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PREFACE TO THE THIRD EDITION

I have once again availed the opportunity of revising this work designed for the requirements
f the students of physics and technical courses at undergraduate and postgraduate levels.

Many new topics such as conformal mapping in complex analysis, inversion of complex

matrices, error functions, factorial functions, etc. and specially the solution of. Schréedinger’s
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In this revision, I have freely consulted the contribution of Indian and foreign authors
in the form of titles as Mathematical Physics, Quantum Mechanics or Complex Analysis.
[ am deeply grateful to the authors and publishers of all these books and pay my heartiest

anks to all of them.

I do hope that the work will be more useful to readers for whom this has been intended.
Ithough I have tried to make it free from errors and omissions, if readers still find any, I will
e grateful to be informed.

Any suggestions for the further improvement of the work will be thankfully accepted
nd executed.

B.D. Gupta
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PREFACE TO THE FIRST EDITION

It was in the year 1965, that myself and my colleague B.S. Rajput, wrote a book entitled
Mathematical Physics, to meet the requirements of Honours, Postgraduate and Engineering
students of various Indian universities. Since then the same work has appeared in six editions
with the previous publishers. But for many reasons, we could not continue the co-authorship.

Here I would like to offer my sincere thanks to my former co-author and previous
publisher for giving their consents to get it revised and published independently.

Now, keeping in mind the needs of the changing syllabi of various universities and the
requirements of changing knowledge which is almost doubled in every decade, I prepared
this work myself alone about five years back, in viéw of new and advanced standpoint. But
owing to some unavoidable circumstances this could not be published earlier, and so some of

its portions have been further revised in order to render it up-to-date, hence more useful.

The value and scope of the present work have obviously been considerably increased,
because, in the first place, several portions contributed by myself, in all my books written with
different coauthors, have been reproduced in a more expository style and in the second
place many more portions have been rewritten. The entire matter has been rearranged and
many new topics have been added. Every section has been supplemented with a large number
of worked-out problems and a set of additional miscellaneous problems selected from the
question papers set in various university examinations.

Ido not claim any originality of matter and this is at best a compiled work, with a novel
presentation. The subject matter has been so arranged that even a layman can understand
how to apply the mathematical operations to the problems of Physics. During the preparation
of this work, I have freely consulted a number of books on Mathematics and Physics written
by foreign and Indian authors. It goes without saying that [ am deeply indebted to all of them,
although, I am sorry not to acknowledge my gratitude to them individually—the number
ing too big to be accommodated in the little space that can be spared for that purpose in a
ork of this nature.

While revising this Volume, I have developed chapter one on ‘Vectors’ from all my
ntributions to our ‘Vector Analysis’, ‘ Vector Calculus’ and ‘Elements of Mechanics’, chapter
0 on ‘Matrices’ from my contributions to our ‘Mathematical Physics’, chapter three on
Tensors’ from my contributions to ‘Relativistic Mechanics’ after the publication of which a
umber of sections on tensors were taken to our ‘Mathematical Physics’, chapter four on
Group Theory’ (written a new); chapters five to ten on ‘Complex Variables’, ‘Beta, Gamma
d Error Functions’; ‘Différential Equations’, ‘Harmonics’, ‘Fourier Series’, ‘Integrals
d Transforms’ and ‘Laplace’s Transforms’ from my contributions to our ‘Mathematical
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Physics’. Chapters eleven to fourteen on ‘Hankel Transforms’, ‘Diffusion, Wave and
Laplace’s Equation’, ‘Maxwell’s Electromagnetic Field Equations’ and ‘Special Theory of]
Relativity’ have been written quite new. Chapter fifteen on *Statistical Probability’ has been
developed from my contributions to our ‘Mathematical Statistics’. In the end the three
Appendices A, B, C on ‘Some formulated results in Basic Mathematics’, ‘Asymptotic
Expansion of Error Function’, and ‘Character Tables in Group Theory’ have veen added in
order to enhance the utility of the work.

In the preparation of Appendix C, | have been much guided by ‘Elements of Group
Theory for Physicists’ by A.W. Joshi, Published by Wiley Eastern Ltd., New Delhi, 1
acknowledge my indebtedness to both author and the publisher of this book. Moreover, 1
acknowledge my indebtedness to all my past and present coauthors, chiefly my colleagues
Messrs O.P. Gupta, H.C. Sharma , J.P. Agarwal, Satya Prakash (formerly a'student of mine),
and the publisher M/s Kedar Nath Ram Nath, Meerut.

My thanks are also due to A.W. Joshi of the Institute of Advanced Studies, Meerut
Univerity and to Naresh Kumar, my colleague and a former pupil of mine, for their concrete
suggestions during the preparation of this book. I would be failing in my duty if I do not
acknowledge my deep gratitude to my colleagues P.C. Jain, M.P. Tyagi, B. Singh and V.P.
Arora for not only rendering me their best help and cooperation but also encouraging and
inspiring me all along.

Any suggestions for further improvement of the book from any corner will be thankfully
accepted and executed.

B.D. Gupta
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CHAPTER 1

VECTORS

1.1. INTRODUCTION

It is generally observed that there exist two types of physical measurements in applied.
mathematics, physics and mechanics : one involving only magnitude and no direction in
the space of three' dimensions, such as volume, mass, length, speed, tempcraturc.
potential, electric charge etc., and the other involving a definite direction in space
. associated with their magnitudes such as velocity, acceleration, momentum, force, electric

. or magnetic field intensities etc., the former being called scalar quaniities or simply
scalars and the latter, vector quantities or simply Vectors.

A little consideration will exhibit that the complete characterization of a scalar
qummy requlres length and support, i.e., a specified unit and a number stating how many
times that unit is contained in that quantity, while the complete characierization of a
vector quanmy requires length suppon and sense, i.e., a specified unit, a number stating
how many times that unit is contained in that quantity and the statement of the directian.

Stating in 3 precise manner a veclor means 'a directed line segment'. In other words
we can state that a vector is a quantity having direction as well as magnitude. In
Astronomy a vector means an imaginary straight line that joins a planet moving-round a
cemre (generally the focus of an elliptic orbit) to that centre.

1.2, REPRESENTATION WF VECTORS

Since a vector is the‘“result of abst:acuon, its magnitude and direction may be represenwd
-—)
by a line OP directed from the.initial point O o the terminal point P and denoted by OP.

¢ Yy .
_Here the length of vector QP denoted by IOPI opP : N ',
is called magnitude or module or modulus of the G‘k Ya —~>?P
vector and the direction in space is indicated by an P o*
arrow head on the line. ’ Fig. 1.1

. - - ' ',
" -In Fig. 1.1, the vector OP has been shown by V' (or in Clarendon print by V) while its.
scalar magnitude is stated by V. Thus OP is the length of the vector V, while the line of

._) .
indefinite length of which the directed line segment OP is only a part is the support of V
and the sense is from O to P.
It should be noted that formulation of a law of physics i in terms of vectors is however
* independent of the choice of axes of reference, i.e., the vector representation has a physical
comtent without reference to any coordinate system.




1.2 MATHEMATICAL PHYSICS

1.3. KINDS OF VECTORS

Equal vectors. Two given vectors may be equal only when they. have the same
magnitude and the same direction, i.e., the given two vectors are equal if and only if they
have the same or parallel support wnh equal length and the same sense. For example in
Fig. 1.1, we have

’
-
V ( OP) V, ( 0'P1)=-V2 (= OIIPII)

where V;and V,have the same scalar magnitude as V but V) has the same and V; the
opposite sense to that of V.

Null vector. A vector having the initial and the terminal points coincident is
termed as a zero vector or a null vector. Thus a null vector has its module zero.

Unit vector. A vector havmg its modulus as unity is called a unit vector.

If a is a vector and 'a’ its modulus, then unit vector a is denoted by @ (read as 'a hat'
or ‘a caret) defined as

a
a=s—=—

la| a
Polar vectors. The line vectors representing the quannues like force, velocity etc.,
in which merely a linear action in a particular direction is involved, are termed as polar
vectors.

Axial vectors. The line vectors representing the quanuues like angular velocny. :
angular acceleration etc., in which some rotational. action is involved about an axis and
which are drawn parallel to the axis of rotation in order that the magnitude of the quantity
is determined by the length of the vector and the direction by the rule of right handed
screw (i.e,. rotation being considered in clockwise direction), are termed as axial vectors.

Free vector. Evidently a vector can be represented by an infinite number of equal
vectors by drawing parallel supports. Such a vector which can be transported from place
to place such that it remains of the same magmtude and keeps up the same direction is
termed as a free vector. In fact a free vector is assumed o remain the same through
transportation, irrespecitve of its position in space.

“Localised or Line vector. We have defined that the value of a free vector
depends only on its length and direction, but if it depends also on its position in space,
i.e., if a vector is restricted to pass through a given origin, then it is termed as a localized
vector.

Collinear vectors. The vectors parallel to the same line, regardless of their
magnitudes and sense of directions are termed as collinear vectors. In other words the
vectors having the same or parallel supports are known as collinear vectors. Such vectors
are parallel to each other and thty may coincide in a special case. As such there exists a
scalar ratio say A between any twq collinear vectors a and b of the form

b=Aa

which follows that one of the two collinear vectors can be expressed as the scalar multiple
of the other.

" Non-collinear vectors. The vectors whose directions are neither parallel nor
coincident are said to be non-collinear.

Like vectors or co-directional vectors. The vectors which are collinear and
have the same sense of directions i.e., the vectors directed in the same sense irrespective
of their magnitudes are termed as like vectors.
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Unlike vectors. The vectors which are collinear but have opposit~ sense of
~ directions from each other are termed as unlike vectors.

" Coplanar vectors. A system of vectors lying in the parallel planes or which can
be made to lie in the same plane are said 1o be coplanar vectors. Evidently any two
vectors are always coplanar.

Non-cOplanar' vectors. A system of vectors consisting of three or more vectors
which cannot be made to lie in the same plane are called non-coplanar vectors.

Reciprocal vector. Any vector having its direction the same as that of a given
- vector a, but its magnitude as the reciprocal of the magnitude of a is termed as the

. . 1
reciprocal vector of a and written as a=' or — - As such
a

alle

. . a - o
a a=—a=— (by definition of a unit vector).
a

h
N

In‘this connection it is notable that the magnitude and so the reciprocal of the magnitud .
* of a unit vector being unity, the unit vector is reciprocal to itself and it is said to be self-
recip'ocal

4 Negative vector. The vector having the-same magnitude as the vector a but '
. opposite direction, is known as the negative of a and written as - a.

: d
Position vector. If a vector OP specifies the position of a point P relative to an

, oo o |

_ arbitrarily chosen point O, then OP is called the Position vector of P with respect to O,
* the origin of vectors.

Problem 1.If (a,b,c) is a right handqd set, which of the following sets are right

(z)a ¢,b;@)b,c,a; )b, ac; (iv)c,a,b;(v)c,b,a
It is clear that the sets (ii) and (iv), i.e..b,c,a;and c, a, b are right handed.
Problem 2. Discuss the geomélricdl significance of aA + bB = 0.

‘We have aA + bB =0, a, b being scalars.

4
This can be written as A = --b-B
! : a

“AB if A=-2
. a

i.e., A is expressible as a scalar rhultiple of B so that the vectors A and B arc parallel
or collinear.

1.4. ADDITION OF VECTORS |

The characterisation of process of summation is inherited in the composition of two or
more displacements of a point. Suppose that we have two vectors a and b acting at a

paint O as shown in Fig 1.2. Let OA =aand QB =b.
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Clearly the resultant effect of the vectors a and b
is the same as that of their vector sum v obtained by
setting off the vector b at the end of a and then
joining the beginning of a to the end of b. This
geometrical construction utilised to find the vector
sum of two vectors a and b is known as the
parallelogram law of addition of vectors.

- o -
Fig. 1.2 Thusv=0C =0A + AC=a+b (1)

A similar result follows by starting with b and setting off the vector aon b, i.e.,

e :
v=0C =0B + BC=b +a. ..(2)
Conclusively the result of adding two co-initial vectors is the vector represented by
the diagonal of the parallelogram having the two given veclors as its adjacent sides.
From (1) and (2) it follows that
. a+b=b+a

i.e., the two vectors obey the commutative law
of addition, according t0 which the vector sum of
two vectors is independent of their order. '

We now propose to find the sum of three vectors

B ) - -
say a,b,c. Let OA =a, AB =b, BC = ¢ as shown
in Fig. 1.3. Then

- B
v=0C=0A+AB +BC=a+b+ec. ...(3)
-5 oS o .
Also v=0C =0B + BC

- - -
=(0A + AB) + (BC)

=(a+b)+c. ' ..d)
Similarly v=a+(b+c¢) ! ...(5)

and v=(a+c)+b ...(6)
It follows from (3), (4), (5) and (6) that :
v=a+b+c=@+b)+c=a+(b+c)=(a+c)+b.
i.e., the three vectors obey the associative law of addition, according to which the
vector sum of three vectors is independent of the mode in which component veciors are
associated in different groups.
In general, if there are n vectors a, b, ¢...n, then B
their vector sum v is given by

v=a+b+c+.4+n . Y

1.5. SUBTRACTION OF VECTORS
If there are two vectors a and b, then 0
a-b=a+(-b), B.o

i.e., the subtraction of b from a may be regarded as
the addition of - b to a. Thus to subtract b from a, L
reverse the direction of b and add w0 a, (Fig. 1.4). 8
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1.6. MULTIPLICATION OF A VECTOR
BY A SCALAR

If a be any given vector and s a given scalar, then sa or as is defined as a vector whose
magnitude is |s| times the magnitude of the vector a, i.e. |s| times the length of a,
the support being the same or parallel to that of a and direction being the same or
-opposite to that of a, according as s is positive or negative. We thus have

@) s(-a)=(-s)a=-sa. o
@ (-s)(-a)=sa.
(i) (s +¢)a=sa+ ra,¢being another scalar.
(iv) (st)a=s(1a) =1 (sa).

