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Introduction

In risk studies, engineers may be required to consider the
consequences of an accident resulting in a shock on a building. This
may be, for example, the impact of a vehicle or aircraft, or the effects
of an explosion on an industrial site.

This book combines elements of applied mechanics from which
practical and sometimes simplified methods used in such studies arise.
It is aimed at Master’s students or students of engineering schools
with a fairly general mechanical training. It can also be used by
practicing engineers who wish to enter the field of structural resistance
to accidental mechanical actions. This book is an intermediary
between two types of scientific literature: on the one hand,
bibliographic resources on the areas of mechanics involved in studies
of shocks on structures, i.e. the waves in continuous systems,
behavior of materials, resistance calculations of structures, vibrations,
structural dynamics, etc., and on the other hand, technical manuals
devoted to practical calculation methods and design of structures to
withstand shocks or explosions. These manuals may be technically
very accurate, especially regarding the constructive arrangements. Just
like regulations related to the calculation of reinforced concrete or
metal structures, their effective use requires knowledge of the
theoretical mechanical elements that led to the methods they advocate.
It is also important to have a basic understanding of the physical
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phenomena involved in the predicted accidental events. For example,
concerning the effects of explosions on a building, the engineer
responsible for the structural design must understand the physical
parameters involved in the explosion process, their relationship with
the extreme effect of the explosion, that is the blast wave, and the
manner in which the interaction with a building leads to a dynamic
load on the latter. In this book, the proposed approach is to provide the
elements of fairly general and theoretical mechanics in order to
develop their applications to cases of shocks and impacts. Throughout
the developments, hypotheses and limitations of the models used will
appear. The engineering methods discussed in this book are not based
on the use of important digital codes for structure calculations.

Impact on a building is primarily a local phenomenon that causes
stress and strain in the form of propagating waves in the material. The
movement then extends to the entire structure. Both local and global
phases of the mechanical response have different time characteristics.
This book follows this chronology: Part 1 is devoted to the study of
the dynamics of solids that come into play during the local
phenomena. Part 2 deals with the dynamics of structures in response
to a global impact on a building.

In Part 1, the propagation of movements in a continuous system is
first presented in the context of linear behavior such as elasticity and
viscoelasticity. Shocks on solids induce stress waves, the amplitude of
which is related to impact velocity. These waves propagate and
diffract and are reflected within the solids. The impact velocities
during accidental events are sufficient for the level of stress to exceed
the yield strength of the construction materials. It is then necessary to
understand how the nonlinear aspects of behavior influence the
propagation of stress and strain. A feature of shocks is to provoke
pressure levels much higher than those commonly found in materials
under static loads. The study of behavior, in this case, is quite specific
to the field of shock.

In Part 2, the case of a simple structure (modeled by a mechanical
system with one degree of freedom) is used to introduce the
engineering tools of the shock response spectrum and iso-damage
curves. Two types of short-term dynamic loading are then introduced:
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collisions and explosions. Collisions of structures, or crashes, are
discussed with the aim of clarifying the load imposed on the structure
that is affected. The case of explosions is approached by defining
some basic knowledge of dynamics, which is necessary to understand
the phenomenon. The goal is to achieve the characteristic elements of
dynamic loading that can be imposed on a structure. The basic
construction element is usually a beam. A study on the evolution of
stress and movements in beams during impacts is considered in order
to identify the various possible levels of modeling and their areas of
relevance. To study the overall response, structures of buildings or
industrial buildings can be modeled by mechanical systems with
several degrees of freedom, as it is customary to do in earthquake
studies. The nonlinear behavior phase of structures can be achieved. In
metal or reinforced concrete structures, it is most often through the
formation of plastic hinges that these nonlinearities occur. The
response to the shock of a structure with plastic hinges is considered.

Despite its compact size, this book covers various significant and
representative aspects of problems related to studies on shocks on
buildings. Not all types of materials and structures are covered in this
book, for example composite materials, plates and shells are not
included. Finally, it should be noted that an educational approach
guided the organization of this book.






PART 1

Dynamics of Solids






Chapter 1

Motion within Solids

The concept of stress and strain waves emerges from the equations
of motion in elastic continuum. Uniaxial propagation is particularly
well-studied because of its practical importance. The waves can be
altered within their propagation by dispersion and dissipation. For
viscoelastic solids, we can address the effects of behavior sensitive to
strain in a linear framework.

1.1. Representation of the medium
1.1.1. Framework of continuum mechanics

The problem for the engineer is to describe the position (or
displacement) of solids and fluids. This mechanism is of a
macroscopic scale. On this macroscopic scale, solid or fluid matter
can be seen as continuous, which is not the case at the microscopic
level of particles, molecules and atoms. The macroscopic scale is not
the same for all materials: a fraction of a millimeter for a metal, a few
inches for geomaterials such as rock or concrete.

In this book, we only refer to classical mechanical engineering
knowledge of continuum mechanics and structural strength. This
chapter intends to recall the basics of continuum motion when these
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can be described by linear equations, such as in the context of small
strains and elastic or viscoelastic material behavior.

1.1.2. Representation of motion

The motions in matter are identified in an affine Euclidean space.
A point in matter which occupies position M, at time 0, defined by the
vector X, is in position M, at time ¢, defined by the vector x. A certain
amount of matter that occupies the simply connected domain Q at
time 0, also occupies the simply connected domain €, at time ¢
(Figure 1.1).

OM’=X(X,X,,X;) OM'=x(x.x%.x) U=x-X [LI]

A &

Q,
o/ -
/V
U

M, — u

€

»
>

Figure 1.1. Material field in its initial position and after transformation

The description of these movements can be given from two points
of view: one is called “Lagrangian” and the other is called “Eulerian”.
The Lagrangian description involves following the matter points in
their motion. The current position, or displacement, is expressed
depending on the initial position and ¢, using a continuous vector
function [1.2] that defines the trajectories (this is a bijection of Qg to
Q,, due to the continuity of displacement of the system):

x=p(X.1) [12]

The Eulerian description involves the knowledge of the velocity
field at each moment relative to the current position. The Eulerian
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description of the velocity field involves specifying the velocity of the
particle passing position x at time ¢ [1.3]:

V(x,1) [1.3]

If the Eulerian velocity field does not depend on time, the motion
is stationary. Eulerian representation is mainly used for fluids and
materials undergoing very large strains. In the remaining chapter, we
use the Lagrangian point of view. The strain is characterized by the
Green—Lagrange strain tensor [1.4]:

E 1
= = - [1.4]
E,

In many cases for solids, displacements and strains are very small
(0.001% elongation, for example). A linearization is then performed
by retaining only the first-order infinitesimal. This is called the
linearized strain tensor [1.5]:

1 1
e=5(YU+'VU) & =3(U,;+U) ]

It is this tensor that will be most widely used. Each component has
a simple physical significance: ¢; represents the relative elongation in
direction i. ¢; (i # j) represents the angular distortion relative to the
two directions i and j. The tensor trace, equal to the divergence of
the displacement vector, represents the relative change in volume. The
partition of the strain tensor in its spherical part, which is related to
the change in volume, and its deviatoric part, which is related to the

change of form [1.6], is used:
. 6

O=tracee=divU  e=e-—3

B I [1.6]

& =

WD

§:

3+ o
= 3

1K

G +ey
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1.1.3. Representation of internal forces

In a continuum, internal forces can be represented either by
a scalar field, pressure (p(x,f)), or by a tensorial field, the Cauchy
stress tensor. In an orthonormal frame, this tensor is represented by a
symmetric matrix [1.7]. Figure 1.2 shows a representation of the
components of the stress tensor of a material whose faces are normal
to the reference axes wherein the said tensor is expressed:

011 O12 O3
o(xt)=|0, 0pn 0y [1.7]

O13 033 O3

For solids, it is customary to partition the stress tensor into a so-
called “spherical” or isotropic part, characterized by pressure p, and a
so-called “deviatoric” part [1.8]:

1
=——trace o S=0c+p3
3Aes 27aT P [1.8]

p

The representation of internal forces by pressure concerns, a priori,
non-viscous fluids. However, when shocks occur in solids, the
pressure can become very large and the terms of the deviatoric part
(shear stress) may be negligible compared to the pressure. In these
cases, it is possible to retain only pressure to represent internal forces.
This is a hydrodynamic model of a material.

A

Figure 1.2. Representation of the components of the
Cauchy stress tensor on a piece of material
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Writing the behavior or resistance of a material logically involves
stress tensor invariants. Besides the main constraints (o;, oy, o) that
are the eigenvalues of the matrix representing the stress tensor,
various invariants of this tensor are used:

— The first invariant of the stress tensor, which defines the pressure
[1.9]:

Iy =tracec =0y, =-3p [1.9]

— The second invariant of the deviator tensor, which defines the
von Mises equivalent stress [1.10]:

1 1 3 3
Jy=2 88 =088, aeq:./3J2:\/5§:§:\/§SySU [1.10]

— The third invariant, and the Lode angle y [1.11]:

el

Use of the fundamental principle of mechanics and its application
to the continuum leads to equilibrium equations. We consider a
continuum in a field Q with a density p. We denote volume forces by
f. Then, the equations are as follows:

1/3

33,

Vi [1.11]

13
Jy= :%(O'ij Ok O'ki) cos(3y)=

W=

— with a pressure field [1.12]:

—grad p +£:PQ Pitfi=pUia [1.12]
— or with a stress field [1.13]:

divo+f=pU o, +fi=pU., [1.13]

In general, these equations are insufficient to predict motion across
the field from external forces data. It is necessary to involve a
relationship between the internal forces and the geometric
transformation (strain). This relationship, which cannot be deduced
from the fundamental principles of mechanics, is called behavior. In
this chapter, we consider isotropic linear elasticity and linear
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viscoelasticity. Nonlinear behaviors and their consequences on motion
will be discussed in Chapter 3.

1.2. Elastodynamic equations
1.2.1. Navier equations

To obtain the equations governing motion in a continuum, we must
associate the equilibrium equations and material behavior. Elastic
behavior has been widely studied [ACH 93, GRA 75]. Isotropic linear
elastic behavior is reflected in the equations linking stress to strain.
The stress tensor can be expressed in terms of strain and the strain
tensor can also be expressed in terms of stress [1.14]:

o= itrace( ) S+2u e Oy =A €40y +2ULE;

p=—-K6 §=2Ge S;=2Ge [1.14]
1+v v I+v v
£=Tg—ftmce(0') § SU-:TO'U EO'kk5

A and u are Lamé coefficients, E is the Young modulus and v is the
Poisson coefficient. X is the bulk modulus and G is the shear modulus.
The relationship between these different coefficients is given in [1.15]:

_ H(34+2u) po_ A ke E
A+ u 2(A+u) 3(1-2v)
vE u=G=—2= [1.15]

T(-2v)(1+v)’

An elasticity problem is formulated by combining the fundamental
principle of the mechanics equation and the behavior relationship
[1.16]:

divg+£=pQ 0y, +1i=Uiy
:%(U,.,j+Uj,,.) [1.16]

gzﬂ(trace g)g+2,u£ =A &y +2u g
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The Navier equations are the displacement equations obtained by
eliminating stress and strain. First, we can express stress as a function
of displacement, and thus obtain its gradient [1.17]:

= A(divU)3+u (YU +'VUe oy =AU;;8;+u (U +U,)

[1.17]
diva = (A+ )V (divU)+u AU 0y ;=AU ;+u (

Uij+Uji )

Then, we can obtain the equations governing the motion of an
elastic continuum, involving only the displacement field. Two vector
equations are possible, using either the Laplacian or the curve of the
displacement field [1.18]:

pAU+(A+u)V(divU)+f=pU  (uU; ;i +(A+0)U; i+ f; =U;y )

1.18
(A+24) V(o) ror (o1 U) + f = U 1%

By deriving and summing equations [1.18], a scalar equation
governing volume variations is obtained. This is the expansion
equation [1.19]:

(A+2u) A(divU) +div [ = pdivU  (A+2u) U, j + fi; = pU;; [1.19]

1.2.2. Strain waves

1.2.2.1. Helmholtz decomposition

The Helmholtz decomposition theorem states that any vector field,
differentiable twice, can be written in a unique manner as the sum of a
gradient field and a rotational field [1.20]:

U =vo

U =rot¥

[
1<

[1.20]

3 U” and U U=U"+U® {

The field U s the primary irrotational field [1.21]:

rotU" =rot (V) =0 [1.21]
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The field QS 1s the second field, which is said to be solenoid, and
corresponds to motion that does not cause changes in volume [1.22]:

divU® =div(rot¥)=0 [1.22]

1.2.2.2. P-waves

If we only consider the primary field, the equation of motion is
written as [1.23]:

(A+2u) V(div QP)=pQP [1.23]

This is a propagation equation. This primary field corresponds to
the propagation of P-waves [1.24]:

auvt=—L__¢g" uyr -—P__yr 1.24
- (A+2u)— S (Aw2u) M [1.24]

The propagation velocity of these P-waves is C,, [1.25]:

~ [(A+2u) _ E(1-v)
Cr= P \/p(l—2v)(1+v) [1.25]

Motions of P-wave propagation are extensions and compressions.

1.2.2.3. S-waves

If we only consider the secondary field, the equation of motion is
written as [1.26]:

.. S
pAUS =pU°  pUS,=pUS, [1.26]

This is also a propagation equation. The propagation of this
secondary field corresponds to S-waves, with a propagation velocity
G, [1.27]:



Motion within Solids 11

= |4 - | £ [1.27]

YA p 2p(1+v)

The propagation of S-waves corresponds to shear movements
without volume change. In an elastic system, the velocity ratio of P-
and S-waves depends only on the Poisson coefficient [1.28]:

2
C _
Sp| _At2u_,1-v [1.28]
C U 1-2v

N

1.2.2.4. Plane waves

If the displacement depends on only one variable in space (U(x)),
the motion is that of plane waves. Propagation is in one direction. The
equations governing the motion are [1.29]:

U, 1

ox - Cp’ :

azUj :LZU'2 [1.29]
dx;” Cg

Uy _ 1

ox _CS2 ’

The longitudinal components of displacement, along the axis of
propagation, correspond to P-waves and thus propagate at velocity Cp.
The transversal displacements, orthogonal to the direction of
propagation, correspond to S-waves at velocity Cs. Figure 1.3 gives an
illustration of the movements associated with these strain waves.

Extension Compression

[————3 T

Figure 1.3. Movements and strains associated with
P-waves (left) and S-waves (right)
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1.2.2.5. P-waves in spherical symmetry

Consider a pressure wave emitted from a point within a large solid.
This could represent the effect of an underground explosion. We
naturally take the spherical coordinates, because the movement
follows the symmetry [1.30]:

U,=u(r)
ulu,=0 [1.30]
U,=0

The propagation equation in the radial direction is then [1.31]:

2
Au—( P ja—“—o [1.31]

A+2u )92
This equation can also be written as [1.32]:

2 2
19 (’2“)_%3_;‘:0 [1.32]
roor Cp~ ot

If we insert z = ru, the equation takes the form [1.33]:

0%z 1 9’z

Z s T 1.33
ot Cpt ot 133

With this change of variable, we see that the propagation occurs at
P-wave velocity and the range of motion decreases in proportion to
1/r.

1.3. One-dimensional waves

1.3.1. Uniaxial stress state

Uniaxial stress state is an approximation that is made when the
considered solid is of slender shape (wire or bar undergoing tension or
compression). The solid is then represented geometrically by a straight
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line, and the displacement field depends only on the abscissa along the
line (Figure 1.4). Stress and strain tensors at a point then take a
simplified form [1.34]:

g 0 0 o 00
£E=10 & 0 =0 0 0 [1.34]
0 0 & 0 00

The equations of motion take the form of system [1.35] (note that,
for the ease of writing, x; =x o0;=0 g&=€ U =U):

do U U
gy _ = 1.35
dx P It € dx o'(g) [ ]

In the case of a linear elastic medium, the propagation equation is
[1.36]:

2 2
U _19U_o where ¢, = F [1.36]
&x CO 0—)t P

C, is the wave velocity in uniaxial stress state.

1.3.2. Uniaxial strain state

Uniaxial strain state corresponds to a situation where movement is
in one direction only (axial). There is no radial strain (Figure 1.4).
This may correspond to strain on the area near the impact in a solid.
There exists a test called “impact plate” where a material is tested in a
state of stress. Stress and strain tensors at a point then take a
simplified form [1.37]:

g 00 oo 0 0
€=10 00 =0 o, 0 [1.37]
0 0 0 0 0 oy
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Elastic behavior gives the relationship between the axial stress and
radial stress [1.38]:

14 E(1-v)
0y =—0] o =(A+2u)geg=——7—"—¢ 1.38
2 (I—V) 1 1 ( lu) 1 (1_2V)(1+V) 1 [ ]
The propagation equation is [1.39]:
2 2
U 1 U_O [1.39]

02 2o

Compression motion in a uniaxial strain state corresponds to
P-waves.

a,(x)
..................... 222
:: | :: € :: :: e,
— «— — «—
—> 4+ —> +—
Ul(xl) O’,(x|+dx1) gl(xl) ** $+ O'I(x|+dxl)
dx1 dxl
+—>
a) b)

Figure 1.4. Volume element in a state of uniaxial stress a),
or in a state of uniaxial strain b)

Table 1.1 presents the values of elastic properties, and uniaxial
compression waves and P-waves propagation velocities for common
building materials.
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p (kgm’)  E(GPa) v Co (m/s) Cp (m/s)
Steel 7,870 210 0.3 5,160 5,990
Concrete 2,200 20 0.2 3,010 3,170
Glass 2,500 69 0.18 5,250 5,470
Wood* 500 10 0.35 4,470 5,660
Brick 1,800 14 0.2 2,790 2,940

* Average characteristics of glulam.

Table 1.1. Elastic characteristics of some building materials and velocity values for
waves in uniaxial stress state and uniaxial strain state

1.3.3. The d’Alembert solution

There are several ways of explaining the wave equation solutions
that we have just seen. The propagation equation of type [1.36] or
[1.39] can also be written as [1.40] (note the speed C):

J 1212 . 17, [1.40]
dx Cdt)\dx Cdt
It is possible to make the following change in variables [1.41]:
X X
U(&,c), E=t—— and ¢=t+— 1.41
(6¢). §=t-Z and g=r+—- [1.41]

In this case, equation [1.40] leads to [1.42]:

2
27U —0 [1.42]
dédg

The solution can be written as the sum of two functions of one
variable:

U($.)=F(5)+G(s), U(x,f)=f(t—%)+g(t+%j [1.43]
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Functions f'and g are determined by the initial conditions. Figure 1.5
shows strain fields at two instants if the motion is described by a
function of type f. This function is called a progressive wave, as it
describes a displacement field or strain, which moves in a positive
direction at speed C. A type function g is called a regressive wave,
because it corresponds to a field that moves in the negative direction.

4 Ukp)

Y=

Car

Ufx, 1+40) < >

/ X
fod
P

Figure 1.5. Example of a displacement field at two instances separated by At, for a
progressive wave represented by an f (t — x/C) function

J

This form of writing can be used for spherical P-waves. A wave
that corresponds to a movement from the origin of the coordinate can
be written as [1.44]:

u(r,t)z%f(t—Cij [1.44]

1.4. Harmonic waves

1.4.1. Definitions

Propagation equation solutions can also be sought in harmonic
form. That is, the functions f and g from the previous section are
written as sums of harmonic functions [1.45]:

U(x,t)=A cos (kx—t)= Acosk(x—Ct) or

U(xr)=4 Ke(¢) [1.45]
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A number of variables associated with the propagation of the
harmonic wave are defined as follows:

— phase (kx—wt);

— phase velocity C =% ;
2
—wavelength A= 77[ ;
1
—number of waves n = 1

Generally, any function can be represented as a sum of harmonic
functions via the Fourier transformation [1.46]:

U(x,f) = i [Tv' e an [1.46]

The previously seen unidirectional waves can be written as the sum
of harmonic waves. Another example for writing waves in this form is
that of Rayleigh waves (Figure 1.6). These waves correspond to
vertical surface motion. The motion is sinusoidal at the surface and
absorbed exponentially with depth [1.47]:

U, :Ae—x2+ik(xl—CRt)

—x,+ik(x,—Cyt)

U| U, =Be
U3 :0

[1.47]

The speed of Rayleigh waves is calculated by expressing stress
conditions on the surface as zero. This leads to equation [1.48]. The
Rayleigh wave speed is slightly less than that of S-waves:

2
C? C? C?
2Kl -4 1-E11-—£1-0
c? C? c?

Cr  0862+114v
CS 1+v

0,862 < C—R < 0,955

Co [1.48]
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[————

Figure 1.6. Motion and strains associated with Rayleigh waves

1.4.2. Wave dispersion

When expressed as the superposition of harmonic waves, it is
possible that phase velocity is constant (as in the examples we have
just seen) or that it depends on wavelength or pulse. The dispersion
relation is the function that connects phase velocity to wavelength or
pulse (C(w) or C(4) or k(w)). The wave is then formulated according
to expression [1.49]:

U(x,t)=$j_+:U*(x,w)e*"“”dw U'(x,0)=W" ()" [1.49]

If the phase velocity is not constant, independent of pulse or
wavelength, a movement propagates by “deforming” itself because all
its harmonic components do not propagate at the same speed. This is
called dispersion. As previously seen in uniaxial plane waves, there is
no dispersion because wave velocity is constant. For uniaxial stress
waves, we get the dispersion equation by introducing the harmonic
solution [1.45] into the equation of motion [1.36]. Then, we obtain
equation [1.50], which shows that the phase velocity is constant:

Ek*-pa*=0 C===|= [1.50]

The dispersion phenomenon occurs when movements are the
solutions of equations that are a little more complex than those we
have already seen. These situations occur when the motion in certain
solids is studied. In Chapter 8, we will see the case of beam flexion.
An interesting case, important for its practical application, is the case
of strain waves in rods.
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1.4.3. Dispersion of waves in a rod

The strain wave rod model, previously seen with the uniaxial stress
state hypothesis, is an approximation to the motion occurring in an
actual rod. In practice, this model is widely used. The description of
motion can be improved by taking into account the radial strain that
occurs under the Poisson effect [BAN 41, MIN 60]. A first approach
is, quite simply, the “Love-Rayleigh” wave. A detailed study of waves
in rods was given by Pochhammer [POC 76] and Chree [CHR &9].
These descriptions lead to dispersed waves (Figure 1.7).

T L,

I l
R A z

\ 4

Figure 1.7. Modifying the shape of a wave by dispersion effect.
Example of two-point strain measurements, due to the
propagation of a pressure wave in a rod of radius R

1.4.3.1. The “Love-Rayleigh” solution

The idea is to take lateral movement into account by considering
its contribution in the expression of kinetic energy. To do this, a
hypothesis on the velocity field is made [1.51]. A radial displacement
is associated with axial strain (along z), proportional to the radius:

U, (r,z,t) N
U(X.0)=U(r0.2,0)=|Up=0 | U,=-vr aU [151]
U.(z.1) :

The kinetic energy of a rod section of unit length dz can be
calculated by expression [1.52]:

R 2 2
1 U 1 2 U
E ==|2 r | rdr+—prR?| 1.52

¢ 2-0[ ”’0[ atjr”zp” [azj [1.52]
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Taking the above kinetic hypothesis into account, we eliminate
radial displacement of the expression and obtain the expression of
energy [1.53]:

27\ 2
=_I2ﬂpv (a UZJ I’3dr+%pﬂ'R2(aUzj [1.53]

dzd ot

Integration gives expression [1.54]:

1 2u. ) 1 oU. Y
E = 2R? 2| +—prR*| == 1.54
TR [azaIJ P [azj 24

The kinetic energy theorem indicates that the power of the forces
applied to the element is equal to the kinetic energy time derivative.
The power of the forces on a single slice is expressed as [1.55]:

L2000 _ o 0*U., U,

11, = /4 1.55
Jdz ot 822 ot [ ]
The kinetic energy time derivative is expressed as [1.56]:
E 2 3 2
d C=lﬂ_ V2R 40U, U 9U; ERZBUZE)UZ [156]

3 2PV R e TP S o

Expression of the first term is changed by noting that we can
consider relationship [1.57]:

0°U. o°U. J-83U ’U. 0’U. o'U

Iz + Zdz 1.57
020t 9zot> 0220t azat 020t 9z%0t? [ ]

Integration by parts of the last term of expression [1.57] leads to
equation [1.58]:

9*U, 2°U, _9U, da'U,
0zt 92012 Ot 92297

[1.58]
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Taking this result into account, application of the kinetic energy
theorem leads to the equation of motion [1.59]:

pviR? ', U, EE)ZUZ

2 9z%0f? P ot’ 02>

[1.59]

The equation of wave dispersion associated with this equation of
motion takes the form [1.60]:

252
R
%kzaf + pat = EK [1.60]
With this modeling, there is wave dispersion, since speed depends

on the number of waves according to formula [1.61]:

CO
V2 RK?
2

C= [1.61]

1+

The change in velocity as a function of wave number is shown in
Figure 1.7.

1.4.3.2. The Pochhammer and Chree solution

A solution of the Navier equation in a cylindrical domain of radius
R was obtained by Pochhammer and Chree. The solution is sought as
a sum of harmonics according to [1.49], but in three-dimensional
space, taking into account the symmetry of revolution [1.62]. This is
done using the Fourier transformation (denoted by *):

1 Foo * i * ® .
UX,n= 2—] U (rzw)edo U (rz,0)=W (r,w)e""" [1.62]
T

The elastic behavior can be expressed in the frequency domain
[1.63]:

o (@)= tr(e ()]1+24 £ (w) [1.63]



22 Materials and Structures under Shock and Impact
The equation of motion becomes [1.64]:
HAU *+(A+p)V (divU ) + f =—pe* U * [1.64]

The Helmholtz decomposition is used [1.65]:

U'(X.0) = V0" (X.0)+rot¥ (X.0) [1.65]
This decomposition leads to two propagation equations [1.66]:

V2¢*(£,w)+ﬂz¢*(g,w)=o and
¢ [1.66]

2
Vzﬁ*(z,w>+%ﬁ*(z,w)=o

2

The “potential” functions are logically formulated using a
cylindrical coordinate system [1.67]:

D' (X.0) = o(r,6,0) "
¥ (X.0) =, (r.0,0)e, +y, (0,0, +y (r0.0¢ ) [1:67]

Given the symmetry of the revolution problem, it is possible to
simplify these expressions and write the potentials as [1.68]:

D' (X.0) = p(r, @)™

¥ (X =y (o), L1.65]
Taking the limiting factors into account (zero stress on the

cylindrical surface of rod » = R), the resolution leads to writing the

analytical expression of these functions as [1.69]:
' (X.0) = A(@)J(ar)e" CA+2u
. % Where [1.69]
¥ (X.0)=B(w)J,(fr)e
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Jo and J, are Bessel functions of order 0 and 1. By introducing the
displacement field obtained from these functions into the Navier

equation, we obtain the dispersion equation [1.70]:
(a/ R)(S* +k*)J (.R)J,(B.R) [1.70]
—(B =Kk J,(a.R)J(BR) —4k’afJ(a.R)J,(BR)=0

Figure 1.8 shows the variation in wave speed depending on wave
number and radius of the rod.

~ Strain

02
Time
o

kR

v

— — = Love Rayleigh = Pochhammer Chree

a) b)

Figure 1.8. a) Change in wave speed in a rod of radius R, according to the
parameter kR, for the Love-Rayleigh model (dotted line) and for the Pochhammer
Chree model (solid line); b) mapping the effect of dispersion on a strain wave that

was originally a discontinuity

Figure 1.8(b) shows, qualitatively, the effect of this dispersion. If
the temporal evolution of strain at the end of a bar, subsequent to a
shock, is represented by a discontinuity (dashed line). The temporal
evolution of strain at another point, far from the end, is shown by the
solid line.

1.5. Viscoelasticity

1.5.1. Representation of rheological behavior

1.5.1.1. Representation and models

When considering the problem of dynamics of solids, it is logical
to question the possible dependence of the material behavior in
physical time, through rate of strain. In this section, we discuss some
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ways to take this effect into account when it exists. Linear behavior is
developed using models and common tools. An application will be
made in order to acquire equations of motion for viscoelastic bodies.
Nonlinear effects will be discussed in Chapter 3. The functional
representation of behavior is the most general way to express stress as
a function of strain and the history of the material [1.71]. We can
obviously express strain based on the history of stress using the
inverse function:

a(t)=R(e(7))  e(0)=R"(a(r)) releer]  [171]

Each variable is determined by its value at an initial time and the
loading history between the initial time and time ¢. The material
“remembers” all the stresses that have been imposed on it in the past.
This memory may be tempered by progressive “oversight”, meaning
that stress o(7) has increasingly less influence on the current strain as
T gets further away from ¢. The formula should respect the principle of
non-duality (or causality). That is, the stress at a given time may
depend on the rate of strain at the same time. However, the strain at a
given time may not depend on the stress rate at the same time. Thus,
we find that a discontinuity in the rate of strain can cause a
discontinuity in stress, but a discontinuity in the rate of stress cannot
cause a discontinuity in strain. In practice, a functional representation
of this is difficult because of the need to remember strain history.
Attempts have been made to replace strain history by taking into
account stress and strain derivative values at a considered time
(differential equations and rheological models), or internal variables
(variables of state). One idea is to write stress as a function of strain
and its derivatives. Unfortunately, this does not describe some
rheological aspects. More generally, it is possible to write an equation
linking stress, strain and their derivatives [1.72]. This formula is less
stringent than the functional formula and not all equations are able to
represent a behavior:

L(o,0,..,6,¢,.)=0 [1.72]
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1.5.1.2. Construction of rheological models

In rheological models, the material is compared to an assembly of
simple mechanical elements [PER 69]. These analogous elements are
only symbols and are unrelated to the constitution of the material.
Figure 1.9 shows three typical rheological models to represent
viscoelasticity. The purpose is to describe a phenomenological
behavior by the construction of its thermodynamically relevant model.
The mechanical elements may be translated by linear or nonlinear
relationships. When behavior is linear, it is often useful to replace the
functions of time (stress and strain) by their operational images using
the  Laplace—Carson  transformation. = The  Laplace—Carson
transformation is very similar to the Laplace transformation. The
image of a function f{¢) is the Laplace transformation of the time
derivative thereof [1.73]. It will be denoted by fip) (p complex):

F(p)=p[ e f(t)dt [1.73]

0

This transformation has the same properties as the Laplace
transformation. The Heaviside function, which is often used in
rheology, has the operational image of the unit.

E E,
n 7

Kelvin Voigt Maxwell Standard linear solid

Figure 1.9. Representation of three classical rheological models

1.5.2. Creep and relaxation functions

1.5.2.1. Formulation

The creep function f{r) is the strain response of a solicitation
represented by a stress slot [1.74]:

f(t)=¢€(t) if o(t)=H(1) [1.74]
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With operational images, creep function is expressed as a ratio [1.75]:

7(p)=22) [1.75]

Behavior can be obtained from the creep function. We obtain the
Boltzmann equations [1.76] (square brackets indicate discontinuity):

el)=0(0)7()+ [, 1(1-2) 2 ke X 161 )lo ()] (1.76]

e()=0()f O+ [[ole~) - ehr+ D 111 llote)]

The relaxation function r(¢) is the stress response to a solicitation
represented by a strain slot [1.77]:

r(t)=0o(t) if €(t)=H(¢) [1.77]

The operational image of the relaxation function is expressed by
the ratio [1.78]:

()= a(p) [1.78]

Use of the relaxation function is symmetrical to that of the creep
function, and we obtain the behavioral relationships [1.79]:

o(1)=£(0)0)+ [ rle=0) % ez + 3l el
4 = [1.79]
()=l (0)+ [ ele-2) L e+ 3 rle1 el

1.5.2.2. Three-dimensional aspect

In the case of isotropy, the definition of relaxation (or creep)
involves only two independent scalar functions. Relaxation is written
as [1.80]:

1

(1) = A()(mraceg )1+2u(t)e, if ()=¢, H(1) [1.80]
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— 24(?) is the relaxation function in simple shear;
— M#)+2u(?) is the relaxation function in simple extension.

Therefore, it returns to loading, regardless of formula [1.81]:
o(t)= l(t)(traceg(O)) S+2u(t) £(0)
i dA du
. IO(E(z— )(1race((2))3+ 294 (-« )g(z‘)jdr

dr

[1.81]

This equation is much simpler when written in operational form
[1.82]:

gz/T(trace 5) 1+2u

[l

[1.82]

Independent creep functions are also two in number and we can
write the inverse relationship [1.83]:

Eg=(1+7V) G-V trace(G) | [1.83]

Since the definition of behavior requires data from two relaxation
(or creep) functions, we can use the following two functions:

— K(¢) relaxation function under isotropic (hydrostatic) load;
— ((¢) relaxation function under split load.

The spherical part and the deviatoric part of behavior are then
separately identified. K and G functions can be from different
rheological models [1.84]. Generally, spherical behavior is solid-like,
while deviatoric behavior can be fluid-like:

p=3K8 o p=36(0 +3f 7)dr (6=tracee)
[1.84]

5=2G8 o sii=2ey~(0)G(t)+2J.0d—T(t—z')el-]-(T)dT
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1.5.3. Rheological models

1.5.3.1. Kelvin—Voigt model

This model is obtained by connecting a spring and a shock
absorber in parallel (Figure 1.9). The differential equation of behavior
and its operational image are immediate [1.85]:

o(t)=Ee(t)+né(t) and G (p)=(E+pn)&(p) [1.85]

It is easy to solve this equation to express strain as a function of
stress [1.86]:

g(t) =g, e_%(t_to) +1J-t e_%(t_r)g(f)df [186]

In the simple model, the creep function is obtained from its
operational image. A characteristic creep time T appears [1.87]:

Fpy=fw)_ 1
/@ o(p) E+np
f(t)zE[l—e_;J where T=% [1.87]

We can build a generalized model with multiple creep times,
which is to imagine putting several simple Kelvin—Voigt models in
series, with different characteristics (£, 77;). The creep function can be
written as [1.88]:

=1 o0 i

1 &1 A . 7,
§i0)! £ +2E [1 e ]+ with 7, - [1.88]
The first term exists if there is a spring without a shock absorber in
series, and the last term is present if there is a shock absorber without
a spring in series (in the latter case, we get fluid-like behavior). This
model is characterized by a spectrum of E; stiffness values associated
with characteristic times 7. A more general model can be considered
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using a continuous distribution of stiffness versus creep time /(7). The
creep function takes the form [1.89]:

f(t)=ELO+J:mj(T)[l—e_;] arr+ﬂi°° [1.89]

The function j(7) can be deduced from the experimental measure of

fib).

1.5.3.2. Maxwell model

This model is obtained by connecting a spring and a shock
absorber in series (Figure 1.9). The strains of the spring and shock
absorber are added. The behavior is formulated as [1.90]:

. 1. 1 _ p 1)\_
E(t)==0(t)+—0o(¢ £ =|=+—|0 1.90
O=gorio)  re(=(2+lotr) 10
It is also easy to solve and express strain depending on stress and
stress as a function of strain [1.91]:

(t)=¢, +%(0'(t) -0,) +%J: o(r)dr

E(f—t Y —E(t-7
o(t)=(0, ~ Ee,) e ™ L[ g (7)ar [1.91]
n o

The relaxation function is useful to describe the simple model [1.92]:

1

-\ 1 - _n
I’(p)—1 ] = r(t)=Ee avec T—E [1.92]

7+7
E np
Let us consider placing several simple models with different

features in parallel. We then get a stiffness spectrum based on
relaxation time. The relaxation function takes the form [1.93]:

rO)=E.+> Ee © [1.93]
i=1
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The first term exists if we place a spring alone in parallel (we
obtain solid-like behavior). A generalization of the model is obtained
by considering a stiffness density continuous distribution as a function
of relaxation time [1.94]:

rit)=E_+ J.Omg(r)e_%dr [1.94]

1.5.3.3. Standard linear model

This rather general model is also called the Zener model
(Figure 1.9). The behavior is written as [1.95]:

(El +E, +p77)5(p)= E, (Ez +p7])§(p)

o()+—1 (1) =Bk (e(t)+Elé(t)] [1.95]

E+FE, E+E,

This differential equation is often written as [1.96]:
o(t)+ac(t)=E(e(t)+bé(t)) [1.96]

But it only represents a behavior under the conditions E, a, b > 0
and a <b.

A more general linear model is represented by the linear
differential equation [1.97] (with some restrictions linked to the
causality condition):

L(0)=L(¢) & ao+a0+..a0".=Ee+Eé+..Ee”.. [1.97]
The behavior can be written in operational form [1.98]:
a(p) 6(p)=E(p) E(p) [1.98]

As a(p) and E(p) are polynomials, we can decompose the relaxation
and creep functions into simple elements [1.99]:
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E n
=28 g SRy
a(p) = p—
1
- alp) 1 &1 7 1
f(p)=—"=—+) ——+—— [1.99]
E(p) E, ;Efpﬂ .

i

Returning to the original formulas, it can be noted that an
equivalence exists between this model and that of the generalized
Kelvin—Voigt and generalized Maxwell models.

1.5.4. Complex modulus

With linear behavior, if the stress is periodic, the response is also
periodic. If the strain is harmonic, the Fourier transformation [1.100]
is used:

_ * * _ —iwt —*= p
e(t)=Fe(e'(t)) £ (1)=¢ge e [1.100]

If the material is a viscoelastic solid, the response is [1.101]:

2

EP S g p [1.101]
p+;}(p—iw)

J

This expression can easily be developed into rational fractions
[1.102]:

1
s 7 (io) p 3 [1+ian'j }P
YE~—4— [1.102]
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We then return to the original function [1.103]:

o (t)=r(iw) &, e +502E (

J=1

1+iwr,

] o [1.103]

The second term represents the transitional state that tends toward
0. Steady state is represented by [1.104]:

o (t)=0,e”  where o,=r(iw)e, [1.104]

The (i) function is the complex modulus £". It can be written as
[1.105]:

E (0)=E(w)e ™ [1.105]

Using harmonic tests and a frequency sweep, we can access curves
representing the modulus and the complex modulus phase
experimentally. We can also define the dynamic modulus £g4 and the

loss factor Sas [1.106]:
E'(0)=E,(0)(1+iB(w)) [1.106]

For the three models described above, the complex modulus
parameters can be explained:

— Kelvin—Voigt model [1.107]:

E=E p=1% [1.107]
E
— Maxwell model [1.108]:
E=—2ft _ p=E [1.108]
+(E/nw) no

— Standard linear model [1.109]:

:E1<E2(E1+E2)+772a)2) B NwkE, [1.109]
(E +E, )2 +n'a’ E,(E +E)+n’e’ '
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1.5.5. Waves in viscoelastic media

1.5.5.1. Propagation equation

As we formulated motion in a continuous elastic medium in section
1.2, we can formulate and study motion in a continuous viscoelastic
medium [SCH 63, BLA 93]. Generally, we obtain an equation of
motion by linking the viscoelastic behavior equation with the
dynamics equation [1.110]:

9o W de odo U oU
p “or o ox Por ox [ ]

i=1

By eliminating the stress and strain variables, the equation of
motion is a differential equation of partial displacement derivatives
[1.111]:

n ai+2U n ai+2U
Z;Eimzp;ai e [1.111]

It is also possible to express the differential equation as a function
of stress [1.112]:

n ai+20_ n ai+20_

i=1 i=1

For the Kelvin—Voigt behavior model, the equations of motion are
written as [1.113]:

BZUH7 AU U and E820-+77 d’c  do
o Tovor Por o Tovar Par

[1.113]

For the Maxwell behavior model, the equations of motion are
written as [1.113]:

U _pd'U pdU d 820'238_0'_'_382_0'

= 1.114
ovor nor £or ™ v na TEae UMY
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The equations of motion can be addressed in operational form
(using the Laplace transformation). The equation of behavior is
written as [1.115]:

Y s'a,6=)sEE &=E(s)E E(s)=§il_ff [1.115]

The dynamics principle is written as [1.116]:

8—5-=ps2(7 [1.116]
ox

We deduce the equation of motion image [1.117]:

= U [1.117]

The general solution of this equation is, in its operational form
[1.118]:

—SX i X i
U(x,5)=A(s)e \/;+B(s)e e [1.118]

In Chapter 2, we will see some solutions for movement in
viscoelastic solids in case of shocks. The viscoelastic properties of a
material are often determined by a complex modulus; we may use a
Fourier transformation of the equation of motion. Behavior and the
dynamics equation can be written using expressions [1.119]:

o*=E*(w)e* =—pw’U* [1.119]

ox

Thus, the equation of motion is [1.120]:

a(;Uz*:—E‘fk‘("2)U* [1.120]
X w
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1.5.5.2. Dispersion equation

In viscoelastic media, movement expressed in harmonic form must
contain a dissipation term, and in the frequency domain, an
elementary wave is formulated according to [1.121]:

U*(x,0)= A4 [1.121]
The dispersion equation, in complex form, is written as [1.122]:

E*(a+ik)' Ut=—pa*U* [1.122]
This complex equation can also be written as a function of the

dynamic modulus and loss factor [1.123]. This corresponds to two real
equations [1.124]:

E,(1+ip)(a+ik) =-pa’ [1.123]

E, (k2 -’ +2ﬂak)=pa)2

1.124
,B(kz—az)—Zakzo | :

The general solutions to these equations are [1.125]:

k:w\/z ”—\'”fz a:ﬁwJZ ! [1.125]
EN\ 2(1+4) E, 2(1+ﬂ2)(1+\/1+ﬂ2)

For the Kelvin—Voigt model, the dynamic modulus and loss factor
are expressions [1.126]. This leads to the dispersion and dissipation
relationships [1.127]:

_ _ho
E=E  p=" [1.126]
C_|2+p) 492G _ B [1.127]

C 141+ 5° w \/2(1+/32)(1+W)
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For the Maxwell model, the dynamic modulus and loss factor are
expressions [1.128]. This leads to the dispersion and dissipation
relationships [1.129]:

E E
E,=——— p=— [1.128]
1+(E/nw) no

4= _ s [1.129]

@ _\/2(1+W)

Figures 1.10 and 1.11 show the speed of waves and the absorption
parameter 4 as a function of dimensionless pulse for Kelvin—Voigt
and Maxwell models.

