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Chapter 1

Introduction

1.1 Background and purpose

The ionosphere is considered to be that region of an atmosphere where significant
numbers of free thermal (<1 eV) electrons and ions are present. All bodies in our
solar system that have a surrounding neutral-gas envelope, due either to gravitational
attraction (e.g., planets) or some other process such as sublimation (e.g., comets),
have an ionosphere. Currently, ionospheres have been observed around all but two
of the planets, some moons, and comets. The free electrons and ions are produced
via ionization of the neutral particles both by extreme ultraviolet radiation from the
Sun and by collisions with energetic particles that penetrate the atmosphere. Once
formed, the charged particles are affected by a myriad of processes, including chem-
ical reactions, diffusion, wave disturbances, plasma instabilities, and transport due
to electric and magnetic fields. Hence, an understanding of ionospheric phenomena
requires a knowledge of several disciplines, including plasma physics, chemical
kinetics, atomic theory, and fluid mechanics. In this book, we have attempted to
bridge the gaps among these disciplines and provide a comprehensive description
of the physical and chemical processes that affect the behavior of ionospheres.
A brief history of ionospheric research is given later in this introductory chap-

ter. An overview of the space environment, including the Sun, planets, moons, and
comets, is presented in Chapter 2. This not only gives the reader a quick look at the
overall picture, but also provides the motivation for the presentation of the material
that follows. Next, in Chapter 3, the general transport equations for mass, momen-
tum, and energy conservation are derived from first principles so that the reader can
clearly see where these equations come from. This is followed by a derivation of the
collision terms that appear in the transport equations, including those relevant to res-
onant charge exchange, nonresonant ion-neutral and electron-neutral interactions,
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2 Introduction

and Coulomb collisions (Chapter 4). These general collision terms and transport
equations are complicated and in many situations it is possible to use simpler sets of
transport equations. Therefore, in Chapter 5, several simplified systems of transport
equations are derived, including the Euler, Navier–Stokes, diffusion, and thermal
conduction equations. This is followed by a discussion of the wave modes, plasma
instabilities, and shocks that can occur in the ionospheres (Chapter 6). In Chapter 7,
the magnetohydrodynamic (MHD) equations are derived and then used to describe
MHD waves, shocks, and pressure balance.
In Chapter 8, chemical kinetics and a variety of reactions relevant to the iono-

spheres are discussed and presented, including those involving metastable species
and negative ions. Optical emissions are also briefly discussed in this chapter. The
relevant ionization and energy exchange processes are detailed in Chapter 9, includ-
ing those pertaining to both photons and particles. The chapter concludes with a
summary of the heating and cooling expressions that are needed for practical appli-
cations. Chapter 10 is devoted to a discussion of neutral atmospheres. The Euler
and Navier–Stokes equations for neutral gases are presented at the beginning of the
chapter, and this is followed by a discussion of atmospheric waves and tides. The
rest of Chapter 10 deals with atmospheric structure, escape fluxes, the exosphere,
and hot atoms. In Chapters 11 and 12, the general material given in the previous
chapters is applied to elucidate the unique characteristics associated with the terres-
trial ionosphere at low, middle, and high latitudes. Although much of this material is
still of a fundamental nature, an overview of what has been accomplished to date is
also provided. Chapter 13 summarizes what is currently known about all of the other
ionospheres in the solar system. The most commonly used experimental techniques
for measuring ionospheric densities, temperatures, and drifts are briefly described in
Chapter 14. Finally, severalAppendices are included that contain physical constants,
mathematical formulas, some important derivations, and useful tables.
This book is the outgrowth of two decades of numerous joint research endeavors

and publications by the authors. Some of the material was used in courses taught
by the authors at Utah State University and at the University of Michigan. This
book should be useful to graduate students, postdoctoral fellows, and established
scientists who want to fill gaps in their knowledge. It also serves as a reference
book for obtaining important equations and formulas. A subset of the material can
be used for a graduate level course about the upper atmosphere and ionosphere, and
plasma physics. At the University of Michigan a one-semester graduate course on
the ionosphere and upper atmosphere has been based on Chapters 2, 3, parts of 5, 8,
9, 10, most of 11 and 12, and 13 and 14. At Utah State University, a one-semester
course on plasma physics has been based onChapters 3–7, and a course on aeronomy
has been based on Chapters 2, 3, 5, 8–12. To facilitate the use of this book as a text,
problems are provided at the end of most of the chapters.
Several people were helpful in the preparation of this book, and we wish to

acknowledge them here. The help came in a variety of forms (e.g., providing some
unpublished material, reading, or proofing part of the manuscript, etc.), and it cer-
tainly improved the book.AFNwould especially like to thank (in alphabetical order)
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J. R. Barker, T. E. Cravens, J. L. Fox, B. E. Gilchrist, T. I. Gombosi, J.W. Holt,
A. J. Kliore, M.W. Liemohn, H. Rishbeth, and C.T. Russell. RWS would like to
thank Melanie Oldroyd for typing a preliminary form of some of the chapters. We
would both like to thank Shawna Johnson for drawing some of the figures, for
digitizing figures, and for overseeing the production of the book. We would both
also like to thank Elizabeth Wood for preparing the manuscript in LATEX. Some of
the material in the book comes from lecture notes collected over many years and
thus may contain material without appropriate references to their sources, which we
have forgotten. This is inadvertent and we apologize to such authors. Also, to keep
the bibliographies from becoming unrealistically long, we limited our referencing
to only those papers from which figures were taken, to either the latest or origi-
nal reference for the material discussed, and to review papers. Hence, we omitted
many deserving, appropriate, and relevant references. We hope that the readers and
scientists working in the field will understand and appreciate our dilemma.
The units used in the book are a mixture of MKSA and Gaussian-cgs because

of the corresponding usage by practitioners in the field. Most of the equations and
formulas throughout the book are in MKSAunits, and some tables and numbers are
given in Gaussian-cgs units when this is the common practice. The conversion from
one system to the other is briefly discussed in Appendix E.

1.2 History of ionospheric research

The earliest exposure of humankind to a phenomenon originating in the upper atmo-
sphere is the visual aurora. The visual displays of colored light appear in the form of
arcs, bands, patches, blankets, and rays, and often the features move rapidly across
the night sky. It has been suggested that the earliest records of the aurora can be
traced to the Stone Age.1 References to the aurora appear in the Old Testament, in
writings of Greek philosophers, including Aristotle’s Meteorologica, and possibly
in ancient Chinese works from before 2000 BC. In most of these early writings,
the auroral displays were interpreted to be manifestations of God.The name aurora
borealis (northern dawn) appears to have been coined by Galileo at some time prior
to 1621.1 The first recorded observation of the southern hemispheric aurora (aurora
australis) was by Cook in 1773.
Aserious scientific study of auroras began at about 1500AD.1 However, the early

theories put forth by noted scientists were completely wrong. Edmund Halley, who
predicted the reappearance of what is now known as Halley’s comet, suggested that
the auroras were “watery vapors, which are rarefied and sublimed by subterraneous
fire, [and] might carry along with them sulphureous vapors sufficient to produce this
luminous appearance in the atmosphere.” In 1746, the Swissmathematician Leonard
Euler suggested that “the aurora was particles from the Earth’s own atmosphere
driven beyond its limits by the impulse of the sun’s light and ascending to a height
of several thousand miles. Near the poles, these particles would not be dispersed by
the Earth’s rotation.”2 Benjamin Franklin, who was a respected scientist in his time,
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thought that the aurora was related to atmospheric circulation patterns.3 Basically,
Franklin argued that the atmosphere in the polar regions must be heavier and lower
than in the equatorial region because of the smaller centrifugal force, and therefore,
the vacuum–atmosphere interfacemust be lower in the polar regions. He then further
argued that the electricity brought into the polar region by clouds would not be
able to penetrate the ice, and hence, would break through the low atmosphere and
run along the vacuum toward the equator. The electricity would be most visible at
high latitudes, where it is dense, and much less visible at lower latitudes, where
it diverges. Franklin claimed such an effect would “give all the appearances of an
Aurora Borealis.”1,3

Numerous other theories of the aurora have been proposed over the last 150 years,
including reflected sunlight from ice particles, reflected sunlight from clouds, sul-
furous vapors, combustionof inflammable air, luminousmagnetic particles, meteoric
dust ignited by friction with the atmosphere, cosmic dust, currents generated by
compressed cosmic ether, thunderstorms, electric discharges between the Earth’s
magnetic poles, and electric discharges between fine ice needles. A comprehensive
and fascinating account of the aurora in science, history, and the arts is given in
Reference 1, and additional theories are presented there.
Although early auroral theories did not fare very well, observations made during

the latter half of the 1700s and throughout the 1800s elucidated many important
auroral characteristics. In 1790, the English scientist Cavendish used triangulation
and estimated the height of auroras at between 52 and 71 miles.4 In 1852, the
relationship among geomagnetic disturbances, auroral displays, and sunspots was
clearly established; the frequency and amplitude of these features varied with the
same 11-year periodicity.5,6 In 1860, Elias Loomis drew the first diagram of the
region where auroras are most frequently observed and noted that the narrow ring
is not centered on the geographic pole, but that its oval form resembles lines of
equal magnetic dip, thereby establishing the relationship between the aurora and
the geomagnetic field. In 1867, the Swedish physicist Angström made the first
measurements of the auroral spectrum.7 However, a significant breakthrough in
auroral physics was not achieved until the end of the nineteenth century, when
cathode rays were discovered and identified as electrons by the British physicist
J. J. Thomson. Subsequently, the Norwegian physicist Kristian Birkeland proposed
that the aurorawas caused by a beamof electrons emitted by the Sun. Those electrons
reaching the Earth would be affected by the Earth’s magnetic field and guided to the
high-latitude regions to create the aurora.
Until the discovery of sunspots by Galileo in 1610, the Sun was generally thought

to be a quiet, featureless object. Galileo not only discovered the dark spots but
also noted their westward movement, which was the first indication that the Sun
rotates. In subsequent observations, it was quickly established that the number of
sunspots varies with time. It was not until more than two centuries later, how-
ever, that an amateur astronomer in Germany, Heinrich Schwabe, noted an apparent
10-year periodicity in his 17 years of sunspot observations.8 Shortly after Schwabe’s
discovery, professional astronomers set out to determine whether or not the cycle
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was real. The leader of this effort was Rudolf Wolf of the Zürich observatory. Wolf
conducted an extensive search of past data and was able to establish that the number
of sunspots varied with an 11-year cycle that had been present since at least 1700.9

In 1890, Maunder called attention to the 70-year period from 1645 to 1715, when
almost no sunspots were observed.10 This period, which is known as the Maunder
Minimum Period, raises the question whether the sunspot cycle is a universal feature
or just a recent phenomenon.
As defined at the beginning of this chapter, the terrestrial ionosphere begins at an

altitude of about 60 km and extends beyond 3000 km, with the peak electron con-
centration occurring at approximately 300 km. The first suggestion of the existence
of what is now called the ionosphere can be traced to the 1800s. Carl Gauss and
Balfour Stewart hypothesized the existence of electric currents in the atmosphere
to explain the observed variations of the magnetic field at the surface of the Earth.
Gauss argued:11

It may indeed be doubted whether the seat of the proximate causes of the regular and
irregular changes which are hourly taking place in this [terrestrial magnetic] force, may not
be regarded as external in reference to the Earth . . . But the atmosphere is no conductor of
such [galvanic] currents, neither is vacant space. But our ignorance gives us no right
absolutely to deny the possibility of such currents; we are forbidden to do so by the enigmatic
phenomena of the Aurora Borealis, in which there is every appearance that electricity in
motion performs a principal part.

It had been well established that there was a direct correlation between the solar
cycle and magnetic disturbances on the Earth. To account for this strong correlation,
Stewart speculated that electrical currentsmust flow in the Earth’s upper atmosphere,
and that the Sun’s action is responsible for turning air into a conducting medium.12

It was also concluded that the conductivity of the upper atmosphere is higher at
sunspot maximum than at sunspot minimum. This view, however, was not widely
accepted and strong counterarguments were presented in 1892 by Lord Kelvin.
The existence of the ionosphere was clearly established in 1901 when G. Marconi

successfully transmitted radio signals across the Atlantic. This experiment indi-
cated that radio waves were deflected around the Earth’s surface to a much greater
extent than could be attributed to diffraction. The following year,A. E. Kennelly and
O. Heaviside suggested that free electrical charges in the upper atmosphere could
reflect radio waves.13 That same year, the first physical theory of the ionosphere
was proposed.14

The observed effect, which if confirmed is very interesting, seems to me to be due to the
conductivity . . . of air, under the influence of ultra-violet solar radiation. No doubt electrons
must be given off from matter . . . in the solar beams; and the presence of these will convert
the atmosphere into a feeble conductor.

In 1903, J. E. Taylor independently suggested that solar ultraviolet radiation was
the source of electrical charges, which implied solar control of radio propagation.15

The first rough measurements of the height of the reflecting layer were made by Lee
de Forest and L. F. Fuller at the Federal Telegraph Company in San Francisco from
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1912 to 1914. The reflecting layer’s height was deduced using a transmitter–receiver
spacing of approximately 500 km, which was determined by the circuits of the Fed-
eral Telegraph Company.16 However, the de Forest–Fuller results were not well
known, and generally accepted measurements of the height of the reflecting layer
were made in 1924 by Breit and Tuve17 and by Appleton and Barnett.18 The Breit–
Tuve experiments involved a “pulse sounding” technique, which is still in use today,
while Appleton and Barnett used “frequency change” experiments, which demon-
strated the existence of downcoming waves by an interference technique. These
experiments led to a considerable amount of theoretical work, and in 1926 the name
“ionosphere” was proposed by R.A. Watson-Watt in a letter to the United Kingdom
Radio Research Board, but it did not appear in the literature until three years later.19

Radio soundings of the ionosphere initially seemed to indicate that the ionosphere
consisted of distinct layers; we now know that this is generally not the case and
we refer to different regions. These regions are called the D, E, and F regions. The
names of these regions originated withAppleton, who stated that in his early work he
wrote E for the reflected electric field from the first layer that he recognized. Later,
when he recognized a second layer at higher altitudes, he wrote F for the reflected
field. Subsequently, he conjectured that there may be another layer at lower altitudes
so he decided to name the first two layers E and F and the possible lower one D,
thus allowing the alphabetical designation of other undiscovered layers.20

The rocket technology available at the endofWorldWar IIwasusedby scientists to
study the upper atmosphere and ionosphere, paving theway for space exploration via
satellites. The first rocket-borne scientific payload, which carried instrumentation to
make measurements directly in the upper atmosphere and ionosphere, was launched
in 1946 on a V-2 from White Sands, New Mexico. The University of Michigan
payload consisted of a Langmuir probe and a thermionic pressure gage; although
the V-2 failed during this flight it marked the beginning of direct exploration of
the ionosphere. The first book devoted to the ionosphere was published in 1952 by
Rawer.21

The rocket technology, coupled with a major advance in ground-based instru-
mentation, led scientists to realize that a dramatic increase in our knowledge of the
terrestrial environment was possible. To take advantage of these new capabilities,
the International Geophysical Year (IGY), 1957–1958, was organized.22,23 This co-
operative effort was to begin with the next maximum of the solar cycle. As part of
the IGY, scientists proposed to launch artificial satellites, and eventually Sputnik 1
was launched on October 4, 1957.
Many consider the launch of Sputnik 1 the beginning of the Space Age, but to

some degree it started much earlier. Rockets have been with us ever since the ancient
Chinese used them for fireworks. Later variations of “rockets” were used, basically
for military purposes, to send payloads from one location to impact at another.
Newton developed the scientific basis to describe how an object could be placed in
orbit around the Earth, and visionaries like Jules Verne and H.G. Wells dreamt such
thoughts.
The modern era of rocket propulsion began in Russia in the 1880s, where

Konstantin Tsiolkovsky worked out the fundamental laws of rocket propulsion and
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published his work proving the feasibility of achieving orbital velocities by rockets
at the turn of the century. He had earlier described the phenomenon of weightless-
ness in space, predicted Earth satellites, and suggested the use of liquid hydrogen
and oxygen as propellants. Robert H. Goddard, a high school physics teacher in
Massachusetts,was not aware ofTsiolkovsky’swork and independently began study-
ing rocket propulsion after World War I. On March 16, 1926, he launched the first
liquid fuel rocket, which burned for only 2.5 seconds and landed a couple of hundred
feet away from the “launch site.” He continued to work, supported by the Guggen-
heim Foundation, in seclusion from the press, which ridiculed him. The third rocket
pioneer was Hermann Oberth of Germany, also a school teacher. His work gained a
great deal of attention and support and eventually led to the development of the V-2
rocket (the first operational liquid fuel rocket).
After World War II, part of the German team responsible for the development

of the V-2, including Wernher von Braun, came to the United States, while others
went to the Soviet Union. Some of the captured V-2 rockets that were brought
to the United States were used to carry scientific payloads; these flights started
in May 1946 from White Sands, New Mexico. A year later, the first Soviet V-2
was launched from Kapustin-Yar. The limited supplies of V-2s and the estimated
large expense of reproducing them led to the development of new sounding rockets
for scientific research. The first one of these was the liquid fueled Aerobee; other
rockets, many of them having a military heritage, followed later. The ascent of the
Cold War spurred the development of Intercontinental Ballistic Missiles (ICBMs),
but much of this effort was highly secret. Reading the history of repetitive studies,
interservice jealousies, politicking, backbiting, and bickering provides a fascinating
view of this secret world of the 1950s.24,25

The first US study regarding the feasibility of artificial satellites can be traced to
1945 when a Navy committee concluded that they were possible, but nothing devel-
oped at that time. After a failed Navy–Air Force collaborative effort, the Air Force
conducted an independent study and concluded that the United States could launch a
500 pound satellite by 1951. Again, this suggestion was not pursued. However, with
pressure from the American Rocket Society and the scientists involved in planning
for the IGY, serious consideration was at last given to the launch of a small satellite
for scientific purposes. Specifically, on July 29, 1955, aWhite House announcement
indicated that the United States would launch “small unmanned Earth-circling satel-
lites as part of the US participation in the IGY.” Two days later, the Soviet Union
announced it would also launch artificial satellites as part of the IGY in the late sum-
mer or early autumn of 1957. However, this announcement was basically ignored by
the US press and public, possibly because it was believed that the Russians did not
have the required technology. In the United States, all three military services pro-
posed to launch the first satellite, which was to be placed in orbit during the 1957–8
time period. The Air Force proposed to use the Atlas ICBM, the Army proposed to
use the Jupiter C Intermediate Range Ballistic Missile (IRBM), and the Navy pro-
posed to develop a new rocket that did not have a military heritage (the Vanguard).
The Vanguard Project was chosen primarily because it would not interfere with the
existing military missile programs and because it seemed more appropriate to use a
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nonmilitary missile for a scientific mission. Despite not being selected, the Army’s
design of the Jupiter C IRBM contained a fourth stage, which appeared to have no
specific military function. In September 1956, when the Jupiter C was ready to be
launched, the Pentagon was so concerned that theArmymight take “the glory” away
from the Navy’s Vanguard Project that von Braun was personally ordered to make
sure that the fourth stage was not live. The launch was successful, and with a live
fourth stage, the Jupiter C could have placed a satellite in orbit.
On October 4, 1957, the Soviet Union launched Sputnik (“Traveling

Companion”) 1, which was an 83 kg satellite. Sputnik 2, a 507 kg satellite fol-
lowed on November 3. This created a tremendous public and political reaction in
the United States.

Vanguard was still given a first chance, but the launch attempt on December 6,
1957, was a televised public failure (the second launch attempt on February 5, 1958,
was also a failure). In the meantime the Army was given the green light to proceed
with a Jupiter C launch, and an 8 kg satellite named Explorer I was successfully
placed in orbit on January 31, 1958. Explorer I carried a small Geiger counter
supplied by JamesVanAllen of theUniversity of Iowa. The instrumentwas supposed
to record the presence of cosmic rays, which are very fast particles from deep space;
but surprisingly the instrument showed no response when the satellite was at high
altitudes. There seemed to be no logical explanation, but a second instrument flown
two months later confirmed the result. A graduate student (Carl McIlwain) working
with Van Allen solved the problem. He suggested that the satellite encountered a
region of very intense energetic particle fluxes, which saturated the Geiger tube and
caused the counting circuits to read zero. Thus, the Van Allen radiation belts were
discovered.26

The large international cooperative efforts, the vast amount of geophysical data
collected, and the launch of artificial satellites, which began during the IGY, led
to the birth of solar–terrestrial physics. The subsequent major infusion of money
into this area by several countries led to a rapid advance in our knowledge of the
Earth’s environment. In the early phase of these explorations, every measurement
yielded new and exciting results. A phase has now been reached where detailed
measurements are available and theoretical models are generally able to explain
and reproduce the observed large-scale features of the terrestrial ionosphere. This
does not imply that a complete understanding has been achieved and there is noth-
ing more to learn. On the contrary, the time has been reached when the problems
that need further study can be clearly defined and then attacked in a systematic
manner.
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Chapter 2

Space environment

Before discussing the various ionospheres in detail, it is necessary to describe the
physical characteristics of the bodies in the solar system that possess ionospheres
as well as the plasma and electric–magnetic environments that surround the bodies
because they determine the dynamical processes acting within and on the iono-
spheres. It is also useful to give a brief overview of the characteristics of the different
ionospheres, including those associated with planets, moons, and comets. This not
only allows the reader to see easily the diversity of ionospheric characteristics and
features, but also provides motivation for the fundamental physics and chemistry
covered in later chapters. In what follows, the sequence of the discussion is the Sun,
the interplanetary medium, the Earth, the inner and outer planets, and then moons
and comets.

2.1 Sun

The Sun is a star of averagemass (1.99× 1030 kg), radius (6.96×105 km), and lumi-
nosity (3.9× 1026 watts) whose remarkable steady output of radiation over several
billion years has allowed life to develop on Earth. The Sun is composed primarily of
hydrogen and helium, with small amounts of argon, calcium, carbon, iron, magne-
sium, neon, nickel, nitrogen, oxygen, silicon, and sulfur. The solar energy is gener-
ated from the nuclear fusion of hydrogen into helium in a very hot central core, which
is about 16million kelvins. This energy is first transmitted through the radiative zone
and then the convective zone, which is the outer 2.00×105 km of the Sun. The Sun’s
surface is irregular because of the strong convection in this outer zone, display-
ing both small-scale and large-scale convective cells or granules. The small-scale
cells are about 1000 km in diameter, with individual cells lasting for approximately

11
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10 minutes. On the large scale, there are networks of cells (supergranules) that have
dimensions of about 30 000 km and can last as long as an Earth day.
The Sun’s atmosphere, which extends out to beyond 10 solar radii, is composed

of three regions, consisting of the photosphere, chromosphere, and corona. The
photosphere is a very thin, cool layer fromwhich the visible radiation is emitted. The
temperature in this layer decreases with radial distance from about 6000 K at its sun-
ward boundary to a minimum of about 4500 K near the photosphere–chromosphere
boundary. The chromosphere is also a relatively thin layer (∼4000 km) in which the
temperature increases rapidly from the temperature minimum of 4500 K to about
25 000 K near the base of the outer atmosphere. This third region, or corona, con-
tains a very tenuous, hot (∼106 K), ionized plasma that typically extends several
radii from the Sun.
Close to the Sun the solar magnetic field is basically dipolar, but there is an offset

between the rotational and dipole axes (Figure 2.1). Hot plasma can be trapped on
these closed field lines and its presence can be detected via the electromagnetic
radiation that it emits. However, away from the Sun, the high coronal temperatures
cause a continuous outflow of plasma from the corona, which is called the solar
wind . As this hot plasma flows radially away from the Sun, it tends to drag the
dipolar magnetic field lines with it into interplanetary space. At times, the solar
wind can be very nonuniform because the magnetic field in the corona can be highly
structured, as shown schematically in Figure 2.2. Hot coronal plasma can be trapped
on strong magnetic field loops, and a very intense X-ray emission is associated with
these coronal loops. Depending on the strength of the magnetic field, some hot
plasma can slowly escape from these loops, forming coronal streamers that extend
into space. These streamers are the source of the slow component of the solar wind.

equator

line

Neutral

Solar

Figure 2.1 A photograph of the
white-light corona above the east
limb of the Sun on June 5, 1973.
The solid lines correspond to a
suggested magnetic field
geometry that is consistent with
the plasma distribution emitting
the white light.1

why it becomes bipolar?



2.1 Sun 13

Polar coronal hole

Coronal stre
amer

Coronal hole

Fast solar w
ind

Slow solar w
ind

Sunspots

X-rays from hot
coronal loops

Coronal loops

Sun

Figure 2.2 Schematic diagram of the magnetic field topology in the solar corona and
the associated coronal features. The solid curves with arrows are the magnetic field
lines.2

However, at other places in the corona, the Sun’s magnetic field does not loop, but
extends in the radial direction. In these regions, the hot plasma can easily escape
from the corona, which leads to the high-speed component of the solar wind. As
a result of this rapid escape, the plasma densities and associated electromagnetic
radiation are low, and consequently, these regions have been named coronal holes.
Typically, coronal holes are transient features that vary from day to day, but during
quiet solar conditions, extensive coronal holes can exist at the Sun’s polar regions.
In the polar regions, the magnetic field lines extend into deep space because the solar
magnetic field is basically dipolar, and hence, hot plasma can readily escape along
these field lines.
The Sun rotates with a period of about 27 days, but because the Sun’s surface

is not solid there is a differential rotation between the equator (25 days) and the
poles (31 days). This rotation and plasma convection act to produce intense electric
currents and magnetic fields via a dynamo action. However, the magnetic fields
that are generated display a distinct temporal variation. Specifically, there is an
overall increase and decrease in magnetic activity that follows a 22-year cycle,
which coincides with the change in polarity of the Sun’s magnetic poles. One of
the primary manifestations of solar magnetic activity is the appearance of sunspots,
which are dark regions on an active Sun (Figure 2.2). Sunspots, which can last from
several hours to several months, are located in the photosphere and are a result of
stormy localized magnetic fields (several thousand gauss). The stormy magnetic
fields choke the flow of energy from below, and consequently, sunspots are cooler
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than the surrounding area, which accounts for their dark appearance because cooler
regions emit less electromagnetic radiation. The number of sunspots is known to
vary with an 11-year cycle and a record of this variation extends for more than
300 years. Because the number of sunspots varies from day to day, annual averages
are usually taken. Figure 2.3a shows the annual mean sunspot numbers from 1610
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Figure 2.3 (a) Annual mean sunspot numbers from 1610 to 1985. The numbers
before 1650 are not reliable.3, 4 (b) Sunspot numbers from 1985 to 2008. (From NASA
Marshall Space Flight Center.)
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Figure 2.4 A rising prominence, as seen in a sequence of photographs taken on
September 8, 1948.5

to 1985 and Figure 2.3b shows sunspot numbers from 1985 to 2008. Clearly evident
in the figure is the 11-year sunspot cycle. However, during the 1600s there was very
little solar activity and this period is known as the Maunder Minimum Period.
Sometimes there are powerful explosions in the atmosphere above sunspots,

which are called solar flares. These bright flashes of light last only a few min-
utes to a few hours, but the explosions send bursts of energetic particles into space.
Another kind of solar explosion stems from a prominence (Figure 2.4). The promi-
nence extends far into the Sun’s upper atmosphere and follows the loop of a closed
magnetic flux tube, with the ends of the loop rooted in sunspots. The strong, curved
magnetic field traps hot plasma, and because of intense heating, thermal conduction
fronts can race through the loops, raising the temperature to 20–30 million kelvins.
At times, one of the ends of the magnetic flux loop breaks free, sending streams of
energetic plasma into space. Another form of mass release is called a coronal mass
ejection (CME). Coronal mass ejections were once thought to be initiated by flares,
but it is now known that most CMEs are not associated with flares. Coronal mass
ejections expand as they move away from the Sun, at speeds as high as 1000 km s−1.
Large CMEs contain as much as 1016 g of plasma. Figure 2.5 shows snapshots of a
CME moving away from the Sun on October 24, 1989. In this figure a black disk
apparently 1.6 times the diameter of the Sun blocks the bright sunlight so that the
CME can be observed.
The loss of energy from the Sun is due to both electromagnetic radiation and par-

ticle outflow, with radiated energy being by far the dominant loss process. Table 2.1
shows the wavelength ranges for the different solar spectral regions. The radiated
energy per second in all wavelengths is approximately constant and at the Earth
it is 1370 wattsm−2, which is called the solar constant. The main energy contri-
butions are from the infrared (52%), visible (41%), and ultraviolet (<7%) spectral
regions, and the energy associated with these regions is steady. The radio and X-ray
emissions display large fluctuations, but they are minor contributors to the total
radiated energy. The energy loss due to particle outflow (solar wind and CMEs) is
also very small, as shown in Table 2.2. However, as will be discussed later, the solar
wind and coronal mass ejections have a dramatic effect on planetary ionospheres and
atmospheres. Likewise, extreme ultraviolet (EUV) radiation, which amounts to only
about 0.1% of the total radiated energy, is a critical source of plasma in planetary
ionospheres.
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Table 2.1 Solar spectral regions.

Radio λ > 1mm
Far infrared 10µm < λ < 1mm
Infrared 0.75µm < λ < 10µm
Visible 0.3µm < λ < 0.75µm
Ultraviolet (UV) 1200Å < λ < 3000Å
Extreme ultraviolet (EUV) 100Å < λ < 1200Å
Soft X-rays 1Å < λ < 100Å
Hard X-rays λ < 1Å

Note: Å = 10−10 m.

Table 2.2 Energy and mass loss from the Sun.7

Radiated power 3.8 × 1026 watts
Solar wind power 4.1 × 1020 watts
CME power 7.0 × 1018 watts
Mass loss (radiation) 4.2 × 109 kg s−1
Mass loss (particles) 1.3 × 109 kg s−1

2.2 Interplanetary medium

Prior to the 1950s it was generally believed that interplanetary space was a vacuum,
except for the occasional bursts of energetic particles associated with solar flares.
However, because of satellite measurements, it is now known that the solar wind is a
continuous source of plasma for this region. The solarwind outflow starts in the lower
corona and the velocity steadily increases as the plasma moves radially away from
the Sun.At a distance of a few solar radii, the solar wind becomes supersonic, which
means its outward bulk velocity becomes greater than the characteristic wave speeds
in the medium. At about the same distance, the rarefied solar wind plasma becomes
collisionless; that is, the collisional mean free path exceeds the characteristic scale
length for density changes. In a collisionless plasma, electric currents flow with
little resistance. As a consequence, the solar magnetic field, which resembles a
dipole close to the Sun, gets “frozen” into the solar wind and is carried with it into
space, becoming the interplanetary magnetic field (IMF).
As the magnetic field is drawn outward by the radial solar wind, the Sun’s slow

rotation (2.7 × 10−6 rad s−1) acts to bend the field lines into spirals that extend
deep into space (Figure 2.6). At the Earth’s orbit, the spiral angle is approximately
43◦ with respect to a line that connects the Sun and Earth. In three dimensions, the
spirals can be described by the ballerina skirt model.8 The skirt represents a sheet
of current that flows in an azimuthal direction around the Sun, but the skirt has a
wavy structure that is similar to a ballerina’s skirt (Figure 2.7). The magnetic fields
on the opposite sides of this heliospheric current sheet have opposite polarity, and
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Earth
Sun

Solar wind

Interplanetary
magnetic field

Figure 2.6 Schematic diagram of the Sun–Earth system in the Sun’s ecliptic plane.
The solar wind is in the radial direction away from the Sun and the magnetic field lines
bend into spirals as the Sun slowly rotates.

Above current sheet

Below current sheet

Earth

Earth orbit
Above
Below

Sun

Sun

B

B

Figure 2.7 Schematic diagram of the three-dimensional structure of the current sheet
that flows in an azimuthal direction around the Sun. The inset at the top of the figure
shows the opposite polarities of the magnetic fields on the two sides of the current
sheet.9 (Courtesy of S.-I. Akasofu, Geophysical Institute, University of Alaska).

as the different folds of the skirt drape the various bodies in the solar system, they
are exposed to different IMF polarities. The polarity of the whole system reverses
at the beginning of each new 11-year cycle because of the reversal in polarity of the
Sun’s magnetic poles.
The formation of shocks in the interplanetary medium can have important conse-

quences for the various ionospheres because of the strong impulsive force associated
with them. Shocks can form when a fast solar wind stream overtakes a slower mov-
ing solar wind, as shown schematically in Figure 2.8. This figure shows the rotating
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Sun
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Figure 2.8 Schematic diagram
showing the conditions leading
to the formation of forward and
reverse shocks in the solar
wind.9 Courtesy of
D. S. Intriligator, Carmel
Research Corporation.

Sun in the ecliptic plane, which is the plane containing the orbits of the planets,
and the associated radial solar wind and spiral magnetic field lines. When the solar
wind is slow, the spirals are tightly coiled. However, when a coronal hole rotates
around, the high-speed stream associated with it also leads to spiral magnetic field
lines, but they are not as tightly coiled because of the higher outward velocity.As the
high-speed stream overtakes the slow solar wind that is ahead of it, there is a density
compression at its leading edge and a rarefaction at its trailing edge. If the velocity
difference between the high- and low-speed streams is greater than the local sound
speed, forward and reverse shocks form. In a frame of reference that is fixed to the
high-speed stream, the forward and reverse shocks are seen to propagate in opposite
directions away from the compression zone. However, these shocks propagate in
a plasma that is streaming away from the Sun, and hence, in an inertial reference
frame, the forward shock appears to be moving away from the Sun at a faster speed
than the reverse shock.
Shocks can also form in association with coronal mass ejections. Some CMEs

can become magnetically isolated from the Sun and then they become plasmoids or
magnetic clouds. As the plasmoid moves rapidly toward the Earth, a shock wave can
be driven ahead of it in the ambient plasma. The ambient plasma is then deflected
around the plasmoid in such a way that the IMF drapes around the plasmoid. When
this happens the magnetic field lines in the plasmoid form closed loops and an
isolated magnetic cloud results.
The solar wind can vary markedly on an hourly basis and is highly structured

throughout the solar system because of time variations, shocks, CMEs, and flares.
Despite thismarkedvariation, it is useful to provide average values for the parameters
describing the interplanetary medium near the Earth, for which there is a large body
of measurements. The Earth’s orbit is approximately 217 solar radii from the Sun,
which is defined to be one astronomical unit (1 AU ≈ 150 million km). The solar
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Table 2.3 Solar wind parameters near the Earth.10

Parameter Average Low-speed High-speed

n(cm−3) 8.7 11.9 3.9
u(km s−1) 468 327 702
nu(cm−2 s−1) 3.8 × 108 3.9 × 108 2.7 × 108
Tp(K) 1.2 × 105 0.34 × 105 2.3 × 105
Te(K) 1.4 × 105 1.3 × 105 1.0 × 105
(1/2mpu2/nu)(erg cm−2 s−1) 0.70 0.35 1.13
β 2.17 1.88 1.24
VA(km s−1) 44 38 66
VS(km s−1) 63 44 81

wind plasma generally takes 2 to 3 days to reach the Earth. Near the Earth the speed
ranges from 200 to 900 km s−1 and the density varies from 1 to 80 cm−3. As the
plasmamoves away from theSun, it expands and cools, with the electron temperature
decreasing from about one million kelvin in the corona to about 100 000K near
the Earth. The interplanetary magnetic field also decreases with distance from the
Sun, from about 1 gauss at the Sun’s surface to about 3 × 10−5 gauss near the
Earth.
Table 2.3 compares the plasma characteristics near the Earth for low-speed, high-

speed, and average solar wind conditions. Given in this table are the plasma density
(n = ne = np), the drift velocity (u = ue = up), the number flux (nu), the proton
temperature (Tp), the electron temperature (Te), the energy flux (0.5mpu2/nu), the
ratio of kinetic to magnetic pressure (β), the Alfvén wave speed (VA), and the ion-
acoustic (sound) speed (VS), where subscripts e and p refer to electrons and protons,
respectively. The parameters β, VA, and VS are defined as

β = npk(Te + Tp)/(B
2/2µ0) (2.1)

VA = B/(µ0npmp)
1/2 (2.2)

VS = [k(Te + 3Tp)/mp]1/2 (2.3)

where B is the magnetic field, k is Boltzmann’s constant, mp is the proton mass, and
µ0 is the permeability of free space. Note that these parameters will be rigorously
derived in later chapters. The fact that the β of the plasma is greater than unity for all
solar wind conditions means that the magnetic field is relatively weak and is carried
along with the flow. In and close to the solar corona, however, the β of the plasma
is much less than unity, which indicates that the magnetic field is strong and directs
the flow.Another interesting result shown in Table 2.3 is that the solar wind velocity
is much greater than both the Alfvén wave speed and the ion-acoustic speed, which
means that the solar wind is supersonic at 1 AU.
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Voyager 2 solar wind parameters (25 day running averages)
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Figure 2.9 Variation of the solar wind velocity (top left panel), density (middle left
panel), temperature (bottom left panel), and interplanetary magnetic field (right panel)
with distance from the Sun. The left panels are from Voyager 2 measurements
(courtesy of J. D. Richardson) and the right panel is from Voyager 1.11

An indication of how the solarwind varies at distances beyond theEarth’s orbit has
been provided by the Pioneer, Voyager, Galileo, Cassini, and Ulysses spacecraft.
Figure 2.9 shows the variation of the solar wind velocity, density, temperature,
and IMF from 1AU to past Pluto’s orbit. The plasma parameters correspond to
25 day running averages and the magnetic field to yearly averages, as measured by
instruments on the Voyager 2 and Voyager 1 spacecraft, respectively. Beyond the
Earth’s orbit, the solar wind speed is between 400 and 500 km s−1 regardless of
the distance from the Sun. The solar wind density, on the other hand, displays a
continuous decrease with distance. The density decrease is fairly rapid between the
Earth (1 AU) and Saturn (∼10 AU), with the density decreasing from about 10 to
0.08 cm−3 over this distance. Beyond 10 AU, the density decrease is not as rapid.
The temperature displays a large variation at all locations even though the profile
was constructed from 25 day averages. However, there is an overall temperature
decrease, from about 50 000 K to 5000 K, between 1 and 20 AU (past Uranus’s
orbit), and then it is difficult to discern a clear trend. The variation of the observed
magnitude of the magnetic field, B, beyond a fewAU is basically consistent with the
expected 1/r variation, where r is the radial distance from the Sun. The deviations
from this simple behavior during the 18 years of the Voyager 1measurements are the
result of solar cycle variations, changes in the solar wind velocity, and the increasing
ecliptic latitude of the spacecraft location.
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2.3 Earth

Comparisons of the physical characteristics of the planets and moons are shown in
Tables 2.4 and 2.5, respectively. One of the important features to note is that the Earth
possesses a strong intrinsic magnetic field. Because collisionless plasmas cannot
readily flow across magnetic fields, the Earth’s field acts as a hard obstacle to the
solar wind, and the bulk of the flow is deflected around the Earth, leaving a magnetic
cavity that is shaped like a comet head and tail (Figure 2.10). The head occurs
on the sunward side of the Earth where the solar wind pressure acts to compress
the geomagnetic field, while the solar wind flow past the Earth acts to produce
an elongated tail on the side away from the Sun that extends well past the orbit
of the Moon. When the supersonic solar wind hits the Earth’s magnetic field, a
free-standing shock wave, called a bow shock, is formed. The shock location is
determined by a balance between the solar wind dynamic pressure and the magnetic
pressure of the compressed geomagnetic field. The shock surface drapes around the
Earth, and its shape and orientation vary with both the direction of the interplanetary
magnetic field and the solar wind speed. However, the shock surface is symmetric
with respect to the ecliptic plane, and the average location of the nose (closest point)
of the shock surface is approximately 12 Earth radii from the Earth’s surface. The
bow shock is unusual in that it is a collisionless shock; the shock is a result of particle
“collisions” with oscillating electric fields, in contrast to shocks around supersonic
aircraft, which are caused by particle–particle collisions.
As the solar wind passes through the bow shock, it is decelerated, heated, and

deflected around the Earth in a region called themagnetosheath. The magnetosheath
thickness is approximately 3RE (RE denotes the Earth’s radius) near the subsolar
point, but it increases rapidly in the downstream direction. After being decelerated
by the bow shock, the heated solar wind plasma is accelerated again from subsonic
to supersonic flow as it moves past the Earth. The boundary layer that separates the
magnetized solarwind plasma in themagnetosheath from that confined by theEarth’s
magnetic field is called the magnetopause. The magnetopause is generally very thin
(∼100 km), and its location is determined approximately by a balance between
the dynamic pressure of the “shocked” solar wind and the magnetic pressure of
the compressed geomagnetic field. Along the Earth–Sun line on the day side, the
magnetopause radial position is approximately 9RE. An extensive current flows
along the magnetopause, which acts to separate the solar wind’s magnetic field
from the geomagnetic field. On the front of the magnetopause, the current flow is
primarily from dawn to dusk, but it acquires an increasing meridional (north–south)
component as it flows around and past the Earth.
The domain where the Earth’s magnetic field dominates is called the magneto-

sphere. This large region, which encompasses the entire three-dimensional volume
inside the magnetopause, is populated by thermal plasma and energetic charged
particles of both solar wind and terrestrial origin. Although the bulk of the solar
wind is deflected around the Earth in the magnetosheath, some of it can cross the
magnetopause and enter themagnetosphere. Direct entry of solarwind plasmaoccurs
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Table 2.5 Physical characteristics of selected satellites.

Mean Mean Mean Orbital Surface
radius Mass position position period gravity

Satellite (km) (kg) (km) (planetary radii) (h) (m s−2)

Callisto 2400 1.077 (23)a 1.883 (6) 26.34 RJ 400.54 1.25
Ganymede 2631 1.48 (23) 1.070 (6) 14.97 RJ 171.72 1.43
Europa 1569 4.80 (22) 6.709 (5) 9.38 RJ 85.22 1.30
Io 1815 8.94 (22) 4.216 (5) 5.9 RJ 42.46 1.81
Titan 2575 1.346 (23) 1.222 (6) 20.28 RS 383 1.35
Triton 1350 2.14 (22) 3.548 (5) 14.33 RN −141 0.78

a 1.077(23) = 1.077 × 1023
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Figure 2.10 Schematic diagram of the Earth’s bow shock and magnetosphere
showing the various regions and boundaries.9 (Courtesy of J. R. Roederer,
Geophysical Institute, University of Alaska.)

on the day side in the vicinity of the polar cusp (or cleft).At low altitudes (∼300 km),
the cusp occupies a narrow latitudinal band that is centered near noon, but is extended
in longitude. Within this band, the solar wind particles can travel along geomagnetic
field lines and deposit their energy in the upper atmosphere. Solar wind particles
also get into the tail of the magnetosphere by mechanisms that have not yet been
fully established. These solar wind particles, along with plasma that has escaped the
Earth’s upper atmosphere and has convected to the tail, populate a region known
as the plasma sheet. However, the plasma sheet particles have an average energy
10 times larger than that found in the magnetosheath and a density that is lower by a
factor of 10 to 100. The particles in the plasma sheet are not trapped, but have direct
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Figure 2.11 Earth’s northern auroral oval as observed in the atomic oxygen emission
at 130.4 nm with the Dynamics Explorer 1 satellite at 1242 UT on November 11, 1981.
The boundary of the polar cap is shown by the dotted curve.12

access to the Earth’s upper atmosphere on the night side along specificmagnetic field
lines. At low altitudes, these field lines converge to a spatial region that is narrow
in latitude, but longitudinally extended around the Earth, joining the day side cusp
to form what is known as the auroral oval. Note that auroral ovals exist in both the
northern and southern polar regions. As the plasma sheet particles stream toward the
Earth along geomagnetic field lines, they get accelerated and then collide with the
Earth’s upper atmosphere, which acts to produce the auroral displays (Figure 2.11).
In addition to the plasma sheet flow toward the Earth that occurs on magnetic

field lines that connect to the auroral ovals, there is a large-scale current flow across
the plasma sheet from dawn to dusk, which is called the neutral current sheet.
This dawn-to-dusk current acts to separate the two regions of oppositely directed
magnetic fields in the magnetospheric tail; the magnetic field is toward the Earth
above the neutral current sheet (northern hemisphere) and away from the Earth
below the current sheet (southern hemisphere). Although these stretched magnetic
field lines extend deep into the magnetospheric tail, near the magnetopause they get
connected to the magnetic field embedded in the shocked solar wind. This magnetic
connection acts to generate voltage drops across the magnetospheric tail larger than
100 000 volts, electric currents greater than 107 amps, and more than 1012 watts of
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power. The potential drop across the magnetospheric tail maps down to the polar
cap, which is the region poleward of the auroral oval. The electric field that is
generated points from dawn to dusk across the polar cap. As will be discussed later,
this electric field has a major effect on the Earth’s upper atmosphere.
The energetic particles near the center of the plasma sheet also drift closer to the

Earth as a result of magnetospheric electric fields and then get trapped on closed geo-
magnetic field lines, thereby forming the Van Allen radiation belts. As these trapped
high energy particles spiral along the closed geomagnetic field lines toward theEarth,
they encounter an increasing magnetic field strength, are reflected, and then bounce
back and forth between the northern and southern hemispheres. These trapped ener-
getic electrons and protons (and at times a significant number of oxygen ions) also
drift in an azimuthal direction around the Earth because of gradients in the geomag-
netic field, with the electrons and protons drifting in opposite directions. The drift of
the lower-energy (10–300 keV) particles results in a large-scale ring of current that
encircles the Earth, which is called the ring current. A final aspect of the radiation
belt and ring current that is important to note is that it prevents the dynamo-generated
electric fields at high latitudes from penetrating to middle and low latitudes. Specifi-
cally, in response to penetrating high-latitude electric fields, the electrons and protons
in the ring current polarize and set up an oppositely directed electric field that effec-
tively cancels the penetrating high-latitude electric field. Hence, except for brief
transient time periods, the mid- and low-latitude regions are generally not affected
by magnetospheric electric fields.
Closer to the Earth is the plasmasphere, which is a torus-shaped volume

that surrounds the Earth and contains a relatively cool (∼5000 K), high-density
(∼102 cm−3) plasma that has its origin in the Earth’s ionosphere (Figure 2.12). The
plasma in this region co-rotateswith the Earth, but it can also flowalong geomagnetic
field lines from one hemisphere to the other. In the equatorial plane, the plasma-
sphere has a radial extent of about 4–8 RE depending on magnetic activity, and its
boundary, called the plasmapause, is typically marked by a large and sharp decrease
in plasma density as one leaves the plasmasphere. The plasmapause is essentially
the boundary between the plasma that co-rotates with the Earth and the plasma that
is influenced by magnetospheric electric fields.
The Earth’s atmosphere is the primary source of plasma close to the planet. It

occupies a relatively thin, spherical envelope that extends from the Earth’s surface
to beyond 1000 km. Below about 90 km the atmosphere is mixed and the relative
composition of the major constituents (N2 and O2) is essentially constant, although

6 4 2 2 4 6

Plasmasphere

Plasmapause

RE

Figure 2.12 Schematic
illustration of the plasmasphere
and its bounding surface, which
is called the plasmapause.13
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Figure 2.13 Schematic diagram of the Earth’s atmosphere showing the different
domains. The dark solid curves show atmospheric temperature profiles for solar
maximum and minimum conditions.9

the atmospheric density decreases rapidly with altitude. However, the temperature in
the lower atmosphere displays important variations with altitude that act to produce
stratified layers, as shown in Figure 2.13. The layer closest to the Earth is the
troposphere, which extends up to about 10 km and is the region normally associated
with atmospheric weather. In this region the atmospheric temperature decreases with
altitude up to a minimum value, which defines its upper boundary (the tropopause).
Above this boundary is the stratosphere, which extends from about 10 to 45 km
and is the region where the ozone layer exists. In the stratosphere the atmospheric
temperature basically increases with altitude up to a local maximum, which defines
its top boundary (the stratopause). In the next layer, which extends from about 45 to
95 km and is called themesosphere, the atmospheric temperature decreases again to
a localminimumat its upper boundary (themesopause). Themesopause corresponds
to the coldest region of the atmosphere, with the temperature getting as low as 180K.
Also, near and below the mesopause is the region where meteors can typically be
seen streaking across the sky.
The thermosphere is the region of the Earth’s upper atmosphere that extends

from about 95 to 500 km. In this region, the atmospheric temperature first increases
with altitude to an overall maximum value (∼1000 K) and then becomes constant
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Figure 2.14 Altitude profiles of the neutral densities in the daytime mid-latitude
thermosphere.14

with altitude.Also, photodissociation of the dominantN2 andO2 molecules is impor-
tant and acts to produce copious amounts of O and N atoms. In addition, diffusion
processes are sufficiently strong for a gravitational separation of the different neutral
species to occur. The net effect of these processes is shown in Figure 2.14, where
profiles of the neutral densities are displayed as a function of altitude for daytime
conditions. The heavy molecular constituents dominate at low altitudes and the
atomic neutrals dominate at high altitudes. Note that the neutral densities decrease
exponentially with altitude at rates that are determined by the neutral masses. At
about 500 km, the neutral densities become so low that collisions become unim-
portant and, hence, the upper atmosphere can no longer be characterized as a fluid.
This transition altitude is called the exobase, and the region above it is called the
exosphere, where the neutrals behave like individual ballistic particles.
The dynamics of the upper atmosphere during quiet geomagnetic activity are pri-

marily controlled by solar heating on the day side. The thermospheric wind tends to
blow horizontally from the subsolar heated region around the Earth to the coldest
region on the night side. As the wind develops, Coriolis forces that are associated
with the Earth’s rotation act to deflect the flow. In addition, at high latitudes heating
due to magnetospheric electric fields and particle precipitation acts either to retard
or enhance the predominately anti-solar flow. The net effect of the magnetospheric
processes is to decrease the anti-solar winds on the day side and increase them both
in the polar caps and on the night side. Typically, the horizontal wind speeds in
the upper thermosphere range from 100 to 300 m s−1 for quiet geomagnetic condi-
tions, but they can approach 900 m s−1 over the polar caps during active magnetic
conditions when the magnetospheric electric fields are large and the auroral pre-
cipitation is intense. Also, during active times, the upwelling associated with the
magnetospheric heating processes can be sufficiently large to impede the gravita-
tional separation of the neutral species. Such major changes in the thermospheric
circulation and density structure have a significant effect on the charged particles
embedded in the neutral gas.
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Figure 2.15 Schematic diagram showing the Earth’s magnetic field and the plasma
flow regimes in the ionosphere.15

The ionosphere is the ionized portion of the upper atmosphere. It extends from
about 60 to beyond 1000 km and completely encircles the Earth. The main source
of plasma for the ionosphere is photoionization of neutral molecules via solar EUV
and soft X-ray radiation, although other production processes may dominate in
certain regions. The ions produced then undergo chemical reactionswith the neutrals,
recombine with the electrons, diffuse to either higher or lower altitudes, or are
transported via neutral wind effects. However, the diffusion and transport effects
are strongly influenced by the Earth’s intrinsic magnetic field, which is dipolar at
ionospheric altitudes (Figure 2.15).
At high latitudes, the geomagnetic field lines extend deep into space in an anti-

sunward direction. Along these so-called open field lines, ions and electrons are
capable of escaping from the topside ionosphere in a process termed the polar wind .
This loss of plasma can have an appreciable effect on the density and temperature
structure. In addition, the dynamo electric field that is generated through the solar
wind–magnetosphere interaction is mapped down to ionospheric altitudes and typi-
cally causes a two-cell plasma flow pattern, with antisunward flow over the polar cap
and return flow equatorward of the auroral oval. This horizontal flow is continuous
and its speed can be as high as 4 km s−1. As a result, the high-latitude plasma is
subjected to widely changing conditions as it drifts into different regions, including
the sunlit hemisphere, the day side auroral oval, the polar cap, the nocturnal auroral
oval, and the dark sub-auroral region. When it is in the auroral oval, the plasma is
heated and ionization is produced due to precipitating energetic electrons.
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At mid-latitudes, the ionospheric plasma is not appreciably affected by magne-
tospheric electric fields and tends to co-rotate with the Earth. However, the plasma
can readily flow along magnetic field lines like beads on a string. One consequence
of the latter is that plasma can escape the topside ionosphere in one hemisphere,
flow along the dipolar field lines, and then enter the conjugate ionosphere. This
plasma flow is the source of plasma for the plasmasphere, which was discussed
earlier (Figure 2.12). Another consequence of the field-aligned plasma motion is
that neutral winds are effective in transporting plasma to higher or lower altitudes
(Figure 2.15). On the day side, there is a component of the neutral wind that blows
away from the subsolar point toward the poles and it drives the ionization down the
magnetic field lines. On the night side, this meridional (north–south) wind blows
from the poles toward the equator, and the ionization is driven up the field lines. All
of these processes have an important effect on the plasma densities and temperatures
at mid-latitudes.
At low latitudes, the geomagnetic field lines are nearly horizontal, which intro-

duces some unique transport effects. First, the meridional neutral wind can very
effectively induce an interhemispheric flow of plasma along these horizontal field
lines. At solstice, the day side wind blows across the equator from the summer to
the winter hemisphere. As the ionospheric plasma rises on the summer side of the
equator, it expands and cools, while on the winter side it is compressed and heated
as it descends. Another interesting transport effect at low latitudes is the so-called
equatorial fountain. In the daytime equatorial ionosphere, eastward electric fields
associated with neutral wind-induced ionospheric currents drive a plasma motion
that is upward. The plasma lifted in this way then diffuses down the magnetic field
lines and away from the equator because of the action of gravity. The combina-
tion of electromagnetic drift and diffusion produces a fountainlike pattern of plasma
motion, and this motion acts to produce plasma density enhancements on both sides
of the magnetic equator, which are known as the Appleton anomaly.
Although different physical processes dominate in the different latitudinal

domains, the electron density variation with altitude still displays the same basic
structure at all latitudes. Specifically, the electron density profile exhibits a layered
structure, with distinct D, E, F1, and F2 regions (Figure 2.16). In the D and E
regions, chemical processes are the most important, molecular ions dominate, and
N2, O2, and O are the most abundant neutral species. Additionally, in the D region
(60–100 km), there are both positive and negative ions, water cluster ions, and three-
body chemical reactions. The cluster ions dominate the D region at altitudes below
about 85 km and their formation occurs via hydration starting from the primary ions
NO+ and O+2 . In the E region (100–150 km), the basic chemical reactions are not
as complicated, and the major ions are NO+, O+2 , and N

+
2 . The total ion density

is of the order of 105 cm−3, while the neutral density is greater than 1011 cm−3.
Therefore, the E region plasma is weakly ionized , and collisions between charged
particles are not important. In the F1 region (150–250 km), ion–atom interchange
and transport processes start to become important and in the F2 region the ionization
maximum occurs as a result of a balance between plasma transport and chemical
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loss processes. In these regions, the atomic species (O+ and O) dominate. The peak
ion density in the F2 region (106 cm−3) is roughly a factor of 10 greater than that
in the E region, while the neutral density (108 cm−3) is still two orders of magni-
tude greater than the ion density. The plasma in this region is partially ionized , and
collisions between the different charged particles and between the charged particles
and neutrals must be taken into account. The topside ionosphere is generally defined
to be the region above the F region peak, while the protonosphere is the region
where the lighter atomic ions (H+ and He+) dominate. Although the neutrals still
outnumber the ions in the protonosphere, the plasma is effectively fully ionized and
only collisions between charged particles need to be considered. In both the topside
ionosphere and protonosphere, plasma transport processes dominate.

2.4 Inner planets

2.4.1 Mercury

Figure 2.17 shows representativemagnetospheres in the solar system. These sketches
provide a rough idea of the scales and extent of these magnetospheres. The planet
Mercury is unique among the inner planets in that it has a strong intrinsic magnetic
field (Table 2.4). Given this strongmagnetic field, a bow shock and a magnetosphere
are formed aroundMercury. The region of post shock, decelerated solar wind flow is
called the magnetosheath, just as in the terrestrial case, and a long tail is also present.
The planet is less than half the size of the Earth, so the different magnetospheric
regions have appropriately scaled dimensions (e.g., the magnetopause stand-off
distance is about 1460 km). Direct information about Mercury is extremely limited;
until very recently all the available data were from three flybys of the planet by the
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Figure 2.17 Schematic diagram showing the magnetospheres that are known to exist
in the solar system. The axes are scaled relative to body radii. (Adapted from
Reference 17.)

Mariner 10 spacecraft in 1974, but the Messenger spacecraft which is on its way
to Mercury will provide a wealth of new information. It will fly by Mercury three
times starting in 2008 and will go into orbit around the planet in 2011.
Mercury does not have a conventional, gravitationally bound atmosphere.

Mariner 10 optical observations indicated an upper limit on the day side surface
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density of about 1× 106 cm−3. Helium and atomic hydrogen were positively iden-
tified and atomic oxygen tentatively identified, with subsolar densities of about
4.5, 8 and 7 × 103 cm−3, respectively.18 In 1985, Earth-based optical observations
established the presence of sodium and potassium; the sunlit column densities were
estimated to be ∼1–2× 1011 and ∼1 × 109 atoms cm−2, respectively.19 Note, that
these column densities are comparable to or less than the estimated sunlit helium
column density of ∼3 × 1011 atoms cm−2. Given these very low neutral gas densi-
ties, Mercury does not have a conventional ionosphere; an ion exosphere is expected
to be present.

2.4.2 Venus

As indicated in Table 2.4 Venus has no intrinsic magnetic field (of any signif-
icance), therefore its interaction with the solar wind is dissimilar to that of the
Earth. The obstacle to the supersonic solar wind is Venus’s ionosphere and atmo-
sphere, and a well-established bow shock is present. Some details of the solar
wind interaction and ionospheric processes and regions are sketched in Figure 2.18.
Analogous to the magnetopause, a so-called ionopause is formed at Venus. This
ionopause is a tangential discontinuity, (see Table 7.1) across which the total
(kinetic, dynamic, and magnetic) pressure is constant and the normal components
of the velocity and magnetic field are zero. At Venus, it is formed at a location
where the kinetic pressure of the ionospheric plasma is approximately equal to the
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Figure 2.18 A schematic (not to scale) drawing of the plasma environment of Venus,
showing some of the important regions and processes.20
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dynamic pressure of the unperturbed solar wind. On the day side the solar wind
dynamic pressure is transformed to magnetic pressure between the bow shock and
the ionopause. This “piled” up magnetic field region, just outside the ionopause, is
called the magnetic barrier. The shocked solar wind is deflected and flows around
the ionopause; the region between the bow shock and the ionopause is called the
magnetosheath or ionosheath. The interplanetary magnetic field (IMF) gets draped
around the planet and a long tail extending to tens ofVenus radii is created behind the
planet.
The first indications and suggestions that the atmosphere of Venus is composed

of CO2 were based on ground-based observations made in the early 1930s.21 These
suggestions were confirmed by in situ measurements at Venus made from the Ven-
era 4 entry probe in 1967.22 The upper atmosphere–ionosphere region of Venus is
the most studied one of all the bodies in our solar system, except for the Earth, and
now Titan. The surface pressure on Venus is about 100 times greater than that on
the Earth and the surface temperature is about 750K. CO2 is by far the most abun-
dant gas species near the surface. However, in the upper atmosphere above about
150 km, atomic oxygen becomes the dominant neutral. At even higher altitudes,
helium, nonthermal atomic oxygen, and eventually atomic hydrogen become the
main neutral species. Figure 2.19 shows representative upper atmospheric neutral
density values from an empirical model, which is based on neutral mass spectrom-
eter measurements.23 At Venus the exobase, (see Section 10.10), the altitude above
which collisions between the neutral atoms become negligible, is around 180 km.
The upper atmospheric temperature is just below 300K on the day side and drops
to near 100 K on the night side,24 as shown in Figure 2.20. It is interesting to note
that although Venus is closer to the Sun than the Earth, its thermospheric tempera-
ture is significantly lower. This is mainly a result of the CO2 15µ cooling, which is
dominant in the altitude region between about 100 to 160 km.25

Venus has a well-developed day side ionosphere; the measured, day side alti-
tude profiles of some of the important ions are shown in Figure 2.21. The major
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ion, near the peak altitude of about 140 km, is O+2 , which was a surprise initially,
because the major neutral species is CO2 and there is essentially no O2 in the upper
atmosphere. However, it was soon realized that photochemical processes can easily
explain the observed result, making Venus an excellent example of the importance
of chemistry in controlling ionospheric behavior. A significant night side ionosphere
was also observed at Venus.27 This was also a surprise originally, because the night
on Venus lasts about 58 Earth days. It was soon recognized that pressure gradients
drive ionospheric plasma from the day side to the night side, helping to maintain
a night side ionosphere. Low-energy electron impact ionization, somewhat similar
to auroral precipitation, also contributes to the night side ionosphere. As indicated
in Figure 2.18 the night side ionosphere is a very complex region with tail rays,
filaments, streamers, and patches of plasma clouds.
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2.4.3 Mars

Mars has no significant intrinsic magnetic field (Table 2.4), although some rem-
nant crustal magnetic anomalies of small spatial scales are present, mostly in the
southern hemisphere.28 Awell-defined bow shock has been observed around Mars,
and its magnetosheath has been extensively explored by the Phobos spacecraft29

and more recently, Mars Express.30 The region of the piled up magnetic field out-
side the ionopause is possibly more complex at Mars than at Venus, although this
apparent difference may simply be the result of better and more data for Mars. This
region at Mars is commonly referred to as the magnetic pile-up boundary or region.
Only very limited and inconclusive information is currently available concerning
the ionopause location at Mars. The electron reflectometer, carried by the Mars
Global Surveyor, indicates a transition in the measured photoelectron fluxes; it
has been suggested that this change is related to the presence of an ionopause.31

If this interpretation is correct the day side ionopause is in the altitude region
between about 300 and 500 km. Radio occultation data from the Mars Global Sur-
veyor and Mars Express, as well as the topside sounder data from Mars Express,
have not so far provided any direct definitive information on the presence of an
ionopause.
The upper atmosphere and plasma environment of Mars has many similarities

to that of Venus. The atmosphere of Mars is composed principally of carbon diox-
ide, as is the case for Venus. The major difference is that the surface pressure at
Mars is only about 6 mbar. However, interestingly the densities in the respective
thermospheres are similar, mainly because of the different gravity and tempera-
tures in the lower atmospheres. The only direct measurement of the thermospheric
neutral gas composition comes from the mass spectrometers carried by the Viking
Landers.32 Figure 2.22 shows altitude profiles of the daytime neutral densities based
on these observations, except for atomic oxygen, whichwas derived from ion density
measurements.33Atomic oxygen becomes the dominant neutral species at an altitude
near 200 km, which is higher than the corresponding transition height at Venus. The
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exospheric neutral gas temperatures have been estimated to vary between about 175
and 300 K. These low temperatures are also caused by the CO2 15µ cooling, but
appear to vary with solar cycle more than the temperatures at Venus.25 One of the
only two directly measured ion density profiles for Mars is shown in Figure 2.23,
and they are similar to the Venus profiles shown in Figure 2.21. A theoretical fit
to the data is also shown in Figure 2.23. The UV spectrometer carried by the Mars
Express spacecraft observed apparent auroral emissions, whichwhen correlatedwith
the nature of electron and ion fluxes indicated possible similarities with terrestrial
aurorae.34

2.5 Outer planets

In any discussion of the outer planets we need to recognize the fact that the amount
of information available is rather limited. All four of the giant planets (Jupiter,
Saturn, Uranus, and Neptune) have strong intrinsic magnetic fields, but the field
orientations with respect to the spin axes and the ecliptic plane varies. Jupiter and
Saturn are the best explored of these giant planets, mainly because of the Galileo
and Cassini missions. Both planets have strong intrinsic magnetic fields, which
are relatively closely aligned (10◦ for Jupiter35 and less than 1◦ for Saturn36) with
their rotation axes. The interaction of these planets with the solar wind is to some
degree similar to that of the Earth. The obstacle is the magnetic field, and a strong
bow shock and magnetopause are formed. The region between the bow shock and
the magnetopause, where the shocked solar wind moves around the obstacle or
magnetopause, is called the magnetosheath, as in the terrestrial case. Some of
the major differences between the terrestrial magnetosphere and the Jovian, as
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well as the Kronian one, are due to the relatively rapid rotation of these planets,
resulting in high centrifugal forces, and the presence of numerous large moons
within the magnetosphere, some of which are important sources of magnetospheric
plasma.
All the other giant planets also have strong bow shocks and magnetospheres;

only, as indicated earlier, the orientation of the magnetic field does result in some
important differences. For example, the magnetic dipole axis at Uranus is tilted
by ∼58.6◦ relative to the rotation axis.37 Its rotation axis lies essentially in the
ecliptic plane and points roughly toward the Sun at the present time. This unusual
combination of circumstances means that the actual dipole tilt with respect to the
so-called GSM coordinate system (the x-axis in this system points from the planet
to the Sun; z is positive to the north and is perpendicular to x and in the plane
that contains x and the magnetic dipole axis) is similar to that of the Earth, so the
resulting magnetosphere has an “Earth-type” bipolar geomagnetic tail. However,
because of the 17.9 hour rotation period of the planet, the magnetosphere changes
from a “closed” to an “open” configuration every 8.9 hours.
The giant planets do not have solid surfaces as do the inner planets. Altitude

scales are generally referred to a reference pressure level, which is now generally
accepted to be the 1 bar level. This pressure level corresponds to a radial distance
of 71 492 km from the center of Jupiter at the equator. Note that these planets are
oblate, given their rapid rotation rate (e.g., there is a nearly 10% difference between
the polar and equatorial radius at Saturn). The atmospheres of these planets consist
predominantly ofmolecular hydrogen and some lesser amounts of heliumand atomic
hydrogen. In the lower atmosphere CH4 and other hydrocarbons are also present as
minor constituents. The latest estimates of the thermospheric temperatures at Jupiter,
Saturn, Uranus, and Neptune are about 900, 400, 800, and 750 K, respectively.
However, these values are very uncertain. At this time the energy sources respon-
sible for these relatively high temperatures have not been established; candidate
sources include Joule heating, gravity wave dissipation, and precipitating particle
energy deposition. The latest estimates of the densities and the neutral gas temper-
ature at Jupiter are shown in Figure 2.24, as a representative example for the giant
planets.
Radio occultation observations by the Pioneer, Voyager, Galileo, and Cassini

spacecraft have established the presence of ionospheres at all the giant planets. All
these occultation measurements, because of the nature of the encounter geometries,
are from near the terminator. Figure 2.25 shows representative electron density
observations from the Galileo spacecraft at Jupiter.
Pluto used to be considered a planet and its companion Charon as its satellite.

However, the new classification places both of them in the category of “dwarf
planets.” Evaporation of surface frost caused by solar radiation and sputtering by
energetic particles are the likely causes of the atmosphere believed to be currently
surrounding Pluto. The information available on the nature of Pluto comes from a
very limited set of remote sensing observations. The surface temperature is estimated
to fall between 30 and 44 K, with a most probable value of 36 K. The temperature
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in the upper atmosphere is believed to be nearly isothermal with a value around
100 K. The atmosphere is likely to consist mainly of N2, CH4, and CO, along with
many other minor constituents.38 An associated ionosphere with a peak density of
less than 103 cm−3 is expected to be present. Pluto’s low gravity implies that the
atmosphere is only weakly bound and thus a significant neutral escape rate is likely
to be present. The New Horizon spacecraft is on its way to Pluto and will fly by in
July 2015.

2.6 Moons and comets

A number of the giant planets’ moons are known to have atmospheres surrounding
them. Io has been observed to have “volcanic” eruptions and thus it must have
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39

a highly time-variable gaseous envelope; sulfur dioxide, SO2, appears to be its
dominant atmospheric constituent. Minor molecular sodium species, such as Na2S
or Na2O, released by sputtering or venting from the surface, are also believed to be
present. Figure 2.26 displays a representative range of total density and temperature
values.39

The presence of an atmosphere around Europa was initially a surprise, because
of its frozen water surface. Surface densities of the order of 107 cm−3 have been in-
directly deduced along with an estimate for the atmospheric temperature in the range
of 350–600 K.40 The constituents are not known, but are likely to be water products,
such as O2 and OH, the result of surface sputtering. Similar thin atmospheres, the
result of surface sputtering, are also present around Callisto and Ganymede.41

From the Cassini mission we now know more about the atmosphere and iono-
sphere of Saturn’s moon Titan than any other moon in the solar system. The surface
pressure at Titan is about one and a half times that of the Earth (1.467 bar).42 This
dense atmosphere consistsmostly ofmolecular nitrogen, N2, and some lesser amount
of methane, CH4. There is also some molecular hydrogen, H2, and a variety of
hydrocarbons (e.g., C2H2, C2H4) as well as more complex organic molecules.43, 44

The measured upper atmospheric N2 and CH4 densities are shown in Figure 2.27.
The neutral temperature derived from these density profiles is around 150K. These
results also indicate that the homopause and exobase (see Sections 10.7 and 10.10)
are at approximately 850 and 1430 km, respectively.

Cassini also found that Enceladus, a relatively small moon of Saturn, has a neutral
gas plume emanating fromnear its southern polar cap, which is likely to be associated
with observed surface cracks, referred to as “tiger paws.” The main constituent was
observed to be water and the densities reached around 106 cm−3,45 as shown in
Figure 2.28.
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The observations during the Voyager flyby of Neptune’s moon Triton indicated
a surface pressure of only 15–19 mbar, a surface temperature of about 38K and an
atmosphere consisting predominantly of N2 and some small amounts of CH4.46

It is important to recognize that the orbits of these moons are generally inside the
magnetospheres of their planets. Therefore, interactions with the magnetospheres
have major impacts on the nature of the atmosphere–ionosphere system of these
moons. For example, the Saturnian magnetic field is very nearly perpendicular to
Titan’s orbit and therefore the ramside, with respect to the co-rotating Saturnian
magnetosphere, can be sunlit, dark, or in between. Finally it should be noted that
the magnetospheric plasma flows may in some cases be supersonic, but generally
no bow shocks are present because the flow is sub-fast, even though the alfvenic or
magnetosonic Mach numbers may exceed one.
Given the fact that many of the moons have atmospheres surrounding them, one

expects that ionospheres should also be present.47, 48 In fact, ionospheres have been
observed at these moons (e.g., see Figures 13.20 and 13.26), and as indicated earlier,
some of the information concerning the atmosphere was deduced using ionospheric
observations.
The gaseous envelopes around comets, commonly referred to as comas, are dif-

ferent from conventional atmospheres in a number of important ways. The most
important distinguishing characteristics of comas are (1) the lack of any signifi-
cant gravitational force, (2) relatively fast radial outflow velocities (∼1 km s−1),
and (3) the rapidly varying, time-dependent nature of their physical properties. A
direct consequence of the first two of these characteristics is the presence of a very
extended neutral envelope around active comets, such as P/Halley. Direct spacecraft
measurements at comet P/Halley were made when it was less than 1 AU from the
Sun. The measurements showed that in the coma, water vapor, H2O, accounted for
about 80% of the gases sublimating from the nucleus, with NH3, CH4, and CO2
making up most of the rest. The expansion velocity and the mass loss rate were
measured to be about 0.9 km s−1 and 6.9× 1029 molecules s−1, respectively.49 It is
interesting to note that the corresponding mass loss rate of comet Hale-Bopp50 was
about 1031 molecules s−1.
A schematic diagram of the solar wind interaction region with an active comet

is shown in Figure 2.29. The neutral gas envelope around comet P/Halley, when it
was near its perihelion,∼0.6 AU, was so extended that the solar wind already began
to “see” the comet at millions of kilometers from the nucleus.52 This occurred via
charge exchange interactions between the solar wind plasma and escaping cometary
neutral gases. These distant interactions acted to slow down the solar wind to about
twice supersonic velocities and the bow shock that formed around comet P/Halley
was a relatively weak one. Direct measurements indicated that the shockwas located
at a distance of about 1.15 × 106 km from the nucleus.53 A tangential discontinuity
or ionopause (sometimes called contact surface or diamagnetic cavity boundary) is
formed near the nucleus of comets that have significant gas production.When comet
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Figure 2.29 Schematic diagram showing the various regions associated with the
interaction of the solar wind with a cometary atmosphere and ionosphere.51

P/Halley was near its perihelion, the distance of this tangential discontinuity from
the nucleus was about 4700 km.49 Themagnetized, shocked solar wind flows around
this contact discontinuity and never enters it, resulting in a diamagnetic cavity. The
region between the bow shock and the tangential discontinuity is again called the
magnetosheath, although some authors have introduced some new terminology that
yields further subdivisions.
The Rosetta spacecraft was launched on March 2, 2004 and will arrive in the

vicinity of comet 67P/Churyumov-Gerasimenko in May 2014. In November of that
year an instrumented package will be deployed and land on the comet. The mother
spacecraft will continue “orbiting” the comet as it approaches and then travels away
from the Sun, until December 2015. This mission promises to provide a wealth of
new information on periodic comets.

2.7 Plasma and neutral parameters

As is evident from the descriptions given in the previous subsections, the ionospheres
found in our solar system display widely different characteristics. Table 2.6 provides
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a summary of representative plasma and neutral parameters that describe the primary
ionization peak in the various ionospheres. The table includes the height of the peak,
the dominant ion species, the electron density (ne), the electron temperature (Te),
the ion temperature (Ti), the dominant neutral species, the neutral density (Nn),
and the neutral temperature (Tn). All of these parameters are for typical daytime
conditions.
Also included in Table 2.6 are some important plasma frequencies and scale

lengths, which are given by

λD =
(
ε0kTe
nee2

)1/2
, (2.4)

NλD =
4π

3
λ3Dne, (2.5)

ωpα =
(

nαe2

ε0mα

)1/2
, (2.6)

ωcα =
eB

mα

, (2.7)

rα = (2kTα/mα)
1/2

ωcα
. (2.8)

where ε0 is the permittivity of free space and α corresponds to either electrons or
ions. The Debye length (λD) is the minimum distance over which a plasma can
exhibit collective behavior. That is, for plasma phenomena that vary over scale
lengths less than λD, the ions and electrons can be treated as individual particles.
The degree to which collective behavior occurs is determined by the number of
plasma particles in a Debye sphere (NλD). When this number is much greater than
unity, collective behavior dominates. The gyroradius (rα) is the radius at which
charged particles gyrate about magnetic field lines. For plasma scale lengths much
less than the gyroradius, the charged particles behave as if they were not magnetized,
i.e., they are not tied to magnetic field lines. The cyclotron frequency (ωcα ) is the
frequency at which charged particles gyrate about magnetic field lines. For plasma
phenomena with frequencies much greater than ωcα , the gyrating motion is not
important. The plasma frequency (ωpα ) describes the ability of the charged particles
to oscillate in response to time varying electric fields. If the frequency of the electric
field is greater than the plasma frequency, the charged particles cannot keep up with
the changing electric field.
These plasma frequencies and scale lengths will be rigorously defined in later

chapters. Typical values of these parameters for the various ionospheres are given
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now because they will help explain why different mathematical approaches are used
for different ionospheric phenomena.
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Chapter 3

Transport equations

Awide variety of plasmaflows can be found in the various planetary ionospheres. For
example, gentle near-equilibrium flows occur in the terrestrial ionosphere at mid-
latitudes, while highly nonequilibrium flow conditions exist in the terrestrial polar
wind and in the Venus ionosphere near the solar terminator. The highly nonequilib-
rium flows are generally characterized by large temperature differences between the
interacting species, by flow speeds approaching and exceeding thermal speeds, and
by flow conditions changing from collision-dominated to collisionless regimes. In
an effort to model the various ionospheric flow conditions, several different mathe-
matical approaches have been used, including collision-dominated and collisionless
transport equations, kinetic and semikinetic models, and macroscopic particle-in-
cell techniques. However, the transport equation approach has received the most
attention, primarily because it can handle most of the flow conditions encountered
in planetary ionospheres. Therefore, the main focus of this chapter is on transport
theory, although other mathematical approaches are briefly discussed at the end of
the chapter. Typically, numerous assumptions are made to simplify the transport
equations before they are applied, and therefore, it is instructive to trace the deriva-
tion of the various sets of transport equations in order to establish their intrinsic
strengths and limitations. Before diving into the rigorous derivation of the transport
equations, it is useful to review the simple derivation of the continuity equation
given in Appendix N.

3.1 Boltzmann equation

The Boltzmann equation is not only the starting point for the derivation of the differ-
ent sets of transport equations but also forms the basis for the kinetic and semikinetic
theories.WithBoltzmann’s approach, one is not interested in themotion of individual

50
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Figure 3.1 Volume element d3r
about position vector r in
configuration space (left) and
volume element d3vs about
velocity vs in velocity space
(right). Note that each volume
element d3r must contain a
sufficient number of particles for
a complete range of velocities.

particles in the gas, but instead with the distribution of particles. Accordingly, each
species in the gas mixture is described by a separate velocity distribution function
fs(r, vs, t), where r, vs and t are independent variables. The distribution function
corresponds to the number of particles of species s that, at time t, are located in a
volume element d3r about r and simultaneously have velocities in a velocity-space
volume element d3vs about vs (Figure 3.1). Alternatively, fs can be viewed as a
probability density in the (r, vs) phase space. The evolution of fs is determined by
the flow in phase space of particles under the influence of external forces and by the
net effect of collisions. The rate of change of fs due to an explicit time variation and
a flow in phase space is given by

dfs
dt
= lim

�t→0
f (r +�r, vs +�vs, t +�t)− fs(r, vs, t)

�t
. (3.1)

Since�t is a small quantity, f (r+�r, vs+�vs, t+�t) can be expanded in a Taylor
series:

dfs
dt
= lim

�t→0
1

�t

[
f (r, vs, t)+ ∂fs

∂t
�t +�r · ∇fs

+�vs · ∇vfs + · · · − fs(r, vs, t)

]
, (3.2)

where ∇ is the gradient operator in configuration space and ∇v is a similar gradient
operator in velocity space. Taking the limit of �t → 0 yields

dfs
dt
= ∂fs

∂t
+ vs · ∇fs + as · ∇vfs, (3.3)

where all the higher-order terms in the Taylor series drop out as �t → 0 and

�r
�t

→ dr
dt
→ vs, (3.4)

�vs

�t
→ dvs

dt
→ as. (3.5)

The vector as is the acceleration of the particles (force/mass).
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If collisions are not important, then dfs/dt = 0 and the resulting equation is called
the Vlasov equation

∂fs
∂t
+ vs · ∇fs + as · ∇vfs = 0. (3.6)

On the other hand, if collisions are important then dfs/dt = 0. This occurs because
collisions act to instantaneously change a particle’s velocity. Therefore, particles
instantaneously appear in, and disappear from, regions of velocity space as a result
of collisions, and hence, they correspond to production and loss terms for fs. Letting
δfs/δt represent the effect of collisions, the equation describing the evolution of fs
becomes

∂fs
∂t
+ vs · ∇fs + as · ∇vfs = δfs

δt
, (3.7)

which is known as the Boltzmann equation.
The main external forces acting on the charged particles in planetary iono-

spheres are the Lorentz and gravitational forces. With allowance for these forces,
the acceleration becomes

as = G + es

ms
(E+ vs × B), (3.8)

where G is the acceleration due to gravity, E is the electric field, B is the mag-
netic field, es is the species charge, and ms is the species mass. On the other hand,
gravitational, Coriolis, and centripetal forces can be important for planetary neutral
atmospheres (Chapter 10).
For binary elastic collisions between particles, the appropriate collision operator

is the Boltzmann collision integral (Appendix G)

δfs
δt
=
∫ ∫

d3vt d� gstσst(gst , θ)
(
f ′s f ′t − fsft

)
, (3.9)

where
d3vt = velocity–space volume element for the target species t,
gst = |vs − vt| is the relative speed of the colliding particles s and t,
d� = element of solid angle in the colliding particles’ center-of-mass

reference frame,
θ = center-of-mass scattering angle,
σst(gst , θ) = differential scattering cross section, defined as the number of mol-

ecules scattered per solid angle d�, per unit time, divided by the
incident intensity,

f ′s f ′t = fs(r, v′s, t)ft(r, v′t , t), where the primes indicate the distribution func-
tions are evaluated with the particle velocities after the collision.

In Equation (3.9) the first term in the brackets corresponds to the particles scat-
tered into a given region of velocity space (production term) and the second term
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corresponds to the particles scattered out of the same region of velocity space (loss
term).
The Boltzmann collision integral can be applied to both self-collisions (t = s)

and collisions between unlike particles. It can be applied to Coulomb collisions, to
elastic ion–neutral collisions, and to collisions between different neutral species. In
addition, it can be applied to a resonant charge exchange interaction between an ion
and its parent neutral because the charge exchange process is pseudo-elastic. The
net energy loss in the interaction is small.

3.2 Moments of the distribution function

In the ideal situation one would like to solve the Boltzmann equation for each of
the species in the gas mixture and thereby obtain the individual velocity distribution
functions, but this can only be done for relatively simple situations. As a conse-
quence, one is generally restricted to obtaining information on a limited number of
low-order velocity moments of the species distribution function. For example, since
fs(r, vs, t) represents the number of particles at time t that are located in a volume
element d3r about r and simultaneously have velocities in a volume element d3vs

about vs, then an integration over all velocities yields the number of particles in the
volume element d3r at time t, which is the species number density, ns(r, t)

ns(r, t) =
∫
d3vs fs(r, vs, t). (3.10)

Likewise, the average or drift velocity of a species, us(r, t), can be obtained by
integrating the product vsfs(r, vs, t) over all velocities and then dividing by the
density

us(r, t) =

∫
d3vsvs fs(r, vs, t)∫
d3vs fs(r, vs, t)

. (3.11)

This process can be continued so that if ξs(vs) is any function of velocity of the
particles of type s, then the average value of ξs(vs) at any position r and time t is
given by

〈ξs(vs)〉 = 1

ns

∫
d3vs fs(r, vs, t)ξs(vs). (3.12)

The procedure of multiplying the species distribution function by powers or prod-
ucts of velocity and then integrating over all velocities is called taking velocity
moments. However, the definition of all higher-order velocitymoments is not unique.
For example, the temperature is a measure of the spread about some average veloc-
ity, and this average velocity must be selected before the temperature can be defined.
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Likewise, all of the higher-order velocity moments of fs must be defined relative to
an average velocity. In the early work of Chapman, Enskog, Burnett, and others,1 the
velocity moments of the distribution function were defined relative to the average
velocity of the gas mixture

u =
∑

s

nsmsus

/∑
s

nsms. (3.13)

Such a definition is appropriate for highly collisional gases, where the individual
species drift velocities and temperatures do not significantly differ from the average
drift velocity and temperature of the gas mixture.
As an alternative to defining the transport properties with respect to the average

gas velocity, Grad proposed that the transport properties of a given species be defined
with respect to the average drift velocity of that species, us.2 This definition is more
appropriate for planetary atmospheres and ionospheres, where large relative drifts
between interacting species can occur. In terms of the species average drift velocity,
the random or thermal velocity is defined as

cs = vs − us. (3.14)

At this point it is necessary to decide what velocity moments are needed beyond the
first two moments ns and us. In general, this will depend on how far the flow is from
equilibrium. For most applications, the following moments are sufficient:

Temperature:

3

2
kTs = 1

2
ms〈c2s 〉 =

ms

2ns

∫
d3vs fs(vs − us)

2, (3.15)

Heat flow vector:

qs = 1

2
nsms〈c2s cs〉 =

ms

2

∫
d3vs fs(vs − us)

2(vs − us), (3.16)

Pressure tensor:

Ps = nsms〈cscs〉 = ms

∫
d3vs fs(vs − us)(vs − us), (3.17)

Higher-order pressure tensor:

µs = 1

2
nsms〈c2s cscs〉

= ms

2

∫
d3vs fs(vs − us)

2(vs − us)(vs − us), (3.18)

Heat flow tensor:

Qs = nsms〈cscscs〉 = ms

∫
d3vs fs(vs − us)(vs − us)(vs − us), (3.19)



3.3 General transport equations 55

where k is the Boltzmann constant. The pressure tensors Ps and µs are second-
order tensors, each with nine elements, and the heat flow tensor Qs is a third-order
tensor with 27 elements. In index notation they are expressed as (Ps)αβ , (µs)αβ , and
(Qs)αβγ , with α, β, and γ varying from 1 to 3.
If a summation is taken of the diagonal elements in the pressure tensor (3.17),

one obtains

3∑
α=1

(Ps)αα = ms

∫
d3vs fs(vs − us)

2 = 3ps, (3.20)

where the second expression follows from Equation (3.15) and where ps = nskTs is
the partial pressure of the gas. When collisions are important, the diagonal elements
of the pressure tensor are the most important elements and they are generally equal.
As a consequence, it is convenient to remove these diagonal elements from the
pressure tensor and consider them separately. This is accomplished by defining a
new tensor, the stress tensor, τ s.

τ s = Ps − psI, (3.21)

where I is a unit dyadic (diagonal elements equal to unity). In index notation, it is
δαβ . The stress tensor is a measure of the extent to which the gas deviates from an
isotropic character. As collisions become more important, the gas becomes more
isotropic and the stress tensor becomes negligible.

3.3 General transport equations

Transport equations that describe the spatial and temporal evolution of the physically
significant velocity moments (ns, us, Ts,Ps, qs) can be obtained by multiplying the
Boltzmann equation (3.7) with an appropriate function of velocity and then integrat-
ing over velocity space. However, before this procedure is applied, it is convenient
to express the Boltzmann equation in a slightly different form. Given that r, v, and
t are independent variables

∇ · (fsvs) = vs · ∇fs + fs(∇ · vs) = vs · ∇fs (3.22)

and

∇v · (fsas) = as · ∇vfs + fs(∇v · as) = as · ∇vfs (3.23)

because∇v ·as = 0 for the acceleration processes relevant to planetary atmospheres
and ionospheres (Equation 3.8). Therefore, the Boltzmann equation (3.7) can also
be written as

∂fs
∂t
+ ∇ · (fsvs)+ ∇v · (fsas) = δfs

δt
. (3.24)
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In what follows, the transport equations are obtained fromEquation (3.24), which
is in terms of vs. The resulting transport equations are commonly referred to as being
in the conservative form. Alternatively, the Boltzmann equation can be transformed
into an equation for cs before the velocitymoments are taken. The two approaches are
equivalent, but the use of Equation (3.24) is more straightforward for the calculation
of the lower-order velocity moments (density, drift velocity, and energy). In either
case, a generalmoment equation can be derived, which is called theMaxwell transfer
equation (Appendix F).
An equation describing the evolution of the species density is obtained simply by

integrating Equation (3.24) over all velocities

∫
d3vs

[
∂fs
∂t
+ ∇ · (fsvs)+ ∇v · (fsas)

]
=
∫
d3vs

δfs
δt
, (3.25)

where

∫
d3vs

∂fs
∂t
= ∂

∂t

∫
d3vs fs = ∂ns

∂t
, (3.26)∫

d3vs∇ · (fsvs) = ∇ ·
∫
d3vs fsvs = ∇ · (nsus), (3.27)∫

d3vs∇v · (fsas) =
∫
S

dAv(fsas) · n̂v = 0, (3.28)

∫
d3vs

δfs
δt
≡ δns

δt
. (3.29)

In Equation (3.28), the divergence theorem is applied so that the velocity–space
volume integral can be transformed into a velocity–space surface integral at infinity,
where dAv is the surface area element and n̂v is an outwardly directed unit normal.
Since there are no particles with infinite velocities, fs and the surface integral in
Equation (3.28) approaches zero as vs goes to infinity. Substituting Equations (3.26–
3.29) into Equation (3.25) yields the continuity equation

∂ns

∂t
+ ∇ · (nsus) = δns

δt
. (3.30)

The equation describing the evolution of the species drift velocity is obtained
by multiplying the Boltzmann equation (3.24) by mscs and then integrating over all
velocities

ms

∫
d3vs

[
cs
∂fs
∂t
+ cs∇ · (fsvs)+ cs∇v · (fsas)

]
= ms

∫
d3vscs

δfs
δt
,

(3.31)
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where the terms can be integrated to obtain the following results:

ms

∫
d3vs(vs − us)

∂fs
∂t
= nsms

∂us

∂t
(3.32)

ms

∫
d3vs(vs − us)∇ · (fsvs) = ∇ · Ps + nsms(us · ∇)us (3.33)

ms

∫
d3vs(vs − us)∇v · (fsas) = −nsms〈as〉 (3.34)

ms

∫
d3vscs

δfs
δt
≡ δMs

δt
. (3.35)

In evaluating the integrals in Equations (3.32–3.35), use was made of the vector
identity involving the divergence of a scalar multiplied by a vector, the divergence
theorem which converts volume integrals into surface integrals, and the definitions
of the transport properties (Equations 3.10–3.11, and 3.17). Finally, the substitution
of Equations (3.8, 3.32–3.35) into Equation (3.31) yields the momentum equation

nsms
Dsus

Dt
+ ∇ · Ps − nsmsG − nses(E+ us × B) = δMs

δt
, (3.36)

where Ds/Dt is the convective derivative

Ds

Dt
= ∂

∂t
+ us · ∇. (3.37)

In a similar manner, the energy, pressure tensor, and heat flow equations can
be derived by multiplying the Boltzmann Equation (3.24) by 1

2msc2s , mscscs, and
1
2msc2s cs, respectively, and then integrating over velocity space.After a considerable
amount of algebra, these equations can be expressed as follows:

Energy equation:

Ds

Dt

(
3

2
ps

)
+ 3
2
ps(∇ · us)+ ∇ · qs + Ps : ∇us = δEs

δt
, (3.38)

Pressure tensor equation:

DsPs

Dt
+ ∇ ·Qs + Ps(∇ · us)+ es

ms

(
B× Ps − Ps × B

)
+ Ps · ∇us + (Ps · ∇us)

T = δPs

δt
. (3.39)



58 Transport equations

Heat flow equation:

Dsqs

Dt
+ qs · ∇us + qs(∇ · us)+Qs : ∇us + ∇ · µs

+
[
Dsus

Dt
−G − es

ms
(E+ us × B)

]

·
(

τ s + 5
2
psI
)
− es

ms
qs × B = δqs

δt
, (3.40)

where

δEs

δt
≡ ms

2

∫
d3vsc

2
s
δfs
δt
, (3.41)

δPs

δt
≡ ms

∫
d3vscscs

δfs
δt
, (3.42)

δqs

δt
≡ ms

2

∫
d3vsc

2
s cs

δfs
δt
. (3.43)

In Equations (3.38–3.40), the transpose of a tensorA = Aαβ is denoted byAT = Aβα
and the operationQs :∇us =∑

β

∑
γ (Qs)αβγ (∂usβ/∂xγ ) corresponds to the double

dot product of the two tensors Qs and ∇us.
Afew points should be noted about the general transport equations. First, the set of

equations can be increased to an arbitrary size merely by taking additional velocity
moments of the Boltzmann equation. For example, if the Boltzmann equation is
multiplied by mscscscs and integrated over velocity space, an equation describing
the spatial and temporal evolution of the heat flow tensorQswill be obtained. Further,
the general transport equations do not constitute a closed systembecause the equation
governing the moment of order � contains the moment of order � + 1. That is, the
continuity equation describes the evolution of the density, but it also contains the
drift velocity, and so on. Finally, it should be noted that the collision terms appearing
on the right-hand sides of the general transport equations can be evaluated rigorously
only for a unique interaction potential between the colliding particles, which will
be presented later. For general interaction potentials, it is necessary to know the
distribution functions of the colliding particles in order to evaluate the collision
terms. Therefore, to obtain a useable system of transport equations, an approximate
expression for the velocity distribution function is needed so that the system of
equations can be closed and the collision terms can be evaluated.

3.4 Maxwellian velocity distribution

A relatively simple distribution function prevails when collisions dominate. As will
be discussed later, in this case the species distribution function is driven toward a
Maxwellian distribution function. If the different species in the gas mixture have
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relative drifts, but collisions between similar particles are significant, then fs is driven
toward a local drifting Maxwellian

f M
s (r, vs, t) = ns(r, t)

[
ms

2πkTs(r, t)

]3/2
· exp {−ms[vs − us(r, t)]2/2kTs(r, t)

}
. (3.44)

When collisions dominate, fs takes this form at all positions in space and at all
times, which is why it is called a local drifting Maxwellian. Note that the drifting
Maxwellian depends only on the density, drift velocity, and temperature moments.
It is easy to verify that the drifting Maxwellian is consistent with the general

definitions for the density, drift velocity, and temperature (Equations 3.10, 3.11,
and 3.15). For example, the density is obtained by integrating the distribution func-
tion over all velocities, and if Equation (3.44) is used the density definition (3.10)
becomes

ns = ns

(
ms

2πkTs

)3/2 ∫
d3vs exp

[−ms(vs − us)
2

2kTs

]
(3.45)

The integral can be calculated by introducing the random velocity, cs = vs−us, and
by using the fact that d3cs = d3vs (the introduction of cs merely changes the origin
of the coordinate system, but the integral is still over all of velocity space). Since
the resulting integrand depends only on the magnitude of cs, a spherical coordinate
system can be used, with d3cs = 4πc2sdcs, and then Equation (3.45) becomes

ns = ns

(
ms

2πkTs

)3/2 ∞∫
0

(4πc2sdcs) exp(−msc
2
s /2kTs). (3.46)

The integral, according toAppendixC, is (2πkTs/ms)
3/2 and, hence, Equation (3.46)

reduces to ns = ns. Likewise, if the drifting Maxwellian is used in the general
definitions for the drift velocity (3.11) and temperature (3.15), it can be shown that
it is consistent with these definitions.
A schematic diagram of a drifting Maxwellian distribution function is shown

in Figure 3.2. The peak of the distribution occurs at vs = us. The distribution is
symmetric about the peak and falls off exponentially from the peak in all direc-
tions. The distribution decreases by a factor of “e” when |vs − us| = (2kTs/ms)

1/2

and, hence, the width of the Maxwellian is determined by the temperature and the
mass. In three dimensions, the contours of constant f M

s are concentric spheres with
the centers at vs = us. A two-dimensional cut through the distribution yields con-
centric circles, and a line through the Maxwellian yields the classic bell-shaped
curve.
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Figure 3.2 The Maxwellian velocity distribution. The left panel is a one-dimensional
cut through the Maxwellian along the vx-axis, and the right panel is a two-dimensional
slice in the principal vx–vy plane. The Maxwellian shown is for a density of 105 cm−3,
ux = 5 km s−1, uy = 0, uz = 0, and T = 1000K.

3.5 Closing the system of transport equations

Asnoted earlier, it is necessary to have an expression for fs in order to close the system
of general transport equations. A standard mathematical technique for obtaining
approximate expressions for the species distribution function is to expand fs(r, cs, t)
in a complete orthogonal series of the form

fs(r, cs, t) = fso(r, cs, t)
∑
α

aα(r, t)Mα(cs), (3.47)

where fso is an “appropriate” zeroth-order velocity distribution function, Mα rep-
resents a complete set of orthogonal polynomials, aα represents the unknown
expansion coefficients, and the subscript α is used to indicate that the summation
is generally over more than one coordinate index.2−4 The zeroth-order distribution
function and the set of orthogonal polynomials are generally chosen so that the
series converges rapidly, and therefore, only a few terms in the series expansion are
needed. If collisions are important, one would expect that the actual species distribu-
tion function is approximately Maxwellian at all locations and times. Consequently,
it is logical to adopt a local Maxwellian as the zeroth-order distribution function2

fso = f M
s = ns

(
ms

2πkTs

)3/2
exp(−msc

2
s /2kTs), (3.48)

where cs = vs − us and ns, us, Ts depend on r and t. With a local Maxwellian as the
zeroth-order distribution function andwith a Cartesian coordinate system in velocity
space, the associated orthogonal polynomials are the Hermite tensors. The unknown
expansion coefficients are also tensors of all orders. For convenience, however, the
expansion coefficients can be expressed in terms of the physically significant (and
unknown) moments of the distribution function (ns, us, Ts,Ps, qs, etc.) simply by
taking the appropriate velocity moments of the series expansion (3.47).
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To close the system of transport equations, the series expansion is first truncated
at some level by setting all higher-order expansion coefficients (velocity moments)
to zero. Only the transport equations that pertain to the velocity moments in the
truncated series expansion are retained. However, as noted earlier, the transport
equation for themoment of order � contains themoment of order �+1. These higher-
order velocity moments in the transport equations are not set to zero, but instead
are expressed in terms of the lower-order moments with the aid of the “truncated”
series expansion, which then yields a closed system of transport equations. For
planetary ionospheres and atmospheres, a truncated series expansion that includes
the stress tensor and heat flow vector is particularly useful. In this so-called 13-
moment approximation, the truncated series expansion for fs takes the form

fs = fso

[
1+ ms

2kTsps
τ s : cscs −

(
1− msc2s

5kTs

)
ms

kTsps
qs · cs

]
, (3.49)

where fso is given by Equation (3.48). Note that in the 13-moment approximation
the stress tensor and heat flow vector are put on an equal footing with the density,
drift velocity, and temperature. The name 13-moment approximation stems from
the fact that each species in the gas mixture is described by 13 parameters (ns = 1,
us = 3, Ts = 1, qs = 3, τ s = 5), where only five of the nine elements in the stress
tensor are unknown, because it is defined to be symmetric (ταβ = τβα) and traceless
(
∑

α ταα = 0).As noted before, the double dot product is τ : cc =
∑

α

∑
β ταβcβcα .

It is easy to show that by multiplying the 13-moment expression for fs (Equa-
tion 3.49), respectively, with 1, cs, 12msc2s , mscscs, and 1

2msc2s cs and integrating
over velocity space, the distribution function properly accounts for the density, drift
velocity, temperature, stress tensor, and heat flow vector. However, the general
transport equations (3.39, 3.40) have velocity moments (µs,Qs) that are of a higher
order than what is available at the 13-moment level. These higher-order moments
can now be expressed in terms of the 13 lower-order moments with the aid of the
truncated series expansion (3.49). Specifically, by multiplying Equation (3.49) with
1
2msc2s cscs andmscscscs, respectively, and integrating over all velocities, one obtains

µs = 5

2

kTs

ms

(
psI+ 7

5
τ s

)
, (3.50)

(Qs)αβγ = 2

5

[
(qs)αδβγ + (qs)γ δαβ + (qs)βδαγ

]
, (3.51)

where index notation is used in Equation (3.51). Using Equations (3.50) and (3.51), it
is now possible to calculate the terms needed to close the system of general transport
equations:

∇ ·Qs = 2

5

[∇qs + (∇qs)
T + (∇ · qs)I

]
, (3.52)
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Qs : ∇us = 2

5

[
qs(∇ · us)+ (∇us) · qs + qs · ∇us

]
, (3.53)

∇ · µs = 5

2

k

ms

[
∇(Tsps)+ 7

5
∇ · (Tsτ s)

]
. (3.54)

Only the pressure tensor (3.39) and heat flow (3.40) equations are affected by the
closure, and these become:

Pressure tensor equation:

DsPs

Dt
+ 2
5

[∇qs + (∇qs)
T + (∇ · qs)I

]
+ Ps(∇ · us)+ es

ms

(
B× Ps − Ps × B

)

+ Ps · ∇us + (Ps · ∇us)
T = δPs

δt
, (3.55)

Heat flow equation:

Dsqs

Dt
+ 7
5
qs · ∇us + 7

5
qs(∇ · us)+ 2

5
(∇us) · qs

+ 5
2

k

ms

[
∇(Tsps)+ 7

5
∇ · (Tsτ s)

]
+
[
Dsus

Dt
−G − es

ms
(E+ us × B)

]

·
(

τ s + 5
2
psI
)
− es

ms
qs × B = δqs

δt
. (3.56)

3.6 13-moment transport equations

The closed system of transport equations at the 13-moment level of approximation
is given by Equations (3.30), (3.36), (3.38), (3.55), and (3.56). For future reference,
it is convenient to list these equations in one place. However, an equation describing
the evolution of the stress tensor is generally more useful than the equation for
the pressure tensor. The stress tensor equation can be obtained by subtracting 2

3I
times the energy equation (3.38) from the pressure tensor equation (3.55). Likewise,
it is also convenient to simplify the heat flow equation (3.56) with the aid of the
momentum equation (3.36). With these changes, the closed system of 13-moment
transport equations becomes

∂ns

∂t
+ ∇ · (nsus) = δns

δt
, (3.57)

nsms
Dsus

Dt
+ ∇ps + ∇ · τ s − nses(E+ us × B)− nsmsG = δMs

δt
, (3.58)
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Ds

Dt

(
3

2
ps

)
+ 5
2
ps(∇ · us)+ ∇ · qs + τ s : ∇us = δEs

δt
, (3.59)

Dsτ s

Dt
+ τ s(∇ · us)+ es

ms

[
B× τ s − τ s × B

]

+ ps

[
∇us + (∇us)

T − 2
3
(∇ · us)I

]

+ 2
5

[
∇qs + (∇qs)

T − 2
3
(∇ · qs)I

]

+
[
τ s · ∇us + (τ s · ∇us)

T − 2
3
(τ s : ∇us)I

]
= δτ s

δt
, (3.60)

Dsqs

Dt
+ 7
5
qs · ∇us + 7

5
qs(∇ · us)+ 2

5
(∇us) · qs

+ 5
2

kps

ms
∇Ts + 1

ρs
(∇ · τ s) · (psI− τ s)

+
(
7

2

k

ms
∇Ts − 1

ρs
∇ps

)
· τ s − es

ms
qs × B = δq′s

δt
, (3.61)

where

δτ s

δt
= δPs

δt
− 2
3

δEs

δt
I, (3.62)

δq′s
δt
= δqs

δt
− 1

ρs

δMs

δt
·
(

τ s + 5
2
psI
)
, (3.63)

and where ρs = nsms is the mass density. Note also that the relation (3.21), Ps=
τ s + psI, has been used.
The 13-moment system of equations is very powerful and can be used to describe

a wide range of plasma and neutral gas flows, provided the species velocity distri-
butions are not too far from Maxwellians. It can be applied to collision-dominated,
transitional, and collisionless flows and provides for a continuous transition between
these regimes. It can also be applied to subsonic, transonic, and supersonic flows as
well as chemically reactive flows.As will be shown in the chapters that follow, in the
collision-dominated limit, the 13-moment system of equations reduces to the Euler
and Navier–Stokes equations depending on whether terms proportional to the zeroth
or first power of the collisional mean-free-path are retained (Chapters 5 and 10).
At the Navier–Stokes level, transport processes such as ordinary diffusion, thermal
diffusion, thermal conduction, diffusion-thermal heat flow, thermoelectric heat flow,
and viscosity are included at a level that corresponds to either the first or second
approximation of Chapman and Cowling,1 depending on the particular transport
coefficient. In the collisionless limit, the 13-moment system of equations reduces
to the Chew–Goldberger–Low (CGL) and extended CGL equations depending on
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whether terms proportional to the zeroth or first power of the Larmor radius are
retained (Chapter 7). The 13-moment equations also account for collisionless heat
flow and temperature anisotropies (Chapter 5).
Temperature anisotropies typically occur in a plasma when collisions are infre-

quent and there is a preferred direction, which can result from the presence of a
strong magnetic field, a strong electric field, or a strong pressure gradient. In this
case, the thermal spread of particles along the preferred direction can be different
from that perpendicular to the preferred direction, which then yields different species
temperatures parallel and perpendicular to the preferred direction. The definitions
of the parallel and perpendicular temperatures that are consistent with the isotropic
temperature definition (3.15) are

Ts‖ = ms

k
〈c2s‖〉 =

ms

kns

∫
d3vs fs(vs − us)

2‖, (3.64)

Ts⊥ = ms

2k
〈c2s⊥〉 =

ms

2kns

∫
d3vs fs(vs − us)

2⊥. (3.65)

By comparing Equations (3.15), (3.64), and (3.65), it is apparent that

Ts = 1

3

[
Ts‖ + 2Ts⊥

]
. (3.66)

However, when there are different temperatures parallel and perpendicular to a
preferred direction, there are also different heat flows because a heat flow is simply
a flow of thermal energy. The definitions of the flow of parallel and perpendicular
thermal energies that are consistent with the usual heat flow definition (3.16) are

q‖s = nsms〈c2s‖cs〉 = ms

∫
d3vs fs(vs − us)

2‖(vs − us), (3.67)

q⊥s =
1

2
nsms〈c2s⊥cs〉 =

ms

2

∫
d3vs fs(vs − us)

2⊥(vs − us), (3.68)

where a comparison of definitions (3.16), (3.67), and (3.68) indicates that

qs = 1

2

[
q‖s + 2q⊥s

]
. (3.69)

In the 13-moment approximation, the fundamental velocity moments are ns, us,
Ts, τ s, and qs, and all other moments can be expressed in terms of these fundamen-
tal moments. As before, this can be accomplished by substituting the 13-moment
expression for fs (3.49) into the definitions for Ts‖, Ts⊥, q‖s , and q⊥s and performing
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the integrals, which yields

Ts‖ = Ts + τ s : e3e3/(nsk), (3.70)

Ts⊥ = Ts + τ s : (I− e3e3)/(2nsk), (3.71)

q‖s =
2

5

(
I+ 2e3e3

) · qs, (3.72)

q⊥s =
2

5

(
2I− e3e3

) · qs, (3.73)

where (e1, e2, e3) are unit vectors of an orthogonal coordinate system and where the
preferred direction is along the e3 axis. Note that the diagonal elements of the stress
tensor are responsible for the temperature anisotropy. Also note that q‖s and q⊥s are
not independent but are related to qs in specific ways. Finally, it should be noted
that in the 13-moment approximation the temperature is assumed to be isotropic to
the lowest order (i.e., Ts appears in the zeroth-order distribution fso). The deviations
from isotropy therefore appear via the correction terms in the series expansion (3.49).
For the series to converge, the terms in the expansion must be small compared to
unity and, hence, the temperature anisotropy and heat flow must be “small.”

3.7 Generalized transport systems

In some plasma flows, the species velocity distributionsmay depart sufficiently from
a Maxwellian such that the 13-moment approximation is not adequate. Provided
that the departures are not too large, one can simply add more terms in the series
expansion and then truncate the series at a higher level. The next appropriate level
is the 20-moment approximation, and at this level the species distribution function
takes the following form5

fs = fso

(
1+ ms

2kTsps
τ s : cscs + m2s

6k2T 2s ps
Qs
... cscscs − ms

kTsps
qs · cs

)
,

(3.74)

where Qs
... cscscs =∑

α,β,γ (Qs)αβγ (cs)α(cs)β(cs)γ . In the 20-moment approxima-
tion, the heat flow tensor is put on an equal footing with the density, drift velocity,
temperature, and stress tensor. Qs is symmetric with respect to a change in any two
coordinate indices, and hence, there are 10 unknown elements in this tensor. This
means there is a total of 20 parameters that describe each species in the gas mixture
at this level of approximation. Therefore, the system of transport equations must
be expanded to include flow equations for the 10 heat flow elements. Generally,
however, the 20-moment system of transport equations is too complicated to be of
practical use.
If the flow conditions are such that the departures of the species distribution func-

tions cannot be adequately described by the 13-moment approximation, it is better to
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derive an entirely new set of transport equations that is based on a series expansion
(3.47) about a “nonMaxwellian” zeroth-order distribution function fso. The specific
form of fso depends on the specific problem that is to be solved. This zeroth-order dis-
tribution functionmay be obtained by solving a simple but related problem, it may be
obtained from simple physical arguments, or it may be deduced frommeasurements.
In practice, one considers only a limited number of terms in the series expansion,
therefore the zeroth-order distribution should be selected with care. A well-chosen
zeroth-order distribution function yields expansion coefficients that decrease rapidly
as the order of the coefficients increases. However, for every zeroth-order distribu-
tion function there is an associated set of transport equations that describes the spatial
and temporal evolution of the expansion coefficients, and consequently, if a complex
zeroth-order distribution function is selected in order to get close to the “expected”
form of fs, it may be difficult or impossible to solve the resulting set of transport
equations. Therefore, for highly nonMaxwellian flows, the zeroth-order distribution
function must be reasonably close to the expected form of fs so that the series expan-
sion (3.47) can be truncated at a fairly low order, yet it must be simple enough to yield
reasonable transport equations for the expansion coefficients. In applications involv-
ing plasmaflows in planetary ionospheres, generalized transport equations have been
derived for series expansions about several “nonMaxwellian” zeroth-order distribu-
tion functions, including bi-Maxwellian (two temperature), tri-Maxwellian (three
temperature) and toroidal distribution functions.6−8
The transport equations based on a zeroth-order bi-Maxwellian velocity distribu-

tion are particularly useful for describing collisionless plasmas subjected to strong
magnetic fields. In this case the zeroth-order velocity distribution takes the form

fso = f BM
s

= ns

(
ms

2πkTs‖

)1/2( ms

2πkTs⊥

)
exp

(
−msc2s‖
2kTs‖

− msc2s⊥
2kTs⊥

)
. (3.75)

Note that with a bi-Maxwellian-based series expansion the anisotropic character of
the distribution, as expressed byTs‖ andTs⊥, is accounted for in theweight factor, fso,
of the series expansion for fs. In theMaxwellian-based series expansion, on the other
hand, the temperature anisotropy enters through the stress terms in the series (3.49),
which must be small for the series to converge. Therefore, a bi-Maxwellian-based
series expansion can describe plasmas with much larger temperature anisotropies
than a Maxwellian-based expansion with the same number of terms.8

3.8 Kinetic, Monte Carlo, and particle-in-cell methods

In planetary ionospheres at high altitudes, the plasma and neutral gases eventually
become collisionless. The altitude where this occurs is called the exobase, which is
defined to be the altitude where the collision mean-free-path (mfp) of the particles
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is equal to the density scale height. Below the exobase, the mfp is smaller than
the density scale height and above the exobase it is larger than the density scale
height. Because of the long-range nature of Coulomb collisions, plasma exobases
are typically at higher altitudes than neutral exobases. For example, in the Earth’s
polar region, the neutral exobase is located at an altitude between 500 and 600 km,
while the plasma exobase is between 1500 and 3000 km.
At the altitudes where either the neutral or plasma gas is collisionless, a kinetic

model can be adopted, as was done for the solar and terrestrial polar winds. In this
case, the Vlasov Equation (3.6) can be integrated in altitude for steady-state condi-
tions, assuming that the velocity distribution function at the exobase is known. The
integration yields the species velocity distribution function at all altitudes above the
exobase, from which the various velocity moments (ns, us, Ts, etc.) can be calcu-
lated for each species. However, the result obtained depends on the assumed velocity
distribution function at the exobase, which is generally not known in a collisionless
(or almost collisionless) regime. Over the years, many different expressions for the
velocity distribution function at the exobase have been adopted, including monoen-
ergetic distributions, a truncated Maxwellian, a drifting or displaced Maxwellian, a
truncated bi-Maxwellian, a drifting or displaced bi-Maxwellian, a Lorentzian, and
a bi-Lorentzian.9

Other mathematical methods have also been used to describe collisionless (or
almost collisionless) gases and plasmas. In the transition region between the
collision-dominated and the collisionless polar wind flow, the Boltzmann equation
with Coulomb collisions has been integrated numerically. However, the accuracy
obtained for the velocity distribution function depends on the numerical grid spac-
ing in velocity space, which extends to infinity.10 Additional methods includeMonte
Carlo (Appendix P) and macroscopic particle-in-cell (PIC) techniques, whereby the
motions of individual particles are followed as they are subjected to various forces
and collision processes. However, the accuracy obtained depends on the number of
particles followed. In the latest three-dimensional PIC simulation of the polar wind,
one billion particles were followed during an idealized geomagnetic storm.11 The
simulation included the effects of gravity, polarization electrostatic field, magnetic
mirror force, centripetal acceleration, ion self-collisions, low-altitude auroral ion
energization, wave–particle interactions (WPI), and the E × B drift of the plasma
flux tubes (see Chapter 12 for a discussion of the polar wind). These and other results
are described in more detail in a series of review papers.12−16

3.9 Maxwell equations

The 13-moment and generalized systems of transport equations are only complete
if the electric and magnetic fields that exist in the plasma are known. However, this
is typically not the case because currents that flow in the plasma generate magnetic
fields and differing ion and electron densities create electric fields. Therefore, in
general, the Maxwell equations of electricity and magnetism must be solved along
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with the plasma transport equations. In a vacuum, these equations are given by

∇ · E = ρc/ε0, (3.76a)

∇ × E = −∂B
∂t
, (3.76b)

∇ · B = 0, (3.76c)

∇ × B = µ0J + µ0ε0
∂E
∂t
, (3.76d)

where the charge density, ρc, and the current density, J, are given by

ρc =
∑

s

nses, (3.77)

J =
∑

s

nsesus, (3.78)

and where ε0 is the permittivity and µ0 the permeability of free space.
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3.11 Problems

Problem 3.1 Show that ∇v · a = 0 for the acceleration given in Equation (3.8).
Problem3.2 Show that the right-hand sides of Equations (3.32) to (3.35) are correct.

Problem 3.3 Derive the energy transport equation by multiplying the Boltzmann
equation (3.24) by (1/2)msc2s and then integrating over velocity space.

Problem 3.4 Show that the local drifting Maxwellian distribution (3.44) is consis-
tent with the general definitions for the drift velocity (3.11) and temperature (3.15)
moments.

Problem 3.5 Show that the 13-moment distribution function (3.49) is consis-
tent with the general definitions for the density (3.10), drift velocity (3.11), and
temperature (3.15) moments.

Problem 3.6 Show that the 13-moment distribution function (3.49) is consistent
with the general definition for the heat flow vector (3.16).

Problem 3.7 Subtract 23I times the energy equation (3.38) from the pressure tensor
equation (3.55) and thereby derive the stress tensor equation (3.60).

Problem 3.8 Using the definitions of Ts (3.15), Ts‖ (3.64), and Ts⊥ (3.65), show
that they are related via Equation (3.66).

Problem 3.9 Using the definitions for qs (3.16), q
‖
s (3.67), and q⊥s (3.68), show

that they are related via Equation (3.69).

Problem 3.10 Substitute the 13-moment expression for fs (3.49) into the definition
for Ts‖ (3.64) and show that Equation (3.70) is correct.

Problem 3.11 Substitute the bi-Maxwellian distribution function (3.75) into the
definition for the heat flow qs (3.16) and obtain an expression that relates qs to Ts‖
and Ts⊥.

Problem 3.12 Substitute the bi-Maxwellian distribution function (3.75) into the
definitions for q‖s (3.67) and q⊥s (3.68) and obtain expressions that relate these
vectors to Ts‖ and Ts⊥.
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Problem 3.13 Consider nondrifting Maxwellian and bi-Maxwellian velocity dis-
tributions, where the parallel temperature for the bi-Maxwellian distribution is
associated with the z-axis. Calculate the flux of particles across the z = 0 plane
for the particles that move from the negative to the positive z-direction for both the
Maxwellian and bi-Maxwellian distributions.

Problem 3.14 Consider the following expression for the distribution of a given
plasma species:

f (r, c, t) = fo

[
1−

(
1− mc2

5kT

)
m

kTp
q · c

]
,

fo = n

(
m

2πkT

)3/2
exp

(
−mc2

2kT

)
,

where f is the 8-moment approximation in the Maxwellian-based expansion of the
distribution function and n, u, T , p, and q have the usual definitions. Note that c
is the usual “random” velocity. Calculate the random flux crossing an imaginary
plane from one side to the other for the 8-moment expression given above (see
Appendix H). Take the plane perpendicular to the principal vx-axis.

Problem 3.15 The velocity distribution for a nonequilibrium gas is given by

f (v) = n

4πv2o
δ(v − v0),

where δ(v) is the Dirac delta function, v0 is a constant, and v is the magnitude of
the velocity. Calculate the density, drift velocity, and temperature.

Problem 3.16 The escape flux from a gravitationally bound planetary atmosphere
is calculated by assuming that above a given critical altitude there are no more
collisions, and particles having energies greater than what is necessary to overcome
the gravitational pull of the planet will escape. In obtaining this expression for
the “particle” flux it is assumed that at that critical level (called the exobase) the
distribution function is a nondrifting Maxwellian. The speed which is necessary
to overcome the gravitational pull at a given altitude, called the escape speed, is
given by

vesc =
(
2GM

r

)1/2
,

where G is the gravitational constant,M is the mass of the planet in question, and r
is the geocentric distance to the exobase altitude. Calculate the escape flux in terms
of the density, the most probable speed at this exobase, and the escape velocity
(Appendix H).
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Problem 3.17 The Lorentzian velocity distribution function is given by

f (r, v, t) = n(r, t)
[
1+ mv2

2αkT (r, t)

]−(α+1)
,

where n is the density, T the temperature, m the mass, v the velocity, k is the
Boltzmann constant, and α is a constant number. Calculate the density, drift velocity,
and temperature moments of the Lorentzian distribution function.

Problem 3.18 Calculate the heat flow moment of the Lorentzian distribution
function given in Problem 3.17.



Chapter 4

Collisions

Collisions play a fundamental role in the dynamics and energetics of ionospheres.
They are responsible for the production of ionization, the diffusion of plasma from
high to low density regions, the conduction of heat from hot to cold regions, the
exchange of energy between different species, and other processes. The collisional
processes can be either elastic or inelastic. The interactions leading to chemical
reactions are discussed in Chapter 8. In an elastic collision, the momentum and
kinetic energy of the colliding particles are conserved, while this is not the case in
an inelastic collision. The exact nature of the collision process depends both on the
relative kinetic energy of the colliding particles and on the type of particles. In gen-
eral, for low energies, elastic collisions dominate, but as the relative kinetic energy
increases, inelastic collisions become progressively more important. The order of
importance is from elastic to rotational, vibrational, and electronic excitation, and
then to ionization as the relative kinetic energy increases. However, the different
collision processes may affect the continuity, momentum, and energy equations
in different ways. For example, ionization of neutral gases by solar radiation and
particle impact are the main sources of plasma in the ionospheres and these pro-
cesses must be included in the continuity equation. On the other hand, ionization
collisions are very infrequent compared with binary elastic collisions under most
circumstances, and therefore, the momentum perturbation associated with the ion-
ization process is generally not important and can be neglected in the momentum
equation.
The various ionospheres correspond to partially ionized gases, and therefore,

several collisional processes need to be considered, including Coulomb collisions,
resonant andnonresonant ion–neutral interactions, electron–neutral interactions, and
collisions between different neutral species. In the material that follows, the focus
is on deriving the collision terms that appear on the right-hand side of the transport
equations in order to elucidate the intrinsic limitations associated with the various

72



4.1 Simple collision parameters 73

simplified expressions. Another goal is to present collision terms that can be used in
the applications of the transport equations to ionospheric problems.

4.1 Simple collision parameters

Some important collision parameters can be calculated by considering the simple
scenario depicted in Figure 4.1. In this scenario, a large particle of radius r0 (e.g., a
neutral molecule) is surrounded by a gas of small particles (e.g., electrons) that has
a constant density n. If the thermal motion is neglected and if the particles collide
as hard spheres, then as the neutral molecule moves through the gas with a relative
speed v, it produces a wake that, in time �t has a volume σ(v�t), where σ = πr20
is the cross section of the neutral molecule and v�t is the distance traveled by the
neutral. The number of electrons in this volume, which corresponds to the total
number of collisions between the neutral and electron gas, is (σv�t)n. Therefore,
the number of collisions per unit time, the collision frequency, is given by

ν = vσn. (4.1)

The collision time (i.e., the mean time between collisions) is simply the reciprocal
of the collision frequency

τ = 1

vσn
(4.2)

and the mean-free-path is just the speed multiplied by the mean time between
collisions (vτ)

λmfp = 1

σn
. (4.3)

These results exhibit some intuitively obvious features of hard sphere collisions.
That is, larger relative velocities, collision cross sections, and gas densities lead to
greater collision frequencies and reducedmean-free-paths.Although these results are

v
r0

Figure 4.1 Schematic diagram
showing a large particle of radius
r0 moving with velocity v
through a background gas of
small particles that is stationary
and has a constant density n.
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also true in general, a gas typically exhibits thermal motion, and hence, the relative
neutral–electron speed will be different for different electrons, g = |vn − ve|. Also,
the collision cross section is typically a function of the relative speed, σ = σ(g),
which means

ν = gσ(g)n (4.4)

λmfp = 1

σ(g)n
. (4.5)

Hence, different particles in the gas will have different collision frequencies and
mean-free-paths. To arrive at “average” quantities, it is necessary to take an average
over the particle distribution functions. Typically, Maxwellians are used when this
is done and the results then depend on the temperatures of the colliding species.
The simple collision parameters discussed above are useful for elucidating some

basic collision features, but in practice there are different ways to define the colli-
sion frequency. The most useful is the collision frequency for momentum transfer,
which is introduced later. At that time, the temperature-dependent average collision
frequencies are presented.

4.2 Binary elastic collisions

To pursue a more rigorous determination of the various transport coefficients, it
is necessary to study the dynamics of particle collisions. For now, the focus is on
binary elastic collisions. In an elastic collision, the mass, momentum, and energy of
the colliding particles are conserved in the collision process. That means ionization,
chemical reactions, and electronic excitation do not occur. Figure 4.2 provides a
schematic of a binary collision in a laboratory reference frame. The particle velocities
before the collision are vs and vt , while those after the collision are v′s and v′t . The
angle θ is the scattering angle and the impact parameter b is the distance of closest
approach if the particles do not collide.
In dealing with binary collisions and in evaluating collision integrals, it is con-

venient to introduce the center-of-mass velocity, Vc, and the relative velocity, gst ,

b

�

vs

vtv�t

v�s Figure 4.2 Binary elastic
collision between two particles in
a laboratory reference frame. The
particle velocities are vs and vt
before the collision and v′s and v′t
after the collision. The angle θ is
the scattering angle and b is the
impact parameter. The collision
depicted is for a repulsion.
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of the colliding particles,

Vc = msvs + mtvt

ms + mt
, (4.6)

gst = vs − vt , (4.7)

where these expressions correspond to the velocities before the collision. These
equations can also be inverted to give vs and vt in terms of Vc and gst :

vs = Vc + mt

ms + mt
gst , (4.8)

vt = Vc − ms

ms + mt
gst . (4.9)

After the collision, similar expressions hold, but now all of the velocities are primed:

V′c =
msv′s + mtv′t

ms + mt
, (4.10)

g′st = v′s − v′t , (4.11)

v′s = V′c +
mt

ms + mt
g′st , (4.12)

v′t = V′c −
ms

ms + mt
g′st , (4.13)

where use has already been made of the fact that the particle masses do not change
in a collision. Conservation of momentum and kinetic energy in the collision yield
additional relations,

msvs + mtvt = msv′s + mtv′t , (4.14)

1

2
msv

2
s +

1

2
mtv

2
t =

1

2
msv

′ 2
s + 1

2
mtv

′ 2
t , (4.15)

and these can be used to relate Vc to V′c and gst to g′st . The comparison of Equa-
tions (4.6) for Vc, (4.10) for V′c, and the momentum conservation equation (4.14)
indicates that

V′c = Vc, (4.16)

which means the center-of-mass velocity does not change in a collision. Substituting
the velocities vs (4.8), vt (4.9), v′s (4.12), and v′t (4.13) into the energyEquation (4.15)
yields, after cancellation of terms,

g2st = g′ 2st , (4.17)
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e3

�

e2

e1

f

g�st

gst

Figure 4.3 The rotation of the
initial relative velocity gst into
the final velocity g′st as a result of
a binary elastic collision. The
magnitudes of the vectors are the
same and the angle between
them is the scattering angle θ .

which indicates that the magnitude of the relative velocity does not change in a
collision. The relative velocity merely changes direction, as shown in Figure 4.3.
The advantage of a center-of-mass reference frame in describing binary elastic

collisions is now obvious; the center-of-mass velocity, Vc, does not change and
the magnitude of the relative velocity gst is also constant. Therefore, if the initial
velocities of the colliding particles and the scattering angle are known, the velocities
after the collision can be calculated. In a gas, many particles can collide with a
given particle and, hence, there is a distribution of initial velocities. This aspect
of collisional dynamics is discussed later. The scattering angle, on the other hand,
depends on the nature of the collision process. For interparticle force laws that vary
inversely as the distance between the particles, r−a, the scattering angle depends
on the power of the force law, a, the magnitude of the relative velocity, and the
impact parameter. Therefore, the trajectories of the colliding particles are governed
by classical mechanics.1

Ultimately, the goal is either to calculate or measure the differential scattering
cross section that appears in the Boltzmann collision integral (3.9) so that the inte-
gral can be evaluated. When a calculation of this cross section is possible, it is first
necessary to calculate the trajectories of the colliding particles, and then the differ-
ential scattering cross section can be obtained. As a simple example of how these
calculations are done, it is instructive to consider a Coulomb collision between an
electron and a heavy ion (Figure 4.4). These particles are chosen because the ion
becomes the center-of-mass and the relative velocity gst is approximately equal to
the electron velocity. In this simple collision scenario, the electron approaches the
ion with an initial velocity v0 and impact parameter b0. For a central force, such as
the Coulomb one, the force, F, is directed along the line joining the two particles
and it is associated with a potential energy, V

F = − 1

4πε0

e2

r2
er , (4.18)

V (r) = − 1

4πε0

e2

r
, (4.19)
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p + u

fm

fm

rm r

f

−u

p−(−u)

b0

mev0

Figure 4.4 Trajectory of an
electron during a collision with a
heavy ion. The ion corresponds
to the center-of-mass of the
colliding particles and the
electron velocity is the relative
velocity. The (r,φ) are the polar
coordinates and (rm,φm) is the
point where the particles are at a
minimum distance. The
scattering angle θ is defined to be
positive for a repulsion.

where e is themagnitude of the electron charge, r is the distance between the charges,
and er is a unit vector along r. F is the force on the electron.
For a central force, the collision trajectory lies in a plane and it is governed by the

conservation of energy and momentum.1 Using the polar coordinates (r,φ) shown
in Figure 4.4, the conservation of energy and angular momentum yields

1

2
me

[(
dr

dt

)2
+ r2

(
dφ

dt

)2]
+ V (r) = 1

2
mev

2
0, (4.20)

mer
2 dφ

dt
= mev0b0, (4.21)

where dr/dt and r(dφ/dt) are the radial and angular velocities at location (r,φ),
respectively. The terms on the right-hand sides of Equations (4.20) and (4.21) are the
initial energy and angular momentum, respectively. The equation for the trajectory,
r(φ), can be obtained from

dr

dt
= dr

dφ

dφ

dt
. (4.22)

Using Equations (4.20) and (4.21) for dr/dt and dφ/dt, respectively, one obtains

(
dr

dφ

)2
= r4

b20

[
1− b20

r2
− 2V (r)

mev20

]
, (4.23)

or

dφ = ±b0
r2

[
1− b20

r2
− 2V (r)

mev20

]−1/2
dr, (4.24)

where the ± signs arise from taking the square root. The choice of sign depends on
which side of the point of minimum distance (rm,φm) is being considered.
Because the trajectory is symmetric about the point of minimum distance, the

scattering angle θ is related to θm by (Figure 4.4)

θ = π − 2φm. (4.25)
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Therefore, the point of closest approach (rm,φm)must be calculated.At this location,
dr/dφ = 0, and Equation (4.23) can then be used to calculate rm

r2m −
2V (rm)

mev20
r2m − b20 = 0. (4.26)

The other coordinate φm is obtained by integrating the trajectory Equation (4.24)
from infinity (r = ∞, φ = 0) to (rm, φm). As φ increases from 0 to φm, r decreases
and, hence, the minus sign must be used in Equation (4.24)

φm =
φm∫
0

dφ = −
rm∫

∞
dr

b0
r2

[
1− b20

r2
− 2V (r)

mev20

]−1/2
. (4.27)

The expression for θ therefore becomes

θ = π − 2b0
∞∫

rm

dr

r2

[
1− b20

r2
− 2V (r)

mev20

]−1/2
. (4.28)

Equation (4.28) for the scattering angle applies to any central force.
For the case of an electron and ion, V (r) is given by Equation (4.19), and

Equation (4.28) then becomes

θ = π − 2b0
∞∫

rm

dr

r2

[
1− b20

r2
− 2α0

r

]−1/2
, (4.29)

where

α0 = − 1

4πε0

e2

mev20
. (4.30)

Before evaluating the integral, it is necessary to first calculate rm from Equa-
tion (4.26), which becomes

r2m − 2α0rm − b20 = 0. (4.31)

The solution of this equation is rm = α0 + (α20 + b20)
1/2, where the (+) sign in the

quadratic formula is required to obtain a positive value for rm. For what follows, it
is useful to multiply and divide this solution by −α0 + (α20 + b20)

1/2, so that rm is
cast in a more convenient form

rm = b20
−α0 + (α20 + b20)

1/2
. (4.32)
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The integral in Equation (4.29) can be evaluated by introducing a change of variables.
Letting x = 1/r in Equation (4.29), one obtains

θ = π − 2b0
(1/rm)∫
0

dx
(
1− 2α0x − b20x

2
)−1/2

. (4.33)

This integral can be evaluated using a standard table of integrals∫
dx(c0 + c1x + c2x

2)−1/2 = 1√−c2
sin−1

[ −2c2x − c1
(c21 − 4c0c2)1/2

]
, (4.34)

which, for the coefficients in Equation (4.33), yields

θ = π − 2b0
{
1

b0
sin−1

[
b20x + α0

(α20 + b20)
1/2

]}1/rm
0

= π − 2b0
{
1

b0
sin−1(1)− 1

b0
sin−1

[
α0

(α20 + b20)
1/2

]}

= 2 sin−1
[

α0

(α20 + b20)
1/2

]
, (4.35)

where sin−1(1) = π/2.
The case just discussed, where an electron collides with an ion, can be generalized

to arbitrary Coulomb collisions by letting −e2 → qsqt and mev20 → µstg2st , where
µst = msmt/(ms+mt) is the reduced mass. Therefore, α0 (Equation 4.30) becomes

α0 = 1

4πε0

qsqt

µstg2st
. (4.36)

Also, an alternative form of Equation (4.35) is

tan

(
θ

2

)
= α0

b0
= 1

4πε0

qsqt

µstg2stb0
. (4.37)

Note that if the charges have the same sign, θ is positive (repulsion), while if the
charges have opposite signs, θ is negative (attractive). Also note that for b0 = ∞,
θ = 0; for b0 = α0, θ = π/2; and for b0 = 0, θ = π . Hence, scattering occurs
for all impact parameters, according to Equation (4.37). As will be discussed later,
shielding by oppositely charged particles provides a cut-off for the maximum impact
parameter applicable to Coulomb collisions.
In the case of Coulomb collisions, the variation of the interaction potential with

the particle separation (V ∼ 1/r) is well-known, but for collisions between neutral
particles or between ions and neutrals, the interaction potential is not that easy to
obtain. In principle, the forces between particles can be calculated using quantum
mechanics, but in practice only very simple systems can be calculated that way.



80 Collisions

Instead, most of the information on interparticle forces is obtained fromexperimental
data. The procedure that is usually adopted is to use theory as a guide to the form
of the force law and then to measure the diffusion (or mobility) of one species as it
drifts through another species (Section 5.1). This transport property is also calculated
using the Boltzmann collision integral and the assumed form for the interparticle
force law, and the parameters in the force law are then adjusted until the measured
and calculated transport properties agree. By conducting experiments with different
species temperatures, the force laws can be deduced for different relative velocities,
gst , between the colliding particles.
Over the years, several different forms for inverse-power interaction potentials

have been used.2 For purely repulsive or purely attractive potentials, the exper-
imental data can frequently be fitted with either inverse-power or exponential
potentials

V = ±K(α)

rα
(4.38)

or

V = ±V0e
−r/r0 , (4.39)

where K is a function of α and K(α), α, V0, and r0 are positive constants. The (+)
sign corresponds to repulsion and the (−) sign to attraction. If the potential energy
of interaction has both attractive and repulsive components, so that it exhibits a
potential well, it may be possible to represent it as a sum of two or more terms
like those in Equations (4.38) and (4.39). The simplest combination is the so-called
Lennard-Jones (α − β) interaction potential

V (r) = K(α)

rα
− K(β)

rβ
; α > β, (4.40)

where α and β are positive whole numbers and K(α) and K(β) are constants. The
first term is used to describe a short-range repulsive force and the second term a long-
range attractive force. In particular, the Lennard-Jones (12–6) interaction potential
has been very successful in describing elastic ion–neutral interactions. However,
other interaction potentials have been used, including multiple inverse-power terms
and combinations of exponential and inverse-power terms. This subject is discussed
again when the various collision terms are calculated using the Boltzmann collision
integral.