(v) 0Oa =0, 0 being the null vector.

§ (vi) If two non-zero vectors a and b are collinear, then there exists a non-zero scalar
. m, such that .

a =mb.

Conversely the relation of this type implies that b is parallel or collinear o a.
(vit) If & is the unit vector co-directional with a while a = |a |, then

a=gaorsa=s(aa)=saa.
a _a . , a .
i——|=-— and if b is parallel to a, then b =+ b— according as b and a
al a a
have the same or opposite directions.

. Note. Division of a vector a by a non-zero scalar s is 1egarded as the multiplication
of the vector a by a scalar 1/s.

Problem 3. If there are two vectors a and b represented by the sides AB and BC of
a triangle, then show that their resultant is represented by the third side AC. Why is this
method equivalent to the parallelogram law of addition?

As shown in Fig. 1.5, the vectors a and b arc

Alsoas a=

—_

C represented by the sides AB and BC of the triangle. Here AC
is a vector drawn between the initial point of a and terminal
point of b and thus may be obtaincd by parallelogram law
of addition, for if we complete the parallelogram ABCD,

-
A > B ~then AC represents a vector along the diagonal of the
' parallelogram and passing through the common point of the
N adjacent sides AB and AD representing the vectors-a and o.
Fig. 1.5 gs such the vector addition obeys the parallelogram law of
rces.

Problem 4. What vector must be added to the two vectors i - 2 j + 2k and 2i +j
~ Kk, 50 that the resultant may be a unit vector along the x-axis ? ,

Suppose that . .

a=i-2j+2kand b=2i+j-k.

Then a+b=3i-j+k.

Hence, in order that the resultant of a and b, i.e. a + b be i, we have 1o add a vector.
' - Qi-jrk).ie;-2i+jk.
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L.7. VECTOR SPACE OR LINEAR SPACE
A vector space (or linear space) over a field F is a set V of elerhents called vectors which
) g::y be combined by two primary operations—addition and scalar multiplication ; such
t

@i the vectors a and b belong to V, thena +b also belongs to v. (This is
krown as closure property).

(éf) Thé vector sum of two vectors a and b belonging 10 V, is commutative, ie.

.a+b=>b+a.
(iii) The vector sum of three vectors a, b, ¢ belonging 1o V; is associative, i.e.
a+b+c=(@+b)+c=(@+c)+b= a+(b+c)
(iv) In vector addition there exists an additive tdenmy vector known as null vector,

such that
a+0=a.

(v) To every vector a in V, there corresponds a vector — a known as additive i inverse
vecior,such that
a+(-a)=0.
(B) (i) If m, n are any two scalars and a is a vector in V, then distributive law holds,
ie.,
(m + n)a=ma + na.

(i) If m is any scalar and a, b are two vectors belonging to V, then distributive law
of scalar multiplication holds, i.e.

(a+b)m=am+bm.

(iii) If m, n are any two scalars and a, is a vector belonging to V, then associative
law holds, i.e.

m (na) = (mn) a = n (ma).
(iv) To every vector a in V, there corresponds a multiplicative identity scalar, such
that - :
la=a.

Note. In case of scalar quanuues m, n, p, we have the followmg laws of
combmauon

() The addition is commutative, i.e.
m+n=n+m.
(it) The addition is associalive, i.e.
m+n+p=(m+n)+p=(Mm+p)+n=m+ (n+p).
(iii) There exists an additive identity scalar 0, which when added to another scalar,
leaves it unchanged, suchas ’
m+0=m.
(iv) To every scalar m, there corresponds an additive inverse scalar -m, such that
: , m+(-m)=0.
In fact m and —m are inverse of cach other as their sum is zero (identity scalar).
(v) The multiplication is distributive, i.e.
m.(n +p)=mn+m.p.
(vi) The multiplication is commutative, i.e.,
) m.n=n.m.
(vii) The mulplication is avsaaauve ie.
m.(n.p) = (m.n).p = n.(m.p).
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(viii) There exists a multiplicative identity scalar 1, such that
m.l=m. '

1
(ix) To every non-zero scalar m, there corresponds a multiplicative inverse scalar —
such that
m.i— =1 (the identity scalar).

Interpretation: Due to directional properties of vector these laws cannot be applied to
vectors and laws for vectos are consistent with the physical problcms in which vector
quantities occur.

1.8. CONDITIONS FOR A PHYSICAL QUANTITY TO BE
REPRESENTABLE BY A VECTOR

We have already mentioned that the vector sum of two or more vectors is inherited in the
combination of two or more displacements of a point in flat space. Besides displacements
there are other many more physical quamities which enter into combination in accordance
with the same invariance properties as d:splaccmems Such quantities are also
representable as vectors. Precisely a physical quantity representable by a vector must
satisfy the two conditions : (§) It must obey the parallelogram law of addition, and (ii) It
must have a magnitude as well as direction independent of any choice of co-ordinate axes.

Examples of physical quantities representable by a vector are : velocity, acceleration,
electric field intensity and magnetic fields, etc.

Note. It should be noted carefully that all quantities havmg magnitude and direction
are not necessanly vectors. For example, consider the rotation of a rigid body about an
axis fixed in space. It has got the magnitude as the angle of rotation and the direction as
the direction of the axis. But two or more such rotations do not obey the parallelogram
law of addition as they cannot be combined according o the vector law of addition, unless
the angles of rotation are vanishingly small. Hence the finite rotations cannot be
represented as vectors as may be seen by experimental verification.

Prablem 8. Classify whtch of the following physical measurements are vectors
and scalars:

Volume, velocity, mass, acceleration, length, speed, temperature, momentum, force,
power, pressure of a gas, temperature gradxent dzsplacement. work, potential, kinetic
energy, electric charge, electric or magnelic intensities, magnetic moment.

“In the light of the discussion made in §1.8 and the definitions of vectors and scalars
so far introduced the above measurements may be classified as follows :

" Scalars Vectors
Volume ’ - Velocity
Mass : Accerleration
‘Length Momentum
Speed Force
Temperature ~ Power
Pressure of a gas Temperature gradient
Work Displacement
Potential ) Electric and magnetic
Kinetic energy . field intensities

Electric charge Magnetic moment
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Problem 6. Which of the following have representations as vectors?

(a) Weight, (b) Specific heat, (c) Momentum, (d) Energy, (e) Speed, (f) Velocity,
(g) Magnetic field intensity, (h) Gravitational force, (i) Kinetic energy, (j) Age, (k)
Flux. to

_Applying the conditions for a physical quantity to be representable as vector as
mentioned in §1.8, we observe that the following quantities have representations as
vectors :

(¢) Momentum, (i) Velocity, (iif) Magnetic field intensity, (iv) Gravitational force.

1.9. RESOLUTION OF VECTORS

(i) Coplanar vectors. If there are two non-collinear vectors a and b, then a third
vector r which is non-collinear with neither of a and b but can be made to lie in the
same plane in which a and b lie, can be uniquely expressed in terms of a and b in the
manner

r=ma+nb
where m, n are scalars.
‘As shown in Fig. 1.6, consider two coplanar vectors .

- - — -

OP and OQ such that OP =a and 0Q = b. Now take
- - -

another vector OC coplanar with OP and OQ such that

-
OC =r.

Now take points A and B on OP and OQ respec-
- - - - —
tively, such that OA = m. OP and OB =n. OQ ; m, n v '
being scalars. Fig. 1.6
It then follows from the parallelogram law of vectors, that

- o -
r=0C =0A +AC
- o

=0A + OB

- -
=mOP + 0Q ,
=ma+ nb

(i) Non-coplanar vectors. If a, b, c be three non-coplanar vectors, then any
vezior r can be uniquely expressed as .

r = ma + nb+ pe,
where m, 'n, p are scalars.

' Choosing a point O as origin of vectors, let OA, OB, OC be three non-conlanar
‘lines, such that



- - -
OA =a,0B =b,0C =c.

-

Take any point P, such that OP =r, in the space
of thrce dimensions. Through P draw planes parallel
to thrce planes BOC, COA and AOB meeting OA,
0B,0C in L, M and N respectively. We thus gel a
parallelopiped with OP as one of its diagonals. Then

-5 o
r=0P = OL+LP

'--0L+ LN’+ NP’

- o9 -5
=0L + OM + ON
Fig. 1.7 : =ma + nb+ pe,

where m,-n, p are scalars and OL OM ON bemg collincar wuh OA OB OC
tespccuvcly, we have

L -
OL =ma, OM = nb, ON = pc.

(iii) Components of a vector in three mutually perpendicular
directions. Let OX, OY, OZ be threc non-coplanar lines such that each line is
perpendicular to the plane containing the other two. The system of axes so chosen form a
right handed co-ordinate system such that if OX is turned towards OY about OZ through a
small angle. a right handed screw would advance along the posmvc dircction of OZ.

Let OP represent the given vector r and let the
length of orthogonal projections of OP along the
axes be x,y,z rcspectively It is conventional to

“take i, j, k as unit vectors along 0Xx,0Y,0Z
respectively, so that

- - o
OA =xi, OB =yj, OC =2k, .

where OA, OB, OC are collinear with 0X,
OY, OZ respectively.

e T e -
Now r=0P =QA + AP =0A +,AQ + QP Fig. 1.8

- - -
=0A + OB + OC
= xi+yj+ 2k,
Here xi, yj, zk are called component vectors of r along the directions of i, j, k and
are the orthogonal vector projections of r along these directions. The scalar projections x,

¥~z are the rectangular cartcsian co-ordinates of the point P refcrred to O as origin and -
0X, QY, OZ as axcs of rcference.,

Note 1. Modulus (magnitude) of a vector. "Modulus of'r, i.e., |57’| is given
by
V(OA2+ 0B2 + 0C?), i.c., V(x2 + y2 + 22).
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Thus if r = xi + yj + zk, then

Irl =2+ y2 + 22 = |OPI.
. Note 2. Direction Cosines. If OP makes angles o, B, y with 0X,0Y, 0Z,
respectively, then x = OP cos a, y = OP cos B, z = OP cos ¥, but from note 1, OP =

v (x2 + y2 + 22) ; therefore we have
. x . y z
cos a=—————-—,cosB= *COosS Y= .
(x-2+ ¥+ zz) (xz/-f- y2+ zz) . (x2+ yi+ zz)

The quantities cos a, cos B, cos y introduced and defined in this manner are called the
direction cosines of the line OP with the axes OX, OY, OZ respectively and are usually
denoted by I, m, n respectively i.e.,l =cos &, m = cos B, n = cos Y

It is obvious that - ‘

cos?a + cos2P + cos2y=1,
ie. RP+m?+nt=1. )

Note 3. Distance between two points. Let a, b be the position vectors of two
points A and B whose cartesian coordinates are (x,, y;, 2;) and (xz, y2, 2) respectively,
then

a=xi+ Y+ 21Kk ;b= x4yl + 2k,

—_
AB=b-a=@x-x)i+ (2=-y1)i+(22-21)k,

so that AB = I Z)BI = Vl(xe- )% + 02 - )2 + (2~ 21)?]
Problem 7. Ifa = 5i+ 6j -4k and b = 2i + 3j, find
()) Magnitudes of a and b
(ii) the direction cosines of a and b.
@) Here lal =V((5)2+(6)*+(-4)2) = V77,
bl =V{@)2+(3)%+ (0)2) = V13.

(if) Direction cosines of a and b are respectivelv

>_ ¢ 4 and 23 0
A e N
Problem 8. /fA =4i+6j+2kand B =i + 6j + k, find the magnitudes and
direction cosines of (A + B) and (A - B).
Given A=4i+6j+2kand B =i+ 6j + 2k,
(A+B)=4i+6j+2k+i+6j+k=>5i+12j+ 3k.
magnitude of (A + i8) = V(52+ 122 + 3?),

Ans.

ie. [A+B| =v(@25+144 +9) =178
direction cosines are given by
|A + BI, 5
cos = = .
|a+B] \J(178)
A+B
cos p = |a+B| 12

[a+8]  Ja78)’



|A+B|, 3
|a+B] (78)°
where cos @, cos B and cos y are direction cosines along x, y and z axes respectively. -
A-B=4i+6j+2k-(i+6j+k) -
=4i+6j+2k-i-6-k
=3i+k.
magnitude of (A -B) = |A -B| = ¥(32+ 12) «/—-
Direction cosines of (A - B) are given-by

cosy =

cosO = IA—ﬂﬁ: 3
[a-B] 0
~ |a-B|
cospP = L=,
|A-B|
cos = IA-BI‘- !
" TaTB| "V

_ Problem 9. A person travelling eastwards at a rate of 3 m.p.h., finds that the wind
seems 10 blow from the north, On doubling the speed it «appears to come from north-east.
Find the irue velocity of the wind.

Let i, j be the unit vectors along east and south,
N so that by Fig. 1.9, ‘ve have

- -
E OA = 3i, OB = 6i.

-4

The relative velocity of wind is along AC = )'J
(say)
. Actual velocity of the wind
Fig. 19 =0A + AC = OC = 3i +yj | .
Again, the relative velocity of the wind is along BC, such that

V4 ABC = 45°, Z BAC = 90° and so £ ACB = 45°,
. AB'=AC =3 units = y.

-~ Actual velocity of the wind = 3i + 3j.and so

IO_E'I = \’(9'4- 9)=3V2 m.ph.