100

Kelvin Voigt

C/Co

== Maxwell

o.01 01 1 10 100

Figure 1.10. Wave velocity as a function of dimensionless pulse (y =n@/E )
for the Kelvin—Voigt model and the Maxwell model

Kelvin Voigt

— - — - Maxwell

0.01

0.001
o.01 o1 1 10 100

y

Figure 1.11. Absorption parameter A as a function of dimensionless pulse
(y =no/E ) for the Kelvin—Voigt model and the Maxwell model



Chapter 2

Shocks in Solids

In Chapter 1, it was shown that transitional movements in solids
can be represented by waves. When shocks occur in solids, in theory,
these waves have a discontinued waveform. Therefore, it is necessary,
in the first instance, to specify the equations governing the motion
associated with these discontinuity waves. The application of elastic
solids will be made, which leads to practical methods of evaluating
stresses caused by shocks. To conclude, we will show how the
presence of linear viscosity behavior of a material modifies the effects
of a shock.

2.1. Discontinuity of stress and velocity
2.1.1. Conservation equations

2.1.1.1. Propagation of a discontinuity

In continuum mechanics, stress discontinuity is non-stationary and
must be associated with velocity discontinuity. It is interesting to
consider the physical relationships governing the states of the material
when passing a discontinuity front of fixed propagation direction, as
shown in Figure 2.1. The material undergoes uniaxial strain. The
medium is characterized by its state at a given time (density, stress
and velocity). We will consider two states: before (indexed 0) and
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after (without index) passage of the discontinuity front. D is the
propagation velocity of the discontinuity surface (according to
propagation direction e;) and V' is the particulate or material velocity
in the same direction. The scalar stress noted here is the normal stress
on a normal facet in the direction of propagation (o, if the
propagation direction is e;). Similarly, the scalar strain used
subsequently is the relative elongation in the direction of propagation

(8]1).

The three principles of conservation of mass, momentum and
energy will introduce relationships that link state of matter parameters
to the discontinuity front (regardless of the behavior of the material).

k po¥ P03V,
VAt Vot
+At pov Py0,V,
: DA

Figure 2.1. Propagation of the velocity and stress discontinuity
(index 0 affects the characteristics of the medium before passing the
discontinuity front). The shaded area corresponds to an elementary mass

2.1.1.2. Conservation of mass

Conservation equations are acquired by considering the motion
between two instances of passage of the discontinuity front (strains
and stresses of compression are positively noted). We consider a
“tube” section unit (Figure 2.1). During the interval Az, the stress jump
has advanced by DAt. The material occupying volume (D — Vo)At at
time ¢, occupies volume (D — V)Ar at time ¢ + Af (this volume
corresponds to the shaded area in Figure 2.1). Then, the equation of
conservation of mass is [2.1]:
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p(D-V)=p,(D-V,) [2.1]

At the passage of the wave, longitudinal strain in the direction of
wave propagation is [2.2]:

=ﬂ=1_& [2.2]
D=V, P

0

2.1.1.3. Conservation of momentum

The same amount of material has a momentum of pyVo(D — V}) at
time ¢ and a momentum of pV(D — V) at time ¢ + At. The change in
momentum corresponds to the applied forces: o— 0y. The equation of
conservation of momentum is [2.3]:

O-_O-OZPV(D_V)_poVo(D_Vo) [2.3]

Given the equation of conservation of mass, this equation can also
use the expression :

o—0,=p(V =V, )(D=V)=p,(V =V, )(D-V,) [2.4]

2.1.1.4. Conservation of energy

Total energy is the sum of mass internal energy e and kinetic
energy. Variations in the elementary volume energy over time (shaded
area in Figure 2.1) are due to the power generated by the applied
forces. This leads to the conservation formula [2.5]:

p[e+%2J(D—V)—po[eo+%j(D—VO)=O'V—O'OVO [2.5]

The variation of internal energy at the passage of the stress jump is
expressed by formula [2.6]:

oV -oV,

2.6
po(D_Vo) 2]

e—e, :—(V2 —V02)+
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This formula can be expressed differently, taking into account the
relationships for conservation of mass [2.1] and momentum [2.3]:

(%)

) 2.7
po(D_Vo) 27

e—e, =%(O‘+O‘0)

Taking into account relationship [2.2], we obtain the most common
formula for internal energy variation at the jump discontinuity:

e—ep :%(amo){pio—%] [2.8]

2.1.2. State diagram

Equations in the previous section provide the relationships between
state parameters before and after the passage of the wave. It is possible
to represent the state of matter in a diagram, retaining state parameters
for particle or material velocity and stress. If the material behavior is
elastic, the speed of the wave is known (D = C) and the relationship of
conservation of momentum [2.3] is written, for a material initially at
rest, as [2.9]. Quantity Z is the impedance:

Ao =p,C AV (Z=p,C) [2.9]

There is a good reason to specify the configuration of the strain in
the medium, as discussed in section 1.3. In uniaxial stress state,
impedance will have the speed C. In uniaxial strain state, impedance
will have the wave velocity P, Cp [2.10]:

"olD" Z=p,C,=+pE

— 2.10
"elD" Z=p,Cp= _AE0Y) (210
(1-2v)(1+v)

Figure 2.2 shows a state of matter diagram. For an elastic material,
initially at rest, the point corresponding to the state after the passage
of a jump is located at (A), with a slope Z, in accordance with
equation [2.9]. If at state (A) another wave passes, the point
representing the state after the passage will be located at another point.
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If we imagine a reference centered on (A), this point will be located
on a straight line passing through (A) of slope =7 [2.11]:

+tAo=+Z AV [2.11]

Figure 2.2 and Table 2.1 show the four possible situations and four
directions in which point B can be searched, depending on the type of
wave that is propagated. Using notations mentioned in Chapter 1,
when we formulate waves using the d’Alembert solution, the waves
propagating in the positive direction of the axis are known as
“progressive waves” and are represented by a function f (¢ — x/C).
Waves propagating in the negative direction of the axis are called
“retrogressive” and are represented by a function g (¢ —x/C). If
compressive stress increases when a wave passes, it is a compression
wave. If compressive stress decreases when a wave passes, it is an
expansion wave.

@ 0]
F 3
o
A
@ @
3 VAo E %
o L .

Figure 2.2. “Stress-particle velocity” diagram; point A represents the state
of matter and the arrows indicate the four possible evolutions of this
state at the passage of a discontinuity wave

Progressive wave Retrogressive wave

f(t=x/C) g(t+x/C)

Ao=ZAV Ao=—ZAV
Compression (1) Ac>0 AV>0 (2) Ac>0 AV <0
Expansion (3) Ao<0 AV <0 (4) Ac<0 AV>0

Table 2.1. The four possible situations for the passage of a discontinuity wave
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2.2. Wave course
2.2.1. Lagrange diagram

The Lagrange representation has the goal of visualizing the “course
diagram” of waves in a plane with two axes: space and time. The ideal
wave that we represent is characterized by a steep jump in the strain
field. A displacement imposed at x = 0, at a constant velocity, creates
a strain wave. The diagram shows the position of the steep jump
(Figure 2.3):

U(xaf)Za(f—%)H[t—%j Vi(x,t)=a H(r—%)

T Ay

a) b)
Figure 2.3. Diagram of the course of a wave: a) position of the wave

Jjump in the space—time diagram, b) stress field at a time t;
(the arrow indicates the direction of discontinuity displacement)

If the displacement at x =0 ceases, there will be an expansion
wave and a strain slot will propagate within the solid (Figure 2.4):

o2l -2h-2)
cereofgo(-o)

[2.13]
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orx, 1)

/:
n
(=3
Q

v

C(1-6 Chy

a) b)

Figure 2.4. Course diagram of a stress slot: a) position of the slot in the
space—time diagram, b) stress field at time t; > 6

2.2.2. Reflection on a free extremity

Let us consider a rod of length L whose extremity is free of stress.
Stress, and therefore strain, is always zero at the extremity. For the
d’Alembert solution, it is written as [2.14]:

o

Vi e(L.t) =—éf'(t—éj+%g'(t+é)=0

The free edge condition imposes relationships [2.15]:

[2.14]

b x 2L X x 2L
| t+= |=f'| t—=+=| and therefore g| 1+ |=—f| t—=+—|[2.15
g( c]f(ccj g[ Cj f(ccj[ :
This means that the arrival of a compression wave at a free
extremity, propagating in the positive direction, generates through its

reflection an expansion wave propagating in the opposite direction
(Figure 2.5).

The reflection of a strain slot on a free extremity leads to the
Lagrange diagram (Figure 2.6). Therefore, a strain wave reflects itself,
at a free extremity, changing sign.
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x UtL1)
V-0 -0
b ot iy

Vea o-a, t=L/C
X

2L-Cyy

v

V=2a

'y 'y
a) b) c)

Figure 2.5. Diagram of wave course with its reflection on a free extremity:
a) the jump of the wave in the space—time diagram, b) displacement
of the free extremity, c) stress field at time t; > L/C

x U(L,y)

.
V=0 o=0
4 V=a o-0,
2 a
V=0 V=2a
=0 0
f V=a o=-0, m— x
V=0
o=0
]
\J v
a) b) ¢)

Figure 2.6. Course diagram of a slot with its reflection on a free extremity:
a) position of the jump of a wave in the space—time diagram;
b) displacement of the free extremity; c) a stress field at time t;

2.2.3. Reflection on a fixed extremity

Let us consider a rod of length L with a fixed extremity.
Displacement is always zero at the extremity. For the d’Alembert
solution, this condition is written as [2.16]:

i U(L,t):f[t—éj+g(t+%)=0 [2.16]
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This condition imposes relationship [2.17]:

g(t+%j=f[t—%+%) [2.17]

This means that the arrival of a compression wave at a fixed
extremity, traveling in a positive direction, generates through its
reflection a compression wave of the same amplitude propagating in
the opposite direction (Figure 2.7).

X

V=0 =0
o A& o1y
V=a o=0, f
9] "_‘
2L-Ct, L

V=0 o-2a0,

'y
a) b)

Figure 2.7. Diagram of wave course with its reflection at a fixed extremity:
a) position of the jump of the wave in the space—time diagram,
b) stress field at time t,

The reflection of a strain slot on a fixed extremity leads to the
Lagrange diagram in Figure 2.8. A strain wave is therefore reflected,
on a fixed extremity, by a wave of the same sign.

Y
oy

V=0 o-0

& V=a o-0,

V=0 V=0

o0 20,

V=-a o=0,
I
V=0
¢ o0
Y

a) b)

Figure 2.8. Course diagram of a slot with its reflection on a fixed extremity:
a) slot position in the space—time diagram; b) stress field at time t,
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2.2.4. Diffraction at an interface

Let us consider two rods in contact. These rods can be made up of
different materials and consist of different sections (S; p; E; and S, p,
E;). We expect a strain wave to arrive at this interface. At the
interface, a reflected wave and a transmitted wave will be generated
(Figure 2.9). Using the d’Alembert solutions, the displacements and
strains in rods 1 and 2 have expressions [2.18]:

U=/f+g U,=/,
, , , [2.18]
‘E‘l__‘f1 g}“:g_l 8[_ f‘z
G G G,

Two conditions must be verified at the interface if there is no loss
of contact:

— equal forces [2.19]:
E1S1 (€i+€r):E2S2 gt [219]

— equal velocities [2.20]:

’ ’ ’
fLt+g =f, or Cte.-C, ¢=— C, g€ [2.20]
| £1p15) E>p28;
a) &, 1"
<+ g
) S LN
g,

Figure 2.9. Diffraction of a strain wave at the interface of two solids
with different impedances: a) incident wave prior to arrival at the interface;
b) reflected and transmitted wave after diffraction
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The reflection and transmission coefficients are defined as [2.21]:

e,=Re, ¢ =Te¢, [2.21]

t i

Both conditions are expressed by system [2.22]:

ES (1+R)=E,S, T
1~1 ( ) 2~2 [222]
C(R-1)=-C,T
The values of the coefficients can be calculated as [2.23]:
_ 2CES, ro CE:S, ~CES, 223
CES, +CE,S, CES, +CE,S,

We should note that the transmission coefficient is always positive.

The sign of the reflection coefficient depends on two quantities that
are the impedances of the rods [2.24]:

R>0 if S,\JE,p, >SJEp, [2.24]

2.2.5. Waves and modes

In this section, a link is made between the representation of motion

in a solid by waves and representation of motion by vibration modes.
When vibrations in a mechanical structure are studied, we seek a
solution to the equation of motion in the form [2.25]:

U(x,t)=w(t)¢(x) [2.25]
The equation of motion [2.26] takes the form [2.27]:

2 2
FU_1U_,

7Y 2.26
adx* C*ar [2:26]

¢”I/I—L2l/7¢=0 or Z:CZ¢—=COI’lSl‘:—(02 [227]
C v ¢
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Then, we can separately examine the space and time functions
[2.28]:

Y+ oty =0 W = Asinwt + B cos ot

2 2.28
¢”+%¢":0 ¢:asin%+bcos% [ ]

The ¢ space function must verify the boundary conditions. Let us
consider, for example, a rod of length L fixed at both extremities. The
boundary conditions for the rod are [2.29]:

#(0)=0 and @(L)=0 [2.29]

This implies relationships [2.30]:
wL
b=0 and ?=n7z ne IN [2.30]

The constant @ can only take certain values, called
eigenfrequencies, which are associated with space functions [2.31]:

nrxC . NAX
= ne IN ¢, =asin

[2.31]

n

Motion can be written as the superposition of normal modes [2.32]:

oo

U(x0)=Yw,(1) ¢,(x)= isinn—IL[x(Acoswnt+ Bsinm,t) [2.32]

n=1 n=l1

This type of solution is interesting, for example in acoustics, for a
vibrating string. The first natural frequency is the fundamental
frequency and subsequent frequencies correspond to harmonics.
Regarding structure vibrations, this type of solution is useful if the
sum of the first few modes gives a good representation of motion.
However, this type of solution may seem different from the
d’Alembert solution. It is possible to show that this is the same
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motion, but observed at different time scales. We take the above
example with the d’Alembert solution [2.33]:

U(x,t)zf(t—%j+g[t+%) [2.33]

The boundary conditions [2.34] impose relationships [2.35]:

U(0,/)=0 and U(L,t)=0 [2.34]

Vi f(t)+g(t)=0
vt f[r—%j+g(z‘+%j=0 [2.33]

It is possible to chooser=t+L/C. We show that function g is
periodic [2.36]:

2L
g(t)—g(t+?) [2.36]

The same is true for function f. These functions can be decomposed
into a Fourier series [2.37]:

f(t)=a,+ i a, cos Clzm +b,sin C’Zm
"~ [2.37]
g(t)=ay+ Za; cos Clzﬂ-t +b!sin Cnrt

n=1

Boundary conditions impose that a, =—a, and b, =b,. It follows
that motion can be written as [2.38] and [2.39]:

U(x,t)= ian {COS WZC [t —%j —cos n72C [t +%H

3]

. nrC X . nnC
+b, | sin t—— |+sin
L C

[2.38]
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j[an sin(ﬂJ +h, cos(n”CtD [2.39]
L L

Thus, motion is written as the superposition of normal modes, and
eigenfrequencies characteristic of the solid exist.

nix
L

U(x,z)=;zsm(

2.3. Shocks of solids
2.3.1. Shocks of two solids

Interactions between impacting solids depend on the shape of the
solids. In the following references, we can find studies integrating this
aspect [GOL 01, ARC 04, ZUK 90]. The study of shocks will here be
addressed in a very simple configuration. We consider shock of two
solids that are two rods of same section. Solid 1 is at rest and solid 2
arrives with an impact velocity V, (Figure 2.10).

=0 Pk 0,=0 V=
o,=0 V=V)o=0| V=V, 0,=0 ¥ =0
<} L
4 0

B

o P
o | oaps,
A >

h V2

Figure 2.10. Shocks of two solids. Solid 1 is initially at rest and
solid 2 arrives with velocity V,

To determine the impact of the shock, we consider the state of
matter in both solids at the area of impact. Figure 2.11 shows the state
diagram. In this diagram, the state of matter in solid 1 is represented
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by point O, and the state of matter in solid 2 is represented by point 4.
Upon impact, the stress in solid 1 (in the impact zone) will grow and
the representative point changes along slope Z;. In solid 2, velocity
will decrease and state, near the point of contact, will change along the
line going from A of slope —Z,, as shown in Figure 2.2 and Table 2.1.
The diagram shows that at the moment of impact, the balance of
stresses at the interface can only be for values V3 and o3 (Figure 2.11).

4 O

\ Z Z /‘\x g
S i R

Figure 2.11. Evolutions of representative states of solids in the “stress-particle
velocity” diagram. The behavior of solid 1 is shown by a solid line and that of
projectile 2 by a dashed line

Changes in states of matter are given by formulas [2.40]. The state
in the impact zone is characterized by V; and o3 [2.41]. After impact,
compression waves will propagate through the solid at velocity C:

0; — 0, ZZI(VB_VI)

[2.40]
0-3_0-2222(1/2_1/3)
o=2% y, oy =Ly, 2.41)
Z +Z, Z, +Z,

In the shock diagram, if solids are from different sections, to the
extent that an approach using one-dimensional waves is valid, we can
replace stress by force in the section. The relationship at the passing of
a wave becomes [2.42]:

AF=+SZAV [2.42]
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A second example is shown in Figure 2.12. The solids do not
have the same properties. We can call them the projectile and the
target. The target is initially at rest and its state is represented by point
O in the diagram. In the same diagram, the state of the projectile is
represented by point A. After impact, the state (represented by point B)
is spread in both solids. In the projectile, the compression wave
reaches the extremity and is reflected as an expansion wave (as seen in
section 2.2.2), and the state behind the latter is represented by point C.
This expansion wave makes contact after time 2Li/Ci. This produces a
diffraction and the states B and C pass to state E according to the rules
as shown in Figure 2.2 and Table 2.1. At the right extremity of the
target, the compression wave is reflected and generates a retrogressive
expansion wave. The target extremity passes into the state represented
by point D. Finally, when the retrogressive expansion wave resulting
from the reflection meets the progressive expansion wave from the
states represented by £ and D, we move on to the state represented by
point G. In this latter state, the target material is under tension. This is
a situation where there is a risk of cracking, i.e. tensile rupture. This
risk exists for materials with a tensile strength lower than that in
compression. Thus, the target can withstand, without damage, the state
represented by B, but break before reaching state G.

It is interesting to note that to determine motion after a shock leads
to a result different from that commonly accepted from basic
mechanical considerations, with the assumption of rigid body.

The basic situation is shown in Figure 2.13. A mass m; of velocity
V' impacts a mass m, at rest. After the impact, masses m; and m,,
respectively, have velocities V; and V,. Between the two instants, we
can express conservation of momentum and, assuming (wrongly) that
the shock occurred without energy dissipation, conservation of kinetic
energy [2.43]:

ny V= lel + szz

lle2
2

1 , 1 5 [2.43]
=—mV" +—m,V.
5 M TS
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Cr)lfiﬂf'lﬂ.! ion wave

Figure 2.12. Shock of two solids, course diagram of waves generated by shock
and diagram of states of matter in the solid (the solid line is relative
to the target and the projectile line is dashed)

oe
“© O

Figure 2.13. Shock of two solids, situations before and after impact

We then obtain velocities after the shock, given as [2.44]:

-1 2
V]:a_V sz_aV a:ﬂ [2.44]
I+o I+o m,
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Unfortunately, this “simple” physics translates into reality with
difficulty. It can only be confirmed by experiments in rare cases, such
as a bowler’s “tile” (a=1 V1 =0 V,=V)). Momentum is always
conserved but energy balance must include the strain energy of the
solid (elastic energy) and, optionally, the dissipated energy if there is
damage, breakage or yielding of solids. However, except in the case of
two identical solids where, through geometrical singularity, elastic
strain energy is zero after impact, this elastic strain energy is not
negligible compared to kinetic energy, regardless of the stiffness of
the material. To show this, in Figure 2.14, we consider the example of
impact of two rods of the same material and same diameter. The target
is double the length of the projectile. A Lagrange diagram shows the
course of the waves and a state diagram specifies the velocities and
stresses. For energy balance, the kinetic energy and the elastic strain
energy per unit length must be specified [2.45]:

1
dEc =—pSV?
2
iz, =19 L osviro=JEpv [2.45]
© 2 FE 2

L 2L

l T ]

a) X

»

b)

ODF

Figure 2.14. Shock of two solids: a) wave course diagram;
b) state matter diagram
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Energies calculated at different times are presented in Table 2.2.
We note that there is conservation of total energy and momentum.
After impact, the target’s elastic energy has the same value as the
kinetic energy, the latter being regardless of the Young’s modulus of
the material. We also note that after impact, the projectile is stationary
V1 =0 and the target moves at an average velocity V, = V/2.
Experiments confirm this result. The conservation of kinetic energy

hypothesis would have led to the incorrect estimates V; =—F/3 and
V2 =2V/3.
Projectile Target
E, E, E, E,
t=0 Lpst y?2 0 0 0
h Lpsty? Lpsty? i pSLV? i pSLV?
2t and 0 0 1 2 1 2
1 and so on LpsLy LpsLy

Table 2.2. Kinetic and elastic energies involved during a collision

2.3.2. Successive shocks

It is possible that the target is composed of several layers of
materials. The stress wave generated by an impact will be diffracted at
each change of material properties. The state diagram is used to
determine the conditions of this diffraction. Let us consider the case of
a target consisting of two solids (Figure 2.15). The state diagram is
shown in Figure 2.16. The behavior of solid 1 is shown by a thick line,
solid 2 by a thin line and solid 3 by a dotted line. Solid 2, launched
at velocity V,, will hit solid 1 that is itself in contact with solid 3.
After the impact of solid 2 on solid 1, the state is denoted as A in
the state diagram, and after transition of the shock wave from
solid 1 to solid 3, the state is denoted as B. States A and B can be
determined from the known impedances Z;, Z, and Z;. Figure 2.16
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shows two possible cases according to the respective impedances of
solids 1 and 3.

2| 2 V=V, 1 3

|
b) JNnp!
A

Figure 2.15. Successive shocks in three solids: a) situations before impact;
b) after impact of solid 1 on solid 2; c) after the passage of the
compression wave in solid 3

A A ~ A
o -2y o
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Z'l e 'Zl
.-~ B s A
-—"’ /’, 23
,.-""Za -Z, = 2 & 2 >
V2 V2
a) b)

Figure 2.16. State diagram in three solids: a) where solid 1 has higher impedance
than solid 3; b) where it has lower impedance

2.3.3. Wave trapping and cracking

An impact such as dynamic loading generates a compression wave
such as the one discussed earlier. The duration of this compression
corresponds to a round trip of the projectile waves. Then, if the
impactor and target have the same impedance, the stress level is reset
to 0 and a discharge wave propagates through the material. Moreover,
when the compression wave reaches a face free of stresses, an
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expansion wave propagating in the opposite direction is issued to
comply with the condition of 0 stress at the extremity. The meeting of
these two expansion waves leads to a tensile stress, the amplitude of
which is equal to that of the initial compressive wave. From this
general case, we evoke two particular situations. If the target consists
of two solid multiples, and the meeting of the two expansion waves
occurs at the exact location of the interface between the two solids,
then there will be a separation of the two solids and no stress will be
propagated (Figure 2.17).

v

separation

b)

oD

v

V2 V

Figure 2.17. Successive shocks in three solids case of the “trapping wave”:
a) course diagram, b) state diagram in three solids;
¢) velocity of the right side of solid 3

In practice, this situation may be desirable. It is, particularly,
observed if the solid at the free extremity has the same dimensional
and material characteristics as the impactor. It is called a “trapping
wave” and leaves at a velocity equal to that of the impactor, which
itself remains stationary.
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Another situation is rupture by cracking. Rupture by cracking
occurs in materials with a tensile strength lower than compressive
strength, such as in concrete. If two expansion waves meet, the
material becomes tensioned (for example Figures 2.12 and 2.14). The
intensity of this tension cannot be supported by the material and a
rupture occurs. Figure 2.18 shows this situation.

T L
+—> +—>
! 2
a)l X c) v
—>
A
v
rupture and
/ separation
v
A I
b) o v
B P rd
Z
AC
oD \ E

z
o
v

G;

Figure 2.18. Shocks of two solid with rupture by tension through cracking:
a) course diagram, b) states in three solids;
¢) velocity of the right side of solid 2

Upon arrival of the compression wave on the free surface, the latter
gains a velocity equal to the velocity V; of impact (point C in
Figure 2.18(b)). At the intersection of the two expansion waves, stress
decreases up to the tensile strength and then returns to zero (point E; if
there were no rupture, E would return to O). The right side gains the
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velocity V,. Measurement of velocity on the front of the ejected part,
more specifically the “velocity jump”, can be used to estimate the
tensile strength (formula [2.46] called the “Novikov formula™):

AN [2.46)

2.4. Shocks on viscoelastic solids

The study of viscoelastic solids is of practical significance. Many
materials have more or less significant viscoelastic properties. In some
cases, they are even used intentionally for absorption. In this section,
some basic results on the behavior of shocks on viscoelastic solids are
given [KOL 56, HUN 60, GOL 01].

2.4.1. Conditions at the interface

At the interface between two solids, velocity and stress equalities
are imposed on the two solids in contact. To determine the states that
will be generated during the impact of the two solids, we must know
the relationship between velocity and stress at the edge of the solids.
For elastic solids, the latter relationship is linear and the ratio of
velocity to stress is called impedance. For viscoelastic solids, this
relationship is less straightforward. If displacements are described as
harmonics, they are expressed using the Fourier transformation [2.47]:

U (x,@)= 4 ™" [2.47]

We can deduce velocity and strain as [2.48]:
Vixo)=—ioU (x,o) & (no)=(a+ik)U (x,o) [2.48]

Using the behavior relationship with a complex modulus, we
obtain the relationship between stress and velocity at the extremity of
the solid (x = 0) [2.49]:

o (0,0)= TEHDE e ) [2.49]

@
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Using the Laplace transformation, it is also possible to formulate
the operational images of these conditions at one extremity. The
image of the equation of motion (and its solution) is shown in [2.50]
(the one-dimensional solid is represented by the “half-line” of origin 0
and positive abscissa; conditions at the extremity are written as x = 0):

2 o [P

277 =
oU_ps U U(x,s)=A(s)e £ls) [2.50]

x> E(s)

The operational image of behavior is written as [2.51]:

n

n n zSiEi

D s'a5=)sEE 6=E(s) E(s)==——  [25]]

n
i=1 i=1 z i
i i s a,'
i=1

We can deduce velocity, strain and stress at the origin as [2.52]:

=sU(0,s 5S:£:_Ss_p
7 (0.5)=5U(0s)  £(0.9) (axl AONE [2.52]

Then, the relationship between stress and velocity at the origin is
[2.53]:

o(s)=-V(s)\PE(s) [2.53]

This relationship can be explained with particular models.

2.4.1.1. Kelvin—Voigt

The relationship at the interface for a Kelvin—Voigt solid is written
in the operational form [2.54]:

V(s) - o) [2.54]

p(E+775)
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This gives the condition [2.55] as time functions of stress and
velocity (* denoting the convolution product):

V(t)= —ﬂ* e

Jon [zt

If the solid is loaded at its extremity, by applying a compressive
stress of intensity oy, the velocity of this extremity is given by formula
[2.56] (erfis the “error” function):

[2.55]

7o :sp(j?ﬁ V(t)z%erf{\/%} [2.56]

This result can be formulated with dimensionless variables [2.57]:

VpE—ef\/_( f]‘j [2.57]

O,

If the solid is solicited at its extremity, with an imposed velocity
Vs, the stress at that extremity is given by formula [2.58]. This may
correspond to a shock against a very rigid obstacle:

5(5)2% p(E+1s)

2.58
)=rifEp{en [E [ -
’ n VEt Iz

The same result can be formulated with dimensionless variables
[2.59]:

—erfT+-S— [2.59]

Sl

Time evolutions in dimensionless velocity and stress as a function
of dimensionless time T are shown in Figure 2.19.
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2.5

- === S Maxwell
- = S Kelvin
V Maxwell
V Kelvin

0 0.5 1 1.5 2
T

Figure 2.19. Evolutions at the extremity of a viscoelastic solid: solid line (V Maxwell,
V Kelvin): time evolution of dimensionless velocity at the extremity of a solid where a
stress slot is imposed,; dashed line (S Maxwell, S Kelvin): time evolution of
dimensionless stress at the extremity of a solid where a velocity slot is imposed

2.4.1.2. Maxwell

The relationship at the interface for a Maxwell solid is written in
the operational form [2.60]:

5 (s)=—V(s)JpE |—— [2.60]

s+E/n

This gives condition [2.61] on time functions of stress and velocity (/,
and /; are modified Bessel functions of the first kind of order 0 and 1):

__O-(t) *£ -Et/2n 2 2
V()= N 2 [10(277}11(2"}} [2.61]

If the solid is solicited at its extremity, by applying a compressive
stress of intensity Gy, the velocity of this extremity is given by formula
[2.62]:
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[2.62]
o Et Et\ Et (Et
V(t)=—/—=e " | ——+1|I,| =— |+—1,| —
) N [(77 " J 0[277} n 1[277N

This can be formulated with dimensionless variables [2.63]:

_V pE_ _1 T T
v_—ao =e ((T+l)lo(zj+fll(2jj [2.63]

If the solid is solicited at its extremity by an imposed velocity V5,
the stress at that extremity is given by formula [2.64]:

E
5(s)=—NPE o(t)=V,\JpE ™" 1{?) [2.64]
n

s(s+E/n)

In the dimensionless form, this becomes [2.65]:

s=—9 =e_710(£j [2.65]
ViNPE 2

Time evolutions in velocity and stress as a function of
dimensionless time T are shown in Figure 2.19. Note that the initial
behavior of the Maxwell solid is that of an elastic body (v=1, S=1)
and tends toward a fluid. A Kelvin—Voigt solid has a very rigid initial
behavior and tends toward an elastic behavior.

2.4.2. Impact of an elastic solid on a viscoelastic solid

Let us consider the impact of an elastic solid, featuring £, and p,,
arriving with velocity V; at a viscoelastic solid. The shock conditions
[2.40] and [2.41] are reflected in operational form by formulas [2.66]:

G =\p.E.(V.-V) VAlp.EAPE

o=

o=VpE s(JP.E. +[PE)

[2.66]
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We can explain the solution in a Kelvin—Voigt solid. We
denote the impedance ratio of the elastic solid to the viscoelastic solid
as z:

VAP EJp(E+ns) __ |Ep. [2.67]

st\/peEe+s\/p(E+77s) Ep

The stress at the interface is formulated with the dimensionless
parameters [2.68]:

o 7(z-1)
S=Vi— m:H(m:( erfe\Jrz - )+—erff [2.68]

This result is shown in Figure 2.20. Impact stress is obtained
from the shock of elastic solid upon a rigid body. Stress tends
toward the value that would give formula [2.41] if there were no
viscosity.

] 0.5 1 15 2
(3

Figure 2.20. Evolution of stresses at the interface during impact of
an elastic solid on a viscoelastic solid (Kelvin Voigt)
for two impedance contrasts
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2.4.3. Shock of two viscoelastic solids

The case of two viscoelastic solids is not generally easy to explain.
Let us take the example of two identical Kelvin—Voigt solids. If a
stationary solid is hit by another solid arriving at velocity V;, from
relationship [2.41], stress at the interface is formulated by operation
[2.69]:

P(E+7s)

25\ p(E+7s)

The time formula is given by formula [2.70]. This expression is
similar to that obtained with an imposed velocity:

_ViEp gﬁe‘”’
o(t)= 5 (erf\/;+ 5 Jr

2.4.4. Propagation of shock in a Maxwell solid

g= [2.69]

] [2.70]

The propagation of a wave in a viscoelastic solid is not generally
easy to explain. An interesting case (that will be discussed in
Chapter 3) is that of the propagation of a stress wave generated by an
imposed velocity at one end in a Maxwell solid. The wave equation in
a Maxwell solid is recalled in [2.71]. Displacement or stress formulas
are similar:

FU _pdU_ pdU
ox’0t n ot E or

[2.71]

If the solid is geometrically modeled as a “half-line” with its origin
at 0 and positive abscissa, the solution is written in operational form
[2.72]. The term containing the exponential of x does not exist due to
the zero stress condition when x tends to infinity:

~X Js(s+E/n)
G(x.s)=D(s)e &' [2.72]
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The imposed velocity condition is [2.73]:

7 (0,s) N [2.73]
S

Given the behavior relationship, we can entirely explain the stress
image [2.74]:
V. E N )
o_'(x,s):Le G [2.74]
s(s+E/n)

The stress field is then explained by [2.75]:

2
o(x.t)=V,\[pE e I, [2£ Ir? —%J H(t—ci] [2.75]
7 > 0

This field can be expressed in terms of dimensionless variables
[2.76]:

s=—2 =e’/2lo(%\lrz—X2JH(r—X) [X=é—€7j [2.76]

VoNPE 0

Figure 2.21 shows the shape of the stress field at different times.
The stress discontinuity amplitude decreases exponentially with
distance from the point of impact.

%z

\
I
bt
\
0.84
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0.24

Figure 2.21. Spatial distribution of stresses in a Maxwell solid
at different times after impact (t= 0.1, 0.5, 1, 2, 3, 4);
dotted line: envelope of successive positions on the jump



Chapter 3

Waves and Shocks in a Nonlinear Medium

The purpose of this chapter is to show how nonlinear and
irreversible behaviors of materials that are highly stressed during
impacts have consequences on movements and waves in solids.

3.1. Irreversible phenomena
3.1.1. Impact velocity

The stress generated in a solid upon impact depends on impact
velocity. According to the considered phenomena, this velocity can
vary from a few centimeters per second to a few kilometers per
second. Mechanical and thermodynamic phenomena occurring in
materials can be different depending on the range of impact velocities.
Table 3.1 presents the ranges of impact velocity. Two dimensionless
parameters characterize the relative kinetic energy (7;) and relative
stress (/) (the values were calculated using average values for
building materials such as steel or concrete). Accidental shocks are in
the range of 1-50 m/s, which is sufficient to exceed the yield strength
of building materials. Impact velocities above the kilometer per
second are related to projectiles of weapons. Hypervelocity shocks
may involve impacts on satellites in space. Impact velocity is greater
than wave velocity in the material and, in this case, the study of
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material behavior is beyond the scope of this book, which is limited to
accidental shocks.

. pV2 = @ V (m/s) Type of shock
O, Oe
107 5x107 5x 107 Quasi-static
10° 5x10°" 5 Slow shock
107! 5 5% 10 Shock (accidental)
10 5% 10 5% 107 Fast shock (weapons)
10° 5% 107 5%x10° Hypervelocity impact
Table 3.1. Range of impact velocities and magnitudes of dimensionless
parameters for concrete or steel solids
3.1.2. Load paths

Impacts of solids generate very high stresses, as has been discussed
in Chapter 2. These stress states can reach and exceed the limits of the
elastic or viscoelastic behavior of the material. Figure 3.1 shows the
different stress states leading to irreversible phenomena in material
behavior. The different paths corresponding to different areas of load
are schematically shown in terms of two invariants of the stress
tensor: pressure and the equivalent von Mises stress (the dotted line
shows the limits of the elastic domain). Yield can be achieved in three
different areas, each corresponding to a type of irreversible
mechanism in the behavior of the material. Fissures and fractures can
occur in extension (A), especially when cracking. In other areas,
slipping phenomena can occur under high shear stress (B). A more
specific characteristic of impact loads is the generation of high
pressure to levels that are rarely achieved under static loading, which can
irreversibly compact the material (C). These three types of irreversible
behavior are well known and specific models exist. Breakage in
extension can be brittle [BUI 78] or more or less ductile. Damage
models can be used to describe material degradation under this type of
loading [LEM 09]. Description of the slipping phenomena is usually
done in the context of plasticity or viscoplasticity models. Finally, the
phenomenon of compaction modeling can use the formalism of
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plasticity, with volumetric plastic strains, or use more specific
formalisms. We will discuss the models associated with these
mechanisms and see their consequences in the movements of such
waves in solids.

Pressure p

Figure 3.1. Different areas in a solid support impact and schematic
loading paths, represented in terms of two invariants (p and ©,,)

3.1.3. Strain velocity

Another characteristic of impacts is to produce dynamic loading
and thus impose a certain strain velocity on the material. The question
may arise as to whether the nonlinear behavior and strength of the
material show dependence on the rate of strain. This question makes
sense because dependence on strain rate in linear viscoelastic behavior
has been observed. Experimental observations often point in this
direction. The apparent strength of many materials, metal or concrete,
depends on the strain rate [TAN 92, BIS 91]. Experimental results
relative to resistance, in uniaxial stress state, are usually represented
by a graph, as a function of strain rate on a logarithmic scale. It
appears that at certain velocity ranges, strength varies nearly linearly
with the logarithm of the strain rate. This finding suggests empirical
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models. Strength appears to be related to strain rate by a relation of
type [3.1]:

0=K(£)ﬂorﬂ=(&fzéj [3.1]

We can provide a physical basis to this observation. In crystalline
materials, plastic strain has its origin in the movement of dislocations.
For metals, in conditions of high strain rate, flow is sensitive to
temperature and strain rate, and this sensitivity can be expressed by an
Arrhenius-type law [3.2]:

_4¢
E,=& e [3.2]
AG(r,T) is the change in Gibbs free energy and &;is a reference

strain rate. The Gibbs free energy depends on the shear stress T
according to expression [3.3]:

AG = AG, —v(7—17,)— (v is an activation volume) [3.3]

Expression of shear stress becomes [3.4]:

T=1, +AG, + [k—len[g—Pj [3.4]
(%

&

In a situation of uniaxial stress, o=7+3 and we obtain the
approximate expression [3.5]:

[ Jo J z4kT [3.5]

&lné‘p )

In a fairly general manner and in order to cover a wide range of
strain rates, we often use the Cowper—Symonds model [3.6] for metal
materials, which expresses the ratio of the resistance at a certain rate
of strain relative to static resistance:

o 8 1/P
Ad=—d=1+(—j [3.6]
o C

s



Waves and Shocks in a Nonlinear Medium 71

For structural steel, the parameters of the Cowper—Symonds model
have the average values of C =40s"' and P = 5. The change in relative
resistance as a function of the strain rate is shown in Figure 3.2.

10

Ad

0 T T T
1.E-06 1LE-04 1.E-02 LE+00 LE+02 ILE+04 1E+06 LE+08

strain rate (1/5)

Figure 3.2. Change in the apparent relative resistance of structural
steel relative to strain rate

The approach used for metals can be extended to other materials.
For example, for polymers, a multiplicative model “power law” has
been proposed, which takes into account the role of temperature [3.7]:

o=d e g M) [3.7]

For brittle or quasi-brittle materials such as concrete, it seems that
better phenomenological descriptions are obtained by taking into
account the inertial effects linked to cracking and scaling effects.
Modeling can be based on the heterogeneous and random nature of the
material on a microscopic level [SUA 84, DEN 00, LAM 07].

3.1.4. Shear and plasticity

3.1.4.1. Plasticity and dynamics

The use of elastoplastic behavior models for materials is very
common for the calculation of structures. These models are based on
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the definition of a standard yield or plastic flow threshold. This
criterion is a function of stress (more precisely, its invariants) and,
possibly, other internal parameters characterizing the state of the
material. Plastic flow is then defined by the laws of evolution linking
an increment of plastic strain to an increment of stress [LEM 09, FRA
95]. For the remainder of the study, we only consider simple models
that we consolidate into two categories. The Tresca and von Mises
criteria do not involve pressure (mean stress) and are instead used for
metallic materials. Coulomb and Driicker Prager criteria [DRU 52] are
used for “cohesive and friction” materials such as concrete or rock
[DAR 95, MAZ 04]. The formulas of the four criteria are presented in
Table 3.2.