4.3 Collision cross sections

Up to this point, the focus has been on binary collisions. However, laboratory
measurements usually involve a beam or flux of particles that is scattered off tar-
get particles, and the resulting scattering cross section is measured. Consider the



4.3 Collision cross sections 81

u

du

b
db

Particle flux  Γ0

Figure 4.5 Scattering of particles in a symmetric center of force. A repulsive force is
depicted.

scenario depicted in Figure 4.5. A homogeneous, monoenergetic, flux of identical
particles, �0, is incident on a single fixed-target molecule that acts like a center
of force. For a repulsive force, the incident particles are scattered away from the
molecule, with those having a smaller impact parameter b being scattered through
a larger angle. An important cross section is the differential scattering cross section,
which characterizes the angular distribution of the scattered particles. Because of the
symmetry of the central force, the pattern of scattered particles is symmetric about
the axis through the target particle (Figure 4.5). Hence, the angular distribution
depends only on the polar scattering angle θ . Specifically, the differential scattering
cross section, σst(gst , θ), is defined as the number of particles scattered per solid
angle d�, per unit time, divided by the incident intensity. The relative velocity, gst ,
is between the colliding particles, which, for the case shown in Figure 4.5, is simply
the velocity of the incident flux. Note that gst is included as a parameter in σst(gst , θ)
because different incident velocities yield different scattering patterns.
Given this definition of σst(gst , θ), the number of particles scattered into a solid

angle d� per unit time is

dN = σst(gst , θ)d��0. (4.41)

Again, because of the symmetry of the scattering process, d� = 2π sin θ dθ
(Figure 4.5), which yields

dN = 2π sin θ dθ σst(gst , θ)�0. (4.42)

The number of particles scattered can also be related to the impact parameter, b

dN = �02πb db. (4.43)
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Equating Equations (4.42) and (4.43) yields an expression for the differential
scattering cross section

σst(gst , θ) = b

sin θ

∣∣∣∣dbdθ
∣∣∣∣, (4.44)

where the absolute value is taken because, as defined, σst(gst , θ) is a positive quantity
whereas the derivative can be negative.
Note that db/dθ can be calculated if the interparticle force law is known, and

hence, σst(gst , θ) can be evaluated. On the other hand, σst(gst , θ) can also be directly
measured in experiments. At any rate, the differential scattering cross section is
needed to evaluate the Boltzmann collision integral.
There are additional collision cross sections that are important and they involve

integrals over solid angle. For example, the total scattering cross section is defined
as the number of particles scattered per unit time divided by the incident flux, which
is all the particles scattered regardless of their direction

QT (gst) =
∫
d�σst(gst , θ). (4.45)

Themomentum transfer cross section is the totalmomentum transferred per unit time
to the target molecule divided by the incident flux. For the case shown in Figure 4.5,
where the target molecule is fixed, the momentum of an incident particle ism0v0 and
the incident momentum flux is m0v0�0. After the particles interact with the target
molecule, they are scattered at an angle θ . Therefore, the new momentum, in the
incident direction, of a given particle is m0v0 cos θ , and the momentum flux after
scattering becomes m0v0�0 cos θ . The change of momentum in the incident direc-
tion, which is themomentum transferred to the targetmolecule, ism0v0�0(1−cos θ).
The total momentum transferred to the target molecule per unit time is obtained by
integrating this quantity over σ(gst , θ)d�. After dividing by the incident momentum
flux, m0v0�0, one obtains the momentum transfer cross section

Q(1)
st (gst) =

∫
d�σst(gst , θ)(1− cos θ). (4.46)

As will be seen throughout this chapter, the momentum transfer cross section plays
a prominent role in diffusion theory. However, other cross sections are important,
and these arise when the collision terms for the higher velocity moments (stress,
heat flow, etc.) are evaluated. The general form of the collision cross sections is

Q(l)
st (gst) =

∫
d�σst(gst , θ)(1− cosl θ), (4.47)

where the superscript l is an integer.
BecauseCoulomb collisions play an important role in ionospheres and correspond

to long-range interactions, it is instructive to study this process in more detail. The
first step is to evaluate the differential scattering cross section (4.44). The connection
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between the scattering angle θ and the impact parameter b for Coulomb collisions is
given by Equation (4.37). Taking the derivative of Equation (4.37) yields an equation
for |db/dθ |:

∣∣∣∣dbdθ
∣∣∣∣ = 4πε0µstg2st

qsqt

b2

2 cos2
(
θ

2

) , (4.48)

and, therefore, the differential scattering cross section (4.44) is given by

σst(gst , θ) = 4πε0µstg2st
qsqt

b3

2 sin θ cos2
(
θ

2

) . (4.49)

Eliminating b3 with the aid of Equation (4.37), setting tan(θ/2) = sin(θ/2)/
cos(θ/2), and using the trigonometric identity sin θ = 2 sin(θ/2) cos(θ/2), yields
the classical form of the Rutherford scattering cross section for Coulomb collisions

σst(gst , θ) =
(

qsqt

4πε0µstg2st

)2 1

4 sin4
(
θ

2

) . (4.50)

Given that 2 sin2(θ/2) = 1− cos θ , this can also be expressed in the form

σst(gst , θ) =
(

qsqt

4πε0µstg2st

)2 1

(1− cos θ)2 . (4.51)

The momentum transfer cross section (4.46) for Coulomb collisions can now be
calculated by using Equation (4.51)

Q(1)
st (gst) = 2πα20

π∫
0

sin θdθ

1− cos θ = 2πα
2
0

1∫
−1

dx

1− x
= −2πα20

[
ln(1− x)

]1
−1,

(4.52)

where α0 is defined in Equation (4.36) and where the integral was transformed by
letting x = cos θ . Note that when the x = 1 (θ = 0, b = ∞) limit is taken, the
integral becomes infinite. That means the particles with infinitely small scattering
angles (b → ∞, θ → 0) contribute to make an infinite momentum transfer cross
section. As it turns out, all of the cross sections (4.47) are infinite for Coulomb
collisions. However, the situation can be remedied by putting a limit on the collision
impact parameter b, which is equivalent to putting a limit on the scattering angle
θ . The limit is justified because of Debye shielding. Specifically, when a charge is
placed in a plasma, it is surrounded by charges of the opposite sign, and its potential
is therefore confined to a spherical domain that has a radius approximately equal
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to the Debye length, λD = (ε0kT/nee2)1/2, where for simplicity, it is assumed that
all the species have a common temperature. As a consequence, the potential field
of an individual charged particle in a plasma does not effectively extend beyond a
distance of about λD, which means the maximum impact parameter, bmax, should
be set equal to λD. Associated with bmax is a minimum scattering angle, θmin, and
with this restriction, Equation (4.52) becomes

Q(1)
st (gst) = −2πα20

[
ln(1− x)

]cos θmin
−1 = 2πα20 ln

[
2

1− cos θmin
]

= 2πα20 ln



1

sin2
(
θmin

2

)

 . (4.53)

From Equation (4.35),

sin2
(
θmin

2

)
= α20

α20 + b2max
= 1

1+
(
λD

α0

)2 , (4.54)

where bmax has been replaced by λD in Equation (4.54). Substituting (4.54)
into (4.53) yields

Q(1)
st (gst) = 2πα20 ln

[
1+

(
λD

α0

)2]
. (4.55)

The quantity λD/α0 has significance and is usually denoted by �

� = λD

α0
= 4πε0µstg2st

qsqt
λD. (4.56)

In general, different interacting species have different �s, but the differences are
small and neglected in multi-component gas mixtures. Also, an average of g2st over
a Maxwellian velocity distribution, µst〈g2st〉 = 3kT , is usually inserted in �, where
the differences in species temperatures are ignored. Therefore, � can be written as

� = 9
(
4π

3
neλ

3
D

)
= 9NλD, (4.57)

where NλD is the number of particles in a Debye sphere (Equation 2.5). Typically,
NλD is very large and, hence, � is very large.
Setting λD/α0 = � in Equation (4.55), neglecting 1 compared to �2, and using

Equation (4.36) for α0, yields the momentum transfer cross section for Coulomb
collisions

Q(1)
st (gst) = 4π

(
qsqt

4πε0µstg2st

)2
ln�, (4.58)
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where ln� is the Coulomb logarithm, which is typically between 10 and 25 for
space plasmas.

4.4 Transfer collision integrals

The transfer integrals arise when velocity moments of the Boltzmann equation are
taken, and they are just moments of the Boltzmann collision integral (3.9). If ξs(cs)
is a general velocity moment, the corresponding moment of the Boltzmann collision
integral is

∫
d3cs ξs(cs)

δfs
δt
=
∫∫∫

d3cs d
3ct d� gstσst(gst , θ)

(
f ′s f ′t − fsft

)
ξs. (4.59)

For ξs= 1, mscs, 12msc2s , mscscs, and 1
2msc2s cs, the moments of the Boltzmann

collision integral are symbolically written as δns/δt, δMs/δt, δEs/δt, δPs/δt, and
δqs/δt, respectively (Equations 3.29, 3.35, 3.41, 3.42, and3.43).Additional collision
moments are δτ s/δt and δq′s/δt (Equations 3.62 and 3.63). Although the different
collision moments can be calculated by using Equation (4.59), it is mathematically
more convenient to use the following equivalent form (Appendix G):

∫
d3cs ξs(cs)

δfs
δt
=
∫∫∫

d3cs d
3ct d� gstσst(gst , θ)fsft(ξ

′
s − ξs), (4.60)

where ξ ′s = ξs(c′s) is themoment evaluatedwith the velocity found after the collision.
The integrals of the type shown in Equation (4.60) are called transfer integrals
because they represent the change in a transport property (momentum, energy, etc.)
as a result of collisions. The multiple integrals in Equation (4.60) are easier to
calculate than those in Equation (4.59) because they do not require the distribution
functions after the collision, f ′s f ′t .
The calculation of the multiple integrals in Equation (4.60) has to be done in two

steps. First, because d� is the solid angle in the colliding particles’ center-of-mass
reference frame, it is necessary to transform to this frame before integrating over the
solid angle. Subsequently, it is necessary to transform back to the (cs, ct) reference
frame so that the integrals over d3cs and d3ct can be performed. The first step is
common to all collision processes and will be done here, while the second step
requires a knowledge of the specific velocity dependence of σst(gst , θ) and, as will
be shown, this leads to additional complications.
To evaluate the integrals over d�, the necessary transformation is from (cs, ct)

to (Vc, gst), where the center-of-mass velocity, Vc, and the relative velocity, gst , are
given in Equations (4.6) and (4.7), respectively. The inversion of these equations
yields vs and vt in terms of Vc and gst , and these are given in Equations (4.8)
and (4.9), respectively. Because vs = cs + us and vt = ct + ut , Equations (4.6)
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to (4.9) can be easily modified to provide the transformations that are needed here

cs = V̂c + mt

ms + mt
gst , (4.61)

V̂c = 1

ms + mt

[
mscs + mtct − mt(us − ut)

]
, (4.62)

gst = cs − ct + us − ut , (4.63)

where

V̂c = Vc − us, (4.64)

and where an expression for ct is not needed because the moments are for ξs(cs).
Note that it has already been shown that Vc and |gst| do not change in a collision.
Likewise, because the average drift of the gas as a whole does not change in an
individual collision, the velocity V̂c (4.64) does not change in a collision.
In what follows, the integrals over solid angles are performed for ξs= 1, mscs,

and 1
2msc2s , and for the others only the final answers are given in order to avoid

excessive algebra. The integrals over solid angles are of the form

∫
d�σst(gst , θ)(ξ

′
s − ξs). (4.65)

For ξs= 1, the integral is zero because the particle’s mass does not change in an
elastic collision. Therefore, the corresponding transfer integral (4.60) immediately
yields

δns

δt
= 0 (4.66)

for all elastic collision processes.
For ξs = mscs, the velocity difference that is needed in the integral over d� is

(c′s − cs). However, cs is given in Equation (4.61) and c′s is the same equation with
a prime on g′st (V̂c does not change in a collision), which yields

ms(c′s − cs) = µst(g′st − gst), (4.67)

where µst = msmt/(ms +mt) is the reduced mass. Using Equation (4.67), the solid
angle integral (4.65) becomes

ms

∫
d�σst(gst , θ)(c′s − cs) = µst

∫
d�σst(gst , θ)(g′st − gst). (4.68)

This integral can be evaluated by using the coordinate system shown in Figure 4.3,
where gst is taken along the z-axis. The relative velocity, g′st , after an elastic collision
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is rotated through a scattering angle θ , but its magnitude does not change. Therefore,

g′st = gst(sin θ cosφ e1 + sin θ sin φ e2 + cos θe3), (4.69)

gst = gste3. (4.70)

Using Equations (4.69) and (4.70), the solid angle integral can be expressed as

ms

∫
d�σst(gst , θ)(c′s − cs)

= µst

2π∫
0

dφ

π∫
0

sin θ dθ σst(gst , θ)
[
sin θ cosφ e1

+ sin θ sin φ e2 + (cos θ − 1)e3
]
gst

= −2πµst

π∫
0

sin θ dθ σst(gst , θ)(1− cos θ)(gste3)

= −µstgstQ
(1)
st , (4.71)

where

Q(1)
st (gst) =

∫
d�σst(gst , θ)(1− cos θ) (4.72)

is the momentum transfer cross section that was deduced earlier using physical
arguments (Equation (4.46)).
For ξs = 1

2msc2s , the velocity difference that is relevant is c′ 2s − c2s . To get c
2
s you

merely take cs · cs using Equation (4.61), which yields

c2s = V̂ 2c +
2mt

ms + mt
V̂c · gst + m2t

(ms + mt)2
g2st . (4.73)

The quantity c′ 2s is obtained from the same formula by evaluating all velocities after
the collision. However, because V̂c and |gst| do not change in a collision,

1

2
ms(c

′ 2
s − c2s ) = µstV̂c · (g′st − gst), (4.74)

and the integral over solid angle (4.65) then becomes

ms

2

∫
d�σst(gst , θ)(c

′ 2
s − c2s ) = V̂c · µst

∫
d�σst(gst , θ)(g′st − gst)

= −µst(V̂c · gst)Q
(1)
st . (4.75)

Note that the first integral on the right-hand side of Equation (4.75) is the same one
that appeared in Equation (4.68) and this leads to the result given in Equation (4.71).
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When ξs is set equal to mscscs and 12msc2s cs, the integrals over solid angles (4.65)
involve a second-order tensor with respect to gst . The tensor involved is

g′stg′st − gstgst = g2st[sin2 θ cos2 φ e1e1 + sin2 θ cosφ sin φ e1e2

+ sin θ cos θ cosφ e1e3 + sin2 θ cosφ sin φ e2e1
+ sin2 θ sin2 φ e2e2 + sin θ cos θ sin φ e2e3
+ sin θ cos θ cosφ e3e1 + sin θ cos θ sin φ e3e2
+ (cos2 θ − 1)e3e3] (4.76)

for the coordinate system shown in Figure 4.3. The quantities such as e1e2 are
unit tensors that define the nine tensor locations (like unit vectors defining three
orthogonal directions). When Equation (4.76) is integrated over solid angle, many
terms drop out because of the φ integration and the expression reduces to

∫
d�σst(gst , θ)(g′stg′st − gstgst) = 1

2
(g2stI− 3gstgst)Q

(2)
st , (4.77)

where I = e1e1 + e2e2 + e3e3 is the unit dyadic and

Q(2)
st (gst) =

∫
d�σst(gst , θ)(1− cos2 θ) (4.78)

is a higher-order collision cross section.
The rest of the details concerning the evaluation of the integrals over solid angle

for the moments ξs = mscscs and 12msc2s cs are not discussed here.
3 However, for

future reference, it is useful to summarize these and the two moments derived above
in one place:

ms

∫
d�σst(gst , θ)(c′s − cs) = −µstgstQ

(1)
st (4.79a)

ms

2

∫
d�σst(gst , θ)(c

′ 2
s − c2s ) = −µst(V̂c · gst)Q

(1)
st (4.79b)

ms

∫
d�σst(gst , θ)(c′sc′s − cscs) = −µst(V̂cgst + gstV̂c)Q

(1)
st

+ 1
2

µ2st

ms
(g2stI− 3gstgst)Q

(2)
st (4.79c)

ms

2

∫
d�σst(gst , θ)(c

′ 2
s c

′
s − c2s cs) = −

1

2
µst

[(
V̂2c +

µ2stg
2
st

m2s

)
gst

+ 2V̂c(V̂c · gst)

]
Q(1)

st +
1

2

µ2st

ms
V̂c

·
(
g2stI− 3gstgst

)
Q(2)

st . (4.79d)
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With the above expressions for the integrations over solid angles in the center-
of-mass reference frame, the transfer integrals (4.60) become

∫
d3cs ξs

δfs
δt
=
∫∫

d3cs d
3ct fsftgst

[∫
d�σst(gst , θ)(ξ

′
s − ξs)

]
. (4.80)

The next step is to transform the results of the solid angle integrations (4.79a–d) from
(V̂c, gst) back to (cs, ct) and then perform the integrals over d3cs and d3ct . However,
these remaining integrals can be evaluated rigorously only for the so-calledMaxwell
molecule interactions, where σst ∼ 1/gst . In this case gstσst is a constant, which
means that gstQ

(1)
st and gstQ

(2)
st are also constants and can be removed from the

integrals. At that point, no integrations actually have to be performed because the
integrals become recognizable velocity moments, such as ns, nt , us, etc. On the other
hand, for all other interactions, it is necessary to adopt approximate expressions for
fs and ft in order to evaluate the transfer integrals.

4.5 Maxwell molecule collisions

Maxwell molecule collisions correspond to an interaction potential of V ∼ 1/r4
and σst ∼ 1/gst . In this case, the momentum transfer integral can be obtained from
Equation (4.80) by setting ξs = mscs and by using Equations (4.79a) and (3.35)

δMs

δt
= −µst

[
gstQ

(1)
st

] ∫∫
d3cs d

3ct fsftgst . (4.81)

Expressing gst in terms of cs and ct with the aid of Equation (4.63) and noting that
〈cs〉 = 〈ct〉 = 0, Equation (4.81) becomes

δMs

δt
= nsmsνst(ut − us), (4.82)

where the momentum transfer collision frequency is defined as

νst = ntmt

ms + mt

[
gstQ

(1)
st

]
. (4.83)

The energy transfer integral is obtained from Equation (4.80) by setting ξs =
1
2msc2s and by using Equations (4.79b) and (3.41)

δEs

δt
= −µst

[
gstQ

(1)
st

] ∫∫
d3cs d

3ct fsft(V̂c · gst). (4.84)
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Table 4.1 Neutral gas polarizabilities.4,5

Species γn(10−24 cm3) Species γn(10−24 cm3)

CH4 2.59 N2 1.76
CO 1.97 N2O 3.00
CO2 2.63 Na 2.70
H 0.67 NH3 2.22
H2 0.82 NO 1.74
H2O 1.48 O 0.77
He 0.21 O2 1.60
N 1.13 SO2 3.89

The term V̂c · gst can be obtained from Equations (4.62) and (4.63)

V̂c · gst = 1

ms + mt
[msc

2
s − mtc

2
t + (mt − ms)ct · cs

− (mt − ms)cs · (us − ut)+ 2mtct · (us − ut)− mt(us − ut)
2].

(4.85)

When this term is substituted into Equation (4.84) and use is made of the relations
〈c2s 〉 = 3kTs/ms and 〈c2t 〉 = 3kTt/mt (see Chapter 3), the result is

δEs

δt
= nsmsνst

ms + mt

[
3k(Tt − Ts)+ mt(us − ut)

2]. (4.86)

The transfer integrals for ξs = mscscs and 12msc2s cs can be calculated in a manner
similar to that for δMs/δt and δEs/δt, but the algebra is considerably more involved.
For easy reference, these collision terms, as well as those derived above, are listed
below. First, however, it should be noted that Maxwell molecule collisions are a
reasonable approximation for elastic (nonresonant) ion–neutral interactions. As the
ion approaches the neutral, the neutral becomes polarized and the interaction is
between the ion and an induced dipole, for which the interaction potential is

V = − 1

4πε0

γne2

2r4
. (4.87)

In Equation (4.87), γn is the neutral polarizability; values are given in Table 4.1 for
the neutral gases relevant to ionospheres. For this interaction potential, it has been
shown that the collision frequency (4.83) can be expressed as6

νin = 2.21π nnmn
mi + mn

(
γne2

µin

)1/2
, (4.88)

where subscripts i and n are used to emphasize that Maxwell molecule collisions
only apply to elastic ion–neutral interactions.
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The transfer integrals, including the two previously derived terms (4.82)
and (4.86), for Maxwell molecule collisions are summarized as follows:

δni

δt
= 0 (4.89a)

δMi

δt
= −

∑
n

nimiνin(ui − un) (4.89b)

δEi
δt
= −

∑
n

nimiνin
mi + mn

[
3k(Ti − Tn)− mn(ui − un)2

]
(4.89c)

δPi
δt
= −

∑
n

2miνin
mi+mn

{
Pi− ni

nn
Pn − nimn(ui− un)(ui− un)+ 3

4

mn
mi

Q(2)
in

Q(1)
in

×
[
τ i + ρi

ρn
τ n + ρi(ui − un)(ui − un)− ρi

3
(ui − un)2I

]}
(4.89d)

δτ i

δt
= −

∑
n

2miνin
mi + mn

{
τ i

[
1+ 3mn

4mi

Q(2)
in

Q(1)
in

]
−nimn

×
[
1

ρn
τ n + (ui − un)(ui − un)− 1

3
(ui − un)2I

][
1− 3

4

Q(2)
in

Q(1)
in

]}
.

(4.89e)

δqi
δt
= −

∑
n

νin

{
A(1)in qi+

1

2
A(2)in Pi · (ui− un)

+ ρi

ρn
A(4)in

[
Pn · (ui− un)− qn

]+ (ui − un)

×
[
3

2
pn
ρi

ρn
A(4)in +

3

2
piA

(3)
in +

1

2
ρi(ui − un)2A

(4)
in

]}
(4.89f )

where

A(1)in =
1

(mi + mn)2

[
3m2i + m2n + 2mimn

Q(2)
in

Q(1)
in

]
(4.90a)

A(2)in =
1

(mi + mn)2

[
2(mi − mn)

2 + mn(mi − 3mn)Q
(2)
in

Q(1)
in

]
(4.90b)

A(3)in =
1

(mi + mn)2

[
(mi − mn)

2 + mn(mn + 3mi)Q
(2)
in

Q(1)
in

]
(4.90c)
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A(4)in =
2m2n

(mi + mn)2

[
2− Q(2)

in

Q(1)
in

]
. (4.90d)

The ratio of collision cross sections, Q(2)
in /Q

(1)
in , varies between 0.7 and 1.0 for an

ion–neutral interaction dominated by an induced dipole attraction, with a short-range
hard core repulsion.7 A reasonable value to use is 0.8.
The transfer integrals for Maxwell molecule collisions are valid for arbitrary

drift velocity differences and arbitrary temperature differences between the ion and
neutral gases.

4.6 Collision terms for Maxwellian velocity
distributions

Asnoted earlier, for general collision processes it is necessary to have an approximate
expression for the species distribution functions, in order to evaluate the transfer inte-
grals (4.80). The simplest situation is when each species in the gas can be described
by drifting Maxwellian distributions (Equation 3.44). This case is known as the
five-moment approximation because each species in the gas is characterized by five
parameters (ns = 1, us = 3, Ts = 1). With regard to the transfer integrals, the
integrations over solid angles have already been done and the results are given in
Equations (4.79a–d). When Maxwell molecule collisions were considered, the next
step was to transform from the (V̂c, gst) system back to the (cs, ct) system and then to
integrate over d3cs d3ct . However, for general collision processes, this latter trans-
formation of velocities is not useful and, as will be shown, it is more convenient to
perform the velocity integrations in terms of the relative velocity, gst .
For Maxwellian velocity distributions and for particle collisions that are gov-

erned by inverse-power interaction potentials, it is possible to derive collision terms
that are valid for arbitrary drift velocity differences and arbitrary temperature dif-
ferences between the interacting species in a gas mixture. However, even in this
simple five-moment approximation, the calculations are laborious. Therefore, in
what follows, only the momentum transfer collision term is calculated and only in
the limit when the drift velocity differences between the various species are much
smaller than typical thermal speeds. Although only this case is considered, it is
still more than adequate to establish clearly how the collision terms are evaluated.
Then, for future reference, the general collision terms are listed for important special
cases.
The momentum transfer collision integral is obtained from Equation (4.80) using

ξs = mscs

δMs

δt
=
∫∫

d3cs d
3ct fsftgst

[
ms

∫
d�σst(gst , θ)(c′s − cs)

]
. (4.91)
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The integration over a solid angle is given in Equation (4.79a), so that δMs/δt
becomes

δMs

δt
= −µst

∫∫
d3cs d

3ct fsftgstQ
(1)
st gst . (4.92)

When the colliding gases are described by Maxwellian distribution functions, the
term fsft can be expressed as

fsft = nsnt

(
ms

2πkTs

)3/2( mt

2πkTt

)3/2
exp

(
− msc2s
2kTs

− mtc2t
2kTt

)
. (4.93)

The integrations over d3cs and d3ct can be performed by introducing the following
velocities3

c∗ = Vc − uc + β�u+ βg, (4.94)

g∗ = −g −�u, (4.95)

where Vc is the center-of-mass velocity (4.6), g is the relative velocity (4.7) and

uc = msus + mtut

ms + mt
, �u = ut − us. (4.96)

The parameter β and other temperature-dependent factors to be used later are

a2 = 2kTsTt

mtTs + msTt
, α2 = 2kTst

µst
, β = µst

ms + mt

Tt − Ts

Tst
. (4.97)

Note that the subscripts s and t have been temporarily left off gst . In Equation (4.97),
µst and Tst are the reduced mass and reduced temperature, respectively;

µst = msmt

ms + mt
, (4.98)

Tst = msTt + mtTs

ms + mt
. (4.99)

The velocity transformation is from (cs, ct) to (c∗, g∗), and with the latter velocities
defined in Equations (4.94) and (4.95), the connection between the two sets of
velocities is

cs = c∗ − ψg∗, (4.100)

ct = c∗ + (1− ψ)g∗, (4.101)

where

ψ = mtTs

mtTs + msTt
, (1− ψ) = msTt

mtTs + msTt
(4.102)
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and where the transformation of d3cs d3ct is accomplished with the aid of a Jacobian
(Appendix C)

d3cs d
3ct = d3c∗ d3g∗. (4.103)

Using Equations (4.100), (4.101), and (4.97), the term fsft (4.93) can be written as

fsft = nsnt

π3a3α3
exp

(
− c2∗

a2
− g2∗
α2

)
. (4.104)

Substituting Equations (4.103) and (4.104) into the expression for δMs/δt (4.92)
yields

δMs

δt
= − µstnsnt

π3a3α3

∫
d3c∗ e−c2∗/a2

∫
d3g∗ e−g2∗/α2gQ(1)

st (g)g. (4.105)

The first integral can be easily evaluated using a spherical coordinate system in
velocity space because the integrand depends only on the magnitude of c∗

∫
d3c∗ e−c2∗/a2 = 4π

∞∫
0

dc∗c2∗e−c2∗/a2 = π3/2a3. (4.106)

In the second integral, Equation (4.95) is used to express g2∗ in terms of g and �u

g2∗ = g2 + 2g ·�u+ (�u)2 (4.107)

and use is made of the fact that d3g∗ = d3g (the only difference being a displace-
ment of the origin of velocity space). With these changes, the second integral in
Equation (4.105) becomes

∫
d3g gQ(1)

st (g)g exp
[
−g2 + 2g ·�u+ (�u)2

α2

]
. (4.108)

This integral can be evaluated by using a spherical coordinate system with �u
taken along the polar axis, as shown in Figure 4.6. In this coordinate system,
Equation (4.108) becomes

∞∫
0

dg g4Q(1)
st (g)

2π∫
0

dφ′
π∫
0

sin θ ′ dθ ′

× exp
[
−g2 + 2g(�u) cos θ ′ + (�u)2

α2

]

× [sin θ ′ cosφ′e1 + sin θ ′ sin φ′e2 + cos θ ′e3], (4.109)
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e3
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e2

f�

u�

e1

g

Figure 4.6 Coordinate system in
velocity space used to evaluate
the general transfer collision
integrals. �u = ut − us.

where d3g= g2 sin θ ′ dθ ′ dφ′. After integrating over dφ′ and letting x= cos θ ′,
Equation (4.109) can be expressed as

2πe3

∞∫
0

dg g4Q(1)
st (g)

1∫
−1
dx x exp

[
−g2 + 2g(�u)x + (�u)2

α2

]
. (4.110)

The integrals in Equation (4.110) can be evaluated for inverse-power interaction
potentials, and the resultingmomentum transfer collision terms are valid for arbitrary
(ut−us) and (Tt−Ts). This is discussed inmore detail later. However, it is instructive
to consider the limit of small relative drift velocities, i.e., when the drift velocity
differences are much smaller than thermal speeds. In this limit, the exponential in
Equation (4.110) can be expanded as follows:

exp

[
−g2 + 2g(�u)x + (�u)2

α2

]
= e−g2/α2e−[2g(�u)x+(�u)2]/α2

= e−g2/α2
[
1− 2g(�u)x

α2

]
, (4.111)

where the second exponential on the right-hand side is expanded in a series because
the argument is small (Appendix D) and where the (�u/α)2 term is second-order in
�u and can be neglected [α is a thermal speed; see Equation (4.97)]. Substituting
Equation (4.111) into Equation (4.110) yields

2πe3

∞∫
0

dg g4Q(1)
st (g)e

−g2/α2
1∫

−1
dx

[
x − 2g(�u)

α2
x2
]
. (4.112)

The integration over dx is −(4/3)g(�u)/α2 and Equation (4.112) then becomes

−8π
3

(�u)

α2
e3

∞∫
0

dg e−g2/α2g5Q(1)
st (g). (4.113)
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This remaining integral over g can be expressed in terms of the so-called Chapman–
Cowling collision integrals,8 which are defined, in general, as

�
(l,j)
st = 1√

4π

(
µst

2kTst

)(2j+3)/2 ∞∫
0

dgst e
−µstg2st/(2kTst)g(2j+3)st Q(l)

st (gst).

(4.114)

Remembering that α = (2kTst/µst)
1/2, the integral in Equation (4.113) can be

expressed as α5
√
4π�(1,1)

st . Using this result and noting that �ue3 = ut − us,
Equation (4.113) becomes

−16π
3/2

3
α3�

(1,1)
st (ut − us). (4.115)

The term given by Equation (4.115) is the result for the second integral in Equa-
tion (4.105) in the limit of small (ut − us), while the result for the first integral is
given in Equation (4.106). The substitution of these results into Equation (4.105)
yields the final expression for δMs/δt

δMs

δt
= nsmsνst(ut − us), (4.116)

where the momentum transfer collision frequency is defined as

νst = 16

3

ntmt

ms + mt
�
(1,1)
st . (4.117)

The advantage of introducing the Chapman–Cowling collision integrals (4.114) is
that they have been evaluated for many collision processes. They also appear in the
higher-order transport equations, as will be shown in Section 4.7.
As noted earlier, the integral in Equation (4.110) can be evaluated without

approximation for some specific collision processes. Hard-sphere interactions are an
example of such a case, and this case is outlined here as an illustration. The collision
cross section for hard spheres, Qst = πσ 2, is a constant (σ is the sum of the radii of
the colliding particles). For this case, Equation (4.110) becomes

2πe3Q
(1)
st

∞∫
0

dg g4
1∫

−1
dxx exp

[
−g2 + 2g(�u)x + (�u)2

α2

]

= e3Q
(1)
st

[
−8π
3
α4(�u)�st

]
, (4.118)
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where

�st = 3
√
π

8

(
εst + 1

εst
− 1

4ε3st

)
erf(εst)+ 3

8

(
1+ 1

2ε2st

)
e−ε2st , (4.119)

εst = |ut − us|
(2kTst/µst)1/2

, (4.120)

and erf is the error function (Appendix D). The substitution of (4.118) and (4.106)
into (4.105) yields an expression for δMs/δt that is completely general for hard-
sphere collisions

δMs

δt
= nsms

[
16

3

ntmt

ms + mt

α√
4π

Q(1)
st

]
(ut − us)�st . (4.121)

Using the definitions of α (4.97) and the Chapman–Cowling collision inte-
gral (4.114), one obtains

�
(1,1)
st = α√

4π
Q(1)

st (4.122)

for hard-sphere interactions. This result, in combination with the collision frequency
definition (4.117), yields the final expression for δMs/δt,

δMs

δt
= nsmsνst(ut − us)�st . (4.123)

Equation (4.123) is valid for arbitrary drift velocity differences and arbitrary
temperature differences between the interacting gases. Although it was derived for
hard-sphere interactions, the general form is valid for all central force interactions;
only νst and �st change. If species s collides with several other species, a sum over
species t should appear in Equation (4.123).Also, an equation for the energy transfer
collision term, δEs/δt, can be derived in a manner similar to that described above for
δMs/δt. For future reference, the general expressions for the five-moment collision
terms are summarized as follows:

δns

δt
= 0, (4.124a)

δMs

δt
=
∑

t

nsmsνst(ut − us)�st , (4.124b)

δEs

δt
=
∑

t

nsmsνst

ms + mt

[
3k(Tt − Ts)�st + mt(us − ut)

2�st

]
, (4.124c)

where νst is given in Equation (4.117) and where�st and�st are velocity-dependent
correction factors that are different for different collision processes.
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For the ionospheres, the important velocity-dependent correction factors pertain
to Coulomb, hard-sphere, and elastic ion–neutral (Maxwell molecule) collisions.
These are summarized as follows:

Coulomb:

�st = 3
√
π

4

erf(εst)

ε3st
− 3
2

1

ε2st
e−ε2st , (4.125a)

�st = e−ε2st , (4.125b)

Hard sphere:

�st = 3
√
π

8

(
εst + 1

εst
− 1

4ε3st

)
erf(εst)+ 3

8

(
1+ 1

2ε2st

)
e−ε2st , (4.126a)

�st =
√
π

2

(
εst + 1

2εst

)
erf(εst)+ 1

2
e−ε2st , (4.126b)

Maxwell molecule:

�st = 1, (4.127a)

�st = 1, (4.127b)

where εst is given by Equation (4.120) and erf(x) is the error function (Appendix D).
Note that the hard-sphere result for �st in Equation (4.126a) is the same as that
derived above (4.119). It is repeated in this summary to provide an easy reference.
In the limit of very small relative drifts between the interacting species (εst �

1), �st = �st = 1 for all inverse-power interaction potentials, including those
listed above. In the opposite limit of very large relative drifts (εst � 1), �st and
�st → 0 for Coulomb collisions, while �st → 3π1/2εst/8 and �st → π1/2εst/2
for hard-sphere interactions.

4.7 Collision terms for 13-moment velocity
distributions

The assumption that each species in the gas is described by separate drifting
Maxwellians is not adequate formost of the ionospheres because this level of approx-
imation does not take into account stress and heat flow processes. To include these
and other effects, it is necessary to assume that each species in the gas can be repre-
sented by a 13-moment distribution function (Equation 3.49). Unfortunately, general
collision terms have not been derived for this expression because of the associated
mathematical difficulties involved. Collision terms for the 13-moment approxima-
tion have been derived in the limit of small drift velocity differences between the
interacting species, but arbitrary temperature differences. These collision terms are
known as Burgers semilinear collision terms. If it is further assumed that the species
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temperature differences are small compared to the individual species temperatures,
the 13-moment collision terms are known as Burgers linear collision terms.
In the linear approximation, the gas is assumed to be sufficiently collision-

dominated that the distributions are approximately Maxwellian. That is, the heat
flow and stress terms in the 13-moment expansions for fs and ft can be treated as
small quantities. In addition, as noted before, (ut −us) and (Tt −Ts) are also treated
as small quantities. Therefore, products or powers of qs, qt , τ s, τ t , (ut − us), and
(Tt−Ts) are neglected. Starting from the 13-moment expressions for fs and ft , (3.49),
the term fsft that appears in the transfer collision integral (4.80) can be simplified
when the small quantities are neglected and it reduces to

fsft = nsnt

(
ms

2πkTs

)3/2( mt

2πkTt

)3/2
exp

(
−msc2s
2kTs

− mtc2t
2kTt

)

×
[
1+ ms

2kTsps
τ s : cscs+ mt

2kTtpt
τ t : ctct −

(
1− msc2s

5kTs

)
ms

kTsps
qs · cs

−
(
1− mtc2t

5kTt

)
mt

kTtpt
qt · ct

]
. (4.128)

The procedure used to calculate the transfer collision integrals with fsft given by
Equation (4.128) is similar to that described in the previous subsection for the five-
moment approximation and small relative drifts, except for the additional assumption
of small species temperature differences. For example, δMs/δt is still given byEqua-
tion (4.92), and the change in velocity integration variables given in Equations (4.94)
to (4.103) is still needed. Now, however, the product of driftingMaxwellians inEqua-
tion (4.104) must be replaced with the velocity transformation of Equation (4.128).
Therefore, the double integral in Equation (4.105) will contain a series of terms,
and they have to be integrated in a manner similar to the procedure outlined via
Equations (4.106) to (4.116).
The linear collision terms for the 13-moment approximation are not derived here

because of the extensive algebra involved.3 However, they are summarized below
because of their wide applicability in aeronomy and space physics. A convenient
form for the 13-moment linear collision terms is9

δns

δt
= 0, (4.129a)

δMs

δt
= −

∑
t

nsmsνst(us − ut)+
∑

t

νst
zstµst

kTst

(
qs − ρs

ρt
qt

)
, (4.129b)

δEs

δt
= −

∑
t

nsmsνst

ms + mt
3k(Ts − Tt), (4.129c)
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δPs

δt
= −

∑
t

2msνst

ms+mt

[
Ps− ns

nt
Pt + 3

10
z′′st

mt

ms

(
τ s+ ρs

ρt
τ t

)]
− 3
5
z′′ssνssτ s,

(4.129d)

δqs

δt
= −

∑
t

νst

[
D(1)

st qs − D(4)
st
ρs

ρt
qt

+ 5
2
ps(us − ut)

(
1− mtzst

ms + mt

)]
− 2
5
z′′ssνssqs, (4.129e)

and δτ s/δt and δq′s/δt can be obtained from the definitions given in Equations
(3.62) and (3.63), respectively;

δτ s

δt
= −

∑
t

2msνst

ms + mt

[
τ s

(
1+ 3

10
z′′st

mt

ms

)

− ns

nt
τ t

(
1− 3

10
z′′st
)]
−3
5
z′′ssνssτ s, (4.129f )

δq′s
δt
= −2

5
z′′ssνssqs −

∑
t

νst

{
qs

[
D(1)

st +
5

2
zst
µst

ms

Ts

Tst

]

− ρs

ρt
qt

[
D(4)

st +
5

2
zst
µst

ms

Ts

Tst

]
−5
2
ps

mtzst
ms + mt

(us − ut)

}
, (4.129g)

and where

D(1)
st =

1

(ms + mt)2

[
3m2s −

5

2
mt(ms + mt)zst + m2t z

′
st +

4

5
msmtz

′′
st

]
,

(4.130a)

D(4)
st =

1

(ms + mt)2

[
3m2t −

5

2
mt(ms + mt)zst + m2t z

′
st −

4

5
m2t z

′′
st

]
,

(4.130b)

zst = 1− 2
5

�
(1,2)
st

�
(1,1)
st

, (4.131a)

z′st =
5

2
+ 2
5

�
(1,3)
st − 5�(1,2)

st

�
(1,1)
st

, (4.131b)

z′′st =
�
(2,2)
st

�
(1,1)
st

, (4.131c)
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z′′′st =
�
(2,3)
st

�
(1,1)
st

. (4.131d)

In these equations, ρ = nm is the mass density, µst is the reduced mass (4.98),
Tst is the reduced temperature (4.99), νst is the momentum transfer collision
frequency (4.117) and �(l,j)

st is the Chapman–Cowling collision integral (4.114).
Note that the parameters zst , z′st , z′′st , z′′′st , D

(1)
st , and D(4)

st become pure numbers once
the identity of the colliding particles is known. Values for these parameters and the
associated momentum transfer collision frequency are given in Section 4.8 for the
collision processes relevant to the ionospheres.
As will be shown in Chapter 5, the heat flow terms that appear in the momentum

collision term (4.129b) account for thermal diffusion effects, and they also provide
corrections to ordinary diffusion. The drift velocity terms in the heat flow collision
term (4.129e) account for thermoelectric and diffusion thermal effects.
The semilinear collision terms are valid for small drift velocity differences and

arbitrary temperature differences between the interacting species. For this case, the
continuity, momentum, and energy collision terms (4.129a–c) are unchanged, but
the pressure tensor (4.129d) and heat flow (4.129e) collision terms (and consequently
δτ s/δt and δq′s/δt) are modified;

δPs

δt
=
∑

t

nsmsνst

ms + mt
2k(Tt − Ts)I−

∑
t

2msνst

ms + mt

Tt

Tst

(
τ s − nsTs

ntTt
τ t

)

−
∑

t

′ νst

ms + mt

[
3

5
mtz

′′
st − 2µst(1− zst)

(Tt − Ts)

Tst

](
τ s + ρs

ρt
τ t

)
,

(4.132a)

δqs

δt
=
∑

t

nsmsνst

ms+mt
(ut−us)

{
5

2
kTs

[
Tt

Tst
+ mt

ms

Tst

Ts
(1− zst)

]
−k(Tt−Ts)yst

}

−
∑

t

′νstqs

[
3m2s

(ms + mt)2

T 2t
T 2st
+ B(3)st

(
z′st −

5

2
zst

)
− B(1)st

+ msmt

(ms + mt)2

Tt

Tst

(
4

5
z′′st −

5

2

Ts

Tst
zst

)]

+
∑

t

′νst
ρs

ρt
qt

[
3m2t

(ms + mt)2

T 2s
T 2st
+ B(3)st

(
z′st −

5

2
zst

)
+ B(2)st

− msmt

(ms + mt)2

Ts

Tst

(
4

5

mt

ms
z′′st +

5

2

Tt

Tst
zst

)]
, (4.132b)
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where

yst = mt

ms + mt

[
2z′′st − 5

Ts

Tst
− 15
2

ms(1− zst)

ms + mt

(Tt − Ts)

Tst

]
, (4.133a)

B(1)st =
mtµst

(ms + mt)2

(Tt − Ts)

Tst

[
4

5
z′′′st − 2z′′st +

ms

mt

Tt

Tst
(6− 11zst)

]
, (4.133b)

B(2)st =
mtµst

(ms + mt)2

(Tt − Ts)

Tst

[
−4
5
z′′′st + 2z′′st +

Ts

Tst
(6− 11zst)

]
, (4.133c)

B(3)st =
m2t

(ms + mt)2

[
1+ 3m2s

(ms + mt)2

(Tt − Ts)
2

T 2st

]
. (4.133d)

The prime on the summations in Equations (4.132a,b) means that the case t = s is
included.

4.8 Momentum transfer collision frequencies

The relevant collision processes for ionospheres, which are partially ionized gases,
includeCoulomb interactions, nonresonant ion–neutral interactions, resonant charge
exchange, and electron–neutral interactions. In what follows, expressions for the
appropriate Chapman–Cowling collision integrals and momentum transfer collision
frequencies are presented.
The transport cross sections and collision integrals that are needed in the eval-

uation of the collision terms have been calculated for a general inverse-power
interparticle force law of the form8

F = Kst

ra
, (4.134)

where F is the magnitude of the force, Kst and a are constants, and r is the distance
between the particles. For such a force law,

Q(l)
st = 2πAl(a)

(
Kst

µstg2st

)2/(a−1)
, (4.135)

�
(l,j)
st =

√
π

2
Al(a)�

(
j + 2− 2

a − 1
)(

Kst

µst

)2/(a−1)(2kTst

µst

)(a−5)/[2(a−1)]
,

(4.136)

where

Al(a) =
∞∫
0

(1− cosl θ)b̂0 db̂0. (4.137)
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Table 4.2 Values of A1(a) and A2(a) for selected
values of a.8

a A1(a) A2(a)

5 0.422 0.436
7 0.385 0.357
9 0.382 0.332
11 0.383 0.319
15 0.393 0.309
∞ 0.5 0.333

In Equations (4.135) to (4.137), �(x) is a gamma function (Appendix D), θ is the
scattering angle, and b̂0 = b(µstg2st/Kst)

1/(a−1) is a nondimensional impact parame-
ter. The integral in Equation (4.137) can be evaluated numerically by quadrature, and
the resulting values of Al(a) are pure numbers that depend only on l and a. Values
are given in Table 4.2 for various combinations of these parameters. The momentum
transfer collision frequency (4.117) and the various ratios of the Chapman–Cowling
integrals (4.131a–c) for inverse-power force laws can be expressed as

νst = 8
√
π

3
A1(a)�

(
3− 2

a − 1
)

ntmt

ms + mt

(
Kst

µst

)2/(a−1)

×
(
2kTst

µst

)(a−5)/[2(a−1)]
, (4.138)

zst = −1
5

a − 5
a − 1 , (4.139a)

z′st =
5

2
− 2
5

(a + 1)(3a − 5)
(a − 1)2 , (4.139b)

z′′st =
3a − 5
a − 1

A2(a)

A1(a)
. (4.139c)

For Coulomb interactions, the quantities that are needed in the 13-moment
collision terms (4.129a–g) are (in cgs units)

νst = 16
√
π

3

ntmt

ms + mt

(
2kTst

µst

)−3/2 e2s e2t
µ2st

ln�, (4.140)

zst = 3

5
, z′st =

13

10
, z′′st = 2, (4.141a)
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Table 4.3 The collision frequency coefficients Bst for ion–ion interactions.

t

s H+ He+ C+ N+ O+ CO+ N+2 NO+ O+2 CO+2
H+ 0.90 1.14 1.22 1.23 1.23 1.25 1.25 1.25 1.25 1.26
He+ 0.28 0.45 0.55 0.56 0.57 0.59 0.59 0.60 0.60 0.61
C+ 0.102 0.18 0.26 0.27 0.28 0.31 0.31 0.31 0.31 0.32
N+ 0.088 0.16 0.23 0.24 0.25 0.28 0.28 0.28 0.28 0.30
O+ 0.077 0.14 0.21 0.22 0.22 0.25 0.25 0.26 0.26 0.27
CO+ 0.045 0.085 0.13 0.14 0.15 0.17 0.17 0.17 0.18 0.19
N+2 0.045 0.085 0.13 0.14 0.15 0.17 0.17 0.17 0.18 0.19
NO+ 0.042 0.080 0.12 0.13 0.14 0.16 0.16 0.16 0.17 0.18
O+2 0.039 0.075 0.12 0.12 0.13 0.15 0.15 0.16 0.16 0.17
CO+2 0.029 0.055 0.09 0.09 0.10 0.12 0.12 0.12 0.12 0.14

D(1)
st =

(
3m2s +

1

10
msmt − 1

5
m2t

)/
(ms + mt)

2, (4.141b)

D(4)
st =

(
6

5
m2t −

3

2
msmt

)/
(ms + mt)

2, (4.141c)

where ln� is the Coulomb logarithm (4.57). For the ionospheres, ln� ∼ 15, and
the Coulomb collision frequency can be approximated numerically by

νst = 1.27Z2s Z2t M 1/2
st

Ms

nt

T 3/2st

, (4.142)

whereMs is the particle mass in atomicmass units,Mst is the reducedmass in atomic
mass units, Zs and Zt are the particle charge numbers, nt is in cm−3, and Tst is in
kelvins. For ion–ion interactions this reduces further to

νst = Bst
nt

T 3/2t

, (4.143)

where Bst is a numerical coefficient; values are given in Table 4.3 for the ion species
found in the ionospheres. Equation (4.142) also reduces further for electron–electron
and electron–ion interactions;

νei = 54.5niZ2i
T 3/2e

, (4.144)

νee = 54.5√
2

ne

T 3/2e
, (4.145)

where subscript e denotes electrons and subscript i denotes ions.
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Table 4.4 The collision frequency coefficients Cin × 1010 for nonresonant ion–neutral
interactions.

Neutral

Ion H He N O CO N2 O2 CO2

H+ Ra 10.6 26.1 R 35.6 33.6 32.0 41.4
He+ 4.71 R 11.9 10.1 16.9 16.0 15.3 20.0
C+ 1.69 1.71 5.73 4.94 8.74 8.26 8.01 10.7
N+ 1.45 1.49 R 4.42 7.90 7.47 7.25 9.73
O+ R 1.32 4.62 R 7.22 6.82 6.64 8.95
CO+ 0.74 0.79 2.95 2.58 R 4.24 4.49 6.18
N+2 0.74 0.79 2.95 2.58 4.84 R 4.49 6.18
NO+ 0.69 0.74 2.79 2.44 4.59 4.34 4.27 5.89
O+2 0.65 0.70 2.64 2.31 4.37 4.13 R 5.63
CO+2 0.47 0.51 2.00 1.76 3.40 3.22 3.18 R

aR means that the collisional interaction is resonant.

Ion–neutral interactions can be either resonant or nonresonant. Nonresonant ion–
neutral interactions occur between unlike ions and neutrals, and they correspond to a
long-range polarization attraction coupled with a short-range repulsion. As noted in
Section 4.5, such an interaction can be approximated by a Maxwell molecule inter-
action, with the momentum transfer collision frequency given in Equation (4.88).
For a given ion–neutral pair, this nonresonant collision frequency takes a particularly
simple form

νin = Cinnn, (4.146)

where nn is in cm−3 and Cin is a numerical coefficient; values are given in Table 4.4
for some of the different ion–neutral combinations found in the ionospheres. The
other quantities that are needed in the 13-moment collision terms (4.129a–g) are

zst = 0, z′st = 1, z′′st = 2, (4.147a)

D(1)
st =

(
3m2s + m2t +

8

5
msmt

)/
(ms + mt)

2, (4.147b)

D(4)
st =

12

5
m2t /(ms + mt)

2. (4.147c)

When these quantities are substituted into the 13-moment collision terms (4.129a–g),
they are in agreement with the linearized version of the general Maxwell molecule
collision terms given in Equations (4.89a–f).
At elevated temperatures (T > 300 K), the interaction between an ion and its

parent neutral is dominated by a resonant charge exchange. That is, as the ion and
neutral approach each other, an electron jumps across from the neutral to the ion,
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thereby changing identities. In this way, a fast ion can become a fast neutral after
the collision, which results in a large transfer of momentum and energy between the
colliding particles. Although a resonant charge exchange is technically not an elastic
collision, it is pseudo-elastic in the sense that very little energy is lost in the collision
and, therefore, the Boltzmann collision integral can be used to calculate the relevant
transport properties. However, for collisions between an ion and its parent neutral,
the different collision cross sections, Q(l)

in , are dominated by different processes.
Specifically, the collision integrals with l = 1 are governed by the charge exchange
mechanism, while for collision integrals with l = 2 the charge exchange mechanism
cancels and elastic scattering dominates.
For resonant charge exchange, it is the energy-dependent charge exchange cross

section, QE, that is generally measured

QE = (A′ − B′ log10 εin)2, (4.148)

where εin = µing2in/2 (in eV) is the relative kinetic energy of the colliding particles,
and A′ and B′ (in cm) are constants that are different for different gases. It can be
shown that the connection between the charge exchange and the momentum transfer
cross sections is Q(1)

st = 2QE.
Using this result, the desired Chapman–Cowling collision integrals become9

�
(1,1)
in =

(
kTin
2πµin

)1/2[
(39.84B2 − 17.85AB+ 2A2)

+ (8.923B2 − 2AB) log10
Tin
M
+ B2

2

(
log10

Tin
M

)2]
, (4.149a)

�
(1,2)
in = 3

(
kTin
2πµin

)1/2[
(41.14B2 − 18.13AB+ 2A2)

+ (9.067B2 − 2AB) log10
Tin
M
+ B2

2

(
log10

Tin
M

)2]
, (4.149b)

�
(1,3)
in = 12

(
kTin
2πµin

)1/2[
(42.12B2 − 18.35AB+ 2A2)

+ (9.176B2 − 2AB) log10
Tin
M
+ B2

2

(
log10

Tin
M

)2]
(4.149c)

�
(2,2)
in = 0.8π

(
γne2

µin

)1/2
, (4.149d)

where

A = A′ + B′[13.4− log10M ], (4.150a)

B = 2B′, (4.150b)
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Table 4.5 Momentum transfer collision frequencies for resonant ion–neutral interactions.5,10

Densities are in cm−3.

Species Tr , K νin, s−1

H+, H > 50 2.65× 10−10n(H)T 1/2r (1− 0.083 log10 Tr)2

He+, He > 50 8.73× 10−11n(He)T 1/2r (1− 0.093 log10 Tr)2

N+, N > 275 3.83× 10−11n(N)T 1/2r (1− 0.063 log10 Tr)2

O+, O > 235 3.67× 10−11n(O)T 1/2r (1− 0.064 log10 Tr)2

N+2 , N2 > 170 5.14× 10−11n(N2)T 1/2r (1− 0.069 log10 Tr)2

O+2 , O2 > 800 2.59× 10−11n(O2)T 1/2r (1− 0.073 log10 Tr)2

H+, O > 300 6.61× 10−11n(O)T 1/2i (1− 0.047 log10 Ti)2

O+, H > 300 4.63× 10−12n(H)(Tn + Ti/16)1/2

CO+, CO > 525 3.42× 10−11n(CO)T 1/2r (1− 0.085 log10 Tr)2

CO+2 , CO2 > 850 2.85× 10−11n(CO2)T 1/2r (1− 0.083 log10 Tr)2

Tr = (Ti + Tn)/2. The CO+ and CO+2 collision frequencies were calculated, not measured.

andwhere γn is the neutral polarizability (Table 4.1), Tin = (Ti+Tn)/2 is the reduced
temperature, M is the ion or neutral mass in atomic mass units, and A′and B′ are
the constants that appear in the charge exchange cross section (4.148). Using these
collision integrals, the 13-moment collision terms for resonant charge exchange can
be readily obtained from Equations (4.129a–g), (4.130a,b), and (4.131a–d).
A less rigorous, but relatively simple, approach has been widely used with

regard to resonant charge exchange.5 In this approach, the energy-dependent charge
exchange cross section (4.148) is replacedwith aMaxwellian-averaged cross section,
〈QE〉, before the Chapman–Cowling collision integrals are evaluated. When this is
done,9 the resonant charge exchange collision terms reduce to the hard-sphere col-
lision terms (discussed later), with the hard-sphere cross section, πσ 2, replaced by
2〈QE〉 and the hard-sphere value of Q(2)

in /Q
(1)
in replaced with the charge exchange

value of 13 . The resultingmomentum transfer collision frequency for resonant charge
exchange using this less rigorous approach becomes

νin = 8

3
√
π

nn

[
2k(Ti + Tn)

mi

]1/2[
A′ + 3.96B′ − B′ log10(Ti + Tn)

]2,
(4.151)

where A′ and B′ are the constants that appear in Equation (4.148) for QE. Values
for νin are given in Table 4.5 for the collisions relevant to most ionospheres. These
expressions for νin have beenwidely used in themomentum collision terms (4.129b),
without the heat flow corrections, and in the energy collision term (4.129c) through-
out aeronomy and space physics. The extension of this less rigorous approach to the
stress and heat flow equations is discussed in Reference 9.
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The parameter for elastic electron–neutral interactions that is generallymeasured
is the velocity-dependent momentum transfer cross section Q(1)

en . For low-energy
electron collisions with the neutrals typically found in the ionospheres, this cross
section can be expressed in the form

Q(1)
en = R1 + R2ve + R3v

2
e + R4v

3
e , (4.152)

where R1, R2, R3, and R4 are experimentally determined constants and where the
electron velocity ve is approximately equal to the electron–neutral relative velocity,
gen. Using this expression, the Chapman–Cowling collision integrals (4.114) for
l = 1 become

�
(1,j)
en = 1

4
√
π

(
2kTe
me

)1/2[
R1�( j + 2)+ R2

(
2kTe
me

)1/2
�

(
j + 5

2

)

+ R3

(
2kTe
me

)
�(j + 3)+ R4

(
2kTe
me

)3/2
�

(
j + 7

2

)]
, (4.153)

where �(x) is a gamma function. The other quantities that are required to evaluate
the 13-moment collision terms are

νst = 16

3
nn�

(1,1)
en , (4.154)

D(1)
en = −

5

2
zen + z′en, (4.155a)

D(4)
en = 3−

5

2
zen + z′en −

4

5
z′′en, (4.155b)

where zen, z′en, and z′′en are defined in Equations (4.131a–c) and where terms of
order me/mn have been neglected compared to terms of order 1. Table 4.6 provides
momentum transfer collision frequencies for the elastic electron–neutral interactions
relevant to the ionospheres. With regard to zen and z′en, they can be calculated
from Equations (4.131a) and (4.131b), respectively, for each electron–neutral col-
lision pair. However, the calculation of z′′en, is problematic because it requires a
knowledge of Q(2)

en and, therefore, a knowledge of the differential scattering cross
section, σen(ve, θ). Unfortunately, most experiments measure Q(1)

en , not the differ-
ential scattering cross section. In some cases, this problem can be circumvented
because for low-energy electron collisions with some neutrals, such as He and O,
the momentum transfer cross section, Q(1)

en , is approximately constant. Hence, for
these neutrals, the thermal electrons collide with them as hard spheres, for which
z′′en = 2 (Equation 4.157a).



4.9 Specific references 109

Table 4.6 Momentum transfer collision frequencies for
electron–neutral interactions.11,12 Densities are in cm−3.

Species νen, s−1

N2 2.33× 10−11n(N2)(1− 1.21× 10−4Te)Te
O2 1.82× 10−10n(O2)(1+ 3.6× 10−2T 1/2e )T 1/2e
O 8.9 × 10−11n(O)(1+ 5.7× 10−4Te)T 1/2e
He 4.6 × 10−10n(He)T 1/2e
H 4.5 × 10−9n(H)(1− 1.35× 10−4Te)T 1/2e
CO 2.34× 10−11n(CO)(Te + 165)
CO2 3.68× 10−8n(CO2)(1+ 4.1× 10−11|4500− Te|2.93)

The quantities needed for hard-sphere interactions in the 13-moment collision
terms are:

νst = 8

3
√
π

ntmt

ms + mt

(
2kTst

µst

)1/2
(πσ 2), (4.156)

zst = −1
5
, z′st =

13

10
, z′′st = 2, (4.157a)

D(1)
st =

(
3m2s +

21

10
msmt + 9

5
m2t

)/
(ms + mt)

2, (4.157b)

D(4)
st =

(
16

5
m2t +

1

2
msmt

)/
(ms + mt)

2, (4.157c)

where σ is the sum of the radii of the colliding particles.
Finally, it should be noted that the momentum transfer collision frequencies are

not symmetric with respect to a change of indices, but satisfy the relation

nsmsνst = ntmtνts. (4.158)
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4.10 Problems

Problem 4.1 Show that the center-of-mass velocity does not change in a binary
elastic collision.

Problem 4.2 Show that the magnitude of the relative velocity does not change in a
binary elastic collision.

Problem 4.3 Starting from Equation (4.28), calculate the scattering angle θ for an
inverse-power interaction potential of the form V (r) = −K0/r2. The parameter K0
is a constant and r is the separation between the particles.

Problem 4.4 Given the definitions of Vc (4.6), V̂c (4.64), gst (4.7), and cs (3.14),
show that Equations (4.61) to (4.63) are correct.

Problem 4.5 Use index notation and derive the nine elements that are associated
with the second-order tensor in Equation (4.76).

Problem 4.6 Using Equations (4.100), (4.101), and (4.97), show that the product
fsft for Maxwellian velocity distributions is given by the expression in (4.104).

Problem 4.7 Show that the velocity-dependent correction factors for Coulomb
collisions (4.125a,b) approach unity in the limit of small relative drifts between
interacting species.

Problem 4.8 Show that the velocity-dependent correction factors for hard-sphere
interactions (4.126a,b) have the following limits when the relative drift between the
interacting species is large: �st → 3π1/2εst/8 and �st → π1/2εst/2.

Problem4.9 Show thatwhenEquations (4.147a–c) are used for zst , z′st , z′′st ,D
(1)
st , and

D(4)
st , the 13-moment collision terms (4.129a–g) are in agreement with the linearized
version of the general Maxwell molecule collision terms (4.89a–f).

Problem 4.10 Consider the following Boltzmann equation:

q

m
E0 · ∇vf = −ν0[f − f M ],
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where

f M = n

(
m

2πkT0

)3/2
exp

(
− mv2

2kT0

)
,

and where f , v, n, m, and q are the species distribution function, velocity, density,
mass, and charge, respectively, E0 is a constant electric field, T0 is a constant tem-
perature, ν0 is a constant collision frequency, and k is Boltzmann’s constant. Derive
the continuity, momentum, and energy equations associated with this Boltzmann
equation.

Problem 4.11 The so-called Lorentz collision model is a differential collision
operator that describes electron collisions with cold ions; it is given by

δf

δt
= 2πnie4 ln�

m2
∇v ·

(
v2I− vv

v3
· ∇vf

)

= 2πnie4 ln�

m2
∂

∂vα

(
v2δαβ − vαvβ

v3
∂f

∂vβ

)
,

where the first expression is in dyadic notation and the second in index notation.
Also, f , v,m, and e are the electron distribution function, velocity, mass, and charge,
respectively, ni is the ion density, and ln� is the Coulomb logarithm. Calculate the
density, drift velocity, and temperature moments of this collision term.

Problem 4.12 Consider a collision between molecules 1 and 2 in which molecule 2
is initially at rest. The deflection angle in the center-of-mass coordinate system is
denoted by χcm, as indicated in Figure 4.7. Show that the angle of deflection, χ1−lab,
is given by the following relation:

tan χ1−lab = sin χcm
cosχcm + (m1/m2)

.

v �1c

v1

v �1

xcm

x1–lab

Figure 4.7 Diagram associated
with Problem 4.12.

Problem 4.13 Consider the two-body collision shown in Figure 4.8. Show that
the fractional energy loss between particles 1 and 2, having masses m1 and m2,
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respectively, is given by the following expression, if particle 2 is initially at rest.
[Hint: Start out by writing the cosine law relation for (v′1− v2)2, expressing v′1c and
v2c in terms of g]:

E1 − E′1
E1

= 2(m1m2)

(m1 + m2)2
(1− cosχ).

v�1c

v�2c

vc

v2c

v1c

x

Figure 4.8 Diagram associated
with Problem 4.13.



Chapter 5

Simplified transport equations

The 13-moment system of transport equations was introduced in Chapter 3 and
several associated sets of collision terms were derived in Chapter 4. However, a rig-
orous application of the 13-moment system of equations for a multi-species plasma
is rather difficult and it has been a common practice to use significantly simplified
equation sets to study ionospheric behavior. The focus of this chapter is to describe, in
some detail, the transport equations that are appropriate under different ionospheric
conditions. The description includes a clear presentation of the major assumptions
and approximations needed to derive the various simplified sets of equations so that
potential users know the limited range of their applicability.
The equation sets discussed in this chapter are based on the assumption of col-

lision dominance, for which the species velocity distribution functions are close to
drifting Maxwellians. This assumption implies that the stress and heat flow terms in
the 13-moment expression of the velocity distribution (3.49) are small. Simplified
equations are derived for different levels of ionization, including weakly, partially,
and fully ionized plasmas. A weakly ionized plasma is one in which Coulomb col-
lisions can be neglected and only ion–neutral and electron–neutral collisions need to
be considered. In a partially ionized plasma, collisions between ions, electrons, and
neutrals have to be accounted for. Finally, in a fully ionized plasma, ion and electron
collisions with neutrals are negligible. Note that in the last case, neutral particles
can still be present, and in many fully ionized plasmas the neutrals are much more
abundant than the charged particles. The plasma is fully ionized in the collisional
sense because of the long-range nature of Coulomb interactions.
The topics in this chapter progress from very simple to more complex sets of

transport equations. First, the well-known coefficients of diffusion, viscosity, and
thermal conduction are derived using simple mean-free-path arguments. Next, com-
pletely general continuity, momentum, and energy equations are derived for the
special case when all species in the plasma can be described by drifting Maxwellian

113
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velocity distributions (i.e., no stress or heat flow effects). This is followed by a dis-
cussion of transport effects in a weakly ionized plasma, for which simplifications are
possible because Coulomb collisions are negligible. Then, for partially and fully ion-
ized plasmas, themomentum equation is used to describe several important transport
processes that can occur along a strong magnetic field, including multi-species ion
diffusion, supersonic ion outflow, and time-dependent plasma expansion phenom-
ena. Following these topics, the momentum equation is again used to describe first
cross-B diffusion, and then electrical conduction, both along and across B. At this
point, simplified equations are presented for the stress tensor and heat flow vector
and their validity is discussed. This naturally leads into a discussion of higher-order
diffusion effects, including heat flow corrections to ordinary diffusion, thermal dif-
fusion, and thermoelectric effects. Finally, a summary is presented that indicates
what sets of equations are to be used for different ionospheric applications.
Several different species have to be considered in this chapter, and therefore, it

is useful to standardize the subscript convention. Throughout this and subsequent
chapters, subscript e is for electrons, i for ions, n for neutrals, and j for any charged
species (e.g., different ions or either ions or electrons).

5.1 Basic transport properties

Diffusion, viscosity, and thermal conduction arewell-known transport processes, but
before presenting a rigorous derivation of the associated transport coefficients, it is
instructive to derive their general form using simple mean-free-path considerations.
The analysis assumes that the mean-free-path, λ, is much smaller than the scale
length for variation of any of the macroscopic gas properties (density, drift velocity,
and temperature).
In the first example, the net flux of particles across a plane is calculated for a

nondrifting isothermal gas with a density that decreases uniformly in the x-direction
(Figure 5.1a). The plane at x is where the flux of particles is to be calculated and the
planes at x +�x and x −�x are on the two sides, approximately a mean-free-path

(a) (b) (c)
   x – ∆ x    x    x + ∆x    x – ∆ x    x    x + ∆x

n(x ) T(x )

y + ∆y

y

y – ∆y

ux(y)

Figure 5.1 Simple density (a), flow velocity (b), and temperature (c) profiles used in
the mean-free-path analysis of diffusion, viscosity, and thermal conduction,
respectively.
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away. If 〈c〉 is the average thermal speed (Equation H.21), then the thermal particle
flux (average number of particles per unit area per unit time) crossing the plane
at x is n〈c〉/4 (Equation H.26). If the gas density is uniform, the net particle flux
crossing the plane is zero because the thermal flux moving to the right cancels the
thermal flux moving to the left. However, when the density varies with x, n(x), the
net particle flux crossing the plane is not zero. In this case, the particles that reach
x from the left are associated with a density n(x−�x), because on the average that
is where they had their last collision. Hence, their contribution to the particle flux at
x is 〈c〉n(x−�x)/4. The contribution to the particle flux at x from the particles on
the right is−〈c〉n(x+�x)/4. Therefore, the net particle flux, �, crossing the plane
at x is

� = 〈c〉
4

n(x −�x)− 〈c〉
4

n(x +�x). (5.1)

Because �x is small, the densities can be expanded in a Taylor series about x

� = 〈c〉
4

[
n(x)− dn

dx
�x − n(x)− dn

dx
�x

]
= −〈c〉

2

dn

dx
�x. (5.2)

But �x ≈ λ = 〈c〉/ν, and therefore

� = −〈c〉
2

2ν

dn

dx
. (5.3)

For a Maxwellian velocity distribution 〈c〉 = (8kT/πm)1/2 (Equation H.21), which
yields

� = − 4
π

kT

mν

dn

dx
= −D

dn

dx
(5.4)

where

D = 1.3 kT

mν
. (5.5)

Equation (5.4) isFick’s law and it indicates that the particle flux is proportional to the
density gradient. The proportionality factor, D, is the diffusion coefficient. Except
for the numerical factor, the simple mean-free-path analysis produces the correct
form forD. Amore rigorous value for the numerical factor in Equation (5.5) is given
in Section 5.14.
The substitution of Fick’s law (5.4) for the particle flux into the continuity

equation (3.57) leads to the classical diffusion equation

∂n

∂t
= D

∂2n

∂x2
, (5.6)

where, for simplicity, D is taken to be constant and the production and loss of
particles are neglected. Equation (5.6) is a parabolic partial differential equation. This
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equation contains a first-order time derivative and a second-order spatial derivative,
therefore, its solution requires one initial condition and two boundary conditions on
x. An indication of how diffusion works can be obtained by considering a simple
example. Assume that there is a background gas with a uniform density. Then, at
t = 0, N particles per unit area of another gas are created at x = 0 on the y–z plane.
The sudden appearance of these new particles corresponds to the initial condition
and the boundary conditions are that the density of these new particles goes to zero
as x goes to±∞. For t > 0, the newly created particles diffuse away from the x = 0
plane through the background gas and this process is described by the diffusion
coefficient. For this simple scenario, the solution to Equation (5.6) is

n(x, t) = N

2(πDt)1/2
e−x2/4Dt . (5.7)

Figure 5.2 shows the temporal evolution of the density profiles. Each profile is a
standard Gaussian curve with the peak at x= 0. As t increases, the density at the
peak decreases and the curve broadens. As t→∞, n(x, t)→ 0 for all values of x.
As t→ 0, n(x, t)→ 0 for all x, except for x= 0 where the solution is not defined.
Another important transport property is viscosity, which corresponds to the

transport of momentum in a direction perpendicular to the flow direction when a
perpendicular velocity gradient exists. This is illustrated in Figure 5.1b. In this sim-
ple example, the gas flow is in the x-direction, but the magnitude of the velocity
varies with y, ux(y). Consider the plane shown by the dashed line at an arbitrary
location y, ux(y). The planes at y + �y and y − �y are on the two sides, approxi-
mately a mean-free-path away. Viscosity arises because of the thermal motion of the
particles in a direction perpendicular to the flow direction. For the simple case of an
isothermal, constant density gas, the particles that cross the plane at y from below
carry momentum [n〈c〉/4]mux(y−�y), while the particles that cross the plane from
above carry momentum [n〈c〉/4]mux(y+�y). If the velocities above and below the
plane at y are the same, there is no net transfer of x-momentum because what is car-
ried up balances what is carried down. However, when there is a velocity gradient,
there is a net transfer of x-momentum per unit area per unit time across the plane
at y and this is the viscous stress τyx. The x-momentum carried upward minus that
carried downward is

τyx = nm〈c〉
4

[
ux(y −�y)− ux(y +�y)

]
. (5.8)

t1

t2

+x–x

n(x,t )

0

Figure 5.2 Density profiles
versus x at selected times
showing the effect of particle
diffusion away from the origin.
The profiles are obtained from
Equation (5.7).
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The quantity�y is small, therefore the velocities can be expanded in a Taylor series
about y:

τyx = nm〈c〉
4

[
ux(y)− ∂ux

∂y
�y − ux(y)− ∂ux

∂y
�y

]

= −nm〈c〉
2

∂ux

∂y
�y. (5.9)

As before, �y ≈ λ = 〈c〉/ν, and hence

τyx = −nm
〈c〉2
2ν

∂ux

∂y
. (5.10)

As before, given a Maxwellian velocity distribution, 〈c〉 can be expressed in terms
of the temperature T , to yield

τyx = −η∂ux

∂y
, (5.11)

where

η = 1.3nkT

ν
(5.12)

is the coefficient of viscosity. As in the case of the diffusion coefficient, the simple
mean-free-path analysis produces the correct form for η.
It is instructive to consider a simple scenario to see how viscosity affects a flowing

gas. A classic problem is a one-dimensional flow between parallel plates. The gas
flows in the x-direction and the parallel plates are at y= 0 and a. The plates are
infinite in the x- and z-directions, and their velocities are V0(y= a) and zero (y= 0)
in the x-direction. The layer of the gas near the upper plate will acquire the velocity
V0 because of friction between the upper plate and the gas, and this information will
then be transmitted to the rest of the gas via viscosity. When viscosity dominates the
flow, the steady state momentum equation (3.58) reduces to

∇ · τ ≈ 0, (5.13)

which for this simple problem becomes (using Equation 5.11)

d

dy

(
η
dux

dy

)
= 0, (5.14)

or

d2ux

dy2
= 0 (5.15)
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when η is assumed to be constant. For the adopted boundary conditions, the solution
of Equation (5.15) is

ux(y) = V0
y

a
. (5.16)

The velocity displays a linear variation with y, and this is the smallest gradient that
is possible for this problem. Hence, viscosity acts to smooth velocity gradients.
The last transport coefficient that is instructional to consider is the thermal con-

ductivity. In this case, one is interested in the flow of thermal energy per unit area
per unit time, which is the heat flow. The thermal energy is translational and thus
for a monatomic gas, m〈c2〉/2 = 3kT/2, and the flux of particles carrying this
energy is n〈c〉/4 in the x-direction (Figure 5.1c). For a Maxwellian, this latter flux
is n〈c〉/4 = n(kT/2πm)1/2 (Equation H.26). Therefore, for a gas with a constant
density, the net flux of thermal energy crossing the plane at x is

q = 3

2
√
2πm

nk3/2
[
T 3/2(x −�x)− T 3/2(x +�x)

]
, (5.17)

where the first term corresponds to those particles that come from x −�x and are
moving to the right, while the second term corresponds to the particles from x+�x
that are moving to the left. As before, the temperature terms can be expanded in a
Taylor series about x

q = 3

2
√
2πm

nk3/2
(

T 3/2 − 3
2
T 1/2

dT

dx
�x − T 3/2 − 3

2
T 1/2

dT

dx
�x

)

= −9
2
√
2πm

nk3/2T 1/2
dT

dx
�x. (5.18)

With �x ≈ λ = 〈c〉/ν, Equation (5.18) becomes

q = −λdT
dx
, (5.19)

where

λ = 2.9nk2T

mν
(5.20)

is the thermal conductivity. Again, a simple mean-free-path analysis is able to pro-
duce the correct form for the thermal conductivity. Equation (5.19) indicates that in
response to a temperature gradient, the heat is conducted from the hot to the cold
regions of the gas, which is intuitively obvious. Thermal conduction is very impor-
tant in the energy balance of ionospheres, and several examples are given in later
chapters after this process has been treated more rigorously.
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5.2 The five-moment approximation

In the five-moment approximation, the species velocity distribution is assumed to be
adequatelyrepresentedbyadriftingMaxwellian(3.44).Atthislevelofapproximation,
stress, heat flow, and all higher-order moments are neglected, and each species in the
gas is expressed in terms of just the density, drift velocity, and temperature. The drift
velocityhas threecomponents, therefore therearea total offiveparametersdescribing
each species. The spatial and temporal evolution of these five parameters is governed
by the continuity, momentum, and energy equations (3.57–59). The truncation of this
reduced system of transport equations is obtained by using the drifting Maxwellian
velocity distribution to express the higher-ordermoments in terms of the lower-order
moments (ns, us, Ts). As shown inAppendix H, this procedure yields

qs = τ s = 0, (5.21a)

Ps = (nskTs)I = psI, (5.21b)

where I is the unit dyadic. Note that in the five-moment approximation, heat flow is
not included and the pressure tensor is diagonal and isotropic (i.e., the three diagonal
elements are the same).
As shown in Chapter 4, completely general collision terms have been derived

for the five-moment approximation. These collision terms are valid for arbitrary
inverse-power force laws, large temperature differences, and large relative drifts
between the interacting species (4.124a–c). Using these collision terms in the conti-
nuity, momentum, and energy equations (3.57–59), and adopting the truncation (or
closure) conditions (5.21a,b), the system of transport equations for the five-moment
approximation becomes

∂ns

∂t
+∇ · (nsus) = 0, (5.22a)

nsms
Dsus

Dt
+∇ps − nsmsG − nses[E+ us × B]

=
∑

t

nsmsνst�st(ut − us), (5.22b)

Ds

Dt

(
3

2
ps

)
+ 5
2
ps(∇ · us)

=
∑

t

nsmsνst

ms + mt

[
3k(Tt − Ts)�st + mt(us − ut)

2�st
]
. (5.22c)

The five-moment approximation has significant limitations. Specifically, pro-
cesses that yield anisotropic pressures, thermal diffusion, and thermal conduction
are not included because heat flow and stress are not considered at this level of
approximation.
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5.3 Transport in a weakly ionized plasma

In many of the ionospheres, the low-altitude domain is generally characterized as
a weakly ionized gas, in that Coulomb collisions are not important. The transport
processes are dominated by electron and ion collisions with the neutral particles.
In this case, the heat flow terms that appear on the right-hand side of the momen-
tum equation (3.58; 4.129b) are absent for nonresonant ion–neutral collisions and
are negligibly small for electron–neutral collisions. Under these circumstances, the
momentum equation (3.58; 4.129b) for the charged particles reduces to

njmj

[
∂uj

∂t
+ (uj ·∇)uj

]
+∇pj +∇ · τ j − njmjG

− ejnj
[
E+ uj × B

] = njmjνjn(un − uj), (5.23)

where subscript n corresponds to neutrals and subscript j to any charged species.
In the so-called diffusion approximation, the inertial terms are neglected. The

effect of this can be seen by comparing these terms to the pressure gradient term.
Assuming that L is a characteristic scale length in the plasma, the ratio of the second
and third terms in Equation (5.23) is

njmju2j /L

njkTj/L
∼ u2j
(kTj/mj)

∼ M 2
j , (5.24)

where the single-species Mach number, Mj, is the drift speed, uj, divided by a
factor proportional to the thermal speed, (kTj/mj)

1/2, for species j. Therefore, the
nonlinear inertial term can be neglected when M 2

j � 1, or for subsonic flow. In a
similar manner, the ratio of the first and third terms in Equation (5.23) is

njmjuj/τ
′

njkTj/L
∼

(
L

τ ′

)
uj

(kTj/mj)
∼ Mj

L/τ ′

(kTj/mj)1/2
, (5.25)

where τ ′ is a characteristic time constant for the plasma. Equation (5.25) indicates
that the ∂uj/∂t term can be neglected if the time constant for the plasma process
is long. In practice, the neglect of the ∂uj/∂t term acts to eliminate plasma wave
phenomena. Therefore, in summary, the diffusion approximation is valid for a slowly
varying, subsonic flow.
At this point, it is instructive to consider a simple diffusion situation in which a

constant electric field, E0, exists in a weakly ionized plasma, but B, G, τ j, and un

are negligible. In this case, the diffusion approximation of Equation (5.23) becomes

∇pj − ejnjE0 = −njmjνjnuj. (5.26)
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For an isothermal plasma (Tj = constant), Equation (5.26) can be expressed as

�j = −Dj∇nj ± µ̄jnjE0, (5.27)

where

Dj = kTj

mjνjn
, (5.28)

µ̄j = |ej|
mjνjn

(5.29)

are the diffusion andmobility coefficients, respectively. In Equation (5.27),�j = njuj

is the particle flux and the ± signs correspond to ions and electrons, respectively.
For E0 = 0, Equation (5.27) reduces to Fick’s law,

�j = −Dj∇nj, (5.30)

which was derived earlier using mean-free-path considerations (5.4).
It is also instructive to consider the effects of stress and heat flow in a weakly ion-

ized gas because they account for nonMaxwellian effects (3.49) and correspond to a
higher level of approximation. Such effects are important, for example, in the terres-
trialE andF regions at high latitudes, where convection electric fields induce relative
ion–neutral drifts as large as several kilometers per second. The electric fields, which
are directed perpendicular to the geomagnetic field, originate in the magnetosphere
and are mapped down along the B field to the ionosphere (Section 2.3). In the
E region, the dominant ion–neutral interactions are nonresonant, and therefore, the
Maxwell molecule collision terms (4.89a–f) are appropriate. However, to simplify
the collision terms, it is assumed that there is only one neutral species, thatmi = mn,
that Q(2)

in = Q(1)
in , and that the neutrals have a drifting Maxwellian velocity distribu-

tion (qn = τ n = 0). Note that these are reasonable assumptions at terrestrialE region
altitudes for both NO+ and O+2 ions. The momentum (3.58, 4.89b), energy (3.59,
4.89c), stress (3.60, 4.89e), and heat flow (3.61, 4.89f) equations for the simple
case of a steady state, homogeneous plasma subjected to an imposed perpendicular
electric field, E⊥, reduce to1

ei
mi
(E⊥ + ui × B) = νin(ui − un), (5.31)

0 = 3k(Tn − Ti)+ mi(ui − un)2, (5.32)

b× τ i − τ i × b+ 7
4

νin

ωci
τ i = 1

4

νin

ωci
nimi

[
(ui − un)(ui − un)

− 1
3
(ui − un)2I

]
, (5.33)
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b× qi + 32
νin

ωci
qi = 1

2

νin

ωci

[
5

2
τ i · (ui − un)+ 1

3
nimi(ui − un)2(ui − un)

]
,

(5.34)

where b is a unit vector directed along the geomagnetic field and ωci = eiB/mi is
the ion cyclotron frequency (Equation 2.7).
The momentum (5.31) and energy (5.32) equations can be readily solved and the

solutions are

(ui − un) = ei
mi

(
νin

ν2in + ω2ci

E′⊥ +
ωci

ν2in + ω2ci

E′⊥ × b
)
, (5.35)

Ti = Tn + mi
3k
(ui − un)2, (5.36)

where

E′⊥ = E⊥ + un × B. (5.37)

The two terms on the right-hand side of Equation (5.35) correspond, respectively,
to the Pedersen and Hall components of the relative ion–neutral drift. The parallel
component of the relative drift is zero in this case becauseE′⊥ is directed perpendicu-
lar toB and gravity is ignored. The energy Equation (5.36) shows clearly that the ion
temperature is greater than the neutral temperature, because of the frictional inter-
actions associated with the relative ion–neutral drift. Note, however, that when the
collision term dominates the energy equation and there is only one neutral species,
the collision frequency drops out of Equation (5.32).
The stress (5.33) and heat flow (5.34) equations can also be readily solved by

introducing a right-handed Cartesian coordinate system with unit vectors pointing
in theB,E′⊥×B, andE′⊥ directions, respectively.1 Here, however, it is instructive to
consider only the two limiting cases of strong (νin/ωci →∞) and weak (νin/ωci →
0) collisions. The effect of the magnetic field is negligible for strong collisions, and
the solutions of the stress tensor (5.33) and heat flow (5.34) equations are

τ i = 1

7
nimi

[
(ui − un)(ui − un)− 1

3
(ui − un)2I

]
, (5.38)

qi = 4

21
nimi(ui − un)2(ui − un). (5.39)

Note that both a stress and heat flow can develop in a weakly ionized homogeneous
plasma due to a relative ion–neutral drift. The magnitude of the stress tensor is
proportional to |ui − un|2, while the magnitude of the heat flow is proportional to
|ui − un|3.
In the small collision frequency limit, all of the components of τ i and qi, except

the parallel components, can be obtained fromEquations (5.33) and (5.34) by setting
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νin/ωci = 0, which yields

b× τ i − τ i × b = 0, (5.40)

b× qi = 0. (5.41)

Equation (5.41) indicates that the heat flow perpendicular to B goes to zero as
νin/ωci→0. Equation (5.40) indicates that the stress tensor is diagonal, and using
the fact that the sum of the diagonal elements is zero (3.21), the solution to
Equation (5.40) can be expressed in the form

τ i = τi‖bb+ τi⊥(I− bb), (5.42)

where

τi⊥ = −12τi‖ (5.43)

andwhere the subscripts ‖ and⊥ denote components parallel and perpendicular toB,
respectively. Therefore, in the limit νin/ωci → 0, the stress tensor becomes isotropic
in the plane perpendicular toB. The parallel components of τ i and qi are obtained by
taking the parallel components of Equations (5.33) and (5.34), respectively, which
yield

τi‖ = − 121nimi(ui − un)2, (5.44)

qi‖ = 0. (5.45)

Thus, in the collisionless limit, qi = 0 (Equations 5.41, 5.45) for the case considered.
The above analysis indicates that in general a relative ion–neutral drift in a weakly

ionized plasma induces both a stress and heat flow, and these processes account for
the deviations from the zeroth-order drifting Maxwellian distribution (3.49). The
effect of heat flow is to cause an asymmetric velocity distribution. For example,
if the ions drift in the x-direction with a bulk velocity, u0, and there is also a heat
flow present in the x-direction due to a relative ion-neutral drift (5.39), the velocity
distribution takes the asymmetric form shown in Figure 5.3a. Relative to the drifting
Maxwellian, the effect of a positive x-directed heat flow is to remove particles from
the tail in the minus vx-direction and increase the number of particles in the +vx

tail, which acts to produce an asymmetric velocity distribution along the vx-axis.
The effect of the stress tensor is to distort the isotropic pressure distribution

that is characteristic of a drifting Maxwellian (5.21b). For example, in the limit
of νin/ωci→ 0, the stress tensor (5.42) is diagonal, but anisotropic. Therefore, the
pressure tensor,Pi = piI+τ i, is also anisotropic, whichmeans that there are different
pressures (or temperatures) parallel and perpendicular to B. Using Equations (3.70)
and (3.71), which relate the parallel and perpendicular temperatures to the stress



124 Simplified transport equations

f (vx)

–vx
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Figure 5.3 (a) Velocity
distribution with a bulk drift, u0,
and a heat flow in the x-direction
(solid curve) and the
corresponding unmodified
drifting Maxwellian distribution
(dashed curve). (b) Contours of
an anisotropic velocity
distribution with a bulk drift in
the z-direction and an enhanced
temperature in the x-direction
(solid curves). The dashed curves
are for a drifting Maxwellian
distribution.

tensor, and the expressions for τi‖ (5.44) and τi⊥ (5.43), the temperatures can be
expressed as

Ti‖ = Ti − 1

21

mi
k
(ui − un)2, (5.46)

Ti⊥ = Ti + 1

42

mi
k
(ui − un)2. (5.47)

Figure 5.3b shows the effect of an anisotropic stress tensor on the ion velocity
distribution for the case when the ions drift alongBwith a velocity u0 and Ti⊥ > Ti‖.
Note that the thermal spread (width of the distribution) perpendicular to B is greater
than that parallel to B.
For simplicity, in the analysis presented above, it was assumed that the plasmawas

homogeneous, that steady-state conditions prevailed, that gravitywas negligible, and
that there was only one neutral species with mn=mi and Q(2)

in =Q(1)
in . As it turns

out, the plasma in the high-latitude terrestrial E region (Figure 2.16) is basically
homogeneous in the direction perpendicular to B, but spatial variations along B are
present and in general are important. Also, at these lower altitudes, the diffusion
approximation is valid (Chapter 12). Taking these facts into account and dropping
the above simplifying assumptions, the transport equations that are appropriate for
the high-latitude terrestrial E region are

∂ni
∂t
+ ∂

∂r
(niui‖) = δni

δt
, (5.48a)

∂pi
∂r
+ ∂τi‖

∂r
+ nimig‖ − nieiE‖ = nimi

∑
n

νin(un − ui)‖, (5.48b)
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ei
[
E⊥ + ui⊥ × B

] = mi
∑
n

νin(ui − un)⊥, (5.48c)

0 =
∑
n

νin

mi + mn

[
3k(Tn − Ti)+ mn(ui − un)2

]
, (5.48d)

where r is the spatial coordinate along B, E‖ and E⊥ are the components of the
electric field parallel and perpendicular to B, respectively, g‖ is the component of
gravity alongB, and δni/δt accounts for the production and loss of ionization, which
is discussed in Chapter 9.
The parallel component of the stress tensor, τi‖, has a general form that is similar

to the spatially homogeneous expression (5.38) because the main component of
(ui − un) is primarily perpendicular to B, which is the direction where the plasma
is homogeneous. If the various neutral species have displaced Maxwellian velocity
distributions with a common temperature and common drift velocity, the general
expression for τi‖ is given by1

τi‖ = Ri
Si

nimi

[
(ui − un)2‖ −

1

3
(ui − un)2

]
, (5.49a)

where

Ri =
∑
n

mnνin
mi + mn

[
1− 3

4

Q(2)
in

Q(1)
in

]
, (5.49b)

Si =
∑
n

miνin
mi + mn

[
1+ 3

4

mn
mi

Q(2)
in

Q(1)
in

]
. (5.49c)

For most ionospheric applications, the contribution of (ui− un)2‖ to τi‖ can be neg-
lected. For a mixture of NO+ or O+2 with either N2 or O2, Ri/Si ≈ 1

4 . For a gas
mixture composed of O+ and either N2 or O2, Ri/Si ≈ 1

3 .

5.4 Transport in partially and fully ionized plasmas

In the previous section, the transport equations that are applicable to ionospheric
regions where Coulomb collisions are negligible were discussed. In the rest of this
chapter, the effect of Coulomb collisions on the transport processes will no longer be
neglected, and their inclusion leads to some interesting new phenomena. Also, for
some of the ionospheres, the rotation of the planet is sufficiently fast that centripetal
acceleration and theCoriolis force become significant at the altitudeswhereCoulomb
collisions are important. Under these circumstances, it is customary to adopt a
coordinate system that is fixed to the rotating planet, which introduces Coriolis and
centripetal acceleration terms in the momentum equation (Chapter 10). Although
these latter processes are neglected in the derivations that follow, it is useful to
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list the general momentum equation here both for future reference and so that the
reader can clearly see what processes are neglected in the various sets of simplified
transport equations that will be presented. Therefore, in a rotating reference frame,
the momentum equation (3.58, 4.129b) for the charged particles is given by

ρs
Dsus

Dt
+∇ps +∇ · τ s − nses(E+ us × B)

+ ρs
[−G + 2�r × us +�r × (�r × r)

]
=
∑

t

nsmsνst(ut − us)+
∑

t

νst
zstµst

kTst

(
qs − ρs

ρt
qt

)
, (5.50)

where the linear collision terms are adopted (4.129b) and where �r is the planet’s
angular velocity and r is the radius vector from the center of the planet.
Equation (5.50) is very general and can be used to describe a wide range of trans-

port processes. However, at the altitudes where the ionospheres are partially ionized,
the momentum equation can usually be simplified because the diffusion approxima-
tion is valid. To demonstrate this, it is convenient to consider the stronglymagnetized
planets at middle and high magnetic latitudes, where the B field is nearly vertical.
Above some altitude, approximately 160 km for the Earth, the ion and electron col-
lision frequencies are much smaller than the corresponding cyclotron frequencies
and, as a consequence, the plasma is constrained to move along the B field like
beads on a string. In certain regions, electric fields can cause the entire ionosphere
to convect horizontally across the magnetic field, but this latter motion is distinct
from the field-aligned motion and the two can simply be added vectorally. The
field-aligned motion is influenced by gravity, as well as by density and temperature
gradients. Owing to the small electron mass, gravity causes a slight charge sepa-
ration, with the lighter electrons tending to settle on top of the heavier ions. This
slight charge separation results in a polarization electrostatic field , which prevents
a further charge separation. After this electrostatic field develops, the ions and elec-
trons move together as a single gas under the influence of gravity and the density
and temperature gradients. Such a motion is called ambipolar diffusion.
It is useful to distinguish between major and minor ions before deriving the

ambipolar diffusion equation. Amajor ion is a species whose density is comparable
to the electron density, and consequently, it is important in maintaining the overall
charge neutrality in the plasma. A minor ion, on the other hand, is essentially a
trace species whose density is much smaller than that of the electrons, and hence, its
contribution to the charge neutrality is negligibly small. In what follows, ambipolar
diffusion equations will be derived for both major and minor ions.

5.5 Major ion diffusion

In the diffusion approximation, wave phenomena are not considered (∂us/∂t→ 0)
and the flow is subsonic (us ·∇us → 0). Also, because the ions and electrons move
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together, charge neutrality (ne = ni) and zero current (neue = niui) conditions
prevail, where it is assumed that the plasma contains major ions, electrons, and, for
convenience, one neutral species. In addition, for a partially ionized plasma, the
heat flow terms in Equation (5.50) are small and will be ignored for now, as will
the Coriolis and centripetal accleration terms. With these assumptions, the ion and
electron momentum equation (5.50) along the magnetic field reduce to

∇‖pi + (∇ · τ i)‖ − nieE‖ − nimiG‖

= nimiνie(ue − ui)‖ + nimiνin(un − ui)‖, (5.51)

∇‖pe + (∇ · τ e)‖ + neeE‖ − nemeG‖

= nemeνei(ui − ue)‖ + nemeνen(un − ue)‖, (5.52)

whereE‖ is the polarization electrostatic field that develops because of the very slight
charge separation. Letting ne= ni, ue= ui, and using the fact that nimiνie= nemeνei,
(4.158), the addition of Equations (5.51) and (5.52) yields

∇‖(pe + pi)+ (∇ · τ i)‖ + (∇ · τ e)‖ − ni(mi + me)G‖

= ni(miνin + meνen)(un − ui)‖. (5.53)

In Equation (5.53), meνen�miνin because of the small electron mass (see
Section 4.8). Likewise, τ e is much smaller than τ i because the stress tensor is pro-
portional to the particle mass (5.38). Neglecting terms that contain the electronmass,
and setting pe = nekTe and pi = nikTi, Equation (5.53) reduces to the ambipolar
diffusion equation,

ui‖ = un‖ − Da

[
1

ni
∇‖ni + 1

Tp
∇‖Tp − miG‖

2kTp
+ (∇ · τ i)‖
2nikTp

]
, (5.54)

where the ambipolar diffusion coefficient (Da) and plasma temperature (Tp) are
given by

Da = 2kTp
miνin

, (5.55)

Tp = Te + Ti
2

. (5.56)

Equation (5.54) applies along the magnetic field for strongly magnetized iono-
spheres, and it also applies in the vertical direction for unmagnetized ionospheres.
Letting r correspond to the spatial coordinate either alongBor in the vertical direction
for the unmagnetized case, Equation (5.54) can also be expressed in the form

1

ni

∂ni
∂r

= − mig

2kTp
− 1

Tp

∂Tp
∂r

− ∂τi‖/∂r
2nikTp

+ (un − ui)

Da
, (5.57)
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whereG‖ = −ger . Note that νin ∝ nn and thus Da ∝ 1/nn. Therefore, Da increases
exponentially with altitude because the neutral density decreases exponentially with
altitude (Figure 2.14). As a consequence, the last term in Equation (5.57) rapidly
becomes unimportant as altitude increases. If the stress term is also neglected,
Equation (5.57) reduces to the classical diffusive equilibrium equation

1

ni

∂ni
∂r

= − 1

Hp
− 1

Tp

∂Tp
∂r
, (5.58)

where Hp is the plasma scale height

Hp = 2kTp
mig

. (5.59)

Equation (5.58) can be easily integrated for an isothermal ionosphere (Tp =
constant), and if the variation of gravity with altitude is ignored, the integration
yields

ni = (ni)0e
−(r−r0)/Hp , (5.60)

where the subscript 0 corresponds to some reference altitude. Therefore, in the diffu-
sive equilibrium region, the major ion (or electron) density decreases exponentially
with altitude at a rate governed by the plasma scale height (Figure 2.16).

5.6 Polarization electrostatic field

In the derivation of the ambipolar diffusion equation, the ion (5.51) and elec-
tron (5.52) momentum equations were added and the polarization electrostatic field
dropped out. However, in many applications an explicit expression for this electric
field is needed. Basically, it is the electron motion that leads to the creation of this
field, and hence, it can be obtained from the electron momentum equation (5.52).
Neglecting the terms that contain me, the polarization electrostatic field effectively
becomes

eE‖ = − 1
ne

∇‖pe. (5.61)

This expression is valid regardless of the number of ion species in the plasma because
all of the electron–ion collision terms drop out owing to the small electron mass.
Equation (5.61) can be expressed in a convenient, alternate form for the special

case of an isothermal electron gas. LettingE‖ = −∇‖�, where� is the electrostatic
potential, and assuming that Te is constant, Equation (5.61) becomes

e

kTe

∂�

∂r
= 1

ne

∂ne
∂r
, (5.62)
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where, as before, r is the spatial coordinate either alongB or in the vertical direction,
depending on whether the planet is magnetized or not. Equation (5.62) can be easily
integrated to obtain the well-known Boltzmann relation

ne = (ne)0e
e�/kTe , (5.63)

where (ne)0 is the equilibrium electron density that prevails when� = 0. The Boltz-
mann relation is widely used in both plasma physics and space physics, but it must be
remembered that it is derived from a simplified electron momentum Equation (5.52)
that does not contain the inertial terms. Therefore, in addition to the isothermal
restriction, it is also restricted to slowly varying phenomena and subsonic electron
drifts.
As noted above, ambipolar diffusion occurs as a result of the polarization electro-

static field that develops in response to a slight electron–ion charge separation. This
electric field is established very rapidly by the electrons, before the ions have time
to move. An estimate of the distance over which charge separation occurs can be
obtained with the aid of the Boltzmann relation. Consider a plasma that is initially
neutral (ne = ni = n0). Subsequently, the electrons move a small distance away
and a polarization electric field, E∗, is established, which is governed by Gauss’
law (3.76a)

∇ · E∗ = e(ni − ne)/ε0. (5.64)

For this electrostatic field, E∗ =−∇�∗, and hence, Gauss’ law becomes the Poisson
equation

∇2�∗ = −e(ni − ne)/ε0. (5.65)

The ions are unperturbed because they do not have time to move, so ni= n0. The
electron density, on the other hand, does change and it is described by the Boltzmann
relation with (ne)0 = n0. For a small charge separation, the potential energy, e�∗, is
much smaller than the electron thermal energy, kTe, and therefore, the exponential
in Equation (5.63) can be expanded for a small argument, which yields

ne = n0

(
1+ e�∗

kTe

)
, (5.66)

where only the first two terms in the series expansion are retained. Substituting
ni = n0 and the electron density (5.66) into the Poisson equation (5.65) yields

∇2�∗ = �∗/λ2D, (5.67)

where λD = (ε0kTe/n0e2)1/2 is the electron Debye length that was introduced earlier
(Equation 2.4). With one spatial dimension, say x, the solution to Equation (5.67) is

�∗ = c0e
−|x|/λD, (5.68)
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where c0 is an integration constant. This solution indicates that the polarization
electrostatic field is establishedover a distanceof aboutλD, which for the ionospheres
is of the order of a fewcentimeters (Table 2.6). Therefore, ambipolar diffusion applies
over distances greater than a few centimeters.
In summary, the polarization electrostatic field (5.61) exists at all altitudes where

the diffusion approximation is valid. At all altitudes, there is a slight electron–ion
charge separation that occurs over a distance of about λD, which is a few centimeters
in the ionospheres.

5.7 Minor ion diffusion

The diffusion equation for a minor ion species in a plasma composed primarily of
major ions, electrons, and neutrals can be obtained from the general momentum
equation (5.50). As with the major ion, the diffusion approximation implies that the
inertial terms are negligibly small, and if the Coriolis force, centripetal acceleration,
and heat flow terms are also neglected, the momentum equation for the minor ion
(subscript �) reduces to

∇‖p� + (∇ · τ �)‖ − n�e�E‖ − n�m�G‖

= n�m�

[
ν�e(ue − u�)‖ + ν�n(un − u�)‖ + ν�i(ui − u�)‖

]
, (5.69)

where, as before, this equation applies either along B for strongly magnetized iono-
spheres or in the vertical direction for unmagnetized ionospheres. The momentum
exchange between the minor ions and electrons is negligible because of the small
electron mass. Also, collisions with the neutrals are usually negligible compared
with collisions with the major ions because of the long-range nature of Coulomb
collisions (ν�i � ν�n). Neglecting these collision terms and setting p� = n�kT�,
Equation (5.69) can be expressed in the form

u�‖ = ui‖ − D�

[
1

n�
∇‖n� + 1

T�
∇‖T� − m�G‖

kT�
− e�E‖

kT�
+ (∇ · τ �)‖

n�kT�

]
,

(5.70)

where the minor ion diffusion coefficient, D�, is given by

D� = kT�
m�ν�i

. (5.71)

Equation (5.70) indicates that the major ions affect the minor ions in three ways.
First, as the major ions diffuse along B, they tend to drag the minor ions with them.
Also, when the minor ions try to diffuse in response to their density and temperature
gradients, their motion is impeded by collisions with the major ions. Finally, the
polarization electrostatic field that appears in Equation (5.70) is established by the
charge separation between the major ions and electrons. Using Equation (5.61) for
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E‖ and setting pe = nekTe, Equation (5.70) takes the classical form for the minor
ion, ambipolar diffusion equation;

u�‖ = ui‖ − D�

[
1

n�
∇‖n� + 1

T�
∇‖(T� + Te)− m�G‖

kT�

+ Te
T�ne

∇‖ne + (∇ · τ �)‖
n�kT�

]
. (5.72)

The characteristic solutions for a minor ion species can be illustrated by assuming
that steady-state conditions prevail, the ionosphere is isothermal, the variation of
gravity with altitude is negligible, and stress effects are unimportant. With these
assumptions, the scalar version of Equation (5.72) can be written as

n�u� = n�ui − D�

[
dn�
dr

+ n�

(
1

H�

+ Te

T�

1

ne

dne
dr

)]
, (5.73)

where r is the spatial coordinate, as before, and H� is the minor ion scale height,
given by

H� = kT�
m�g

. (5.74)

As altitude increases, the major ion velocity ui→ 0, and its density distribution
becomes a diffusive equilibrium distribution (Equation 5.58). Also, ionization and
chemical reactions are not important for theminor ion at high altitudes, and therefore,
its steady state continuity equation reduces to d(n�u�)/dr = 0 or n�u� = F�, where
F� is a constant. With this information, Equation (5.73) becomes

F� = −D�

[
dn�
dr

+ n�

(
1

H�

− Te

T�Hp

)]
. (5.75)

Taking the derivative of Equation (5.75), bearing in mind that F�, H�, Hp, T�, and
Te are assumed to be constant, one obtains the following second-order differential
equation for n�:

d2n�
dr2

+
[
1

Hp
+
(
1

H�

− Te
T�Hp

)]
dn�
dr

+
(
1

H�

− Te
T�Hp

)
1

Hp
n� = 0, (5.76)

where use was made of the fact that

1

D�

dD�

dr
= 1

Hp
. (5.77)

The latter result follows from Equation (5.71), which shows thatD�∝ 1/ν�i ∝ 1/ni.
However, ni decreases exponentially with altitude at a rate governed by Hp (5.60),
and hence, D� increases exponentially with altitude at this rate.
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The two linearly independent solutions of the minor ion equation (5.76) are

n� = (n�)0 exp

[(
Te

T�Hp
− 1

H�

)
(r − r0)

]
, (5.78a)

n� = (n�)0 exp

(
− r − r0

Hp

)
, (5.78b)

where r0 is a reference altitude and (n�)0 is the minor ion density at this altitude. The
general solution for n� is a linear combination of solutions (5.78a) and (5.87b), with
appropriate integration constants. However, the minor ion behavior can be better
understood by separately examining the two linearly independent solutions.
The first solution (5.78a) corresponds to diffusive equilibrium for a minor ion in

the presence of major ions and electrons. If Te ∼ Ti ∼ T� = T , then

(
Te

T�Hp
− 1

H�

)
∼ g

kT

(
mi
2
− m�

)
. (5.79)

For heavy minor ions (m� >mi/2), this quantity is negative and the minor ion den-
sity (5.78a) decreases exponentially with altitude above the reference level. On the
other hand, for light minor ions (m� <mi/2), the quantity in Equation (5.79) is posi-
tive and theminor ion density (5.78a) increases exponentially with altitude above the
reference level. The solution is valid up to the altitude where species � is no longer a
minor ion. The physical reason for this behavior can be understood by recognizing
the fact that E‖ is controlled by the major ions and electrons. The magnitude of this
field is such as to counterbalance the gravitational force on the major ions and keep
them from separating from the much lighter electrons. This means that minor ion
species that are lighter than mi/2 will experience a net upward force.
The second solution (5.78b) indicates that the minor ion density decreases expo-

nentially with altitude with the same scale height as the major ion. This solution
corresponds to the maximum upward flow of the minor ion that the plasma will
sustain. The upward flow velocity increases exponentially with altitude at the same
rate that the density decreases with altitude, because n�u� = F� = constant. For
this solution, the minor ion always remains minor. However, at some altitude the
flow becomes supersonic, and hence, the neglect of the nonlinear inertial term in the
momentum equation is no longer justified.

5.8 Supersonic ion outflow

The field lines near the magnetic poles of planets with intrinsic magnetic fields
extend deep into space in an antisunward direction. Along these so-called open field
lines, thermal ions and electrons can escape the topside ionosphere. The outflow
begins at low altitudes, but as the ions diffuse upward their speed increases and
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eventually the flow becomes supersonic. The nonlinear inertial term in the momen-
tum equation (5.50) must be retained for supersonic ion outflow and the situation
becomesmore complex. To illustrate this case, it is convenient tomake the following
simplifying assumptions: (a) there is only one ion species; (b) the flow is ambipo-
lar (ni= ne, ui= ue); (c) the ionosphere is isothermal; (d ) steady-state conditions
prevail; (e) the neutrals are stationary; and ( f ) the stress, heat flow, Coriolis, and
centripetal acceleration terms are not important.
The ion momentum equation along theB field reduces, with the above mentioned

assumptions, to

nimiui
dui
dr
+ k(Te + Ti)

dni
dr
+ nimig = −nimiνinui, (5.80)

where Equation (5.61) was used for the polarization electrostatic field and where the
ambipolar flow assumption was also employed. Equation (5.80) can be expressed
in the following form:

ui
dui
dr
+ V 2S

ni

dni
dr
+ g = −νinui, (5.81)

where

VS =
[
k(Te + Ti)

mi

]1/2
(5.82)

is the ion-acoustic speed . The density gradient in Equation (5.81) can be related to
the velocity gradient with the aid of the continuity equation. In the steady state case,
assuming no sources or sinks, this equation is simply given by

∇ · (niui) = 1

A

d

dr
(Aniui) = 0, (5.83)

where the divergence is taken in a curvilinear coordinate system and A is the
cross-sectional area of the flux tube (see Section 11.1). For radial outflow in a
spherical geometry (e.g., solar wind), A∼ r2; whereas for ion outflow along dipolar
field lines near the magnetic pole (e.g., polar wind), A∼ r3 (Appendix B). Using
Equation (5.83), the density gradient can be expressed as

1

ni

dni
dr

= − 1
ui

dui
dr
− 1

A

dA

dr
, (5.84)

and the substitution of this result into Equation (5.80) yields

(u2i − V 2S )
1

ui

dui
dr
− V 2S

A

dA

dr
+ g = −νinui. (5.85)
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Figure 5.4 Schematic diagram
showing the possible solutions to
the Mach number equation for
H+ outflow in the terrestrial
polar wind. Curve B corresponds
to subsonic flow, and curve A
corresponds to the solution that
exhibits a transition from
subsonic to supersonic outflow.2

With the introduction of the ion-acoustic Mach number,

M = ui
VS
, (5.86)

Equation (5.85) can be cast in the following form:

dM

dr
= M

M 2 − 1
(
1

A

dA

dr
− g

V 2S
− νin

VS
M

)
. (5.87)

This equation corresponds to a first-order, nonlinear, ordinary differential equation
for the Mach number. Note that the equation contains singularities at M =±1, at
the points of transition from subsonic to supersonic flow in the upward (M = 1) or
downward (M =−1) directions.
Figure 5.4 shows schematically the different solutions that are possible for an

outflow situation. The solutions are presented in a Mach number versus altitude
format.All of the solutions that remain subsonic (M < 1) at all altitudes are possible
physical solutions. The Mach number (flow velocity) is small at low altitudes for
these solutions, increases to a peak value that is less than unity, and then decreases
to a small value at high altitudes. On the other hand, for supersonic flow, only the
critical solution (labeled A) is a physical solution. For this case, the ion flow is
subsonic at low altitudes, passes through the singularity point M = 1, and then is
supersonic at high altitudes. Which solution prevails is determined by the pressure
difference between high and low altitudes.
Additional insight concerning the subsonic versus supersonic nature of the flow

can be gained by examining the sign of the terms in Equation (5.87).At low altitudes
in the terrestrial ionosphere the flow is upward and subsonic (0 < M < 1), and
hence, M /(M 2 − 1) is negative. Also, at low altitudes, gravity dominates and the
sum of the terms in the curved brackets is negative. The net result is that dM /dr> 0
and the Mach number (flow velocity) increases with altitude. As altitude increases,
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νin → 0 and gravity (g ∼ 1/r2) decreases more rapidly than the area term ( 1A
dA
dr ∼

3
r ), which means that at some altitude the terms in the curved brackets will change
sign and become positive. IfM is still less than unity at this altitude, dM /dr becomes
negative and the Mach number (flow velocity) then decreases with altitude. This
behavior corresponds to the subsonic solution labeled B in Figure 5.4. On the other
hand, ifM becomes greater than unity at the altitude where the sum of the terms in
the curved brackets becomes positive, then dM /dr > 0, as it is at low altitudes, and
the Mach number (flow velocity) continues to increase. This situation corresponds
to the supersonic solution labeled A in Figure 5.4. As noted above, which solution
prevails is determined by the pressure difference between high and low altitudes. In
the terrestrial ionosphere, both types of flow occur.
The supersonic flow described above is similar to what occurs in a Lavalle rocket

nozzle. In this case, an initially subsonic flow [M /(M 2− 1) < 0] enters a converging
nozzle (dA/dr< 0), which yields a positive dM /dr. When the flow just passes
the sonic point [M /(M 2 − 1)> 0], the nozzle is designed to diverge (dA/dr> 0),
and hence, dM /dr remains positive. The net result is a smooth transition from
subsonic to supersonic flow. In the solar and terrestrial polar winds, gravity acts
as the convergent nozzle in the subsonic flow regime, and the diverging magnetic
field acts as the divergent nozzle in the supersonic regime. In the case of neutral gas
outflow from comets, the gas–dust friction acts as the convergent nozzle and the
spherical expansion acts as the divergent nozzle.
As a final issue concerning the transition from subsonic to supersonic flow, it

should be noted that the singularity in Equation (5.87) arises only because the time
derivative and stress terms in the momentum equation were neglected when Equa-
tion (5.87) was derived. When these terms are included, the singularity does not
occur. Nevertheless, the above physical description is still an instructive and realistic
account of what occurs in a transition from subsonic to supersonic flow.

5.9 Time-dependent plasma expansion

The previous discussion concerning the supersonic flow of an electrically neutral
plasma was restricted to steady-state conditions. However, additional transport fea-
tures occur during a time-dependent plasma expansion, and the results are relevant
to a wide range of plasma flows in aeronomy and space physics.3−5 It is instructive
to consider a simple one-dimensional expansion scenario involving the collision-
less expansion of an electrically neutral plasma into a vacuum. Figure 5.5 shows
a schematic of the initial setup. At t= 0, the half-space r< 0 contains a single-ion
electrically neutral plasma and the half-space r> 0 is a vacuum. For t> 0, the plasma
is allowed to expand into the vacuum.At first, the electrons stream ahead of the ions
into the vacuum because of their greater thermal speed, but after a short time a polar-
ization electrostatic field develops that acts both to slow the electron expansion and
accelerate the ion expansion. Once this polarization field develops, the expansion is
ambipolar, and the ions and electrons move together as a single fluid.
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Figure 5.5 Self-similar solution
for the expansion of a single-ion
plasma into a vacuum.4 The
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configuration is shown in the top
panel and the plasma expansion
features at time t are shown in
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For this simple expansion scenario, the plasma is assumed to be collisionless
and isothermal, and the effects of gravity and stress are ignored. Therefore, in
the ambipolar expansion phase (ne= ni, ue= ui), the continuity and momentum
equations for the ions (or electrons) reduce to

∂ni
∂t
+ ∂

∂r
(niui) = 0, (5.88)

∂ui
∂t
+ ui

∂ui
∂r
+ V 2S

ni

∂ni
∂r

= 0, (5.89)

where Equation (5.61) was used for the polarization electrostatic field and where VS
is the ion-acoustic speed (5.82). Note that these equations are similar to those used
to describe supersonic ion outflow (Equations 5.83 and 5.81).
Equations (5.88) and (5.89) yield self-similar solutions, which depend only on the

ratio r/t of the independent variables r and t.With the introduction of the self-similar
parameter ξ , which is defined to be

ξ = r

tVS
, (5.90)

the derivatives with respect to r and t can be expressed as

∂

∂r
= ∂ξ

∂r

d

dξ
= 1

tVS

d

dξ
, (5.91)
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∂

∂t
= ∂ξ

∂t

d

dξ
= −ξ

t

d

dξ
. (5.92)

With the aid of Equations (5.91) and (5.92), the continuity (5.88) and momen-
tum (5.89) equations become, respectively

1

ni

dni
dξ

(ui − ξVS)+ dui
dξ

= 0, (5.93)

dui
dξ

(ui − ξVS)+ V 2S
ni

dni
dξ

= 0, (5.94)

and the solution of these equations is

ni = n0e
−(ξ+1), (5.95a)

ui = VS(ξ + 1). (5.95b)

Note that the solution is only valid for (ξ + 1)> 0. For (ξ + 1)< 0, the plasma is
unperturbed. This condition enters through the boundary condition for the solution
of the continuity equation, which is that at (ξ + 1)= 0, ni= n0 (the unperturbed
plasma density). The associated polarization electrostatic field can now be obtained
from Equation (5.61), and the result is

E = (kTe/e)

tVS
. (5.95c)

The self-similar solution (5.95a–c) for the expansion of a single-ion plasma into
a vacuum in shown in Figure 5.5. For t> 0, a rarefaction wave propagates into the
plasma at the ion-acoustic speed. The density in the expansion region decreases
exponentially with distance (5.95a) and the profile is concave at all times. The asso-
ciated polarization electrostatic field does not vary with position, but its magnitude
decreases inversely with time (5.95c). The ion drift velocity increases linearly with
distance (5.95b) because of the ion acceleration associated with the electric field.
However, at a given distance r, the ion drift velocity decreases as t−1 in parallel
with the decrease in the electric field.

5.10 Diffusion across B

Up to this point, the focus has been on transport either along B for a planet with a
strong magnetic field or in the vertical direction for an unmagnetized planet. How-
ever, plasma transport across a magnetic field can play an important role in certain
ionospheric regions. To illustrate the effects of cross-field transport, it is convenient
to consider a plasma that spans all levels of ionization, from weakly ionized at low
altitudes to fully ionized at high altitudes. For simplicity, it is also convenient to con-
sider a three-component plasma composed of ions, electrons, and neutrals.Assuming
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that the diffusion approximation is valid (∂us/∂t → 0, us · ∇us → 0), stress
and heat flow are not important (τ s= qs= 0), and adopting an inertial reference
frame (no Coriolis or centripetal acceleration terms), the momentum equation (5.50)
perpendicular to B for the charged particles (subscript j) reduces to

∇pj − njej(E⊥ + uj × B)− njmjG = njmjνjn(un − uj), (5.96)

where E⊥ is an applied electric field that is perpendicular to B and where electron–
ion collisions are neglected because the momentum transfer associated with them
is small. It is convenient in solving Equation (5.96) first to transform to a reference
frame moving with the neutral wind (uj→ u′j + un), which introduces an effective
electric field that is given byE′⊥ =E⊥+un×B. Therefore, Equation (5.96) becomes

∇pj − njej(E′⊥ + u′j × B)− njmjG = −njmjνjnu′j. (5.97)

At high altitudes, collisions with the neutrals are negligible because the neutral
densities decrease exponentially with altitude (see Figures 2.14, 2.19, 2.22, and
2.24). In this case, the transport across B can be easily obtained by taking the cross
product of Equation (5.97) with B, which yields

u′j⊥ = uE + uD + uG, (5.98)

where the electromagnetic drift (uE), diamagnetic drift (uD), and gravitational drift
(uG) are given by

uE = E′⊥ × B

B2
, (5.99)

uD = − 1

njej

∇pj × B

B2
, (5.100)

uG = mj
ej

G × B
B2

, (5.101)

and where (u′j×B)×B=−B2u′j⊥. Note that the electrons and ions drift across B
together in the presence of a perpendicular electric field, but they drift in opposite
directions in the presence of pressure gradients and gravity. It should also be noted
that when collisions are unimportant, the resulting drifts are perpendicular to both
B and the force causing the drift.
At the altitudes where collisions are important, it is possible to have perpendicular

drifts both in the direction of the force, F⊥, and in the F⊥ ×B direction. Assuming
that the forces in Equation (5.97) have components perpendicular toB, this equation
can be expressed in the form

u′j⊥ = −
Dj
pj

∇⊥pj ± µ̄jE′⊥ +
1

νjn
G⊥ ± ωcj

νjn
(u′j⊥ × b), (5.102)
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where Dj= kTj/(mjνjn) is the diffusion coefficient (5.28), µ̄j = |ej|/(mjνjn) is the
mobility coefficient (5.29), ωcj = |ej|B/mj is the cyclotron frequency (2.7), b =
B/B is the unit vector, and the± signs correspond to ions and electrons, respectively.
Equation (5.102) can be readily solved by first expressing it in terms of the individual
Cartesian velocity components. The resulting solution is given by

u′j⊥ = −
Dj⊥
pj

∇⊥pj ± µ̄j⊥E′⊥ +
νjn

ν2jn + ω2cj

G⊥ + uE + uD + uG
1+ ν2jn/ω

2
cj

, (5.103)

where

Dj⊥ = Dj
1+ ω2cj/ν

2
jn

, (5.104)

µ̄j⊥ = µ̄j

1+ ω2cj/ν
2
jn

. (5.105)

In the limit of νjn/ωcj→ 0, Dj⊥→ 0, µ̄j⊥→ 0, Equation (5.103) reduces to
Equation (5.98). In the opposite limit of νjn/ωcj→∞, Dj⊥→Dj, µ̄j⊥→ µ̄j,
Equation (5.103) reduces to the expression that prevailswhenB = 0 (Equation 5.27).

5.11 Electrical conductivities

Electric currents play an important role in the dynamics and energetics of the
ionospheres. For ionospheres that are not influenced by strong intrinsic magnetic
fields, the electric currents can generate self-consistent magnetic fields that are suf-
ficiently strong to affect the large-scale plasma motions. Under these circumstances,
Maxwell’s equations must be solved along with the plasma transport equations.
Although such a procedure is straightforward, it is generally more convenient to use
the so-called magnetohydrodynamics (MHD) approximation to the transport equa-
tions, which is discussed in Chapter 7. On the other hand, for the currents that flow
in strongly magnetized ionospheres, the self-consistent magnetic fields generated
by the currents are too small to affect the large-scale plasma dynamics, and hence,
the intrinsic magnetic field can be taken as a known field. In this latter case, currents
can flow both along and acrossB in response to imposed electric fields. The currents
along B are carried by the electrons because their mobility is much greater than
that of the ions (Equation 5.29). However, both ions and electrons contribute to the
current that flows across B. Typically, the current flows down along B from high to
low altitudes, across B at low altitudes, and then back up along B to high altitudes,
forming an electrical circuit that spans all levels of ionization.
It is convenient first to consider the cross-B current, which is typically driven by

a perpendicular electric field, E⊥. Generally, for the electric field strengths found in
the strongly magnetized ionospheres, the electric field dominates the perpendicular
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momentum equation (5.50), which reduces to

− ej
mj
(E⊥ + uj × B) =

∑
t

νjt(ut − uj), (5.106)

where subscript j corresponds to electrons or one of the ion species and where the
summation over t involves all of the other species.
For a given ion species (subscript i), the momentum transfer to the electrons is

negligible because of the small electron mass. Also, the momentum exchange with
other ion species is much smaller than that with the neutrals because the ion drifts
are nearly equal and ni � nn. In addition, the different neutral species typically
have the same drift velocity, un. With this information, Equation (5.106), for ion
species i, can be simplified and it becomes

ei
mi
(E⊥ + ui × B) = νi(ui − un), (5.107)

where

νi =
∑

n

νin. (5.108)

To solve Equation (5.107), it is convenient first to transform the equation to a
reference frame moving with the neutral wind (ui→ u′i + un), which yields

ei
miνi

E′⊥ +
ωci

νi
u′i × b = u′i, (5.109)

where E′⊥ =E⊥ +un×B is an effective electric field (5.37), ωci = eiB/mi, and
b=B/B. The next step is to solve for the individual velocity components using a
Cartesian coordinate system with E′⊥ along the x-axis and b along the z-axis. After
the velocity components are obtained, they can be recast in terms of vectors, which
yields

u′i⊥ =
ei
mi

(
νi

ν2i + ω2ci

E′⊥ −
ωci

ν2i + ω2ci

b× E′⊥
)
. (5.110)

The final form for the result is obtained by transforming back to the original reference
frame (u′i → ui − un) and then multiplying by niei:

Ji⊥ = nieiun⊥ + σi

(
ν2i

ν2i + ω2ci

E′⊥ −
νiωci

ν2i + ω2ci

b× E′⊥
)
, (5.111)

where Ji⊥ = nieiui⊥ is the perpendicular ion current and σi is the ion conductivity,
given by

σi = nie2i
miνi

. (5.112)
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The momentum loss of the electrons to the ions is much smaller than that to the
neutrals because the neutral density is typically much greater than the ion density.
Therefore, whenEquation (5.106) is applied to the electrons, it reduces to an equation
similar to the ion equation (5.107), except for the sign of the charge. This electron
momentum equation is solved in a manner similar to that discussed above for the
ions, and the solution is

Je⊥ = −neeun⊥ + σe

(
ν2e

ν2e + ω2ce
E′⊥ +

νeωce

ν2e + ω2ce
b× E′⊥

)
, (5.113)

where Je⊥ = −eneue⊥ is the perpendicular electron current, ωce = |e|B/me, and

νe =
∑

n

νen, (5.114)

σe = nee2

meνe
. (5.115)

The total perpendicular current is simply, J⊥ = Je⊥ + ∑
i Ji⊥, which can be

obtained from Equations (5.111) and (5.113), and the result is

J⊥=
(∑
i

niei − nee

)
un⊥ + σP(E⊥ + un × B)+ σHb× (E⊥ + un × B),

(5.116)

where the Pedersen, σP, and Hall, σH, conductivities are given by

σP =
∑

i

σi
ν2i

ν2i + ω2ci

+ σe
ν2e

ν2e + ω2ce
, (5.117)

σH = −
∑

i

σi
νiωci

ν2i + ω2ci

+ σe
νeωce

ν2e + ω2ce
(5.118)

and whereE′⊥ =E⊥+un×Bwas used in Equation (5.116). Typically, there is a very
small net charge in the ionospheres, and hence, the first term in Equation (5.116) can
be neglected. Also, the electron contribution to the Pedersen and Hall conductivities
can be simplified because νe � ωce in most cases. Keeping only the terms that are
of order νe/ωce the Pedersen and Hall conductivities reduce to

σP =
∑

i

σi
ν2i

ν2i + ω2ci

, (5.119)

σH = −
∑

i

σi
νiωci

ν2i + ω2ci

+ νeσe

ωce
. (5.120)
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These results indicate that, in general, the electrons contribute to the Hall current,
but not to the Pedersen current.
The electron current along B can be obtained from the parallel component of

Equation (5.50). Neglecting both the terms on the left-hand side of this equation that
contain the electron mass, and the heat flow terms on the right-hand side, which will
be discussed in the next section, the parallel component of Equation (5.50) becomes

∇‖pe + eneE‖ =
∑

t

nemeνet(ut − ue)‖, (5.121)

where E‖ is an applied electric field that is much larger than the polarization field.
Typically, when an electric current is induced along B, the electron drift velocity is
much greater than the ion and neutral drift velocities and the latter velocities can be
neglected. Using this fact, and setting pe = nekTe, Equation (5.121) becomes

kTe∇‖ne + kne∇‖Te + eneE‖ = −nemeν
′
eue‖, (5.122)

where

ν′e =
∑

i

νei +
∑

n

νen. (5.123)

With the introduction of the field-aligned current density J‖ =−eneue‖, Equa-
tion (5.122) can be expressed in the following form:

J‖ = σe

(
E‖ + kTe

ene
∇‖ne

)
+ ε̄e∇‖Te, (5.124)

where σe is the parallel electrical conductivity and ε̄e is the current flow conductivity
due to thermal gradients. These coefficients are given by

σe = nee2

meν′e
, (5.125a)

ε̄e = neek

meν′e
. (5.125b)

Note that the σe defined in Equation (5.125a) is similar to that defined previously in
Equation (5.115), with the only difference being the electron collision frequency. It
should also be noted that when the applied electric field dominates, Equation (5.124)
reduces to Ohm’s law for electron motion along B, which is

J‖ = σeE‖. (5.126)

The conductivities given in Equations (5.125a) and (5.125b) have been widely
used in ionospheric studies, but they correspond only to the first approximation
to these coefficients. In the next section, these field-aligned conductivities will be
derived again including the effect of electron heat flow on the momentum balance.
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As will be seen, the heat flow provides an important correction to the electrical
conductivity (5.125a).

5.12 Electron stress and heat flow

Simplified expressions for the electron stress tensor and heat flow vector can be
obtained when the collision frequency is large, and hence, the electron velocity dis-
tribution is very close to a driftingMaxwellian (i.e., small τ e andqe). However, in the
ionospheres, electron transport effects are generally important at all altitudes, and
therefore, it is necessary to consider electron interactions with other electrons, ions,
and neutrals. To simplify the electron collision terms, it is convenient to assume that
the various ion and neutral species have displaced Maxwellian velocity distribution
functions (τ i = qi = 0; τ n = qn = 0), and that terms of order me/mi and me/mn
can be neglected compared with terms of order unity. With these assumptions, the
linear collision terms (4.129) for the electrons become

δMe

δt
= −

∑
i

ρeνei(ue − ui)

−
∑

n

ρeνen(ue − un)+ me
kTe

qe

(
3

5

∑
i

νei +
∑

n

νenzen

)
,

(5.127a)

δEe
δt

= −
∑

i

ρeνei

mi
3k(Te − Ti)−

∑
n

ρeνen

mn
3k(Te − Tn), (5.127b)

δPe
δt

= −
∑

i

ρeνei

mi
2k(Te − Ti)I−

∑
n

ρeνen

mn
2k(Te − Tn)I− 6

5
νeaτ e,

(5.127c)

δqe
δt
= −pe

∑
i

νei(ue − ui)− 5
2
pe
∑

n

νen(ue − un)(1− zen)− 4
5
νebqe,

(5.127d)

where

νea = νee +
∑

i

νei + 1
2

∑
n

νenz
′′
en, (5.128)

νeb = νee − 1
4

∑
i

νei + 5
4

∑
n

νen

(
z′en −

5

2
zen

)
. (5.129)

The collision-dominated transport equations are obtained from the 13-moment
system of equations (3.57–61, 5.127a–d) by using a perturbation scheme in which
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τ e and qe are treated as small quantities. To lowest order in the perturbation scheme,
stress and heat flow effects are neglected and the resulting continuity, momentum,
and energy equations correspond to the Euler equations. However, the Euler approx-
imation is not useful for the electron gas because electron heat flow is almost always
important. To the next order in the perturbation scheme, τ e and qe are expressed
in terms of ne, ue, and Te with the aid of the stress tensor (3.60, 5.127c) and heat
flow (3.61, 5.127d) equations. This is accomplished by assuming that terms con-
taining ντ e, νqe, ωceτ e, and ωceqe are the same order as terms that just contain the
lower-order moments ne, ue, and Te, while all other terms containing τ e and qe are
of order 1/ν and, therefore, are negligible. Retaining only those terms of order 1,
the electron stress tensor and heat flow equations become

τ e − 5ωce
6νea

(b× τ e − τ e × b) = −ηe
[
∇ue + (∇ue)T − 2

3
(∇ · ue)I

]
,

(5.130)

qe + 5ωce
4νec

qe × b = − λe∇Te + 15
8

pe
νec

∑
i

νei(ue − ui)

+ 25
8

pe
νec

∑
n

νenzen(ue − un), (5.131)

where the coefficients of viscosity and thermal conductivity are

ηe = 5pe
6νea

, (5.132)

λe = 25

8

kpe
meνec

, (5.133)

and where

νec = νee + 13
8

∑
i

νei + 5
4

∑
n

νenz
′
en. (5.134)

Therefore, the closed system of Navier–Stokes equations for the electron gas is com-
posed of the stress tensor (5.130) and heat flow (5.131) equations and the following
continuity, momentum, and energy equations:

∂ne
∂t
+∇ · (neue) = δne

δt
, (5.135a)

ρe
Deue
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3

5

∑
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∑
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νenzen

)
, (5.135b)
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De
Dt

(
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2
pe

)
+ 5
2
pe(∇ · ue)+∇ · qe + τ e : ∇ue

= −
∑

i

ρeνei

mi
3k(Te − Ti)−

∑
n

ρeνen

mn
3k(Te − Tn). (5.135c)

Several factors should be noted about the electron transport equations. First,
stresses arise as a result of velocity gradients, and when B= 0, the stress tensor
takes the classical Navier–Stokes form (see Section 10.3). Also, for a heat flow
along B, Equation (5.131) indicates that qe ∼ −λe∇Te, as expected, but there are
additional terms proportional to (ue − ui) and (ue − un). This indicates that an
electron heat flow is induced by a relative drift between the electrons and other
species, which is called a thermoelectric effect.
Additional insight about the collision-dominated electron equations can be gained

by considering a fully ionized plasma composed of electrons and one singly ionized
ion species. For such mixtures, relatively simple expressions for ηe and λe can be
obtained by using Equation (4.140) for the Coulomb collision frequencies, and these
expressions are

ηe = 5

8
√
π(1+√2)

m1/2e (kTe)5/2

e4 ln�
, (5.136)

λe = 75

4
√
π(8+ 13√2)

k(kTe)5/2

m1/2e e4 ln�
. (5.137)

The terms containing the
√
2 account for electron–ion collisions. Note that both ηe

and λe are proportional to T 5/2e for a fully ionized plasma. Electron heat flow is
known to be important in all of the ionospheres, but the effects of viscous stress
have not been rigorously evaluated. Nevertheless, viscous stress is expected to be
negligible because the electron drift velocity and its gradient are typically small, and
hence, the∇ ·τ e term cannot competewith the other terms in the electronmomentum
equation.
For the fully ionized gas under consideration, the electron heat flow parallel to

B (5.131) can be expressed in the form

qe‖ = −λe∇‖Te − 15
8

νei

νec

kTe
e
J‖, (5.138)

where J‖ = nee(ui − ue)‖ is the current density. Neglecting the τ e term and the
terms containing me, the electron momentum equation (5.135b) parallel to B can
also be expressed in the form

nee2

meνei

(
E‖ + kTe

nee
∇‖ne

)
+ enek

meνei
∇‖Te = J‖ + 3

5

e

kTe
qe‖. (5.139)
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Note that Equation (5.139) is essentially the fully ionized limit of Equation (5.124),
except for the heat flow term, which was neglected in the derivation of Equa-
tion (5.124). As will be seen, the heat flow affects the momentum balance and
provides corrections to the electrical conductivity and the current flow conductivity
due to thermal gradients. This can be shown by eliminating qe‖ in Equation (5.139)
with the aid of Equation (5.138). After doing this, the final forms for the electron
momentum (5.139) and heat flow (5.138) equations are given by

J‖ = σ ′e
(
E‖ + kTe

ene
∇‖ne

)
+ ε̄′e∇‖Te, (5.140)

qe‖ = −λe∇‖Te − βeJ‖, (5.141)

where the conductivities can be expressed as

σ ′e =
nee2

meνei

1

gσ0
, (5.142)

ε̄′e =
neke

meνei

1

gε0
, (5.143)

λe = 5nek2Te
meνei

1

gλ0
, (5.144)

βe = 15

8

νei

νec

kTe
e
. (5.145)

In Equations (5.142–145), the parameters gσ0 , gε0 , and gλ0 are pure numbers to be
discussed below. The thermal conductivity (5.144) is the same as that given pre-
viously in Equation (5.137), but expressed in a different form. The coefficient βe
is the thermoelectric coefficient and it accounts for the electron heat flow asso-
ciated with a current. The equation for J‖ (5.140) is similar to Equation (5.124),
but the conductivities are modified because of the electron heat flow. The conduc-
tivities in Equations (5.142) and (5.143) correspond to the second approximation,
whereas those in Equations (5.125a,b) correspond to the first approximation to these
conductivities.6

The different levels of approximation can be traced to the expression for the
species velocity distribution function, which in general is an infinite series about
some zeroth-order weight factor. For the 13-moment approximation, only a few
terms are retained in the series expansion for fs (Equation 3.49), and consequently,
only a few terms appear in the 13-moment expressions for the linear collision terms
(see Equations 4.129a–g). On the other hand, for the general case of an infinite series
for fs, each of the linear collision terms (4.129a–g) would contain an infinite series of
progressively higher-order velocity moments. These terms would describe higher-
order distortions (beyond τ s and qs) of the species velocity distribution. Naturally,
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Table 5.1 Comparison of electron transport parameters.1

Parameter 13-moment Exact values

gσ0 0.518 0.506
gε0 0.287 0.297
gλ0 3.731 1.562
eβe/kTe 0.804 0.779

the more terms retained in the expansion for fs, and hence in the collison terms, the
more accurate are the associated conductivites.
An exact numerical solution of the electronBoltzmann equation has been obtained

for a fully ionized gas,7 and this solution is equivalent to keeping all of the terms
in the infinite series for fs. The resulting conductivities have been expressed in the
same forms as those given in Equations (5.142–145), and the 13-moment results
can be compared to the exact conductivities simply by comparing the corresponding
correction factors gσ0 , gε0 , and gλ0 and the coefficient of βe. This comparison is
shown in Table 5.1, where the 13-moment values were calculated with the aid of the
Coulomb collision frequencies (4.144) and (4.145). Except for gλ0 , which is in error
by more than a factor of two, all of the 13-moment conductivities are in excellent
agreement with the exact values.7

The electron conductivities (5.142–145) can be generalized to include elec-
tron interactions with several ion and neutral species simply by replacing νei with
ν′e =

∑
i νei +

∑
n νen (5.123), but in this case the exact values of the g-correction

factors depend on both the degree of ionization and the specific neutral species under
consideration.8,9 Typically, these g-correction factors vary by factors of two to three,
as the degree of ionization is varied from the weakly to fully ionized states.
Perhaps the most widely used conductivity is the electron thermal conductivity

because electron heat flow is an important process in all of the ionospheres. In
many ionospheric applications, the following relatively simple, electron thermal
conductivity has been used10

λe = 7.7× 105T 5/2e
1+ 3.22× 104T

2
e

ne

∑
n

nn
〈
Q(1)
en

〉 , (5.146)

where the units are eV cm−1 s−1 K−1 and where 〈Q(1)
en 〉 is a Maxwellian average

of the momentum transfer cross section (4.46). This expression was derived using
mean-free-path considerations, but in the derivation a slight algebraic error was
made. The number in the denominator should be 2.16, not 3.22.11 However, as
it turns out, the number 3.22 yields slightly better results when values calculated
from Equation (5.146) are compared with the more rigorous values obtained from
the generalization of Equation (5.144). Typically, the errors associated with the
approximate λe (5.146) are less than 5%, and reach a maximum of 18%. Such errors
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are acceptable in ionospheric studies, because the uncertainties associated with the
electron–neutral momentum transfer cross sections are generally larger.