- .
Also" OC. makes cqual angles with OF and OS, i.e., the wind is blowing from north-
weslt at 3V2 m.p.h,

Problem 10. The vectors of magnitudes a,2a, 3a meet in a pgint and their
directions are along the dtagonals of three adjacent faces of a cube Delcrmme their

resultant. iy
Consider a cube of unit lcngth and lct i, j, k be the unit vectors along lhc ad, jacent o
edges OA, OB, OC as shown in Fig, 1.10. . L
- =

Also let OA 0Q, 0S be the vectors of magnitudes a, 2a, 3a along the thrce
diagonals, OM, OL, OD of threc adjacent faccs.
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I
HereOL = OA + AL =i+
A b—;, i+
YL _+J
so that OL_OL—W
Similarly unit vectors along OM
i+k j+k

and OD are —77.73-

Now

= == oM=L (k+i).
op |0P| 7 (ki)

Similarly OAQ = % (i+)) and 53 = %(j +k).

- If R be the required resultant, then
- — _3a i Sa 4a

=ortop*tos = it F it pk
Its magnitude = |R | = J{(—j—%) +(—3—%) + (%) }= 5a which

3 1 4
is inclined at angles cos-! , cos™ , cos”! with the edges OA, UB,0C
: & sV2 V2 Sv2 g

respectively.
Problem 11, If the resultant of two forces is equal in magnitude to one of the
components and perpendicualr 10 it in direction, find the other component.
Let P, Q be two forces inclined at an angle 6 and
let their magnitudes be P and Q respectively. Also let
- ij be the unit vectors along the direction of P and
‘{‘ in a direction perpendicular to it. According to the
question the resultant of Pand Q is P in a durecuon
) perpendicular to that of P.
i Here
P=Piand Q =Qcos 8i+ Q sin 8], so that
\ . P +Q =P gives
— Pi+ Qcos 8i+ Q sin 8j, = Pj,
P ie. , (P+Qcos B)i+(Qsin8-P)j=
Fig. 1.11 ' Equating the coefficients of like vectors on either
side, we get
P+Qcos 0=0andQsin6-P=0
. r
e 0= MO e
. Dividing, lan 6=-1, te,9=l35°

= P2,

ol

Hence - =
once = sin l35°
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Problem 12. The base BC of a triangle ABC is divided at G so that mBG = nGC.
Show that mAB?+ nAC? = mBG?+ nCG?+ (m + n) AG2. .

Taking A as origin of vectors, let position
vectors of B and C be b and ¢ respectively.

Since mBG = nGC A
BG n -
ie —_——=— b -
_ GC m <
or BG:GC=n:m, .
therefore the position vector of G is given by 8 A c
— nc+mb Fi
=277, g 1.12
AG™ sim
Now

- - -
m3G2+ nCG2+ (m + n) AG*= m (BG)? + n(CG)? + (m + n) (AG)?

- - S -
=m(BA + AG)*+ n[CA + AG)2+ (m + n) (AG)?

nc+mb7? nc+mb?? nc+mb\
=m|-b+ +n|-c+ J +(m+n) | ——

n+m n+m n+m

( 5 [mn? (c - b)2+ nm2 (b - ¢)? + (m + n) (nc + mb)?)
m+n

[mn (m + n) (b = c)2+ (m + n) (nc + mb)?)

_ 1
B (m+ n)*

(mnb2+ mnc? - 2mnb.c + n%c2+ m2b2+ 2mnb.c],

m+n

- [mb2(n + m) + nc? (n + m) = mb? + nc?
m+n

, b2=b%and ¢2=c?
= mAB? + nAC? (by properties of dot product)
Problem 13. The line AB is bisected in Py, P\B in P, P2B in P3 and so on ad

. pe s . m m
iafinitum; and the particles of masses m, Y -2—- .etc., are placed Py, Py, Ps...elc.,

respectively. Prove that the distance of their centre of mass from A is equal lo one-third of
the distance from B 1o A.

Taking A as origin let the posmon:vector of

Bbeb. The position vectors of the points P,, »* ¢ it
b b b A AooRR S
Py, Ps.. e(c are — > ?? ...... respectively. Fg. 113 .
Let G be the required centre of mass; then R
md,m b mb, ' '
o2 2 2% 2% 9%
AG~ m+ 2 Dy
mE kg
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1
_ -2-+E-3'+-2—s-+... _ l—llzz_b
—p{22 2, 1-1l/27 b
1+-1-+i+ —l- 3
2 22 voe l__l_
2

i.e. AG = L of the distance from B to A.

Problem 14. Prove that
(a) The internal bisectors of the angles of a triangle are concurrent.
(b) The medians of a triangle meet in a point of trisection of each other.
(Nagpur, 1965)
(a) Consider a triangle ABC, the position vectors of whose vertices A, B, C are p, q,
r respectively. Let a, b, c be the lengths of the sides BC, CA, AB respectively.
If AD be the internal bisector of the angle A, then by geometry,
BD:DC=AB:AC

=c:b.
~. The position vector of
_bg+cr
T b+c

Now the position vector of a point I dividing
AD intheratiob +c:ais

bq+cr
) (b+c). brc +
b+c+a
_ap+bg+cr.
a+b+c ‘

The symmetry of this result follows that the point / also lies on the other two
internal bisectors, namely BE and CF.

Hence the three internal bisectors of a triangle are concurrent.

(b) Consider a triangle ABC, the
position vectors of whose vertices are a, b,
¢ respectively. Let D, E, F be the mid.
points of the sides BC,CA,A B
respectively; then their position vectors are

b+c c¢c+a a+b
2 2 2
respectively. . ’

The position vector of a point G
dividing the median AD in the ratio 2 : 1 is

ap

Fig. 1.14

2l)+c
2T aibee Fig. 118
2+1 3

The symmetry of the result follows that the point G also lies on the other two
medians, namely BE and CF. Hence the medians of a triangle meet in a point of trisection
of each other.
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Problem 15. Forces P, Q act at O and have a resultant R. If any transversal cuts
their lines of action at A, B, C respectively, show that

—P—+-Q—-=—E—.
OA 0B OC

Taking O as origin, let a, b, ¢ be the
position vectors of A, B, C respectively; then

YR ISR B S
OA' - OB’ ocC-
so that ’
[id [
- P Pa-OAa.Q-OB
Fig. 1.16 S0
‘e R=R .
ocC
. P () R
S P =R, .. — — b=—
ince +Q oA a+OB oC C
or La .—Q_b_ic 0

OA 0B oc
The points A, B, C being collinear, we must have
—P_+£---£-=O' 1 L+-—Q—.=—R;-.
0OA 0B OC . 0A 08B OC
Problem 16. If the force Fy, F,,...F, acting in a plane a1 O are in equilibrium
and any transversal cuts their lines of action in points L,,L,..., L,and a length OL is

positive when in the same direction as OF , then prove that ¥ .O‘FZ =0.

Let AB be the given transversal such N
that the force Fy, F,,..., F, make angles 6,
6,...., 6, with it. '

If p be the length of the perpendicular
from O to AB, then

: P

0, =,

sin 6, oL,
Ld =L
smoz-Olq .., sin 6, oL,

Let i, j be the unit vectors along and
perpendicular to AB and F, F,, F,, etc., be
the magnitudes of the forces, then Fig. 1.17

F,=F, cos 6,i+ F, sin 6, j,
Fy= Fycos 6i + F,sin 6, §,

F,=F,cos 8,i+ F,sin 6,j.
The system being in equilibrium, we have F, + Fy+...+ F,=0i.e. (F,cos 6, + F,

cos 6, +...+ F,cos 6,) i+ (F, sin 6, + F, sin 6, +...+ F,sin 6,) j = 0. Equating the
coefficients of j on either side, we get F, sin 6; + Fysin 8, +...+ F,sin 6,=0
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ie. FLsr Loy sf, L0 ie zL0
oL, oL, oL, oL
Problem 17. A boy runs 3 miles on a road towards east. It then turns towards
north and runs 4 miles before stopping. Find the resullant distance covered by the boy.
Taking x and y-axes of co-ordinate system along

B east and north respectively, let A and B be the two
y successive displacements given by
Y A =3i
B =4j.

So that their resultant,

(3] r =A+B=3i+4j
] Y N ~lel =VG3 443 =425)
s = 5 miles making an angle
@ with x-axes where
Fig. 1.18 an g < Soeft-ofi _ 4.
coeft. ofi 3

Giving cos 8 = % i.e. @=cos™ %

Problem 18. A car is driven eastward for a distance of S miles. then northward for
3 miles and then in a direction 30° east of north for 10 miles. Draw the vector diagram
and determine the total displacement of the car from its starting point. ,

Taking x and y-axes lowards east and north
respectively, and z-axis along the vertical, let
the displacements along these axes be a, b, ¢ -
respectively, Then the resultant displacement r
is given by

r=a+b+c.
But according to the given problem, |
a=5ib=3j J'
and ¢ =10 sin 30° i + 10 cos 30j 1
5i + 5V5;j. |
i+ 3j + 5i + 5V3j :
10i + (5V3 +3) j.
Sothat |r| =r=V(102+ (5V3 + 3)?) [T A
=V (100 +75+9 + 30V3) o
= (100 + 75 + 9 + 52) = V(236) 0 o A —
= 15.35 miles v

r

. " Fig.1.19

,_-10 or 8 =cos 10
V(236) \’(236)

Hence the resuliant displacement has magnitude equal to 1535 miles making an

and cos @ =

angle cos™! 10 north of cast, i.e. with x-axis
|(236)

Problem 19. The projection velocity of a rocket is expressed as
v=Si+7j+9k



!
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where i, j, k are unit vectors along east, north and veriical direction re.gpecnvely
Calculate the magnitude of horizontal and vertical components of the velocity. Also
datluce the change in angle of projection if the vertical component is doubled.
(Agra, B.Sc., 1969)
" The velocity vector is given to be expressed as’ '
- -v=5i+7j+ 9%k
where i, j and k are unit vectors along east, north and vertical directions respectively,
which are taken as axes of reference. .
Clearly the vertical component of velocity vector = 9k.
~. the mangitude of vertical component of velocity = lok | =
Horizontal component of velocity vector = 5i + 7j.
- magnitude of horizontal component of velocity
=V(52 + 72) = V(25 + 49) = N(74).
In case the rocket is projected making.an angle o with east, then we have

cos a = IS.' = >
[Si+7j+9Kk| J(S’ +72493)
_ 5 __5 __s
J(25+49+81) |(155) 12.45
= 4016

o =66°17' (by tables of cosine).
lf the vertical componem is doubled, then the velocity vector becomes

= 5i + 7j + 18k.
As such , the angle of projeclion of rocket with east is given by
jxl 5 5 5
=.2507
or B=75°29"

Hence the change in angle = - 0. = 75°29'- 66° 17°=9° 12",

1.10. LINEAR COMBINATION OF VECTORS
A vector v is termed as a linear combination of a set of n vectors vy, v,, Vi..., v,, if it
is expressible as

Vv=k Vi+kyVy+ kyvat...+k,V,
where k,, kj, k3, ...k, are scalars.

The set of n vectors vy, vs,...v, is said to be linearly dependent if there exis(s a set
of n scalars k,, k3, ka,...k,such that all of them are not zero i.e., at least one of them is
non-zero, satisfying the relations. -

le|+k2V2+ +k V. =0

If all the scalars &y, k,...k, are zero i.e. k; = k; =...= k,= 0 then the set of n vectors

vy, Va...v,combined as
kyvi+ kavo+..+ k,v,=0
is said to be linearly independent.

Note 1. 1t is evident that if a set m (m < n) out of n vectors is linearly dependent,
then the whole set containing n vectors is linearly dependent.
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Note 2. If the set of n vectors is linearly independent, thien clearly any subset of these
n vectors will also be linearly independent.

Problem 20. If a set of n (> 1) vectors is linearly dependem then at least one of
these n vectors can be expressed as a linear combination of the remaining (n - 1) vectors.

Let vy, v,..., v, be a set of n vectors which are linearly dependent. This set being
linearly dependent, we must have a linear combination of the type '

kyvy+kyv, ot k,v,=0

~ where all of the scalars k,, k..., k, are not zero.
Suppose k, # 0. Then, we can write

which can be expressed as
= kl' Vi + kzl Vuz +o.t k) v,
thereby-proving the proposition. '

Problem 21. Show that any set of n vectors containing the null vector is linearly
dependent.

Let vy, v,..., v, be a set of n vectors, of which v,is a null vector i.e. v,= 0. Then
by note 1 of § 1.10, if the set vy, v,..., v,_; Of n - I vectors is linearly dependent, the
set of n vectors containing these (n — 1) vectors and the null vector will also be linearly
dependent.

In the case when the set vy, v,..., v,_; Of (n - 1) veclors is linearly independent,
then by definition there exists a set of (n — 1) scalars ky, kj..., k., all of which being
zero, such that

kyvy+ kavy 4.4+ kpy Voo =0,

Assuming that k, #0 and v,, = 0, this relation will still hold in the form
kyvy + kavy 4.4k Vo + ko va=0.

Where all the scalars &y, k,..., k, are not zero, as k, = 0.

This follows: that the set of n vectors vy, v,..., v, is linearly dependent thereby

proving the proposition.

Problem 22. Show that the set of vectors ry, vy, ry given by
rp=2a-3b+c,rp=3a-5b+2c,ry=4a-5b+c,

a, b, ¢ being non-zero and non-coplanar vectors, is linearly dependent .

The vectors r, ra, ry will be linearly dependent if there exists a set of scalars k,, &5,
k3 not all zero, such that

kyry+ kory + kar3 =0 : ' ()
ie, Kk (2a-3b+c)+k;(3a-5b+2c)+ks(da-5b+c)=0
or (2k) + 3ky + 4k3) a — (3ky + Sky + 5k3) b + (k) + 2ka+ k3 ) ¢ =

a, b, c being non-zero and non-coplanar, this relation will hold only if the
cocfflclems of a, b, ¢ separately vanish, i.e., if

7

2ky+ 3ky + 4ky =0 (2
3ky + Sky + Sk3 =0 ..(3)
kl + 2k2 +k3= 0 0'0(4)'

Multiplying (4) by 5 and then subtracting from (3) .
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2k, + Sky = 0 which is satisfied for k; = §, k; = -2 (non-zero values) and then

(4) yields k3 = -1.