Tresca criterion Coulomb criterion (O'i >0 j)

sup‘o;- —0']-‘ -Y=0 sup{a,-(l +sing)—o;(1 —sin(p)—2Ccos¢)} =0
i#] i#]

von Mises criterion Driicker Prager criterion

O-eq_YZO O'eq+0((traceg—Yh):0

Table 3.2. Plasticity criteria. Formulas as a function of the main stresses for the
Tresca and Coulomb criteria, and as a function of the equivalent von Mises stress
and the first invariant for the Driicker Prager and von Mises criteria

Many authors have tried to take into account the experimental
observation mentioned above, noting that resistance, or more precisely
the maximum stress reached during a test, was dependent on strain
rate. We show formula [3.8], following the Holmquist, Johnson and
Cook model [HOL 93], involving strain rate in the expression of yield
point (ABCN are constants and D is a damage parameter). In this
scalar expression, stress and strain are taken in the sense of von Mises
criterion. Variants of this model exist [STE 89, MIM 96]:

N .
Ocq _ A(l—D)+B[£J (1+cm[in [3.8]
Oy Oy &o
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3.1.4.2. Viscoplasticity

Experimental observations suggest that we can write stress as the
sum of a strain function, which reflect the quasi-static behavior, and a
term dependent on the rate of the plastic strain [3.9]:

o=[(€)+Cln(1+b,) [3.9]

This amounts to considering that the plastic strain depends on the
difference between the current stress and the stress corresponding to
static evolution. From the above formula, we get expression [3.10]:

o-f(e)
g =1 e[ ‘ J—l [3.10]

More generally, we can write that plastic strain rate is a function of
the state of stress and strain, which is the definition of viscoplasticity
[3.11]:

E¢, =g(0,¢) é,,zé—% 5 G¢=Eé-g(o.e)  [3.11]

A fairly simple viscoplastic model, which will be discussed later, is
the Bingham model, represented by a rheological model in Figure 3.3
and corresponding to formula [3.12]:

o":Eé‘—%(O'—Y) [3.12]
5 Y
o "W\~ |+ o
n

Figure 3.3. Representation of viscoplastic rheological Bingham model

In these scalar expressions, stress and strain are taken in the
sense of von Mises criterion. More generally, the three-dimensional
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aspect can be obtained from a formula based on a dissipation potential
[3.13]:

¢ =29 [3.13]
=p ag

Many authors have rigorously formalized viscoplastic behavior
laws [MAL 51, PER 63, BOD 75]. For metallic materials, the plastic
strain rate is often “proportional” to deviatoric stress, as in Norton’s
viscoplastic law [3.14]:

N
g =3 (%_Y] S [3.14]

=r 2o, k =

3.1.5. Behavior under high pressure

Shocks in solids can generate very high pressure levels (several
hundred megapascals). These levels can result in irreversible volume
changes in materials, which we call compaction. This situation is
rather rare in quasi-static loading, as many models representating this
phenomenon have been developed in the scope of dynamic
applications. One behavior construction method is to separate the
stress and strain tensors into their spherical and deviatoric parts [3.15]:

j [3.15]

We can then separately define the relationship between the
spherical parts (pressure and volume change), which is called isotropic
behavior, and the relationship between the deviatoric parts, as
mentioned in the previous paragraph. Of course, there can be coupling
between these two relationships. This approach to describing behavior
has a lot of significance if we consider that there is no coupling
between the two terms of volume and deviatoric behavior, as
formulated in [3.16] (the second expression often taking a scalar form
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with the use of the equivalent von Mises stress). This assumption is
realistic for metals since the deviatoric behavior, plasticity, is
independent of pressure and does not generate volume changes:

p(6) and S(e) [3.16]

However, this hypothesis of decoupling of the two parts of
behavior is not valid for geomaterials and materials that contain
porosity, such as concretes. First, the plastic flow threshold depends
on pressure and flow that causes volume change; second, the presence
of shear promotes compaction. Modeling irreversible volume
phenomena can use the formalism of plasticity models. One approach
is to consider yield surfaces, closed on the hydrostatic axis, and
formulate the laws of evolution including volumetric plastic strains.
This method was used to model concrete under high pressure with a
Willam—Warnke model [HAN 85] or Gurson model [GUR 77, BUR 01].
A second method is to consider two threshold surfaces, one for the
slipping mechanism and the other for the compaction mechanism.
This is the case of the “Cap” surface model [SAN 76]. The two
plasticity mechanisms may be interdependent [LOR 87].

For very high intensity dynamic loading, for example when solid
explosives come into contact, the main element of behavior is the
relationship between pressure and volume change. This means that the
magnitude of shear stress is small compared to that of pressure. If we
only consider pressure, we must use a hydrodynamic model.
The volumic relationship of behavior can be confused with law of
state. This may consist of the relationship between pressure and
porosity, and possibly other thermodynamic variables such as
temperature and phase states [3.17]:

p(ul..) pu=L- [3.17]
Po

The relationship between pressure and density is often written in
polynomial. In numerical codes, an example of this kind of law is the
“p-o. model”, o being a porosity index [HER 69]. We will revisit this
notion of law of state to describe the compaction of a material by
shock wave.
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3.2. Adiabatic shear
3.2.1. Dynamic and thermal

When solids are quasi-statically loaded, it is customary to consider
that during loading the material undergoes an isothermal
thermodynamic transformation. Indeed, irreversible mechanical
phenomena cause heat, but it is assumed that heat is diffused in this
material fast enough to maintain the isothermal assumption. It is
assumed that the characteristic time for heat diffusion in a solid is very
short compared to the characteristic time of mechanical stress. If strain
rate increases, this assumption may be impaired. To decide, we
consider the heat equation in a solid [3.18]. In this equation, the heat
source is the energy dissipated by the irreversible phenomena from the
mechanical behavior of the material. Mean values for common
building materials are presented in Table 3.3:

oT

AAT =pC=——¢p [3.18]
ot

where

— T is the temperature;

— A s the thermal conductivity;

— pis the density;

— C is the specific heat (notation for this section only);
— @is the heat source;

— o= A/p C is the thermal diffusion coefficient.

p (kg/m?) C (J/kgK) A(W/m-K) a (10°m?%s)
Steel 7,870 452 80 15
Concrete 2,400 880 2.1 0.54
Glass 2,500 700 0.87 0.50
Wood 420 2,720 0.14 0.12
Brick 1,800 840 0.5 0.30

Table 3.3. Thermal characteristics of some building materials
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Energy provided by irreversible mechanical phenomena can be
diffused into the material or used as a source of heat, depending on
the relative importance of the two terms in the heat equation. The
dimensionless number that allows us to judge the relative importance
of these two terms, and thus the relative importance of diffusion, is the
Fourier number. Expression of this number is given in [3.19]. In this
formula, L. is the characteristic length of a solid and ¢, is the
characteristic time of the phenomenon:

pCL’
At,

Fo= [3.19]

If this number is small compared to 1, the diffusion phenomenon is
dominant. The temperature in the solid is almost uniform, and if it is
not isolated from the outside, the transformation can be considered
isothermal. If the Fourier number is large compared to 1, diffusion is
negligible and the energy is used to heat the material locally. The
transformation can then be regarded as adiabatic. For dynamic
stresses, a characteristic time is the time needed to achieve a critical
level of strain relative to irreversible phenomena [3.20]:

; =& [3.20]

The condition of adiabatic transformation is [3.21]:

e,

£>> >
pCL,

[3.21]

For example, for a test on steel, the characteristic values &, =107
L, =107’ m can be selected. The strain rate from which changes can be

considered as adiabatic is&>>10"'s™".

Dynamic loading conditions are such that the adiabatic
transformation assumption is often more realistic than the isothermal
transformation. If the behavior of a material is sensitive to
temperature, the dynamic rupture conditions can then be different to
those usually obtained in quasi-staticity, as in isothermal conditions.
This also holds if the behavior of the material is not sensitive to strain
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rate. To study this situation simply, let us consider a behavior where
stress depends on strain and temperature [3.22]:

o(eT) [3.22]

The change in internal energy in the material is a function of the
change in temperature [3.23]:

de=pCdT [3.23]

In a material undergoing adiabatic transformation, we can write the
following result [3.24]. The strain that comes into play in this equation
is the one related to heat source mechanisms (usually, plastic strain).
The Taylor—Quinney /3 coefficient can be less than 1. This reflects the
fact that all the energy is dissipated as heat. Some of this energy can
be “blocked” in the material:

¢=ﬁg;£p [3.24]

3.2.2. Adiabatic shear condition

For the rest of our demonstration, let us consider a one-
dimensional case, or that of a radial load, in which the stress
parameter and strain are denoted as o and & (in general, it is shear and
plastic distortion). Relationship [3.24] can be written as [3.25] (taking
a Taylor—Quinney coefficient equal to 1):

d_ _ dT_o

- — 3.25
dt ¢ de pC [-25]

Differentiation of the behavior relationship gives expression [3.26]:

to (i) (%) a1 b6
de \de ), \IT).de

The first term represents the slope of the stress—strain curve in
isothermal transformation (quasi-static case). This term is generally
positive. The second term represents the expansion of stress, at
constant strain, when temperature rises. This term is generally
negative [3.27]:
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(&—Uj >0 (a—") <0 [3.27]
€ ), aT ),

The instability condition (rupture) in the material, as a condition of
adiabatic loading, takes the form [3.28]:

9.9 ‘(&_aj " >[‘90j [3.28]
de aT ). .

pC e
Table 3.4 gives, for three models of isothermal behavior, the
expression of critical strain for which adiabatic shear may appear. The
stresses here are shears and plastic strain distortions (o — 7, — 7).

Culver model Pomey model Bai model
Isothermal _ T=A+Bhy =Y +by
=B
behavior r=By"
Critical strain _ —npC _ BpC _ pC Y
76_(37',] 76_1-& J/C_ﬁ b
aT ¥ aT ¥ aT ¥

Table 3.4. Critical strain distortions in adiabatic conditions
for three models of isothermal behavior

If the material is sensitive to strain rate, stress can be represented
byo(e,&,T). Then, the differential is written as [3.29]:

da:(a—o-J dg+(f7_?) dg{f?_ffj JT [3.29]
E )sq € )y aT ). .

,E

which can also be written as [3.30]:

d_a:(o'?_aJ +(0—)_UJ £+(‘7_O'j ar [3.30]
de \de )y \dé )., & \JT )., de
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The additional term that appears has a sign that is dependent on the
acceleration of strain. The instability condition becomes [3.31]:

) (2,20
T )..|\pC, \ )., & \Jde ),

For example, an isothermal behavior model using power laws and
the application of the stability criterion leads to the critical strain
expression [3.33]:

n

=A Yad =
AT Llor| _mdy
C|aT|,, ydy

144

[3.32]

3.3. Propagation in uniaxial stress state
3.3.1. Elastoplastic material

In Chapter 2, we discussed shock in elastic solids in uniaxial state
of stress or strain. We will extend this study to the case where the
elastic limit of the material is reached. First, let us consider uniaxial
stress state. According to formula [2.40], if solid 1 impacts on solid 2
at velocity V;, the induced compressive stress depends on the velocity
and impedances of the two materials. A certain velocity can reach
yield stress [3.33]:

Z+Z
K=%f5f- [3.33]
172

If the impact velocity is greater than this value, yielding will occur.
We will study motion and waves that are propagated in this case.
Generally, in uniaxial stress state, the equations of motion take the
form [3.34]:

Jdo _ d’u g:@
o o o

[3.34]
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“ R(&y)

\ 4

& &

Figure 3.4. Stress—strain relationship in uniaxial state for an
elastoplastic material

To treat monotonic loading, we assume that stress is a simple
function of the current strain [3.35]. Figure 3.4 shows the evolution of
the stress versus strain:

o(e) and K(g)zd—.g [3.35]

Motion is then described by the partial differential equation [3.36]:

Pu
axbé :pazl; [3.36]

If R is constant, the elastic wave propagation equation solutions are
known. We propose to solve this equation through the simple case as
shown in Figure 3.5.

Figure 3.5. Long rod undergoing velocity discontinuity at the origin
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The domain is the half-line and the boundary conditions are given
in [3.37]:

xe[0,00] u(0,)==Vt and u(eo,t)=0 [3.37]

To solve this problem, which was addressed by Taylor and von
Karman, we determined variable o [3.38]:

a:; (dx=t der) [3.38]

We suppose that strain is a function of «[3.39]:

e=f(a) and u(xt)=[ f(a)dc=t["f(B)dB [3.39]

We deduce the displacement derivatives with respect to time [3.40]
and in relation to space [3.41]:

du_ e da_ e _
5= Bapeif (@)= f(B)dp-af(a)
do x o
as —=——=——
dt ¢ t
’u _ (o3 i dE
S =S@)-af () = f(e)—-=—1"(a) [3.40]
du duda da 1
o daa T E
82u_1 ,
2= (@) [3.41]

The propagation equation [3.36] imposes one of the two equalities
from [3.42]:

pa’=K or f'(a)=0 [3.42]
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Respecting the boundary conditions of the problem, the solution
will come in three different forms in three different areas as presented
in Table 3.5. The associated strain field is shown in Figure 3.6, as a
function of the variable x/z.

0<x<Ct u(x,t)=-Vt+ex Area of uniform strain
2 R

Ct <x <Cyt — == Area where plastic strains progress
- P

Cot<x u(x,t)=0 and £=0 Area not yet reached by the waves

Table 3.5. Displacement fields in an elastoplastic impacted rod

A ¢

€ Co

Figure 3.6. Strain field in an impacted elastoplastic rod

In the intermediate area, we understand that each strain increment
propagates at a velocity that depends on the value of R for the level of
strain. We investigate the relationship between velocity at the origin,
strain & and behavior R(€). To do this, we can write the displacement
at the origin with expression [3.43]:

u(0.0)=—Vi=1["f(a)dex [3.43]
We deduce the velocity at the origin [3.44]:

V:j:f(a) da [3.44]
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This expression corresponds to the calculation of the area under the
curve as shown in Figure 3.6. Velocity can also be expressed by the
integral along the other axis [3.45]:

szog'a df:j;l\/g de [3.45]

If function R(€) is known, we can find a relationship between &
and V. The speed of the “plastic” wave jump can be calculated using
formula [3.46]:

_[ [R] _ [R(&)
c_(ﬁl . [3.46]

1

We can illustrate the propagation of a plastic wave with the
example of an elastoplastic material with linear hardening. The
behavior of the material is represented by the curve as shown in
Figure 3.7.

g : "

expansion

Eyl

v

& &

Figure 3.7. Elastoplastic relationship with linear hardening

The strain field is shown in Figure 3.8(a). The relationship between
velocity at the origin (impact velocity) and maximum strain is given
by formula [3.47]:

V:j:" /5 dg+j€‘ L e [3.47]
P o\ p
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The calculation gives relationship [3.48]:

VF(\EFJ [3.48]
P p \p

The velocity of a “plastic” wave jump, therefore, has expression
[3.49]:

C = [3.49]

Yo,

The relationship between impact velocity and maximum strain can
be written as [3.50]:

V=C g+(C,-C)e, [3.50]

If the condition of the imposed velocity ceases after time €, an
expansion wave will propagate in the solid at speed C, through elastic
waves. In Chapter 2, we saw that the duration of a shock was related
to the size and characteristics of the impactor.

Figure 3.8(b) shows a diagram of the course of waves. We see the
elastic compression wave jump (A) that propagates at speed C,. The
plastic compression wave jump (B) leaves at the same instant, but
propagates more slowly, at speed C;. From time 6, an expansion wave
(C) propagates at speed Cp. The expansion wave joins the plastic
compression wave at time 6. After this time, no more areas are
yielded in the solid. The length of the area that has been yielded is
given by formula [3.51]:

Ip=0-SC_ [3.51]
Co _Cl

3.3.2. Viscoplastic material

The propagation of a yield wave in a viscoplastic solid has been
studied by [SOK 48] and [MAL 51]. Here, we take the example of a
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simple Bingham viscoplasticity model to show how plastic strain
waves propagate in a medium whose behavior is sensitive to the rate
of strain. Beyond the elastic limit, the behavior of the material is
consistent with the expression [3.52]:

. O
G=Y+7](8——j [3.52]
E
A £ x>
o=10
€
e G «®
loA
X/t g K
C; Co +— (B)
Co
g| =
©
Lp
w\‘—)’ =0
y
a) b)

Figure 3.8. a) The strain field of an impacted elastoplastic rod;
b) course diagram of elastic and plastic waves

We consider the same geometric configuration and the same
boundary conditions as in the previous section [3.37]. We will change
the variables in order to only consider what happens beyond the
plasticity threshold. This threshold is characterized by a stress
threshold Y and an impact velocity associated with [3.53]:

o=t [3.53]

" JEp

The change of variable is the following [3.54]:

o,=0-Y V =V-V, [3.54]
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In the area where the elastic limit is exceeded, the equation of
motion can be expressed in terms of “viscoplastic” stress [3.55]:

d’c, _pao, +£820'V

3.55
ox> n ot E of [3.53]

There is a similarity with the equation of motion in a viscoelastic
Maxwell medium, and the operational image of the solution is [3.56]:

—As(s+E/m)

5‘v(x,s)=D(S)e 0 [3.56]

The imposed velocity condition is formulated in operational form
[3.57]:

IZ_(O,S):—ﬂ [3.57]
S

Given the behavior relationship, we can completely explain the
image of the stress [3.58]:

V\pE ~As(s+E/m)
e 0

[3.58]
s(s+E/n)

o, (x,5)=

Returning to time functions, the stress field is then explained with
formula [3.59]:

2
o, (x,t)=V,\[pE e I, [2E_77 7 —%j H(z—CiJ [3.59]
0 0

Returning to the initial variables, the stress field obtained in the
yielded area is given by [3.60]:

2
O'(x,t):[Y+<V pE—Y>e'E’/2” 10[2E—77 zz—%BH(z—cij [3.60]
0 0
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This field can be expressed in terms of dimensionless variables
[3.61]:

Bty XE
n Con
t E
Szwz 1+<VTP_1>eT/2 IO(%\/TZ—XZJ H(r-X)

[3.61]

Figure 3.9 shows the stress field at different moments (7=1, 7=2,
7=3 and 7 =4) in a viscoplastic solid. The dotted line shows the
exponential decay of amplitude as it tends toward the yield limit.

24
1.75 TP

1.5 e
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o o
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Figure 3.9. Stress field at different moments (t=1, t=2, t=3, 1=4)
in a viscoplastic solid. The dotted line shows the exponential decay
of the amplitude as it tends toward the elastic limit

3.4. Uniaxial strain state
3.4.1. Metallic material

In some shock situations, the movement of a solid can be properly
represented in a uniaxial strain state (see Chapter 1). We will study the
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consequences of yield in this situation. We distinguish between two
types of plasticity criteria, first considering a criterion independent of
pressure, such as the Tresca and the von Mises criteria commonly
used for metallic materials. In a uniaxial strain state, which may
correspond to certain impact conditions, the strain and stress tensors
are of the forms [3.62]:

g 00 o, 0 0
£= 0 0 0 o= 0 o O [3.62]
0 00 0 0 o

To study such a stress state, the most common assumption is that
the material is described by perfect elastoplastic behavior. We then
make a partition between elastic and plastic strain [3.63]:

[Ky;)
Ity

‘+e’ o &+ =0(i=2,3) [3.63]

Plastic flow is incompressible, which implies the relationship
[3.64]:

trace £” =0 = el +2el =0 [3.64]

The plastic flow criterion is of von Mises or Tresca type, which in
this case is translated through equation [3.65]:

0,—-0,=Y=o0, [3.65]

In the elastic phase, the relationships between stress and strain are
[3.66]:

E(1-v) ( 4 )
o =(A+2u)e =————"—¢=| K+=G |¢g
( ) (I-2v)(1+v) 3 [3.66]

v
0-2_ O-l
1-v

Then, we can express the stress state at the plasticity threshold
[3.67]:
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o, —0, =(1—#jq =Y

o, = vy (K 2)y
1-2v 2G 3

[3.67]

The yield in a uniaxial strain state is also called the Hugoniot
elastic limit (HEL). We can deduce the value of the strain threshold
[3.68]:

1 Y
E 2G

Beyond the yield threshold, the equations that remain valid are
those of perfect plasticity and incompressible flow [3.69]:
o,=Y+o,

. [3.69]
trace £ = trace £ = & =& +2¢;

The change in volume is solely due to elastic strains. We can
deduce the relationship, after yielding, between stress and strain in
direction 1 [3.70]:

trace 0=3 K trace &° & 0,+20,=3K¢

b [3.70]
o, =Keg+=Y
3

This behavior is shown in Figure 3.10(c), as well as the behavior
under hydrostatic stress state (b) and uniaxial stress state (simple
compression) (a).

Once the elasticity threshold is crossed, we see that the behavior
curve in uniaxial strain (c) is parallel to the behavior in hydrostatic
stress state (b). It is often assumed, through extrapolation, that
behavior obtained in uniaxial strain state, when near the elastic
threshold, is the same as the relationship between pressure and volume
changes under hydrostatic conditions. However, we must not forget
that this result is based on assumptions of the von Mises criterion and
incompressibility of plastic strain.
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(K2G + 2/3)Y

23Y

»
>

Figure 3.10. Stress—strain relationship for an elastoplastic material:
a) in uniaxial stress state, b) in isotropic state and c) in uniaxial strain state

In uniaxial strain state, elastic waves propagate with the velocity
C.;, which is equal to Cp of P-waves, and plastic waves propagate at
velocity Cy; [3.71]:

/K+4G \/:c ( [3.71]

If the shock is of limited duration, stress at the origin becomes zero
and an expansion wave is created. During the expansion, o, decreases
and the material returns to the elastic range. Therefore, first there is an
elastic expansion. Then, o; becomes smaller than ¢, and the plasticity
criterion can again be achieved. At this point, the relationships
between the stresses then become [3.72]:

6,—0,=Y and 0, =1Laz [3.72]
e 4

Then, there is a plastic expansion, or release, in the material.
During this phase the stress o; follows the law [3.73].

Figure 3.11 shows a loading and unloading cycle in uniaxial strain
state. There is a residual strain at the end of the cycle and the final
stress state does not coincide with the initial state.
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o, =Kg —%Y [3.73]

0

Plastic strain

Elastic expansion

2/13Y

Plastic expansion €

v

-2/13Y

Figure 3.11. The loading and unloading cycle in uniaxial strain state

From the viewpoint of waves in a solid, the expansion is composed
of an elastic wave and a plastic wave. Figure 3.12(a) shows the graph
of the course of the waves. Two compression waves, one elastic and
the other plastic, leave at the initial time. At the end of loading time &,
two waves also leave: one elastic and one plastic. Figure 3.12(b)
shows the stress field in a solid shortly after loading. We distinguish
between, from right to left, the elastic compression wave, the plastic
compression wave, which progresses more slowly, the expansion
elastic wave, which will catch up the previous wave, and, finally, the
plastic expansion wave.

3.4.2. Geomaterial

For cohesive and friction materials such as concrete, the criterion
associated with the onset of irreversible strain from internal slip
depends on pressure. We will consider the Driicker Prager criterion.
This criterion is obtained by adding sensitivity to the spherical part of
the stress tensor to the von Mises criterion. In the space of main
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stresses, this criterion is represented by a cone whose axis is the
trisection and the summit is the abscissa Y}, [3.74]:

f(g)=0, —a(l,+Y,) [3.74]

v

a;

HEL

a;

v

pl

Figure 3.12. Course diagram of waves in an elastoplastic solid
in a) uniaxial strain state and b) stress field at a time

As before, we consider uniaxial strain state [3.62]. In these
conditions, the invariants are expressed as [3.75]:

o,=0,-0, I =0+20, [3.75]

The plasticity criterion is formulated as [3.76]:
o,(1-a)-o,(1+2a)-aY,=0 [3.76]

At the elasticity limit, the main constraints are in the ratio [3.77]:

0, =——0, [3.77]
14
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Under uniaxial strain load, the yielding threshold (HEL) appears
for the stress level [3.78]:
a(l-v)y,

STy —a(1+v) B-78]

We must note that this threshold only exists if condition [3.79] is
verified. Thus, for materials with a Poisson coefficient close to 0.5 and
a sufficient angle of internal friction, the criterion will never be
reached. This means that for these materials, irreversible phenomena
in uniaxial strain state will be of compaction type rather than internal
slipping type.

1-2v
<
1+v

[3.79]

We continue the study as if the criterion is met. When o; exceeds
the threshold [3.78], the criterion [3.76] is verified and lateral stress
can be calculated [3.80]:

_l-a  ay,
1+2a ' 1+2«

[3.80]

0,

If we retain the assumption of incompressible plastic flow,
formulas [3.69] and [3.70] remain valid. Then, we can express the
relationship of stress as a function of strain [3.81]:

0']=K(1+20:).91+270{Yh [3.81]

In this case, we see that the conclusion made earlier through
considering the von Mises criterion is no longer valid. The pressure—
volume relationship cannot be deduced from the stress—strain
relationship under the oedometer path by a simple translation.
However, if the deviatoric behavior is well known, deduction is still
possible with the assumption of incompressible plastic flow. Here, we
have considered perfect plasticity models. If there is hardening and if
plastic expands or contracts, although in principle this is not
impossible, producing the pressure—volume relationship from the
stress—strain relationship can get quite complicated.
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3.5. Shock waves
3.5.1. Origin of the phenomenon

In section 3.3.1, we saw that when nonlinear behavior is exhibited,
a stress and strain level is propagated at a velocity that depends on the
slope of the stress—strain curve corresponding to this point [3.46]. In
uniaxial stress state, this slope is a decreasing function, and therefore,
as stress is increased at the extremity of a solid, strain waves
propagate increasingly slowly as shown in Figure 3.6. In uniaxial
strain, the material can compact itself and the curvature of changes in
the stress versus strain may become positive. Therefore, the slope of
this curve can increase. If we imagine that stress is increased at the
extremity of a solid, then strains could propagate faster from a certain
threshold level than at lower levels. There is a discrepancy that
reflects the fact that a continuous description of propagation of
stresses and strains according to their amplitude is no longer possible.
If an impact causes a level of stress in a solid that belongs in a region
of positive curvature in stress—strain law, it will propagate the stress
level by shock wave.

To understand the propagation of this shock wave, we take the
equations for conservation of mass and momentum formulated in
Chapter 2 for a discontinuity wave (see equations [2.1]-[2.4]). The
material is, before passage of the wave, in the “0” state (density py,
particle velocity V,, strain & and stress op) and, after passage of the
wave, in the “1” state (density p,, particle velocity V), strain & and
stress o). Conservation equations are used to write the variation in
strain and stress as a function of material velocity and shock wave
velocity D [3.82]. If we express volume decreases and compressions
positively, we see that the ratio between stress change and strain
change can only be positive:

pesV Vo 1P
D=V, P
4o =p,(D=V,)(V =V,)

Ao
Zz:ﬂxp—mf [3.82]

Assuming that before the shock, particle velocity being zero, we
can deduce the velocity of the shock wave from this ratio [3.83].
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Figure 3.13 shows the stress—strain curve at the two states before and
after passage of the shock wave:

A
s=49_,p p=|% [3.83]
e )
F Y
a
5 /
0y S
£
& & -

Figure 3.13. Stress—strain curve in uniaxial state with compaction
Jjumping from state 0 to state 1 at the passage of a shock wave

Upon impact on a solid, two different situations can occur (see
Figure 3.14). If the shock is not too strong, the matter will go from
state “0” to state “i ”, and the shock wave will be preceded by a wave,
called “elastic precursor”, because the velocity of the shock wave
jump is less than that of the elastic waves. If the shock is very violent,
the material will go from state “0” to state “ii”, velocity may exceed
that of the elastic waves and there is no precursor.

' 3
o e s

A\ 4

0
& &ii

Figure 3.14. Stress—strain curve in uniaxial state with compaction:
from state 0 to state i: shock wave with elastic precursor;
from state 0 to state ii: shock wave without elastic precursor
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3.5.2. Compaction at the passage of a shock wave

At the beginning of this chapter (section 3.1.4), we looked at
behaviors such as compaction. If these behaviors are studied in
dynamics, in uniaxial strain state, different descriptions exist [3.84].
If, when static, it is customary to consider a curve showing stress as a
function strain, then other representations are possible in dynamics. It
is possible to represent the relationship between stress jump and
particle velocity jump at the passage of a shock in the material. In
Chapter 2, we saw the great practical value of such a description for
the study of shocks in elastic solids. The interest of this description
remains for compactable solid. A third representation is possible by
giving the change in the velocity of a shock wave through a material
as a function of particle velocity after the shock (the material is
initially at rest). This third method is useful for very violent shocks
where both D and V values are directly accessible by experimentation.

o(e) & o(V) & D(V) [3.84]

For example, if compaction is described by a stress—strain
relationship of “power” type, other relationships can be deduced using
the laws of conservation of mass and momentum [3.85]:

1 n 2n n—1
- £ = A n+l 270
o= Agn «— o= AIH—] p(;H—l Vn+l <« D= (_] Vn+1 [385]
Po

Figure 3.15 shows an example of using the state diagram from the
law o(V) to find the level of stress o¢ created by impact on a
compactable material, with solid impedance Z arriving at velocity V.

A5 Compactible material

target
\/ Impactor

d

[

Oc

V;

Figure 3.15. Using the state diagram to determine the stress created
by the impact of a solid of impedance Z on a compactable material
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Figure 3.16 shows the correspondence between the stress—strain
relationship and the shock velocity—material velocity relationship for
three basic behaviors: elasticity, plasticity and compaction. In the
latter case, the model often takes the form of the McQueen formula
[MCQ 70] given in [3.86]:

D=A+BV" [3.86]

As a first approximation, n = 1, we present three materials in
Table 3.6.

Quartz D=6319+141V (m/s)

Water D=1,460+22V (m/s)

Air D=241+1.06 V (mls)

Table 3.6. Behavior of three materials when under shock

A Elasticity 4

o A D
=
P
\ oo, v
r 3
g Plasticity
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A Compaction
£ %

L »
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Figure 3.16. Correspondence between the stress—strain relationship
and the shock velocity—material velocity relationship for three basic behaviors
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Figure 3.17 shows the correspondence between the stress—strain
relationship and shock velocity—material velocity relationship for a
material with compactable elastoplastic behavior.

A
g AD

o |

H & V

b
Lt

.
>

Figure 3.17. Correspondence between stress—strain relationship and shock
velocity—material velocity relationship for a compactable elastoplastic material

3.5.3. Notion of state law

We have seen (section 3.1.4) that there are several ways to model
compaction. In the case of very high intensity dynamic loading in
contact with solid explosives or under very strong impacts, it is
customary to separate the internal forces into an isotropic part
(average pressure or stress) and a deviatoric part (shear) [3.15].
Pressure reaches very high values, in the order of tens of gigapascals,
while shear stresses are of limited value due to the plastic flow, in the
order of hundreds of megapascals. It is assumed that very high
pressure can be described separately from the laws of evolution for the
two components of internal forces. The limitations of this hypothesis
are still questionable for materials where compaction and flow
mechanisms are coupled, such as concrete. The relationship between
shear and distortion is called the behavior law. The relationship
between pressure and volume change is called state law in a
thermodynamic sense. This state law obtains its formula by expressing
pressure as a function of the internal energy and specific volume
[ZUK 90] [3.87]:

ple) (v:l] [3.87]

yo,
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It is generally assumed that in this law, there is no dependence on
strain rate. Differentiation of the law gives the expression [3.88]:

dp= a_p dv+ a_p de [3.88]
v ), de ),

We therefore pass from a “0” state to a current state by formula
[3.89]:

¢ ¢
p=po+j(a—’:j dv+j[a—‘e’J de [3.89]

The last term represents the change in pressure at constant volume.
To calculate this term, we determine the Gruneisen parameter,
assumed to depend only on the specific volume [3.90]:

r (v):v[a_p} [3.90]
de )

The pressure change at constant volume can be expressed in terms
of this parameter [3.91]:

j[a—p)dezr(v)(e—eo) [3.91]

The state law is generally determined by an impact test in uniaxial
strain state. The relationship between stress and change in volume is
called the Hugoniot relationship. We can deduce pressure, p, in isotropic
state from pressure py, the Hugoniot relation, by formula [3.92]:

r
P=ry +7(e—eH) [3.92]

where ey is the internal energy in the “Hugoniot™ state and can be
calculated, as already seen in [2.8], using formula [3.93]:

e =tp | L Ll 1p i |,_P_ [3.93]
2"\ p) 27p Po
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This allows us to deduce the state law through experiments in
uniaxial strain state [3.94]:

psz( —£j+£e [3.94]
2 v

Often, the Hugoniot relationship is expressed as a polynomial
[3.95]:

Pu =c1,u+c2,u2 +C3,U3 [3.95]

Figure 3.18 shows a relationship between pressure and specific
volume for a compactable solid. At the passage of a shock wave, the
state abruptly changes from an initial state to a compacted state
following a “Rayleigh” line, which corresponds to formula [3.83]. Then,
if there is an expansion that brings the solid back to its initial pressure,
compaction being an irreversible process, the path will be different. We
show by the dashed—dotted line the behavior of the completely
compacted solid, in which all porosity was closed. The shaded area
indicates energy supplied to the material to achieve this compaction.

Rayleigh

Compact

solid

line

Y

Vo

Figure 3.18. Compacting a solid in the pressure—volume diagram,
compression by shock wave and expansion showing the energy
supplied for compaction






Chapter 4

Dynamic Materials Testing

This chapter aims to show how knowledge of movements in solids,
as seen in previous chapters, is used for the construction and analysis
of tests to characterize the behavior of materials under a high rate of
strain. The Hopkinson pressure bar technique is presented. Technical
aspects of measurements are not addressed. There are specific and
comprehensive works on testing techniques (for example [FRA 01]).

4.1. Dynamic testing
4.1.1. Testing means

The most conventional testing means are electromechanical or
hydraulic machines that make it possible to submit a sample of
material to tensile stress or compression. Various devices are used to
create stress states. It is customary to speak of materials testing if load
leads to a state of homogeneous stress and strain in the test body. If
load leads to a state of non-homogeneous stress or strain, we refer to it
as structure testing. Flexion tests are of the second type. Strain rate in
the test body is related to the velocity of the movable portion (the
crosshead) of the testing machine. For electromechanical machines,
the maximum velocity is in the order of millimeters per second. This
value may be higher for hydraulic machines. Test specimens are of a
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size in the order of centimeters or tens of centimeters. “Quasi-static”
tests are usually made with strain rates from 10 to 107 s™'. To achieve
velocities of a much higher order of magnitude, specific experimental
means are required. High strain rates can be achieved subsequent to
the impact of a solid upon the test body. Hydraulic machines have
been designed for velocities in the order of 1 m/s. In these machines, a
cylinder pushes a crosshead that impacts the test body. Strain rates
from 10 to 100 s™' can then be achieved. A simpler idea is to drop a
mass on the test body (chute). The purpose of a test material is to
perform measurements that allow an estimation of the stress and
strain, assumed to be homogeneous, in a sample of matter. To access
these variables, specific devices have been developed. The device
most commonly used for dynamic tests is the “Hopkinson pressure
bar”, which will be described in section 4.2.

With this device, we can easily perform compression tests on the
test body, or specimen, by imposing a strain rate from 100 to 1,000 s .
In practice, the velocity range is limited to its minimum and maximum
values. Even for higher strain rates, a real impact test can be done by
studying the impact of a very rigid solid on the test body, or by
projecting it onto a rigid target (Taylor test). From a certain impact
velocity, the concept of strain rate loses its meaning. This is the case
with violent impacts, as seen in Chapter 3, which generate shock
waves in solids. The material then passes almost instantaneously from
a state of stress and strain to another state (strain rate tends to infinity).
Tests, called plate impact tests, are present for studying the behavior
of materials at the passage of shock waves. For a more complete
vision of dynamic testing, refer to [LAT 01].

4.1.2. Specific difficulty

A test aiming to characterize the behavior of a material must allow
the estimation of stresses and strains. In quasi-static tests, this estimate
is made by measuring forces and displacements on the contour, or part
of the contour, of the test body. In simple tests, we seek to obtain
homogeneous states. With the assumption of homogeneity, the
estimation of stresses and strains can be based on the measurements.
For example, in a simple compression test, stress is estimated by
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dividing the compressive force by the section of the test specimen;
strain is estimated by the ratio of specimen shortening relative to
length. The experimental reality is that this homogeneity is, in
practice, an approximation (for example friction at the specimen—
machine interface). Loading velocity can have an impact on this
homogeneity assumption. In Chapter 1, we saw that the homogeneous
evolution of stress or strain in a solid is not possible. Any change is
reflected through wave propagation. It is therefore necessary to
consider the validity limit of the homogeneity assumption. To
illustrate this, we consider a simple compression test on a concrete
specimen (L = 0.1 m). Time A¢ taken for a wave to make a round trip
in the test body is calculated in [4.1]:

a=2L (cszgzsﬁmnmﬂ [4.1]
Co P

If the crosshead wvelocity is ¥V, the machine will impose a
displacement 6 = VAt during this time, which corresponds to a strain
of amplitude specified in [4.2]

2L
CO

Ae [4.2]

At any given time, the difference in strain between two points on
the test body can have this value. If this value is very small compared
to the magnitude of the strain characteristic of the material (for
example, strain at yield point), the usual quasi-static assumption of
homogeneity is relevant and may be considered. For the example of
concrete, while the crosshead speed is /' = 1 mm/s, the difference in
strain Ag is in the order of 107, This value is very small compared to
the strain at yield point, which is in the order of 107°. If the speed is ¥’
= 10 m/s, the difference in strain is in the same order of magnitude as
strain at the elastic limit. The assumption of homogeneity or quasi-
equilibrium cannot be assumed a priori.

For a dynamic test, we can classify the methods into two
categories. If, during the test, we can make measurements that
show that, although dynamic, the specimen is in a state of
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quasi-equilibrium, we can easily estimate the stresses and strains. This
situation is often sought for the Hopkinson pressure bar test. If this is
not the case, analysis of the test can become very difficult. Advanced
metrics exist (field measurements) to support the operation of a test.
More generally, we can proceed using an inverse method based on a
choice, a priori, of the type of material behavior.

4.2. Hopkinson pressure bars
4.2.1. Device

The original device invented by Hopkinson used only one bar
[HOP 14]. The current device, consisting of two bars, was developed
by Kolsky [KOL 49]. This device is shown in Figure 4.1. It consists of
a compressed air canon projecting an impactor and two bars, between
which a sample of the test material is placed. The basic metrology of
this device consists of recording strain in the bars using resistive
gauges. It is possible to complete this metrology, for example with a
camera.

strain

Digital :
Velocity acquisition i s
measure 3 J
e = _
Impactor P
Strain.gauges. .
|l - : e - _ - — i - ,
. . | I il L A T 4, T

Compressed air ‘
canon Incident bar Specimen Transmitter bar

Figure 4.1. A Hopkinson pressure bars device

4.2.2. Principle of the test

The test body, or specimen, to be subjected to compression is
placed between the two bars. A compressed air canon sends a
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projectile from the end of the first bar, called the incident bar. The
shock induces a compression slot, as shown in Chapter 2, which
propagates through the bar. If the compressional wave reaches the
other end of the incident bar, it compresses the test body. The latter is
then crushed and a reflected wave goes back into the incident bar, and
a wave is transmitted to the transmitter bar. The characteristics of
these two waves are related to the behavior of the test body. Figure 4.2
shows the wave course diagram in the device. Upon impact, the
projectile has velocity V;. If the impactor and the incident bar have the
same diameter and are made of the same material (which is not a
requirement), the value of the amplitude of the compression wave is
shown in [4.3] (pp is the density of the material constituting the bars,
Ejpis Young’s modulus and Cj is the wave velocity in the bars):

0= E PsCh [4.3]
Measurement Measurement
A ; & and g, &
»
3
L 1 ]
Impactor Incident bar Specimen Transmitter bar

Figure 4.2. Wave course diagram in a Hopkinson pressure bar
and strain measurements in the bars
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The duration of the compression slot is that of a round trip of the
waves in the impactor. The strain gauge placed on the incident bar
allows for the measurement of this slot. If the compressional wave
reaches the end of the incident bar, which is in contact with the sample
material to be tested, diffraction occurs. A part of this wave is
reflected. The gauge placed on the incident bar allows the
measurement of the reflected wave. Part of the wave is transmitted
and can be measured with the gauge placed on the transmitter bar. As
analysis of the test is based on the knowledge of the three waves
(incident, reflected and transmitted), it is necessary to measure them
in a place where they do not overlap. Thus, a gauge needs to be placed
in the middle of the incident bar, with a length greater than twice that
of the impactor. For the same reasons, the transmitter bar must also be
longer than the impactor. The development of strains measured
by gauges, an example of which is shown in Figure 4.3, is recorded
and is the raw test result. The purpose of the test is to deduce, from
these measurements, the stress and strain in the sample of tested
material.

j’ -~

— pcident bar

"signal” (V)

— — — - transmitter bar

0 0.001 0.002 0.003 0.004 0.005
time (s)

Figure 4.3. Recording example: incident and reflected waves in the incident bar
(solid line) and transmitted wave in the transmitter bar (thin line)

We can study in more detail how the waves will compress the test
body. Figure 4.4 shows the wave course diagram. The specimen
generally has an inferior impedance than the bars, and velocity of the
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waves is lower. Multiple successive diffractions can be observed at
the interfaces between the bars and the sample.