5.13 Ion stress and heat flow

Collision-dominated expressions for the ion stress tensor and heat flow vector can
be derived using a perturbation scheme similar to that used for the electrons,1 and
the resulting equations are also similar. For example, in the limit of a fully ionized
plasma with a single ion component, the collision-dominated stress tensor is given
by the following equation

τ i + 5ωci
6νii + 10νie

(
b× τ i − τ i × b

) = −ηi
[
∇ui + (∇ui)T − 23 (∇ · ui)I

]
,

(5.147)

where

ηi = 5pi
6νii + 10νie . (5.148)

In the terrestrial case, viscous stress is not important for the ions. For the neutrals,
on the other hand, it is important, as will be shown in Section 10.3. The reason for
this difference relates to the magnitude of the main flow and the direction of the
velocity gradient. For the neutrals, the main flows are horizontal, at speeds of from
100–800 m s−1, while the velocity gradients are in the vertical direction. These
conditions yield large viscous stress effects. For the ions, the velocity gradients are
also primarily in the vertical direction, but the flows can be either in the horizontal
or vertical directions. The vertical ion drifts are usually of the order of 10–50 m s−1,
and because of the low speeds, the viscous effects associated with them are small.
Large horizontal ion flows can occur, with speeds up to several km s−1, but they are
E× B drifts, and they exhibit little variation with altitude. The lack of a velocity
gradient implies that viscous stress is not important even for these large drifts.
Although the viscous stress effects associated with velocity gradients (5.147)

are typically not important, large ion–neutral relative drifts do result in important
stress effects, as discussed previously in Section 5.3 for a weakly ionized plasma
(Equation 5.49a). The extension of this result to a single-ion partially ionized plasma
is straightforward, and the modified expression is given by

τi‖ = Ri
Si + 0.6νii nimi

[
(ui − un)2‖ −

1

3
(ui − un)2

]
, (5.149)

where Ri and Si are still given by Equations (5.49b, c). The appropriate ion momen-
tum equation is (5.48b), with the polarization electrostatic field, E‖, given by
Equation (5.61).
The derivation of a collision-dominated expression for the ion heat flow is more

involved than that for the electrons. In the electron derivation (Section 5.12), the ions
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and neutrals were assumed to have driftingMaxwellian velocity distributions, which
simplified the analysis. This simplification is reasonable for the electrons because
the small electron mass acts to decouple the electrons from the other species. On
the other hand, when the ion equations are derived, it is not appropriate to assume
simplified forms for the electron and neutral velocity distributions; the full 13-
moment expression must be used. This more general procedure leads to additional
transport effects, and these are discussed in Section 5.14.

5.14 Higher-order diffusion processes

The 13-moment system of transport equations can describe ordinary diffusion, ther-
mal diffusion, and thermoelectric transport processes at a level of approximation that
is equivalent toChapman andCowling’s so-calledfirst and second approximations,12

depending on the process. However, the 13-moment approach has an advantage over
the Chapman–Cowling method in that the different components of the gas mixture
can have separate temperatures. The classical forms for the diffusion and heat flow
equations are obtained from the 13-moment momentum (3.58) and heat flow (3.61)
equations by making several simplifying assumptions. First, the linear collision
terms (4.129) are adopted. Also, the inertial and stress terms in the momentum
equation are neglected. In the heat flow equation (3.61), all terms proportional to
qs and τ s are neglected, except the qs terms multiplied by a collision frequency
(collision-dominated conditions). Finally, only diffusion and heat flows either along
a strong magnetic field or in the vertical direction are considered, and density and
temperature gradients perpendicular to this direction are assumed to be small.
With the above assumptions, the momentum (3.58, 4.129b) and heat flow (3.61,

4.129g) equations for a fully ionized plasma reduce to

∇ps − nsmsG − nsesE = nsms

∑
t

νst(ut − us)

+ 3
5

∑
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kTst
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)
, (5.150)
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where νss, νst , D(1)
st , and D(4)

st are those relevant to Coulomb collisions (4.140,
4.141a–c). In addition to these equations, the plasma is governed by charge
neutrality and charge conservation with no current (ambipolar diffusion), and for a



150 Simplified transport equations

three-component plasma, these conditions are

ne = niZi + njZj, (5.152)

neue = niZiui + njZjuj. (5.153)

In Equations (5.152) and (5.153), subscript e is for the electrons and subscripts i and
j are for the two ion species.
The application of the heat flow equation (5.151) to the two ion species and

the electrons yields three coupled equations because qe, qi, and qj appear in each
equation. The simultaneous solution of the three equations for the individual heat
flows yields equations of the form

qe = −λe∇Te + δei(ue − ui)+ δej(ue − uj), (5.154)

qi = −K ′ji∇Ti − Kij∇Tj + Rij(ui − uj), (5.155)

qj = −Kji∇Ti − K ′ij∇Tj − Rji(ui − uj), (5.156)

where λe, Kij, Kji, K ′ij, and K ′ji are thermal conductivities and δei, δej, Rij, and Rji are

diffusion thermal coefficients.13 These expressions are given in Appendix I. Note
that a flow of heat is induced in both ion gases as a result of a temperature gradient
in either gas or as a result of a relative drift between the ion gases. The latter process
is known as a diffusion thermal effect. When this process operates in the electron
gas, it is called a thermoelectric effect, as discussed previously in Section 5.12
(Equation 5.141). It should also be noted that ∇Te terms do not appear in the ion
heat flow equations and that ∇Ti and ∇Tj terms do not appear in the electron heat
flow equation. This occurs because in deriving Equations (5.154–156), terms of the
order of (me/mi)1/2 and (me/mj)1/2 were neglected. With regard to the underlying
physics, the fact that a temperature gradient in one ion gas can induce a heat flow in
another ion gas can be traced to the collision process. If heat flows in ion gas i due to
a ∇Ti, then the ion gas has a nonMaxwellian velocity distribution (Equation 3.49).
The nonMaxwellian feature in gas i is communicated to gas j via collisions, and they
induce a similar nonMaxwellian feature in gas j.
Turning to the momentum equation (5.150), the primary function of the electrons

is to establish the polarization electrostatic field that produces ambipolar diffusion.
Taking into account the small electron mass and using equation (5.154) for qe, the
electron momentum equation (5.150) can be expressed in the form13,14

eE = − 1
ne

∇pe −
(15
√
2/8)(niZ2i + njZ2j )k∇Te

niZi + njZj + (13
√
2/8)(niZ2i + njZ2j )

. (5.157)



5.14 Higher-order diffusion processes 151

The second term on the right-hand side of Equation (5.157) is a thermal diffusion
process, and it describes the effect of heat flow on the electron momentum balance.
Again, ion temperature gradient terms do not appear in Equation (5.157) because
terms of the order of (me/mi)1/2 and (me/mj)1/2 are neglected.
Iondiffusion equations of the classical formcannowbeobtained from themomen-

tum equation (5.150) by explicitly writing the momentum equations for ion species
i and j, by eliminating the polarization electrostatic field with the aid of Equa-
tion (5.157), by using Equations (5.154–156) for the ion and electron heat flows,
and by taking into account the small electron mass. When the resulting equations are
solved for the ion drift velocities, the following diffusion equations are obtained:

ui = uj − Di

[
1

ni
∇ni − miG

kTi
+ 1

Ti
∇Ti + Zi

Te/Ti
ne

∇ne

+ (Zi − γi)

Ti
∇Te + nj

ni + nj

(
αij

Ti
∇Ti −

α∗ij
Ti

∇Tj

)]
, (5.158)

uj = ui − Dj

[
1

nj
∇nj − mjG

kTj
+ 1

Tj
∇Tj + Zj

Te/Tj
ne

∇ne

+ (Zj + γj)

Tj
∇Te − ni

ni + nj

(
αij

Tj
∇Ti −

α∗ij
Tj

∇Tj

)]
, (5.159)

where

Di = kTi
miνij

1

1−�ij
, (5.160)

Dj = kTj
mjνji

1

1−�ij
. (5.161)

In the above equations, αij, α∗ij, γi, and γj are thermal diffusion coefficients and

�ij is a correction factor for ordinary diffusion.13 All of these coefficients arise as
a result of the effect that heat flow has on the momentum balance. The complete
expressions are given in Appendix I. It should be noted that the correction factor,
�ij, is less than one, so the effect of heat flow is to enhance ordinary diffusion. Heat
flow also induces an additional diffusion via temperature gradients, which is called
thermal diffusion. In particular, a temperature gradient in either of the ion gases or
in the electron gas causes thermal diffusion in both ion gases. The effect of thermal
diffusion is to drive the heavy ions toward the hotter regions, which usually means
toward higher altitudes.
Diffusion and heat flow equations have also been derived for a three-component

partially ionized plasma composed of electrons (subscript e), ions (subscript i), and
neutrals (subscript n). The technique used to derive these equations is similar to
that described above for the fully ionized plasma, and the resulting equations are
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given by

qi = −K ′ni∇Ti − Kin∇Tn + Rin(ui − un), (5.162)

qn = −Kni∇Ti − K ′in∇Tn − Rni(ui − un) (5.163)

ui = un − Da

[
1

ni
∇ni − miG

k(Te + Ti)
+ ∇(Te + Ti)

Te + Ti

+ 2ω

Te + Ti
∇Tn + 2ω∗

Te + Ti
∇Ti

]
, (5.164)

where

Da = k(Te + Ti)

miνin

1

1−�in
, (5.165)

and where ω and ω∗ are thermal diffusion coefficients, the Ks are thermal con-
ductivities, the Rs are diffusion thermal coefficients, and �in is a correction factor
for the ambipolar diffusion coefficient; the corresponding expressions are given in
Appendix I. Typically, these processes are not as important in a partially ionized gas
as they are in a fully ionized gas.
The accuracy of the various ion and neutral transport coefficients can be deter-

mined only in the limit of equal species temperatures. In this limit the 13-moment
system of transport equations yields ordinary diffusion coefficients that correspond
to the second approximation to these coefficients, while the resulting thermal diffu-
sion coefficients and thermal conductivities correspond to the first approximation.
The accuracies of these levels of approximation have been studied,12,15–16 and it
appears that for a fully ionized plasma the various ion transport coefficients are
accurate to within 20–30%. For a partially ionized plasma, the transport coefficients
are accurate to within 5%.
Sometimes it is useful to have an expression for the ion thermal conductivity that

is not as complicated as those given by Equations (5.155), (5.156), and (5.162). A
simplified expression can be derived with the aid of a few assumptions. The starting
point for the derivation is the heat flow equation (5.151). Assuming that the qt and
(us − ut) terms are negligible and that Ts ≈ Tst , Equation (5.151) can be simplified
and written in the form

qs = −λs∇Ts, (5.166)

where the thermal conductivity (λs) is given by

λs = 25

8

nsk2Ts

msνss

[
1+ 5

4

∑
t =s

νst

νss

(
D(1)

st +
3

2

µst

ms

)]−1
, (5.167)

and where ps = nskTs was used in arriving at Equation (5.167). Equations (5.166)
and (5.167) can be applied to any species and the general expression for D(1)

st is
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given by Equation (4.130a). The expression in Equation (5.167) is what Chapman
and Cowling call the first approximation to the thermal conductivity.12

For ions, a convenient form can be obtained by using Equation (4.142) for νss,
and the thermal conductivity (5.167) becomes

λi = 3.1× 104 T 5/2i
M 1/2
i Z4i

[
1+ 5

4

∑
t =i

νit

νii

(
D(1)
it + 3

2

µit

mi

)]−1
, (5.168)

where the units are eV cm−1 s−1 K−1 and where Mi is the ion mass in atomic
mass units and Zi is the ion charge number. Note that subscript i is used in Equa-
tion (5.168) to emphasize that the expression only applies to ions. The summation
over the subscript t pertains to neutrals and other ion species. Also, as noted above,
Equation (5.167) corresponds to the first approximation to the thermal conductiv-
ity. For ions, this first approximation conductivity has to be corrected to achieve
agreement with the more rigorous values obtained from a numerical solution of the
Boltzmann equation.7 The corrections are made by multiplying νii by 0.8, which
was already done in arriving at the numerical factor 3.1× 104 in Equation (5.168).
A more explicit numerical expression for λi can be obtained for a fully ionized

plasma, and the result is

λi = 3.1× 104 T 5/2i
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−1

, (5.169)

where subscripts i and j are used to emphasize that the expression only applies to a
plasma in which ion–ion collisions are dominant.

5.15 Summary of appropriate use of transport equations

The topics in this chapter progressed from very simple tomore complex sets of trans-
port equations. This progression had the advantage of clearly showing the reader, in a
step-by-step fashion, how the various transport processes affect a plasma. However,
for practical applications, it is usually the final, more complex, equations that are
needed. Hence, for the practitioner, the following summary indicates what equations
are needed for different applications:

1. In the five-moment approximation, stress and heat flow effects are assumed
to be negligible, and the properties of the plasma are described by only
five parameters (ns, us, Ts). The appropriate continuity, momentum, and
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energy equations are given by Equations (5.22a–c). The collision terms that
appear in these equations are valid for arbitrary temperature differences
and arbitrary relative drifts between the interacting species. However, these
equations cannot describe anisotropic pressure distributions, thermal diffu-
sion, and thermal conduction effects because stress and heat flow are not
considered.

2. In a weakly ionized plasma, Coulomb collisions are negligible, and the
drift speeds are typically subsonic, so that the diffusion approximation is
valid. Under these circumstances, the appropriate continuity, momentum,
and energy equations are given by Equations (5.48a–d). The continuity and
momentum equations apply either along B for a planet with a strong intrin-
sic magnetic field or in the vertical direction for an unmagnetized planet.
The stress tensor component τi‖ is given by Equations (5.49a–c), but it is
only important if there is a large relative ion–neutral drift in the horizontal
direction.

3. For partially and fully ionized plasmas, the general continuity, momentum,
and energy equations are given by Equations (3.57–59). However, for a
coordinate system that is fixed to a rotating planet, Coriolis and centripetal
acceleration terms may need to be added to the momentum equation, and
this equation is given by Equation (5.50). The general momentum equation
for motion either along B for magnetized planets or in the vertical direction
for unmagnetized planets can be simplified in the diffusion approximation
(ambipolar, subsonic flow). For a three-component fully ionized plasma
(electrons and two ion species), the ion diffusion equations are given by
Equations (5.158) and (5.159). The associated collision-dominated expres-
sions for the ion and electron heat flows are given byEquations (5.154–156).
The ion conductivities are given in Appendix I and Equation (5.146) can
be used for the electron thermal conductivity. For a three-component par-
tially ionized plasma (electrons, one ion, and one neutral species), the
appropriate ambipolar diffusion and heat flow equations are given by Equa-
tions (5.162–164), where again the conductivities are given in Appendix I.
Simplified, albeit less rigorous, ion thermal conductivities are given by
Equations (5.168) and (5.169). When thermal diffusion and diffusion ther-
mal heat flow are not important, the ambipolar diffusion Equation (5.164)
reduces to Equation (5.54), except for the τi‖ term. This latter term is impor-
tant if there are large relative ion–neutral drifts in the horizontal direction. In
this case, the τi‖ appropriate for a partially ionized plasma is given by Equa-
tion (5.149). Note that if thermal diffusion and stress are both important,
the ambipolar diffusion Equation (5.164) must be augmented with the stress
term that appears inEquation (5.54). For supersonic floweither along amag-
netic field for a magnetized planet or in the vertical direction for an unmag-
netized planet, the momentum equation must include the inertial terms.
For steady state and simple time-dependent expansions, the appropriate
momentum equations are, respectively, Equations (5.87) and (5.89).
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4. For diffusion across B, all levels of ionization generally need to be consid-
ered. The equation describing the diffusion of charged particles across B is
Equation (5.103), which depends on the collision-to-cyclotron frequency
ratio of the charged particle under consideration. In the small collision
frequency limit, only the E× B (5.99), diamagnetic (5.100), and gravita-
tional (5.101) drifts survive, which are perpendicular to both B and the
force causing the drift. In the high collision-frequency limit, the drift is in
the direction of the forces causing the drift (5.27).

5. Electrical currents typically flow alongB from high to low altitudes, across
B at low altitudes, and then back up along B to high altitudes, forming an
electrical circuit that spans all levels of ionization. The current flow across
B is given by Equation (5.116), and the associated Pedersen and Hall con-
ductivities are given by Equations (5.119) and (5.120), respectively. The
current flow along B is given by Equation (5.140). The associated electrical
conductivity and the current flow conductivity due to thermal gradients are
given by Equations (5.142) and (5.143), respectively, for a fully ionized
plasma. The g-correction factors are given in Table 5.1 for a fully ionized
plasma. For a partially ionized plasma, the quantity νei in the expressions
for the conductivities must be replaced with the total electron collision
frequency (5.123), and the g-correction factors become dependent on the
degree of ionization. The variation of the g-correction factors with the ratio
νen/νei is given in Reference 9.
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5.18 Problems

Problem 5.1 Show that the density expression given in Equation (5.7) is a solution
to Equation (5.6).

Problem 5.2 Consider the simple scenario where a gas with a constant density and
temperature has a flow velocity in the x-direction. If the velocity varies with x, ux(x),
calculate the viscous stress component τxx using a mean-free-path approach.

Problem 5.3 Consider the simple scenario where a gas flows between infinite par-
allel plates. The gas, which has a constant density and temperature, flows in the
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x-direction and the parallel plates are at y = 0 and a. The plate velocities are V0 at
y = 0 and V1 at y = a. Calculate the velocity component ux(y).

Problem 5.4 Consider a stationary gas with a constant density. The gas is confined
between infinite parallel plates, which are located at y = 0 and a. The plate temper-
atures are T0 at y = 0 and T1 at y = a. Assume thermal conduction dominates the
energy balance (∇ · q ≈ 0) and that the thermal conductivity of the gas is given by
Equation (5.20), with ν constant. Calculate the temperature as a function of y.

Problem 5.5 Show that Equations (5.35) and (5.36) are solutions to the momen-
tum (5.31) and energy (5.32) equations.

Problem 5.6 Show that the expression for the isotropic stress tensor (5.42) is the
solution to Equation (5.40). Note that in index notation the isotropic stress tensor
is given by (τi)αβ = τi‖bαbβ + τi⊥(δαβ − bαbβ), where α and β are the coordinate
indices.

Problem 5.7 Calculate plasma scale heights (Equation 5.59) for Venus, Earth, and
Mars at an altitude of 400 km. Assume that Tp = 1000 K.
Problem 5.8 In deriving the ambipolar diffusion equation for a minor ion (5.72), it
was implicitly assumed that the minor ion is singly charged. Derive the ambipolar
diffusion equation for the case when the minor ion is multiply charged, and then
obtain the two linearly independent solutions for multiply charged minor ions that
are equivalent to Equations (5.78a,b).

Problem 5.9 Derive a Mach number equation for a minor ion species that is similar
to Equation (5.87). Assume that the major ions and electrons are in diffusive equi-
librium and that ne = ni, where subscript i corresponds to the major ion. Adopt the
same assumptions used in the derivation of Equation (5.87).

Problem 5.10 Show that the solution of Equation (5.102) for u′j⊥ is given by
Equation (5.103).

Problem 5.11 Show that the solution of Equation (5.109) for u′i is given by
Equation (5.110).

Problem 5.12 Show that the weakly ionized expression for the stress tensor (5.49a)
is modified for the case of a single-ion, partially ionized plasma, and that the result
is given by Equation (5.149).

Problem 5.13 Show that the fully ionized expression for the ion thermal conductiv-
ity (5.169) follows from Equation (5.168) and then calculate the ion conductivities
for a plasma composed of H+, He+, and O+.

Problem 5.14 Consider a partially ionized, electrically neutral, four-component
plasma composed of hot electrons (nh, uh, Th), cold electrons (nc, uc, Tc), ions
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(ni, ui, Ti), and one neutral species (nn, un = 0, Tn). Derive an ambipolar
diffusion equation for the plasma. Include gravity and temperature gradients, but
ignore B.

Problem 5.15 For the four-component plasma described in Problem 5.14, derive a
Mach number equation for steady state, ambipolar, supersonic plasma flow along a
strong diverging magnetic field.



Chapter 6

Wave phenomena

Plasma waves are prevalent throughout the ionospheres. The waves can just have
fluctuating electric fields or they can have both fluctuating electric and magnetic
fields. Also, the wave amplitudes can be either small or large, depending on the
circumstances. Small amplitude waves do not appreciably affect the plasma, and
in many situations they can be used as a diagnostic of physical processes that are
operating in the plasma. Large amplitude waves, on the other hand, can have a
significant effect on the plasma dynamics and energetics. In general, there is a
myriad of waves that can propagate in a plasma, and it is not possible, or warranted,
to give a detailed discussion here. Instead, the focus in this chapter is on just the
fundamental wave modes that can propagate in both magnetized and unmagnetized
plasmas. First, the general characteristics of waves are presented. This is followed
by a discussion of small amplitude waves in both unmagnetized and magnetized
plasmas, including high frequency (electron) waves and low frequency (ion) waves.
Next, the effect that collisions have on thewaves is illustrated, and this is followed by
a presentation of wave excitation mechanisms (plasma instabilities). Finally, large
amplitude shock waves and double layers are discussed.

6.1 General wave properties

Many types of waves can exist in the plasma environments that characterize the
ionospheres. Hence, it is useful to first introduce some common wave nomenclature
before discussing the various wave types. It is also useful to distinguish between
background plasma properties and wave induced properties. In what follows, sub-
script 0 designates background plasma properties, and subscript 1 designates both
the wave and the perturbed plasma properties associated with the wave. The waves
can be electrostatic, for which there is only a fluctuating electric field, E1, or

159
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Table 6.1 Wave characteristics.

Electrostatic wave E1 = 0,B1 = 0
Electromagnetic wave E1 = 0,B1 = 0
Longitudinal mode E1 ‖ K
Transverse mode E1 ⊥ K
Parallel propagation K ‖ B0
Perpendicular propagation K ⊥ B0
Cut-off K→ 0
Resonance K→∞

electromagnetic, for which there are both fluctuating electric, E1, and magnetic,
B1, fields. In the case of a longitudinal mode, the propagation constant, K, which
defines the direction of propagation of the wave, and the fluctuating electric field,
E1, are parallel, whereas for a transverse mode they are perpendicular. Also, in a
magnetized plasma with a background magnetic field, B0, the waves can propagate
along the magnetic field (K ‖B0), perpendicular to it (K⊥B0), or at an arbitrary
angle. For easy reference, the nomenclature is summarized in Table 6.1.
The starting point for a discussion of wave phenomena is the set of Maxwell

equations (3.76a–d). For electrostatic waves (B1= 0), only two of the four Maxwell
equations are relevant, and these are

∇ · E1 = ρ1c/ε0, (6.1)

∇ × E1 = 0, (6.2)

where ρ1c = ∑
s esns1 is the perturbed charge density. The curl equation (6.2) can

be satisfied by introducing a scalar potential, �1, such that

E1 = −∇�1 (6.3)

because∇×(∇�1) = 0 (Appendix B). The substitution of Equation (6.3) into Equa-
tion (6.1) then yields a second-order, partial differential equation for the potential,
which is known as the Poisson equation, and is given by

∇2�1 = −ρ1c/ε0. (6.4)

For electrostatic waves, the effect of the plasma enters through the perturbed charge
density. Given a knowledge of ρ1c(r, t), the perturbed potential can be obtained
from a solution of Equation (6.4), and then E1 can be obtained from Equation (6.3).
However, as will be discussed later, for small amplitude, sinusoidal waves, the
electrostatic waves are longitudinal (K ‖ E1). In this case, Equation (6.2) is automat-
ically satisfied and only Equation (6.1) needs to be considered. For some electrostatic
waves, charge neutrality is maintained not only in the background plasma, but also
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in the plasma wave perturbation. For these waves, equation (6.1) can be replaced by
the charge neutrality condition

∑
s esns1 = 0.

The full set of Maxwell equations is needed for electromagnetic waves (E1 = 0,
B1 = 0). However, a more useful form of these equations can be obtained by taking
the curl of the curl equations (3.76b,d). For example, the curl of Faraday’s law (3.76b)
yields

∇ × (∇ × E1) = − ∂

∂t
(∇ × B1), (6.5)

where the spatial and temporal derivatives can be interchanged for coordinate
systems that are fixed in space. Now, substituting Ampère’s law (3.76d) into
Equation (6.5) and using the vector relation ∇ × (∇ × E1) = ∇(∇ · E1) − ∇2E1
(Appendix B) yields the following equation:

∇2E1 − µ0ε0
∂2E1
∂t2

−∇(∇ · E1) = µ0
∂J1
∂t
, (6.6)

where J1 =∑
s es(nsus)1 is the perturbed current density.

A similar equation for B1 can be obtained by first taking the curl of Ampère’s
law (3.76d) and then performing manipulations similar to those that led to Equa-
tion (6.6). However, in practice, the electric field, E1, is typically obtained first
from Equation (6.6), and then the associated magnetic field, B1, is obtained from
Faraday’s law, which is ∇ × E1 = −∂B1/∂t (3.76b). Note that for electromagnetic
waves the effect of the plasma can enter through both the perturbed current density,
J1, and the perturbed charge density, ρ1c, via ∇ · E1 (3.76a).
In a vacuum (ρ1c = 0, J1 = 0), Equation (6.6) reduces to the classical wave

equation, which is

∇2E1 − 1

c2
∂2E1
∂t2

= 0 (6.7)

where ∇ · E1 = 0 (6.2) and c = 1/√µ0ε0 is the speed of light.
For the special case of small amplitude, sinusoidal perturbations, the fluctuating

electric field can be expressed in the form

E1(r, t) = E10 cos(K · r − ωt) (6.8)

where E10 is a constant vector, K is the propagation vector of the wave, and ω
is the wave frequency. The magnitude of K is the wave number and it is related
to the wavelength, λ, by K = 2π/λ. Waves of the type given in Equation (6.8) are
known as plane waves. Note that for plane waves, the spatial, r, and temporal, t,
variations appear in the cosine function, and that they are characterized by a single
frequency, ω, and propagation vector,K. Also, for plane waves, it is mathematically
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convenient to introduce complex functions, so that Equation (6.8) can be expressed in
the form

E1(r, t) = E10ei(K·r−ωt) (6.9)

where eiα = cosα + i sin α, and i is the square root of minus one. Therefore, the
original form given in Equation (6.8) can be recovered simply by taking the real part
of the expression in Equation (6.9). The advantage of using Equation (6.9) is that
when ∇ and ∂/∂t operate on this exponential form of a plane wave, they become

∇ → iK,
∂

∂t
→−iω. (6.10)

There are several other important wave properties that should be noted. The first
concerns the phase of the cosine function. This function has a constant phase when
(K · r−ωt) is constant. The velocity at which a constant phase propagates is called
the phase velocity, Vph, and it is given by

Vph = ω

K
. (6.11)

The velocity at which the energy or information propagates is called the group
velocity, Vg, and it is given by

Vg = dω

dK
. (6.12)

The flow of energy (energy per unit area and per unit time) for an electromagnetic
wave is in the direction of K and it is given by the Poynting vector, which is

S = E1 ×H1. (6.13)

For sinusoidal waves (6.9), the Poynting vector is time dependent. However, what
is generally of interest is the time-averaged flow of energy, which can be calculated
from the expression1

〈S〉 = 1

2
Re E1 ×H∗1 (6.14)

where H∗1 is the complex conjugate of H1 and “Re” means that the real part of the
expression should be used.
The substitution of the plane wave solution (6.9) into the vacuum wave equa-

tion (6.7) leads to a relation betweenK andω, which is called the dispersion relation,
and the result is

ω2 = c2K2. (6.15)



6.1 General wave properties 163

Note that in this case, the phase and group velocities are the same

ω

K
= dω

dK
= ±c (6.16)

where the± sign indicates that the waves can propagate in opposite directions.Also,
although Equation (6.15) is called a dispersion relation, there is no dispersion in this
case, because the phase velocity (6.16) does not depend on frequency.
Equation (6.15) indicates that if a plane wave solution is assumed, the wave

number, K , and the wave frequency, ω, are related. However, this is not the only
restriction on the wave parameters (E1, B1,K, ω). From Faraday’s law (3.76b), it is
clear that if E1 has a plane wave form, then B1 must also have this form, otherwise
Faraday’s law cannot be satisfied. In fact, all four of the Maxwell equations (3.76a–
d) must be satisfied if the plane wave solution is correct. When the plane wave
solution (6.9) is substituted into Maxwell’s vacuum equations (ρ1c = 0, J1= 0), the
following additional constraints on the wave parameters are obtained:

K · E1 = 0, (6.17a)

K × E1 = ωB1, (6.17b)

K · B1 = 0, (6.17c)

K × B1 = − ω

c2
E1. (6.17d)

These additional constraints indicate that K, E1, and B1 are perpendicular to each
other and that E1×B1 points in the direction ofK, as shown in Figure 6.1. Such an
electromagnetic wave is called a transverse wave, because E1 and B1 are perpen-
dicular to the direction of propagation of the wave. Equations (6.17b) and (6.17d)

B1

E1

K

z

x

y

Figure 6.1 Directions of the
wave parameters for a transverse
electromagnetic wave
propagating in a vacuum. The
dispersion relation is
ω2 = c2K2.
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also indicate that the magnitudes of the fluctuating electric and magnetic fields are
related, and the relation is E1 = cB1.
In a plasma, the perturbed charge density, ρ1c, and current density, J1, must

also have a plane wave form similar to Equation (6.9), when the electric, E1, and
magnetic, B1, field perturbations have this form. For electrostatic waves, either
Gauss’ law (6.1) or the Poisson equation (6.4) is appropriate, and when a plane wave
solution is assumed, these equations become, respectively,

iK · E1 = ρ1c/ε0 (6.18)

and

K2�1 = ρ1c/ε0. (6.19)

For electromagnetic waves, the general wave equation (6.6) is appropriate. When a
plane wave solution is assumed, this equation becomes

(
ω2

c2
− K2

)
E1 +K (K · E1) = −iωµ0J1. (6.20)

Note that for either electrostatic or electromagnetic waves, the wave equations,
which are partial differential equations, become algebraic equations when plane
wave solutions are assumed.

6.2 Plasma dynamics

As noted in the previous section, the propagation of electrostatic waves in a plasma
is governed by either Gauss’ law (6.18) or the Poisson equation (6.19), and the effect
of plasma enters through the perturbed charge density, ρ1c. On the other hand, for
electromagnetic waves the propagation is governed by the more complicated wave
equation (6.20), and the effect of the plasma can enter through both the perturbed
charge density, ρ1c, and the perturbed current density, J1. Therefore, the next step
in determining the types of waves that can propagate in a plasma is to calculate
ρ1c and J1 for different plasma configurations. In general, however, this can be
difficult, depending on both the plasma conditions and the adopted set of transport
equations. For example, for a multi-species magnetized plasma, the 13-moment
transport equations (3.57–61) are appropriate for describing each species in the
plasma. However, these equations are difficult to solve, even when plane wave
solutions can be assumed for the perturbations. Consequently, only a simplified set
of transport equations is used in the discussion of waves that follows.
It is assumed that the five-moment continuity, momentum, and energy equations

(5.22a–c) are adequate for representing the plasma dynamics in the presence of
waves. These simplified transport equations are based on the assumption that each
species in the plasma has a drifting Maxwellian velocity distribution. In addition to
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this limitation, gravity and collisions are ignored. In a plasma, the electrodynamic
forces are much more important than gravity, and hence, the neglect of gravity in
calculating the normal wave modes is not restrictive. However, gravity is important
for wave phenomena in neutral atmospheres, and this is discussed in Chapter 10.
The effect that collisions have on waves is discussed in Section 6.12.
With the above simplifications, the continuity, momentum, and energy equations

(5.22a–c) become

∂ns

∂t
+∇ · (nsus) = 0, (6.21)

nsms

[
∂us

∂t
+ (us ·∇)us

]
+ ∇ps − nses(E+ us × B) = 0, (6.22)

Dsps

Dt
+ γ ps(∇ · us) = 0, (6.23)

where γ = 5/3 is the ratio of specific heats, which follows from the Euler equations.
The energy equation (6.23) can be cast in a more convenient form with the aid of

the continuity equation (6.21), which indicates that

∇ · us = − 1
ns

Dsns

Dt
. (6.24)

When this expression is substituted into the energy equation (6.23), the result is

Dsps

Dt
− γ ps

ns

Dsns

Dt
= 0, (6.25)

which can also be written as

Ds

Dt

(
ps

ρ
γ
s

)
= 0 (6.26a)

or

ps

ρ
γ
s
= constant. (6.26b)

Equation (6.26b) is known as the equation of state for a plasma. Although Equa-
tion (6.26b) was derived from the Euler energy equation (6.23), for which γ = 5/3,
the equation of state (6.26b) is frequently used with other values of γ . Note
that γ = 5/3 corresponds to an adiabatic flow and γ = 1 corresponds to an
isothermal flow.
In the momentum equation (6.22), ∇ps is needed, and using Equation (6.26b),

this term can be expressed in the form

∇ps = γ ps

ρs
∇ρs = γ kTs

ms
∇ρs, (6.27)
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where ps = nskTs has been used to obtain the second expression in Equation (6.27).
At this point, it is useful to generalize the expression for γ by letting it be different
for different species in the plasma (γ → γs). With the use of a generalized γs in
Equation (6.27), the momentum equation (6.22) becomes

nsms

[
∂us

∂t
+ (us ·∇)us

]
+ γskTs∇ns − nses(E+ us × B) = 0. (6.28)

The transport equations that describe the plasma dynamics in response to waves
are the continuity equation (6.21) and the momentum equation (6.28). The normal
wavemodes that can propagate in a plasma governed by these transport equations (or
any other set of transport equations) are obtained as follows. First, the equilibrium
state of the plasma has to be calculated. Then, the equilibrium state is disturbed by
adding small perturbations to the plasma and electromagnetic parameters (ns, us, E,
and B). Next, the perturbed parameters are substituted into the transport equations,
and the transport equations are linearized because the perturbations are small. The
perturbed parameters are also assumed to be described by plane waves, and with
this assumption, the partial differential equations for the perturbed parameters are
converted into a set of linear algebraic equations. When the algebraic equations are
solved, the result is the dispersion relation, which relates K and ω.
The above normal mode analysis will be applied to a simple plasma situation.

Initially, the plasma is assumed to be electrically neutral, uniform, and steady. The
initial density, ns0, is therefore constant. The plasma is also assumed to have a con-
stant drift (us0) and to be subjected to perpendicular electric, E0, and magnetic, B0,
fields. For this initial equilibrium state, the continuity equation (6.21) is automat-
ically satisfied because ns0 and us0 are constant. The momentum equation (6.28)
indicates that the constant plasma drift that exists in the equilibrium state can have
both parallel and perpendicular components, relative to B0. The perpendicular drift
component is governed by

E0 + us0 × B0 = 0. (6.29a)

The solution of this equation for us0 leads to the well-known electrodynamics drift
(Equation 5.99), which is

(us0)⊥ = E0 × B0
B20

. (6.29b)

However, in the equilibrium state, the plasma can also have a constant drift, (us0)‖,
parallel to the magnetic field because such a drift satisfies the parallel component of
the momentum equation (6.28). Therefore, in the equilibrium state, the total plasma
drift is given by

us0 = (us0)‖ + (us0)⊥. (6.30)
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Now that the equilibrium state of the plasma is established, the characteristic
waves (normalmodes) that can propagate in the plasma can be calculated by perturb-
ing this equilibrium state. This is accomplished by perturbing the plasma parameters
and the electric and magnetic fields, as follows:

ns(r, t) = ns0 + ns1(r, t), (6.31a)

us(r, t) = us0 + us1(r, t), (6.31b)

E(r, t) = E0 + E1(r, t), (6.31c)

B(r, t) = B0 + B1(r, t), (6.31d)

where the subscript 1 is used to denote a small perturbation. These perturbed quanti-
ties are then substituted into the continuity (6.21) and momentum (6.28) equations,
and this yields equations that govern the behavior of ns1 and us1.
The substitution of Equations (6.31a–d) into the continuity equation (6.21) yields

∂

∂t
(ns0 + ns1)+∇ · [(ns0 + ns1)(us0 + us1)

] = 0. (6.32)

The perturbations are assumed to be small, and hence, nonlinear terms like ns1us1

are negligible compared with linear terms. Also, other terms drop out because ns0

and us0 are constant, and therefore, Equation (6.32) reduces to

∂ns1

∂t
+ ns0∇ · us1 + us0 ·∇ns1 = 0. (6.33)

Note that Equation (6.33) is linear in the perturbed quantities, as it should be.
The perturbed momentum equation is obtained in a similar fashion. The sub-

stitution of the perturbed quantities (6.31a–d) into the momentum equation (6.28)
yields

(ns0 + ns1)ms

[
∂

∂t
(us0 + us1)+ (us0 + us1) ·∇(us0 + us1)

]

+ γskTs∇(ns0 + ns1)

− (ns0 + ns1)es
[
E0 + E1 + (us0 + us1)× (B0 + B1)

] = 0. (6.34)

Neglecting the nonlinear terms, taking account of the fact that the equilibrium
parameters (ns0, us0, E0, B0) are constant, and using the equilibrium momen-
tum equation (6.29a), leads to the following momentum equation for the perturbed
quantities:

ns0ms

[
∂us1

∂t
+ (us0 ·∇)us1

]
+ γskTs∇ns1

− ns0es(E1 + us1 × B0 + us0 × B1) = 0. (6.35)
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For small perturbations, the perturbed quantities can be described by planewaves;

ns1, us1,E1,B1 ∝ ei(K·r−ωt). (6.36)

Substituting the plane-wave solution (6.36) into the perturbed continuity (6.33)
and momentum (6.35) equations, and remembering that ∇→ iK and ∂/∂t→−iω
(Equation 6.10), yields

(ω −K · us0)ns1 = ns0K · us1 (6.37)

i(ω −K · us0)us1 − iK γskTs

ns0ms
ns1 + es

ms
(E1 + us1 × B0 + us0 × B1) = 0.

(6.38)

Note that by assuming a plane wave solution, the partial differential equations (6.33)
and (6.35) for the perturbed density, ns1, and drift velocity, us1, are converted into
algebraic equations.
For electrostatic waves (B1= 0), the perturbed parameters (ns1, us1, E1) are gov-

erned by the continuity equation (6.37), the momentum equation (6.38), and Gauss’
law (6.18). For electromagnetic waves, the same continuity (6.37) and momentum
(6.38) equations govern the behavior of ns1 and us1, respectively, butE1 is described
by the perturbed wave equation (6.20). Also, B1 is obtained from the plane wave
form of Faraday’s law (6.17b).
Depending on what wave modes are of interest, the relevant equations can be

solved for the unknown parameters (ns1, us1, E1, B1), and the result is a dispersion
relation that describes the characteristics of the waves. This can be done for the gen-
eral case, but the resulting dispersion relation is complex. The alternative approach
is to study the different wave modes separately, which is more instructive, and this
is what is done in the sections that follow.
First, the dispersion relations for electrostatic waves in an unmagnetized plasma

are derived, including high frequency (electron plasma) and low frequency (ion-
acoustic) waves. Then, electrostatic waves in a magnetized plasma are discussed,
and this again includes both high frequency (upper hybrid) and low frequency (lower
hybrid and ion-cyclotron) waves. Next, the dispersion relation for electromagnetic
waves in an unmagnetized plasma is presented. This is followed by a discussion
of electromagnetic waves in a magnetized plasma, including both high frequency
(ordinary, extraordinary, L, and R) and low frequency (Alfvén and magnetosonic)
waves.

6.3 Electron plasma waves

Electron plasma waves are high frequency electrostatic waves that can propagate
in any direction in an unmagnetized plasma and along the magnetic field in a
magnetized plasma. The basic characteristics of these waves can be elucidated
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by considering a two-component, fully ionized plasma that is electrically neutral
(ne0 = ni0), stationary (ue0 = ui0 = 0), uniform, and steady. Also, there are no
imposed electric or magnetic fields (E0 = B0 = 0). The fact that the waves are high
frequencymeans that the ions do not participate in the wave motion. Physically, the
ion inertia is too large and the ions cannot respond to the rapidly fluctuating waves.
Therefore, the ion equations of motion can be ignored, and the ions merely provide
a stationary background of positive charge.
For these electrostatic waves, the relevant equations are the electron continu-

ity (6.37) and momentum (6.38) equations and Gauss’ law (6.18). With the above
simplifications, these equations become

ωne1 = ne0K · ue1, (6.39a)

iωue1 − iK γekTe
ne0me

ne1 − e

me
E1 = 0, (6.39b)

iK · E1 = −ene1/ε0, (6.39c)

where subscript s = e for electrons and where ρ1c = e(ni1− ne1) = −ene1, because
the ions cannot respond to the high-frequency waves. The dispersion relation is
obtained by solving Equations (6.39a–c) for the unknown perturbations (ne1, ue1,
E1). The same dispersion relation is obtained regardless ofwhich parameter is solved
for. The easiest solution is obtained by first taking the scalar product of K with the
momentum equation (6.39b), which yields

iω(K · ue1)− iK2 γekTe
ne0me

ne1 − e

me
(K · E1) = 0. (6.40)

When K · ue1 from the continuity equation (6.39a) and K · E1 from Gauss’ law
(6.39c) are substituted into (6.40), the result is

ne1

(
−ω2 + γekTe

me
K2 + ne0e2

meε0

)
= 0. (6.41)

Now, ne1 = 0, because the plasma was disturbed and, therefore, the solution to
Equation (6.41) yields the dispersion relation for electron plasma waves, which is

ω2 = ω2pe + 3V 2e K2. (6.42)

In Equation (6.42), ωpe is the electron plasma frequency and Ve is the electron
thermal speed , and these are given by

ωpe =
(

ne0e2

ε0me

)1/2
, (6.43)

Ve =
(

kTe
me

)1/2
. (6.44)
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Also, in Equation (6.42), γe= 3 was used because the density compressions are
one-dimensional.2 Note that ωpe was introduced previously in Equation (2.6).
The so-called cold plasma (Te = 0) approximation is assumed for many appli-

cations. In this case, the dispersion relation for electron plasma waves (6.42)
becomes

ω2 = ω2pe , (6.45)

which describes plasma oscillations. Note that Equation (6.45) does not describe
waves because K does not appear in this expression. In a cold plasma, a disturbance
created locally does not propagate to other parts of the plasma, but remains a local
disturbance.

6.4 Ion-acoustic waves

Ion-acoustic waves are the low frequency version of electron plasma waves. That is,
they are low frequency electrostatic waves that can propagate in any direction in an
unmagnetized plasma and along the magnetic field in a magnetized plasma. How-
ever, for these waves, the ion equations of motion must be considered in addition to
the electron equations ofmotion.Aswith electron plasmawaves, the basic character-
istics of the ion-acoustic waves can be elucidated by considering a two-component,
electrically neutral (ne0 = ni0) plasma that is stationary (ue0 = ui0 = 0), uniform,
and steady. It is also not subjected to either electric or magnetic fields (E0 = B0 = 0)
in the analysis that follows.
The relevant equations for ion-acoustic waves are the electron and ion conti-

nuity (6.37) and momentum (6.38) equations and Gauss’ law (6.18). The electron
continuity and momentum equations, for the plasma under consideration, are the
same as those previously given in Equations (6.39a,b). The ion continuity and
momentum equations are similar, and are given by

ωni1 = ni0K · ui1, (6.46a)

iωui1 − iK γikTi
ni0mi

ni1 + e

mi
E1 = 0, (6.46b)

where subscript i denotes ions. For this wave, Gauss’ law (6.18) must take account
of both the electron and ion density perturbations, and the correct form is given by

iK · E1 = e(ni1 − ne1)/ε0. (6.46c)

As was done for electron plasma waves, it is convenient to take the scalar
product ofKwith the electron momentum equation (6.39b), which resulted in Equa-
tion (6.40). The electron continuity equation indicates that K · ue1= ωne1/ne0, and
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when this result is substituted into Equation (6.40), the result is

i

(
ω2 − K2

γekTe
me

)
ne1
ne0

− e

me
K · E1 = 0. (6.47)

When Equation (6.47) is multiplied by mene0/i, the equation becomes

[
meω

2 − K2(γekTe)
]
ne1 − ene0

i
K · E1 = 0. (6.48)

Likewise, when the same algebraic manipulations are performed on the ion
momentum equation (6.45b), a similar equation is obtained, and it is given by

[
miω

2 − K2(γikTi)
]
ni1 + eni0

i
K · E1 = 0. (6.49)

The term containing me in Equation (6.48) can be neglected compared with the
other terms in this momentum equation. This is equivalent to neglecting the electron
inertial term, which is valid for low frequencywaves. Neglecting theme term, adding
Equations (6.48) and (6.49), and then dividing by mi, leads to the following result:

(
ω2 − K2

γikTi
mi

)
ni1 − K2

γekTe
mi

ne1 = 0, (6.50)

where the K · E1 terms cancel because ne0 = ni0.
At this point it is necessary to obtain a relationship between ne1 and ni1. This

can be obtained by substituting K · E1 from Gauss’ law (6.46c) into the electron
momentum equation (6.48), and the result is

−K2(γekTe)ne1 + e2ne0
ε0

(ni1 − ne1) = 0. (6.51)

Multiplying Equation (6.51) by ε0/(e2ne0) and then solving for ne1 leads to the
following equation:

ne1 = ni1
1+ γeK2λ2D

(6.52)

where λD = (ε0kTe/e2ne0)1/2 is the Debye length (Equation 2.4).
The substitution of Equation (6.52) into Equation (6.50) leads to one equation for

one unknown and, hence, to the dispersion relation for ion plasma waves, which is

ω2 = K2
(
γikTi
mi

+ γekTe
mi(1+ γeK2λ2D)

)
. (6.53)
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It is instructive to express the term K2λ2D in terms of the wavelength, λ, and the
result is

K2λ2D =
4π2λ2D
λ2

(6.54)

where K = 2π/λ. For long wavelength waves (λ � λD), K2λ2D � 1, and in
this limit Equation (6.53) becomes the dispersion relation for ion-acoustic (sound)
waves,

ω2 = K2V 2S , (6.55)

where VS is the ion-acoustic speed,

VS =
(
γikTi + γekTe

mi

)1/2
. (6.56)

Note that VS agrees with the expression introduced earlier if γe = γi = 1 (Equa-
tion 5.82). Also note that the dispersion relation for sound waves in a plasma
(Equation 6.55) is similar to the dispersion relation for sound waves in a neutral
gas (Equation 10.32). Finally, when K2λ2D � 1, ne1 = ni1 (Equation 6.52) and,
therefore, charge neutrality is maintained not only in the background plasma, but in
the perturbation as well.

6.5 Upper hybrid oscillations

Upper hybrid oscillations are high frequency electrostatic oscillations that are
directed perpendicular to a magnetic field. The fact that the oscillations are high
frequency means that only the electron equations of motion are needed. As in
the previous cases, the dispersion relation for upper hybrid oscillations is derived
by considering a two-component, electrically neutral (ne0 = ni0), stationary
(ue0 = ui0 = 0), uniform, and steady plasma. The plasma is not subjected to
an electric field (E0 = 0), but there is an imposed magnetic field, B0. It is also
assumed that the plasma is cold (Te = 0). This means that the pressure gradient
term in the momentum equation is not considered. Without thermal motion, it is
not possible to have a wave and, hence, the dispersion relation to be derived will
actually describe localized oscillations.
The relevant equations for upper hybrid oscillations are the electron continu-

ity (6.37) and momentum (6.38) equations and Gauss’ law (6.18). With the above
assumptions, these equations become

ωne1 = ne0K · ue1, (6.57a)

iωue1 − e

me
(E1 + ue1 × B0) = 0, (6.57b)

iK · E1 = −ene1/ε0. (6.57c)
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Figure 6.2 Directions of the
wave and plasma parameters for
electrostatic waves that
propagate in a direction
perpendicular to an imposed
magnetic field B0. The velocity
u1 is in the x–y plane. These
directions are relevant to both
upper hybrid and lower hybrid
waves.

For simplicity, a Cartesian coordinate system is adopted with the magnetic field
taken along the z-axis and K taken along the x-axis, as shown in Figure 6.2. The
fluctuating electric field,E1, is also in the x-direction becauseK ‖ E1 for electrostatic
waves. However, ue1 has both x and y components. For this coordinate system, the
continuity equation (6.57a) becomes

ne1 = ne0K(ue1)x
ω

. (6.58)

An expression for (ue1)x can be obtained from the x and y components of the
momentum equation (6.57b), which are given by

iω(ue1)x − eE1
me

− ωce(ue1)y = 0, (6.59a)

iω(ue1)y + ωce(ue1)x = 0, (6.59b)

where ωce = eB0/me is the electron cyclotron frequency (Equation 2.7). These two
equations can be readily solved to obtain (ue1)x, which is given by

(ue1)x = −iω
ω2 − ω2ce

eE1
me
. (6.60)

The substitution of Equation (6.60) for (ue1)x into the equation for ne1 (6.58) leads
to the following result:

ne1 = −iK
ω2 − ω2ce

ne0eE1
me

. (6.61)
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The final substitution of ne1 (6.61) into Gauss’ law (6.57c) leads to an equation for
E1, from which the dispersion relation for upper hybrid oscillations is obtained

ω2 = ω2pe + ω2ce , (6.62)

where ωpe = (ne0e2/ε0me)1/2 is the electron plasma frequency (Equation 6.43).

6.6 Lower hybrid oscillations

Lower hybrid oscillations are low frequency electrostatic oscillations that are
directed perpendicular to a magnetic field. The low frequency character of the oscil-
lations means that the ion equations of motion must be considered in addition to
the electron equations. However, other than the need to include the ion motion,
the plasma configuration is the same as that used to study upper hybrid oscillations
(Figure 6.2). The relevant electron equations are the same as those given previously
in Equations (6.57a,b). The ion continuity and momentum equations are similar to
the electron equations, and for a cold plasma (Ti = 0) are given by

ωni1 = ni0K · ui1, (6.63a)

iωui1 + e

mi
(E1 + ui1 × B0) = 0. (6.63b)

As was the case for ion plasma waves, charge neutrality can be assumed for low
frequency waves, provided that the wavelengths are longer than the plasma Debye
length (Equation 6.52). Therefore, instead of using Gauss’ law (6.18), the fluctuating
plasma is assumed to remain neutral, which means that

ne1 = ni1. (6.63c)

Previously, in the derivation of the dispersion relation for upper hybrid oscil-
lations, the electron continuity and momentum equations were solved for the
coordinate system shown in Figure 6.2, and the resulting expression for ne1 is given
by Equation (6.61). Using similar mathematical manipulations, the ion continu-
ity (6.63a) and momentum (6.63b) equations can be solved to yield an expression
for ni1, which is given by

ni1 = iK

ω2 − ω2ci

ni0eE1
mi

, (6.64)

where ωci = eB0/mi is the ion-cyclotron frequency (Equation 2.7).
The charge neutrality condition (6.63c) indicates that ne1 (6.61) and ni1 (6.64)

can be equated, and this yields the following equation:

−1
me(ω2 − ω2ce)

= 1

mi(ω2 − ω2ci)
, (6.65)
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where ne0 = ni0. Equation (6.65) can be cast in the form

mi(ω
2 − ω2ci) = −me(ω

2 − ω2ce), (6.66)

which can also be written as

ω2(me + mi) = meω
2
ce + miω

2
ci = e2B20

(me + mi)

memi

= ωceωci(me + mi). (6.67)

Therefore, the final expression for lower hybrid oscillations is given by

ω2 = ωceωci . (6.68)

6.7 Ion-cyclotron waves

Ion-cyclotron waves are low frequency electrostatic waves that propagate in a direc-
tion that is almost perpendicular to a magnetic field. The difference between these
waves and lower hybrid oscillations can be traced to how charge neutrality is main-
tained in the perturbed plasma. For lower hybrid oscillations, the propagation is
exactly perpendicular to B0. In this case, the electron (6.58) and ion (6.63a) continu-
ity equations indicate that if ne1 = ni1, then (ue1)x = (ui1)x. In other words, when
the propagation is exactly perpendicular to B0, the electrons must move across B0
to maintain charge neutrality. However, the electrons can more easily move along
B0 than across B0. Consequently, when K has a small parallel component, the ion
motion across B0 can be neutralized by an electron flow along B0. This difference
in charge neutralization leads to ion-cyclotron waves.
The plasma configuration considered here is the same as that used in the discussion

of lower hybrid oscillations, except that here K is almost, but not exactly, perpen-
dicular toB0. Figure 6.3 shows the directions of the wave and plasma parameters for
this case. Now,K = Kxe1+Kze3, where (e1, e2, e3) are unit vectors for the Cartesian
coordinate system shown in this figure. However, Kx � Kz because the direction of
propagation is almost perpendicular to B0. The ion motion is predominantly across
B0 and is the same as that calculated for lower hybrid oscillations. Therefore, the
expression (6.64) for ni1 is the same, except that K and E1 in Equation (6.64) now
pertain to the x-components of these parameters

ni1 = iKx

ω2 − ω2ci

ni0eE1x
mi

. (6.69)

For electron flow along B0, the governing equation is the parallel component of
the momentum equation (6.38), which becomes

iωme(ue1)z − iKz
γekTe
ne0

ne1 − eE1z = 0, (6.70)
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Figure 6.3 Directions of the
wave and plasma parameters for
electrostatic waves that
propagate at almost 90◦ to a
constant magnetic field B0. The
velocity ui1 is in the x–y plane,
ue1 is along B0, and K is in the
x–z plane. These directions are
relevant to electrostatic
ion-cyclotron waves.

where the electrons are no longer assumed to be cold (i.e., Te = 0). For low fre-
quency waves, the inertial term, which contains me, can be neglected. Therefore,
Equation (6.70) can be easily solved to obtain an expression for ne1, which is

ne1 = − ene0E1z
iKz(γekTe)

. (6.71)

Equations (6.69) and (6.71) can be equated because of charge neutrality (ne1 =
ni1), and the result is

E1z = (γekTe)Kx(KzE1x)

mi(ω2 − ω2ci)
. (6.72)

For electrostatic waves, the components of the electric field are related because
∇×E1 = 0. This curl equation becomesK × E1 = 0 for plane waves, whichmeans
KzE1x=KxE1z. Substituting this result into Equation (6.72) yields the following
equation:

ω2 = ω2ci + K2x
γekTe
mi

. (6.73)

Now, K2 = K2x + K2z ≈ K2x , and VS = (γekTe/mi)1/2 in this application, because
the ions were assumed to be cold (Equation 5.56). Therefore, Equation (6.73) can
also be written as

ω2 = ω2ci + K2V 2S , (6.74)

which is the dispersion relation for electrostatic ion-cyclotron waves.
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6.8 Electromagnetic waves in a plasma

The propagation of electromagnetic waves in a vacuumwas discussed in Section 6.1,
and it was shown that the wave is transverse (E1⊥K) and that ω2= c2K2. The
focus here is on the propagation of electromagnetic waves in a plasma. The full set
of Maxwell equations is needed for electromagnetic waves, and when a plane wave
solution is assumed, the resulting general wave equation (6.6) takes the algebraic
form given in equation (6.20). The effect of the plasma can enter through both the
perturbed current density, J1, and the perturbed charge density, ρ1c. However, for
purely transverse waves K · E1= 0, and in this case, the general wave equation
reduces to(

ω2

c2
− K2

)
E1 = −iωµ0J1. (6.75)

The perturbed current density is obtained by a linearization of the total current
density, J, which for a two-component plasma is given by

J = nieui − neeue. (6.76)

The linearization is accomplished by first perturbing the densities and drift velocities
in the usual manner (Equations 6.31a–d)

ne = ne0 + ne1, (6.77a)

ni = ni0 + ni1, (6.77b)

ue = ue0 + ue1, (6.77c)

ui = ui0 + ui1. (6.77d)

Substituting Equations (6.77a–d) into Equation (6.76) and neglecting the nonlinear
terms yields the following expression for the current density:

J = J0 + J1, (6.78)

where

J0 = ne0e(ui0 − ue0), (6.79)

J1 = ne0e(ui1 − ue1)+ ni1eui0 − ne1eue0, (6.80)

and where it is assumed that charge neutrality prevails in the undisturbed plasma
(ni0 = ne0). The current J0 is the current that flows in the undisturbed plasma, and
J1 is the perturbed current associated with the electromagnetic wave.
It is instructive to consider first the propagation of electromagnetic waves in a

plasma that is not subjected to either electric or magnetic fields (E0 = B0 = 0). For
simplicity, the plasma is also assumed tobe electrically neutral (ne0 = ni0), stationary
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(ue0= ui0= 0), cold (Te= Ti= 0), uniform, and steady. When an electromagnetic
wavepropagates through such aplasma, a current is induced and the disturbedplasma
then affects the electromagnetic wave. When light waves or microwaves propagate
through a plasma, only the electrons can respond because the wave frequencies
are high. For these waves, the relevant equations are the electron continuity (6.37)
and momentum (6.38) equations, the electromagnetic wave equation (6.75), and the
expression for the perturbed current density (6.80).
With these simplifying assumptions, the perturbed current density (6.80) and the

electron momentum equation (6.38) reduce to

J1 = −ne0eue1, (6.81)

iωue1 − e

me
E1 = 0. (6.82)

Substituting ue1 from Equation (6.82) into the equation for J1 (6.81) and then sub-
stituting that result into the wave equation (6.75), yields an equation for E1, which
is given by

E1

(
ω2

c2
− K2 − µ0ε0ω

2
pe

)
= 0, (6.83)

where ωpe is the electron plasma frequency (Equation 6.43). The fluctuating electric
field is not zero and, therefore, the quantity in the brackets must be zero, which
yields

ω2 = ω2pe + c2K2, (6.84)

where, as before, µ0ε0= 1/c2. Equation (6.84) is the dispersion relation for high
frequency electromagnetic waves propagating in an unmagnetized plasma. For these
waves, the phase velocity is greater than the speed of light (Vph > c), but the group
velocity, Vg, is less than c. Specifically, from Equation (6.84),

ω2

K2
= c2 + ω2pe

K2
> c2, (6.85)

dω

dK
= c

(ω/K)
c < c. (6.86)

It is of interest to determine the frequencies of electromagnetic waves that
can propagate through an unmagnetized plasma. These can be obtained from the
dispersion relation (6.84) by solving for K , and the result is

K =
√
ω2 − ω2pe

c
. (6.87)
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When ω > ωpe , K is real, and the wave propagates through the plasma. When
ω = ωpe , K = 0, and this is called the cut-off frequency. Finally, when ω < ωpe ,
K = i|K | is imaginary, and the wave is damped. The damping distance can be
obtained from the plane wave expression for E1, which is given by Equation (6.9).
When K = i|K |, this expression becomes

E1(r, t) = E10e−|K |x cos(ωt), (6.88)

where, for simplicity, a one-dimensional situation was assumed and where the real
part of the plane wave expression was taken. Equation (6.88) indicates that as an
electromagnetic wave, with frequency ω < ωpe , tries to propagate through the
plasma, it is damped exponentially with distance. The penetration depth or skin
depth, δ, is given by

δ = 1

|K | =
c√

ω2pe − ω2
. (6.89)

Physically, the results onwave damping can be understood as follows. The plasma
frequency defines the electrons’ ability to adjust to an imposed oscillating elec-
tric field. When ω < ωpe , the electrons can easily adjust to the imposed electric
field and establish an oppositely directed, polarization electric field that cancels
the imposed electric field. The decay of the electric field then leads to a decay of
the associated magnetic field because Faraday’s law indicates that B1= K × E1/ω
(Equation 6.17b). On the other hand, whenω > ωpe , the electrons cannot fully adjust
to the imposed, oscillating electric field, and the electromagnetic wave is modified
as it passes through the plasma, but it does not decay.

6.9 Ordinary and extraordinary waves

Ordinary and extraordinary waves are high frequency electromagnetic waves that
propagate in a direction perpendicular to a magnetic field, B0. For the ordinary
wave (O mode), the wave electric field is parallel to the background magnetic field
(E1 ‖ B0), whereas for the extraordinary wave (X mode), it is perpendicular to the
background magnetic field (E1 ⊥ B0). As noted before, high frequency means that
only the electron motion needs to be considered. Also, as in the previous wave anal-
yses, the dispersion relation is derived by considering a two-component, electrically
neutral (ne0 = ni0), stationary (ue0 = ui0 = 0), uniform, and steady plasma. The
plasma is magnetized (B0 = 0), but there is no imposed electric field (E0 = 0). In
addition, the plasma is assumed to be cold (Te = 0).
The relevant plasma transport equations are the electron continuity (6.37) and

momentum (6.38) equations, and the expression for the perturbed current den-
sity (6.80). For the above equilibrium plasma configuration, these equations
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reduce to

ωne1 = ne0K · ue1, (6.90a)

iωue1 − e

me
(E1 + ue1× B0) = 0, (6.90b)

J1 = −ne0eue1. (6.90c)

The wave equation is also needed in addition to these transport equations. However,
as it turns out, the extraordinary wave is not a purely transverse wave. There-
fore, Equation (6.75) cannot be used because K · E1 = 0. The complete wave
equation (6.20) is needed to describe the extraordinary wave.
Theorientations of thewavevectors for the ordinarywave are shown inFigure 6.4.

This wave is purely transverse (K · E1= 0) and, hence, the reduced wave equa-
tion (6.75) is applicable. In addition, for this wave, the fluctuating electric field
is parallel to the magnetic field (E1 ‖B0), and this electric field induces a veloc-
ity that is also parallel to the magnetic field (ue1 ‖B0). Under these circumstances,
the ue1× B0 term vanishes and the resulting system of equations (6.90a–c, 6.20)
reduces to the equivalent equations for an unmagnetized plasma (6.81, 6.82). There-
fore, the dispersion relation for the ordinary wave is the same as that obtained for
an electromagnetic wave in an unmagnetized plasma (Equation 6.84).
The ordinary wave, and all of the other waves considered up to this point, are lin-

early polarized , which means that the electric field, E1, always lies along one axis.
For the extraordinary wave, on the other hand, a component of E1 alongK develops
as the wave propagates in the plasma, and therefore, the wave becomes partly longi-
tudinal (E1x ‖K) and partly transverse (E1y ⊥ K), as shown in Figure 6.4. The two
components of the electric field are out of phase by 90◦ and their magnitudes are
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Figure 6.4 Directions of the wave parameters for the ordinary and extraordinary
electromagnetic waves. Both waves propagate in a direction perpendicular to a
magnetic field. The ordinary wave is linearly polarized and the extraordinary wave is
elliptically polarized.
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not equal. Consequently, as the wave propagates, the tip of the electric field vector
traces out an ellipse every wave period, and this is called elliptic polarization.
It is necessary to allow E1 and ue1 to have both x and y components in order

to describe the extraordinary wave. In this case, the x and y components of the
momentum equation (6.90b) become

iω(ue1)x − e

me

[
E1x + (ue1)yB0

] = 0, (6.91a)

iω(ue1)y − e

me

[
E1y − (ue1)xB0

] = 0. (6.91b)

These two equations can be easily solved to yield the individual velocity components,
which are given by

(ue1)x = −(e/meω)
1−ω2ce/ω

2

(
iE1x + ωce

ω
E1y

)
(6.92a)

(ue1)y = (e/meω)

1−ω2ce/ω
2

(
ωce

ω
E1x − iE1y

)
. (6.92b)

Now, substituting the expression for J1 (6.90c) into the wave equation (6.20), leads
to the following result:

(ω2 − K2c2)E1 + c2K(KE1x) = iωne0e

ε0
ue1, (6.93)

where c2 = 1/µ0ε0. After taking the x and y components of Equation (6.93),
and using Equations (6.92a) and (6.92b) for the velocity components, the wave
equation (6.93) becomes

E1x(ω
2 − ω2ce − ω2pe)+ E1y

(
iω2pe

ωce

ω

)
= 0, (6.94a)

E1x(−iω2peωceω)+ E1y
[
(ω2 − K2c2)(ω2 − ω2ce)− ω2peω

2] = 0. (6.94b)

The two equations can be solved for eitherE1x orE1y and then the dispersion relation
is obtained

(ω2 − ω2ce − ω2pe)(ω
2 − K2c2)(ω2 − ω2ce)

− (ω2 − ω2ce − ω2pe)ω
2
peω

2 − ω4peω
2
ce = 0. (6.95)

Equation (6.95) can be simplified via several algebraicmanipulations,2 and the result
is the classical form for the dispersion relation that describes the extraordinary wave

ω2 = K2c2 + ω2pe

ω2 − ω2pe

ω2 − (ω2pe + ω2ce)
. (6.96)
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Typically, not all frequencies can propagate in a plasma, and this is true for both
the ordinary (O-mode) and extraordinary (X-mode) waves. There are generally both
cut-offs and resonances.Acut-off is the frequency atwhich thewave numberK → 0,
whereas a resonance is the frequency at which K →∞. Awave is usually reflected
at a cut-off and absorbed at a resonance. The cut-offs and resonances divide the
frequency domain into propagation and nonpropagation bands.
The dispersion relation for the ordinary wave, which is ω2 = ω2pe + c2K2 (Equa-

tion 6.84), has one cut-off and no resonances. The cut-off frequency is ω=ωpe .
Therefore, the ordinary wave can propagate in a plasma only for frequencies
ω > ωpe .
The extraordinary wave (Equation 6.96) has one resonance and two cut-offs. The

resonance occurs when K→∞, and an inspection of the dispersion relation (6.96)
indicates that the nonzero frequency atwhichK→∞ isω2=ω2pe +ω2ce , which is the
upper hybrid frequency (Equation 6.62). Therefore, as an extraordinary wave, which
is partly electrostatic and partly electromagnetic, approaches a resonance, bothω/K
and dω/dK→ 0, and the wave energy is converted into electrostatic upper hybrid
oscillations.
The cut-offs for the extraordinary wave are obtained from the dispersion relation

(6.96) by setting K = 0, which yields

ω2 = ω2pe

ω2 − ω2pe

ω2 − (ω2pe + ω2ce)
. (6.97)

This equation can be rearranged as follows:

1 = ω2pe

ω2

1− ω2pe

ω2

1− ω2pe

ω2
− ω2ce

ω2(
1− ω2pe

ω2

)
− ω2ce

ω2
= ω2pe

ω2

(
1− ω2pe

ω2

)
(
1− ω2pe

ω2

)2
= ω2ce

ω2

ω2 ∓ ωωce − ω2pe = 0 (6.98)

where the ∓ signs appear when the square root is taken of Equation (6.98). For
both the minus sign and the plus sign in Equation (6.98), two roots appear when the
quadratic formula is applied. However, for each case, only the positive frequency is
considered. Negative frequencies are associated with negative K and correspond to
waves propagating in the opposite direction. With this caveat in mind, the solution
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of Equation (6.98) is

ωR = 1

2

[
ωce + (ω2ce + 4ω2pe)1/2

]
, (6.99a)

ωL = 1

2

[−ωce + (ω2ce + 4ω2pe)1/2
]
. (6.99b)

The frequencies ωR and ωL are called the right-hand and left-hand cut-offs of the
extraordinary wave.
The ordering of the resonance (at the upper hybrid frequency) and the cut-offs

with respect to frequency magnitude is ω2L < (ω2pe + ω2ce) < ω2R. The propagation
characteristics for the extraordinary wave are as follows:

ω < ωL no propagation,
ωL < ω < ωh propagation,
ωh < ω < ωR no propagation,
ωR < ω propagation,

where ω2h = ω2pe + ω2ce .

6.10 L and R waves

The L and R waves are high frequency, transverse, electromagnetic waves that
propagate along a magnetic field. The wave electric field, which is perpendicular
to K, has two orthogonal components that have equal amplitudes, but are out of
phase by 90◦. Consequently, as the wave propagates along the magnetic field, B0,
the electric field vector, E1, rotates aboutB0 and its tip traces out a circle every wave
period (Figure 6.5). Hence, the L and R waves are circularly polarized .
The relevant plasma transport equations are the same as those used to describe

the ordinary and extraordinary waves (Equations 6.90a–c), and the appropriate wave
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E1R
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Figure 6.5 Directions of the
wave parameters for the L and R
electromagnetic waves. Both
waves propagate along the
magnetic field and are circularly
polarized, but the electric field
vectors of the waves rotate in
opposite directions.
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equation is the transverse wave equation (6.75). Both E1 and ue1 have x and y com-
ponents, as was the case for the extraordinary wave, and the solution for (ue1)x and
(ue1)y in terms ofE1x andE1y is the same as obtained previously (Equations 6.92a,b).
The difference results from the fact that here the propagation is alongB0, not perpen-
dicular toB0. Using the fact thatK ‖ B0, and using the expressions for the perturbed
current (6.90c) and the perturbed velocities (6.92a,b), the x and y components of the
transverse wave equation (6.75) become

E1x

(
ω2 − K2c2 − ω2pe

1− ω2ce/ω
2

)
+ E1y

(
i
ωce

ω

ω2pe

1− ω2ce/ω
2

)
= 0,

(6.100a)

E1x

(
−iωce

ω

ω2pe

1− ω2ce/ω
2

)
+E1y

(
ω2−K2c2− ω2pe

1− ω2ce/ω
2

)
= 0.

(6.100b)

The solution of Equations (6.100a) and (6.100b) for either E1x or E1y yields the
following relation:

ω2 − K2c2 − ω2pe

1−ω2ce/ω
2
= ±ωce

ω

ω2pe

1−ω2ce/ω
2

or

ω2 − K2c2 = ω2peω

ω2 − ω2ce
(ω ± ωce). (6.101)

There are two waves that can propagate along B0, corresponding to the± signs, and
these are given by

ω2 = K2c2 + ω2pe

1− ωce/ω
(R wave), (6.102a)

ω2 = K2c2 + ω2pe

1+ ωce/ω
(L wave). (6.102b)

Equations (6.102a) and (6.102b) correspond, respectively, to the dispersion
relations for the R and L electromagnetic waves. The R wave exhibits a right-
hand circular polarization and the L wave exhibits a left-hand circular polarization
(Figure 6.5). The direction of rotation of the electric field is unchanged for both the
R and L waves regardless of whether they propagate parallel or antiparallel to B0
because the dispersion relations depend only on the magnitude of K .
The R wave has a resonance (K→∞) at ω = ωce (Equation 6.102a). The

direction of rotation of the electric field is in resonance with the cyclotron motion
of the electrons. As the electrons gyrate about B0, they continuously absorb energy
from the R wave, and it is damped when ω approaches ωce . The cut-off for the R
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wave is obtained by setting K = 0 in Equation (6.102a), and the cut-off occurs at
ω = ωR (Equation 6.99a). The propagation features of the R wave are as follows:

ω < ωce propagation (whistler wave),

ωce < ω < ωR no propagation,

ω > ωR propagation.

The Lwave does not have a resonance (K→∞) because the electric field rotates
in the opposite direction to the gyration motion of the electrons. However, the L
wave does have a cut-off (K = 0), and Equation (6.102b) indicates that this occurs
at the frequency ω = ωL (Equation 6.99b). The propagation characteristics of the L
wave are given by:

ω < ωL no propagation,

ω > ωL propagation.

6.11 Alfvén and magnetosonic waves

Alfvén and magnetosonic waves are low frequency, transverse, electromagnetic
waves that propagate in a magnetized plasma. The Alfvén wave propagates along
the magnetic field and the magnetosonic wave propagates across the magnetic field.
Bothwaves are linearly polarized. The low-frequency nature of thewavesmeans that
both the electron and ion motion must be considered. The dispersion relations for
these waves can be derived in a manner similar to that used to derive the dispersion
relations for the high frequency electromagnetic waves (O-mode, X-mode, L and
R waves). In this case, the appropriate equations are the electron continuity (6.37)
and momentum (6.38) equations, similar equations for the ions, an expression for
J1 that includes the ion motion [J1= ne0e(ui1−ue1); Equation (6.80)], and the
transverse wave equation (6.75). For the Alfvén wave, the plasma is assumed to be
cold (Te = Ti = 0), but that is not the case for the magnetosonic wave.
Although the dispersion relations for the Alfvén and magnetosonic waves can

be derived using the equations mentioned above, they can be derived more eas-
ily starting from the so-called ideal magnetohydrodynamic (MHD) equations, and
this is done in Chapter 7. However, in the MHD approximation, the displacement
current, ∂E/∂t, in Faraday’s law (3.76d) is ignored because all MHD phenomena
are assumed to be low frequency. The neglect of the displacement current does not
affect the dispersion relation for theAlfvén wave, but it does modify the one for the
magnetosonic wave.
When theplasma transport andwave equationsmentioned above are used to derive

the dispersion relations for the Alfvén and magnetosonic waves, these dispersion
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relations are, respectively, given by

ω2 = K2V 2A, (6.103)

ω2 = K2
V 2S + V 2A
1+ V 2A/c

2
, (6.104)

where VA = B0/(µ0ni0mi)1/2 is theAlfvén speed (Equation 7.88) and VS is the ion-
acoustic or sound speed (Equation 6.56). As noted above, the dispersion relation
for the Alfvén wave (6.103) is the same as that obtained using the ideal MHD
equations (7.90). A comparison of (6.104) with the corresponding MHD dispersion
relation for magnetosonic waves (7.91) indicates that the effect of including the
displacement current in Faraday’s law is to add the V 2A/c

2 term in the denominator
of Equation (6.104). In the limit when VA � c, which is typically the case, the two
dispersion relations become equivalent.

6.12 Effect of collisions

Collisions have an important effect onmany plasma processes that occur in the iono-
spheres, and it is natural to ask whether they can affect wave phenomena. The effect
of collisions on waves can be determined simply by rederiving the wave dispersion
relations including the collision terms in the electron and ion momentum equations.
As an example, the dispersion relation for electrostatic electron plasma waves is
rederived with allowance for electron–ion collisions. As before (Section 6.3), the
plasma is assumed to be unmagnetized, electrically neutral (ne0 = ni0), stationary
(ue0 = ui0 = 0), uniform, and steady. The ions do not participate in the wavemotion
because the wave frequency is high and they have a large inertia.
The normal modes of the plasma are obtained by first linearizing the electron

continuity and momentum equations and Gauss’ law, and then assuming plane wave
solutions. Equations (6.39a–c) are the result of this procedure for electron plasma
waves when collisions are not considered. These equations are applicable here,
except that an electron–ion collision termmust be added to the right-hand side of the
momentum equation (6.39b). For electron–ion collisions, the appropriate collision
term for a Maxwellian plasma is given by Equation (4.124b), and in the limit of
small relative drifts between the electrons and ions, this collision term reduces to

δMe

δt
= nemeνei(ui − ue), (6.105)

where νei is the electron–ion collision frequency (4.144). For the case considered
here, the ion density and electron temperature are constant, and therefore, νei is
constant. In the derivation leading to Equation (6.39b), the electron momentum
equation was divided by−ne0me and, therefore, the collision term that is consistent
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with Equation (6.39b) is

− 1

ne0me

δMe

δt
= −νei(ui − ue)

= νeiue1, (6.106)

where the second expression is the linearized form of the collision term (ui = ui0;
ue = ue0 + ue1).
With the addition of the linearized electron–ion collision term on the right-hand

side of Equation (6.39b), this momentum equation becomes

iωue1 − iK 3V
2
e

ne0
ne1 − e

me
E1 = νeiue1, (6.107)

where γ = 3 for a one-dimensional compression and V 2e = kTe/me (Equation 6.44).
The scalar product of K with Equation (6.107) yields

iω(K · ue1)− iK2 3V
2
e

ne0
ne1 − e

me
(K · E1) = νei(K · ue1). (6.108)

Now, K · ue1 = ωne1/ne0 (Equation 6.39a) and K · E1 = −ene1/iεo (Equa-
tion 6.39c). When these expressions are substituted into Equation (6.108), the
following relation is obtained:

ω2 + iνeiω = ω2pe + 3K2V 2e . (6.109)

Equation (6.109) is the dispersion relation for electron plasma waveswith allowance
for electron–ion collisions.
The effect of collisions can be easily seen by considering the limit νei → ∞.

In this limit, Equation (6.109) becomes ω2 + iνeiω ≈ 0, and the nontrivial root is
ω = −iνei. The substitution of this result into the plane wave solution (6.9) indicates
that the wave perturbation is damped, exponentially with time, as follows

E1(r, t) = E10e−νeitei(K·r). (6.110)

The damping rate is ν−1ei . Although the above analysis is for electron plasma waves,
this result has general validity. That is, the effect of collisions is to damp waves, and
in general, the damping is effective when the collision frequency is greater than the
wave frequency (6.109). Physically, waves correspond to a coherent motion, and
collisions act to scatter the particles and destroy the coherent wave motion.
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6.13 Two-stream instability

In Section 6.8, it was shown that when an electromagnetic wave, with a frequency
ω less than ωpe , tries to propagate in an unmagnetized plasma, it is damped expo-
nentially with distance (Equation 6.88). In Section 6.12, it was shown that waves
can be damped exponentially with time when the collision frequency is greater than
the wave frequency (Equation 6.110). However, wave amplitudes can also grow
exponentially, both with time and distance, when there is an energy source. In this
case, the plasma becomes unstable. A plasma can become unstable when there is
a relative drift between different species (streaming instabilities), when a heavy
fluid lies on top of a light fluid (Rayleigh–Taylor instability), and when the species
velocity distributions are nonMaxwellian (velocity-space instabilities).
It is instructive to consider the so-called two-stream instability, as one example of

an unstable plasma. In this case, it is assumed that there is a relative drift between the
electrons and ions in a two-component, fully ionized plasma, and this relative drift
is a possible energy source for waves. For simplicity, the plasma is also assumed
to be electrically neutral (ne0 = ni0), cold (Te = Ti = 0), unmagnetized (B0 = 0),
uniform, and steady. There is no external electric field (E0= 0), and the ions are sta-
tionary (ui0 = 0), but the electrons have an initial drift relative to the ions (ue0 = 0).
The procedure for studying the stability of the plasma is the same as that used to

calculate the normal modes of a plasma (Sections 6.1 and 6.2). That is, the ion and
electron continuity and momentum equations are perturbed and linearized, and then
plane wave solutions are assumed (Equations 6.37 and 6.38). At that point, the pos-
sible excitation of either electrostatic or electromagnetic waves can be considered.
For electrostatic waves, Gauss’ law (6.18) is used, while for electromagnetic waves
the general wave equation (6.20) is applicable.
Typically, in either unmagnetized or strongly magnetized plasmas, electrostatic

waves are more easily excited than electromagnetic waves and, therefore, they
are considered here.2 For this case, the electron and ion continuity (6.37) and
momentum (6.38) equations and Gauss’ law (6.18) become

(ω −K · ue0)ne1 = ne0K · ue1, (6.111a)

ωni1 = ni0K · ui1, (6.111b)

i(ω −K · ue0)ue1 − e

me
E1 = 0, (6.111c)

iωui1 + e

mi
E1 = 0, (6.111d)

iK · E1 = e(ni1 − ne1)/ε0. (6.111e)

The scalar product of K with the electron and ion momentum equations (6.111c,d)
yields, respectively,

K · ue1 = e

ime

K · E1
(ω −K · ue0) , (6.112)
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K · ui1 = − e

iωmi
K · E1. (6.113)

Substituting these results into the appropriate continuity equations (6.111a,b) yields
expressions for ne1 and ni1 in terms of the electric field

ne1 = ne0e

ime

K · E1
(ω −K · ue0)2 , (6.114)

ni1 = −ni0e

imi

K · E1
ω2

. (6.115)

Finally, substituting Equations (6.114) and (6.115) into Coulomb’s law (6.111e)
leads to the dispersion relation for the electrostatic two-stream instability, which is

1 = ω2pi

ω2
+ ω2pe

(ω −K · ue0)2 , (6.116)

where ωps = (ns0e2/msε0)
1/2 is the plasma frequency for species s.

In the limit of mi →∞, ωpi → 0 and the dispersion relation (6.116) reduces to

(ω −K · ue0)2 = ω2pe . (6.117)

This relation is equivalent to the expression derived earlier for a cold, stationary
plasma (Equation 6.45), except there is a Doppler shift of the frequency by the
amount K · ue0.
In the general case of a finite mi, the dispersion relation (6.116) is a fourth-order

equation for ω. If all four roots are real, the plasma is stable. If any of the roots are
complex, then the plasma is unstable because complex roots always occur in complex
conjugate pairs. One of the complex roots corresponds to a damped wave and the
other to a growing wave. Typically, the solution for the growing wave dominates
and the plasma becomes unstable.
The plasma stability for the dispersion relation (6.116) can be determined by

graphical means by introducing the following function:

y(K ,ω) = ω2pi

ω2
+ ω2pe

(ω −K · ue0)2 , (6.118)

where y(K ,ω) = 1 yields the dispersion relation (6.116). A sketch of y versus ω for
a fixed K is shown in Figure 6.6. Note that when ω approaches either +∞ or −∞,
y → 0. Also, note that y → ∞ when ω approaches 0 and K · ue0. In the sketch
of y versus ω, two general cases are possible in the central portion of the curve, as
shown. When the line at unity intersects y(K ,ω) at four distinct points, there are
four real roots and the plasma is stable for the adopted value of K. On the other
hand, when the line at unity intersects y(K ,ω) at two points, there are two complex
roots and the plasma is unstable. Therefore, it is necessary to determine whether the
minimum value of y(K ,ω) shown in Figure 6.6 lies above or below the line at unity.
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Figure 6.6 Graphical solution of the two-stream dispersion relation (6.116) for cases
when the plasma is stable (left plot) and when it is unstable (right plot). The dispersion
relation is y(K ,ω) = 12.

The minimum of the function is obtained from ∂y/∂ω = 0, which yields

ω2pi(ω −K · ue0)3 + ω2peω
3 = 0, (6.119a)

or

me
mi
(ω −K · ue0)3 + ω3 = 0. (6.119b)

The minimum of y(K ,ω) occurs at a frequency (ωmin) that is in the range 0 <

ωmin < K · ue0. Therefore, an approximate value for ωmin can be obtained by
assuming ωmin � K · ue0 and, hence, by neglecting ω in comparison with K · ue0
in (6.119b). This approximate value is

ωmin ≈
(

me
mi

)1/3
K · ue0. (6.120)

Note that this solution of (6.119b) for ωmin is consistent with the assumption that
ωmin � K · ue0. Now, the substitution of ωmin (6.120) into the expression for
y (6.118) yields

ymin ≈
ω2pi(

me
mi

)2/3
(K · ue0)2

+ ω2pe

(K · ue0)2 . (6.121)

When ymin > 1, the plasma is unstable and this occurs for

(K · ue0)2 � ω2pe . (6.122)

Finally, it should be noted that relative drifts between interacting species are common
in the ionospheres and, therefore, streaming instabilities can play an important role
in the plasma dynamics and energetics.
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6.14 Shock waves

The focus up to this point has been on the types of waves that can propagate in
ionized gases. Only small disturbances were considered and, hence, the continuity,
momentum, and energy equations could be linearized and planewave solutions could
be assumed. Under these circumstances, the set of partial differential equations for
the perturbed parameters could be converted into a set of linear algebraic equations
from which the dispersion relation was obtained.
A set of algebraic equations for the perturbed parameters can also be obtained

in the opposite limit of shock waves, which are sharp discontinuities that occur in
supersonic flows in response to either an obstacle or changing conditions in the region
ahead of the flow. However, for shock waves, the resulting algebraic equations are
nonlinear.
The occurrence of shock waves can be traced to the fact that waves propagate

with a finite speed in a neutral or ionized gas. When a subsonic flow approaches an
obstacle, the waves created by the obstacle propagate back into the gas, and they
carry the information that the gas is approaching an obstacle. The gas then gradually
adjusts its flow properties to accommodate the obstacle. For a gas flow that is almost
sonic, the flow and wave speeds are nearly equal. Therefore, the waves cannot
propagate very far from the obstacle before they are overtaken by the flow. Hence,
the adjustment of the flow to the obstacle is distributed over a smaller spatial region
than for a low-speed flow. For a supersonic flow, the drift speed is greater than the
wave speed and, consequently, the waves created by the obstacle cannot propagate
back into the gas. In this case, the adjustment of the flow to the obstacle is abrupt and
occurs in a narrow spatial region that is either at or close to the obstacle. The shock
thickness is of the order of a fewmean-free-paths for a collision-dominated gas. The
net effect of the shock is either to stop the flow or to slow down and deflect the flow
around the obstacle, which leads to both density and temperature enhancements on
the side of the shock that is closer to the obstacle. Physically, these conditions result
because of the enhanced collision frequency in the shock, which acts to convert flow
energy into random (thermal) energy.
The classical treatment of shock waves starts with the Euler equations (5.22a–c).

These equations, for a single-component neutral gas and with gravity neglected,
become

∂ρ

∂t
+∇ · (ρu) = 0, (6.123)

ρ

[
∂u
∂t
+ (u ·∇)u

]
+∇p = 0, (6.124)

∂p

∂t
+ u ·∇p+ γ p(∇ · u) = 0, (6.125)

where ρ = nm is the mass density and γ = 5/3 is the ratio of specific heats. As
it turns out, Equations (6.123) to (6.125), and the forthcoming analysis of shocks,
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also apply to a single-component ionized gas under certain conditions, but this will
be discussed later.
The momentum (6.124) and energy (6.125) equations are not in their most

convenient form for shock studies. The momentum equation can be modified by
multiplying the continuity equation (6.123) by u and then adding it to themomentum
equation (6.124), which yields

∂

∂t
(ρu)+∇ · (ρuu)+∇p = 0. (6.126)

A modified equation for the flow of energy can be obtained by first taking the
scalar product of u with the momentum equation (6.124), which yields

ρ

[
∂

∂t

(
u2

2

)
+ (u ·∇)u

2

2

]
+ u ·∇p = 0. (6.127)

This equation can also be written in the form

∂

∂t

(
1

2
ρu2

)
+ u ·∇

(
1

2
ρu2

)
− u2

2

(
∂ρ

∂t
+ u ·∇ρ

)
+ u ·∇p = 0.

(6.128)

Now, the continuity equation (6.123) indicates that ∂ρ/∂t + u · ∇ρ = −ρ(∇ · u).
When this expression is substituted into Equation (6.128), and the second and third
terms are combined, the result is

∂

∂t

(
1

2
ρu2

)
+ ∇ ·

(
1

2
ρu2u

)
+ u ·∇p = 0. (6.129)

An expression for u · ∇p can be obtained from the energy equation (6.125), which
can be written in the form

∂p

∂t
+ u ·∇p+∇ · (γ pu)− u ·∇(γ p) = 0. (6.130)

Equation (6.130) then yields

u ·∇p = 1

γ − 1
∂p

∂t
+ γ

γ − 1∇ · (pu). (6.131)

Substituting Equation (6.131) into Equation (6.129) yields the final form for the
energy flow equation, which is

∂

∂t

(
1

2
ρu2 + p

γ − 1
)
+∇ ·

[(
1

2
ρu2 + γ p

γ − 1
)
u
]
= 0. (6.132)

Equations (6.123), (6.126), and (6.132) correspond, respectively, to the continu-
ity, momentum, and energy equations that are typically used in shock studies. If the
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Figure 6.7 Shock dynamics in a one-dimensional system. The top schematic shows a
shock propagating through a gas in a fixed reference frame. The gas velocities ahead
and behind the shock are Ua and Ub, respectively, and Us is the shock velocity. The
bottom schematic shows the same flow in the shock reference frame.

conditions ahead of the shock are known, these equations are sufficient to deter-
mine the conditions behind the shock. To illustrate this point, consider the simple
one-dimensional situation shown in Figure 6.7. The top schematic shows a shock
propagating through a gas with velocity Us. The velocities Ua and Ub are the gas
velocities ahead and behind the shock, respectively. The bottom schematic shows the
flow dynamics in a reference frame fixed to the shock. The velocities u1 and u2 are
the velocities ahead and behind the shock, respectively. Note that u1=Ua −Us. The
situation depicted in Figure 6.7 is for a normal shock, for which the fluid velocity is
perpendicular to the shock structure.
In the shock reference frame, the flow is assumed to be steady and the flow is

also assumed to be homogeneous on both sides of the shock. The shock is therefore
treated as a discontinuity and the goal is to calculate the “jump” in the gas properties
as the shock is crossed. For this one-dimensional, steady, constant-area flow, the
continuity (6.123), momentum (6.126), and energy (6.132) equations become

d

dx
[ρu] = 0, (6.133a)

d

dx
[ρu2 + p] = 0, (6.133b)

d

dx

[(
1

2
ρu2 + γ p

γ − 1
)

u

]
= 0. (6.133c)

Equations (6.133a–c) indicate that the quantities in the square brackets are conserved
as the shock is crossed, and therefore, the parameters on the two sides of the shock
are connected by the following relations:

ρ1u1 = ρ2u2, (6.134a)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2, (6.134b)
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(
1

2
ρ1u

2
1 +

γ

γ − 1p1

)
u1 =

(
1

2
ρ2u

2
2 +

γ

γ − 1p2

)
u2. (6.134c)

Hence, if the gas parameters ahead of the shock (ρ1, u1, p1) are known, those behind
the shock (ρ2, u2, p2) can be calculated from Equations (6.134a–c).
For what follows, it is convenient to introduce the upstream Mach number

M 2
1 =

ρ1u21
γ p1

, (6.135)

where γ p1/ρ1 is the square of the thermal speed (Equation 10.33). Equation (6.135)
indicates that p1= ρ1u21/(γM 2

1 ), and this result should be substituted into Equations
(6.134b) and (6.134c) before the equations are solved. Now, an equation for u2 can
be obtained by substitutingρ2 (fromEquation 6.134a) and p2 (fromEquation 6.134c)
into Equation (6.134b), which yields

u22 −
2γ

γ + 1
(
1+ 1

γM 2
1

)
u1u2 +

(
γ − 1
γ + 1 +

2

(γ + 1)M 2
1

)
u21 = 0, (6.136)

or

(u2 − u1)

[
u2 −

(
γ − 1
γ + 1 +

2

(γ + 1)M 2
1

)
u1

]
= 0. (6.137)

There are two solutions to this quadratic equation. One solution is simply that u2 =
u1, which is the solution when a shock does not exist. The other solution provides
the change in velocity across a shock, which is

u2
u1
= γ − 1
γ + 1 +

2

(γ + 1)M 2
1

. (6.138a)

With this expression for u2/u1, it is now possible to obtain expressions for ρ2/ρ1 and
p2/p1 from Equations (6.134a) and (6.134c), respectively, and these expressions are
given by

ρ2

ρ1
= (γ + 1)M 2

1

2+ (γ − 1)M 2
1

, (6.138b)

p2
p1
= 2γM 2

1 − γ + 1
γ + 1 . (6.138c)

Equations (6.138a–c) are the Rankine–Hugoniot relations for the jump conditions
across a shock.
In addition to the three jump conditions (6.138a–c), it is useful to have an expres-

sion for the Mach number behind the shock, M2. This expression can be easily
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obtained by starting with the ratio

M 2
2

M 2
1

= ρ2

ρ1

u22
u21

p1
p2
. (6.139)

The substitution of Equations (6.138a–c) into Equation (6.139) then yields

M 2
2 =

2+ (γ − 1)M 2
1

2γM 2
1 − γ + 1 . (6.140)

Forweak shocks (M1→ 1), the density, velocity, and pressure are continuous and
M2→ 1. For strong shocks (M1� 1), Equations (6.138a–c) and (6.140) take the
following forms:

u2
u1
→ γ − 1

γ + 1 =
1

4
, (6.141a)

ρ2

ρ1
→ γ + 1

γ − 1 = 4, (6.141b)

p2
p1
→ 2γ

γ + 1M 2
1 =

5

4
M 2
1 , (6.141c)

and

M 2
2 →

γ − 1
2γ

= 1

5
, (6.142)

where the numerical factors are for γ = 5/3. Therefore, for strong hydrodynamic
shocks, the maximum density compression and velocity decrease behind the shock
are a factor of four. Likewise, there is a maximum limit to the decrease in the
Mach number behind the shock, which is M2 = 0.45. However, there is no
limit to the pressure (i.e., temperature) increase behind the shock, according to
Equation (6.141c).
The discussion of shock waves presented above was based on the Euler equa-

tions (6.123–125), which in turn are based on the assumption of a Maxwellian
velocity distribution (3.44). Therefore, the Rankine–Hugoniot relations (6.138a–c)
are valid provided the fluid is Maxwellian on both sides of the shock. However, for
high Mach number flows, this may not be the case, and then the limiting values for
the jump conditions (Equations 6.141a–c, 6.142) are not appropriate.
Also, when a plasma is treated as a single-component, electrically neutral gas,

the Euler equations (6.123–125) are valid to lowest order under certain conditions
(see Equations 7.45a,c,e). Specifically, they are valid both for an unmagnetized
plasma flow and for a plasma flow along a strong magnetic field. Under these cir-
cumstances, the Rankine–Hugoniot relations are valid, and they properly describe
the jump conditions across shocks in both the solar and terrestrial polar winds.3,4
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6.15 Double layers

Acurrent is inducedwhen an electric field is applied to either anunmagnetizedplasma
or along the magnetic field of a magnetized plasma. In collision-dominated plasmas,
the relationship between the induced current and the applied electric field is given
by Ohm’s law (Equation 5.124), which reduces to J = σE (Equation 5.126) when
density and temperature gradients are negligible. When the plasma is not collision-
dominated, an electron–ion two-stream instability may be triggered, depending on
the strength of the current. In this case, the plasma can become turbulent, and an
anomalous resistivity can arise as a result of electron “collisions”with the oscillating,
wave electric fields. As a consequence, the classical collision-dominated conduc-
tivity is not valid and an anomalous conductivity must be calculated to obtain a
relationship between the applied electric field and the induced current. Also, when a
large electric field is applied to a dilute plasma, an electrostatic double layer can form.
An electrostatic double layer is a narrow region that contains a large electric

field relative to the electric fields that exist in the plasma surrounding the double
layer (Figure 6.8). The potential drop across the double layer, �0, is generally
larger than the equivalent thermal potential, kTe/e, of the plasma. The potential
varies monotonically across the double layer, and the potential drop is supported
by two distinct layers of oppositely charged particles. The electron and ion layers,
which are separated by some tens of Debye lengths, have approximately the same
number of particles. Therefore, the double layer is electrically neutral when it is
viewed as a single structure. This feature is consistent with the fact that the electric
fields are small outside the double layer. Not all double layers are associated with
currents. Double layers can form at the boundaries between plasmas with different
temperatures or densities, and under these circumstances, they prevent a current flow
from one plasma to the other. Current-carrying double layers have been suggested
to exist both on auroral field lines in the terrestrial magnetosphere and in the Jovian
magnetosphere.5,6 Current-free double layers have been deduced to occur at high
altitudes in the terrestrial polar cap as a result of the interaction of cold ionospheric
and hot magnetospheric plasmas.7,8

The particles both inside and outside of a double layer, DL, are shown in
Figure 6.9. For this case, the DL electric field points to the right. All of the elec-
trons in the plasma on the right that move toward the DL penetrate the DL and are
accelerated as they pass through it. On the other hand, the bulk of the ions in the
plasma on the right that move toward the DL are reflected by the DL electric field
and only the very energetic ions can penetrate the DL. For the plasma on the left,
the reverse occurs. The ions penetrate the DL and are accelerated, while the bulk of
the electrons are reflected. For the case shown, there is a net current flow from left
to right.
Double layers have been studied for many years and there is an extensive litera-

ture on these nonlinear potential structures.9−11 The first self-consistent theory of a
double layer was developed in 1929 by Langmuir, who studied a strong double layer
in a one-dimensional geometry for steady-state conditions.9 Langmuir also assumed
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Figure 6.8 Schematic diagram
of an electrostatic double layer,
including the spatial variations of
the potential (top), electric field
(middle), and charge density
(bottom).

that the plasmas on the two sides of the double layer were cold, unmagnetized,
and collisionless. Although Langmuir’s theory is very simple, it can explain some
importantDLfeatures and, therefore, it is instructive to consider it here. The situation
studied byLangmuir is shown schematically inFigure 6.8. The region x< x0 contains
a cold plasma, and at the edge of the double layer (x= x0), there is an ion flux
(ni0ui0 = �i) that enters the double layer (Figure 6.9). All of the electrons in the
region x < x0 that approach the double layer are reflected because the double
layer is assumed to be strong. Likewise, the region x> x1 contains a cold plasma,
and there is an electron flux (ne1ue1=�e) that enters the double layer at x = x1.
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Figure 6.9 Schematic diagram
showing the transmitted and
reflected particles associated
with an electric double layer. The
dashed lines indicate that some
high-energy particles can
penetrate the double layer even
though the electric field opposes
this motion.

In the region x > x1, all of the ions are reflected by the double layer because it is
strong. In this simple scenario, only the counterstreaming ions and electrons exist
in the double layer. At the left boundary (x = x0), � = �0 and E = 0, where E is
the electric field. At the right boundary (x = x1), � = E = 0.
The equations that govern this scenario are the continuity (3.57) and momen-

tum (3.58) equations and Gauss’ law (3.76a). With the above simplifications, these
equations reduce to

d

dx
(nsus) = 0, (6.143a)

msus
dus

dx
− esE = 0, (6.143b)

dE

dx
=
∑

s

nses/ε0, (6.143c)

where subscript s corresponds to either electrons or ions. The continuity equation
(6.143a) can be easily integrated, and the result is

nsus = constant. (6.144)

Likewise, after setting E = −d�/dx, integrating the momentum equation (6.143b)
results in

1

2
msu

2
s + es� = constant. (6.145)

For the ions, the constants of integration are determined at the left boundary (x = x0),
where ni= ni0, ui = ui0, and� = �0. For the electrons, the constants are determined
at the right boundary (x= x1), where ne= ne1, ue= ue1, and�= 0.When the various
constants of integration are evaluated, the continuity (6.144) andmomentum (6.145)
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equations for the ions and electrons become

niui = ni0ui0 = �i, (6.146)

neue = ne1ue1 = �e, (6.147)

1

2
miu

2
i + e� = 1

2
miu

2
i0 + e�0, (6.148)

1

2
meu

2
e − e� = 1

2
meu

2
e1. (6.149)

The drift energy of the ions at x = x0 ismiu2i0/2, and the drift energy of the electrons
at x = x1 is meu2e1/2; both are negligible compared to the energy these charged
particles gain as they are accelerated by the strong double layer. Neglecting these
terms and then solving the momentum equations (6.148) and (6.149) for the ion and
electron velocities leads to the following results:

ui =
(
2e

mi

)1/2
(�0 −�)1/2, (6.150)

ue =
(
2e

me

)1/2
�1/2. (6.151)

When these expressions are substituted into the corresponding continuity equations,
(6.146) and (6.147), the result is

ni = �i

(
2e

mi

)−1/2
(�0 −�)−1/2, (6.152)

ne = �e

(
2e

me

)−1/2
�−1/2. (6.153)

Using Equations (6.152) and (6.153), along with E=−d�/dx, Gauss’ law
(6.143c) can be expressed in the form

d

dx

(
d�

dx

)
= −�i

ε0

(
mie

2

)1/2
(�0 −�)−1/2 + �e

ε0

(
mee

2

)1/2
�−1/2.

(6.154)

When Equation (6.154) is multiplied by (d�/dx), it becomes

d

dx

[
1

2

(
d�

dx

)2]
= �i

ε0

(
mie

2

)1/2
(�0 −�)−1/2

(
−d�
dx

)

+ �e

ε0

(
mee

2

)1/2
�−1/2

(
d�

dx

)
. (6.155)
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Equation (6.155) can now be integrated from some position x to the DL boundary
at x = x1, and the result is

1

2
(E21 − E2) = 2�i

ε0

(
mie

2

)1/2{
(�0 −�)1/2

}x1
x

+ 2�e
ε0

(
mee

2

)1/2{
�1/2

}x1
x . (6.156)

However, at x = x1, E = � = 0, and therefore, Equation (6.156) becomes

E2 = 2�i
ε0

(2mie)
1/2[(�0 −�)1/2 −�

1/2
0

]

+ 2�e
ε0

(2mee)
1/2�1/2. (6.157)

Now, at the left double layer boundary (x = x0),� = �0 and E= 0. When these
conditions are substituted into Equation (6.157), the Langmuir condition is obtained

�e =
(

mi
me

)1/2
�i, (6.158)

which indicates that the electron flux entering the double layer must be much greater
than the ion flux for a stationary and steady double layer. The substitution of �i from
Equation (6.158) into Equation (6.157) yields the following expression for E2:

E2 = 2�e
ε0

(2mee)
1/2[(�0 −�)1/2 −�

1/2
0 +�1/2

]
. (6.159)

It is instructive to examine the behavior of Equation (6.159) close to the left
boundary at x= x0. Near this boundary,�≈�0, and the term in the square brackets
is approximately given by (�0−�)1/2. Using this approximation and E=−d�/dx
in Equation (6.159), yields an equation of the form

(
d�

dx

)2
= 2�e

ε0
(2mee)

1/2(�0 −�)1/2. (6.160)

When the square root of Equation (6.160) is taken, the result is

d�

dx
= −

(
2�e
ε0

)1/2
(2mee)

1/4(�0 −�)1/4, (6.161a)

or

−d�
(�0 −�)1/4

=
(
2�e
ε0

)1/2
(2mee)

1/4 dx, (6.161b)
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where theminus sign is usedwhen the square root is takenbecause d�/dx is negative.
When Equation (6.161b) is integrated from x0 to x, the result is

4

3
(�0 −�)3/4 =

(
2�e
ε0

)1/2
(2mee)

1/4(x − x0). (6.162)

Equation (6.162) can also be written as

Je(x − x0)
2 = 4ε0

9

(
2e

me

)1/2
(�0 −�)3/2, (6.163)

where Je = e�e is the magnitude of the electron current density that enters the
double layer.
Although Equation (6.163) is only valid near x = x0, it displays the correct

functional form, in general. Specifically, when Equation (6.159) is numerically
integrated from x = x0 to x = x1, Equation (6.163) is obtained, except that the
right-hand side should be multiplied by 1.865 and (x− x0)2 should be replaced with
d2, where d is the width of the double layer. With these changes, the general result
for strong double layers is given by

Jed
2 = 1.17ε0

(
e

me

)1/2
�
3/2
0 , (6.164a)

or

�0 = 0.9
(

me
eε20

)1/3
d4/3J 2/3e . (6.164b)

6.16 Summary of important formulas

Electrostatic waves:

ω2 = ω2pe + 3V 2e K2 Electron plasma waves B0 = 0 or
K ‖ B0

ω2 = ω2pe Electron plasma oscillations Te = 0
ω2 = ω2pe + ω2ce Upper hybrid oscillations K ⊥ B0

ω2 = K2V 2S Ion-acoustic waves B0 = 0 or
K ‖ B0

ω2 = ω2ci + K2V 2S Ion-cyclotron waves K ⊥ B0
ω2 = ωceωci Lower hybrid oscillations K ⊥ B0

Te = Ti = 0
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Electromagnetic waves:

ω2 = K2c2 + ω2pe Ordinary wave (O-mode) B0 = 0 or
K ⊥ B0;E1 ‖ B0
Te = 0

ω2 = K2c2 Extraordinary wave (X-mode) K ⊥ B0

+ω2pe

ω2 − ω2pe

ω2 − (ω2pe + ω2ce)

E1 ⊥ B0

Elliptic polarization
Te = 0

ω2 = K2c2 + ω2pe

1− ωce/ω
RWave (whistler wave) K ‖ B0

E1 ⊥ B0
Circular polarization
Te = 0

ω2 = K2c2 + ω2pe

1+ ωce/ω
L wave K ‖ B0

E1 ⊥ B0
Circular Polarization
Te = 0

ω2 = K2V 2A Alfvén wave K ‖ B0
E1 ⊥ B0
Linear polarization

ω2 = K2
V 2S + V 2A
1+ V 2A/c

2
Magnetosonic wave K ⊥ B0

E1 ⊥ B0
Linear polarization

where ωps = (nse2/ε0ms)
1/2 is the plasma frequency of species s, ωcs = |es|B/ms

is the cyclotron frequency, VA=B/(µ0nimi)1/2 is theAlfvén speed, VS =
[
(γikTi+

γekTe)/mi
]1/2 is the ion-acoustic speed, and Ve = (kTe/me)1/2 is the electron

thermal speed.

Hydrodynamic shocks:

u2
u1
= γ − 1
γ + 1 +

2

(γ + 1)M 2
1

,

ρ2

ρ1
= (γ + 1)M 2

1

2+ (γ − 1)M 2
1

,

p2
p1
= 2γM 2

1 − γ + 1
γ + 1 ,

M 2
2 =

2+ (γ − 1)M 2
1

2γM 2
1 − γ + 1 ,
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where the jump conditions are relevant to the shock reference frame, and where
subscript 1 corresponds to the flow conditions ahead of the shock and subscript 2 to
the flow conditions behind the shock.

Strong double layers:

E2 = 2Je
ε0

(
2me
e

)1/2[
(�0 −�)1/2 −�

1/2
0 +�1/2

]
,

Je =
(

mi
me

)1/2
Ji,

�0 = 0.9
(

me
eε20

)1/3
d4/3J 2/3e ,

where Je and Ji are the current densities that enter the double layer, d is the thickness
of the double layer, and �0 is the potential jump across the double layer.

6.17 Specific references

1. Jackson, J. D., Classical Electrodynamics, New York: Wiley, 1998.
2. Chen, F. F., Introduction to Plasma Physics and Controlled Fusion, New York: Plenum,
1985.

3. Sonett, C. P., and D. S. Colburn, The SI+ − SI− pair and interplanetary forward-reverse
shock ensembles, Planet. Space Sci., 13, 675, 1965.

4. Singh, N., and R.W. Schunk, Temporal behavior of density perturbations in the polar
wind, J. Geophys. Res., 90, 6487, 1985.

5. Mozer, F. S., C.W. Carlson, M.K. Hudson, et al., Observations of paired electrostatic
shocks in the polar magnetosphere, Phys. Rev. Lett., 38, 292, 1977.

6. Shawhan, S. D., C.-G. Fälthammar, and L. P. Block, On the nature of large auroral zone
electric fields at 1− RE altitude, J. Geophys. Res., 83, 1049, 1978.

7. Winningham, J. D., and C. Gurgiolo, DE-2 photoelectron measurements consistent
with a large scale parallel electric field over the polar cap, Geophys. Res. Lett., 9,
977, 1982.

8. Barakat, A. R., and R.W. Schunk, Effect of hot electrons on the polar wind, J. Geophys.
Res., 89, 9771, 1984.

9. Langmuir, I., The interaction of electron and positive ion space charges in cathode
sheaths, Phys. Rev., 33, 954, 1929.

10. Block, L. P., Potential double layers in the ionosphere, in Cosmic Electrodynamics, 3,
349, 1972.

11. Carlqvist, P., Some theoretical aspects of electrostatic double layers, inWave Instabilities
in Space Plasmas, ed. by P. J. Palmadesso and K. Papadopoulos, 83, Boston: D. Reidel,
1979.



204 Wave phenomena

6.18 General references

Bittencourt, J.A., Fundamentals of Plasma Physics, Brazil, 1995.
Cap, F. F., Handbook of Plasma Instabilities, vol. 1 and 2, NewYork: Academic Press, 1976.
Emanuel, G., Gasdynamics: Theory and Applications, New York: American Institute of
Aeronautics and Astronautics, 1986.

Gary, S. P., Theory of Space Plasma Microinstabilities, Cambridge, UK: Cambridge
University Press, 1993.

Ichimaru, S., Plasma Physics: An Introduction to Statistical Physics of Charged Particles,
Menlo Park, CA: Benjamin/Cummings, 1986.

Nicholson, D. R., Introduction to Plasma Physics, New York: Wiley, 1983.
Stix, T. H., Waves in Plasmas, New York: American Institute of Physics, 1992.
Tidman, D.A., and N.A. Krall, Shock Waves in Collisionless Plasmas, New York: Wiley,
1971.

6.19 Problems

Problem 6.1 Consider a collisionless, spatially uniform, electrically neutral,
unmagnetized, electron–ion plasma. If the plasma drifts with a constant veloc-
ity ue0= ui0= u0, derive the dispersion relation for electron plasma waves that
propagate both parallel and perpendicular to u0.

Problem 6.2 Consider a collisionless, spatially uniform, electrically neutral,
unmagnetized plasma. The plasma is composed of electrons (subscript e) and two
ion species (subscripts i and j). All three species can be described by an equation of
state (6.27). Derive the dispersion relation for ion-acoustic waves.

Problem6.3 For the plasma described in Problem 6.1, derive the dispersion relation
for ion-acoustic waves that propagate in the direction of u0.

Problem 6.4 A collisionless, spatially uniform, electrically neutral, electron–ion
plasma is subjected to a constant magnetic field B0. Derive the dispersion relation
for upper hybrid oscillations assuming that Te is constant, but not zero.

Problem 6.5 A collisionless, spatially uniform, electrically neutral, electron–ion
plasma drifts with a velocity u0 in the direction of a constant magnetic field B0.
Derive the dispersion relation for high frequency, electrostatic oscillations both
parallel and perpendicular to B0. Assume the plasma is cold.

Problem 6.6 Consider a collisionless, spatially uniform, electrically neutral, sta-
tionary plasma. The plasma is composed of electrons (subscript e) and two ion
species (subscripts i and j). The plasma is also subjected to a magnetic field B0.
Derive the dispersion relation for electrostatic ion-cyclotron waves.

Problem 6.7 A constant magnetic field B0 permeates a collisionless, fully ion-
ized, three-species plasma. The plasma is composed of hot electrons (nh, Th), cold
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electrons (nc, Tc), and ions (ni, Ti). Initially, the plasma is electrically neutral, homo-
geneous, and stationary. Derive the dispersion relation for electrostatic ion-cyclotron
waves.

Problem 6.8 Consider the plasma described in Problem 6.1. Derive the dispersion
relation for high frequency “light waves” that propagate in the direction of u0.
Assume that Te is constant, but not zero.

Problem 6.9 Consider the plasma described in Problem 6.6 and derive the
dispersion relation for Alfvén waves.

Problem 6.10 Consider the plasma described in Problem 6.7 and derive the
dispersion relation for Alfvén waves.

Problem6.11 Anelectron–ion plasma is homogeneous, electrically neutral, station-
ary andunmagnetized. If the electron–ion collision term is givenbyEquation (6.105),
and if νei is assumed to be constant, derive the dispersion relation for high frequency
“light waves.”

Problem 6.12 Add the collision term (−nsmsνsus) to the right-hand side of Equa-
tion (6.28) and then derive the dispersion relation for ion-acoustic waves for the
case of an unmagnetized plasma that is stationary, homogeneous, and electrically
neutral. Assume that νs is constant for both electrons and ions.

Problem 6.13 A collisionless, homogeneous, electrically neutral, electron–ion
plasma drifts under the influence of perpendicular electric, E0, and magnetic, B0,
fields (see Equation 6.29b). Consider the stability of the plasma with regard to high
frequency, electrostatic oscillations both parallel and perpendicular to B0. Assume
that the plasma is cold.

Problem 6.14 An electron beam of density nb and velocity ub propagates through a
background electron plasma of density np. The background plasma is cold, station-
ary, and uniform, and there are no background electric or magnetic fields. Assume
that the ions are immobile and that they provide the charge neutrality of the system.
Discuss the stability of the system for ω > ωp and for ω < ωp, where ω is the wave
frequency and ωp is the plasma frequency of the background plasma.

Problem 6.15 Derive the Langmuir condition (6.158) for the case when there are
two ion species in the presence of a strong double layer.



Chapter 7

Magnetohydrodynamic formulation

The 13-moment systemof transport equationswas presented inChapter 3 and several
associated sets of collision terms were derived in Chapter 4. These 13-moment
transport equations, in combination with the Maxwell equations for the electric and
magnetic fields, are very general and can be applied to describe a wide range of
plasma flows in the ionospheres. However, the complete system of equations for a
multi-species plasma is difficult to solve under most circumstances, and therefore,
simplified sets of transport equations have been used over the years. The simplified
sets of equations that are based on the assumption of collision dominance were
presented in Chapter 5. In this chapter, certain simplified transport equations are
derived in which the plasma is treated as a single conducting fluid, rather than a
mixture of individual plasma species. These single-fluid transport equations, along
with the Maxwell equations, are known as the single-fluid magnetohydrodynamic
(MHD) equations.
The outline of this chapter is as follows. First, the single-fluid transport equations

are derived from the 13-moment system of equations. Subsequently, a generalized
Ohm’s law is derived for a fully ionized plasma. This naturally leads to simplifica-
tions that yield the classical set ofMHD equations. The classicalMHD equations are
then applied to important specific cases, including a discussion of pressure balance,
the diffusion of a magnetic field into a plasma, the concept of a B field frozen in
a plasma, the derivation of the spiral magnetic field associated with rotating mag-
netized bodies, and the derivation of the double-adiabatic energy equations for a
collisionless anisotropic plasma. These topics are followed by a derivation of the
MHD waves and shocks that can exist in a plasma.

7.1 General MHD equations

To treat a gas mixture as a single conducting fluid, it is necessary to add the contri-
butions of the individual species and obtain both total and average parameters for

206
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the gas mixture. Some of the fundamental parameters are the total mass density, ρ,
the charge density, ρc, the average drift velocity, u, and the total current density, J,
which are defined as

ρ =
∑

s

nsms, (7.1)

ρc =
∑

s

nses, (7.2)

u =
∑

s

nsmsus

/∑
s

nsms, (7.3)

J =
∑

s

nsesus. (7.4)

Note that the average drift velocity (7.3) is the same as that used in the early classical
work on transport theory and was introduced previously in Equation (3.13). The
quantities ρc and J have also been defined before in Equations (3.77) and (3.78), but
it is convenient to list them again for easy reference.
All of the higher-order transport properties, such as the temperature, pressure

tensor, and heat flow vector, are defined for this single-fluid treatment relative to
the average drift velocity of the gas mixture (Equation 7.3) and not the individual
species drift velocities (Equation 3.14). Therefore, in this case, the randomor thermal
velocity is defined as

c∗s = vs − u (7.5)

and the important transport properties become1,2

3

2
kT ∗s =

1

2
ms〈c∗2s 〉, (7.6)

q∗s =
1

2
nsms〈c∗2s c∗s 〉, (7.7)

P∗s = nsms〈c∗s c∗s 〉, (7.8)

τ ∗s = P∗s − p∗s I, (7.9)

where p∗s = nskT ∗s is the partial pressure of species s.
When u is used to define the transport properties, it is customary to introduce a

species diffusion velocity, ws, to describe the mean flow of a given species relative
to the average drift velocity of the gas mixture

ws = us − u. (7.10)

The difference in the definitions of the transport properties, defined in Equa-
tions (3.15–17, 3.21) and in Equations (7.6–9), can be expressed in terms of the
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diffusion velocities ws by noting that

c∗s = cs + ws, (7.11)

which follows from Equations (3.14), (7.5), and (7.10). Substituting Equation (7.11)
into Equations (7.6–9) and taking account of the definitions in Equations (3.15–17,
3.21), the following expressions, connecting the different definitions of the transport
properties, are obtained:

T ∗s = Ts + msw
2
s /3k, (7.12)

q∗s = qs + 5
2
psws + ws · τ s + 1

2
nsmsw

2
sws, (7.13)

P∗s = Ps + nsmswsws, (7.14)

τ ∗s = τ s + nsms
[
wsws − (w2s /3)I

]
. (7.15)

Therefore, the total transport properties for a single-fluid description are simply
given by

p =
∑

s

nskT
∗
s , (7.16)

q =
∑

s

q∗s , (7.17)

P =
∑

s

P∗s , (7.18)

τ =
∑

s

τ ∗s . (7.19)

Now that the transport properties have been redefined in terms of u, it is possible
to derive the single-fluid continuity, momentum, and energy equations starting from
the 13-moment system of equations (3.57–61). The equation describing the flow of
the total mass density, ρ, is obtained by multiplying the continuity equation (3.57)
by ms and summing over all species in the gas mixture, which yields

∂

∂t

(∑
s

nsms

)
+∇ ·

(∑
s

nsmsus

)
= δ

δt

(∑
s

nsms

)
, (7.20)

or

∂ρ

∂t
+∇ · (ρu) = 0, (7.21)

where ρ and u are defined in Equations (7.1) and (7.3), respectively, and where it
is assumed that there is no net production or loss of particles in the gas mixture
(δρ/δt = 0). In a similar manner, an equation describing the evolution of the charge



7.1 General MHD equations 209

density, ρc, is obtained by multiplying the continuity equation (3.57) by es and
summing over all of the species, which yields

∂ρc

∂t
+∇ · J = 0, (7.22)

where it is assumed that δρc/δt = 0.
The momentum equation for the gas mixture is obtained by summing the

individual momentum equations (3.58), which yields

∑
s

ρs
Dsus

Dt
+
∑

s

∇ · Ps − ρG − ρcE− J × B = 0, (7.23)

where ρ, ρc, and J are defined by Equations (7.1), (7.2), and (7.4), respectively.
Note that the collision terms cancel when the individual momentum equations are
summed. The first term in Equation (7.23) can be expressed in an alternate form by
using both the individual continuity equation (3.57) and the continuity equation for
the gas mixture (7.21), as follows:

∑
s

ρs
Dsus

Dt
=
∑

s

ρs
∂us

∂t
+
∑

s

ρs(us ·∇)us

=
∑

s

[
∂

∂t
(ρsus)− us

∂ρs

∂t

]
+
∑

s

ρs(us ·∇)us

= ∂

∂t
(ρu)+

∑
s

us∇ · (ρsus)+
∑

s

ρs(us ·∇)us

=ρ ∂u
∂t
+ u

∂ρ

∂t
+
∑

s

∇ · (ρsusus). (7.24)

Likewise, the pressure tensor term in Equation (7.23) can be cast in a more
convenient form

∑
s

∇ · Ps =∇ ·
[∑

s

P∗s −
∑

s

ρs(us − u)(us − u)
]

=∇ · P−
∑

s

∇ · (ρsusus − ρsusu− ρsuus + ρsuu)

=∇ · P−
∑

s

∇ · (ρsusus)+∇ · (ρuu), (7.25)

where use has been made of Equations (7.10), (7.14), and (7.18). Substituting Equa-
tions (7.24) and (7.25) into Equation (7.23), yields the momentum equation for the
gas mixture

ρ
Du
Dt
+∇ · P− ρG − ρcE− J × B = 0, (7.26)
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where the convective derivative for the composite gas is given by

D

Dt
= ∂

∂t
+ u ·∇, (7.27)

and where use has been made of both the continuity equation (7.21) and the tensor
relation ∇ · (ρuu) = u∇ · (ρu)+ ρu ·∇u.
The species momentum equations can also be used to derive an equation for J in

a manner similar to that used to derive the momentum equation (7.26). Multiplying
Equation (3.58) by es/ms and summing over all species yields

∑
s

nses
Dsus

Dt
+
∑

s

∇ ·
(

es

ms
Ps

)
− ρcG

−
∑

s

nse2s
ms

(E+ us × B) =
∑

s

es

ms

δMs

δt
, (7.28)

where now the collision terms do not cancel. The inertial and pressure tensor terms
can be manipulated in a manner similar to that which led to Equations (7.24) and
(7.25), and the result is

∑
s

nses
Dsus

Dt
= ∂J
∂t
+
∑

s

∇ · (nsesusus), (7.29)

∑
s

∇ ·
(

es

ms
Ps

)
=
∑

s

∇ ·
(

es

ms
P∗s
)
−
∑

s

∇ · (nsesusus)

+ ∇ · (uJ + Ju− ρcuu). (7.30)

The substitution of Equations (7.29) and (7.30) into Equation (7.28) leads to an
equation governing the spatial and temporal evolution of the current density, and
this equation is given by

∂J
∂t
+∇ · (uJ + Ju− ρcuu)+∇ ·

(∑
s

es

ms
P∗s
)

− ρcG −
∑

s

nse2s
ms

(E+ us × B) =
∑

s

es

ms

δMs

δt
. (7.31)

A single-fluid energy equation can be derived simply by summing the individual
energy equations (3.59) over all the species in the gas mixture. Using algebraic
manipulations similar to those used to derive the equations for u and J, the energy
equation can be cast in the following form:

D

Dt

(
3

2
p

)
+ 5
2
p∇ · u+ τ : ∇u+∇ · q− J · (E+ u× B)+ ρcu · E = 0

(7.32)
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where the continuity (7.21) and momentum (7.26) equations must be used to get the
energy equation in the form given in (7.32).
In summary, the general MHD equations for a single-fluid conducting gas

are composed of the mass continuity equation (7.21), the charge continuity
equation (7.22), the momentum equation (7.26), the equation for the current
density (7.31), the energy equation (7.32), and the complete set of Maxwell equa-
tions (3.76a–d). Although these general MHD equations are not as complicated as
the complete 13-moment set of transport equations, they are still difficult to solve,
and typically, additional simplifications are made before they are used.2−4 The most
frequently used additional simplifications are discussed in Section 7.3.

7.2 Generalized Ohm’s law

The equation for the current density (7.31) is not in its classical form. Typically,
when this equation is used, the following additional assumptions are made: (1) the
gas consists only of electrons and one singly ionized ion species; (2) charge neutrality
prevails (ne = ni = n); (3) the linear collision terms (4.129b) are appropriate and
the heat flow contribution to these collision terms can be neglected; and (4) terms
of order me/mi can be neglected compared with terms of order one.
Equation (7.31), for such a two-component plasma that is electrically neutral

(ρc= 0), becomes

∂J
∂t
+∇ · (uJ + Ju)+ e∇ ·

(
P∗i
mi
− P∗e

me

)
− ne2

me
(E+ ue × B)

− ne2

mi
(E+ ui × B) = e

mi

δMi

δt
− e

me

δMe

δt
. (7.33)

Also, using the charge neutrality condition and taking account of the small electron
mass, the expressions for u (Equation 7.3) and J (Equation 7.4) become

u ≈ ui, (7.34)

J = ne(ui − ue). (7.35)

An expression for ue in terms of J and u can now be obtained from Equations (7.34)
and (7.35), and the result is

ue≈ u− J/ne. (7.36)

Consider the third term on the left-hand side of Equation (7.33). Only the P∗e
term will survive because of the small electron mass. With regard to the fourth and
fifth terms, the electric field term divided by mi can be neglected compared with
the electric field term divided by me. The magnetic field terms can be expressed in
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the form

−ne2

me

(
ue × B+ me

mi
ui × B

)
=− ne2

me

[(
u− J

ne

)
× B+ me

mi
u× B

]

=− ne2

me
(u× B− J × B/ne), (7.37)

where Equations (7.34) and (7.36) were used for ui and ue, respectively, and where
the term containing me/mi was neglected.
The linear collision term for the electrons is obtained from Equation (4.129b),

and it becomes

e

me

δMe

δt
= enνei(ui − ue) = νeiJ. (7.38)

Likewise, the ion collision term can be expressed in the form

e

mi

δMi

δt
= e

mi
nimiνie(ue − ui) = e

mi
nemeνei(ue − ui) = −

(
me
mi

)
νeiJ,

(7.39)

where nimiνie= nemeνei (Equation 4.158). Therefore, a comparison of Equations
(7.39) and (7.38) indicates that the ion collision term can be neglected compared
with the electron collision term.
Using Equations (7.37) and (7.38), and neglecting the terms discussed above that

are small, Equation (7.33) reduces to

∂J
∂t
+∇ ·(uJ + Ju)− e

me
∇ ·P∗e −

ne2

me
(E+ u× B)+ e

me
J × B = −νeiJ,

(7.40)

Multiplying (7.40) by −me/ne2, this equation can be written as

− me
ne2

[
∂J
∂t
+∇ ·(uJ + Ju)

]
+ 1

ne
∇ · P∗e −

1

ne
J × B+E+ u× B = J/σe,

(7.41)

where

σe = ne2

meνei
. (7.42)

Note that σe is the so-called first approximation to the parallel conductivity of a fully
ionized plasma (see Equations 5.125a and 5.142). Finally, the neglect of the terms
in the square brackets that are multiplied by me leads to the generalized Ohm’s law
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for an MHD plasma, which is

1

ne
(∇ · P∗e − J × B)+ E+ u× B = J/σe. (7.43)

The J × B term contains the Hall current effect. The ratio of this term to the
conductivity term is simply ωce/νei. Therefore, when the collision frequency is
much greater than the cyclotron frequency, the Hall current effect is negligible.
Even when the collision frequency is not large, it is often possible to neglect both
the Hall current and pressure tensor terms. Under these conditions, the generalized
Ohm’s law reduces to

J = σe(E+ u× B). (7.44)

7.3 Simplified MHD equations

As noted earlier, the general set of MHD equations is complicated and rarely used.
Instead, a simplified set ofMHD equations is used that is based on several additional
assumptions. First, charge neutrality is assumed (ρc = 0). Next, in the momentum
equation (7.26), the pressure tensor is typically assumed to be diagonal and isotropic,
P = pI, so that ∇ · P = ∇p. This means that the stress tensor is negligible and only
the scalar pressure is important. Two additional assumptions generally made are that
the simplified form of Ohm’s law (Equation 7.44) can be used and that the energy
equation (7.32) can be replaced by an equation of state. Both of these assumptions
are difficult to justify a priori, but in many applications they can be, at least, partially
justified after the solutions are obtained. Finally, it is assumed that the phenomena
under consideration vary slowly in time, being governed by ion time scales. Under
these circumstances, the displacement current, ε0∂E/∂t, in the Maxwell ∇ × B
equation (3.76d) can be neglected.
It is convenient to list the set of simplified MHD equations in one place because

of its wide use by the scientific community. With these assumptions, the equations
for mass continuity (7.21), current continuity (7.22), momentum (7.26), the cur-
rent density (7.31), and energy (7.32) reduce, respectively, to the following set of
equations:

∂ρ

∂t
+∇ · (ρu) = 0, (7.45a)

∇ · J = 0, (7.45b)

ρ
Du
Dt
+∇p− ρG − J × B = 0, (7.45c)

J = σe(E+ u× B), (7.45d)

p = Cργ , (7.45e)
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where the equation of state was introduced previously in Equation (6.26b) and C is
a constant. The associated set of simplified Maxwell equations is

∇ × E =− ∂B
∂t
, (7.45f )

∇ × B =µ0J. (7.45g)

Note that Equation (7.45b) is redundant because it can be obtained by taking the
divergence of Equation (7.45g). Also, the ∇ ·B and ∇ ·E equations do not have the
same status as the two curl equations. From Faraday’s law (7.45f), ∂/∂t(∇ ·B) = 0,
and hence, the requirement that ∇ ·B = 0 can be specified as an initial condition.
Likewise, ∇ ·E = 0 is not imposed as an additional constraint because charge neu-
trality has already been assumed. The electric field is completely determined by the
two curl equations and Ohm’s law.5 In reality, however, when numerical computa-
tions are performed, it is important to verify that the solutions to the simplified set of
MHD equations are, at least, consistent with ∇ ·E and ∇ ·B being very small. This
is necessary because the numerical techniques employed tend to introduce errors
that eventually cause these conditions to be violated.