These values of ky, k5, ky also satisfy (2) and hence the relation (1) is expressible in
ithe form

S5ty -2r,-r3=0o0rry=5r, - 2r,
ishowing that the set of vectors ry, rp, r3is linearly dependent.

Problem 23. Show that the set of vectors vy, ry, ¥3 given by

n=j-2k,rp=i-j+k,r3=i+2j+k

iis linearly independent.

The vectors r;, r,, ry will be linearly independent if there exists a set of scalars k;,
iky, k4 all being zero, such that

klrl + karg + kar3=0 (1)
e kyG-2k)+ky (i-J+K)+ky (i+2+ k) =0
lor (ko +ky) i+ (ky—ky+2k3)j+(-2k +ka+k3) k=0 ...(2)
Now i, j, k beivng non-coplanar, this relation will hold if
’ ky+k3=0 ' X))
! ky-ky+2k3 =0 ..(4)
: -2k, + ky +k3 =0. . ...(5)
Solving (4) and (5),
k kb _ Kk
-1-2 4-1 1-2
ie. %‘-=%=kf-=3§(say)
These equations give,

kl = 3)., kz = SX. k3= A
Substituting these values in (3) we find,
6.=0ie,A=0
As such, we have
kl =0= kz = k3
showing that the given set of vectors is linearly independent.
Problem 24. Show that a necessary and sufficient condition for the vectors
ry=xd + y,j + 21k, rg = x50 + y3j + 25k, r3 = X351 + y3j + 23k
80 be linearly independent is that the determinant
I
X2 »h %
X3 B &

The set of given vectors will be linearly independent if there exists a set of scalars k).
ky, ks all being zero, such that

kll" + kzl'z + kgl':g =(0
ie. ky(xyi + y1§ +2)k) + kg (x20 + yaoj + 22K) + ks (¥3i + yaj + 23k) =(0
or (x1ky + xoka + x3k3) | + (1ky + Yoka + yaka) J +(21ky + 22k2 + 23k3) k =(0

be different from zero.
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But I, J, k being non-coplanar, this result will hold only if
xlk,+ be'f' X3k3 = O ’ : (l)
Ak + pka+ nky=0
zlkl + 22k2+ 23k3 =0

Elimination of k;, k,, k3 from these equations with the help of a determinant yields

X X2 X3
A R XKl=
5 2 %
But thc given set of vectors being linearly independent, we have
kl = kz = k;- 0

in which case equations (1) are not solvable in the form (2) showing that the given set of
vectors will be linearly independent if and only if

X Xy X3
A 2 »
y 2 3
otherwise the scalars ky, ka, k3 will be different from zero.

=0 ) i2)

20

1.11. PRODUCT OF TWO VECTORS
A careful observation of the ways in which two vector quantities enter into combinations
in various branches of mathematics and mechanics leads us to define two well marked and
distinct kinds of products, one being called scalar or dot product and other being called
vector or cross product. The former yields a number (scalar) while the latter, a vector
quantity. In either case the product is jointly proportional to the modules (moduli) of the
two vectors.

Conventionally, the scalar or dot product of two vectors a and b is denoted by a - b
or (a, b) and their vector or cross product by a x b or (ab).

(1) The Scalar or Dot Product of Two Vectors
Defnition. The scalar or dot product of two vectors & and b, with modules a and &
respectively and their directions being inclined at an angle 6, is defined to be the real
number ab cos 8, i.e.
a-b=abcos 6.
Characteristics of dot product. (i) The dot product of two vectors a and b is
independent of their order
ie. ~ a-b=abcosfO=b-a
(&) The dot product of two vectors a and b may be expressed as the product of two
numbers, one being the length of one vector and the other resolute of the second in the
direction of the first, i.e.
a - b = (length of a) times (scalar projection of b onto a)
="(length of b) times (scalar projection of a onto b).
(uz) Ifa-b=0,then either of the two vectors is a null vector or the vectors a and
b are mutually perpendicular, i.e. 4
a=0orb=0oré= ,n

In particular i - j=j-k=k-i=0;1i,]J, k being mutually perpendlcula. unit
vectors.



' VECTORS | 121,
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(fv) The vectors a-and b are parallel if 8=0orm,i.c.,ifa b =1tab, where a, b
- are modules of a and b respectively.

(v) The scalar product of two equal vectors a, a is given by
a-a=a-acos0°=a?sincethen 6=0
In case a is a unit vector i.e.,a =" then |d}= 1 so that 84 = 12= |
“In particular i -i=j-J=k -k =1.
(vi) The scalar product of two unit vectors &,b is given by
a b-cosBsmcethen[ |=1= 'b'

, (vii) The scalar product is associative i.e. if a, b be any two vectors and m, nbe any -
' two scalars, then

(maY:(nb)=mn(a-b)=mna-b=a-mnb=na mb

(viii) The scalar product being a number, can occur as the numerical coefficient of
. any vector, e.g. (a - b) c represents a vector parallel to ¢ and whose module is (a - b)
times that of c.

(i) In the case of scalar product, the distributive law of muluphcauon holds i.e. if a,
b, ¢ be three vectors, then

a-(b+c)=a-b+a-c
- -
Referred to Fig. 1.20, let OA = a, OB = b,

O—é' = ¢ and projections ¢f OB and BC on OA be
respectively OM and MN, so that

' ON=OM + MN.

It is also clear that .

e
OC=0B +BC=b+c¢
R .
Now, a - (b +¢) =a - OC = (length of a) c

times (scalar projection of 0-2‘ onto a) +
= a(ON), a being module of a R
=q(OM + MN) o M N A
= a(OM) + a (MN)
=a-b+a-cby (i) Fig.1.20
In general, we have , : '
- (a+b+c.) - +m+n.)=a-l+a-m+.+b-1+b-m +... and
in particular,(atb)-(at b)=(ath)?
=aZt2a-b+b?
.and (a+b) - (a-b)=2a2-b2
{x) If 8 be the angle between two vectors a and b whose orthogonal projections
(components) in the directions of axes of x, y, z are (a,, a;, a3) and (by, by, b3)
respectively and if i, j, k be the unit vectors along the axes, then.
a=a,i+a+ak
b = b)i + byJ + bk,
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- (ai+ ayj+ a3k)-(bi+ by j+ bsk)
b |(ai+ayi+ayk)|-|(byi+ byj+byJ)]|
- ay b+ ay byt a3 by o
‘I(a, + az+ a,)\l(b,2+ b2+ b,)
(2) The Vector or Cross Product of Two Vectors

Definition. Given two vectors a and b whose
? : directions are inclined at an angle 6, their vector product is
B defined to be the vector r, whose module is ab sin 6 and.
whose direction is perpendicular to both a and b, being
positive relative 10 a rotation fromato b, i.e.,

r=axb=|al |b|lsingé
=absin @ €

g where € is a unit vector perpendicular to the plane of a and
b, and has the same direction as is obtained by the motion
A of a right handed screw due to rotation from a to b, and a, b

are the modules of a and b respectively.

Fig. 1.21 Characteristics of vector product. (i) The vector
product is not commutative, i.e., by reversing the order of
the factors, tne sign of the product is reversed, e.g.
bxa=basin(-0)€ =-aghsin0€ =-axb
(ii) The magnitude of the vector product a x b is equal to the area of the
parallelogram of which a and b are adjacent sides i.e.
laxb| =labsin@é| =absin®,as [€| =1
= OA multiplied by the perpendicular distance of OA from B.
= Area of the parallelogram OACB.
(iii) The vector product is associative, i.e., if m be a scalar a, b be two vectors, then

(ma) x b =2 x (mb)=m (axb)=mabsin § €) -
(iv) The vectors a and b are parallel, if the angle 8 included between their directions
isOormie., if 8=0orx so that

axb=0assin@=0for8=0o0rmn
which follows that the vector product of two parallel vectors is a null vector.
(v) The vector product of two equal vectors a, a is given by
axa=0. ’

Since the two vectors are equal if they are either collinear or parallel. So that the
angle 6 between them being 0 or z, sin 8= 0 and hecne the result follows.

In particular, if i, j, k are the unit vectors along the principal axes, then
ixi=jxj=kxk=0. ‘
(vi) The two vectors a and b with modules a and b respectively, will be mutually
perpendicular if the angle 6 between their directions is 90°, so that sin 8= 1.

so that cos 8=

As such if a, b are at right angles, then a X b = ab €, € being a unit vector normal
to-the| plane containing a and b.
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~ Incasc a and b are unit vectors, then la| =1
and.|b| =1, therefore @ x b = &, which shows
that the cross product of two mumally perpendicular y
unit vectors a and b is a unit vector € normal to the :
ﬂ.ﬂc of a and b -

Hence, in particular if i, j, k be the unit vectors
along the principal axes, then

ixXjask=-jxi
Jxk=i=-kxj
kxi=j=-ixk
(vii) The vector product of two unit vectors a
and b-is given by
Axb=sinEas |d]| =]b] =1,
where 8is the angle between their directions and € is Fig.1.22
the unit vector normal to the plane of @ and b.

(viii) The distributive law holds, i.e. in case of vector product if a, b, ¢ are three
veclors, then

ax(+c)=axb+axec.
Let the components of a, b, ¢ along the principal axes be (a;, a2,.33); (b,. by, b3)
and (c,, ca, c3) respectively. Then if i, j, k be the unit vectors along the axes, we have

a=a,i+a,yj+ak
b = byi + byj+ bsk
c=cli+C2j+C3k
Sothat, b+c = (B+ c)i + (by* c3)j+ (by+ c3)k

~ax(b+c)=(ai+ayj+ask)x{(by+ c)i+(by+ ca)j+ (b+ ca)k]

= {ay(by+ c3) - a3+ ¢,) )i + {aa b+ 6) - ay(bs+ c3)}

{al(b2+ ¢2) = oy by+ Cl)}

asixj=ketc.
={(a,64- a3b,)i + (a3~ @ b5)j + (@) b~ 0, b)k}

+ {(a263- ascy)i + (a301- @13) + (a162- a1 )k}
=axb+axec, .
[Sincea x b =(a,i+ ayj+ ask) x (i + b, j+ byk)

=(apby- babz)i. +(asb- @ by)j+(a,b,- ay by)k
Similarly a X ¢ = (a2¢c3- a3ca) i + (asc) = a163)j + (a)¢3 - a2¢1)K]
In general, @+b+c+.)X(M+m+n+...) '
=axl+axm+.+bxl+bxm +..+...

(ix) Vector product in terms of components. Consider two vectors a and b whose
components are (a, a,, as), (b1, b2, b3) along the pnnc:pal axes. Then if i, j, k are lhe
.unit vectors along these axes, we have
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a=ai+aj+ak
b=bi+bj+bk
axb =i+ aj+ask)x(bi+by )+ byk)
= (2 b5- taby)i + (a351- 3, b5) + (0, b, 6, b )k

aix)y=k=-jxietc.

i j k .
=g, a, a (Agra, 1954)
b b b

Now if 8 be the angle between the directions of a and b and £, a unit vector normal
to the plane of a and b, then

(axb)? = (absin® &) = {(a,55- ayby)i +(a301- @, by) + ()b, 0zb|)|‘}
i.e., a®bsin?0=(dyby- ayh,)’ + (a3by— aybs)’ + (a,by— ayby)as €2 =1
(ézbs"azbz)z*'(aabx'alb:)z + (b= aphy)’

(af+ a}+ a3) (b7+ b3+ b3)

or sin?@=

. , asal=al= a2+ a+az?elc.
(x) Cross product in terms of dot product. By definition,
(axb)*=(absin® é)2

= a%b? sin? 6,

=a?%? (1 - cos? 6)

= a%bh? - a?b2cos? 0

=a’b®-(a.b)%, - a’=a? b2=b%a-b=ab cos®

Problem 25. If a and b are unit vectors and O is the angle between them, show
‘that
0 1
in —=—|a-bj
sin = 2| |

We have |a-b|2=(a-b)?
=a’+b%-2a-b, v a=a’=1andb’=b%=1

=2-2cos @
=4 5in26/2,
ie. ~ la-bl =2sin 2,
so that sin@2=4%la-bl.

Problem 26. From the relations (Lorentz transformation equauons in theory of
relativity).
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- _C . .
where ¥ = + prove the reciprocal relations

r:r’+[-—-5—y'lv~r'+7:']v,
. v .

,o ver
F=yr+—i .

<

v

¥ - ¥-1 ¥-1 -) -2( v-r)
Sr+ ==V r=-Yl|V+| ==V qr+|—5=V r-Yyt Vo + t———|lv
[ v Y] l v? { ( v? Y Y, c?

2
=r+%';(v-r)v-ytv+%(v~r)v+(yv—;l) (v-r)viv

Here, r'+[y_2l v~r'+~71’]v
-1

2 2 2
ARASMATE AR 1
c

v

' 2
v -r+20—v}!l.(v-r)v-ytv+(yv;zl)-(v~r)v-(y-l)ytv

2 v.r o2 ?
+Y lv-mv .Y ==

sr+1;;-l(wr)v(2+y-l)-ytv-y’tv+yté+72tv- :-riv
ct-v

2
-1 v.r
=l‘+-‘-Y-;’-(l"V)V-z§T;-2-V

--r-o»l —2—702 =1 v-r)v —2—7"" v
\!1 [ v c=-v

)
Again '7[:’+—V ; ]

¢t ot
_ it ver +7v-r+7v Pogyr v
c2-vi -2 PO ?  c-v?