[ 3

iSﬂm

4+——>

Figure 4.4. Diagram of wave course in the test body

Figure 4.5 shows the evolution of stress and the state diagram in
the test body. The impactor shock has imposed a “0” state in the
incident bar. When this wave comes into contact with the sample, it
passes from rest to state “A” (Zp is the impedance of the bars and Zj,,
is that of the sample).

4, &

0

L

v

\ 4

Figure 4.5. Evolution of stress and state diagram in the test body

A number of round trips occur in the specimen, which result in an
increase in the stress state in the latter and completion of the
compression test.
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4.2.3. Analysis of the test

Test analysis methods have been extensively studied (for example
[DAV48, DAV 63, FOL 83, MAL 86]). The estimation of stresses and
strains in the test body requires a determination of forces and
displacements at the extremities of the test body that are assumed to
be in a state of simple compression (Figure 4.6).

Ef
Er
<—— i

U, Us

Figure 4.6. Test body conditions at the boundaries

The diffraction conditions mentioned in Chapter 2 are used to
calculate the forces and velocities at the interfaces as a function of
waves.

Incident and transmitted waves are progressive and the reflected
wave is retrogressive. The corresponding formulas are given in [4.4]:

{Vg =Cy (gi(t)—gr(t)) {E’ =SpEy (gi(t)+€r(t)) [4.4]

V.=Cy gt(t) F, =S,E, gt(t)

These formulas are expressed by strain waves at the end of the
bars. However, these formulas are measured at points far from the said
ends. So, measured waves have to be transported in time. The incident
wave must be “moved forward” in time and the reflected and
transmitted waves must be moved “backward”. As we know how
waves propagate in the bars, it is possible to perform this operation.
The calculation is very simple if we plan to model the wave bars in
uniaxial stress state. We can search for a more accurate result by
taking wave dispersion in the bars into account, as was discussed in
Chapter 1 [GON 90, ZHA 96]. Formula [4.4] shows that we must
calculate the sum and difference of the waves. In practice, this
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calculation will be significant if the amplitudes of these waves are in
the same order of the magnitude. This depends on the ratio of
impedance of the bars and the sample. In fact, if the tested material is
of very low impedance compared to bars, the reflected wave will be
almost opposite to the incident wave as a reflection on a fixed edge,
and the transmitted wave will be very small. It will be very difficult to
deduce the strength from the measurements of strain waves. It is
therefore necessary to adapt the device to the material being tested.
Steel bars are used to test high-performance metallic materials. To test
materials such as concrete, aluminum bars would be used instead. If
test materials of lower impedance are to be tested, such as wood or
polymers, bars made of a material with impedance in the same order
as nylon must be used. Such materials generally exhibit a viscoelastic
behavior and the transport of waves, as mentioned above, must take
into account the dispersion and dissipation of waves in the medium
[ZHA 95, GAR 97].

The forces and velocities estimated in [4.4] are the result of an
analysis of measurements. As mentioned in section 4.1.2, it is
necessary to consider the state of stress and strain in the test body and
its homogeneity. Knowing the force at each end is important. If both
F, and F; forces are substantially equal, we can assume that the stress
state is homogeneous in the sample. Assuming that the state of strain
is homogeneous, we can use formulas [4.5]:

1 1 1 1 1 1
€I—€0=5(0'1+O'0) ;_P_ el_eozg(o-l"'ao) ;_P_
S C s
1 1 1
61_9025(0'1 +0y) o o)
1 Po

If homogeneity, or quasi-equilibrium, in the test body cannot be
verified, the forces and velocities at the extremities provide useful
data to try a behavior search by an inverse method [GAR 93].
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4.2.4. Types of loads

The device described above concerns compression tests. The
principle of this test has been exploited to create additional stress
states in the tested specimen. Torsion and traction bars exist. It is also
possible to get other loads with the compression system. Instead of
directly placing the test body in contact with the bars, we can insert an
intermediate device that will put, by confined compression, shear or
bending tension on the material to be tested (for example [YOK 93]).

4.3. Testing by direct impact
4.3.1. Device

The direct impact device is simpler than the Kolsky device
described previously. An impactor is projected directly onto the test
body. There is only a “transmitter” bar with a gauge to measure the
strain wave crossing it. Figure 4.7 illustrates this device. It is essential
to measure the projectile impact velocity V; on the test body.

Velocity
Impactor measurement :
. Strain gauges
| L = | | - - i - ]
Compressed air |
canon Specimen Transmitter bar

Figure 4.7. Direct impact device

4.3.2. Analysis of the test

The primary measurement is of the strain in the bar &(¢). This
strain is produced by the propagation of a compression wave
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generated at the extremity. We deduce, as before, force and velocity at
this extremity [4.6]:

F(1)=5,E, &(1)

[4.6]
V(1) =Cy &)
The velocity of the projectile, at any time, is then determined by
the balance of momentum [4.7]:

V(t):I/l.—%J‘;FX(T)dT [4.7]

If we assume a uniform strain state on the test body, the strain is
then determined as [4.8]:

g(z):]% [{(v(2)-7,(2))dz [4.8]

The analysis of this test is done, a priori, with the assumption of
quasi-equilibrium in the test body. With only impact velocity
measurements and measurements of wave in the bar, this hypothesis
cannot be verified. It is therefore necessary to be careful or to
complete the metrology, for example with a camera, to reinforce the
assumptions of the analysis of this test.

4.4. Taylor impact test
4.4.1. Principle of the test

The Taylor impact test involves projecting a cylindrical test body
onto a very stiff target. If the impact velocity is sufficient (see Chapter
2), the projectile will be yielded. A yield wave is propagated through
the test body, starting from the face of contact with the target, until the
initial kinetic energy of the projectile is dissipated. Figure 4.8 shows
the test body at the instant of impact (¢ = 0) and an instant ¢ where a
part of the cylinder has plasticized. When the test is completed, the
test body has zero velocity and a certain area is yielded (x = X).
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Figure 4.8. Taylor impact device

4.4.2. Simplified analysis

Analysis of the Taylor test is generally quite complex because the
impact causes large strains [ZUK 90]. It is difficult to simply deduce a
law of behavior. This test is often used to make a comparison with the
result of a calculation that uses the finite element method and a model
behavior law, in a law validation process. To understand the basic
phenomena involved in this test, we propose a very simple analysis for
the case where the material is assumed to be elastoplastic without
hardening and without dependence on strain rate. Upon impact, an
elastic wave with amplitude Y (yield) returns through the solid, at
velocity Cy. A plastic wave starting at the same time also goes into the
solid at velocity C,;.. Assuming that the plasticized zone is at rest, the
relationship between stress and particle velocity is [4.9]:

Y=pCl [4.9]

With each reflection of the elastic wave on the fixed end, the
projectile velocity decreases by a quantity indicated by [4.10]:

2y 1 pdv

dV =— =
pC, G, 2Y

[4.10]
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A return of elastic waves in the non-plastic part of the cylinder will
last for the value shown in [4.11]:

dt = 2x [4.11]
CO
the length dx going from the elastic to plastic state is [4.12]:
2x
alx:—(l/+6'p,)c1t:—(V+cpl)F [4.12]

0

We then deduce the differential equation that governs the evolution
of the plasticized zone [4.13]:

dx _2(V+Cp1) _p(V+Cp1)

= = dv [4.13]
X C, Y

By integration, we obtain the equation governing the evolution of
the plastic zone [4.14]:

2
Inx =§[V7+ cp,vj [4.14]

By integrating this equation between time ¢ = 0, where x = L, and
the final time where V' = 0 and x = Xz, we obtain a formula indicating
the size of the zone plasticized during the test [4.15]:

_B(Vi J
2 +C
1n(XL]=£[VL+cp,Vi] L _ 72 [4.15]

4.5. Plate impact
4.5.1. Devices

The plate impact test aims to characterize the behavior of a
material during the passage of a shock wave, as seen in Chapter 3. The
test principle is to generate a shock wave in a test specimen by
applying a relatively high strain rate on one side of a test body. This
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imposed speed may result from the impact of a plate, projected from a
canon. The test may also be done by propelling a plate in contact with
the test specimen. This propelling is the result of an explosion of
energetic material behind the plate. Figure 4.9 shows these two types
of devices. It is recognized that, in the test body, the state is close to
the uniaxial strain state. The basic instrumentation of this test is for
measuring the velocity of the plate and the velocity of the rear face of
the test body. The magnitude of the stresses referred to in this type of
test is gigapascal or greater.

Specimen Explosive Specimen

v l Y

=

a) b)

Figure 4.9. Plate impact devices: a) plate powered by a canon;
b) plate propelled by an explosive

4.5.2. Analysis elements

In this test, a shock wave is created in the material for which we
wish to know the behavior under very high pressure. We can estimate
velocity D of the shock wave in the material by measuring the time
delay between the velocity of the plate (and thus the front side) and
the velocity of the rear face of the sample. Velocity of the rear face is
also measured and the particulate velocity V' behind the shock wave
can thus be deduced. Then, we have a pair of values (D, V) associated
with the behavior of the material under shock. It is therefore necessary
to carry out several tests with different stress levels to approximate the
shape of the relationship between velocity D and particle velocity V.
In Chapter 3, we saw the duality between relationship D(V) and the
behavior o(€) in uniaxial strain state.
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Chapter 5

Impact on a Simple Structure

From the mechanical response of a simple system to short-term
stress, we introduce specific tools such as the shock response
spectrum and iso-damage curves. These methods allow us to model a
real structure through a simple system.

5.1. Basic structure
5.1.1. Linear system with one degree of freedom

Dynamic modeling of a simple mechanical system is an oscillator
with one degree of freedom. The construction of more complex
models is often based on this basic element. We first recall the
characteristic parameters and properties of the system with one degree
of freedom, which is used in the study of vibrations. Then, tools to
assist the engineer for short-term loads will be discussed. A structure
with one degree of freedom is represented by a single position
parameter x(?) and, therefore, a single load parameter f{?). This model,
often called single degree of freedom (SDOF), has been the subject of
many studies [GER 96, AXI 0la]. The mathematical representation of
such a system in the time domain is a differential equation where each
term has a physical significance (Figure 5.1).



120  Materials and Structures under Shock and Impact

The equation governing the mechanical response of a structure
with one degree of freedom is [5.1]:

mi(t)+cx(t)+kx(t)= f(1) [5.1]
k
10)
——> m

C
L’x(l}

Figure 5.1. Model of a structure with one degree of freedom

The general problem is finding response x(#) if the load, or
excitation, is known f{?). A characteristic of oscillators, as used in the
field of vibrations, is the frequency response function. In this context,
if excitation (and therefore response) is periodic, we can use the
Fourier transformations of force and displacement, which give an
image in the frequency domain [5.2]:

TF (x(t) = x" () TF(f ()= f"(w)

[5.2]
TF (x(¢)) =iwx" (@) TF (%(1)) =—’x" ()

Given the properties of the Fourier transformation, the differential
equation is then written as [5.3]:

(-ma’ +ico+k) x" (w)= " (@) [5.3]

The (complex) frequency response function is defined as the ratio,
in the frequency domain, of the response to excitation. In the one
degree of freedom example, this function is expressed as [5.4]:

_x (o) 1
_f*(a))_k—ma)2+ica)

H(w)=|H ()" [5.4]
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H(®) has amplitude |H (a))| and phase ¢ (w). This means that a

sinusoidal excitation produces a sinusoidal response of the same
frequency. The amplitude of the response is that of excitation

multiplied by |H (a))| and the response is dephased with ¢(®)with

respect to solicitation. If excitation is not sinusoidal, we try to describe
it as the sum of harmonic functions. We can also write the frequency
response function as [5.5]:

o e S——_—
iw—p Iiw-p

[5.5]

Other complex oscillator features are then defined. p is the pole
and R is the residue (p and Rare their conjugates). These

characteristics are related to the physical parameters of the oscillator
by the relationships [5.6]:

—i

R

= p=—0+im,
2mw, ¢

k c
0’ =0-0" @y =,|— o=—o
m 2m

Figure 5.2 gives the graphical representation of the frequency
response function. Paths drawn are, on the one hand, the module
relative to pulsation and, on the other hand, the dephasing relative to
pulsation. The oscillator characteristics are the parameters of these
curves (20 is the peak width at a level of —3dB relative to the
maximum).

[5.6]

The elements defined here are the basic tools for general use, and
in particular for studying the response of a structure to vibrational
excitation [CLO 75]. We now address more specific tools for studying
the effects of impacts — short-term loads.
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Figure 5.2. Frequency response of a structure with one degree of freedom,
amplitude and dephasing of the response

5.1.2. Short-term loads

It is necessary, first, to clarify the concept of short-term as it is
relative. Shocks and explosions impose loads on structures, which are
modeled by f{#) functions. In Chapter 2, we discussed impacts of
solids, and in Chapters 6 and 7, we will discuss the modeling of
impacts of structures and explosions. These f{#) functions become zero
after a certain period.

The concept of short-term refers to the natural period of the system
with one degree of freedom that represents the structure (7 =27/@,).

“Short-term loading” is that which induces force on a structure,
the application duration of which is less than or in the order of the
natural period of the structure. It is a field of study quite different from
that of forced vibrations, where excitation is considered permanent in
models, that is to say, in practice, of long duration compared to the
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natural period of the structure. If we study the dynamic transient
response to a short-term stress, the maximum amplitude of the
response, which is the main object of interest to an engineer, is
reached during the first oscillations. The effect of absorption is usually
negligible on these first oscillations. We, therefore, consider an
equation of motion without absorption of type [5.7]:

mi+kx=f(t) or 5c'+a)2x=if(z‘) [5.7]
m

The first tool that we define is the impulse response. This response
is the displacement caused by a load f{?), represented by the Dirac
delta function o). The Laplace transformation will be used to search
for solutions to the equation of motion. The operational image of x(r)

is X(s). The equation of motion under impulsion is [5.8]:
. ) 1
Xs+ @ x5 =—0(1) [5.8]
m
Its operational image with the Laplace transformation is [5.9]:
2— 2 — 1
SF P F, = [5.9]
m

Under operational form, the solution is [5.10]:

1
Xy=——7T+ [5.10]
" om(s+?)
Going back to the time domain gives solution [5.11]:
1 .
x5 (t)=——sinwr [5.11]

ma

The interest of this impulse response is to enable the calculation of
response to any f(#) load. Indeed, any load can be written in the
operational domain as the product of itself with the image of the Dirac
delta function (which is the unit). The image of the response to this
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load is written in the operational domain as the product of the load
image with the impulse response. Returning to the time domain,
response is then represented by a convolution product which is called
the Duhamel integral [5.12]:

X=[X% x=[f*x x:thf(t—z')sina)rdr [5.12]
ma:- 0

5.2. Shock response spectrum
5.2.1. “Slot” impulse

The response spectrum is an evaluation tool for the effect of an
action. If the action, load f{?), is given (for example, the impact of a
projectile or the effect of a determined explosion), the aim of the
spectrum is to give the response of a basic structure to that load. The
variable parameter is the eigenfrequency of the proposed structure.
The response spectrum is the maximum amplitude of displacement
that a basic structure will undergo, under a given load, according to its
own eigenfrequency [AFN 98, LAL 99, MOR 06].

To begin, we will build the response spectrum to short-term,
“rectangular” pulse-type or “slot” load as shown in Figure 5.3.
Although simple, this load is realistic for some situations such as the
impact of solids. In Chapter 2, we saw that these are reflected in the
application of a force that remains constant for a certain period (due to
the size and the velocity of the wave). The load parameters are its
amplitude P, duration 6 and pulse, which is the integral of f(z) [5.13]:

i:j:f(t)dz [5.13]

This load and operational image are formulated as [5.14]:

FO)=P(H()-H(t-0) F(s)=2(1-) [5.14]

N
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The image of the response to this load is as follows [5.15]:

__£ 1 3 e
x_m[s<s2+a)2) s(s2+a)2)] [>-15]

‘f)

v

e

Figure 5.3. Short-term load of “slot” or “rectangular pulse” type

In the time domain, the result is [5.16]:

X =

mi)z((1—cosa)t)—H(z—é’)(l—cosa)(t—é?))) [5.16]

This response takes two different expressions, depending on time
[5.17]:

t<@ x=

o~ (1-coswr)

[5.17]
t>0 x=

> (cos Wt cos @l + sin @t sin w6 — cos a)t)

mw
We will seek the maximum amplitude in both domains. To
generalize the results, dimensionless variables are introduced [5.18]:

00, kx

x¥=—mx 5.18
T 2P [ ]

W*

The maximum amplitude reached during loading gives the initial
spectrum [5.19]:

*(w* :i max 4 |x
2 i O [5.19]
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The expression of this initial spectrum is given by formulas [5.20]:

xl_*(w*)=%|1—cosw*| if wh<rmw [5.20]
X,‘*(W*)Zl l'fW*>7[

The maximum amplitude reached after loading is called the
residual spectrum [5.21]:

x,*(w*)=£tr€r[1§§[{|x(t)|} [5.21]

Expression of the residual spectrum is given by formula [5.22]:

x, *(w*) =%min{\/(cosw*—l)2 +sin” w*; l—cosw*|} [5.22]

These two spectra are shown in Figure 5.4. The total spectrum is
the maximum amplitude of displacement over time, regardless of the

period. The total spectrum is the envelope of the initial spectrum and
the residual spectrum [5.23]:

x*(w*)=max{x,.*(w*);x,*(w*)} [5.23]

0

I!

amms:

0.1 1 I o

g
5
&

0.0i

0.01 o 1 10 100

w*

Figure 5.4. Response spectra to a “rectangular pulse” load type: initial spectrum
(solid line) and residual spectrum (dotted line)
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The total spectrum is shown in Figure 5.5. We clearly define two
areas in this spectrum. If w* is greater than /, the spectrum equals the
unit. If w* is less than 7, the spectrum tends toward a line in the log-
log scale. These two situations correspond to different practical cases.

12 10
1
0.8 1
% 06 %
0.4 01
0.2
0 I 0.01
0 1 2 3 0.001 001 0.1 1 10 100
w* w*
a) b)

Figure 5.5. Total spectrum of response to “rectangular pulse” load type:
a) linear scale and b) logarithmic scale

The mechanical response of the structure represented by formulas
[5.17] and [5.18] can be simplified in two cases. If the loading time is
small compared to the natural period of the system, it is called a
pulsed load. The maximum amplitude is reached after loading.
Simplifications are given in [5.24]:

0<<2” coswh~1 sinwd=awd [5.24]
w

This leads to the response [5.25]:

sin wt [5.25]

x= P—esin ot = !
me km
The maximum displacement only depends on pulse i:

x = [5.26]
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It should be noted that the loading pulse is used to give the system
an initial velocity. The response corresponds to free vibrations within
the system. The velocity condition can be found by expressing the
change in momentum during loading (between ¢ = 0 and ¢t = ) as
equal to the pulse delivered to the system such that its displacement is
still negligible [5.27]:

4
m(#(0)=#(0))=i=[ "f(t)ar [5.27]
In this case, only pulse determines the amplitude of the response.

However, if, load time is large compared to the natural period of
the system, the maximum displacement is reached during loading and
other simplifications can be made [5.28]:

0527 =L cosan) [5.28]
10 k

The maximum displacement only depends on the amplitude of
loading, x,,., = 2P/k. If the load was static, displacement would be P/k.
In this case, the structure oscillates around this value and tends toward
it if there is absorption.

5.2.2. Various types of pulses

Short-term loading may take a different form than that of a
constant force applied for a certain period. Among the different
pulses, we retain those of the “triangle” and “sine” (or “half-sine”)
which are shown in Figure 5.6.

AS

a)

Figure 5.6. Different shapes of impulsive loads:
a) rectangle, b) triangle and c) sine
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Impulsive loading of “triangle” type may be the model of a load
imposed by an explosion, as discussed in Chapter 7. This load consists
of a force of intensity P applied instantly that decreases linearly until
it vanishes after time €. Its formula and operational image are shown
in [5.29]:

[5.29]

The image of the basic system response to this load is as follows:

P 1 e®-1)
= — .30
m(s2+a)2)[sJr Os’ J [5-30]

In the time domain, the response to the triangular pulse is [5.31]:

=|

(ot —sint) . (@(t—6)-sinw(t-06))
fw fw

x= Pz{(l—cosa)t)—

H(t—H)] [5.31]
ma

“Sine”-type loading corresponds to a force that sinusoidally
changes during a half-period. This loading may represent the result of
impact on an elastic structure, as will be discussed in Chapter 6. The
expression of force and its operational image are shown in [5.32]:

/(1) :P[sin%tH(t)+sin 7r(t6—6’) H(t—@)j
[5.32]
- Pﬂ- Os
= (14+¢
/(s) 9(52+(7Z/9)2)( ¢ )
The image of the response to this load is [5.33]:
. P7r(1+e_gs)
X = [5.33]

ml9(s2 + a)z)(s2 +(71'/(9)2)
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In this time domain, the result is [5.34]:

(a)sin”—t—gsin a)t)H(t)
P g 0

- [5.34]
mo(@’ - (7/6)') —[wsm@—%smw(t-e)jy(t-e)

X =

From formulas [5.31] and [5.34], the response spectra of these two
types of loads have been calculated. They are shown in Figure 5.7
with the rectangular load spectrum.

12

0.8
rectangle
‘?,_0.6 — i 5iNE
m=m==== friangle
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0.2

0 :
0 ¥ 2 3 4
w

Figure 5.7. Response spectra for three types of impulsive loads:
“rectangle”, “triangle” and “sine”

5.2.3. Alternating loading

Transient loading does not necessarily represent a pulse as defined
above. Although for a short time, there may be a sign change for the
force. The impacts of solids or structures will lead to impulsive loads
where the force is always positive. These loads will be detailed in
Chapter 6. However, loading a structure by a blast wave after an
explosion may have a phase of positive force, a consequence of
overpressure, followed by a phase of negative force, a consequence of
depression. The load will be detailed in Chapter 7. To understand the
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effects of an alternating load, as a typical example, we take the load
shown in Figure 5.8. The load is written, along with its image, by
formulas [5.35]:

f(t)=£sin(%tj (H(1)-H(t-20)) f(s)=Z—P# [5.35]

m

v

Figure 5.8. Short-term alternating load of “sine” type

The operational response is expressed as [5.36]:

-26
=L L-e [5.36]
{sz +sz(s2 +)
The basic structure response to an alternating load is [5.37]:
T . .t
—sinwt — wsin—+

P o o

x= [5.37]

7 s
ma)[gz_ afj H(t- 26)[wsinw—%sina)(t— 26)}

It then becomes possible to calculate the response spectrum of such
a load, still using the same dimensionless parameters. This spectrum is
shown in Figure 5.9. In this figure, we remind the reader of the



132 Materials and Structures under Shock and Impact

rectangular pulse response spectrum. For the positive load response
spectrum (section 5.2.2), we distinguish between two areas: one for
relatively short-term loads, for which response amplitude depends on
pulse, and the other, for longer loading durations (the relative duration
w* is always the ratio of duration of loading to the natural half-period
of the structure).

3

x*
LY

0.01 0.1 1 10

Figure 5.9. Response spectrum to a short-term alternating load of “sine” type (solid
line) compared to that of a rectangular pulse (dotted line)

In the spectrum of an alternating load, there are three areas:

— w*<0.5: the stress is of short duration for the structure. For low
frequencies, the response is of very low amplitude because it depends
on the total pulse, which in this case is zero.

— 0.5<w*<35: the loading time is in the same order of magnitude as
the natural period of the structure. There is amplification of the
response (x*>7). This can be interpreted as the beginning of
resonance of the structure.

— 5<w*: the load is applied slowly.



Impact on a Simple Structure 133

5.2.4. Dynamic amplification factor

For the engineer, another way of assessing the effects of a dynamic
load on a structure is by determining the static load that would cause
the same maximum displacement. If the amplitude of the load is P, we
look for the Daf coefficient (dynamic amplification factor) by which
we must multiply amplitude P to achieve the same maximum
displacement [5.38]:

Xy = X" (P.Daf ) [5.38]

Obviously, the dynamic load response spectrum determines this
coefficient. If the eigenfrequency of the structure is @ and load time is
6, the Daf coefficient is deduced from the spectrum by formula [5.39]:

Daf =2x*(w8/x) [5.39]

If the load is always a positive force, the coefficient is less than 2.
If the load is alternating, it can take larger values (up to about 7 as in
the example shown in Figure 5.8). A common example for using the
Daf is that of a long-term load with rapid implementation as shown in
Figure 5.10.

A

0 o

v

Figure 5.10. Long-term load applied at a certain velocity

The load is long compared to the natural period of the structure
[5.40]:

or >~ [5.40]
w
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The movement of the structure will be governed by equation
[5.41]:

a

i+@’x=—(tH(t)-(t-7)H(t- 7)) [5.41]

m
The response of the structure, in operational form, is [5.42]:

a(l—e"%)

S e

[5.42]

The response as a function of time is expressed as [5.43]:

x=——((wt-sinwt)H (1)~ (ot - 6) - sinw(t— 6)) H (1 6)) [5.43]
ma
For times ¢>6, during which the maximum is reached, this

expression takes the form [5.44]:

P 1, . .
x—;(I—E(smwt—sma)(z‘—ﬁ))] [5.44]

The desired coefficient is then determined by expression [5.45]:

Daf = n[lgax[ (1 - Le(sin Wt — sin @t cos WO + cos wt cos wﬁ)) [5.45]
te[8,e 7))

It is possible to calculate this factor analytically, and we obtain
formula [5.46]:

Daf =1+ %((1 — cos ) sin & + sin w@cos &)
@

[5.46]
1—cos a)ﬁj

sin w@

E= arctan(

The value of this coefficient is represented as a function of the
relative time in Figure 5.11. This coefficient varies between 1 and 2.
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w*

Figure 5.11. Dynamic amplification factor as a function of the
relative duration of time scalability

5.3. Iso-damage curves
5.3.1. Impulsive loading

The response spectrum is a useful tool for the engineer if loading is
determined and if we want to estimate the response of any structure.
The practical question may arise in a different form. If a structure is
known (an existing building, for example), what are the dynamic loads
it is able to bear? This approach assumes that the shape of the
dynamic stress is known and defined by two parameters. We take the
example of a rectangular pulse, defined by two parameters, amplitude
P and pulse i. The resistance of the structure is linked in order not to
exceed a certain displacement amplitude, denoted by x,,,4..

The question is then formulated as the search for pairs of values
(P, i) that allow x,,,, to be achieved. To make quite a general approach,
dimensionless parameters are used [5.47]:

_ i pro 2P
xmax v km kxmax

I* [5.47]
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As the mechanical response is known (equations [5.17]-[5.23]), it
is possible to calculate the points on this iso-damage curve, also
known as a P-I curve, as shown in Figure 5.12. This iso-damage curve
resembles a hyperbola for which the asymptotes correspond,
horizontally, to the load pulse and, vertically, to the long-term load.
The use of such a graph is simple. If the parameters of the load
correspond to a point below or to the left of the curve, the structure
will be able to resist. If the load is of the “triangle” or “half-sine” type,
the iso-damage curve looks the same. The iso-damage curve can be
deduced from the response spectrum, as shown in Figure 5.13. Point i
in the spectrum corresponds to a load of duration 6, =7w; */@. The
dimensionless amplitude of the load is 1 and produces the
displacement x;. Reaching a critical displacement of 1 requires a load
of amplitude P; = 1/x;. With knowledge of P; and &, we can calculate
I;(P; 6) according to a formula that depends on the shape of the signal.
We then have a point on the iso-damage curve.

5

I*

P*

Figure 5.12. Iso-damage curve, or “pressure-pulse” graph, for a structure with one
degree of freedom solicited by a rectangular pulse



Impact on a Simple Structure 137

oo s g P N

/ w P

\ 4
\ 4

Figure 5.13. Correspondence between a response spectrum and
iso-damage curve

5.3.2. Alternating load

Determination of the iso-damage curve was done in the case of an
alternating load of type as in Figure 5.8. The result, derived from the
spectrum, is shown in Figure 5.14. We note that in this case, the
appearance of a hyperbole is not conserved and the “safety” area has a
very different border. Thus, we must be very careful when there is
stress accompanied by change in force direction before using tools
that were originally developed for impulsive loads close to the
“rectangle”.

10

x®

0.01 0.01
0.1 1 10 100 0.1 !

we

s 10 100

Figure 5.14. Response spectra curves and iso-damage curve for a rectangular
pulse (dotted line) and an alternating pulse (solid line)
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5.4. Modeling a real structure
5.4.1. Definition of an equivalent system

There are some cases where modeling a structure as a highly rigid
mass, connected to a foundation via a link with easily identifiable
rigidity, is quite obvious. In general, a real structure does not present
itself as a mass connected to a spring. A significant work is structure
modeling and the choice of mass and equivalent stiffness [BIG 64,
TIL 86, PAU 05, WEE 07]. Below, we present the so-called Rayleigh
method. This method is formally presented in order to demonstrate the
principle and generality. In subsequent sections, typical examples of
structures are modeled.

In general, a structure (S) is solicited by a load QO(x, ¢) which causes
displacement U(x,¢). These two quantities are, a priori, vector fields.
This structure has a mechanical model (bending beam, for example)
which allows calculation of stresses and strains under static load.

The first step in modeling is to choose scalar variables to represent
the load and the mechanical response:

— choice of scalar F,(?) representing the load;

— choice of scalar X,(?) representing the displacement.

There are no special restrictions to make this choice. Generally, the
resultant force load is chosen for F, and the largest structure
displacement is chosen for X,. A structural mechanics static
calculation can find the ratio of this force to the displacement, which
we call the equivalent stiffness [5.48]:

K =—¢ [5.48]

The second step consists of determining the equivalent mass in
order to give the system to one degree of freedom. This is based on
the Rayleigh method for approximate determination of a specific
frequency structure. We must first choose the displacement mode
[5.49]. This choice may be based on intuition and must verify the
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kinematic boundary conditions that are imposed on the structure. It is
customary to take static strain, or the first mode of vibration of the
structure, as the displacement mode if these are known:

U(x,0) = (1)g(x) [5.49]

In the absence of load, we consider the free oscillations of the
structure and the temporal function is harmonic [5.50]:

y(t)=ae” [5.50]

It is then possible to estimate the kinetic energy of the structure
that oscillates depending on the selected mode [5.51] (the integral is
over the entire structure):

EC=%JP(£)Q2(z,t)dv:_;da%””‘j (x)¢” (x)av  [5.51]

Moreover, it is also possible to determine the elastic strain energy
in the structure. The elastic strain energy is explained from a
calculation under static loading. Examples will be discussed in the
following sections. We write this energy from the strain field
associated with the chosen displacement field by formula [5.52]:

e(U)=ae” (9) [5.52]
The elastic energy is then written as formula [5.53]. This is a
formal expression to explain the method principle. In practice, the
elastic energy formula will be adapted to the mechanical model of the
structure. Examples will be developed in the following sections:

=—|e(U )|dv=— Lz e[ ¢ :0'(8 )dv 5.53
[eW)iolew))av=3a e [e(g):ofe(g))dv [553]

During free oscillations, these energies vary with time. Kinetic
energy is at a maximum when velocity is greatest, that is to say, when
the structure passes through the static equilibrium position. At this
same instant, elastic strain energy is zero. Elastic energy is at its
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maximum when the amplitude of strain in the structure is at its
maximum. At this point, the velocities are cancelled out and the
kinetic energy is zero. These maximum energies are expressed as
formulas [5.54]:

E™ :%wzazfpgzdv E™ :%"‘zj £(9):(z(g))av 1554

As the sum of the two energies remains constant, and if one is at its
maximum, then the other is zero, the maximum elastic energy is equal
to the maximum kinetic energy. This allows us to find an expression
for the eigenfrequency of the oscillating structure depending on the
selected mode [5.55]:

Je(0):a( eo))av

W = > [5.55]
Jpg’ v

The value of the pulsation, using the Rayleigh method, is still
estimated by excess. The best choice of mode ¢ is the one that
minimizes this value. Determining the eigenfrequency can determine
the value to be given to the equivalent mass [5.56]:

M, == [5.56]

5.4.2. Beams in flexion

We can explain formulas [5.54] and [5.55] if the structure is a
beam in flexion. The beam in question is straight (x-axis), of length L,
made up of a material with elasticity module £ and density p. The
section of the beam is S, and the second moment of area is 1.
Displacement of the structure corresponds to the transverse
displacement field of the beam U(x,#). These displacements are
proportional to the chosen mode @(x). Kinetic energy is related to the
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transverse displacements of the beam [5.57]. Neglecting the kinetic
energy associated with the rotation of beam sections:

mx 1L : @’ pS L
E, zzjo pSUzdx:TIO @ (x)dx [5.57]

In a beam, the elastic strain energy can be expressed in terms of the
internal forces [5.58], where Mf is the bending moment, V' is shear
force and N is the normal force (G is the shear modulus and S’ is the
corrected sheared section):

N2
:_I = _+—de [5.58]
EI GS' ES

As strains due to flexion are generally much greater than those
caused by normal force and shear force, it is customary to only
consider the term at the bending moment in the expression of energy.
As the beam is elastic, the bending moment is proportional to the
curve [5.59]:

2
L A2 (32 2
alej M~ JELE 1970 g | ME_970 | 15501
2Jo  EI 2 Jo | 92 EI 3y
We then deduce the expression of the eigenfrequency associated
with the selected strain mode [5.60]:

EII { J [5.60]

pSJ' @2 dx

5.4.3. Shock on a beam

We address the problem of an object falling onto a beam deformed
by flexion. The impact results in a point force F(#) applied in the
middle of the beam. The beam is made up of a material with elasticity
module £ and density p. The beam section is S, and the second
moment of area is / (Figure 5.15).
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l ) lF,?(f)

A
v

Figure 5.15. Flexion beam undergoing an impact at its center
and an equivalent system to one degree of freedom

We try to use a system with one degree of freedom to model the
mechanical response of the beam. The transverse displacement of the
beam is U(x,t). We choose the parameters for the model.
Displacement of the center of the beam is the variable characterizing
the displacement and, in this case, the equivalent force is identical to
the real load [5.61]:

e

Xe(t)zU(g,t) F()=F(1) [5.61]

Using beam theory, we can know the expression of the bending
moment along the beam and the equation of the deformed line. As the
structure is symmetrical, the bending moment and the strain are also
symmetrical. The formula is expressed in the half-beam [5.62]:

M (x)=—2 U(@:%G—Z—ﬁ—g\ xe[o,ﬂ [5.62]

From these expressions, we deduce the value of the equivalent
stiffness K, of the system [5.63]:

F, F  48EI
K = = =
X, U(L2) I

[5.63]
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For the beam strain mode, we will take three hypotheses to
compare the results [5.64]:

— Mode ¢, is proportional to the static deformed line of the beam.
— Mode ¢ is the first mode of vibration on the beam.

— Mode ¢; is a parabola.

These three modes satisfy the kinematic conditions imposed on the
beam extremities (the third hypothesis does not verify the dynamic
condition of the support because the moment and, therefore, the
curvature should be zero):

2 3
) (x)=%—% (xel0,L/2])
[5.64]
. TTX
6.(x)=sin " g(x)=x(L—x) (ve[0.1])
For mode ¢;, we estimate kinetic and elastic energy [5.65]:
s :afpS.[m xz[x_4_x2L2 +L_4\ e 370°pSL
0 9 6 16 20160 [5.65]

L2 LEI
EM™ =EIf 4% dx= —

We deduce the eigenfrequency associated with this mode and the
equivalent mass M, to be attributed to the equivalent system [5.66]. M
is the total mass of the beam:

_ 3360 EI4:90‘8 EI4 M= psL=0529M  [5.66]
37 pSL pSL 70

Similarly, for mode ¢,, we estimate the kinetic and elastic energies
[5.67]:

2 2 2
SrLo. SL
Em™ :MJ' sin? T o =2P
2 4
Y A AR 2 ©*El
EM™=—| — =5~
279 L L 4L

[5.67]



144  Materials and Structures under Shock and Impact

We deduce the eigenfrequency associated with mode ¢, and the
equivalent mass M, to be attributed to the equivalent system [5.68]:

a]zz

4
TEL g7 BT hp =B psi=0493m [5.68]
pSL PSL V4

Finally, for mode ¢, we estimate kinetic and elastic energy [5.69]:

2 2 5
E™ = @ 'DSJ.L x’ (L—x)zdxz—w pSL
2 60
o [5.69]
L
E™ ==["4dx=2EIL
2 Jo

We deduce the eigenfrequency associated with mode ¢; and the
equivalent mass M, which must then be assigned to the equivalent
system [5.70]:

@’ =120

EI4 M, :szL:OAM [5.70]
pPSL 5
In this case, it is assumed that mode ¢, proportional to strain
under static loading, is the best approximation for the strain mode as it
is with this mode that the lowest eigenfrequency is obtained. This
optimum concept is relative because the system with one degree of
freedom is already an approximation for which we will discuss the
limitations in Chapter 8. We note that even a rough estimate of the
mode (¢s;) allows us to assess the order of magnitude of the
eigenfrequency.

5.4.4. Blast on a beam

We will now consider the action of a blast on a structure that can
result in the application of a uniformly distributed load upon a beam.
The beam is made up of a material with elasticity module £ and
density p. The beam section is S, and the second moment of area is /
(Figure 5.16). We try to use a system with one degree of freedom to
model the mechanical response of the beam. The transverse
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displacement of the beam is U(x,#). As in the previous example, we
choose the displacement of the center of the beam as a variable
characterizing the displacement. As the force parameter, we choose
the resulting load distributed on the beam [5.71]:

XJﬁzU(éJ) F(0)=Lp(0) [5.71]

20 lFﬁm
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— Xt

M,
Urx,t) % K,

Figure 5.16. Beam subjected to a load from a blast and
the equivalent associated system

A
v

We always know the expression of the bending moment along the
beam and the equation of the deformed line [5.72]:

2 3 4
PLx_PX ()= P(” _ﬂ_"_j xe[0,L] [5.72]
2 2 EIN 12 24 24

Mf (x)=

From these expressions, we can deduce the value of the equivalent
stiffness K, of the equivalent system [5.73]:
_F, pL  384E]

_°

‘T X, Su(L2) sC

[5.73]

For the mode of strain on the beam, we will use the three
assumptions from the previous example [5.74]. Mode ¢; is only
changed by that which is proportional to the static strain on the beam
because the latter is different with a distributed load:

¢ (x)=2Lx" - L'x—x* (x € [O,L])

x [5.74]
¢, (x)= sinT ¢, (x)=x(L—x) (x € [O,L])



146  Materials and Structures under Shock and Impact

For the new ¢ mode, we estimate kinetic and elastic energy [5.75]:

@’'pS _3l0’pSC

E’max —
¢ 1260

J.OL (2Lx3 —L3x—x4)2 dx

- [5.75]

EM™ == (122x-124%) dx
2

¢ 0

_12LFEI
5

We deduce the eigenfrequency associated with this mode and the
equivalent mass M, to be attributed to the equivalent system [5.76]:

=22 B g5 BTy 2B s —07870 (5.76]
31 pSL PSL 315

We can calculate the eigenfrequency and the equivalent mass for
mode ¢, proportional to the vibration mode [5.77]:

4
nEl o, El . 384

@ = = =
pSL! pstt ¢ sgt

pSL=0.788M [5.77]

The same eigenfrequency and equivalent mass calculation is
performed for mode ¢; [5.78]:

ET - M, =§ PSL=0.64M [5.78]

PSL

' =120

In this case, we note that calculations with static deformed line and
calculations using the first mode of vibration give very similar results.
This example also illustrates that the equivalent mass depends not
only on the structure, but also on the load and choice of representative
variables.

5.4.5. Shock on a mass supported by a mast

A structure may be composed of beams and other elements
representable by non-deformable solids. We then combine beam
theory and the mechanics of rigid solids. A representative example of
this is a flexible mast supporting a structure similar to a rigid solid as
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shown in Figure 5.17. The mast is a beam; it consists of a material
with elasticity module £ and density p. The section of the beam is S
and the second moment of area is /.