7.4 Pressure balance

It is instructive to consider the balance of pressure for the special case of a steady state
(∂/∂t = 0), incompressible (ρ = constant; ∇ · u = 0), and irrotational (∇× u = 0)
MHD flow. In this case, the momentum equation (7.45c) becomes

ρ(u ·∇)u+∇p− J × B = 0, (7.46)

where gravity is neglected. When J is eliminated with the aid of Ampère’s
law (7.45g), Equation (7.46) becomes

ρ(u ·∇)u+∇p− 1

µ0
(∇ × B)× B = 0. (7.47)

The third term in Equation (7.47) can be cast in a more convenient form by using
one of the vector relations given in Appendix B, which is

1

2
∇(B · B) = (B ·∇)B− (∇ × B)× B ≈ −(∇ × B)× B. (7.48)

The second result in Equation (7.48) is true provided thatB does not vary appreciably
along its direction, which is a situation that frequently occurs. The first term in
Equation (7.47) can also be cast in a more convenient form by using the same vector
relation

1

2
∇(u · u) = (u ·∇)u+ u× (∇ × u) = (u ·∇)u, (7.49)

where for irrotational flow ∇ × u = 0.
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Substituting Equations (7.48) and (7.49) into Equation (7.47) yields an equation
of the form

∇
(
1

2
ρu2 + p+ B2

2µ0

)
= 0, (7.50)

where use has been made of the fact that ρ is constant for an incompressible fluid.
Equation (7.50) indicates that the quantity in the brackets is a constant. For the special
case of a one-dimensional flow where B is perpendicular to u and all quantities vary
only in the u direction, the assumption of incompressible flow (∇ · u = 0) implies
that both ρ and u are constants. Hence, for this case, ρu2/2 can be added to the
quantity in the brackets of Equation (7.50) and the result is

ρu2 + p+ B2

2µ0
= constant. (7.51)

As it turns out, the one-dimensional result (7.51) is also valid for a compressible
flow (see Section 7.9 and Problem 7.11). In Equation (7.51), p is the kinetic pres-
sure, ρu2 is the dynamic pressure, and B2/2µ0 is the magnetic pressure. Therefore,
Equation (7.51) indicates that, for the conditions assumed, the total pressure is a
constant. Note that such a pressure balance has been observed, for example, at the
day side Venus ionopause region (Section 13.2).
Consider the special case of a stationary plasma (u = 0). If the plasma has a

pressure gradient, then Equation (7.51) implies that the magnetic pressure must
vary in an opposite sense so that the total pressure remains constant. Therefore,
the magnetic field must be weak in the regions where the density is high, and vice
versa. The reduction of the magnetic field in the high-density regions is caused by
a diamagnetic current, which can be obtained from the momentum equation (7.46).
Taking the cross product of this equation with B yields

∇p× B = (J × B)× B = −B2J⊥, (7.52)

or

J⊥ = −∇p× B
B2

, (7.53)

where J⊥ is the current perpendicular to B. An indication of the magnitude of the
diamagnetic effect is given by the ratio of the kinetic and magnetic pressures, and
this ratio is called the β of the plasma

β = p

B2/2µ0
. (7.54)

When β is small, the magnetic field is strong, and it has a dominating effect on the
plasma dynamics. On the other hand, when β is large, the magnetic field is weak,
and it does not appreciably affect the plasma dynamics.
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7.5 Magnetic diffusion

Magnetized and unmagnetized plasmas frequently come into contact. This occurs,
for example, when the magnetized solar wind impacts the unmagnetized ionosphere
of Venus (Section 13.2). When such plasmas come into contact, it is important to
know whether or not the magnetic field in the one plasma can penetrate the other
plasma.Aswill be shown, the extent towhich amagnetic field can penetrate a plasma
depends on the conductivity of the plasma.
An equation that describes the diffusion of a magnetic field in a plasma can be

obtained from the simplified set ofMHDequations (7.45a–g). For simplicity, assume
that the conductivity of the plasma is constant. Substituting the electric field obtained
fromOhm’s law (7.45d) into Faraday’s law (7.45f) results in the following equation:

∂B
∂t
= − 1

σe
∇ × J +∇ × (u× B). (7.55)

Now, the substitution of J, obtained fromAmpère’s law (7.45g), into Equation (7.55)
yields

∂B
∂t
=− 1

µ0σe
∇ × (∇ × B)+∇ × (u× B)

=− 1

µ0σe

[∇(∇ · B)− ∇2B]+∇ × (u× B), (7.56)

where a vector identity, given in Appendix B, was used for the ∇ × (∇ × B)
expression. Given that ∇ · B = 0 (3.76c), Equation (7.56) reduces to

∂B
∂t
= 1

µ0σe
∇2B+∇ × (u× B). (7.57)

When u = 0, Equation (7.57) takes the classical form of a diffusion equation,
and hence, the first term on the right-hand side of (7.57) accounts for magnetic
diffusion. The second term is the flow term. Clearly, when σe is large, the flow term
dominates, while when it is small, magnetic diffusion dominates. An estimate of the
relative importance of the two processes can be obtained by taking the ratio of the
flow and diffusion terms, which is called the magnetic Reynolds number. Letting
L correspond to the characteristic scale length of the gradients, the ratio of the two
terms is given by∣∣∇ × (u× B)

∣∣∣∣∇2B/µ0σe∣∣ = uB/L

B/(µ0σeL2)
= uLµ0σe. (7.58)

In the ionospheres, the plasma conductivities are typically very large, and there-
fore, the flow term dominates. In this case, it can be shown that the magnetic field
is effectively frozen in the plasma.5 Hence, both the magnetic field and plasma have
the same velocity. This velocity can be obtained from Ohm’s law (7.45d) which, in
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the limit of σe→∞, becomes
E+ u× B = 0. (7.59)

Taking the cross product of Equation (7.59) with B results in the well-known
expression for the E× B drift velocity

u⊥ = E× B
B2

. (7.60)

Therefore, when the plasma conductivity is large, both the plasma and magnetic
field move with the E× B drift velocity (also see Equation 5.99).

7.6 Spiral magnetic field

The solarwind is a classic example of a plasmawith amagnetic field that is frozen into
the flow.6 Beyond about ten solar radii, Rs, the conductivity and magnetic Reynolds
number are extremely large. Consequently, as the solar wind moves radially away
from the Sun, the magnetic field cannot diffuse through the plasma and it is carried
with the plasma into interplanetary space. If the Sun did not rotate, the magnetic
field would extend radially outward in all directions; but because the Sun rotates,
the magnetic field lines are twisted into Archimedes’ spirals (Figure 2.6).
The basic configuration of the Sun’smagnetic field can be obtained by considering

the simple case of a spherically symmetric, purely radial solar wind. Beyond about
10Rs, the solar wind velocity does not vary appreciably, and for this simple analysis,
it is assumed to be constant. Now, consider a spherical coordinate system (r, θ ,φ)
fixed to the rotating Sun, with the polar axis aligned with the Sun’s rotation axis and
φ positive in the direction of rotation. In the inertial (nonrotating) reference frame,
the solar wind velocity components are (ur, 0, 0), and in the rotating frame they are
given by (Equation 10.1)

U = u−�s × r (7.61)

where U is used to designate the velocity in the rotating frame and �s is the Sun’s
rotation rate (2.7 × 10−6 rad s−1). From Equation (7.61), the velocity components
in the equatorial plane of the rotating reference frame are

Ur = ur, (7.62a)

Uφ = −�sr. (7.62b)

The difference in the plasma motion seen in the inertial and rotating reference
frames is shown in Figure 7.1. In the inertial frame, the plasma element expands
radially outward and the Sun’s counterclockwise rotation causes the magnetic field
to be twisted. In the rotating frame, on the other hand, the plasma elements appear to
bemoving both outward and in a clockwise direction. Themagnetic fieldmoveswith
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ur

ur

Ur

Ur

Uf

Uf

Ωs

Inertial frame Rotating frame

x x
Figure 7.1 The magnetic field
configuration and radial
expansion of the solar wind as
seen in inertial and rotating
reference frames. The solar wind
velocity components in the
inertial frame are (ur , 0, 0) and
those in the rotating frame are
(Ur , 0,Uφ). �s is the Sun’s
rotation rate and χ is the angle
between the magnetic field and
the radial direction.

these plasma elements because it is frozen into the flow. Therefore, the trajectory of
a magnetic field line is the same as the trajectory of a plasma element in the rotating
reference frame, which is defined by

Ur
Uφ

= − ur
�sr

. (7.63)

Using Ur = dr/dt and Uφ = rdφ/dt, Equation (7.63) becomes

dr

dφ
= − ur

�s
. (7.64)

This equation can be easily integrated to obtain an equation for the trajectory, and
the result is

r − r0 = − ur
�s

(φ − φ0), (7.65)

where r0 and φ0 are reference positions (at 10Rs).
The angle that the magnetic field (i.e., trajectory) makes with the radial direction

is called the spiral angle χ . From Figure 7.1, this angle is given by

tan χ = |Uφ|
Ur

= �sr

ur
. (7.66)

At the Earth’s orbit, ur = 400 km s−1 and r = 1 AU ≈ 1.5×1011 meters. Therefore,
tan χ ≈ 1 and χ ≈ 45◦. This value, which was obtained from a simple analysis, is
in remarkable agreement with measurements of the spiral angle shown in Figure 2.6.
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The magnetic field can be obtained by starting with the equation∇ ·B = 0, which
simply yields

Br = B0

(
r0
r

)2
(7.67a)

because the flow is spherically symmetric. From Figure 7.1, the azimuthal
component, Bφ , is related to Br by

Bφ = −Br tan χ = −B0
r20�s
rur

. (7.67b)

Combining Equations (7.67a) and (7.67b), the magnitude of the magnetic field in
the equatorial plane can be written as

|B| = B0

(
r0
r

)2(
1+ r2�2s

u2r

)1/2
. (7.67c)

7.7 Double-adiabatic energy equations

When a magnetized plasma becomes collisionless, it is unlikely that the plasma
pressure will remain isotropic. Instead, there will generally be different pressures
parallel, p‖, and perpendicular, p⊥, to B. This situation arises because the charged
particles cannot effectively move across B, and hence, the thermal spread along B
tends to be different from that across B. In the MHD approximation, the pressure
tensor equation is similar in form to the 13-moment pressure tensor equation (3.55).
Also, for a strongly magnetized plasma (β � 1), the dominant terms in the pressure
tensor equation are those containing B. Consequently, to lowest order, the MHD
pressure tensor equation reduces to

B× P− P× B = 0, (7.68)

which has as its solution

P = p‖bb+ p⊥(I− bb), (7.69)

where I is the unit dyadic and b = B/B is a unit vector in the direction of the local
magnetic field. Note that a diagonal pressure tensor of the form in Equation (7.69)
is consistent with a bi-Maxwellian velocity distribution (Equation 3.75). In this
case, the relations connecting the pressures and temperatures are p‖ = nkT‖ and
p⊥ = nkT⊥.
Equations describing the temporal and spatial evolution of the parallel and per-

pendicular pressures can be obtained by taking the scalar products of bb and
(I− bb), respectively, with the MHD pressure tensor equation, which is similar
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to Equation (3.55). The result of these operations is

1

p‖
Dp‖
Dt

= −∇ · u− 2bb : ∇u, (7.70)

1

p⊥
Dp⊥
Dt

= −2∇ · u+ bb : ∇u. (7.71)

For a highly conducting plasma, Ohm’s law reduces to E+ u× B = 0 (Equa-
tion 7.59). Taking the curl of this equation and using∇×E = −∂B/∂t and∇·B = 0,
Ohm’s law can be written in the form

DB
Dt

+ B(∇ · u)− B ·∇u = 0. (7.72)

The parallel component of Equation (7.72) can be obtained by taking the scalar
product of b with this equation, which then yields an equation for bb : ∇u that is
given by

bb : ∇u = 1

B

DB

Dt
+∇ · u. (7.73)

An expression for ∇ · u can be obtained from the continuity equation (7.45a)

∇ · u = − 1
ρ

Dρ

Dt
. (7.74)

When Equations (7.73) and (7.74) are substituted into the equations for the
parallel (7.70) and perpendicular (7.71) pressures, these equations become the
well-known double-adiabatic energy equations, which are given by7

D

Dt

(
p‖B2

ρ3

)
= 0, (7.75a)

D

Dt

(
p⊥
Bρ

)
= 0. (7.75b)

With an anisotropic pressure distribution (7.69), the momentum equation (7.26)
is modified because of the ∇ · P term, which can be expressed as

∇ · P = ∇ · [p‖bb+ p⊥(I− bb)
] = ∇ ·

[
p⊥I+ (p‖ − p⊥)

BB
B2

]
. (7.76)

The first term becomes

∇ · (p⊥I) = ∇p⊥ (7.77)
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and the second term can be expanded using a tensor identity, as follows:

∇ ·
[
(p‖ − p⊥)

B
B2
B
]
= (p‖ − p⊥)

B
B2
(∇ · B)+ B ·∇

[
(p‖ − p⊥)

B
B2

]
,

(7.78)

where ∇ · B = 0. Therefore, using Equations (7.77) and (7.78), the divergence of
the pressure tensor (7.76) becomes

∇ · P = ∇p⊥ + B ·∇
[
(p‖ − p⊥)

B
B2

]
. (7.79)

In summary, the closed system of transport equations in the double-adiabatic
limit is the simplified MHD equations (7.45a–g), but with ∇p in the momentum
equation (7.45c) replaced with ∇ · P in (7.79) and with the equation of state (7.45e)
replaced with the double-adiabatic energy equations (7.75a and b). However, note
that these equations are applicable only if heat flow is negligible in the plasma under
consideration.

7.8 Alfvén and magnetosonic waves

The discussion in Chapter 6 of the characteristic waves that can propagate in
both magnetized and unmagnetized plasmas did not consider the low frequency
waves that can propagate in a highly conducting, magnetized plasma. Although
these waves could have been treated with the standard transport equations pre-
sented in that chapter, the waves are more easily derived from the simplified MHD
equations (7.45a–g).
For the wave analysis, gravity is neglected, and the plasma conductivity is

assumed to be infinite so that Ohm’s law (7.45d) reduces to E = −u× B. Also, the
equation of state (7.45e) can be expressed as ∇p = V 2S∇ρ, where VS = (γ p/ρ)1/2

is the sound speed, and J = (∇ × B)/µ0 from Ampère’s law (7.45g). With this
information, the simplified set of MHD equations becomes

∂ρ

∂t
+∇ · (ρu) = 0, (7.80a)

ρ

[
∂u
∂t
+ (u ·∇)u

]
+ V 2S∇ρ − 1

µ0
(∇ × B)× B = 0, (7.80b)

∇ × (u× B) = ∂B
∂t
. (7.80c)

In calculating the characteristic waves that can propagate in the plasma, it is
assumed that the plasma is initially uniform and that the mass density, ρ0, pressure,
p0, and magnetic field, B0, are constant. Also, there are no imposed electric fields
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(E0 = 0) and the plasma is stationary (u0 = 0). Then, the plasma is perturbed as
follows:

ρ = ρ0 + ρ1(r, t), (7.81a)

u = u1(r, t), (7.81b)

p = p0 + p1(r, t), (7.81c)

E = E1(r, t), (7.81d)

B = B0 + B1(r, t), (7.81e)

where subscript 1 denotes a small perturbation. Substituting the perturbed parame-
ters (7.81a–e) into Equations (7.80a–c) and retaining only those terms that are linear
in the perturbed parameters leads to the following equations:

∂ρ1

∂t
+ ρ0(∇ · u1) = 0, (7.82a)

ρ0
∂u1
∂t

+ V 2S∇ρ1 − 1

µ0
(∇ × B1)× B0 = 0, (7.82b)

∇ × (u1 × B0) = ∂B1
∂t
, (7.82c)

where VS = (γ p0/ρ0)1/2 in Equation (7.82b).
The perturbations can be assumed to be sinusoidal,

ρ1, u1, p1,E1,B1 ∝ ei(K·r−ωt), (7.83)

because the perturbations are small. Therefore, when ∇ and ∂/∂t operate on per-
turbed quantities, they can simply be replaced by∇ → iK and ∂/∂t →−iω. In this
case, the partial differential equations (7.82a–c) reduce to the algebraic equations:

−ωρ1 + ρ0K · u1 = 0, (7.84a)

−ωρ0u1 + V 2Sρ1K −
1

µ0
(K × B1)× B0 = 0, (7.84b)

K × (u1 × B0) = −ωB1. (7.84c)

There are three equations for the three unknowns (ρ1, u1,B1), and the goal is to
obtain one equation for one unknown, which then leads to the dispersion relation
for the possible wave modes. An expression for ρ1 in terms of u1 can be obtained
from Equation (7.84a), and the result is

ρ1 = ρ0

ω
K · u1. (7.85)
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Likewise, B1 can be expressed in terms of u1 with the aid of Equation (7.84c). When
the double cross product in Equation (7.84c) is expanded, using the vector relation
A × (B × C) = (A · C)B − (A · B)C given in Appendix B, the equation for B1
becomes

B1 = 1

ω

[
(K · u1)B0 − (K · B0)u1

]
. (7.86)

Now, an equation for u1 can be obtained by expanding the double cross prod-
uct in Equation (7.84b) with the vector relation given above and by substituting
Equations (7.85) and (7.86) into Equation (7.84b), and the result is

u1
[−ω2 + V 2A(K · b)2

]− bV 2A(K · b)(K · u1)
+K

[
(V 2A + V 2S )(K · u1)− V 2A(K · b)(b · u1)

] = 0, (7.87)

where b = B0/B0 is a unit vector and VA is the Alfvén velocity

VA = B0√
µ0ρ0

. (7.88)

Equation (7.87) is the dispersion relation for the characteristic waves that can
propagate in a single-component, highly conducting plasma. As it turns out, three
distinct waves are possible. Two of thewaves propagate alongB0 and one propagates
in a direction perpendicular to B0. For one of the parallel propagating waves, the
perturbed velocity, u1, is also parallel to B0 (Figure 7.2). In this case, the dispersion
relation (7.87) simply reduces to

ω2 = K2V 2S . (7.89)

For this wave, B1= 0 (Equation 7.86), E1= 0 (E1=−u1×B0), and ρ1= ρ0Ku1/ω
(Equation 7.85). Therefore, Equation (7.89) is the dispersion relation for ordinary
acoustic waves (Equation 6.56).
For the other parallel propagating wave, the perturbed velocity, u1, is perpendic-

ular to B0 (Figure 7.2). When u1 ⊥ K and K ‖ B0, the dispersion relation (7.87)
reduces to

ω2 = K2V 2A, (7.90)

which is known as the Alfvén wave. For this wave, ρ1= 0 (Equation 7.85), B1=
−(B0K/ω)u1 (Equation 7.86), and E1=−u1 × B0. Therefore, the Alfvén wave is
an electromagnetic wave that propagates along B0.
The third wave propagates in a direction that is perpendicular to B0. If K is

also perpendicular to u1, then Equation (7.87) reduces to ω = 0, which is a trivial
solution. ForK ‖ u1 (Figure 7.2), the dispersion relation (7.87) can be easily solved
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Figure 7.2 Characteristics of the three primary waves that can propagate in a
single-component, compressible, conducting fluid. For the acoustic mode, there are no
electric or magnetic field fluctuations and the density perturbations are along B0. For
the Alfvén wave, there are no density perturbations and the magnetic field fluctuations
are in the x-direction, producing the kinks in B. There are density perturbations
associated with the magnetosonic wave and they are in the x-direction. The associated
B field always points along the z-axis, but because the field is frozen in the plasma,
there are compressions and rarefactions of B similar to those in ρ1.

by first taking the scalar product of Equation (7.87) with K, which yields

ω2 = K2(V 2S + V 2A). (7.91)

This is the magnetosonic wave. For this wave, there is a density compression and
expansion because ρ1 = ρ0Ku1/ω (Equation 7.85), and this is why “sonic” appears
in the name. However, the wave also has electric and magnetic perturbations asso-
ciated with it, where B1 = (Ku1/ω)B0 (Equation 7.86) and E1 = −u1 × B0. Note
that the wave is electromagnetic in nature because E1, B1, andK are orthogonal and
E1 × B1 points in the K direction.
Note that the threewaves given byEquations (7.89), (7.90), and (7.91) are actually

nondispersive because ω/K does not depend on the frequency.
The above analysis only considered those waves that propagate either along or

perpendicular to B0. However, waves can also propagate at an angle to B0. Again,
there are three modes that are possible. If α is the angle between the wave vector K
and B0, the three waves are given by the following dispersion relations4,8

ω

K
= VA cosα, (7.92)

(
ω

K

)2
= 1

2
(V 2A + V 2S )±

1

2

[
(V 2A + V 2S )

2 − 4V 2AV 2S cos
2 α
]1/2. (7.93)
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The first mode (7.92) is known as the oblique Alfvén wave. In Equation (7.93), the
plus sign yields the fast MHD wave, while theminus sign yields the slow MHD wave.
Note that the additional plus and minus signs that result from taking the square root
of Equation (7.93) merely indicate that both the fast and slow MHD waves can
propagate in opposite directions in the plasma.

7.9 Shocks and discontinuities

In Section 6.14, theRankine–Hugoniot relations, which describe the jumpconditions
across a shock, were derived for the case of ordinary hydrodynamic shocks. Here,
shocks and discontinuities are discussed for the more general case of a collisionless,
magnetized plasma. Comparedwith ordinary hydrodynamics, the passage of a shock
through a collisionless plasma is more complex. The main reason is that energy and
momentum can be transferred from the plasma particles to the electric and magnetic
fields, and these fields must be taken into account when the conservation equations
are applied to both the pre-shock and post-shock plasmas. Also, plasma instabilities
and turbulence can be excited as a result of the processes associated with the shock.
Therefore, in general, shocks canbe laminar, turbulent, or amixture of both features.9

Only MHD shocks and discontinuities are discussed in this section, and the start-
ing point is the simplified (or ideal)MHD equations (7.45a–g). These equations, like
the Euler equations (6.123–125) used to describe ordinary shocks, are not in a con-
venient form to obtain the jump conditions across a shock. Therefore, they must be
converted to a conservative form, as was done with the Euler equations (6.123–125).
In comparing the MHD continuity (7.45a), momentum (7.45c), and energy (7.45e)
equations with the corresponding Euler equations (6.123–125), it is apparent that
the continuity and energy equations are the same because (7.45e) can also be written
as D/Dt(p/ργ ) = 0. The only difference between the momentum equations is the
appearance of the J × B term in the MHD momentum equation (7.45c) because
gravity is ignored. Hence, most of the work needed to convert the MHDmomentum
and energy equations to a conservative form has already been done in connection
with the conversion of the Euler equations, and only the J × B term needs to be
considered here.
The J×B term in the momentum equation (7.45c) can be converted to a con-

servative form by first expressing J in terms of ∇ × B via Equation (7.45g), which
yields

−J × B =− 1

µ0
(∇ × B)× B = − 1

µ0

[
(B ·∇)B−∇

(
B2

2

)]

=− 1

µ0

[
∇ · (BB)− B(∇ · B)−∇

(
B2

2

)]

=− 1

µ0
∇ ·

(
BB− B2

2
I
)
, (7.94)
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where I is the unit dyadic, ∇ · B = 0, and where the second and third expressions
result from the use of the vector relations given in Appendix B. Adding the −J×B
expression (7.94) to the Euler momentum equation (6.126) yields the conservative
form of the MHD momentum equation (7.45c), which is

∂

∂t
(ρu)+∇ ·

[
ρuu+ pI− 1

µ0

(
BB− B2

2
I
)]
= 0. (7.95)

The conservative form of the energy equation (7.45e) is obtained by first taking
the scalar product of u with the momentum equation (7.45c) and then substituting
the continuity (7.45a) and energy (7.45e) equations into this modified momentum
equation. However, all of the algebraic manipulations have already been done in
connection with the derivation of the Euler energy equation (6.132), except for the
additional term −(J × B) · u. This term can be converted to a conservative form as
follows:

−u · (J × B) = − 1

µ0
u · (∇ × B)× B = 1

µ0
(u× B) · (∇ × B), (7.96)

where the first expression follows from equation (7.45g) and the second from a
vector relation given in Appendix B. For a highly conducting plasma (σe→∞),
Equation (7.45d) indicates that E = −u× B and, therefore, Equation (7.96) can be
written as

−u · (J × B) = − 1

µ0
E · (∇ × B) = 1

µ0

[∇ · (E× B)− B · (∇ × E)
]

= 1

µ0

[
∇ · (E× B)+ ∂

∂t

(
B2

2

)]
, (7.97)

where the second expression follows from the vector relation∇ · (E×B)=B · (∇×
E) − E · (∇ × B) and the third from Equation (7.45f). Adding the term given in
Equation (7.97) to the Euler energy equation (6.132) yields the conservative form
of the MHD energy equation, which is

∂

∂t

(
1

2
ρu2 + p

γ − 1 +
B2

2µ0

)

+ ∇ ·
[(
1

2
ρu2 + γ p

γ − 1
)
u+ 1

µ0
E× B

]
= 0 (7.98)

where E× B/µ0 = E×H is the Poynting vector.
The equations that are appropriate for MHD shocks and discontinuities are the

continuity (7.45a), momentum (7.95), and energy (7.98) equations, coupled with
∇×E=−∂B/∂t (7.45f), and E=−u × B for σe→∞ (7.45d). As with hydro-
dynamic shocks, the equations are applied in the reference frame of the shock or
discontinuity, and steady-state conditions are assumed. It is also assumed that the
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plasma is homogeneous on both sides of the discontinuity over at least a short
distance. In the shock reference frame and for steady state (∂/∂t → 0) conditions,
the MHD equations become

∇ · (ρu) = 0, (7.99a)

∇ ·
[
ρuu+ pI− 1

µ0

(
BB− B2

2
I
)]
= 0, (7.99b)

∇ ·
[(
1

2
ρu2 + γ p

γ − 1
)
u+ 1

µ0
E× B

]
= 0, (7.99c)

∇ × (u× B) = 0. (7.99d)

The procedure for obtaining the jump conditions across a shock or discontinuity is
the standard procedure used in electromagnetic theory to obtain boundary conditions
on the electric and magnetic fields.5 Specifically, for the divergence equations (for
example, ∇ · A = 0), a so-called Gaussian pillbox (a cylinder) is created so that
its axis is normal to the discontinuity and the discontinuity cuts the cylinder in
half, with the top and bottom of the cylinder on opposite sides of the discontinuity.
The divergence expression (∇ · A = 0) is then integrated over the volume of the
cylinder, and because of the divergence theorem (Appendix C), the volume integral
can be converted into an integral over the surface of the cylinder. As the sides of the
cylinder go to zero, a condition is obtained that relates the normal component of the
quantity under the divergence operator (i.e.,A) on the two sides of the discontinuity
(A1n = A2n), where subscript n indicates a normal component. For a curl equation, a
similar procedure is employed, but Stokes theorem (AppendixC) is applied to a loop.
The net effect is that a divergence implies that the normal component of the quantity
is continuous, and a curl implies that the tangential component is continuous.
At this point, it is useful to introduce the normal (subscript n) and tangential

(subscript t) components of the vectors, relative to the surface of the discontinuity.
Also, as with hydrodynamic shocks, subscripts 1 and 2 denote the quantities on the
opposite sides of the discontinuity. However, before themomentum equation (7.99b)
is converted into a jump condition, the normal and tangential components of this
vector equation should be taken. With these conditions in mind, the jump relations
associated with Equations (7.99a–d) become

(ρun)1 = (ρun)2, (7.100a)

[
ρu2n + p− 1

µ0

(
B2n −

B2

2

)]
1

=
[
ρu2n + p− 1

µ0

(
B2n −

B2

2

)]
2

,

(7.100b)[
ρunut − BnBt

µ0

]
1
=
[
ρunut − BnBt

µ0

]
2
, (7.100c)
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Table 7.1 Classification scheme for MHD discontinuities.4

Contact discontinuity un = 0, Bn = 0
Tangential discontinuity un = 0, Bn = 0
Parallel shock un = 0, Bt = 0
Perpendicular shock un = 0, Bn = 0
Oblique shock un = 0, Bt = 0, Bn = 0

[(
1

2
ρu2 + γ p

γ − 1
)

un + Bt

µ0
(unBt − utBn)

]
1

=
[(
1

2
ρu2 + γ p

γ − 1
)

un + Bt

µ0
(unBt − utBn)

]
2

, (7.100d)

(unBt − utBn)1 = (unBt − utBn)2, (7.100e)

where (E× B) · n = Bt(unBt − utBn) and the tangential component of E is (unBt −
utBn). Given the five parameters on the one side of the MHD discontinuity (ρ1, u1n,
u1t , B1n, B1t), Equations (7.100a–e) are sufficient to determine these parameters on
the other side of the discontinuity.
For ordinary (nonMHD) shocks (B= 0) and for the case of a normal shock

(ut = 0), Equations (7.100a–e) reduce to the jump conditions given previously
(Equations 6.134a–c), which led to the Rankine–Hugoniot relations (6.138a–c). In
general, various situations can occur in a magnetized plasma and a classification
scheme for MHD discontinuities has been established, depending on whether the
plasma or magnetic field penetrate the discontinuity. This classification scheme is
given in Table 7.1.
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7.12 Problems

Problem 7.1 Show that the different definitions for the stress tensor, τ s (Equa-
tion 3.21) and τ ∗s (Equation 7.9), are related via Equation (7.15).

Problem 7.2 The heat flow tensor in the single-fluid treatment is defined as Q∗s =
nsms〈c∗s c∗s c∗s 〉. Express this tensor in terms of Qs (Equation 3.19) and the diffusion
velocity ws (Equation 7.10).

Problem 7.3 Show that themomentum equation (7.23) can be expressed in the form
given by Equation (7.24) when the continuity equations (3.57) and (7.21) are used.

Problem 7.4 Derive the single-fluid MHD energy equation (7.32) from the
individual species energy equations (3.59).

Problem 7.5 Using the parameters given in Tables 2.4 and 2.6, calculate β for the
Earth at 300 km and Jupiter at 3000 km.

Problem 7.6 The trajectory of the Sun’s magnetic field in the equatorial plane is
given by Equation (7.65). Calculate the Sun’s B-field trajectory at an arbitrary solar
latitude" using the same assumptions adopted in the derivation of Equation (7.65).

Problem 7.7 Ignore the heat flow and collision terms in Equation (3.55) and
assume that the pressure tensor is given by Equation (7.69). Show that the parallel
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and perpendicular pressures are then governed by Equations (7.70) and (7.71),
respectively.

Problem 7.8 The MHD equations in the double-adiabatic limit are given by
(Section 7.7):

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ
Du
Dt
+ ∇p⊥ + B ·∇

[
(p‖ − p⊥)

B
B2

]
− 1

µ0
(∇ × B)× B = 0,

∇ × (u× B) = ∂B
∂t
,

p‖B2

ρ3
= constant,

p⊥
Bρ

= constant,

where it is assumed thatG = 0 and σe→∞. Linearize this system of equations by
assuming ρ = ρ0+ρ1, u = u1, p⊥ = p⊥0+p⊥1, p‖ = p‖0+p‖1, andB = B0+B1,
where ρ0, p⊥0, p‖0, and B0 are constants, and then derive the dispersion relation for
plane waves that propagate along B0.

Problem 7.9 Derive the dispersion relations (7.92) and (7.93), which describe the
oblique Alfvén wave and the fast and slow MHD waves.

Problem 7.10 Show that the jump conditions across a shock or discontinuity that
are associated with Equations (7.99a–d) are given by Equations (7.100a–e).

Problem 7.11 Starting from Equation (7.95) show that the pressure balance Equa-
tion (7.51) is valid for a compressible, one-dimensional, plasma flow with B
perpendicular to u and all spatial variations only in the u direction.



Chapter 8

Chemical processes

Chemical processes are of major importance in determining the equilibrium distri-
bution of ions in planetary ionospheres, even though photoionization and, in some
cases, impact ionization are responsible for the initial creation of the electron–
ion pairs. This is particularly apparent for the ionospheres of Venus and Mars
because they determine the dominant ion species (Sections 13.2 and 13.3). The
major neutral constituent in the thermosphere of both Venus and Mars is CO2, and
yet the major ion is O+2 , as a result of ion–neutral chemistry. Therefore, a thorough
knowledge of the controlling chemical processes is necessary for a proper under-
standing of ionospheric structure and behavior. The dividing line between chemical
and physical processes is somewhat artificial and often determined by seman-
tics. In this chapter the discussion centers on reactions involving ions, electrons,
and neutral constituents; photoionization and impact ionization are discussed in
Chapter 9.

8.1 Chemical kinetics

The area of science concerned with the study of chemical reactions is known as
chemical kinetics. This branch of science examines the reaction processes from
various points of view. A chemical reaction in which the phase of the reactant
does not change is called a homogeneous reaction, whereas a chemical process
in which different phases are involved is referred to as a heterogeneous reaction.
In the context of atmospheric chemistry, heterogeneous reactions involve surfaces
and are significant in some of the lower atmospheric chemical processes (e.g., the
Antarctic ozone hole), but do not play an important role in ionospheric chemistry.
The chemical change that takes place in a chemical reaction is generally represented

231
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by the following, so-called stoichiometric, equation:

aA + bB→ cC+ dD, (8.1)

where A and B denote the reactants, C and D represent the product molecules, and
a, b, c, and d indicate the number of molecules of the various species involved in
the reaction. The dissociative recombination of O+2 with an electron is an example
of such a reaction

O+2 + e− → O+ O. (8.2)

Reactions that proceed in both directions are called reversible; the accidentally
resonant charge exchange reaction, shown below, is an example of such a reversible
reaction

O+ + H↔ H+ + O. (8.3)

These are called elementary reactions because the products are formed directly
from the reactants. In the terrestrial ionosphere, O+ can directly recombine with
an electron, but this process is very slow. In most cases, O+ recombines through a
multi-step process involving intermediate species;

O+ + N2→ NO+ + N, (8.4)

NO+ + e→ N + O. (8.5)

It is common practice in ionospheric and atmospheric work to denote the number
density of a given species A as [A], n(A), or nA. In the rest of the book, the choice
between these symbols will be based on simplicity. The SI unit for concentration
is moles per cubic decimeter (note that a cubic decimeter is a liter). However,
in ionospheric work the common unit for number density is molecules per cubic
centimeter (cm−3).
The relatively low densities present in upper atmospheres imply that the most

common reactions of importance in ionospheric chemistry are the two-body or
bimolecular reactions represented by Equation (8.1). In the lower thermospheres,
three-body or termolecular reactions may become important. An example of such a
reaction is the three-body recombination of atomic oxygen

O+ O+M→ O2 +M, (8.6)

where M denotes a third body.
The reaction rate of these chemical processes is a function of the concentration

of the reactant species and in the next section we show how to obtain a general
expression for this rate, using kinetic collision theory. At this point, just assume that
the rate is proportional to the densities of the reactants and write the rate of reaction,
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R, for the bimolecular reaction between species A and B as

R = kAB[A]i[B]j, (8.7)

where kAB is the reaction rate constant and i and j are the orders of the reaction
with respect to constituents A and B, respectively. The overall order of the reaction
is given by the sum of i and j. To avoid the use of awkward symbols, numerical
subscripts, e.g., k1, will be used to distinguish among the reaction rates in the rest
of the book.
It is generally advisable to evaluate the various time constants associated with the

different processes involved in any complex problem, in order to assess which are
the controlling ones. For example, in the ionospheres both chemical and transport
processes are potentially important. However, if the time constant for chemistry is
much shorter than that for transport, one may be able to neglect the latter.
The only first-order reaction of importance that needs to be considered in an

ionosphere is the spontaneous de-excitation of a molecule, atom, or ion. A good
example of such a process is the transition of an excited oxygen atom from its 1D
state to the ground 3P state (Figure 8.1a)

O(1D)→ O(3P)+ hν(630/636 nm). (8.8)

where the de-excitation results in a photon, hν, that has a wavelength of either
630 nm or 636 nm (the oxygen red line; Section 8.7). In certain altitude regions this
transition time is fast compared to transport processes, and in this case, the relevant
continuity equation is

d
[
O(1D)

]
dt

= −k1
[
O(1D)

]
. (8.9)
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Figure 8.1 (a) Simple diagram showing the low-lying energy levels of oxygen atoms
(OI). (b) Simple diagram showing the low-lying energy levels of nitrogen atoms (NI).
Note that the wavelengths of the various transitions are in Å.
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The solution of Equation (8.9) for the time variation of [O(1D)], in terms of the
initial density, [O(1D)]0, is

[
O(1D)

] = [
O(1D)

]
0e
−k1(t−t0). (8.10)

If the characteristic time constant, τ1, is defined as the time during which the initial
concentration drops to 1/e of its initial value, it is related to k1, by

τ1 = 1/k1. (8.11)

For the sake of consistency, the rate at which spontaneous de-excitation takes place
was written as k1. However, the rate is usually denoted as A, and referred to as the
Einstein A factor or coefficient; it has a value of 8.6× 10−3 s−1.1
Two types of second-order reactions are possible. The first of these, in which

two identical species are involved, is not significant in ionospheric chemistry. The
second type, in which two different reactants are involved, is important and is
discussed in what follows. A representative example of such a reaction is the ion–
atom interchange reaction, indicated by Equation (8.4). The continuity equation,
without the transport terms, for this reaction is

d[O+]
dt

= d[N2]
dt

= −k2[O+][N2]. (8.12)

In solving Equation (8.12), it is common to define a variable [X ], which is equal
to the number of O+ and N2 ions or molecules that have reacted in a unit volume
during time, t. Thus, Equation (8.12) can be rewritten as

d[X ]
dt

= k2
([O+]0 − [X ])([N2]0 − [X ]), (8.13)

where [O+]0 and [N2]0 are the initial densities at t = t0. The solution to this
differential equation is

k2(t − t0) = 1([O+]0 − [N2]0) ln
( [N2]0[O+]
[O+]0[N2]

)
. (8.14)

No simple expression can be obtained for the time constant for this general case.
However, if the initial concentrations of O+ and N2 are the same, which is usually
not the case, the solution to Equation (8.13) becomes

k2(t − t0) =
([O+]0 − [O+])
[O+]0[O+] =

([N2]0 − [N2])
[N2]0[N2] . (8.15)
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The time taken for the initial densities to decrease by a factor of two, in this special
case, is

τ2 = 1

k2[O+]0 =
1

k2[N2]0 . (8.16)

Inmany ionospheric applications, one of the species participating in a bimolecular
reactionmay remain approximately constant. In the terrestrial ionosphere, the charge
exchange represented by Equation (8.4) is a good example of such a process. The
densities of N2 are orders of magnitude larger than that of O+ and thus are not
affected by this reaction. Therefore, this charge exchange behaves like a first-order
reaction.
Finally, we look at third-order reactions of the type represented by Equation (8.6).

In that specific case the relevant differential equation is

d[O]
dt

= −2k3[O]2[M]. (8.17)

A number of different cases are possible for termolecular reactions. In the case of
atomic oxygen recombination, the two cases that are appropriate to consider are
(1) the situation where the third body is O and (2) the case when [M] � [O], so
that this reaction does not cause the concentration of M to change. The differential
equation corresponding to the first case, when all three reactants are the same, can
be written as

d[O]
dt

= −3k3[O]3 (8.18)

and the solution becomes

1

[O]2 =
1

[O]20
+ 6k3(t − t0). (8.19)

In this case the time necessary for the initial concentration to drop to half of its initial
value is

τ3 = 1

2k3[O]20
. (8.20)

The solution to the differential equation in the case when the third species M is a
constant is

1

[O] =
1

[O]0 + 2k
∗
3 (t − t0), (8.21)

where k∗3 = k3[M]. The time it takes for the initial concentration to drop to half of
its initial value is

τ ∗3 =
1

2k∗3 [O]0
. (8.22)
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Asolution to the continuity equation without the transport term for a termolecular
reaction for species A is easy to obtain if both [B] and [C] are much larger than [A].
In that case, the solution takes the form of Equation (8.10). If only one of the
constituents can be assumed to be time independent, the differential equation takes
the form of Equation (8.12). Finally, if all three reactants are varying with time,
one needs to use the method of partial fractions to obtain a solution. However, such
reactions are not likely to be of importance in most upper atmospheres.

8.2 Reaction rates

Aperson interested in studying the ionosphere needs to have quantitative information
on the reaction rates and an understanding of the various factors influencing these
rates. A physically intuitive way to begin a discussion of reaction rates is to use
collision theory to calculate the rate of bimolecular reactions. The collision rate
between two groups of molecules can be calculated in a straightforward manner
(Section 4.3). Consider two groups of molecules with densities and velocities ns, vs,
and nt , vt , respectively. The rate at which a single molecule of group t collides with
molecules of group s can be expressed in terms of a stationary t molecule and s
molecules moving with relative velocity, gst = vs− vt . The flux of smolecules, �s,
encountering molecule t with velocity increment d3vs, is

d�s = gstfs(vs)d
3vs, (8.23)

where fs(vs) is the velocity distribution function of the s molecules. The differ-
ential cross section σst(gst , θ) gives the fraction of particles scattered into a solid
angle d� = sin θ dθ dφ, where θ and φ are the spatial polar and azimuthal angles,
respectively (Figure 4.5). If one integrates over all scattering angles and uses the
definition of the total scattering cross section, QT, given by Equation (4.45), then
the total number of collisions, dNst , between molecules s and t within the velocity
increments d3vs d3vt is (G.4)

dNst = ξstgstQT(gst)fs(vs)ft(vt)d
3vs d

3vt , (8.24)

where ξst is 12 if s and t are identical and unity otherwise. Equation (8.24) can
be written in terms of the center-of-mass and relative velocities. If both particle
populations are characterized byMaxwellian velocity distributions, then the integral
over the center-of-mass velocities can be easily carried out. Writing the relative
velocity in spherical coordinates and integrating over the solid angle associated with
the relative velocity leads to the following expression for the collision rate, Nst :

Nst = 4πξstnsnt

(
µst

2πkTst

)3/2 ∞∫
0

dgstg
3
stQT(gst) exp

(
− µstg2st
2kTst

)
, (8.25)

where µst is the reduced mass (4.98) and Tst is defined by Equation (4.99).
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If the total cross section,QT, is independent of the relative speed, gst , the following
simple expression for Nst is obtained:

Nst = ξstQTnsnt

√
8kTst

πµst
. (8.26)

Equation (8.26) allows for the situation when the two gases are characterized by
different temperatures, Ts and Tt .
An approach very similar to the one used for collision rates has also been used

to calculate simple, bimolecular chemical reaction rates. A variety of approx-
imations have been used in making these simple calculations, which involve
assumptions concerning the appropriate cross sections, minimum approach dis-
tances, or velocities necessary for a reaction to take place. One approach, presented
here,2 assumes that when the two particles approach within a critical distance,
dc, they stick together to form an intermediate complex that eventually breaks
up into the final products. If there are no forces between the two molecules,
the cross section is simply πd2c . However, when the particles are close together,
strong repulsive forces are present and only those molecules that have sufficient
energy to overcome this potential barrier can approach to within the critical dis-
tance. The magnitude of this potential barrier corresponds to the minimum energy
necessary to form the complex, and this energy is commonly referred to as the
activation energy, Ea. Therefore, the cross section for a bimolecular chemical reac-
tion, in the presence of repelling potentials and using these assumptions, can be
written as2

QT(E) = πd2c (1− Ea/Est) Est > Ea
(8.27)= 0 Est < Ea.

Writing the relative kinetic energy, Est , in terms of the magnitude of the rela-
tive velocity, Est = 1/2(µstg2st), the energy-dependent cross section (8.27) can
be substituted into Equation (8.25) to give

Nst = 4πξstπd2c nsnt

(
µst

2πkTst

)3/2 ∞∫
gc

dgstg
3
st

(
1− 2Ea

µstg2st

)
exp

(
− µstg2st
2kTst

)
,

(8.28)

where

gc =
(
2Ea
µst

)1/2
. (8.29)
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Figure 8.2 A schematic diagram indicating the variation of enthalpies of formation in
a reaction.

After performing the integral in Equation (8.28), the following relation for the rate
at which bimolecular chemical reactions take place is obtained:

Nst = 2ξstd2c nsnt

(
2πkTst

µst

)1/2
exp

(
− Ea

kTst

)
. (8.30)

Expressing this rate in terms of the conventional bimolecular chemical reaction rate,
kst , one gets the well known Arrhenius equation

kst = 2d2c
√
2πk

µst

√
Tst exp

(
− Ea

kTst

)
. (8.31)

A way to think of bimolecular reactions is illustrated in Figure 8.2, which is
plotted in terms of enthalpy change; it is assumed that an intermediate, activated
state is formed during the reaction. This figure simply indicates that if the total
enthalpy change of the reactants is greater than that of the products, the reaction
results in an energy release; such a reaction is said to be exothermic. If the sum of
the enthalpy changes of the products is greater than that of the reactants, the reaction
is endothermic. Given typical ionospheric temperatures of less than a few thousand
degrees, exothermic reactions are the dominant ones. At this point it is appropriate
to remind the reader of the definition of enthalpy, H

H = E + pV (8.32)

where E, p, and V denote energy, pressure, and volume, respectively. However, in
general, pressure remains constant for ionospheric reactions, and therefore,�H is in
effect �E. Given the enthalpies of formation (�H 0

f ) of the reactants and products,
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Table 8.1 Standard enthalpies of formation at
298.15 K.3, 4

Species (gaseous) �H 0
f (kJ mole

−1)

C 715
CH3 147
CH4 −74.8
C2H2 228
CO −111
CO2 −394
H 218
H2 0.0
H2O −242
H+3 1107
H3O+ 581
He 0.0
K 89.2
N 473
N2 0.0
N+2 (2#) 1503
NO 90.3
NO+(1#) 990
Na 108
O(3P) 249
O(1D) 439
O(1S) 653
O+(4S) 1563
O−(2P) 105
O2 0.0
O2(1�g) 94.2
O+2 (2$) 1171
O−2 (2$) −48.6
O3 143
OH 38.9
S 277
SO 5.01
SO2 −297

it is possible to calculate whether a reaction is exothermic or endothermic and the
excess energy available from the exothermic reactions. The important ionospheric
reaction betweenO+ andN2 (8.4) provides a good example (note that 1 eVparticle−1
is equal to 9.649× 104 joulesmole−1 or 2.305× 104 caloriesmole−1):

O+(1563)+ N2(0)→ NO+(990)+ N(473), (8.33)

where the numbers in the brackets are the enthalpies of formation in kilo-
joulesmole−1 obtained from Table 8.1, and all reactants and products are assumed
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to be in their ground state. The excess of the total enthalpies of formation of the reac-
tants over that of the products is 100 kJ mole−1. Thus, the reaction is exothermic
and the excess energy that is available as kinetic energy of the products is 1.04 eV.
Table 8.1 gives the enthalpies of formation at the standard temperature of 298.15K;
this is usually denoted by a superscript, thus the standard notation is�H 0

f . Note that
all species are assumed to be in their ground state, unless indicated otherwise in this
table. Also, for the sake of simplicity, the �H 0

f values for the ions are not given in
Table 8.1, except in a few cases, because they are simply equal to the value of the
neutral gas �H 0

f plus the ionization potential, given in Table 9.1.

8.3 Charge exchange processes

The two most important chemical processes of direct ionospheric relevance are
the charge exchange and recombination reactions. Charge exchange reactions can
be important with respect to momentum transfer (Section 4.8 and Appendix G),
energy balance, hot atom formation, and ion chemistry (Chapter 10). In simple
charge exchange reactions between ions and their parent atom or molecule, or in
accidentally resonant charge exchange, the reactants tend to maintain their kinetic
energy after the transfer of the electric charge. Therefore, this process can provide
a rapid means for energetic ions to become energetic neutral particles or vice versa.
In a more general charge exchange process, as shown in Equation (8.4), the reaction
may be an important source of a given ion species.
It has been shown5 that the energy dependence of both symmetric and acciden-

tally resonant charge exchange reactions have a very similar behavior and that their
cross sections can be expressed as given by Equation (4.148). The corresponding
momentum transfer collision frequencies are given in Table 4.5.
The accidentally resonant charge exchange reaction between hydrogen and oxy-

gen ions, shownbyEquation (8.3), is of great importance in a number of ionospheres.
For example in the terrestrial upper ionosphere it is the main source of H+. For
convenience the reaction is rewritten in more detail as

O+(4S)+ H(2S)↔ H+ + O(3PJ )+�E. (8.34)

The energy differences for the different J values are shown inTable 8.2. The reaction
rate for the reverse of the reaction indicated by (8.34) was measured to be 3.75 ×
10−10 cm3 s−1 at 300 K.6 The reaction rates for the forward and reverse reactions
are related by the products of the partition functions, ", of the reactants involved
multiplied by exp(−�E/kT ). The partition function is defined as

" =
∑

i

gi exp(−Ei/kT ) (8.35)

where Ei is the energy of the atom or ion in the ith level and gi is the degeneracy
or statistical weight of the energy level. The partition functions for O+, H, and H+
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Table 8.2 Energy differences for the different J values of the
ground state of atomic oxygen.

�E (eV) 0.00000 0.01965 0.02808

J 2 1 0

are given by the ground state degeneracies, (2L+ 1)(2S + 1), which are 4, 2, and 1,
respectively. The general expression for the partition function of O is

"(O) =
2∑

J=0
(2J + 1) exp(−EJ /kT ). (8.36)

where J = 2 is the lowest energy level, with the J = 1 level 0.01965 eV above
J = 2 and the J = 0 level 0.02808 eV above J = 2. In the terrestrial upper
ionosphere, the temperatures are sufficiently high that in most cases the exponential
factor in Equation (8.36) can be neglected, leading to a partition function value of
9 for atomic oxygen. However, in other applications, for example in the ionosphere
of Venus where the neutral gas temperatures are less than 300 K, the exponential
factor cannot be neglected. For these applications, the following expression can be
used to approximately evaluate the oxygen partition function:

"(O) = 5+ 3 exp(−223/kT )+ exp(−325/kT ). (8.37)

Charge exchange reactions are also important in auroral studies, inwhich the inter-
action of energetic precipitating ions and neutrals are investigated. For example, in
the ionosphere and upper atmosphere of the Earth, Jupiter, and Saturn, precipitating
ions of keV energy undergo numerous charge exchange reactions leading to impor-
tant ionization and heating effects. These interactions are not commonly considered
to be chemical reactions, but this is only an artificial and semantic distinction; they
will be discussed further in Section 9.5.
There are hundreds of bimolecular ion–molecule reactions of importance for

ionospheric studies. It is impossible to list them all in this book, but a small subset
of these reactions is given in Table 8.3.
No laboratory or other direct information exists for some ion–neutral reactions.

In the case of nonpolar molecules, an approximate upper limit for the reaction rate
can be obtained by using the Langevin model, which assumes that the reaction is
controlled by the ion-induced dipole potential,8 as discussed in Section 4.5. The
reaction rate resulting from this approximation, expressed in cm3 s−1, is

k ≈ 3× 10−9
(
γn

µst

)1/2
, (8.38)

where γn is the polarizability of the neutral reactant andµst is the reduced mass. The
polarizability of a typical small polyatomic molecule is of the order of 10−24 cm3;
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Table 8.3 Room temperature bimolecular ion–molecule reaction rates.7

Reaction
number Reaction Rate constant (cm3 s−1)

R1 C+ + CO2 → CO+ + CO 9.9× 10−10
R2 CH+3 + CH4 → C2H

+
5 + H2 1.1× 10−9

R3 CO+ + O→ O+ + CO 1.4× 10−10
R4 CO+ + CO2 → CO+2 + CO 1.1× 10−9
R5 CO+2 + O→ O+ + CO2 9.6× 10−11
R6 CO+2 + O→ O+2 + CO 1.64× 10−10
R7 CO+2 + NO→ NO+ + CO2 1.23× 10−10
R8 CO+2 + H→ HCO+ + O 2.7× 10−10
R9 H+ + H2(v ≥ 4)→ H+2 + Ha see Figure 8.3
R10 H+ + O→ O+ + H 3.75× 10−10
R11 H+ + CO2 → HCO+ + O 3.8× 10−9
R12 H+2 + H2 → H+3 + H 2.0× 10−9
R13 H+2 + CH4 → CH+3 + H2 + H 2.3× 10−9
R14 H+2 + H→ H+ + H2 6.4× 10−10
R15 HNC+ + CH4 → HCNH+ + CH3 1.1× 10−9
R16 H2O+ + H2O→ H3O+ + OH 1.85× 10−9
R17 H2O+ + H2 → H3O+ + H 7.6× 10−10
R18 H2O+ + CH4 → H3O+ + CH3 1.12× 10−9
R19 H2O+ + NH3 → NH+3 + H2O 2.21× 10−9
R20 H2O+ + NH3 → NH+4 + OH 9.45× 10−10
R21 H+3 + CH4 → CH+5 + H2 2.4× 10−9
R22 H+3 + NH3 → NH+4 + H2 4.4× 10−9
R23 H+3 + H2O→ H3O+ + H2 5.3× 10−9
R24 H3O+ + NH3 → NH+4 + H2O 2.23× 10−9
R25 He+ + CH4 → CH+2 + H2 + He 8.5× 10−10
R26 He+ + CH4 → H+ + CH+3 + He 4.4× 10−10
R27 He+ + CO2 → CO+ + O+ He 7.8× 10−10
R28 He+ + CO2 → O+ + CO+ He 1.4× 10−10
R29 He+ + N2 → N+ + N + He 7.8× 10−10
R30 He+ + N2 → N+2 + He 5.2× 10−10
R31 He+ + O2 → O+ + O+ He 9.7× 10−10
R32 N+ + CH4 → CH+3 + NH 5.75× 10−10
R33 N+ + CH4 → HCNH+ + H2 4.14× 10−10
R34 N+ + CH4 → HCN+ + H2 + H 1.15× 10−10
R35 N+ + CO2 → CO+2 + N 9.2× 10−10
R36 N+ + CO2 → CO+ + NO 2.0× 10−10
R37 N+ + O2 → O+2 + N 3.07× 10−10
R38 N+ + O2 → NO+ + O 2.32× 10−10
R39 N+ + O2 → O+ + NO 4.6× 10−11
R40 N+2 + CH4 → CH+3 + N2 + H 1.04× 10−9
R41 N+2 + CH4 → CH+2 + N2 + H2 1.0× 10−10
R42 N+2 + CO2 → CO+2 + N2 8.0× 10−10
R43 N+2 + NO→ NO+ + N2 4.1× 10−10
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Table 8.3 (Cont.)

Reaction
number Reaction Rate constant (cm3 s−1)

R44 N+2 + O→ NO+ + N 1.3× 10−10
R45 N+2 + O→ O+ + N2 9.8× 10−12
R46 N+2 + O2 → O+2 + N2 5.0× 10−11
R47 O+ + N2 → NO+ + N 1.2× 10−12
R48 O+ + O2 → O+2 + O 2.1× 10−11
R49 O+ + NO→ NO+ + O 8.0× 10−13
R50 O+ + CO2 → O+2 + CO 1.1× 10−9
R51 O+ + H→ H+ + O 6.4× 10−10
R52 O+2 + NO→ NO+ + O2 4.6× 10−10
R53 O+2 + N→ NO+ + O 1.5× 10−10
a v corresponds to the vibrational state.

values of polarizability for the most important neutral constituents are given in
Table 4.1. The reaction rate for polar molecules is expected to be considerably larger
than the Langevin value.

8.4 Recombination reactions

Themost direct recombination process, called radiative recombination, is the inverse
of photoionization

X+ + e− → X∗ + hν, (8.39)

where X∗ indicates that the product atom or molecule may be in an excited state.
However, the radiative recombination rate is small (Table 8.4) and in most cases this
is a negligibly slow process.
The chemical loss process thatmost frequently dominates ionospheric abundances

is dissociative recombination, an example of which was given by Equation (8.5).
The product atoms may be in an excited state and the excess energy goes to the
kinetic energy of the products. Avery important dissociative recombination reaction
in the terrestrial, Venus, and Mars ionospheres is that of the ground electronic state
of O+2 , for which the different, energetically permitted branches are

O+2 (X
2$g)+ e− → O(3P)+ O(3P)+ [6.99 eV] (0.22)

→ O(3P)+ O(1D)+ [5.02 eV] (0.42)

→ O(1D)+ O(1D)+ [3.06 eV] (0.31)

→ O(3P)+ O(1S)+ [2.80 eV] (<0.01)

→ O(1D)+ O(1S)+ [0.84 eV] (0.05). (8.40)
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Table 8.4 Radiative recombination rates.9

Reaction Rate constant (cm3 s−1)

C+ 4.2× 10−12(250/Te)0.7
H+ 4.8× 10−12(250/Te)0.7
He+ 4.8× 10−12(250/Te)0.7
N+ 3.6× 10−12(250/Te)0.7
Na+ 3.2× 10−12(250/Te)0.7
O+ 3.7× 10−12(250/Te)0.7

Table 8.5 Dissociative recombination rates (J. L. Fox,
private communication).11–15

Reaction Rate (cm3s−1)

CH+3 3.5× 10−7(300/Te)0.5
CH+4 3.5× 10−7(300/Te)0.5
CO+ 2.75× 10−7(300/Te)0.55
CO+2 4.2× 10−7(300/Te)0.75
HCNH+ 3.5× 10−7(300/Te)0.5
H+2 1.6× 10−8(300/Te)0.43

for v = 0a

2.3× 10−7(300/Te)0.4
for v = 0

H+3 4.6× 10−6(Te)−0.65
H2O+ and H3O+ 1.57× 10−5(Te)−0.569

for Te < 800 K
4.73× 10−5T−0.74e
for 800 K < Te < 4000 K

1.03× 10−3 T−1.111e
for Te > 4000 K

NH+3 3.3× 10−7(300/Te)0.5
N+2 2.2× 10−7(300/Te)0.39
NO+ 4.0× 10−7(300/Te)0.5
O+2 2.4× 10−7(300/Te)0.70
OH+ 3.75× 10−8(300/Te)0.5
a v corresponds to the vibrational level.

For such a reaction, the value of the total recombination rate, namely the rate at
which the sum of all branches takes place, and the branching ratios, which indicate
the fraction going to each branch, must be specified. The excess energy for a given
branch is shown inside the square brackets and the measured branching ratios10 are
given in the curved brackets. The dissociative recombination of H+2 , H2O+, H

+
3 , and

H3O+ are of great importance in the ionospheres of the outer planets and comets,
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especially the last two;

H+2 + e− → H+ H, (8.41)

H2O
+ + e− → H+ OH

→ H2 + O, (8.42)

H+3 + e− → H+ H2
→ H+ H+ H, (8.43)

H3O
+ + e− → H+ H2O

→ H2 + OH
→ H3 + O. (8.44)

The total dissociative recombination rate and the branching ratios may depend on
the vibrational state of the ion and the energy or temperature of the electrons. The
present understanding of dissociative recombination rates comes from a combination
of laboratory, space-based measurements and theoretical calculations. There are
still many uncertainties associated with these values; the information presented in
Table 8.5 represents the best accepted values at this time.

8.5 Negative ion chemistry

In the lower ionosphere, where the neutral gas density is relatively large, negative
ions may be formed. Such negative ions are believed to be important in the terrestrial
D region (Section 11.4) and have been observed at Titan (Section 13.6). However,
because of the difficulties associated with their measurements, only minimal infor-
mation is available about these ions. The formation of negative ions is believed to
start by the collision between an electron and neutral particles, in which the elec-
tron becomes attached to a neutral particle. The most important of these attachment
reactions at Earth is the one involving two oxygen molecules:

O2 + O2 + e− → O−2 + O2 + 0.5 eV, (8.45)

although the following reaction may also be significant:

O2 + N2 + e− → O−2 + N2 + 0.5 eV. (8.46)

These negative ions may be lost by a variety of mechanisms. The most likely of
these processes are photodetachment,

O−2 + hν(<2.44 µm)→ O2 + e−, (8.47)
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Table 8.6 Photodetachment and photodissociation
rates at 1 AU.16

Reaction Rate (s−1)

O− + hν → O+ e− 1.4
O−2 + hν → O2 + e− 3.8× 10−1
O−3 + hν → O3 + e− 4.7× 10−2
OH− + hν → OH+ e− 1.1
CO−3 + hν → CO3 + e− 2.2× 10−2
NO−2 + hν → NO2 + e− 8.0× 10−4
NO−3 + hν → NO3 + e− 5.2× 10−2
O−3 + hν → O− + O2 0.47
O−4 + hν → O−2 + O2 0.24
CO−3 + hν → O− + CO2 0.15
CO−4 + hν → O−2 + CO2 6.2× 10−3

associative detachment,

O−2 + O→ O3 + e− + 0.6 eV, (8.48)

two-body ion–ion recombination,

O−2 + O+2 → 2O2 + 11.6 eV, (8.49)

or collisional detachment involving an excited atom or molecule

O−2 + O2(1�g)→ 2O2 + e− + 0.5 eV. (8.50)

Photodissociation can also change the negative ion species in the following way:

O−3 + hν → O− + O2. (8.51)

In reality, the formation of the initial negative ions O−2 , as well as O−, is just the
beginning of a long chain of chemical reactions leading to more and more complex
negative ions. A more detailed discussion of these steps is given in Section 11.4,
which includes a short discussion of the terrestrial D region. Here, in Table 8.6,
the rate coefficients for some of the more important negative ion reactions are
presented.16

8.6 Excited state chemistry

The presence of a significant population of excited neutral or ionized species can have
a major impact on ionospheric chemistry. Neutral or ion species in an excited state,
corresponding to forbidden electronic transitions (Section 8.7), have relatively long
lifetimes, which in turn can result in significant populations. Vibrationally excited
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molecules can also have a significant impact on reaction rates. In general, electron-
ically or vibrationally excited species have reaction rates that are different, often
higher, than the corresponding ground state ones. Also, a certain reaction that is
endothermic when the reactants are in a ground state may become exothermic if one
of the reactants is in an excited state. In general, the various potentially important
excited states need to be considered as separate species, adding a potentially major
complexity to ionospheric calculations. Nevertheless, such details are often neces-
sary to insure that the resulting models provide a realistic description of the true
nature of the ionosphere.
A good example to demonstrate the importance of metastable species is the reac-

tions involving the 2D state of atomic nitrogen (see the energy level diagram shown
in Figure 8.1b). One of the sources of excited atomic nitrogen in the terrestrial
high-latitude upper atmosphere is electron impact dissociative excitation of N2

N2 + e− → N(2D)+ N + e. (8.52)

Dissociative recombination of N+2 and NO+ may also produce N(2D)

N+2 + e− → N(2D)+ N, (8.53)

NO+ + e− → N(2D)+ O. (8.54)

The reaction between N(2D) and molecular oxygen is the main source of NO in the
lower thermosphere,

N(2D)+ O2→ NO+ O. (8.55)

The rate of formation of NO by the reaction between a ground state atomic nitrogen
and O2 is highly temperature dependent,16 4.4 × 10−12 exp(−3220/T ) cm3 s−1,
because of the relatively large activation energy of the reaction. At the temperatures
found in the lower terrestrial thermosphere (∼350 K), the ground state reaction is
negligible, and reaction (8.56), involving the metastable 2D state of atomic nitrogen,
with a rate coefficient of 6× 10−12 cm3s−1, is the dominant one.17
Another example of the potential importance of excited state chemistry is asso-

ciated with the loss of H+ in the upper ionospheres of the giant planets. Radiative
recombination is very slow, so charge exchange with the major neutral background
constituent, H2, needs to be considered. However, the charge exchange reaction

H+ + H2→ H+2 + H (8.56)

is endothermic, unless H2 is in a vibrationally excited state v ≥ 4. As indicated in
Figure 8.3, the reaction is reasonably fast for v ≥ 4. Therefore, this reaction may be
a potentially important loss of H+, if the vibrational temperature of H2 is sufficiently
elevated. This is discussed in more detail in Section 13.4.
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Figure 8.3 The kinetic temperature and vibrational level dependent reaction rate of
H+ + H2. The rates plotted are for various different vibrational levels and rotational
levels, J = 1. (Courtesy of Dr. D. Shemansky).

8.7 Optical emissions; airglow and aurora

Excited atmospheric species eventually drop to a lower level of excitation by either
spontaneous emission of a photon or by losing energy via a collision. Collisional
de-excitation is commonly referred to as quenching. The value of the Einstein tran-
sition probability of spontaneous de-excitation (Section 8.1) depends on the electric
and magnetic dipole and electric quadrupole contributions. The electric dipole com-
ponent is about 105 times that of the magnetic dipole one and about 108 times the
electric quadrupole value. Therefore, if the electric dipole term is zero, because of
symmetry properties, the transition probability becomes very small, and the corre-
sponding transition is referred to as a forbidden one. Atoms and molecules in an
excited state from which the de-excitation transition is forbidden are said to be in a
metastable state.
The optical emissions fromexcited atmospheric species are referred to as aurora if

particle impact excitation, other than that due to photoelectrons, is the original source
of the excitation energy. The emissions are referred to as airglow if solar radiation
is the initial source of energy causing the excitation. This book does not discuss
in any detail the processes leading to these optical emissions; there are a number
of good references available on this topic (see the General References). However,
one emission line of the dayglow is discussed in this section as a representative
example. Otherwise, further discussion of this topic will only come up in the context
of ionospheric relevance.
The oxygen atom has two low-lying electronic states at 1.97 and 4.19 eV, the

1D and 1S states, respectively, as shown in Figure 8.1a. The spontaneous transition
from the 1D state to the ground, 3P2, state results in the emission of a photon at
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630 nm. This, so-called oxygen red line is an important emission in the terrestrial
night and dayglow, as well as the aurora. Here, we concentrate on this specific
dayglow emission line. The processes which are plausible production sources for
O(1D) are18

e∗ + O(3P)→ e∗ + O(1D), (8.57)

O2 + hν → O+ O(1D), (8.58)

O+2 + e− → O+ O(1D), (8.59)

O(1S)→ hν(λ = 558 nm)+ O(1D), (8.60)

N(2D)+ O2→ NO+ O(1D), (8.61)

N(2D)+ O→ N(4S)+ O(1D), (8.62)

N(2P)+ O2→ NO+ O(1D), (8.63)

N(2P)+ O→ N(4S)+ O(1D), (8.64)

N+ + O2→ NO+ + O(1D), (8.65)

O+(2D)+ O(3P)→ O+(4S)+ O(1D), (8.66)

e∗ + O2→ e∗ + O+ O(1D), (8.67)

eth + O→ eth + O(1D), (8.68)

where e∗ and eth represent energetic (photoelectron) and thermal electrons, respec-
tively. If no excited state is indicated, it means that depending on the circumstances,
any of the energetically permitted states is possible. The possible loss reactions are

O(1D)+ N2→ O(3P)+ N2, (8.69)

O(1D)+ O2→ O(3P)+ O2, (8.70)

O(1D)+ O(3P)→ O(3P)+ O(3P), (8.71)

O(1D)+ e− → O(3P)+ e−, (8.72)

O(1D)→ O(3P)+ hν(λ = 630, or 636 nm). (8.73)

In the case of steady-state conditions and negligible transport effects, the conti-
nuity equation simplifies to a balance between production and loss rates. Writing
the continuity equation for an excited species X∗ and then solving that algebraic
equation for the number density of X∗, n(X∗), and multiplying it by the Einstein
coefficient (equal to 1/lifetime; Section 8.1) for the transition of interest, Aλ, the
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Figure 8.4 A comparison of calculated and measured 6300Å airglow intensities.
Symbols 1, 2, and 3 indicate the contributions from photoelectron impact (8.58),
photodissociation (8.59), and dissociative recombination (8.60), respectively.18

following equation for the steady state emission rate, R(λ), is obtained,

R(λ) = Aλn(X
∗) =

∑
p

p(X ∗)

∑
λ

Aλ(X
∗)

Aλ
+



∑
Q

kQn(Q)

Aλ



, (8.74)

where p(X ∗) represents the various production rates of X ∗ by the different source
mechanisms, the kQ are the quenching rate coefficients and the summations are over
all production, quenching, and radiative de-excitation processes. Figure 8.4 shows a
comparison of the calculated 630 nmemission rate and thatmeasured18 by the visible
airglow photometer (VAE) carried aboard theAE-E satellite.19 The agreement is very
good between the modeled and observed intensities and shows that photoelectron
impact excitation, photodissociation, and dissociative recombination are the three
main source processes.
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8.10 Problems

Problem 8.1 The half-life of a first-order reaction is 15 minutes. What is the rate
constant of this reaction? What fraction of the reactant remains after 45 minutes?

Problem 8.2

(a) Show that if the initial concentrations of the species reacting in a
second-order reaction are the same, then Equation (8.15) follows from
Equation (8.13).

(b) A gas species A is removed via a second-order reaction with B. If the rate
constant for this loss reaction is 1× 10−9 cm3 s−1 and the initial densities
of A and B are the same, what is the half-life of constituent A if its initial
concentration was 1× 106 cm−3?

Problem 8.3 Obtain Equation (8.25) fromEquation (8.24) assuming that both parti-
cle populations are characterized by Maxwellian velocity distributions. For the sake
of simplicity, you may assume that both gases have the same temperature, T . Also
note that d3vs d3vt = d3Vc d3gst .

Problem 8.4 Show that Equation (8.31) reduces to Equation (8.26) when the
activation energy, Ea, is zero.

Problem 8.5 Measurements show that the rate of a given reaction doubles when
the temperature is raised from 300 to 310 K. What is the activation energy of this
reaction expressed in eV particle−1?

Problem 8.6 The activation energy of the reaction

H+ CH4→ H2 + CH3
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is 49.8 kJ mole−1. Given the enthalpies of formation in Table 8.1, estimate the
activation energy of the reverse reaction. (Look at Figure 8.2 for guidance.)

Problem 8.7 Calculate the excess energy resulting from the following reaction:

O+(4S)+ CO2→ O+2 (
2$)+ CO

Express your results in terms of eV particle−1.

Problem 8.8 On the planet Imaginus, at a given altitude, the O+, O+2 , and electron
densities are 5 × 105, 5 × 105, and 106 cm−3, respectively, and the neutral gas,
electron, and ion temperatures are all 1000 K. The O2 density at this altitude is
108 cm−3.

(a) Calculate the radiative recombination rate of O+.
(b) Compare the rate from (a) with the charge exchange rate between O+ and

O2 and the dissociative recombination rate of O
+
2 .

(c) If the loss of O+ is controlled by the two-step process of charge exchange
followed by dissociative recombination, as calculated in (b) above, which
of these two processes is the rate limiting (the slow) one?

(d) If the time constant for transport at this altitude is 105 seconds and the
loss of O+ is determined by charge exchange with O2, will transport or
chemistry dominate at this altitude? (Compare time constants!)

Problem 8.9 Use the steady state continuity equation for the excited O(1D) atom
to obtain Equation (8.75).



Chapter 9

Ionization and energy exchange processes

Solar extreme ultraviolet (EUV) radiation and particle, mostly electron, precipitation
are the two major sources of energy input into the thermospheres and ionospheres in
the solar system. A schematic diagram showing the energy flow in a thermosphere–
ionosphere system caused by solar EUV radiation is shown in Figure 9.1. Relatively
long wavelength photons (�900 Å) generally cause dissociation, while shorter
wavelengths cause ionization; the exact distribution of these different outcomes
depends on the relevant cross sections and the atmospheric species. The only true
sinks of energy, as far as the ionospheres are concerned, are airglow and neutral
heating of the thermosphere. Even the escaping photoelectron flux can be reflected
or become the incoming flux for a conjugate ionosphere. The specific distribution of
the way that energy flows through the system is very important in determining the
composition and thermal structure of the ionospheric plasmas. This chapter begins
with a discussion of the absorption of the ionizing and dissociating solar radiation
and the presentation of information needed to calculate ionization and energy depo-
sition rates. This material is followed by a description of particle transport processes.
The chapter ends with a presentation of electron and ion heating and cooling rates
that can be used in practical applications.

9.1 Absorption of solar radiation

Radiative transfer calculations of the solar EUV energy deposition into the thermo-
sphere are relatively simple because absorption is the only dominant process. To
illustrate the basic physical principles, it is convenient first to make the following
simplifying assumptions: (a) the radiation is monochromatic (single wavelength),
(b) the atmosphere consists of a single absorbing species, which decreases exponen-
tially with altitude with a constant characteristic length, H , and (c) the atmosphere

254
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is plane and horizontally stratified in the manner shown by Figure 9.2. Let σ a be the
absorption cross section, I(sλ) the photon flux, and n(z) the neutral density, where
sλ is the distance along the path of the photons and z is altitude. As the photon flux
penetrates the atmosphere, it is attenuated by absorption. The decrease in intensity
of the flux after it travels an incremental distance, dsλ, is

dI(sλ) = −I(sλ)n(z)σ
adsλ. (9.1)

With the assumption of a plane stratified atmosphere

dsλ = −dz secχ (9.2)
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where χ is the solar zenith angle, which is measured from the vertical. Substituting
Equation (9.2) into Equation (9.1) and integrating from z to infinity, yields

ln
[
I∞/I(z)

] =
∞∫
z

dz n(z)σ a secχ , (9.3)

where I∞ is the unattenuated flux at the top of the atmosphere. Given that neither χ
nor σ a vary with altitude and that the neutral density decreases exponentially with
altitude (Equation 9.12 and Section 10.7);

n(z) = n(z0) exp

[
− (z − z0)

H

]
(9.4)

where z0 is an arbitrary reference altitude, the intensity of the photon flux at an
arbitrary altitude can be written as

I(z,χ) = I∞ exp[−Hn(z)σ a secχ ]. (9.5)

Equation (9.5) was obtained using the various simplifying assumptions outlined
above. In reality, the photon flux and the absorption cross section vary with wave-
length, numerous absorbing neutral species exist that do not have the same altitude
variation, and of course the planets are not flat. Taking into consideration these
factors, Equation (9.1) has to be modified to the general form

dI(z, λ,χ) = −
∑

s

ns(z)σ
a
s (λ)I(z, λ) dsλ (9.6)

where I(z, λ) is the intensity of the solar photon flux at wavelength, λ; ns(z) is
the number density of the absorbing species, s; σ as (λ) is the wavelength-dependent
absorption cross section of species s; and dsλ is the incremental path length in the
directionof theflux. The integrationofEquation (9.6) yields the following expression
for the solar flux as a function of altitude and wavelength:

I(z, λ,χ) = I∞(λ) exp


−

z∫
∞

∑
s

ns(z)σ
a
s (λ) dsλ


 , (9.7)

where I∞(λ) is the flux at the top of the atmosphere and the integration is to be
carried out along the optical path. The argument of the exponential in Equation (9.7)
is defined as the optical depth or optical thickness, τ , thus

τ(z, λ,χ) ≡
z∫

∞

∑
s

ns(z)σ
a
s (λ) dsλ (9.8)
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and

I(z, λ,χ) = I∞(λ) exp
[−τ(z, λ,χ)]. (9.9)

The evaluation of the optical depth requires a detailed knowledge of the atmo-
spheric densities and all the relevant absorption cross sections. If the atmosphere is
assumed to be plane stratified and some simplifying assumptions are made regarding
the gas temperatures, simple expressions can be obtained for the optical depth. The
vertical distribution of a given neutral atmospheric species can be simply written as
(Section 10.7)

ns(z) = ns(z0)
Ts(z0)

Ts(z)
exp

[
−

z∫
z0

dz′

Hs(z′)

]
(9.10)

where the neutral gas scale height, Hs, is defined as

Hs(z) ≡ kTs(z)

msg(z)
. (9.11)

If one assumes that both the temperature and the scale height are altitude independent,
the following well-known exponential relation for the density is obtained:

ns(z) = ns(z0) exp

[
− (z − z0)

Hs

]
. (9.12)

The vertical column density is easily obtained from Equation (9.12) and is given by

∞∫
z0

ns(z) dz = ns(z0)Hs(z0). (9.13)

The relationship given by Equation (9.13) is true even if Ts is not independent of
altitude. To show this, a new dimensionless parameter, h, known as reduced height,
has to be introduced. The reduced height is defined by the following relation:

dh ≡ dz/Hs, (9.14)

where h= 0 corresponds to an altitude z0. Using this new parameter, the following
expression for the pressure variation is obtained by substituting Equation (9.14) into
Equation (9.10) and setting ps = nskTs:

ps(h) = ps(0) exp(−h). (9.15)
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The vertical column density is then given by

∞∫
z0

ns(z
′) dz′ =

∞∫
0

ns(h
′)Hs(h

′) dh′

=
∞∫
0

ps(h′)
kTs

kTs

mg
dh′

= ps(0)

mg

∞∫
0

exp(−h′) dh′

= ns(z0)Hs(z0), (9.16)

where the only assumption made was that g is not a function of altitude. Next, if
the atmosphere is assumed to be plane and horizontally stratified (Equation 9.2 and
Figure 9.2), then the expression for the optical depth can be simply written as

τ(z, λ,χ) = secχ
∑

s

ns(z)σ
a
s (λ)Hs. (9.17)

The plane stratified assumption (that is, the−secχ dz approximation for dsλ) is good
for χ less than about 75◦, but at larger zenith angles the curvature of the planetary
surface and changing densitieswith solar zenith anglemakes the atmospheric column
content a much more complicated function of χ . A so-called Chapman function,
Ch(z0,χ0), has been used in the past,1 which is defined by the following relation:

∞∫
z0

ns(z) dsλ ≡ ns(z0)Hs(z0)Ch(z0,χ0). (9.18)

A great deal of effort used to be devoted to obtaining good analytic expressions for
this Chapman function.1 However, with the availability of high speed computers, an
exact evaluation of the optical depth is relatively easy, as long as the necessary infor-
mation on the wavelength-dependent absorption cross sections and the densities, as
a function of altitude and solar zenith angle, are available.

9.2 Solar EUV intensities and absorption cross sections

Solar radiation in the EUV and X-ray range of wavelengths excites, dissociates,
and ionizes the neutral constituents in the upper atmosphere. These emissions come
from different regions of the solar atmosphere (chromosphere, transition region, and
corona), and therefore, both the short- and long-term variabilities are wavelength
dependent. Although measurements of solar ultraviolet radiation began in 1946,2 it
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was not until the 1970s that quantitative information for the wavelength region of
thermospheric and ionospheric interest, 5–185 nm, became available.
The currently existing database is limited, consisting of a few rocket

measurements,3, 4 and two extended satellite observations. Measurements by a
spectrophotometer5 on board theAtmosphere Explorer (AE) satellites between 1974
and 1981 and a solar EUV experiment6 (SEE) currently on the Thermosphere, Iono-
sphere, Mesosphere Energetics, and Dynamics (TIMED) satellite are the current
base of our information.
A detailed knowledge of the behavior of this important wavelength region of the

solar flux is necessary for quantitative studies of the thermosphere and ionosphere.
Two important, but conflicting, criteria need to be considered in the creation and
dissemination of this spectral information. One of these is the desire to keep the data
as compact as possible, while the other is the need to have sufficient spectral details
to make its use meaningful in potential applications (e.g., theoretical calculations).
A number of different solar EUV models have been introduced over the years.

One widely used model is the so-called EUVAC Solar Flux Model.7 This EUVAC
model uses only 37 wavelength intervals, covering a range of 5 to 105 nm, and its
basic parameters are given in Table J.1 in Appendix J.
In the EUVAC model, the following simple factor accounts for solar activity

variations:

P = (
F10.7+ 〈F10.7〉)/2 (9.19)

which is used to scale each wavelength bin of solar photon flux, Ii, for different
levels of solar activity via the expression

Ii = F74113i
[
1+ Ai(P − 80)

]
. (9.20)

In these equations, F74113i is themodified reference flux, as given in Table J.1; Ai is
the scaling factor for each interval, also given in Table J.1; F10.7 is the 10.7 cm solar
radio flux in WHz−1m−2, multiplied by 1022; and 〈F10.7〉 is F10.7 flux averaged
over 81 days. Thus, this model provides an estimate of the unattenuated solar flux
for any period.
The EUVAC model is appropriate for calculating parameters such as ionization

rates, but its relatively coarse wavelength resolution is not good enough to calculate
certain parameters of aeronomic interest adequately, such as detailed photoelectron
fluxes, for example. A high resolution model which has flexible wavelength binning
was developed recently to overcome this shortcoming of the simpler EUVAC, if
necessary. This high resolution model is called HEUVAC8 and its wavelength bins
can range from 0.1 to 100 nm. There are other solar flux models also available (e.g.,
NRLEUV9 and SOLAR2000,10) but they are all based on the same general database,
and while there are some differences among them, they lead to very similar results.
It is clear from Equation (9.7) that to calculate the optical depth and the solar flux

as a function of altitude, the absorption cross sections for the various atmospheric
species are necessary. Because the solar flux is given in discrete intervals, one needs
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to average the corresponding absorption cross sections over the same wavelength
intervals. Table J.2 gives wavelength averaged absorption cross sections, corre-
sponding to the EUVAC solar flux intervals, for N2, O2, O, N, CO2, CO, CH4, H2O,
He, and SO2.

9.3 Photoionization

Photoionization of the neutral gas constituents in planetary atmospheres produces
free electron–ion pairs, and this is themajor source of ionization inmost ionospheres.
The energy of the ionizing photons exceeds, in general, the threshold ionization
energy (seeTable 9.1 for the ground-state ionization energy of some common neutral
gas species), with the excess going either into electron kinetic energy or excitation
of the resulting ion. The reason that the electrons pick up the bulk of the kinetic
energy is that the ions are much more massive than the electrons, and therefore, the
ions acquire very little recoil energy during the photoionization process.
Before presenting a rigorous expression for the energy-dependent photoelectron

production rate, it is instructive to derive a simple expression for this rate using
the same three simplifying assumptions that led to the simple expression for I(z,χ)
given by Equation (9.5). If the probability of a photon absorption, resulting in the
production of an ion–electron pair, is denoted by η, then this rate of production,
sometimes called the Chapman production function, Pc, can be written as

Pc(z,χ) = I(z,χ)ησ an(z) = I∞ exp[−Hn(z)σ asecχ ]ησ an(z). (9.21)

With the advent of high-speed computers, this highly simplified equation (9.21)
is not of much practical use. However, it is extremely useful for gaining physical
insight. This equation clearly indicates that the production rate is proportional to the
product of the intensity of solar ionizing radiation, which increases with altitude,
and the neutral gas density, which decreases with altitude. The altitude of the peak
production rate can be obtained by differentiating Equation (9.21) and setting it equal
to zero; this gives

zmax = z0 + H ln[n(z0)Hσ asecχ ], (9.22)

where z0 is an arbitrary reference altitude. This result shows that zmax increases with
increasing solar zenith angle, just as one would expect from intuition. Substituting
Equation (9.22) intoEquation (9.21) gives the following expression for themaximum
production rate:

Pc(zmax,χ) = I∞η cosχ
H exp(+1) . (9.23)

Note that the peak production rate increases with decreasing solar zenith angle and
is a maximum for an overhead Sun. This can be seen in Figure 9.3, which is a plot of
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Table 9.1 Ionization threshold potentials.

Neutral eV nm

C 11.26 110.1
CH4 12.55 98.79
CO 14.01 88.49
CO2 13.77 90.04
H 13.60 91.16
H2 15.43 80.35
H2O 12.62 98.24
He 24.59 50.42
Mg 7.646 162.2
N 14.55 85.33
N2 15.58 79.58
NH3 10.16 121.9
NO 9.264 133.8
Na 5.139 241.3
O 13.62 91.03
O2 12.06 102.8
OH 13.18 94.07
S 10.36 119.7
SO 10.0 124.0
SO2 12.34 100.5
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Figure 9.3 Plot of the
normalized Chapman production
function (9.21).
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Equation (9.21) versus z/H , normalized to the maximum production rate, Pc(zmax),
for the case where z0 is taken to be zmax for an overhead Sun (χ = 0◦). This altitude
is also the same as the altitude for unit optical depth (τ = 1) for an overhead Sun.
Realistic detailed calculations of the electron production rate as a function of

altitude, energy, and solar zenith angle are more complicated than that for the Chap-
man production function given by Equation (9.21). The initial photoelectron energy
depends on the final state of the ion, as well as the energy of the ionizing photon.
Therefore, to calculate the energy distribution of the newly created photoelectrons,
one needs to know not only the total ionization cross sections listed in Table J.2,
but also the ionization cross sections for each excited ionic state (or the equivalent
information through the branching ratios of the final ion states). The branching ratio
multiplied by the total ionization cross section gives the ionization cross section of
a given state.
The expression for the altitude, energy, and solar zenith angle dependent

photoelectron production rate, Pe(E,χ , z), can be written as

Pe(E,χ , z) =
∑

l

∑
s

ns(z)

λsi∫
0

I∞(λ) exp[−τ(λ,χ , z)]σ is(λ)ps(λ,El) dλ,

(9.24)

where σ is(λ) is the wavelength-dependent total ionization cross section, ps(λ,El) is
the branching ratio for a given final ion state with ionization energy level El ,E =
Eλ − El ,Eλ is the energy corresponding to wavelength λ, and λsi is the ionization
threshold wavelength for neutral species s. The summations are to be carried out
over all species, s, and ion states, l. There are applications where the detailed
photoelectron spectrum is not needed, but where only the ionization rate of a given
ion species is needed. This total ion production rate for species s, Pts(z), can be
written as

Pts(z,χ) = ns(z)

λsi∫
0

I∞(λ) exp
[−τ(z,χ , λ)]σ is(λ) dλ. (9.25)

If the total ionization rate for all species Pt is all that is needed, Pts is simply summed
over all s, giving

Pt(z,χ) =
∑

s

Pts =
∑

s

ns(z)

λsi∫
0

I∞(λ) exp
[−τ(z,χ , λ)]σ is(λ) dλ. (9.26)

Avery useful parameter is the ionization frequency, which is defined as the ionization
rate per unit neutral gas particle at the top of the atmosphere. It was calculated for
a number of important ions and the results are presented in Table 9.2.9 Ionization
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Table 9.2 Total ionization frequenciesa at 1 AU (J.A.
Fennelly, Private communication, 1998).

Species Solar minimumb Solar maximumc

CH4 5.753× 10−7 1.708× 10−6
CO 4.245× 10−7 1.127× 10−6
CO2 6.696× 10−7 1.695× 10−6
H2 7.46× 10−8 1.407× 10−7
H2O 4.286× 10−7 1.184× 10−6
He 5.283× 10−8 1.276× 10−7
N2 3.35× 10−7 9.476× 10−7
O 2.44× 10−7 6.346× 10−7
O2 4.90× 10−7 1.594× 10−6
SO2 1.147× 10−6 3.278× 10−6
aThese ionization frequencies are for ions that are the same as
the parent neutrals. Units are s−1. Calculated using EUVAC.7
bCorresponds to solar flux F74133.
cCorresponds to solar flux F79050N.
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frequencies are useful because the production rate of a given ion species, at altitudes
well above the peak production rate, can be calculated simply by multiplying the
appropriate neutral density with the corresponding ionization frequency.
Representative examples of calculated photoionization rates for Earth and Venus

are shown in Figures 9.4 and 9.5, respectively. The rate of other analogous processes
(e.g., molecular dissociation) can also be calculated, using Equation (9.25), if the
ionization cross sections are replaced by the appropriate cross sections.
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9.4 Superthermal electron transport

The transport calculations for electrons in the atmosphere are significantly more
difficult than those for EUV radiation because scattering and local sources play an
important role. Electron and ion kinetic transport equations can be derived from the
Boltzmann equation (3.7), and numerous authors have done so.13 It is interesting to
point out that the radiative transport equation can also be derived from theBoltzmann
equation,14 and some authors have started from the radiative transfer equation to
obtain the electron transport equations.15

In a collisionless plasma, the motion of a charged particle in a magnetic field
can be considered to consist of the combination of a gyrating motion around the
magnetic field line and the motion of the instantaneous center of this gyration,
called the guiding center. When the radius of gyration is small compared with the
characteristic dimensions of the magnetic field line, one can just concentrate on
the motion of the guiding center.16 The gyroradius of a typical electron, created
by photoionization in the ionospheres of magnetized planets, is generally small
compared with an ionospheric scale or field “length.” Therefore, in dealing with
photoelectron transport, it is sufficient to be concerned only with the motion of the
guiding centers. With this approach, one expresses the distribution function in terms
of the guiding center parameters and then averages over a gyration period. If one
further neglects drift motions perpendicular to the magnetic field and gravitational
acceleration and assumes that any externally imposed electric field is parallel to the
magnetic field line, the following equation is obtained:

∂f

∂t
+ µv

∂f

∂r
+ e

m
ε‖µ

∂f

∂v
+
(

e

m
ε‖ − v2

2B

dB

dr

)
1− µ2

v

∂f

∂µ
= δf

δt
, (9.27)
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where µ = cos α, α = pitch angle, r= distance along the magnetic field line,
ε‖ = externally imposed parallel electric field, e is the electron charge, v is the mag-
nitude of the velocity, and all other symbols have been defined earlier. [Note that in
the rest of the book, the electric field is denoted by E, consistent with conventional
notation. However, E is also the commonly used symbol for energy. Therefore,
to distinguish between energy and electric field, ε is used for the latter in Equa-
tions (9.27–29).] It is often convenient to write Equation (9.27) in terms of the flux
of particles and change from the variable v to the kinetic energy, E. Most of the
direct measurements of these fluxes are in terms of flux versus energy. Assuming
that the particle velocity changes slowly along the field lines, this modified form of
the transport equation is

√
m

2E

∂�

∂t
+ µ

∂�

∂r
+ eε‖Eµ

∂

∂E

(
�

E

)

+
(

eε‖
E
− 1

B

dB

dr

)
1− µ2

2

∂�

∂µ
=
√

m

2E

δ�

δt
, (9.28)

where � is the flux

� ≡ 2E

m2
f (9.29)

and E is in eV. This definition of� leads to flux units such as cm−2 s−1 eV−1 ster−1,
which are the normal units in spherical coordinates. Electron transport equations
of this form have been solved for the case of the terrestrial photoelectron fluxes.17

These types of relatively detailed, time-dependent calculations are only necessary
for special circumstances, such as the refilling of empty plasmaspheric field tubes.
A much simpler, steady state formulation of this equation has been used for the
calculation of ionospheric photoelectron fluxes.
For most ionospheric applications, except possibly right at sunrise or sunset,

steady-state conditions can be assumed. Furthermore, it is also appropriate to neglect
the presence of external electric fields and the divergence of the magnetic field. In
that case, Equation (9.28) simplifies to the following:

µ
∂�

∂r
=
√

m

2E

δ�

δt
. (9.30)

In solving this equation, the photoelectron flux is typically divided into a number of
equal angular components or streams.18, 19 It has been demonstrated, using Monte
Carlo calculations, that given all the uncertainties associated with the differential
scattering cross sections, it is generally sufficient to consider only two streams in
the ionosphere.20 The two-stream equations can be written as follows:

〈µ〉∂�
+

∂r
= −nsσ

t
s�

+ + nsσ
e
s

2
(�+ +�−)+ Qo

2
, (9.31)
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−〈µ〉∂�
−

∂r
= −nsσ

t
s�

− + nsσ
e
s

2
(�+ +�−)+ Qo

2
(9.32)

where ns is number density of the scattering background species, and σ ts and σ
e
s are

the total and elastic scattering cross sections for species s, respectively. Also, the
following definitions for the upward and downward fluxes have been introduced:

�+(r) ≡
2π∫
0

dφ

1∫
0

dµ�(φ,µ, r), (9.33)

�−(r) ≡
2π∫
0

dφ

0∫
−1
dµ�(φ,µ, r), (9.34)

Q0(r) =
2π∫
0

dφ

1∫
−1
dµPe(φ,µ, r). (9.35)

Furthermore, in arriving at Equations (9.31) and (9.32) it was assumed that the
electron production rate, Pe, is isotropic, that the average of the cosine of the pitch
angle, 〈µ〉, is altitude independent, and that the elastic forward and backward scat-
tering probabilities are equal to 1/2. Equations (9.31) and (9.32) are written, for
the sake of simplicity, assuming the presence of only one scattering or absorbing
species. However, for a multi-constituent atmosphere one only needs to sum over
the various species, s, to arrive at the appropriate equations. These equations give
the flux at one energy. Energy-dependent calculations can be carried out by assum-
ing that the flux is zero above some energy, Eub, and then solving the equations
for monotonically decreasing energies taking into account the particles that cascade
from higher energies by adding an effective production term, Qcasc, to the right-
hand side of Equations (9.31) and (9.32). This Qcasc corresponds to all particles that
cascade to energy, E, from energies between E and Eub. The above discussions of
electron transport assumed the presence of a magnetic field and used the guiding
center approximation. However, these equations can and have been used to calculate
electron transport in the ionospheres of nonmagnetic planets. In general these were
done for vertical, one-dimensional calculations.
Figure 9.6 shows a comparison of measured photoelectron fluxes with those

calculated by the two-streammethod. The noticeable peaks in the 20 to 30 eV energy
range are due to the photoionization of the neutral species into various excited states
by the very strong HeII 304 Å solar line. The steep drop above about 60 eV is
caused by the corresponding decrease in the relevant solar flux. The increase in
photoelectron flux at the low energies is the result of both the increase in the solar
flux and electrons cascading downward in energy via inelastic collisions.
At low altitudes, where collisions are sufficiently frequent, photoelectrons are

created and lost essentially at the same location, therefore transport is negligible. In
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that case, so-called local calculations are appropriate, in which one simply equates
the source and loss terms. In this high collision region, it is reasonable to assume that
the distribution function, f (E), is isotropic, and it is written in terms of the kinetic
energy. The rate at which particles are lost, L, from an energy increment dE can be
written as

L =
∑

s

∑
l

nsσsl(E)v(E)f (E) dE, (9.36)

where σsl is the inelastic collision cross section, the subscript s denotes the different
atmospheric species, the subscript l denotes inelastic loss processes and f (E) is the
un-normalized particle distribution function. The rate at which new particles are
created within this energy increment dE is denoted simply as Q(E) dE. The rate at
which particles are scattered into this energy increment dE from higher energies can
be expressed as

S =
∑

s

∑
l

nsσsl(E +�Esl)v(E +�Esl)f (E +�Esl) dE, (9.37)

where �Esl is the energy loss suffered by the particle colliding with species s in an
inelastic collision l. Equating the source and loss terms and then solving for f (E)
gives

f (E) = Q(E)+ ∑
s
∑

l nsσsl(E+�Esl)v(E+�Esl)f (E+�Esl)∑
s
∑

l nsσsl(E)v(E)
.

(9.38)

Here again note that the expression for f (E) contains f (E+�Esl). Thus, this equation
is normally solved by assuming that f (E) is zero above some upper boundary value,
E > Eub, and then “work down” in energy. Note that both in this local approximation
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and in the two- or multiple-stream approach the energy loss processes are considered
to be discrete. This is an appropriate assumption for all interactions except for the
electron–electron one, which is basically a continuous loss process. For the latter
interaction, an effective collision cross section, σeff , has been used18 to approximate
this continuous loss process

σeff = 1

�E

1

ne

dE

dz
, (9.39)

where ne is the thermal electron density and (dE/dz)/ne is the loss function or
stopping cross section for electron–electron interactions. The expression for this
electron–electron stopping cross section, #e, is rather complex; however, a simple
and quite good approximation was obtained that is given by21

#e(E) = 3.37× 10−12
E0.94n0.03e

(
E − Ee

E − 0.53Ee
)2.36

, (9.40)

where Ee = 8.618× 105Te and Te is the thermal electron temperature.
Ananalogous expression toEquation (9.38) canbeobtained fromEquations (9.31)

and (9.32) by neglecting the ∂�/∂r transport terms. The expression thus obtained
for the upward flux, under no transport (local) conditions is

�+(E) = Q0(E)/2+ Q+casc(E)∑
s

∑
l

nsσsl

, (9.41)

where Q+casc corresponds to the rate at which particles cascade down to energy, E,
from higher energies and have upward-directed velocities; the expression for �−
has the same form.
At this point the so-called continuous loss approximation should be mentioned;

this can also be used when transport is negligible. If �Esl is small, f (E) is a rel-
atively smooth function, and one can use a Taylor series expansion about E in
Equation (9.38) and arrive at the following expression:

∑
s

∑
l

nsσsl(E)v(E)f (E) dE = Q(E) dE +
∑

s

∑
l

nsσsl(E)v(E)f (E) dE

+
∑

s

∑
l

ns

{
∂

∂E

[
σsl(E)v(E)f (E)

]
E�Esl

}
dE. (9.42)

Canceling terms on both sides and integrating from E to∞, one gets

f (E) =

∫ ∞

E
Q(E) dE∑

s

∑
l
nsσsl(E)v(E)�Esl

=

∫ ∞

E
Q(E) dE

dE/dt
, (9.43)
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where dE/dt is the energy loss rate (note that nσv is the collision frequency). Equa-
tion (9.43) is intuitively very clear: the number of particles at a given energy, E,
is directly proportional to the production rate at all energies above E and inversely
proportional to the loss rate at E (consider the analogy with flow in a pipeline).
Particle impact ionization rates can be calculated in a way analogous to pho-

toionization. That is, once the particle flux, �p(z,E), is determined as a function
of altitude and energy the ionization rate of ion species, s, in a given state, l, with
energy Esl , is:

Psl(z,Esl) = ns(z)

∞∫
Esl

�p(z,E)σ
i
s(E)ps(E,Esl) dE (9.44)

where the ionization cross sections and branching ratios refer to the relevant impact
processes. If the total ionization rate of a given ion is needed, it is obtained by
summing over all l, and if the total ionization rate over all species is desired one
sums over all l and s. Figure 9.7 shows calculated electron–ion pair production rates
for monoenergetic electron fluxes precipitating into the terrestrial atmosphere. As
expected, the higher the energy of the electron flux the deeper into the atmosphere it
penetrates. Also the column integral of the ionization rate increases with increasing
electron energy. It is well established that on average it takes about 35 eV to produce
an electron–ion pair. (This value does depend on atmospheric species and electron
energy, but it is a good first approximation for most atmospheric species and electron
energies above about 100 eV.) This value can be used to get estimates of column
ionization rates and is also useful as a first-order check in complex calculations.
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Figure 9.7 Calculated electron–ion pair production rates for monoenergetic electron
fluxes of 108 electrons cm−2 s−1 precipitating into the terrestrial atmosphere.22
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9.5 Superthermal ion and neutral particle transport

The transport of superthermal ions and neutral gas particles is somewhat more com-
plicated than that of electrons because additional processes, such as charge exchange
and ionization, are involved. These processes require the solution of simultaneous
coupled transport equations for both the ions and the neutrals. For example, protons
can capture an electron from an atmospheric neutral species, M (Section 8.3);

H+ +M→ H+M+. (9.45)

The reverse process can turn a neutral hydrogen into a proton;

H+M+ → H+ +M, (9.46)

or a neutral hydrogen can also become a proton via ionization-stripping;

H+M→ H+ +M+ e−. (9.47)

A further complication is that while the ion motion is confined to a helical path
along the field line, the neutral particles move in a straight line in the direction of
the velocity they acquired at their creation (neglecting gravity). This means that
an initially narrow precipitating beam can spread out significantly as it penetrates
the atmosphere. Figure 9.8 shows a sketch of this phenomenon. The extent of this
spreading is determined by the fraction of time that the incident particle spends in
its neutral versus charged state.

α

H+
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H

Charge
exchange

Lower
atmosphere

H

Figure 9.8 Representative path
of a charged ion entering a
magnetized atmosphere.23
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Figure 9.9 Comparison of calculated primary ionization rates versus altitude obtained
by different methods. The Fang et al.27 results are shown by solid lines and those of
Solomon26 by dashed lines; the results of Galand et al.25 fall right on top of the Fang
et al. results.

Self-consistent calculations of ion–neutral precipitation have been carried out
using a variety of approaches. Among these model calculations during the
last couple of decades are relatively simple one-dimensional studies employ-
ing the two-stream approach,24 the relevant multi-stream transport equations,25

or Monte Carlo methods.26 However, very recently multi-dimensional studies
have also been published.27 These latter studies used the so-called direct sim-
ulation Monte Carlo (DSMC) method.28 Figure 9.9 shows the results of three
different one-dimensional calculations of the primary ionization rates for incident
1 erg cm−2 sec−1 Maxwellian proton fluxes with characteristic energy of E0 = 4, 8,
and 20 keV. The agreement among these results is very good and the calculations
show that, just as was the case for electrons, and as expected, the flux penetrates
deeper into the atmosphere as the incident energy increases. The importance of beam
spreading has been established by the 3D, Monte Carlo calculations.27 Figure 9.10a
shows how a 1 erg cm−2 s−1, monoenergetic, 10 keV proton beam injected at the
top of the atmosphere spreads for an assumed vertical magnetic field; Figures 9.10b
and 9.10c indicate the spreading of the associated neutral hydrogen beam and ion-
ization rate. It should be noted that ion or neutral precipitation in general has a spatial
spread. Studies, using theMonteCarlomethod, of such extended precipitation events
have now been published.29

The charge exchange process, Equation (9.45), creates energetic neutral atoms
(ENAs) that, neglecting gravity, move in a straight line. These ENAs provide an
opportunity to “image” the energetic ion population. This measurement approach
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Figure 9.10 Calculations showing the spreading of the protons, neutral hydrogen, and
ionization rates for a precipitating 10 keV proton beam in a vertical magnetic field at
different altitudes (β is the azimuthal angle).27

has become an important tool for remotely studying three-dimensional plasma
populations in our solar system.30, 31

9.6 Electron and ion heating rates

The energy absorbed in the thermosphere from either solar radiation or particle pre-
cipitation is partitioned among a number of different channels. The block diagram in
Figure 9.1 shows the various major routes that the absorbed energy takes; the main
processes are ionization, excitation, heating, and transport. Some of the excited
species undergo spontaneous de-excitation, which leads to airglow or auroral emis-
sions, as briefly mentioned in Section 8.7. A fraction of the absorbed energy goes
to the neutrals, ions, and electrons as kinetic energy. The calculation of the asso-
ciated heating rates is complex because one needs to understand, in detail, all the
energy sharing processes. The total amount of incident solar energy absorbed in a
unit volume per unit time, Qtotal(z), is simply equal to

Qtotal(z) =
∑

s

ns(z)
∫

E(λ)I(z, λ)σ as (λ) dλ, (9.48)
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where E(λ) is the energy of the absorbed photon in eV. However, the calculation
of the fractions going to the different processes is very difficult and the concept
of a heating efficiency has been widely used. The heating efficiency for a given
constituent is defined as the fraction of the absorbed energy that goes locally to
heating that constituent.
The question that needs to be discussed in this section is what fraction of the

absorbed energy goes to heating the electrons and the ions. In general, the solar
energy first goes to the electrons, which in turn transfer some of that energy, via
Coulomb collisions, to the ion gas. For this reason, our discussion concentrates on
the energy input calculations to the electron gas. The electron energy distribution
function typically has been, somewhat arbitrarily, divided into thermal and non-
thermal (superthermal) components. The electron–electron collision cross section
is inversely proportional to energy, and therefore, at low energies the large num-
ber of collisions among the electrons result in a Maxwell–Boltzmann distribution.
Consequently, these low-energy electrons can be characterized by a temperature.
At higher energies, the electron–electron collisions are less frequent and inelastic
collisions with the neutral background species become more important. Therefore,
the distribution function becomes highly nonthermal and controlled mostly by the
source processes and inelastic collisions. A distribution function measured at high
latitude in the terrestrial ionosphere32 clearly demonstrates this behavior, as shown
in Figure 9.11.
The transport equations discussed in Chapter 3 are derived in terms of the total

particle population. Therefore, the term δE/δt in the energy equation (3.38) refers
to the energy gained by the whole population. One could try to work with two
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sets of fluid equations, one for the thermal and one for the superthermal electrons,
but this would be very difficult to do for the latter, given its highly nonthermal
character. So, it has been the accepted approach to use the fluid equations for the
thermal electrons, which involve the bulk of the population, and then calculate the
corresponding heating and cooling rates taking into account all elastic and inelastic
collisional processes that the thermal electrons undergo. These heating, Qe, and
cooling, Le, rates are discussed separately in this and the following section.
The transition energy, ET, between the thermal and nonthermal population has, in

general, been taken to be the energy where the distribution deviates detectably from
a Maxwell–Boltzmann one. It has been shown that the thermal electron heating rate
consists of three terms: one due to collisions between the thermal and superthermal
electrons, one due to newly created electrons with energy less than ET, and a term
evaluated on the energy surface at ET.33 It has been the general practice to consider
only the first contribution to the heating rate. In that case the electron heating rate,
Qe(z), can be calculated from the following relation:

Qe(z) =
∞∫

ET

�e(z,E)

(
dE

dz

)
e
dE, (9.49)

where�e is the electron flux, (dE/dz)e=#e, as given by Equation (9.40), and is the
rate at which an electron of energy E loses energy to the ambient thermal electrons
in traveling a unit distance. It was shown that the term given by Equation (9.49) is
the dominant term33 (within a factor of two), and given the uncertainties associated
with these calculations, no significant new effort has gone into improving them.
Most of the published photoelectron heating calculations were based on multi-

stream, generally two-stream, models. In these calculations the energy increments
are discrete, of the order of an eV. The published heating rates are calculated in the
manner indicated by Equation (9.49), with the integral taken over all the calculated
fluxes, except for the lowest increment. Examples of such calculations are shown in
Figures 9.12 and 9.13, corresponding to representative heating rates for the terrestrial
and Venus ionospheres.
With regard to ion heating, the primary heat source in an ionosphere is the thermal

electrons and not the photoelectrons. This occurs for two reasons. First, during the
ionization process, the ions acquire very little recoil energy because of their large
mass. Also, after the photoelectrons are created, they do not transfer a significant
amount of energy to the ions because they have a large velocity and the Coulomb
cross section is inversely proportional to the energy (Equation 4.51). The same is
true for precipitating auroral electrons. Consequently, the slower thermal electrons
have a larger collision cross section with the ions than either the photoelectrons or
the auroral electrons.
The rate at which the ions exchange energy with the thermal electrons is given

by Equation (4.129c) in the 13-moment approximation. However, this expression is
valid only in the limit of small relative drifts between the ions and electrons. When
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Figure 9.13 Calculated electron heating rates for the Venus ionosphere. The heating
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the relative ion–electron drift is large, Equation (4.129c) should be replaced with the
five-moment nonlinear collision term (4.124c), which is a better approximation. Note
that the two collision terms agree in the limit of small relative ion–electron drifts. In
both expressions, the appropriate collision frequency is given by Equation (4.140).
The velocity-dependent correction factors, �st and �st , can be set equal to unity
for ion–electron collisions because εst is small owing to the large electron thermal
speed (Equation 4.120).
In addition to the heat gained from the thermal electrons, the ions can be heated

as a result of exothermic chemical reactions and frictional interactions with other
species. The heating from exothermic chemical reactions is typically small and the
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heating rates are generally not well known. Frictional interactions with other species
can result in very significant ion heating rates in certain regions of the ionospheres.
For example, when one ion species drifts relative to another ion species, such as
in the terrestrial polar wind, or when ions drift through slower moving neutrals,
frictional heating occurs as energy of directed motion is converted into random
thermal energy. Note that this type of frictional heating is not described by the lin-
ear collision term (4.129c). When frictional heating may be important, the linear
collision term should be replaced with the nonlinear collision term (4.124c). Like-
wise, the nonlinear collision term (4.124b) should then be used in the momentum
equation. For the nonlinear collision terms, the appropriate collision frequencies
are given in Table 4.3 for ion–ion collisions, in Table 4.4 for nonresonant ion–
neutral collisions and in Table 4.5 for resonant ion–neutral collisions. The associated
velocity-dependent correction factors are given by Equations (4.125a) and (4.125b)
for ion–ion collisions, and they are equal to one for nonresonant ion–neutral colli-
sions (Equations 4.127a,b). For resonant ion–neutral interactions, the hard sphere
expressions for the correction factors �st (4.126a) and �st (4.126b) are approxi-
mately valid. However, under most circumstances, the values obtained from the
hard sphere correction factors are close enough to unity that they can be set equal to
one with little error. This is especially true in view of the fact that there is generally
a large uncertainty associated with the resonant charge exchange cross sections and,
hence, collision frequencies.

9.7 Electron and ion cooling rates

In the lower altitudes of the various ionospheres, elastic collisions, along with
rotational and vibrational excitation of the molecular neutrals, are most likely to
be the dominant cooling processes for the thermal electron population. The fine
structure excitation of atomic oxygen can also be an important mechanism. At
high electron temperatures, the excitation of atomic oxygen to its lowest elec-
tronic state, 1D (Figure 8.1), may also need to be considered. At high altitudes,
where the ionospheric plasma approaches a fully ionized condition, Coulomb col-
lisions with the ambient ions become the dominant energy loss mechanism for the
electrons.
The calculation of thermal electron cooling rates for inelastic collisional pro-

cesses requires a knowledge of the excitation cross sections. These cross sections
are either calculated or measured, as a function of electron energy. Then, average
(i.e., temperature-dependent) cooling rates for the thermal electrons are obtained by
integrating the energy-dependent excitation cross sections over Maxwellian elec-
tron and neutral velocity distributions. In some cases, the cooling rates are fitted
with convenient analytic expressions. Unfortunately, many of the inelastic electron
cooling rates were calculated, not measured, and the calculated rates were generally
based on important simplifying assumptions. Also, many of the cooling rates that
are in use today are more than 30 years old. Nevertheless, electron cooling rates
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are required for ionospheric energy balance calculations, and therefore, the cooling
rates that are currently available are given in what follows.
Letting Le(X ) represent the cooling rate in eV cm−3s−1 due to an inelastic colli-

sion with neutral species X (densities in cm−3 and temperatures in K), these cooling
rates are given by the following expressions:

N2 rotation36

Le(N2) = 3.5× 10−14nen(N2)(Te − Tn)/T
1/2
e . (9.50)

O2 rotation37

Le(O2) = 5.2× 10−15nen(O2)(Te − Tn)/T
1/2
e . (9.51)

H2 rotation38

The following expression was fit for a neutral temperature of 1000K, appropriate
for the outer planetary ionospheres; for significantly different neutral temperatures
one needs to use the complex expressions given in the original reference.38

Le(H2) = 2.278× 10−11nen(H2)
{
exp[2.093× 10−4(Te − Tn)

1.078 − 1]}.
(9.52)

CO2 rotation39

Le(CO2) = 5.8× 10−14nen(CO2)(Te − Tn)/T
1/2
e . (9.53)

CO rotation40

Le(CO) =− 〈Q〉 exp
{[

Jmax

(
1− 2Tn

Te

)
− Tn

Te
+ 1

]
B0
kTn

}

·
(

kTn
B0

)15/8[
�

(
15

8

)
+ 1
2

(
kTn
B0

)1/2
�

(
19

8

)
a

+ 1

6

kTn
B0

�

(
23

8

)
a2
]
a, (9.54)

where

Jmax = (1.5kTn/B0)
1/2, (9.55a)

a = −2B0(Te − Tn)

kTeTn
, (9.55b)

〈Q〉 = 2.36× 107nen(CO)B
7/4
0 29/4

(kTe)1/4
Rσr�

(
5

4

)
, (9.55c)
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and where σr = 4.90 × 10−19 cm2, R is the Rydberg energy, B0 = 2.4 × 10−4 eV
is the CO rotational constant, and �(Y ) is the gamma function of quantity Y .

H2O rotation41

Le(H2O) = nen(H2O)
[
a + b ln(Te/Tn)

][
(Te − Tn)/T

5/4
e
]
, (9.56)

where

a = 1.052× 10−8 + 6.043× 10−10 ln(Tn), (9.57a)

b = 4.18× 10−9 + 2.026× 10−10 ln(Tn). (9.57b)

CH4 rotation42

No analytic expression has yet been presented for this loss function. Calculated
values for different Tn, as a function of Te, are presented in Figure 9.14.

N2 vibration36

Le(N2) = nen(N2)
{
1− exp(−E1/Tvib)

}

×
10∑

v=1
Q0v

{
1− exp[vE1(T

−1
e − T−1vib )

]}

+ nen(N2)
{
1− exp(−E1/Tvib)

}
exp(−E1/Tvib)

9∑
v=2

Q1v
{
1− exp[(v − 1)E1(T−1e − T−1vib )]

}
, (9.58)
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versus electron temperature for the rotational temperatures shown.42
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Table 9.3 Coefficients for calculations of Q0v for 1500 ≤ Te ≤ 6000 K.36

v A0v B0v , K−1 C0v , K−2 D0v , K−3 F0v , K−4 δ0v

1 2.025 8.782 · 10−4 2.954 · 10−7 −9.562 · 10−11 7.252 · 10−15 0.06
2 −7.066 1.001 · 10−2 −3.066 · 10−6 4.436 · 10−10 −2.449 · 10−14 0.08
3 −8.211 1.092 · 10−2 −3.369 · 10−6 4.891 · 10−10 −2.706 · 10−14 0.10
4 −9.713 1.204 · 10−2 −3.732 · 10−6 5.431 · 10−10 −3.008 · 10−14 0.10
5 −10.353 1.243 · 10−2 −3.850 · 10−6 5.600 · 10−10 −3.100 · 10−14 0.13
6 −10.819 1.244 · 10−2 −3.771 · 10−6 5.385 · 10−10 −2.936 · 10−14 0.15
7 −10.183 1.185 · 10−2 −3.570 · 10−6 5.086 · 10−10 −2.769 · 10−14 0.15
8 −12.698 1.309 · 10−2 −3.952 · 10−6 5.636 · 10−10 −3.071 · 10−14 0.15
9 −14.710 1.409 · 10−2 −4.249 · 10−6 6.058 · 10−10 −3.300 · 10−14 0.15
10 −17.538 1.600 · 10−2 −4.916 · 10−6 7.128 · 10−10 −3.941 · 10−14 0.15

Table 9.4 Coefficients for calculations of Q0v for 300 ≤ Te ≤ 1500 K.36

v A0v B0v , K−1 C0v , K−2 D0v , K−3 F0v , K−4 δ0v

1 −6.462 3.151 · 10−2 −4.075 · 10−5 2.439 · 10−8 −5.479 · 10−12 0.14

Table 9.5 Coefficients for calculations of Q1v for 1500 ≤ Te ≤ 6000 K.36

v A1v B1v , K−1 C1v , K−2 D1v , K−3 F1v , K−4 δ1v

2 −3.413 7.326 · 10−3 −2.200 · 10−6 3.128 · 10−10 −1.702 · 10−14 0.11
3 −4.160 7.803 · 10−3 −2.352 · 10−6 3.352 · 10−10 −1.828 · 10−14 0.11
4 −5.193 8.360 · 10−3 −2.526 · 10−6 3.606 · 10−10 −1.968 · 10−14 0.12
5 −5.939 8.807 · 10−3 −2.669 · 10−6 3.806 · 10−10 −2.073 · 10−14 0.08
6 −8.261 1.010 · 10−2 −3.039 · 10−6 4.318 · 10−10 −2.347 · 10−14 0.10
7 −8.185 1.010 · 10−2 −3.039 · 10−6 4.318 · 10−10 −2.347 · 10−14 0.12
8 −10.823 1.199 · 10−2 −3.620 · 10−6 5.159 · 10−10 −2.810 · 10−14 0.09
9 −11.273 1.283 · 10−2 −3.879 · 10−6 5.534 · 10−10 −3.016 · 10−14 0.09

where E1 = 3353K(0.2889 eV), Tvib = Tn and

logQ0v = A0v + B0vTe + C0vT
2
e + D0vT

3
e + F0vT

4
e − 16 , (9.59a)

logQ1v = A1v + B1vTe + C1vT
2
e + D1vT

3
e + F1vT

4
e − 16. (9.59b)

The A,B,C,D, and F coefficients are given in Tables 9.3 to 9.5.

O2 vibration43

Le(O2) = nen(O2)Q(Te)
{
1− exp[2239(T−1e − T−1n )

]}
, (9.60)
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where

log10[Q(Te)] = − 19.9171+ 0.0267Te − 3.9960× 10−5T 2e
+ 3.5187× 10−8T 3e − 1.9228× 10−11T 4e
+ 6.6865× 10−15T 5e − 1.4791× 10−18T 6e
+ 2.0127× 10−22T 7e − 1.5346× 10−26T 8e
+ 5.0148× 10−31T 9e . (9.61)

H2 vibration44

Le(H2) = 1.17× 10−6knen(H2) exp
[−5253.7/(Te − Tn)

]
, (9.62a)

for (Te − Tn) ≤ 1870K
Le(H2) = 1.00× 10−10knen(H2)

[−7663.1+ 4.4485(Te − Tn)
]
, (9.62b)

for 1870 K < (Te − Tn) ≤ 2700K.

A slightly more accurate, but much more complex expression is given in a more
recent reference.38

CO2 and CO vibration40

Le(X ) =− 2.36× 107nen(X )
(
2

kTe

)3/2 M∑
j=1

wj

·
{
exp

[
−wj(Te − Tn)

kTeTn

]
− 1

}
Sj(X ), (9.63)

where

Sj(X ) = Dj + Rj, (9.64a)

Dj = Ajw
2
j e
−Cj

2∑
i=1

{
�(δj + i)

C
δj+i
j

− �(δj + i)[
(1/βj)+ Cj

]δj+i

+ �(νj + i)[
(1/γj)+ Cj

]νj+i −
1

βj
· �(δj + i + 1)[
(1/γj)+ Cj

]δj+i+1

}
, (9.64b)

Cj = wj/kTe, (9.64c)

Rj =
L∑

n=1
Rjn, (9.64d)
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Table 9.6 Vibrational cross section fitting parameters.40

Gas Transition W A δ β ν γ

CO2 010 0.083 3.07E-16 −6.72E-1 5.44E-1 3.19E-1 2.29E-1
CO2 020+ 100 0.167 3.87E-17 −6.02E-1 1.08E3 4.98E-2 1.74E0
CO2 001 0.291 3.92E-16 −7.75E-1 7.32E-1 3.25E-1 6.11E0
CO ν′ = 1 0.266 4.32E-17 −6.65E-1 1.24E1 6.21E-1 7.19E-1

Resonance terms

Gas Transition n σn λn En
0

CO2 010 1 1.47E-16 1.08E0 3.78E0
CO2 010 2 3.44E-16 2.25E0 7.23E0
CO2 020+ 100 1 1.76E-16 8.51E-1 3.63E0

020+ 100 2 2.95E-17 3.90E0 7.42E0
CO2 001 1 2.41E-17 9.41E-1 7.42E0
CO ν′ = 1 1 2.17E-16 8.57E-1 2.49E0

Rjn = σn exp

[
1

kTe

(
λ2n

4kTe
− E0n

)]{
λ2n

2
exp(−η2t )

+ λn

(
E0n −

λ2n

2kTe

)
π1/2

[
1− erf (ηt)

]
/2

}
, (9.64e)

ηt = 1

λn

[
wj +

(
λ2n

2kTe
− E0n

)]
, (9.64f )

and where n(X ) is either the CO2 or the CO number density, M is the number of
vibrational modes considered for excitation from the ground vibrational state for
species X , wj is the threshold for process j, erf is the error function, L is the number
of resonances, and the remaining quantities Aj, δj, βj, νj, γj, σn, λn, and E0n are given
in Table 9.6.

H2O vibration41

The analytic expression for the cooling function is extremely complex, but can be
found in Reference [41]. This cooling function must be multiplied by nen(H2O) to
obtain the cooling rate Le. Calculated values for different Tn, as a function of Te, are
presented in Figure 9.15.

CH4 vibration42

No analytic expression has yet been presented for this cooling function, which must
be multiplied by nen(CH4) to obtain the cooling rate Le. Calculated values for
different Tn, as a function of Te, are presented in Figure 9.16.
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Figure 9.15 Calculated
vibrational cooling function for
H2O versus the difference
between the electron and neutral
temperatures for the neutral
temperatures shown.41
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Figure 9.16 Calculated vibrational cooling function for Maxwellian electrons in CH4
versus electron temperature for the neutral temperatures shown.42

O fine structure45

Le(O) = nen(O)D
−1(S10{1− exp[98.9(T−1e − T−1n )

]}

+ S20
{
1− exp[326.6(T−1e − T−1n )

]}

+ S21
{
1− exp[227.7(T−1e − T−1n )

]})
, (9.65)
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where

D = 5+ exp(−326.6 T−1n )+ 3 exp(−227.7 T−1n ) , (9.66a)

S21 = 1.863 · 10−11 , (9.66b)

S20 = 1.191 · 10−11 , (9.66c)

S10 = 8.249 · 10−16 T 0.6e exp(−227.7 T−1n ). (9.66d)

O(1D) excitation46

Le(O(
1D)) = 1.57× 10−12nen(O) exp

(
d

Te − 3000
3000Te

)

·
[
exp

(
−22713Te − Tn

TeTn

)
− 1

]
, (9.67)

where

d = 2.4× 104 + 0.3(Te−1500)−1.947× 10−5(Te−1500)(Te−4000).
(9.68)

With regard to elastic collisions, both the electron–ion and electron–neutral cool-
ing rates are given by the five-moment energy exchange term (4.124c). For Coulomb
collisions, the velocity-dependent correction factors, �st and �st are given by
Equations (4.125a) and (4.125b), respectively, and the associated Coulomb col-
lision frequency is given by either Equation (4.140) or Equation (4.144). For elastic
electron–neutral interactions, the velocity-dependent correction factors can be set
equal to unity because εst is small owing to the large electron thermal speed (Equa-
tion 4.120). A number of the appropriate electron–neutral collision frequencies are
given in Table 4.6.
The relative importance of the various electron cooling rates depends on the

ionospheric and atmospheric conditions, and hence, on latitude, longitude, alti-
tude, local time, season, solar cycle, and geomagnetic activity. Figure 9.17 shows a
comparison of the electron cooling rates from at recent simulation of the northern,
high-latitude, terrestrial ionosphere.47 The simulation conditions were for winter
(day 357), medium solar activity (F10.7 = 150), and high geomagnetic activity
(Kp = 6). The figure shows altitude profiles of the cooling rates at 50◦ magnetic
latitude, 130◦ magnetic longitude, and 5 UT. Also shown are the total cooling, Le,
and heating, Qe, rates. The difference between Le and Qe is due to thermal conduc-
tion. Note that Figure 9.17 corresponds to a snapshot at one time and one location
in an evolving ionosphere, and the comparison of the various cooling rates can be
significantly different at other times and locations.
As far as the ions are concerned, the main cooling of the ion gases in the iono-

spheres results from collisions with the neutrals. This cooling is automatically
included if the five-moment energy exchange term (4.124c) is used to describe
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Figure 9.17 Electron cooling rates as a function of altitude in the northern terrestrial
ionosphere.47 Le and Qe denote the total electron cooling and heating rates,
respectively. Subscripts R, V , and E represent the cooling rates associated with
rotational, vibrational, and elastic collisions, respectively. The curves labeled O(1D),
Ofine, and e − i are the electron cooling rates associated with excitation of O to the 1D
state, excitation of the fine structure levels of O, and Coulomb collisions with ions,
respectively. (Courtesy of M. David).

the ion–neutral interactions. The associated velocity-dependent correction factors
and collision frequencies are the same as those discussed above with regard to ion
heating rates.
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9.10 Problems

Problem 9.1 The atmosphere of the planet Imaginus consists of only molecular
nitrogen, and the surface density is 5 × 1015 cm−3. You can assume that the gas
temperature is 1000K and is constant with altitude; the acceleration due to gravity
is 1000 cm s−2 and is also constant with altitude. This planet is twice as far from
the Sun as is Earth. Calculate the intensity of the solar radiation of the 977.02 and
the 303.78Å solar lines for an overhead Sun, as a function of altitude, assuming
that F10.7 and 〈F10.7〉 are both 150. Use the EUVAC model for these calculations.
Also, calculate the total ionization rate due to these lines as a function of altitude.
(Specifically calculate for 400, 375, 350, 325, 300, and 200 km.)

Problem 9.2 Calculate the approximate volume absorption rate of solar energy
(eV cm−3 s−1) at an altitude of 120 km for the planet Imaginus. In carrying out
these calculations, you can assume the following values for solar radiation at the top
of the atmosphere:

λ (nm) I (photons cm−2 s−1 nm−1)

100–150 1011

0–100 108

You should assume that the mean energy of the photons in each of these intervals
is that at the midpoint. The only atmospheric species that needs to be considered is
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the molecule X2, which is in diffusive equilibrium throughout the atmosphere. The
wavelength thresholds for dissociation and ionization are 150 and 100 nm, respec-
tively. The cross sections for photodissociation and photoionization are 1× 10−21
and 5× 10−18 cm2, respectively. The number density at the surface of the planet is
5× 1015 cm−3 and the scale height of X2 is 3× 106 cm, independent of altitude.
Problem 9.3 On the planet Imaginus, described in Problem 9.2, the photodissocia-
tion process, in the wavelength region 100 nm < λ < 150 nm, results in two ground
state X atoms, with the excess energy going into kinetic energy

X2 + hν(100 nm < λ < 150 nm)→ X + X + KE.
What fraction of the total absorbed energy goes toward heating the ambient neutral
gas in this wavelength region?

Problem9.4 On the planet Imaginus, the neutral atmosphere consists only of atomic
oxygen. The radiation impacting on this planet is monochromatic at a wavelength
of 304Å (30.4 nm). Half the oxygen ions are created in their ground state (4S) and
half in the first excited state (2D), which is 3.31 eV above the ground state. The
ionization threshold for oxygen is 13.62 eV. Sketch the energy distribution function
of the newly created photoelectrons, showing the appropriate energies.

Problem 9.5 Starting from Equation (9.21) show that the altitude of the maximum
production rate and the corresponding rate are given by Equations (9.22) and (9.23),
respectively.

Problem 9.6 Show that Equation (9.41) does follow from Equation (9.32) in the
case of low altitude, no transport conditions, with multiple neutral species and a
cascading term, Q+casc.

Problem 9.7 On planet Imaginus, where the atmosphere consists of atomic X only,
the energy distribution function of photoelectrons with energies greater than 50 eV is

f (E > 50 eV) = f0/E
2

and the photoionization source term for all energies is

Q(E) = Q0 exp

(
− E

Ep

)
,

where f0 is the value of the distribution function at 1 eV and Ep is a characteristic
energy of the source function. Using Equation (9.38), write down the expression
for the electron distribution function at 50 eV, given that the constituent X has only
two excited states at 3 and 5 eV, respectively, and only one ionization level at 12 eV.
Furthermore, you can assume that the excitation and ionization cross sections are
the same, energy independent, and denoted by σ . Finally, assume that all secondary
electrons are produced with an energy of 20 eV and tertiary ionization is negligible.



Chapter 10

Neutral atmospheres

Neutral atmospheres play a crucial role with regard to the formation, dynamics, and
energetics of ionospheres, and therefore, an understanding of ionospheric behavior
requires a knowledge of atmospheric behavior. A general description of the atmo-
spheres that give rise to the ionospheres was given in Chapter 2. In this chapter,
the processes that operate in upper atmospheres are described, and the equations
presented have general applicability. However, the discussion of specifics is mainly
directed toward the terrestrial upper atmosphere (see Chapter 2 for a limited descrip-
tion of other solar system neutral atmospheres) because our knowledge of this
atmosphere is much more extensive than that for all of the other atmospheres (i.e.,
other planets, moons, and comets).
Typically, the lower domain of an upper atmosphere is turbulent, and the various

atomic and molecular species are thoroughly mixed. However, as altitude increases,
molecular diffusion rapidly becomes important and a diffusive separation of the
various neutral species occurs. For Earth, this diffusive separation region extends
from about 110 to 500 km, and most of the ionosphere and atmosphere interactions
occur in this region. At higher altitudes the collisional mean-free-path becomes very
long and the neutral particles basically follow ballistic trajectories. For the case of
light neutrals, such as hydrogen and helium, and more energetic heavier gases, some
of the ballistic trajectories can lead to the escape of particles from the atmosphere.
The topics in this chapter progress from the main processes that operate in the

diffusive separation region of an upper atmosphere to the escape of atoms from
the top of the atmosphere. First, atmospheric rotation is discussed because it has
a significant effect on the horizontal flow of an atmosphere. Next, the Euler and
Navier–Stokes equations are derived because they provide the framework for studies
of the dynamics and energetics of upper atmospheres. This is followed by a discus-
sion of atmospheric waves, including gravity waves and tides. Then, the discussion
progresses from the neutral density structure, to the escape of terrestrial hydrogen,

289
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and to atmospheric energetics. Finally, topics relevant to an exosphere are discussed,
including the escape of particles and the distribution of hot neutrals.

10.1 Rotating atmospheres

The 13-moment transport equations given in Equations (3.57) to (3.61) are relevant
to an inertial reference frame. However, in most cases, atmospheric behavior is
studied from a reference frame that is fixed to a rotating body. Hence, it is necessary
to transform the transport equations from an inertial to a rotating reference frame.
Themain result of such a transformation is the appearance of Coriolis and centripetal
acceleration terms in the Momentum Equation (3.58).
In a rotating reference frame, the velocity of interest is that relative to the rotating

body, urot. If �r is the angular velocity of the body, the connection between the
velocity in an inertial (nonrotating) reference frame, uint, and that in the rotating
reference frame is

uint = urot +�r × r, (10.1)

where r is the radius vector from the center of the planet. Equation (10.1) is the well-
known result from classical mechanics that links velocities in inertial and rotating
reference frames.
In addition to a difference in velocities, as seen in the inertial and rotating frames,

there is also a difference in total time derivatives if they operate on vectors. However,
there is no difference if they operate on scalars. This can be shown by considering the
simple situation in which a rotating planet is embedded in a constant vector fieldW,
whereW is assumed to be perpendicular to the planet’s angular velocity �r. To an
observer on the planet, the vectorW appears to continuously change its direction,
making a complete rotation in a time 2π/�r. In the rotating reference frame, the
time rate of change of the constant vectorW is(

dW
dt

)
rot
= −�r ×W, (10.2)

while in the inertial reference frame it is(
dW
dt

)
int
= 0. (10.3)

IfW is now allowed to vary with position and time, the time rate of change ofW in
the inertial frame will not necessarily be zero. In this case, the connection between
time derivatives in the inertial and rotating reference frames is(

dW
dt

)
rot
=
(
dW
dt

)
int
−�r ×W, (10.4)

which follows from Equation (10.2).
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Up to this point, the observers were fixed in the inertial and rotating reference
frames. If they are now allowed to move with velocities uint and urot, respectively,
the time derivatives d/dt in Equation (10.4) become the convective time derivatives(

DW
Dt

)
int
=
(
∂

∂t
+ uint · ∇

)
W, (10.5)

(
DW
Dt

)
rot
=
(
∂

∂t
+ urot · ∇

)
W, (10.6)

and Equation (10.4) becomes(
DW
Dt

)
int
=
(
DW
Dt

)
rot
+�r ×W. (10.7)

WhenW = r, Equation (10.7) yields the well-known result (10.1). WhenW =
uint, Equation (10.7) becomes(

Duint
Dt

)
int
=
(
Duint
Dt

)
rot
+�r × uint. (10.8)

Eliminating uint on the right-hand side of Equation (10.8) with the aid of
Equation (10.1) yields the following result:(

Duint
Dt

)
int
=
[
D

Dt
(urot +�r × r)

]
rot
+�r × (urot +�r × r)

=
(
Durot
Dt

)
rot
+ 2�r × urot +�r × (�r × r), (10.9)

where�r is assumed to be constant. The second and third terms on the right-hand side
of (10.9) represent Coriolis and centripetal acceleration, respectively. Therefore, if
the momentum equation (3.58) is applied in a rotating reference frame, Coriolis and
centripetal acceleration terms must be added to the equation.

10.2 Euler equations

The Euler and Navier–Stokes equations of hydrodynamics can be derived from the
13-moment system of transport equations (3.57–61; 4.129a–g) by using a simple
perturbation scheme. However, in the derivation of these equations, it is convenient
to consider a single-component neutral gas because this corresponds to the clas-
sical case in which the equations apply. In the perturbation scheme, the collision
frequency is assumed to be sufficiently large that the neutral velocity distribution
is very nearly Maxwellian. In this collision-dominated limit, τ n and qn are small
and of order 1/νnn compared to nn, un, and Tn, which are of order one. To lowest
order in the perturbation scheme, stress and heat flow effects are neglected, and the
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13-moment equations of continuity, momentum, and energy, in a rotating reference
frame, reduce to

∂nn
∂t

+ ∇ · (nnun) = 0, (10.10a)

ρn
Dnun
Dt

+ ∇pn + ρn[2�r × un +�r × (�r × r)−G] = 0, (10.10b)

Dn
Dt

(
3

2
pn

)
+ 5
2
pn(∇ · un) = 0, (10.10c)

where ρn = nnmn is the mass density. Equations (10.10a–c) correspond to the Euler
hydrodynamic equations for a neutral gas. However, the energy equation (10.10c)
can be cast in a more familiar form by eliminating the (∇ · un) term with the aid of
the continuity equation (10.10a). When this is done, the energy equation reduces to
the simple adiabatic energy equation with the ratio of specific heats equal to 53

Dn
Dt

(
pnρ

−5/3
n

) = 0. (10.11)

Also, it should be noted that the Euler hydrodynamic equations (10.10a–c) are equiv-
alent to the five-moment equations (5.22a–c) if the collision terms are neglected in
the latter system of equations. Therefore, the Euler equations pertain to the case
when the neutral velocity distribution is a drifting Maxwellian.