+

e

\

1.26 ' MATHEMATICAL PHYSICS

Problem 27. What is the meaning of (a + b) - (& — b) for the case where a2= b2?
Hee (a+b):(a-b)=a2-a*b+b-a-b2
=a2-b2asa*b=b-a
=0 asa? =b2
This shows tiat either a +b=0,a-b =0 or the vectors a+banda-b are
mutually at right angles.
In the former case when a.+ b =0, ora - b 0, we havea=0and b =0, i.e. both
the vectors a and b are null vectors.
Conclusively, either both the vectors a and b are null vectors or the angle between

the vectors a + band a - b is -!-n

Problem 28, What is the unit vector perpendicular to each of the vectors 2i - j +
k and 3i + 4j - k? Calculate the sine of the angle between these vectors.

Leta=2i-j+kandb=3i+4j-k.

If € be a unit vector perpendicular to the plane of'a and b, then since a X b is also a
vector'perpendicular to the plane of a and b, we have

._axb
(1
|axb| m
Now a xb = (2j - j + k) x (3i + 4j - k)
i j k
=2 -l =-3i+5j+11k
3 4 -1

laxbl | =1 -3i+55+11k |=v (9 +25+121) =V (155).
._axb i+5j+llk

£€= =
Again lal = |2i-j+k |l =V@+1+1)=V6_
bl = 13i+4j-kl =V ©9+16+1)=V26.
Thus if 0 is the angle between the directions of a and b, then
axb=lal |blsing ¢
ie. v
Gn g = axb‘=|axb|
lal|b]€ |a|b]

(155)- _ (155)

6 v25 156
Problem 29. Ifa = 3i + 4j - Sk’and b = — i + 2j + 6k, then calculate
(i) the module of each, :

(i) the scalar product a b,
(iii) the vector sum and difference a + b and a- b.

by (1)

() Wehave - lal = |3i+4j-5kl
=V(O9+16+25)=5V2
and Iv |=|-|+21+6k|

=V (1+4+36) = Va1,
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(@) ab =(3i+4j-5k) (-i+2j+6k)
-3(- 1)+42+(-5).6
"=-3+8-30=-25.
(1) 8+b=3l+4j 5k+(-|+2,|+6k)
=2i +6j + k,
a-b =3i+4j-5k-(-i+2i+6k)=4i+2j-1lk.
Problem 30..Show that a is perpendicular o b if la+b| = a-b].
We have lasbl=1la-bl.
Squaring both sides, we get
2+b2+2a-b=a2+b2-2a*b
or 4a°b=0
or a'b=0,
which shows that a and b are mutually at right angles.
Problem 31. Two particles emitting from a source have displacements
=4+ 3j + 8k and ry= 2i + 10j + 5k at any time. Find the displacement of second
parucle relative to first.
Required displacement = rz- r
= 2i + 10j + 5k - (4i + 3j + 8k)
=-2i+7j-3k.

Problem 32. Find the scalar and vector products of the vectors A and B, where
A=2i+j+kandB =4i+2j-3k. Also find the angle between A and B.

Given , A=2i+j+k,
: B = 4i + 2j - 3k.
Scalar product =A'B
= (2i +j +Kk) - (4i +2j - 3k)
=8+2-3=7.
Vector product =AxB
- = (2i + j + k) x (4i + 2j - 3k)
= 4K + 6j - 4k - 3i + 4 - 2i (1)
= - 5I + 10j.
According to definition of scalar proeduct,
A *B =AB cos 6, ..(2)
where @ is the angle between A and B.
= |A| =V (A, 2-o-A 2+Az)
=V@+1+1)=16,
B=|B|=V(B2+B2+B2)=V(16+4+9)
=v29.
Substituting values of (A - B), A and B in cquation (2), we get
7 = V29V6 cos 6.
- 7. 7

058 = Txe) Ja74) '
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-1

7
i 0 =cos T—— .
‘oe-' (174)

Problem 33. Prove that an angle inscribed in a semi-circle is a right angle.
Referred to Fig. 1.23 ACB is a seémi-circle with AB as bounding diameter and C any

point on its circumference. Let O be its centre and r the radius. Also let AD = a = ob
and OC = b.
Now )47:=Ib+0'b sa+b
and CB=Cb+OB=-b+a.
At-Ch=@+b). (a-b)
=a2-b?

= A0’ - 0C?asa’ = A0? = g0 ctc
=rt-r2 ' ¢

=0. '
But from the definition of dot product, A

. A 2 0 7T 8
cosAACB=&C_-é-=O. ¢ ¢

|at||cBt

AACB--‘;'K.'

Problem 34. Prove that the area of a triangle whase two sides are A and B is
given by %- laxB] . Also find the direction-cosines of normal to this area,

Fig,1.23

Area of the A XYZ

=%A.h

= $AB sin 0

=% | AxBl.
v 4 The vector area is perpendicular to.
A the plane containing A and B. And

Fig. 124 magnitude of area
= i' I A X BI .

»: Vector area = +(A X B) = L(id, + j A, + kA,) X (B, + jB, + kB,)

= %i(AyB;f'Az By) + %j (A;Bz -AB) + *k (AxBy - A,Bx)~
Thus, direction-cosines of the normal to the given area-are given by

AyB,- A,B, 1 A,B,- A,B AB,- AB,
= TaxB] P T2 T Al M YT A%

Note. Area of the parallelogram with sides A and B is double of the above area,
ie., (A X B).

Problem 3s. Show that ax (b+c)+bx(c+a)+cx(a+b) =0

We have ax (b+¢c)+ bx (c+ q)+cx(a+ b)=axb+axc
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+bxc+bxa+cxa+cexb
zaxb=cxa+bxc-axb+ecxa-bxc=0.

1.12. TRIPLE PRODUCTS OF VECTORS

We have stated that-the vector product of two vectors b and ¢ is a vector quantity. So
this product (b x ¢) may be multiplied scalarly or vectorially with a third vector a to
give two triple products namely a. (b % ¢) and a x (b x ¢). The former being a scalar
quantity is termed as scalar triple product and the latter being a vector quantity is called
vector triple product.

(1) The Scalar Triple Product

Difinition. Let a, b, ¢ be three vectors. Then the scalar product of any of these
vectors with the vector product of the other two such as a. (b X ¢) is called scalar triple
product of the vectors a, b, ¢ and denoted by [abc] or [a, b, c]. Obviously, this type
of triple product is a scalar quantity.

“Note. The scalar triple product is sometimes known as Box Product.

Characteristics of Scalar Triple Product. (i) Geometrically interpreted as below, the

scalar triple product of three vectors a, b, ¢ represents the volume of a paralielopiped which

has for its three coterminus edges the vectors a, b, ¢.
Construct a parallelopiped with coterminus

edges OA, OB and OC, such that OA = a, 55 = b,

Ot= ¢

Suppose that n = b X ¢ and its direction is ON,
which is perpendicular to the plane OBEC whose
adjacent sides are b and ¢. The direction of the vector n
is positive in the sense of rotation from OB to OC.

From the pro| y of vector product of two vectors,
Fig. 125 it follows that measures the area of the

parallelogram OBEC
Volume of the parallelopiped with coterminus edges OA, OB, OC
= (area of the parallelogram of the base OBEC) multiplied by the perpendicular
distance of the plane OBEC from the point A)
= (Area of the parallelogram OBEC) multiplied by (the scalar projection of OA
on ON)
=|n| (OA cos 6), where Z AQN = 6

: - .

=Inl lal cos 8, since OA = |04 |=]al

= a * n from the definition of dot product

=a (b x ¢) = [abc] = V (say)
where V measures the volume of the parallelopiped.

The product is regarded as positive or negative according as @ is acute or obtuse. It is
easy to show that
a- (bxc)=b~(cxa)=c-(axb)=iv,

ie.. [abc] = [bcal = [cab] =1 V.
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This follows that if the cyclic order of the occurrence of the vectors a, b, cis
maintained, the position of cross and dot may be interchanged without changing the value
of the product.

‘Again since a X b =~ b x a etc., therefore-

[bac] = [cba] =-[abc]) )= V.,
[ (ii) If the vectors a, b, ¢ are coplanar, then their scalar triple product is zero, i.e.
abc) =0,

Since the volume of the parallelopiped, so formed with coplanar vectors a, b, ¢ as
coterminus edges will be zero.

As such (aab] = [abb] = [cbc] etc. = 0.

(iii) The scalar triple product may be expressed in terms of components.
~ Let a, b, ¢ be three vectors whose ‘magnitudes in right handed system of unit
vectors i, j, k are (ay, a3, a3), (by, ba, b3) and (¢, c3, c3) respectively. Then
' a = ayi + a, + a;k,

b=b|i+b7j+b3k. .
¢ =ci+cj+cik,
i J ok
Wehave,bxe=(b b, by|=(brcs- bycy) i+ (Byci- byca) + (Byca- bacy k.
G € G

a-(bxc)=(a)i+az+ask)  ((byes-bicy) i+ (byc) =bic3) §
+ (bica - bycy) k),

ie. [abe] = a; ( bycs — baca) + az (bacy ~ byc3) + a3 (byca - bacy)
G & a
=l b b
6 € 3

In particular,  [ijk] = (jki] = (kij) = 1
[ikj] = (kji] = (jik] =- 1.
In general if the three vectors a, b, ¢ are resolved in terms of three non-coplanar
vectors 1, m, n, then
a=al +am +asn,
b = bl + bom + bjn,
c=cyl +com +cyn. .
We have (b X ¢) = (bacs— bicd) m X n + (bscy - bica) n X 1+ (byca - bacy) IXm
a* (b x ) = ay (byes - bycy) (Imn],+ a3 ( byc - byc) (mnl)
+ a3 (bicz - bacy) [nim]
a a ayf
=|b b, b [Imn] © as (lmn] = (mnl] = (nlm).
G € €
(2) The Vector Triple Product.
Definition. The product of the type a X (b X ¢) is called the vector triple product
of given three vectors a, b, ¢ and is expressed as -
ax(Mxc)=(@-c)b-(a-b)c.
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" Suppose that q=ax(xc).
Then, q being a vector product of two vectors a and (b X ¢) represents a vector
perpendicular 1o both a and (b X ¢) and therefore by the property of dot product, we have
q-a=0andq-(bxc)=0.
But the product b x ¢ being a vector product. of two vectors b and ¢ is itself a
vector perpendicular, to both b and ¢, i.e. a vector normal o the plane of b and c.

If follows that q lies in the plane of b and ¢, so that q is expressible in terms of b
and c.

Suppose that q = sb + ¢, where s and ¢ are scalars,
~ Multiplying both sides scalarly by a, we get
q-a=s(@-b)+t(a-c),

i€, ——=—t-A(say) (sinceq.a=0)
.a-¢c a-b
Then

ax(bxc)=q=A[@a-c)b-(a-b)cl. ...(1)
~ In order to find A, let us introduce an
‘orthogonal right handed system of three unit
vectors i, j, k such that iis along a and j is
perpendicular to it in the plane of a and b, the
direction of k is automatically decided because, i,
J» k form a right handed system of vectors. Then

Fig. 1.26 a=ajl, b=bi+baj,c=ci+coj+esk.
Now bxc= b2C3i - b;c;i + (b1C2 - sz]) k
sothat ax (b X C) (albgC) a,b,c;)j a,b1c3 k.
Also (a-c) b = (a1b,c,i + aybyc,yj) and-(a-b) ¢ = a,b,c;i + a‘b;c,j + a1bycs k.
Putting these values in (1), we get, A =1
Substituting this value of A in (1), we find ) v
q=ax(xc)=(@-c)b-(a-b)c ~ (Vikram, 1969)
Characteristics of Vector Triple Product.
The vector triple product is not associative, i.e.,
, ax®xc)#(@axb)xe.
Since ax(xc)=(@-c)b-(a-b)c
and (axb)xec=-cx(@axb)
=-[(c-b)a-(c-a)b]
. =(@c)b-(- c)a:
which follows that the product a X (b X ¢) represents a vector c0planar with b and ¢

while the product (a X b) X ¢ represents a vector lymg in the plane of a and b. Hencc
the two products do not represent the same vector quantity, i.e.,

ax(Mxcrz(@axb)xc.
Problem 36 (a). fA=4i-5j+ 3k,B=2i-10j-7kand C = 5i + 7j - 4k
deduce the values of .
@® (AxB):-Cand(ii)A x(BxC). (Agra, 1&9)
(@iii) Unit vectors perpendicular to A and lying in the plane of B and C.
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(b) Find the unit vectors which are perpendicular to vector 2i - j - 3k and lie in
the plane of vector 7i - j -k and i + 5j - 3k. (Rohilkhand, 1987)
(@) ) Given A =4i-5j+3k
B=2i-10j- 7k
C = 5l + 7j - 4k.
(A xB)=(4i -5j + 3k) x (2i - 10j - 7k)
= - 40k + 28j + 10k + 35i + 6j + 30i
= 651 + 34j - 30k.
(A XB):C = (651 + 34j - 30k) - (5i + 7j - 4k)
" =325+238+ 120

= 683.

(1)} (B x C) = (2i - 10j - 7k) x (5i + 7j - 4k)
= 14k + 8j + 50k + 40i - 35j + 49i
= 891 - 27j + 64k.

A x (B x C) = (4 - 5] + 3k) x (89 - 27j + 64K)
= - 108k — 256j + 445k — 320i + 267j + 81i
= - 230i + 11j + 337k.

(i1f) The required unit vectors are
Ax(BxC) -

* [Ax(BxC)
- 239i+11j+337k
\[{(- 239)%+ (1) + (337)%)
- 239i+ ll]+337k
y/(170811)
() Proceeding as in (a) (iii), the requied vectors are
3i-3j+k
(19)
Problem 37. Show that [ax b, b x ¢, ¢ x a] = [ab¢]
a-a a'b a-c
={b-a b:‘b b-c|by means of determinant.