F)

— Ib "

H

Figure 5.17. Structure consisting of a rigid beam and a mass subjected to an impact.
Modeling of deformation is shown on the right

The rigid element has a mass Mg and a moment of inertia3¢ [5.79]

(with respect to its center of gravity and the perpendicular axis to the
figure). Its dimensions @ and b are small compared to the height H:

Mg (a2 +b2)
S =y [5.79]

The mechanical model of the structure is shown the right part of
Figure 5.17. Some simplifications are made by considering a beam of
length H and estimating that the displacement of the rigid solid is
characterized by the displacement and rotation of the extremities of
this beam. We search for a system, equivalent to one degree of
freedom, to represent the oscillating motion under the action of an
impact represented by a horizontal force F acting on the rigid body.
We choose the displacement of the top of the beam and the horizontal
force as the parameters of the equivalent system [5.80]:

X, (1)=U(H.t) F,()=F(r) [5.80]
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Beam theory is used to find the bending moment and the deformed
line under the action of a static force F' [5.81]:

6

F [x3 Hx*)

Mf (x)=-F(H —x) U(x)=E 2) xe[0,H][5.81]

This static calculation allows us to determine the equivalent
stiffness K, of the system [5.82]:

T =3E31 [5.82]
X, UH) H

e

We choose a strain mode proportional to strain under static load
[5.83]:

P(x) =x’-3Hx’ (xe[O,H]) [5.83]

Kinetic energy calculation is achieved by adding the term for
transverse displacements of the beam to the terms from the translation
and rotation of the rigid solid [5.84]. In the selected mode, mass M;
undergoes translation ¢(H) and a rotation equal to the rotation at the
end of the beam:

£ osf! o s (4]
2 [5.84]

dx ),

2
E™ ="’7(§ pSH® +4MH* +93SH4)

The elastic energy is only due to the strain on the beam [5.85]:

E™ :% 0” (6(x—H)) dx=6EIH’ [5.85]

This allows the estimation of eigenfrequency [5.86]:

o’ = 1251 [5.86]
(33/35) pSH> +4AM H’ + 93 H
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We then deduce the equivalent mass to give the system to one
degree of freedom, representative of the motion of this structure
depending on the strain mode [5.87]:

Me:%pSH+MS+%% [5.87]

The system to one degree of freedom is simple to study, but it
corresponds to an assumption about the shape of displacements. The
assumption made here on the shape is valid if the rigid body moment
of inertia is not too large. The system to one degree of freedom is the
most basic of models. The type of structure in this example can be
modeled by a system with two degrees of freedom. For example, it is
possible to consider the displacement and rotation of the rigid body as
two degrees of freedom. The corresponding methods will be discussed
in Chapter 9.

5.4.6. Shock on a structure

This last example concerns a building of two levels for which we
want to estimate the effect of a horizontal impact (Figure 5.18). The
floors are considered as rigid solids of mass M (reinforced concrete).
Flexibility of the structure subjected to a horizontal force is provided
by the metal studs whose mass is negligible compared to the floors. K
is the stiffness provided by the set of poles for one level.

LX)
AW F(” x'lri(
% :

hJ

Ji i M M

Figure 5.18. Two-level structure: on the left, the mechanical model; on the right,
the impact force and the displacement identified as parameters
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The mechanical modeling of the structure can be written in matrix
form [5.88]:

IR L s s

Thus, the mass and stiffness matrices are defined as [5.89]:

) &= %)
M= K= [5.89]
=\l0o M) = -k K

It is possible to consider the displacements of floors as two degrees
of freedom. This will be discussed in Chapter 9. A simpler and faster
but less accurate method may be to look for a system with one degree
of freedom equivalent to the structure under the load. As parameters
of this elementary system, we choose the displacement from level 2,
X(t)(X =x,) and the impact force F(z). The search for equivalent
stiffness is done by solving the static problem [5.90]:

(=% D) =gg 590
F) \-k k)\x, F 2

We also have the static strain mode [5.91]:

g@ [5.91]

By choosing this method of static strain mode for the oscillation of
the structure as a result of impact, we can calculate the kinetic energy
and the elastic strain energy [5.92]:

c

', 5, 1,
E = ?£?=Ea)M E =—"0K¢=K [5.92]
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It is easy to deduce the eigenfrequency of the structure in this strain
mode and the equivalent mass to give the system with one degree of
freedom [5.93]:

‘9K¢ 2K K
a)2=t2=?=_ Me 5 é
oMo M o 4

M [5.93]

To define an equivalent system with one degree of freedom for a
structure allows the use of the tools mentioned at the beginning of this
chapter. However, this method should be used with caution. Indeed,
equivalence is based on the choice of the shape of displacements.
Intuition and simplicity guide this choice toward the static mode and
the first mode of vibration. We should check that the load F(?) leads to
strain of this type. For example, it is necessary that its duration is
greater than or equal to the natural half-period of the chosen model.
Otherwise, a very short load could cause displacements of a very
different shape than in the selected mode. The most comprehensive
study of beams (Chapter 8) and that of systems with multiple degrees
of freedom (Chapter 10) will critically examine this method.






Chapter 6

Collisions of Structures

In an accident, shock on a structure may be caused by another
deformable structure. The force then imposed can be estimated first in
the case of elastic behavior and then by considering the crushing of
the projectile.

6.1. Shocks on elastic structures

6.1.1. Equations of motion

Shocks on structures differ from shocks on bulk solids. The
projectile and the target structure are deformable (Figure 6.1). One
approach is to model the projectile and target as linear elastic systems,
each with one degree of freedom [CEB 88] (Figure 6.2).

10

L\I W

Figure 6.1. Shock of one structure on another structure

—



154  Materials and Structures under Shock and Impact

Projectile “Target” structure
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Figure 6.2. Impact of a projectile on an elastic structure

Let us consider the initial moment of contact between the projectile
and the target structure. After this instant, and as long as the two
structures are in contact, the ensemble behaves as a system with two
degrees of freedom. The equations governing motion are given in
[6.1]. There are no external forces applied to the system. Motion is
caused by the fact that at the initial moment, the projectile mass m; is
driven by velocity V;. The study of this system will be used to
determine the force applied to the structure during the shock:

{ml)'c'l +k (x,—x,)=0
[6.1]

m,Xx, _kl(xl —x2)+k2x2 =0

6.1.2. Impact of a relatively flexible projectile

In practice, it may occur that the mass and stiffness of the structure
are much greater than those of the projectile. Displacement x; of the
projectile is then also much larger than displacement x, of the
structure. We can consider a decoupling of these equations by
considering the approximation k, (x, —x,)=kx; . Then, it is easy to

estimate the impact force and the system can be written as [6.2]:

mX, +kx =0
F(t)=kx, x >>x, [6.2]

mx, + k,x, = F(t)
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The resolution is then very simple and we obtain expression [6.3]
for the impact force:

F(t) =V Jkm, sinwt IE{O,E} i=2mV, [6.3]

a)l
The evolution of the impact force is shown in Figure 6.3 with
characteristic values of duration, amplitude and pulse. Force cannot be

negative and contact stops after time #/@. This is the projectile
rebound.

A Fy

V,\Jkm,

A 4

nlw,

Figure 6.3. Impact force of a structure on a rigid target, based on the elastic
characteristics of the structure comprising the projectile

6.1.3. Coupling in a collision of two structures

In general, motion of the projectile and the structure are coupled by
equations [6.1] and determination of force requires resolution thereof.
The system of equations [6.1] can be solved using the operational
images from the Laplace transformation [6.4]. The initial velocity of
mass m; is taken into account in the transformation:

m (s°% =V )+ k(X -5,) =0

[6.4]
m,s’%, —k (X, = X,) + k,x, =0
This system can be rewritten as [6.5]:
2 2\ = 2— _
(S +a)l)x1—a)1x2—V,. ) (6.5]

aw'%, —(s* + aw +w; ) %, =0 m,
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The solutions to this system are [6.6]:

(s +aw] +@3)V,

X =

(s + @} )(s* + a0} + @3 ) - ) [6.6]
awV,

X, =

(s + @} ) (s> + o + w; ) - aw}

The denominator of these expressions is a polynomial that always
has two negative roots; it can thus be written as [6.7]:

(s +aw) + @)V,

1

(s +27)(s*+2)

X
[6.7]
am’V,

1

(s2 +.le)(s2 + Qf)

This, by inversion, leads to temporal evolutions of both masses
[6.8]:

2 2 2
(—awl T, =4 sin ¢
v, Q
X, = ————~
(2 -2) aw} + @} — 2
————=sin ¢ 6.8
2 : [6.8]
2
x, =02w—1V;2(Lsinﬂlt—Lsin.ta}
(2 -2\ 02,

We then deduce the force applied by the projectile onto the
structure [6.9]:

2 2 2 2
F(r)= flK - (0] -4 siant—a)z—stin.ta} [6.9]
('Qz -4 ) 2 2,

Expressions [6.8] and [6.9] are valid as long as the force is
positive. It may be noted that the rate of application of this force, at
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the initial time, is always the same and equals k.. To represent this
force, dimensionless parameters [6.10] are introduced:

F wt m
f:— T:—l a:—l

VJkim, T m,

Figure 6.4 shows four examples of impact forces for particular
values of coefficients zand f. Curve A corresponds to the impact on a
rigid structure as discussed in the previous section. The impact force
may differ from the “half-sine” shape if we take flexibility of the
structure into account.

kl
,B_E [6.10]
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Figure 6.4. Impact force during the collision of two structures: (4) rigid target;
B)a=01, =1, Ca=1,=1,(D)a=1, f=0.1;(E) =10, f=0.1

6.1.4. Fall of a rigid body onto a flexible structure

A practical case for which we can ignore coupling is a rigid body
falling onto a deformable structure. Take the example of a rock falling
onto a structure covering a road in the mountains [ZHA 06]. To
illustrate this, we consider an object falling in the middle of a beam
that deforms by bending. The beam is made of a material of elasticity
module £ and density p. The beam section is S, and the second
moment of area is /. This beam is modeled as a system with one
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degree of freedom. The variable characterizing displacement is
displacement of the center of the beam (Figure 6.5).

l Vi M l V"

J(x,t) % K.
L

Figure 6.5. A rigid body falling onto an elastic structure

*
v

Stiffness K, and equivalent mass M, are determined by the
Rayleigh method described in Chapter 5 [6.11]:

48E1
K, = I

M, =~05M [6.11]

A shock results in a point force F(¢) applied to the middle of the
beam [6.12] (X¢) is the Dirac delta function and H(¢) is the Heaviside
function):

F(t)=MV,8(t)+M,gH (1) [6.12]

After impact, the block remains in contact with the beam and it is
the ensemble of two masses that oscillate. The response of the beam is
then [6.13]:

x (1) =28 (1 coson) + ——2_sinent (a): LJ [6.13]
K, K, (M,+M,) M, +M,

This expression is valid as long as the two masses are fixed, i.e. if
the acceleration does not exceed that of gravity. If this condition is
always satisfied, there is no rebound. The condition for non-rebound
can be explained by formula [6.14]:

MV,0<g M,(M,+2M,) [6.14]
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6.2. Shock with crushing
6.2.1. Crushing phenomena

Impacts of structures can lead to an impact force that exceeds the
elastic resistance capacity of one of them. For the projectile, we talk of
its crushing on the structure. Later in the classification of shocks, we
will see that this qualifies as “soft”. If one is interested in projectile
crushing mechanisms, the phenomena that occur beyond the elastic
phase can be more or less complex, but they generally reflect the fact
that the force that a structure can withstand is limited. We denote
force by Fp. This force can be estimated by theoretical or
experimental study of the bearing capacity of the structure of the
projectile under static conditions. This force Fp can be the result of
plasticizing in compression, as discussed in Chapter 3, but more
frequently, it is the buckling mechanism that characterizes crushing.
We will first look at the mechanism of elastic buckling of a bar upon
impact. In this case, the buckling length does not depend on the
boundary conditions as when static, but depends on the impact
velocity. Figure 6.6 shows a bar impacting, at velocity V;, a structure
we will consider as rigid.

A
A\ 4

A
~

Figure 6.6. Initiation of buckling of a bar upon impact

The force caused by the shock can be determined according to the
principles discussed in Chapter 2, and its expression is given by
[6.15]:

F=SJEpV [6.15]
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Section S, the Young modulus E and density p are the
characteristics of the projectile bar. The Euler critical force that causes
the elastic buckling of the bar is given by expression [6.16]:

F=2= [6.16]

During buckling of a static bar, buckling length Lf is known and
determined by the conditions at the extremities. We then make the
compressive force grow until it reaches the value F,. at which buckling
occurs. During a shock, the compressive force is determined by
the conditions of shock [6.15] and the compressed zone propagates in
the bar at velocity Cp. Buckling may initiate if the length of the
compressed zone corresponds to the buckling length associated with
the compression force [6.17]:

IC,
SV,

1

If=x [6.17]

Buckling can only initiate if the buckling length is less than the
length of the bar. This condition is reflected in the impact velocity by
[6.18]:

2
' IC
V> 0

> [6.18]

The critical buckling length therefore decreases as impact velocity
increases according to [6.17]. To illustrate this, we consider an
impactor that is a steel bar of 10 mm in diameter with impact
velocities in the range of those of accidental impacts, around 10 m/s.

Figure 6.7 shows the critical buckling length depending on the
impact velocity. This is the initiation of buckling. In dynamics, the
compressive force may continue to propagate through the rest of
the bar, and can even grow if the extremity on the left of the bar is not
free but connected to a solid element. The study of this dynamic
buckling will be discussed at the end of Chapter 8.
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Figure 6.7. Buckling length as a function of impact velocity
for a steel bar 10 mm in diameter

The projectiles can have more complex geometries than a simple
bar. A fairly common situation is characterized by the fact that a
“local” buckling length exists, linked to the geometry of the structure
and which can be determined statically, i.e. less than the defined
“global” buckling length, as we have just discussed under shock
conditions. Another feature is that crushing corresponds to large
plasticizing in the structure. In these cases, the maximum force that
the projectile Fp can support can be determined in a static state. A
typical example of this situation is that of the projectile consisting of a
metal tube.

Figure 6.8 shows a tube crushing against a rigid target.
Experiments show that the compressive force supported by the tube is
limited by plastic buckling manifested by the tube’s “accordion”
folding. Upon impact, this folding appears at the extremity that is in
contact with the target. A local buckling length (24) is observed. To
determine the limiting force, we can proceed by experimentation. We
can also estimate the amount of plastic work in the folding mechanism
[JON 89]. Figure 6.8 shows a model for the folding mechanism. This
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is a simplified view of the actual mechanism. A fold is supposed to
respect the cylindrical symmetry and be composed of three annular
plastic hinges. Two of them, denoted (1), remain on the circumference
of the tube. The fold is formed outwardly by two cones that plasticize,
denoted (3), and an annular plastic hinge, denoted (2), with a
circumference that increases.

N

o e

plastic

‘ hinge

Figure 6.8. Crushing of a cylindrical tube against a rigid target.
Overview and detail of the folded area with plastic hinges

We can successively estimate the energy dissipated by these three
elements during folding if the angular parameter € passes from 0 to
/2. The material is assumed to be perfectly plastic with yield o.
Elastic strains are neglected when it comes to plastic strain. We first
calculate the energy dissipated by the hinges (1). It can be assumed
that plasticizing occurs during flexion in a state close to the
strain plane. The plastic moment per unit length is estimated by
formula [6.19]:

2

Mp = ¢

(0}
23 ¢

[6.19]
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Thus, the work done is equal to the time unit length multiplied by
the circumference and rotation of 772. For both hinges (1), this work is
equal to W, [6.20]:

W, =27’RMp [6.20]

For hinge (2), the expression should take into account that the
length of the circumference increases progressively with folding. In a
given state, characterized by the position parameter &, a rotation

increment of d@ produces elementary work dW, as indicated by
formula [6.21]:

dW, =4x(R+ Asin6) Mpd O [6.21]

Integrating between 0 and 772, we obtain the work done by hinge
(2), for which expression W, is given by [6.22]:

W, =2m(Rm+22) Mp [6.22]

For elements (3), the work comes from the extension that occurs by
increasing the radius that passes from R to R+x as x ranges from 0 to
A. The estimate of work W3 is given by formula [6.23]:

A
W, =2e0,| 2zxdc=27me0,’ [6.23]

During this folding phase, the cylinder is shortened from length 24,
and the plastic work is therefore equal to the work done by force Fp,
which leads to formula [6.24]:

W=2FpA=W,+W,+W, [6.24]

We obtain an expression for crushing force through formula [6.25]:

Fp=reo, [%(”—f+ 1) + /1] [6.25]

Expression of this force involves the length parameter A. There
may be projectiles where this length is determined by the geometry
and structure, for example, if there are reinforcement rings. In the
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“smooth” tube that we study, this length will “naturally” be defined as
one that is consistent with the lowest crushing force possible. This
leads to expression [6.26]:

JdFp emR \JerR
—=rxeo,| 1— =0 A= 6.26
¢ [ ﬂfﬁj B 16:2¢]

By introducing this length into expression [6.25], we obtain an
expression of the crushing force according to the dimensional and
material characteristics of the projectile [6.27]:

Fp=reo, [%{% ”—eR + 1} +_\,§/?ej [6.27]

Other hypotheses can be made to estimate the crushing shape. For
example, the manual [DNA 83] uses a mechanism modeled by the
diagram in Figure 6.9. The wavelength of the folding mechanism is
set empirically from many experimental results using formula [6.28]:

A= 2.86+§ [6.28]

Rotation during folding takes the thickness of the tube into
account. The work put in then has expression [6.29]:

W= Fp(2A-3e) [6.29]

The estimation of plastic work then leads to the formulation of the
crushing force explained in [6.30]:

= €0 [/1\/4/12 9¢ +eRarccosﬂj [6.30]

T 24-3e

The crushing of tubes of different shapes has been extensively
studied, both theoretically and experimentally [JON 89]. Rectangular
section tubes have been particularly well studied because they give a
good representation of the crushing of motor vehicle parts, which we
call “spars”, that plasticize during frontal impact in the same manner
as described here. Force Fp is not necessarily constant throughout the
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crushing process. The geometric characteristics of the projectile, like
the section, may vary along the length. This will give a force Fp(x),
where x is the reference position of the zone that plastically deforms.

Figure 6.9. Crushing of a cylindrical tube on a rigid target.
Detail of a folding mechanism with plastic hinges

6.2.2. Impact force

During a shock, the force applied to the target structure is from two
sources: on the one hand, there is the projectile crushing force, as
discussed in the previous section; on the other hand, there is the
impulsion that the structure must provide to cancel out or absorb the
motion of the mass being crushed. A rather general determination of
the impact force was proposed by Riera [RIE 68]. The projectile is an
elongated structure that behaves like a beam or a tube in compression
that has just been crushed against the target (Figure 6.10).

LX)

e

Figure 6.10. Impact of a projectile against a target, definition of the crushed length
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The projectile has a mass per unit length u(x) and the force that it
can withstand during compression is limited to a value Fp(x), which
corresponds to plasticizing or buckling. x is the longitudinal abscissa
in the projectile and x(#) is the length that is crushed at time 7 as shown
in Figure 6.10. We want to determine the force F(¢) between the target
and the projectile. To do this, we must consider dynamic equilibrium
at all times. We denote V(¢) as the velocity of the uncrushed part of the
projectile. This velocity decreases monotonically. Between two
instants separated by df, a projectile section of length dx is crushed
and passes from velocity V(¢) to 0 as shown in Figure 6.11.

>

SRR

Figure 6.11. Projectile element dx crushed during a time increment dt

During the time interval dt, the change in momentum is u(x)dx V().
At time ¢, the section supports F(#) on the target side and always

Fp(x)on the projectile side. The impulse is thus: F () dt— Fp(x)dt.
This leads to equation [6.31]:

w(x)dxV (t)=F(t) dt — Fp(x)dt [6.31]

We deduce the impact force by formula [6.32], called the “Riera
formula™:

F(t)=Fp(x)+ u(x) V*(¢) [6.32]

Some authors have proposed considering a coefficient a that takes
the notion of “effective mass” (0.5 < a < 1) into account, which
slightly modifies the expression and gives [6.33]:

F(t)=Fp(x)+au(x) V? () [6.33]
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Using this formula to find F(f) requires the calculation of the
projectile velocity after the initiation of impact until it stops. We then
write the equation of motion of the non-crushed part of the projectile,
of length L — x. This equation is given in [6.34]:

V(0)] ulg)dg+ Fp(x)+ u(x)V* (1) =0 [6.34]

We can also write this equation for position x(f), which gives
formula [6.35]:

%] u(g)dg+ Fp(x)+u(x)¥* =0 [6.35]

This equation is nonlinear and must be solved numerically (using
finite differences). Thus, we can solve the equation if the projectile is
a thin and light tube of constant section. In [6.36], we give the useful
characteristics of this projectile:

u=10kgm L=Im  Fp=100N [6.36]

Calculation was performed by taking, successively, initial velocity
V;=5m/s and then V; =10mvs. The results of these calculations are

shown in Figure 6.12.
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Figure 6.12. Impact force determined by the Riera formula:
solid lineV,=5m/s , dotted line V,=10m/s

During the compression phase, velocity decreases and the
projectile ceases to apply a force on the structure when its velocity
becomes zero. For a given projectile, the duration of the shock is
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shorter if the impact velocity is higher. We note that at the beginning
of a shock, the kinetic term u¥? is preponderant, and more so with
increasing impact velocity. As the projectile slows down, the force
tends, logically, toward the value of the static crushing force. The
Riera formula [6.32] is the basis for the general determination of the
impact force models. In Figure 6.13, we give the example of a model
to represent the impact force when an airliner crashes against a
building. We can observe several phases:

— Force is stable (approximately 20 Nm), which corresponds to the
crushing force of the cabin, the kinetic term has little influence
because linear mass is low.

—The force peak (approximately 90 Nm) corresponds to the
contact of large masses that are the motors and reservoirs.

In [BAN 09], we can find the impact forces corresponding to many
aircrafts.

75

30

F(MN)

0 0.1 02 0.3 0.4

1(s)

Figure 6.13. Example of impact force model for a commercial
airliner at a velocity of 100 m/s

6.3. Classification of shocks
6.3.1. Hard shock and soft shock

The aim here is to qualify an accidental impact as “hard” or “soft”.
A formalization of the classification of shocks was established by
Koechlin [KOE 07] from the elements previously defined in this
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chapter and in Chapter 2. This classification is done by considering
the behaviors of the projectile and target in the first moments of
impact. To classify the different types of shock, we consider the
resistance of the target, denoted Fc. This limit force may be due to
plasticizing or another mode of rupture. In the first moments of the
shock, the projectile applies maximum impact force, if there is
crushing, given by formula [6.37]; V; is the impact velocity:

Fp+uV? [6.37]

This allows us to define a hard shock, for which the target ruptures.
Hard shock is written as [6.38]:

Fe<Fp+uV; [6.38]

Soft impact is when there is a rupture of the projectile, which is
expressed by [6.39]:

Fe>Fp+uV? 6.39
p+ul

The boundary between these two types of shock is represented by
equation [6.40]:

2
?#‘FL =1 [6.40]
C C

By defining the dimensionless parameters that are the relative
resistance R and the relative kinetic force K, this equation can be
written more simply as [6.41]:

K R+K=1 [6.41]
Fc Fc

Relative kinetic force is called impact factor / by some authors.
Another expression of this factor is [6.42]:

_ NmV;?

1=—— [6.42]

N is a dimensionless parameter, m is the mass of the projectile, d is
its diameter and o, is the resistance to compression from the target.
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6.3.2. Shock with rebound or crushing

Another classification criterion can be considered by looking at the
conditions in which the projectile is not crushed. The study of the
impact of solids in Chapter 2 indicates that the maximum force a
projectile can transmit, as an elastic solid, to the target is given by
formula [6.43]:

Fpow =V.S\E,p, [6.43]

If the force of impact is greater than this value, the projectile will
be crushed, as indicated by [6.44]:

Fp>V,.S\JE,p, [6.44]

Crushing can be written as [6.45]:
Fp* >V?S’E,p, [6.45]

If we consider that the force a projectile can transmit is limited by
plasticizing, it can be written as [6.46]. If it is another phenomenon
that limits force, we consider an equivalent fictional strain &,:

Fp=SE,, [6.46]
The two previous formulas lead to crushing [6.47]:
2 Q2
JVSEp,

[6.47]
SEpep

Fp

We can also write this in form [6.48], by using the relative
resistance parameters R and the relative kinetic force K:

2
Ip JBVT pe <k [6.48]
Fe  ¢g,Fc !

If the maximum force that the projectile can transmit is greater
than the resistance of the target, the target will be crushed, resulting in
[6.49]:

Fc* <V?S’E,p, [6.49]
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Crushing of the projectile thus finally results in [6.50]:

F v?
_C> /.t !

e KR<E [6.50]
P

All these conditions can be drawn together onto the same diagram
as shown in Figure 6.14. The different areas determine the types of
shocks.

—Zone A: this is an elastic shock with projectile rebound as
discussed in section 6.1.

—Zone B: this is an elastic shock for the target, but with no
rebound because the projectile is crushed.

— Zone C: this is the area of soft shocks.

— Zone D: this is the area of hard shocks.

. v{g

R+K=1

Figure 6.14. Diagram of shock classification depending on the
relative resistance and the relative kinetic force

In crash studies, cases A and B are quite rare. For example, a land
vehicle or an aircraft crashing into a reinforced or prestressed concrete
structure generally corresponds to a situation as in zone C (soft
impact) [SAA 07]. (Warning: this classification is based on what
happens in the first moments of shock.) A shock classified as “soft”
first leads to the collapse of the projectile, but the impact force
produced can then lead to the destruction of the impacted structure.






Chapter 7

Explosions and Blasts

This chapter is devoted to the study of the load that a structure
supports if an accidental explosion occurs in the environment. An
explosion of gaseous mixture in free space is predominartly considered
in order to highlight the parameters and elements of understanding of the
thermodynamic explosion phenomenon. Modeling pressure waves
generated by explosions and their interaction with structures are
considered in simple geometrical configurations.

7.1. Accidental explosions
7.1.1. Importance of the risk of explosion

On industrial sites, accidental explosions are relatively frequent.
These are mainly gas explosions and, to a lesser extent, dust explosions.
The number of explosions with significant and serious consequences is
in the order of 10 per year worldwide. Following an incident or
an accident, flammable products in the gaseous or liquid phase
may be released into the atmosphere. This type of accident can happen
during the implementation phase of hazardous products in an industrial
process or during the storage or transportation of these products. For
some activities, the risk of explosion cannot be eliminated (rocket
engine test bench, for example). It is then necessary to take this
solicitation into account for the design of protective structures or
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buildings to ensure the safety of equipment and people. It should be
noted that the term “explosion” covers phenomena for which
physicochemical processes may be different. The first meaning of the
term refers to a rapid combustion generating a pressure wave. We
must then distinguish detonation and deflagration. Explosion can also
be physical, where the pressure wave is due to a phenomenon other
than rapid combustion. For example, this is the case for the BLEVE
case, where spontaneous vaporization in a large amount of fluid
creates a pressure jump. BLEVE is an acronym for the term boiling
liquid expanding vapor explosion. BLEVE is produced by
spontaneous vaporization in a liquid. This phenomenon can occur in a
liquefied gas tank if there is a major leak or following heating.
Modeling the effects of shock waves is based on quantification of the
energy available in the tank at the time of its rupture. Explosions can
occur in free space (unconfined vapor cloud explosion) or in confined
spaces. Dust explosions are most likely to occur in confined spaces.
There are numerous studies in the literature that deal with the study of
accidental explosions (for example, [BAK 83, SIM 94, LAN 84]).

7.1.2. Gas explosion process

This section is intended to provide the basic knowledge necessary
for understanding the thermodynamic phenomena that lead to a
pressure wave. An explosion is a combustion process in a reactive gas
mixture. After an initiation process, a combustion jump combined
with a pressure discontinuity jump is propagated [LEE 65]. “Fresh”
gases, which have not yet reacted, are located upstream of the jump,
and combusted gases are located downstream. Figure 7.1 shows the
jump propagating in a monodimensional manner, with the
thermodynamic variables associated with fresh gas (index 0) and
combusted gas (respectively, particle velocity, pressure, density,
internal energy, enthalpy).

To understand the basic patterns of explosive combustion, we must
consider the three principles of conservation: mass, momentum and
energy. These three principles bring about the relationship between
the parameters of the gas state and discontinuity jump. These
equations are similar to those already seen in Chapter 2.
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7.1.2.1. Conservation of mass

The conservation equations can be found by considering the
motion between two moments at the passage of the discontinuity jump
(we denote the strains and stresses of compression positively). We
consider a “tube” of unitary section (in Figure 7.1). The equation for
the conservation of mass is expressed by formula [7.1]:

p(D=V)=p,(D-V,) [7.1]

The change in specific volume at the passage of the wave is shown
in [7.2]:

I 1 1 V-V
Yoy, = m =m0 [7.2]
P P Py D=V,

Combusted Fresh gas
4 gas Vopo Poeoho
Vppeh

t+At

Figure 7.1. Propagation of a combustion jump associated with a velocity and stress
discontinuity (index 0 affects the characteristics of the medium before the passage of
the jump). Shaded area: combusted gas; white area: fresh gas,; and blotted area:
volume occupied by a basic mass

7.1.2.2. Conservation of momentum

The equation of conservation of momentum is expressed by
formula [7.3]:

p=p,=pV(D=V)=pVy(D-V;) [7.3]
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Given the equation of conservation of mass, this equation can also
be written as [7.4]:

P=py=p(V =V, )(D=V)=p,(V =V, )(D~V,) [7.4]

7.1.2.3. Conservation of energy

Energy is the sum of the internal energy e and kinetic energy.
Change over time in the elementary volume energy in question (dotted
line in Figure 7.1) is caused by the power generated through the forces
applied. This leads to formula [7.5]:

(1 1

eey=L(pwpy) Lo L))
0—217 Po L,Oo pJ—

L+ n)n 73]
We can deduce the change in enthalpy [7.6]:

1
h—hOZE(p—pO)(v0+v) [7.6]

From the equation of assumed perfect state of gas, we can explain
this change in enthalpy [7.7] (7 is the ratio of heat capacities of gas):

Y 1
ﬁ(povo —PV)=5(P—P0)(V0 +v) [7.7]
If combustion occurs as the jump passes, an amount of heat Q is
contributed, and the formula becomes [7.8]:

(=) + 0= (p 1) +v) [7.8]
y—1 2

Figure 7.2 shows a diagram of the state of pressure as a function of
specific volume. Curve A, which corresponds to formula [7.7], is
relative to a simple shock wave in the gas, without combustion. It is a
hyperbola with horizontal and vertical asymptotes as specified in
[7.9]:

p__r=1 v_7r-1 [7.9]

P y+1 v0_7/+1
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Curve B corresponds to formula [7.8], meaning that it is relative to
gas after the contribution of heat Q. As the jump passes, the state will
pass from a point on curve A, denoted by (p,, Vo), to a point on curve
B. By combining formulas [7.2] and [7.4], we obtain expression
[7.10]:

P~ D 2 2
v— P (D-V,) [7.10]
This means that one can only go from a point on curve A to a point
on curve B through a line with negative slope. Thus, there are two
possibilities. If at the passage of the combustion jump there is an
increase in pressure and a decrease in specific volume, the system will
undergo detonation. If at the passage of the combustion jump there is
a decrease in pressure and an increase in the specific volume, the
system will undergo deflagration. If the gas is initially at rest, formula
[7.10] shows that the relationship between the slope of the line
connecting the two states is proportional to the square of the jump
propagation velocity. For maximum velocity, the state reached is
called “Chapman—Jouguet” (pc;in Figure 7.2) [CHA 99, JOU 05].

r 3
Detonation

Porfcn b

B

Po ;

' Deflagration

’
v

Figure 7.2. Pressure state — specific volume diagram showing the two
possibilities for state change at the passage of the combustion jump
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The explosion of a reactive gas mixture can therefore occur in two
modes: detonation and deflagration. In free space, the characteristics
of these two modes are described in Table 7.1. The detonation mode
that corresponds to a supersonic jump velocity is very stable. It is also
experimentally reproducible and insensitive to the environment.
However, the deflagration mode is very unstable, and the combustion
rate is strongly influenced by the environment in which the
combustion propagates. Detonation of a gas mixture is produced by a
chemical reaction that propagates into a gas cloud at a velocity that is
supersonic relative to fresh gas (flame velocity can reach 3,000 m/s).
The pressure behind the flame jump is high (Chapman—Jouguet
pressure up to 5 MPa). This induces a shock wave in the surrounding
space.

Detonation Deflagration
Flame jump velocity 1,800-3,000 m/s (stable) 0.01-100 m/s (unstable)
Combusted gas Same direction as the wave Opposite direction of
displacement the wave
Pressure discontinuity Large (# 5 MPa) Weak (<< atmospheric

pressure)

Expansion of reactive gases No Yes
External blast wave Supersonic shock wave Sonic blast wave

Table 7.1. Comparison of the characteristics of detonation and deflagration
regimes during the explosion of a gas cloud in free space

7.1.2.4. Energy

We are only interested in external effects as detonation is mainly
characterized by the energy it releases. This energy can be determined,
a priori, from the enthalpies of formation for various reaction
products. For example, for a cloud formed from a mixture of propane
and oxygen, formula [7.11] shows the energy released at two different
concentrations:

C,Hy+50, = 3CO,+4H,0 9966 kl/kg or 15.26 kl/kg
C,H,+2,50, —» 2C0O,+CO+4H, 6389 kl/kgor10.19kJkg [7.11]

Detonation is fairly well known and described by models. There is
a minimum initiation energy needed to produce detonation of a
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reactive mixture. If the detonation of a homogeneous mixture occurs,
only knowledge of the reaction products’ enthalpies of formation and
the geometric position of the center of the explosion are needed to
define the pressure wave in any point in space. In practice, if we
consider an accident, we can estimate the quantity of products likely
to respond. Mixture of these products with air leads to the formation
of an explosive cloud.

7.1.3. Explosion with confinement

For detonation of a gaseous mixture in a confined space, it is
possible to estimate the value of the pressure over time. Existing
models and measures are relative to homogeneous mixtures. As the
chemical reaction is known, it is possible to determine the pressures
following the initial conditions. The load imposed upon a building
structure hosting the internal detonation results from pressure exerted
by the gases from the detonation against the inner walls. The load is
manifested by a pressure which, in the first tenths of a millisecond, is
in the order of the Chapman—Jouguet pressure pc; and which, after
several milliseconds, tends toward a so-called isochoric combustion
pressure with half the magnitude of pc;. The pressure change is
disturbed by peaks corresponding to multiple reflections off the
internal walls of the structure. The pressure will decrease in a manner
that depends on the presence, or not, of vents and their sizes.

7.2. Pressure waves
7.2.1. External wave from a detonation

7.2.1.1. Characteristics

The change in static pressure at a point in space at the passage of
the blast wave after a gas explosion has the typical appearance of a
shock wave in free space and is shown in Figure 7.3 with the
parameters of pressure, pulse and duration.

The blast wave from an explosion introduces the parameters shown
in Table 7.2.
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A
Overpressure

Time

A 4

r r
g B

Figure 7.3. Pressure change at the passage of a shock wave following detonation

Ap* overpressure peak  t* duration of overpressure i* positive pulse

Ap~ depression t™ duration of depression i~ negative pulse

Table 7.2. Characteristic parameters of a shock wave following detonation

7.2.1.2. Rules of similarity

A shock wave in free space is a physical phenomenon that follows
the rules of similarities. It is possible to identify the dimensionless
parameters by dimensional analysis. Table 7.3 lists the parameters and
dimensions.

“Exhibitors”

Variable Dimension M L T
t Time T 0 0 1
X Distance L 0 1 0
p Pressure ML ™'T? 1 -1 -2
E Energy released by the explosion ML’T 2 1 2 -2
Po Initial pressure (ambient) ML'T? 1 -1 -2
co Speed of sound in ambient air LT 0 1 -1
D Wave velocity LT 0 1 -1
14 Particulate velocity LT 0 1 -1
P Density (of gas) ML 1 -3 0

Table 7.3. Parameters involved in the propagation of a shock wave
after detonation, with their dimensions
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There are nine parameters and three physical dimensions (length,
time and mass). The Vaschy—Buckingham theorem thus indicates that
there are six dimensionless groups, which are shown in Table 7.4.

D 1
m=— 7y = x| 22 ; my=L
2 =X
€0 E Po
] v P
Ty =cot ro ; s =— T :LCO
E 40 Po

Table 7.4. Dimensionless parameters involved in the propagation of
a shock wave following detonation

7.2.1.3. Sachs similarity

To describe a shock wave, it is possible to use dimensionless
parameters. The Sachs similarity involves expressing the values of
dimensionless pressure, dimensionless pulse and dimensionless time,
given in [7.12], depending on the value of dimensionless distance
from that point to the center of the explosion [7.13]:

. 113
P - Qg - (po)
A L 7.12
g Po Elﬁpoz/3 "\E [ :
1/3
R:R[&) [7.13]
E

7.2.1.4. Hopkinson’s similarity

The conditions of ambient air are invariable (pressure, speed of
sound). By abandoning the dimensionless characteristic of parameters,
we can write that pressure, reduced pulse and the reduced duration, as
given in [7.14], are functions of the reduced source size and reduced
distance A, expressed in [7.15 ]:

)% . 1 [7.14]

A=— [7.15]
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The Hopkinson similarity is often used either to correlate results
from various experiments [BRO 85] or to conduct studies on a
reduced scale [PRI 83, REN 88]. In the second case, Table 7.5 shows
the scale for two experiments, respecting the Hopkinson similarity.

Parameter Scaling factors
p Pressure 1
DV Speed and velocity 1
P Density 1
i Pulse k
R Lengths k
t Durations k
E Energy K

Table 7.5. Scaling factors for the parameters of a shock wave
between a real situation and a reduced scale model

Figure 7.4 illustrates the Hopkinson similarity situation.

' 3
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o at
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3 kit
KE
Ap- - '
K, B

Figure 7.4. Hopkinson similarity between a real explosion
and reduced scale model
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With the usual conditions of ambient air (pressure, speed of
sound), it is possible to make a link between the parameters of
Hopkinson similarity, reduced distance, reduced pulse and reduced
time, with the dimensionless parameters of distance, pulse and time
[7.16]. For the reduced pulse and the reduced time, energy E is
expressed in MJ:

13
R=2 [p—(;) ~0.4642 1
10

[E’;/J 1026 ~0, 1578[ ) [7.16]

— ( t\ep" t
t‘(ﬁj TRV

The characteristics of shock waves from gas explosions have been
established by integrating a large number of experiments on different
scales [BRO 85]. The formulas are presented in [7.17] as a function of
dimensionless variables. Figure 7.5 shows the evolution of these
features relative to dimensionless distance.

i

In| 2P J_—o 032.X° +0241X%-1.82X +0.356
In =—0.0323.X° +0.0648 X> —0.94 X —0.868
0.1578
[7.17]
In 01578 j —0.1118 X2 +0.676 X +0.203

- R
"0.4642
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Figure 7.5. Dimensionless characteristics of a shock wave

after detonation of a gas mixture

7.2.1.5. The TNT reference

When considering an accidental explosion, one method is to
consider the “TNT equivalence” [MOU 99, LAN 84]. This consists of
assessing the TNT mass (trinitrotoluene is a reference high explosive)
that would have the same external effects as an accidental gas
explosion. Determination of equivalence is difficult: on the one hand
because the concepts of efficiency and energy equivalence are based
on the choices of experts and, on the other hand, because shock waves
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from gas or TNT explosions do not have exactly the same profile
(Figure 7.3); thus, the equivalence of the external effect can only be
done for a single characteristic, usually peak pressure or pulse. In
Chapter 5, we saw that these two parameters are of equal importance
and, therefore, only respecting one of them is questionable for the
calculation of the mechanical response of structures. The energy
produced by the explosion of 1 kg of TNT is shown in [7.18]:

E,y =4.69 MJ | kg [7.18]

To clarify the characteristics of the shock wave resulting from a
TNT explosion, it is customary to consider a reduced distance Z.
Formula [7.19] specifies the definition of Z, where m is the mass of
TNT and d is the distance from the center of explosion. We also
indicate the approximate ratio with reduced distance defined for gas
explosions and dimensionless distance (calculated for ambient
conditions):

7= (mkg™) 4=0.597 Z R=0277 Z [7.19]

W

There are many data on the characteristics of waves from TNT
explosions [KIN 62, BAK 83]. We show one in [7.20]:

Ayt 808(1+(2/45)")

Po \/1+(Z/0.O48)2\/1+(Z/0.32)2\/1+(Z/1.35)2

[7.20]
o 980(1+(2/4.5)")

Ym J1+(270.02) J1+(2/0.74)° 1 +(2/6.9)

Figure 7.6 shows the relative peak value of pressure relative to
dimensionless distance for a gas explosion and TNT explosion. There
are areas where the difference is significant.
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Figure 7.6. Dimensionless characteristics of a shock wave after detonation
of a gas mixture compared to that of an explosive solid (TNT)

7.2.1.6. Modeling

The typical shape of pressure evolution can be modeled
(Figure 7.3). Various possibilities exist, and in [7.21] we show the
model proposed by [LAN 84]. All parameters of this expression can
be determined as a function of dimensionless distance [BRO 88]:

sin(z(t—1")/1")

e—kr/z+ [7'21]
sin(—ﬂ't+ /t’)

Ap(t,R)=Ap*

7.2.2. External wave after deflagration

When considering an accidental explosion as a detonation, a
deterministic study of its effects is possible. It is difficult to predict the
combustion process that will occur, but it will depend on the external
mechanical effect of the explosion, a pressure wave. The deflagration
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process produces a pressure wave Ap(r,t) which has a markedly
random character and is difficult to model. At some point during the
passage of a pressure wave, there will be an overpressure phase
followed by a depression phase. There is no typical signal shape for
detonation. In fact, for slow deflagrations, energy and fluid mechanics
allow us to access the relationship between the evolution of
combustion and the blast wave emitted 4P(r,t). The spherical piston
model represents the mechanical effect of combusted gas as these
have a greater volume than fresh gas. The parameters for this are: 7
radius of the spherical volume occupied by fresh gas, r,(?) radius of the
flame, V; flame velocity and Vp piston velocity. These last two
parameters are specified in [7.22] (a being the expansion ratio or the
ratio of combusted gas density to fresh gas density):

dr dr,
V. =—L v =(1-a)—L 7.22
Todr 7 (1-a) dt 7:22]

An analytical solution can be obtained after integration of the Euler
equations [DES 81]. It shows that for fields of overpressure 4Ap(r,¢) far
from the flame, (r>7/) is expressed as [7.23] (pyis the density of the gas
mixture, and ¢ is the speed of sound):

):po(l_a)(z (dr,(z J*’ d2 (7))

J [7.23]

Combustion, and in particular velocity of the flame jump, is
subjected to changes. We know the causes qualitatively, but these
changes are difficult to predict and model. Indeed, any factor that may
affect the flame jump can accelerate it. As the burning rate is clearly
subsonic, geometry of the site and environment of the explosion will
affect combustion. The presence of obstacles in the path of the flame
jump disrupts combustion, increases the reaction surface by creating
turbulence and finally accelerates, overall, the flame jump. In some
cases, acceleration of the flame jump due to initial turbulence in fresh
gas, obstacles, changes in concentration or interactions between the
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flame and pressure waves from reflections becomes important. The
flame velocity increases and the explosion regime then moves toward
detonation. Methods exist for taking the risk of explosion in the
deflagration mode into account [MOU 99]. The most used method is
called the “multi-energy method” [VAN 84]. This evaluation method
is based on expert analysis of the practical situation: nature and
quantity of reagents, as well as the geometry and environment of the
locations. This analysis leads to choosing an explosion violence index
(1-10). The concept of violence is linked to the flame velocity value.
As shown in equation [7.22], pressure effects are strongly related to
this value and its variations. Based on this index, charts from
calculations exist. These charts are used to determine the relative
overpressure and dimensionless duration of overpressure at any point
in the explosion environment. Figure 7.7 shows the three shapes used
for the pressure wave (from left to right, with a higher index to a
lower index). These models do not intend to account for a depression
phase following overpressure. For deflagrations of low index, 1-3,
this depression phase is of comparable amplitude to overpressure.