10.3 Navier–Stokes equations

To next order in the perturbation scheme, the stress tensor (3.60, 4.129f) and heat
flow (3.61, 4.129g) equations are used to express τ n and qn in terms of nn, un, and
Tn. This is accomplished by noting that terms containing νnnτ n and νnnqn are of
order one, while all other terms containing τ n and qn are of order 1/νnn. Retaining
only those terms that are of order one, the stress tensor equation reduces to

pn

[
∇un + (∇un)T − 2

3
(∇ · un)I

]
= −6

5
νnnτ n, (10.12)

or

τ n = −ηn
[
∇un + (∇un)T − 2

3
(∇ · un)I

]
, (10.13)

where ηn is the coefficient of viscosity

ηn = 5pn
6νnn

. (10.14)
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Likewise, retaining only those terms of order one in the heat flow equation (3.61,
4.129g), it reduces to

5

2

kpn
mn
∇Tn = −4

5
νnnqn, (10.15)

or

qn = −λn∇Tn, (10.16)

where λn is the thermal conductivity

λn = 25

8

kpn
mnνnn

. (10.17)

Note that both ηn and λn are proportional to pn/νnn. This is consistent with the
initial assumption that stress and heat flow are of order 1/νnn in comparison with
nn, un, and Tn. Also note that as the collision frequency decreases, the importance
of stress and heat flow increases because ηn and λn become large. However, the
expressions for τ n (10.13) and qn (10.16) were derived assuming that the collision
frequency is large, and when the gas starts to become collisionless these equations
are no longer valid.
A comparison of the viscosity (10.14) and thermal conductivity (10.17) coeffi-

cients with the corresponding coefficients (5.12) and (5.20) derived using mean-
free-path considerations indicates that they are of the same form, except for the
numerical factors. The comparison of Equation (10.14) and Equation (10.17) with
those in the original work of Chapman and Cowling1 can be made by setting νnn
equal to the hard sphere collision frequency (4.156), which yields

ηn = 5
√
π

16

(mnkTn)1/2

πσ 2
, (10.18)

λn = 75
√
π

64

k

mn

(mnkTn)1/2

πσ 2
. (10.19)

These expressions correspond to what Chapman and Cowling1 call the first approx-
imation to these coefficients. Both ηn and λn are directly proportional to T 1/2n for
hard-sphere interactions and inversely proportional to the collision cross section,
πσ 2. The latter proportionality indicates that viscosity and thermal conduction are
more important for atomic species, such as H, He, and O, than for molecular species,
such as N2, O2, and CO2, because of the smaller collision cross section.
The Navier–Stokes system of equations consists of the continuity (3.57), momen-

tum (3.58), and energy (3.59) equations coupled with the collision-dominated
expressions for the stress tensor (10.13) and heat flow vector (10.16). This system
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can be expressed in the following form for a rotating reference frame:

∂nn
∂t

+ ∇ · (nnun) = 0, (10.20a)

Dnun
Dt

+ 2�r × un +�r × (�r × r)−G + 1

ρn
∇pn

− η̄n

[
∇2un + 1

3
∇(∇ · un)

]

− η̄n

2Tn
∇Tn ·

[
∇un + (∇un)

T − 2
3
(∇ · un)I

]
= 0, (10.20b)

cvnn
DnTn
Dt

+ pn(∇ · un)− ∇ · (λn∇Tn)

− ηn

[
∇un + (∇un)T − 2

3
(∇ · un)I

]
: ∇un = 0, (10.20c)

where η̄n = ηn/ρn is the kinetic viscosity and cv = 3k/2 is the specific heat at
constant volume. The distinction between the Navier–Stokes system of equations
and the complete 13-moment system of equations is that in the 13-moment approx-
imation, τ n and qn are put on an equal footing with nn, un, and Tn, while in the
Navier–Stokes approximation, τ n and qn are not independent moments, but instead
are expressed in terms of the fundamental moments nn, un, and Tn and their first
derivatives. Therefore, the Navier–Stokes equations are valid only for very small
deviations from a drifting Maxwellian velocity distribution.
The perturbation scheme based on an expansion in powers of 1/νnn can be con-

tinued to higher levels of approximation. However, the continuation of this scheme
to higher levels leads to expressions for τ n and qn, which contain space and time
derivatives of increasing order. When these expressions are then substituted into
the momentum and energy equations, they yield partial differential equations of
an even higher order. Consequently, to obtain solutions to the resulting set of flow
equations, it is necessary to specify boundary conditions not only for nn, un, and Tn,
but also for several derivatives of these quantities. The latter requirement precludes
the usefulness of these higher-order Navier–Stokes equations.

10.4 Atmospheric waves

Wave phenomena are prevalent in planetary atmospheres and arise as a result of
perturbations induced by both external and internal sources. In general, the waves
can be classified into three main groups, with the primary designation being the
spatial scale length of the wave. On the largest scale are planetary waves and tides,
which are global in nature and exhibit coherent patterns in both latitude and longitude.
In the terrestrial lower thermosphere, the planetary waves have periods of about 2, 5,
and 16 days, while the tidal modes have periods of about 8, 12, and 24 hours. These
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large-scale waves contain both migrating modes, which are fixed in local time and
may be driven, for example, by heating at the subsolar point, and stationary modes,
which are fixed with respect to a rotating planet.
On a smaller spatial scale are atmospheric gravity waves (AGWs), which arise

because of the buoyancy forces in the atmosphere. These waves are not global
and, therefore, the curvature of the planet is not relevant. The waves typically
have a localized source and propagate with a limited range of wavelengths. For
the Earth, gravity waves can be generated in the stratosphere and mesosphere and
then propagate to thermospheric heights or they can be generated in situ in the
thermosphere. In the lower atmosphere, AGWs can be generated by perturbations
in the jetstream, the flow of air over mountains, thunderstorms, volcanoes, and
earthquakes. In the upper atmosphere, they can be generated by variations in the
Joule and particle heating rates, the Lorentz forcing at high latitudes, the breaking of
upward propagating tides, the movement of the solar terminator, and solar eclipses.
Typically, gravity waves are divided into large-scale and medium-scale waves. The
large-scale AGWs have horizontal wavelengths of about 1000 km, wave periods of
more than an hour, and horizontal velocities of 500–1000m s−1. The medium-scale
AGWs have horizontal wavelengths of several hundred kilometers, wave periods of
about 5–60 minutes, and horizontal velocities of 100–300 m s−1.
The smallest spatial scales pertain to acoustic waves. However, these waves,

which are ordinary sound waves, do not play a prominent role in the dynamics or
energetics of upper atmospheres.
The general treatment of atmospheric waves is very complicated and detailed

descriptions can be found in classic books.2, 3 This chapter focuses on simple descrip-
tions of gravity waves and tides, with the goal being the elucidation of the basic
physics.With this approach, the reader should have a sufficient knowledge of gravity
waves and tides to understand their effects on the ionospheres that will be discussed
in later chapters.

10.5 Gravity waves

For the analysis of gravity waves, consider only the characteristic modes that can
exist in the atmosphere and ignore the source and dissipation mechanisms. In this
case, viscous effects and thermal conduction can be neglected. In general, the
Coriolis and centripetal acceleration terms can also be neglected, because the wave
periods are typically much less than planetary rotation periods. Under these circum-
stances, the continuity, momentum, and energy equations for a single-component
neutral gas (10.10a–c) reduce to

∂ρ

∂t
+ ∇ · (ρu) = 0, (10.21a)

ρ

(
∂

∂t
+ u · ∇

)
u+ ∇p− ρG = 0, (10.21b)
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(
∂

∂t
+ u · ∇

)
p+ γ p(∇ · u) = 0, (10.21c)

where γ = 5/3 is the ratio of specific heats and where the subscript n has been
omitted.
The characteristic waves that can propagate in an atmosphere are obtained by per-

turbing a given atmospheric state. For simplicity, the initial atmosphere is assumed
to be isothermal (T0 = constant), stationary (u0 = 0), horizontally stratified, and
in hydrostatic equilibrium (Equation 10.58)

∇p0 = ρ0G, (10.22)

where subscript 0 is used to designate the initial unperturbed state. A Cartesian
coordinate system can be introduced because thewavelengths ofAGWs are typically
much smaller than planetary radii. Letting the coordinates (x, y, z) correspond to
(eastward, northward, upward), Equation (10.22) can be expressed in the form

1

n0

dn0
dz

= − 1

H0
, (10.23)

where p0 = n0kT0 andH0 = kT0/mg is the atmospheric scale height (Equations 9.11
and 10.56). Equation (10.23) indicates that the initial atmospheric state varies only
with z, and in an exponential manner

p0, ρ0 ∝ e−z/H0 . (10.24)

The perturbation of the initial atmospheric state is accomplished by setting ρ =
ρ0+ρ1, p = p0+p1, and u = u1, where subscript 1 denotes the perturbations, which
are assumed to be small. Substituting these quantities into Equations (10.21a–c), and
retaining only those terms that are linear in the perturbations, yields the following
equations:

∂ρ1

∂t
+ u1 · ∇ρ0 + ρ0(∇ · u1) = 0, (10.25a)

ρ0
∂u1
∂t

+ ∇p1 − ρ1G = 0, (10.25b)

∂p1
∂t
+ u1 · ∇p0 + γ p0(∇ · u1) = 0, (10.25c)

where in the derivation use has been made of Equation (10.22). For what follows,
it is convenient to express the equations in terms of ρ1/ρ0 and p1/p0 instead of ρ1
and p1. Also, the terms containing ∇ρ0 and ∇p0 can be expressed in terms of the
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atmospheric scale height, H0, by using Equation (10.24)

u1 · ∇ρ0 = − ρ0

H0
u1z, (10.26)

u1 · ∇p0 = − p0
H0

u1z, (10.27)

where u1z is the vertical component of the perturbed velocity. With these changes,
Equations (10.25a–c) become

∂

∂t

(
ρ1

ρ0

)
− 1

H0
u1z + (∇ · u1) = 0, (10.28a)

∂u1
∂t

+ p1
ρ0p0

∇p0 + p0
ρ0
∇
(

p1
p0

)
− ρ1

ρ0
G = 0, (10.28b)

∂

∂t

(
p1
p0

)
− 1

H0
u1z + γ (∇ · u1) = 0. (10.28c)

For small perturbations, the perturbed quantities can be described by plane waves

(
ρ1

ρ0

)
,

(
p1
p0

)
, u1∝ ei(K·r−ωt), (10.29)

where K is the wave vector and ω is the wave frequency. For plane waves, the
space and time derivatives of perturbed quantities can be easily obtained and
Equations (10.28a–c) become

− iω
(
ρ1

ρ0

)
− 1

H0
u1z + i(K · u1) = 0, (10.30a)

− iωu1 + p1
ρ0p0

∇p0 + p0
ρ0
iK
(

p1
p0

)
− ρ1

ρ0
G = 0, (10.30b)

− iω
(

p1
p0

)
− 1

H0
u1z + iγ (K · u1) = 0. (10.30c)

Equations (10.30a–c) can be solved to obtain the perturbed quantities and the result
is a general dispersion relation for the wave modes that can propagate in the atmo-
sphere. However, first consider two important limiting cases. If gravity is ignored
(G→ 0,H0→∞), the initial atmosphere is homogeneous andEquations (10.30a–c)
for the perturbed quantities reduce to

−ωρ1 + ρ0(K · u1) = 0, (10.31a)

K2p1 − ωρ0(K · u1) = 0, (10.31b)

−ωp1 + γ p0(K · u1) = 0, (10.31c)
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where the momentum equation (10.30b) was dotted with K. The solution for the
perturbed quantities (ρ1, p1,K · u1) can be obtained by substituting the equations
into each other until there is one equation with an unknown. Regardless of what
parameter is solved for, the same dispersion relation is obtained.Alternatively, Equa-
tions (10.31a–c) can be solved by the matrix method of linear algebra. In the present
situation, the dispersion relation canbe easily obtainedby solvingEquations (10.31b)
and (10.31c) for p1, which yields

ω2 = c20K
2, (10.32)

where c0 is the sound speed in the neutral gas,

c20 =
γ p0
ρ0

= γ gH0 = γ kT0
m
. (10.33)

For sound waves, both K and ω are real, which means the waves propagate without
growth or attenuation. Also, ω/K = dω/dK = ±c0, where the ± signs correspond
to sound waves that propagate in opposite directions. Hence, for sound waves there
is no dispersion, because ω/K is constant.
The second limiting case that is worth discussing is for a negligible pressure

disturbance (p1 = 0). The resulting waves are then produced as a result of a balance
between gravity and acceleration effects. For this situation, Equations (10.30a–c)
reduce to

− iωρ1 + ρ0

(
iKz − 1

H0

)
u1z = 0, (10.34a)

− iωρ0u1z + gρ1 = 0, (10.34b)(
iγKz − 1

H0

)
u1z = 0, (10.34c)

where K and u1 are assumed to be only in the vertical direction and where
G=−gez. Equation (10.34b) yields ρ1= iωρ0u1z/g, while Equation (10.34c) yields
iKz =1/γH0. Substituting these results into Equation (10.34a) leads to the following
expression:

ω2b = (γ − 1)g
2

c20
. (10.35)

Note that the wave vector K does not appear in Equation (10.35) and, hence, the
disturbance is not a propagating wave, but is a local buoyancy oscillation. The
frequency given by (10.35) is called the buoyancy frequency or the Brunt–Väisälä
frequency, and it is the natural frequency at which a local parcel of air oscillates if
it is disturbed from its equilibrium.
Gravity waves basically propagate in the horizontal direction, but they usually

have a small vertical component. For simplicity, the propagation is assumed to be in
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the x–z plane so thatK only has x and z components. Note that this assumption does
not lead to a new restriction because the horizontal directions are not coupled owing
to the neglect of viscosity and Coriolis effects. With propagation in the x–z plane,
the momentum equation (10.30b) becomes two equations, one for u1x and one for
u1z. Therefore, Equations (10.30a–c) become four equations for the four unknown
perturbations (ρ1/ρ0, p1/p0, u1x, u1z). These equations can then be solved by the
matrix technique for linear equations, and the solution is nontrivial only when the
following condition is satisfied:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−iω 0 iKx

(
iKz − 1

H0

)

0 iKx
c20
γ

−iω 0

g

(
iKz − 1

H0

)
c20
γ

0 −iω

0 −iω iγKx

(
iγKz − 1

H0

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (10.36)

where the columns correspond to the coefficients of ρ1/ρ0, p1/p0, u1x, and u1z,
respectively, and the rows correspond to the continuity, x-momentum, z-momentum,
and energy equations, respectively. The expansion of the determinant leads to the
following dispersion relation that relates K and ω:

ω4 − ω2c20(K
2
x + K2z )+ (γ − 1)g2K2x − iγ gω2Kz = 0. (10.37)

When g = 0, the dispersion relation (10.37) reduces to that derived earlier for
sound waves (10.32), for which bothK andω are real. When gravity is included, Kx,
Kz, and ω cannot all be real. For a horizontally propagating wave, ω and Kx must be
real, and therefore, it is necessary to assume that Kz is complex; Kz = Kzr + iKzi,
where Kzr and Kzi are the real and imaginary parts, respectively. With allowance for
a complex Kz, Equation (10.37) becomes4

ω4 − ω2c20(K
2
x + K2zr − K2zi)+ γ gKziω

2 + (γ − 1)g2K2x
− iω2Kzr(γ g + 2c20Kzi) = 0, (10.38)

and from the imaginary part of this equation, one obtains

Kzi = − γ g

2c20
= − 1

2H0
. (10.39)

With a complex Kz, the velocity perturbation given in Equation (10.29) becomes

u1 ∝ ez/2H0ei(Kxx+Kzrz−ωt) (10.40)
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Figure 10.1 Schematic diagram of the characteristics of a large-scale gravity wave.
The arrows show the neutral velocity variation with height, while the nearly horizontal
lines show the density variation. Also shown are the directions of the group (energy)
and phase velocities of the gravity wave.4

and waves that propagate in this manner are called internal gravity waves. These
waves have the property that the wave perturbation energy, 12ρ0u

2
1z, is constant

because ρ0∝ e−z/H0 (Equation 10.24) and u1z ∝ ez/2H0 (Equation 10.40). Note that
the wave amplitude grows as the wave propagates toward higher altitudes.
For large-scale gravity waves, the horizontal wavelength is much greater than

the vertical wavelength (λx� λz), and the wave frequency is much smaller than
the Brunt–Väisälä frequency (ω�ωb). For such waves, the wavefronts are nearly
horizontal, as shown in Figure 10.1. As a consequence, the group velocity has a
slightly upward tilt, while the phase velocity has a sharply downward tilt.

10.6 Tides

Tides are global-scale atmospheric oscillations that arise primarily as a result of solar
or lunar influences. The tides can be either gravitationally or thermally induced,
and in both cases they are called migrating tides because the tidal perturbations
move westward relative to a fixed location on the rotating Earth. A diurnal tide
has a 24-hour period and a wavelength equal to the Earth’s circumference, while
a semi-diurnal tide has a 12-hour period and a wavelength equal to one-half of
the Earth’s circumference. In the terrestrial lower thermosphere (100 km), the main
tidal source is the heating associated with the absorption of solar radiation by water
vapor and ozone; and at mesospheric altitudes, the semi-diurnal tide dominates.
However, this tide can propagate upward to thermospheric heights, and as it does,
its amplitude grows. Tides can also be excited in situ in the thermosphere by the
absorption of UV and EUV solar radiation. Above about 250 km, the solar-driven
diurnal tide dominates, while between 100 and 250 kmboth diurnal and semi-diurnal
components are present.
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The mathematical treatment of atmospheric tides is more complicated than that
of gravity waves because tides have long wavelengths and low frequencies. Conse-
quently, both the curvature of the Earth and the Coriolis force must be taken into
account. The classical theory of tides neglects dissipation processes, such as col-
lisions, viscosity, and thermal conduction, and focuses on determining the normal
modes of the atmosphere. Also, only a single species neutral gas is considered.
Therefore, the starting place for the derivation of the tidal theory is the Euler equa-
tions (10.21a–c), but with the Coriolis term 2ρ�r × u added to the momentum
equation (10.21b). As with gravity waves, the atmosphere is assumed to be at rest
(u0 = 0) and in hydrostatic equilibrium (10.22) prior to the tidal wave perturbation.
The small perturbations are introduced in the usual manner by letting ρ = ρ0 + ρ1,
p = p0 + p1, and u = u1. However, an additional gravitational perturbation is
introduced through the use of a potential, �1, such that G → G − ∇�1, where
�1 is assumed to be small. The perturbation on gravity may arise, for example,
as a result of the moon’s influence on the Earth’s upper atmosphere. When these
perturbations are inserted into the Euler equations and only the linear terms are
retained, the continuity, momentum, and energy equations are similar to the gravity
wave equations (10.25a–c), except for the momentum equation which contains two
additional terms. This modified momentum equation is given by

ρ0
∂u1
∂t

+ ∇p1 − ρ1G + ρ0∇�1 + 2ρ0�r × u1 = 0. (10.41)

At this point, the tidal wave theory departs significantly from the gravity wave
theory. First, the tidal waves are global, not local, and, therefore, a spherical coor-
dinate system is needed. It is convenient to align the polar axis with the rotation
vector, �r, and to let r be the geocentric distance, θ be co-latitude, and φ be the
azimuthal angle (positive toward the east). Next, several assumptions are introduced
in the classical theory to simplify themathematics. These assumptions are as follows:
(1) the Coriolis and acceleration terms in the radial momentum equation are ignored;
(2) the Coriolis terms involving the radial velocity are ignored; (3) the atmosphere
is assumed to be a thin shell, so that r = RE + z ≈ RE, where z is altitude; (4) the
variation of g and r with altitude is ignored in the thin shell and ∂/∂r = ∂/∂z; and
(5) ρ0, p0, and T0 vary with z, but not with θ , φ, or t.
With the above assumptions, the continuity (10.25a), momentum (10.41), and

energy (10.25c) equations become3, 5

∂ρ1

∂t
+ u1z

∂ρ0

∂z
+ ρ0χ1 = 0, (10.42a)

∂p1
∂z

+ gρ1 = −ρ0 ∂�1
∂z
, (10.42b)

∂u1θ
∂t

− 2�r cos θu1φ + 1

ρ0RE

∂p1
∂θ

= − 1

RE

∂�1

∂θ
, (10.42c)
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∂u1φ
∂t

+ 2�r cos θu1θ + 1

ρ0RE sin θ

∂p1
∂φ

= −1
RE sin θ

∂�1

∂φ
, (10.42d)

∂p1
∂t
+ u1z

∂p0
∂z

+ γ p0χ1 = 0, (10.42e)

where

χ1 = (∇ · u1) = 1

RE sin θ

[
∂

∂θ
(sin θu1θ )+ ∂u1φ

∂φ

]
+ ∂u1z

∂z
. (10.43)

The normalmodes of the system are obtained by ignoring the gravitational forcing
function,�1, and by substituting the equations into each other to obtain one second-
order differential equation for one of the five unknowns (ρ1, u1z, u1θ , u1φ , p1).
However, it is best to solve for χ1 (10.43) as the unknown. Also, in solving for χ1,
the time and longitudinal dependencies of the perturbed quantities are assumed to
be periodic and of the form exp[im(φ + 2π t/Td)], where Td is the length of the
solar day. The index m must be an integer in order to obtain single-valued results,
and positive values of m correspond to westward traveling oscillations that keep
pace with the subsolar point. The values m = 1 and 2 correspond to diurnal and
semi-diurnal oscillations, respectively.
The resulting partial differential equation for χ1 is given by

H0
∂2χ1

∂z2
+
(
dH0
dz

− 1
)
∂χ1

∂z
− g

4R2E�
2
r

F

[(
γ − 1
γ

+ dH0
dz

)
χ1

]
= 0,
(10.44)

where F is the operator

F= 1

sin θ

∂

∂θ

(
sin θ

a2 − cos2 θ
∂

∂θ

)
− m

a2 − cos2 θ
(

m

sin2 θ
+ 1

a

a2 + cos2 θ
a2 − cos2 θ

)
,

(10.45)

and where a = πm/(Td�r). Equation (10.44) can be solved by the separation of
variables technique because it is a linear equation. Letting χ1(z, θ) = Z(z)"(θ)
and 1/h be the separation constant, Equation (10.44) separates into the following
ordinary differential equations:

F

[
"(θ)

]
+ 4R

2
E�

2
r

gh
"(θ) = 0, (10.46)

H0
d2Z

dz2
+
(
dH0
dz

− 1
)
dZ

dz
+
(
γ − 1
γ

+ dH0
dz

)
Z

h
= 0. (10.47)

Equation (10.46) for " is called the Laplace tidal equation. The separation con-
stant h has dimensions of length and is called the equivalent depth. For each value of
m, there is a series of eigenfunctions,"mn(θ), with associated eigenvalues, hmn, that
satisfy Equation (10.46), where n = 1, 2, 3, etc. The quantity eimφ"mn(θ) is called
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aHough function.6, 7 The Hough functions are denoted by (m, n), withm specifying
the longitudinal dependence and n the latitudinal dependence. Figure 10.2 shows the
latitudinal variation of some of the Hough functions for both the diurnal (m = 1) and
semi-diurnal (m = 2) tidal components. When n is even, the Hough functions are
symmetric about the equator, and when n is odd, they are anti-symmetric. Negative
values of n correspond to nonpropagating modes.
For each tidal mode (m, n), there is a wavenumber,Kmn, that describes the vertical

propagation characteristics of the wave, which is given by

K2mn =
1

H0hmn

[
(γ − 1)

γ
+ dH0
dz

]
− 1

4H 2
0

. (10.48)

At a given altitude, the solution to the radial equation (10.47) varies as Zmn(z) ∝
exp(iKmnz). Therefore, if Kmn is real, the tide propagates upward, whereas if Kmn is
imaginary, the tide is evanescent (the wave decays as it tries to propagate vertically).
Given the earlier definition of H0, if the atmospheric temperature decreases with
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altitude, as it does in the mesosphere, then dH0/dz is negative. If the quantity in the
square brackets is also negative, Kmn can become imaginary and the tide becomes
evanescent.
For the tidal modes that propagate vertically, the classical theory predicts that the

wave energy is constant, as it is for internal gravity waves. Therefore, the amplitude
of the tide grows as the wave propagates toward higher altitudes. Eventually, the
tide may break, forming gravity waves, but that is beyond the scope of linear theory.
Also, in the vertical direction, the energy flow is upward and the phase velocity is
downward, which is similar to what occurs for internal gravity waves.
With the separation of variables technique, the most general solution for the

perturbed parameter χ1 is simply a linear sum of all possible solutions, which is

χ1 =
∑
m

∑
n

Zmn(z)"mn(θ) exp[im(φ + 2π t/Td)]. (10.49)

This solution describes the normal modes that can propagate in the atmosphere,
but which tidal modes are actually excited depends on the form of the gravitational,
�1, and solar heating functions. For a thermally driven tide, a heating term must
be included on the right-hand side of the energy equation (10.42e). The measured
(or prescribed) solar heating function, Q, is then expanded in a series of Hough
functions

Q(z, θ) =
∑
m

∑
n

qmn(z)"mn(θ), (10.50)

where the qmn(z) are the expansion coefficients calculated from the known heating
function Q(z, θ). Note that the heating function is also assumed to have the same φ
and time dependencies as given in Equation (10.49). When the heating term (10.50)
is added to the energy equation (10.42e) and a new equation for χ1 is obtained,
the resulting radial equation for Z(z) is very complicated. Nevertheless, such a
procedure was used to explain why the semi-diurnal tide dominates in the lower
atmosphere.3

10.7 Density structure and controlling processes

At the lower boundary of the terrestrial thermosphere, which is called themesopause,
the major neutral gas components, molecular nitrogen and oxygen, are well mixed.
Numerous important minor species, such as atomic oxygen, hydrogen, nitric oxide,
ozone, and hydroxyl, are also present and chemically very active in the mesosphere
and lower thermosphere. Density and composition vary significantly with latitude
and longitude, aswell as time, but vertical variations are, in general, much larger than
horizontal ones. This is also generally true for most other upper atmospheres, with
only few exceptions, such as Io, where the atmosphere is believed to be supplied, to
a large degree, by volcanic sources. Therefore, the discussion is limited to altitude
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variations in this section. To establish the altitude variation of a given species, one
needs to solve the vertical component of the corresponding continuity equation. This
sounds simple, but of course it is not. The controlling chemistry has to be established
if the species are not inert, and the relevant velocities and temperatures have to be
determined.
This discussion begins by using the momentum equation (10.20b) to examine the

altitude distribution of chemically inert neutral gas species. In the vertical direction,
the neutral velocities are generally small and vary slowly with time, so that the
diffusion approximation is valid. This means that the inertial, viscous stress, and
Coriolis terms in Equation (10.20b) can be neglected. Centripetal acceleration for
planets, where it is important, is usually combined with gravity, and the resulting
expression is referred to as effective gravity. Also, when several neutral species
are present in the gas, collision terms appear on the right-hand side of (10.20b)
(see Equation 4.129b). The heat flow collision terms account for corrections to
ordinary diffusion and thermal diffusion effects, which are negligible under most
circumstances for neutral gases.
The vertical component of the momentum equation (10.20b) for the neutral gas,

with allowance for the above outlined simplifications, can be written as

∇ps − nsmsG = −
∑
t =s

msnsνst(us − ut), (10.51)

where subscripts s and t distinguish different species. After defining the diffusive
flux, �s, as nsus, one can write

�s = − 1∑
t =s

msνst

(
∇ps − nsmsG −

∑
t =s

msnsνstut

)
. (10.52)

Considering the vertical component of Equation (10.52) and defining the diffusion
coefficient, Ds, as (see Section 5.3)

Ds = kTs∑
t =s

msνst
, (10.53)

the expression for the vertical flux can be written as

�sz = − Ds

kTs

(
∂ps

∂z
+ nsmsg −

∑
t =s

msnsνstutz

)

= −Ds

(
∂ns

∂z
+ ns

Ts

∂Ts

∂z
+ ns

msg

kTs
− 1

kTs

∑
t =s

msnsνstutz

)
. (10.54)

In most typical upper atmospheric situations, the last term in Equation (10.54) can
be set to zero because the collision frequency is small. Under these circumstances
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the diffusive equilibrium solution, �sz = 0, for ns(z) is

ns(z) = ns(z0)
Ts(z0)

Ts(z)
exp


−

z∫
z0

dz′

Hs


 , (10.55)

where Hs is the scale height of the neutral species, s (Equation 9.11)

Hs = kTs

msg
. (10.56)

Equation (10.54) describes vertical transport due to molecular diffusion; note that
this process tends to separate the atmospheric constituents according to their mass.
Turbulence, on the other hand, mixes the atmospheric constituents and thus works
against this tendency to separate. At lower altitudes (z<∼ 100 km in the terrestrial
atmosphere) this mixing process dominates and the region is called the homosphere.
At higher altitudes (z >∼ 125 km in the terrestrial atmosphere) molecular diffusion
prevails and the region is called the heterosphere. The concept of a homopause or
turbopause, a sharp boundary between these two regions, has been used in the past.
It is commonly taken as the altitude where Kz = Ds, where Kz is the vertical eddy
diffusion coefficient, which is introduced in Equation (10.57). However, in reality
there is a region of transition where both processes are significant. Over the years a
number of measurements have been carried out to establish the location of the ter-
restrial turbopause. These measurements have been based on two different general
methods. One has used rocket released gas trails to observe the transition from turbu-
lent to diffusive regions; Figure 10.3 shows the observed trail from such a release.9

The other approach used the measured altitude distribution of inert species to infer
the altitude where diffusive separation begins. The results from such measurements
and theoretical fits are shown in Figure 10.4.10

Figure 10.3 Photograph of a sodium vapor trail released from a sounding rocket
showing the transition from a turbulent to a diffusive region in the atmosphere.9
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Figure 10.4 Calculated and
measured height variations of the
ratio of argon to molecular
nitrogen densities. The
calculations assumed three
different turbopause heights, as
indicated.10

The vertical velocity, uEsz, due to eddy diffusion (mixing), can be written as

uEsz = −Kz
1

ns/n

∂(ns/n)

∂z
= −Kz

(
1

ns

∂ns

∂z
− 1

n

∂n

∂z

)
, (10.57)

where Kz is the vertical eddy diffusion coefficient and n is the total density. The
simplified form of the steady state diffusion equation for the total density (often
referred to as the hydrostatic relation, namely the balance between the gravitational
force and the pressure gradient, see Equation (10.22)) is

dp

dz
+ n〈m〉g = 0, (10.58)

where

〈m〉 =
∑
s

nsms

n
. (10.59)

Substituting Equation (10.58) into Equation (10.57) the expression for the vertical
flux due to eddy diffusion, �Esz, becomes

�Esz = nsuEsz = −Kz

(
∂ns

∂z
+ ns

T

∂T

∂z
+ ns

H

)
, (10.60)

where H and T are the scale height and the temperature of the mixed gas

H = kT

〈m〉g . (10.61)

Total vertical flux, �sz, can be obtained by using Equations (10.54) and (10.57),

�sz(z) = −Ds

(
∂ns

∂z
+ ns

Ts

∂Ts

∂z
+ ns

Hs

)
− Kzn

∂

∂z

(
ns

n

)
. (10.62)
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Setting this flux equal to zero, one can obtain the following expression for the
diffusive equilibrium number density:

ns(z) = ns(z0)
Ts(z0)

Ts(z)
exp


−

z∫
zo

(
1

Hs
+ �

H

)
(1+�)−1dz′


 , (10.63)

where � = Kz/Ds. If � = 0, there is no turbulence and Equation (10.63) reduces
to Equation (10.55), the diffusive equilibrium solution. On the other hand, when
� = ∞, Equation (10.63) reduces to the fully mixed solution, which is

ns(z) = ns(z0)
Ts(z0)

Ts(z)
exp


−

z∫
z0

dz′

H


 . (10.64)

In case the flux is not zero a solution for ns(z) is possible,11 if one assumes that the
temperature is constant with altitude and so is the eddy diffusion coefficient, Kz. The
reference altitude is taken to be at the homopause, so that Ds = Kz exp(h), where h
is measured in units of the scale height of the mixed gas. The solution for ns is

ns(z) = A exp(−h)[1+ exp(h)]1−�s + �szH

Kz(1−�s)
exp(−h),

ns(z) = B exp(−h)[1+ exp(h)]1−�s

− �szH

Kz(1−�s)
exp(−h)

{[1+ exp(h)]1−�s − 1}, (10.65)

where�s = mass ratio = ms/〈m〉,�sz is the vertical flux, andA andB are integration
constants. The two forms of the relation for ns are equivalent, with the first being
useful for an upward flux and the second for a downward flux. For the case of zero
flux, the asymptotes for large negative and positive values of h become, as expected,

ns(z)→ A exp(−h) for h � 0,

ns(z)→ A exp(−�sh) for h � 0. (10.66)

So far, only the steady state situation has been discussed. For a time-dependent
problem the full continuity equation needs to be solved. In cases when trans-
port, either molecular diffusion or eddy mixing, is dominant the time constants
(approximated as being of the order of a scale height divided by the velocity) are,
respectively

τDM ≈ H 2
s /Ds and τDE ≈ H 2/Kz. (10.67)

A number of different ways show that the time constants are approximately correct.
One way is to look at the continuity equation (10.20a), and noting that for the case
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Figure 10.5 Calculations showing the time evolution of argon and helium
distributions. The solid lines correspond to a steady state distribution of complete
mixing and a sharp transition to diffusive separation at three different altitudes. The
dashed curves marked by (1) and (2) show the calculated distributions 10 and 30 days
from a completely mixed initial state.12

of molecular diffusion, nnun is of the order of Ds∂ns/∂z (10.54), therefore,

∂ns

∂t
∼ ∂

∂z

(
Ds

∂ns

∂z

)
. (10.68)

Using scaling arguments and denoting themolecular diffusion time as τDM, Equation
(10.68) can be written as

ns

τDM
∼ Dsns

H 2
s
→ τDM ∼ H 2

s

Ds
. (10.69)

(For a more rigorous derivation see Problem 10.7.) Figure 10.5 shows the results of
calculations on the evolution of argon and helium densities from completely mixed
initial conditions, after 10 and 30 days, respectively.12 Note that argon tends more
rapidly toward a diffusive altitude distribution than helium because the difference
between the mixed and diffusive case is less for argon. Figure 10.6 shows steady
state density profiles for a variety of eddy diffusion coefficients.13

The above discussions are appropriate for inert species, such as the noble gasesHe
andAr, as well as N2, which is not affected by chemical processes to any significant
degree. On the other hand, chemistry plays an important role in establishing the
altitude distribution of oxygen and hydrogen in the terrestrial upper atmosphere.
Molecular oxygen undergoes photodissociation at altitudes above about 100 km.
In the lower thermosphere and upper mesosphere, the major loss mechanism for
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Figure 10.7 (a) Calculated molecular oxygen dissociation rate and atomic oxygen
recombination rates. (b) Calculated vertical atomic oxygen flux.14

atomic oxygen is the three-body recombination reaction, O+O+M→O2 + M,
introduced in Section 8.1 as Equation (8.6). At even lower altitudes, recombination
with OH dominates. Rate calculations show that recombination is much slower
than dissociation above about 90 km.14 Therefore, atomic oxygen, newly created
by dissociation, is transported downward to lower altitudes, where it recombines,
and the freshly formed oxygen molecules are transported upward to replace those
lost by dissociation at the higher altitudes. Figure 10.7 shows calculated photolysis
and recombination rates as well as the downward atomic oxygen flux, which is
equal to twice the upward flux of O2.14 Both eddy and molecular transport are
involved, although eddy diffusion is themost important transport process at the lower
altitudes.
To establish the altitude distribution of atomic oxygen, a continuity equation has

to be solved that takes into account both eddy and molecular diffusion, as well
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as the relevant photochemical processes. This cannot be done analytically, but has
to be done numerically. The results of a one-dimensional numerical model13 are
shown in Figure 10.8. In this model the eddy diffusion coefficient was assumed
to be independent of altitude and was varied to arrive at different O/O2 ratios at
120 km. Chemical equilibrium solutions are also shown for comparison.

10.8 Escape of terrestrial hydrogen

The idea of the escape of light atmospheric gases, such as hydrogen, from the atmo-
sphere was first proposed about 150 years ago. However, the processes controlling
the actual escape of hydrogen from the terrestrial atmosphere have only been clari-
fied about 30 years ago. Most of the attention in the past centered around the escape
from the top of the atmosphere. This topic is discussed in Section 10.10. This section
outlines the processes controlling the hydrogen distribution and flow velocities in
the mesosphere and thermosphere, which play a very significant role in establish-
ing the actual escape flux from the higher altitudes. It is not surprising that the
escape flux can depend strongly on the “available” upward flux at lower altitudes.
An expression for this limiting flux is developed here.15 Hydrogen is a minor species,
which makes the derivation of this limiting flux easier, but this is not a necessary
condition.
The total vertical flux of a minor species in a stationary background gas is given

by Equation (10.62). Now, if the temperature gradient terms are neglected and the
logarithmic derivative of ns for any arbitrary altitude distribution is denoted as

1

ns

∂ns

∂z

∣∣∣∣
arbitrary

= − 1

H∗
s
, (10.70)
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then Equation (10.62) can be rewritten as

�sz = −Dsns

(
1

Hs
− 1

H∗
s

)
− Kzn

∂

∂z

(
ns

n

)

= −bsξs

(
1

Hs
− 1

H∗
s

)
− Kzn

∂ξs

∂z
, (10.71)

where bs = Dsn and ξs is the mixing ratio, defined as ξs = ns/n. When the
constitutents are fully mixed

∂ξs

∂z
= ∂

∂z

(
ns

n

)
= 0. (10.72)

Next, if it is assumed that ms < 〈m〉, then for diffusive conditions
∂ξs

∂z
> 0. (10.73)

Given the above assumption, the bracketed term on the right-hand side of Equa-
tion (10.71) is negative for mixed conditions, and negative approaching zero as it
moves to diffusive equilibrium conditions. Given that ms < 〈m〉, the first term is
always positive and the maximum upward flux corresponds to complete mixing,
which makes the second term zero. The expression for this limiting flux, ��, is

�sz

∣∣∣∣
limiting

= bsξs

H

(
1− ms

〈m〉
)
= ��. (10.74)

Finally, for light gases, such as hydrogen, Equation (10.74) simplifies to

�� ≈ bsξs

H
. (10.75)

Substituting this result back into Equation (10.71), and after some rearranging, one
obtains

�sz = �� − (Kz + Ds)n
∂ξs

∂z
. (10.76)

This equation states that if the flow is not limiting there is a gradient in the mixing
ratio (note that if �sz is greater than �� the mixing ratio decreases with altitude,
choking off the flow). In general, if escape from the top of the atmosphere is not a
limiting factor, the upward flow is very close to the limiting flux.
The source of hydrogen in the homosphere, which supplies the upper atmosphere

and the escaping flux, is discussed next. The main sources of hydrogen, which
eventually escapes from the atmospheres of Earth, Venus, and Mars, are believed
to be H2O, H2, and CH4. An important question pertaining to all three planets is
how quickly H2 is converted to H at higher altitudes. Photolysis is very slow, and
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on Earth the following two-step process in which H2 is split by the formation of an
O2 molecule is believed to be the important one;

H2 + O→ OH+ H,
OH+ O→ O2 + H. (10.77)

The results of model calculations of the density distributions of the major hydrogen-
carrying gases and their fluxes for the terrestrial atmosphere are shown in
Figures 10.9 and 10.10.16 These calculations confirm that for the Earth, in gen-
eral, the mixing ratio of the total hydrogen is about the same at the homopause as
in the lower stratosphere. Furthermore, the escape flux is approximately equal to
the limiting flux and all H2 is converted into H below the critical level or exobase
(Section 10.10).
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10.9 Energetics and thermal structure of the
Earth’s thermosphere

The topic of energy deposition into an ionosphere was discussed in Section 9.6 with
respect to the heating of the electrons and ions. One of the issues to be discussed
in this section is what fraction of the absorbed energy goes to heating the neutral
gas in the thermosphere. In the terrestrial thermosphere, the primary source of the
energy going to the neutrals is solar EUV radiation, but at the higher latitudes,
particle precipitation and Joule heating become dominant at times. At Venus and
Mars solar heating is also dominant, whereas at the outer planets a combination of
solar, energetic particle precipitation, and wave dissipation processes is believed to
be responsible for the relatively high thermospheric temperatures.
The absorbed solar ultraviolet energy is distributed among three major channels:

radiation or airglow, dissociation and ionization, and kinetic energy of the various
thermospheric or ionospheric constituents, as outlined in Section 9.1 and indicated
in Figure 9.1. An evaluation of the neutral gas heating efficiency, which is the
fraction of absorbed energy that goes to heating (Section 9.6), needs accurate and
comprehensive calculations of the chemical and transport processes, involving both
neutral and ionized constituents. Such detailed calculations have been carried out for
the thermospheres of Earth, Venus, and Mars during the last couple of decades.17, 18

In this section the discussion is limited to the terrestrial case and, because of
the many processes involved in the establishment of the heating efficiency, only a
single process, the photodissociation of O2, is briefly discussed as a simple repre-
sentative example. The major direct dissociation process for O2 in the terrestrial
thermosphere is photodissociation by radiation in the Schumann–Runge contin-
uum (∼125–175 nm). In addition, practically every ionization that occurs in the
thermosphere ultimately leads to the dissociation of an O2 molecule (dissociative
recombination and other chemical processes are involved in this indirect route; e.g.,
O+2 + e− → O+O). These processes constitute an important loss of energy from the
middle and upper thermosphere because the resulting oxygen atoms do not recom-
bine locally, but are transported down to below about 100 km, where they recombine
(Section 10.7). Therefore, each dissociation removes 5.12 eV from the thermosphere
above about 100 km. Calculations indicate that about 33% of the total absorbed solar
energy goes to O2 dissociation. The average energy of a photon in the Schumann–
Runge continuum is about 7.6 eV and the probability is high that one of the resulting
oxygen atoms is in the 1D state, taking a further 1.97 eV. Therefore, on average, there
is about 0.5 eV left over, which goes into the kinetic energy of the oxygen atoms
created by the dissociation, and thus, about 6.6% of the absorbed Schumann–Runge
radiation goes directly into heating. Some of the energy that goes into exciting the
1D state is recovered as heating via the quenching (collisional de-excitation) process
(Section 8.7), which occurs mainly at lower altitudes.
Figure 10.11 shows the local energy loss rates for the various major channels,

calculated for a typical, terrestrial solar minimum case.17 Clearly, the total local
losses do not balance the total energy deposition rate at the higher altitudes because
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Figure 10.11 A comparison of calculated solar UV and EUV energy deposition rates
and major energy partitions.17

of the downward transport of long lived species. The calculated heating efficiencies
for a number of different cases are shown in Figure 10.12. These results indicate
that the heating efficiency is not a constant, but varies with altitude, local time,
season, and solar cycle. The calculated neutral gas heating efficiency for Venus is
shown inFigure 10.13. 18 Neutral gas heating efficiency calculations for precipitating
particles have also been carried out and the processes involved are similar.19 The
results of calculations for auroral electron fluxes with Maxwellian energy spectra of
several characteristic energies and a range of energy deposition rates, for terrestrial
conditions, are shown in Figure 10.14.
The simplest form of the energy equation, appropriate for the terrestrial thermo-

sphere, is Equation (3.59), with the second and fourth terms on the left-hand side
neglected. Considering the steady state vertical component of this energy equation,
one can write for the “global mean”

− ∂

∂z

(
λn
∂T

∂z

)
= δE

δt
=Q̄heat, (10.78)

whereQ̄heat is the globally averaged net heating rate and T is the globally averaged
neutral gas temperature. This equation states that the only process by which heat
is transported vertically is thermal conduction. Furthermore, no heat flows into the
terrestrial thermosphere from the top. Therefore, the integral of the net heating above
a given altitude has to be transported down through that level by heat conduction,
thus setting the temperature gradient at that altitude. Considering the situation at
150 km of the terrestrial thermosphere and assuming that the integrated net heating
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above 150 km is 0.3 erg cm−2 s−1, one obtains

− λn
∂T

∂z

∣∣∣∣∞ + λn
∂T

∂z

∣∣∣∣
150 km

=
∞∫

150 km

Q̄heatdz ≈0.3≈45(750)3/4
∂T

∂z

∣∣∣∣
150 km

...
∂T

∂z

∣∣∣∣
150 km

≈ 4.65Kkm−1, (10.79)

where the fact that the heat inflow from the top is zero was used, and where it
was assumed that the temperature at 150 km is 750K. The thermal conductivity
value corresponding to an even mixture of atomic oxygen and molecular nitrogen
was also used. Some rather complex theoretical equations and observational data
for the thermal conductivity of various neutral gas species of interest do exist.20–22

However, it has been common practice by aeronomers to adopt the following simple
expression for the neutral gas thermal conductivity:

λn = ATs. (10.80)

Table 10.1 gives the values of A and s for a variety of neutral gas constituents,
obtained from theory or measurements.
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Table 10.1 Constants for the expression of thermal conductivity given by Equation (10.80).

N2 O2 O CO2 CH4 H H2

Aa 5.63 (T < 150) 36 54 0.82 5.63 235 103 (T < 150)
36 (T > 150) 223 (T > 150)

s 1.12 (T < 150) 0.75 0.75 1.28 1.12 0.75 0.92 (T < 150)
0.75 (T > 150) 0.77 (T > 150)

aThe values of A are in erg (cm s K)−1.

The above highly simplified calculation can also be carried out going in the
other direction (Problem 10.8), which leads to an estimate of the global mean upper
thermospheric temperature if one assumes that the heating rate varies exponentially
with altitude,

Q̄heat = Q0 exp

{
−z − z0

H

}
⇒

∞∫
z

Q̄heatdz = Q0H exp

{
−z − z0

H

}

... λn
∂T

∂z

∣∣∣∣
z
= Q0H exp

{
−z − z0

H

}
, (10.81)

where H is a characteristic length. Integrating, using the same parameters as in the
previous example, and taking H to be 50 km, the calculated temperature at the top
of the atmosphere comes out to be about 956K. Even in this simple calculation, the
argument is somewhat circular, because H must be related to the temperature.
Clearly, these highly simplified calculations only provide very crude, order-of-

magnitude estimates of the mean global temperature. Temperatures calculated by a
comprehensive one-dimensional, coupled, thermospheric and ionospheric model,23

for solar cycle maximum and minimum conditions for the terrestrial thermosphere,
are shown in Figure 10.15. As a comparison, Figure 10.16 shows a calculated tem-
perature profile for Jupiter, along with some indirectly measured values.24 Highly
sophisticated three-dimensional numerical models called thermosphere and iono-
sphere general circulation models (TIGCMs) are now in existence, which solve
the coupled continuity, momentum, and energy equations for the terrestrial ther-
mosphere, mesosphere, and ionosphere.25–27 The results of a representative set of
calculations are shown in Figure 10.17, which presents neutral gas temperatures
and wind velocities at a constant pressure surface, corresponding to approxi-
mately 286 km.25 Such TIGCMs also exist for Venus, Mars, Jupiter, Saturn, and
Titan.28–31

Over the last couple of decades, a great deal of observational data on terrestrial
thermospheric temperatures and composition have been gathered by satellite-borne
neutralmass spectrometers and ground-based incoherent scatter radars. These results
have been used to obtain an empirical model of the thermosphere called the MSIS,
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mass spectrometer incoherent scatter model,32 which gives temperature and com-
position values as a function of altitude, time, geographic location, and geomagnetic
conditions. It has become a widely used standard reference model. Anew, expanded
and improved version of this model, called NRLMSISE-00 is now also available.33

A representative set of density and temperature values is given in Appendix K. In
Figure 10.17 the calculated temperatures are compared with theMSIS values, show-
ing reasonably good agreement. An observation-based reference model of densities
and temperatures, sometimes called the VIRA, Venus international reference atmo-
sphere model,34, 35 has also been developed for Venus. Representative VIRAmodel
values are also presented inAppendix K. Finally an empirical model of Titan’s upper
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Figure 10.17 Terrrestrial neutral gas temperatures and velocities at a constant
pressure height, corresponding to an altitude of about 286 km, calculated by a
numerical model (top) and an empirical model (bottom).25



10.10 Exosphere 321

atmosphere has also been constructed.36 It used a Legendre polynomial expansion
to fit the densities measured by the Cassini ion neutral mass spectrometer.37

10.10 Exosphere

The uppermost regions of planetary atmospheres are called exospheres. In the ther-
mosphere the collision frequency among the neutral gas constituents is sufficiently
large that the particles have, to a good approximation, aMaxwellian velocity distribu-
tion. The collision frequency decreases with increasing altitude and the distribution
eventually deviates significantly from aMaxwellian. This transition altitude is called
the critical level or exobase and the region above it is the exosphere. In the exosphere,
the mean-free-path is long enough to allow particles to follow ballistic trajectories,
and those with sufficient energy escape from the planet’s gravitational field. In the
classical definition of the critical level, particles experience no further collisions in
the region above this altitude. Therefore, this critical level or exobase is located
at a radial distance, rc, where the probability of a collision for an upward moving
particle is unity;

∞∫
rc

n(r)σ dr = 1 ∼= σn(rc)H (rc) = H (rc)

λ(rc)
, (10.82)

where σ is the collision cross section and λ = 1/nσ is the vertical mean-free-path
(Equation 4.3). In other words, the exobase is at an altitude where the mean-free-
path is equal to the atmospheric scale height. Of course, this description is a highly
simplified one. For one thing, the collision cross section is energy dependent, so
the exobase altitude varies with energy even in this simple definition. The more
important issue is that, in most classical calculations of exospheric densities and
escape fluxes, the velocity distribution function at the critical level is assumed to
be Maxwellian, which cannot be true because of the low collision frequencies and
the escaping particles. Numerous Monte Carlo calculations have been used to study
the exospheres and escape fluxes at Earth, Mars, and Venus.38–40 In most of these
calculations, sharp transition boundaries are generally not assumed and the transition
between the thermosphere and exosphere comes about “naturally.” However, the
errors introduced by using a Maxwellian distribution at an appropriate critical level
are typically not very large, and the analytic solutions thus obtained are instructive
and given later in this section. There is another frequently used approach,41 in which
the exobase distribution function (or flux) is calculated using a multi-streammethod
(see Section 9.4) and the Liouville theorem used to determine the densities and
velocities in the exosphere. This is discussed in more detail in the next section.
The particles found above the critical level can be divided into the following

categories:

(a) Particles that cross the critical level; and
(b) Particles that never reach the critical level.
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Some of the particles moving upward above the critical level have velocities suf-
ficiently large to escape from the planet’s gravitational pull along parabolic or
hyperbolic trajectories. The escape velocity at the critical level, rc, is

vesc =
(
2GM

rc

)1/2
, (10.83)

where G is the gravitational constant and M is the mass of the planetary body.
Recognizing the fact that some of the particles can escape means that a further
subdivision is possible. Namely, particles in category (a) consist of

1. Particles moving upward with a velocity less than the escape velocity;
2. Particles moving downward with a velocity less than the escape velocity;
3. Particles moving upward on ballistic escape trajectories; and
4. Particles moving downward on ballistic trajectories from interplanetary

space.

There are two subgroups making up category (b):

1. Particles in satellite orbits whose periapses are above the critical level; and
2. Particles on ballistic orbits from interplanetary space.

The classical Jeans or thermal escape flux42 is obtained by assuming a discrete
critical level and a Maxwellian velocity distribution at that level. The escape flux
can then be obtained by integrating over the appropriate velocity limits

�esc = n(rc)

(
m

2πkT

)3/2 ∞∫
vesc

π/2∫
0

2π∫
0

v cos θ v2exp

(
−mv2

2kT

)
sin θ dφ dθ dv

= n(rc)

2

√
2kT

πm

(
1+ GMm

kTrc

)
exp

(
−GMm

kTrc

)

= n(rc)vmp
2π1/2

(
1+ v2esc

v2mp

)
exp

(
−v2esc

v2mp

)
, (10.84)

where vmp is the most probable speed, as given by Equation (H.24).
This Jeans thermal escape flux is highly temperature dependent and is important

in the terrestrial case. However, at Venus and Mars, where the thermospheric tem-
peratures are low, it is negligible, except for light gases, such as hydrogen. In the
terrestrial case, the neutral gas temperature near the critical level is high enough
to ensure that the thermal escape flux alone is, in general, sufficiently large so that
the hydrogen escape rate is limited by the low altitude fluxes (Section 10.8). This
hydrogen escape flux is of the order of 2–3× 108cm−1s−1.
There are a number of escape mechanisms, besides thermal escape, that are

potentially very important.43 The term “hydrodynamic escape” is associated with a
global expansion of the atmosphere, resulting from a very large heat input.44 One
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way of understanding this mechanism is as follows. In Jeans escape a small fraction
of atoms in the high energy wing of the Maxwellian distribution have sufficient
energy to escape, whereas in hydrodynamic escape basically the full Maxwellian
distribution is lost. It is believed that during the early phase of the evolution of the
terrestrial atmosphere about 4 billion years ago (∼ 4 Gyr b.p.) when the solar EUV
flux was much greater, hydrodynamic escape played an important role.
Photochemical escape is another important mechanism to consider.45, 46 Disso-

ciative recombination (Section 8.4) of molecular ions can create energetic neutral
atoms, which may have enough energy to escape certain solar system bodies. For
example, the dissociative recombination of molecular oxygen ions at Mars does
make a significant contribution to the total oxygen escape from that planet. Charge
exchange (Section 8.3) is also a potentially important escape mechanism. In this
process a hot, energetic ion charge exchanges with a cold neutral. The resulting
energetic neutral is not constrained by magnetic field lines, and may have enough
energy to escape. For example, hot hydrogen neutrals can be created by the following
two charge exchange reactions:

H+hot + H→ H+ + Hhot, (10.85)

H+hot + O→ O+ + Hhot. (10.86)

Thus, for example, if the ion energy is greater than 0.63 eV and the ion is moving
away from the Earth, the resulting neutral hydrogen atomwill be able to escape from
the terrestrial atmosphere. Figure 10.18 shows an estimate of relative importance of
the Jeans and charge exchange hydrogen escape fluxes, as a function of the exobase
temperature, for the terrestrial case.47
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Ion escape and ionospheric outflow are processes that also need to be considered.
At the Earth, high-speed, polar wind type (Sections 5.8 and 12.12) of outflows can
result in actual escape. However, current calculations indicate that this type of escape
is not important in the terrestrial case. On the other hand, ionospheric outflows into
the tail do make a significant contribution to the total escape at Mars.48 Significant
ion outflows can also result from the photo or electron impact ionization of neutrals,
especially at nonmagnetic solar system bodies, such as Venus and Mars. In this case
the newly created ions are picked up by the shocked solar wind andmove and escape
with it. Finally, the term sputtering has been introduced to describe the process by
which ions impact the atmosphere and the collision results in the ejection of a neutral
atmospheric particle which may have enough energy to escape.49 Here again, this
mechanismmaymake an important contribution to the escape of atomic oxygen from
the atmosphere ofMars. The ion escape rate fromMars, during solar cycle minimum
conditions, has recently beenmeasured and found to be about 3.1×1023 s−1;50 model
calculations also obtain values consistent with this observation.51

A variety of exospheric density studies have used a simple form of Liouville’s
theorem to obtain estimates of exospheric densities.41 According to this theorem one
can write

f (r, v) = f (rc, vc), (10.87)

where f is the velocity distribution function, and v and vc are the particle speeds at an
arbitrary radial position r and at the critical level, rc, respectively. The relationships
between v and vc and θ and θc, the angles with respect to the local vertical, are given
by the conservation of energy and angular momentum relations;

1

2
mv2 − GMm

r
= 1

2
mv2c −

GMm

rc
, (10.88)

rv sin θ = rcvc sin θc. (10.89)

Rearranging Equations (10.88) and (10.89) leads to the following relations:

v2c − v2 = 2gcrc(1− y), (10.90)

v sin θ = yvc sin θc, (10.91)

where gc is the gravitational acceleration at the critical level and y = rc/r. The
density n(r) at a radial distance, r, is given (assuming spherical symmetry) as

n(r) = 4π
∫∫

f (r, v)v2 sin θ dv dθ

= 4π
∫∫

f (rc, vc)Jv2 sin θ dvc dθc, (10.92)

where J is the appropriate transformation Jacobian (Appendix C). The factor 4π in
Equation (10.92) comes from having integrated over π from 0 to 2π , which gives
2π , and the factor of two comes from summing over particles moving away and
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toward the critical level. This latter factor of two is appropriate for “symmetric”
distributions, but must be modified for other cases. Substituting for the Jacobian,
which is obtained from the conservation relations (10.88) and (10.89), one obtains

n(r) = 4πy2
∫∫

f (rc, vc)v3c cos θc sin θc dθc dvc[
v2c (1− y2 sin2 θc)− 2gcrc(1− y)

]1/2 . (10.93)

The integral over θc needs to be carried out from 0 to π/2. The integration limits
over vc can be obtained by noting that at the altitude level r, the particle must have
an upward velocity of zero or greater, therefore

v2 cos2 θ = v2(1− sin2 θ) ≥ 0. (10.94)

Use of Equations (10.90) and (10.91) leads to

v2c − 2gcrc(1− y)− v2cy
2 sin2 θc ≥ 0

... vc ≥ vceu, (10.95)

where the escape velocity vce at rc is given by Equation (10.83) and can also be
written as

vce =
√
2gcrc (10.96)

and

u2 = 1− y

1− y2 sin2 θc
. (10.97)

Given Equation (10.93), the density at a location, r, can be calculated if the velocity
distribution function, f (rc, vc), is known. Analytic expressions for n(r) have been
obtained assuming various distributions at the exobase, such as complete or trun-
cated Maxwellian distributions. For example, the expression for n(r), given a full
Maxwellian distribution at the critical level, is52

n(r) = n(rc) exp
[−E(1− y)

][
1− (1− y2)1/2 exp

(
− Ey2

1+ y

)]
, (10.98)

where E = mv2ce/2kT . Note that at infinity (y = 0), Equation (10.98) gives zero
density, which is different from that obtained assuming a hydrostatic approximation.

10.11 Hot atoms

The previous discussion of mechanisms leading to escape fluxes mentioned that a
variety of different processes can lead to atoms having significant kinetic energies.
Significant populations of such “hot” atoms have been predicted to be present in the
upper atmospheres of solar system bodies. The only planet where such a hot atom
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population has been definitely detected is Venus.53 However, there are some clear
indications of their presence at Earth54, 55 and Mars40, 56 and they are expected to
be present around some of the outer planet moons, namely Europa57 and Titan.58

These hot atoms may play a significant role in setting escape fluxes at planets with
low thermospheric temperatures, as mentioned in the previous section, and may also
play a role in the chemistry or energetics of the thermospheres and ionospheres.54, 59

Finally, they can influence the solar wind interaction with weakly or nonmagnetized
planets, such as Mars and Venus60 and the interaction of magnetospheric plasmas
with moons, such as Titan.61

In this section we will briefly examine the case of oxygen and carbon at Venus
as representative examples. The three sources most commonly considered for hot
oxygen atoms are the dissociative recombination of ions (Equation 8.40) and the
following two charge exchange reactions:

O+hot + O→ O+ + Ohot, (10.99)

O+hot + H→ H+ + Ohot. (10.100)

Calculations have shown that, in effect, dissociative recombination is the major
source of hot oxygen for Venus, Earth, and Mars.40, 41 Hot carbon atoms have also
been seen atVenus and the likely sources that have been examined are the dissociative
recombination of CO+, the photodissociation of CO and collisions with hot oxygen
atoms.62 The calculations indicated that the dominant processes are the first two of
these.63

Exospheric densities and escape fluxes have been calculated using either Monte
Carlo techniques38–40 or a combination of the two-stream56 (Section 9.4) andMonte
Carlo46 approaches to obtain the exobase fluxes, which are then used to calcu-
late exospheric densities using Liouville’s theorem. The exobase fluxes are usually
calculated as a function of energy, which means that to use Liouville’s theorem,
Equation (10.93) has to be recast in terms of energy

n(r) = 1

2

∫
θc

∫
Ec

F(rc,Ec)
v̄cy2 sin θc cos θc[

v̄c(1− y2 sin2 θc)− (1− y)
]1/2 dEc dθc,

(10.101)

where F is the energy distribution function and v̄c = vc/vce is the normalized
velocity at rc. After some lengthy algebra it was shown that the number of particles
at a radial distance, r, associated with an energy increment, �Ec, depending on the
corresponding velocity range, is:64

v̄c > 1 (escaping particles),

�n(r) = F(rc,Ec)

2v̄c

([
v̄2c − (1− y)

]1/2 − [v̄2c (1− y2)− (1− y)
]1/2)

�Ec,

(10.102)
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1

[1+ y]1/2 < v̄c < 1,

�n(r) = F(rc,Ec)

v̄c

([
v̄2c − (1− y)

]1/2 − [v̄2c (1− y2)− (1− y)
]1/2)

�Ec,

(10.103)

[1− y]1/2 < v̄c <
1

[1+ y]1/2 ,

�n(r) = F(rc,Ec)

v̄c

[
v̄2c − (1− y)

]1/2
�Ec. (10.104)

Equations (10.102–104) allow the total population of particles at a given alti-
tude to be calculated, given the variation of F over the energy range of relevance.
Examples of such calculations are shown in Figures 10.19 and 10.20. Figure 10.19
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shows the calculated energetic oxygen flux at the critical level for solar cycle min-
imum and maximum daytime conditions at Venus.64 The calculated exospheric
densities for solar cycle maximum daytime conditions are shown in Figure 10.20,
along with the densities deduced from measurements of the OI 130.4 nm airglow
emission.41 There is good agreement between calculations and observations. It must
be pointed out that these calculations were one-dimensional and that horizontal
transport is not negligible, especially near the terminator, so more complex calcula-
tions (e.g., multi-dimensional Monte Carlo calculations) are necessary for improved
accuracy.40,65
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Lǎstovička, J., Forcing of the ionosphere by waves from below, J. Atmos. Solar-Terr. Phys.,
68, 479, 2006.

Müller-Wodarg, I. et al., Neutral atmospheres, in Comparative Aeronomy, Space Sciences
Series of ISSI, New York: Springer, 2008.

Nappo, C. J.,An Introduction toAtmosphericGravityWaves, InternationalGeophysics Series,
85, New York: Academic Press, 2002.

Ortland, D.A. and M. J. Alexander, Gravity wave influence on the global structure of the
diurnal tide in the mesosphere and lower thermosphere, J. Geophys. Res., 111, A10S10,
doi:10.1029/2005JA011467, 2006.

Rees, M.H., Physics and Chemistry of the Upper Atmosphere, Cambridge, UK: Cambridge
University Press, 1989.

Rishbeth, H., F-region links with the lower atmosphere?, J. Atmos. Solar-Terr. Phys., 68,
469, 2006.

Shizgal, B. D., and G.G.Arkos, Nonthermal escape of the thermospheres of Venus, Earth and
Mars, Rev. Geophys., 34, 483, 1996.



332 Neutral atmospheres

Tohmatsu, T., Compendium of Aeronomy, Terra Scientific Publishing Co., Dordrecht,
Holland: Kluwer Academic Publishers, 1990.

10.14 Problems

Problem 10.1 Show that Equations (10.10a) and (10.10c) lead to Equation (10.11).

Problem 10.2 Calculate the Coriolis and centripetal accelerations (Equation 10.9)
for Venus, Earth, and Mars at 45◦ latitude and 300 km altitude. Assume urot =
200 m s−1.

Problem 10.3 Calculate the Brunt–Väisälä frequency (Equation 10.35) for Venus
and Earth at 200 km at both noon and midnight using the reference atmospheres in
Appendix K.

Problem10.4 Obtain expressions forρ1, p1, and (K·u1) usingEquations (10.31a–c)
and show that the same dispersion relation is obtained in all three cases.

Problem 10.5 Show that the solution of Equations (10.30a–c) leads to the matrix
given by Equation (10.36).

Problem 10.6 Show that the continuity (10.25a), momentum (10.41), and energy
(10.25c) equations reduce to the tidal equations given by Equations (10.42a–e)
when the four assumptions given in the paragraph that precedes these equations
are adopted.

Problem 10.7 Assume that the diffusive time constant is defined by the following
relation:

τi,diff =
z2∫

z1

dz

ui,diff

where the diffusion velocity for a minor species, i, flowing through a stationary
atmosphere, ui,diff is given by

ui,diff = −D

H

[
−X (1+ β)+ β + mi

m

]
,

where X is a parameter of the order of unity, β is the altitude slope of the scale height
H , and 〈m〉 is the mean mass. Furthermore, assume that the height variation of H
can be represented as

H = H0 + βz ≡ H0 exp(βζ ),
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which defines a new height variable ζ . Using this new height variable one can
write

n

n0
=
(

H

H0

)−[1+β]/β
= exp[−(1+ β)ζ

]
.

Finally, the altitude variation of D can be written as:

D = 3

8

√
g

2π

(
1+ m

m1

)1/2H 1/2

nσ 2
= D∗0

H 1/2

n
= D0 exp

(
1+ 3

2
β

)
ζ .

Obtain an expression for the time constant as defined above.

Problem 10.8 Starting with Equation (10.55), show that if

β = dHk

dz
= constant,

then

pk(zb)

pk(za)
=
[

Hk(zb)

Hk(za)

]−1/β

and

nk(zb)

nk(za)
=
[

Hk(zb)

Hk(za)

]−(1+β)/β
.

To obtain this last relationship you need to assume that g does not vary with altitude.

Problem 10.9 In a hypothetical, isothermal atmosphere of 1500 K the relative ratio
of helium (m = 4) to argon (m = 40) is 3.0× 10−4 at ground level. It is known that
there is complete mixing up to a certain altitude (the turbopause) and experimentally
it was found that the helium to argon density ratio is 1.0×10−3 at 155 km.Assuming
that g is 980 cm s−2 and a constant and that the helium to argon change from “mixed”
to a “diffusive” atmosphere takes place abruptly at a given height, find the altitude
of the turbopause.

Problem 10.10 Show that Equation (10.76) is the same as Equation (10.62) if the
temperature gradient can be neglected.

Problem 10.11 On the planet Imaginus the photodissociation process, in the wave-
length region 100 nm < λ < 150 nm, results in two ground state X atoms, with the
excess energy going into kinetic energy

X2 + hν(100 nm < λ < 150 nm)→ X + X + KE.
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For wavelengths less than 100 nm, one of the atoms is left in an excited state, with
an excitation energy of 4 eV, and the rest of the surplus energy goes to kinetic energy

X2 + hν(λ < 100 nm)→ X∗(4 eV)+ X + KE.
Further, it can be assumed that the excited atoms, X∗, are rapidly and radiatively
de-excited and that radiation as well as the energy from the recombination of X and
photoelectron loss processes do not contribute to the heating of the ambient neutral
gas. If collisions among the atmospheric neutral gas particles are frequent and all the
above assumptions are applicable, what fraction of the total absorbed energy goes
toward heating the ambient neutral gas in these two given wavelength regions? (The
dissociation threshold for X2 is at 150 nm. Also assume that the mean energy of the
photons is at the midpoint of the wavelength intervals.)

Problem 10.12 Obtain an expression for the steady-state altitude variation of the
neutral gas temperature on the planet Imaginus, assuming that thermal conduction
is the only dominant energy transport mechanism and that the net heating rate is
given by:

Q(z) = Q(z0) exp

(
−z − z0

H

)

where z0 is a reference altitude and H is a constant. Assume no heat inflow
from the top, the temperature at the reference altitude, z0, is T0, and the thermal
conductivity, λ, is

λ = AT 3/2,

where A is a constant.

Problem 10.13 The electron gas on the planet Imaginus receives a heat inflow of
1010 eV cm−2 s−1 at the top of the ionosphere and its temperature is 500 K at the
surface of the planet. Assume that there are no energy sources and sinks for the
electrons inside the ionosphere and that vertical thermal heat conduction is the only
energy transport process.

1. Obtain a general expression for the steady state electron temperature in the
ionosphere given that the thermal conductivity, λe, is

λe = 7.7× 105T 5/2e eV cm−1s−1K−1.

2. Evaluate the electron temperature at 400 km.

Problem 10.14 Calculate the energy per unit mass (in eV) that a gas particle must
have, at an altitude of 200 km, to escape from Venus and Mars.



Chapter 11

The terrestrial ionosphere at middle and
low latitudes

The plasma parameters in the Earth’s ionosphere display a marked variation with
altitude, latitude, longitude, universal time, season, solar cycle, and magnetic activ-
ity. This variation results not only from the coupling, time delays, and feedback
mechanisms that operate in the ionosphere–thermosphere system, but also from the
ionosphere’s coupling to the other regions in the solar–terrestrial system, including
the Sun, the interplanetary medium, the magnetosphere, and the mesosphere. The
primary source of plasma and energy for the ionosphere is solar EUV, UV, and X-ray
radiation; but magnetospheric electric fields and particle precipitation also have a
significant effect on the ionosphere. The strength and form of the magnetospheric
effect are primarily determined by the solar wind dynamic pressure and the orienta-
tion of the interplanetary magnetic field (IMF), i.e., by the state of the interplanetary
medium. Also, tides and gravity waves that propagate up from the mesosphere
directly affect the neutral densities in the lower thermosphere, and their variation
then affects the plasma densities. The different external driving mechanisms, cou-
pled with the radiative, chemical, dynamical, and electrodynamical processes that
operate in the ionosphere, act to determine the global distributions of the plasma
densities, temperatures, and drifts.
As noted in Section 2.3, the ionosphere is composed of different regions and,

therefore, it is instructive to show the regions inwhich thedifferent external processes
operate. Figure 11.1 indicates the altitudes where the various external processes
are most effective. Solar radiation leads to ion–electron production and heating
via photoelectron energy degradation, with EUV wavelengths dominating in the
lower thermosphere (E and F1 regions) and UV and X-ray wavelengths dominat-
ing in the mesosphere (D region). These processes occur over the entire sunlit side
of the Earth. On the night side, resonantly scattered solar radiation and starlight
are important sources of ionization for the E region. At high latitudes, the main
momentum and energy sources for the ionosphere are magnetospheric electric fields
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Figure 11.1 External processes that operate on the terrestrial ionosphere.1

and particle precipitation. The production of ionization due to auroral precipita-
tion and the Joule heating that is associated with convection electric fields are
maximized in the E and F1 regions (Chapters 2 and 12). These magnetospheric
processes affect not only the high-latitude ionosphere, but also the middle and low
latitudes, particularly during storms and substorms. The magnetosphere also affects
the lower ionosphere via very energetic particle precipitation from the radiation belts,
which can produce ionization at all latitudes in the D region, and via a downward
plasmaspheric flow, which helps maintain the nocturnal F region at mid-latitudes.
With regard to the stratosphere, it has a significant effect on the lower ionosphere
because upward-propagating tides and gravity waves from this region deposit most
of their energy at E–F1 region altitudes owing to wave breaking and dissipation.
Finally, in a sporadic fashion, the ablation of impacting meteors produces neutral
metal atoms, which are then ionized by charge transfer with molecular ions and by
photoionization.2

This chapter focuses on the processes that affect the ionosphere at middle and
low latitudes, where the plasma essentially co-rotates with the Earth, while those
at high latitudes are discussed in Chapter 12. The topics covered in this chapter
include the geomagnetic field, magnetic disturbances, the Sq and L current systems,
the formation of ionospheric layers, nighttime maintenance processes, large-scale
ionospheric features (light ion trough, sub-auroral red arcs, Appleton anomaly),
plasma transport processes, dynamo electric fields, and the plasma thermal structure.
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Also included in this chapter is a discussion of small-scale and irregular density
features, such as sporadic E, intermediate layers, traveling ionospheric disturbances
(TIDs), gravity waves, and equatorial plasma bubbles.

11.1 Dipole magnetic field

The effect that the various external processes have on the ionosphere is determined,
to a large degree, by plasma transport processes, which are affected by the Earth’s
intrinsic magnetic field. At ionospheric altitudes, this internal field can be approx-
imated by an Earth-centered dipole, with the dipole axis tilted with respect to the
Earth’s rotational axis by about 11.5◦ (Section 11.2). Ifm is the dipole moment at the
Earth’s center (m ≈ 7.9× 1015 T m3) and if a spherical coordinate system (r, θ ,φ)
is adopted, with the polar axis parallel to the dipole axis (Figure 11.2), then the
magnetic scalar potential (�m) is given by

�m(r, θ ,φ) = m cos θ

r2
. (11.1)

The magnetic field (B) is obtained by taking the gradient of the scalar potential, and
it is given by

B = −∇�m = 2m cos θ

r3
er + m sin θ

r3
eθ , (11.2)

where er and eθ are unit vectors in the radial and polar directions, respectively. The
magnitude of this dipole magnetic field can be expressed as

B = m

r3

(
1+ 3 cos2 θ

)1/2
. (11.3)

There are several other dipole parameters that are useful for later applications.
First, it is convenient to express m in terms of the magnetic field, BE, on the Earth’s
surface (r = RE) at the equator (θ = 90◦), for which Equation (11.3) yields m =
BER3E. Next, it is useful to introduce a unit vector along B, and this is simply

m RE

r

s

b

R0

B

u

Figure 11.2 Geometry and
parameters associated with a
dipole magnetic field line.
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given by

b = B
B
= 2 cos θer + sin θeθ

(1+ 3 cos2 θ)1/2 . (11.4)

It is also convenient to introduce the dip angle or inclination angle, I , which is the
angle that B makes with the horizontal direction. The important functions for I are

−sin I = ∣∣b× eθ
∣∣ = 2 cos θ

(1+ 3 cos2 θ)1/2 , (11.5)

cos I = b · eθ = sin θ

(1+ 3 cos2 θ)1/2 , (11.6)

−sin I cos I = 2 sin θ cos θ

1+ 3 cos2 θ . (11.7)

In addition, the equation for a dipole field line is needed, and this can be obtained
from the expression

rdθ

dr
= Bθ

Br
= tan θ

2
, (11.8)

which relates differential arc lengths in the spherical coordinate system to the B-field
components (Equation 11.2). The solution of Equation (11.8) is

r = R0 sin
2 θ , (11.9)

where R0 is the radial distance at which the dipole field line crosses the equator (θ =
90◦). The solution (11.9) can be easily verified by substituting it into Equation (11.8).
It is also useful to express derivatives along a magnetic field line in terms of r

and θ derivatives. Letting s represent the distance along B, then

∂

∂s
= b · ∇ = −sin I

∂

∂r
+ cos I

r

∂

∂θ
, (11.10)

where the equations for b (11.4), sin I (11.5), and cos I (11.6) have been used. Now,
the cross sectional area, A, of a magnetic flux tube varies as A∝ 1/B, or, from
Equation (11.3),

A = C
r3(

1+ 3 cos2 θ)1/2 , (11.11)

where C is a normalization constant. Typically, the constant is chosen such that
A = 1 cm2 at an altitude of 1000 km, but for the present purposes the constant is not
important. A quantity that is important is

1

A

∂A

∂s
= 9 cos θ + 15 cos3 θ

r(1+ 3 cos2 θ)3/2 , (11.12)
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which is derived by applying the ∂/∂s operator in Equation (11.10) to the expression
for A (11.11) and then dividing by A. Note that near the poles of a dipole magnetic
field (θ ≈ 0◦), (1/A)∂A/∂s ≈ 3/r. This result was used in the polar wind discussion
(Section 5.8).
In the low-latitude ionosphere, co-rotation and dynamo electric fields exist that

are directed perpendicular to B. These fields cause the plasma to E× B drift across
B (Section 11.11). The co-rotation electric field points toward the Earth, and the
resulting E×B drift is eastward at a speed that matches the Earth’s rotational speed.
Themain dynamoEfield, on the other hand, is in the azimuthal (east–west) direction,
and its associated electrodynamic drift is either toward or away from the Earth. Drifts
away from the Earth result in an expanding plasma and a density decrease, while the
reverse occurs for E× B drifts toward the Earth. This effect is important and must
be taken into account in the continuity equation.
Given an azimuthal electric field, E = Eφeφ , and a dipole magnetic field (11.2),

the electrodynamic drift, uE = E× B/B2, becomes

uE = r3Eφ
m(1+ 3 cos2 θ)

(−sin θer + 2 cos θeθ ). (11.13)

It is customary to express Equation (11.13) in terms of the plasma drift (uE0 ) at the
magnetic equator, which is where the drift is typically measured. At the equator,
θ = 90◦ and r=R0 (Figure 11.2), and Equation (11.13) yields a radial drift of
uE0 = −R30Eφ0/m, where Eφ0 is the electric field at r=R0. Using this result to
derive an expression for the dipole moment m and then substituting this m into
Equation (11.13) yields the following equation for uE:

uE = −uE0
1+ 3 cos2 θ

r3

R30

Eφ
Eφ0

(−sin θer + 2 cos θeθ ). (11.14)

Now, r3/R30 = sin6 θ (Equation 11.9), and it is left as an exercise to show that
Eφ/Eφ0 = 1/ sin3 θ . Using these results, Equation (11.14) can be expressed in
the form

uE = uE0 sin
3 θ

1+ 3 cos2 θ
(
sin θer − 2 cos θeθ

)
. (11.15)

This expression describes the E × B drift of plasma across dipole magnetic field
lines. The drift is the largest at the equator, where θ = 90◦ and uE = uE0er . The
E× B drift decreases as the Earth is approached along a dipole field line.
The divergence of uE can be obtained by taking the divergence of Equa-

tion (11.15), which is left as an exercise. However, it can also be obtained by
taking the divergence of E × B/B2, which is the procedure used in Section 12.1.
From Equation (12.3)

∇ ·
(
E× B

B2

)
= (E× B) · ∇

(
1

B2

)
= −2uE ·

(
1

B
∇B

)
. (11.16)



340 The terrestrial ionosphere at middle and low latitudes

The term in the parentheses can be obtained from Equation (11.3), and the result is

1

B
∇B = −3

r

(
er + sin θ cos θ

1+ 3 cos2 θ eθ
)
. (11.17)

Substituting Equations (11.17) and (11.15) into Equation (11.16), and remember-
ing that r = R0 sin2 θ (11.9), the divergence of the electromagnetic drift can be
expressed as

∇ · uE = 6uE0
R0

sin2 θ(1+ cos2 θ)
(1+ 3 cos2 θ)2 . (11.18)

Note that near the poles of a dipole (θ ≈ 0◦), ∇ · uE ≈ 0. That is, the E × B drift
is basically incompressible. This result is important for the high-latitude ionosphere
(Section 12.1). Near the magnetic equator (θ = 90◦), ∇ · uE ≈ 6uE0/R0, which
corresponds to the maximum expansion or contraction rate.
It is convenient for some applications to introduce orthogonal dipolar coordinates

(qd, pd), which are given by

qd = R2E cos θ

r2
, (11.19)

pd = r

RE sin2 θ
. (11.20)

The coordinate qd replaces the arc length s along B and pd is the coordinate perpen-
dicular to B. The ultimate goal is to express ∂/∂s, which appears in the transport
equations, in terms of ∂/∂qd. This is accomplished by first noting that

∂

∂qd
= dr

dqd

∂

∂r
+ dθ

dqd

∂

∂θ
. (11.21)

When calculating dr/dqd and dθ/dqd, it is important to remember that r and θ
are related along a dipole magnetic field line (Equation 11.9). Therefore, qd can be
expressed in the form, qd = (RE/R0)2 cos θ/ sin4 θ , and from this expression it can
be shown that

dθ

dqd
= −R20

R2E

sin5 θ

1+ 3 cos2 θ = −
r2 sin θ

R2E(1+ 3 cos2 θ)
, (11.22)

where Equation (11.9) was used again to obtain the second expression in Equa-
tion (11.22). Likewise, using Equation (11.9), qd can also be expressed in terms of
just r, qd = (RE/r)2(1− r/R0)1/2, and from this expression it follows that

dr

dqd
= − 2r3 cos θ

R2E(1+ 3 cos2 θ)
. (11.23)
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Now, combining Equations (11.21–23), ∂/∂qd can be written in the following form:

∂

∂qd
= − r3/R2E

(1+3 cos2 θ)1/2
[

2 cos θ

(1+3 cos2 θ)1/2
∂

∂r
+ sin θ

(1+ 3 cos2 θ)1/2
1

r

∂

∂θ

]
,

(11.24)

where the quantity in the square brackets is just ∂/∂s (Equation 11.10). Solving for
∂/∂s, one obtains

∂

∂s
= −R2E(1+ 3 cos2 θ)1/2

r3
∂

∂qd
. (11.25)

The second derivative, ∂2/∂s2, is also needed when the transport equations are
solved in the so-called diffusion approximation (Section 5.7). This derivative can
be obtained as follows:

∂2

∂s2
= ∂

∂s

(
∂

∂s

)
= α2

∂2

∂q2d
+ α

∂α

∂qd

∂

∂qd
, (11.26)

where

α = −R2E(1+ 3 cos2 θ)1/2
r3

, (11.27)

∂α

∂qd
= −3 cos θ(3+ 5 cos

2 θ)

r(1+ 3 cos2 θ)3/2 . (11.28)

11.2 Geomagnetic field

A magnetic dipole is a reasonable approximation for the geomagnetic field at low
and middle latitudes. The simplest approximation is the axial-centered dipole, for
which the Earth’smagnetic and rotational axes coincide. The next approximation is a
tilted dipole, with the dipole axis intersecting the Earth’s surface at 78.5◦N, 291◦ E,
and 78.5◦ S, 111◦ E geographic. A better approximation is the eccentric dipole, for
which the dipole axis is displaced from the Earth’s center by a distance of about
500 km in the direction 21◦N, 147◦ E. The eccentric dipole intersects the Earth’s
surface at 82◦N, 270◦ E, and 75◦ S, 119◦ E.3
The most accurate representation of the geomagnetic field is the one obtained

when the magnetic scalar potential is expanded in a spherical harmonic series of
the form

�m(r
′, θ ′,φ′)=RE

∞∑
n=1

n∑
m=0

(
RE
r′

)n+1(
gm
n cosmφ

′ + hm
n sinmφ′

)
Pm

n (cos θ
′),

(11.29)
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where (r′, θ ′,φ′) are geographic coordinates, and where r′ increases in the outward
radial direction, θ ′ is co-latitudemeasured from the northern geographic pole, and φ′
is east longitude.4 In Equation (11.29), Pm

n (cos θ
′) is the Schmidt form of the asso-

ciated Legendre polynomial of degree n and order m, and gm
n and hm

n are expansion
coefficients. The expansion coefficients are obtained by fitting the magnetic poten-
tial (11.29) to a global distribution of both ground-based and satellite magnetometer
measurements. This fitting procedure is done at various times because the intrin-
sic magnetic field changes with time (the secular variation). The outcome of this
effort is the International Geomagnetic Reference Field (IGRF).5 The axial-centered
dipole approximation is given by the (n = 1,m = 0) term:

�m(r
′, θ ′,φ′) = RE

(
RE
r′

)2
g01 cos θ

′ (11.30)

and the tilted dipole approximation is given by the (n = 1, m = 0, 1) terms:

�m(r
′, θ ′,φ′) = RE

(
RE
r′

)2[
g01 cos θ

′ + (g11 cosφ
′ + h11 sin φ

′) sin θ ′
]
.

(11.31)

Some of the commonly used angles and vector components of the geomagnetic
field are shown in Figure 11.3. The relations between the different quantities are
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given by

H = (X 2 + Y 2)1/2, (11.32)

B = (H 2 + Z2)1/2, (11.33)

X = H cosD, (11.34)

Y = H sinD, (11.35)

D = tan−1(Y /X ), (11.36)

I = tan−1(Z/H ), (11.37)
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Figure 11.4 Magnitude of the geomagnetic field (top) and declination angle in
degrees (bottom) at the Earth’s surface.6
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where B is the magnitude of the geomagnetic field, H is the magnitude of
the horizontal component, and (X , Y , Z) are the Cartesian components of B in the
northward, eastward, and downward directions, respectively. The angleD is the dec-
lination, which is the deflection of the geomagnetic field from the geographic pole.
The angle I is the inclination or dip angle of the magnetic field from the horizontal
(Equation 11.5). Note that themagnitude of the geomagnetic field is not uniformover
the Earth’s surface (Figure 11.4). In general, it is weaker in the equatorial region
and stronger in the polar regions, but there are distinct regions where it reaches
extreme values (e.g., the South Atlantic anomaly). Likewise, the declination and
inclination angles are not uniform over the Earth’s surface as shown, for example,
in Figure 11.4, where the declination is plotted. As expected, the largest declination
angles occur in the regions close to the magnetic poles.

11.3 Geomagnetic variations

The geomagnetic field displays an appreciable variation during both quiet and dis-
turbed times.6,7 During quiet times, the magnetic variations are primarily caused
by the solar-quiet (Sq) and lunar (L) current systems. These current systems flow
in the E region, where dynamo electric fields are generated as the neutrals drag
ions across geomagnetic field lines (Figure 11.5). The Sq current is driven by solar
EUV radiation, which not only produces the ionization in the E region but also
heats the atmosphere and causes the wind. The primary wind component that drives
the Sq current is the diurnal tide (1,−2), which has a small phase progression
with altitude, and therefore, the contribution of each altitude adds constructively
(Section 10.6). Because the Sun is responsible for the Sq current system, this system
and the associated magnetic disturbance move westward as the Earth rotates. The
Sq current typically extends from about 90 to 200 km, but it maximizes at about
150 km where the Pedersen current maximizes. The associated polarization electric
field, which is basically in the east–west direction, is of the order of a few mV m−1,
and the corresponding ground magnetic perturbation reaches a maximum value of
about 20 nT at mid-latitudes. Naturally, solar variations are manifested in the Sq

B

E

E E

E

u

E region dynamo

Equator

F region

SN

Figure 11.5 Thermospheric winds in
the equatorial E region generate
dynamo electric fields as the ions are
dragged across B. These dynamo
fields are responsible for the
equatorial electrojet. The dynamo
fields are also transmitted along the
dipole magnetic field lines to the F
region.
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current system, and hence, the Sq currents display strong seasonal and solar cycle
dependencies.
The Sq current increases substantially, by about a factor of four, in a narrow

latitudinal band about the magnetic equator. This band of enhanced current, called
the equatorial electrojet, is a consequence of the nearly horizontal field lines at the
equator. An eastward electric field, in combination with the northward geomagnetic
field, acts to drive a Hall current in the vertical direction. However, the E region
conductivity is bounded in the vertical direction and this inhibits the Hall current.
The net result is that a vertical polarization electric field is created, which induces a
Hall current in the eastward direction. This latter Hall current augments the original
Pedersen current, thereby enhancing the effective conductivity in the eastward elec-
tric field direction (Cowling conductivity). At latitudes just off the magnetic equator,
the slight tilt of the geomagnetic field lines is sufficient to allow the polarization
charges to partially drain, thus reducing the Cowling conductivity.8

The L current system and its associated magnetic disturbance are generated in the
samemanner as the corresponding Sq features, except that the driving winds are pro-
duced by gravitationally excited lunar tides. The prominent tide is the semi-diurnal
(2, 2) mode (Section 10.6). The magnitude of the magnetic perturbation associated
with the L current is about an order of magnitude smaller than that associated with
the Sq current. The magnetic perturbation tends to follow the lunar day, which is
24 hours and 50 minutes on average.
In addition to the regular variations caused by the Sq and L current systems, the

geomagnetic field can be disturbed by magnetospheric processes. The disturbance
field D′ is the magnetic field that results after the steady and quiet-variation fields
have been subtracted from the total field. The characteristic times associated with
most disturbances extend fromminutes to days, and almost all of them can be traced
to the effects that solar wind perturbations have on the magnetosphere. The largest
disturbances are calledmagnetic storms. Typically, the disturbance field is separated
into two components D′ =Dst + Ds, where Dst is the storm-time variation and Ds
is the disturbance-daily variation. The Dst component results from the magnetic
disturbance generated by the ring current (Figure 2.10), while the Ds component
is the magnetic field associated with the ionospheric currents generated by auroral
particles precipitated from the ring current.
Amagnetic storm generally has three phases; initial, main, and recovery phases.

The initial phase results from a compression of the magnetosphere due to the arrival
of a solar wind discontinuity (shock, CME) at the Earth. Frequently, storms begin
abruptly and this is called a sudden storm commencement (SSC), but storms can also
begin gradually without an SSC. Sometimes an impulsive change in the magnetic
field occurs, but a storm does not develop, and this is called a sudden impulse (SI).
The initial phase of a storm typically lasts 2–8 hours, during whichDst is increased,
owing to the compression of the magnetosphere. During the main phase, Dst is
decreased, often by more than 100 nT, relative to prestorm values. This decrease
occurs because magnetic storms are generally associated with a southward inter-
planetary magnetic field, which allows for an efficient energy coupling of the solar
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wind and magnetosphere (Section 12.1). The net result is an intensification of the
ring current, which is the westward current that encircles the Earth at equatorial lat-
itudes (Figure 2.10). The enhanced westward current induces a horizontal magnetic
field H that is southward (opposite to the Earth’s dipole field), and this accounts for
the negative Dst during the main phase of a storm. The recovery phase, which can
last more than a day, is a time when Dst gradually increases to its prestorm value.
This occurs because the source of the enhanced ring current subsides and the excess
particles are lost via several different mechanisms.
Several indices have been used to describe magnetic activity in addition to Dst,

which is calculated at low latitudes and describes the ring current. The AE, AL,
andAU indices are calculated at auroral latitudes and primarily describe the auroral
electrojet intensity. The K indices are calculated at all latitudes and are the most
widely used of all the indices.7 The three-hour K index provides a measure of the
magnetic deviations from the regular daily variation during a three-hour period. The
information about magnetic activity is provided via a semi-logarithmic numerical
code that varies from 0 to 9, with the different numbers corresponding to different
magnetic activity levels. The K indices from twelve observatories are combined
to produce a three-hour planetary index, Kp, which provides information on the
average level of magnetic activity on a worldwide basis. The Kp index is specified
to one-third of a unit, with the steps varying as follows: 00, 0+, 1−, 10, 1+, . . . 8−,
80, 8+, 9−, 90. However, almost all of the magnetic observatories that are used to
produce Kp are in the northern hemisphere at mid-latitudes, and therefore, Kp is not
truly a worldwide index.

11.4 Ionospheric layers

The terrestrial ionosphere at all latitudes has a tendency to separate into layers,
despite the fact that different processes dominate in different latitudinal domains
(Figure 2.16). However, the layers (D, E, F1, and F2) are distinct only in the daytime
ionosphere at mid-latitudes. The different layers are generally characterized by a
density maximum at a certain altitude and a density decrease with altitude on both
sides of the maximum. The E layer was the first layer to be detected, followed by
the F and D layers (see Section 1.2). Typically, the E and F layers are described
by critical frequencies (f0E, f0F1, f0F2), peak heights (hmE, hmF1, hmF2), and half-
thicknesses (ymE, ymF1, ymF2), as shown in Figure 11.6. The critical frequency,
which is proportional to n1/2e (Equation 2.6), is the maximum frequency that can be
reflected from a layer. Electromagnetic waves with a higher frequency, transmitted
from below the layer, will penetrate it and propagate to higher altitudes. Associated
with each critical frequency is a peak density (NmE, NmF1, NmF2) and a peak height,
which is the altitude of the density maximum. Also, it is customary to define a half-
thickness for each layer, which is obtained by fitting a parabola to the electron density
profile in an altitude range centered at the density maximum. All of the layers occur
during the daytime, but the F1 layer decays at night and a distinct E–F valley can
appear that separates the E and F2 layers.
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Figure 11.6 Schematic diagram
of an electron density profile
showing critical frequencies,
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and F2 layers. The curve labeled
E–F valley is a nighttime profile
and the one labeled f0F1 is a
daytime profile.9

The dominant ions in theE region aremolecular (NO+, O+2 , N
+
2 ) and the chemical

time constants are short enough that plasma transport processes can be neglected.
In this case, photochemistry prevails (Chapter 8). Although there is a large number
of minor ion species in the E region, the dominant ions can be described, to a good
approximation, by just a few photochemical processes. The main processes, which
include photoionization, ion–molecule reactions, and electron–ion recombination,
are given by

O+ hν → O+ + e−, (11.38)

O2 + hν → O+2 + e−, (11.39)

N2 + hν → N+2 + e−, (11.40)

O+ + N2 → NO+ + N, (11.41)

O+ + O2 → O+2 + O, (11.42)

N+2 + O2 → O+2 + N2, (11.43)

N+2 + O → O+ + N2, (11.44)

N+2 + O → NO+ + N, (11.45)

NO+ + e− → N + O, (11.46)

O+2 + e− → O+ O, (11.47)

N+2 + e− → N + N, (11.48)

where the rate constants (in cm3 s−1) are given inTables 8.3 and8.5 and the ionization
frequencies can be found in Table 9.2.
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When photochemistry is more important than transport processes, the ion
continuity equation (5.22a) for species s reduces to

dns

dt
= Ps − Ls, (11.49)

where Ps is the production rate and Ls is the loss rate. It is instructive to use one
of the ions, say N+2 , in an example of how to construct rate equations. During the
daytime, N+2 is produced via photoionization at a rate P(N+2 ) and is lost in reactions
with O2, O, and electrons. The loss rates are obtained simply by multiplying the N

+
2

density by both the rate coefficient and the density of the other species involved in
the reaction. For N+2 , Equation (11.49) can be written as

dn(N+2 )
dt

= P(N+2 )−
[
5× 10−11n(O2)+ 1.4× 10−10n(O)

+ 2.2× 10−7
(
300

Te

)0.39
ne

]
n
(
N+2
)
, (11.50)

where the rate coefficients were obtained from Tables 8.3 and 8.5 and where P(N+2 )
can be calculated from Equation (9.25). Similar equations hold for the other molec-
ular ions (NO+ and O+2 ). The important facts to note are that the ion equations
are coupled and nonlinear because the electron density is the sum of the ion den-
sities. Nevertheless, these photochemical rate equations can be readily solved with
numerical techniques.
An analytical expression for the electron density in an ionosphere dominated by

photochemical reactions can be obtained with the aid of a few simplifying assump-
tions. First, assume that one of the molecular ions is dominant, which means that the
ion and electron densities are equal. Also, throughout most of the daytime, the time
derivative term in the continuity equation (11.49) is negligible, and this equation
then reduces to

Pe = kdn
2
e, (11.51)

where kd is the ion–electron recombination rate. Now, assume that the Chapman
production function (9.21) can be used to describe the ionization rate as a function
of altitude, z, and solar zenith angle, χ . Using Equation (9.21), and the derivation
that led to this equation, it follows that

Pc(z,χ) = I∞ησ (a)n(z)e−τ , (11.52)

where

τ = Hσ (a)n(z) secχ , (11.53)

n(z) = n0e
−(z−z0)/H , (11.54)
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and where n(z) is the neutral density (9.4), H is the neutral scale height, σ (a) is
the absorption cross section, I∞ is the flux of radiation incident on the top of the
atmosphere, η is the ionization efficiency, τ is the optical depth, and z0 is a reference
altitude. If the reference altitude is chosen to be the level of unit optical depth (τ = 1)
for overhead sun (χ = 0◦), the production rate at z0 becomes

Pco = I∞ησ (a)n0e−1. (11.55)

Now, the substitution of Equations (11.53–55) into Equation (11.52) yields

Pc(z,χ) = Pco exp

[
1− z − z0

H
− exp

(
z0 − z

H

)
sec χ

]
, (11.56)

where Hσ (a)n0 = 1 from Equation (11.53) because τ = 1 and χ = 0◦ at the refer-
ence altitude z0. Finally, the substitution of the Chapman production function (11.56)
into the continuity equation (11.51) leads to the expression for the Chapman layer;

ne(z,χ) =
(

Pco
kd

)1/2
exp

{
1

2

[
1− z − z0

H
− exp

(
z0 − z

H

)
secχ

]}
.

(11.57)

Note that near the peak of the layer (z ≈ z0), the exponentials can be expanded in a
Taylor series, and the expression for ne reduces to

ne
(
z, 0◦

) ≈ (
Pco
kd

)1/2[
1− (z − z0)2

4H 2

]
(11.58)

for overhead sun (χ = 0◦). Hence, the electron density profile is parabolic near
the peak of the layer, which is why half-thicknesses are defined with reference to a
parabolic shape.
The F region is usually divided into three subregions. The lowest region, where

photochemistry dominates, is called the F1 region. The region where there is a
transition from chemical to diffusion dominance is called the F2 region, and the
upper F region, where diffusion dominates, is called the topside ionosphere. In the
F1 region, the photochemistry simplifies because only one ion (O+) dominates. The
important reactions are photoionization of neutral atomic oxygen (11.38) and loss in
reactions with N2 andO2 (Equations 11.41 and 11.42). However, transport processes
become important in the F2 and upper F regions, including ambipolar diffusion
and wind-induced drifts along B (Equation 5.54) and electrodynamic drifts across
B (Equation 5.99). In the mid-latitude ionosphere, the magnetic field is basically
straight and uniform at F region altitudes, but it is inclined to the horizontal at an
angle I (see Figure 11.7; Section 11.1). However, the mid-latitude ionosphere is
horizontally stratified, which means that the density and temperature gradients (and
gravity) are in the vertical direction. The inclined B field, therefore, reduces the
effectiveness of diffusion because the charged particles are constrained to diffuse
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Figure 11.7 Geometry associated with induced vertical plasma drifts due to
(a) field-aligned plasma diffusion, ua‖, driven by a vertical force F, (b) an equatorward
meridional neutral wind, un, and (c) an eastward electric field, E. The components uaz ,
uwz , and uEz are the induced vertical drifts due to diffusion, the wind, and the electric
field. The angle I is the inclination of the B field.

alongB as a result of the small collision-to-cyclotron frequency ratios (Section 5.10).
The inclinedB field also affects the wind-induced and electrodynamic plasma drifts.
If ua|| is the ambipolar diffusion part of the ion velocity along B (Equation 5.54),

then for a vertical force F (g, dT/dz, dn/dz), it is the component of F along B that
drives diffusion, so that ua|| ∝F sin I (Figure 11.7). The vertical component of the
ambipolar diffusion velocity, which enters the continuity equation, is uaz = ua|| sin I ,
so that uaz ∝F sin2 I . A vertical plasma drift is also induced by both a meridional
neutral wind and a zonal electric field. For an equatorward neutral wind (un), the
induced plasma drift along B is un cos I and the vertical component of this plasma
velocity is un sin I cos I . Finally, for an eastward electric field, the electrodynamic
drift has a vertical component that is equal to (E/B) cos I . When all three plasma
drifts are taken into account, the ion diffusion equation (5.54) can be expressed in
the form

uiz = E

B
cos I + un sin I cos I − sin2 IDa

(
1

ni

∂ni
∂z
+ 1

Tp

∂Tp
∂z

+ 1

Hp

)
,

(11.59)

where Hp = 2kTp/(mig) is the plasma scale height (Equation 5.59) and where, for
simplicity, the ∇ · τ i term is neglected.
Equation (11.59) is the “classical” ambipolar diffusion equation for the F2 region.

It is applicable at both middle and high latitudes. However, for many applica-
tions, additional terms must be taken into account. For example, the ∇ · τ i term
is important at high latitudes in the regions where the convection electric fields
are greater than about 40 mV m−1, because it introduces a temperature anisotropy
(Sections 5.2 and 5.13). Also, in deriving Equations (5.54) and (11.59), the heat
flow collision terms in the momentum equation were neglected. These collision
terms, which account for thermal diffusion and provide corrections to ordinary
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diffusion, are important in the upperF region and topside ionosphere atmid-latitudes
(Section 5.14). Finally, the expressions for induced vertical plasma drifts due to
electric fields and neutral winds become more complicated when the magnetic field
declination is also taken into account.
Neutral winds and electric fields do not affect the basic shape of the F layer

and, therefore, it is convenient temporarily to ignore their influence. In the daytime
F1 region at mid-latitudes, diffusion is not important, and during the daytime, the
time variations are slow. For these conditions, the O+ (or electron) density can be
obtained simply by equating the production (11.38) and loss (11.41 and 11.42) terms
in the O+ continuity equation, which yields

n(O+) = Pts(O+)
1.2× 10−12n(N2)+ 2.1× 10−11n(O2) , (11.60)

where the chemical rate constants were taken from Table 8.3 and Pts is given by
Equation (9.25). Equation (11.60) is the chemical equilibrium expression for O+.
When chemical equilibrium prevails, the O+ density increases exponentially with
altitude (Figure 11.8). This occurs because the O+ photoionization rate, Pts(O+), is
directly proportional to the atomic oxygen density, which decreases exponentially
with altitude, but at a slower rate than the decrease of the N2 and O2 densities. The
net result is that the O+ density increases exponentially with altitude. On the other
hand, in the upper F region diffusion dominates and the O+ density, in general,
follows a diffusive equilibrium profile, which is obtained by setting the quantity in
the parentheses in Equation (11.59) to zero (Section 5.5). Hence, the O+ density
decreases exponentially with altitude at a rate governed by both the plasma tem-
perature gradient and scale height. The F region peak density occurs at the altitude
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where the diffusion and chemical processes are of equal importance, i.e., where the
chemical and diffusion time constants are equal (Section 8.1 and Equation 10.67).
As noted above, the charged particles are constrained to move along B at F

region altitudes. As a consequence, a poleward neutral wind induces a downward
plasma drift, while an equatorward wind induces an upward plasma drift. Likewise,
a westward electric field induces a downward plasma drift and an eastward electric
field induces an upward plasma drift. The effect of such induced drifts on the daytime
F region is shown in Figure 11.9. For the upward plasma drift, the F layer moves
to higher altitudes, where the O+ loss rate is lower and, therefore, both NmF2 and
hmF2 increase. The reverse occurs for a downward plasma drift.
Photoionizationdoes not occur at night and, therefore, the ionosphere decays. This

decay is shown in Figure 11.10 for the idealized situation where nighttime sources
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of ionization are ignored. The calculations start with a typical daytime ionosphere
at mid-latitudes (t = 0). Subsequently, the photoionization rates are set to zero and
the decays of the E and F regions are followed for several hours. The E region,
which is populated by the molecular ions NO+, O+2 , and N

+
2 , decays very rapidly

because of the fast dissociative recombination rates. The O+ density in the F region
decays exponentially with time in a shape-preserving fashion. The time constant for
the exponential decay is approximately equal to the inverse of theO+ loss frequency
(11.61) at the height of the F region peak. This fact can be deduced by considering
the O+ continuity equation. At night, photoionization is absent and near the peak
of the layer the variation with altitude is small (∂/∂z → 0). Consequently, the O+
continuity equation reduces to

∂n/∂t = −kβn, (11.61)

where kβ = [1.2 × 10−12n(N2) + 2.1× 10−11n(O2)] is the O+ loss fre-
quency evaluated at the peak altitude, hmF2. The solution of this equation is
n∼ exp(−kβ t). For the case shown in Figure 11.10, the initial O+ density decays
by a factor of ten in about four hours.
The ionospheric decay shown in Figure 11.10 occurs in the absence of ionization

sources. However, this situation is not representative of the true nighttime conditions
because ionization sources other than direct photoionization exist at night. Specifi-
cally, the nocturnal E region is maintained by production due to both starlight and
resonantly scattered solar radiation (H Lyman α and β). The nocturnal F region is
partially maintained by a downward flow of ionization from the overlying plasma
sphere (discussed in Section 11.5). Also, the basic flow of the neutral atmosphere is
around the globe from the subsolar point on the day side to the night side. Therefore,
on the night side, the meridional neutral wind is generally toward the equator. This
equatorward wind induces an upward plasma drift that raises the F layer and, hence,
slows its decay. None of these nocturnal processes were included in the calculations
shown in Figure 11.10.
The D region, which covers the altitude range from about 60 to 100 km, is dis-

cussed last because it is the most difficult region to observe and to model. Like
the E region, the D region is controlled by chemical processes and the dominant
species are molecular ions and neutrals. However, unlike the E region, the D region
is composed of both positive and negative ions and water cluster ions; in addi-
tion, three-body chemical reactions are important. The cluster ions dominate the D
region at altitudes below about 85 km and they are formed via hydration starting
from the primary ions NO+ and O+2 . Also, in addition to the usual neutrals that
are found in the E and lower F regions (N2, O2, O, N), several important minor
neutral species [NO, CO2, H2O, O3, OH, NO2, HO2, O2(1�g)] must be taken into
account. Nitric oxide, in particular, plays a crucial role in the D region ion chem-
istry because it can be ionized by Lyman α radiation. Unfortunately, the densities
of the minor neutral species and many of the chemical reaction rates are not well
known.
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Cluster ionswere firstmeasured in 1963with a rocket-bornemass spectrometer,12

and subsequently, increasingly more complex models were developed to explain the
measurements. Figure 11.11 shows the Mitra–Rowe six-ion chemical scheme for
the D and E regions.13 The various reactions and rates are given elsewhere14 and
are not repeated here.14 Some of the important features of this simplified model
are: (1) NO+ and O+2 are the precursor ions; (2) clustering occurs through NO+
above about 70 km and through O+2 below this altitude; (3) O

+
4 is included explicitly

because the back reaction to O+2 inhibits clustering from the O
+
2 channel above about

85 km; (4) all cluster ions are lumped under a common ion called Y+ (this is the
main simplifying assumption); (5) all negative ions, except O−2 , are lumped under
X−. The main advantage of the six-ion model is its computational efficiency, but
another advantage is that numerous reactions with uncertain rate coefficients are
lumped together.
The most sophisticated chemical model of the D and E regions that has been

developed to date is the Sodankylä ion chemistry (SIC) model, which includes
24 positive ions and 11 negative ions.14 The chemical scheme upon which the model
is based is shown in Figure 11.12. Note that the water cluster ions are primarily of the
formH+(H2O)n, NO+(H2O)n, andO+2 (H2O)n, where n can be as large as eight. The
SICmodel takes account of both two- and three-body positive ion–neutral reactions,
recombination of positive ions with electrons, photodissociation of positive ions,
both two- and three-body negative ion–neutral reactions, electron photodetachment
of negative ions, photodissociation of negative ions, electron attachment to neutrals,
and ion–ion recombination. Overall, there are 174 chemical reactions in the SIC
model. The specific reactions and their rates are given in the literature14 and are not
repeated here.14

A comparison of electron density profiles calculated from the Mitra–Rowe and
SIC models with measurements clearly shows the current state of the art with regard
to D and E region modeling. Such a comparison has been made using EISCAT
incoherent scatter radar measurement of ne over the altitude range of 80–120 km.14

The comparison was limited to the daytime, summer ionosphere and quiet geomag-
netic conditions. To start the model and data comparison, it was necessary to adopt
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Figure 11.12 The 35-ion chemical scheme for the D and E regions developed at the
Sodankylä Geophysical Observatory.14

a reference solar spectrum, a representative Lyman α flux, density profiles for the
main neutral species (N2, O2, O, N, He, H), and altitude profiles for theminor neutral
species [NO, CO2, H2O, O3, OH, NO2, HO2, O(1�g)], which were obtained from
separate measurements. As expected, the initial comparison of both the six-ion and
35-ionmodelswith the ne measurementswere not very successful. To get agreement,
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Figure 11.13 The comparison of the Mitra–Rowe and SIC models with EISCAT
electron density measurements taken at 1510 UT on August 23, 1985.14

the solar EUV flux was first adjusted in such a way as to give a better agreement
between modeled and measured ne at E region altitudes. Then, the nitric oxide (NO)
density profile was adjusted to get a better model and data fit at all altitudes.With the
adjustments, both the six-ion and 35-ion models were in good agreement with the
measured ne profiles at several solar zenith angles (Figure 11.13). Unfortunately,
the NO and solar flux adjustments needed by the two models were very different.
Large, but different adjustments had to be made to the adopted NO profile, and the
adopted EUV fluxes had to be multiplied by a factor of 2.5 for the Mitra–Rowe
model and 1.3 for the SIC model. This means the fundamental chemical reactions
that govern the ne behavior in the D and lower E regions have not yet been clearly
established.

11.5 Topside ionosphere and plasmasphere

The ionospheric layers were first studied in the 1925 to 1930 time period using
ground-based radio sounding techniques (Section 14.5). However, high-frequency
radio waves transmitted from the Earth are reflected only from altitudes up to the F2
region peak. Above the F2 peak, it was assumed that the electron density decreased
exponentially with altitude until it merged with the solar wind. This view persisted
up to 1953, when lightning-generated low-frequency radio waves (whistlers), which
propagate alongB, were used to deduce the presence of appreciable electron concen-
trations (∼103 cm−3) up to altitudes as high as three or four Earth radii.15 However,
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Figure 11.14 Altitude profiles of ion composition for the daytime (top panel) and
nighttime (bottom panel) ionosphere. The profiles were measured with the incoherent
scatter radar at Arecibo, Puerto Rico.17

it was not until 1960 that a plausible explanation was advanced to explain the high
plasma densities. In 1960, it was suggested that the reversible charge exchange reac-
tion O+ + H⇔ H+ + O could produce large quantities of H+ ions that could then
diffuse upward along geomagnetic field lines to high altitudes.16

It is now well known that the plasma environment that surrounds the Earth is
composed of both a topside ionosphere and protonosphere. The topside ionosphere
is defined to be that region above the F2 peak (hmF2) where O+ is the dominant
ion; it extends from about 600 to 1500 km at mid-latitudes. The region above this,
where H+ becomes dominant, is referred to as the protonosphere. Figure 11.14
shows typical ion density profiles in the topside ionosphere and protonosphere, as
measured by the incoherent scatter radar at Arecibo, Puerto Rico.
TheH+ ions at low altitudes are in chemical equilibriumwithO+ and their density

is controlled by the charge exchange reaction (also see Section 8.3)

O+ + H
kf←→
kr

H+ + O, (11.62)
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where kf and kr are the forward and reverse reaction rates,18

kf = 2.5× 10−11
[
Tn + T (O+)

16
+ 1.2× 10−8(u(O+)− un

)2]1/2,
(11.63a)

kr = 2.2× 10−11
[
T (H+)+ Tn

16
+ 1.2× 10−8(u(H+)− un

)2]1/2,
(11.63b)

and where the temperatures are in kelvins, the field-aligned velocities in cm s−1, and
the rate coefficients in cm3 s−1. At these altitudes, the H+ density can be obtained
simply by equating the H+ production and loss terms, which yields

n(H+) = 1.13n(O+)n(H)
n(O)

, (11.64)

where the temperatures are assumed to be comparable and relatively high
(Section 8.3), and the flow terms are negligible in the chemical equilibrium domain,
so that kf /kr ≈ 1.13. Therefore, when chemical equilibrium prevails, the H+ den-
sity increases exponentially with altitude, because the O+ and H densities decrease
exponentially with altitude more slowly than the O density.
Eventually, chemical equilibrium gives way to diffusive equilibrium, and this

occurs when H+ is still a minor ion. However, under these circumstances, the H+
density continues to increase with altitude, at a rate that is almost the same as that
which occurs for chemical equilibrium (Section 5.7). When the H+ density becomes
greater than the O+ density, it then decreases exponentially with altitude with a
diffusive equilibrium scale height that is characteristic of amajor ion (Equation 5.59).
When diffusive equilibrium controls the density structure of the topside iono-

sphere, thermal diffusion can be important (Section 5.14). Thermal diffusion arises
as a result of the effect that heat flow has on the momentum balance when different
gases collide. It is particularly strong in fully ionized gases when there are substan-
tial ion or electron temperature gradients. In a plasma composed of O+, H+, and
electrons, thermal diffusion acts to drive the light and heavy ions in opposite direc-
tions. The heavy ions are driven toward hotter regions, i.e., toward higher altitudes.
This effect is illustrated in Figure 11.15, where theoretical ion and electron density
profiles are shown for calculations with and without thermal diffusion. Three cases
are illustrated, corresponding to plasma temperatures typical of the nighttime and
daytime ionosphere at mid-latitudes and those found in sub-auroral red arcs (SAR
arcs; Section 11.6). For all three cases, both Te and Ti increase with altitude, with
progressively larger temperature gradients in going from the nighttime to the day-
time and then to the SAR arc case. Note that thermal diffusion acts to increase the
O+ density at high altitudes and decrease the H+ density, and this can result in a
substantial change in the O+/H+ transition altitude (by as much as 400 to 500 km).
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Diffusive equilibrium prevails when the upward H+ flow speed is much smaller
than the H+ thermal speed. In general, diffusive equilibrium prevails at low latitudes
and at the lower end of the mid-latitude domain. It can also prevail throughout the
entiremid-latitude domain duringmagnetically quiet periods. In themore typical sit-
uation, the upward H+ speed increases with latitude because the H+ upward flow is
determined by the pressure in the overlying plasmasphere (also called the protono-
sphere), which is a torus-shaped volume composed of closed, basically dipolar,
magnetic field lines (Figure 2.10). As latitude increases, the volume of the plasma-
spheric flux tubes increases, and consequently, the H+ density and pressure at high
altitudes tend to decrease.
Several situations are possible, depending on the solar cycle, seasonal, and geo-

magnetic activity conditions. First, when the ionosphere and plasmasphere are in
equilibrium, diffusive equilibrium prevails and there is a gentle ebb and flow of
ionization between the two regions. The flow is upward from the ionosphere during
the day, when the O+ density is relatively high, and downward at night, when the
O+ density decays. The downflowing H+ ions charge exchange with O to produce
O+, and this process helps to maintain the nighttime F region. A different situation
can occur near the solstices, where the flow can be interhemispheric. In this case,
it is upward and out of the topside ionosphere throughout the day and night in the
summer hemisphere. In the winter hemisphere, the flow is upward during the day
and downward at night. Of course, the direction of the flow determines whether the
flow is a source or sink for the ionosphere.
Another flow situation occurs after geomagnetic storms and substorms.20 Dur-

ing these events, the plasma in the outer plasmasphere is convected away owing to
enhancedmagnetospheric electric fields (Section 12.1). The high-altitude depletions
can be very substantial, and the consequent reductions in plasma pressure induce
ionospheric upflows. The upflows typically occur throughout the day and night in
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both hemispheres, and they can last for many days after the storm or substorm.
The flux tubes at low latitudes refill fairly quickly because their volumes are small.
However, the flux tubes in the outer plasmasphere can take many days to refill,
which is longer than the average time between geomagnetic storms. Therefore, the
outer plasmaspheric flux tubes are always in a partially depleted state. The net result
is that at a fixed altitude the densities of the light ions (H+ and He+) decrease
with increasing latitude (Figure 11.16). This feature is known as the light-ion
trough.

11.6 Plasma thermal structure

In Chapter 9, the general flow of energy in the Earth’s upper atmosphere was dis-
cussed and the various heating and cooling rates for the electrons and ions were
presented (Sections 9.6 and 9.7). As noted in Chapter 9, the photoelectrons provide
the main source of energy for the thermal electrons at all latitudes, but precipitating
auroral electrons are an important additional source of energy at high latitudes. The
photoelectron energy is transferred to the ionospheric electrons by both direct and
indirect processes. First, the low-energy photoelectrons (≤2 eV) transfer energy
directly to the thermal electrons via Coulomb collisions in a region close to where
they are created. This leads to a bulk heating of the thermal electron gas, with the
bulk heating rate peaking in the 150 to 300 km altitude region depending on the geo-
physical conditions (Figure 9.12). However, the more energetic photoelectrons can
also heat the ionospheric electrons by an indirect mechanism. These photoelectrons
can escape the ionosphere, and they lose energy to the thermal electrons at high
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altitudes as they escape. This energy is then conducted down into the ionosphere
along geomagnetic field lines.
The thermal electrons can lose energy to the various ion and neutral species

via both elastic and inelastic collisional processes. At middle and low latitudes,
the dominant electron cooling results from excitation of the fine structure levels of
atomic oxygen at low altitudes and from both Coulomb collisions with ions and
downward thermal conduction at high altitudes (Figure 9.17). However, when the
electron temperature is high, as it is in the auroral oval and in sub-auroral red arcs,
other inelastic collisional processes also become effective in cooling the thermal
electrons.
The equation that governs the electron energy balance in a partially ionized plasma

was derived earlier and is given by Equation (5.135c). In general, the viscous heating
of the electron gas is small and, therefore, the τ e : ∇ue term in Equation (5.135c)
can be neglected. On the other hand, additional terms must be added on the right-
hand side of this equation to account for external heat sources and inelastic cooling
processes. With these modifications, Equation (5.135c) becomes

De
Dt

(
3

2
pe

)
+ 5
2
pe(∇ · ue)+ ∇ · qe =

∑
Qe −

∑
Le

−
∑

i

ρeνei

mi
3k(Te − Ti)

−
∑

n

ρeνen

mn
3k(Te − Tn), (11.65)

where
∑

Qe is the sum of the external heating rates (photoelectrons (9.51), auroral
electrons, etc.),

∑
Le is the sum of the inelastic cooling rates (Equations 9.52–70),

and De/Dt = ∂/∂t+ue ·∇ is the convective derivative. The energy equation (11.65)
can be expressed in a more convenient form by using the source-free continuity
equation, ∂ne/∂t + ∇ · (neue) = 0, and the result is

3

2
nek

∂Te
∂t

= −nekTe∇ · ue − 3
2
nekue · ∇Te − ∇ · qe +

∑
Qe −

∑
Le

−
∑

i

ρeνei

mi
3k(Te − Ti)−

∑
n

ρeνen

mn
3k(Te − Tn). (11.66)

The first term on the right-hand side of Equation (11.66) represents adiabatic
expansion and the second termaccounts for advection. These processes are negligible
in the terrestrial ionosphere.Also, at middle and high latitudes, the electron heat flow
is along B, while the dominant temperature gradients are in the vertical, z, direction.
This leads to the appearance of a sin2 I term in the expression for∇ ·qe (the same as
for diffusion; Equation 11.59). Therefore, for the terrestrial ionosphere at middle and
high latitudes, with no field-aligned current (J‖ = 0), the electron energy equation
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reduces to
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Le,
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ρeνen

mn
3k(Te − Tn), (11.67)

where the appropriate expression for qe is given in Equation (5.141) and where the
thermal conductivity, λe, is given by Equation (5.146).
Typically, the electron temperature in the ionosphere responds rapidly (a few

seconds) to changing conditions and, therefore, the electron temperature is generally
in a quasi-steady state (∂/∂t → 0). Furthermore, at lowaltitudes, thermal conduction
is not important because the neutrals are effective in inhibiting the flow of heat
(Equation 5.146). Under these circumstances, the electron temperature is determined
by a balance between local heating and cooling processes. The altitude below which
a local thermal equilibrium prevails varies from 150 to 350 km, depending on local
time, season, and solar cycle. On the other hand, the electron thermal balance at
high altitudes is dominated by thermal conduction and the plasma is effectively
fully ionized. In this case, the electron energy equation (11.67) reduces to

d

dz

(
7.7× 105T 5/2e dTe

dz

)
= 0, (11.68)

where the fully ionized expression, λe = 7.7 × 105T 5/2e eV cm−1 s−1K−1 (the
Spitzer conductivity), was used (Equation 5.146). Equation (11.68) can be easily
solved to obtain an analytical expression for the Te profile at the altitudes where
thermal conduction dominates, and the solution is

Te =
[
T 7/2eb − 7

2

(
qet

7.7× 105
)
(z − zb)

]2/7
, (11.69)

where Teb (K) is the electron temperature at the bottom boundary of the thermal
conduction regime, qet (in eV cm−2 s−1) is the electron heat flow through the top
boundary, and zb (in cm) is the altitude of the bottom boundary. Equation (11.69)
shows that if there is a downward heat flow through the top boundary (qet < 0),
then Te increases with altitude. If qet = 0, then Te = Teb at all altitudes, i.e., Te is
isothermal.
The basic physics described above is reflected in Figure 11.17, where calculated

Te profiles are plotted for both day and night local times.22, 23 The profiles pertain to
the ionosphere over Millstone Hill on March 23–24, 1970. For the daytime condi-
tions, photoelectron heating and oxygen fine structure cooling dominate the electron
thermal balance below 300 km, and the peak in Te is associated with the peak in the
photoelectron heating rate. Above 300 km, the Te profile is dominated by thermal
conduction, with cooling to the ions playing a minor role. The steep gradient in
Te is caused by the imposition of a large downward electron heat flow at the upper
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Figure 11.17 Calculated electron, ion, and neutral temperature profiles for the
ionosphere over Millstone Hill on March 23–24, 1970. The left panel is for 1422 LT
and the right panel for 0222 LT.22

boundary (800 km), whichwas required to bring the calculated Te profiles into agree-
ment with the measured profiles (not shown).At night, the photoelectron heat source
is absent, andTe = Tn at low altitudes, owing to the strong collisional coupling of the
electrons and neutrals. However, above about 250 km, thermal conduction becomes
important and Te increases with altitude in response to the imposed downward heat
flux at 800 km. This latter downward heat flow results from either energy stored at
high altitudes during the day or from the effects of wave–particle interactions at high
altitudes.
The ion thermal balance is straightforward because temporal variations, advec-

tion, adiabatic expansion, and thermal conduction are not too important at mid-
latitudes. Typically, thermal conduction is only important for the ions above about
700 km. Therefore, the ion energy balance is simply governed by collisional coupling
to both the hot thermal electrons and the cold neutrals. At low altitudes, coupling
to the neutrals dominates and Ti = Tn during both the day and night. As altitude
increases, coupling to the electrons becomes progressively more important and Ti
increases. However, ion–electron coupling is never complete and, therefore, Ti does
not attain thermal equilibrium with Te (Figure 11.17).
The ability of photoelectrons to escape the topside ionosphere leads to some

interesting thermal phenomena.As noted above, the photoelectrons lose energy to the
thermal electrons at high altitudes as they stream alongB. The length of a dipole field
line increases as latitude increases, and consequently, more photoelectron energy is
transferred to the thermal electrons on longer, higher latitude, field lines than on
shorter, lower latitude, field lines. The net effect is that the downward electron heat
flow into the ionosphere and, hence, the ionospheric electron temperature increase
with latitude at the altitudes where thermal conduction dominates. This phenomenon
is illustrated in Figure 11.18, where Te distributions at 1000 km are shown as a
function of latitude and local time. The temperatures are from an empirical model
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Figure 11.18 Electron temperatures obtained from an empirical model of the averaged
latitudinal and local time behavior of Te at 1000 km for winter solstice in 1964.24

that is based on Explorer 22 satellite measurements.24 Note that there are Te maxima
in both hemispheres at about 50◦ latitude, which is the approximate upper limit of
the mid-latitude domain.
Another interesting thermal phenomenon is known as the predawn effect, whereby

Te begins to increase rapidly before local sunrise. This feature is shown in
Figure 11.19, where Te measurements at 375 km are plotted as a function of local
time for Millstone Hill. Note that Te begins to increase at about 0230 LT, while local
sunrise occurs at about 0530 LT. This early onset of the Te increase occurs at a time
that corresponds to sunrise in the magnetically conjugate ionosphere and the heating
is caused by photoelectrons arriving from the conjugate hemisphere.
A thermal phenomenon that does not involve photoelectrons occurs during geo-

magnetic disturbances and is known as sub-auroral red (SAR) arcs or stable auroral
red (SAR) arcs.26, 27 These arcs correspond to a band of red emission that is nar-
row in latitude, but extended in longitude. The band of emission appears to extend
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Figure 11.19 Electron temperature measurements obtained with the Millstone Hill
incoherent scatter radar on 2–3 March 1967. Clearly evident is the predawn electron
heating caused by photoelectrons arriving from the conjugate hemisphere.25

completely around the Earth, and it generally occurs in both hemispheres simul-
taneously. The stability of the emission led to the term stable auroral red arc, but
SAR arcs occur equatorward of the auroral oval and, to avoid confusion, the term
sub-auroral red arc was introduced. Sub-auroral red arcs are a manifestation of a
thermal phenomenon and arise in the following manner. During geomagnetic dis-
turbances, the cold, high density plasma in the plasmasphere comes into contact
with the hot, tenuous plasma in the ring current. As a result of Coulomb collisions
or wave–particle interactions (via ion cyclotron or hydromagnetic waves), energy is
transferred from the ring current particles to the thermal electrons in the interaction
region. This energy is then conducted down to the ionosphere along B, produc-
ing elevated electron temperatures (4000–10 000 K). At altitudes between 300 to
400 km, there is a sufficient number of hot electrons in the tail of the thermal elec-
tron velocity distribution to collisionally excite atomic oxygen to a higher electronic
state. The excitation is from the O(3P) to O(1D) state, which requires an energy of
1.97 eV (Figure 8.1). The excited atoms subsequently emit 630 nm photons, which
corresponds to the red line of atomic oxygen.

11.7 Diurnal variation at mid-latitudes

The ionosphere undergoes a marked diurnal variation as the Earth rotates into and
out of sunlight. This diurnal variation is shown in Figure 11.20 for a typical mid-
latitude location. The figure shows contours of ne, Te, and Ti as a function of altitude
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and Eastern Standard Time (EST). The measurements were made with the Millstone
Hill incoherent scatter radar on March 23–24, 1970.22, 23, 28 The physical processes
that control the diurnal variation of the electron density change with both local
time and altitude. At sunrise, the electron density begins to increase rapidly owing
to photoionization (Section 9.3). After this initial sunrise increase, ne displays a
slow rise throughout the day, and then it decays at sunset as the photoionization
source disappears. The ionization below the F region peak is under strong solar
control, reaching its maximum value near noon, when the solar zenith angle is
the smallest, and then decreasing symmetrically away from noon. This behavior
results from the fact that photochemistry dominates at altitudes below the F region
peak and the chemical time constants are short (Sections 8.2 to 8.4). The electron
density above theF region peak is influenced by other processes, including diffusion,
interhemispheric flow, and neutral winds. Therefore, the electron density contours
at altitudes above the peak do not display a strong solar zenith angle dependence,
and the maximum ionization occurs late in the afternoon close to the time when
the neutral exospheric temperature peaks. At night, the plasma transport processes
control the ionization decay. However, the height of the F region peak is primarily
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determined by the meridional neutral wind, which induces a plasma flow along the
inclined geomagnetic field lines. It is upward at night and downward during the day
(Section 11.4).
The electrons are heated by photoelectrons that are created in the photoionization

process and by a downward flow of heat from the magnetosphere. However, the
electron temperature is also influenced by both elastic and inelastic collisions of
the thermal electrons with the ions and neutrals (Sections 9.6 and 9.7). In addition,
for a given electron heating rate, the electron temperature is inversely related to
the electron density. These facts help explain the diurnal variation of Te shown in
Figure 11.20. At sunrise, Te increases rapidly, with a time constant of the order of
seconds, because of photoelectron heating. The photoelectron heating rate does not
vary appreciably during the early morning hours, but the electron density continues
to increase. As the electron density increases, the electron temperature decreases
(between 07 and 10 EST), because of the increasing heat capacity of the electron
gas and the stronger coupling to the relatively cold ions. From about 10 to 16 EST, Te
is nearly constant, and thenTe decreases at sunsetwhen the photoelectron heat source
disappears. However, Te stays elevated above Tn because of an energy flow from
the plasmasphere, which produces the positive gradient in the nocturnal electron
temperature above 200 km.
The diurnal variation of the ion temperature is more straightforward than those

for the electron density and temperature. Below about 400 km, the ion temperature
basically follows the neutral temperature, and its diurnal variation determines the
Ti diurnal variation. Above this height, Ti increases with altitude, owing primarily
to the increased thermal coupling to the hotter electrons, but there is also a small
downward ion heat flow from themagnetosphere. Nevertheless, the diurnal variation
of Ti is controlled by the diurnal variation of Te above 400 km.

11.8 Seasonal variation at mid-latitudes

The ionosphere exhibits strong seasonal and solar cycle variations because the main
source of ionization and energy for the ionosphere is photoionization. Therefore,
whenever either the solar zenith angle or the solar radiation flux change, the iono-
sphere will change. The ionosphere’s seasonal variation is related to a solar zenith
angle change, while its solar cycle variation is related to a change in the solar EUV
and X-ray radiation fluxes. However, the ionospheric variations are not always
simple because the ionosphere is closely coupled to the thermosphere, which also
undergoes seasonal and solar cycle changes. For example, Figure 11.21 shows the
seasonal variation of the daytime ionosphere at mid-latitudes.29 The important fea-
ture to note is that NmF2 in winter is greater than NmF2 in summer despite the fact
that the solar zenith angle is smaller in summer. This phenomenon, which is called
the seasonal anomaly, occurs because of the seasonal changes in the neutral atmo-
sphere. Specifically, the summer-to-winter neutral circulation results in an increase
in theO/N2 ratio in thewinter hemisphere and a decrease in the summer hemisphere.
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Figure 11.21 Summer (solid curves) and winter (dashed curves) profiles of Te, Ti, and
ne measured by the Arecibo incoherent scatter radar during the daytime.29

The increased O and decreased N2 densities in winter act to increase the O+ densi-
ties, due to the relative increase in the production rate and decrease in the loss rate.
This effect is more than enough to offset the tendency for decreased O+ densities
due to a larger solar zenith angle. The net result is that the O+ densities in winter
are larger than those in summer at F region altitudes. In turn, the higher electron
densities in winter result in lower electron temperatures (Figure 11.21), owing to the
inverse relationship between the electron density and temperature. Also, it should
be noted that the neutral helium density displays a strong seasonal dependence and
this leads to a seasonal dependence for He+. However, this topic is discussed later
in connection with the polar wind (Section 12.12).