=%

cca c¢b c-¢c
Let the compbmms of the vectors a, b, ¢ in the directions of the axes of x, y, 2
along which i, j, k are the unit vectbrs, be (a), a;, a3), (b1, b2, b3) and (cy, ¢, 03)
respectively, Then .
a=agi+a,j+ak ’
b=bi+byj+ bk, . v ()
c=gi+cj+ok
a-a=al+a}+al=3Tql(say), b-b=3b% c-c=Xcf ®

sothat
a-b=Xab,b-c=Xbc and cca=Xqq }
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' a a4 &
Now, [abc]=|b b, by| from (1)
G € G
) aq 02 YR KL ,dz a,
[abe’=n b bl b b
G & Gal|q €3
Ta? Xab Xcal| |aca ab a-c
=|Zab. IH Ibel=|b-a b-b b-c| from(2)
Xaa Zbha cca c¢b c-c
N 4 a a '
Again, LetA =|b b, byl=[abc]-
' (4} Cy Cy

Then, if A, By, C;... elc. be the cofactors of ay, by, ¢;... etc., we have

a,A,+ 02A2+ 03A3 =A
0181 + 02-824‘ 0383 =0
a,Ci+a,Cy+a,C3=0 etc.

where A, = byc; - bac, elc.
Suppose that A’ =| A,

aq 4 a4
AA'=1b b, b
G - C (4]
A 0 0
=10 A 0
0 0 A
= A3,
ie. A'=A?
A
o [abc)=|B,
G

i
But axb=|g

b

G

A A
B, B5
C G

A A A

A A
B, B,
C, C

ik

«.(3)

...(4)

@,  a3|=(a5y- asby)i+ (Byas- byay)i+ (a1bp- arBy)k.

b b
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Snmxlarly bxc= (b2C3 - bg(.‘z) i+ (Cgbg - C;bl)j + (b|C2— bzcl) k
cxa=(ca3-ciar) i+ (acs—-ascy) j+ (ca;- cza,) k.
* faxb,bxc cxa)

@by-a3by  bay-bya,  a)by-ab
=|bycs- by Gby-chy bicy- by
[€203=C3d; Q03— 430 (13— 024y
G G YCS whea A, B, C ...etc. 4 G 4
=[A A A .| by by
are the cofactors in
B B, B5 , G, 6 €
A A A
=|B, B B
Cl C2 P)
= [abc)? from (4).
Problem 38. Show that ax(bxc)+bx(c><a)+ cx(axb)=0.
We have ax(xc)=(@a'c)b-(a*b)c

bx(cxa)=(b-a)c-(b-c)a
cx(@axb)=(c- b)a (c-a)b.
Adding all wogether, we get
ax(bxc)+bx(cxa)+ cx(axb)=0.

Problem 39. Find the volume of a parallelopiped whose three coterminus edges
are described by the vectors i + 2j, 4j and § + 3k.

Volume of the required parallelopiped
= scalar triple product of the vectors i + 2j, 4j and j + 3k
=(i+2) (4 x ([ +3Kk))
=(i+2j)-12i asjxj=0and jxk=i
=12 “ici=land j-i=0.

Problem 40. $how that the law of refraction of light passing from a medium of
refractive index W into one of index |’ is expressed by the equation paxn=l'cxn,
where n, a, ¢ are the unit vectors perpendicular to the boundary, along the incident and
along the refracted ray respectively.

Also find the law of reflection, if\b be a unit
vector in the direction of the reflected ray.

5
Let i and 7 be the angles of incidence and T
refraction respectively. Then the laws of refraction !
are ] -
’ Q
M _sinr %
Woosini (1) 5
and n, a, ¢ are coplanar (2 r!
Now axm=1.1sini &,i.e., ) > o
. ._axn I
sini = — g
€

Fig. 1.27
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where € is a unit vector normal to the plane containing n, a, c.
' ¢ x n

Similarly, sin r=

From (1), we have psini=p’sinr,
. axn ,cXn
ie., T}

e £
or Ha X n=pcxn.
Again, the angle of incidence = angle of reflection, gives
axn=bxn,
Problem 41. Decompose a vector v as a linear combination of a vector-a, another
vector perpendicular to a, and coplanar withr and a.
We know that a X (a X r) is a vector which is coplanar with a and r and is
perpendicular to a. Let us therefore suppose that
r=la+max(axr).
Premultiplying both sides of (1) scalarly and vectorially with a, we get

a'r=1/a-a,i.e., L ..(2)
a-a
and axr=maXx[ax(@xr)]
=max([@-r)a-(a‘a)rl=-m(a-a)axr,
ie., m=—l- ()
a-a
Hence from (1), (2) and (3), we have
r=a—-a——[ax(axr)]
a-a

IV l-m’ l-n’
Problem 42. Prove that [Ilmn] (I'mn]=|m-’ m-m’ m-n’}
n-’ nm’ n-n
where 1, m, n; I', m’, n’ are any vectors.
Suppose that I’x m’ = p and consider the four vectors 1, m, n, p which can be
connected linearly as
[imn) p = [(mnp] 1 - [Inp] m + (Imp] n. ¢))
m-I’ m-m’
n-’ n-m |'
- 1em’
n-l n-m'|4
1Y 1em’ |

Here (mnp]=mxn.p=(mxn) .(I'xm)=

[lnpl=Ixc.p= (Ixn) (Ixm’) l

~and [lmp]=lxm.p=(lxm).(l'xm')=m_l, m-m’

'

With these substitutions (1) becomes
m-I’ m-m’
n-l’ n-m’

Y 1-m’

- m
n-t n-m’l

‘(lmn] p = [Imn] I'x m'='
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1Y 1w’
+ n
m-I’ m-m’
Multiplying scalarly both sides by n’, we get
, o, |mr mem’ , |[vY bm’ ,
[Imn)I'xm'.n'= , ,|1n - , ,| m-n
n-li n-m nl” nm
1Y 1w’ ,
lmr mem|™"

IV I-m’ 1-n’
or (lmn] 'mn')=|m-’ m-m’ m-n
' n-’ n-m n-n

I=l'=a, : a-a a-b
Note:1f m=m’=b,} then [abc)*=|b-a b-b b
n=n’=c, ¢-b c¢-c

Problem 43. Prove that

(bxc):(axd)+(cxa)-(bxd)+(@xb)-(cxd)=0
and deduce that

sin (A + B) sin (A - B) = sin?A - sin? B = % (cos 2B - cos 24).
Here
(bxc)-(axd)+(cxa) (bxd)+(axb)-(cxd)

LA b-d+c~b c-d+'a-c a-d|

"Ic-a c-d la-b a-d’l .Ib-:-c b-d

=(-a)(c-d)-(b-d)(c-a)+(c-b)(@a-d)-(c-d)(@a-b)+(a-c)(b-d)
-(@a‘d)y(-c)

=0asa-b=Db-aetc...

For the second part,leta,b,c, d
be four coplanar vectors and € be a unit
vector in the direction perpendicular to the
plane containing a, b, c, d. Let the angles
between the directions of a and b, b and ¢,
cand d be 6, 8,, 83 respectively. '

Since b x ¢ = bc sin 6, € etc., a, b, c,
d being modules of a, b, ¢, d respectively,

s (bxc)-(axd)+(cxa)-(bxd) ,

+(axb) - (cxd) =0 gives Fig. 1.28

(bc sin 8,€) . [cd sin (6, + 63+ 63) €]

+[-casin (6, + 6) €] . [bd sin (6,+ 63) €1+ (absin 6, €) . (cdsin 63€) =0

or sin 8, sin (8, + 6, + 85) - sin (6, + 68,) sin (8, + 8;) + sin 8, sin 6, =0

Putling 6, = B, 6,= A and 6; = - B, this gives
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sinA - sin (A + B) sin (A - B) - sin2B =0,

i.e.,sin (A + B)sin (A - B) =sin2A - sin’?B

= 3(1 - cos 24) - $(1 - cos 2B)

= 3 (cos 2B - cos 24).
-a -b ¢ d
a; b| <C| . d]
a, by ¢, dyf
@, by ¢ dy

Problem 44, Prove that 2 (ax b) x (¢ xd) =

where a = a,i + a,j + a3k elc..
Since  (ax b) x (¢ x d) = [abd] ¢ - [abc] d

aq b 4 aq b ¢
=G, bz dz C-|ay bz Cy d ..-(l)
ay by dy a by o

Also (axb)x(cxd)=[acd}b -[bcd]a
aq o 4 . b o 4
a € dz b- b2 . G dz a ...€2)
a3 ¢ dy by ¢ d

Adding (1) and (2), we get
"~ |l-a -b ¢ d
2@xbyx(exdy =|% & a4
o b o 4

a-_‘ b3 C3 d3

Problem 4S. [f OX, OY OZ and O’X’, O°'Y’, O'Z’ are two sets of rectangular co-
ordinate axes and Iy, m\, ny; l, may, ny ; I3, ma, ny denote the direction cosines of the
members of either set with respect to other,

v L m n
then Iy my ny=1
I3 my oy
Let i, j, k 5 i% j° k' be unit vectors along lhe.two sets of axes.
Then using the adjoining scheme of, lransformation;vwc have )
, , il ik
i"=Li+mj+nk, i 4| m | A
J = hi+ maj + ngk, V1L m]|n
k' = li + myj + n3k. Kl h{m]|m

Now j'x k= (Iji + maj+ nok) x (isi + maj + nyk)
= (namy - m:hg)j xk + (nzlg - n:;lz) kxi+ (lzmg— lym3) i X j.
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Multiplying scalarly by i’, we get '
ik = (hi+mj+nmk) - [(namy —many) j Xk + (naly = n3ly)k x
+ (Izmy- Iomy) i X j]
or - [i'j'k'] = 1y (ngm3 — m3ny) [ijk] + m, (nals— naly) (jki) + Ii] (lams- lsmy) [kij]

Il my n
= lz my ny [ijk].
13 my ny

L m n
Since [i’j°k") = [ijk], we have |l, m, ny|=1.
Iy my ny

1.13. PRODUCT OF FOUR VECTORS
(1) Scalar product of four vectors. If a, b, ¢, d are four vectors then the

product of the type (a X b) - (¢ x d) is called scalar product of four vectors. In fact this
being a scalar product of two vectors (a X b) and (¢ x d), is a scalar quantity. We can
treat this product as a scalar triple product of thrce vectors a, b and (¢ x d).

Since the dot and cross may be interchanged in a scalar triple product, we have
(axb)-(cxd)=a-bx(cxd)
=a-[(b-d)c-(b-c)d]
=(@-'c)(b-d)-(a-d)(b-e€)
_lac b-c
“la-d b-d

Problem 46. Show that
(bxc)-(axd)+(cxa) (bxd)+(axb) (cxd)=0,
b-a c-a
b-d c-d
=(b-a)(c-d)-(b-d)(c-a).

Similarly (cxa) - (bXd)=(c-b)(a-d)-(c-d)(a-b)
and (axb)-(cxd)=(@-c)(b-d)-(a-d)(b-c).

Adding all together, we get

(bxc)-(axd)+(cxa)-(bxd)+(@xb) (cxd)=0.

(2) Vector product of four vectors. If a, b, ¢, d are four vectors then the
product of the type (a X b) x (¢ x d) is called vector product of four vectors. The value of
this vector product is a vector which is’at right angles to the vectors (a x b) and (¢ x d)
both, and therefore is coplanar with a, b and also c, d. Conclusively this vector is
parallel to the line of intersection of a planc parallel to a and b with another plane
parallel to ¢ and d.

The value of this vector product may be obtained in two ways :

@) If we put ¢xd = p, then

“(axbyx(cxd) =(@axb)xp
=(a-p)b-(b-p)a

We have (bxc).(ax d)
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=(a‘cxd)b-(b-cxd)a
=[acdlb-[bcd]a
(i) If we put axb =q,then
(axb)x(cxd) =qx(cxd)
=(q-d)c-(q -¢c)d
=(axb-d)c-(axb-c)d
=(abd)jc-[abc]d
Linear relationship between four vectors.
The two results namely () and (ii), on subtraction, yield
O=[bcdla-[acdlb+[abd]c-[abc]d
Rearranging, we get
d;_[a bcja+[dca]b+[dab]c

provided {a b ¢]#0.

[a bec]
This may also be expressed as
d=d. bxc a+d. cxa b+d. axb c.
[a bc] [a bc] [a b c]

Note. As an alternative, the linear relationship between four non-coplanar veciors a,
b, ¢, d may be found as follows : i

Suppose d = Aa + pub + vc, where A, |, v are scalars.

Multiplying both sides scalarly by (b x c), we get

[dbc)=A [abc], other terms vanishing as [bbc}=0=[c b c]

A,—[d b c]

o “[abc]
i _[d ¢ a] _[dab
Similarly u-[a b <] and V_I[-a_-l-)—-c%'

Substituting the values of A, i, v, we have
d=[dbc]a+[d c.a]b+[da b] ¢
[a b c]
Problem 47. Prove that d - [a x {b x (¢ X d)}] = (b - ¢) [acd]. .
Hee d-[ax (bx(cxd)) =d-[ax ((b-b)c-(b-c)d))]
=d-[((b-d)(@axc)-(b-c)(axd)
=(-d)(axc-d)asaxd-d=[add]=0 "
= (b - d) [acd].
Problem 48. Prove the identity
ax[bx(cxd))=(@xc)b-d)-(@xd)(®-c).
L.H.S. =ax [bx (cxd)]
=ax[b-d)c-(b:c)d]
=(b-d)(axc)-(b-c)(axd)
= R.H.S.
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1.14. RECIPROCAL SYSTEM OF VECTORS
If there are two sets of non-coplanar vectors a, b, ¢ and a’, b’, ¢’ such that
(bxe ., _exa ,_axb
" [abe]” " [abe]”  [abe]’
then &, b, ¢ and a’, b’, ¢’ are said to be Reciprocal systems of vectors.
It is so called, because
a.a’=b.b’'= [abc]
[ bc] [abc]

so that a’=alb’=bl,c'=cl. .