Ap

» | > »
» > >

At At At
+—r —>r +—r

Figure 7.7. Pressure wave shapes resulting from more or less violent deflagrations

7.3. Action of an explosion on a structure
7.3.1. Reflection of a shock wave

A load imposed upon a structure results from the interaction of a
pressure wave with a structure that obstructs its propagation. The
aerodynamic phenomena involved are mainly wave reflection and
diffraction. These phenomena are theoretically difficult to model.
Simplified methods exist, the principle of which is expressed by
certain regulations [UFC 08], and these are mainly derived from tests
with highly explosive solids. The load on a structure is particularly
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effective, or dangerous, if the structure opposes the passage of a wave
and provokes its normal reflection. The surface perpendicular to
propagation direction will support the reflected pressure from the
shock wave. The reflection coefficient, i.e. the ratio between reflected
overpressure and incident overpressure, is a “static” pressure as
indicated by formula [7.24]. This coefficient tends toward 2 for weak
overpressures and thus is close to a propagating wave in the acoustic
model, and tends toward the value of 8 for very high overpressures:

Ap; _84p; +14p,
Ap;  Ap; +7p,

[7.24]

If this reflected, overpressure is very high for a construction such
as a concrete wall very close to the explosion (dimensionless distance
less than 1) and it may result in a compression wave in the wall, as in
a solid impact. If the overpressure has a value in the order of
magnitude of the tensile strength of concrete, it can produce rupture
through cracking [FRA 83, KOT 77]. If the structure surfaces are not
perpendicular to wave propagation, there will be an oblique reflection
of the shock wave. This oblique reflection can be regular, as in
acoustics, or of the “Mach reflection” type [KIN 62, BAK 83]. We
will not address this situation in this book.

7.3.2. Response spectrum to a detonation

The pressure reflected on the surface of a building is a distributed
load (assuming the surface is perpendicular to the propagation of the
shock wave). In Chapter 5, we discussed modeling a structure by a
mechanical system with one degree of freedom. In this case, it is
possible to find the response spectrum of such a system to a load from
detonation for a unitary surface. The response of a structure is the
solution of the equation formulated in [7.25]. The characteristics of
the pressure signal can be determined as a function of dimensionless
distance [BRO 88]:

sin(fr(t—f)/t_)

sin(—ﬂf /t’)

mi+kx=f(t)=Ap’ e [7.25]
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To generalize this result, this equation is written with
dimensionless variables as given in [7.26]:

2
$* 4w’ x* = WTe“” (cos7— Bsin7)

Tt ot kx Kt 1 [7.26]

X" = o= =
t /4 24P° wt* tan ( zt* /t’)

To calculate the spectrum, we consider a building located in the
“far field”, meaning a dimensionless distance greater than 1. The
values of some parameters vary little in this field and are specified in
[7.27]:

=47 k=06 a=0.764 [=1 [7.27]

The solution to equation [7.26] with parameters [7.27] is explained
in [7.28]:

we " ((w” —1.94)cos7—(1.11+w")sinz)
w
2.5-0.83w" +w')

+(1.76w” —0.37)sin wz [7.28]

x*(r): 2(

+w(1 94— w? ) coswt

Figure 7.8 shows the response spectrum to a detonation (solid line).
The dotted line shows the response spectrum calculated with a load
only taking the overpressure phase into account. There is an area
where the fact of considering only the overpressure phase does not
lead to an upper bound of the response (0.5 <w <3).

7.3.3. Simplified model of an action on a structure

The passage of a pressure wave around the obstacle that is a
construction is a transient aerodynamic phenomenon. The load
imposed on the construction corresponds to the sum of pressures
applied when the shock wave strikes and then exceeds it. A first
approach, as we have just discussed, is to consider the pressure
reflected on a wall. In reality, diffraction phenomena will occur
around the construction, which may affect the reflected pressure signal
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to a greater or lesser degree [7.25]. There are simplified methods to
address this diffraction phenomenon [BAK 83, KIN 62, UFC 08].
Calculation is also possible using powerful digital aerodynamic codes.
To illustrate the simplified method, we consider a simply-shaped
building hit by a shock wave (Figure 7.9).
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Figure 7.8. Response spectrum to detonation: solid line, spectrum calculated with full
signal; dotted line, spectrum calculated with the overpressure phase only

d=min (1/2, b/2)
Figure 7.9. Construction obstructing propagation of a shock wave

Aerodynamic phenomena that occur are shown in Figure 7.10. We
will use the following variables:

— pp atmospheric pressure;
— p; static pressure;

— p, reflected pressure;
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— p. Stagnation pressure;

— p, drag pressure;

— V particulate velocity behind the shock jump;

— C, aerodynamic drag coefficient for the construction (=2).

These values are functions of the amplitude of the shock wave

[KIN 62, BAK 83]. Formulas [7.29] give the relationships between
these variables.

P, =D, +%pV2 P, =%CxpV2 [7.29]

Incident shock  Reflected shock Diffracted shack
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Figure 7.10. Diffraction of a shock wave by a construction

The wave is reflected on the face perpendicular to wave
propagation. Diffraction occurs on the edges of the face. An expansion
wave is propagated at the speed of sound from the edges. It arrives at
the center of the face after a time d/cy. After a delay estimated at 2d/c,
stagnation pressure is established. This stagnation pressure integrates
dynamic pressure which is related to the flow behind the shock jump.
The wave jump overtakes the construction and pressure builds up on
the rear face. This pressure is in the order of the stagnation pressure
decreased by aerodynamic drag and settles after a period estimated at
3d/cy. Figure 7.11 shows the sequence of different loading phases of
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the construction. Figure 7.12 shows the changes in pressure on the face
receiving the reflected pressure and its opposite face, called the rear face.

Static
Po pressure s
oy L
Reflected Stagnation
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pressure_,| T -
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Figure 7.11. Pressures applied on a construction at the passing of a shock wave:
Do atmospheric pressure, p; static pressure, p, reflected pressure
Pa Stagnation pressure, p, drag pressure
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Figure 7.12. Evolution of pressure on the front face of the structure,
load on a construction at the passing of a shock wave

EXAMPLE 7.1— We consider a two-story building as shown in
Figure 7.13. We want to find the load this structure would be
subjected to if an explosion, representing a 700 MJ energy release,
occurred at a distance of 25 m.
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7m I
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700 MJ

Figure 7.13. Explosion near a construction

The face has a surface normal to the direction of propagation of the
shock wave. It is relatively easy to calculate the dimensionless
distance and deduce, from charts, the shock wave characteristics that
will reach this wall [7.30]:

R=13 Ap!=25kPa t =13.10"s i"=141Pas [7.30]

The elements needed for definition of the load are deduced and
shown in [7.31]:

Ap; =25kPa Mach=1.102 ¥V =0.162¢,

[7.31]
Ap; =55kPa Ap, =272kPa Ap’ =4.4kPa

Calculation of the time delay for the relaxation waves to arrive to
the middle of the wall gives d/cy= 1072 s. In this case, the expansion
waves will not significantly alter the reflected pressure. We may
consider the load as Ap,(?) [7.25].

7.4. Blast-structure coupling
7.4.1. Coupling conditions

The above considerations on load imposed upon a structure by a
blast wave were made with the assumption that the building was a
rigid obstacle relative to the movement of fluid. However, the
structure is deformable and is displaced by the action of pressure
exerted on its walls. This raises the question of a possible coupling
between fluid flow that occurs behind the shock jump and movement
of the structure. The elements required to answer this question are the
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comparisons of characteristic time and characteristic displacement of
fluid flow and motion of the structure. To establish these comparisons,
the characteristic elements of fluid and shock waves in the air are
shown in Table 7.6.

E Explosion energy

R Distance

Ap Overpressure

t Overpressure duration

14 Particulate velocity

Mach Mach number

Z; = ((ypo)/(2c0)) Impedance of air (210 kg.m .5 ?)

Table 7.6. Variables characteristic of a blast wave in air

The structure can be modeled by a system with degree of freedom
(see Chapter 5). The characteristic features are shown in Table 7.7.

M Mass

K, Stiffness

wg = m Angular frequency
S Exposed surface
Z, =\KM_/S, Surface impedance

Table 7.7. Variables characteristic of a structure
Two loading parameters follow: maximum load and impulse:
1
F=Ap’.S IzEF.f [7.32]

The characteristic time of the wave is the duration of overpressure.
The characteristic time of the structure is its half-period. An initial
idea is thus to compare these two characteristic times. We first define
a dimensionless parameter [7.33]:

ot
r

7,

[7.33]



196  Materials and Structures under Shock and Impact

If this parameter is very small compared to 1, the load can be
considered impulsive. If it is very large, it approaches a quasi-static-
type situation (which is rare). To estimate a possible coupling, the speed
of sound V; and the particle fluid velocity ¥y must be compared. We
then look at the value of the ratio of these two orders of variables [7.34]:

1
V.=— if T, <1
di oM v | [7.34]
T, =—— .
v F
s V ~

R (if 7, 21)

If this dimensionless parameter is in the order of the unit, there is a
reason to consider coupling between the motions of the fluid and the
structure. If it is large compared to the unit, the structure displacements
are negligible compared to the motion of the fluid and, thus, flow is
unchanged. In this case, flow acts as if the structure was rigid.

EXAMPLE 7.2.— We consider the explosion previously defined in [7.30]
and [7.31] and two types of structures: a tank on poles and a panel, also
on poles, for which the characteristics are shown in Table 7.8.

Tank Panel
Mass M, =20,000 kg M; =200 kg
Stiffness K,=3.10°N/m K, =50,000 N/m
Angular frequency ,=3.87s" a=15s"
Exposed surface S, =10 m? S,=10m’
Surface impedance Z,=17,700 kg.mﬁl.sf2 Z,=316 kg.mfl.sf2

Table 7.8. Variables characteristic of the two structures

The load parameters are calculated [7.35]:
F=550kN [ =3,500N.s [7.35]

For the first structure, with load time being 13.107° s, the time
parameter is 7; = 0.016. The magnitude of the velocity of the structure
can be estimated by the pulse response and we obtain V; = 0.17 m/s.
The particulate velocity behind the shock jump is Vy= 54 m/s;
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therefore, the velocity parameter is 7 = 300. It seems reasonable in
this case not to take coupling into account to determine the load. Fluid
motion occurs as if the structure were fixed.

For the panel, the time parameter is 7z = 0.06. The magnitude of
the velocity of the structure can be estimated at V, = 17.5 m/s, and
that of the fluid is V, = 54 m/s. The displacement parameter is then
my = 3. Taking coupling into account is relevant here. The velocity of
the structure is high and it approaches fluid velocity because the
structure is very light. Indeed, for a pulse load, the initial velocity
depends only on the impulsion and mass of the structure. The surface
impedance of the structure is the same order of magnitude as that of
the fluid. We could imagine a situation where, for the same value of
surface impedance, the time parameter would be in the order of the
unit and the structure velocity would be high because its stiffness is
very weak. This last situation does not occur in buildings.

7.4.2. Linear approach to coupling

Coupling between the movement of the fluid associated with a
shock wave and that of a structure is a difficult problem. To see how
this coupling affects load on the structure, we can deal with a very
simplified approach. This is the problem of the uniaxial reflection
movement of a wave on an elastic structure, assuming a linear
behavior of the fluid. This is a strong assumption which can only
concern waves of very small amplitude for which overpressure is
small compared to atmospheric pressure. The linear model of
compressible fluid is that of acoustics. We consider air as a perfect fluid
and take the Euler equations as fundamental: continuity and fundamental
law of dynamics. As we consider the problem to a single space
parameter, the equations governing fluid motion are given in [7.36]:

LA
ot ox

(E)V aV op [7.36]
pl —+v—|=-=
ot ox ox
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We are considering small perturbations around the resting position.
By only retaining the first-order terms, the linearized equations
become [7.37]:

ap’ v

+ _—
or P
oV adp’

—+
Po ot ox

0

(p'=p=p, P'=P-p,) [7.37]

We must add a thermodynamic relationship to this system. We
consider an isentropic transformation. If we assume the gas is perfect,
we get the relationship [7.38]:

’ ’

p_1p

LoV P

where p” = p K, p’ [7.38]

The system can then be written in terms of pressure and velocity
[7.39]:

op’ oV
pOKfa_pt poa_:O
Ry * [7.39]
0—+i=0
Jfr  ox

By transformation of the system, we can separate the variables and
obtain the equations of wave propagation [7.40]:

azp/ azp/
K e Y
7.40
oqV NV L7401
AR e

The general solution to these equations can be written as [7.41]:

V(x,t)zFl[z—i]H@(HiJ o P2} [7.41]

Co Co Po
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where ¢ is the velocity of sound waves (or speed of sound). The
displacement can also be written in the form [7.42]:

u(x,t)=fl(t—i)+f2(t+iJ (Vza_” F’:%J [7.42]
¢ ¢ Jt ot
Overpressure is related to strain in the fluid. The pressure field is
therefore [7.43]:
’ al/l 1 ’ X 1 ’ X
p(x.t) =—7Poa—=—7po[——fl (t__]"'_fz [H—B [7.43]
x IeN ¢ ) ¢ c

In this expression, incident pressure and reflected pressure [7.44]

are recognized:
g X
b= 2y fi (t - J

Co Co

p=-12 7, (Hi]

Co Co

P (x,t)=p,(x,t)+p,(xt) [7.44]

Movement of the structure is a response to this pressure (at x = 0)
[7.45]:

0’u(0,¢)

o thul0.)=p(0) [7.45]

m
where m;, and k; are the stiffness and weight per unit area. Introducing
expressions [7.41] and [7.44] into this equation, we get expression
[7.46]:

” ’ ’

m () £ )+ £ (S04 L)y = =22 =1 (0)+ £ (1) [7:46]

0

By alleviating writing, we obtain the formula [7.47]:

m f, +Z2 g ke = LR [7.47]

C C

This equation, with image functions, is [7.48]:

(szmy+sﬂ+kyj72(s)=(—s2ms+sﬂ—ky) (s)  [7.48]
c

c
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We can then express the reflected wave as a function of the
incident wave [7.49]:

g VDo +£

Fi(s)=—| —— T 17 () [7.49]

k
s2pg P K
com, m,
It is then possible to calculate reflected overpressure and total
overpressure [7.50]:

S2_S7po+£ S2+ks
c,m m m
p(s)=| —————=|p(s) P(s)=2—————|p(s) [7.50]
sas TPk siestPo K
COmN mS COmS ms

The characteristic parameters of the problem are given in [7.51]:

k,
o =% g=TP oy o=
m 2¢cym,

S

o’ -a’| [7.51]

N

Two cases are to be considered depending on the value of
impedance of the structure:

1) If \Jkm >% , the structure is said to be “stiff” and the
N co

operator is [7.52]:

p(s) =2£(s2+—a%zJﬁi(S) [7.52]

s+0{)2+a)2

2) If \Jkymy <% , the structure is said to be “supple” and the
o

operator is [7.53]:

f’(SF{%}E(S) [7.53]
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To show the effect of coupling, let us take the example of an
incident wave modeled by pressure discontinuity [7.54]:

p()=apH() P = Ap% [7.54]

In the case of a “stiff” structure, the evolution of pressure will be
[7.55], or if dimensionless [7.56]:

4 .
p’(t):Ap(Z——ae""” sma)t) [7.55]
[0
p, 20'/ —-atlo
C= =1-—"e sinz (7=wt) [7.56]
2Ap w

In the case of a “supple” structure, the evolution of pressure will be
[7.57], or if dimensionless [7.58]:

p'(t)zAp(2—4—aew sinha)tj [7.57]
[0
"(2
c=P W) 2 pario o [7.58]
24p w

Figure 7.14 shows these changes in pressure in the case of a “stiff”
structure (o = @/2) and a “supple” structure (& = 2 ).

1.2
‘! 4
0.8
stiff structure
0.6
© = = = = supple structure
0.4
---------- without coupling
0.2
0

Figure 7.14. Evolution of reflected pressure on a structure
taking into account coupling with the movement of the structure
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The response of the structure can be calculated by solving [7.45].
In the case of a “stiff” structure (&= @w?2), the answer will be
expressed as [7.59], or if dimensionless [7.60]:

24 .
u= —p[l—e"’” (gsma)t+ cosa)tD [7.59]
k, w
u* = ku :1—6'“”’”(gsinr+cosrj [7.60]
24p (0]

In the case of “supple” structure (¢ =2®), the response will be
expressed as [7.61], or if dimensionless [7.62]:

24
u:—p[l—e“’(gsinha)t+cosha)tD [7.61]
k, w
k,l/l -at/w a .
ut=——=l-e —sinh 7+ cosh 7 [7.62]
24p 0]

Figure 7.15 shows these responses. The case of the supple structure
is unlikely to occur in buildings. The structure is said to be “stiff”
because its surface impedance is greater than that of air. In reality,
structures that have such low surface impedances are quite rare, and
the effect of coupling is generally very low and, in practice, ignored.

2.5
2 9 Frenteny
=
1.5 4 i — stiff structure
. ;
! ._,o' __________ SEm——moo——oo ..'.- - === supple
P "__ F structure
05 "'-_ _.'. """"" without
. ‘..- S coupling
P i i
0
a 2 4 6 8

Figure 7.15. Displacement of a structure under the action of an incident pressure
Jjump, taking into account coupling with the movement of the fluid



Chapter 8

Mechanical Response of Beams

When masses are spread over a structural element, it may be
possible to use the beam model to represent mechanical behavior. The
beam model is widely used by engineers for calculations of stresses
and strains in structural elements under static loading, when these
items have a “slim” geometry. It can also be used as a dynamic model.
The mechanical response of a beam to an impact is studied here to
highlight its specificities.

8.1. Dynamic beam models
8.1.1. Notations

There are three beam models that differ through the choice of
representative kinematic strain [AXI 01lb]. In the following, we
present these three models in the framework of straight beams with an
invariant section along its length, in the configuration of plane
problems. Figure 8.1 shows a deformed beam.

We use the classical notations of beam theory or curved
environments theory. A beam is defined by its axis (x) and a straight
section (in the yz plane) with dimensions that are small compared to



204 Materials and Structures under Shock and Impact

the length, and for which the center is denoted by G. We denote the
following:

— the kinematic variables:
- w (x,7): beam displacement (perpendicular to its x axis),
- Q (x,1): rotation of a section (around z axis);
— the internal forces:
- M(x,?): bending moment (around z axis),
- V(x,1): shear force (according to y axis);
— the geometric characteristics of a section:
- §: beam section (constant),

-I: second moment of the section relative to the Gz axis
(constant);

— the material characteristics:
- E: material strain module,

- p: material density.

A x,t)

v

Figure 8.1. Representation of a beam that is deformed in a plane,
with transverse motion w and rotation of a section €2

If the beam is composite, linear density pS and equivalent stiffness
EI must be used. For beams with non-uniform sections along their
length, the latter two elements are functions of x and solving the
equations is generally not numerical.
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8.1.2. Bernoulli model

The Bernoulli beam model (or Euler—Bernoulli) is a restriction of
the curvilinear medium model in flexion where displacements are
ignored, that is the strains associated with shear force. This
assumption leads to a distinct simplification of the description of beam
movement; in particular, the rotation of a section is equal to the slope
of the displacement [8.1]:

_ow

o-2"
ox

[8.1]

The error from this assumption is negligible for beams with a
“solid” section and large slenderness, or if considering long
wavelengths. We will later discuss the limits imposed by this
assumption. With the assumptions for modeling curvilinear media,
equilibrium conditions for a single beam element allow us to write the
relationships in [8.2]:

om
ox

_aV

V =— -
(1) 0x

f, (x.) [8.2]

where f, is the linear density of force applied to the beam (in direction
y axis). Therefore, we simply deduce equation [8.3], which reflects the
balance:

*M
ox’

(x,1)=f,(x,2)=0 [8.3]

In addition, the elastic behavior of the material leads us to write
that the bending moment is proportional to the curvature of the beam
[8.4]:

o*w

M (x,t)=EI
(x ) ax2

[8.4]
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This leads to equation [8.5] that governs the transverse
displacements:

EI 842”()@:)—/3 (x.£)=0 [8.5]
dx

If we consider free vibrations in this model, the forces involved are
the only inertial forces associated with transverse motion [8.6]:

*w

S/, (x,t)=—pS o7 [8.6]
The equation of motion can be written by formula [8.7]:
2 4
J Zv+c2 J TzO where ¢’ :ﬂ [8.7]
dt dx pS

This is a propagation equation, such as those seen in Chapter 1.
Solutions to the propagation equation can be sought in the form of
waves. It is interesting to consider the dispersion equation. If we give
displacements a harmonic form [8.8]:

w= A4 [8.8]
we obtain the dispersion equation [8.9]:

_2x [E]

EIk'—pSa’ =0 C= = 8.9
oy or 1\ s [8.9]

This dispersion equation gives a limit to the Bernoulli model to
represent the movements of beams. Indeed, in an elastic bar, the
waves cannot go faster than compression waves, for which the
velocity is Cy. The Bernoulli model is only valid for sufficiently large
wavelengths, as shown by condition [8.10]:

=L ccc, 5 asEEL o w<c? PS80
o G\ pS El
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8.1.3. Rayleigh model

The Rayleigh beam model is based on the same kinematic
assumption as the Bernoulli model, i.e. the rotation of a section is the
same as the average slope of line [8.1]. Although the Bernoulli model
only takes into account inertia forces due to transverse movements,
the Rayleigh model introduces forces due to inertia that are associated
with rotation of the sections. This leads to two equations of motion,
one relative to displacement along the y axis and the other to the
rotation around the z axis [8.11]:

3w IV
or*  Ox
[8.11]
2’2 oM
-y
ot dx

By eliminating the variables V, M and €2, we obtain the equation of
motion [8.12]:

IPw I d'w e *w
at* S ox’ot’ ax*

=0 [8.12]

The dispersion equation associated with this model is formulated
as [8.13]:

k-’ —icozk2 =0
S

f c’ . E
or C= m and %123(1—\/; [813]

If the wavelength decreases and tends toward 0, velocity tends
toward a finite limit that, at lower frequencies, widens the description
capacities of this model compared to the Bernoulli model.



208 Materials and Structures under Shock and Impact

8.1.4. Timoshenko model

A more comprehensive model that takes displacement
deformations into account was introduced by Timoshenko [TIM 39].
Displacement % also called warping, corresponds to the difference
between the rotation of the beam axis and rotation of a section as
indicated by formula [8.14]:

ow

y=o_-0 [8.14]

The transverse movements and rotations are then governed by
equations [8.15]:

2 2
pSa_wzk,SG[aw ag]

o1 x> ox

%0 p) PEYe) [5:13]
Pl =k'SG| 2@ |+ E1S=

ot ox ox

The first relationship reflects the consequence of the fundamental
principle of dynamics in the transverse direction. The second
relationship corresponds to the equation of moment. Internal forces,
bending moment and shear force have the expressions [8.16]:

002 o*w o*w o j
M=-Er%i=pr| 22X _p2¥ =
ox (8x2 p ot’ J ('B k'G

V=—k'SG[a—W—.QJ
dx

[8.16]

Coefficient &' is called Timoshenko’s coefficient. This coefficient is
introduced to connect displacement to shear force. Its value depends on
the shape of the section and the Poisson coefficient of the material
[FUN 68, BLE 79] (k' = 0.8667 for a solid steel section). The system of
equation [8.15] can be used directly, or if the rotation variable is
removed, we obtain a differential equation of motion [8.17]:

2 4 4 4
d*w I(1+Ej8w+pl 8w+207w:0 (8.17]

o S\ GK Joxor  Gsk o < ax
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This model allows us to further increase the description capacities
in the field of high frequencies and short wavelengths. This model is
also necessary in the case of beams with displacement deformations
that are non-negligible compared to flexion (this may be the case of
composite beams or lattice beams). To write the Timoshenko model
dispersion equation, we introduce parameter » that is the gyration
radius of the section, and we consider the magnitude of the second
coefficient term that is known for solid beam sections. Then, we
obtain equation [8.18]:

2
—w — 4 oK —3% o' +C kK =0
0

where rz\/% and (1+ 5(,]:4 [8.18]
or:
2 22 2
—C2(1+16r—27[2 +12 r2C2 7:2}00%2 4”2 =0 [8.19]
A A*C, A

If we introduce slenderness as the ratio of the wavelength to the
gyration radius of the beam section ¢=A4/r, this dispersion equation

takes the form [8.20]:

2
—Cz(fz +167° +12% 7[2]+47Z'2C02 =0 [8.20]

0

We can compare dispersion relationships for the three models. The
phase velocity as a function of the slenderness ratio is shown in
Figure 8.2.

Formulas [8.21]-[8.23] recall the expression of phase velocity as a
function of slenderness and its limit when slenderness, and hence the
wavelength, tends toward zero:
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— Euler Bernoulli:

C 2 imC=w [8.21]
CO / =0
— Rayleigh:
C 1
— = limC=C [8.22]
Co 1+ /agr =0
— Timoshenko:

£=\/ 12(\/(€2+167r2)2+193754—(€2+167r2)j
C, \24r [8.23]

lim C = 0,46 C,

L5

C/Co

0.5

slenderness |

Fuler-Bernoulli =— — = Ravleigh — - — - Timoschenko

Figure 8.2. Phase velocity as a function of slenderness

The Euler—Bernoulli model is the most widely used model because
of its simplicity. We can, with this model, use analytical formulas of
solutions. Use of the Timoshenko model is rarer. If analytical
solutions to this equation do exist [ORT 96], they are not very
compact formulas. The Timoshenko model is used to represent the
movement of a structure modeled as a beam with significant
displacements. This is the case for composite beams and lattice
systems or “scaling” structures. We may then need to use a numerical
solution [REN 88].
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8.2. Impacts on beams
8.2.1. Adaptation of the model to a time scale

8.2.1.1. Introduction of the flexion

An impact on a beam is a dynamic load that results in a transverse
force for which intensity increases rapidly F(¢). This can be modeled
by a point force or as a force distributed over an area that is small
compared to the beam (Figure 8.3). The rapid application of this force
generates a phenomenon that we call the mechanical response of the
solid, which is the beam. Several phases can be considered for the
description of the mechanical response. Each phase has a

characteristic time scale. For each of these phases, modeling may
differ.

ﬂ Fyt F
! Mix,1) ® Mx,t)

——
\_{Hﬂ_/_,, Y Vi)

I ____________ ”*‘:\; ﬁ@

Figure 8.3. Impact on a beam showing the two response phases:
a) waves in a solid; b) flexion of a beam

The first phase considers the first moments after impact and the
area near the contact point (Figure 8.3(a)). The rapid application of
load induces a compression wave that propagates through the solid, as
described in Chapter 1. This compression wave will be reflected at the
opposite side of the beam. This can eventually lead to rupture by
spalling. A characteristic time for this phase is the duration of one
round trip of waves in the transverse dimension of the solid. The order
of magnitude of this time is ¢, =2¢/Cp.

To describe what happens on this time scale, the beam model (one-
dimensional) is, of course, not at all relevant. It is necessary to use a
three-dimensional (or two-dimensional) model of the solid to
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represent these waves and nonlinear effects that can potentially result
if the stress levels are high enough. For example, for a 20 cm thick
concrete beam, the characteristic time of this phase is about
t, =0.1ms.

The second phase considers times above time ¢, (Figure 8.3(b)). On
this time scale, waves have been reflected and diffracted several times
in the solid. We can then consider motion across the beam structure.
The movements have reached distances from the point of impact
sufficient for the Saint-Venant hypothesis to be relevant. The average
motion of the beam, i.e. its transverse displacements about its axis,
can then be sought as a solution to the equations presented in the
previous section.

8.2.1.2. Influence of conditions at the limits

Let us consider a beam on two supports, such as that shown in
Figure 8.3. From a point of impact at the center, a movement
propagates through the beam. We denote f# the time required for
transverse movements to propagate across a length equal to that of the
half-beam. Below, we will specify the order of magnitude of this
length. As long as movement does not reach the support, the transient
motion of the beam is the same as if it were of infinite length. During
this phase, support reactions are negligible. Beyond time #; support
reactions appear and modify movement until a movement that can be
described as a superposition of strain modes is achieved. We will first
study the transient response of a long beam, which corresponds to the
moments between # and #: In section 8.3, we will study movements by
modal superposition, which is relevant for times that are much higher
than #,

| <L S

<
-

v

Figure 8.4. Strains on the beam before movement has reached the supports,
and at a time well beyond the arrival of movement on the supports
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8.2.2. Impact at the center of a beam

Let us study a beam by considering its length as very large. A point
force is applied to its center. The origin of the coordinate is placed at
this point. The equation governing transverse displacement w is given
in [8.24]. We consider the Bernoulli model and, as there is symmetry,
we only study a half-beam:

4 2
OV 4t W 4gt=LS xe[0,+0 | [8.24]
ox* or’ EI

The boundary conditions at x = 0 are explained by relationships
[8.25]. The displacement slope is zero by symmetry and the shear
force is equal to half the point force applied:

o’w 1

At the other end of the beam (to infinity), the transverse
displacement remains zero. It is possible to find an analytical solution to
this problem by using a Laplace transformation in time [DIT 79] [8.26]:

o'W

ox*

+4s’a*w=0 [8.26]
The image of the movement of the beam can be written as [8.27]:
v_v(x,s)=e'“xﬁ(lzlcos(ax\/§)+lzzsin (ax\/g)) [8.27]

The following operators and time-associated functions [8.28] are
posed:

2.2
Ql(x,t)chos[a al j _u(xas)z%emﬁ COS((XX\/;)
s

2, (x,t)= —sin(azxz j Q,(x,s) = sin(O!X\/;) [8.28]

&=
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The response image is also expressed using these functions [8.29]:
W(x,s)=+/s (K2 +K,22,) [8.29]

Calculation of the partial derivatives with respect to x and
consideration of boundary conditions at x = 0 leads to expressions [8.30]:

g—W(O,s)=a\/§([?2—IZ'1)=O—> 1?2=]Z]=1?
X
a3—”7(0,s)= 4a3s£1?=LF(s) > I?(s)=;l3(s) [8.30]
9x 2E] 80’ sv/sEl
Then, the response image is [8.31]:
1 _ _
w = F Q+ 0 8.31
W(xs) = oo F(5)(2 4 2)) [8.31]

First, we consider the case of pulse load: F(¢)=i5(¢) F(s)=i. The

pulse response is formulated in [8.32]:

i t o’x’ . [ ox?
w(x,t)=——,|—| cos +sin
S8a’El \ 2t 2t

+ xi g ox +C ox
8a’EI\ "\ Jmt ) "\t
This expression uses the Fresnel integrals [8.33]:

CF(Z)zjcos(ﬂngdu SF(Z)zjsin(”;ZJdu [8.33]

[8.32]

It is possible to represent the pulse response in a dimensionless
manner using dimensionless variables [8.34]:

2

I X \ﬁ

w
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It may be noted that with this change of variables, equation [8.24]
becomes an ordinary differential equation [8.35]:

d‘'w 2d2W=O

8.35
dn* dn’ [8.35]

The solution is formulated in [8.36]:

w(n)= 77;; [cos(%z]+ sin(%zjj+(5} [%} C, [%D [8.36]

Figure 8.5 gives a representation of the solution.

0.05

Figure 8.5. Representation with dimensionless variables W(1) of the
deflection of a beam under a specific pulse load

The dimensionless character of curve W(n) does not give an

instantaneous image of the shape of the beam. However, we can
notice that the effect of loading is relatively small beyond 7 =5. The

area with significant strain of both sides of the point of impact is of
length Lf[8.37]:

Lf =100n/t [8.37]

It should be noted that flexion strain does not spread in the beam as
a wave at constant velocity. This gives an order of magnitude of time
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at which the supports will start to influence the movement of the beam

[8.38]:
L 2

To give the engineer a more useful image of the transitional phase
of flexion following an impact, it is best to consider load as the brutal
application of a force that remains constant [8.39]. We can write the
bending moments and shear forces in this beam:

F(1)=PH(1) F(S)zg [8.39]

The response image to this load is formulated in [8.40]:

P

wu@=§5§ﬂg+g) [8.40]

The transverse displacement can be calculated by formula [8.41]
(* denoting the convolution product):

2.2 2.2
w(x,t)= IZt « L cos| £ | 4 sin| &5 [8.41]
8’ EI Tt 2t 2t

It is possible to calculate the bending moment and shear force and
express it in a dimensionless manner [8.42]. The diagrams are shown
in Figure 8.6. The maximum bending moment below the point of
impact and its intensity varies as the square root of time:

4 Mo

()= P m(17) = P

[8.42]

8.2.3. Beam acted upon by a blast

Another case of rapid loading is that of the sudden application of a
distributed force. This situation may arise under the action of a blast
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wave. The equation that governs the transverse displacements w is
then [8.43]:

2w 2°w
El—+pS—; =p(t) [8.43]
ox ot
i
0.5
=
0 4
0.5
5 4 3 2 I 0 ! 2 3 4 5
7
]
0.5
=0
_05 B
- .
5 4 3 2 1 0 1 2 3 4 5
n

Figure 8.6. Diagram of bending moment and shear force in a
beam upon an impact

Figure 8.7 represents this situation. In the first instants, the whole
beam is displaced under the action of the blast. Flexion of the beam is
initiated by the support, which requires a point force, and propagates
toward the center of the beam.

To study movement in those first instants, it is useful to change the
variable [8.44]. Then, we calculate the relative displacement of the
support relative to the whole beam. During this phase, movement
occurs as if the length of the beam was infinite. This assumption
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becomes invalid as soon as the movement reaches the center of the
beam:

w(x,t)=u(x,t)+v(1) xe[0,+00 | [8.44]

p(t

AR AR R R RN

w(x. 1)

u(x,t)

L

1 »
< Lt

Figure 8.7. Deformation of a beam under a distributed load applied suddenly

The equations of the problem are formulated in [8.45]:

4 2 2
ou, Hsdt_g p531=p0) [8.45]

El
ax* ot or’

The boundary conditions at x = 0 are explained by relationships
[8.46]. At the origin, a relative displacement is imposed. The bending
moment, and therefore curvature, is zero:

- 2
L Th4)=0 [8.46]
s pS  ox

LT(O,S) =

At the other end of the beam (at infinity), the transverse
displacement remains zero. It is possible to find an analytical solution
to this problem. Using a Laplace transformation in time, the image of
the movement of the beam is the shape [8.47]:

E(x,s)ze’“‘ﬁ (E,cos(ax«/;)Jrlzzsin(aXx/g)) [8.47]

Operators and associated time functions, as previously defined in
[8.28], are used. The response image is also expressed using these
functions. Calculation of the partial derivatives with respect to x and
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taking into account the boundary conditions at x = 0 leads to
expressions [8.48]:

u(xs)= 207 20 p "’“Ism(ax\/_)

s'pS
.
g;‘z :Z;j{’)—;’e”ﬁsm (ceevs) [8.48]
3—
PR

If we consider a pulse (i) as a load, we can explain the shear force
and bending moment [8.49]:

(2] )

We can express this result with dimensionless parameters [8.50]:

zzaiﬁ () =DM WS e sy

i 2it

[8.49]

v(1)

The shear force, bending moment and displacement are represented
in dimensionless form in Figure 8.8.

A more realistic situation is to consider the load as the sudden
application of a distributed force of intensity P that remains constant
[8.39]. We can write the bending moments in the beam as [8.51]:

M (x,t)= 2a2fj[ (r)—SF(j%]]dr [8.51]
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1.5

2
0 2 4 n 6 8 10

Figure 8.8. Shear force (v), bending moment (m) and distorted line (W) near a
support beam for a beam impulsively loaded by a blast (dimensionless parameters)

By changing the variables, we obtain the expression [8.52]:

L@ E)y e

Dimensionless parameters [8.53] are used:

m(1) = Mo, _ax [8.53]

Pt 77_\/2

The dimensionless bending moment diagram is shown in
Figure 8.9.

As this case of loading is very representative of a real situation, it
is interesting to investigate the value of the maximum bending
moment and the location of this maximum. The dimensionless
formula gives the result [8.54]:

Pt Jt

M, =011 x(M,,)=071"— [8.54]
o o

max
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Figure 8.9. Dimensionless bending moment, near a support,
for a beam loaded by a pressure step

If the bending moment is in practice limited by a maximum value
M, corresponding to plasticizing (or rupture), we can estimate position
x, of the plastic zone (or fissure) [8.55]:

%=Lmjll [8.55]
Mp

8.2.4. Solicitation in a section of a beam under impact

The above examples show that the shear force and bending
moment do not evolve according to the same time functions. To
understand the consequences, we consider the elementary section of the
beam located at the point of impact. This is the central section (x = 0)
of the problem seen in section 8.2.2. The internal forces in this section
are then determined as a function of any force F(f) by relationships
[8.56]:

1

4(1«/;

M(0,1) :iﬁﬁmf) dr

M (0,5)=—— F(s) 7(0,5) == F(s)

N | —

L%QQ:%F@) [8.56]
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To highlight the role of load velocity, let us consider that force is
applied at a certain velocity [8.57]:

F(t)=pt F*(s):ﬁ2 [8.57]
s
We deduce the bending moment rate of change [8.58]:

M(o,s)zL M(O,t):ﬁ [8.58]

4(152\/; 3(1\/;

The difference between a quasi-static load and dynamic load is not
only the strain rate. It is also linked to the loading path characterized
by the evolution of the two loading parameters: shear force and
bending moment. Figure 8.10 schematically shows the two types of
rupture.