11.9 Solar cycle variation at mid-latitudes

The solar cycle variation of the electron density and temperature is shown in
Figure 11.22 for the daytime mid-latitude ionosphere at equinox. At solar maxi-
mum, the solar EUV fluxes and the atomic oxygen densities are greater than those
at solar minimum, and these conditions lead to higher electron densities and lower
electron temperatures. The higher electron densities at solar maximum are simply a
result of an increased production, while the lower electron temperatures are a result
of the inverse relationship between the electron density and temperature.With regard
to the shape of the Te profile, a pronounced peak occurs at about 250 km at solar
maximum, while Te increases monotonically with altitude at solar minimum. The
Te peak at solar maximum is again a consequence of the high electron densities,
which lead to a dominance of electron–ion energy coupling over thermal conduc-
tion at altitudes between about 250 to 400 km. The stronger electron coupling to the
cold ions causes the decrease in Te over this altitude range. Above 400 km, thermal
conduction dominates and Te increases with altitude in response to a downward heat
flow from the magnetosphere.
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Figure 11.22 Electron temperature and density profiles for the daytime mid-latitude
ionosphere at equinox for both solar minimum and maximum conditions. The solid
curves are profiles measured by the Millstone Hill incoherent scatter radar, while the
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11.10 Plasma transport in a dipole magnetic field

The large-scale flow of plasma in the equatorial region of the terrestrial ionosphere
can be described in terms of a flow along B(u‖b) and an electrodynamic drift across
B(uE), such that

u = uE + u‖b. (11.70)

In this case, the continuity equation (3.57) for an electrically neutral (ne = ni = n),
current-free (ue = ui = u), single-ion O+-electron plasma can be expressed in the
form

Dn

Dt
+ ∇ · (nu‖b) = P − L′n− n(∇ · uE), (11.71)

where L′ is the O+ loss frequency and

D

Dt
= ∂

∂t
+ uE · ∇ (11.72)

is the convective derivative that pertains tomotion acrossB andwhere∇·uE is given
by Equation (11.18). The second term on the left-hand side of Equation (11.71) can
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be written as

∇ · (nu‖b) = b · ∇(nu‖)+ nu‖(∇ · b) = ∂

∂s
(nu‖)+ nu‖

(
1

A

∂A

∂s

)
,

(11.73)

where it is left as an exercise to show that ∇ · b = (1/A)∂A/∂s (Equation 11.12).
With this result, the continuity equation (11.71) becomes

Dn

Dt
+ ∂

∂s
(nu‖)+ nu‖

(
1

A

∂A

∂s

)
= P − L′n− n(∇ · uE). (11.74)

The flow along B can be obtained by taking the scalar product of b with the
momentum equation (3.58). However, in the equatorial region, the field-aligned
flow is usually subsonic and the temperature is isotropic. Therefore, the nonlinear
inertial and stress terms can be neglected, and the field-aligned momentum equation
for the ions reduces to

∂pi
∂s
+ nimig sin I − nieE‖ = nimiνi(un − ui)‖, (11.75)

where un is the neutral wind velocity, which is assumed to be the same for all neutral
species, and where νi is the total ion–neutral collision frequency

νi =
∑

n

νin. (11.76)

The polarization electrostatic field is determined by the electron motion alongB and
is given by (Equation 5.61)

eE‖ = − 1
ne

∂pe
∂s
. (11.77)

Substituting Equation (11.77) into Equation (11.75) and noting that pe = nekTe,
pi = nikTi, and ne = ni = n, the field-alignedmomentum equation for the single-ion
plasma can be written in the form of a classical diffusion equation

nu‖ = nunθ cos I − Da

[
∂n

∂s
+ n

(
1

Tp

∂Tp
∂s

+ mig sin I

2kTp

)]
, (11.78)

where Da = 2kTp/(miνi) is the ambipolar diffusion coefficient (Equation 5.55),
Tp = (Te+Ti)/2 is the plasma temperature (Equation 5.56), and unθ is themeridional
component of the neutral wind. In deriving Equation (11.78), the contribution of the
vertical neutral wind was neglected, because it is generally small.
The substitution of the expression for the field-aligned plasma flux (11.78) into

the continuity equation (11.74) leads to a second-order, parabolic, partial differential
equation in the coordinate s. The coordinate s is then typically replaced with the
dipole coordinate qd by using Equations (11.19), (11.25), and (11.26).31–33
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11.11 Equatorial F region

The dynamo electric fields that are generated in the equatorial E region by ther-
mospheric winds are transmitted along the dipole magnetic field lines to F region
altitudes because of the high parallel conductivity (Figure 11.5). During the daytime,
the dynamo electric fields are eastward, which causes an upwardE×B plasma drift,
while the reverse occurs at night. The plasma that is lifted during the daytime then
diffuses down the magnetic field lines and away from the equator due to the action of
gravity. This combination of electromagnetic drift and diffusion produces a fountain-
like pattern of plasmamotion (Figure 11.23), which is called the equatorial fountain.
A result of the fountain motion is that ionization peaks are formed in the subtropics
on both sides of the magnetic equator; this feature is termed the equatorial anomaly
or Appleton anomaly. Figure 11.24 shows theAppleton anomaly, as calculated with
a numerical model for December solstice conditions.35 The figure shows the con-
ditions corresponding to 2000 LT, which is when the upward E× B drift raises the
F layer at the magnetic equator to 600 km. This leads to ionization peaks on both
sides of the magnetic equator via the fountain effect. The asymmetry in the peaks is
a result of a meridional neutral wind that blows from the southern (summer) hemi-
sphere to the northern (winter) hemisphere. Such a wind acts to transport plasma
up the field line in the southern hemisphere and down the field line in the north-
ern hemisphere. Four hours later, the E × B drift is downward, the height of the
F layer at the magnetic equator drops to 400 km, and the ionization peaks move
closer to the equator (not shown). The asymmetry is also decreased because the
northern peak, which is at a lower altitude, decays at a faster rate than the southern
peak.36, 37

Magnetic
Equator

0.0

1000.0

Magnetic latitude (degrees)

800.0

600.0

400.0

A
lti

tu
de

 (
km

)

200.0

0.0

3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0

27.0

30.0
0

Flux magnitude scale
(109cm–2 s–1)

5 10

Figure 11.23 Plasma drift pattern at low latitudes due to the combined action of an
upward E× B drift near the magnetic equator and a downward diffusion along B.34
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The vertical plasma drifts induced by dynamo electric fields have a pronounced
effect on the low-latitude ionosphere, and therefore, it is not surprising that a major
effort has been devoted to obtaining empirical models of this drift component. Cur-
rently, the most comprehensive empirical model of vertical plasma drifts (zonal
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electric fields) is the one based onAtmosphere Explorer E satellite measurements.38

The model includes diurnal, seasonal, solar cycle, and longitudinal dependencies.
Figure 11.25 shows the vertical plasma drifts as a function of local time in four lon-
gitude sectors and for three seasonal periods. As noted earlier, the vertical drifts are
upward during the day and downward at night, with typical magnitudes in the range
of 10–30 m s−1. A feature that is evident in most longitude sectors and seasons is
the pre-reversal enhancement in the upward plasma drift near dusk (∼18 LT). This
feature is linked to equatorial spread F (Section 11.12).
The vertical drifts shown in Figure 11.25 correspond to the average drifts that

occur in the low-latitude ionosphere. However, when magnetic activity changes
rapidly, which occurs during storms and substorms, disturbance electric fields appear
in the equatorial region.39 These electric fields result from the prompt penetration
of magnetospheric electric fields from high to low latitudes and from the dynamo
action of storm-generated neutral winds. The direct penetration electric fields have a
lifetime of about 1 hour. The disturbance dynamo (wind-driven) electric fields have
a longer lifetime and amplitudes that are proportional to the energy input into the
ionosphere–thermosphere system at high latitudes.

11.12 Equatorial spread F and bubbles

Plasma irregularities and inhomogeneities in the F region caused by plasma insta-
bilities manifest as spread F echoes (Figure 11.26). The scale sizes of the density
irregularities range from a few centimeters to a few hundred kilometers, and the
irregularities can appear at all latitudes. However, spread F in the equatorial region
can be particularly severe. At night, fully developed spread F is characterized by
plasma bubbles, which are vertically elongated wedges of depleted plasma that drift
upward from beneath the bottomside F layer to altitudes as high as 1500 km. The
individual flux tubes in a vertical wedge are typically depleted along their entire
north–south extents. The east–west extent of a disturbed region can be several thou-
sand kilometers, with the horizontal distance between separate depleted regions
being tens to hundreds of kilometers.41, 42 When bubbles form, they drift upward
with a speed that generally varies from 100 to 500 m s−1. However, fast bubbles,
with speeds in the range of from 500m s−1 to 5 km s−1, occur 40% of the time that
bubbles are detected.43 The plasma density in the bubbles can be up to two orders
of magnitude lower than that in the surrounding medium. When spread F ends, the
upward drift ceases and the bubbles become fossil bubbles. The fossil bubbles then
drift toward the east with the background plasma, but the high-altitude bubbles tend
to lag behind.
Figure 11.27 shows a schematic diagram of the evolution of equatorial spread F

and bubbles that is consistent with simultaneous HF radar, rocket, and Jicamarca
VHF radar measurements on March 14–15, 1983.44 Near the dusk terminator, the
equatorial F layer rises due to the action of dynamo electric fields and subsequently
it descends. On the day the measurements were made, the layer was in the process
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of moving downward when spread F occurred. Plasma bubbles formed on the bot-
tomside of the F layer and drifted to higher altitudes as the entire disturbed region
convected toward midnight. Past midnight, the spread F disturbance ceased, but
the bubbles (detached plumes) persisted. When a satellite traverses bubbles, the
measured ambient plasma density can decrease by more than an order of magnitude
(Figure 11.28). In this figure, the electron density variation along the polar orbiting
DMSPF-10 satellite track is shown for three orbits on day 74 of 1991.45 The satellite
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for day 74 of 1991. The numbers in the plots correspond to the longitude at the
magnetic equatorial crossing. The solar zenith angle at the magnetic equator varies
from 113◦ to 116◦, corresponding to a local solar time of about 1940.45

altitude varied from 745 to 855 km and data were taken every 2 s. Note that on two
orbits there were large density depletions and the density in the depleted region was
irregular. These depleted regions are equatorial bubbles.
The commonly accepted scenario for the formation of spread F and plasma bub-

bles is as follows. During the day, the thermospheric wind generates a dynamo
electric field in the lower ionosphere that is eastward, and this field is mapped to
F region altitudes along B. The eastward electric field, in combination with the
northward B field, produces an upward E × B drift of the F region plasma. As the
ionosphere co-rotates with the Earth toward dusk, the zonal (eastward) component
of the neutral wind increases, with the wind blowing predominantly across the ter-
minator from the day side to the night side. The increased eastward wind component,
in combination with the sharp day–night conductivity gradient across the terminator,
leads to the pre-reversal enhancement in the eastward electric field (Figure 11.25).
The F layer therefore rises as the ionosphere co-rotates into darkness. In the absence
of sunlight, the lower ionosphere rapidly decays and a steep vertical density gradient
develops on the bottomside of the raised F layer (Figure 11.29). This produces the
classical configuration for the Rayleigh–Taylor (R–T) instability, in which a heavy
fluid is situated above a light fluid.
A density perturbation can trigger the R–T instability on the bottomside of the F

layer under certain conditions. Once triggered, density irregularities develop, and
the field-aligned depletions then bubble up through the F layer. However, the F
layer height and bottomside density gradient are not the only conditions necessary
for the R–T instability and spread F . Upward propagating gravity waves, which
induce vertical winds, can trigger the R–T instability both by providing an initial
perturbation and by affecting the instability condition. However, ameridional neutral
wind, which produces a north–south density asymmetry along B (Figure 11.24), can
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stabilize the plasma.Also, the field-line integrated conductivity is important because
spreadF has been shown to display seasonal and longitudinal dependencies. Clearly,
the longitudinal dependence is related to the B field declination (Figure 11.4) and
the associated conductivity differences at the two ends of the B field line.
The basic physics underlying the R–T instability can be derived by considering

the simple configuration depicted in Figure 11.30. In this figure, a plasma that is
supported by a strong magnetic field sits on top of a vacuum. In the initial equi-
librium state, the density–vacuum interface is smooth, a density gradient exists in
the z-direction, ∇n0 = (∂n0/∂z)ez, G = −gez, and B0 = −B0ex, where (ex, ey,
ez) are Cartesian unit vectors. For simplicity, the plasma is assumed to be cold
(Te = Ti = 0), there are no electric fields initially (E0 = 0), and the variation of
gravity with altitude is ignored. As it turns out, the R–T instability for a plasma
is an electrostatic mode that can be described by the hydrodynamic equations. In
the equilibrium state, three fluid drifts are possible, including the electromagnetic,
diamagnetic, and gravitational drifts (Section 5.10). However, only the gravita-
tional drift is relevant because the plasma is cold (∇p = 0) and E0 = 0. For the
configuration in Figure 11.30, the gravitational drift is given by (5.101)

uGs = ±
g

ωcs
ey, (11.79)
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Figure 11.30 Schematic diagram for a simple Rayleigh–Taylor configuration.
Relative to the Earth’s equatorial ionosphere at dusk, x points to the south, y points to
the east, and z points upward.

where ωcs = |es|B0/ms is the cyclotron frequency (2.7) for species s and the± signs
correspond to ions and electrons, respectively.
The stability of the plasma is determinedby the procedure described inSection6.2.

The equilibrium state is perturbed (Equations 6.31a–d), the continuity and momen-
tum equations are linearized with respect to the perturbed quantities (Equations 6.33
and 6.35), and plane wave solutions (6.36) are assumed. The resulting transport
equations are given by Equations (6.37) and (6.38), except for the appearance of
an additional term in the continuity equation that contains ∂n0/∂z. Also, for the
problem at hand, us0 = uGs (a constant), and the perturbation propagates along the
plasma–vacuum interface, so that K = Key. Therefore, the relevant continuity and
momentum equations become

(ω − Kus0)ns1 − ns0K · us1 + ius1 · ∇ns0 = 0, (11.80)

i(ω − Kus0)us1 + es

ms
(E1 + us1 × B0) = 0, (11.81)

where subscript 0 refers to the equilibrium state and subscript 1 to the perturbed
state. Note that charge neutrality prevails in the equilibrium state (ni0 = ne0 ≡ n0).
The perturbed velocities, us1, can have both y and z components, but it is assumed

that the perturbed electric field, E1, is only in the y-direction (Figure 11.30). Also,
as it turns out, the R–T instability satisfies the condition ω2cs � (ω− Kus0)

2. Using
this information, the solution of the momentum equation (11.81) for the individual
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velocity components yields

(us1)y = −iω − Kus0

ω2cs

esE1y
ms

, (11.82a)

(us1)z = E1y
B0
, (11.82b)

and the continuity equation (11.80) becomes

(ω − Kus0)ns1 − Kn0(us1)y + i∂n0
∂z

(us1)z = 0. (11.83)

Now, substituting the perturbed velocity components (11.82a,b) into the continu-
ity equation (11.83) yields an equation that relates the perturbed densities to the
perturbed electric field;

(ω − Kus0)ns1 + i∂n0
∂z

E1y
B0

+ iKn0
ω − Kus0

ω2cs

esE1y
ms

= 0. (11.84)

When applied to the electrons, Equation (11.84) simplifies because of the small
electron mass (ue0→ 0, ωce →∞), and it reduces to

E1y
B0

= i ωne1(
∂n0
∂z

) . (11.85)

Also, charge neutrality prevails not only in the equilibrium state but in the perturbed
state as well (ne1 = ni1) because the frequency of the perturbation is low. Now,
using this fact and Equation (11.85), Equation (11.84) for the ions can be expressed
in the form

ω2 − ωKui0 + ωciui0
n0

∂n0
∂z

= 0. (11.86)

This quadratic equation can be easily solved, and the solution is

ω = 1

2
Kui0 ±

(
1

4
K2u2i0 −

g

n0

∂n0
∂z

)1/2
, (11.87)

where ωciui0 = g (Equation 11.79). Therefore, when the equilibrium density gradi-
ent is sufficiently large, the second term in the square root dominates and the plasma
is unstable. In this case, the situation that develops is shown in the bottom panel of
Figure 11.30. The perturbation at the plasma–vacuum interface leads to a polariza-
tion electric field that causes density depletions to E × B drift into the plasma and
density enhancements to E× B drift into the vacuum. The situation is unstable and
the perturbations grow.
The above mathematical analysis only provides linear growth rates, and a full

nonlinear treatment is needed to describe the complete evolution of the plasma. In
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this regard it should be noted that the time-dependent evolution of equatorial spread
F has been simulated via two-dimensional numerical solutions of the nonlinear
hydrodynamic equations. The initial simulations showed that the R–T instability
does indeed lead to bottomside spread F , which then evolves into plasma bubbles.46

Further simulations showed thedependenceof spreadF on theF regionpeak altitude,
the bottomside density gradient, zonal and vertical winds, electric fields, gravity
waves, and the E region conductivities in the conjugate hemispheres.

11.13 Sporadic E and intermediate layers

Sporadic E layers are ionization enhancements in the E region at altitudes between
90 and 120 km (also see Section 13.5).47 The layers tend to occur sporadically and
can be seen at all latitudes. The layer densities can be up to an order of magnitude
greater than background densities and the primary ions in the layers are metallic
(e.g., Fe+, Mg+). Neutral metal atoms are created during meteor ablation, and their
subsequent ionization via photoionization and charge exchange yields the long-
lived metallic ions.2 A characteristic feature of sporadic E layers is that they are
very narrow (0.6–2 km wide). At times, multiple layers can occur simultaneously,
separated by 6–10 km in altitude, and after formation the layers tend to descend at a
slow speed (0.6–4 m s−1). Sometimes the sporadic E layers are flat and uniform in
the horizontal direction, while at other times they are like clouds (2–100 km in size)
that move horizontally at speeds of 20–130 m s−1.47
An example of a sporadic E layer is shown in Figure 11.31. The figure shows

electron density profiles as a function of altitude at different times, asmeasured by the
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incoherent scatter radar on
May 7, 1983.48



380 The terrestrial ionosphere at middle and low latitudes

Arecibo incoherent scatter radar on May 7, 1983.48 During the early evening, from
1710 to 1910Atlantic StandardTime (AST), a sporadicE layerwas present at 116 km
with a peak electron density of about 5 × 105 cm−3. After sunset (1810 AST), the
densities below the F region decayed rapidly and a deep valley formed. However,
the sporadic E layer persisted, but it descended to 114 km and its peak density
decreased to about 1 × 104 cm−3. After 1910 AST, the layer continued to descend
and it remainedweak until 2148AST, atwhich time it reached 105 km. Subsequently,
the layer density started to increase.
Sporadic E layers at mid-latitudes are primarily a result of wind shears, but they

can also be created by diurnal and semi-diurnal tides as well as by gravity waves.47

The layers are formed when the vertical ion drift changes direction with altitude, and
the layers occur at the altitudes where the ion drift converges. In the E region, the
zonal neutral wind is primarily responsible for inducing vertical ion drifts, which
result from a un × B dynamo action (un is the zonal wind and B is the geomag-
netic field). Hence, a reversal of the zonal neutral wind with altitude will result
in ion convergence and divergence regions. The ions accumulate in the conver-
gence regions, but since the molecular ions (NO+, O+2 , N

+
2 ) rapidly recombine,

it is the long-lived metallic ions that survive and dominate the sporadic E layers.
At equatorial latitudes, gradient instabilities also play an important role in creating
sporadic E layers, while at high latitudes they can be created by convection electric
fields.
In contrast to sporadic E layers, intermediate layers are broad (10–20 km wide),

are composed of molecular ions (NO+, O+2 ), and occur in the altitude range of
120–180 km.49 They frequently appear at night in the valley between the E and F
regions, but they can also occur during the day. They tend to form on the bottomside
of the F region and then slowly descend throughout the night toward the E region.
As with sporadic E layers, intermediate layers can occur at all latitudes, can have
a large horizontal extent, and can have an order of magnitude density enhancement
relative to background densities. Figure 11.31 shows an example of the formation
and subsequent downward descent of an intermediate layer, from 160 to 120 km,
which appeared at about 2030 AST on May 7, 1983.48

Intermediate layers are primarily a result of wind shears connected with the semi-
diurnal tide.47 In the E–F region valley (130–180 km), the meridional neutral wind
is mainly responsible for inducing the upward and downward ion drifts. When
the wind blows toward the poles a downward ion drift is induced, whereas when
it blows toward the equator, an upward ion drift is induced. If the wind changes
direction with altitude (a wind shear), the plasma will either diverge and decrease
its density or converge and increase its density (layer formation). When a null in
the wind shear moves down in altitude, the ion convergence region, and hence
intermediate layer, also descend. Although the meridional wind component of tidal
motion is the primary mechanism for creating intermediate layers, the dynam-
ics of these layers can be affected by zonal winds, electric fields, and gravity
waves.
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11.14 F3 layer and He+ layer

The existence of additional layers above the F2 peak at low latitudes was estab-
lished more than fifty years ago,50 but the additional layers were simply attributed
to traveling ionospheric disturbances. In the 1990s, however, ionosonde measure-
ments and modeling have helped identify some of the important characteristics of
the additional layers, now called F3 layers.51–54 The basic physics underlying the
formation of an F3 layer is related to photochemical processes, electric fields, and
neutral winds. During the day, theF2 layer forms near the equator by photochemistry
and diffusion, but as the F2 layer drifts upward in response to the upward E × B
drift and neutral wind the F3 layer is formed at a higher altitude (above ∼500 km).
Subsequently, a normal F2 layer forms again at a lower altitude by the standard pho-
tochemical and transport processes.At times, theF3 layer peak density can be greater
than the F2 peak density and at those times it can be measured with ionosondes. The
F3 layer has been observed on both the summer and winter sides of the magnetic
equator, and it becomes weaker and less evident with increasing solar activity. The
F3 layer has also been observed to form in association with a magnetic storm and
the consequent sudden change in the southward Interplanetary Magnetic Field.55

Measurements at theArecibo incoherent scatter radar facility have shown that an
He+ layer can form near the O+ to H+ transition altitude at mid-latitudes during
the night.56, 57 The layer starts to develop just before midnight and its build-up is
associated with the nighttime collapse of the topside ionosphere.56 The He+ layer
occurs during both solar maximum andminimum.At solar maximum, the He+ layer
is clearly evident, with He+ relative abundances that can be more than 50% at the
altitude of theHe+ peak. Themeasurements also indicate that at solarmaximum there
are regions of He+ dominance in the topside ionosphere between 750 to 1200 km.57
However, at solar minimum, He+ is never the dominant ion at the peak of the He+
layer, where typical He+ relative abundances are between 10 and 20%.

11.15 Tides and gravity waves

Tides and gravity waves play an important role in the dynamics and energetics of
the thermosphere, particularly in the altitude range from 100 to 250 km.58, 59 These
waves are generated in situ by solar UV and EUV heating as well as by temporally
varying auroral processes (precipitation, currents, convection). Tides and gravity
waves are also generated in the lower atmosphere and then propagate up to ther-
mospheric heights. For example, the heating associated with the absorption of solar
radiation by H2O in the troposphere and by O3 in the stratosphere generates upward
propagating tides that penetrate the lower thermosphere. Although the upward prop-
agating tides and gravity waves have a significant effect on the lower thermosphere,
they are difficult to include in numerical models in a realistic manner, owing to the
lack of global measurements of the forcing function.
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Figure 11.32 Variation of the meridional neutral wind versus altitude and latitude for
70◦ W at 1800 UT on a quiet day. The variation is shown both without (left panel) and
with (right panel) tidal effects. Solid contours are for winds blowing toward the south
and dashed contours correspond to northward winds.63 The contour interval
is 10 m s−1.

As noted in Section 10.6, migrating tides are synchronizedwith the Sun (orMoon)
and appear to travel westward on the rotating Earth. However, nonmigrating tides
also exist in the mesosphere and lower thermosphere. These tides can be excited
in the troposphere by latent heat release associated with tropical convection and
by nonlinear interactions of global-scale waves.60–62 The nonmigrating tides can
propagate toward the east or west, and can also have standingmodes. The interaction
of a wavenumber 3 nonmigrating tide with the zonal wind in the lower thermosphere
(diurnal tide) can act to modify the equatorial ionization anomaly, as will be shown.
The mathematical description of tides was discussed in Section 10.6, where it

was shown that both diurnal and semi-diurnal tidal components exist. However,
the semi-diurnal tide is the more important component in the lower thermosphere.
An example of the effect that semi-diurnal tides can have on the thermosphere is
shown in Figure 11.32. The results in this figure are from the NCAR Thermospheric
General CirculationModel (TGCM), which simulated the magnetically quiet period
of September 18–19, 1984. The figure shows the variation of the meridional neutral
wind versus latitude for the 70◦W longitude at 1800 universal time (UT). The left
panel shows the wind without semi-diurnal tides, while the right panel shows the
wind with tidal effects. Obviously, semi-diurnal tides can be very important in the
lower thermosphere. The wind structure below 300 km is complex, with reversals
of the wind direction clearly evident. The semi-diurnal tides also have a similar
effect on the neutral temperature and densities. The tidal-induced perturbations in
the neutral parameters then affect the ionosphere atD and E region altitudes because
the time constant for chemical reactions is short (Section 8.2).
As noted already, the interaction of upward propagating nonmigrating tides and

the diurnal tide can act to modify the equatorial ionization anomaly. As the tides
propagate upwards, their amplitudes grow and at E region altitudes they dominate
the locally driven tides, but the upward propagating tides are damped before they
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Figure 11.33 Tidal-induced peaks in the equatorial ionization anomaly.67

reach the F region. However, these tides can induce a longitudinal variation in the
E region dynamo electric field as the tidal winds drag ions across geomagnetic field
lines. The modulated electric field can then affect the F region ionization via the
associated electromagnetic plasma drift.64–69

The connection between weather in the tropics, upward propagating tides,
dynamo electric fields in the E region, and the equatorial ionization anomaly was
made by examining night side far ultraviolet (FUV) observations from the IMAGE
satellite.67 One month (20 March–20 April, 2002) of FUV data was averaged as
a function of local time (LT) and magnetic latitude and longitude. The averaged
data displayed four distinct tidal-induced peaks in the equatorial ionization anomaly
(Figure 11.33). The variation in ne from peak to trough that is associated with the
brightness in Figure 11.33 is about 20%. However, this study was limited to equinox
and solar maximum conditions.
Amore comprehensive study of this phenomenon was conducted with a 13-year

data set of vertical total electron content (TEC) measurements from the TOPEX
and Jason satellites.70 The dataset was used to establish the local time, seasonal,
solar cycle, and geomagnetic activity dependence of the wavenumber-4 longitudinal
pattern under these conditions. The study showed that the wavenumber-4 pattern is
created during the daytime hours at equinox and June solstice, but is either absent
or washed out by other processes during December solstice. During equinox, the
wavenumber-4 pattern is created around noon with well-defined enhancements in
the low-latitude TEC. These enhancements, which are symmetric about the geo-
magnetic equator during this season, last for many hours. The longitudinal patterns
are found to be nearly identical between the vernal (March/April) and autumnal
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(September/October) equinoxes and are largely independent of the solar cycle condi-
tions. Thewavenumber-4 pattern is also observed during activemagnetic conditions,
indicating that the processes that create this pattern are also present during active
times. During the June solstice, the wavenumber-4 pattern is also observed in the
afternoon hours, but in contrast to the equinox cases, it exhibits a strong hemi-
spheric asymmetry and is not observed during the night. The low-latitude TEC
exhibits clear longitudinal variations during the December solstice, with large day-
time enhancements over the East-Asian and Pacific regions and a third enhancement
in the afternoon over the Atlantic ocean, but a clear wavenumber-4 pattern is not
observed during this season. Although the equatorial and low-latitude TEC values
exhibit clear longitudinal patterns during all seasons, a significant amount of scatter
remains in the TEC data that is not accounted for by changes in the solar cycle,
season, local time, or by the longitudinal variability. This remaining scatter in TEC
is largest near the poleward edges of the anomalies and is of the order of 40%.70

Gravitywaves that are generated in theEarth’s lower atmosphere (mesosphere and
stratosphere) can reach the lower thermosphere. Figure 11.34 shows the relationship
between gravity wave period and propagation angle. Usually, short-period (high
frequency) waves propagate at a steeper angle than the long-period (low frequency)
waves. The gravity waves that reach the lower thermosphere typically have periods
of less than ten minutes.71

In general, the situation is more complicated because of wind filtering. In the
derivation of the gravity wave dispersion relation (10.38), it was assumed that the
atmosphere was stationary (u0 = 0). If there is a background wind, then the gravity
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Figure 11.34 Relationship between gravity wave period and propagation angle.71
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wave frequency is Doppler shifted (ω→ ω−K •u0) and a wind can act to filter the
gravity waves. Specifically, if a gravity wave propagates in the same direction as the
wind, the gravity wave frequency can beDoppler shifted to zero and thewave energy
can be absorbed into the background atmosphere, as illustrated in Figure 11.35. In
this figure, a horizontal wind versus altitude is shown. For this example, gravity
waves that primarily propagate horizontally in the direction of the wind with phase
speeds less than the maximumwind speed (36m s−1) will be filtered out of the wave
spectrum that is generated at low altitudes. However, gravity waves that propagate
in a direction opposite to the background wind are not filtered, and this can lead to
an anisotropy in the gravity wave spectrum.
The mathematical description of atmospheric gravity waves (AGWs) is given

in Section 10.5, where it is noted that AGWs are responsible for traveling iono-
spheric disturbances (TIDs). Large-scale TIDs have periods of the order of one hour,
wavelengths of about 1000 km, and horizontal speeds greater than 250m s−1.
Figure 11.36 shows an imposed large-scale AGW and its effect on the ionosphere,
as calculated with a numerical ionospheric model.73 The calculations are for the
location of the EISCAT incoherent scatter radar (Table 14.1), a fall equinox day
(September 6, 1988), and moderate solar activity (F10.7 = 152). The simulation
covers the period 1600 to 1900 UT, where the local time at the EISCAT site is
obtained by adding 1.25 hours to the universal time. The top panel shows the
AGW perturbation imposed on the thermosphere. The AGW has a 1-hour period, a



386 The terrestrial ionosphere at middle and low latitudes

500

400

300

200

H
ei

gh
t (

km
)

Universal time (hh:mm)
16:00 17:00 18:00 19:00

AGW casecont. spacing =1.0   

ne – TID contours (m s–1) Vi – TID contours (m s–1)

500

400

300

200

H
ei

gh
t (

km
)

Universal time (hh:mm)
16:00 17:00 18:00 19:00

AGW casecont. spacing =1.0   

AGW case 500

400

300

200

H
ei

gh
t (

km
)

AGW case

Relative dist. quantities, contours

Vn||1(ms–1)

Vn||1 Tn1/Tn0 nn1/nn0
200 km

400 km

4
0

–4

4
0

–4

V
n|

|1
(m

s–1
);

n n
1/

n n
0 

;T
n1

/T
n0

Causative mechanism illustration

0 0 0 0
2

4

4

4
2

2 2

2

20 0

0

000

2

002

2

2

Figure 11.36 Imposed AGW perturbations (top panel) and the calculated ionospheric
response (bottom panel). The calculations are for the location of the EISCAT
incoherent scatter radar, a fall equinox day, and moderate solar activity.73

1000 km horizontal wavelength, a southward-downward phase propagation, and a
wave-associated neutral wind perturbation of 5 m s−1 at the bottom of the F region
(160 km). TheAGWperturbation is shown via the change in the field-aligned neutral
velocity (vn‖1, m s−1), and the perturbed-to-background density (nn1/nn0, %) and
temperature (Tn1/Tn0, %) ratios. The top-left plot shows the temporal evolution of
the perturbations at 200 and 400 km and the top-right plot shows contours of vn‖1
versus altitude and time. The bottom plots show the ionospheric response to the
imposedAGW via perturbations in the electron density and field-aligned ion veloc-
ity. Note that the perturbations in vn are greater than those in Tn and nn, and that the
phase of the Tn and nn perturbations are advanced or delayed by about 60◦ relative
to the phase of the vn perturbation. Also note that the contour plots of vn‖1, ne, and
vi show the inclined wave phase fronts that are characteristic ofAGWperturbations.
The largest ionospheric perturbations occur at about 250 km for the adopted AGW.

11.16 Ionospheric storms

As noted in Section 11.3, geomagnetic storms can result from a compression of the
magnetosphere due to the arrival of a discontinuity in the solar wind. During the
growth phase, the magnetospheric electric fields, currents, and particle precipitation
increase, while the reverse occurs during the recovery phase. The net result is that
a large amount of energy is deposited into the ionosphere–thermosphere system at
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high latitudes during a storm. In response to this energy input, the auroral E region
electron densities increase, and there is an overall enhancement in the electron and
ion temperatures at high latitudes. In addition, neutral composition changes occur,
wind speeds increase, and equatorward propagating gravity waves are excited. At
mid-latitudes, the equatorward propagating waves drive the F region plasma toward
higher altitudes, which can result in ionization enhancements. Behind the wave
disturbance are enhancedmeridional neutral winds, and these diverging winds cause
upwellings and decreases in the O/N2 density ratio. The latter, in turn, leads to
decreased electron densities in the F region. For big storms, the enhanced neutral
winds and composition changes can penetrate all the way to the equatorial region.
In general, when the electron density increases as a result of storm dynamics, it is
called a positive ionospheric storm, whereas a decrease in electron density is called
a negative ionospheric storm.
Strong electric fields can penetrate to the low-latitude ionosphere during the early

stages of a magnetic storm, creating a region of strong plasma drift known as a
sub-auroral polarization stream (SAPS). The plasma in the stream drifts in a north-
west direction across the USA and in the stream there are storm-enhanced densities
(SEDs), as shown in Figure 11.37.74, 75 The SEDs appear in the evening–afternoon
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Figure 11.38 A schematic diagram that shows a mechanism that can create SEDs
(Courtesy of J. C. Foster).

sector of the mid-latitude ionosphere and take the form of a narrow, continuous ridge
of ionization that extends from the evening to afternoon sector at mid-latitudes, to
the cusp, and into the polar cap. In general, the SAPS-SEDs have the following
characteristics: (1) a TEC enhancement of 50–100 TECU; (2) an F region sunward
velocity that ranges from 50–1000 m s−1; (3) a width of only a few degrees; and
(4) a duration of three hours. Storm-enhanced density plumes have been observed in
both the North European and North American longitude sectors but the TEC values
of the storm-enhanced density plumes are stronger in the North American sector.
Storm-enhanced density plumes have also been observed to be magnetically conju-
gate. For similar magnetic activity levels, the latitude location of the plume base is
consistent over solar cycle.74–77

Apossible cause of the SED plumes is illustrated in Figure 11.38. During the early
stages of amagnetic storm, a strong eastward electric field penetrates to low latitudes,
which leads to a relative large upward (E×B) plasma drift (see Section 11.11). The
plasma rises to high altitudes before it diffuses down the geomagnetic field lines,
and as a consequence, the Equatorial IonizationAnomaly peaks are located at lower
mid-latitudes. Subsequently, a northward electric field that is associated with an
expanded storm-time convection pattern causes the plasma to E×B drift in a north-
west direction across the United States, through the cusp and into the polar cap,
where it takes the form of a tongue of ionization.75

The response of the ionosphere–thermosphere system to different geomagnetic
storms can be significantly different, and even for a given storm, the system’s
response can be very different in different latitudinal and longitudinal regions.78, 79

Nevertheless, it is instructive to show the ionospheric response to the large magnetic
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storm that was triggered by a solar flare which appeared at 1229 UT on October 19,
1989. Associated with this flare was an enhanced solar wind speed of about
2000 km s−1, and the IMF turned southward two times (between 1250–1340 UT
and 1650–1900 UT).As a consequence, a sudden storm commencement occurred at
0917 UT on October 20, and after an initial phase the storm displayed two periods of
enhanced activity during the following 48 hours. Auroral glows were seen down to
about 29◦N geomagnetic latitude in the United States during the height of the storm.
In response to the storm, there were long-lasting electron density depletions at high
latitudes, as measured by a worldwide network of ionosondes (Figure 11.39). In
the equatorial region, both negative and positive storm effects occurred at different
times. In addition, large-scale TIDs were observed on two nights, with equatorward
propagation velocities in the range of 330 to 680m s−1.
Medium-scale and large-scale TIDs have been observed in association with both

storms and substorms.81–84 Figure 11.40 shows a TID passing over North America
on 1–2 October 2002.81 This period was marked by a magnetic storm (Kp ∼ 7;
Dst ∼ −175 nT) and a series of periodic substorms, which acted to excite a series
of large-scale TIDs that propagated toward the equator. Figure 11.40 corresponds
to snapshots of the perturbation displayed in vertical total electron content (TEC).
The perturbation is of the order of 2 TEC units (TECU) and is associated with
the neutral wind of a large-scale traveling atmospheric disturbance (TAD). The
TEC measurements were made with the North American network of 500 Global
Positioning System (GPS) receivers.
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11.19 Problems

Problem 11.1 Calculate the variation of the magnitude of B and sin I over the
altitude range from 200 to 1000 km at a dipole magnetic latitude of 45◦.

Problem 11.2 Show that ∇ · b = (1/A)∂A/∂s by taking the divergence of b
(Equation 11.4) in spherical coordinates.

Problem 11.3 Show that Eφ/Eφ0 = 1/ sin3 θ , where Eφ is the magnitude of
an azimuthal electric field that is perpendicular to a north–south dipole magnetic
field. Eφ0 is the electric field at the equatorial crossing of the dipole B field. See
Equations (11.13) to (11.15).

Problem 11.4 Calculate ∇ · uE by taking the divergence of Equation (11.15) and
show that the result is Equation (11.18).

Problem 11.5 Calculate values of qd (Equation 11.19) and pd (Equation 11.20) for
θ = 60◦, 90◦, and 120◦ and for a dipole B field line that has an equatorial crossing
altitude of 3000 km.

Problem 11.6 Show that Equation (11.28) is correct.
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Problem 11.7 When O+ is in chemical equilibrium (Equation 11.60), show that the
O+ density increases exponentially with altitude. Calculate the scale height associ-
ated with the O+ density increase. Neglect n(O2) and assume that Pts is proportional
to n(O).

Problem 11.8 Using Equation (11.64), show that the H+ density increases expo-
nentially with altitude when the O+, H, and O densities are in diffusive equilibrium.
Calculate the scale height associated with the H+ density increase.

Problem 11.9 Show that when H+ is a minor ion and in diffusive equilibrium
with the major ion O+, the H+ density increases exponentially with altitude with
a scale height that is approximately equal to the chemical equilibrium scale height
(Problem 11.8).

Problem 11.10 For Te = Ti = 1000 K and z = 1000 km, compare the H+, He+,
and O+ diffusive equilibrium scale heights assuming that each ion is, separately, the
major ion.

Problem 11.11 Assuming that qe = −λedTe/dz and λe = 7.7× 105T 5/2e eV cm−1
s−1 K−1, calculate qe and λe for Te = 3000 K and dTe/dz = 1 and 3 K km−1.
Problem 11.12 Derive an expression for the Cowling conductivity.

Problem 11.13 Derive an expression for the Rayleigh–Taylor dispersion relation
(equivalent to Equation (11.87)) for the case when an initial constant electric field
E0 is perpendicular to the vacuum–plasma interface (E0 points in the z-direction in
Figure 11.30).

Problem 11.14 Obtain a numerical solution for the F region ionization in the ter-
restrial ionosphere at mid-latitudes using �z = 5 km and �t = 300 seconds (see
Appendix O). Initially, assume that the electron (or O+) density is 105 cm−3 at all
altitudes and then run the model until a steady state is achieved. Let zB = 200 km
and zT = 800 km. Set Te = Ti = Tn = 1000 K at all altitudes.
Problem 11.15 Repeat Problem 11.14 with different values of�t, including 0.001,
0.1, 1, 1000, and 10,000 seconds. Plot the temporal evolution at selected times. The
steady state should be the same, but the temporal evolution could be different.

Problem 11.16 Repeat Problem 11.14 with different values of�z, including 0.001,
0.1, 1, 10, and 1000 km. Plot the temporal evolution at selected times.

Problem 11.17 Repeat Problem 11.14 with different upper boundary altitudes;
including 600, 1000, and 1500 km.

Problem 11.18 Repeat Problem 11.14 with the diffusion coefficient multiplied by
a factor of two.

Problem 11.19 Repeat Problem 11.14 with Te = Ti = 3000 K.



Chapter 12

The terrestrial ionosphere at high latitudes

The magnetosphere–ionosphere–atmosphere system at high latitudes is strongly
coupled via electric fields, particle precipitation, field-aligned currents, heat flows,
and frictional interactions, as shown schematically in Figure 12.1. Electric fields of
magnetospheric origin induce a large-scale motion of the high-latitude ionosphere,
which affects the electron density morphology. As the plasma drifts through the
neutrals, the ion temperature is raised owing to ion–neutral frictional heating. The
elevated ion temperature then alters the ion chemical reaction rates, topside plasma
scale heights, and ion composition. Also, particle precipitation in the auroral oval
acts to produce enhanced ionization rates and elevated electron temperatures, which
affect the ion and electron densities and temperatures. These ionospheric changes,
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Figure 12.1 Coupling processes in the magnetosphere–ionosphere–atmosphere
system.
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in turn, have a significant effect on the thermospheric structure, circulation, and
composition. At F region altitudes, the neutral atmosphere tends to follow, but
lags behind, the convecting ionospheric plasma. The resulting ion–neutral frictional
heating induces vertical winds and O/N2 composition changes. These atmospheric
changes then affect the ionospheric densities and temperatures.
The ionosphere–thermosphere system also has a significant effect on the magne-

tosphere. Precipitating auroral electrons produce conductivity enhancements, which
can modify the convection electric field, large-scale current systems, and the elec-
trodynamics of the magnetosphere–ionosphere system as a whole. Also, once the
thermosphere is set into motion by convection electric fields, the large inertia of
the neutral atmosphere will act to produce dynamo electric fields whenever the
magnetosphere tries to change its electrodynamic state. Additional feedback mech-
anisms exist on polar cap and auroral field lines via a direct flow of plasma from
the ionosphere to the magnetosphere. In the polar cap, there is a continual outflow
of thermal plasma from the ionosphere (the polar wind) and it represents a signif-
icant source of mass, momentum, and energy for the magnetosphere. On auroral
field lines, energized ionospheric plasma is injected into the magnetosphere via ion
beams, conics, rings, and toroidal distributions.
This chapter elucidates the effect that the various magnetospheric processes have

on the ionosphere–thermosphere system. The topics covered include the effects of
convection electric fields, particle precipitation, field-aligned currents, geomagnetic
storms, and substorms. This chapter also includes discussions concerning large-scale
plasma structuring mechanisms, the polar wind, and energetic ion outflow.

12.1 Convection electric fields

Electrodynamical coupling is perhaps the most important process linking the mag-
netosphere, ionosphere, and thermosphere at high latitudes. This coupling arises as
a result of the interaction of the magnetized solar wind with the Earth’s geomag-
netic field. When the supersonic solar wind first encounters the geomagnetic field, a
free-standing bow shock is formed that deflects the solar wind around the Earth in a
region called the magnetosheath (Figure 12.10). The subsequent interaction of the
magnetosheath flow with the geomagnetic field leads to the formation of the mag-
netopause, which is a relatively thin boundary layer that acts to separate the solar
wind’s magnetic field from the geomagnetic field. The separation is accomplished
via a magnetopause current system. However, the shielding is not perfect, and a por-
tion of the solar wind’s magnetic field (also known as the interplanetary magnetic
field – IMF) penetrates the magnetopause and connects with the geomagnetic field.
This connection is shown in Figure 12.2 for the case of a southward IMF.1 Note

that the IMF has vector components (Bx, By, Bz). The Bx component is in the ecliptic
plane directed along the Sun–Earth line (positive toward the Sun), By is in the ecliptic
plane perpendicular to the Sun–Earth line (positive toward dusk), and Bz (the north-
south component) is perpendicular to the ecliptic plane and positive to the north
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Figure 12.2 Schematic diagram showing the directions of the electric and magnetic
fields, and the plasma flows, in the vicinity of the Earth. The Sun is to the left, north is
at the top, and south is at the bottom. The electric field points from dawn to dusk (out
of the plane of the figure).1

(Figures 2.9 and 2.10). The connection of the IMF and the geomagnetic field occurs
in a circular region known as the polar cap, and the connected field lines are referred
to as open field lines. At latitudes equatorward of the polar cap, the geomagnetic
field lines are closed. The auroral oval is an intermediate region that lies between the
open field line region (polar cap) and the low-latitude region that contains dipolar
field lines. The field lines in the auroral oval are closed, but they are stretched deep
in the magnetospheric tail (Figure 12.2).
The solar wind is a highly conducting, collisionless, magnetized plasma that, to

lowest order, can be described by the ideal MHD equations (7.45a–g). Therefore,
the electric field in the solar wind is governed by the relation E = −usw×B (Equa-
tion 7.45d), where usw is the solar wind velocity. When the radial solar wind, with a
southward IMF component, interacts with the Earth’s magnetic field (Figure 12.2),
an electric field is imposed that points in the dawn-to-dusk direction across the polar
cap. This imposed electric field, which is directed perpendicular to B, maps down
to ionospheric altitudes along the highly conducting geomagnetic field lines. In the
ionosphere, this electric field causes the plasma in the polar cap to E × B drift in
an antisunward direction. Further from the Earth, the plasma on the open polar cap
field lines exhibits an E× B drift that is toward the equatorial plane (Figure 12.2).
In the distant magnetospheric tail, the field lines reconnect, and the flow on these
closed field lines is toward and around the Earth.
The existence of an electric field across the polar cap implies that the boundary

between open and closed magnetic field lines is charged. The charge is positive on
the dawn side and negative on the dusk side, as shown in Figure 12.3. This figure
displays the same configuration as that in Figure 12.2, except that the view is from the
magnetotail looking toward the Sun. The solar wind is out of the plane of the figure
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Figure 12.3 Schematic diagram showing the electric and magnetic fields in the
vicinity of the Earth. The view is from the magnetotail looking toward the Sun. The
solar wind is toward the observer and north is at the top.1

and north is at the top. The charges on the polar cap boundary act to induce electric
fields on nearby closed field lines that are opposite in direction to the electric field
in the polar cap. These oppositely directed electric fields are situated in the regions
just equatorward of the dawn and dusk sides of the polar cap (Figure 12.3). As with
the polar cap electric field, the electric fields on the closed field lines map down to
ionospheric altitudes and cause the plasma to E×B drift in a sunward direction. On
the field lines that separate the oppositely directed electric fields, field-aligned (or
Birkeland ) currents flow between the ionosphere and magnetosphere. The current
flow is along B and toward the ionosphere on the dawn side, across the ionosphere
at low altitudes, and then along B and away from the ionosphere on the dusk side.
The net effect of the electric field configuration shown in Figure 12.3 is as follows.

Closed dipolar magnetic field lines connect to the IMF at the day sidemagnetopause.
When this connection occurs, the ionospheric foot of the field line is at the day side
boundary of the polar cap. After connection, the open field line and attached plasma
convect in an antisunward direction across the polar cap. When the ionospheric foot
of the open field line is at the night side polar cap boundary, the magnetospheric end
is in the equatorial plane of the distant magnetotail (Figure 12.2). The open field line
then reconnects, and subsequently, the newly closed and stretched field line convects
around the polar cap and toward the day side magnetopause. The direction of the
E × B drift in the ionosphere that is associated with the magnetospheric electric
field is shown in Figure 12.4. This figure displays electrostatic potential contours
in a magnetic latitude–local time coordinate system, with the magnetic pole at the
center. Note that the electrostatic potential contours coincide with the streamlines
of the flow when there is only an E × B drift. The flow pattern exhibits a two-cell
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character, with antisunward flow over the polar cap and return (sunward) flow at
latitudes equatorward of the polar cap.
Magnetospheric electric fields are not the only source of ionospheric drifts and,

therefore, it is important to determine the relative contributions of the various
sources. A general expression for the cross-field transport of plasma was derived
in Chapter 5 (Equation 5.103). At altitudes above about 150 km, the ratio of the
collision-to-cyclotron frequencies is very small for all of the charged particles, and
the expression for the cross-field transport of plasma reduces to (Equation 5.98):

u′j⊥ =
E′ × B

B2
− 1

njej

∇pj × B
B2

+ mj

ej

G × B
B2

, (12.1)

where u′j⊥ = uj⊥−un⊥ andE′ = E+un×B. At ionospheric altitudes (300 km), the
magnetospheric electric field typically varies from about 10 to 200 mV m−1, which
corresponds to E × B drifts that vary from about 200 m s−1 to 4 km s−1. Also, at
these altitudes, typical values for the O+ density and temperature are 105 cm−3 and
1000K, respectively. These values can be used to compare the three drifts in Equa-
tion (12.1). For O+, the gravity term (mjG/ej) is equivalent to an electric field of
the order of 10−3 mV m−1 and is, therefore, negligible. The pressure gradient term
(∇pj/njej) is equivalent to a 10mV m−1 electric field when the pressure scale length
is of the order of 10 meters. In other words, the diamagnetic drift will only be impor-
tant for scale lengths less than 10 meters, and hence, is negligible. Finally, a neutral
wind of 200m s−1 is equivalent to a 10mV m−1 electric field at F region altitudes.
The above analysis indicates that the electrodynamic drift dominates the plasma

motion at altitudes above approximately 150 km. However, the net electrodynamic
drift is driven by both magnetospheric and co-rotational electric fields. Specifically,
the ionosphere at low andmiddle latitudes is observed to co-rotatewith the Earth, and
this motion is driven by a co-rotational electric field . At high latitudes, the plasma
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also has a tendency to co-rotate, and thismust be taken into account when calculating
the plasma convection paths. The co-rotational electric field causes the plasma to drift
around the Earth once every 24 hours and, as a consequence, the plasma remains
above the same geographic location at all times. In a geographic inertial frame,
with the geographic pole at the center, the drift trajectories are concentric circles
about the geographic pole. The magnetospheric potential pattern, on the other hand,
maps to the ionosphere along magnetic field lines and, therefore, the location of
the magnetic pole is relevant. Unfortunately, the geographic and magnetic poles
do not coincide. The offset is 11.5◦ in the northern hemisphere and 14.5◦ in the
southern hemisphere (Section 11.2). For magnetospheric convection (Figure 12.4),
the appropriate coordinate system to use is a quasi-inertial magnetic reference frame,
with the magnetic pole at the center and the noon–midnight direction taken as one of
the axes. In thismagnetic frame, themagnetospheric convection pattern stays aligned
with the noon–midnight axis as the magnetic pole rotates about the geographic pole.
As it turns out, co-rotation in the geographic inertial frame is equivalent to co-rotation
in this quasi-inertial magnetic frame.3 Therefore, the contours of the co-rotational
electric potential are concentric circles about the magnetic pole in the quasi-inertial
magnetic frame.
When the co-rotational and magnetospheric electric potentials are combined, the

plasma drift trajectories take the form shown in Figure 12.5. Eight representative
trajectories are shown, along with the corresponding circulation times. The plasma
following the outer trajectories 1 and 2 essentially co-rotates with the Earth. For
these trajectories, the plasma drift is eastward and a complete traversal takes about
one day. For trajectories just poleward of trajectory 2, the eastward co-rotational
drift is opposed by the westward (sunward) magnetospheric drift. Consequently, the
plasma slows down and a stagnation region appears. Plasmas following trajectories
that enter this region have circulation times that are longer than a day (trajectory 4).
For the trajectories that are confined to the polar cap (3, 5–8), the circulation times
are less than a day because the trajectories are short and the E× B drift speeds are
high (Figure 12.6).Another important aspect ofmagnetospheric convection concerns
the vertical drift. The magnetospheric electric field is perpendicular to B, but the
magnetic field is not vertical. Consequently, there is a vertical E × B component
that is upward on the day side of the polar cap and downward on the night side
(Figure 12.6).
These convection features are relevant to a magnetospheric convection pattern

that is constant for about 1.5 days. Clearly, if the magnetospheric convection pattern
varies with time, the trajectories that the plasma elements follow will be more com-
plex. Also, even for a constant magnetospheric convection pattern, the trajectories
will appear to be more complex in a geographic inertial frame because of the motion
of the magnetic pole about the geographic pole. This is illustrated in Figure 12.7,
where two representative plasma trajectories are shown that cover a 24-hour period.
Also shown in this figure are the positions of the terminator at winter solstice (W),
equinox (E), and summer solstice (S). The trajectory in panel A corresponds to
trajectory 3 in Figure 12.5. The plasma following this trajectory has a circulation
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period of about two hours and, hence, it executes many cycles per day. Depending
on the location of the terminator, the plasmamay drift entirely in sunlight, entirely in
darkness, or move in and out of sunlight many times during the course of a day. The
trajectory in panel B corresponds to trajectory 4 in Figure 12.5, and its circulation
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Figure 12.7 Plasma drift trajectories in the geographic inertial frame. The trajectories
are for a 24-hour period. The trajectories in panels A and B correspond to trajectories 3
and 4 in Figure 12.5. The curves labeled W, E, and S show the locations of the
terminator at winter solstice, equinox, and summer solstice, respectively.3

period is longer than 24 hours. For equinox conditions, the plasma following this
trajectory crosses the terminator three times in a 24-hour period.
An important feature of the plasma motion induced by the co-rotational and

magnetospheric electric fields is that the flow is incompressible.4 This can be shown
by taking the divergence of the electrodynamic drift (12.1)

∇ · uE = ∇ ·
(
E′ × B/B2

)
. (12.2)

The divergence of the cross product can be expanded by using one of the vector
identities given in Appendix B, and the result is

∇ · uE = 1

B2
[
B · (∇ × E′) − E′ · (∇ × B)

] + (E′ × B) · ∇
(
1

B2

)
. (12.3)

For an electrostatic field, ∇ × E′ = 0. Also, ∇ × B ∝ J and J is either zero or
parallel to B at F region altitudes. Therefore, the term E′ · (∇ × B) = 0, because
E′ ⊥ B. The last term in Equation (12.3) represents compression (rarefaction) as
the plasma drifts into a region of greater (smaller) B, and it can be shown that this
term is small at high latitudes.4 Therefore, ∇ · uE ≈ 0, and the flow is essentially
incompressible. This means that when the plasma approaches a convection throat
its speed increases and a density build-up does not occur.

12.2 Convection models

The simple two-cell convection pattern shown in Figure 12.4 does indeed exist at
certain times. Figure 12.8 shows drift velocities measured along two Dynamics
Explorer 2 (DE 2) orbits as the satellite passed through the high-latitude region of
the northern hemisphere. It is evident that the measured flow directions are basically
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consistent with a symmetric two-cell convection pattern. In general, however, the
magnetospheric convection pattern is more complex than that shown in Figure 12.8.
In fact, it is now well known that the magnetospheric electric field is strongly corre-
lated with magnetic activity, Kp (see Section 11.3), and that it depends on the solar
wind dynamic pressure and the direction of the IMF (Bx, By, Bz). During the last 30
years, a major effort has been devoted to obtaining empirical or statistical patterns of
plasma convection for a wide range of conditions. Typically, these empirical mod-
els are constructed from data collected over many months or years from numerous
ground-based sites or satellite orbits. The data are synthesized, binned, and then fit-
ted with simple analytical expressions. As a consequence, the empirical convection
models represent average magnetospheric conditions, not instantaneous patterns.
Also, the convection boundaries that exist in these models are smooth, whereas the
instantaneous convection boundaries can be fairly sharp.
When the IMF is southward (Bz < 0), plasma convection at high latitudes exhibits

a two-cell pattern with antisunward flow over the polar cap and return flow equator-
ward of the polar cap. The potential drop across the polar cap, which determines
the convection speed, varies with the solar wind dynamic pressure. However, the
potential drop can be distributed uniformly or asymmetrically between the two cells
depending on the IMFBy component. ForBy ≈ 0, the convection cells are symmetric
(Figure 12.8). For other values of By, the two-cell convection pattern is asymmetric,
with enhanced convection in the dawn cell for By > 0 and enhanced convection
in the dusk cell for By < 0 in the northern hemisphere (Figure 12.8). Also, the
entry of the flow into the polar cap is in the prenoon sector for By > 0 and in the
postnoon sector for By < 0. Finally, it should be noted that for a given sign of By,
the asymmetry is reversed in the southern hemisphere.
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When the IMF is northward (Bz > 0), the plasma convection patterns are more
complex than those found for southward IMF. In particular, measurements have
shown that when the IMF is northward, the convection in the polar cap can be
sunward.7 The sunward convection was first interpreted to be a signature of a four-
cell convection pattern, but such patterns were clearly seen only on the sunlit side of
the polar region.8 Subsequently, it was suggested that three-cell convection patterns
can occur for northward IMF, depending on the direction of the By component.9

Figure 12.10 shows the proposed convection patterns in the southern polar region
for Bz > 0 and three By cases. For By = 0, a four-cell convection pattern occurs.
When By becomes either positive or negative, one of the convection cells in the
polar cap expands and the other shrinks. The net result is that for large By values, the
convection pattern appears to have just three cells. On the other hand, the sunward
convection in the polar cap has been interpreted in terms of a severely distorted
two-cell convection pattern, as shown in Figure 12.11. Although the form that the
convection pattern takes for northward IMF is controversial, the consensus of the
scientific community appears to be leaning toward multi-cell convection patterns,
rather than distorted two-cell patterns. However, this issue is still not completely
settled.
Another new empirical model of magnetospheric electric fields (or plasma con-

vection) has been constructed from a large database of satellite measurements.10, 11

Thismodel yields electric field patterns for all IMF (By,Bz) combinations and for sev-
eral ranges of the magnitude of the IMF. Typical patterns are shown in Figure 12.12.
Note that for northward IMF, the new empirical model yields multi-cell convection
patterns.
The empirical convection models discussed above are useful for many applica-

tions, but some caveats should be noted. First, as noted above, the empirical models
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provide average patterns, not instantaneous pictures, and sharp convection bound-
aries tend to get smoothed in the model construction. Furthermore, when the IMF
changes direction, the convection pattern is in a transitory state, and that state is
probably not captured by empirical models. Finally, at times, the convection pattern
appears to be turbulent, as shown in Figure 12.13. The ion drift velocities shown
in this figure were measured by the DE 2 satellite during a crossing of the northern
polar region when the IMF was northward. The traversal of the polar region took
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only 12 minutes and, therefore, the highly structured drift velocities probably rep-
resent spatial structure in the convection pattern and not time variations. A careful
examination of the figure indicates that there are nine reversals of the flow direction.
Although this case corresponds to an extreme case of electric field structure, it does
indicate what is missing from the empirical convection models.
Recently, a study was conducted to determine how well empirical convection

models represent instantaneous convection.13 The Weimer empirical convection
model was selected for this determination because it was the most comprehensive
model of its time.11 The cross-track velocities measured by theDefense Meteorolog-
ical Satellite Program (DMSP) F13 satellite were compared with the corresponding
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velocities obtained from the Weimer empirical convection model. The comparisons
were made for nearly a year of satellite crossings of the northern polar region (4430
successive crossings in 1998). The comparisons indicated that the empirical model
was able to capture the gross structure of the plasma convection pattern, but it could
not adequately capture the mesoscale spatial structure and convection magnitudes
observed by theDMSP satellite. Typically, the empirical convection model was able
to capture real (instantaneous) convection features in only 6% of the satellite cross-
ings. Figure 12.14 shows a representative comparison of the modeled and measured
cross-track velocities. A multi-cell convection pattern is evident from the satellite
measurement. The cross-track velocities obtained from the empirical model are off
by more than a factor of two and at certain places the flow directions are wrong.13

12.3 Effects of convection

The effect that convection electric fields have on the ionosphere depends on altitude,
as shown in Figure 12.15. At ionospheric altitudes, the electron–neutral collision
frequency is much smaller than the electron cyclotron frequency (Chapter 4), and
hence, the combined effect of the perpendicular electric field, E, and the geomag-
netic field, B, is to induce an electron drift in the E × B direction. For the ions,
on the other hand, the ion–neutral collision frequencies are greater than the corre-
sponding cyclotron frequencies at low altitudes (E region), with the result that the
ions drift in the direction of the perpendicular electric field. As altitude increases,
the ion drift velocity rotates toward the E × B direction because the ion–neutral
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collision frequencies decrease with altitude. At F region altitudes (≥150 km), both
the ions and electrons drift in the E × B direction, and therefore, it is below this
altitude where the horizontal ionospheric currents flow (Section 12.5). At altitudes
above about 800 km, the plasma begins to flow out of the topside ionosphere with a
speed that increases with altitude, and this phenomenon is known as the polar wind
(Section 12.12).
The convecting ionosphere can be a significant source of momentum and energy

for the thermosphere via ion–neutral collisions. The resulting interactions act tomod-
ify the thermospheric circulation, temperature, and composition, and this, in turn,
affects the ionosphere. The extent of the coupling, however, depends on the plasma
density. For plasma densities of 103 to 106 cm−3, the characteristic time constant for
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accelerating the thermosphere ranges from 200 hours (several days) to 10 minutes.
Therefore, when the plasma density is high or when the ionospheric driving source
persists for a long time, a significant thermospheric response can be expected.
Satellite measurements have been extremely useful for elucidating the extent

of the ion–neutral coupling at high latitudes.15, 16 Figure 12.16 (left dial) shows
neutral wind vectors along the track of theDE 2 satellite for three orbits that crossed
the southern (summer) polar region.15 The orbits are evenly distributed in universal
time and thus cross the southern auroral oval in different regions. In the polar cap, the
wind direction is from day to night, but the magnitude of the wind is typically much
greater than expected if solar heating was the only process driving the flow (about
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Figure 12.16 Neutral wind vectors measured along the track of the DE 2 satellite for
several passes over the summer, southern polar region (left dial) and the winter,
northern polar region (right dial).15

200 m s−1 for solar heating alone). Also, at lower latitudes, either the magnitude of
the antisunward flow is reduced or there is a reversal to sunward flow. These fea-
tures strongly suggest that the convecting high-latitude ionosphere has a significant
effect on the thermospheric circulation. The evidence for convection-driven winds
is also clear in the northern (winter) hemisphere (Figure 12.16, right dial), but the
momentum forcing does not appear to be as strong in the winter hemisphere as it is
in the summer hemisphere. This trend is consistent with the seasonal variation one
would expect if ionospheric convection controls the thermospheric circulation. In
the northern winter hemisphere, the bulk of the polar cap is in darkness, and conse-
quently, the electron densities are lower than those found in the summer hemisphere.
The lower electron densities, in turn, yield a weaker momentum source.
The neutral wind vectors shown in Figure 12.16 are consistent with a two-cell

plasma convection pattern, which occurs when the IMF is southward. However,
when the IMF is northward, multi-cell plasma convection patterns can exist, and
if the conditions are right, the multi-cell signature should also be reflected in the
thermospheric circulation pattern. Figure 12.17 shows neutral winds and ion drifts
measured along aDE 2 track in the northern hemisphere at a time when the IMFwas
northward.16Although the ion drift velocities are highly structured, a clearmulti-cell
convection pattern can be seen with some sunward flow in the polar cap. To a certain
extent, the neutral circulation pattern mimics the ion convection pattern. The neutral
flow is sunward in the morning side of the central polar cap, but the wind speed is
much smaller than the ion convection speed. Also, the neutral reversal regions are
co-located with the ion reversal regions. These results provide further evidence for
the strong coupling of the ions and neutrals in the polar regions.
The ions are frictionally heated, via ion–neutral collisions, as they convect through

the slower moving neutral gas, and this acts to raise the ion temperature. At high
latitudes, ion–electron energy coupling is not as important as it is at middle and
low latitudes because the electron densities are generally smaller at high latitudes.
Consequently, to a good approximation, the ion temperature at F region altitudes
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can be obtained simply by considering ion–neutral collisional coupling, which yields
(Equation 5.36)

Ti = Tn + mn
3k

(ui − un)2, (12.4)

where only one neutral species is considered and the subscripts n and i refer to neu-
trals and ions, respectively. The ion–neutral relative velocity along B is generally
small, and therefore, the velocity term inEquation (12.4) can be calculated by assum-
ing that E×Bmotion dominates. With this assumption, Ti can be expressed directly
in terms of the electric field. Above 150 km, where νin/ωci � 1, the expression for
Ti reduces to

Ti = Tn + mn
3k

(
E′

B

)2
, (12.5)

where E′ = E+ un × B is the effective electric field (Equation 5.37). This relation
indicates that for large electric fields, Ti ∝ (E′)2.
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The effect of frictional heating on the ion temperature profile is shown in
Figure 12.18. The profiles in this figure were calculated for daytime, steady-state
conditions at solar minimum for both summer and winter solstices and for atmo-
spheric conditions characteristic of both high and low geomagnetic activity.17 The
calculations included thermal conduction and ion–electron coupling in addition to
ion–neutral coupling. The left panel shows the results for E′ = 0 and the right panel
is for a meridional (north–south) electric field of 100mV m−1. Without the electric
field, Ti is equal to Tn at altitudes below 400 km for all of the geophysical cases.
Above 400 km, Ti increases with altitude because of ion collisions with the hot-
ter electrons (Te is not shown). Thermal conduction is important only above about
600 km, and it acts to produce isothermal profiles. With the 100mV m−1 electric
field, Ti is significantly enhanced at all altitudes for all of the geophysical cases. In
each case, the highest ion temperature (∼4000 K) occurs at low altitudes, where
the ion–neutral frictional heating is the greatest. The ion temperature decreases with
altitude in theF region because of the decrease of the neutral density and, hence, fric-
tional heating rate. Associated with the negative temperature gradient is an upward
heat flow, which acts to raise Ti at altitudes above about 600 km.
The elevated ion temperatures shown in Figure 12.18 act to alter the ion com-

position in the lower ionosphere through temperature-dependent chemical reaction
rates. For example, the most important chemical reactions for O+ are

O+ + N2→ NO+ + N , k1, (12.6)

O+ + O2→ O+2 + O, k2, (12.7)

O+ + NO→ NO+ + O, k3, (12.8)
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where the reaction rates (in cm3 s−1) are given by:

k1 = 1.533× 10−12 − 5.92× 10−13(T/300)+ 8.60× 10−14(T/300)2
(12.9a)

for 350 ≤ T ≤ 1700K;

k1 = 2.73× 10−12 − 1.155× 10−12(T/300)+ 1.483× 10−13(T/300)2
(12.9b)

for 1700 < T < 6000K;

k2 = 2.82× 10−11 − 7.74× 10−12(T/300)+ 1.073× 10−12(T/300)2
− 5.17× 10−14(T/300)3 + 9.65× 10−16(T/300)4 (12.10)

for 350 ≤ T ≤ 6000K;

k3 = 8.36× 10−13 − 2.02× 10−13(T/300)+ 6.95× 10−14(T/300)2
(12.11a)

for 320 < T < 1500K; and

k3 = 5.33× 10−13 − 1.64× 10−14(T/300)+ 4.72× 10−14(T/300)2
− 7.05× 10−16(T/300)3 (12.11b)

for 1500 < T < 6000K. In Equations (12.9–11), T is the effective temperature,
which can be expressed in the form18, 19

T = T (O+)+ m(O+)
m(O+)+ mr

mr − mb
3k

u2⊥(O+), (12.12)

where

mb =

∑
n

mnν(O+, n)
m(O+)+ mn∑

n

ν(O+, n)
m(O+)+ mn

, (12.13)

andwheremr is the reactant mass (N2, O2, or NO) and T (O+) is the O+ temperature.
The effective temperature is different for the three reactions in Equations (12.9–11)
because of the presence of mr.
The expression for the effective temperature takes a particularly simple form at

altitudes above about 200 km, where νin/ωci � 1 and where atomic oxygen is the
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main neutral species impeding the flow of O+[mb→ m(O)]. Setting mr = m(N2),
B = 0.5 gauss, and assuming that the O+ perpendicular drift is due to E×Bmotion,
the expression for T becomes

T = Tn + 0.33E′2, (12.14)

where E′ is in mV m−1. For large electric field strengths, T ∝E′2 and k1∝E′4.
Therefore, a factor of two increase in the electric field results in a factor of 16
increase in the O+ + N2→ NO+ + N reaction rate.
The above analysis indicates that in the regions where the convection electric

field is large, the associated frictional heating should lead to a rapid conversion of
O+ into NO+. This effect is shown in Figure 12.19, where ion and electron density
profiles are given for convection electric fields of 0 and 100 mVm−1. The profiles
were calculated for daytime steady-state conditions.19 With no electric field, the
molecular ions dominate in the E region and O+ is the dominant ion in the F region.
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The transition from molecular to atomic ion dominance occurs at about 225 km. On
the other hand, for a 100mVm−1 electric field, the elevated ion temperature leads
to an increased conversion of O+ into NO+, with the result that NO+ becomes the
dominant ion at altitudes up to 330 km.
The ion frictional heating discussed above is a manifestation of changes in the

ion velocity distribution due to ion–neutral collisions. For small electric fields, the
ion–neutral relative drift is small and ion–neutral collisions do not appreciably alter
the ion velocity distribution. In this case, the ion distribution is basically a drift-
ing Maxwellian with an enhanced temperature, as shown in Figure 12.20 for an
altitude of about 120 km.20 However, when the electric field is greater than about
40 mVm−1, the ion drift exceeds the neutral thermal speed and the ion velocity
distribution becomes nonMaxwellian. For large electric fields (≥100 mV m−1), the
ion distribution tends to become bean-shaped in the lower ionosphere. Such highly
nonMaxwellian distributions are unstable, and the resulting wave–particle interac-
tions have a significant effect on the ion energetics. Note that the nonMaxwellian
features shown in Figure 12.20 relate to an altitude of about 120 km. At higher alti-
tudes, the nonMaxwellian features change markedly, while at lower altitudes they
rapidly disappear owing to the decrease of the ion drift velocity as the ions try to
penetrate a more dense atmosphere.
Large electric fields also lead to anomalous electron temperatures in the E region

owing to the excitation of plasma instabilities.21, 22 Specifically, in the auroral E
region the electrons drift in theE×B direction, while the ions drift in theE direction.
This ion–electron relative drift excites a modified two-stream instability when the
electric field exceeds a threshold. The subsequent interaction of the plasma waves
and the electrons heats the electron gas. For large electric fields, Te can be much
greater than Tn in the lower ionosphere. This is illustrated in Figure 12.21, where
EISCAT radar measurements of the electric field, electron and ion temperatures,
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Figure 12.21 Measurements from EISCAT of electric field strength, electron and ion
temperatures, and electron density as a function of time. The measurements were made
at an altitude of 110 km on September 13, 1990 between 2130 and 2330 UT.22

and electron density are shown versus time at an altitude of 110 km.22 Note that
Ti, and probably Tn, remain below 600K throughout the observing period, but that
Te is significantly enhanced at certain times. The peaks in the electron temperature
coincide with electric field enhancements. However, not all of the electric field
enhancements produce Te increases, but this is probably because of the need to
satisfy certain threshold conditions for the plasma instability.

12.4 Particle precipitation

Particle precipitation is another important mechanism that links the magnetosphere,
ionosphere, and thermosphere at high latitudes. Energetic electron precipitation in
the auroral oval is not only the source of optical emissions, but also a source of
ionization due to electron impact with the neutral atmosphere, a source of bulk
heating for both the ionosphere and atmosphere, and a source of heat that flows
down from the lower magnetosphere into the ionosphere. For a southward IMF,
the electron precipitation occurs in distinct regions in the auroral oval, as shown
schematically in Figure 12.22. In addition to diffuse auroral precipitation, there are
discrete arcs in the nocturnal oval, low-energy polar rain precipitation in the polar
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model.24

cap, soft precipitation in the cusp, and diffuse auroral patches in the morning oval.
For northward IMF, there are sun-aligned arcs in the polar cap (Section 12.9).
The energy flux and characteristic energy of the auroral electron precipitation

have been extensivelymeasured via particle detectors on polar orbiting satellites and
several empirical models are currently available to describe these parameters.24, 25

Figure 12.23 shows representative auroral electron energy fluxes in the northern
hemisphere for both quiet (Kp = 1) and active (Kp = 6) magnetic conditions (see
Section 11.3).24 For quiet magnetic conditions, the largest energy fluxes occur in
the midnight–dawn sector of the auroral oval and the maximum energy flux is about
1 erg cm−2 s−1. For active magnetic conditions, the precipitation is more intense,
with the maximum energy flux reaching 8 ergs cm−2s−1. Also, for active magnetic
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conditions, the auroral oval has a greater latitudinal width, extending from about
50◦ to 80◦ in latitude.
The contours of the characteristic energy of electron precipitation have a morpho-

logical form similar to the energy flux contours shown in Figure 12.23. However,
electrons with different characteristic energies generally have sharp spatial bound-
aries. Figure 12.24 shows the auroral boundaries in the dusk sector as a function
of electron energy. The data were obtained with the particle detector (SSJ/3) on the
DMSP/F2 satellite as it crossed the northern polar region. At each energy, the equa-
torward boundary of the auroral region can be identified by a factor of 10 increase
in the electron number flux (counts) over a range of 0.1◦ to 1◦ in latitude. For the
energy range shown (50 to 5500 eV), the different boundaries extend over a 2.5◦
latitude range.
Ion precipitation also occurs in the auroral zone and, on average, the ion precipi-

tation pattern varies systematically with magnetic latitude, magnetic local time, and
magnetic activity (Kp).27 The integral number flux of the precipitating ions is always
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much smaller than that for the electrons, typically by one or two orders ofmagnitude.
Therefore, the current carried by the precipitating ions is negligible. On the other
hand, the energy flux associated with the precipitating ions can be comparable to
that for the precipitating electrons, as shown in Figure 12.25. In the dusk sector, near
the electron equatorward boundary, the ion integral energy flux actually exceeds the
electron integral energy flux. However, in the rest of the auroral zone, the ion energy
flux is comparable to, but smaller than, the electron energy flux. For example, the
ratio of the ion to electron integral energy fluxes is 0.28 at midnight, 0.14 at dawn,
and 0.43 at noon for Kp = 2. Along the dawn–dusk meridian, the pattern for the ion
energy flux is displaced equatorward of that for the electrons on the dusk side and
poleward on the dawn side. Also, along this meridian, the highest ion energies occur
at dusk, while the highest electron energies occur at dawn. Note that the average
energy of the precipitating ions is substantially greater than that for the precipitating
electrons.
In general, the particle precipitation in the auroral zone is structured and highly

time dependent. This should act to produce structure in the ionization created by the
precipitation as well as important temporal variations. The rapid build-up of ioniza-
tion structure in response to ongoing auroral precipitation is shown in Figure 12.26.
The measurements were made with the Chatanika incoherent scatter radar when it
was in the auroral oval. Two altitude–latitude scans are shown, separated by about
10 minutes. Note the rapid enhancement in the electron density, particularly in the
lower ionosphere.
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12.5 Current systems

The precipitating auroral electrons are responsible for the upward field-aligned
(Birkeland) current. Associated with these precipitating magnetospheric electrons
are upflowing ionospheric electrons, which provide for a return current. These
upward and downward field-aligned currents have been extensively measured with
satellite-borne magnetometers and their average properties have been incorporated
into empirical models.29 Figure 12.27 shows statistical patterns of Birkeland cur-
rents for southward IMF and for both quiet (left dial) and active (right dial) magnetic
conditions. The field-aligned currents are concentrated in two principal areas that
encircle the geomagnetic pole. The poleward (Region 1) currents exhibit current
flow into the ionosphere in the morning sector and away from the ionosphere in the
evening sector, while the equatorward (Region 2) currents contain current flows in
the opposite directions at a given local time. The basic field-aligned current flow
pattern is the same during geomagnetically quiet and active periods. Themagnitudes
of the currents in the poleward and equatorward regions are not well known, but
it appears that the net current is inward on the morning side and outward on the
evening side in the northern hemisphere.
The Region 1 and Region 2 field-aligned currents display both annual and semi-

annual variations with regard to their location and intensity.30 For example, on the
day side the field-aligned current moves poleward in the summer hemisphere and
equatorward in the winter hemisphere, while the night side field-aligned current dis-
plays an opposite seasonal dependence. The average day side field-aligned current
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intensity is larger in the summer hemisphere than in the winter hemisphere, and
this is related to the seasonal variation of the ionospheric conductivity. The primary
cause of the annual variation of the field-aligned current is related to the dipole tilt
of the geomagnetic field, while the semiannual variation appears to be related to the
fact that geomagnetic activity tends to be greater around the equinoxes.30

In addition to the Region 1 and 2 current systems, there is another current system
associated with the cusp region (Figure 12.28). The cusp field-aligned currents are
located poleward of the Region 1 and 2 currents in the 0930 to 1430 magnetic local-
time (MLT) sector and are statistically distributed between 78◦ and 80◦ invariant
latitudes during weak magnetic activity. These currents generally flow away from
the ionosphere in the prenoon sector (0930–1200 MLT) and into the ionosphere in
the postnoon sector (1200–1430 MLT).
When the IMF is northward, an additional field-aligned current system exists

in the polar cap, which is called the NBZ current system. The NBZ currents are
concentrated on the sunlit side of the polar cap and the intensity of the currents
increases as the magnitude of Bz increases. The statistical distribution of the NBZ
currents is shown in Figure 12.29 for strongly northward Bz (≥5 nT) conditions.32
TheNBZ currents are poleward of the Region 1 currents and are in opposite direction
to the Region 1 currents at a given local time. The NBZ currents are nearly as intense
as the Region 1 and 2 currents. When the NBZ currents are present, the Region 1
and2 currents continue to exist, although their intensity is diminished. In the southern
hemisphere, the NBZ currents flow into the ionosphere on the dusk side of the polar
cap and away from the ionosphere on the dawn side. These currents also display a
distinct By dependence.
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The field-aligned currents that flow into and out of the ionosphere are connected
via horizontal currents that flow in the lower ionosphere, as shown schematically in
Figure 12.30. These large-scale currents, the auroral conductivity enhancements due
to precipitating electrons, and the convection electric fields are not independent, but
instead are related via Ohm’s law and the current continuity equation (Sections 5.11
and 7.2). Numerous model studies, based on these equations, have been conducted
over the years. These studies have shown that for southward IMF the Region 1
and 2 current systems (Figure 12.27), in combination with conductivity distributions
obtained from empirical precipitation models (Figure 12.23), are consistent with the
basic two-cell pattern of plasma convection (Figure 12.4).

12.6 Large-scale ionospheric features

The magnetospheric electric fields, particle precipitation, and field-aligned currents
act in concert to produce several large-scale ionospheric features. These include polar
holes, ionization troughs, tongues of ionization, plasma patches, auroral ionization
enhancements, and electron and ion temperature hot spots. However, whether a
feature occurs and also the detailed characteristics of a feature depend on the phase
of the solar cycle, season, time of day, type of convection pattern, and the strength of
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convection. Because of the myriad of possibilities, only the basic physics governing
the formation of certain large-scale ionospheric features is described here.
Most of the large-scale features that have been identified occur for southward

IMF. In this case, a two-cell convection pattern exists, with antisunward flow over
the polar cap and sunward flow at lower latitudes. The effect of the antisunward
flow is to transport the high-density day side plasma into the polar cap. However,
the effect of this process depends on the speed of the antisunward flow and the
location of the solar terminator. For low antisunward speeds (∼200m s−1), the
plasma travels 720 km (7.2◦ of latitude) in one hour, while for moderate antisunward
speeds (∼1 km s−1) it travels 3600 km (36◦ of latitude). In summer, when the bulk of
the polar cap is sunlit, the difference in convection speeds is not significant because
the plasma density tends to be uniform. In winter, on the other hand, the difference
in antisunward convection speeds is important.
Figure 12.31 shows the ionospheric feature that occurs for slow convection in

winter. After the plasma convects across the solar terminator, it decays, owing
to the absence of sunlight coupled with ordinary ionospheric recombination. The
e-folding decay time for NmF2 is about half an hour. When the convection speed
is low, the plasma density can decay to very low values (NmF2 ∼ 103 cm−3) just
before the plasma enters the nocturnal oval. In the oval, the density is enhanced
because of impact ionization due to precipitating electrons. The net result is a polar
hole, which is situated just poleward of the nocturnal oval. On the other hand, when
the antisunward convection speed is high, the high-density day side plasma can be
transported great distances before it decays appreciably. The net result is a tongue
of ionization that extends across the polar cap from the day side to the night side
(Figure 12.32). Measurements have clearly established the existence of both the
polar hole and the tongue of ionization, as well as their characteristics, for different
seasonal and solar cycle conditions.
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Another interesting feature that is evident in winter is the main or mid-latitude
electron density trough. This trough, which is situated just equatorward of the noc-
turnal auroral oval, is a region of low electron density that has a narrow latitudinal
extent, but is extended in longitude. The trough’s existence can be traced to the
low-speed region in the dusk sector (Figure 12.5). In winter, this region is in dark-
ness, and the long residence time allows the plasma density to decay to low values.
Eventually, the plasma drifts out of this low-speed region and then co-rotates around
the night side. The main trough occurs for all levels of geomagnetic activity, but it is
especially pronounced during low geomagnetic activity when the convection speeds
are slow. Trough electron densities as low as 103 cm−3 have been measured at 300
km during quiet geomagnetic conditions.35

Ion temperature hot spots can occur in the high-latitude ionosphere during peri-
ods when the convection electric fields are strong.36 The hot spots correspond to
localized regions of elevated ion temperatures located near the dusk or dawn merid-
ians. For asymmetric convection patterns, with enhanced flows in either the dusk
or dawn sectors of the polar region, a single hot spot occurs in association with the
strong convection cell. However, on geomagnetically disturbed days, two strong
convection cells can occur, and hence, two hot spots should exist. The enhanced ion
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temperatures are a consequence of the increased ion–neutral frictional heating that is
associated with the elevated convection speeds. Figure 12.33 provides experimental
evidence for the existence of ion temperature hot spots. The figure shows contours of
the ion temperature and line-of-sight plasma convection velocity at 500 km altitude,
as observed via the Millstone Hill incoherent scatter radar over a 24-hour period
on October 10–11, 1980. The line marked UT corresponds to the local time the
observations began. During this day, Kp remained above five from the time the mea-
surements began until about 1000 LT. Therefore, it is highly probable that the basic
convection patternwas a two-cell pattern and that it persisted during this time period.
The measurements show two distinct regions where the north–south, line-of-sight
convection velocity exceeds 1 km s−1. When the full vector is constructed with the
aid of a two-cell convectionmodel, these line-of-sight convection velocities are con-
sistent with two strong convection cells, one at 0600 LT and the other at 1800 LT.
Horizontal speeds in excess of 2 km s−1 are obtained in both of the convection
cells. Associated with the large convection speeds are high ion temperatures, with
Ti reaching 4000K in a small region near the dusk terminator. The enhanced ion
temperatures are confined to the general region where the line-of-sight velocities are
large, which yields two distinct hot spots in the high-latitude ionosphere.
Electron temperature hot spots are also prevalent in the high-latitude ionosphere.

The main source of Te hot spots is electron precipitation. The precipitating elec-
trons transfer energy to the thermal electrons via Coulomb collisions and they create
energetic secondary electrons, thereby raising the temperature of the thermal elec-
trons. Low-energy (soft) precipitation is most effective in raising Te, because of the
velocity dependence of the Coulomb cross section (Equation 4.51). Consequently,
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the cusp is expected to appear as an electron temperature hot spot, and that is indeed
the case (Figure 12.34). However, localized Te enhancements also occur in associ-
ation with patches of precipitation, sun-aligned polar cap arcs, and auroral arcs. In
addition, Te hot spots can occur when the low-density plasma in the main trough
convects into sunlight (Figure 12.31), which can occur in the morning or evening
sectors. The photoelectron heating rate is spatially uniform, but the heat capacity of
the low-density plasma is lower than that of the surrounding plasma. Therefore, Te
is elevated in the low-density region relative to the surrounding plasma and, hence,
a Te hot spot appears.38

12.7 Propagating plasma patches

Plasma patches are regions of enhanced plasma density and 630 nm emission that
occur at polar latitudes. They have been observed for more than 15 years via optical,
digisonde, and in situ satellite measurements.39–42 Patches typically appear when
the IMF turns southward. They have been observed in summer and winter at both
solar maximum andminimum. They seem to be created either in the day side cusp or
just equatorward of the cusp. Once formed, they convect in an antisunward direction
across the polar cap at the prevailing convection speed, which typically varies from
300m s−1 to 1 km s−1. Patch densities are a factor of 3–10 greater than background
densities and their horizontal dimensions vary from 200 to 1000 km.As they convect
across the polar cap, the associated electron temperatures are low, which indicates
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Figure 12.35 Propagating plasma patches observed at Qaanaaq on October 29, 1989.
The dials represent a digitization of all-sky images (630 nm) taken at two-minute
intervals. The solid and shaded areas show two plasma patches moving in an
antisunward direction.39

an absence of particle precipitation. However, intermediate-scale irregularities
(1–10 km) and scintillations are usually associated with propagating plasma
patches.43 Figure 12.35 shows an example of plasma patches observed at Qaanaaq,
Greenland, on October 29, 1989.39 The figure corresponds to a digitization of a
sequence of all-sky photographs (630 nm) taken at two-minute intervals. The direc-
tion of the sun is indicted by an arrow on the first and last photographs. At 23:30 UT,
a patch that is extended in the dawn–dusk direction is observed and it subsequently
moves in an antisunward direction. Six minutes later, another patch appears in the
all-sky camera’s field-of-view and it also moves in an antisunward direction. The
velocity of the patches is about 730m s−1.
Several mechanisms have been proposed to explain the appearance of plasma

patches.44 One mechanism suggested is that the patches are created in the cusp by
pulsating soft electron precipitation, and then the patches convect into the polar cap.
Another mechanism suggested is that the patches are created as a result of the sudden
expansion and then contraction of the convection pattern. When the convection pat-
tern expands, high-density plasma from the sunlit ionosphere is transported through
the cusp and into the polar cap. When the convection pattern contracts, high-density
plasma no longer flows into the polar cap, and the high-density plasma already there
becomes isolated, forming a plasma patch. Although both of these mechanisms can,
in principle, account for the formation of propagating plasma patches, themost likely
cause of them is time-dependent changes in the By component of the IMF.40, 45 With
this mechanism, the tongue of ionization that normally extends through the cusp
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and into the polar cap (Figure 12.32) is broken into patches as the convection throat
moves in response to By changes. However, it was also suggested that the tongue of
ionization is broken by the sudden appearance of a fast plasma jet.40 The appearance
of the plasma jet coincides with a change in the IMF By component. The plasma jet
is latitudinally narrow (300 km), extended in the east–west direction (2000 km), and
contains eastward velocities in excess of 2 km s−1. The plasma jet is located just
poleward of the cusp and perpendicular to the tongue of ionization. The jet causes a
rapid depletion of the ionization because of the increased O++N2 reaction rate that
is associated with ion–neutral frictional heating (Section 12.3). This process breaks
the tongue of ionization into patches.

12.8 Boundary and auroral blobs

Boundary and auroral blobs are regions of enhanced plasma density that are located
either inside or on the equatorward edge of the auroral oval. Figure 12.36 shows
examples of such features. The figure shows contours of the electron density mea-
sured on November 11, 1981, by the Chatanika incoherent scatter radar.28, 46 The
contours are plotted as a function of altitude and geomagnetic north distance from
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Figure 12.36 Contours of electron density measured on November 11, 1981 by the
Chatanika incoherent scatter radar. The contours are plotted as a function of altitude
and geomagnetic north distance from the radar (in 100 km units).46
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the radar (in 100 km units). Two 15-minute radar scans are shown that are close to
each other in time. The auroral blob is seen in the first scan and is located about 500
kmnorth of the radar. The structure extends from 180–300 km in altitude and is about
200 km wide. The structure is no longer evident in the second scan. The boundary
blob appears in both radar scans and is situated just equatorward of the auroral E
layer and poleward of the mid-latitude trough. The auroral E layer is evident in the
second scan as enhanced densities north of the radar at about 130 km altitude, while
the mid-latitude trough is located south of the radar and is the narrow latitudinal
region of low plasma densities. At still lower latitudes, a classical F region is clearly
evident. Although not shown in Figure 12.36, boundary blobs can persist for many
hours and can extend over large longitudinal distances.
Auroral blobs are thought to be produced by nonuniform particle precipitation in

the auroral oval. Indeed, the measurements in Figure 12.27 reveal that a substantial
ionization enhancement can occur in both the E and F regions within 10 minutes
after precipitation commences.After the precipitation ceases, theE region ionization
rapidly decays via recombination, leaving an auroral blob in the F region. Boundary
blobs, on the other hand, are not created locally. They are polar cap patches that have
convected through the night side auroral oval and around towarddusk.47 Figure 12.37
shows the calculated evolution of plasma in a circular region in the polar cap when
the ionospheric dynamics is governed by a two-cell convection pattern. Starting
with plasma in a circular region in the dusk convection cell, the subsequent plasma
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Figure 12.37 Distortion of a circular patch of ionization as it convects from the polar
cap through and around the nocturnal oval toward dusk. A two-cell convection pattern
was used.47
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convection distorts the circle as the elements inside the circle move along different
convection trajectories. After three hours, the circle transforms into a structure that
is narrow in latitude but extended in longitude. The structure is located on the
equatorward edge of the dusk side auroral oval, which is where boundary blobs are
located.

12.9 Sun-aligned arcs

Sun-aligned polar cap arcs are discrete 630 nm emission structures in the polar
cap.48 The arcs appear when the IMF is near zero or northward and are a result
of electron precipitation, with the characteristic energy varying from 300 eV to
5 keV and the energy flux varying from 0.1 to a few ergs cm−2 s−1. They are
relatively narrow (≤ 300 km), but are extended along the noon–midnight direction
(1000–3000 km). Under conditions of large (>10 nT) northward IMF, a single arc
can form that extends all the way from the day side to the night side auroral oval,
with the associated optical emission forming the Greek letter theta when viewed
from space.11 Typically, however, the arcs do not completely extend across the
polar cap, and frequently, multiple arcs are observed. Once formed, the arcs tend
to drift toward either the dawn or dusk side of the polar cap at speeds of a few
hundred meters per second. Figure 12.38 shows the temporal evolution of multiple
polar cap arcs observed at Qaanaaq, Greenland, on February 19, 1989. The arcs are
reconstructions of 630 nm images displayed in a corrected geomagnetic coordinate
system.49 Initially, three arcs were visible, but at 22:57 UT a fourth arc appeared,
which then drifted toward the other arcs. In general, the direction of motion of the
arcs depends on both the IMF By component and the arc location in the polar cap.
For a given value of By, two well-defined regions (or cells) exist. Within each cell,
the arcs move in the same direction toward the boundary between the cells. The arcs
located in the dusk side cell move toward the dawn, while those in the dawn side cell
move toward the dusk. The relative sizes of the dawn and dusk cells are determined
by the magnitude of By.

12.10 Cusp neutral fountain

The CHAMP satellite observations at 400 km indicate that the neutral density in the
day side cusp can be nearly twice that in the adjacent regions.50 It was suggested that
Joule heating of the neutral gas at lower altitudes caused upwelling, which led to
the density enhancement measured by CHAMP. It was also noted that the CHAMP
observations might be related to simulations with a thermosphere general circulation
model (TGCM) that predicted a four-cell neutral density pattern with high-density
structures in the noon and midnight sectors of the polar region.51 These modeled
neutral density cells, which were 1000–2000 km in diameter, were caused by a
combination of Joule heating and ion drag. However, the modeled cells were only
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Figure 12.38 Multiple polar cap arcs observed at Qaanaaq, Greenland, on
February 19, 1989. The arcs are displayed in a corrected geomagnetic coordinate
system.49 The oval marks the polar cap boundary.

evident at low altitudes (140–300 km) and the neutral density variation at 400 km
was relatively smooth. In a follow-up study with a more comprehensive CHAMP
data set,52 numerous neutral density peaks and troughs were observed in the polar
region. The width of the structures, either maxima or minima, varied from a few
hundred km to 2000 km and the amplitudes of the structures approached 50% of
the ambient density. The maxima clustered around the cusp, while the minima
tended to cluster around the pole. In further comparisons of the observed density
peaks and troughs with the predictions of global ionosphere–thermosphere models,
it was concluded that these models do not produce neutral density structures at
the CHAMP satellite altitude, and therefore, are not consistent with the CHAMP
measurements.
A possible problem with the previous global ionosphere–thermosphere simula-

tions could simply be that the spatial resolution used in the simulations was not
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adequate and that the Joule heating and ion drag force were not strong enough in
the vicinity of the cusp. To test this hypothesis, a high-resolution (50 km× 50 km
horizontal resolution in the polar region), global, thermosphere–ionosphere model
was used to simulate the thermosphere’s response to ion heating in the day side
cusp.53 With a series of relatively simple simulations, it was found that increased
ion–neutral frictional heating and ion drag in the cusp results in the formation of a
cusp neutral fountain with upwelling of the neutral gas in the heated region and a
divergence and gradual subsidence of the gas outside of the heated region at higher
altitudes. For frictional heating in the cusp that results in a doubling of neutral density
at 400 km relative to background densities, the fountain contains a 200m s−1 vertical
wind and a 1500K neutral temperature (Figure 12.39). However, it is possible that
ion–neutral frictional heating is not the only mechanism responsible for elevated
neutral densities in the cusp. Other possible mechanisms include heating via parti-
cle precipitation, field-aligned currents, solar EUV radiation, and the dissipation of
atmospheric gravity waves.52
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12.11 Neutral density structures

The cusp neutral fountain is a prominent thermospheric structure. However, the
polar region also contains other thermospheric structures that are associated with
mesoscale (100–1000 km) plasma structures, which can appear in the form of
propagating plasma patches, auroral and boundary blobs, and ionization channels
associated with polar cap arcs, discrete auroral arcs, and storm-enhanced densities
(SEDs). Mesoscale plasma structures can also be associated with density deple-
tions, including sub-auroral ion drift (SAIDs) events and equatorial plasma bubbles.
These plasma structures have been observed to have a pronounced effect on the
thermosphere.54 The observations have shown the thermosphere to be highly struc-
tured both during geomagnetic storms and near discrete auroral features, with spatial
scales varying from 50 to 500 km. The thermosphere was also observed to exhibit
fairly rapid temporal variations, with time scales as short as 10–30 minutes. The
plasma structures not only affect the local thermosphere, but the cumulative effect
of multiple plasma structures can alter the global mean circulation and temperature
of the thermosphere.55

There have been several modeling studies of the effect that ionospheric structures
have on the thermosphere. Time-dependent, high-resolution simulations have been
conducted to study the thermosphere’s response to discrete auroral arcs, sub-auroral
ion drift events, single and multiple propagating plasma patches, circular and cigar-
shaped plasma patches, single and multiple sun-aligned polar cap arcs, theta aurora,
and equatorial plasma bubbles.56–62 In all cases, the neutral disturbances induced by
the plasma structures were characterized by neutral density, temperature, wind, and
composition enhancements and depletions. Figure 12.40 shows the thermosphere’s
response to a series of propagating plasma patches, which act as a collisional “snow-
plow”, creating a hole in the thermosphere in and behind the plasma patches and a
neutral density enhancement at the front of the patches. The neutral disturbance that
is induced by the propagating plasma patches moves along with the patches, and at
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300 km the disturbance is characterized by a neutral density perturbation (30–35%),
an increasedwind speed (100–150m s−1), a temperature enhancement (100–400K),
neutral gas upwelling, and O/N2 composition changes. In general, the neutral gas
perturbations due to plasma structures can be comparable to the day–night change
in the neutral gas at 300 km (see Appendix K).

12.12 Neutral response to convection channels

As noted in Sections 12.1 and 12.2, the plasma convection pattern at high latitudes
can exhibit a relatively simple cellular structure (Figures 12.8 to 12.12). Frequently,
however, the convection pattern can contain narrow channels (200–1000 km wide)
of high-speed flow (Figures 12.3 and 12.17) and the plasma density in the channels
can be either higher or lower than the plasma density outside the channels, depending
on where the channels form. These convection channels can form in the polar cap,
in the auroral oval, and equatorward of the oval at all local times. An example of
a well-known convection channel is the one associated with a sub-auroral ion drift
(SAID) event. These SAID events correspond to narrow regions of rapid westward
ion drifts that are located in the evening sector just equatorward of the auroral oval.
The SAID events have a narrow latitudinal width, but are extended in longitude
(Section 12.15).
The enhanced electric field in a narrow convection channel will have a significant

effect on the plasma in the channel. In addition to the rapid plasma flow, there will
be elevated ion temperatures due to ion–neutral collisions, O+ → NO+ conversions
and electron density depletions due to chemical reactions, and plasma upflows due
to ion heating (Section 12.3). There is also a significant thermospheric response
to a narrow channel of rapidly convecting plasma and the disturbance occurs both
inside and outside the channel. Some of the important characteristics of the neutral
flow in and near a convection channel have been simulated with two-dimensional,
high-resolution models of the thermosphere–ionosphere system, and these simula-
tions indicate that the flow characteristics in and near a convection channel can be
considerably different from those in the background neutral gas.63–67

For illustrative purposes, it is useful to consider the simple channel shown in
Figure 12.41, which was used to simulate an idealized SAID event.66 In this case, x
is the zonal direction, y is the meridional direction, and z is altitude. The channel is
extended in the x-direction so that spatial gradients in this direction can be ignored.
A constant electric field exists in the channel that is directed in the –y-direction and
a constant magnetic-field is in the –z-direction. The resulting E × B drift is in the
x-direction. Ion density profiles that contain realistic E and F region characteristics
(NmF2 = 105 cm−3) are imposed both inside and outside the channel and the ion
density profiles are the same across a given region. The ion density profiles are also
kept constant with time. Consider the case where the channel is 150 km wide, the
electric field in the channel isE = 100 mV m−1 (2 km s−1E×B drift), E = 0 outside
the channel, the electron density in the channel is 10 times larger than that outside the
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Figure 12.41 Schematic diagram of an idealized plasma convection channel.66

channel, and the neutral atmosphere is initially stationary. After the electric field is
turned on and a steady state is reached (20–60minutes), the horizontal neutral veloc-
ities in and near the convection channel are as shown in Figures 12.42 and 12.43. For
the case considered, the ion collision-to-cyclotron frequency ratio is much less than
one at altitudes above 150 km, so that the ions and electrons E× B drift together in
the x-direction (Equation 5.110, Figure 12.15). Therefore, the neutral flow pattern
shown in Figure 12.42 is a result of the competition between the following processes;
the drifting ions tend to drag the neutrals in the E× B (or x) direction; the Coriolis
force acts to deflect the flow to the negative y-direction; and vertical and horizontal
viscosity act to decrease vertical and horizontal velocity gradients, respectively, and,
hence, act to transmit velocity information upward and out of the plasma convec-
tion channel. It is apparent that the Coriolis force dominates in the channel below
about 250 km.
Above 250 km, the ion drag force, which decreases with altitude, is balanced by

vertical and horizontal viscosity. Vertical viscosity acts to smooth vertical gradients
and increase the flow speed at high altitudes, while horizontal viscosity acts to trans-
mit flow information outside the channel and reduce the flow speed. At altitudes
above 300 km, horizontal viscosity dominates, and therefore, both the meridional
and zonal neutral velocities decrease with altitude. This is in sharp contrast to what
happens in the background thermosphere, where the velocity profiles tend to go
constant with altitude owing to the importance of vertical viscosity (Figure 12.43).
Also, outside the channel the horizontal and vertical viscosity forces tend to balance
each other, and as a consequence, the Coriolis force has an appreciable effect on
the momentum balance to altitudes up to about 400 km. Furthermore, horizontal
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Figure 12.42 Horizontal neutral velocities in and near a convection channel. The
channel width is 150 km, E = 100 mV m−1 in the channel, and the electron density is
10 times larger than that outside the channel.66

viscosity acts to induce a thermospheric motion over a region that extends up to
1000 km on both sides of the electric field region.65, 66 Because of the impor-
tance of horizontal viscosity, viscous heating (−τn : ∇un; viscous term brought
to the right-hand-side of Equation 10.20c) can be comparable to or more important
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than Joule heating (ion–neutral frictional heating) in and near plasma convection
channels.65–67

The simulation shown in Figures 12.42 and 12.43 corresponds to a case when
there is no wind in the background thermosphere. However, if there is a large-scale
pressure gradient that drives a meridional wind across the convection channel in the
+y-direction (toward the equator) then the thermospheric flow pattern changes from
that in Figure 12.42 to the one shown in Figure 12.44. In this case the large-scale
pressure gradient tends to balance the Coriolis force, which results in larger neutral
velocities in the E× B (zonal) direction.
With regard to the thermal structure in and near a plasma convection channel,

thermal conduction in the vertical and horizontal directions plays a role that is
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similar to viscosity in that heat is conducted upward and out of the convection
channel. The tendency is for Tn to decrease with altitude and to increase outside of
the channel due to thermal conduction. However, advection of heat out of the channel
by cross-channel winds can also occur.67 In a more general simulation, the various
processes discussed here will occur simultaneously and the net outcome will depend
on several parameters, including the channel width, the location of the channel,
the electric field and electron density profiles inside and outside of the channel,
the temporal evolution of the electron density profiles, the lifetime of the event, and
the background thermospheric conditions. Nevertheless, the basic characteristics of
the neutral flow in and near convection channels will be similar to that discussed in
this section.

12.13 Supersonic neutral winds

Dynamics Explorer 2 (DE 2) satellite data indicate that supersonic neutral winds
frequently occur in the high-latitude thermosphere.68 The supersonic neutral winds
occur most often in the dawn sector of the polar cap between 75◦ and 85◦ magnetic
latitude and at altitudes from 300–400 km, but they have been observed as high
as 600 km. The Mach numbers of the supersonic neutral winds fall in the range
1 < M < 2. The average horizontal extent of the supersonic flow regions is 140 km
in a roughly dawn–dusk direction. The Mach number and neutral temperature were
found to be anti-correlated.68

A time-dependent, high-resolution model of the global thermosphere–ionosphere
systemwas used to study the geophysical conditions that give rise to supersonic neu-
tral winds.69 Simulations were conducted for a wide range of solar cycle, seasonal,
and geomagnetic activity conditions. Since high-speed neutral winds are primarily
driven by antisunward plasma convection (see Figure 12.16), only southward IMF
conditions (Bz < 0) were considered. However, three By cases (0, positive, neg-
ative) and three values for the cross-polar-cap potential (100, 150, 200 kV) were
considered. In a typical simulation, a diurnally reproducible thermosphere was first
calculated for quiet conditions, and then at a selected time the convection patternwas
changed to mimic a southward turning of the IMF and enhanced convection. The
simulations indicated that the main factor controlling the neutral wind speed is the
magnitude of the cross-polar-cap potential. For a sufficiently large cross-polar-cap
potential (>∼ 150 kV), supersonic flow of the neutral gas can occur. Typically, the
neutral gas is accelerated to supersonic speeds in less than three hours. In general, the
region of supersonic flowoccurs about 70–90 degreesmagnetic latitude in the dawn–
midnight quadrant. The spatial extent of the supersonic flow region and themaximum
Mach numbers that occur there are seen to increasewith altitude, but the increases are
very small above 400 km. For cross-polar-cap potentials in the range of 150–200 kV,
the dawn–dusk extent of the supersonic flow region is about 150 km, and at an altitude
of 400 km the Mach numbers vary from 1 < M < 2, where M = un/(kTn/mn)1/2.
The simulations also indicate that the Mach number and neutral temperature are
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anti-correlated. This occurs because the ion drag force is proportional to (ui − un),
while the ion–neutral frictional heating is proportional to (ui − un)2. As the neutral
gas is accelerated, the heating decreases more rapidly than the drag force. Note that
all of the features predicted by the global thermosphere–ionosphere model69 are in
good agreement with the measured supersonic flow events.68

Figure 12.45 shows simulation results for moderate solar activity (F10.7 = 150)
and autumn equinox (day 268) conditions in the northern polar region.69 The
simulation was conducted with the plasma convection defined by a symmetric
two-cell convection pattern similar to that shown in Figure 12.4.2 Initially, a
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Figure 12.45 Contour plots of the Mach number in the northern hemisphere at high
latitudes and at 200, 300, 400, and 500 km. The case is for equinox, moderate solar
activity, and a Volland convection pattern with a cross-polar-cap potential of 150 kV.69
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diurnally reproducible thermosphere–ionosphere systemwas calculatedwith a 40 kV
cross-polar-cap-potential, and then at 0UT the potential was increased to 150 kV.
Figure 12.45 is a snapshot of the simulation results three hours after the increase
in the potential. Figure 12.46 shows ion drift velocities (left panel) and neutral
velocities (middle panel), both at 400 km and three hours. Note that the variation of
the neutral velocities across the polar cap is similar to the measurements displayed
in Figure 12.16. The right panel of Figure 12.46 shows the Mach number versus
distance along the dusk–dawn path through the region containing large Mach num-
bers. Mach numbers curves are shown at 200, 300, and 400 km. Mach numbers
greater than one are clearly evident in the midnight–dawn sector of the polar cap at
400 km. Typically, Mach numbers greater than one occur at and above 300 km for
cross-polar-cap potentials greater than about 150 kV.69

12.14 Geomagnetic storms

Geomagnetic storms occur when there is a large sudden change in the solar wind
dynamic pressure at themagnetopause, whichoccurswhen it is impactedby a coronal
mass ejection (Figures 2.2 and 2.5) or solar flare material (Figure 2.4). The storms
can be particularly strong when the increased solar wind pressure is associated with
a large southward IMF component. A sudden storm commencement (SSC) is fol-
lowed sequentially by initial, main, and recovery phases. During the growth phase,
the plasma convection and particle precipitation patterns expand, the electric fields
become stronger, and the precipitation intensifies. These changes are accompanied
by substantial increases in the Joule and particle heating rates and the electrojet cur-
rents. The energy input to the upper atmosphere maximizes during the main phase,
while during the recovery phase the geomagnetic activity and energy input decrease.
Large storms can significantly modify the density, composition, and circulation of
the ionosphere–thermosphere system on a global scale, and the modifications can
persist for several days after the geomagnetic activity ceases. If the electron density
increases as a result of storm dynamics, it is called a positive ionospheric storm,
while a decrease in electron density is called a negative ionospheric storm. During
a sudden storm commencement, gravity waves can be excited at high latitudes and
their subsequent propagation toward lower latitudes leads to a traveling ionospheric
disturbance (TID). Unfortunately, the response of the ionosphere–thermosphere sys-
tem to different geomagnetic storms can be significantly different, and even for a
given storm the system’s response can be very different in different latitudinal and
longitudinal regions.
The sequence of events that occurs during a geomagnetic storm is as follows.70

In response to the large energy input at high latitudes, auroral E region densities
increase, day side high-density plasma convects into the polar cap at F region
altitudes, the main trough moves equatorward, the neutral and charged particle
temperatures increase, the thermospheric wind speed increases, the O/N2 ratio



0

6
18

12
 M

LT 80 70 60

=
 1

 k
m

s–1
=

 1
 k

m
s–1

U
i: 

15
0 

kV
; F

10
.7

 =
 1

50

0

6
18

12
 M

LT 80 70 60

U
n:

 1
50

 k
V

; 
F

10
.7

 =
 1

50

–3
00

0
–2

00
0

–1
00

0
0

10
00

20
00

30
00

D
is

ta
nc

e 
fr

om
 n

oo
n–

m
id

ni
gh

t m
er

id
ia

n 
(k

m
)

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

 Mach number

 V
ol

la
nd

: 1
50

 k
V

; 
F

10
.7

 =
 1

50

F
ig
ur
e
12
.4
6
Io
n
dr
if
tv
el
oc
ity
(l
ef
t)
,n
eu
tr
al
ve
lo
ci
ty
(m
id
dl
e)
,a
nd
M
ac
h
nu
m
be
r
pr
ofi
le
s
(r
ig
ht
)
fo
r
th
e
ca
se
sh
ow
n
in
Fi
gu
re
12
.4
5.
T
he
ve
lo
ci
ty

ve
ct
or
s
ar
e
at
an
al
tit
ud
e
of
40
0
km
.T
he
M
ac
h
nu
m
be
r
pr
ofi
le
s
ar
e
al
on
g
a
ho
ri
zo
nt
al
lin
e
fr
om
du
sk
(l
ef
t)
to
da
w
n
(r
ig
ht
)
th
at
pa
ss
es
th
ro
ug
h
th
e
pe
ak

of
th
e
M
ac
h
nu
m
be
r
di
st
ri
bu
tio
n.
T
he
pr
ofi
le
s
ar
e
fo
r
al
tit
ud
es
of
20
0
(d
ot
te
d)
,3
00
(d
as
he
d)
,a
nd
40
0
(s
ol
id
)k
m
.6
9



12.14 Geomagnetic storms 447

decreases, and equatorward propagating gravity waves are excited.At mid-latitudes,
the equatorward propagating waves drive the F region ionization toward higher alti-
tudes, which results in an ionization enhancement (positive storm effect). Behind
the wave disturbance are enhanced meridional winds. These diverging winds cause
upwelling and neutral composition (O/N2) changes, which then lead to decreased
electron densities (negative storm effect). For major magnetic storms, the composi-
tion changes and winds can penetrate all the way to the magnetic equator, but that
is rare. However, in the mid–low latitude region, the enhanced winds can gener-
ate dynamo electric fields that can affect the equatorial ionosphere (Sections 11.11
and 11.16).
A significant effort has been devoted to modeling magnetic storms, including

weak, moderate, large, and super storms.71–78 The results of these studies indicate
that electric fields, neutral winds, and O/N2 composition changes all contribute
to the positive phase of a storm, while the negative phase of a storm is due to N2
upwelling (decrease in the O/N2 ratio). In one study, the thermosphere–ionosphere–
mesosphere–electrodynamics general circulation model (TIME-GCM) was used to
simulate the response of the global thermosphere–ionosphere system to the onset
of the November 20, 2003 magnetic storm.72, 73 The model simulated the dynamic
changes in the neutral winds, temperatures, and composition as well as in the iono-
spheric densities, temperatures, and drifts. The inputs to the model were the solar
flux, tides, and high-latitude electric fields and particle precipitation, which were
obtained with the aid of satellite measurements. The simulation ran on November
19–22, 2003.
Unfortunately, there were very few data available for validating the calculated

neutral parameters. However, the GUVI instrument on the NASA-TIMED satellite
provided remote sensing observations of the column-integrated O/N2 ratio during
the storm.72, 73 The GUVI measurements were made in a narrow swath below the
satellite, and therefore, to obtain a global picture it was necessary to accumulate
data from about 15 orbits, which takes a day. On November 19–21, the GUVI
measurements were all made close to local noon. Figure 12.47 shows the column-
integrated O/N2 ratios obtained from the GUVI instrument (top panel) and the
corresponding ratios calculated from the TIME-GCM model (bottom panel). The
results are shown as a function of latitude and longitude, and time runs from right
to left. The black ellipse on November 20 shows the European and North African
regions near 1200 UT. In this ellipse the O/N2 values on the storm day are generally
larger than those on the previous quiet day (November 19). However, as the storm
proceeds (November 20), there is a reduction in the O/N2 values relative to the
prestorm values (November 19). The location of these reduced O/N2 values moves
equatorward as the stormdevelops. There are also elevatedO/N2 values in the region
equatorward of the depletedO/N2 values. TheTIME-GCMsimulation indicates that
the model can capture the general stormtime behavior, although the magnitudes of
the O/N2 ratios are not accurate.
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Figure 12.47 Column integrated O/N2 ratio measured by the GUVI instrument (a)
and predicted by the TIME-GCM (b). The vertical lines indicate day boundaries. Note
that time runs from right to left.73

12.15 Substorms

Substorms correspond to the explosive release of energy in the auroral region near
midnight MLT.79 After substorm onset, there are growth, expansion, and recovery
phases, with the expansion phase typically lasting about 30 minutes and the entire
substorm two to three hours. When the substorm is viewed via the associated optical
emission, it first appears as a region of bright emission that is located on the poleward
edge of the auroral oval near midnight MLT. This bulge is part of a westward trav-
eling surge that occurs during the expansion phase of a substorm. Associated with
substorms are localized regions of enhanced electric fields, particle precipitation, and
both field-aligned and electrojet currents. Discrete auroral arcs also usually appear
near the poleward and westward fronts of the bulge. Eventually, the disturbances
associated with substorms encompass the entire high-latitude region.80

Numerous models have been invoked to explain substorms, but to date, the mea-
surements have not been able to determine which of the models is correct.81–84

However, a possible sequence of events is shown in Figure 12.48 for the simple case
of an isolated substorm.85 The sequence of events begins with a southward turning
of the IMF, which leads to an increased rate of magnetic merging of the Earth’s
field and the IMF at the day side magnetopause. The newly opened field lines are
then convected across the polar cap and into the magnetotail on the night side. After
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Figure 12.48 Possible sequence of events involved in an isolated substorm. The
Earth’s magnetosphere is viewed in the noon–midnight, north–south plane.85

about 30–60 minutes, the increased magnetic stress in the tail leads to a thinning of
the plasma sheet and then to magnetic reconnection. When the oppositely directed
magnetic fields above and below the equatorial plane reconnect in an x-line config-
uration, there is a sudden conversion of magnetic energy into particle acceleration
in the plasma sheet (the expansion phase). The flow is toward the Earth on the
near-Earth side of the x-line and away from the Earth on the other side. The subse-
quent injection of hot plasma into the Earth’s upper atmosphere is responsible for
the substorm’s effects on the ionosphere.
Recently, the electrodynamic parameters in the nighttime ionosphere were exam-

ined during 35 substorms in an effort to determine the characteristic features of
a substorm.86 Data from the DE 1 and 2 satellites were studied with respect to
a generic aurora for 35 isolated substorm events; in this way it was possible to
identify specific electrodynamic features during substorm expansion. Figure 12.49
shows the synthesis of the results, including the field-aligned currents, electric fields,
and auroras. Note that at the poleward boundary of the bulge, upward and down-
ward field-aligned currents are present in association with a narrow eastward or
antisunward plasma flow.
During the recovery phase of a substorm, a sub-auroral ion drift (SAID) event

can occur. These SAID events correspond to relatively narrow regions of rapid
westward ion drifts located in the evening sector just equatorward of the auroral
oval.87 In SAID events, the ion drifts can reach 4 km s−1. The latitudinal width of
the region varies from 0.1◦ to 2◦, and the lifetime of the event ranges from less than
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Figure 12.49 Schematic diagram showing the distributions, field-aligned currents,
plasma flows, and auroras associated with a generic aurora during a bulge-type
substorm.86

30 minutes to 3 hours. The SAID events are extended in longitude, but usually are
confined to the 1800–2400 LT sector. These events are commonly thought to occur
because of a separation between ion and electron drift paths in the plasma sheet that
develops during the recovery phase of substorms.

12.16 Polar wind

The suggestion that light ionospheric ions (H+ and He+) might be able to escape
the Earth’s gravitational field can be traced to studies in the 1960s. At that time, it
was recognized that the Earth’s geomagnetic field is stretched into a long comet-like
tail on the night side that extends past the Moon’s orbit (Figures 2.10, 2.15). The
magnetic field lines that form the tail originate in the polar region, and because the
pressure in the ionosphere is much greater than the pressure in the distant tail, it
was suggested that a continual escape of thermal plasma should occur along these
open field lines.88, 89 The early suggestions of light ion outflow were based on the
well-known theory of thermal evaporation, which had been successfully applied to
the escape of neutral gases from planetary atmospheres (Section 10.10). As a result
of thermal evaporation, the light ions should escape the topside ionosphere with
velocities close to their thermal speeds, and then they should flow along magnetic
field lines to the magnetospheric tail. However, it was subsequently argued that the
ion outflow should be supersonic, and it was termed the polar wind in analogy to the
solar wind.90, 91 Measurements later confirmed the supersonic nature of the outflow
by both direct and indirect means.92
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After 30 years of intensive study, it is now well-known that the classical polar
wind is an ambipolar outflow of thermal plasma from the high-latitude ionosphere.
As the light ion plasma flows up and out of the topside ionosphere along diverging
geomagnetic field lines, it undergoes four major transitions, including a transition
from chemical to diffusion dominance, a transition from subsonic to supersonic
flow, a transition from collision-dominated to collisionless regimes, and a transition
from a heavy (O+) to a light (H+) ion. At times, however, O+ can remain the
dominant ion to very high altitudes in the polar cap. Another important aspect of
the flow concerns its horizontal motion. Because of magnetospheric electric fields
(Figure 12.5), the high-latitude ionosphere and polar wind are in a continual state of
horizontal motion, convecting into and out of the cusp, polar cap, nocturnal auroral
oval, nighttime trough, and sunlit hemisphere. This horizontal motion is significant
because the time it takes the polar wind to flow up and out of the topside ionosphere
is comparable to the transit time across the polar cap and, hence, the local conditions
are constantly changing.
Owing to the complicated nature of the flow, numerous mathematical approaches

have been used over the years to model the classical polar wind. These include
hydrodynamic, hydromagnetic, generalized transport, kinetic, semikinetic, and
macroscopic particle-in-cell models. Also, numerous studies have been conducted
of the nonclassical polar wind, which may contain, for example, ion beams or hot
electrons. Polar wind studies have been conducted to examine its supersonic nature,
its anisotropic thermal structure, its evolution through the collision-dominated to
collisionless transition region, its stability in the presence of nonthermal plasma
components, and its seasonal and solar cycle dependencies. Studies have also been
carried out to understand the extent to which various processes can affect the polar
wind, including charge exchange between O+ and H, photoelectrons, elevated ther-
mal electron and ion temperatures, ion heating transverse to B, hot electrons and
ions of magnetospheric origin, centrifugal acceleration, wave–particle interactions
in the polar cap, and field-aligned auroral currents.
The purpose of this list is simply to indicate that a myriad of processes could be

operating in the polar wind and that an extensive amount of work has been done to
date. Further details concerning these processes can be found in the comprehensive
review articles listed in the General references section. Here, the goal is to elucidate
the basic physics of the ion outflow and not to discuss all of the relevant processes
in detail. However, at the end of this section, a summary of all the possible polar
wind processes puts them in perspective.
The early polar wind studies were based on a hydrodynamic formulation that

contained relatively simple continuity, momentum, and energy equations. In these
studies, one-dimensional, steady state solutions were obtained that included ion pro-
duction and loss processes. However, at that time, it was necessary to use a mixture
of both linear and nonlinear collision terms, because general collision terms were
not available for all of the moment equations. As a consequence, nonlinear colli-
sion terms were used for the exchange of momentum (4.124b) and energy (4.124c)
between the interacting species, but linear collision terms were used for the stress
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tensor (4.129f) and heat flow vector (4.129g). Despite these simplifications, these
hydrodynamic equations were able to describe the basic polar wind characteristics
in the altitude range from 200 to 3000 km.
The hydrodynamic equations adopted in these early studies were obtained from

Equations (3.57) to (3.59) and are given by

d

dr
(nsus) = Ps − L′sns, (12.15)
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where the ‖ signs denote quantities parallel to B, r is the radial distance along B,�st

and �st are the velocity-dependent correction factors (Equations 4.125, 4.126, and
4.127), Ps is the production rate, L′s is the loss frequency, and subscript s can be used
for eitherO+, H+, or electrons. The summations in Equations (12.16) and (12.17) are
over all charged and neutral species (O+, H+, e−, N2, O2, O, He, H). The collision
terms on the right-hand sides of both equations are the nonlinear terms. The frictional
term in the energy equation (12.17), which is proportional to (us − ut)

2, accounts
not only for heating due to a relative H+–O+ flow along B, but also for ion heating
as the plasma drifts horizontally through the slower moving neutral atmosphere due
to magnetospheric electric fields. The parallel component of the stress tensor, τs‖,
and the heat flow vector used in the early studies were obtained from the collision-
dominated expressions for the Navier–Stokes stress tensor (5.130) and the thermal
conductivity (5.131), respectively, which are obtained from linear collision terms.
Note that for a three-component plasma composed of ions, electrons, and neutrals,
the momentum equation (12.16) is equivalent to the Mach number equation (5.80 or
5.87) derived previously, except for the dτs‖/dr and dA/dr terms. The stress tensor
term was included in the early polar wind studies because it removes the singularity
at M = ±1 (Equation 5.87). The dA/dr term is discussed later.
Typical results obtained from the hydrodynamic equations (12.15) to (12.17) are

shown in Figures 12.50 and 12.51 for the case when horizontal transport due to
magnetospheric electric fields is not considered. The different sets of density, drift
velocity, and temperature profiles correspond to different H+ escape velocities at
the upper boundary of 3000 km, when O+ is assumed to be gravitationally bound.
The H+ ions are produced via the accidentally resonant charge exchange reaction
O+ + H ←→ H+ + O (Equation 8.3), and then they diffuse upward to higher
altitudes. The upward H+ speed increases at altitudes above 600 km as the assumed
H+ escape velocity at 3000 km is increased (Figure 12.50). Curve (a) corresponds
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Figure 12.50 Theoretical H+
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velocity profiles for the Earth’s
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correspond to different H+
escape velocities at 3000 km:
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to a near diffusive equilibrium situation, with H+ becoming the dominant ion at
900 km (Section 5.7). The O+ density in this case follows the lower curve of the
shaded region. As the H+ escape velocity is increased, the H+ density is progres-
sively reduced, with a peak in the H+ density profile occurring in the 600–700
km region. Curves (b–e) correspond to subsonic outflow, while curves (g–h) corre-
spond to supersonic outflow. Curve (f) is for a transonic flow, with theMach number
increasing to 1.17 at 1400 km, and then decreasing to 0.89 at 3000 km. For curve (h),
which is for an H+ escape velocity of 20 km s−1 at 3000 km, the H+ escape flux is
8.5 × 107 cm−2 s−1.
The temperatures of bothH+ andO+ are affected by theH+ outflow. The behavior

of theO+ temperature is straightforward in that it decreases at high altitudes as theH+
escape velocity increases. This behavior results because the H+ density decreases as
the H+ escape velocity increases, and O+ then becomes more tightly coupled to the
relatively cold neutrals. For H+, on the other hand, the variation of the temperature
with escape velocity ismore complicated.As the escape velocity is increased, theH+
temperature at high altitudes first decreases, then increases, and then decreases again.
This behavior is related to the relative contributions made to the H+ thermal balance
by convection, advection, thermal conduction, frictional heating, and collisional
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Figure 12.51 Theoretical H+ (top) and O+ (bottom) temperature profiles for the
Earth’s daytime high-latitude ionosphere. The profiles correspond to the density and
drift velocity profiles shown in Figure 12.50.93

cooling.93 However, the general trendof increasingH+ temperatures at high altitudes
as the H+ escape velocity increases in the subsonic regime (curves b–e) is due
primarily to enhanced frictional heating as H+ moves through a gravitationally
bound O+ population with an increasing speed. The decrease in the H+ temperature
with increasing H+ escape velocity in the supersonic regime (curves f–h) is due
both to a decrease in frictional heating as the plasma becomes collisionless and to a
change in the shape of the velocity profile, which acts to increase the importance of
convective cooling.
An interesting feature of the H+ outflow is its flux-limiting character. As the

H+ escape velocity increases, the H+ escape flux increases to a saturation limit.
This behavior is shown in Figure 12.52 in terms of the H+ density at 3000 km. For
sufficiently high H+ densities, the H+ flux is downward (negative), but as the H+
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density at 3000 km is lowered, an outward H+ flux is established, and it quickly
saturates in magnitude. Physically, this occurs because the production of H+ is
limited by the charge exchange reaction O+ +H⇔H+ +O, and in the steady state,
the escape rate depends on the production rate. This implies that the H+ escape flux
is directly proportional to both the O+ and H densities and inversely proportional to
the O density. The limiting H+ escape fluxes for several atomic hydrogen densities
are shown in Figure 12.52, which demonstrates the direct relationship between the
H+ escape flux and the atomic hydrogen density.
The hydrodynamic equations (12.15–17) were also solved to obtain steady state

polar wind solutions for He+, assuming that He+ was a minor ion at all altitudes
between 200 and 2000 km.95 Figure 12.53 shows the calculated He+ density and
drift velocity profiles for three upper boundary He+ escape velocities (0.1, 0.5,
and 2.5 km s−1). For these calculations, the O+ density at the F2 peak was 2.1 ×
105 cm−3, the H+ escape velocity at 3000 km was 10 km s−1, and the convection
electric field was neglected. The He+ ions are created by photoionization of neutral



456 The terrestrial ionosphere at high latitudes

helium, He, and lost in chemical reactions with molecular nitrogen, N2. In general,
the characteristics of the He+ density profiles are similar to those of H+. For all
three profiles, there is a region below 600 km where chemistry dominates, whereas
at high altitudes diffusion dominates. At intermediate altitudes, the competition
between chemistry and diffusion yields a peak in the He+ density profile at about
600 km. Also, as was found for H+, the He+ density at high altitudes decreases
when the He+ escape velocity is increased.
The He+ drift velocity profiles are also similar to those of H+. Specifically, the

He+ flow is downward at low altitudes, becomes positive in the vicinity of the He+
density peak, and then increases to a peak value before falling back to the imposed
upper boundary value. However, a notable difference in the He+ and H+ drift veloc-
ity profiles is that the rapid increase in the outflow velocity with altitude occurs at a
higher altitude for He+ (1300 km) than for H+ (800 km). This difference is primarily
due to the smaller diffusion coefficient for He+, which allows chemistry to dominate
to higher altitudes for He+ than for H+. The smaller He+ diffusion coefficient, and
the greater mass, account for the generally lower He+ escape velocities compared
to those obtained for H+. These lower He+ velocities, in turn, yield relatively small
He+–O+ frictional heating rates and, therefore, the He+ temperature is not signifi-
cantly elevated above the O+ temperature (not shown). This latter result is in sharp
contrast to that obtained for H+ (Figure 12.51).
Measurements indicate that the He+ escape flux exhibits a large seasonal

variation,92 and this is primarily a result of the seasonal changes in the neutral
atmosphere. Specifically, the neutral atmosphere displays a winter helium bulge,
wherein the He densities in winter are 20 times greater than those in summer. This,
in turn, yields much greater He+ production rates in winter than in summer, and
hence, much greater He+ densities and escape fluxes. Calculations indicate that the
limiting He+ escape fluxes in winter are greater than those in summer, with the win-
ter/summer ratio varying between 20 and 30. Also, the He+ escape fluxes at solar
maximum are typically 1.5–2 times greater than those at solar minimum. The net
result is that the limiting He+ escape flux varies by two orders of magnitude over the
extremes of geophysical conditions. It varies from about 105 cm−2 s−1 for solar min-
imum, summer, and high magnetic activity conditions to about 1–2× 107 cm−2 s−1
for solar maximum, winter, and low magnetic activity conditions.
The H+ and He+ outflow cases discussed above correspond to situations where

O+ is gravitationally bound. However, it is now well known that O+ is an impor-
tant magnetospheric constituent and that O+ energization occurs over a range of
altitudes in the ionosphere. When O+ is energized at some altitude, the O+ ions
escape and the O+ density then decreases at that altitude. The energization process
triggers an O+ upflow from lower altitudes, and the consequent reduction in the
O+ density then affects the H+ escape flux because the two ions are coupled via
the O+ + H⇔ H+ + O reaction (Equations 8.3 and 11.62). Figure 12.54 provides
a summary of four possible outflow situations. Panel (a) shows the case of no ion
outflow. In this case, both ion species are in diffusive equilibrium at altitudes above
the F region peak, and consequently, the lighter ion H+ becomes the dominant ion
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in the topside ionosphere. For panel (b), H+ is in a flux-limiting situation and O+
is gravitationally bound (no O+ escape). In this case, H+ remains a minor ion at
high altitudes because of the outflow. Also, because O+ is the dominant ion species
impeding the H+ escape, the H+ density scale height approaches the major ion (O+)
scale height. Panel (c) corresponds to the case of limiting escape fluxes for both H+
and O+. When O+ is in a saturated outflow state, O+ is depleted at high altitudes,
and its density scale height approaches that of neutral atomic oxygen because it
is the dominant species impeding the O+ outflow. Likewise, the H+ scale height
approaches the O+ scale height because O+ is the dominant species impeding its
outflow. Finally, panel (d) shows the case where O+ approaches its limiting escape
flux, but the H+ escape flux is negligibly small. In this case, O+ has a density scale
height equal to the neutral atomic oxygen scale height, while H+ is in a state of
diffusive equilibrium.
The polar wind solutions presented above are valid at the altitudes where the

H+, He+, and O+ gases are collision-dominated.As a rough guide, the ion gases are
effectively collision-dominatedwhen ui/(Hiνi)� 1, where ui is the ion field-aligned
drift velocity, Hi is the ion density scale height, and νi is the ion collision frequency.
For H+, this condition generally begins to break down at about 1500 km and is
clearly violated at 2000 km. However, He+ and O+ can remain collision dominated
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to altitudes as high as 3000 km. When the plasma is not collision dominated, the ion
pressure (or temperature) distributions can become anisotropic and the ion heat flow
vectors are not simply proportional to the ion temperature gradients. Also, in the
collisionless regime above about 2000–3000 km, the divergence of the geomagnetic
field becomes progressively more important as altitude increases.
The effect of an anisotropic ion pressure distribution on the momentum balance

enters via the stress term in Equation (3.58), and the variation of the geomag-
netic field with altitude comes into play when the divergence operator is used
(Appendix B). With allowance for these effects, the steady state continuity (3.57)
and momentum (3.58) equations become

1

A

d

dr
(Ansus) = Ps − L′sns, (12.18)

nsmsus
dus

dr
+ d
dr

(
nskTs‖

) − nsesE‖ + nsmsg‖ + nsk
(
Ts‖ − Ts⊥

) 1
A

dA

dr

= nsms

∑
t

νst(ut − us)�st , (12.19)

where Ts‖ and Ts⊥ are the ion temperatures parallel and perpendicular to B, respec-
tively. The quantity (1/A) dA/dr accounts for the divergence of the magnetic field
with distance. For a spherically symmetric flow (solar wind), A∼ r2, while near the
poles of a dipole magnetic field, A ∼ r3 (Section 11.1).
The collisionless characteristics of the polar wind can be described by kinetic,

hydromagnetic, and generalized transportmodels.97 For supersonic flow, thesemod-
els produce density and drift velocity profiles that are similar to those obtained from
the hydrodynamic equations. However, the ion temperature distributions are differ-
ent, with the collisionless models yielding large temperature anisotropies at high
altitudes. Typical results are shown in Figure 12.55, where the H+ and O+ tempera-
tures parallel and perpendicular to the geomagnetic field are plotted as a function of
altitude for collisionless, supersonic H+ outflow. The ion temperature distributions
were calculated with both kinetic and hydromagnetic (collisionless transport) mod-
els and the results are similar. The parallel ion temperatures are essentially constant
with altitude at high altitudes, while the perpendicular ion temperatures decrease
monotonically with altitude. The decrease of the perpendicular temperatures occurs
because of the conservation of the ion adiabatic invariant, mv2⊥/2B = constant
(Chapter 5). Because of this decrease, the parallel-to-perpendicular temperature
anisotropy grows with altitude, reaching nearly a factor of 50 for H+ at a distance
of 10 Earth radii.
The temperature anisotropies shown in Figure 12.55 were calculated for the

collisionless regime above 4500 km, while the isotropic temperatures shown in
Figure 12.51 were calculated for the collision-dominated regime below about
1500 km (the region where the temperatures are valid). At intermediate altitudes, the
polar wind passes through a relatively narrow transition region where the ion veloc-
ity distributions evolve from Maxwellians in the low-altitude collision-dominated
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Figure 12.55 O+ and H+ temperatures parallel and perpendicular to the geomagnetic
field obtained from kinetic (solid curves) and hydromagnetic (dashed curves) models
of the collisionless, supersonic polar wind.98

regime to highly nonMaxwellian distributions in the high-altitude collisionless
regime. Figure 12.56 shows this evolution for H+, where contours of the ion veloc-
ity distribution are plotted at six altitudes from 230 to 1850 km.99 The distributions
were calculated with a Monte Carlo technique for the case of a steady state flow of
H+ through a stationary background plasma composed of O+ and electrons. At low
altitudes (230 km), the H+ velocity distribution is a drifting Maxwellian (panel a).
As the H+ gas drifts upward, the high-speed ions in the tail of the distribution are
accelerated by the H+ pressure gradient and the polarization electric field created by
the major ions (O+) and electrons (Sections 5.6–5.8). The low-speed H+ ions in the
core of the distribution are more strongly coupled to the nondrifting O+ ions than the
high-speed H+ ions in the tail because of the velocity dependence of the Coulomb
cross section (Equation 4.50). The net result is that an extended tail forms on the H+
velocity distribution in the upward direction (panel b). As the H+ gas continues its
upward drift, only the high-speed H+ ions reach high altitudes because the ions in
the core of the distribution remain coupled to O+. This leads to the formation of a
minimum in the distribution that separates the high- and low-speed components, and
the distribution becomes double-humped (panels c and d). The high-speed compo-
nent grows with altitude, while the low-speed component decreases (panels e and f).
At 1850 km, the low-speed component disappears and the H+ velocity distribution
becomes kidney shaped. Note that at this altitude the perpendicular H+ temperature
is greater than the parallel H+ temperature, which is evident from the width of the
distribution in these two directions. As the H+ ions drift to still higher altitudes, the
velocity distribution changes shape again, becoming basically bi-Maxwellian, with
Ti‖ > Ti⊥ (Figure 12.55). As noted above, this change results from the conservation
of the first adiabatic invariant in a diverging magnetic field.
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Figure 12.56 Contours of the H+ velocity distribution at six altitudes. The altitudes
extend from low altitudes (230 km), through the transition region (1030, 1160, 1280,
1570 km), to the top of the transition region (1850 km). The contours are plotted with
respect to the normalized velocity components Ṽ‖ and Ṽ⊥, where the normalization is
[2kT (O+)/m(O+)]1/2. The contour levels are 0.9fmax, 0.8fmax, 0.7fmax, etc., where
fmax is the maximum value of the distribution function. The dotted line shows the H+
drift velocity.99

Up to this point, the focus of the polar wind discussion has been on steady-state
solutions obtained from one-dimensional models applied to fixed geographical loca-
tions. These solutionswere useful for elucidating the basic polarwind characteristics.
However, in reality, the polar wind is rarely, if ever, in a steady state, and
the ionosphere–polar wind system continually convects across the polar region
due to magnetospheric electric fields. Indeed, three-dimensional time-dependent
simulations of the global ionosphere and polar wind have shown that, during
changing geomagnetic activity, the temporal variations and horizontal plasma con-
vection have a significant effect on the polar wind structure and dynamics.100 The
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three-dimensional model used in these studies covered the altitude range from 90 to
9000 km for latitudes greater than 50◦ magnetic in the northern hemisphere. At low
altitudes (90 to 800 km), three-dimensional density (NO+, O+2 , N

+
2 , N

+, O+), drift
velocity, and temperature (Te, Ti‖, Ti⊥) distributions were obtained from a numerical
solution of the appropriate continuity, momentum, and energy equations. At high
altitudes (800–9000 km), the time-dependent, nonlinear, hydrodynamic equations
for H+ and O+ (Equations 12.18 and 12.19; with time derivatives) were solved
self-consistently with the ionospheric equations.
The global ionosphere–polar windmodel was used to study the system’s response

to an idealized geomagnetic storm for different seasonal and solar cycle conditions.
The modeled geomagnetic storm, which commenced at 0400 UT when Kp was one,
contained a one-hour growth phase, a one-hour main phase, and a four-hour decay
phase. During increasing magnetic activity, the plasma convection and auroral pre-
cipitation patterns expanded, convection speeds increased, and particle precipitation
becamemore intense. The reverse occurred during decreasingmagnetic activity. The
global simulations produced the following interesting results:

1. Plasma pressure disturbances in the ionosphere, due to variations in either
Te, Ti, or electron density, are mimicked in the polar wind, but there are
time delays because of the propagation time required for a disturbance to
move from low to high altitudes.