In fact the two systems of vectors, i.e. a, b, ¢ and a’, b’, ¢’ are mutually reciprocal

a ®

b’xc¢” ¢ xa’ c= a’xb’
[a'b'c’] [ab’e]” ~ [ade’]
In particular if i, {, k be the unit vectors along the principal axes and i, j’, k' their
reciprocals, then

i'=l,j’=jand k'=k as [ijk] = 1..
This is called self-recipro'cal system.
Note. With these notations, the linear relationship between four vectors a, b, ¢ and
d may be expressed as
d=(d-a’)a+(d-b)b+(d-c)ec.
Froblem 49, Prove that (axa’)+ (b xb’)+ (¢ xc¢’) =0, where a, b, ¢ are

vectors and a’, b’, ¢’ their reciprocals.
,_bxc , cxa , axb

Vehave “{abe]’ ” Tabe]” © T Tabe]’
ax‘a'=ax([‘;:c°]) [a; [3-0) b-(a-b) o
Similarly bxb’= Tabe] b ] [(b-a)e-(b-c)a]
and .cxc'=m [(c-b)a-(c-a)b)

Adding all together, we get _
(axa')+(bxb')+(cxc')=—l—— [0]=0.

[abc]

1.15, VECTOR EQUATIONS
Here below some methods for solving the vector equations are explained with the help of
iexamples. .

Problem 50. Solve the vector equation x X a = b.

Given equation is xx b=b. (1)

We know that a x b is a vector perpendicular to both a and b, therefore the vectors a, b
and a x b are three non-coplanar vectors. Let us assume that the solution of the given
equation is of the from x=Aa+ub+v(axb), «2)
where A, y, v are scalars.



VECTORS ' 1.41

Since (2) is a solution of (1), therefore substituting in (1) the value of x from (2),
we get
(Aa+ub+v(axb)) xa=b,

or u(bxa)+v[(axb)xa] basaxa=0
or -p(@axb)+v((a-a)b-(b-a)a)=b
or -p(@xb)+v ((a(b-a)a) =b, where |a| =a.

Equating the coefTicients of like veciors on either side, we get
-u=0,va’=1,-vb-a=0,
ie. u=0,v=1a2anda-b=0asv=0.
Subs;ituting in (2), these values of | and v, the general solution of the given
equation is
x=1a-1/a2(axb)
and the condmon for the existence of this solution is
' a'-b=0,
i.e. the vectors a and b arc mutually at right angles.
Problem S1. Solve the simulianeous equations
xxb=axb, x -¢=0provided b -c #0.
The given equations are v i
xxb=axb (D

and x-¢c=0. : .(2)
The equation (1) can be written as
(x-a)xb=0,

which follows that (x - a) and b are parallcl, i.e.
x - a = b, wherc ¢ is a scalar

or x=a+1(b, ...(3)
Substituting this value of x in (2), we get
(a+t)-c=0.
Giving ' 1= -%—c-whcn b-c= 0 (given).
¢
Hence the required solution is obtaincd by pumng lhe value of ¢ in (3) and that is
X=a- ac b. '
b-c

Problem 52. Solve the simulianéous equations
SX +1ly=a, xxy b provided a - b = 0.
The given cquations are
SX + 1y = a, Q)]
XxxXy=b. ...(2)
Multiplying (1) vectorially by x, we get
XX (SX+1y)=xXa
or IXXy=xXaasxXxx=0
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or x X a = (b from (2). ...(3)
Multiplying (3) vectorially by a, we have
ax(xxa)=tr(axb)

or (a‘a)x-(a-x)a=t(@axb)
(;r x-7\a=t(a:2b)

where A is a scalar parameicr,
ie. x-?»a+—(axb)

which is the general solution for x. Similarly procedure will yield the solution for y.

1.16. SIMPLE APPLICATIONS OF VECTORS TO MECHANICS

(1) Concurrent forces. It is found experimentally that the resultant effect of two
concurrent forces is equivalent to a single force acting at the same point. The single force
is represented by their vector sum. In general a system of forces acting at a point
represented by the vectors Py, P,, Py... P, is equivalent to a single resultant force F
acting at the same point such that -

T F=Pl sz'C' p3 +...+ pn' . ’ E
It can bc obtained by constructing a vector polygon of M D
which A
3
Ab=p, Bt=P,. . MN=P, N c
The resultant is represented by AN = F which is drawn 10 P

close up the polygon opposite to that in which the sidcs have
been drawn. The polygon docs not necessarily lic in a plane as
the forces, may not be coplanar. Fig. 1.29

COROLLARY. Lami’s theorem. If three forces acting at a poml be in equlllbnum
then each is proportional to the sine of the angle between the other two.

In the case of three concurrent forces the closed polygon will be a triangle, the forces
will be coplanar and cach side is proportional to the sine of the opposite angle and hence
each force will be proportional to the sine of the angle between the other two.

(2) Work done by a force. We know that a force acting on a particle does work
when the displacement of the particle takes place in the direction which is not
perpendicular to the direction of the force. The work done is measured by the product of
the force and the resolved part of the displacement in the direction of the force. Hence if
the vectors representing the force and the displacement be respectively F and d inclined at
an angle 6 and whose respective’ modules are F and d, then the work done
Fdcos = F - d (by the definition of dot product).

In case d is perpendicular 1o F, i.e. 6 = 90° the work done is zero.

COROLLARY. Rate of doing work. If a particle acted upon by a force F is

‘moving with a vclocity v, then the rate of work done, i.e. ‘ii_vzv is given by

dw
— =F.v
- d
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(3) Vector moment or torque of a force. The
vector moment or torque of a force about a point O is a vector
quantity related to an axis through O perpendicular to the plane
containing O and the line of action of the force F. The
magnitude of the vector moment is jointly proportional to the
force and the perpendicular distance ON upon the line of the
force.

Take a point P on the line of action of the force. Let the
position vector of P be r. Then the moment of the force F
about O is represented by a vector perpendicular to the plane of
r and F Since r % F is a vector perpendicular to the plane of r
and F, therefore the vector representing the moment of F
about O is r x F. Hence if M be the moment vector, then

M=rxF.

(4) Force on a particle in a
magnetic field. Let F be the force on a
point charge in a magnetic field of intensity B.
Then F is proportional to the component of B
perpendicular to the velocity of the charge. If v
be the velocity of the charge then the vector
product v x B represents a vector normal to
the plane of v and B and hence may be
regarded as the component of B along the
perpendicular to the velocity v. Thus if ¢ be
the charge on the particle and ¢ the speed of
light then the above relation existing between
the vectors F, B and v is expressed as

Fig. 130

Fig. 1.31
F=2yxB in Gaussian units. 8
c
or F = gv x B in MKS units.

(5) Force on a charged particle. If a particle of charge g is in an electric field
of intensity E at rest, then force on the charged particle due to electric field F, = gE (in
e.s.u.) .

But if the charged particle is moving with velocity v relative to an observer, the
magnetic field is produced. The force experienced by a moving charged particle dut to
magnetic field F,, = gv X B (in e.m.u.), where B is the intensity of magnetic field. This
isknown as magnetic force.

-~ Total force on the moving charged particle is the sum of electrostatic forces and is
given by -

F=F,+F,=qE + q (vxB),
ar F=gq[E +vxB). ' (D)
This is known as Lorentz force.
If E is in e.s.u. and B in gauss, the equation (1) can be written as

F=q[E+ va]"
c

(2

where c is speed of light in vacuum,
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(6) Circular motion. Let us consider a particle
moving in a circle of radius » with angular vclocity . Let
O be the centre of the circular path and A the starting point.
Join O to A and draw OB perpendicular to OA. Let i, j be
the unit vectors along OA and OB taken as axes of x and y
respectively. Let at an instant of time f, P be the position of
the particle such that its position vector referred to O as
origin is r.

Assuming £ AOP = 6, we have 6 = wt .{(1)

Since the radius r of a circular orbit is constant and the
unit vector T rotates at a constant ratc, the equation of the Flg.1.32
circular orbit can be given as

r (1) = (F (1). ...Q2a)
Now draw PM perpendicular to OA. Then
- S5 o

OP =0M + MP
= 0P cos 0i+OP sin @ j,
or r()=rf ({)=rcoswti+rsinwtjasOP =r. . ...(2b)
ie. T (1) = cos 0! i + sin o j. )
n - 1 1
In particular if 6=—, the = —= i+97
n particular i ” nr 73 i 7 j
and if 6=-12£thcnr=j
also if 0=0,then F = i.

Now the velocity, v of the particle is given by (differentiation of vectors being
defined in 1.17) :

VE—=p—= r(i i cos W! + jisin col) from (2b)
di di

, = or (- sin ot i + cos o j),
which follows that the magnitude of the velocity
lv| = wrsayv=or : ..(@)
Again the acceleration of the particle is given by
_dv _d*r

dt do?
d,6 . . .
=er(-sm Wli+cos wt j)

= - 02r (cos W! i+ sin I j)
= - @ from (3).
-, magnitude of the acccleration, say a
‘ =lal=|-wl,
ie., a= ...(5)
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Elimination of ® between (4) and (5) yields
2
a= 2. .(6)
r
The acceleration given by the expression (6) is known as the Centripetal (i.e.
centre seeking) acceleration.

Now we know that if f be the frequency of the particle, then :
2nf = o, ..(0

and the time period T of the motion is given by
e T= 2n = 1 from (7). . ...(8)
1 (7) Angular velocity of a rigid body about a

fixed axis. Consider the motion of a rigid body rotating
N P about a fixed 2xis ON at the rate of © radians per secand. Then
g the angular velocity of the body is specified by the vector ®
whose module is » and whose direction is parallel to the axis,

and in the positive sense relative (o the rotation.
- Let O be a point on the fixed axis; P, a point fixed in
the body, r the position vector of P referred to O as origin,
and PN perpendicular to the axis of rotation. The particle at

o P is moving in a circular path of radius PN =r sin PON
about N as centre. Its velocity vector v is at right angles to
Fg. 133 the plane of.® and r and its magnitude is given by
v = r sin 0.
Hence v=0xr,

Problem 53. A particle, acted on by constant forces 6i + § — 3k and 3i+j -k
is displaced from the point i + 2§ + 3k to the point 5i + 4j + k. Find the total work
done by the forces.

Let ' F, =4i+j-3k,F,=3i+j-k
and the displacement r=5i+4j+k-(i+2j+3k)
= 4i + 2j - 2k.

Work done by force F, =F,-r
= (4i + j - 3k). (4i +2j - 2k)
=44+ 12 -3.(-2) = 24 units.
Work done by the force F, : ’
=Fy r=(3i+j-k) (4i +2j - 2k) = 16 units.
Total work done = 24 + 16 = 40 units,
Problem 84, A rigid body is spinning with an angular velocity of 4 radians per’

second about an axis parallel to 3j - k passing through the point i + 3j - k. Find the
velocity of the particle at the point 4i - 2j + k.

Let r be the position vector of the point relative to the given point on the axis, then
r=4i-2j+k-(@+3j-k)

= 3i - 5j+ 2k.
Angular velocity of the particle is given by
G4 (3j-k) _ 4
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Hence the velocity of the particle

G)xr:\/—f_é- (3j-k)x(3i-5j+2k)

4 .

Its magnitude = 7% |i=3j-9k|=4 (19—(;) =12 approx.

Problem 55. Find the torque about the point 10j of a furce represented by - 3i + j
+ Sk acting through the point 7i + 3j + k.

Let F = - 3i + j + Sk and r be the vector from the given point to the point of
application of the force, then

r=10j- (7i+3j+k)=-7i+ 7j-k.

Reqd. Torque =rxF=(-7i+7j-k)x (-3i+j+ 5k)

= 36i - 38j - 14k.

Problem 56. A particle is moving in a circular orbit of radius 10 cms. If its
frequency of motion is 60 cycles per sec., find the time period, veclocity and acceleration
of the particle.

Given freqency f = 60 cycle/sec.; radius of the orbit = 10 cms.

Let T be the time period, v the velocity and a the accerleration of the particle. Then

1 1
T= 7 o 0.017 sec. nearly.
~ Now w=2nf=2-2.60= 22 =377 radians/sec. approx.

v=0r =377 x 10 = 3.8 x 103 sec. nearly

and a = 02 = 377 x 377 x 10 = 108 cm/sec. nearly

Problem 57. Calculate the force in dynes acting (1) on a proton, and (2) on an
electron, in an electric field of intensity 1000 volts per cm. Given charge on electron
=48 x101¢.5.u.

The intensity of electric field = 1000 volts/cm.

1000
= —— e.s.u, of volts/cm.
300 s

= -'39 stat. volts/cm.

The force on the proton = qE
=4.8x10710x 2 = 1.6 x 107 dynes.

The force on the electron = gE = - 1.6 x 10-° dynes.
Problem 58. Calculate the force on the proton in dynes in a magnetic field of
intensity 100 gauss directed along z—axis :
(®) when the proton moves with velocity 10® along x-axis.
(i) when the proton is at rest.
() Given B = 100 gauss along z-axis = 100k,
v = 108i.
the force on the proton due to magneltic field

=2 (vxB)
c
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-10
- i‘%’%_ [10% x (100K))
= 1.6 x 1020 [ - 10'9j)
= - 1.6 x 10'% dynes,
i.e., the force of magnitude 1.6 x 10'%is acting along ncgative direction of y-axis.
(if) When the proton is at rest, there is no magnetic field and hence no force.

Problem 59. Using a right-handed system, the electric field E, and velocity v of a
pariicle of charge q e.s.u. are given by

E =2iesu

B =@Qi+4j)emu.

v =9i+3j+ 4k cm./sec.
Calculate the electrostatic and magnetic force on the charge.
Electrostatic force on the charge ¢ = gE = ¢. 2i = 2qi dynes, ¢ is in e.s.u.
Therefore electrostatic force has magnitude 2¢ along positive x-axis.