Fe

Figure 8.10. Rupture patterns in “shear” and in “bending”

In a quasi-static load, the two loading parameters are functions of
the applied force and their ratio remains constant. To the central
section of a rectangular beam, the path will be given by formula
[8.59]:

[8.59]

Impact on a beam, especially if it is made of brittle material, can
lead to several types of rupture (cratering, spalling, perforation, etc.).
If the shock is of the “soft” type, there are two main mechanisms. The
first is rupture by flexion, and the second is rupture through shearing.
Shear rupture is not usually observed in quasi-static loading.
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The material rupture criteria and the dynamic response of the test
body are what will determine the type of rupture that will occur. For a
brittle material, the simplest criterion is the Rankine criterion. This
criterion states that rupture occurs when the greatest principal stress
reaches a threshold £, [8.60]:

Sup{ 0',,0',,,0',,,} < fr [8.60]

The rupture plane is then orthogonal to the corresponding principal
direction map. A load on a beam section is described by two
parameters, the bending moment M and the shear force V. Modeling
provides these two parameters, and it is possible to express the
Rankine criterion based on them. In beam theory, a stress plane state
defined by relationships [8.61] is assumed (the stress oy, is the normal
tensile stress or compression and oy, is the shear stress, y is the
ordinate in the transverse direction):

o, O, M V(e o,
o [0_12 0 ] n=Yy 7 12 21[ 4 y [ ]

To show dimensionless load parameters, we adopt the notation
[8.62]:

2y 87 21 M V
==L y = M., =" = V=—m 8.62
z B T2 Jr =, Jr MT Vr [ ]

The stresses are expressed as a function of load parameters [8.63]:
on=zuf, o,=vf(1-2") [8.63]

The maximum principal stress is then expressed as [8.64]:

1 2 2
0',=5(0'11+«/0“ +40,, )

1 2 2 2\?
:Efr(zlu+\/(zlu) +4v (1—2 ) j [8.64]
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The Rankine criterion is expressed in terms of the two load
parameters [8.65]:

2 2 2\?
gl[%?ﬁ{zﬂ+\/(zﬂ) +40°(1-2°) }< 2 [8.65]
It is also possible to use the Saint-Venant criterion that indicates that
rupture occurs when the largest principal strains reach a limit value
[8.66]. In practice, this criterion is very similar to the Rankine criterion:

Ir

Sup{€1a€11’€111} < E

ma)]({z(l—v),u+(1+v)\/(z,u)2+41)2(1—22)2} <2

ze [O, ]

[8.66]

Figure 8.11 shows the Rankine criterion in the plane of load
parameters. It has two parts:

—1if rupture occurs because the load parameters are such that
(u« =1 and 0 < v < 0.92), there will be flexion rupture and the rupture
plane will be normal to the axis of the beam;

— if the parameters become the coordinates of a point of the second
part (0 < u <1 and 0.92 <v < 1), there will be a shear rupture, and the
rupture plane will be inclined on the axis of the beam at an angle close
to 45°.

The terms “flexion” and “shear” associated with rupture are
common but inaccurate because, in both cases, rupture of the material
occurs under tension. In the plane of Figure 8.11, if the loading path is
quasi-static, it is a line with a slope greater than 10 (if L > 5) [8.67]:

#_2t [8.67]
v e
We note that only flexion rupture is possible. For dynamic loads,

change in both parameters depends on the load application velocity
[8.68]:

3 Bt _pt
T V=2 [8.68]

M
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criteria
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Figure 8.11. Rupture criterion for a beam of quasi-brittle material.
Different load paths at different strain rates

The load path is then described by equation [8.69]:

f=a v [“:322& \/%J [8.69]

Depending on the value of load velocity £, it is possible to observe
either of the two modes of rupture. The load velocity that corresponds
to the transition between the two modes is called f;,. [8.70]:

B, =—3 [8.70]

For a rectangular beam section, we obtain the expression [8.71]:

B, =11 ftF [8.71]
P

Several loading paths are shown in Figure 8.11, with different
values for the relative load velocity.
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8.3. Calculation by modal superposition
8.3.1. Eigenmodes of displacement

For times that are significantly higher than #; it is possible to use
the modal superposition method to represent the mechanical response
of a beam. This method requires us, as a first step, to calculate the
eigenmodes of the beam, and as a second step, to project the equation
of motion on these modes. To find the eigenmodes, we seek a solution
in the form w(x,t)=¢(x)y(r). Its introduction into the partial

differential equation allows us to write [8.72]:

Ell1de_ 1dy _ .
pS¢ddt w dr

[8.72]

This will separate the variables and obtain two ordinary differential
equations. For the time function, we have the classical equation
[8.73]:

d’y
dr

+w'y=0 y(t)=Acos @t + Bsin ot [8.73]
The equation governing the function of space is [8.74]:

d’ s
dx?—kw):o 3 =a)2% [8.74]

If the distributions of mass and stiffness of the beam are constant
(uniform beam section), the solution can be written as follows [8.75]:

¢(x) = a cos kx + bsin kx + c cosh kx + d sinh kx [8.75]

The constants must be determined using boundary conditions.
Three types of condition meet at the extremity of a beam and are
presented in Table 8.1.
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Hinged or simply
Fixed extremity supported extremity Free extremity
de¢ 2 2 3
¢=O —=0 ¢=0 7d¢:0 7d¢=0 7d¢=0
dx dx? dx? dx

Table 8.1. Conditions imposed on the deformed function at
the extremity of the beam

As a beam has two extremities, the boundary conditions provide
four linear equations linking the four constants. This system is non-
trivial, i.e. admits solutions other than zero, if its determinant is zero.
This provides the “pulses equation”. The solutions to this equation
determine an infinite sequence of eigenfrequencies w,. Therefore,

there exist an infinite number of modes ¢,(x) with which we

associate just as many time functions y,, (¢) [8.76]:
¢, (x)=a, cosk,x+b,sink,x+c, coshk,x+d, sinhk,x

v, (t)=A4,cosmt+B,sinw,t (kf =0’ g—ij [8.76]

The solution of the equation of free vibration is [8.77]:

w(x.1) zily/n (1) 6, (x) 8.77)

The eigenmodes are mutually orthogonal in the sense of scalar
products incorporating mass and stiffness distributions. This can be
seen by projecting the equation of space variable for mode n onto
another mode m, and then projecting the equation of space variable for
mode m onto mode n [8.78]:

4
j.L¢mE]d (/Z dx—wij¢mP5¢n dx=0
0 dx 0
o [8.78]
L m 2 L _
IO o.EI— 3 dx—a%njo 9, pS @, dx=0
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The difference of the two equations gives [8.79]:

dx+(w) -},

d ¢m
dx’* [8.79]
jo 4, pS ¢, dx=0

d'e

— EI—=f is the load that must be imposed upon the beam

such that its displacement is mode #;

,J' 0, EI d ¢" dx represents the work load n for mode m
dlsplacements,

I ¢EI ¢”’ dx represents the work load m for mode n
dlsplacements.

The Maxwell-Betti reciprocity theorem allows us to express that
the sum of the first two terms of [8.79] is zero. Therefore, we deduce
[8.80]:

(0 -a2) [ 6,pS ¢, dx=0 [8.80]
This gives the orthogonality relationship [8.81]:

ifnem [ 6,pS g, dr=0 [8.81]

8.3.2. Modal base projection

To introduce load into these equations, we must project it onto the
modal base. We must be able to separate the variables in the formula
for transverse load on the beam [8.82]:

O(x,1)= pt) q(x) [8.82]
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We try to write the spatial distribution of this load as [8.83]:
q(x) =3 ¢, 9,(x) [8.83]
The coefficients of this decomposition are obtained through the

projection of load onto the mode, taking into account the
orthogonality of eigenmodes [8.84]:

L L& L
IO ¢, (x)q(x) dx :.[o > 4,8, (x)¢,(x) a’xzj0 q,8; (x) dx=0 [8.84]
m=1
We deduce the value of each coefficient g, [8.85]:

[76,(x)ax
== - [8.85]

q,= L
[, 8 (x)ax

If a point force F(¢) is placed at x=¢, this expression becomes
8.86]:

O(u)=F(1)8(x-a) g, =2\ [8.86]
[, 9] (x)ax
Each modal equation is [8.87]:
i, + o,y =1 p(1)
pS [8.87]

As the p(?) function is known, we can solve each modal equation.
To do this, the pulse response can be used [8.88]:

Vast) = —sin(@,0)
©n [8.88]
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The response to an imposed load can be expressed as the
convolution product of the load with pulse response (Duhamel
integral) [8.89]:

=t dn

b L ole =) ) 8.89)

W, ()

Then, we restore the total response by superposition [8.90]:

w(x,t):Zl//n (1) ¢,(x) [8.90]

In practice, we only do the sum of a finite number of modal
responses, so there is a truncation error. To choose the number of
modes to take into account in order to obtain a good response
estimate, we may consider the following points:

—we must not forget a mode for which the g, coefficient is not
negligible;

—the load spectrum wusually has a significant amplitude
within a certain range of frequencies; these are the modes for
which the frequency is in the range that will be important for the
response.

8.3.3. Example of a blast against a wall

As an example of calculation by modal superposition, we consider
a vertical beam (the wall) embedded at the base and free at the top.
The load can be a distributed action, for example the action of a blast
(Figure 8.11). The search for eigenmodes is facilitated by writing the
function of space as [8.91]:

¢(x)=a(coskx +coshkx) + f(cos kx — cosh kx)

. . . [8.91]
+ y(sin/x +sinh kx) + & (sin kx —sinh Ax)



Mechanical Response of Beams 231

1 P

P
L -

2]

Y
A
o

p()

22222222

A 4

Figure 8.12. Embedded beam receiving a transitional distributed load

The conditions for perfect embedding at x = 0 and free extremity at
x = L can be written as [8.92]:

_o [92) o [40) _, [42) _
#(0)=0 (dxl 0 (dle 0 (dfl 0 [8.92]

— the first two conditions impose: =0 and y=0;

— the following two are expressed by the system [8.93]:

{ﬁ(coskL+coshkL)+5(sinkL+sinhkL)=0 (8.93]

B (coshkL —sinkL)+ & (coskL +coshkL)=0

This system is non-trivial if the determinant is zero, i.e. if
z =cos kL cosh kL =—1, which we call the “pulses equation”. Solutions
are found numerically. We note that for higher order modes
k,L=m(n—1/2). These values are used to find the w, values and we

can write the modes as [8.94]:
¢, (x)=f, (cosk,x—coshk,x)+ 3, (sink,x—sinhk,x)

5= cosk,L+coshk L [8.94]
! " sink,L+sinhk, L
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If the load is uniformly distributed [8.95], the characteristic
parameters of the first six modes are summarized in Table 8.2. The
modal displacements of the first six modes are shown in Figure 8.13:

O(x.1)=q(x)p(1) q(x)=1 p(1)=Pe"

L

[ . (x)dx

0
9, =—F—— ; [8.95]
J.o ¢” (x)dx
_ Wy L )
No. | $n=—" | kyL | By s J. @, (x)dx J. n (x)dx 4n
@ 0 0

1 1 1.8751 1 —0.7341 —0.8335 1.1023 —0.7561
2 6.2667 4.6940 1 -1.018 -0.3879 1.0998 -0.3590
3 17.547 7.8547 1 0.9999 -0.1540 0.9646 -0.1597
4 34.389 10.996 1 -1 —0.2455 0.9842 —0.2466
5 56.842 14.137 1 -1 —0.09864 0.9957 —0.0991
6 84916 17.279 1 -1 -0.1149 1.0037 —0.1145

Table 8.2. Parameters of the first six eigenmodes of a cantilever beam

The response of the beam is calculated by superimposing the first
six modal responses [8.96]:

6

w(xt)=>w,(t)8,(x) [8.96]

n=1
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Figure 8.13. First six eigenmodes of the cantilever beam

A dimensionless time and relative load duration are introduced
[8.97]:

p(t)=Pe"’ p(r)=Pe™ t=ayt A=@@ [8.97]
Each modal response can be expressed [8.98]:

_P_ 4
PS ) (1+(V2E,))

v, (7) (e +(1/A¢,)sing,T—cos&,z)  [8.98]

To represent a result relating to the strength of the structure, we
consider the embedding time of the beam. The embedding curvature is
[8.99]:

2 —
ax n=1 n=1

2 6 a 6 5
TSy, [%] =23 Bklv, [8.99]

The embedding moment can be expressed dimensionlessly [8.100]:

yr M(00)  EI’w
PI? P’ 9x°

RN —2p,4, S (UAE Vsin 7o
"Z;kaz(H(l//i@)z)( #(/4¢ Jsing,z —cosé.7)

[8.100]
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We describe two examples of solutions:

—1in the case of Figure 8.14, the load duration is in the same order
of magnitude as the first natural period. The solution is very close to
the solution of single mode 1. Contribution from other modes is very
small and could be neglected;

—in the case of Figure 8.15, the load duration is much shorter. The
contribution of modes 2 and 3 is significant.
07
0.5 4
0.3 4

0.1 1

."Vf*

0.1 1
-0.3 1
-0.5 4

-0.7 + T T T T T T T T T 1

Figure 8.14. Response to a load duration relative to A =71

To represent the response of the beam as a function of load
duration, a response spectrum is used. The maximum amplitude
attained by the dimensionless embedment moment M* is shown as a
function of the relative load duration w*. The relative duration is
determined with respect to the natural period of the first mode [8.101]:

_9ao
T

W*

[8.101]

This spectrum is shown in Figure 8.16 with the sum of the first six
modes. The response spectra of modes 1 and 2 are also shown. For the
latter, we find the typical shape of the spectrum of a system with one
degree of freedom. In the range of explored load durations, it is
mainly modes 1 and 2 that contribute to the response of the beam. For
relatively long loads (w* > 1), mode 1 provides a good estimate of the
response of the beam. For shorter loads, contribution from mode 2 is
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no longer negligible. It may be noted that, as the two modes are
clearly separated, meaning that their eigenpulse ratio is not close to 1
(it is 6.267), the amplitude obtained by superposition is close to the
sum of the maximum amplitudes for each mode.
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Figure 8.15. Response to a load duration relative to A=7/100
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Figure 8.16. Beam response spectra to dynamic loading
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This can also be represented in an “iso-damage” diagram, which
here will be an “iso-embedding moment” diagram. The parameters
used to construct the curves are made dimensionless by referring to
the parameters of the first mode [8.102]:

F="""g [8.102]

Figure 8.17 presents two curves. For the curve of moment
calculated by only using the first mode, we obtain the classic shape of
a hyperbolic system with one degree of freedom. The curve of
moment calculated using the six superposition modes takes on a
different appearance. Indeed, in the area of impulsive loading, the
curve does not tend toward a horizontal asymptote. This is due to the
important role that successive modes take when the load duration
weakens.

100

10 A

J*

0.1
0.1 1 10 100 1000

6 modes — — = mode |

Figure 8.17. “P-1” curves indicating the load parameters
that give the same embedding moment

To locate the position of a real case in Figure 8.16, we can take the
example of a concrete wall, 3 m high and 20 cm thick. The load comes
from an explosion located 7 m from the wall, releasing 1.1 MJ of
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energy. The overpressure is 270 kPa, the overpressure duration is
3 ms. The natural period of the first mode is 0.1 s and the relative load
duration is w* = 0.06. This is a situation where inclusion of the first
mode only is insufficient.

8.3.4. Transfer function through a bending element

When a blast wave hits a structure, the load begins as pressure,
mainly reflected, on front panel or siding type walls. These walls are
associated with resistant building structure and behave, more often, as
beams on two supports. Therefore, we consider a beam of length L
whose eigenmodes are written according to expression [8.103]:

¢, (x)=a, cosk,x+b,sink,x+c, coshk,x+d, sinhk,x [8.103]

The boundary conditions are written at each end [8.104]:

0 0=0 (3%] =0 aw=0 (3] <0 oy

ox ox?

These boundary conditions require that the shape of the modes be
[8.105]:

nwx

¢, (x)=sin [8.105]
L
Each modal equation is expressed as [8.106]:
v+ aty, =9 () | =" [EL [8.106]
n n n pS n L2 pS

The modal load coefficient is [8.107]:

p 4
¢, (x)d =2 (n odd
q,,—M 4=y (nodd) [8.107]

IOLsz(x)dx q,=0 (n even)
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We consider the load as the sudden application of pressure [8108]:

p(t)=PH/t) [8.108]
Then, the movement of the beam is [8.109]:
w(x,t)= oLl L(l—cos(z)nt)sin nrx [8.109]
n odd n”pS a);f

The load to be transmitted to the rest of the structure corresponds
to the support reaction that is equal to the shear force at the end of the
beam [8.110]:

V(O,t)=—EI£gzv:j (0.0)= Y 2PE (1-cosay) [8.110]

X noddnﬂ’-

Figure 8.18 shows the evolution of this shear force with variables
[8.111]:

r=wt V*—V(O’t) [8.111]
-4 -~ PL '

1
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Figure 8.18. Support reaction for a load level (Heaviside)

In the case of a short load, we can do the calculation. As in the

previous section, we introduce dimensionless time and a relative load
duration [8.112]:

p(t)=Pe” p(r)=Pe™ r=wyt A=qb [8.112]
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If the relative load time is not too short, the strain will be estimated
with the first eigenmode. The response of this mode is [8.113]:

P q, —7/4 :
v, (1) =——F+———(e7" +(1/A)sint—cosT [8.113]
s ag(u(m)z)( A )
Shear force at the extremity is [8.114]:

- v (0,7) _ 4
PL 2 (1+(1/2)")

(e"’/’1 +(1/A)sint — cosz’) [8.114]

Figure 8.19 shows the load and support reaction for two relative
durations of different loads.

T -0.4 :
0 2 4 6 8 10 0 2 4 6 8 10

e A L

Figure 8.19. Load on the beam (pL) and support reactions
(V*) (left A =1, right = 10)

8.4. Dynamic buckling
8.4.1. Equation of motion for elastic buckling

Buckling has already been discussed in Chapter 6. This was the
case of very rapid loading following a solid impact. Strain in buckling
mode begins at the same time as the pressure wave generated by the
leading shock. Here, we consider loads that are possibly less violent in
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intensity, but of longer duration 6. The purpose is to calculate the
buckling behavior, knowing that inertia opposes buckling strain and
allows compression to significantly exceed the critical value given by
the Euler theory in quasi-staticity. To study dynamic buckling
behavior, it is assumed that there is an initial deformation of the beam
that the buckling phenomenon amplifies. Figure 8.20 shows a non-
perfect straight beam subjected to a compressive force.

wix,1) w(x)

Figure 8.20. Schematic of the buckling strain of an initially distorted beam

The bending moment in the beam is explained in [8.115]. The total
displacement of the beam is the sum of the initial displacement w, and
displacement created by flexion wy:

M (x)==Fw=-F (w,+w) [8.115]
The equation of motion of the beam is shown in formula [8.116]:

9*w, 9’w, 9’w

El F(t =
o FriOrw

+pS 0 [8.116]

The problem is that we do not know the original displacement. We
can decide to write it as a Fourier series, as the sum of sinusoidal
functions respecting boundary conditions. The strain created by
flexion is written in the same way [8.117]:

wO:Zanosin(”Lﬂ] wl(t):Zanl(t)sin(nLﬂj [8.117]

Given this decomposition of functions, equation [8.116] leads to
the formulation of n-type equations [8.118]:
4_4

n‘m . n‘m’ n'r
E]Ta’” (t)+pSa,l(r) —TF(z)an1 (t)=—F(t)a,, [8.118]
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These equations are rewritten using the amplitude amplification of
each strain mode as variable [8.119]:

. n4ﬂ.4 n272_2
pS a, (t)+ [EIT—TF(t)J
[8.119]

In making the Euler critical force appear, we obtain formula
[8.120]. Moreover, we note that if we consider a static situation,
instability corresponding to an infinite value of amplification is
obtained for the critical Euler force. The risk of instability exists when
the a, coefficient is positive, so for modes such as n* < F/F,:

2 2 2.2
,oSc'in+nL7r (nzFC—F)a,,(t):—n T F (an:ﬂj (8.120]

2 2
L anO

8.4.2. Response to a pulse

A calculation method for response to loading is to estimate the
maximum amplification caused by this load. We do not know, a
priori, the mode n that will best represent the response of the beam.
Then, we calculate the amplification coefficient of modes that can be
activated, and retain as most probable the one that is amplified the
most with the given load. For example, for a load of slot type [8.121],
we will calculate the amplification for all modes such that n* < F/F.:

F(t)=F(H(t)-H(t-6)) 0>>C£ [8.121]

For this load, we can do the calculation. Equation [8.120] becomes
[8.122]:

2.2 2.2
0<i<6 pSi, -2 (F- ch)anz—nf F

£ L [8.122]
t>0  pSi,+ 2 Fa,=0
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Resolution gives solution [8.123] during the application of force
and [8.124] after the end of loading:

.2
an(t):Lz(—Hcosh(”—’” MB [8.123]
F-n'F, L\ u

nr8 |F-n’F, nz(t-0)
—1+cosh| — < ||cos —< |+
F L U L i
= 2
F=nF\([g_pr  (nro [F-w?F || . (n2(t-6) [E
sinh sin -
F, L u L u

The maximum amplification is obtained during the second phase
and its value is given by expression [8.125]:

2
2
—1+cosh n o {—F nF, +
max F L ﬂ
“ TFowF 2
NF-n’F| . | nm@ |F-n’F,
——<| sinh —_
F, L u

It is possible to formulate this result with dimensionless parameters
[8.126]. We obtain expression [8.127]:

2 3
f*zg x = 20 [a,z’% /iz’z_zco\gj [8.126]
™ yZ

c

a,(1) [8.124]

[8.125]

- p (—Hcosh(lmf*\/m))2
. +(f*_n2)(sinh(”W*W))2

[8.127]



Mechanical Response of Beams 243

The assumption on the duration of loading is expressed as a

reduced duration [8.128]:
2
0 >> L o ows \/z
G, L\S
The acceptable limit for a beam can be formulated by a maximum
permissible value for a specific amplification coefficient in the
considered work [LIN 83] (this parameter is based on expert
knowledge that may rely on feedback and test results). For example,
to present the method, we arbitrarily take an amplification coefficient
of 1,000 as the limit. We can then find the characteristics, intensity
and duration that can lead to this value. The higher the force, the
greater the number of modes to be considered. Figure 8.21 combines
the results for six different loads. For each load, calculation of
amplification modes such as n* < f* was done. Note that for higher

forces, the most amplified mode is also of a high order. This is
consistent with experimental observations. Therefore, we retained the

[8.128]

most amplified mode as probable.
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Figure 8.21. Amplification relative to buckling modes for different loads
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Figure 8.22. Representations of “iso-damage” points in a diagram
of force duration and momentum (dimensionless parameters)

We logically note that the higher the intensity of a load, the more
brief the application duration must be, for a fixed amplification limit.
Figure 8.22 shows the “iso-damage” points in a diagram of force
duration and momentum, with dimensionless parameters. There is no
simple curve as we have seen for simple linear systems, since here
each point is relative to a different mode. We may consider that the set
of points form a curve that delimits two areas. There is an area under
the curve where the coordinates of points are parameters that do not
lead to the fixed criterion (here, arbitrarily). There is another area
above the curve where the coordinates of points are parameters that
lead to exceedence of the fixed criterion.



Chapter 9

Responses of Multiple Degree
of Freedom Structures

A building structure can be modeled by a number of mechanical
systems with multiple degrees of freedom. An analytical solution for
equations of motion is possible by using the modal superposition
method. The movement of a structure may be coupled to the
movement of fluids, which is the case for reservoirs.

9.1. Modeling through a discrete system
9.1.1. Equations of motion

A structure can be modeled by a set of masses concentrated at
points connected by deformable elements. This type of modeling is
widely used to study the movement of structures such as multi-story
buildings. Methods for calculating the response of these structures to
dynamic loads, including earthquakes, have been widely developed
[GOU 80, BAT 87, SCH 91, PAU 05, RAK 09]. To describe the
motion of a structure to multiple degrees of freedom, consisting of n
number of nodes identified by their number i, we define the following
parameters:

— m;: mass concentrated at node i;
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— x;: displacement of node i in a given direction (scalar);
— F;: component of force applied at node i (scalar);
— X: set of displacements (vector);

— F: set of forces (vector).

An example of such a structure is shown in Figure 9.1. The search
for equations begins by studying the static structure. A structure
shows linear behavior if there is a linear mapping between the forces
and displacements. This results in a linear system of equations [9.1]:

X=AF(x=aqF) F=KX(F=kx)

g

K=4" [91]

The terms in matrix 4, a flexibility matrix, can be calculated using
a method based on the curvilinear media theory if the structure is
made up of beams. By choosing different unitary loads, we can
calculate displacements of all nodes corresponding to elements of
the flexibility matrix (a; is also called the influence coefficient; it is
the displacement of node i for a unitary force placed at node j). The
stiffness matrix is the inverse of the flexibility matrix. The Maxwell—-
Betti reciprocity theorem allows us to say that a; = a;;, and the matrix
is symmetrical.

Figure 9.1. Model of a multiple degree of freedom structure.
Identification of masses, forces and displacements
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If vibration is studied, forces are the forces of inertia and external
forces [9.2]. The mass matrix appears as:

F=-m% +F  F=-MX+F 5:2]

When writing linear behavior, we obtain the system of equations
governing movement of the structure [9.3]:

m % +kx; =F°  MX+KX=F° [9.3]

gy i

We may notice that the kinetic energy and the elastic strain energy
of the system can be written as [9.4]:

)_'(’A=4)_'(=lxm % E =

2[[/’] e

g’ggzlxk x [9.4]

E = 5 Nl

1
)

N | —

9.1.2. Search for eigenmodes

Vibration eigenmodes are sought by considering the free
movement of a structure without loading. To do this, displacement is
written as [9.5]:

X=y(1)¢ [9.5]

¢ is a modal vector representing eigendisplacement. The equations of

motion take the form [9.6]:
Ym;¢+y k¢, =0 Y Me+y K9=0 [9.6]

By multiplying the left by the modal vector, we obtain a scalar
equation [9.7]:

(0m,0,)9+(04,0, )y =0 (¢ M g)yr+(¢' K 9)y=0[9.7]

The coefficients of this equation are quadratic. The separation of
variables leads to the relationship [9.8]:
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i 90K k@
(02:—%:?[=Q:¢’ ”¢-’ [9.8]
vooMp m,
The modal vector is defined by [9.9]:
(K-o'M )g=0 [9.9]

This system is non-trivial if the matrix is singular [9.10]:

det( K-’ M )=0. [9.10]
This equation, called “pulses equation”, is of n degree in «'; the

solutions are called eigenfrequencies. A discrete system has as many
eigenfrequencies as degrees of freedom. For each eigenfrequency @,

we calculate the eigenmodegi. All eigenvectors form the modal
matrix [9.11]:

o=(¢..9") @=9 [9.11]
The solution of the initial system can be written as [9.12]:

—y, ¢ =Y oycos(wr+6) ¢ [9.12]
i=1

Eigenmodes are mutually orthogonal with respect to the mass
matrix and the stiffness matrix, which results in relationships [9.13]:

[9.13]

t . . .
{QiMQj =0 si i#)
t . . .
DIKD, =0 si i#)

Indeed, if Qi and Q’ are two modes, they are solutions of [9.14]:

e st

<
I
I
o O

S |
Il
o e
IS
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|% |Q

[9.14]
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If the mass and stiffness matrices are symmetrical, the difference
of the two equations leads to [9.15]:

(@7 -0]) ¢ Mg’ =0 [9:15]
We see that if i #j, we show [9.16]:
w#0, '¢'M¢ =0and 9K ¢’ =0 [9.16]

It may be interesting to write the equations in the eigenbase. Modal
masses and modal stiffnesses [9.17] can be calculated. We can
“normalize” the modal vectors such that the modal masses are equal to
the unit:

‘9 M ¢ =i and 'PK¢ =k [9.17]

(ASY

Alternatively, using the modal matrix, we define the modal mass
and stiffness matrices which are diagonal matrices [9.18]:

DM P=Mand®'K =K [9.18]

In the modal base, the system of equations becomes [9.19], which
is a system of n independent or decoupled equations:

vy

1=
[
I
<

=0 [9.19]

9.2. Resolution by modal superposition
9.2.1. Projection on a modal base

We will now consider a dynamic load imposed on the structure,
represented by the forces applied to the nodes of the structure. If the
actual load does not appear in this form, for example as pressure on a
wall, it will need to be modeled. The system of equations then
contains a second member [9.20]:

m X, +k,x =F X+KX=F° :
%tk =F MX+KX=F 9.20
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Solutions are sought using modal vectors [9.21]:

x=yd X=y ¢ [9.21]

This leads to system [9.22]:
Ak Oy =F M@y K@y=F  [922]
By multiplying the left by the modal matrix, we obtain [9.23]:
oim, 9LV, + 0k, 0y, =0 F 'OM P+ 'PK Dy ="®F  [9.23]

As seen in the previous section, eigenmodes are orthogonal to mass
and stiffness matrices. The system is then composed of n independent
equations [9.24]:

¢’kmy¢fl//k+¢’kky¢jkl//k:¢lk};:e erM¢kz+,Qk£QkZ:[?kEe [924]

In each equation, the eigenfrequency of the considered mode
appears and the second member is the projection of load onto the
mode [9.22]:

,_ Ok _OK¢ _OF __2E g5

Each modal equation is, therefore simply formulated as [9.26]:
v, + oy, =0 [9.26]
The solution can be written as [9.27]:

m(t)=ijQ:(f)sinwk(t—f)df [9.27]

a)kO

The complete response is obtained by superimposing the modal
responses [9.21]. In some cases, if careful, we can use the load
response spectrum. If the load can be expressed at any point by the
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same time function [9.28] (this can be the case for a blast wave load),
each modal load component uses this function [9.29]:

F'=qf(t) F'=q,f() [9.28]
e: ¢ikqi — fgkg — 929
o; ¢,.km,.,¢;rf(’) am Qkf(r) q./ (1) [9:29]

If the load has a characteristic application time of 6 and we know
the response spectrum to this load f; x*(w*), we can use it to estimate

the amplitude of each modal response [9.30]:

2
77 Z&x"{&ej [9.30]
k, V4

It is then possible to estimate an upper bound on the response by
superimposing the maximums of modal responses.

9.2.2. Example

To illustrate the method, we consider the two-story building from
Chapter 7 (see Figure 9.2) and calculate its response to loading from
the planned explosion. The supporting structure of the building
consists of cross-beams made up of metal columns embedded in a
concrete slab. The repetitive nature of the cross-beam structure, every
5 m, allows us to address this problem as the study of the motion of a
cross-beam in its plane. The latter is then modeled by a structure with
two degrees of freedom. The reinforced concrete floors are considered
to be solid and rigid elements. Steel columns (HEA steel profile) are
the flexible elements and their own mass is negligible compared to the
floors. The degrees of freedom are the horizontal displacements of
the floors. Static structure calculations have clarified the stiffnesses to
be considered. The load will be modeled by point forces applied at the
floor level. Figure 9.3 shows the model structure and its
characteristics.
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‘y’

m
25m

700 MJ

Figure 9.2. 4 building face receives the effects of an explosion

vaﬂ my=21.10° kg
k, = 4.10° N/m
PL:"" m;=21.10° kg
ky = 8.10° N/m

Figure 9.3. 4 building structure modeled by a system with two degrees of freedom

When applied successively to both constituted masses of floors, the
fundamental principle of dynamics provides equations [9.31]:

m X, +kx, —k, (xz _xl) =K

. [9.31]
m,%, +k,(x, —x)=F,

These equations can be put into matrix form by introducing a mass
matrix and a stiffness matrix [9.32]:

m, 0% +kl+k2 —k,\(x ) (A 93
0 m )\% —k, k) \x _Fz 532
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The system is simplified by considering m; = m,, = m, k; = 2k and
ky =k [9.33]:

m 0\ X 3k —k\[ x K
R = [9.33]
0 m)\ X%, -k k )\ x, F,
The eigenfrequencies are solutions of equation [9.34]:

3k—a’m —k

. P m*w* —4kme” +2k* [9.34]
- —w'm

det(g—w2£)=|

Eigenfrequencies and eigenperiods have the values [9.35]:
MX+KX=0 [9.35]

The eigenvectors are the solutions to systems [9.36]:

MX+KX=0

3k — s —k 2] (o
(ﬁ—wzzﬁ)?z{ _jt:zm k—a)%m}(?%}z(oj = 0-41¢12+¢22:0

[9.36]

We choose [9.37] as eigenvectors:

¢1=[1J ¢2=( 1 J [9.37]
- 241 - -041 :

The modal forms associated with these eigenvectors and
eigenfrequencies are shown in Figure 9.4.

The solution of the equations of motion can be deduced from the
solutions of the system of independent modal equations [9.38]:

. o F+241F
nmtoy=—
(M)_W ¢1+1// ¢2 6.8m
IR R B} F, —0.41F. [9.38]
*2 V/2+0)22V/2 =1 2

1.2m
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Figure 9.4. Visualization of two eigenmodes of deformation of
a structure modeled by a system with two degrees of freedom

The force on a node is the integral of pressures applied to a part of
the face that is based on that node (Figure 9.2). The two forces can be
formulated according to expressions [9.39], p(?) being the pressure
exerted on the face at the reflection of the shock wave:

=5 t)=5x35xp(t
=S p(1) p(1) [9.30]
F,=S8, p(t)=5x1.75% p(r)
The characteristics of the reflected pressure are given in [9.40]:

R=13 Ap' =55 kPa " =13 x107s i* =310 Pa.s  [9.40]

Load duration (¢) is very short compared to the eigenperiods of the
structure [9.35]. We can estimate each modal response as a response
to a pulse [9.41]:

5.67if
.. 2 5.67 v = sin oy (¢)
v+ oy =—m plt) may
it 9.41
11.6 _ll.6lr sin [ ]

- 2 _ = t
'//2+6021//2—mp(t) L —— ,(0)
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We then obtain the complete expression of the response [9.42]:

-+
w0 (f) = 1[5'67 sin a1 () + - sin a)z(t)J
2

m\
+ 9.42
xz(t):%(z.m;s.m sin o (1) - 0.41x11.6 Sinwz(t)] [9.42]

An upper bound of the displacements amplitude can be estimated
from the maximums of modal responses [9.43]:

{x{mx < gy max XX < 0,046 m 0.43]

X <241y 4 0.41 xy ™ < 0.069 m

9.3. Fluid-structure coupling
9.3.1. Small movements of fluids

There exist various situations of coupling between the movement
of a fluid and that of a solid. Each coupling contains a relevant model
[DEL 01, AXI Olc]. Small movements of a fluid, in the absence of
flow, can be coupled with the movement of a solid or structures if
there are one or several surfaces of contact between the fluid and the
solid. There are two areas where this coupling comes into play: high
frequency (>100 Hz), where fluid movements are of the acoustic type
and related to fluid compressibility, and low frequency (<10 Hz),
where fluid movements are convective in nature, usually with a free
surface. The second case is especially important to consider if one is
interested in the overall response of a structure. The first case is used
to consider a shock on the wall of a reservoir (plate or shell) in order
to study the local response of this element (which is beyond the scope
of this book). Therefore, we are interested in fluid movements in the
absence of flow, that is to say movements around an equilibrium
position that corresponds to a resting fluid state. The velocity field is,
a priori, written in an Eulerian manner based on the current
coordinates. For small movements, one can confuse the latter with the
initial positions as in a Lagrangian description [9.44]:

V(x,t)=V(X,t) [9.44]



256  Materials and Structures under Shock and Impact

To write the equations of fluid motion simply, we show that
pressure p, (total) is the sum of hydrostatic pressure p, at rest and
fluctuating pressure p [9.45]:

P=DP,t+Pp [9.45]

The equations governing small fluid movements are derived from
the writing of conservation of mass in an incompressible fluid and
conservation of momentum [9.46]:

divl =0
[9.46]

4
Pr o —prge.—grad p,

These equations are simplified because they are only functions of
fluctuating pressure [9.47]:

divV =0

4
Pr % =—grad p 47

We seek velocity and pressure fields from modal forms [9.48]:

V(X.t)=y (1) grad @(X)
p(X.t)==p, ¥ (1) D(X)

[9.48]

For the fluid, the problem comes back to seeking function @ such
that [9.49]:

AD =0 [9.49]

From these equations, we can consider two types of practical
problems. First, the case of partially or totally submerged structures:
pile bridge, pillar supporting a quay or a platform, etc. In this case, it
is the concept of added mass that will take the presence of fluid into
account. Second, there is the case of structures supporting, or
containing, a reservoir. In this case, it is the convective motions of the
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fluid, the sloshing modes, which will be coupled to the movement of
the structure.

9.3.2. Concept of added mass

If a structure is immersed in a fluid, expression of fluid and solid
coupling movement originates from the conditions imposed on the
communal surface, called interface, of the two elements (Figure 9.5).

U(x,1)

f

Figure 9.5. Movement of a solid submerged in a fluid

At a solid—fluid interface, there is equality of normal velocities and
forces [9.50]:

Q)

V.n =—Q.n
Vn=""n
—pn=T [9.50]

If a modal approach is adopted for the structure, motion of the
solid is described using a single time-dependent parameter [9.51]:

The velocity condition at the interface is then reflected as [9.52]:

V.n=y ¢.n [9.52]
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or by using the potential function for fluid [9.53]:

grad®.n=¢.n [9.53]
The force condition becomes [9.54]:
PrY®Pn=T [9.54]

Projection onto the mode of force exerted by the fluid onto the
solid gives expression [9.55]:

Fro=| —pn.¢gds=pry | @n.gds
s =] pnpdsmpry [ @ng [9.55]

This force is proportional to acceleration. The proportional
coefficient can, therefore, be interpreted as a mass, called the added
mass [9.56]:

M,=pr| @Pn.¢ds
‘ FL = [9.56]

Movement of the structure that was governed, outside of the fluid,
by equation [9.57]:

} K,
Mel//+kel//=0 ), = V
e [9.57]

becomes [9.58] if the solid is submerged in a fluid:
(Mo +M, )y +K,p =0 [9.58]

The effect of this added mass reduces the eigenfrequency of the
structure [9.59]:

W=t [9.59]
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The presence of fluid also adds a damping on the movement of the
structure. This is usually not taken into account during the search for
responses to loads of short duration. A simple example is the bending
of a beam in a fluid. If the fluid volume is large compared to the
volume of the submerged structure, the added mass can be only
determined from the shape of the beam. The simplest case is that of
the beam with a circular cross section of radius R. Its movement in a

fluid is obtained by considering a linear added mass of pp ZTR>.

9.3.3. Sloshing mode

Sloshing is a form of fluid oscillation associated with convective
movements of a fluid mass contained in a reservoir and with a free
surface (Figure 9.6) [DEA 91].

A -

Uy =y (gradol)

- B
« L

Figure 9.6. Sloshing mode of fluid in a reservoir

Description of motion is sought modally [9.60]:
V(X.t)=y, () grad @(X)
P(XJ) =—Pr Vs (t) dj(X)

The potential [9.61] respects the different boundary conditions of
the fluid domain (the altitude measured from the free surface at rest is
called z):

[9.60]

hi(H
D (x,7) = 4 coske OKUITHZ) [9.61]
coshkH L
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If the A4 coefficient has the dimension of a length, then this is also
the case for the time function [9.62]:

wr (t)=a;sin(at+6; ) [9.62]

The free surface condition results in a relationship between
pressure at z = 0 and vertical displacement at this same level [9.63]:

—-p(x,0)+ pgU,_ (x,0)=0 [9.63]
The equation governing modal motion is obtained by projecting the

free surface condition onto the modal pressure field (B is the width of
the reservoir) [9.64]:

B[ ~p(x.0)@(x,0)dx+p.gB[ Uy. (x.0)®(x,0)dx=0[9.64]

Taking the modal form of pressure and displacement [9.60] into
account, we obtain equation [9.65]:

Y L 0D
peiieB[ | @ (x,0)dx+pey, B, @(x,O)a—Z(x,O)dx:O [9.65]
The modal elements are [9.66]:
0D
@ (x,0) = 4 coskx a—(x,O) = kA, cos kx tanh kH [9.66]
z

The modal equation of motion is then [9.67]:
% PrBLA +% prBLgk A tanh kH w,, =0 [9.67]

We find the eigenfrequency of a sloshing mode [9.68]:

@, = gk tanh kH [9.68]
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We can give the coefficients of this equation the usual dimensions.
The coefficient of acceleration has the dimension of a mass and
displacement has that of stiffness [9.69]:

BL ) BLg
" =0 .
pF[zkta - kijFwF( : jwp [9.69]

The equivalent mass and equivalent stiffness describing a sloshing
mode are thus defined as [9.70]:

M,y +K, p, =0 [9.70]

Moreover, for the potential function coefficient, which has the
dimension of a length, it is possible to choose [9.71]:

4, == [9.71]
a)k
The time function has the dimension of a length that represents the
height of waves. For example, the first modek =x/L and the free
surface has equation [9.72]:

Ur. (x,O)=m(f)[%—fj<x,0)=wF(r)cos(%j [9.72]

9.3.4. Coupling with a structure

The most common case of coupling of a fluid sloshing mode and a
structure is that of a reservoir supported by a structure (Figure 9.7).
We will consider a structure represented by a system with one degree
of freedom, taking into account the concepts of equivalent mass and
stiffness as defined in Chapter 5. Only the first sloshing mode will be
considered.