2. Plasma convection through the auroral oval and regions of high electric
fields produces transient O+ upflows and downflows. Typically, the H+
upward flow is enhanced when the plasma convects into these regions and
is reduced when the plasma convects out of them.

3. The density structure in the polar wind can be considerably more compli-
cated than in the underlying ionosphere because of horizontal convection
and changing vertical propagation speeds due to spatially varying iono-
spheric temperatures. For example, transient H+ downflows can occur at
intermediate altitudes (3000–6000 km) even though the H+ flow is upward
from the ionosphere and upward at high altitudes (9000 km).

4. O+ upflows typically occur in the auroral oval at all local times and down-
flows occur in the polar cap. However, during increasing magnetic activity,
O+ upflows can occur in the polar cap. The O+ upflows are generally the
strongest in the cusp at the location of the day side convection throat, where
both Te and Ti are elevated.

5. During increasingmagnetic activity, O+ can be the dominant ion to altitudes
as high as 9000 km throughout the bulk of the polar region.

6. Forwinter, solar-minimumconditions, anH+ blowout can occur throughout
the bulk of the polar region shortly after a storm commences, and then the
H+ density slowly recovers when the storm subsides. However, the O+
density variation is opposite to this. There is an increase in the O+ density
above 1000 km during the storm’s main phase, and then the O+ density
decreases during the recovery phase.
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trajectory for a representative
flux tube of plasma during
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7. For summer, solar-maximum conditions, the O+ and H+ temporal mor-
phologies are in phase, but the ion density variations at high altitudes are
opposite to those at low altitudes. During the peak of the storm, the H+ and
O+ densities increase at high altitudes and decrease at low altitudes.

Some of these results can be seen by following an individual flux tube of plasma
as it convects across the polar region. Figure 12.57 shows a representative con-
vection trajectory in a magnetic latitude–MLT reference frame. At the start of the
simulation (0300 UT), the plasma flux tube following this trajectory was located at
about 1900 MLT and 67◦ magnetic latitude, and the geomagnetic activity level was
low (Kp = 1). Subsequently, the plasma flux tube moved sunward and entered the
day side “storm” oval, passed through the convection throat, moved antisunward
across the polar cap, entered the “quiet” nocturnal oval, and then exited the evening
oval near the end of the trajectory.
Figure 12.58 shows the temporal variations of the plasma and neutral param-

eters at 500 km that are associated with the flux tube that followed the trajectory
in Figure 12.57. This altitude was selected for presentation because the H+ out-
flow typically begins above this level and, hence, the variations at 500 km show the
drivers of the polar wind. The increase in Te to almost 4800K between 0400 and
0600 UT was a result of heating due to electron precipitation in the storm auroral
oval. The increase in Ti during this time period was primarily a result of ion–neutral
frictional heating in the throat region, where the electric fields were large. These
increases in Te and Ti resulted in a substantial O+ upflow, with Te being the main
driver in this case because Te was substantially larger than Ti. Associated with the
O+ upflow was an O+ density enhancement, but its peak lagged behind the peak
in the upward O+ velocity. The H+ ions were in chemical equilibrium at 500 km
and, hence, the H+ drift velocity was negligibly small at all times. When the flux
tube exited the day side oval, there was a rapid decrease in both Te and Ti and, as
a consequence, the O+ flow turned downward as the topside ionosphere collapsed.
The O+ flow remained downward at 500 km for most of the time that the flux tube
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was in the polar cap, and associated with this downflow was a slow decay of the O+
density (between 0600 and 0900 UT). The storm-enhanced O+ densities in the polar
cap, which persisted after the storm subsided, produced enhanced H+ densities and
escape fluxes at higher altitudes, and this, in turn, led to a time delay in the build-up
of the maximum global H+ escape rate. The maximum H+ escape rate from the
entire polar region (1.7 × 1025 ion s−1) occurred at 0700UT, which was one hour
after the storm’s main phase. Finally, between about 0930 and 1400UT, the con-
vecting flux tube of plasma was in the quiet nighttime auroral oval. Here, Te and
Ti were elevated, the O+ flow was initially upward, and there was a slow build-up
of the O+ density at 500 km. However, the increases were smaller than those in the
daytime storm oval because of the smaller convection speeds and smaller electron
precipitation fluxes.
Figure 12.59 shows the temporal variations of the ion drift velocities and densities

at 2500 km that are associated with the flux tube trajectory in Figure 12.57.When the
flux tube first entered the day side stormoval, both theH+ andO+ flowswere upward
at this altitude, with a drift velocity of about 16 km s−1 for H+ and 3.5 km s−1 for
O+ (both ions were supersonic). After this initial surge, the upward H+ velocity first
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densities (bottom) at 2500 km for the plasma flux tube that followed the convection
trajectory shown in Figure 12.47.100

decreased to 3.5 km s−1 and then increased to more than 20 km s−1. In contrast, the
O+ flow at 2500 kmwas downward shortly after 0500UT, as it was at lower altitudes
(Figure 12.58). Despite this reversal in flow direction, O+ was the dominant ion at
2500 km during most of the time that the magnetic activity was enhanced (from
about 0430 to 0630 UT). The O+ density was also comparable to the H+ density
in the quiet nocturnal oval, where Te was elevated. As the plasma flux tube drifted
along the trajectory, the H+ flow remained upward at 2500 km and the H+ density
displayed a relatively slow variation, with n(H+) ∼ 60 cm−3. On the other hand,
the O+ flow was both upward and downward, and the O+ density varied by more
than six orders of magnitude.
The ionosphere–polar wind simulation discussed here represented the classical

polar wind, which is driven by thermal processes in the lower ionosphere. However,
the polar wind may be affected by other processes not included in the classical pic-
ture of the polar wind, as shown schematically in Figure 12.60. Specifically, in sunlit
regions, escaping photoelectrons may provide an additional ion acceleration at high
altitudes (≥7000 km) as they drag the thermal ions with them. This process would
act to increase the O+ andH+ drift velocities in the polar regions where the ion flows
are upward.101 Cusp ion beams and conics that have convected into the polar cap can
destabilize the polar wind when they pass through it at high altitudes. The resulting
wave–particle interactions act to heat both O+ and H+ in a direction perpendicular
to B, which then affects the escape velocities and fluxes.102 The interaction of hot
magnetospheric electrons (polar rain, showers, and squall) with the cold, upflow-
ing, polar wind electrons can result in a double-layer potential drop over the polar
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Figure 12.60 Schematic diagram showing nonclassical processes that may affect the
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cap (at about 4000 km), which can energize the O+ and H+ ions. The H+ energy
gain varies from a few eV to about two keV, depending on the hot electron density
and temperature.103 At altitudes above 6000 km in the polar cap, electromagnetic
turbulence can significantly affect the ion outflow via perpendicular heating through
wave–particle interactions.104 Also, above about 3000 km in the polar cap, centrifu-
gal acceleration will increase ion upward velocities, which may affect ion densities
at high altitudes.105 Finally, anomalous resistivity on auroral field lines can affect
the polar wind as the plasma convects through the nocturnal auroral oval.106

12.17 Energetic ion outflow

In addition to the coupling of the ionosphere and magnetosphere via convection
electric fields, field-aligned currents, and energetic particle precipitation, which have
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been discussed earlier, the two regions are strongly linked via upflowing ionospheric
ions.107–11 Figure 12.61 is a schematic diagram that shows how the upflowing iono-
spheric ions populate the different regions of the magnetosphere and vice versa.112

The ionospheric ions feed the magnetosphere at all latitudes. Upflowing ions from
the day side cusp populate the mantle or boundary layer and plasma sheet regions.
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Ions escaping from the polar cap can populate both the plasma sheet and magneto-
tail lobes. Ionospheric ions energized in the nocturnal auroral oval can populate the
plasma sheet and ring current regions. At lower latitudes, upflowing thermal ions
can populate both the inner and outer plasmaspheric regions. Except for H+ outflow,
nearly all upflowing ion events require an energization source in addition to ordi-
nary ionospheric heating (solar heating, exothermal chemical reactions, ion–neutral
frictional heating, etc.). Therefore, energetic ion outflow is discussed separately in
this section.
The first measurements of outflowing energetic heavy ions from the polar iono-

sphere were made in the mid-1970s.113 Instruments on the S3-3 satellite at about
5000 km detected field-aligned upflowing O+ beams with keV energies. Sub-
sequently, upflowing O+ conics with keV energies were detected. Since these
pioneering discoveries, significant progress has been made in elucidating the
characteristics of energetic ion outflow events. It is now well known that ener-
getic ions are produced in the cusp, polar cap, and nocturnal auroral oval. It has also
been clearly established that the production of energetic ions varies systematically
with the solar cycle, season, magnetic activity, and local time. In addition, it has
been shown that the altitude of the energization spans the range of 500 to 8000 km,
that both parallel and transverse (to B) energization can occur, and that the energy
of the escaping ionospheric ions varies from 10 eV to tens of keV.114, 115

In the day side cusp, ionospheric ions (O+, H+, He+, N+, and O++) are heated
in a direction transverse to the geomagnetic field (due to wave–particle interactions)
to energies of 10–50 eV. The heated ions are then driven upward by the gradient-B
force; they also convect in an antisunward direction across the polar cap due to
magnetospheric electric fields. The lower energy heavy ions ultimately fall back
to the Earth, while the more energetic ions convect to the plasma sheet. The net
result is the so-called cleft ion fountain. Evidence for this fountain is shown in
Figure 12.62. In this figure, segments of DE 1 orbits are shown in which O+ ions
were observed in the polar cap contiguous with upwelling ion events. The data were
binned with regard to the magnetic activity index Kp. For low Kp, the upwelling O+
ions occurred only on the day side, while for highKp the O+ ions extended across the
polar cap.
The polar cap contains both relatively cool (0.1–10 eV) polar wind ions and

warm (10–50 eV) ions that have convected into this region from the day side cusp.
However, more energetic (∼1 keV) upflowing ions have also been detected at high
altitudes above the polar cap, and these probably have a source region in the polar
cap, based on the time it would take the ions to convect from the cusp to the satellite
for typical electric field strengths. In particular, when the IMF is northward, sun-
aligned arcs occur in the polar cap and upflowing energetic ions have been observed
in association with these arcs.116

In the nocturnal auroral region, both parallel and perpendicular acceleration of
the ionospheric ions can occur through a range of mechanisms and over a range of
altitudes. Consequently, virtually all ionospheric ion species participate in energetic
ion outflow events, and the escaping ions have velocity distributions in the form of
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Figure 12.62 DE 1 observations of the locations of O+ ions in the polar cap
contiguous with upwelling ion events. The data are plotted for six Kp ranges.114

beams, conics, rings, and toroidal distributions.115, 117 This is an area of research
that is ongoing and very active, with the main emphasis on identifying the acceler-
ation mechanisms, altitudes of acceleration, and reasons why certain mechanisms
dominate at certain times.
Several statistical studies relate to the characteristics of the acceleration mech-

anisms leading to energetic ion outflow. In particular, one study of the long-term
variation in the energetic (0.01–17 keV) H+ and O+ outflow rates used DE 1 ion
composition data acquired in the auroral and polar regions between September 1981
and May 1986.118 This period began near the maximum of solar cycle 21 and ended
near the minimum; F10.7 varied over the range 70–250 × 10−22 W m−2 Hz−1.
Figure 12.63 shows the H+ and O+ outflow rates as a function of F10.7 for three
Kp ranges. In each Kp range, the variation with F10.7 is the same. For O+, there
is a factor of five increase in the outflow rate in going from near solar minimum
to near solar maximum. For H+, on the other hand, there is about a factor of two
decrease in the outflow rate over the same F10.7 range, which may or may not be
statistically significant. The H+ and O+ outflow rates as a function of Kp are shown
in Figure 12.64 for three F10.7 ranges. For all three F10.7 ranges, the outflow varia-
tions with Kp are similar. For O+, there is a factor of 20 increase in the outflow rate
as Kp varies from 0 to 6, while for H+ the increase is a factor of four over this Kp
range. These results imply that there is an order of magnitude increase in the O+/H+
composition ratio in energetic ion outflow events in going from solar minimum to
solar maximum and in going from quiet to active magnetic conditions.
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This statistical study did not include ions with energies less than about 10 eV.
However, a study was conducted of the relative contributions to the total ion outflow
of ionfluxes belowand above 10 eV.119 The studywas limited to the cleft ion fountain
and solar maximum conditions. It was found that for O+ the “less than 10 eV flux”
was four times greater than the “greater than 10 eVflux,” while the reversewas found
for H+. However, one caution should be noted because O+ ions with energies less
than 10 eVmaynot escape the ionosphere if they do not gain additional energy at high
altitudes. Nevertheless, measured ion upflow rates fromseveral statistical studies and
from different ionospheric regions were used, in combination with ion residence-
time estimates for the different magnetospheric regions, to calculate typical ion
densities for the magnetospheric region. These calculated densities suggest that
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plasma outflow from the ionosphere alone can account for all of the plasma in the
magnetosphere.119

Although significant progress has been made in identifying the ionospheric
regions where energetic ion outflow events are likely to occur, much work still
remains before these events are fully understood. Numerous parallel and perpen-
dicular acceleration mechanisms have been proposed, but because the experimental
data are incomplete, it has not been possible to determine, conclusively, which
mechanisms dominate at specific times. Also, although it is known that the neutral
atmosphere has a strong influence on the ion outflow rates, it is not clear why the
acceleration mechanisms are more effective at solar maximum than at solar mini-
mum. Additional satellite measurements of ion escape fluxes are needed and more
theoretical work needs to be done to improve the estimates concerning the percent-
age of ionospheric versus solar wind plasma in the magnetosphere. Specifically, the
transport and loss processes for ionospheric plasma in the magnetosphere are not
well known, and hence, the residence time estimates are in question.Also, there may
be a cold (less than 10 eV) ionospheric population in the magnetosphere that has
gone undetected because of spacecraft charging problems. Finally, it is not known
whether the heavy ionospheric ions affect the dynamics and stability of the mag-
netosphere. Global numerical models have now reached the point where they can
begin to include such features.

12.18 Neutral polar wind

Asignificant discovery was made when an instrument on the NASA IMAGE satellite
measured large escape fluxes (∼1−4 × 109 cm−2 s−1) of neutral atoms from the
high-latitude ionosphere.120, 121 An interesting feature of the measurements was
that the neutrals appeared to be coming from all directions. This discovery was in
conflictwith previousmodeling studies that predicted relatively small neutral particle
escape rates at high latitudes.122, 123 However, in the previous studies, simplified
steady state ionosphere models were adopted, and the contribution of the polar wind
was either ignored or taken into account only in an approximate way. On the other
hand, global ionosphere–polar wind simulations indicated that the magnitudes of the
upward H+ and O+ fluxes increased markedly during geomagnetic storms, and that
they were spatially nonuniform and highly time dependent.124–8 This implied that
during geomagnetic storms substantial fluxes of H and O can be created via charge
exchange in the polar wind.
The H+ and O+ ions execute three characteristic motions. They spiral about

the geomagnetic field, flow up and out of the top side ionosphere with a velocity
that eventually becomes supersonic, and they drift horizontally across the polar
region, moving into and out of sunlight, the cusp, polar cap, and nocturnal auroral
oval. During this motion, the ions can undergo charge exchange reactions with the
background neutral atmosphere, which is composed of both thermal neutrals and
a hot neutral geocorona (Figure 12.65). For example, an upflowing O+ ion can
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undergo a charge exchange reaction with either H or O, and this would yield an up-
flowing O atom. This reaction would also produce a nonflowing H+ or O+ ion, and
subsequently, this ionwould be accelerated upwards by the polarization electric field
in the polar wind. The initial velocity of a neutral particle created in the polar wind
is equal to the velocity of the H+ or O+ parent ion just before the charge exchange
process. Consequently, at high altitudes, neutral streams of H and O are created that
predominantly flow in the vertical direction (the neutral polar wind ), while at low
altitudes the neutrals tend tomove in all directions owing to ion gyration and plasma
convection.129–131

Substantial particle fluxes are created in the ion and neutral polar winds during
geomagnetic storms at altitudes above about 500 km, with the neutral fluxes larger
than the ion fluxes.As the H+ andO+ ions drift upward in response to storm heating,
they are accelerated to velocities as high as 10–20 km s−1 for H+ and 3–5 km s−1 for
O+. Charge exchange of the upflowing ions with the background neutral atmosphere
(thermal and hot geocoronal neutrals) acts to produce energetic streaming H and O
neutrals. Both H+ and H have sufficient energy to escape, but most of the O+ and O
atoms eventually reverse direction and head toward the Earth (Figure 12.66). A sim-
ilar situation occurs in the plasmasphere. The plasma in this region co-rotates with
the Earth, but it can flow along B from one hemisphere to the other (Section 11.5).
During solstice conditions, the flow is primarily from the summer to the winter
hemisphere. However, during geomagnetic storms and substorms, the outer regions
of the plasmasphere are peeled away, and then the ionospheric flow is upwards
from both hemispheres day and night as the plasmasphere refills, which takes about
10 days. Typically, storms and substorms occur frequently, and therefore, the outer
plasmasphere is in a continual state of refilling.As the H+ andO+ ions flow upwards
along B, they can exchange charge with the background neutral atmosphere, includ-
ing thermal and hot geocoronal neutrals, and this acts to create energetic neutral
streams in a manner analogous to what occurs in the neutral polar wind. Initially,
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Figure 12.66 Not to scale. Upflowing ions in the plasmasphere (left) and polar wind
(right). Charge exchange and the resulting downward flux of neutrals provides
momentum and energy to the thermosphere.132

the neutral O and H atoms move upward because they acquire the velocity of their
parent ions, and they form neutral plasmaspheric streams. However, the O atoms
do not have sufficient energy to escape Earth’s gravity and they subsequently follow
parabolic trajectories back to Earth, as they do at high latitudes (Figure 12.66). The
global distribution of downward streamingO atoms, which pass through the exobase
at 500–600 km, corresponds to a continuous neutral rain on the thermosphere, and
this could be an important source of momentum and energy for the thermosphere.132
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12.21 Problems

Problem 12.1 Aplasma element is initially located at an altitude of 300 km, at 70◦
latitude and 12MLT in a magnetic-latitude–MLT coordinate system. The plasma
element then convects in an antisunward direction across the polar region along the
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noon–midnight meridian. Calculate the time it takes the plasma element to E × B
drift from 70◦ on the day side to 70◦ on the night side for electric field strengths of
50, 100, and 200mV m−1. Assume the altitude does not change.

Problem 12.2 Themagnetospheric electric field decreases equatorward of the auro-
ral oval and eventually the co-rotational electric field dominates. Calculate the
magnitude of the co-rotational electric field at both 60◦ and 70◦ magnetic latitude at
300 km altitude.

Problem 12.3 Consider a dipole magnetic field, as given by Equations (11.1–11.4).
Aplasma element is located at 300 km altitude, 70◦ latitude, and 12MLT.An electric
field points from dawn-to-dusk (⊥ B). Calculate the vertical component of theE×B
drift for electric field strengths of 50, 100, and 200mV m−1.

Problem 12.4 The Earth’smagnetic pole is located about 11.5◦ from the geographic
pole in the northern hemisphere. Consider a quasi-inertial magnetic reference frame,
with the magnetic pole at the center. As the magnetic pole rotates about the geo-
graphic pole, the noon–midnight meridian of the magnetic coordinate system stays
aligned with the Sun. Show that co-rotation in the geographic coordinate system
leads to co-rotation in the quasi-inertial magnetic reference frame.

Problem 12.5 Ion–neutral frictional heating is the process that controls the ion
energy balance at F region altitudes when the convection electric field is large.
Calculate Ti from Equation (12.5) for Tn = 800K, θ = 70◦ and for effective electric
fields of 100, 200, and 300mV m−1.

Problem 12.6 Calculate the rate coefficient for the O+ + N2 reaction (Equations
12.9a,b) for effective temperatures, T , of 350, 500, 1000, 2000, 3000, and 6000K.
Sketch k1 versus T .

Problem 12.7 Calculate the effective temperature, T , using Equation (12.12) for
u⊥(O+) = 0.5, 1, and 4 km s−1. Assume T (O+) = 1000 K, mr = m(N2), and
mb = m(O).

Problem 12.8 For Problem 12.6, calculate theO++N2 loss rate at 300 km for solar-
minimum, winter (Table K.3) and solar-maximum, summer (Table K.5) conditions
at noon.

Problem 12.9 Assume that O+ begins to convect through an initially stationary
atmosphere with a speed of 1 km s−1. Calculate the ion drag force on the atmosphere
at 300 km, noon, and both solar-minimum, winter (Table K.3) and solar-maximum,
summer (Table K.5) conditions.

Problem 12.10 The upward H+ flux at 1000 km is 108 cm−2 s−1 near the magnetic
pole. Calculate the change in flux with altitude for a steady state flow in which
production and loss processes are negligible. Calculate the H+ flux at 2000, 4000,
and 8000 km.



Chapter 13

Planetary ionospheres

This chapter summarizes our current understanding of the various ionospheres in the
solar system. The order of presentation of the planetary ionospheres follows their
position with respect to the Sun, that is, it starts with Mercury and ends with Pluto.
The amount of information currently available varieswidely, from a reasonably good
description forVenus to just a basic guess for Pluto. In the last section of this chapter,
the ionospheres of the various moons and that of Comet Halley are described. Here
again the existing data are limited, with the exception of Titan, which is currently
undergoing extensive exploration by the Cassini Orbiter.

13.1 Mercury

Mercury does not have a conventional gravitationally bound atmosphere, as indi-
cated in Section 2.4. The plasma population caused by photo and impact ionization
of the neutral constituents, which is present in the neutral exosphere, is an ion exo-
sphere, not a true ionosphere. No quantitative calculations of the plasma densities
have been carried out to date. The global Na+ production rate was estimated to be a
few times 1023 ions s−1, but no other studies have been published and there are no
observations concerning the thermal plasma densities.1 The Messenger spacecraft
is currently on its way and will be placed in orbit around Mercury in 2011. Our
understanding of Mercury’s environment will increase significantly with data from
a successful Messenger mission.

13.2 Venus

Of all the nonterrestrial thermospheres and ionospheres in the solar system, those
of Venus have been the most studied and best understood, mainly because of the

482
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Pioneer Venus Orbiter (PVO) spacecraft, which made measurements over the 14-
year period from 1978 to 1992. Comprehensive published reviews of the aeronomy
of Venus are listed in the General References.
The major source of daytime ionization at Venus is solar EUV radiation. The

photoionization rate peaks at around 140 km above the surface of the planet. At
this altitude the major neutral atmospheric constituent is CO2, along with about
10–20% of atomic oxygen (Figure 2.19). The predominance of CO2 led to early
predictions that the main ion in the Venus ionosphere is CO+2 ; however it was
realized, even before direct measurements could confirm it, that chemical reactions
quickly transform CO+2 to O

+
2 .
2 The main chemical reactions affecting the major

ion species in the altitude region where chemistry dominates (≤180 km) are

CO2 + hν → CO+2 + e−, (13.1)

CO+2 + O→ O+2 + CO, (13.2)

→ O+ + CO2, (13.3)

O+ + CO2→ O+2 + CO, (13.4)

O+2 + e− → O+ O. (13.5)

The last reaction, dissociative recombination of O+2 , is the major terminal loss pro-
cess for ions. A block diagram of the main ion chemistry of Venus is shown in
Figure 13.1. Figure 13.2 shows modeled and measured ion densities for the day side
ionosphere, indicating that (1) the peak total ion (and electron) density is near 140 km,
(2) the major ion is O+2 , (3) CO

+
2 is truly a minor ion, and (4) O

+ becomes the
major ion and peaks near 200 km.4 The figure also shows that there are many other
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Figure 13.1 Ion chemistry
scheme appropriate for Venus
and Mars.3
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ion species present, which again are the result of a large variety of photochemical
processes, some of which involve metastable species.5

As mentioned before, the dominant ion loss mechanism is dissociative recombi-
nation of O+2 , and this combined with the fact that O

+
2 is the major ion below about

180 km, allows one to approximate the total ion or electron loss rate as

Li = kdn
2
i , (13.6)

where kd is the dissociative recombination rate (Table 8.5), and ni is the total ion
density. Note that the dissociative recombination rate of O+2 is electron temperature
dependent. In the altitude region below about 180 km, where chemical processes
dominate, the following expression for the total ion or electron densities is obtained,
by equating the production and loss rates

ni = ne = 277
√

PeT
0.35
e , (13.7)

where Pe is the total ionization rate and Te is the electron temperature. Note that the
electron density depends on the electron temperature even in this photochemically
controlled region. This fact was overlooked in some past attempts to obtain infor-
mation on the neutral gas temperature from the electron density data base and it led
to incorrect conclusions.
The fact that chemical processes dominate below about 180 km implies that the

variations in the day side electron density at the ionospheric peak, as a function of
solar zenith angle, should be close to that predicted by the simple Chapman theory,
which yields (cosχ)1/2 (Equations 9.23 and 13.7).6 It should be emphasized that
the ionospheric peak at Venus is not an F2 type, as in the terrestrial ionosphere;
instead it results from a peak in the production rate. The actual solar cycle variation
in the electron density peak is different from that predicted by the simple Chapman
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theory in terms of the F10.7 solar flux. This is not surprising because F10.7 is only
a crude proxy for the true ionization flux and the neutral atmospheric density and
temperature also change with solar activity. Furthermore, the recombination rate is
a function of the electron temperature, which is also solar cycle dependent. A fit
to 115 electron density profiles found the following relation for the day side peak
electron density as a function of the F10.7 flux and solar zenith angle7

ne,max(F10.7,χ) = (5.92± 0.03)× 105(FEUV/150)0.376(cosχ)0.511,
(13.8)

where F10.7 is the value of the 10.7-cm flux, corrected to the orbital position of
Venus. Finally, it should be mentioned that the altitude of the peak does not rise
with solar zenith angle, as predicted by the Chapman theory (Equation 9.22), but
remains near 140 km. This invariance of the peak altitude is the result of the drop of
the neutral atmosphere as a function of zenith angle.6

Above 200 km, the chemical lifetime becomes long enough to allow transport
processes (owing to diffusion or bulk plasma drifts) to dominate. Venus has no
significant intrinsic magnetic field, although at times of high solar wind dynamic
pressure, a significant (∼100 nT) induced horizontal magnetic field is present in the
ionosphere; examples of both situations are shown in Figure 13.3.8 Note that narrow
flux ropes are generally present even in the nonmagnetized situation. Given these
conditions, the plasma can move freely in both vertical and horizontal directions,
except when the induced field is significant. The vertical distribution of the ion
or electron density near the subsolar region is believed to be controlled mainly
by vertical diffusion, while horizontal plasma flows become dominant at larger
zenith angles. Ion velocity measurements have indicated that the horizontal plasma
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velocities increase with altitude and solar zenith angles, reaching a few km s−1 at the
terminator, and becoming supersonic on the night side (Figure 13.4).9 A variety of
one- and multi-dimensional hydrodynamic and magnetohydrodynamic models have
been used to study the densities and flow velocities in the Venus ionosphere.10–12

These calculations indicate that the measured velocities are, to a large degree, driven
by day-to-night pressure gradients. There are also both experimental and theoretical
indications of shock deceleration of the flow in the deep night side region. The
general agreement between the model results and the observations is quite good; as
an example of such a comparison, Figure 13.5 shows measured13 and calculated10

electron density profiles for solar cycle maximum conditions.
There is a sharp break in the topside ionosphere at an altitude where thermal

plasma pressure is approximately equal to the magnetic pressure. The sum of these
two pressures is approximately equal to the dynamic pressure of the unperturbed
solar wind outside of the bowshock (Figure 13.3). This condition of the constancy
of the total pressure was discussed in Chapter 7 and specifically stated by Equa-
tion (7.51). The very sharp gradient in the ionospheric thermal plasma density is
called the ionopause. This pressure transition is also referred to as a tangential
discontinuity in magnetohydrodynamic terminology (Table 7.1). At the ionopause,
there is a transition from an ionospheric plasma pressure to a magnetic pressure
dominated region in an altitude increment of only a few tens of kilometers when the
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Figure 13.5 (a) Measured solar cycle maximum ion (electron) densities as a function
of zenith angle.13 (b) Calculated solar cycle maximum electron densities as a
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ionosphere is not magnetized. However, the transition region is much broader in the
case of a magnetized ionosphere, as seen in Figure 13.3. Given that the ionopause
is at an altitude where the ionospheric thermal pressure balances the solar wind
dynamic pressure, its location must change as the solar wind and ionospheric condi-
tions change. For example, as the solar wind pressure increases, the ionopause height
decreases, but it actually levels off at around 300 kmwhen the pressure exceeds about
4× 10−8 dyne cm−2. Also, the mean ionopause height rises from about 350 km at
the subsolar location to about 900 km at a solar zenith angle of 90◦, as indicated in
Figure 13.6.14
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The effective night on Venus lasts about 58 Earth days (the solar rotation period
is 117 Earth days), during which time the ionosphere could be expected to disap-
pear because no new photoions and electrons are created to replace the ones lost
by recombination. Therefore, it was very surprising, at first, whenMariner 5 found
a significant night side ionosphere at Venus.15 Subsequently, extensive measure-
ments have confirmed the presence of a significant, but highly variable, night side
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ionosphere. Figure 13.5 shows the average measured night side electron densities
during solar cycle maximum conditions. Plasma flow from the day side, along with
impact ionization caused by precipitating electrons, is responsible for the observed
nighttime densities. The relative importance for a given ion species depends on
the solar wind pressure and solar conditions (e.g., during solar cycle maximum
conditions day-to-night transport is the main source of plasma for the night side
ionosphere.16) It must be emphasized that the electron density profiles shown in
Figure 13.5 are mean values. The night side electron densities are extremely vari-
able both with time and location. Order of magnitude changes have been seen by
the instruments on PVO along a single path through the ionosphere and subse-
quent passes. Terms such as disappearing ionospheres, ionospheric holes, tail rays,
troughs, plasma clouds, etc., have been introduced to classify the apparently dif-
ferent situations encountered. For example, Figure 13.7 shows two ionospheric
holes observed during orbit 530 of PVO.17 Strong radial magnetic fields found to be
present in these holes allow easy escape of the ionospheric thermal plasma into the
tail, presumably causing the sharp drops in density.
The observed solar cycle maximum ion and electron temperatures, for different

solar zenith angle increments, are shown in Figure 13.8.13 These plasma temper-
atures are significantly higher than the neutral gas temperature (Figure 2.20) and
cannot be explained in terms of EUV heating and classical thermal conduction,
as is the case for the mid-latitude terrestrial ionosphere (Section 11.6). The two
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suggestions that led to model temperature values consistent with the observations
are (1) an ad hoc energy input at the top of the ionosphere and (2) reduced thermal
conductivities.18 The latter causes a reduced downward heat flow, and consequently,
a decreased energy loss to the neutrals at the lower altitudes. There are reasons
to believe that both mechanisms are present, but there is insufficient information
available to establish which is dominant, when, and why. Measurements by the
PVO plasma wave instrument indicate significant wave activity at and above the
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ionopause, and different estimates of the heat input into the ionosphere, from these
waves, all lead to values of the order of 1010 eV cm−2 s−1, which is about the
magnitude necessary to explain the observed plasma temperatures.19 Some stud-
ies also suggest that the shocked solar wind plasma from the tail region can move
along draped field lines toward the ionosphere, when it is magnetized, and pro-
vides the necessary energy to explain the observed temperatures.20 Other studies
claim that a reduction in the thermal conductivity from its classical value (Equa-
tion 5.146) can be justified because of the presence of fluctuating magnetic fields
in the ionosphere. The associated conductivity values result in temperatures consis-
tent with the measured ones.19 A one-dimensional model calculation used classical
electron and ion conductivities and topside electron and ion heat flows of 3×1010
and 3× 107 eV cm−2 s−1, respectively, to produce temperatures reasonably close
to the observed values (Figure 13.9). On the other hand, a one-dimensional model
calculation that assumed no topside heat inflow, but incorporated reduced thermal
conductivities resulting frommagnetic fieldfluctuations, also led to calculated values
consistent with the measured ones (Figure 13.10). The parameter λ in Figure 13.10
is the correlation length of the assumed fluctuations. Note that while the electrons
are strongly affected by these fluctuations, the effect is smaller on the ions; this is
the result of the significant difference in the respective gyroradii.
A small bump observed in the day side ion temperatures just below 200 km can be

accounted for by considering either chemical or Joule heating processes. Also, the
mechanisms controlling the temperatures on the night side are even less understood.
It is certainly reasonable to assume that energy is transported from the day side to
the night side by heat flow and advection and that heat input from above or from the
tail is also present.21 However, the specific roles of these different potential energy
sources have not been elucidated. It was also observed that the H+ temperatures are
lower than theO+ ones on the night side. This appears to be caused by the differences
in thermal conductivities resulting from ion–neutral collisional effects,22 similar to
the electron thermal conductivity situation (Equation 5.146).
At this time, there is no clear understanding of the mechanisms controlling the

energetics of the ionosphere of Venus,18 and further progress is unlikely until more
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electron and ion temperatures for zero heat input, 0◦ solar zenith angle and a constant
magnetic field of 10 nT. The influence of the assumed fluctuating magnetic field is
indicated by the various effective mean-free-paths.19

direct information becomes available from either Venus or, possibly, Mars, because
of the assumed similarities between the two planets. It is clear that conventional EUV
heating and classical thermal conductivity lead to temperature values well below the
observed ones. To remedy this situation, the two main suggestions invoke either
additional heat sources or reduced thermal conductivities. Unfortunately, there is
insufficient direct information to establish their validity and distinguish between
these hypotheses. It is most likely that both processes play a role, but whether one
or the other dominates is unclear. Also, it is not known whether other processes, not
yet considered, are important.

13.3 Mars

The ionosphere of Mars is believed to be similar to that of Venus, but the amount of
information available concerning its structure and behavior is much more limited.
Except for two vertical profiles of ion densities and temperatures and electron tem-
peratures, obtained from the retarding potential analyzers (Section 14.3) carried by
the two Viking landers,23, 24 all the information concerning the ionospheric proper-
ties of Mars comes from radio occultation or radar observations (see Sections 14.6
and 14.7) by the various US, ESA, and USSR Mars missions.
Photochemical processes control the behavior of the main ionospheric layer of

Mars, just as is the case forVenus; the block diagramof themain ion chemistry shown
in Figure 13.1 applies to both Venus and Mars. A typical value for the day side peak
plasma density is about of the order of 105 cm−3 and the height of the maximum is
about 135 km. One of the ion density profiles obtained by the Viking lander retarding
potential analyzer (RPA) instrument is shown in both Figures 2.23 and 13.11. These
measurements clearly established that the principal ion in the Martian ionosphere
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does not correspond to the main ionizable neutral constituent, CO2, but is O
+
2 ,

in a manner totally analogous to the Venus ionosphere. The Viking RPA results
also established the presence of CO+2 and O+, with O+ becoming comparable in
concentration to that of O+2 at altitudes at and above about 300 km (Figures 2.23
and 13.11).
Analysis of the appropriate time constants andmore sophisticatedmodels indicate

that transport processes become more important than photochemistry somewhere
between 170 to 200 km in the day side ionosphere of Mars. Comprehensive mod-
els have been developed to describe the behavior of the ionosphere in both the
photochemical and transport controlled regions. One such model26 solved the
coupled continuity, momentum, and energy equations to study the chemistry and
energetics of the Martian ionosphere. This model was successful in matching the
observed ion densities, as indicated in Figure 2.23. However, remember that no
direct measurements of the neutral atomic oxygen density have been made, there-
fore, the oxygen profile used in this model was obtained by forcing a best fit to
the observed ion densities. Furthermore, the calculations were carried out using
mixed upper-boundary flow conditions. The model results are relatively indepen-
dent of these upper boundary values below about 250 km, but at higher altitudes
the densities depend strongly on transport, for which no data are available at this
time. Amore recent model solved the coupled continuity and momentum equations
and used measured electron and ion temperatures.27 A good fit to the data was also
achieved in these calculations as long as significant upward fluxes were assumed to
be present at the upper boundary. A three-dimensional, multi-species, magnetohy-
drodynamic (MHD) model developed to study the solar wind interaction with Mars,
has been successful in reproducing the observed density profiles, without any ad hoc
assumptions regarding ionospheric fluxes, as shown in Figure 13.11.25
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The daytime ion and electron temperatures measured by the RPAs24 depart from
the neutral gas temperature (Tn∼ 200 K; Section 2.4) at altitudes above the iono-
spheric peak (∼135 km) (Figure 13.12). Just as for the Venus ionosphere, EUV
heating alone predicted ion and electron temperatures considerably lower than the
measured ones.26, 28 The one-dimensional models constructed to study the energet-
ics of the ionosphere ofMars came to similar conclusions as those reached forVenus.
Namely, that to arrive at electron and ion temperatures consistent with the RPAmea-
sured day side values either a topside heat source or reduced thermal conductivities
must be invoked.26, 28 Figure 13.12 shows calculated ion and electron temperatures,
which were obtained assuming different topside ion heat inflows and which led to
temperature values close to the measured ones.28

A very large number of ionospheric electron density profiles have been obtained
by radio occultation methods (Section 14.6), mainly from using the Viking Orbiter,
Mars Global Surveyor (MGS) and Mars Express (MEX) spacecrafts. The den-
sity profiles thus obtained are basically limited to altitudes below about 300 km,
but nevertheless they have provided a great deal of information concerning iono-
spheric variables29, 30 and have been used to provide indirect information on the
thermosphere.31 The MEX radio occultation observations also established the pres-
ence of a sporadic third electron density peak in the altitude range between 65 and
110 km, below the main peak which is around 135 km and a secondary peak around
110 km.32

Mars Express spacecraft carried a radar system designed to study both the subsur-
face and the ionosphere of Mars. The topside ionospheric electron density profiles
thus obtained extend to about 400 km and provide information beyond what was
available earlier.33 These measurements, as well as earlier radio occultation data,34
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showed that the variation of the electron density peak with solar zenith angle is
close to that predicted by the ideal Chapman theory ([cosχ ]0.5; see Equations 9.23
and 13.7); the MEX radar results are shown in Figure 13.13.
There is only limited information available on the densities in the night side iono-

sphere of Mars. The radio occultation measurements obtained byMars 4 and 5 and
Viking 1 and 2 showed that the observed peak densities are highly variable; at times
none were detected. The highly variable structure, along with ionospheric holes,
observed by the Mars Express radar,33 are very reminiscent of the Venus situation.
The mean peak density is about 5× 103 cm−3, with a peak altitude around 160 km.
The rotation period of Mars is relatively short, close to that of Earth, therefore, the
observed small densities do not seem to be especially difficult to account for. There
are some indirect indications that electron impact ionization may be an important
nighttime ionization source, as well as day-to-night transport processes, again in a
manner similar to the Venus situation. Auroral emission have been seen by the spec-
trometer on Mars Express,35 which was explained to be the result of accelerated
electrons,36 consistent with the suggestion that impact ionization is present.37

The question of whether an intrinsic magnetic field is present atMars was debated
for many years. Observations prior to 1997 established that the mean intrinsic field,
if present, must be very weak, leading to a field of less than about 40 nT in the
ionosphere. TheMars Global Surveyor (MGS) was the first spacecraft that carried a
magnetometer (see Section 14.5), whichmademeasurements deep in the ionosphere,
thus capable of resolving this question unambiguously. These measurements clearly
established the presence of localized patches of relatively strong crustal magnetic
fields, but no intrinsic field of significance (< 2× 1011 T m3).38 These crustal fields
are located mainly, but not exclusively, in the southern hemisphere. Good models of
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these measured fields, using harmonic expansion, are available.39, 40 The presence
of these crustal magnetic fields means that significant spatial structures must be
present, the result of these changing fields.
The presence of a clear and well-defined ionopause has been established by the

PVO measurements at Venus. This is not the case at Mars. No clear evidence of
an ionopause was seen in the occultation data prior to Mars Express. The radio
occultation and radar observations with Mars Express, provide some indications
of an ionopause, but so far no definitive or consistent detection has been reported.
Finally, theMGS electron flux data has shown a transition layer in the suprathermal
electron fluxes and this transition has been interpreted as the boundary between
shocked solar wind and planetary ionospheric plasma.41

13.4 Jupiter

The presently available direct information regarding the ionosphere of Jupiter is
based on the Pioneer 10 and 11, Voyager 1 and 2, and Galileo radio occultation
measurements. Some indirect information, mainly optical remote sensing observa-
tions, also provide insight into certain ionospheric processes. Given that Jupiter’s
upper atmosphere consistsmainly ofmolecular hydrogen, as indicated in Section 2.5,
the major primary ion, which is formed by either photoionization or particle impact,
is H+2 . In the equatorial and low-latitude regions, electron–ion pair production is
due mainly to solar EUV radiation, while at higher latitudes impact ionization by
precipitating particles is believed to become very important. The actual equilibrium
concentration of the major primary ion, H+2 , is very small because it undergoes
rapid charge transfer reactions. The rest of the discussion in this section is based, for
the sake of brevity, on photoionization and photodissociation only, because particle
ionization leads to similar products and processes. Solar radiation, with appropriate
wavelengths, leads to

H2 + hν → H+ H, (13.9)

→ H+2 + e−, (13.10)

→ H+ + H+ e−. (13.11)

The resulting neutral atomic hydrogen can also be ionized:

H+ hν → H+ + e−. (13.12)

At high altitudes, where hydrogen atoms are the dominant neutral gas species,
H+ can only recombine directly via radiative recombination, which is a very slow
process (Table 8.4). It was suggested that H+ could charge exchangewith H2 excited
to a vibrational state of v > 4.42 The vibrational distribution of H2 is not known,
but calculations indicate that the vibrational temperature is elevated at Jupiter;43, 44

however, it is not very clear how important this effect is.



13.4 Jupiter 497

H+2 is very rapidly transformed into H
+
3 , especially at the lower altitudes where

H2 is dominant:

H+2 + H2→ H+3 + H. (13.13)

H+3 is likely to undergo dissociative recombination

H+3 + e− → H2 + H. (13.14)

Significant uncertainties have been associated with the dissociative recombina-
tion rate of H+3 . However, recent measurements have shown that the rate is rapid
(Table 8.5), even if the ion is in its lowest vibrational state.45

The primary ions in the middle ionosphere can be rapidly lost by reactions with
upflowing methane. However, the importance of this process depends on the rate
at which methane is transported up from lower altitudes, which in turn depends on
the eddy diffusion coefficient, which is not well known. Direct photoionization of
hydrocarbon molecules at lower altitudes can lead to a relatively thin hydrocarbon
ion layer around 300 km.46

The early hydrogen-based models predicted an ionosphere composed predomi-
nantly ofH+ because of its long lifetime (∼ 106 s). In thesemodelsH+ is removedby
downward diffusion to the vicinity of the homopause (∼ 1100 km), where it under-
goes charge exchange with heavier gases, mostly hydrocarbons such as methane.
The hydrocarbon ions, in turn, are lost rapidly via dissociative recombination. The
Voyager and Galileo electron density profiles indicated the presence of an iono-
sphere with peak densities between 104 and 105 cm−3, as indicated in Figures 2.25
and 13.14. These electron density profiles seem to fall into two general classes. One
group has the peak electron density located at an altitude around 2000 km and the
other group has the electron density peak near 1000 km. The two groups also exhibit
different topside scale heights, with the high-altitude peaks associatedwith the larger
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Figure 13.14 Measured electron density profiles of Jupiter’s ionosphere near the
terminator.47
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scale heights. There appears to be no clear latitudinal or temporal association with
these separate groups of profiles. The different peaks may be the result of a combina-
tion of different major ionizing sources (EUV versus X-ray or particle impact) and
different ion chemistries. A number of different models of the ionosphere, both one-
and multi-dimensional ones,48–50 have been developed. The limited observational
data base, combined with significant variations in the observed density profiles (as
shown in Figures 2.25 and 13.14), along with the large uncertainties associated with
such important parameters as the relevant reaction rates, drift velocities, degree of
vibrational excitation and the magnitude and nature of the precipitating particles,
means that there are too many free parameters to allow a definitive model of the
ionosphere to be developed at this time.
It has been a fairly well-accepted assumption that the major source of Jupiter’s

magnetospheric plasma is Io.51 However, the question has been raised some time
ago whether the ionosphere, as in the case of the Earth, could also be a significant
contributor. Calculations52 and recent observations53 have shown that the ionosphere
may also make a significant contribution.

13.5 Saturn, Uranus, Neptune, and Pluto

Ahandful of electron density profiles of Saturn were obtained by the Pioneer 11 and
Voyager 1 and 2 spacecraft using radio occultation techniquesmore than two decades
ago. The number of such density profiles available has increased significantly with
the insertion of Cassini in orbit around Saturn.54 So far the Cassini data has been
restricted to near equatorial latitudes, but it has still been helpful in advancing our
understanding of Saturn’s ionosphere. Figure 13.15 shows the averaged equatorial
electron density profiles for dawn and dusk conditions (note that orbital conditions
only allow near dusk and dawn occultations). The peak densities for the dusk and
dawn results are 5.4×103 and 1.7×103 cm−3, respectively, while the corresponding
altitudes are 1880 and 2360 km, respectively. It has been suggested that the density
decrease and altitude increase from dusk to dawn is the result of the recombination
of the molecular ion species below the peak, during the approximately five hours
of Saturn’s nighttime. As the ionosphere decays at night, it is the bottomside which
decreases more rapidly, because of the larger neutral densities, resulting in a drop in
density and an increase in the altitude of the peak. Similar behavior is predicted and
seen in the terrestrial mid-latitude ionosphere. Significant orbit to orbit variations
were seen, but the cause is still being studied and debated.
The simple one-dimensional “hydrogen-only” ionospheric models lead to plasma

densities significantly greater than the observed one. For these models to fit the
observations, two additional processes have been included. One was mentioned
earlier in the Jupiter section (Section 13.4), namely elevated vibrational temperature
for the neutral molecular hydrogen molecules. The other added assumption is that
water from the rings is transported into Saturn’s upper atmosphere, which then
modifies the chemistry in the ionosphere.55 The presence of H2O results in the
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Figure 13.15 Average dawn and dusk, near equatorial electron density profiles
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following catalytic process:

H+ + H2O→ H2O
+ + H, (13.15)

H2O
+ + H2O→ H3O

+ + OH, (13.16)

H3O
+ + e− → H2O+ H. (13.17)

A block diagram of the chemistry scheme, involving water is shown in
Figure 13.16. The results of such a one-dimensional model calculation56 along with
the observed density profile is shown in Figure 13.17. There are no data indicating
what the actual ion composition is in Saturn’s ionosphere. There are differences in
the various model predictions,57, 58 but in general they predict H+ to dominate at
the higher altitudes and the presence of significant population of H+3 and H3O+ ions
at the lower altitudes.
The low-frequency cut-off of the Saturn electrostatic discharges (SEDs) observed

byVoyager, which originate in the equatorial atmosphere from lightning, was used to
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provide indirect information on the diurnal variation in the electron density peaks.59

This work indicated that the diurnal variations exceed two orders of magnitude,
which no model came even close to being able to explain. The dawn-to-dusk vari-
ations seen by Cassini radio occultation are only about a factor of three; clearly
the midday to midnight variations are greater, but still much less than what was
implied by the SEDs. A recent paper60 suggested that the interpretation of the SEDs
in terms of peak electron densities may be incorrect, because of ring shadowing
effects. However, some new Cassini results61 contradict this suggestion; thus this
issue is still open.
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Besides the conventional ionosphere of Saturn, Cassini ion–neutral mass spec-
trometer also detected an ionosphere, in the broadest sense, around the A-ring of
Saturn.62 It saw signatures of molecular and atomic oxygen ions and of protons.
The likely explanation for these ions is the photo or impact ionization of neutral
molecular oxygen associated with a tenuous ring atmosphere or cloud, which in turn
is probably the result of energetic ion sputtering from the cloud.
Finally, it should be mentioned that the question whether Saturn’s ionosphere is

a significant source of plasma for the magnetosphere has also been raised, as it was
for Jupiter. Here again, model calculations indicate that it may make a significant
contribution,63 although Enceladus and the rings are likely to be themajor sources.64

The only direct information concerning the ionospheres of Uranus and Neptune
come from the Voyager 2 radio occultationmeasurements. The ionospheric densities
measured at the two planets are shown in Figures 13.18 and 13.19 respectively.65, 66

The observed day sideUVemissions67 from Jupiter, Saturn, andUranus indicate that
a column integrated energy flux of about 0.1–0.3 erg cm−2 s−1, due to soft (< 15 eV)
electrons, may be present; this has been referred to as electroglow. However, alter-
native explanations of the observed emissions have also been put forward.68 Simple
one-dimensional model calculations of the ionospheres of Uranus and Neptune have
been published; some of them included ionization caused by the electroglow elec-
trons. All the calculated peak electron densities found by these models exceeded the
measured values; this result has been interpreted as an indication of a significant
influx of water molecules, similar to the situation of Saturn.
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The radio occultation data from all the giant planets (Jupiter, Saturn, Uranus,
and Neptune) indicate the presence of enhanced electron density layers in the lower
ionosphere. These layers are potentially extremely important in establishing the
integrated ionospheric conductivities, because they lie in the appropriate ion–neutral
collision regime. These layers may be composed of long-lived metallic ions of
meteoric or satellite origin, somewhat analogous to the terrestrial sporadic E layers,
formed by wind shears (Section 11.13). Gravity waves may also play a role in
creating these narrow, multiple layers47 (Section 10.5).
No measurements of Pluto’s ionosphere have been obtained to date. Model cal-

culations suggest that the peak ionospheric density is less than 103 cm−3 and that
the major ions are likely to be HCNH+ and CH+5 .69 However, as suggested for Titan
(Section 13.6), more complex hydrocarbon molecules may be synthesized, because
of their higher proton affinity.

13.6 Satellites and comets

The first direct indication of an ionosphere around Io was the radio occultation
observations by Pioneer 10 in 1973.70 A number of further electron density profiles
have been obtained using Galileo radio occultation measurements and representa-
tive results are shown in Figure 13.20.71 The densities vary dramatically between
the leading and trailing hemispheres, showing the influence of the rapidly flowing
torus plasma on Io’s atmosphere and ionosphere. Plasma near Io’s equatorial plane
was observed to be moving away from Io at high velocities, which increased from
30 km s−1 at three Io radii up to the co-rotation speed of 57 km s−1 at seven Io radii.
The vapor pressure of SO2 exhibits such a strong dependence on temperature

that an atmosphere in equilibrium with surface frost could result in many orders
of magnitude difference between day and night atmospheric densities. This pic-
ture would be considerably modified if significant amounts of a noncondensing gas,
such as O2, were present. Another outstanding issue is the source of atmospheric
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Na species. Potential sodium species, such as NaO2 and Na2O, which have lower
saturation vapor pressures than SO2, do not sublime easily. It is also very important
to recognize the fact that the interaction of the Galilean satellites with the magne-
tosphere of Jupiter is certain to influence the nature and variability of the respective
ionospheres. Given all these uncertainties, ionospheric modeling is very uncertain
because of the lack of constraints on many of the crucial parameters. Figure 13.21
shows the results of a specific model,72 which leads to a reasonable agreement with
thePioneer 10 day side profile. Finally, it should be emphasized that Io’s atmosphere
and ionosphere are very likely to be highly variable, both spatially and temporally,
given the nature of the volcanic sources. Ionospheres have also been detected by the
Galileo radio occultation measurements at Europa, Ganymede, and Callisto. The
peak electron densities are seen near the surface and have values of about 1, 0.4, and
0.1× 104 cm−3, respectively.73, 74
Titan, the largest satellite of Saturn, is surrounded by a substantial atmosphere

and, therefore, one expects a correspondingly significant ionosphere. Until recently,
when the Cassini spacecraft began its orbital mission around Saturn, the only infor-
mation concerning Titan’s ionosphere came from the Voyager 1 radio occultation
observation. After a careful reanalysis of these data, an electron density peak of
about 2.7 × 103 cm−3 at an altitude near 1190 km, for a solar zenith angle of 90◦
was found.75 TheCassini spacecraft has now observed this ionosphere on numerous
occasions, using a Langmuir probe,76 an ion–neutral mass spectrometer,77 and the
radio occultation technique.78 These measurements reconfirmed the presence of a
day side ionospherewith a peak density of a few times 103 cm−3 at an altitude around
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Figure 13.22 Comparison of measured and calculated electron densities along the Ta
flyby of Titan by Cassini. The calculations assumed chemical equilibrium conditions.
One of the calculations considered only the solar sources of plasma, while the other
also included impact ionization by magnetospheric electrons.81

1200 km. The radio occultation observations also found the presence of a shoulder
in the electron density profiles around 1000 km, caused by solar X-ray ionization,78

and an intermittent, but significant second density peak in the 500–600 km region,
the likely result of energetic particle precipitation79 or ablation of meteorites.80

Figure 13.22 shows the results of some of these measurements. As mentioned in
Section 2.6 and indicated in Figure 13.23 given the orbit of Titan around Saturn
and the fact that its orbital speed is less than the co-rotation velocity it is rammed
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by the magnetospheric plasma. This means that the ram side is at times sunlit, in
the dark or somewhere in between, leading to the dominance of different ionization
sources as the orbit changes. Under nominal conditions the calculations indicate that
photoionization is the main source of ionization for the day side ionosphere,81 fol-
lowed by photoelectron impact, and finally impact by magnetospheric electrons. Of
course, magnetospheric electrons must dominate in the night side ionosphere. These
comments apply to the case when Titan is inside the magnetosphere of Saturn, but
in the case of high solar wind pressure Titan may find itself in the magnetosheath,
or rarely even in the unshocked solar wind and the importance of impact ionization
is likely to increase significantly.
A variety of one- and multi-dimensional models have been developed which

calculate the electron density profiles, and they all lead to reasonably good agreement
with the observed values.81, 82 An example of calculated and observed densities,
corresponding to aTitan flyby is shown in Figure 13.22. Themajor initial ionospheric
ion, given Titan’s neutral atmosphere, is N+2 (see Figure 2.28), but these ions quickly
undergo a number of ion–neutral reactions, leading to HCNH+ and other more
complex hydrocarbon ions, as indicated in Figure 13.24.
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A variety of studies looked at the issue of the transition from chemical to trans-
port control in the ionosphere of Titan. Simple time constant considerations, as well
as detailed multi-dimensional calculations, have indicated that the transition from
chemical to diffusive control takes place in the altitude region around 1400–1500
km. The comparison between chemical equilibrium and a three-dimensional MHD
model calculation is shown in Figure 13.25, and it clearly indicates where the chem-
ical equilibrium assumption breaks down. In general, the magnetospheric plasma
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velocity (∼ 120 km s−1) is just below the magnetosonic velocity and thus no bow
shock forms and the magnetospheric plasma slows gradually as it moves through
Titan’s exosphere, by mass loading. Titan has no intrinsic magnetic field, so as the
magnetospheric plasma moves in, carrying Saturn magnetic field, a pile-up results
and eventually the field drapes around Titan. Of course, there are times when the
plasma flow is fast enough for a weak shock to form. The situation at Titan has many
similarities to the solar wind interaction with Venus and Mars.
The plasma temperatures in the ionosphere of Titan have been a topic of inter-

est for some time before Cassini’s arrival. Model studies have indicated that the
expected plasma temperatures will be significantly higher on the ram side than on
the anti-ram side.83 This is because the draped magnetic field is nearly horizontal
and thus inhibits vertical heat flow. The Langmuir probe carried aboard the Cassini
spacecraft76 has provided the first direct measurements of electron temperatures at
Titan. The measured altitude variation of the electron temperature from an orbit near
the terminator and about 90◦ with respect to the ram is shown in Figure 13.26. A
model,84 which used the measured suprathermal electron fluxes to calculate heat-
ing rates and then substituted these values into an electron energy equation, was
successful in obtaining values consistent with the measured temperatures in the
1200–1300 km altitude region.
As indicated in Section 2.6 there is a significant neutral gas plume originating in

the southern hemisphere of Enceladus, and thus the ionization of this gas, mainly
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H2O, will result in a plasma population. However, at this time no measurements of
this plasma have yet been reported.
A well-established ionosphere has been observed at Triton, the major satellite of

Neptune, by the Voyager 2 radio occultation measurements66 (Figure 13.27). These
Voyagermeasurements prompted the development of a number of ionospheric mod-
els, which assumed, consistentwith the airglowobservations,86 that themain sources
of ionospheric plasma are photoionization by solar EUV radiation and magneto-
spheric electron impact ionization. A one-dimensional model calculation,85 which
solved the coupled continuity and momentum equations for the more important
neutral and ion species, clearly demonstrated that Triton’s ionosphere cannot be
understood considering nitrogen chemistry only, but that CH4, H, and H2 must also
be considered. Note that these calculations used relatively simple ion chemistry and
were made well before the Cassini observations, which has taught us a great deal
about the relevant photochemistry.
The predominance of water vapor in the atmosphere of active comets, such

as P/Halley, means that the following photochemical processes control their
ionospheric behavior:

H2O+ hν → H2O
+ + e−, (13.18)

→ H+ + OH+ e−, (13.19)

→ OH+ + H+ e−, (13.20)

H2O
+ + H2O→ H3O

+ + OH, (13.16)

H3O
+ + e− → OH+ H2, (13.21)

→ OH+ H+ H, (13.22)

→ H2O+ H. (13.17)

Note that two of these reactions were introduced earlier, in the discussion of the role
of inflowing water vapor into Saturn’s ionosphere. The chemistry scheme indicated
in Figure 13.16 can also be used to understand the ion chemistry of water-dominated
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cometary ionospheres. The very rapid rate at which H2O+ transforms into H3O+
means that in comets with water-dominated atmospheres, such as Halley, H3O+
is the dominant ionospheric constituent. Model calculations have also shown that
the electron density varies roughly as 1/r, where r is the radial distance from the
nucleus, under both photochemical and transport controlled conditions, as long as
the transport velocity is constant.87

The Giotto spacecraft carried two spectrometers that were capable of measuring
the ion composition in Halley’s ionosphere. The neutral spectrometer, operating in
its ion mode, found that the H3O+ to H2O+ ratio increases with decreasing dis-
tance from the nucleus and it exceeds unity at distances less than about 20 000 km.88

The variations of the different ion densities measured by the ion mass spectrome-
ter, carried aboard the Giotto spacecraft as it flew by comet P/Halley,89 are shown
in Figure 13.28. Model calculations of the ion composition and structure87 are in
qualitative agreement with these measurements.
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13.9 Problems

Problem 13.1 Assume that the ionospheric peak at Venus is formed at unit optical
depth, where the CO2 and O densities are 1×1011 and 1×1010 cm−3, respectively.
Write down the chemical equilibrium continuity equations for CO+2 , O+, and O

+
2 .

Solve for the solar maximum steady state value of O+2 , assuming that its value is
approximately equal to that of the total electron density, or in other words that it is
the major ion. Check if this assumption is consistent with your answer. You may
assume that the electron temperature is 300 K.

Problem 13.2 At around 210 km altitude on the day side, solar-maximum, iono-
sphere of Venus, the controlling chemical loss of O+ is the reaction indicated by
Equation (13.4). Estimate the relevant chemical and diffusive time constants to con-
firm that the transition from chemical to diffusive control takes place in this general
altitude region. Are the time constants of the same order of magnitude?

Problem 13.3 Using the information provided in this chapter and Chapter 2, calcu-
late the maximum daytime ionospheric thermal plasma pressure of Venus, for solar
cycle maximum (PVO) conditions. Compare this result with the total, unperturbed
solar wind pressure at Venus. Repeat these calculations for low solar cycle (Viking)
conditions at Mars (assume that the peak ionospheric pressure is at 160 km at both
planets). Are these ionospheres capable of holding off the solar wind?

Problem 13.4 Assume that the major ion in the ionosphere of Venus is O+ above
200 km and that it is in diffusive equilibrium with a density of 105 cm−3 at 200 km.
Assume altitude-independent electron and ion temperatures of 3000K and a constant
g of 800 cm s−2. If the solar wind density and velocity are 10 cm−3 and 400 km s−1,
respectively, at what altitude will the subsolar ionopause be located? Repeat the
calculation for an increased solar wind velocity of 500 km s−1.

Problem 13.5 Assume that the electron energy transport is only controlled by ther-
mal conduction in the upper ionosphere of Venus. If the electron temperature is
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1500 K at 200 km and a topside heat inflow of 1010 eV cm−2 s−1 is imposed at
600 km, what is the electron temperature at 400 km? Assume that the thermal con-
ductivity is given by Equation (5.146) with the denominator equal to unity. Repeat
the calculations for an increased topside heat inflow of 5×1010 eV cm−2 s−1. Also,
repeat the calculations for the original heat flow value (1010 eV cm−2 s−1), but a
thermal conductivity reduced by a factor of 10.

Problem 13.6 Assume that in the day side mid-latitude ionosphere of Jupiter pho-
toionization dominates and the optical depth is zero at and above 1500 km. If 50%
of the photoionization of H2 leads to H+, calculate the chemical equilibrium den-
sity of H+ at 2000 km, if the H2 density and electron temperature at that altitude
are 108 cm−3 and 1500 K, respectively, and if radiative recombination is the only
possible loss process. Assume solar maximum conditions and that H+ is the major
ion. Calculate the optical depth of H2 for 30.378 nm at 2000 km given a neutral tem-
perature of 1000 K, in order to test the zero optical depth assumption. Also, repeat
the calculations for the H+ density assuming that 10% of H2 is in a vibrational state
of v > 4 and so charge exchange with H2 has the rate given in Table 8.3 and the
resulting H+2 is in its ground state and is lost by dissociative recombination. H+ is
now not the major ion: to show this, calculate both the H+ and H+2 densities. Choose
all necessary parameters from the information presented in the book, and compare
the two potential loss rates of H+, to see if one is negligible.

Problem 13.7 Show that the steady state ratio of [H+]/[H+3 ] in the chemically
controlled region of Jupiter can be written as:

[H+]
[H+3 ]

= J11αne

J10kv[H2]v
where J10 and J11 correspond to ionization frequencies associated with Equa-
tions (13.10) and (13.11), respectively, [H2]v is the number density of molecular
hydrogen in a vibrationally excited state, v > 4, α is the dissociative recombination
rate corresponding to Equation (13.14) and kv is the reaction rate for

H+ + H2(v > 4)→ H+2 + H.
What, if any, assumption did you have to make to arrive at your answer?

Problem 13.8 In the photochemically controlled region of a certain comet, the only
neutral gas constituent is H2O, with a density of 107 cm−3. You can assume that
the only resulting ions are H2O+ and H3O+. The comet is located at 1 AU during
solar-minimum conditions, the optical depth is zero, and the electron temperature
is 300 K. What is the resulting equilibrium electron density? (Neglect dissociative
recombination of H2O+.)



Chapter 14

Ionospheric measurement techniques

This chapter describes the various measurement techniques that are directly appli-
cable to the determination of ionospheric parameters. This discussion is restricted
to the most commonly used methods, which measure the thermal plasma densities,
temperatures, and velocities, as well as magnetic fields (currents). In general, these
techniques can be grouped as remote or direct (in situ) ones. Topics related to direct
measurement techniques are described in the first five sections and the rest of the
chapter deals with remote sensing. The remote, radio sensing methods rely on the
fact that the ionospheric plasma is a dispersivemedia (Section 6.8) while the relevant
radar measurements use the reflective properties of the plasma. The direct in situ
measurement techniques discussed here are restricted to those that are applicable to
altitudes where the mean-free-path is greater than the characteristic dimension of
the instrument.

14.1 Spacecraft potential

In situ measurements of ionospheric densities and temperatures are based on the
laboratory technique developed and discussed by Irving Langmuir and co-workers
over eighty years ago.1 These so-called Langmuir probes, or retarding potential
analyzers (RPAs), have been used for many years in laboratory plasmas before they
were adopted for space applications.2 On a rocket or a satellite, the voltage applied
to an instrument has to be driven against the potential of the vehicle, and therefore,
it is appropriate to begin with a discussion of the factors that affect the value of
this potential. The equilibrium potential is the one that a floating (conducting) body
immersed in a plasma acquires in order to cause the net collected current to be
zero. Assuming comparable ion and electron temperatures, the ions, due to their
much larger mass, have a thermal velocity (Equations 3.14. H.21, and H.22) that
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is considerably less than that of the electrons. The ion and electron densities are
in general the same; therefore, the body accumulates more negative than positive
charges initially. Eventually, the body attains a negative potential that is just large
enough to repel enough of the electrons and attract a sufficient number of ions
so that equal numbers of ions and electrons reach it. This negative potential is
called the equilibrium or floating potential. It follows that the electron density in the
immediate vicinity of the probe is lower than in the undisturbed plasma, resulting in
a net positive charge in this region. The magnitude of this total net positive charge is
equal to the negative charge on the body. This region of net positive charge, referred
to as the positive ion sheath, shields the floating body potential from the rest of the
ambient plasma. The thickness of the ion sheath is related to the fundamental length
parameter of a plasma, the Debye length (Equation 2.4). Typical Debye lengths in
the terrestrial ionosphere are about 1 cm.
The equilibrium potential, VS, of a stationary body immersed in a plasma, if only

ambient thermal particle effects are considered, is given by

VS = −kTe
e
log

(
Ioe
Ioi

)
, (14.1)

where k is the Boltzmann constant, e is the magnitude of the electronic charge,
Ioe is the random electron current, and Ioi is the random ion current. The random
current is the rate at which charged particles cross an area, A, in a plasma with a
nondrifting Maxwellian velocity distribution. This random electron and ion current
is (Equation H.26)

Ios = ensA

√
kTs

2πms
= ensA

〈cs〉M
4
, (14.2)

where ns, Ts, and ms are the density, temperature, and mass of the given charge
carriers and 〈cs〉M = (8kTs/πms)

1/2 is the mean thermal velocity (Equation H.21).
Typical randomelectron current densities in the terrestrial ionosphere (Te ≈ 1500 K;
ne ≈ 105 cm−3) are of the order of 1× 10−3 A m−2.
The actual equilibrium potential that a moving body (rocket or satellite) acquires

in the ionosphere depends on a number of factors. Among them are the ratio of the
thermal velocity of the ionospheric particles to the satellite velocity, photoemission
resulting from the interaction of solar radiation with the surface, and secondary
electron emission resulting from the impact of energetic particles. Therefore, the
satellite potential depends on the effective areas for these various processes (e.g.,
the effective area for the photoemission current is only a fraction of the area for the
thermal electron current). The satellite potential, more generally, is given by

VS = −kTe
e
log




∫
jedSe∫

jidSi +
∫

jpdSp +
∫

jSdSS


 , (14.3)
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where je is the electron, ji the positive ion, jp the photoemission current densi-
ties, and jS the current density due to secondary electrons from energetic particle
bombardment.
The geomagnetic field induces a potential gradient in a moving spacecraft (U×B

effect) and this can be especially important when the spacecraft has long booms. In
such a case, it can no longer be assumed that a satellite moving in an ionosphere is
an equipotential surface and the vehicle potential may vary along the spacecraft. A
typical value for the induced U × B potential difference is about 0.2Vm−1 in the
terrestrial ionosphere. The U× B effect is directly proportional to body dimension;
therefore, long booms (>20 m), as used on many satellites, can lead to substantial
potential differences.
All present observations of spacecraft potential fall into one of the following three

categories:

1. Small negative or positive values, |VS| <∼ 2V .
2. Significant negative values, VS ≈ −10V , resulting from the presence, on

the spacecraft, of exposed areas with large positive potentials that collect
large electron currents that drive the spacecraft negative.

3. Occasionally large (∼1 keV)negative potentials, on solar-eclipsed satellites
at very high altitudes (outside the plasmasphere), where the thermal particle
density is small and the energetic particle population is significant.

14.2 Langmuir probes

The total electron current density collected by a Langmuir probe is given by

je = Ie
A
= e

∫∫∫
vnf (v) d

3v, (14.4)

where Ie is the total electron current, A is the probe area, vn is the particle velocity
component normal to the probe surface, and f (v) is the velocity distribution function.
Note that flux is defined as

n〈c〉 ≡
∫∫∫

vnf (v) d
3v, (14.5)

so that the current density je, or Ie/A, represents ameasure of the chargedparticleflux.
For a Maxwellian distribution, the electron current collected by the probe

(Figure 14.1a) in the electron-retarding region (Vp < Vo) is given by1

Ie = eneA

(
kTe
2πme

)1/2
exp

(
−e|Vp − Vo|

kTe

)
, (14.6)

where ne is the electron density, Te is the electron temperature, Vp is the potential
applied to the probe relative to the vehicle potential, VS, and Vo is the plasma
potential relative to VS. This relationship between electron current and retarding
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Figure 14.1 (a) Sketch of
current collected by a cylindrical
Langmuir probe, showing the
electron retarded and accelerated
current regions. (Courtesy of
L. H. Brace.) (b) Current versus
retarding potential data points
from one of the cylindrical
Langmuir probes carried by the
Pioneer Venus Orbiter. The solid
line is a fit to the retarding region
of the curve, which is used to
determine the electron
temperature. The electron
temperature value corresponding
to the fit is also indicated.3

potential is valid regardless of probe shape and it also holds for moving probes as
long as the probe velocity is small compared to the electron thermal velocity.4 The
probe current, however, is reduced when a magnetic field is present.5

Taking the logarithm of Equation (14.6) gives

log Ie = − e

kTe
|Vp − Vo| + log Ioe. (14.7)

Taking the derivative ofEquation (14.7)with respect to the probe potential leads to

d(log Ie)

dVp
= − e

kTe
. (14.8)

Thus, a linear dependence of log Ie with respect to Vp indicates a Maxwellian distri-
bution and the electron temperature can be determined from the logarithmic slope
of the Ie versus Vp characteristic. A nonlinear log Ie versus Vp dependence indi-
cates a nonMaxwellian energy distribution or multiple Maxwellian populations.
The electron temperature can also be obtained from the retarding portion of the I–V
characteristic, by the so-called Druyvestyn-type analysis6

Te = − e

k

dIe
dVp

/
d2Ie
dV 2p

. (14.9)
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The plasma potential corresponds to the value of Vp at which d2Ie/dV 2p = 0. When
the energy distribution function is not Maxwellian one needs to establish the actual
energy distribution function. Druyvestyn6 demonstrated that the energy distribution
function, f (E), of the ambient charged particles is related to the current collected by
a stationary probe with retarding potentials through the following relation:

f (E)dE = 2

Ae

(
2mV

e

)1/2 d2I
dV 2r

dE, (14.10)

where A is the probe area, m/e is the mass-to-charge ratio of the charged particle,
Vr = Vp − Vo is the retarding potential of the probe relative to the plasma, I is
the collected current, and E is in eV. This approach of reconstructing the energy
distribution function has been used on a few occasions.7

The total current collected by a probe operating in the electron retarding region,
Iet, is given by

Iet = Ioe exp

(−e|Vp − Vo|
kT

)
− Ii − Isp, (14.11)

where Ii is the positive ion current to the probe, and Isp is the sum of all other
“spurious” currents, such as that due to a photoelectron current to the probe.As long
as Ii and Isp are small, the total probe current in the retarding region can be interpreted
as the electron current and the electron temperature can then be determined in a
straightforward fashion. The ion current Ii will generally be more than an order of
magnitude lower than Ioe. However, at high altitudes, where the ambient density
is low, Isp may become a significant contributor to the probe current and must be
taken into account. Gridded Langmuir probes, commonly called retarding potential
analyzers (RPAs), have the advantage of eliminating the unwanted currents Ii and Isp
directly and are, therefore, preferable in the low-density regions of any ionosphere.
Retarding potential analyzers are discussed in the next section.
The electron density is usually derived from the value of the current at either

the plasma potential from the random current (14.2) or the current collected in the
electron accelerating region (Figure 14.1a). The value of the random current is
usually obtained by establishing the transition point in the I–V curve, separating
the retarding and accelerating regions. The electron density measurement is thus a
weak function of Te. In the case of a cylindrical probe, the electron density can also
be determined without an a-priori knowledge of Te, by measuring the current in the
accelerating region (Vp>Vo) of the Ie–Vp characteristic. When the diameter of the
collector is small compared with the Debye length, which is indicative of the sheath
dimension, the probe operates under the so-called orbital motion limited condition.
In this case the accelerated electron current collected by such a cylindrical probe is1

Ie = 2Aene
π1/2

(
kTe
2πme

)1/2(
1+ e|Vp − Vo|

kTe

)1/2
. (14.12)
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When (e[Vp − Vo])/kTe� 1, the current collected by the probe varies as the square
root of the applied voltage and is independent of Te. Therefore, long cylindrical
probes have the added practical advantage that they can be operated at a fixed
positive potential to make continuous measurements of ne without interruptions in
order to obtain the electron temperature values.
Such cylindrical probes have been used widely. A measured volt–ampere

characteristic from a cylindrical probe flown on the Pioneer Venus Orbiter and
the theoretical fit with the deduced electron temperature are shown in Figure 14.1b.3

In most spacecraft applications the available data rate is limited. Therefore, instead
of simply telemetering the full measured volt–ampere characteristics, a variety of
data compression schemes have been employed. Some of the simpler systems trans-
mitted the full curves only intermittently and in between curve transmissions they
telemetered some indicators of the desired quantities. A clever and relatively sim-
ple scheme employed with the AE, DE, and Pioneer Venus Langmuir probes relied
on automatic gain and voltage sweep adjustments as indicators of the ion densities
and electron temperatures, respectively.3 A very different approach was used for
the Langmuir probes built for the Akebono and Nozomi satellites. In the Akebono
instrument a small 3 kHz ac signal was applied to the probe along with the usual dc
sweep voltage. The second harmonic component of the current to the probe, which
is proportional to the second derivative of the current with respect to the sweep volt-
age and thus to the energy distribution function (Equation 14.10), was monitored.8

In the Nozomi instrument a sinusoidal signal was applied to the probe at floating
potential. The resulting shift in the floating potential was monitored and, since this
shift is proportional to the electron temperature, values of Te could be obtained.9

14.3 Retarding potential analyzers

Langmuir probe theory applies to positive ionmeasurements aswell as to the electron
measurements discussed in the preceding section. The basic difference between the
two is the fact that for ions the motion of the spacecraft through the plasma generally
cannot be neglected. The random current density for ions is also reduced compared
with that for electrons by the mass ratio (me/mi)1/2, so that the ion current will
be smaller than the electron current. Furthermore, ion measurements may also be
masked by photoemission currents, resulting from the interaction between solar
radiation and the probe. However, this effect can be eliminated or at least reduced
with the use of grids. The term retarding potential analyzers (RPAs) refers to charged
particle collectors with a screening aperture and grids that allow for instrumental
rejection of particles of either polarity (electron and ion modes of operation), as well
as for suppression of photo and secondary electron emission effects. Two different
geometrical configurations of gridded analyzers have been used, namely planar
collectors with circular openings and spherical collectors. The spherical traps on
some rocket flights and satellite missions were operated in the electron mode to give
electron density and temperature information.10,11 Planar RPAs have also been used
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in both ion and electron modes in some recent applications.12 However, in most
cases these RPAs are used to measure ion density and temperature.13,14 Also, planar
RPAs are widely used because of their ease of mounting on a spacecraft.
The equation for the positive ion current to a moving planar collector operating

in a retarding potential mode, in a multi-species ionosphere, is14,15

Ii = αeAU cos θ
∑

j

nj

(
1

2
+ 1
2
erf (y)+ exp{−y2}

2π1/2λj

)
, (14.13)

where α is the total transparency of the grids, A is the collecting area, U is the
spacecraft velocity, θ is the angle between the velocity vector and the normal to the
planar collecting surface, nj is the density of the jth ion species, y = λj−(eV/kTj)

1/2,
V = Vp−Vo, λj = (U cos θ)/(

√
2kTj/mj), andTj andmj are the ion temperature and

mass, respectively. The current in the ion accelerating potential mode is independent
of the applied potential and is also given by Equation (14.13) by simply setting
V = 0. Figure 14.2 shows the results from a retarding potential scan of the RPA
carried by theDMSP F10 satellite (R.A. Heelis, private communication). The figure
also shows the fit to the data and the deduced ionospheric parameters.
As indicated in Figure 14.2, and implied by Equation (14.13), an RPA provides

information on the energy of the ions in the spacecraft frame of reference, and thus,
in a multiconstituent medium, it can yield ion composition and ion temperature data.
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Figure 14.2 Ion current versus retarding potential characteristic measured by the
retarding potential analyzer carried by the DMSP F10 satellite. The curve-fitting
procedure leads to the total ion density and relative composition, shown in the left
column; the deduced ion temperature, the ion drift velocity along the sensor look
direction, and the universal time the measurement was made are shown in the right
column. (Courtesy of R.A. Heelis.)
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The energy of a stationary ion of mass mj, in the frame of reference of an orbiting
satellite is

Ej = 1

2
mjU

2, (14.14)

where U is the satellite velocity with respect to the plasma. An ion with a unit
positive charge will be prevented from reaching the collector and contributing to the
current when the potential is more positive than Ej/e. Because Ej is a function ofmj,
sweeping the collector potential to larger positive values will result in decreases of
the ion current collected at the various voltages, corresponding to the different ion
masses. Therefore, this type of instrument can be used as a low-resolution ion mass
spectrometer. This description is, of course, a simplified one because it ignores the
effect of the ion thermal velocity. The inclusion of thermal velocity effects causes
the drop in the current to be less abrupt; the degree of sharpness of this drop in the
current depends on the ion temperature, as indicated in Figure 14.2.
More sophisticated data handling approaches, beyond simply telemetering the

I–V curves, have also been introduced and used by a variety of RPA experimenters.
For example, ion composition, temperature, and instrument potential can also be
obtained by taking the derivative of the I–V curve at the satellite and telemetering
this information back to Earth. The RPA carried by the Pioneer Venus Orbiter could
be operated in the full I–V mode or it could be commanded to transmit �I/�V
information, which yields density and temperature information.12 Figure 14.3 shows
data points and theoretical fits obtained by that instrument in these two different
modes of operation.
In general the spacecraft velocity is not negligible with respect to the ion drift

velocity, and RPAs have been used to measure these drift velocities. When the ions
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Figure 14.3 Ion current and �I values versus retarding potential as measured and
telemetered by the RPA that was carried by the Pioneer Venus Orbiter. Least square
fits and the resulting parameters are also shown.12
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have a net drift velocity, the peak current will occur not when the sensor is looking
parallel to the spacecraft velocity, but when it looks parallel to the total velocity
vector. Thus, if the spacecraft velocity is well established, the ion drift velocity
component along the normal to the collector axis can be derived from the shifted
position of the maximum current. Such a procedure has been used by numerous
scientists using RPA data.
A clever modification of simple planar RPAs has been developed to measure

plasma drifts and is now widely used.16 These so-called drift meters have special
four-segment equal area collectors. If the mean velocity of the ions entering the sen-
sor is perpendicular to the collecting surfaces, then the currents to all four segments
are the same. When the entry velocity is no longer perpendicular, the currents to
the various segments will be different. Therefore, if the spacecraft orientation with
respect to its velocity vector is accurately known, the ion drift velocity in the plane
of the four planar segments can be derived from the measured current ratios. The
ion drift velocity in the direction normal to the collector surface is determined from
the conventional RPAoperation, as characterized by Equation (14.13) and indicated
in Figure 14.2, and thus the total velocity vector can be obtained.

14.4 Thermal ion mass spectrometers

The first spectrometers used successfully in the space programwere radio frequency
(RF/Bennett) instruments.17 Since the mid 1950s, this type of instrument has been
used widely on rockets and satellites both in the United States and the USSR.18,19

The general principle of operation of this instrument is illustrated with the aid of
Figure 14.4, which is a cross-sectional view of the spectrometer used on both the
Atmosphere Explorer satellites and the Pioneer Venus Orbiter.20 Ambient ions enter
the instrument orifice through the guard-ring grid and are accelerated down the axis of
the spectrometer by a slowly varying negative dc sweep potentialVA. Corresponding
to each ion mass there is a value of VA which accelerates the ion to the instrument’s
resonant velocity. These resonant ions traverse the analyzer stages in phase with the
applied RF potentials and gain enough energy to overcome the retarding dc potential
VR. The relationship between resonant ion mass, sweep potential, and frequency,
assuming that the instrument is at rest with respect to the plasma, is given as

mi = 0.266|VA|/(S2f 2), (14.15)

wheremi is the ion mass in amu, VA is the sweep potential in volts, S is the analyzer
intergrid spacing in cm, and f is the frequency applied to the analyzer in MHz.
Since the early 1960s, a variety of instruments have been used in which ions

with different e/m ratios are separated using deflection caused by a magnetic field.
Figure 14.5 shows a drawing of the magnetic ion mass spectrometer built for the
Atmospheric Explorer (AE) C, D, and E satellites,21 which clearly indicates the
simple principles involved in such a device. Ions accelerated through a potential
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Figure 14.4 A schematic diagram of the Bennett ion mass spectrometer. The mass
analysis equations are also indicated.20
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Figure 14.5 A schematic drawing of the magnetic deflection ion mass spectrometer
carried by the Atmosphere Explorer C,D, and E satellites. The collector slits were
placed so as to enable the simultaneous collection of ions with mass ratios of 1:4:16.21

difference Va and injected into a magnetic field of strength B will move with a
radius of curvature, that is given by

ro =
(
2miVa
eB2

)1/2
, (14.16)

where mi is the ion mass and e is the electronic charge. In the specific spectrometer
shown in Figure 14.5, the ions are accelerated through the entrance aperture into the
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Figure 14.6 A schematic
diagram of an ion–neutral
quadrupole spectrometer.
(Courtesy of H. B. Niemann.)

analyzer system by a negative sweep voltage; three parallel detection systems are
employed to measure high, mid, and low mass numbers simultaneously. Mass spec-
trometers that use a combination of electrostatic and magnetic deflection sections
have also been used.
The quadrupole mass spectrometer was developed in the 1950s for isotope

separation,22 but since then it has been widely used for space applications, gen-
erally for neutral gas spectrometry23 and recently as a combined ion–neutral mass
spectrometer.24 Figure 14.6 shows a schematic diagram of a quadrupole spectrom-
eter, which basically consists of four rod-shaped electrodes with hyperbolic cross
sections and spaced a distance of R0 from the central (long) axis. Opposite pairs
of electrodes are electrically connected and a combination of RF and dc potentials
applied to them. The ions are injected along the axis of the poles. For a particular
combination of voltages, ions within a small range of e/mi ratios have stable tra-
jectories that oscillate closely around the axis, while the other ions follow unstable
trajectories that strike the rods, and thus, are unable to reach the collector.
The condition for collection of ions with a mass mi is given by

mi = 1.385× 107VRF
R20f

2
, (14.17)

where mi is the ion mass in AMU, R0 is half the diametrical spacing between rods
in meters, f is the frequency of the applied RF voltage in Hz, and VRF is the peak
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Figure 14.7 A schematic diagram of the time-of-flight (TOF) mass spectrometer with
a two-stage gridded mirror. The drift space is field free.25

RF voltage in volts. The total voltage applied to the rods is the sum of VRF and a dc
potential Udc. Theoretically the mass resolution approaches infinity, but the number
of ions reaching the collector drops to zero for

Udc = 0.168VRF. (14.18)

In practice the analyzer is operated at a finite resolution and the mass spectrum is
obtained by fixing the frequency and the Udc/VRF ratio, while scanning Udc and
VRF.
A relatively more recent type of mass spectrometer is the time-of-flight (TOF)

one.25 Its principle of operation is based on the injection of a short ion pulse into a
combination of electric fields and field-free drift regions, as indicated in Figure 14.7.
Ions leave the so-called source region, with an energy spread of�Es, and are accel-
erated to an energy eVo � �Es, before entering the actual spectrometer. During
their field-free drift they disperse in time according to their mi/e ratio. After being
turned around in the mirror region they are focused at the detector. The measure-
ment of their dispersed arrival time at the detector yields the mi/e information. The
resolution depends on the ion path length and is limited by the initial spread in ion
energies. The ions are accelerated through a potential V0, gaining energy before
entering the TOF spectrometer; the measured time of flight is related to mi/e by:

mi/e = 2V0T 2/L2. (14.19)

Taking the logarithmic derivative of Equation (4.19) gives:

mi/�mi = T/�T . (14.20)

Equation (14.20) shows that to get good mass resolution a TOF spectrometer must
have a very good time resolution.
A significant improvement in TOF spectrometers was made with the introduction

of an electrostatic mirror, usually called a “reflectron” (see Figure 14.7). The more
energetic and faster electrons penetrate deeper into the mirror field and spend more
time being turned around than the lower energy ones. This corrects to a first order the
flight time problems associated with the energy spread. As indicated in Figure 14.7,
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the drift region of length, L0, is held at the accelerating potential, V0, which is
followed by a retarding lens of length L1, and the mirror depth is L2 with a potential
of V2 at the back. Given this configuration the mass resolution, which takes into
account the energy spread of �Es, so that the total energy of the entering ion,
E = eV0,+�Es, can be written as:

mi/�mi = 2
{
L0 + 2L2(E/q− V1)/V2

}
/
{
(L0)(�Es/eV0)

1/2}. (14.21)

Aproblem common to all ion mass spectrometers on spacecraft (in fact, common
to all direct-measurement devices of charged particles) is the conversion of mea-
sured collector currents to actual ion densities. For ion mass spectrometers mounted
on rockets and satellites, processes inside the sensor, as well as those controlling
the effective collection area associated with the aperture of the sensor, have to be
considered. The conversion from ion currents to ion densities is generally performed
by resorting to a laboratory calibration of the instrument or by normalizing to ion
densities obtained from a total ion collector (RPA) using the appropriate formulas
discussed in Section 14.3.

14.5 Magnetometers

The motion of ionospheric charged particles is constrained by the magnetic field,
therefore a detailed knowledge of the spatial and temporal variations of this field is
of primary importance. Magnetometers have been widely used for such measure-
ments aboard terrestrial26 and planetary space missions.27 These measurements can
also provide information on low frequency waves. The two most commonly used
basic types of magnetometers are (1) the fluxgate magnetometers and (2) the helium
magnetometers.
The principle of operation of a fluxgate magnetometer is based on the nonlinear

magnetic saturation characteristics of its core material. Consider a saturable trans-
former whose characteristics can be represented by straight line segments, as shown
in Figure 14.8. The external magnetic field of intensity �H biases the core, as
indicated, and a triangular-shaped driving signal of frequency 1/T is applied to the
primary of the transformer, which causes the core to saturate whenH reachesHC. In
general practice the driving waveform is sinusoidal; the triangular waveform is used
here only to simplify the discussion. The output signal induced into the secondary
is, according to Faraday’s Law, proportional to the time rate of the change of flux,
which is alternatively driven between plus and minus saturation. The output signal,
therefore, consists of nonuniformly spaced positive and negative pulses, where the
separation is related to the external ambient magnetic field.
Fourier analysis of the output waveform gives the results shown in Figure 14.8.

Even harmonics of the primary driving frequency appear in the output only in
the presence of an external magnetic field. The ratio, r, of the second to the first
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Figure 14.8 Principle of operation of a fluxgate magnetometer.28

harmonic is:

r =
[
1− exp(−iπ{1−�H/HD}2

)
1− exp(−iπ{1−�H/HD}

)
]
sin 2πα

2 sin πα
, (14.22)

where the various symbols are defined in Figure 14.8. If�H � HD, andHD � HC,
the ratio r is approximately given as:

r ≈ iπ �H

HD
. (14.23)

Thus the second harmonic is ±90◦ out of phase with the primary signal and its
amplitude is a linear function of the ambient component parallel to the core axis. To
measure the three vector components, three such systems have to be used. Beyond
the difficulty associated with measuring the small second harmonic component, the
spurious magnetic fields associated with the spacecraft have to be minimized, both
by ensuring magnetic “cleanliness” and by placing the magnetometers on a boom
away from the spacecraft interferences. It has also been a common practice to place
two magnetometers separated by some distance on the boom, to be able to use the
1/r3 dependence of the spacecraft-generated field to account for it properly.
A helium magnetometer can be designed to operate in either a scalar or vector

mode. The operation of the scalar magnetometer is based on the Zeeman effect, i.e.,
field dependent light absorption, and optical pumping to sense the field. Helium
in an absorption cell is excited by a radio frequency (RF) discharge to maintain a
population of metastable, long-lived atoms. The cell is made to resonate in a manner
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Figure 14.9 Schematic diagram of a helium magnetometer.

similar to a class of magnetometers called the alkali vapor magnetometers, e.g.,
rubidium. This magnetometer works best in very large fields such as those on the
surface of the Earth, but is subject to corrections that are functions of the direction of
the magnetic field that are relatively larger for smaller fields. Also the magnetometer
has a directional dead zone in which it does not work, a cone with half angle of about
45◦, centered on the optical axis of the detector.
In vector mode the helium magnetometer does not resonate the helium cell at

the Larmor frequency, but uses the cell as a null detector. As shown in Figure 14.9,
circularly polarized light at a wavelength of 1083 nm is passed through the cell.
The ambient magnetic field affects the pumping efficiency of the metastable helium
population. The optical pumping efficiency is proportional to cos2 ϑ where ϑ is the
angle between the optical axis and the direction of themagnetic field. The Helmholtz
coils around the cell are driven to create a rotating magnetic field alternately in two
planes. The light received by the detector depends on the vector sum of the rotating
sweep field and the ambient field. The detector signal is then amplified and phase
detected using the sweep field as a reference. This signal is then applied to feedback
coils in each axis. The feedback keeps the helium cell in zero field. The current
required to null the field is then proportional to the ambient field in each axis, just
like the fluxgate magnetometer. This magnetometer, as implemented onUlysses and
Cassini spacecrafts, has good zero-level stability. However, it cannot achieve the
bandwidth of a fluxgate magnetometer. Typically a vector heliummagnetometer has
a sample rate of about 1Hz whereas fluxgates are often run about 100Hz.
The vector helium magnetometer, unlike the scalar helium magnetometer, works

well in low fields. Thus, it is sometimes switched from vector to scalar mode where
the spacecraft enters magnetic fields above 250 nT. It should be noted that, because
of the directional variation of the sensitivity of the scalar helium magnetometer, in
most applications it needs to be operated in parallel with a vector magnetometer.
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Both fluxgate and helium magnetometers have been widely used in both terrestrial
and planetary studies.26,27

Magnetometers have been basically the means by which we have learned about
current systems in the terrestrial and solar system plasmas. The relation between
current and magnetic field is given by one of Maxwell’s equations (3.76d); in the
case of low frequencies we can neglect the displacement current and can write

µ0J = ∇ × B. (14.24)

A single spacecraft measurement cannot establish the curl of the magnetic field.
However, it is reasonable, for most cases, to assume that the actual current is a sheet
current, and in that case the jump in the measured B is equal to µ0J as one moves
through the current sheet.

14.6 Radio reflection

The first indication of the presence of the terrestrial ionosphere was by “remote
sensing,” as described in Chapter 1. All the early radio techniques were based on the
fact that the refractive index,µ, of aweakly ionized plasma is proportional to the free
electron number density. The so-calledAppleton–Hartree equations give the general
value ofµ in the presence of collisions and a magnetic field. In the highly simplified
case that neglects collisions and magnetic field effects, the refractive index is simply

µ2 = 1− ω2p

ω2
, (14.25)

where ωp is the plasma frequency (see Equations 2.6 or 6.43) and ω is the frequency
of the propagating wave.
An ionosonde or ionospheric sounder, the oldest ionospheric remote sensing

device and one that is still widely used, transmits a radio pulse vertically and mea-
sures the time it takes for the signal to return. The reflection takes place, to a first
order, where ωp = ω. Thus, the time delay is used to determine the altitude of
reflection, and the frequency is an indicator of the electron density at that loca-
tion. In actuality, the interpretation of an ionogram, the delay time versus frequency
characteristics, is more complicated. One complication is that the radio wave travels
at the group velocity and not at the constant velocity of light, and this group velocity
is itself a function of the refractive index.
If one neglects magnetic field effects and collisions, the so-called round-trip delay

time for a horizontally stratified ionosphere, as a function of frequency, is given by:

�t(f ) = 2

c

∫ z(fp)

0

dz√
1− ω2p(z)

ω2

, (14.26)

where integration is carried out from the transmitter location to the altitude of the
reflection location, z(fp).
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The height calculated assuming that the waves travel with the velocity of light is
called the virtual height.A further complication pertains to the effect of the geomag-
netic field, which leads tomultiple values of the refractive index. This, in turn, results
in different propagation paths and velocities, giving rise to the so-called ordinary
and extraordinary waves (Section 6.9).
Despite all these inversion difficulties associated with arriving at an electron

density profile from the return signal, ionosondes have been the workhorse for
monitoring the terrestrial electron densities below the altitude of the peak density.
The highest frequency that can be reflected, at vertical incidence, is called the critical
frequency. Thus, ground-based transmitters are limited to making measurements
only up to an altitude corresponding to the maximum electron density (F2 peak). A
transmitter on a satellite that orbits at high enough altitudes can make measurements
down to the altitude of the peak density.30 Such transmitters have flown in the
past carried by both terrestrial and planetary orbiters (e.g., Alouette, ISIS, EXOS,
IMAGE, andMars Express satellites) and will undoubtedly be used again. Although
the terminology has not beenwidely used, an ionosonde is amonostatic radar system
in which the transmitter and receiver are co-located. Thus, such a device can have
multiple uses; as an example the radar system on Mars Express was designed to
study both the ionosphere and the surface and subsurface of Mars.31

Modern ionosondes are sophisticated, digital instruments that automatically scale
the ionograms and provide the ionospheric parameters in real time.32 A representa-
tive digital ionogram is shown in Figure 14.10. The symbols Eo, F1o, F2o are the
critical frequencies for ordinary wave reflections from the E,F1, and F2 regions,

F1o
F2o

F2x

F1x

Eo

N(h)-profile

Millstone Hill
April 1, 1996 19:26 UT
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Figure 14.10 A digital ionogram, with an incorporated automatic scaling procedure,
taken at Millstone Hill, MA., on April 1, 1996. The deduced electron density altitude
profile is plotted, in terms of the corresponding plasma frequency. The various symbols
are defined in the text. The autoscaled electron density profile is also shown.32
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respectively, and F1x and F2x are for extraordinary reflections from the F1 and F2
regions, respectively. The autoscaled electron density profile is also indicated in
Figure 14.10.

14.7 Radio occultation

The simplest and the most common ionospheric remote sensing technique that has
been used outside the Earth is the radio occultation technique.33−36 This method is
based on the fact that radio waves transmitted from a satellite, as it flies behind a
solar system body (e.g., planet ormoon), pass through an atmosphere and ionosphere
and undergo refractive bending, which introduces a Doppler shift in addition to
its free space value. This difference, commonly called Doppler residual, �fd, is
proportional to the refractive index of the media through which the wave travels.
To convert the time-varying Doppler shift into a quantity suitable for inversion,

the trajectory or ephemeris of the spacecraft needs to be used. For each time tj for
which the value of the Doppler residual,�fd, is available, the spacecraft ephemeris
provides a position vector relative to the receiving station on the Earth, as well as
position and velocity vectors relative to the center of the planet. The component of
the planet-centered spacecraft velocity in the direction of the Earth, ve, one light
propagation interval after the time tj, is given by

ve = (v · ê)ê, (14.27)

where v is the planet-centered velocity in the plane containing the spacecraft and the
centers of the Earth and the planet and ê is the unit vector in the direction of the Earth
one light propagation time after the time tj (Figure 14.11). The Doppler frequency
that one would expect to see at the Earth, if propagation were to take place in the
direction ê, is

�fe = f

c
|ve| = |ve|

λ
, (14.28)

where c is the velocity of light and λ is the free space wavelength of the transmitted
signal. The angle �e between the velocity vector, v, and the vector in the direction
of the Earth is

�e = cos−1 |ve||v| . (14.29)

However, the angle measured between the velocity vector of the spacecraft and
the actual direction of the ray that ultimately reaches the Earth, after undergoing
refraction in the planetary atmosphere and ionosphere, is36

� = cos−1
[

c

f |v| (�fe +�fd)

]
. (14.30)
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Figure 14.11 A schematic diagram indicating a representative ionosphere occultation
geometry. The solid line shows the ray path followed by the radio signal propagating
from the spacecraft to Earth, which lies in the plane containing the transmitting and
receiving antennas and the local center of curvature of the planet.

The refractive bending angle, α, is then given by

α = ψ − ψe. (14.31)

Finally, as can be seen from Figure 14.11, the ray asymptote distance, a, is

a = R sin β, (14.32)

whereR is the distance from the center of the planet to the spacecraft, β = φ−α, and
φ is the angle subtended by the Earth and the center of the planet at the spacecraft.
Thus, one now has, in effect, the refractive bending angle as a function of the ray
asymptote distance. However, the desired result is the refractive index, µ(r), which
can be obtained from α(a) by an inversion procedure. It can be shown that the
bending angle, α, corresponding to a ray passing through a spherically symmetrical
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medium with a refractive index variation, µ(r), is given by36–9

α(a) = 2a
∞∫

r0

[
dµ(r)

dr

]
dr

µ(r)
{[

rµ(r)
]2 − a2

}1/2 , (14.33)

where ro is the closest approach point of the ray and a = µoro (see Equation 14.36
below). The expression in Equation (14.33) can be inverted using the Abel integral
transform,36 which states that if

f (w) = k

w∫
0

g′(y) dy
(w − y)1/2

then g(y) = 1

kπ

y∫
0

f (w) dw

(y −w)1/2
+ go.

(14.34)

Using this transform relationship, Equation (14.33) can be written as

µj = exp

 1
π

∞∫
aj

α(a) da

(a2 − a2j )
1/2


 , (14.35)

where µj corresponds to the refractive index at r0j, the closest approach point of
the ray, corresponding to the ray asymptote, aj. The relationship between these
parameters is

r0j = aj

µj(r0j)
, (14.36)

where µj(roj) is the refractive index at the closest approach for this ray. The
refractivity, N , is defined as

N = (µ− 1)× 106. (14.37)

The relationship between the electron density, ne, in units of cm−3 and refractivity is

nej = −f 2Nj

4.03× 103 , (14.38)

where Nj is given in units of µj and f is in Hz.
A significant improvement in the sensitivity of radio occultation measurements

can be achieved by using two harmonically related frequencies. In this way, any
nondispersive (not frequency dependent) effects are eliminated when the signals
from the two frequencies are differenced. This allows the elimination of the uncer-
tainties in the motion of the spacecraft and the propagation through the neutral
atmosphere of the Earth, for example. The two frequencies used by NASA and
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JPL for radio occultation measurements are the S-band (∼2.4 GHz) and X-band
(∼8.8 GHz), which are related by

fX = 11

3
fS (14.39)

and so the differential Doppler residual is

�fSX = �fS −
(
3

11

)
�fX. (14.40)

This differential Doppler is converted to a bending angle and inverted in the con-
ventional manner described above to obtain the differential refractivity, NSXj. The
relationship between the electron density and NSXj is

nej = −f 2S NSXj

4.03× 1013
[
1−

(
3

11

)2]
. (14.41)

An example of the measured Doppler residuals,�fS, fromMariner 6 S-band results
atMars37 is shown in Figure 14.12, alongwith the refractivity profile obtained by the
type of inversion outlined above. The negative and positive refractivities correspond
to the ionosphere and neutral atmosphere, respectively.
The inversion of the radio occultation measurements to a refractive index or, in

effect, to the electron density altitude profile has been made in all past cases by
assuming spherical symmetry in the regions probed by the signal. This can intro-
duce significant errors, especially near the terminator region and in cases where
patchy layers are present. Unfortunately, the radio occultation measurements at the
outer planets are obtained from near the terminator, and sharp layers appear to be
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Figure 14.12 The measured S-band frequency residuals, �fd, from the Mariner 6
entry data, and the corresponding refractivity profile, obtained by the appropriate
inversion.37
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present. This makes the interpretations difficult, but nevertheless still very useful.
Furthermore, the signal has to pass through the interplanetary medium and the ter-
restrial ionosphere before it is received on the ground. It is reasonable to assume
that during the short period of occultation these do not change and, therefore, do not
introduce a significant error.
In the past, radio occultation has been used exclusively for planetary exploration.

However, recently, the availability of a fleet of global positioning system (GPS)
satellites has allowed columndensitymeasurements of the terrestrial ionosphere over
a very wide geographic range. These data are then used, with tomographic inversion
methods, to provide near real-time ionospheric distributions.40 This information has
become an important component of space weather activities.

14.8 Incoherent (Thomson) radar backscatter

About a century ago, J. J. Thomson established that single electrons are capable of
scattering electromagnetic waves.41 The radar cross section corresponding to such
a single electron scattering event is

σe = 4π(re sinψ)2, (14.42)

where re is the classical electron radius andψ is the angle between the direction of the
incident electric field and the direction of the observer. If the only density fluctuations
in the ionospheric plasma come from random thermal motion, the resulting cross
section, σ , for energy backscatter by a unit volume in the ionosphere is simply42

σ = neσe, (14.43)

where ne is the electron density. The scattered radar return signal from the electrons
in a finite volume of the ionosphere will have phases that vary in time and bear
no relation to each other, and the signal powers will add at the receiver. The term
incoherent scatter was used to describe this process. This terminology is still used
today, even though we now know that the presence of ions in the plasma introduces
a degree of coherence. There was an attempt to introduce the name Thomson scatter,
but it did not gain general acceptance. It was argued in the 1950s that powerful radars
should be able to detect this incoherent backscatter and that the return signal should
have a Gaussian shape with a half-power width determined by the electron thermal
motion, as given by

�fe = 1

λ
(8kTe/me)

1/2, (14.44)

where k is the Boltzmann constant, Te is the electron temperature, and λ is the radar
wavelength. This means that the return signals were expected to be widely spread
in frequency. It was on this basis that the construction of the Arecibo Observatory
was proposed.
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Figure 14.13 Ion, gyro and plasma lines observed atArecibo (courtesy ofA.N. Bhatt).

The first successful detection of backscattered radar signals was achieved by
Bowles in 1958, using a high power transmitter with a large dipole array in Illinois.43

However, contrary to the initial expectations, the observed bandwidth of the return
signal was much narrower than predicted by Equation (14.44), and it was found to
be related to the ion motion in the plasma. This led to a number of comprehensive
theoretical papers, which all demonstrated that when the radar wavelength is much
longer than the Debye length, λD (Equation 2.4), the scattering arises from density
fluctuations resulting from longitudinal oscillations in the plasma. The main wave
components are ion-acoustic waves and electron-induced waves at the plasma and
electron gyrofrequency (see Figure 14.13). The power spectrum of the scattered
signal is given by an extremely complex relation, which is not given here, but can
be found in a variety of references.44−47 The parameter αD, charactarizing the ratio
of the Debye length, λD, to the radar wavelength, λ, is defined as

αD = 4πλD/λ. (14.45)

When αD is large, the wavelength is small compared with the Debye length and the
scattering is from individual electrons. In this case, the nature of the return signal
is as originally anticipated. As this parameter decreases and becomes much less
than unity, the amount of power in the electronic component of the return spectrum
decreases and appears as a single line, Doppler shifted by approximately the plasma
frequency of the scattering volume. Now the major portion of the returned signal
is concentrated in the ionic component, which is caused by the organized motion
(oscillations) of the plasma. The width of this ion component in the return spectrum
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is of the order of the Doppler shift,�fi, corresponding to the mean speed of the ions

�fi = 1

λ
(8kTi/mi)

1/2. (14.46)

The fact that the return signal is concentrated in such a narrow spectral region
makes this method a practical and powerful technique for exploring the terrestrial
ionosphere, without the need of extremely high power radar facilities. This ion line
has been used to extensively study the ionosphere, and the remaining discussion
focuses on this component of the return signal.
Figure 14.14 shows the spectra of the three main ionospheric species for different

ratios of the electron-to-ion temperature, Te/Ti, for αD→ 0.47,48 If the mean ion
velocity of the plasma in the scattering volume is not zero, the returned spectrum
is Doppler shifted with respect to the transmitter frequency. Thus, the return, or
echo, signal carries information about the electron density and temperature, the ion
mass and temperature, and the mean ion velocity along the line-of-sight of the radar,
inside the scattering volume. Least square fits of the returned spectra to theoretical
ones have been used at a number of radar facilities. Figure 14.15 shows such an
observation obtained at Millstone Hill, Massachusetts.
In the other commonly used method, pairs of short pulses are transmitted, sepa-

rated by a short interval, τ , which allows the autocorrelation function between the
echoes from the altitude of interest to be computed as τ is varied over the appro-
priate range [0 ≤ τ ≤ (�fi)−1]. This method has been used extensively at the
Arecibo Observatory in Puerto Rico. Figure 14.16 is an example of data obtained
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at Arecibo, displayed and fitted in both the frequency (spectra) and time domain
(autocorrelation).
At altitudes below about 120 km, collisions of the electrons and ions with the

neutral background gas become important.49 The parameter of significance is the
ratio of the radar wavelength to the mean-free-paths of the electrons and ions, λe
and λi, respectively. The ratio, usually denoted by the symbol �, is written as

�e,i = λ/(4πλe,i). (14.47)

The mean-free-path of the electrons is about an order of magnitude larger than the
ion mean-free-path at the same altitude. Therefore, the ion–neutral collisions are
of greater significance in this case. Figure 14.17 shows how the return spectrum
changes as this � parameter increases. As the ion–neutral mean-free-path becomes
comparable to or smaller than λ/4π , the double-humped spectrum disappears and
it is no longer possible to establish the Te/Ti ratio from the spectrum. The total
scattered power remains the same, independent of the collision frequency.
In general, both the theory and data analyses of ionospheric incoherent radar

measurements assume that the plasma has a Maxwellian distribution. This is a good
assumption in most cases. However, in situations when this is not true, the use
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Figure 14.16 Radar backscatter data, corresponding to an altitude of 1025 km,
obtained at Arecibo, Puerto Rico, on October 10, 1988. The data points are shown by
open circles and the different possible fits are also indicated. The data have been
analyzed both in the frequency and time domains. (Courtesy of M. P. Sulzer.)
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Table 14.1 Operating radar facilities.

Peak Transmitting
Geographic Geographic Dip transmitter frequency

Facility latitude longitude latitude L-value power (MW) (MHz)

Jicamarca, 11.9◦S 76.9◦W 1.1◦N 1.1 5–6 50
Peru,
1963–

Arecibo, 18.3◦N 66.7◦W 30.0◦N 1.4 2 430
Puerto
Rico,
1963–

Millstone 42.6◦N 71.5◦W 53.2◦N 2.8 2.5 440
Hill, MA,
USA
1960–

Kharkov, 48.5◦N 36.0◦E 49.5◦N 2.05 2.5 150
Ukraine

Irkutsk, 52.2◦N 104.5◦E 71.0◦N 11.9 2.5 150
Russia

Sondrestrom, 67.0◦N 51.0◦W 71.0◦N >15.0 3.5 1290
Greenland,
1983–

EISCAT, 69.6◦N 19.2◦E 66.9◦N 6.2 2.2 928.5
Tromso, 3.0 224
Norway
1981–

EISCAT, 78.2◦N 16.0◦E 74.2◦N 14.7 1 500
Svalbard,
Norway
1996–
AMISR, 65.1◦N 147.5◦W 66.74◦N 5.71 1.5–2 450
Poker Flat,
Alaska
AMISR, 74.7◦N 95.0◦W 86.8◦N 73 1.5–2 450
Resolute Bay,
Canada
ALTAIR, 9.39◦N 167.47◦E – – 4 422
Roi-Namur,
Marshall Islands

of a Maxwellian distribution leads to incorrect results. For example, at high lati-
tudes, in the presence of significant electric fields, the velocity distribution of the
plasma becomes nonMaxwellian. Theoretical calculations have established how the
return spectrum is modified in these cases and appropriate care needs to be taken to
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analyze such data.50 It should also be mentioned that the discussion in this section
is applicable to a magnetized plasma, except when the probing direction is nearly
perpendicular to the magnetic field.
At present there are a number of operating radar facilities that are fully or par-

tially dedicated to ionospheric research.All but the UHF EISCAT facility are pulsed,
monostatic radars, with the transmitter and receiver co-located. The UHF EISCAT
system is a tristatic one; the transmitter is located near Tromso, Norway, and two
steerable receiving antennas are located near Kiruna, Sweden, and Södönkylä, Fin-
land. Some details about the location, transmitting power, and frequency of all
currently operating facilities are shown in Table 14.1.
The latest backscatter facility to be constructed is the Advanced Modular Inco-

herent Scatter Radar (AMISR) system. It is a phased array incoherent scatter radar
with unique features that allow efficient and cost-effective dismantling, shipping,
and reassembly. Three identical antenna faces have been constructed, each with a
sensitivity somewhat better than the incoherent scatter radar currently operating in
Sondre Stromfjord, Greenland. AnAMISR antenna face is approximately 35meters
square and contains more than 3000 individual radiating elements with a transmit-
ting power of 500W each. The first of the three faces began operation in 2007 at
Poker Flat, Alaska. The second and third faces will be deployed at Resolute Bay,
Nunavut, in Arctic Canada.
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AppendixA

Physical constants and conversions

A.1 Physical constants

e 1.602× 10−19 C Fundamental charge
k 1.381× 10−23 J K−1 Boltzmann constant
c 2.998× 108 m s−1 Speed of light
h 6.626× 10−34 J·s Planck constant
ε0 8.854× 10−12 C2 N−1 m−2 Permittivity of vacuum
µ0 4π × 10−7 NA−2 Permeability of vacuum
me 9.109× 10−31 kg Electron mass
mi 1.673× 10−27 kg Proton mass
Mi 1.6605× 10−27 kg Mass of unit atomic weight
mp/me 1836 Mass ratio
G 6.674× 10−11 m3 s−2 kg−1 Gravitational constant
N0 6.022× 1023 mol−1 Avogadro number
S0 1340 W m−2 Solar constant
a0 5.29× 10−11 m Radius of first Bohr orbit
r0 2.82× 10−15 m Classical electron radius

A.2 Conversions

1 AU = 1.496× 1011 m
1 meter = 100 cm
1 angstrom = 10−10 m
1 joule = 107 erg
1 joule = 0.2389 calorie
1 watt = 107 erg s−1

548



A.2 Conversions 549

1 newton = 105 dyne
1 kilogram = 103 grams
1 coulomb = 3× 109 statcoulomb
1 volt = (1/300) statvolt
1 volt m−1 = (1/3)× 10−4 statvolt cm−1
1 tesla = 104 gauss
1 tesla = 109 gamma
1 gamma = 10−5 gauss
1 weber = 108 maxwell
1 farad = 9× 1011 esu
1 amp = 3× 109 statamp
1 ohm = (1/9)× 10−11 s cm−2
1 henry = (1/9)× 10−11 s2 cm−1
1 eV = 1.602× 10−19 joule
1 eV = 1.602× 10−12 erg
1 eV = 11 610 K
1 eV = 3.827× 1020 calorie
1 eV photon = 1239.8 nm
1 eV photon = 12398 Å
1 eV/particle = 2.305× 104 calorie mol−1
1 eV/particle = 9.649× 104 joule mol−1
1 pascal = 1 newton m−2 = 10 dyne cm−2
1 bar = 105 newton m−2
1 atm = 1.013× 105 newton m−2
1 barn = 10−28 m2



Appendix B

Vector relations and operators

B.1 Vector relations

A · (B× C) = B · (C× A) = C · (A × B)

A × (B× C) = (A · C)B− (A · B)C
(A × B) · (C× D) = (A · C)(B · D)− (A · D)(B · C)
(A × B)× (C× D) = (A × B · D)C− (A × B · C)D
∇(φψ) = φ∇ψ + ψ∇φ
∇(A · B) = A × (∇ × B)+ B× (∇ × A)

+ (A · ∇)B+ (B · ∇)A
∇ · (φA) = φ∇ · A + A · ∇φ
∇ · (A × B) = B · ∇ × A − A · ∇ × B

∇ · ∇φ = ∇2φ
∇ · (∇ × A) = 0
∇ × (φA) = φ∇ × A + ∇φ × A

∇ × (A × B) = A(∇ · B)− B(∇ · A)+ (B · ∇)A − (A · ∇)B
(∇ × A)× B = (B · ∇)A − (∇A) · B
∇ × (∇ × A) = ∇(∇ · A)− ∇2A
∇ × ∇φ = 0
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B.2 Vector operators

Cartesian (x, y, z)

dr = dx ex + dy ey + dz ez
dV = dx dy dz

∇ψ = ex
∂ψ

∂x
+ ey

∂ψ

∂y
+ ez

∂ψ

∂z

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

∇ × A = ex

(
∂Az

∂y
− ∂Ay

∂z

)
+ ey

(
∂Ax

∂z
− ∂Az

∂x

)
+ ez

(
∂Ay

∂x
− ∂Ax

∂y

)

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2

Cylindrical (ρ, θ , z)

dr = dρ eρ + ρdθ eθ + dz ez
dV = ρdρ dθ dz

∇ψ = eρ
∂ψ

∂ρ
+ eθ

1

ρ

∂ψ

∂θ
+ ez

∂ψ

dz

∇ · A = 1

ρ

∂

∂ρ
(ρAρ)+ 1

ρ

∂Aθ
∂θ

+ ∂Az

∂z

∇ × A = eρ

(
1

ρ

∂Az

∂θ
− ∂Aθ

∂z

)
+ eθ

(
∂Aρ
∂z

− ∂Az

∂ρ

)

+ ez
1

ρ

[
∂

∂ρ
(ρAθ )− ∂Aρ

∂θ

]

∇2ψ = 1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1

ρ2

∂2ψ

∂θ2
+ ∂2ψ

∂z2

Spherical (r, θ ,φ)

dr = dr er + rdθ eθ + r sin θdφ eφ

dV = r2 sin θdr dθ dφ
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∇ψ = er
∂ψ

∂r
+ eθ

1

r

∂ψ

∂θ
+ eφ

1

r sin θ

∂ψ

∂φ

∇ · A = 1

r2
∂

∂r
(r2Ar)+ 1

r sin θ

∂

∂θ
(sin θAθ )+ 1

r sin θ

∂Aφ
∂φ

∇ × A = er
1

r sin θ

[
∂

∂θ
(sin θAφ)− ∂Aθ

∂φ

]
+ eθ

[
1

r sin θ

∂Ar

∂φ
− 1

r

∂

∂r
(rAφ)

]

+ eφ
1

r

[
∂

∂r
(rAθ )− ∂Ar

∂θ

]

∇2ψ = 1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2

Dipole (q, p,ϕ)

The dipole coordinate system typically used in aeronomy is the right-handed orthog-
onal system (q, p,ϕ), which is defined in terms of spherical coordinates (r, θ ,ϕ) as
(Equations 11.19 and 11.20)

q = R2E cos θ

r2
p = r

RE sin2 θ
ϕ = ϕ

where the subscript d has been dropped on q and p.1−3 For this system B =
−Beq and4

dr = eq
r3

R2E
(
1+ 3 cos2 θ)1/2 dq+ ep

RE sin3 θ(
1+ 3 cos2 θ)1/2 dp

+ eϕr sin θ dϕ

dV = r4 sin4 θ

RE
(
1+ 3 cos2 θ) dq dp dϕ

∇ψ = eq
R2E
(
1+ 3 cos2 θ)1/2

r3
∂ψ

∂q
+ ep

(
1+ 3 cos2 θ)1/2

RE sin3 θ

∂ψ

∂p

+ eϕ
1

r sin θ

∂ψ

∂ϕ

∇ · A = R2E
(
1+ 3 cos2 θ)
r4 sin4 θ

∂

∂q


 r sin4 θ(
1+ 3 cos2 θ)1/2Aq




+
(
1+ 3 cos2 θ)
REr4 sin4 θ

∂

∂p

[
r4 sin θ(

1+ 3 cos2 θ)1/2Ap

]
+ 1

r sin θ

∂Aϕ
∂ϕ
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∇ × A = eq

[(
1+ 3 cos2 θ)1/2

REr sin3 θ
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(
Aϕr
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r sin θ

∂Ap
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]
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1
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Appendix C

Integrals and transformations

C.1 Integral relations

Divergence theorem

∫
V

dV∇ · A =
∮
S

da n̂ · A

∫
V

dV∇φ =
∮
S

da n̂φ

∫
V

dV∇ × A =
∮
S

da n̂× A

S is a closed surface surrounding a volumeV and n̂ is an outwardly directed unit nor-
mal on the surface. Note that these integral relations are valid both in configuration
space and in velocity space.

Stokes theorem

∫
S

da (∇ × A) · n̂ =
∮
C

A · d�

∫
S

da n̂×∇φ =
∮
C

φd�
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S is an open surface that is surrounded by a closed curve C and n̂ is a unit vector that
is perpendicular to the open surface. The direction of integration around the closed
curve and the direction of n̂ are related by the right-hand rule.

C.2 Important integrals

∞∫
0

dx e−α2x2 = 1

2α

√
π

∞∫
0

dx x2n+1e−α2x2 = n!
2α2n+2

∞∫
0

dx x2ne−α2x2 = (2n− 1)(2n− 3) · · · 1
2n+1α2n+1

√
π

where n is a positive integer or zero and 0! = 1.

x∫
0

dt e−α2t2 =
√
π

2α
erf(αx)

x∫
0

dt te−α2t2 = 1

2α2
(
1− e−α2x2)

x∫
0

dt t2e−α2t2 = 1

2α2

[√
x

2α
erf(αx)− xe−α2x2

]

x∫
0

dt tn+2e−α2t2 = − 1

2α

d

dα

x∫
0

dt tne−α2t2

x∫
0

dt t et
2
erf(t) = 1

2
ex
2
erf(x)− x√

π

x∫
0

dt t3et
2
erf(t) = 1

2
(x2 − 1)ex2erf(x)+ x√

π
− x3

3
√
π

x∫
0

dt t5et
2
erf(t) = 1

2
(x4 − 2x2 + 2)ex2erf(x)− 2x√

π
+ 2x3

3
√
π
− x5

5
√
π
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C.3 Integral transformations

In the course of evaluating multiple integrals, it is frequently necessary to change
the integration variables from one coordinate system to another. Consider a multiple
integral in terms of the variables (v1, v2, v3),

∫∫∫
dv1 dv2 dv3 f (v1, v2, v3).

The transformation of thismultiple integral to one in terms of the variables (c1, c2, c3)
is accomplished with the aid of a Jacobian determinant, J ,

∫∫∫
dc1 dc2 dc3|J |f (c1, c2, c3),

where

J = ∂(v)
∂(c)

= ∂(v1, v2, v3)

∂(c1, c2, c3)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂v1
∂c1

∂v2
∂c1

∂v3
∂c1

∂v1
∂c2

∂v2
∂c2

∂v3
∂c2

∂v1
∂c3

∂v2
∂c3

∂v3
∂c3

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and where the new integral extends over the range of values of the variables
(c1, c2, c3) that correspond to the range of values of the original variables (v1, v2, v3).
Note that what actually appears in the transformed integral is the magnitude of the
Jacobian. Also, the Jacobian transformation is valid for both spatial and velocity
integrals.
As an example, consider the transformation of the density integral from a

Cartesian coordinate system in velocity space to a spherical coordinate system

n =
∞∫

−∞

∞∫
−∞

∞∫
−∞

dvx dvy dvz f (vx, vy, vz).

The transformation is from (vx, vy, vz) to (v, θ ,φ), where

vx = v sin θ cosφ,

vy = v sin θ sin φ,

vz = v cos θ ,
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J = ∂(vx, vy, vz)

∂(v, θ ,φ)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂vx

∂v

∂vy

∂v

∂vz

∂v

∂vx

∂θ

∂vy

∂θ

∂vz

∂θ

∂vx

∂φ

∂vy

∂φ

∂vz

∂φ

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

J =
∣∣∣∣∣∣
sin θ cosφ sin θ sin φ cos θ

v cos θ cosφ v cos θ sin φ −v sin θ
−v sin θ sin φ v sin θ cosφ 0

∣∣∣∣∣∣ ,
|J | = v2 sin θ .

Because the original integral is over all velocities, in the new variables the limits
of integration are 0≤ v<∞, 0≤ θ ≤π , and 0≤φ≤ 2π . The transformed integral
becomes

n =
∞∫
0

v2dv

π∫
0

sin θ dθ

2π∫
0

dφ f (v, θ ,φ).
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Functions and series expansions

D.1 Important functions

Error function

erf(x) = 2√
π

x∫
0

dt e−t2

= 2√
π

(
x − x3

3
+ x5

10
− · · ·

)
for x ≤ 1

= 1− 2√
π
e−x2

(
1

2x
− 1

4x3
+ · · ·

)
for x →∞

erf(−x) = −erf(x)

Gamma function

�(x) =
∞∫
0

dt tx−1e−t

= √2π x(x−1/2)e−x for x →∞
�(x + 1) = x�(x)

�(1/2) = √π
�(n) = (n− 1)! for n = integer
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D.2 Series expansions for small arguments

sin x = x − x3

3! +
x5

5! − · · ·

cos x = 1− x2

2! +
x4

4! − · · ·

ex = 1+ x + x2

2! +
x3

3! + · · ·

ln(1+ x) = x − x2

2
+ x3

3
− x4

4
+ · · ·

(1+ x)m = 1+ mx + m(m− 1)x
2

2! + m(m− 1)(m− 2)x
3

3! + · · ·

Im(x) = 1

�(m+ 1)
(

x

2

)m

; modified Bessel function (m ≥ 0; x� 1)

f (x +�x) = f (x)+ df
dx
�x + 1

2

d2f

dx2
(�x)2 + · · ·

f (r +�r) = f (r)+�r · ∇f + 1
2
�r�r : ∇∇f + · · ·



Appendix E

Systems of units

Throughout the book all equations and formulas are expressed in the MKSA system
of units. However, Gaussian-cgs units are still frequently used by many scientists.
In this latter system, all electrical quantities are in electrostatic units (esu) except for
B, which is in electromagnetic units (emu). Most formulas that are in MKSA units
can be converted to Gaussian-cgs units by replacing B with (B/c) and ε0 by 1/4π ,
where c = (ε0µ0)

−1/2 is the speed of light.
For easy reference, the formulas in Table E.1 are given in both MKSA and

Gaussian-cgs units. The last four equations are known as the Maxwell equations
and, as given here, pertain to a vacuum.

Table E.1 Widely used formulas.

Quantity Symbol MKSA Gaussian-cgs

Plasma frequency ωpα

(
nαe2

ε0mα

)1/2 (
4πnαe2

mα

)1/2

Cyclotron frequency ωcα
eB

mα

eB

mαc

Debye length λD

(
ε0kTe
nee2

)1/2 (
kTe

4πnee2

)1/2

Larmor radius rα
(2kTα/mα)

1/2

ωcα

(2kTα/mα)
1/2

ωcα

E× B drift uE
E

B

cE

B

Lorentz force F qα[E+ vα × B] qα

[
E+ 1

c
vα × B

]

560
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Table E.1 (Continued)

Quantity Symbol MKSA Gaussian-cgs

Pressure ratio β
nik(Te + Ti)

(B2/2µ0)

nik(Te + Ti)

(B2/8π)

Alfvén speed VA
B

(µ0nimi)1/2
B

(4πnimi)1/2

Acoustic speed VS

[
k(Te + 3Ti)

mi

]1/2 [
k(Te + 3Ti)

mi

]1/2
Gauss’ law — ∇ · E = ρc/ε0 ∇ · E = 4πρc
Faraday’s law — ∇ × E = −∂B

∂t
∇ × E = −1

c

∂B
∂t

No monopoles — ∇ · B = 0 ∇ · B = 0

Ampère’s law — ∇ × B = µ0J + ε0µ0
∂E
∂t

∇ × B = 4π

c
J + 1

c

∂E
∂t



Appendix F

Maxwell transfer equations

In Chapter 3, the general transport equations were derived by taking velocity
moments of the Boltzmann equation (3.24) with respect to the velocity vs. Although
this is a straightforward procedure and easy to follow, most of the importantmoments
are in terms of the random velocity cs. Therefore, an alternative way to derive the
transport equations is first to express the Boltzmann equation in terms of cs and
then take a general velocity moment ξs(cs). The resulting equation is known as the
Maxwell transfer equation in terms of cs. It can also be obtained in terms of vs (see
end of this appendix).
To transform the Boltzmann equation, it is necessary to change from the

independent variables (r, vs, t) to (r, cs, t), where

cs = vs − us(r, t). (F.1)

The derivative terms in the Boltzmann equation become

∂fs(r, vs, t)
∂t

= ∂fs(r, cs, t)
∂t

+ ∇cfs(r, cs, t) · ∂cs
∂t

= ∂fs(r, cs, t)
∂t

− ∇cfs(r, cs, t) · ∂us
∂t
, (F.2)

∇fs(r, vs, t) = ∇fs(r, cs, t)+ ∇cfs(r, cs, t) · (∇cs)

= ∇fs(r, cs, t)− ∇cfs(r, cs, t) · (∇us), (F.3)

∇vfs(r, vs, t) = ∇cfs(r, cs, t), (F.4)
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where the chain rule was used in taking derivatives. Substituting Equations (F.2),
(F.3), and (F.4) into the Boltzmann equation (3.24) yields

(
∂fs
∂t
− ∂us

∂t
· ∇cfs

)
+ (cs + us) · [∇fs − (∇us) · ∇cfs] + as · ∇cfs = δfs

δt
.

(F.5)

After rearranging the terms, the equation becomes

∂fs
∂t
+ (cs + us) · ∇fs − Dsus

Dt
· ∇cfs − cs · (∇us) · ∇cfs + as · ∇cfs = δfs

δt
,

(F.6)

where

Ds
Dt
= ∂

∂t
+ us · ∇, (F.7)

as = G + es
ms
[E+ (cs + us)× B]. (F.8)

Equation (F.6) is the Boltzmann equation expressed in the new independent variables
(r, cs, t).
The next step in the derivation of the Maxwell transfer equation is to multiply

Equation (F.6) by ξs(cs), where ξs is an arbitrary function of velocity, and then
integrate over all velocities. Considering each term separately, the first term becomes

∫
d3csξs

∂fs
∂t
= ∂

∂t

∫
d3csξsfs = ∂

∂t
[ns〈ξs〉], (F.9)

where now ∂/∂t does not operate on cs because r, cs, and t are independent variables.
The second term can be manipulated as follows:

∫
d3csξs(cs + us) · ∇fs =

∫
d3csξscs · ∇fs +

∫
d3csξsus · ∇fs

=
∫
d3cs(cs · ∇)(fsξs)+

∫
d3cs(us · ∇)(fsξs)

= ∇ ·
∫
d3cscsfsξs + us · ∇

∫
d3csfsξs

= ∇ · [ns〈csξs〉] + us · ∇[ns〈ξs〉], (F.10)

where ∇ does not operate on cs. Also, it should be noted the ξs can be any function
of velocity, including a scalar, vector, or tensor of arbitrary order. Therefore, in the
manipulations it must be remembered that the “dot” products are between ∇ and cs
in the first term and between ∇ and us in the second term. The velocity moment ξs
is not involved in this vector operation.
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The third term involves some extra steps

−
∫
d3csξs

Dsus
Dt

· ∇cfs = −
∫
d3cs∇c ·

(
Dsus
Dt

ξsfs

)

+
∫
d3csfs∇c ·

(
Dsus
Dt

ξs

)
,

where the following mathematical identity was used:

∇c ·
(
Dsus
Dt

fsξs

)
= ξs

Dsus
Dt

· ∇cfs + fs∇c ·
(
Dsus
Dt

ξs

)
.

When ξs is a scalar, this is the well-known expression for the divergence of a vector
times a scalar. The expression is still valid if tensors are involved, but again, it is
important to keep track of what vector is involved in the “dot” product. Because
of the divergence theorem, which also holds if tensors are involved, the volume
integral of a pure divergence can be converted into a surface integral that surrounds
the volume;

∫
d3cs∇c ·

(
Dsus
Dt

ξsfs

)
=
∫
Sc

dAc n̂c · Dsus
Dt

fsξs = 0,

where the surface is at infinity in velocity space and where it is assumed that fs→ 0
as cs→∞ at a rate fast enough to insure that fsξs→ 0 for any ξs. Therefore,

−
∫
d3csξs

Dsus
Dt

· ∇cfs =
∫
d3csfs∇c ·

(
Dsus
Dt

ξs

)
=
∫
d3csfs

Dsus
Dt

· ∇cξs

= Dsus
Dt

·
∫
d3csfs∇cξs = ns

Dsus
Dt

· 〈∇cξs〉. (F.11)

The fourth term must be manipulated carefully, to keep track of “dot” products.
This can be easily done by temporarily introducing index notation, where a repeated
Greek letter implies a summation over the coordinate indices,

−
∫
d3csξscs · ∇us · ∇cfs = −

∫
d3csξscsα

∂usβ
∂xα

∂fs
∂csβ

= −∂usβ
∂xα

∫
d3csξscsα

∂fs
∂csβ
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= −∂usβ
∂xα

[∫
d3cs

∂

∂csβ
(ξscsαfs)

−
∫
d3csfs

∂

∂csβ
(csαξs)

]

= ∂usβ
∂xα

〈
∂

∂csβ
(csαξs)

〉
ns

= (∇us) :
〈∇c(csξs)〉ns, (F.12)

where the same vector identity was used as for the third term and where one of the
volume integrals was converted to a surface integral at infinity and then set to zero.
The last term on the left-hand side of Equation (F.6) becomes

∫
d3csξsas · ∇cfs =

∫
d3csξs∇c · (asfs)

=
∫
d3cs∇c · (asfsξs)−

∫
d3csfsas · ∇cξs

= −ns〈as · ∇cξs〉, (F.13)

where ∇c · as = 0 and where the manipulations are similar to those done for the
third and fourth terms.
Collecting the terms given byEquations (F.9) to (F.13) yields theMaxwell transfer

equation

∂

∂t
[ns〈ξs〉] + ∇ · [ns〈csξs〉] + us · ∇[ns〈ξs〉]

+ ns
Dsus
Dt

· 〈∇cξs〉 − ns〈as · ∇cξs〉

+ ns(∇us) : 〈∇c(csξs)〉 =
∫
d3csξs

δfs
δt
. (F.14)

The general transport equations can be obtained from Equation (F.14) by select-
ing the appropriate velocity moments. For example, setting ξs equal to one, mscs,
(1/2)msc2s , mscscs, and (1/2)msc2s cs yields the continuity, momentum, energy,
pressure tensor, and heat flow equations, respectively, for species s.
As an example, the simple case of ξs = 1 is considered

〈ξs〉 = 1,
〈csξs〉 = 〈cs〉 = 0,
∇cξs = 0,

∇c(csξs) = ∇ccs = I,
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where I is the unit tensor (δαβ in index notation). Substituting these quantities into
the Maxwell transfer equation (F.14) yields:

∂ns
∂t
+ us · ∇ns + ns∇ · us = δns

δt
,

or

∂ns
∂t
+ ∇ · (nsus) = δns

δt
, (F.15)

where

∇us : I = ∂uα
∂xβ

δαβ = ∂uα
∂xα

= ∇ · us.

The Maxwell transfer equation is sometimes derived in terms of a function ξs(vs)
instead of ξs(cs). In this case, it is not necessary to express the Boltzmann equation
in terms of cs, as was done above. Instead, the transfer equation is derived in a
manner similar to that used in Chapter 3 to derive the continuity, momentum, and
energy equations. Specifically, the Boltzmann equation (3.24) is multiplied by ξs(vs)
and then the resulting equation is integrated over all velocities. After algebraic
manipulations similar to those described above, the Maxwell transfer equation for
the general velocity moment ξs(vs) can be expressed in the form

∂

∂t
[ns〈ξs〉] + ∇ · [ns〈vsξs〉] − ns〈as · ∇vξs〉 =

∫
d3vsξs

δfs
δt
. (F.16)

Equation (F.16) is equivalent to Equation (F.14). However, when using Equa-
tion (F.16), remember that the higher velocity moments (Ts, τ s, Ps, qs, etc.) are
defined relative to the random velocity cs, whereas in Equation (F.16) ξs = ξs(vs).
Therefore, additional algebra is required when Equation (F.16) is used instead of
Equation (F.14) to obtain the transport equations for the higher velocity moments.
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Collision models

G.1 Boltzmann collision integral

The collision term δ fs/δt describes the rate of change of the velocity distribution as a
result of collisions. The effect of a collision is instantaneously to change the velocity
of a particle, and hence, collisions cause the sudden appearance and disappearance
of particles in velocity space. Consider a spatial volume element d3r about a position
r and a velocity volume element d3vs about a velocity vs (Figure 3.1). If the rate of
change of fs due to particles scattered into d3vs is denoted by δ f +s /δt and the rate
of change fs due to particles scattered out of d3vs is denoted by δ f −s /δt, then

δ fs
δt
= δ f +s

δt
− δ f −s

δt
. (G.1)

The velocity–space production and loss terms in Equation (G.1) were calculated
by Boltzmann assuming binary elastic collisions between particles possessing sym-
metric force fields.1 In addition, Boltzmann based his derivation on the assumption
of molecular chaos, which means that there is no correlation between the positions
and velocities of the different particles before collisions. Considering first the loss
term, δ f −s /δt, the number of s particles in the spatial volume d3r and the velocity
element d3vs is

fsd
3vs d

3r. (G.2)

Some of these s particles will be scattered out of the velocity element d3vs by t
particles that are in the same spatial element d3r and in a velocity element d3vt .
With binary elastic collisions, an individual s particle is exposed to a flux of t
particles with a relative velocity gst , with impact parameters between b and b+ db,
and with collision planes between ε and ε+ dε (Figure G.1). In a time dt, the flux of
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gst

g�st

u

e

b

Figure G.1 Coordinate system used to calculate δ fs/δt. The relative velocities before
and after the collision are gst and g′st , respectively, b is the impact parameter, ε is the
azimuthal angle that defines the plane of the collision, and θ is the scattering angle.
The cross-hatched area is b db dε.

t particles occupies a cylindrical spatial volume of (gstdt)b db dε, and the number
of t particles in this volume is

( ftd
3vt)(gstb db dε dt). (G.3)

This number also corresponds to the number of collisions a single s particle has
with the t particles in the cylindrical volume element and in a time dt. Therefore,
the number of collisions that scatter s particles out of the velocity element d3vs

due to interactions with t particles in element d3vt in a time dt is obtained by
multiplying (G.3) by the number of s particles in the phase space element d3vsd3r
(Equation G.2)

dN−c = ( fsd
3vs d

3r)( ftd
3vt gstb db dε dt). (G.4)

Therefore, the total number of s particles scattered out of velocity element d3vs in a
time dt, N−c , is obtained by integrating Equation (G.4) over all t particle velocities,
all impact parameters, and all collision plane orientations

N−c = fsd
3vs d

3r dt
∫∫∫

d3vt dε b db gst ft . (G.5)

When this total number of scattered s particles is divided by d3vsd3rdt, the result is

δ f −s
δt

=
∫∫∫

d3vt dε b db gst ft fs, (G.6)

where fs can be put under the integrals because it is not involved in the integrations.
To calculate the term δ f +s /δt, which accounts for the appearance of s particles in

d3vs due to collisions with t particles, it is necessary to consider inverse collisions.
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An inverse collision is one in which an s particle with an initial velocity in d3v′s about
v′s is scattered into d3vs about vs due to a collision with a t particle having an initial
velocity in d3v′t about v′t . Also, in an inverse symmetric collision, the t particle is
in the same impact parameter range (between b and b+ db) and the same collision
plane range (between ε and ε+ dε) as in the previous case where the s particle was
scattered out of d3vs. Note, it can be shown that inverse collisions always exist for
binary elastic collisions when the interparticle force field is symmetric.2

The calculation of δ f +s /δt proceeds in amanner similar to that described above for
δ f −s /δt. An individual s particle in volume elements d3r and d3v′s will, in a time dt,
collide with all the t particles in a cylindrical spatial volume of size (g′st dt)(b db dε),
and this number is

( f ′t d3v′t)(g′stb db dε dt), (G.7)

where f ′t = ft(r, v′t , t). The number of s particles in d3r d3v′s that are scattered into
d3r d3vs in a time dt is obtained by multiplying Equation (G.7) by f ′s d3v′s d3r, which
yields

dN+c = ( f ′s d3v′s d3r)( f ′t d3v′t g′stb db dε dt). (G.8)

Therefore, the total number of s particles scattered into d3vs in a time dt is obtained
by integrating over all t particle velocities, all impact parameters, and all collision
plane orientations, which yields

N+c = f ′s d3v′sd3rdt
∫∫∫

d3v′t dε b db g′st f ′t . (G.9)

In an elastic collision, g′st = gst (Equation 4.17). The volume elements d3v′sd3v′t can
be related to d3vsd3vt with the aid of a Jacobian (Appendix C)

d3v′s d3v′t = |J |d3vs d
3vt , (G.10)

where

J = ∂(v′s, v′t)
∂(vs, vt)

= 1. (G.11)

The evaluation of the Jacobian of the transformation is accomplished with the aid
of Equations (4.6) to (4.17). Using Equations (G.10) and (G.11), Equation (G.9) can
be expressed in the form

N+c = f ′s d3vs d
3r dt

∫∫∫
d3vt dε b db gst f

′
t . (G.12)
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Dividing Equation (G.12) by d3vsd3r dt yields

δ f +s
δt

=
∫∫∫

d3vt dε b db gst f
′
t f ′s , (G.13)

where f ′s = fs(r, v′s, t) can be put under the integrals because it is not involved in
the integrations.
The Boltzmann collision integral can now be obtained by substituting Equa-

tions (G.6) and (G.13) into Equation (G.1), which yields

δ fs
δt
=
∫∫∫

d3vt dε b db gst( f
′
s f ′t − fs ft). (G.14)

An alternative form of Equation (G.14) can be obtained by relating b db dε to the
differential scattering cross section (Equation 4.44)

b db dε= σst(gst , θ) sin θ dθ dε

= σst(gst , θ) d�, (G.15)

which yields the following form for the Boltzmann collision integral:

δ fs
δt
=
∫∫

d3vt d�σst(gst , θ)gst( f
′
s f ′t − fs ft). (G.16)

An important quantity is the rate of change of the mean value of a transport prop-
erty, ξs(vs), as a result of collisions between the s and t particles. For example, the
transport property of interest could be the momentum, ξs = msvs, or the energy,
ξs = msv2s /2. The rate of change of ξs(vs) can be obtained by multiplying Equa-
tion (G.16) by ξsd3vs and then integrating over all s particle velocities. However, a
more convenient form can be obtained by going back to Equation (G.5). This equa-
tion gives the number of s particles scattered out of element d3vs in a time dt due
to collisions with the t particles. As a result of a collision, the transport property,
ξs(vs), is altered by an amount, ξs(v′s) − ξs(vs) ≡ ξ ′s − ξs. Multiplying this change
by the number of collisions for s particles in d3vs, in a time dt, with all t particles,
Equation (G.5) yields

(ξ ′s − ξs) fsd
3r d3vs dt

∫∫∫
d3vt dε b db gst ft . (G.17)

The integration of Equation (G.17) over all s particle velocities gives the total change
of ξs in a time dt and spatial element d3r due to collisions. However, this resulting
integral is equal to (nsd3r)dt ξ̄s, so that

nsd
3r dt ξ̄s = d3r dt

∫∫∫∫
d3vs d

3vt dε b db gst fs ft(ξ
′
s − ξs). (G.18)
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where ξ̄s is the average change of ξs in a time dt and spatial element d3r due to
collisions. Dividing by nsd3r dt and using Equation (G.15) for b db dε yields the
following form:

ξ̄s = 1

ns

∫∫∫
d3vs d

3vt d�σst(gst , θ)gst fs ft(ξ
′
s − ξs). (G.19)

Finally, note that Equation (G.19) can also be written in terms of the random
velocities cs and ct because the Jacobian of the velocity transformation from (vs, vt)

to (cs, ct) is |J | = 1, so that d3vs d3vt = d3cs d3ct . When this change is made,
Equation (G.19) becomes the same as Equation (4.60).

G.2 Fokker––Planck collision term

The Boltzmann collision integral can be applied to charged particle interactions, but
the complexity of this expression resulted in a search for simpler collision mod-
els. The motivation for simplifying the Boltzmann collision integral in the case of
Coulomb interactions is that these are long-range interactions and, therefore, the
change in velocity of a particle due to a collision, �vs, is small for most collisions.
In this case, the distribution functions evaluated after the collision, f ′s and f ′t , can
be expressed in terms of those evaluated before the collision, fs and ft , by means
of a Taylor series expansion, with �vs as the small parameter. The Fokker–Planck
collision operator is obtained if only those terms proportional to �vs and �vs�vs

are retained3

δ fs
δt
= −∇v · [ fs〈vs〉] + 1

2
∇v∇v : [ fs〈�vs�vs〉], (G.20)

where

〈�vs〉 =
∫∫

d3vt d� gstσst(gst , θ) ft�vs, (G.21)

〈�vs�vs〉 =
∫∫

d3vt d�gstσst(gst , θ) ft�vs�vs, (G.22)

and where the double-dot product is defined as
∑

α,β ∂
2/∂vα∂vβ( fs〈�vs�vs〉αβ).

The quantities α and β are the coordinate indices.
The Fokker–Planck collision term is used to describe small angle collisions. That

is, a given particle collides consecutively with many particles, and the effect of such
collisions is that the velocity vectors of the colliding particles only change by a
small amount. These multiple small-angle collisions can be thought of as causing
a continuous flow of phase points in velocity space. The quantity 〈�vs〉, which is
called dynamical friction, slows down the s particles as a result of collisions with
the t particles. The quantity 〈�vs�vs〉 provides for a diffusion in velocity space.
In practical applications, the Fokker–Planck collision term, which appears to be
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just as difficult to evaluate as the Boltzmann collision integral, can be reduced to
relatively simple forms in many specific cases.3,4 This can be a real advantage. On
the other hand, in a partially ionized plasma, several different types of collision
need to be included, all of which can be described by the Boltzmann collision
integral. Therefore, the advantage gained by using Fokker–Planck collision terms
for Coulomb collisions is often offset by the mathematical inconvenience of using
different collision terms.

G.3 Charge exchange collision integral

Resonant charge exchange is an important process for a collision between an ion and
its parent neutral. As noted in Chapter 4, this process is pseudo-elastic because both
energy andmomentumare approximately conserved in a collision.As a consequence,
theBoltzmann collision integral canbeused to describe such collisions. Starting from
the Boltzmann collision integral and assuming that the resonant charge exchange
cross section, QE, given in Equation (4.148) is constant, the following simplified
collision term for resonant charge exchange has been derived5

δ fi
δt
= QE fn(vi)

∫
d3vn fi(vn)|vi − vn|

− QE fi(vi)
∫
d3vn fn(vn)|vi − vn|, (G.23)

where subscripts i and n distinguish ions and neutrals. A collision term similar to
Equation (G.23) has also beenused to describe accidentally resonant charge exchange
collisions, such as those in H+ and O interactions.
The advantage of the collision term (G.23) is that it is easier to use than the full

Boltzmann collision integral. However, this collision term implies a constant charge
exchange cross section, while the actual cross section (4.148) is energy dependent.
Therefore, in general, it is better to use the Boltzmann collision integral to include
energy dependence.

G.4 Krook collision models

Numerous, relatively simple, collision models have been used over the years in an
effort to include the effects of collisionswhile avoidingmathematical complications.
These relaxation collision models take the simple form6

δ fs
δt
= −ν0( fs − f0), (G.24)

where f0 is a local equilibrium distribution function and ν0 is the relaxation colli-
sion frequency. The effect of the collision term (G.24) is to drive the distribution
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function, f , to the equilibrium distribution, f0, at a rate governed by the collision
time, τ = ν−10 . Consider a simple situation in which there are no spatial gradients
or forces in a plasma, but initially the distribution is not in equilibrium. In this case,
the Boltzmann equation reduces to

∂ fs
∂t
= −ν0( fs − f0), (G.25)

or

∂ fs
∂t
+ ν0 fs = ν0 f0. (G.26)

Assuming that ν0 is constant, the solution of Equation (G.26) is

fs(v, t) = f0 + [ fs(v, 0)− f0]e−ν0t . (G.27)

This solution indicates that the velocity distribution relaxes from the initial distribu-
tion to the equilibrium distribution in an exponential manner, with a time constant
of ν−10 .
Relaxation collision models have been used to describe collisions between iden-

tical particles as well as between ions and neutrals.7 In the latter case, collisions in
a weakly ionized gas were described by the relaxation model given as

δ fi
δt
= −νin( fi − fi0), (G.28)

where

fi0 = ni

(
mi

2πkTn

)3/2
exp

(
−miv2i
2kTn

)
(G.29)

is a Maxwellian distribution with a neutral temperature, Tn, and νin is a velocity-
independent ion–neutral collision frequency. An advantage of the relaxation model
(G.28) is that an exact solution to the Boltzmann equation can be obtained for a
homogeneous plasma subjected to perpendicular electric and magnetic fields. Also,
with a judicious choice for νin, the momentum and energy collision terms obtained
with the relaxation model can be made to agree with those obtained from the more
rigorous Boltzmann collision integral.
The main advantage of the relaxation collision models is their simplicity, but they

can have serious deficiencies. First, the different macroscopic velocity moments
(density, drift velocity, temperature, stress, heat flow, etc.) have different relaxation
times and this feature is not properly described by a simple relaxation collision
model. Also, some transport properties are sensitive to the nature of the collision
process. For example, thermal diffusion does not occur for nonresonant ion–neutral
interactions, but is very strong in fully ionized gases. Therefore, the use of a simple
relaxation model could inadvertently eliminate an important process. Finally, even
when the relaxation model can be configured to yield the correct momentum and
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energy collision terms, the collision terms for the higher velocity moments are not
properly described. Typically, a relaxation collision model tends to overestimate the
higher velocity moments, which alsomeans that it overestimates the deviations from
a Maxwellian velocity distribution.7
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Appendix H

Maxwell velocity distribution

Collisions drive a gas toward an equilibrium state. In such a state, the velocity
distribution of the particles in the gas is independent of both position and time and,
therefore, collisions no longer affect the velocity distribution. Considering a simple
gas of identical particles, collisions drive the gas to a state in which the density,
n0, drift velocity, u0, and temperature, T0, are constants. However, this state will
be reached only if no other forces act on the gas. Under these circumstances, all of
the terms on the left-hand side of the Boltzmann equation (3.7) are zero and this
equation reduces to (G.16)

δf

δt
=
∫∫

d3v2 d� g12σ12(g12, θ)
[
f (v′1)f (v′2)− f (v1)f (v2)

] = 0, (H.1)

where subscripts 1 and 2 distinguish the identical particles in this gas.
The equilibrium velocity distribution is obtained from the solution of Equa-

tion (H.1). However, the solution of Equation (H.1) does not necessarily mean that
the integrand is zero, because the integrand can be positive or negative and these
contributions to the integral may simply cancel when the integration is performed.
On the other hand, Boltzmann showed, using the H theorem, that the integral in
Equation (H.1) vanishes if, and only if

f (v′1)f (v′2) = f (v1)f (v2) (H.2)

for all values of v1 and v2. Therefore, Equation (H.2) is both a necessary and
sufficient condition for equilibrium.1 Taking the logarithm of Equation (H.2) yields
the alternate form

ln f (v′1)+ ln f (v′2) = ln f (v1)+ ln f (v2). (H.3)
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In a binary elastic collision, the mass, momentum, and energy are conserved
(Equations 4.14 and 4.15), and these quantities are known as collisional invariants.
Given the initial relative position and velocity of the particles before the collision,
the conservation of mass, momentum, and energy are all that are needed to deter-
mine completely these quantities after the collision. Therefore, all other collisional
invariants can be expressed as a linear sum of the invariants m, mv, and mv2/2.
An inspection of Equation (H.3) indicates that ln f (v) is a collisional invariant, and
hence, it can be expressed in the form

ln f = α0 + α1 · v + α2v
2, (H.4)

or

f = eα0e(α1·v+α2v2), (H.5)

where α0, α1, and α2 are constants. Equation (H.5) can also be expressed in the form

f = a0e
−a2(v−a1)2 , (H.6)

where a0, a1, and a2 are new constants that are introduced after the square of the
velocity in Equation (H.5) is computed. These unknown constants can be expressed
in terms of the gas parameters n0, u0, and T0 by using the definitions of these
quantities (Equations 3.10, 3.11, and 3.15);

n0=
∫
d3v f = a0

∫
d3v e−a2(v−a1)2 = a0

(
2πkT0

m

)3/2
, (H.7)

u0= 1

n0

∫
d3v f v = a1, (H.8)

T0= m

3kn0

∫
d3v f (v − u0)2 = m

2ka2
, (H.9)

where the integrations can be performed using either a spherical or Cartesian coordi-
nate system in velocity space (as previously shown). The substitution of the constants
a0, a1, and a2 into Equation (H.6) yields the equilibrium velocity distribution

f = n0

(
m

2πkT0

)3/2
exp

[
−m(v − u0)2

2kT0

]
, (H.10)

which is known as the driftingMaxwell–Boltzmann distribution function or a drifting
Maxwellian velocity distribution.
In the ionospheres, forces are always at work and an equilibrium velocity dis-

tribution is rarely, if ever, obtained. Also, the ionospheres contain multiple ion and
neutral species. Under these circumstances, collisions between both like and unlike
particles must be considered. The effect of collisions between identical particles is
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to drive the species distribution function toward a local drifting Maxwellian:

f Ms (r, vs, t)= ns(r, t)
[

ms

2πkTs(r, t)

]3/2
· exp{−ms[vs − us(r, t)]2/2kTs(r, t)

}
, (H.11)

where f Ms takes this form at all positions in space and at all times because the macro-
scopic transport properties (ns, us, Ts) vary with r and t. The effect of collisions
between unlike particles, in the presence of forces, is to drive the distribution away
from a local drifting Maxwellian. This is why the actual velocity distribution func-
tion is usually expanded in an orthogonal series about a local drifting Maxwellian
(Chapter 3).
It is instructive to consider some of the properties of a local drifting Maxwellian

because of its importance to transport theory.As noted in Chapter 3, this distribution
is consistent with the general definitions of density (3.10), drift velocity (3.11), and
temperature (3.15). Other macroscopic transport properties of interest are the heat
flow vector (3.16) and the pressure tensor (3.17). Considering first the heat flow
vector, for a Maxwellian this becomes

qs= ms

2

∫
d3vs f Ms (vs − us)

2(vs − us) = ms

2

∫
d3cs f Ms c2s cs

= nsms

2

(
ms

2πkTs

)3/2 ∫
d3cs e

−msc2s /(2kTs)c2s cs, (H.12)

where the random velocity, cs = vs−us, is introduced and where d3cs = d3vs (only
the origin of velocity space is different). For a spherical coordinate system in velocity
space, with polar angle θ and azimuthal angle φ, d3cs = c2s sin θ dθ dφ dcs and

cs = cs(sin θ cosφ e1 + sin θ sin φ e2 + cos θ e3), (H.13)

where (e1, e2, e3) are Cartesian unit vectors. Substituting Equation (H.13) into
Equation (H.12) and integrating over θ and φ yields

qs = 0. (H.14)

For a Maxwellian, the pressure tensor (3.17) becomes

Ps=ms

∫
d3vs f Ms (vs − us)(vs − us) = ms

∫
d3cs f Ms cscs

= nsms

(
ms

2πkTs

)3/2 ∞∫
0

dcsc
2
s

π∫
0

sin θ dθ

2π∫
0

dφ cscse−msc2s /(2kTs),

(H.15)
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where cscs is a second-order tensor obtained by multiplying Equation (H.13) by
itself (the form is similar to Equation 4.76). All of the off-diagonal elements are zero
after integration over solid angle, and Equation (H.15) reduces to

Ps = nsms

(
ms

2πkTs

)3/2 ∞∫
0

dcs

π∫
0

sin θ dθ

2π∫
0

dφ c4s e
−msc2s /(2kTs)

· (sin2 θ cos2 φe1e1 + sin2 θ sin2 φ e2e2 + cos2 θ e3e3). (H.16)

The integration of the quantity in parentheses over the solid angle yields (4π/3)I,
where I = e1e1 + e2e2 + e3e3 is the unit dyadic (δαβ in index notation). Therefore,
Equation (H.16) becomes

Ps = 4π

3
Insms

(
ms

2πkTs

)3/2 ∞∫
0

dcsc
4
s e
−msc2s /(2kTs). (H.17)

The remaining integral in Equation (H.17) can be obtained from the formulas in
Appendix C and is

3
√
π

8

(
2kTs

ms

)5/2
.

Therefore, Equation (H.17) reduces to

Ps = (nskTs)I. (H.18)

For a Maxwellian, the pressure tensor is diagonal and all three elements are equal
to the scalar pressure, ps = nskTs.
In addition to the transport properties discussed above, there are several

Maxwellian-averaged speeds that are frequently used. These average speeds are
obtained in the usual manner by multiplying the drifting Maxwellian velocity dis-
tribution (H.11) by the desired velocity parameter, ξs(cs), and then integrating over
all velocities

〈ξs(cs)〉M = 1

ns

∫
d3cs ξs f Ms (r, cs, t), (H.19)

where in most cases the integrals are most easily performed in a spherical coordi-
nate system. The root-mean-square speed is obtained by setting ξs = c2s , and then
Equation (H.19) yields

〈c2s 〉1/2M =
(
3kTs

ms

)1/2
. (H.20)



Maxwell velocity distribution 579

For the average speed, ξs = |cs|, and for the average speed in one direction,
ξs = |csx|. For these speeds, the integrations defined in Equation (H.19) yield,
respectively,

〈|cs|〉M =
(
8kTs

πms

)1/2
, (H.21)

〈|csx|〉M =
(
2kTs

πms

)1/2
. (H.22)

Another useful distribution is the Maxwell speed distribution, FM(cs), which
depends only on the speed cs. This distribution is obtained from the drifting
Maxwellian distribution (H.11) by integrating over solid angle in a spherical
coordinate system, such that

FMs (cs) dcs = 4πns

(
ms

2πkTs

)3/2
e−msc2s /(2kTs)c2sdcs, (H.23)

where the 4π results from the solid angle integration because FMs does not depend
on the angles. The speed distribution does not peak at zero, but instead, peaks at the
speed where dFMs /dcs = 0. This occurs at the most probable speed, (cs)mps, which
is given by

(cs)mps =
(
2kTs

ms

)1/2
. (H.24)

Finally, it is instructive to calculate the random or thermal flux that crosses
an imaginary plane from one side to the other. Consider a nondrifting (us = 0)
Maxwellian plasma and assume that x= 0 defines the imaginary plane. The ther-
mal flux of particles that crosses this plane from the negative to the positive side is
given by

�sx = ns

(
ms

2πkTs

)3/2 ∞∫
0

dvxvxe
−msv

2
x /(2kTs)

∞∫
−∞

dvye
−msv

2
y /(2kTs)

×
∞∫

−∞
dvze

−msv
2
z /(2kTs), (H.25)

where only those particles with a positive vx cross the plane in the desired direction.
The integrals in Equation (H.25) can be readily evaluated using the formulas in
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Appendix C and the result is

�sx = ns

(
kTs

2πms

)1/2
= ns〈cs〉M

4
. (H.26)

where cs = |cs|.

H.1 Specific reference

1. Chapman, S. and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, New
York: Cambridge University Press, 1970.



Appendix I

Semilinear expressions for transport
coefficients

I.1 Diffusion coefficients and thermal conductivities

The heat flow and ambipolar diffusion equations that contain the higher-order trans-
port effects, such as thermal diffusion and diffusion thermal heat flow, are presented
in Section 5.14. The transport coefficients that appear in these equations have
been calculated using both the linear (4.129a–g) and semilinear (4.132a,b) colli-
sion terms.1,2 Here, the more general semilinear transport coefficients are presented,
which are valid for arbitrarily large temperature differences between the interact-
ing species. These coefficients reduce to the linear coefficients in the limit of small
temperature differences, i.e., when (Ts − Tt)/Tst � 1.
The general expressions for the ion and neutral heat flows are summarized as

follows:

qs = −K ′ts∇Ts − Kst∇Tt + Rst(us − ut), (I.1)

qt = −Kts∇Ts − K ′st∇Tt − Rts(us − ut), (I.2)

where subscripts s and t refer to either ion or neutral species. The thermal
conductivities and diffusion thermal coefficients in Equations (I.1) and (I.2) are
given by

K ′st = −FstJt/Hst , (I.3)

Kst = CstJt/Hst , (I.4)

Rst = (CstAts + FtsAst)/Hst , (I.5)
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where

Ast = psνstµst

mt

{
5

2

[
Tt

Tst
+ mt

ms

Tst

Ts
(1− zst)

]
+ yst

(
1− Tt

Ts

)
− 5
2

(
mt

µst

)}
,

(I.6)

Fst = −
{
2z′′ss
5
νss + νst

[
3

(
µst

mt

)2( Tt

Tst

)2

+ B(3)st

(
z′st −

5

2
zst

)
− B(1)st +

µst

(ms + mt)

· Tt

Tst

(
4

5
z′′st −

5

2

Ts

Tst
zst

)
+ 5
2

Ts

Tst

µst

ms
zst

]}
, (I.7)

Cst = νst
ρs

ρt

[
3

(
µst

ms

)2( Ts

Tst

)2
+ B(3)st

(
z′st −

5

2
zst

)
+ B(2)st −

µst

(ms + mt)

· Ts

Tst

(
4

5

mt

ms
z′′st +

5

2

Tt

Tst
zst

)
+ 5
2

Ts

Tst

µst

ms
zst

]
, (I.8)

Js = 5

2

kps

ms
, (I.9)

Hst = FstFts − CstCts. (I.10)

Note that a simple change of subscripts in Equations (I.3) to (I.10) yields the other
transport coefficients that are needed. Also, in Equations (I.6) to (I.10), the parame-
ters yst ,B

(1)
st ,B

(2)
st , andB(3)st are given byEquations (4.133a–d),µst = msmt/(ms+mt)

is the reduced mass (4.98) and Tst = (msTt + mtTs)/(ms + mt) is the reduced tem-
perature (4.99). The quantities zst , z′st , and z′′st are pure numbers that are different
for different collisional processes; values are given in Chapter 4 for the processes
relevant to the ionospheres.

I.2 Fully ionized plasma

The transport coefficients�ij, αij, α∗ij, γi, and γj given in Equations (5.158) to (5.161)
are expressed in termsof the thermal conductivities anddiffusion thermal coefficients
as follows:

�ij = zijµij

ρikTij

(
Rij + ρi

ρj
Rji

)
, (I.11)

αij = zijνijµij

k2Tij

ni + nj

ninj

(
K ′ji −

ρi

ρj
Kji

)
, (I.12)
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α∗ij =
zijνijµij

k2Tij

ni + nj

ninj

(
ρi

ρj
K ′ij − Kij

)
, (I.13)

γi = 15
√
2

8

njZiZj(Zi − Zj)

13
√
2

8 (niZ2i + njZ2j )+ niZi + njZj

, (I.14)

γj = 15
√
2

8

niZiZj(Zi − Zj)

13
√
2

8 (niZ2i + njZ2j )+ niZi + njZj

. (I.15)

I.3 Partially ionized plasma

For a three-component plasma composed of electrons, ions, and neutrals, and when
mi = mn, the transport coefficients �in, ω, and ω∗ are given by

�in = zin
2nikTin

(
Rin + ni

nn
Rni

)
, (I.16)

ω = zin
4

νinmi
nik2Tin

(
Kin − ni

nn
K ′in
)
, (I.17)

ω∗ = zin
4

νinmi
nik2Tin

(
K ′ni −

ni
nn

Kni

)
. (I.18)

I.4 Specific references

1. St-Maurice, J.-P. and R.W. Schunk, Diffusion and heat flow equations for the mid-latitude
topside ionosphere, Planet. Space Sci., 25, 907, 1977.

2. Conrad, J. R. andR.W. Schunk, Diffusion and heat flow equationswith allowance for large
temperature differences between interacting species, J. Geophys. Res., 84, 811, 1979.



Appendix J

Solar fluxes and relevant cross sections

Table J.1 Parameters for the EUVAC solar flux model.1

Interval Å F74113a Ai
b

1 50–100 1.200 1.0017(−02)
2 100–150 0.450 7.1250(−03)
3 150–200 4.800 1.3375(−02)
4 200–250 3.100 1.9450(−02)
5 256.32 0.460 2.7750(−03)
6 284.15 0.210 1.3768(−01)
7 250–300 1.679 2.6467(−02)
8 303.31 0.800 2.5000(−02)
9 303.78 6.900 3.3333(−03)
10 300–350 0.965 2.2450(−02)
11 368.07 0.650 6.5917(−03)
12 350–400 0.314 3.6542(−02)
13 400–450 0.383 7.4083(−03)
14 465.22 0.290 7.4917(−03)
15 450–500 0.285 2.0225(−02)
16 500–550 0.452 8.7583(−03)
17 554.37 0.720 3.2667(−03)
18 584.33 1.270 5.1583(−03)
19 550–600 0.357 3.6583(−03)
20 609.76 0.530 1.6175(−02)
21 629.73 1.590 3.3250(−03)
22 600–650 0.342 1.1800(−02)
23 650–700 0.230 4.2667(−03)
24 703.36 0.360 3.0417(−03)
25 700–750 0.141 4.7500(−03)
26 765.15 0.170 3.8500(−03)
27 770.41 0.260 1.2808(−02)
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Table J.1 (Continued)

Interval Å F74113a Ai
b

28 789.36 0.702 3.2750(−03)
29 750–800 0.758 4.7667(−03)
30 800–850 1.625 4.8167(−03)
31 850–900 3.537 5.6750(−03)
32 900–950 3.000 4.9833(−03)
33 977.02 4.400 3.9417(−03)
34 950–1000 1.475 4.4167(−03)
35 1025.72 3.500 5.1833(−03)
36 1031.91 2.100 5.2833(−03)
37 1000–1050 2.467 4.3750(−03)
aMultiply the F74133 reference flux values by 109 to yield
photons cm−2 s−1.

b Read 1.0017(−2) as 1.0017× 10−2.

Table J.2a Photoabsorption and photoionization cross sectionsa,b for N2 and O2.1

Interval λ, Å N2 abs N+2 total N+2 N+ O2abs O+2 total O+2 O+

1 50–100 0.720 0.720 0.443 0.277 1.316 1.316 1.316 0.000
2 100–150 2.261 2.261 1.479 0.782 3.806 3.806 2.346 1.460
3 150–200 4.958 4.958 3.153 1.805 7.509 7.509 4.139 3.368
4 200–250 8.392 8.392 5.226 3.166 10.900 10.900 6.619 4.281
5 256.30 10.210 10.210 6.781 3.420 13.370 13.370 8.460 4.910
6 284.15 10.900 10.900 8.100 2.800 15.790 15.790 9.890 5.900
7 250–300 10.493 10.493 7.347 3.145 14.387 14.387 9.056 5.332
8 303.31 11.670 11.670 9.180 2.490 16.800 16.800 10.860 5.940
9 303.78 11.700 11.700 9.210 2.490 16.810 16.810 10.880 5.930
10 300–350 13.857 13.857 11.600 2.257 17.438 17.438 12.229 5.212
11 368.07 16.910 16.910 15.350 1.560 18.320 18.320 13.760 4.560
12 350–400 16.395 16.395 14.669 1.726 18.118 18.118 13.418 4.703
13 400–450 21.675 21.675 20.692 0.982 20.310 20.310 15.490 4.818
14 465.22 23.160 23.160 22.100 1.060 21.910 21.910 16.970 4.940
15 450–500 23.471 23.471 22.772 0.699 23.101 23.101 17.754 5.347
16 500–550 24.501 24.501 24.468 0.033 24.606 24.606 19.469 5.139
17 554.37 24.130 24.130 24.130 0.000 26.040 26.040 21.600 4.440
18 584.33 22.400 22.400 22.400 0.000 22.720 22.720 18.840 3.880
19 550–600 22.787 22.787 22.787 0.000 26.610 26.610 22.789 3.824
20 609.76 22.790 22.790 22.790 0.000 28.070 26.390 24.540 1.850
21 629.73 23.370 23.370 23.370 0.000 32.060 31.100 30.070 1.030
22 600–650 23.339 23.339 23.339 0.000 26.017 24.937 23.974 0.962
23 650–700 31.755 29.235 29.235 0.000 21.919 21.306 21.116 0.190
24 703.36 26.540 25.480 25.480 0.000 27.440 23.750 23.750 0.000
25 700–750 24.662 15.060 15.060 0.000 28.535 23.805 23.805 0.000
26 765.15 120.490 65.800 65.800 0.000 20.800 11.720 11.720 0.000
27 770.41 14.180 8.500 8.500 0.000 18.910 8.470 8.470 0.000
28 789.36 16.487 8.860 8.860 0.000 26.668 10.191 10.191 0.000
29 750–800 33.578 14.274 14.274 0.000 22.145 10.597 10.597 0.000
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Table J.2a (Continued)

Interval λ, Å N2 abs N+2 total N+2 N+ O2abs O+2 total O+2 O+

30 800–850 16.992 0.000 0.000 0.000 16.631 6.413 6.413 0.000
31 850–900 20.249 0.000 0.000 0.000 8.562 5.494 5.494 0.000
32 900–950 9.680 0.000 0.000 0.000 12.817 9.374 9.374 0.000
33 977.02 2.240 0.000 0.000 0.000 18.730 15.540 15.540 0.000
34 950–1000 50.988 0.000 0.000 0.000 21.108 13.940 13.940 0.000
35 1025.72 0.000 0.000 0.000 0.000 1.630 1.050 1.050 0.000
36 1031.91 0.000 0.000 0.000 0.000 1.050 0.000 0.000 0.000
37 1000–1050 0.000 0.000 0.000 0.000 1.346 0.259 0.259 0.000

a The cross section values are presented in units of Mb; to transform them to cm2 multiply by 10−18.
b N+2 total and O

+
2 total denote the sum of all ionization cross sections; individual ionization cross sections are

also listed separately (e.g., N2 + hν → N+ + N denoted as N+).

Table J.2b Photoabsorption and photoionization cross sectionsa for O and N.1

Interval Å 4S 2D 2P 4P 2P∗ O++ Oabs N+ N++ Nabs

1 50–100 0.190 0.206 0.134 0.062 0.049 0.088 0.730 0.286 0.045 0.331
2 100–150 0.486 0.529 0.345 0.163 0.130 0.186 1.839 0.878 0.118 0.996
3 150–200 0.952 1.171 0.768 0.348 0.278 0.215 3.732 2.300 0.190 2.490
4 200–250 1.311 1.762 1.144 0.508 0.366 0.110 5.202 3.778 0.167 3.946
5 256.30 1.539 2.138 1.363 0.598 0.412 0.000 6.050 4.787 0.085 4.874
6 284.15 1.770 2.620 1.630 0.710 0.350 0.000 7.080 5.725 0.000 5.725
7 250–300 1.628 2.325 1.488 0.637 0.383 0.000 6.461 5.192 0.051 5.244
8 303.31 1.920 2.842 1.920 0.691 0.307 0.000 7.680 6.399 0.000 6.399
9 303.78 1.925 2.849 1.925 0.693 0.308 0.000 7.700 6.413 0.000 6.413
10 300–350 2.259 3.446 2.173 0.815 0.000 0.000 8.693 7.298 0.000 7.298
11 368.07 2.559 3.936 2.558 0.787 0.000 0.000 9.840 8.302 0.000 8.302
12 350–400 2.523 3.883 2.422 0.859 0.000 0.000 9.687 8.150 0.000 8.150
13 400–450 3.073 4.896 2.986 0.541 0.000 0.000 11.496 9.556 0.000 9.556
14 465.22 3.340 5.370 3.220 0.000 0.000 0.000 11.930 10.578 0.000 10.578
15 450–500 3.394 5.459 3.274 0.000 0.000 0.000 12.127 11.016 0.000 11.016
16 500–550 3.421 5.427 3.211 0.000 0.000 0.000 12.059 11.503 0.000 11.503
17 554.37 3.650 5.670 3.270 0.000 0.000 0.000 12.590 11.772 0.000 11.772
18 584.33 3.920 6.020 3.150 0.000 0.000 0.000 13.090 11.778 0.000 11.778
19 550–600 3.620 5.910 3.494 0.000 0.000 0.000 13.024 11.758 0.000 11.758
20 609.760 3.610 6.170 3.620 0.000 0.000 0.000 13.400 11.798 0.000 11.798
21 629.73 3.880 6.290 3.230 0.000 0.000 0.000 13.400 11.212 0.000 11.212
22 600–650 4.250 6.159 2.956 0.000 0.000 0.000 13.365 11.951 0.000 11.951
23 650–700 5.128 11.453 0.664 0.000 0.000 0.000 17.245 12.423 0.000 12.423
24 703.36 4.890 6.570 0.000 0.000 0.000 0.000 11.460 13.265 0.000 13.265
25 700–750 6.739 3.997 0.000 0.000 0.000 0.000 10.736 12.098 0.000 12.098
26 765.15 4.000 0.000 0.000 0.000 0.000 0.000 4.000 11.323 0.000 11.323
27 770.41 3.890 0.000 0.000 0.000 0.000 0.000 3.890 11.244 0.000 11.244
28 789.36 3.749 0.000 0.000 0.000 0.000 0.000 3.749 10.961 0.000 10.961
29 750–800 5.091 0.000 0.000 0.000 0.000 0.000 5.091 11.171 0.000 11.171
30 800–850 3.498 0.000 0.000 0.000 0.000 0.000 3.498 10.294 0.000 10.294
31 850–900 4.554 0.000 0.000 0.000 0.000 0.000 4.554 0.211 0.000 0.211
32 900–950 1.315 0.000 0.000 0.000 0.000 0.000 1.315 0.000 0.000 0.000

a The cross section values are presented in units of Mb; to transform them to cm2, multiply by 10−18.
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Table J.2d Photoabsorption and photoionization cross sectionsa,b for H2O and He
(J.A. Fennelly; private communication).

Interval Å H2Oabs H2O
+
tot H2O+ OH+ H+ O+ Heabs He+

1 50–100 0.699 0.699 0.385 0.093 0.171 0.050 0.1441 0.1441
2 100–150 1.971 1.971 1.153 0.306 0.404 0.107 0.4785 0.4785
3 150–200 4.069 4.069 2.366 0.733 0.781 0.189 1.1571 1.1571
4 200–250 6.121 6.121 3.595 1.197 1.105 0.223 1.6008 1.6008
5 256.30 7.520 7.520 4.563 1.560 1.166 0.230 2.1212 2.1212
6 284.15 8.934 8.934 5.552 1.889 1.262 0.230 2.5947 2.5947
7 250–300 8.113 8.113 4.974 1.704 1.206 0.230 2.3205 2.3205
8 303.31 9.907 9.907 6.182 2.148 1.347 0.231 2.9529 2.9529
9 303.78 9.930 9.930 6.198 2.154 1.347 0.230 2.9618 2.9618
10 300–350 11.350 11.350 7.237 2.559 1.347 0.207 3.5437 3.5437
11 368.07 13.004 13.004 8.441 3.065 1.327 0.171 4.2675 4.2675
12 350–400 12.734 12.734 8.218 2.984 1.352 0.180 4.1424 4.1424
13 400–450 16.032 16.032 10.561 4.042 1.354 0.075 5.4466 5.4466
14 465.22 18.083 18.083 11.908 4.688 1.458 0.028 6.5631 6.5631
15 450–500 18.897 18.897 12.356 4.981 1.529 0.031 7.2084 7.2084
16 500–550 20.047 20.047 12.990 5.374 1.660 0.024 0.9581 0.9581
17 554.37 21.159 21.159 13.559 5.789 1.811 0.000 0.0000 0.0000
18 584.33 21.908 21.908 13.968 6.096 1.844 0.000 0.0000 0.0000
19 550–600 21.857 21.857 13.972 6.090 1.795 0.000 0.0000 0.0000
20 609.76 22.446 22.446 14.392 6.383 1.672 0.000 0.0000 0.0000
21 629.73 22.487 22.026 14.464 6.279 1.282 0.000 0.0000 0.0000
22 600–650 22.502 22.297 14.558 6.368 1.371 0.000 0.0000 0.0000
23 650–700 22.852 20.735 17.443 3.118 0.174 0.000 0.0000 0.0000
24 703.36 22.498 19.655 18.283 1.364 0.008 0.000 0.0000 0.0000
25 700–750 22.118 17.945 17.557 0.386 0.002 0.000 0.0000 0.0000
26 700–750 19.384 13.080 13.080 0.000 0.000 0.000 0.0000 0.0000
27 765.15 20.992 13.512 13.512 0.000 0.000 0.000 0.0000 0.0000
28 770.41 16.975 10.636 10.636 0.000 0.000 0.000 0.0000 0.0000
29 789.36 18.151 11.625 11.625 0.000 0.000 0.000 0.0000 0.0000
30 750–800 16.623 9.654 9.654 0.000 0.000 0.000 0.0000 0.0000
31 800–850 19.837 9.567 9.567 0.000 0.000 0.000 0.0000 0.0000
32 850–900 20.512 8.736 8.736 0.000 0.000 0.000 0.0000 0.0000
33 900–950 15.072 6.188 6.188 0.000 0.000 0.000 0.0000 0.0000
34 950–1000 15.176 4.234 4.234 0.000 0.000 0.000 0.0000 0.0000
35 1025.72 18.069 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000
36 1031.91 15.271 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000
37 1000–1050 8.001 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000

a The cross section values are presented in Mb; to transform them to cm2 multiply by 10−18.
b H2O

+
total denotes the sum of all ionization cross sections; individual ionization cross sections are

also listed separately (e.g., H2O+ hν → OH+ + H denoted as OH+).
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Table J.2e Photoabsorption and photoionization cross sectionsa,b for CH4 (J.A. Fennelly;
private communication).

Interval Å CH4abs CH+4 total CH+4 CH+3 CH+2 CH+ C+ H+2 H+

1 50–100 0.204 0.204 0.051 0.052 0.033 0.014 0.003 0.005 0.047
2 100–150 0.593 0.593 0.147 0.152 0.095 0.039 0.008 0.015 0.137
3 150–200 1.496 1.496 0.387 0.409 0.201 0.095 0.023 0.038 0.344
4 200–250 2.794 2.794 0.839 0.884 0.416 0.165 0.031 0.046 0.414
5 256.30 3.857 3.857 1.192 1.290 0.576 0.214 0.035 0.058 0.492
6 284.15 5.053 5.053 1.681 1.824 0.665 0.232 0.042 0.049 0.559
7 250–300 4.360 4.360 1.398 1.514 0.614 0.223 0.038 0.055 0.519
8 303.31 6.033 6.033 2.095 2.287 0.701 0.282 0.057 0.052 0.559
9 303.78 6.059 6.059 2.103 2.302 0.701 0.282 0.058 0.052 0.561
10 300–350 7.829 7.829 2.957 3.108 0.781 0.310 0.066 0.055 0.552
11 368.07 10.165 10.165 3.972 4.305 0.867 0.361 0.085 0.053 0.521
12 350–400 9.776 9.776 3.820 4.101 0.852 0.344 0.079 0.054 0.527
13 400–450 14.701 14.701 6.255 6.573 1.074 0.359 0.059 0.018 0.362
14 465.22 18.770 18.770 8.442 8.776 1.097 0.211 0.007 0.000 0.238
15 450–500 21.449 21.449 9.837 10.212 1.014 0.162 0.001 0.000 0.225
16 500–550 24.644 24.644 11.432 11.974 0.926 0.131 0.000 0.000 0.181
17 554.37 27.924 27.924 13.398 13.853 0.652 0.021 0.000 0.000 0.000
18 584.33 31.052 31.052 14.801 15.501 0.750 0.000 0.000 0.000 0.000
19 550–600 30.697 30.697 14.640 15.374 0.683 0.000 0.000 0.000 0.000
20 609.76 33.178 33.178 15.734 16.719 0.726 0.000 0.000 0.000 0.000
21 629.73 35.276 35.276 17.102 17.494 0.680 0.000 0.000 0.000 0.000
22 600–650 34.990 34.990 16.883 17.422 0.685 0.000 0.000 0.000 0.000
23 650–700 39.280 39.280 19.261 19.266 0.754 0.000 0.000 0.000 0.000
24 703.36 41.069 41.069 20.222 20.092 0.755 0.000 0.000 0.000 0.000
25 700–750 42.927 42.927 21.314 20.850 0.764 0.000 0.000 0.000 0.000
26 765.15 45.458 44.800 22.599 21.436 0.765 0.000 0.000 0.000 0.000
27 770.41 45.716 44.796 22.763 21.316 0.717 0.000 0.000 0.000 0.000
28 789.36 46.472 44.607 23.198 20.899 0.510 0.000 0.000 0.000 0.000
29 750–800 45.921 44.693 22.886 21.145 0.662 0.000 0.000 0.000 0.000
30 800–850 48.327 40.284 25.607 14.651 0.025 0.000 0.000 0.000 0.000
31 850–900 48.968 25.527 24.233 1.294 0.000 0.000 0.000 0.000 0.000
32 900–950 48.001 13.863 13.863 0.000 0.000 0.000 0.000 0.000 0.000
33 977.02 41.154 0.136 0.136 0.000 0.000 0.000 0.000 0.000 0.000
34 950–1000 38.192 0.475 0.475 0.000 0.000 0.000 0.000 0.000 0.000
35 1025.72 32.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
36 1031.91 30.121 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
37 1000–1050 29.108 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

a The cross section values are presented in Mb; to transform them to cm2, multiply by 10−18.
b CH+4 total denotes the sum of all ionization cross sections; individual ionization cross sections are also
listed separately (e.g., CH4 + hν → CH+3 + H denoted as CH+3 ).
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Table J.2f Photoabsorption and photoionization cross sectionsa,b for SO2 (J.A. Fennelly;
private communication).

Interval Å SO2 abs SO+2tot SO+2 SO+ S+, O+2 O+ SO++

1 50–100 4.33 4.33 0.97 1.11 1.03 1.18 0.042
2 100–150 6.32 6.32 1.62 1.68 1.46 1.51 0.056
3 150–200 10.54 10.54 3.01 3.00 2.31 2.13 0.090
4 200–250 13.91 13.91 4.35 4.27 2.83 2.36 0.096
5 256.30 15.38 15.38 5.23 4.85 2.94 2.27 0.087
6 284.15 16.62 16.62 6.09 5.37 3.04 2.06 0.060
7 250–300 15.88 15.88 5.60 5.05 2.97 2.18 0.076
8 303.31 17.33 17.33 6.68 5.57 3.13 1.90 0.049
9 303.78 17.38 17.38 6.70 5.59 3.14 1.90 0.049
10 300–350 19.91 19.91 8.20 6.26 3.83 1.61 0.016
11 368.07 23.41 23.41 10.34 7.25 4.71 1.11 0.000
12 350–400 22.77 22.77 9.95 7.10 4.55 1.18 0.000
13 400–450 29.78 29.78 13.92 10.54 4.92 0.40 0.000
14 465.22 35.20 35.20 16.88 14.39 3.64 0.29 0.000
15 450–500 38.15 38.15 18.54 16.77 2.56 0.28 0.000
16 500–550 42.27 42.27 20.23 20.23 1.50 0.31 0.000
17 554.37 47.75 47.75 22.64 24.16 0.63 0.33 0.000
18 584.33 53.16 52.58 24.88 27.08 0.37 0.25 0.000
19 550–600 52.75 52.09 24.50 26.89 0.47 0.24 0.000
20 609.76 57.61 55.96 26.31 29.20 0.37 0.08 0.000
21 629.73 61.64 58.72 28.10 30.21 0.38 0.03 0.000
22 600–650 60.65 58.07 27.79 29.85 0.39 0.04 0.000
23 650–700 62.78 60.76 32.11 28.23 0.42 0.00 0.000
24 703.36 62.06 59.15 32.36 26.37 0.42 0.00 0.000
25 700–750 55.36 50.21 29.45 20.40 0.37 0.00 0.000
26 765.15 51.91 42.52 40.36 2.16 0.00 0.00 0.000
27 770.41 50.22 42.56 41.22 1.34 0.00 0.00 0.000
28 789.36 47.40 44.27 44.27 0.00 0.00 0.00 0.000
29 750–800 48.99 42.59 41.24 1.30 0.05 0.00 0.000
30 800–850 43.36 41.88 41.88 0.00 0.00 0.00 0.000
31 850–900 41.21 38.41 38.41 0.00 0.00 0.00 0.000
32 900–950 49.32 34.27 34.27 0.00 0.00 0.00 0.000
33 977.02 42.76 18.73 18.73 0.00 0.00 0.00 0.000
34 950–1000 41.81 17.58 17.58 0.00 0.00 0.00 0.000
35 1025.72 43.03 0.00 0.00 0.00 0.00 0.00 0.000
36 1031.91 44.80 0.00 0.00 0.00 0.00 0.00 0.000
37 1000–1050 45.47 0.26 0.26 0.00 0.00 0.00 0.000

a The cross section values are presented in Mb; to transform them to cm2, multiply by 10−18.
b SO+2 total denotes the sum of all ionization cross sections; individual ionization cross sections
are also listed separately (e.g., SO2 + hν → SO+ + O denoted as SO+).
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Table J.2g Photoabsorption and photoionization cross sectionsa for H2 and H.2

Interval Å H2 abs H+ H+2 Habs

1 50–100 0.0108 0.0011 0.0097 0.0024
2 100–150 0.0798 0.0040 0.0758 0.0169
3 150–200 0.2085 0.0075 0.2009 0.0483
4 200–250 0.4333 0.0305 0.4028 0.1007
5 256.30 0.6037 0.0527 0.5509 0.1405
6 284.15 0.8388 0.0773 0.7454 0.1913
7 250–300 0.7296 0.0661 0.6538 0.1676
8 303.31 1.0180 0.1005 0.8999 0.2324
9 303.78 1.0220 0.1011 0.9041 0.2334
10 300–350 1.4170 0.1200 1.2960 0.3077
11 368.07 1.9420 0.1577 1.7840 0.4152
12 350–400 1.9010 0.1594 1.7420 0.3984
13 400–450 3.0250 0.1255 2.8900 0.6163
14 465.22 3.8700 0.0925 3.7780 0.8387
15 450–500 4.5020 0.0944 4.0470 0.9739
16 500–550 5.3560 0.1020 5.2540 1.1990
17 554.37 6.1680 0.1184 6.0500 1.4190
18 584.33 7.0210 0.1208 6.9000 1.6620
19 550–600 6.8640 0.1237 6.7410 1.6200
20 609.76 7.8110 0.1429 7.6680 1.8880
21 629.73 8.4640 0.1573 8.2990 2.0790
22 600–650 8.4450 0.1524 8.2880 2.0760
23 650–700 9.9000 0.0287 9.7020 2.6410
24 703.36 10.7310 0.0000 10.7310 2.8970
25 700–750 11.3720 0.0000 9.7610 3.1730
26 765.15 10.7550 0.0000 8.6240 3.7300
27 770.41 8.6400 0.0000 7.0710 3.8070
28 789.36 7.3390 0.0000 5.0720 4.0930
29 750–800 8.7480 0.0000 6.6290 3.8680
30 800–850 8.2530 0.0000 0.0889 4.7840
31 850–900 0.4763 0.0000 0.0000 5.6700
32 900–950 0.1853 0.0000 0.0000 3.4690
33 977.02 0.0000 0.0000 0.0000 0.0000
34 950–1000 0.0456 0.0000 0.0000 0.0000
35 1025.72 0.0000 0.0000 0.0000 0.0000
36 1031.91 0.0000 0.0000 0.0000 0.0000
37 1000–1050 0.0000 0.0000 0.0000 0.0000

a The cross section values are presented in Mb; to transform them to cm2,
multiply by 10−18.
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Appendix K

Atmospheric models

K.1 Introduction

Empirical models of the Venus and terrestrial upper atmospheres have been devel-
oped. Tables K.1 and K.2 provide representative values of the Venus neutral
temperature and densities for noon andmidnight conditions, respectively. The values
are from the Venus International Reference Atmosphere (VIRA) model.1 Represen-
tative neutral temperatures and densities for the Earth’s thermosphere are given in
Tables K.3 to K.6. The tables provide typical values at noon and midnight for both
solar maximum and minimum conditions, and for quiet geomagnetic activity. The
neutral parameters are from the Mass Spectrometer and Incoherent Scatter (MSIS)
empirical model.2, 3

The latest version of the MSIS empirical model covers both the lower and upper
atmosphere and includes diurnal, semi-diurnal, and terdiurnalmigrating tidalmodes.
A reference atmosphere for Mars that is based on measurements has not been devel-
oped. However, an engineering-levelMars atmospheremodel that is basedonmodels
is available. The Mars Global Reference Atmospheric Model (Mars-GRAM)4 is
based on the NASA Ames Mars General Circulation Model below 80 km5 and the
University of Michigan Mars Thermospheric General Circulation Model above
80 km.6
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Table K.1 VIRAmodel of composition, temperature, and density (noon, 16◦N, F10.7 = 150).

Altitude Tn CO2 O CO He N N2 H
(km) (K) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3)

150 246.5 9.81(9)a 4.00(9) 2.34(9) 5.01(6) 4.65(7) 1.32(9) 8.88(4)
155 257.4 3.87(9) 2.78(9) 1.27(9) 4.51(6) 3.36(7) 7.20(8) 8.43(4)
160 265.0 1.60(9) 1.98(9) 7.18(8) 4.10(6) 2.49(7) 4.06(8) 8.09(4)
165 270.5 6.83(8) 1.43(9) 4.15(8) 3.75(6) 1.87(7) 2.34(8) 7.82(4)
170 274.4 2.98(8) 1.05(9) 2.43(8) 3.46(6) 1.42(7) 1.37(8) 7.59(4)
175 277.1 1.32(8) 7.76(8) 1.44(8) 3.19(6) 1.09(7) 8.15(7) 7.40(4)
180 279.0 5.90(7) 5.76(8) 8.63(7) 2.96(6) 8.40(6) 4.08(7) 7.23(4)
185 280.4 2.66(7) 4.30(8) 5.19(7) 2.74(6) 6.50(6) 2.93(7) 7.07(4)
190 281.4 1.21(7) 3.22(8) 3.14(7) 2.55(6) 5.04(6) 1.77(7) 6.93(4)
195 282.1 5.51(6) 2.42(8) 1.90(7) 2.37(6) 3.92(6) 1.07(7) 6.79(4)
200 282.5 2.52(6) 1.82(8) 1.15(7) 2.21(6) 3.05(6) 6.53(6) 6.67(4)
205 282.9 1.16(6) 1.37(8) 7.03(6) 2.05(6) 2.38(6) 3.97(6) 6.54(4)
210 283.1 5.32(5) 1.03(8) 4.29(6) 1.91(6) 1.86(6) 2.42(6) 6.43(4)
215 283.3 2.45(5) 7.77(7) 2.62(6) 1.78(6) 1.45(6) 1.48(6) 6.31(4)
220 283.4 1.13(5) 5.87(7) 1.60(6) 1.66(6) 1.13(6) 9.05(5) 6.20(4)
225 283.5 5.24(4) 4.43(7) 9.80(5) 1.55(6) 8.88(5) 5.54(5) 6.09(4)
230 283.6 2.43(4) 3.35(7) 6.01(5) 1.44(6) 6.95(5) 3.40(5) 5.98(4)
235 283.6 1.13(4) 2.53(7) 3.68(5) 1.35(6) 5.44(5) 2.08(5) 5.88(4)
240 283.6 5.23(3) 1.92(7) 2.26(5) 1.26(6) 4.26(5) 1.28(5) 5.78(4)
245 283.7 2.43(3) 1.45(7) 1.39(5) 1.17(6) 3.34(5) 7.85(4) 5.68(4)
250 283.7 1.13(3) 1.10(7) 8.55(4) 1.09(6) 2.62(5) 4.83(4) 5.58(4)

a 9.81(9) = 9.81× 109.
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Table K.2 VIRAmodel of composition, temperature, and density (midnight, 16◦N,
F10.7 = 150).

Altitude Tn CO2 O CO He N N2 H
(km) (K) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3)

150 127.4 7.10(7)a 8.51(8) 7.24(7) 1.89(7) 5.80(6) 5.91(7) 1.64(7)
155 127.4 1.23(7) 4.50(8) 2.37(7) 1.81(7) 3.32(6) 1.94(7) 1.58(7)
160 127.4 2.13(6) 2.38(8) 7.78(6) 1.37(7) 1.90(6) 6.35(6) 1.51(7)
165 127.4 3.71(5) 1.26(8) 2.56(6) 1.17(7) 1.09(6) 2.09(6) 1.45(7)
170 127.4 6.48(4) 6.68(7) 8.42(5) 9.99(6) 6.26(5) 6.87(5) 1.40(7)
175 127.4 1.13(4) 3.54(7) 2.78(5) 8.53(6) 3.59(5) 2.27(5) 1.34(7)
180 127.4 1.99(3) 1.88(7) 9.18(4) 7.28(6) 2.07(5) 7.49(4) 1.29(7)
185 127.4 3.50(2) 1.00(7) 3.04(4) 6.21(6) 1.19(5) 2.48(4) 1.24(7)
190 127.4 6.18(1) 5.33(6) 1.01(4) 5.31(6) 6.84(4) 8.22(3) 1.19(7)
195 127.4 1.09(1) 2.84(6) 3.35(3) 4.53(6) 3.94(4) 2.73(3) 1.15(7)
200 127.4 1.94(0) 1.51(6) 1.11(3) 3.88(6) 2.28(4) 9.09(2) 1.10(7)
205 127.4 3.46(−1) 8.08(5) 3.71(2) 3.31(6) 1.31(4) 3.03(2) 1.06(7)
210 127.4 6.17(−2) 4.32(5) 1.24(2) 2.83(6) 7.59(3) 1.01(2) 1.02(7)
215 127.4 1.10(−2) 2.31(5) 4.15(1) 2.42(6) 4.39(3) 3.39(1) 9.81(6)
220 127.4 1.98(−3) 1.24(5) 1.39(1) 2.07(6) 2.54(3) 1.13(1) 9.43(6)
225 127.4 3.56(−4) 6.62(4) 4.67(0) 1.77(6) 1.47(3) 3.81(0) 9.07(6)
230 127.4 6.43(−5) 3.55(4) 1.57(0) 1.52(6) 8.54(2) 1.28(0) 8.73(6)
235 127.4 1.16(−5) 1.91(4) 5.29(−1) 1.30(6) 4.96(2) 4.32(−1) 8.40(6)
240 127.4 2.11(−6) 1.03(4) 1.79(−1) 1.11(6) 2.88(2) 1.46(−1) 8.08(6)
245 127.4 3.84(−7) 5.52(3) 6.04(−2) 9.52(5) 1.67(2) 4.92(−2) 7.77(6)
250 127.4 7.00(−8) 2.97(3) 2.04(−2) 8.16(5) 9.75(1) 1.67(−2) 7.47(6)

a 7.10(7) = 7.10× 107.
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Table K.3 MSIS model of terrestrial neutral parameters (noon, 45◦N, 0◦E,
F10.7 = 70, winter).

Altitude Tn N2 O2 O He H
(km) (K) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3)

100 192.0 9.22(12)a 2.21(12) 4.26(11) 1.14(8) 2.41(7)
120 352.2 3.27(11) 4.83(10) 8.97(10) 3.55(7) 4.79(6)
140 525.2 5.22(10) 5.56(9) 2.81(10) 4.33(7) 1.49(6)
160 617.3 1.48(10) 1.33(9) 1.27(10) 3.53(7) 6.89(5)
180 668.4 5.17(9) 4.05(8) 6.72(9) 2.93(7) 4.41(5)
200 696.9 1.99(9) 1.37(8) 3.82(9) 2.51(7) 3.48(5)
220 712.8 8.11(8) 4.92(7) 2.26(9) 2.18(7) 3.07(5)
240 721.8 3.40(8) 1.83(7) 1.36(9) 1.92(7) 2.85(5)
260 726.8 1.45(8) 6.91(6) 8.35(8) 1.69(7) 2.71(5)
280 729.7 6.28(7) 2.65(6) 5.16(8) 1.50(7) 2.61(5)
300 731.3 2.74(7) 1.03(6) 3.21(8) 1.33(7) 2.52(5)
400 733.3 4.76(5) 1.00(4) 3.16(7) 7.44(6) 2.18(5)
500 733.4 9.37(3) 1.13(2) 3.35(6) 4.24(6) 1.89(5)
600 733.4 2.07(2) 1.44(0) 3.79(5) 2.46(6) 1.65(5)
700 733.4 5.08(0) 2.08(−2) 4.56(4) 1.45(6) 1.45(5)
800 733.4 1.38(−1) 3.39(−4) 5.81(3) 8.66(5) 1.27(5)
900 733.4 4.16(−3) 6.19(−6) 7.85(2) 5.25(5) 1.12(5)
1000 733.4 1.38(−4) 1.26(−7) 1.12(2) 3.23(5) 9.93(4)

a 9.22(12) = 9.22× 1012.

Table K.4 MSIS model of terrestrial neutral parameters (midnight, 45◦N,
0◦E, F10.7 = 70, winter).

Altitude Tn N2 O2 O He H
(km) (K) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3)

100 189.3 9.70(12)a 2.33(12) 4.15(11) 1.20(8) 2.96(7)
120 342.3 3.28(11) 4.83(10) 8.34(10) 3.61(7) 6.57(6)
140 510.1 5.04(10) 5.31(9) 2.52(10) 3.82(7) 2.29(6)
160 594.5 1.39(10) 1.23(9) 1.11(10) 3.08(7) 1.15(6)
180 638.7 4.69(9) 3.59(8) 5.67(9) 2.55(7) 7.73(5)
200 661.9 1.74(9) 1.16(8) 3.12(9) 2.18(7) 6.26(5)
220 674.1 6.76(8) 3.97(7) 1.79(9) 1.89(7) 5.58(5)
240 680.6 2.70(8) 1.39(7) 1.04(9) 1.65(7) 5.21(5)
260 684.0 1.10(8) 4.97(6) 6.19(8) 1.45(7) 4.97(5)
280 685.9 4.51(7) 1.80(6) 3.70(8) 1.27(7) 4.78(5)
300 686.8 1.87(7) 6.57(5) 2.22(8) 1.12(7) 4.61(5)
400 687.9 2.49(5) 4.74(3) 1.88(7) 6.04(6) 3.94(5)
500 688.0 3.79(3) 3.96(1) 1.72(6) 3.32(6) 3.40(5)
600 688.0 6.49(1) 3.79(−1) 1.68(5) 1.86(6) 2.94(5)
700 688.0 1.25(0) 4.15(−3) 1.76(4) 1.06(6) 2.55(5)
800 688.0 2.68(−2) 5.15(−5) 1.96(3) 6.11(5) 2.22(5)
900 688.0 6.40(−4) 7.21(−7) 2.32(2) 3.58(5) 1.95(5)
1000 688.0 1.69(−5) 1.13(−8) 2.90(1) 2.13(5) 1.71(5)

a 9.70(12) = 9.70× 1012.
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Table K.5 MSIS model of terrestrial neutral parameters (noon, 45◦N, 0◦E,
F10.7 = 220, summer).

Altitude Tn N2 O2 O He H
(km) (K) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3)

100 220.8 5.83(12)a 1.25(12) 2.55(11) 6.83(7) 8.70(6)
120 404.3 3.34(11) 3.46(10) 7.29(10) 1.81(7) 1.23(6)
140 754.9 5.89(10) 4.03(9) 2.16(10) 6.46(6) 2.30(5)
160 990.1 2.18(10) 1.31(9) 1.08(10) 4.72(6) 7.57(4)
180 1146.5 1.05(10) 5.81(8) 6.60(9) 3.96(6) 4.00(4)
200 1250.9 5.74(9) 2.95(8) 4.46(9) 3.49(6) 2.88(4)
220 1320.6 3.36(9) 1.61(8) 3.19(9) 3.14(6) 2.44(4)
240 1367.4 2.05(9) 9.24(7) 2.36(9) 2.88(6) 2.23(4)
260 1398.8 1.29(9) 5.45(7) 1.79(9) 2.67(6) 2.12(4)
280 1419.8 8.26(8) 3.28(7) 1.37(9) 2.49(6) 2.05(4)
300 1434.2 5.36(8) 2.00(7) 1.07(9) 2.33(6) 2.00(4)
400 1459.9 6.81(7) 1.90(6) 3.25(8) 1.72(6) 1.83(4)
500 1463.8 9.48(6) 2.00(5) 1.05(8) 1.30(6) 1.70(4)
600 1464.4 1.40(6) 2.25(4) 3.52(7) 9.86(5) 1.59(4)
700 1464.5 2.19(5) 2.69(3) 1.22(7) 7.56(5) 1.49(4)
800 1464.5 3.60(4) 3.43(2) 4.35(6) 5.85(5) 1.40(4)
900 1464.5 6.24(3) 4.61(1) 1.60(6) 4.55(5) 1.31(4)
1000 1464.5 1.13(3) 6.56(0) 6.02(5) 3.57(5) 1.23(4)

a 5.83(12) = 5.83× 1012.

Table K.6 MSIS model of terrestrial neutral parameters (midnight, 45◦N,
0◦E, F10.7 = 220, summer).

Altitude Tn N2 O2 O He H
(km) (K) (cm−3) (cm−3) (cm−3) (cm−3) (cm−3)

100 217.2 6.15(12)a 1.31(12) 2.39(11) 7.20(7) 9.15(6)
120 394.0 3.35(11) 3.46(10) 6.45(10) 1.79(7) 1.30(6)
140 722.6 5.82(10) 3.94(9) 1.86(10) 4.95(6) 2.44(5)
160 915.1 2.14(10) 1.26(9) 9.16(9) 3.60(6) 8.16(4)
180 1026.8 1.00(10) 5.40(8) 5.46(9) 3.05(6) 4.39(4)
200 1092.0 5.24(9) 2.60(8) 3.58(9) 2.70(6) 3.19(4)
220 1130.0 2.90(9) 1.33(8) 2.47(9) 2.44(6) 2.73(4)
240 1152.3 1.66(9) 7.06(7) 1.75(9) 2.23(6) 2.51(4)
260 1165.5 9.69(8) 3.82(7) 1.27(9) 2.05(6) 2.39(4)
280 1173.2 5.72(8) 2.10(7) 9.29(8) 1.90(6) 2.32(4)
300 1177.8 3.41(8) 1.16(7) 6.88(8) 1.76(6) 2.26(4)
400 1184.0 2.76(7) 6.55(5) 1.61(8) 1.23(6) 2.06(4)
500 1184.5 2.42(6) 4.07(4) 4.00(7) 8.66(5) 1.88(4)
600 1184.6 2.28(5) 2.73(3) 1.04(7) 6.18(5) 1.73(4)
700 1184.6 2.30(4) 1.99(2) 2.80(6) 4.45(5) 1.60(4)
800 1184.6 2.47(3) 1.55(1) 7.82(5) 3.24(5) 1.47(4)
900 1184.6 2.83(2) 1.30(0) 2.26(5) 2.37(5) 1.36(4)
1000 1184.6 3.42(1) 1.17(−1) 6.78(4) 1.76(5) 1.26(4)

a 6.15(12) = 6.15× 1012.
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Appendix L

Scalars, vectors, dyadics, and tensors

Plasma physics is a subject where advanced mathematical techniques are frequently
required to gain an understanding of the physical phenomena under consideration.
This is particularly true in studies involving kinetic theory and plasma transport
effects, where scalars, vectors, andmulti-order tensors are needed (Chapters 3 and 4).
Therefore, it is useful to review briefly some of the required mathematics.
A scalar is a single number that is useful for describing, say, the temperature of

a gas. However, to describe the velocity of the gas, both a magnitude and direction
are required (e.g., a vector). A vector is defined relative to some orthogonal co-
ordinate system and three numbers, corresponding to the components of the vector,
are required to define the vector. In a Cartesian coordinate system, the vector a is
given as

a = a1e1 + a2e2 + a3e3, (L.1)

where e1, e2, and e3 are unit vectors along the x, y, and z axes, respectively. In
index notation, the vector a is simply represented by aα where α varies from 1 to 3.
Suppose that another vector b exists, where

b = b1e1 + b2e2 + b3e3. (L.2)

It is then possible to take both the scalar product and cross product of the vectors a
and b, which are given by

a · b = b · a = a1b1 + a2b2 + a3b3 = aαbα , (L.3)

a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3

= εαβγ aαbβeγ (L.4)
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where the last expression in these equations is the result in index notation. In
Equations (L.3), the repeated indices imply a summation, while in Equation (L.4)
εαβγ = +1 if α, β, γ are all unequal and in the order 123123 . . . ,−1 if the order is
213213 . . ., and zero otherwise.
The vectors a and b can also be used to construct a dyadic, which is denoted

by ab. Adyadic is composed of nine numbers, with each corresponding to a different
orthogonal direction. The dyadic is therefore the extension of the vector concept to
two dimensions and is equivalent to a second-order tensor. It can be represented in
the three equivalent forms

ab = aαbβ =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


 , (L.5)

where aαbβ corresponds to the index representation of the dyadic and the quantity
on the right is its matrix representation. In a Cartesian coordinate system, ab is
expressed as

ab = (a1e1 + a2e2 + a3e3)(b1e1 + b2e2 + b3e3)

= a1b1e1e1 + a1b2e1e2 + a1b3e1e3

+ a2b1e2e1 + a2b2e2e2 + a2b3e2e3

+ a3b1e3e1 + a3b2e3e2 + a3b3e3e3, (L.6)

where quantities such as e1e2 are unit dyadics. Unit dyadics are an extension of the
concept of unit vector to two dimensions. In comparing the matrix in Equation (L.5)
with Equation (L.6), it is apparent that the unit dyadics are introduced to provide
orthogonal directions to the nine elements in the matrix. When dealing with dyadics,
the location of a particular vector in the dyadic is important. In general, ab = ba,
and when a dyadic is operated on via a dot or cross product, it is the closest vector
in the dyadic that is affected by the operation. For example,

ab · c = a(b · c), (L.7)

c · ab = (c · a)b, (L.8)

ab× c = a(b× c), (L.9)

c× ab = (c× a)b. (L.10)

Second-order tensors, which are composed of nine independent elements, can
also be expressed in dyadic form. In analogy to Equation (L.5), a second-order
tensorW can be expressed in the three equivalent forms

W = Wαβ =

W11 W12 W13

W21 W22 W23

W31 W32 W33


 , (L.11)
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and in Cartesian coordinatesW becomes

W = W11e1e1 +W12e1e2 +W13e1e3

+W21e2e1 +W22e2e2 +W23e2e3

+W31e3e1 +W32e3e2 +W33e3e3. (L.12)

If the tensor is not symmetric, then

a ·W =W · a (L.13)

a ×W =W × a (L.14)

and in Equations (L.13) and (L.14) the dot and cross products operate on the closest
vectors in Equation (L.12). That is, if the dot or cross product is on the left, then the
left vectors in the unit dyadics are affected. For example,

a ·W = aαWαβ = a1(W11e1 +W12e2 +W13e3)

+ a2(W21e1 +W22e2 +W23e3)

+ a3(W31e1 +W32e2 +W33e3)

= (a1W11 + a2W21 + a3W31)e1

+ (a1W12 + a2W22 + a3W32)e2

+ (a1W13 + a2W23 + a3W33)e3. (L.15)

The second-order tensorW can also operate on another second-order tensor Y.
The dot product of the two tensors is given by

W · Y = WαβYβγ (L.16)

so that the dot product of two second-order tensors is another second-order tensor.
It is possible to have a double dot (or scalar) product ofW andY, and the result is

W : Y = WαβYβα = Y :W, (L.17)

where the convention is that the two inner indices and the two outer indices are
repetitive.
The transpose of a tensorW with components Wαβ is denoted byWT, and it is

obtained simply by interchanging rows and columns so that its components areWβα .
In general,W =WT, but when they are equal the tensor is symmetric.
The unit or identity dyadic, I, is equivalent to theKronecker delta in index notation

and can be expressed in the three forms

I = δαβ =

1 0 0
0 1 0
0 0 1


 . (L.18)
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In Cartesian coordinates, I becomes

I = e1e1 + e2e2 + e3e3. (L.19)

When I is dotted with either a vector or tensor, the quantity is recovered, so that

I · a = δαβaβ = aα = a, (L.20)

I ·W = δαβWβγ = Wαγ =W, (L.21)

and

I · a = a · I = a, (L.22)

I ·W =W · I =W. (L.23)

In addition, it is possible to take a double dot product of Iwith a second-order tensor
W. This yields the trace of the tensor, which is the sum of the diagonal elements,
given by

I :W = δαβWβα = Wαα . (L.24)

Also,

I : I = δαβδβα = δαα = 3. (L.25)

Two additional operations that are useful with regard to the material in the book
are the divergence of a tensor, ∇ ·W, and the construction of the dyadic ∇u. From
Equation (L.12), the divergence ofW is given by

∇ ·W =
(
e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3

)
·W

=
(
∂W11

∂x1
e1 + ∂W12

∂x1
e2 + ∂W13

∂x1
e3

)

+
(
∂W21

∂x2
e1 + ∂W22

∂x2
e2 + ∂W23

∂x2
e3

)

+
(
∂W31

∂x3
e1 + ∂W32

∂x3
e2 + ∂W33

∂x3
e3

)
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=
(
∂W11

∂x1
+ ∂W21

∂x2
+ ∂W31

∂x3

)
e1

+
(
∂W12

∂x1
+ ∂W22

∂x2
+ ∂W32

∂x3

)
e2

+
(
∂W13

∂x1
+ ∂W23

∂x2
+ ∂W33

∂x3

)
e3. (L.26)

The dyadic ∇u is constructed as follows

∇u =
(
e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3

)(
u1e1 + u2e2 + u3e3

)

= ∂u1
∂x1

e1e1 + ∂u2
∂x1

e1e2 + ∂u3
∂x1

e1e3 + ∂u1
∂x2

e2e1 + ∂u2
∂x2

e2e2 + ∂u3
∂x2

e2e3

+ ∂u1
∂x3

e3e1 + ∂u2
∂x3

e3e2 + ∂u3
∂x3

e3e3. (L.27)

Therefore, ∇u is a second-order tensor with nine independent elements. The
transpose of ∇u, which is denoted by (∇u)T, is obtained by interchanging the
elements in the rows with the elements in the columns, which yields

(∇u)T = ∂u1
∂x1

e1e1 + ∂u1
∂x2

e1e2 + ∂u1
∂x3

e1e3

+ ∂u2
∂x1

e2e1 + ∂u2
∂x2

e2e2 + ∂u2
∂x3

e2e3

+ ∂u3
∂x1

e3e1 + ∂u3
∂x2

e3e2 + ∂u3
∂x3

e3e3. (L.28)

Finally, the nonlinear inertial term (u · ∇)u can be obtained either by first taking the
dot product (u · ∇) and then operating on the vector u or by taking the dot product
of u with the tensor (∇u) given in Equation (L.27). In both cases the result is

(u · ∇)u = u · (∇u) =
(

u1
∂u1
∂x1

+ u2
∂u1
∂x2

+ u3
∂u1
∂x3

)
e1

+
(

u1
∂u2
∂x1

+ u2
∂u2
∂x2

+ u3
∂u2
∂x3

)
e2

+
(

u1
∂u3
∂x1

+ u2
∂u3
∂x2

+ u3
∂u3
∂x3

)
e3. (L.29)



AppendixM

Radio wave spectrum

Table M.1

Extra low frequency (ELF) 30–330Hz
Voice frequency (VF) 300–3000Hz
Very low frequency (VLF) 3–30 kHz
Low frequency (LF) 30–300 kHz
Medium frequency (MF) 300–3000 kHz
High frequency (HF) 3–30MHz
Very high frequency (VHF) 30–300MHz
Ultra high frequency (UHF) 300–3000MHz
Super high frequency (SHF) 3–30GHz
Extremely high frequency (EHF) 30–300GHz
L1 frequency 1.57542GHz
L2 frequency 1.227GHz

Note: 1Hz = 1 cycle s−1; kilo (k) = 103; mega (M) = 106; giga
(G) = 109
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Simple derivation of continuity equation

Arigorous derivation of the transport equations that is based onBoltzmann’s equation
is given in Chapter 3. However, physical insight can be gained by considering a
derivation of the continuity equation via a more straightforward method. Consider
a volume element in a three-dimensional fluid flow, as shown in Figure N.1. The
density of the fluid is n and the drift velocity components are ux, uy, and uz, all of
which are a function of x, y, z, and t. The flux of particles moving in the x-direction is
nux(m−2s−1) and the number of particles per second that enters the volume element
across a plane at location x is (nux)x(�y�z). The number per second that leave the
volume element at location x+�x is (nux)x+�x(�y�z). Therefore the net increase
in the number per second is:

number

s
= {

(nux)x − (nux)x+�x
}
�y�z . (N.1)

y

x 

∆y

∆z

z

(nux)x + ∆x 

(nux)x

∆x

Figure N.1 Volume element
showing a flux of particles
entering the volume at x and
leaving at x +�x.
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If�x is small, the second term in Equation (N.1) can be expanded in a Taylor series,
which yields:

number

s
=
[
(nux)x −

(
(nux)x + ∂

∂x
(nux)x�x . . .

)
�y�z

]
, (N.2)

number

s
= − ∂

∂x
(nux)�x�y�z + . . . , (N.3)

where the subscript x on the curved brackets has been dropped and where the
additional terms in the Taylor series are of order (�x)2 or higher.
The flow across the surfaces along the y and z axes yield similar results, so the

net increase in the number of particles per second that enter the volume is:

number

s
=
[
− ∂

∂x
(nux)− ∂

∂y
(nuy)− ∂

∂z
(nuz)

]
�x�y�z + . . .

= −∇ · (nu)�x�y�z + . . . (N.4)

However, the net increase in the number of particles in the volume is related to the
density change with time:

number

s
= ∂n

∂t
�x�y�z . (N.5)

Therefore,

∂n

∂t
�x�y�z = −∇ · (nu)�x�y�z + . . . (N.6)

Dividing both sides of Equation (N.6) by the volume element and then letting �x,
�y, and �z go to zero yields the continuity equation:

∂n

∂t
+ ∇ · (nu) = 0 . (N.7)

Each species in the plasma will be governed by Equation (N.7) so it is appropriate to
add a subject, j, to n and u to identify the different species. Also, Equation (N.7) was
derived by only considering the flow into and out of a volume element. In reality,
particles can be either created or destroyed by photoionization or chemical reactions,
and hence, production, Pj, and loss, Lj, terms need to be added to the right-hand
side of Equation (N.7), and the continuity equation then becomes:

∂nj

∂t
+ ∇ · (njuj) = Pj − Lj . (N.8)



Appendix O

Numerical solution for F region ionization

The main ionization peak in the terrestrial ionosphere is associated with the F2 layer
and its basic characteristics are described in Section 11.4. However, it is instructive to
obtain a numerical solution of the continuity and momentum equations that govern
this region. Restricting the analyses to mid-latitudes, the plasma in this region is
primarily produced by photoionization of neutral atomic oxygen and lost in chemical
reactions with N2 and O2. If the ionosphere is assumed to be horizontally stratified
(a reasonable assumption at mid-latitudes), the electron (or O+) continuity equation
becomes

∂ne
∂t
+ ∂

∂z
(neuez) = Pe − kβne, (O.1)

where ne = ni, Pe is the electron production rate, kβ is the electron loss fre-
quency (equation 11.61), z is the altitude, and subscript i corresponds to O+. In
the F region, the momentum equation reduces to the diffusion equation (11.59), and
if, for simplicity, it is assumed that there is no neutral wind (un = 0), no imposed
electric field (E = 0), and the magnetic field is vertical (I = 90◦), Equation (11.59)
becomes

neuez = −Da

[
∂ne
∂z

+ ne

(
1

Tp

∂Tp
∂z

+ 1

Hp

)]
, (O.2)

whereHp = 2kTp/(mig) is the plasma scale height (Equation 5.59), Tp = (Te+Ti)/2
is the plasma temperature (equation 5.56) and Da = 2kTp/(mivin) is the ambipolar
diffusion coefficient (Equation 5.55).
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For illustrative purposes, it is useful to adopt the following simple expressions
for the production rate, loss frequency, and ambipolar diffusion coefficient:

Pe = 4× 10−7n(O), (O.3)

kβ = 1.2× 10−12n(N2)+ 2.1× 10−11n(O2), (O.4)

Da = 3× 1017Tp
T 1/2R n(O)

(O.5)

where TR = (Ti + Tn)/2, and where the densities are in cm−3, Tp and TR in K, Pe
in cm−3 s−1, kβ in s−1, and Da in cm2 s−1. Equation (O.3) takes account of the fact
that at F region altitudes the atmosphere is optically thin, and hence, the production
rate is simply proportional to the neutral oxygen density (the numerical coefficient
is a typical value). Equation (O.4) is discussed in connection with Equation (11.60),
and the O+–O collision frequency used in Equation (O.5) is given in Table 4.5. At
F region altitudes, the neutral densities are in hydrostatic equilibrium and can be
calculated separately from Equation (9.12), where z0 is some reference altitude and
Hn = kTn/(mng) is the neutral scale height. Reference values for the N2, O2, and
O densities are given in tables K.3 to K.6.
The substitution of Equation (O.2) into Equation (O.1) yields a second-order,

parabolic, partial differential equation for the electron density,

∂ne
∂t

= A1(z, t)
∂2ne
∂z2

+ A2(z, t)
∂ne
∂z

+ A3(z, t)ne + A4(z, t), (O.6)

where

A1 = Da, (O.7a)

A2 = ∂Da
∂z

+ Da

(
1

Tp

∂Tp
∂z

+ 1

Hp

)
, (O.7b)

A3 = Da

[
1

Tp

∂2Tp
∂z2

− 1

T 2p

(
∂Tp
∂z

)2

+ ∂

∂z

(
1

Hp

)]
+ ∂Da

∂z

[
1

Tp

∂Tp
∂z

+ 1

Hp

]
− kβ , (O.7c)

A4 = Pe. (O.7d)

The solution of the second-order partial differential equation (O.6) requires an
initial condition (e.g., a starting ne altitude profile) and two boundary conditions.
The lower boundary (zB) is usually taken at an altitude where chemistry dominates,
and hence, the electron density at this altitude can be obtained by equating local
production and loss rates, which yields

ne = Pe/kβ . (O.8)
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At the top boundary (zT), diffusion dominates, and therefore, a flux boundary con-
dition is appropriate. A simple boundary condition is that the particle flux through
the top boundary is a constant (Fa), which yields

neuez = Fa . (O.9)

Different values for Fa can be selected and different initial conditions can also be
selected. These issues will be discussed later.
Equation (O.6) for the electron density is a linear, parabolic, partial differential

equation and the completely implicit numerical technique provides a very stable and
simple numerical solution.1 The first step is to break the altitude range into a discrete
set of grid points. Let zB and zT be the bottom and top grid points, respectively, and
�z the spatial step between grid points. Let the grid index j go from 1 at (zB +�z)
to J at zT. If t is the current time and �t is the time interval, then t + �t is the
future time. With the completely implicit numerical technique, the electron density
terms on the right-hand side of Equation (O.6) are evaluated at the future time. Using
space-centered spatial derivatives and a forward time derivative, the electron density
terms in Equation (O.6) become

∂2n

∂z2
= nt+�t

j+1 − 2nt+�t
j + nt+�t

j−1
(�z)2

, (O.10a)

∂n

∂z
= nt+�t

j+1 − nt+�t
j−1

2(�z)
, (O.10b)

n = nt+�t
j , (O.10c)

∂n

∂t
= nt+�t

j − nt
j

�t
, (O.10d)

where the subscript e on ne has been dropped for convenience. The quantities A1 to
A4 are arrays that should be evaluated at the current time (t) and at each grid point
(j). Note that in calculating numerical derivatives of quantities that are known and
appear in A2 and A3, space-centered derivatives can only be calculated at the interior
grid points (2 ≤ j ≤ J − 1). At j = 1, a forward derivative is needed [(∂T/∂z) =
(T2 − T1)/�z], while at j = J a backward derivative is used [(∂T/∂z)J = (TJ −
TJ−1)/�z].
Substituting Equations (O.10a–d) into Equation (O.6) yields an equation of

the form

−αjn
t+�t
j−1 + βjn

t+�t
j − γjn

t+�t
j+1 = St

j , (O.11)

where

αj = 1− �z

2

A2(j)

A1(j)
, (O.12a)
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βj = 2+ (�z)2

(�t)A1(j)
− (�z)2A3(j)

A1(j)
, (O.12b)

γj = 1+ �z

2

A2(j)

A1(j)
, (O.12c)

St
j =

(�z)2A4(j)

A1(j)
+ (�z)2

(�t)A1(j)
nt
j , (O.12d)

where j goes from 1 to J . Equation (O.11) constitutes a tri-diagonal matrix, except
for the j = 1 and j = J rows which are modified by the boundary conditions.
At the bottom boundary (j = 0), the density is specified via Equation (O.8),

so that

nt+�t
0 = nt

0 = (Pe/kβ)
t
0 . (O.13)

Equation (O.11) at the j = 1 grid point then becomes

β1n
t+�t
1 − γ1n

t+�t
2 = St

1 + α1n
t
0 . (O.14)

At the top boundary (j = J ), the flux is specified via Equation (O.9), so that

(nu)t+�t
j = Fa, (O.15)

where (nu) is given by Equation (O.2) and can be written as

(nu)t+�t
j = −A1(j)

[
nt+�t
j+1 − nt+�t

j−1
2(�z)

+ nt+�t
j Q(j)

]
, (O.16)

Q(j) =
[
1

Tp

∂Tp
∂z

+ 1

Hp

]
j

. (O.17)

At j = J , the flux becomes Fa and Equation (O.16) can be solved for the density
value that is beyond the altitude range,

nt+�t
j+1 = nt+�t

j−1 − 2(�z)Q(J )nt+�t
J − 2(�z)Fa

A1(J )
. (O.18)
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Setting j = J in Equation (O.11) and eliminating nt+�t
J+1 with Equation (O.18) yields

−[αJ + γJ ]nt+�t
J−1 + [βj + 2(�z)γjQ(J )]nt+�t

J = St
J −

2(�z)γJ Fa
A1(J )

.

(O.19)

For j = 1, Equation (O.14) applies, for 2 ≤ j ≤ J − 1 Equation (O.11) applies,
and for j = J , Equation (O.19) applies. Therefore, the matrix that needs to be
inverted to obtain the future densities contains three elements in each row except for
the first (j = 1) and last (j = J ) rows. This matrix can be solved as follows. First fill
the αj, βj, γj, and St

j arrays from j = 1 to j = J using Equations (O.12a–d), where
nt
j is the electron density profile obtained at time t and is known from the previous
matrix inversion. Next, modify αj, βj, γj, and St

j for j = 1 and j = J as follows;

St
1→ St

1 + α1n
t
0, (O.20a)

α1→ 0, (O.20b)

which comes from Equation (O.14) and

αJ → αJ + γJ = 2, (O.21a)

βJ → βJ + 2(�z)γJQ(J ), (O.21b)

St
J → St

J −
2(�z)γJ Fa

A1(J )
, (O.21c)

γJ → 0 (O.21d)

which follows from Equation (O.19). Note that αj and γJ have to be used first before
they are set to zero.
With the tri-diagonal matrix modified as described above, arrays rj and ej are

filled from the bottom to the top, where rj and ej are given by

r1 = γ1/β1, (O.22a)

e1 = St
1/β1, (O.22b)

rj = γj

βj − αjrj−1
, 2 ≤ j ≤ J , (O.22c)

ej =
St
j + αjej−1
βj − αjrj−1

, 2 ≤ j ≤ J . (O.22d)

The electron densities are then calculated from the top to the bottom,

nt+�t
J = eJ , (O.23a)

nt+�t
j = rjn

t+�t
j+1 + ej , j = J − 1 , . . . , 1 . (O.23b)
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This procedure is repeated in a time loop until the desired time-dependent solution
is obtained. Note that before the next time loop is executed, nt+�t

j → nt
j and a new

density profile is again obtained.

O.1 Specific reference

1. Oran, E. S. and J. P. Boris, Numerical Simulation of Reactive Flow, Cambridge, UK:
Cambridge University Press, 2001.



Appendix P

Monte Carlo methods

Monte Carlo (MC) techniques were developed in the 1940s and are based on a ran-
dom sampling to determine the possible outcome of an event.1−4 The name Monte
Carlo comes from the famous casino in Monaco, where your success depends on
“chance” events at the gambling tables. There are various Monte Carlo techniques
and they are nowwidely used in almost all areas of science andmathematics, includ-
ing statistics, quantummechanics, kinetic theory, astrophysics, atmospheric physics,
space science, nuclear physics, and thermodynamics. They are particularly useful
for evaluating complex integrals and for solving partial differential equations.
Integrations provide a useful tool to show how the Monte Carlo method works.

Consider a function g(x, y, z) that is to be integrated over a volume V . With the
Monte Carlo method, a random number generator is used to select N points (xi,
yi, zi) inside the volume V , where i goes from 1 to N . The arithmetic mean of the
function g over the N selected points is given by:1, 2

〈g〉a =
1

N

N∑
i=1

g (xi, yi, zi), (P.1)

and the approximation to the volume integral is:∫
d3xg (x, y, z) ≈ V 〈g〉a (P.2)

An estimate for the uncertainty in the integral is given by the one standard
deviation error,

±V

[〈
g2
〉
a − 〈g〉2a
N

] 1
2

, (P.3)
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where

〈
g2
〉
a
= 1

N

N∑
i=1

g2 (xi, yi, zi). (P.4)

The volume integral (P.2) is simply the arithmetic mean of the function g in the
volume multiplied by the volume. The uncertainty decreases as more random points
are used to calculate the arithmetic mean. However, the uncertainty decreases as

N− 12 , so the convergence to the answer is slow. Nevertheless, with high-speed
computers, the Monte Carlo method is a powerful tool for solving many problems.
The MC technique has been used in simulating space plasma for several

decades.5−8 The simulations increased in sophistication with time; from homo-
geneous to nonhomogeneous, steady state to time varying, and from single to
multi-species. Here, a simple model will be presented, to elucidate the technique.
Following Barakat,5−7 we consider the steady-state flow of a homogeneous,

weakly ionized plasma in response to a homogeneous electric field. The ion–neutral
collision is assumed to obey a simple relaxation model, for which the total collision
cross section σ T is inversely proportional to the relative velocity g between col-
liding particles (Section 4.5). Also, according to this model, the colliding particles
exchange their velocities (or, equivalently, exchange identities) during the collision,
which occurs during a charge exchange collision. This is equivalent to assuming
that the ions and neutrals have the same mass (ions in their parent gas) and that
the differential scattering cross section varies as [σ (g, θ)→ δ (θ − π) /g] where
θ is the scattering angle in the center-of-mass frame of reference and δ (x) is the
delta function. For this simple model, a closed-form expression exists,5 which can
be used in validating the numerical MC model. The neutrals are assumed to have a
nondrifting Maxwellian with temperature Tn.

fn (v) = nn

(
mn
2πkTn

) 3
2

exp

[
− vn
(vth)n

]2
, (P.5)

where nn,mn, and (vth)n are the density, mass, and thermal speed of the neutral gas,
respectively. The ion–ion collisions are neglected in comparisonwith the ion–neutral
collisions. The standard procedure of the MC simulation is to follow the motion of
one ion for a large number of collisions, and to monitor its velocity. According to
the ergodic theorem, the time average can be equated to the corresponding ensemble
averages. In particular, the following steps are taken:

1. An initial ion velocity is picked (say vi = 0). To “remove” the bias due to
that choice, the first few hundred collisions are ignored.

2. The time interval between consecutive collisions (tc) is found. Since the
mean-free-time (τ = 1/νin) is constant here, the probability density
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function of tc is given by

p (tc) = 1

τ
e−tc/τ , (P.6)

and hence,4

tc = −τ�n (γ ) , (P.7)

where γ is the value of a uniformly distributed (pseudo) random variable,
such that

p (γ ) =
{
1 for 0 < γ < 1
0 elsewhere

. (P.8)

3. The ion is followed between collisions as it moves in phase space (velocity
space here) in a straight line with

vi⊥ = (vi⊥)0 , vi|| =
(
vi||
)
0 +

(
qiE
mi

)
t, (P.9)

where the subscript 0 indicates values at the start of the interval tc.
4. At the end of tc, the ion collides with a neutral particle, which is picked

randomly in accordance with Equation (P.5), specifically

v2n⊥ = −2 (vth)2n �n (γ ) , (P.10)

vn|| = (vth)n [−2�n (γ1)]
1
2 cos (2πγ2) , (P.11)

where γ , γ1, and γ2 are statistically independent values with probability
density functions similar to Equation (P.8).4

5. After a collision, the ion assumes the neutral’s velocity:

v′i = vn, (P.12)

where the prime indicates the value after the collision.
6. v′i is then used as the initial velocity and steps 2 through 5 are repeated for

a very large number (say 106) of collisions.

A rectangular grid is used to record the probe ion velocities. The grid has vi|| and
vi⊥ as coordinates, while the azimuthal dependence is taken care of by virtue of
cylindrical symmetry. The ion’s velocity distribution function is proportional to:

fi (vb)→
∑
i

(�ti)b/Vb, (P.13)
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where vb is the velocity of the bin’s center, (�ti)b is the time the ion spends within
the bin, Vb is the bin’s size, and

∑
i
indicates summation over intervals between

collisions, after throwing out the first few hundred, as mentioned earlier.
The velocitymoments (or density, temperature, etc.) can be found from the values

of fi(vb) as follows:

〈
vαi|| v

β

i⊥
〉
=
∑
b

vαb||v
β

b⊥fi (vb)∑
b

fi (vb)
, (P.14)

where
∑
b
indicates a summation over all bins. More accurate values of the moments

can be achieved by using the individual trajectory segments of the test ion directly.6

P.1 Specific references

1. Cheney, W. and D. Kincaid, Numerical Mathematics and Computing, Monterey,
California: Brooks/Cole Publishing Company, 1980.

2. Koonin, S. E., Computational Physics, Menlo Park, California: Benjamin/Cummings
Publishing Company, 1986.

3. Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford,
UK: Oxford University Press, 1994.

4. Sobol, I.M., A Primer for the Monte Carlo Method, Boca Raton, Florida: CRC Press,
1994.

5. Barakat,A. R. and R.W. Schunk, Comparison of transport equations based onMaxwellian
and bi-Maxwellian distributions for anisotropic plasmas, J. Phys. D:Appl. Phys., 15, 1195,
1982.

6. Barakat, A. R. and R.W. Schunk, Comparison of Maxwellian and bi-Maxwellian expan-
sions with Monte Carlo simulations for anisotropic plasmas, J. Phys. D: Appl. Phys., 15,
2189, 1982.

7. Barakat, A. R. and D. Hubert, Comparison of Monte Carlo simulations and polyno-
mial expansions of auroral non-Maxwellian distributions. 2 The 1D representation, Ann.
Geophys., 8, 697, 1990.

8. Combi, M. R., Time-dependent gas kinetics in tenuous planetary atmospheres, Icarus,
123, 207, 1996.
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5-moment approximation, 92, 97, 119, 153, 164
10.7 cm radio flux, 259, 468, 485
13-moment approximation, 62, 64, 91, 98, 143, 274
20-moment approximation, 65
630 nm radiation, 249, 364

absorption cross section, 255, 256, 349, 584
accidental resonance, 232
activation energy, 237, 247
AE index, 346
airglow, 248, 328
Akebono spacecraft, 522
AL index, 346
Alfvén wave speed, 20, 186, 223
Alfvén waves, 185, 221
Alouette spacecraft, 533
ambipolar diffusion, 126, 151
ambipolar diffusion coefficient, 127, 152
ambipolar diffusion equations, 127, 133, 152, 350,

370, 608
ambipolar electric field (see polarization electric

field)
ambipolar expansion, 135, 136
Ampère’s Law, 68, 161, 214, 561
anisotropic ion temperatures, 64, 66, 124
anisotropic pressure tensor, 124, 220, 459
anomalous electron temperatures, 418
anomalous resistivity, 196
Appleton anomaly, 30, 371
arc length of magnetic field, 338
Archimedes’ spiral, 17, 217
Arecibo incoherent scatter radar, 538, 543

Arrhenius equation, 238
associative detachment, 246
astronomical unit (AU), 19
Atmosphere Explorer satellites (AE), 259, 373,

522, 525
atmospheric gravity waves (AGW), 295, 381
atmospheric models:

empirical terrestrial (MSIS), 318, 594
empirical Titan, 319
empirical Venus (VIRA), 319, 594

atmospheric sputtering, 324
atomic oxygen red line, 233, 249, 364
attachment reaction, 245
AU index, 346
auroral blobs, 432
auroral electrons (see particle precipitation)
auroral oval, 25, 400, 420, 421
average drift velocity, 53
average speed, 53, 579
axial-centered dipole, 341
azimuthal electric field, 339

β (of a plasma), 20, 215
B field divergence, 133, 338, 458
ballerina skirt model, 17
beam spreading, 270
Bennett ion mass spectrometer, 525
Bessel function, 559
bi-Maxwellian velocity distribution, 66, 219, 459
bimolecular reaction, 232, 236, 242
Birkeland current, 401, 424
Boltzmann collision integral, 52, 85, 567

618
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Boltzmann equation, 52, 55, 264, 562
Boltzmann H theorem, 575
Boltzmann relation, 129
boundary blobs, 432
bow shock, 22, 399
branching ratio, 244, 262
Brunt–Väisälä frequency, 298
buoyancy frequency, 298
Burgers linear collision terms, 99
Burgers semilinear collision terms, 98

Callisto, 40, 503
Cassini spacecraft, 20, 37, 40, 498, 500, 501, 531
catalytic process, 498
center of mass, 74
central force, 76
centripetal acceleration, 125, 291, 451, 465
CH4 38–42, 497, 506, 508, 590
Chapman, 54, 63, 484, 495
Chapman–Cowling collision integrals, 96, 103
Chapman function, 258
Chapman layer, 349
Chapman production function, 260, 348
characteristic energy of precipitating

particles, 419
characteristic time, 120, 234, 345, 411
charge density, 68
charge exchange, 105, 232, 240, 326
charge exchange collision integral, 572
charge exchange reaction rates, 240, 242
charge neutrality, 127, 161, 174, 177
charge separation, 127, 129, 130
Charon, 38
Chatanika incoherent scatter radar, 422, 432, 543
chemical equilibrium, 351, 358
chemical kinetics, 231
chemical reactions, 231, 237, 275, 354
chemical time constant, 233
Chew–Goldberger–Low (CGL) approximation,

63, 219
chromosphere, 12
circular polarization, 202
classical MHD equations, 206
cleft ion fountain, 468, 469
closure conditions, 58, 60
CH+

5 , 502
CO, 34, 483, 587, 595
CO+, 483
CO2, 34, 483, 493, 587, 595
CO+

2 , 35, 37, 483, 493
coefficient of viscosity, 117, 292
cold plasma, 170, 197
collision cross section, 80

collision-dominated flow, 63, 143, 191, 451, 457

collision frequency:

electron–ion, 104

electron–neutral, 108, 109

ion–ion, 104

ion–neutral, 105–107

momentum, 89, 96, 102

relaxation, 573

collision time, 73, 573

collisional de-excitation, 248, 314

collisional detachment, 246

collisional invariants, 576

collisionless flow, 17, 63, 135, 225, 458

collisionless shock, 22, 225, 228

column density, 257

coma, 42

Comet Hale–Bopp, 42

Comet P/Halley, 42, 508, 509

composition of atmospheres:

comets, 42, 508

Earth, 28, 597–598

Enceladus, 40,507

Io, 39, 502

Jupiter, 38, 496

Mars, 36, 492

Mercury, 31

Neptune, 38, 501

Pluto, 38, 502

Saturn, 38, 498

Titan, 40, 503

Uranus, 38, 501

Venus, 334, 483

configuration space, 51

conjugate hemispheres, 364, 379

conjugate ionosphere, 30, 254, 364

conservative form of transport equations, 56,
192, 226

contact discontinuity, 228

contact surface, 42

continuity equation, 56, 62, 119, 124, 133, 136, 165,
191, 208, 292, 301, 452, 458

convection:

anisotropic temperatures, 63, 124, 458

electromagnetic drift, 29, 138, 217, 339, 371,
399, 410

frictional heating, 121, 124, 414

heat source for the thermosphere, 447

increased chemical reaction rate, 416

momentum source for the thermosphere, 413,
414, 445

convection channels, 438

convection electric field, 29, 122, 138, 139, 399

convection models, 405
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convection patterns:
four-cell, 408
three-cell, 408
two-cell, 29, 402, 406, 407, 408, 409
multi-cell, 410, 414

convective derivative, 57, 209, 361, 369
convective zone, 11
cooling rates, 276, 361
core, 11
Coriolis acceleration (force), 28, 125, 291
corona, 12
coronal holes, 13
coronal loops, 12
coronal mass ejection (CME), 15, 445
coronal streamer, 12
co-rotation speed, 502
co-rotational electric field, 339, 402, 404
Coulomb collisions (see also collision frequency),

76, 83, 98, 360
Coulomb logarithm, 84
Cowling conductivity, 345
critical frequency, 346, 533
critical level, 321
cross B field plasma transport: 137–139

diamagnetic drift, 138, 402
electromagnetic drift, 138, 339
gravitational drift, 138, 376

cross section (see absorption and ionization cross
sections)

cross sectional area, 338, 458
current continuity, 213, 426
current density, 68, 142, 210, 519
current sheet, 17, 25
current systems: 423

electrojet, 345, 445, 448
lunar, 344
solar-quiet, 344

currents:
Birkeland, 401, 423
cusp, 425
NBZ, 424
Region 1, 423
Region 2, 423

cusp neutral fountain, 434
cut-off frequency, 160, 179, 182, 185
cyclotron frequency, 45, 121, 174, 202, 377, 560

D region, 30, 245, 353
Debye length, 45, 84, 129, 171, 560
Debye shielding, 83
Debye sphere, 45, 84
declination, 343, 376
derivative of vectors in a rotating frame, 290

descending layers, 379

detached plumes, 374

detachment, 245, 354

diamagnetic cavity, 43

diamagnetic current, 215

diamagnetic drift, 138, 402

differential scattering cross section, 81, 570

diffuse auroral patches, 420

diffuse auroral precipitation, 420

diffusion coefficients:

ambipolar diffusion, 127, 152

classical, 115, 121, 305

major ion, 127

minor ion, 130

perpendicular to B, 139

thermal, 151, 582

diffusion equations:

ambipolar, 127, 131, 152, 350

classical, 115, 370

magnetic, 216

major ion, 127

minor ion, 130

diffusion in velocity space, 571

diffusion thermal coefficient, 150, 581

diffusion thermal heat flow, 150

diffusion velocity, 207

diffusive equilibrium:

classical, 306, 351

minor ion, 132

dip angle, 338, 344

dipolar coordinates, 340

dipole magnetic field, 337

dipole moment, 23, 337

disappearing ionosphere, 489

discrete auroral arcs, 420

dispersion relations, 162, 170, 172–186, 201, 223

displacement current, 185

dissociative excitation, 247

dissociative recombination, 232, 243–245, 314, 353,
483, 484, 497

distribution function, 51, 53, 59, 65, 273, 521

disturbance dynamo, 373

disturbance electric fields, 373

diurnal tide, 300, 344

divergence of electrodynamic drift, 405

divergence theorem, 57, 227, 554

DMSP satellites, 374, 409, 421, 523

Doppler residual, 534

Doppler shift, 534

double adiabatic energy equations, 219

double dot product, 58, 61, 571, 603

double layers, 196

drift energy, 199
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drift meter, 525
drift motion, 265
drift velocity, 53, 57, 207, 410, 455, 524
drifting Maxwellian, 59, 92, 418, 459, 576
Druyvestyn-type analysis, 521
Ds index, 346
Dst index of geomagnetic activity, 346
dynamic pressure, 22, 215, 406, 486
dynamical friction, 571
Dynamics Explorer Satellites (DE), 405, 408, 379,

412, 449, 522

E × B drift (see electrodynamic drift)
E region, 30, 347, 418, 432, 445
Earth, 22, 300, 306, 335, 398
eccentric dipole, 341
ecliptic plane, 19, 399
eddy diffusion, 307, 308, 497
E–F region valley, 347, 380
effective electric field, 138, 414
effective gravity, 305
effective temperature, 416
Einstein coefficient, 234, 250
EISCAT incoherent scatter radar, 354, 385, 418, 543
elastic collision, 73, 74
elastic electron–neutral collision, 90, 98, 108, 109
electric field, 52, 120, 128, 129, 137, 138, 145, 150,

160, 211, 339, 370, 399
electrical conductivities:

Cowling, 345
Hall, 141
parallel, 142
Pedersen, 141

electrodynamic drift, 138, 339, 350, 369, 402, 405
electroglow, 501
electrojet, 344, 345
electromagnetic drift (see electrodynamic drift)
electromagnetic waves, 159–164, 177–179,

179–185, 202
electron accelerating region, 521
electron current, 141, 201, 519
electron cyclotron frequency, 45, 141, 174, 410, 560
electron Debye length, 45, 129
electron density, 21, 31, 35, 37, 39, 44, 53, 128, 129,

137, 150, 169, 212, 347–354, 357–369, 372,
375, 379, 390, 415, 417, 423, 428, 431–432,
463, 484–485, 489, 493, 495, 497, 499–508,
560, 608

electron impact, 247, 249, 419, 489, 494, 501, 503
electron plasma frequency, 45, 170, 174, 179, 560
electron retarding region, 519
electron temperature, 44, 359, 360, 363, 366, 419,

430, 489–492, 494, 507

electron thermal speed, 169, 202
electron–ion collision, 104
electron–neutral collision, 108, 109
electron–neutral cooling rate, 98, 276, 284
electrostatic double layers, 196
electrostatic potential, 129, 402
electrostatic waves, 159, 160, 168–176, 201
elementary reaction, 232
elliptic polarization, 180, 202
empirical atmosphere models:

terrestrial atmosphere, 318, 319
Titan atmosphere, 319
Venus atmosphere, 319

empirical ionosphere models:
Venus ionosphere (see VIRA)

ENA (energetic neutral atom), 271
endothermic reaction, 238
energetic ion outflow, 465
energy deposition, 254, 270–272, 315
energy equations:

electron, 361
ion, 121–125, 416, 452
neutral gas, 292, 294, 295, 315

energy flux, 420, 435, 501
enthalpy, 238, 239
equation of state, 165, 213
equatorial anomaly, 371
equatorial fountain, 30, 371
equatorial F region, 371
equilibrium potential, 517
equivalent depth, 302
error function, 558
escape flux, 311, 322–324, 453, 456
escape velocity, 322, 453
Euler equations, 63, 144, 291–292
Europa, 40, 503
EUV solar flux, 254 258, 368, 489, 584
EUVAC solar flux model, 259, 584
evanescent wave, 303
exobase, 28, 34, 321
exosphere, 28, 321
exothermic reaction, 238
expansion phase (of a substorm), 449
exponential interaction potentials, 80
extraordinary waves (X-mode), 179, 202, 533

F1 region, 30, 347, 349
F2 region, 30, 347, 349, 351, 353
F10.7 radio flux, 259, 485
Faraday’s law, 68, 561
fast MHD wave, 224
fast plasma jet, 432
Fick’s law, 115
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field aligned current (see Birkeland current)
floating potential, 518
fluxgate magnetometer, 529
Fokker–Planck collision term, 571
forbidden transition, 248
forward shock, 19
fossil bubbles, 373
frictional heating, 274, 414–416, 428, 454, 463
frozen in magnetic field, 216
fully ionized plasma, 113, 125, 144–146, 358,

362, 582

Galilean satellites, 503
Galileo spacecraft, 21, 37, 496, 502, 503
Ganymede, 40, 503
Gamma function, 558
Gauss’ law, 68, 160, 561
Gaussian pillbox, 227
general transport equations, 55–58, 62–63, 89–92,

97–102
generalized Ohm’s law, 211 (see also Ohm’s law)
geographic coordinates, 341
geographic pole, 342, 402, 404
geomagnetic field, 341
geomagnetic indices, 345
geomagnetic pole, 341, 424
geomagnetic storms, 345, 359, 445
geomagnetic variations, 344
geopotential height (see reduced height)
Giotto spacecraft, 509
global positioning system (GPS), 538
granules, 11
gravitational drift, 138, 376
gravity waves, 295, 375–379, 445, 502
ground state, 241, 243, 247
group velocity, 163, 178, 299, 304, 533
growth phase (of a geomagnetic storm), 345, 445
GSM co-ordinate system, 38
guiding center, 264
gyrofrequency (see electron and ion cyclotron

frequencies)
gyroradius, 45, 264

H, 28, 90, 105, 107, 109, 180, 207, 232, 239, 242,
247, 261, 270, 272, 311–313, 318, 326, 463,
470, 496, 497, 508, 595–598

H theorem, 575
H+, 240, 247, 323, 357, 450, 453, 469, 496, 499
H+–O charge exchange, 232, 240, 326, 357
H2, 38, 239, 247, 277, 280, 496, 508, 592
H+

2 , 245, 496
H2O, 239, 245, 261, 278, 281, 354, 499, 508, 589
H2O+, 245, 499, 508

H+
3 , 245, 497

H3O+, 245, 499, 508
half-thicknesses, 347
Hall conductivity, 141
Hall current, 213, 345
hard precipitation, 419–422
hard sphere collisions, 73, 96, 98, 109
HCNH+, 502, 505
He, 278 33, 34, 239, 261, 263, 456, 483, 589,

595–598
He+, 242, 360, 381, 450, 455
heat flow, 54, 61–65, 118, 122, 143–149, 207,

293, 577
heat flow equation, 58, 62, 63, 91, 100, 101, 122,

144–153
heat of formation, 239
heat sources:

ionospheric, 122, 272–276, 254–263, 414, 416,
429, 430, 445, 452, 493, 507

thermospheric, 238, 244, 270, 304, 315–318,
323, 326

heating efficiency, 273, 314
heliospheric current sheet, 17
helium magnetometer, 530
heterogeneous reaction, 231
heterosphere, 306
homogeneous reaction, 231
homopause, 306, 497
homosphere, 306, 312
hot atoms, 325
hot plasma, 12, 449
Hough function, 302
hydration, 354
hydrocarbon molecules, 497
hydrodynamic equations (see Euler and

Navier–Stokes)
hydrodynamic shocks, 191, 202
hydrostatic equilibrium, 296, 307

IMAGE, 533
impact parameter, 74, 77–79, 567
inclination, 344
incoherent scatter, 538
incompressible flow, 213, 339, 405
inelastic collisions:

electronic excitation, 283
fine structure excitation, 282
rotational excitation, 277
vibrational excitation, 278

inertial reference frame, 290
in-situ measurement techniques, 517
integrated column density, 258
interaction potential, 76, 80
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intermediate layers, 379

intermediate species, 232

internal field, 337

internal gravity waves, 300

International Geomagnetic Reference Field (IGRF),
342

interplanetary magnetic field (IMF), 17, 21, 34, 389,
399, 405–411, 414, 423, 430

intrinsic magnetic field, 22, 485, 495

inverse collisions, 569

inverse-power interaction potentials, 80, 102

Io, 39, 502

ion-acoustic Mach number, 134

ion-acoustic speed, 20, 133, 202

ion-acoustic waves, 170, 201, 537

ion current, 139–141

ion cyclotron frequency, 45, 122, 170

ion-cyclotron waves, 175, 201

ion–ion recombination, 246, 354

ion line, 540

ion mass spectrometers:

Bennett, 525

magnetic deflection, 525

quadrupole, 527

retarding potential analyzer, 523

time of flight, 528

ion–molecule reaction rate, 242

ion–neutral cooling rate, 97, 106, 107, 283

ion–neutral thermal coupling, 363, 414, 428

ion outflow (see polar wind and energetic ion
outflow)

ion production rate, 262, 269

ion thermal conductivity, 150, 153

ion velocity distribution (see distribution function)

ionization cross section, 262, 269, 584

ionization energy, 270

ionization frequency, 262

ionization threshold potential, 261

ionization-stripping, 270

ionogram, 532

ionopause, 33, 42, 215, 486, 496

ionosheath, 34

ionosonde, 522

ionospheric critical frequencies (see critical
frequency)

ionospheric decay, 352

ionospheric features:

light ion trough, 360

mid-latitude trough, 427

polar hole, 427

propagating plasma patches, 430

temperature hot spots, 429

tongue of ionization, 428

ionospheric half-thicknesses (see half-thickness)
ionospheric holes, 489
ionospheric layers:

E, F1, F2, 346
F3 layer, 381
He+ layer, 381

ionospheric peak densities, 44, 351, 492, 497, 498,
502, 503

ionospheric peak heights, 44, 260, 351, 483, 492,
497, 498, 503

ionospheric regions:
D region, 31, 245, 353
E region, 31, 347, 417, 432, 445
F1 region, 347, 349
F2 region, 347, 349, 356, 357

ionospheric sounder, 532
ionospheric storms, 386
ionospheric variations:

diurnal, 365
seasonal, 367
solar cycle, 368

irrotational flow, 214

Jacobian, 556
Jeans escape flux, 322
Jicamarca incoherent scatter radar, 373, 543
Joule heating, 445, 491
Jupiter, 37, 496

K index, 346
kinetic pressure, 33, 215
kinetic transport equation, 50–52, 264, 563
kinetic viscosity, 294
Kp index, 346
Krook collision model, 572

L waves, 184, 202
Langevin model, 241
Langmuir condition, 200
Langmuir probe, 517, 519–522
Laplace’s tidal equation, 302
large-scale ionospheric features, 425
Lavalle nozzle, 135
Lennard-Jones interaction potential, 80
limiting flux, 311
linear collision term (13-moment), 99
linear polarization, 180, 202
linearization technique, 167, 222
Liouville’s theorem, 324, 326
local approximation, 267
local drifting Maxwellian, 59, 576
longitudinal mode, 160
loss frequency, 353, 370, 452
loss function, 268
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lower hybrid oscillations, 174, 201
lunar influence, 300, 344
Lyman α radiation, 353

Mach number:
ion-acoustic, 134, 452
sonic, 120, 194

magnetic barrier, 34
magnetic cloud, 19
magnetic deflection ion mass spectrometer, 525
magnetic diffusion, 216
magnetic dip, 343
magnetic equator, 340, 342, 371
magnetic field (see geomagnetic field)
magnetic field divergence, 338
magnetic flux tube, 338
magnetic moments of solar system bodies, 23
magnetic pile-up, 36, 507
magnetic pressure, 20, 22, 34, 215, 486
magnetic Reynolds number, 216
magnetic scalar potential, 337, 341
magnetic storms (see geomagnetic storms)
magnetized plasma, 160, 168, 185, 217, 219,

400, 543
magnetohydrodynamic (MHD) equations, 206, 213
magnetohydrodynamic (MHD) waves, 221
magnetometers, 529
magnetopause, 23, 31, 37, 399
magnetosheath, 22, 22, 31, 34, 36, 37, 43, 399, 505
magnetosonic waves, 185, 202, 221
magnetosphere, 22, 31, 38, 345, 470, 505
magnetospheric tail, 24, 400
main phase (of a geomagnetic storm), 345, 445
major ion diffusion equation, 126
Mariner 5, 488
Mariner 6, 537
Mariner 10, 32
Mars, 36, 492
Mars 4 and 5, 495
Mars Global Surveyor (MGS), 36, 494, 496
Mars Express, 36, 494, 496, 533
Maunder Minimum Period, 15
Maxwell–Boltzmann velocity distribution function,

58, 575
Maxwell equations of electricity and magnetism,

68, 561
Maxwell molecule collisions, 82, 90
Maxwell speed distribution, 579
Maxwell transfer equations, 60, 562
mean-free-path, 73, 115, 321
Mercury, 31, 482
meridional wind, 350–352, 366, 371, 375,

380, 445

mesopause, 27, 304
mesosphere, 27, 304, 309, 311
Messenger, 32, 482
metallic ions, 379, 502
metastable state, 247, 248, 484
MHD discontinuities, 225, 227
mid-latitude trough, 427
migrating tide, 295, 300
Millstone Hill incoherent scatter radar, 543
minor ion diffusion equation, 130
minor ion scale height, 131
Mitra–Rowe six-ion model, 354
mixed distribution, 306, 308
mixing ratio, 312
mobility coefficient, 121, 139
molecular diffusion, 305, 307
moments of distribution:

density, 53, 207
heat flow, 54, 207
pressure, 54, 207
stress, 55, 207
velocity, 53, 207
temperature, 54, 207

momentum equation, 57, 62, 91, 97, 99, 119, 125,
126, 133, 136, 139, 141, 151, 165, 213, 225,
294, 301, 350, 370, 452, 458

momentum transfer collision frequency (see
collision frequency)

Monte Carlo methods, 67, 321, 326, 614
most probable speed, 579
MSIS (mass spectrometer incoherent scatter model),

318, 320, 597–599, 299

N+, 506, 508
N2, 28, 30, 34, 36, 39, 40, 41, 83, 97, 99, 232, 239,

242, 247, 261, 263, 277, 278, 311, 318, 347,
367, 415, 447, 483, 506, 585, 595–598

N+
2 , 247, 347, 380, 506, 508

Navier–Stokes equations, 63, 144, 292–294
NBZ currents, 424
negative ionospheric storm, 387
negative ions, 245, 354–356
Neptune, 38, 501
neutral current sheet, 25
neutral density structures, 437
neutral gas heating efficiency, 314, 315
neutral gas polarizability, 90, 107, 241
neutral gas scale height, 257
neutral polar wind, 470
neutral wind, 28, 138, 140, 350, 353, 366, 370, 380,

413, 443
NH3, 42
NO, 36, 90, 239, 242, 247, 261, 354, 415, 483
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NO+, 247, 347, 354, 355, 380, 415
nonresonant ion–neutral collisions, 105
normal shock, 192, 227
Nozomi, 522
NRLMSIS, 319
numerical solution for F-region density, 608

O, 28, 30, 34, 36, 90, 105, 107, 232, 239, 228, 243,
249, 261, 263, 282, 283, 310, 311, 318, 323,
326, 347, 355, 365, 368, 447, 483, 586,
595–598

O+, 31, 35, 37, 232, 239, 240, 243, 244, 326, 347,
351, 357, 415, 456, 461–464, 467–469, 483,
493

O2, 28, 30, 36, 40, 90, 105, 107, 232, 239, 245, 261,
263, 277, 279, 310, 311, 318, 347, 355, 415,
585, 597, 598

O+
2 , 232, 243, 244, 347, 354, 380, 483, 484, 493

O−
2 , 245, 246, 354, 355

oblique Alfvén wave, 224
oblique shock, 227
Ohm’s law, 142, 211, 213, 216
OI 130.4 nm airglow, 328
open field lines, 29, 132, 400, 450
optical depth, 256, 258, 262, 348, 349
optical thickness, 256
order of a reaction, 233
orbital motion limited condition, 521
ordinary waves (O mode), 179, 202, 533
orthogonal expansions, 60
oxygen fine structure cooling, 276, 282, 284, 361
oxygen red line emission, 233, 249, 364

parallel electrical conductivity, 142, 212
parallel propagation, 160
parallel shock, 228
parallel temperature, 64–66, 458
partial pressure, 55, 207
partially ionized plasma, 31, 113, 125, 152, 154,

360, 572, 583
particle precipitation:

characteristic energy, 419
diffuse auroral patches, 419
diffuse auroral precipitation, 419
electron precipitation, 419, 429, 433, 434,

463, 489
energy flux, 419
Io, 504, 505
ion precipitation, 421, 497
Jupiter, 496
polar rain, 419, 464
Sun-aligned arc, 434
theta (�) aurora (see Sun-aligned arcs)

Titan, 505

Venus, 489

partition function, 240

Pedersen conductivity, 141

Pedersen current, 141, 344

perpendicular propagation, 160

perpendicular shock, 228

perpendicular temperature, 64, 66, 458

perturbation technique, 143, 148, 467, 291–294, 296

phase space, 51, 567

phase velocity, 162, 300, 304

physical parameters of planets, 23

physical parameters of satellites, 24

Phobos, 36

photoabsorption, 254, 584

photochemical equilibrium (see chemical
equilibrium)

photodetachment, 245

photodissociation, 246, 309, 314, 347, 354, 483, 496

photoelectron calculations:

continuous loss approximation, 268

local approximation, 267

two-stream approximation, 265

photoelectron heating rate, 274, 362, 367, 430

photoelectron production rate, 262

photoemission, 518

photoionization, 260, 266, 351, 367, 496, 505,
584–593

photon flux, 255

photosphere, 12

Pioneer Venus Orbiter (PVO), 483, 489, 490, 522,
524, 525

Pioneers 10 and 11, 21, 496, 498, 502, 503

pitch angle, 265, 266

plane waves, 161, 168, 297

planetary parameters, 23

planetary waves, 294

plasma β, 20, 215

plasma bubbles, 373

plasma convection (see convection)

plasma expansion, 135

plasma frequency, 45, 170, 174, 179, 202, 532, 560

plasma oscillations, 170, 201

plasma parameters (ionospheric), 44

plasma scale height, 128, 350

plasma sheet, 24, 449, 465, 466

plasma temperature, 358, 360, 370, 489–492,
494, 507

plasma thermal structure, 360, 489–492, 494, 507

plasmapause, 26

plasmasphere, 26, 356, 359, 388

plasmoid, 19

Pluto, 39, 502
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Poisson equation, 129, 160
polar cap, 26, 197, 400
polar cusp, 24, 420, 428
polar hole, 427
polar rain, 419, 465
polar wind, 29, 132, 195, 450
polarization electric field, 128, 137, 150, 452
positive ion sheath, 518
positive ionospheric storm, 387
Poynting vector, 162, 226
precipitation (see particle precipitation)
predawn effect, 364
pressure balance, 214
pressure tensor, 54, 208, 219, 577
prominence, 15
propagating plasma patches, 430
propagation constant (vector), 160, 161
protonosphere, 31, 357

quadrupole mass spectrometer, 527
quenching, 248

R waves, 184, 202
radar (incoherent) backscatter stations, 543
radiative recombination, 243, 244, 496
radiative zone, 11
radio frequency (Bennett) ion mass spectrometer,

525
radio occultation technique, 534
radio wave spectrum, 605
random current, 518
random flux across a plane, 579
random velocity, 54, 207, 562, 577
Rankine–Hugoniot relations, 194, 228
Rayleigh–Taylor (R–T) instability, 375
reaction rates, 233, 236, 242
recombination rate (see dissociative and radiative)
reconnection, 449
recovery phase (of a geomagnetic storm), 345, 447
reduced height, 257
reduced mass, 79, 86, 93
reduced temperature, 93
refractive bending angle, 535
refractive index, 532
refractivity, 536
Region 1 current, 423
Region 2 current, 423
relative velocity, 74
resonance (wave), 160
resonant ion–neutral collisions, 107
retarding potential analyzer (RPA), 517, 522–525
reverse shock, 19
reversible reaction, 232

ring current, 26, 345, 365
Rosetta, 43
rotating reference frame, 290–292
rotational axis, 337
rotational excitation, 277
Rutherford scattering cross section, 83

Saturn, 37, 498–500
Saturn electrostatic discharge (SED), 499
scale height:

minor ion, 131
mixed gas, 307
neutral gas, 257, 296, 306
plasma, 128, 350

scattering angle, 74, 78
Schumann–Runge continuum, 314
seasonal anomaly, 367
secular variation, 342
self-similar solution, 136
semi-diurnal tide, 300, 304, 379
shock waves, 191, 202, 225
simplified MHD equations, 213
single fluid MHD equations, 206
skin depth, 179
slow MHD wave, 225
SO2, 502, 591
Sodankylä ion chemistry (SIC) model, 354
soft precipitation (see particle precipitation)
solar activity, 14, 259
solar constant, 15
solar flares, 15
solar fluxes (see EUV solar flux)
solar magnetic field, 12
solar wind, 12, 217
solar wind parameters, 20
solar zenith angle, 256
Sondrestrom incoherent scatter radar, 543
sound speed, 20, 172, 221, 298
South Atlantic anomaly, 344
spacecraft (see specific spacecraft)
spacecraft potential, 517–519
specific heat, 165, 191, 292, 294, 296
speed of light, 161, 179
spiral angle, 17, 218
Spitzer conductivity, 362
spontaneous de-excitation, 233, 248
sporadic E layer, 379, 502
spread F, 373
stationary tide, 295
statistical weight, 240
stoichiometric equation, 232
Stokes’ theorem, 227, 554
stopping cross section, 268
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storm-enhanced density (SED), 387
stratopause, 27
stratosphere, 27, 295, 313, 381
streaming instabilities, 188, 196, 418
stress tensor, 55, 61, 63, 122, 144, 148, 292, 452
strong shocks, 195
sub-auroral ion drift (SAID), 449
sub-auroral polarization stream (SAPS), 387
sub-auroral red arcs (SARARCS), 358, 364
subsonic flow, 120, 135, 191
substorms, 448
sudden storm commencement (SSC), 345, 445
Sun, 11
Sun-aligned arcs, 434
sunspots, 13
supersonic flow, 17, 22, 63, 132, 154, 191, 450, 453
supersonic neutral winds, 443

tail rays, 35, 489
tangential discontinuity, 33, 42, 228, 486
temperature anisotropy, 64, 65, 350, 459
temperature hot spots, 425–430
termolecular reaction, 232, 235
terrestrial thermosphere empirical model (see MSIS)
TGCM (see thermosphere–ionosphere general

circulation model)
thermal conduction:

electron, 145–147, 362, 490, 494, 581
ion, 150, 153, 581
neutral gas, 118, 293, 317

thermal diffusion, 101, 152, 358
thermal electron heating rate, 272, 362, 367
thermal escape flux, 322
thermal potential, 196
thermal velocity, 54, 207, 562, 577
thermoelectric coefficient, 150, 583
thermoelectric effect, 101, 145, 150
thermosphere, 27, 36, 38, 314, 315, 318
thermosphere–ionosphere general circulation model

(TIGCM), 318, 382
thermospheric composition:

Earth, 304, 310, 314, 597–598
Jupiter, 38
Mars, 36
Titan, 40
Venus, 34

thermospheric temperatures:
Earth, 27, 320, 597–598
Jupiter, 23, 38, 318
Mars, 37
Saturn, 38
Venus, 34

thermospheric wind, 28, 318, 413, 445

theta aurora (Sun-aligned arc), 419, 434

Thomson scatter, 538

three-body recombination, 232

tides, 294, 300, 344, 381

TIGCM (see thermosphere–ionosphere general
circulation model)

tilted dipole, 38, 337, 341

time constants, 234, 235, 308, 352–353, 365,
411, 573

TIMED, 259

time-of-flight spectrometer, 528

Titan, 40, 503–507

tongue of ionization, 427, 428, 431

topside ionosphere, 31, 132, 349, 356, 450, 457,
486, 497

total scattering cross section, 82

trace of a tensor, 61, 603

transfer collision integrals, 85, 92, 99

transport equations:

5-moment set, 119, 165, 291

13-moment set, 62, 98–102

ambipolar diffusion, 127, 150, 151, 350

continuity, 56, 62, 119, 124, 133, 136, 165, 191,
208, 292, 301, 452, 458

diffusion, 115, 126, 127, 130, 131, 151, 216,
350, 370

energy, 57, 122, 125, 292, 294, 315, 361, 416, 452

Euler, 63, 144, 191

heat flow, 58, 63–65, 118, 122, 143, 148, 207,
293, 577

momentum, 57, 62, 91, 97, 99, 119, 125, 126,
133, 136, 139, 141, 151, 165, 213, 225, 294,
301, 350, 370, 452, 458

Navier–Stokes, 63, 144, 292
pressure tensor, 57, 62

self-similar, 136

stress tensor, 63, 122, 125, 144, 148, 292

thermal conduction, 118, 146, 150, 151, 152, 293,
362, 581

transport properties:

ambipolar diffusion, 127, 131, 151, 350

diffusion, 115, 126, 130, 131, 151, 216, 350, 370

diffusion-thermal heat flow, 150, 581

electrical conduction, 141, 142, 345

thermal conduction, 118, 144–147, 152, 293, 317,
362, 489, 491, 581

thermal diffusion, 150, 151, 582

thermoelectric effect, 101, 145, 146, 150

viscosity, 116, 145, 292, 294

transverse mode, 160

traveling ionospheric disturbance (TID), 385,
390, 445

Triton, 42, 508
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tropopause, 27
troposphere, 27, 381
turbopause, 306
two-stream approximation (see photoelectron

calculations)
two-stream instability, 188, 196, 418

Ulysses, 21
unit dyadic, 55, 88, 119, 219, 225, 578, 603
unmagnetized plasma, 168, 178, 196
upper hybrid oscillations, 172, 201
Uranus, 38, 501

Van Allen radiation belt, 26
velocity-dependent correction factors, 98
velocity moments:

density, 53
drift velocity: 53

heat flow for || energy, 64
heat flow for ⊥ energy, 64
heat flow tensor, 54
heat flow vector, 54
higher-order pressure tensor, 54
parallel temperature, 64
perpendicular temperature, 64
pressure tensor, 54

stress tensor, 55
temperature, 54

velocity space, 51, 56, 556
Venus, 33, 482
vertical column density, 257
vibrational excitation, 247, 279–282, 496
Viking, 356, 492–495
VIRA (Venus international reference atmosphere),

319, 595, 596
virtual height, 533
viscosity, 117, 145, 292–294
Vlasov equation, 52
Voyagers, 21, 38, 496–498, 501, 503, 508

water cluster ions, 30, 354
wave modes, 201
wave number-4 pattern, 383
wave–particle interactions, 365, 418, 464, 467
weak shocks, 195, 507
weakly ionized plasma, 30, 113, 120, 154
westward traveling surge, 448
whistler waves, 202
wind filtering, 384
winter helium bulge, 457

zenith angle, 256
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