Free movement of the structure, when the reservoir is empty, is
governed by the following equation [9.73]:

MU, +KU, =0 [9.73]
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Figure 9.7. A structure supporting a reservoir

The interface used here consists of the two vertical walls of the
reservoir. On these planes, the kinematic interface condition is written
as [9.74]:

Ve =U, or —-92_¢j, [9.74]

Pr 0x

To satisfy this condition, we must add a term to the previously
defined pressure field [9.75]:

p:pFl/}Fdj_prUS [9.75]
The displacement of the fluid is then formulated as [9.76]:
Up=-Y,grad®+Use, [9.76]

The equation governing fluid motion is obtained by projecting the
free surface condition onto the mode [9.77]:

[ =p(x.0)0(x.0)dv+prg [ Uy (x.0)@(x.0)dx=0  [9.77]
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In this case, it gives equation [9.78]:

Pty [ @ (x.0)dx+ pogw, [ @(x. O)aa (x,0)dx =
[9.78]

:pFUSIOL x®(x,0)dx

or by giving the equation of motion coefficients the usual dimensions
[9.79]:

BI’ N BLg 2B
— Wt | —= W, =—p, | —— U, [9.79
pF(zﬂ_tanh(ﬂ_H/L)Jl//F pF( 2 jl//F pF( 7[2 J S [ ]

Coupling is reflected in the fluid equation of motion as the
presence of a second member dependent on the acceleration of the
solid [9.80]:

M, v +K, v, =-MgU; [9.80]

The factor affecting acceleration is called the solid—fluid coupling
mass [9.81]:

2BI*

Mg =pr—7— [9.81]
T

To find structure movement, we calculate the force exerted by the
fluid on the vertical walls at x = 0 and x = L [9.82]:

FS—BJ »(0,2) dz+Bj L,z)dz [9.82]

or:

——pFBz//F(j 0(0.2)d~ [ (Lz)dz) pUBL[" dz 9.83]
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Two terms appear in this force. One is proportional to the
acceleration of the fluid and the other is proportional to that of the
structure [9.84]:

Frg==M s Wy _MFUS [9.84]

The coefficients have the dimension of masses. The first is called
solid—fluid coupling mass and the second is called the total mass of
the fluid [9.85]:

2BL*

Mys=pp = M, =p,BHL [9.85]

The equations governing the motion of the structure and the fluid,
taking coupling into account, are [9.86]:

Mg/‘ W+ Kef Ve = _MSFUS

. 3 . [9.86]
MU+ KUs=-M ;s — M Ug

or, in matrix form [9.87]:

e wan S5 e o) e
M., Mq+M, )\U; 0 K )\Ug 0

Coupling results in non-diagonal terms in the masses’ matrix.
Coupled movements give, a priori, non-diagonal and non-symmetric
masses’ matrices. In this particular case, the choice of modal mass for
motion of fluid and the fact that the stiffness matrix is diagonal lead to
a symmetrical masses’ matrix. This system is formally equivalent to
that of an oscillator coupled to a pendulum. Calculations of equivalent

masses and coupling masses were made for different reservoir
geometries (cylindrical, conical, etc.) [DOD 66].

EXAMPLE 9.1.— The search for system eigenmodes goes through
calculation of the determinant [9.88]:
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2 _ 2
K,—wo'M, oMy, [9.88]

-o’M,; K-’ (Mg+M,)
This gives the pulses equation [9.89]:

(Mef (M, +MF)—M;S)w“

~(KsM, +K, (Mg +M,)) & +K, K =0 [9.89]

The characteristics of the structure are the following:

— structure: “HEA 240 poles, 5 m in height;
Mg =40 x 10° kg; Ks=6.26 x 10° N/m;

—reservoir: L=1m;
— for a water height of 3 m, My =40 x 10’ kg;
Me=20.8 x 10° kg; Koy = 0.122 x 10° N/m; Mes = 25.3 x 10’ kg.
Figure 9.8 shows the variation of eigenperiods according to the
water level in the reservoir. For comparison, the structure and fluid

eigenperiods that would be obtained without considering coupling are
also shown in the figure.
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Figure 9.8. Variation of vibration eigenperiods according to the water level in the
reservoir (t1 and t2). For comparison, the structure and fluid eigenperiods without
considering coupling are shown
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For a water depth of 3 m, there are two eigenmodes [9.90].
Displacements associated with these two modes are shown in

[9.90]

Figure 9.9:

4 = 0.76 = -35

Sl ) L
Ve r \ E—"

Ve l _/
' T
— M, B M
K Ks

Figure 9.9. Representation of two eigenmodes



Chapter 10

Response of a Nonlinear Structure

In this chapter, we consider the nonlinear behavior of structures
made up of beams. First, we present nonlinear metallic structure
behaviors and then reinforced concrete structure behaviors. Then, we
discuss the inclusion of nonlinear behavior in the modeling of a
structure with one degree of freedom. To conclude, we discuss the
structural response of an elastoplastic beam to impact.

10.1. Nonlinear behavior of structures

We speak of nonlinear behavior of a structure when the movement
of a structure cannot be described by one or more linear differential
equations, as discussed in Chapters 5, 8 and 9. There are two origins
for the introduction of nonlinear equations. The first origin is
geometric in nature. Linear equations are obtained by approximation
to small displacements. If the amplitude of structure movements or
relevant description of physical mechanisms cannot maintain this
hypothesis, the equation of motion will be nonlinear. The second
origin is the consequence of the structure on the behavior when taking
the nonlinear behavior of a material into account, i.e. of different
linear elasticity or viscoelasticity. These nonlinear material behaviors
were discussed on the level of waves in solids in Chapter 3. A
combination of these two types of nonlinearities can also occur.
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10.1.1. Metallic structures

Different plasticizing mechanisms can occur in a metal beam
depending on the state of stress. Plasticization is the main mechanism
that defines the ultimate state of resistance of a structure [AFN 93]. If
the bending stress is predominant, a plastic hinge is produced. The
shear force can be predominant and lead to plasticization by yielding.
If a beam supports a normal force and bending moment, a plastic
hinge can be formed, and in this case the normal plastic force and the
plastic moment that this hinge can support are linked. Generally,
determination of plasticization conditions for a beam as a function of
stress (normal force, shear force and bending moment) can be quite
complex and require the use of limit analysis methods [SAL O1].
Nonlinear behavior can combine plasticization and the effect of large
beam displacements. This situation occurs when the beam is fixed at
both extremities and strain induces a significant stretching in the
midline of the beam.

10.1.1.1. Plastic hinge

For a beam in flexion, behavior is elastic as long as the maximum
stress is below the elasticity limit. Figure 10.1 shows the stress
diagram in a section of a beam in flexion. If the elastic limit is reached
in the section, the corresponding bending moment is called M, (al). If
solicitation increases, a plastic hinge is formed. The section is then
partially plasticized (a2). If the section is fully plasticized (a3), the
bending moment reaches the Mp value that cannot be exceeded,
although the strain of the beam can be increased. Figure 10.1(b) shows
the elastoplastic behavior of a beam, i.e. the bending moment change
according to curvature. For a rectangular section (width b and height
h), these moments are given by formulas [10.1]:

210, bi b’
M(_) = —Gg = Ge MP p— Ge
h 6 4

[10.1]

The ratio between moment Mp and moment M, depends on the
shape of the section of the beam. This ratio is 1.5 for a rectangular
section and approximates to 1 in sections in /. To simplify the
calculations, we can ignore the intermediate phase and only consider
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two phases of behavior, the elastic phase and plastic phase, where the
moment is Mp.

al) a2) a3)
M, JW.-:(M(‘MP MP
1[
h >
Y
O. O, a
A
M )]
Mp
M,
4
Le Y

Figure 10.1. Elastoplastic behavior in a beam section. Distribution of stresses: (al)
elastic section, (a2) partially plasticized section, (a3) fully plasticized section; (b)
changes in moment according to curvature

10.1.1.2. Plasticization by shear force

As discussed in Chapter 9, during a dynamic load, shear force
increases much faster than bending moment. This situation can lead to
plasticization mainly due to shear stresses created by shear force,
although stresses due to flexion are still weak. This situation is very
rare in staticity. For a compact section, an estimate of the shear force
causing plasticization is given by [10.2]:

s
v, ~ ;’ [10.2]
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If the shear force and bending moment coexist in a beam section, a
plasticization condition connects these two solicitations [DRU 56,
HOD 57]. We will not detail this coupling. In practice, for metal
beams for which the section is in /, it can be assumed that the shear
stresses due to shear force are significant in the “web” of the beam (S,
section) and stresses due to the bending moment are significant in the
“flange” (S, section). We do not consider coupling between shear
force and bending moment in the plasticity condition, and the plastic
limit values are given in [10.3]:

h
zSao;, M, ~ So,

”
) 2

[10.3]

10.1.1.3. Plasticization in flexion and tension or compression

There are a number of situations in many structures where a beam
supports a bending moment and a normal force: for example, a post
supporting a compressive force to which flexion, due to an action such
as a lateral impact, can be added. Another example is that of beams
supporting a cladding or roofing element that, if fixed at their
extremities, can undergo tension due to large displacements caused by
flexion. Plasticization results in the formation of a plastic hinge.
Figure 10.2 shows the graphs of stress distribution in a plastic hinge
when there is a normal force and bending moment. As discussed
previously, if the normal force is zero, plasticization is only due to the
moment and the stress distribution as shown in (al). If the bending
moment is zero, the stress distribution is homogeneous in the section
as shown in (a3). In the presence of two solicitations, the stress
distribution in the section is shown in (a2). In the latter case, and for a
rectangular section, the normal force and bending moment are given
by expressions [10.4]:

M =abh’c,(1-a)=4M o (1- @)

[10.4]

N =bho,(200-1)=N, (2 -1)
By removing the o parameter, we obtain formula [10.5], which
connects the normal force and bending moment. This relationship,
given here for a rectangular section and shown in the graph in
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Figure 10.2(b), depends on the shape of the section and may not have
a simple analytical expression:

[10.5]
M, LN J
al) a2) a3)
N:O, Mp N“’-NP, M<Mp Np, M:CJ
F 3
h >
ah
Y v
v ” “ %
"
A 4
M H
My

v

Np

Figure 10.2. Ultimate plastic states for a beam section. Stress distribution: (al)
flexion without normal force; (a2) tension and flexion; (a3) tension only; (b) final
plastic states coupling M and N

10.1.2. Reinforced concrete structures

For reinforced concrete structures, we focus on material
nonlinearities. The manifestations of these material nonlinearities can
be modeled as plasticity, at the beam section scale, to determine the
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ultimate resistance states of a reinforced concrete element [AFN 92].
The usual values for “yield” and “ultimate limit” states of steel and
concrete materials used in reinforced concrete structures are shown in
Table 10.1. A plastic hinge results from many nonlinear mechanisms
in materials, such as steel plasticity, damage and cracking of concrete,
and landslides. Determination of the conditions for hinge formation
according to stresses that are the normal force, shear force and
bending moment can prove to be quite a complex problem, depending
on the level of elaboration of the model used to represent the behavior
of materials. This can be done using analytical methods such as limit
analysis [KOE 07], or digital and experimental methods. Numerous
studies on this subject exist (for example [MAI 05, ZIN 07]). We will
consider the most common situation, which is the formation of a
plastic hinge in the presence of a normal force and bending moment.
Coupling between the shear force and bending moment has been
studied by Sheridan and Cowdey [SHE 92]. Figure 10.6 schematically
shows a reinforced concrete beam section. Steels are represented by
two sets of sections, 4 and A4'.

Steel Concrete compression | Concrete tension
Module E,=2x10"Pa E,=2x10"Pa E,=2x10"Pa
Elastic limit | 0,7 =3.5x10°Pa | 0, =3.5x10 Pa o, =0.6+0.06 o,
Stress £, =18x10" gBe —2x1073 (MPa)
Strain
Ultimate 0, =3.5x10"Pa 0, =3.5x10" Pa
limit £, =1.0x1072 | g, =2x107 (or 3.5)
Stress
Strain

Table 10.1. Characteristic values for “elasticity limit” and “ultimate limit” states of
steel and concrete materials

An assumption of reinforced concrete is the perfect adherence
between steel and concrete. Therefore, we locally have relationships
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[10.6] between stresses and strains (index A4 for steel and index B for
concrete). A coefficient of equivalence 7 is defined as:

94 9 4 opg, n=fs [10.6]

Ey4=€& =
A g EA EB EB

The concrete section is B = bh and steel sections are A and
A' (B >>A4). We define an equivalent section as [10.7]:

S,=B+n(A+4) [10.7]
<l h -
A A F 3
vy ¢
Vs 4 'y
Ya
Y I h 4
e | A h
At
Yo Ya
A h 4
c
4 4

Figure 10.3. Schematic section of a reinforced concrete beam

The center of this section is the point G defined by its position
[10.8]:

B hB+n(c'A'+(h—c)A)
YT T (B (a+ )

[10.8]

Under flexion, this section has a quadratic moment [10.9]:

" )
IO:B[?—ycy'GJ+y'A2A'+yA2A [10.9]
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Ultimate limit states associated with a plastic hinge are defined by
strain limit states [AFN 92] that are shown in Figure 10.7 (in the case
of a positive bending moment). The definition of these states is based
on the fact that the strain diagram, assumed to be linear, rests at a
point called the “pivot”. Table 10.2 specifies the definition of the three
pivots. The search for a criterion, depending on the normal force and
bending moment stresses, is based on the calculation of the resultant
force and resultant moment of stress states compatible with strain
limits states. This calculation, which is often carried out and
completed digitally, leads to a criterion that has a shape such as that
shown in Figure 10.4 (dotted line). We can see this criterion very
schematically as a quadrilateral that can specify the position of the
four peaks (I, 11, I1I and IV, see Figure 10.5).

Pivot A Zone 1 &,=10x10" Simple tension, tension
+ flexion

Simple flexion

Pivot B Zone 2 &u=3.5%107 Compound flexion

Pivot C Zone 3 2%x1073 <EpS 35X 1073 Compound flexion

Simple compression

Table 10.2. The three “pivots” determining the ultimate limit
states of a reinforced concrete beam section

3.5x10° .
——>
2107
s
: 7B
i c
i 1 R P
: o i o
: T i, Longitudinal
i . G 2 J-’: C reinforcement
[ . o 5
Ai -7 g |
Ll A |
g '
& = 10x107
Tension < » Compression

Figure 10.4. Final states of strain in a reinforced concrete beam section
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v =

mr

w

Figure 10.5. Conditions for plastic hinge formation in a reinforced concrete beam
supporting a normal force and a bending moment (dotted line: schematic form of the
criterion, solid line: simplified representation)

In Figure 10.5, point I corresponds to a state where the steel is
plasticized when under tension. The section is fully extended. The
coordinates of this point are given in [10.10]:

{N’:"j S [10.10]

M, =0} (AyA _A'y'A)

Point II corresponds to a state where inferior steels are plasticized
under tension and the concrete is plasticized under compression (it is
also assumed that the compressed steels are very close to plasticizing).
The compression zone is defined by distance d, and the coordinates of
this point are given by [10.11]:

1
N,=05(A-A")——o0, bd .
y =0y (4=4)=50% g —atys) e

e [N 1 e ' d ge_ge
M, =0, (AyA+AyA)+Eo-B bd(yc_?) o

[10.11]

Point III corresponds to a state where the concrete is plasticized
under compression (it is also assumed that the compressed steels are
very close to the plasticizing). The coordinates of this point are given
by [10.12]:
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{N,,,z—aj (Ad+A") -0 B=—-0% S, [10.12]

M, =-o, (AyA _A'y'A)

Point IV corresponds to a state where high-quality steels are
plasticized under tension and concrete is plasticized under
compression (it is also assumed that the compressed steels are very
close to the plasticizing). This is the equivalent of point II in the case
of negative curvature. The compression zone is defined by d'. The
coordinates of this point are given by [10.13]:

1
N[Vzo-:i (A_A')__GZ’ bd' _ ] e
P . a="W)E g 13
€ [N} e ] E,—&
MIV:_O-A(AyA+AyA)_Eo-Bbd (YG_?] o

The size of the hinge is length (L,) of the beam, which can be
attributed to the plasticization state defined above. This length is
determined empirically from experimental observations. A formula
proposed by Paulay and Priestley [PAU 92] is shown in [10.14]:

L,=a,(0.08 L +0.022 fd,) (mm) [10.14]

pi

— ay: coefficient of steel grade:
-a,=0.81f (fi/f;) < 1.15;
-ag, = 11if (f/f)) > 1.15;

— L,: shear extent L, = M/V (mm);
— f;: elasticity limit of the longitudinal reinforcements (MPa);
— f;: resistance of longitudinal reinforcements (MPa);

— dp;: diameter of longitudinal reinforcements.

10.1.2.1. Limit state for shear force

In a reinforced concrete beam, resistance to shear force stress is
provided by the transverse reinforcement in the form of frames
(Figure 10.3). Faced with this solicitation, the reinforced concrete
beam functions as a truss (in N). The vertical bars of the lattice are the
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transverse reinforcement, which are in a state of tension, and the
diagonal bars, which are in compression, correspond to an area of
compressed concrete called the “compression link”, as shown in
Figure 10.6. The stress in the frames or transverse reinforcement is,
according to assumptions [AFN 92], determined by formula [10.15]:

V st

oc=— [10.15]
09z4

— Vis the shear force;

— st is the spacing of frames;

— z is the height (y G + y.);

— A, is the cross section of steel.

The ultimate shear force associated with plasticization of
transverse reinforcements is then determined by formula [10.16]:

0.9z A0
09240, [10.16]
St
/ “link”
/ F §
. . z Longitudinal
reinforcements
Y

st Transverse reinforcements

Figure 10.6. 4 reinforced concrete beam element supporting
a shear force, lattice diagram of N

As discussed in Chapter 8 (section 8.2.4), with dynamic loading,
the shear force stress may be the critical solicitation for the strength of
a beam. The extreme value of shear force is in the impact area that
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may be located at any point along the beam. Therefore, in beams
dimensioned to withstand impacts, we find significantly higher
amounts of transverse reinforcement than those currently in the
literature. For violent actions generating high shear forces, there is
even the provision of specific frames, called “lacing”, consisting of
bars forming a “W” lattice [UFC 08, WHI 55].

10.1.3. Flexion and extension in large displacements

We have just seen the consequence of the material nonlinearity that
is plasticity in a beam section. On another level, the structural
behavior of a beam can be nonlinear. Figure 10.7 shows a localized
force applied in the middle of an elastoplastic beam. Under the action
of force, the beam bends. The value of the force may increase until the
appearance of a plastic hinge at its center (this value is F' = 2Mp/L). If
the beam is fixed at its extremities, the value of the force can be
further increased, which has the effect of creating a normal force
linked to the extension of the midline of the beam. The midline
extension strain is estimated by formula [10.17]. We only take into
account the strains that are due to expansion and ignore those that are
due to bending:

2 2
A2 L e L2 cp) [10.17]
¢V 2) L

The normal force linked to this extension is [10.18]:

2

N:ESzLi2 [10.18]

The beam balance provides the relationship between applied force,
displacement, normal force and bending moment [10.19]:

4x 2
F= N+ZM [10.19]
L L

In the plastic hinge, the normal force and bending moment are
connected by a criterion that is characteristic of the beam section (see,
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for example, Figure 10.2 for a rectangular section steel bar or
Figure 10.5 for a reinforced concrete beam). If we continue the
calculation for the example of a steel beam with rectangular section,
the criterion is given by formula [10.5]. We can then deduce the
nonlinear relationship between force and displacement [10.20]:

> 2
F:8§Sx3+%MP 1—(2]55; j [10.20]
P

As displacement x increases, the second term decreases until it
becomes negligible. Expression of force tends toward cubic
proportionality of displacement [10.21]:

8ES |
= X

F IE

[10.21]

When the plasticity threshold is reached under tension across the
beam, force takes expression [10.22]:

o 4N
x2L,—= ~—Lx [10.22]
2F L
A
E 8ES(/L)?
-
EJMP/L
E - b Lo > x

Figure 10.7. Elastoplastic strain of a beam articulated at its two extremities.
Behavior taking into account the normal force of traction subsequent to large
displacement

Another example of a nonlinear structure behavior associated with
large displacement is that of a flexible wall, such as a metal siding,
under the action of pressure. Flexion of a siding, which has the
geometry of a pleated or corrugated metal sheet, only supports
bending in one direction. The behavior of an element of unitary width
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is comparable to that of a beam. A siding element under pressure
deforms to become a cylindrical surface. Figure 10.8 illustrates this
situation. If the strain becomes large, the stresses due to bending
become negligible compared to those due to extension. This extension
is linked to the extension of the center line of the beam and is
estimated by formula [10.23]:

A0 _2R6

x=R(1-cosb) T

[10.23]

The tensile stress is estimated to be that of a cylinder of small
thickness under pressure [10.24]:

a:Pﬁ=E[ﬁ—j [10.24]
R L

If we express pressure and displacement in a dimensionless
manner, according to expressions [10.25], the nonlinear relationship
between force and displacement is as shown in Figure 10.9:

x*—ﬁ—l(l—ﬁ) [{zsin&z%}

=T = ;
[10.25]
2Ph 1(1 . . )
= = —arcsm{—lJ
EL ({\¢&
0.3
.‘-K-—
]
R/
P
Fy ¥ * * i \' p L ! ' T
XI &% M : 0.2 0.4 0.6 0.8
L2 : L2 ) x*
a) B

Figure 10.8. a) Deformation of a wall under the action of pressure (membrane
effect); b) associated nonlinear behavior
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10.2. Nonlinear system with one degree of freedom
10.2.1. Formula

We have just discussed the mechanisms, mainly related to
plasticity, that lead to the nonlinear behavior of a structure. If the
structure is modeled as a mechanical system with one degree of
freedom, it should be noted that resistance R that opposes the load F(¢)
is expressed as a nonlinear function of the displacement x of the latter.
The movement results in an equation of the form [10.26]:

mx =F(t)- R(x) [10.26]

The work of the resisting force structure is W(x) [10.27]:
W (x)=[R(y)dy [10.27]

In general, an equation of type [10.26] is not analytically
integrable. It is then possible to use digital resolution.

Structure response begins with an elastic phase. It is possible to
express the conditions under which the elastic limit is reached. This is
similar to the determination of conditions leading to the iso-damage
curves discussed in section 5.3. For example, let us consider a load of
“rectangular pulse” type, that is a constant force P, applied for
duration 6. The elastic response of the structure (mass m and stiffness
k) has the expressions given in [10.28]. There are two -cases,
depending on whether we consider time ¢ during loading or after:

P P
0<t<@ x=—(1-coswt) X= sin @t
1 k Vkm [10.28]
0<t  x=—x(6)sinwt+x(0)coswr
1)

The elasticity limit is reached in the first phase under conditions
[10.29]:

p>B and 05% [10.29]
2 w
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If these conditions are not met, the maximum amplitude during the
second phase is expressed as [10.30]:

X = \/sz(e)z +x(t9)2 = %\/Z—COSCUH [10.30]
1)

The plasticity threshold will be exceeded during the second phase
under conditions [10.31]:

P>i and 0>larccos (2—{2) [§’=£j [10.31]
w

D P

10.2.2. Pulse load

A situation in which estimation of the nonlinear response of a
structure is analytically possible is that of load pulse. The load is
considered impulsive or short term within the meaning given in
section 5.1.2 if the duration is small compared to the eigenperiod of
the structure (6 << x /w). With this condition, the elasticity limit
cannot be reached during loading. We consider that after loading, the
structure has barely moved. The effect of loading was to provide the
structure with a velocity. The momentum gained by the structure at
the end of loading is equal to the pulse it receives [10.32]:

mi(6) :j:(F—R)dz [10.32]

As the displacement of the structure is negligible, we can ignore
the resistance force R relative to load £ [10.33]:
i

(6) z%j:m - [10.33]

m

Once charging is complete, we can estimate the velocity of the
structure using the kinetic energy theorem [10.34]:

£ (0) = (0)-= [ R(y)ay

H) =L 7 —2mm(v)

m

[10.34]
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When the velocity of the structure cancels out, the displacement
reaches its maximum value. An estimation of the maximum
displacement is possible from the pulse and resistance [10.35]. This is
illustrated in Figure 10.9:

W (X ) == [10.35]

A R(x) AWx)

P/2m

A 4
A

Xmax

Figure 10.9. Resistance curve of a structure and energy dissipated
versus displacement, determination of the maximum displacement
depending on the load pulse

10.2.3. Plastic rigid approach

Another situation allowing rapid assessment of the response is that
the behavior of the structure can be considered as “plastic rigid”. This
assumption is relevant if the elastoplastic structure is plasticized from
the first moment of loading. Let us consider a load of amplitude P and
duration @ if time #, marks reaching the elasticity threshold such that
1,<<@. At the end of loading, the velocity and position of the structure
are shown in [10.36]:

w0 =2(r-r)  x(6)=2(r-r) [10.36]

m 2m

After the end of loading, the movement is slowed and the
maximum displacement is reached when velocity is zero [10.37]:

X, :Q—Z(P—R)+ﬂ(MJ [10.37]
2m 2R m
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The maximum displacement can be expressed in terms of the pulse
load [10.38]:
i (P-R)

Xy =————— [10.38]
2m PR

If we define an x,,,, value that is not to be exceeded for a structure,
we can try to represent the loading conditions that can lead to the
displacement limit. This leads to an iso-damage curve equivalent to
the “pressure pulse” diagram seen for elastic structures. We will use
dimensionless pulse i* and the { parameter that characterizes the
relative amplitude of the load. The condition is formulated in [10.39]
and is shown in the graph in Figure 10.10:

po Lo (£=§j [10.39]
2mRx,, 1= \P

¢

Figure 10.10. Iso-damage curve for a rigid plastic structure

10.3. The case of elastoplastic behavior
10.3.1. Pulse load

To further estimate the response of a nonlinear structure, we will
consider the case of perfect elastoplastic behavior, which is one of the
most used models. Before considering a more general case, we will
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study the case where the pulse load hypothesis is valid. The
elastoplastic behavior model is shown in Figure 10.11. It indicates the
resistance of the structure according to the displacement as well as the
work of this force, which is also explained in [10.40]:

x<x, W(x) =1Kx2
2 [10.40]

x>x, W(x)=R(x—x,/2)

A A

A J
=
v

Figure 10.11. a) Resistance curve of an elastoplastic structure;
b) work as a function of displacement

On the basis of considerations of section 10.2.2 and formula
[10.35], the elastic limit is exceeded if the value of the pulse exceeds
value [10.41]:

R
i>— [10.41]
0]

The maximum displacement can be calculated on the basis of pulse
[10.42]:

g
X =l [10.42]
2mR 2

For nonlinear systems, we take the ratio of maximum displacement
to displacement corresponding to the elasticity limit as the
dimensionless response [10.43]:

kP& 1
e tme BT T - [10.43]
X 2mR° 2

e
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The dimensionless response can be expressed in terms of
dimensionless parameters relative to loading time (w*) and relative
resistance of the structure (£) [10.44]:

rw* 1 b R
* — — 4 — VV*=_ =— 10.44
=t ( s Pj [10.44]

Expression [10.44] is only valid if the load is impulsive and if
plasticity is achieved, which results in condition [10.45]:

Cm<wr<<l [10.45]

Figure 10.12 shows the response spectra of a nonlinear system
under pulse loading. Condition [10.45] indicates that this situation
occurs for loads of short duration, but amplitude is much greater than
resistance of the structure.

100 v 7
yad /
. /
.4 / 05
v 7 Vi
/ i o -— 2
£ 10 oy
i Fa / —_—— 0.
/ // ““““ 0.05
/
s /
4 /
7
& 7
2 s
i

0.01 0.1 1

Figure 10.12. Nonlinear response spectrum for a pulse load with different load
amplitudes (§=10.5, {=0.2, {=0.1, {=0.05)

10.3.2. Nonlinear response spectrum

More generally, the response spectrum of a structure with
nonlinear behavior can be sought for a given load. Let us take the
example of a structure with elastoplastic behavior, as presented in the
previous section. The considered load is a slot of amplitude P and
duration 6. Plasticization occurs if at least one of the conditions
[10.29] and [10.31] is not checked. This case being excluded, there
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are five possible situations to describe the different phases of structure
response (Figure 10.13):

— Cases shown under Figure 10.13(a) correspond to loads with an
amplitude below the plasticity threshold.

—In case al, loading ends when the behavior is still elastic, but the
free movement of the structure in the moments after the end of the
loading leads it to the plasticity threshold.

— In case a2, the structure reaches the plastic phase during loading.
In the plastic phase, movement is decelerated and loading is ended
before the maximum displacement is reached.

— Case a3 is similar to the previous case, except that the maximum
displacement is achieved when loading has yet to be finished.

When the load amplitude exceeds the structure plasticization
threshold, only two situations are possible:

— In case b1, the relatively brief load ends as the structure is still in
the elastic phase.

—In case b2, loading continues even though plasticization has
started.

The case where maximum displacement is reached and loading
continues is not possible if the load amplitude exceeds the plasticity
threshold. If the end of loading occurs while the structure is still
elastic (¢, >6) (case al and bl), the loading phase ends at time 6, and
an elastic phase without loading and a plastic phase without loading
follow. At the end of loading, the position and velocity parameters are
given as [10.46]:

x(e)zg(l—cosa)ﬁ) x(6)= sinwd [10.46]

P
Nkm
In the elastic phase following completion of loading, movement is
governed by equation [10.47]:

O<t<t, x=§(cosw(z—0) — cos ot ) [10.47]
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Plasticity is reached at time ¢, set by [10.48]:
cosa (1, —6)—cosawt, =¢ [10.48]

fo
6 L ta ©
A
kx /_
P
| . —
fy
L
L 0 [

Figure 10.13. The five possible situations for the elastoplastic
response of a structure to a “rectangular” type load

After this time, movement is uniformly decelerated and
displacement reaches the maximum value [10.49]:

X =x, +§X(te)2 [10.49]

If plasticization appears before the end of loading (cases a2, a3 and
b2), the elastic phase ends at time ¢, (. < 6). The end of the elastic
phase is characterized by parameters [10.50]:

t,=—  a=arccos(1-¢) X(te):%sinazpfki [10.50]
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Then, there will be a plastic phase in the presence of loading. This
movement is described by expressions [10.51]:

m (t—te)2 +—Pé:;l%:“)

This phase ends either because maximum displacement is reached
(which can happen if R > P, as in case a3), or because loading is
finished, followed by a plastic stopping phase without charge (as in
cases a2 and b2). In case a3, maximum displacement is reached when
velocity is zero and its expression is specified as in [10.52]:

P—-R
t,<t<@ x=

+x, [10.51]

RSP (t)=0 (t,—1)=—"F6 ____©

(R-P)km ({-Do

x:—R_P( 3 J2+ Pf( ¢ j+x
T2 (Cne) el G0

In cases a2 and b2, the movement (¢, > &) continues after loading

m

[10.52]

with positional parameters [10.53]:

_ PE(O—t
t=6 x(6)=—P2 R(G—te)2+—§(km E)+xe
" o V s [10.53]
i(0)=——(0-1)+—==
( ) m ( e) M
The movement is then described by equation [10.54]:
O<t<t, x:—i(t—e)z+x(9)(t—9)+x(9) [10.54]

2m

Phase (c¢) ends when velocity is zero, that is at moment #,, indicated
in [10.55]:

tm=9+%x(9)=0+1—(9—t,)+§i [10.55]
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Maximum displacement is reached at this moment and is set by the
value explained in [10.56]:
R 2.
x, =~ (1 —6) +5(6)(1, - 6) + x(6)

g E L)
e B F -9

2
+ P—R(a_g] +£(9—gj +x
2m w Jkm w

The set of expressions thus found allows us to calculate the
maximum displacement in all cases and represent the nonlinear
response spectrum for a “rectangular” type load. As in the previous
section, we define the dimensionless response as the ratio of
maximum displacement to that corresponding to the elasticity limit
(x* = Xpav/xe). Figure 10.14 shows the response spectrum, i.e. the
dimensionless response as a function of the relative duration of
loading (w* = w@&'7). Similarly, we can construct the response
spectrum for triangular-type loading [UFC 08].

[10.56]

100

10 A

xt

w#

Figure 10.14. Response spectrum of a nonlinear system for a
rectangular-type load (curves according to the R/P ratio)
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10.3.3. Equivalent system

Replacing a real structure with a system with one degree of
freedom is based on a concept of equivalence. The concepts of
equivalent force, representative of loading, and equivalent
displacement, representative of deformation of the structure, do not
change compared to those defined for elastic structures in Chapter 5.
For example, for a beam supporting a point force as shown in
Figure 10.15, the equivalent force is the actual force and the
equivalent displacement may be the displacement of the center of
the beam. There is no equivalent stiffness, but we must respect the
equivalent load resistance force. In the example, with Mp being the
momentum in the plastic hinge, the equivalent reaction is R, = 4Mp/L.
If plasticity occurs in a structure, displacements related to elastic
behavior quickly become negligible compared to those related to the
plastic strain mechanism. For an elastic structure, the equivalence
requires that the eigenfrequency of the structure, according to the
representative mode, be the same as that of the equivalent system.
This condition determines the choice of equivalent mass to give the
simple system. Once the structure is plasticized, this equivalence has
no more meaning because the eigenfrequency is a characteristic of
linear elastic behavior. Then, we must find another equivalence
condition to determine mass. In a nonlinear structure, in plasticity, and
for loads of short duration, dissipated energy is the main parameter
determining the maximum displacement amplitude. We can therefore
find an equivalent energy. The equivalent mass M, can be sought by
explaining the kinetic energy equivalence of the structure and the
equivalence of the system with one degree of freedom. For the
example in Figure 10.16, this equivalence is formulated as [10.57 |:

LM X2 =1 ps (x)dv = ps X2 “[ﬂjzdx—”—”f[lo 57]
2 e““e 2 0 p p eJo L 6 e °

We deduce that the equivalent mass should be one-third of the total
mass. However, when the beam had an elastic behavior, the equivalent
mass was about half of the total mass (see section 5.4). Therefore,
when the beam plasticizes, we reduce the value of the equivalent
mass. If the valuation of the maximum displacement of a plasticized
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beam is worked out with the equivalent mass determined for elastic
behaviour, the result will be underestimated. This mistake is not in the
interests of safety.
Fu1) l
F) _

»
PoXo l M

¥ L2 np L2 S R—aML

Figure 10.15. Elastoplastic strain of a beam and equivalent system

10.4. Approach of response to a violent impact
10.4.1. Shock on a beam

Previous studies on the response of nonlinear structures assumed
that the displacement mode shape of the structure under dynamic
loading was the same as in quasi-static loading. We discussed the limits
of this hypothesis in Chapter 8 (section 8.2) when the structure was
elastic. These considerations remain relevant if the elasticity limit is
reached. Under the effect of a violent impact, plasticization may appear
before the movement is propagated enough for the effect of boundary
conditions, the supports, to influence structure response. Different cases
were studied by Jones [JON 89]. To illustrate this, we consider the
impact on a beam. In section 8.2.2, we discussed the development of a
bending moment diagram that is, for some time, independent of the
boundary conditions that are the supports or embeddings. If the load has
sufficient amplitude, plasticization may appear during this phase. This
situation is shown in Figure 10.16 and we will discuss it with an
approximate method that involves metal beams. A plastic hinge is
formed at the point of impact, as well as two other hinges at a distance
« from that point. As we have already assumed, when plasticization
occurs, displacements due to elastic strains are negligible compared to
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those due to plastic strains. Under this assumption, the velocity field can
be formulated with expression [10.58]:

1i(x,1) =u(o,t)<1—i> [10.58]

o
Fm
“ u(x,1)

........ = 'W‘

af)

Figure 10.16. Impact on a beam with formation of plastic hinges

Expression of the fundamental principle of dynamics, by projecting
the resultant onto the vertical axis and projecting the moment along
the normal to the face, leads to the system of equations [10.59]. It is
assumed that the shear force is zero at the location of plastic hinges,
which is the location of the maximum bending moment:

Ia pSii(x,t)dx = lF(z‘)
0 2 [10.59]

Ioa S xii(x,t)dx=2M,

Acceleration of transverse motion of the beam can be expressed by
formula [10.60]:
xo

ii(x,t):ii(O,t)(l—g)+?d(0,t) O<x<a [10.60]

This therefore provides, by replacement in [10.59], equations
[10.61]:
: 1
PS (i, + deity) =+ F (1)
2 2
[10.61]

%S(azijo + 2000, ) =2M ,
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These equations can also be written in the form [10.62]:

d 1
= (o) =—F (¢
[10.62]
d, ,. 12
)= s M
By integrating, we obtain expressions [10.63]:
. 1. . ¢

o, =—Sz(t) i(?) =J.OF(T)dT

P , [10.63]
o iy =——M t

pS

From these expressions, we extract those that give the length o
affected by the movement associated with plastic hinges and the
displacement of the beam at the point of impact [10.64]:

2
al)=12M, - = [T g [10.64]
i(2) 12pSM, "0 7

We note that if the load is of constant amplitude (Heaviside
function), « stays constant and the hinge is fixed. Quite often, as
discussed in Chapter 6 with the Riera formula, force is a decreasing
function of time and, therefore ofr) is an increasing function of time.
If the mobile hinge reaches the limit of the beam, the above model is
no longer relevant and we obtain a structure like that seen in section
10.3.3. An example of a violent impact is a solid mass m hitting a
beam with an impact velocity V.. This is a hard shock, according to the
classification given in Chapter 6. The projection of the fundamental
principle onto the vertical axis in this case provides formula [10.65]:

I pSii(x,t)dxz—%miio [10.65]

The use of the acceleration field [10.60] leads to expression
[10.66]:
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ii

E(m‘") =i [10.66]

By integrating, taking the initial condition of impact velocity V;
into account, expression [10.67] is obtained:

. m .
o, =p_S(V' — 1) [10.67]

System [10.63] takes, in this case, the form [10.68]:
PO PR B
pS pS

o, = £Mpt

[10.68]

By removing the point of impact velocity from these expressions,
we get equation [10.69]:

mV.a® —2M tar — 12— Mt =0 [10.69]
pS

Then, we get an expression of the law of evolution of the area
affected by the movement associated with the plastic hinges [10.70]:

a(r):6MPt+\/MPt£—36MPt+ 12 j [10.70]

mV, m’V:  pSV,

1 1

This kind of approach can also be conducted by taking into account
a shearing plasticization due to shear force, if the latter occurs
[JON 89].

10.4.2. Impact of a distributed load

Another example of a violent load imposed on a beam is that
imposed by a distributed load that is applied suddenly. This may be



296 Materials and Structures under Shock and Impact

the effect of pressure subsequent to an explosion in a confined space
or the interaction of a shock wave with a wall, as discussed in
Chapter 7. We consider the case where the structure is modeled by a
beam in flexion. We have already discussed this type of loading for an
elastic beam (section 8.2.3). Once a load is applied, a shear force
occurs near the supports providing a bending moment diagram that
has its maximum near the supports. The primary cause of rupture is
related to the ability of the beam section to resist this shear force. If
rupture by shearing does not occur and the intensity of the load is
sufficient, plastic hinges may appear near the support, as shown in
Figure 10.17. We approach the study of nonlinear response in the first
moments of the response by an approximate calculation to estimate
the position of the plastic hinges. Here, we do not take into account
the effect of large displacements and tension of the beam.

R R R R R R R R

N) u(x, 1) l (1) ﬂ
- —

«
o p—

L ;
< a
< >

Figure 10.17. Impact of a distributed force on a beam with
formation of plastic hinges

By only considering displacements due to plastic strains, the
velocity field can be approximated by formula [10.71]. We assume, in
this case, that the intensity of pressure is constant and the plastic hinge
is fixed:

L't(x,t)=%12€(t) (O<x<a) di(x,f)=u(f) (@<x<L-a)[10.71]

We will use the kinetic energy theorem. The estimation of this
energy is made by formula [10.72]:

1L ) L X . : 1 .
EC:EJ'O pSuz(X,l)dX=I0 PS(;%) dx+EpS(L—2(Z)u§ [10.72]
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Calculation of this gives expression [10.73]:

[10.73]

e

L 2«
(-2
c=P > 3 u

The power of external forces, distributed load and the internal
forces, plastic moments, can be connected through formula [10.74]:

L L'tg
H:jopu(x,t)dx—2MP;

. _ [10.74]
=2 pidx+(L-2a) pii, ~2M , =
o o o
Calculation of this gives expression [10.75]:
) u
=(L-a)pi,-2M,—~ [10.75]
o
The kinetic energy theorem leads to formula [10.76]:
L 2 2M
ZpS(E—Tain,:(L—a)p— P [10.76]

Moreover, the fundamental principle of dynamics applied to the
central part of the beam that undergoes translational motion gives
formula [10.77]. It is assumed that the shear force is zero at the
location of plastic hinges, which is the location of a bending moment
maximum;:

pS(L-2a)ii,=(L-2a)p [10.77]

From these two expressions, we can deduce the expression giving
the position of the plastic hinge [10.78]:

M
a=2,45 |Le [10.78]
p
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We can compare this value of the plastic hinge position to that,
very close, calculated in [8.55] from the elastic behavior of the beam.
It may be noted that when the hinge is in the middle, the linear force is
equal to three times the value, causing static plasticization. If we want
to take into account a variable pressure p and a mobile hinge, the
approximate method above leads to equations [10.79], for which
digital resolution should be considered:

2M

P

2pS(E—T)iie —%deme =(L-a)p-

pS(L-2a)ii,— pSou, =(L-2a) p

[10.79]
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