Magnetic force on charge ¢ = i(v x B), B being in e.m.u.
c
=3T‘10W [(2+ 3j+ 4K) x (3i + 4J)]

q . .
= k-9k+12j-16
Tx107 [8k - 9k +12j i

- 3xzo'° [-16i +12j - k]

. : , ; o4 2 2,42
-~ magnitude of magnetic force = 3%107 [16 +12°+1 ]

= 3x108 V]

=7 x 10" a dynes.
(gisines.u)
Direction cosines of Lorentz force arc

-16 - 12 -1
7x107% " 7x107% " 7x107% |
Problem 60. A proton is moving with velocity 10'° cm./sec. along z-axis in an
electric field of intensity 3 x 10° volis along x-axis and magnetic field of intensity 3000
gauss along y-axis. Calculate the magnitude and direction of 1o1al force.
. Charge on the proton ¢ = 4.8 X 10"'%¢.s.u.
Intensity of clectric field E = 3 x 10% volts
_3x10°
300
E = 100 i stat-volts.
Intensity of magnctic ficld B = 3000j
and velocity of proton v = 1010k,
va]

c

i stat - volts

. total force on the proton = ¢ [E +
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=4.8x10" ’°[1oo. += {1o’°k x 30001}]

=4.8x 10"°[100i " W {-3x 10“i}]

= 4.8 x 10-1°[100i - 1000i]
= 4.8 x 10719 [~ 900i)
= - 4.32 x 107 dynes.
Thus the towal force has magnitude 4.32 x'10~7 dynes along the negative direction of
x-axis.

1.17. DIFFERENTIATION OF VECTORS
Vector Function of a Single Scalar Variable. F is a vector function of a single
scalar variable ¢, if to each 1 of the range of valucs of 1, there corresponds a vector F and
1S written as
F =F ().
Thc veetor F can be be expressed in components form, such as
F=fii+L0i+f (kK
where £, (1), f2 (1), f3 (¢) are components of F (¢) defined for the range of values of ¢ and i,
. k are unit vectors in the directions of the principal axes.

Illustration: If a movmg parucle undergoes a dlsplaccmcm in any manner such
that at any time ¢, its position is at a point P whose position vector relative to any fixed
origin O is r, then the vector r is the function of scalar variable ¢, i.e., r = F(r).

Derivative of a vector function of a scalar variable. If F() represents a
vector function of a scalar variable f, over the interval a < 1< b, and if -
Lim F(+3t)-F(@)
8t—0 Y
coefficient of F (1) at ¢. The process of finding out differential coefficient is called
differentiation.

By convention the method of denoting a derivative is

- d
F' (1) or " F().

exists, then this limit is called as the derivative or differential

.Time-derivative of a vector. Let us suppose
that vector r is a continuous single valued function of a

ar scalar variable 1, ie. r=F(). ,
Al an instant of time ¢, let P be the position of a
< — &F particle whose position vector referred to a fixed origin’
Q ' 0, ber.,After an .interval of time 81, let Q be the
position of the moving particle along the curve r=F -
L d v
r r+er (1). Assuming that an increment &/ in ¢ produces- an
increment 8r in r, we have
r+0r=F(+6)
Fig. 134 It is apparcnt from Fig. 1.34 that PQ = 5r.

. . or . . . . .
Obviously the quotient 8_ is a vector, since r is a vector and ¢ is a scalar and it
!

gives the average rate of change of r with 1.
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" As 8¢ tends to take zero value, the point Q moves up to coincide with P, so that the

cherd PQ coincides with tangent at P to the curve. Thus the vector %;— as 8t — 0 i aiong

the direction of tangent at P in the sense for increasing ¢. The limiting value of this
quotient when exists, is the derivative or differential coefficient of r with respect to ¢

(time), and denoted by % orfi.e.
Lim & _dr _
8t-0 5, &

But we know that velocity v of a particle is a vector and this is the time rate of
chlnge of the position of the particle, therefore

dr !

V= —,

i.e. the rsi time derivative of position of a particle gives its velocity and its magnitude
i.e.v=|v| is known as the speed of the particle. Clearly the speed is a scalar quantity.

Further the derivative'%‘l is also in general a function of time ¢, and may itself
dz
dt 2°

But the acceleration a of a particle is a’ vector and this is the time rate of change of
the velocity of the particle, therefore ,

prossess a derivative, which is called the second derivative of r and is denoted by —5-

i.e. the second time-derivative of the position of a particle gives its acceleration.
2 .
- r. .
Note 1. The second denvauve_ %‘7 is also a vector function of ¢ and hence possesses

3
a derivative 5:—‘; known as the third derivative of r. Similarly the existence of fourth,

fifth, sixth...derivatives can be stated.
Note 2. The derivative of a constant vector ¢ is zero i.e. if ¢ is a constant vector,

then % =0; for, then the increment in 8¢ producess no change in c.

o

1.18. SOME RULES FOR DIFFERENTIATION

(1) The derivative of the sum of two differentiable vector functions, is equal to the sum
of their derivatives.

Letr; and r, be two differentiable vector Tunctions of a scalar vanablc t
Suppose that r=r +0;
Then if a change 8t in ¢ corresponds a change 8r inr, 8r, in 1y, 8r; in l’z we have
r+8r=(r;+08r)+ (ry+0ry)
ie. Or =38r, +dr, ,
Dividing throughout by &¢ and proceeding to the limit as 5—0, we find,

e dt de
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This result may be extended to any number of vectors.
In particular if any vector is expressed as the sum of rectangular component vectors
suchas
r = xi + yj + zk, where i, j, k are unit vectors along the axes. then the derivative
of r is given by
dr _dx. - dy dz
= —ij +—k
da dt A dt
Note. If r is a differentiable function of a scalar variable s and s is differentiable
tunction of another variable ¢, then we can state that
dr _dr ds

& ds At
(2) The differentiation of scalar product of two vectors. The derivative

-of product of two differential vecior functions, is equal to the sum of the quantities found
by differentiating one of the factors and leaving first unchangedi.e.,x =r, - v, wherer, *
rpare the vector functions of a scalar variable ¢,
then ﬂ-r, .d_rl.,.ﬁ.,-z

dt a
If a change 8¢ in ¢ corresponds the changes 3r in r, 8r; in ry and 8r;in rz, then we
have,
r+dr=(r; +8r)): (ry+ 8ry)
=ry - rp+r - 8ry+8r -ry+ 8y - 8ry
=r, ry+r,dry+ dr, - ra, neglecting the product
: Sr, - 8rpas it is vanishingly small

or Sr=r;-8rp+0r; rasr=r;-ry
Dmdmg throughout by 8¢ and proceeding to the limit as 8t —0,
we get ﬂ=r, ar +ﬁ-r2
dt da dt
Note 1. If u is a scalar function of ¢, and r = ur,, then
dr _du dv,
o di ! dt
Note 2. If r =r1 . 11, then ﬁ-ﬁ.rﬁ.n.ﬁ
da d di

dr, .~ . .
=2r T“ since dot product is commutative

dr,
=2/1'—‘L asr; 'l'|=l'2|v=l’12

which follows that 1, -‘% =n=l ‘;:‘

Note 3. The necessary and sufficient condition for a vector r to have constant

magnitude is r - %— 0.

‘Sincer-r=|rl2ie 2r. 7-2|r| =eh.
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Therefore r %lr- =0, if and only if% Irl =0,ieif Ir | is constant.

(3) Differentiation of vector product of two vectors. Suppose that
r=r; Xrp,

where r, and r, are differentiable vector functions of a scalar variable ¢.

. If an increment &t corresponds to increments 3r in r, 3r, in r; and 8r, in r,, then we
have

r+dr=(r;+0r)) x(r,+ 6rp)

. =T, Xry+ I X 8ry + 8r) X raneglecting the product 8ry x drpas it is

vanishingly small -

or Or=r; x8ry+ 8ry x 1.
Dividing throughout ‘by &¢ and proceeding to the limit 80, we have
dr dr, dn
—=px—2+—
dt a a
Note. The necessary and sufficient condition for r to have constant direction is
rx %.- 0. '
Let 7 be the magnitude of r and F be the unit vector in the direction of r. Then
r=rr,
dr dr dr.
— I — —
dr - d
so that rx£=?rx rd—r—-'-ﬂ r
dr de  di
._dr
2 .
=r‘rx— @
da «

other term vanishing as ¢ x r = 0.
Let us now suppose that r has constant direction, so that r is a constant vector
giving,

As such we have from (i)
orx % =0 i.e., the condition is necessary.

Now to show that the condition is sufficient, suppose that

rx ar =0.
dl
So that from (i) r’f XT 0 ... (1D
But F is a vector having unity as its length therefore by Note 3, Rule 2 of §1.17
. dr . .
r.—=0. (1))
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From (i) and (iii)-we see that T 20 therefore di _

dt
*. T is a constant vector, i.e. the direction of r remains the same.
(4) The differentiation of a scalar triple product. Let v be expressed as
the scalar triple product of three vectors p, q, r as
v=[pqr]

: =p-qxr ()]
where p, q, r are the differentiable vector functions of a scalar variable . If a change & in
t corresponds a change Sv in v, 8p in p, 8q in q and dr in r, then we have

v+38v=(p+8p) ((q+8q)x(r+dr))

= (p+8p) : (q X1 +qxdr+8gxr + 8q x 5r)

=(p+8p) (qxr+qxdr+3qgxr)
(leaving 3q X 3r as it is vanishingly small)

=p-qXr+0p-qXr+p-8qxXr+p-qxér
(Leaving small value products)

or Sv=8p qxr+p-3qgxr+p-qxdr..unsing (i)
Dividing it throughout by &¢ and proceeding to the limit as 5t—0, we have

{89 5q

anﬁ Lim qXr+p-—xr+ x&}
q p: 1 p-q 5t

§51908¢ 8:t-0| ¢

or ﬂ—[ﬂ Xr+ ﬂxr+ xﬂ]
a La TPy Prax

(o bt i}
~{2Rart+ {p22e} 4 {palt
(5) The differentiation of vector tnple product. Let v be expressed as the
vector triple product of three vectors p, q. 1, i.e.,
vepXx(qXr) @

p. q, r, being differentiable vector functions of scalar variable ¢. If a change &t in ¢
corresponds a change 8p in p, 8q in q, and dr inr, then we have

v+8v—(p+8p)x{(q+8q)x(r+8r)]
=(P+dp)x(qxr+qxdr+38qgxr+8qxdr)
=(p+dp)x (qxr+qxdr+dpxr)
(neglecting product 8q % r as it is vanishingly small)
=px(qxr)+px(qxdr)+px(Bqxr)+dp x(qxr)
’ +0px(qxdr)+dpx(dqgxr)
=px(qxr)+px(qx8r)+px(&qxr)+8px(qxr)
(neglecting small value products)
or Sv=px(qxdr)+px(8qxr)+8px(gxr) using (i)
Dividing it throughout by 8¢ and proceeding to the limit as /—0, we have
B, EATNE AN
Lim -Lun{px(qxst)ﬂ)x(s‘xr)+8‘x(qxr)}

85120 §¢ 810
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. dv dr dq ) dp }
or —=4{p X X — —_— —
7 {p (q d‘)+qx(d‘ Xr ‘ x(qxr)

Problem 61. IfF () =x () i+ y (t) j+ z (¢) k, where x,y,z.are deﬁ'erenuable
. functions of a scalar variable t, prove that
| dF _dr by . ds

aa it "d—ck'
By the definition of differential coefficient
L. F(1+8¢) - F(1)

dt s:-.o &8¢
[x (e+8¢e) i+ y(t+81) j+2 (e +80)k]
-[x @(Wi+y(r) j+2 (l)k]

81=0 S5t

- Lim [x (e+ 8:)- x (l)] [y (e+ 81)-—y(:)]j+ [z (1+80)-2 (l)Jk
510 S5¢ St
- Lim (321,82 _1)
_}M(Sti TR Th
_dx Ay, d
-d‘i+d‘j+d‘k .
Problem 62. If r = (%i- (% + (2t + 1) k. Find the value of
ar _d’_r dr| |d’r at ¢=0.
a ar el [d?

(Agra, M.Sc., 1966)
Given vector r is the function of scalar variable ¢, expressed in the form

r = %i- tj+ 2t + 1) k. (1)
L YR _ )
(- 1, J, k are constant vectors)
Thereforeat 1 =0 :
) dr
—=oj+2k
a =
dr
owa |- 0t @] -5
Again dtfferenuatmg (2), with respect to {, we gel
d*r
o
d2

at ' ‘—O—d‘—{ = 2i.
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- Problem 63. If r = a cos wt + b sin wt, show that

dr
rx—=mwaxbhb
dt

) .
ad % =-?r a, b being constant vectors and ® is also .a constant.
Given r = a cos Wt + b sin w¢ (1)
ar_d (cos w!) a -0--i (sinwt) b
di di dt ‘

=-sin wra+ o cos wtb.
Dxffercnuaung (2) with respect to ¢, we get

2
%;- -(o-—(sm wt)a+ m—(cot m)b
=- mzcos ota-w2sinwd
= - ©? [cos ¢ a + sin wt b]
=-w?r by (1)
. d*r
ie. —_— = - ?r.
dr*

" Again, we have
rx%;-=(acos ! + b sin ) X (- sin W a + @ cos O b)

= [acos WX -sinwla +axb cos? ws

-bxasin2w¢+ b xbsin wfcos ]
= (a xb) {cos® @t + sin? ¢t} ®
Asaxa=bxb=0and-bxa=axb
=(axb)w,

ie. rx%.—.(n(axb)

Problem 64. If r = ae® + Be~®, show that
iz - % = 0; a, b are constant vectors and o being a constany.
Given r = ae™ + be* ..(1
% = 0ae® + wbe ’

Differen;iating it w. r. t. £, we get
d_zr_ = 0)2ae® - W2he*
27 ae® - wibe
= @2 (ae® - be)
= w?r from (1)

2.
or -‘;—‘; -0’ =0.
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Problem 65. A particle moves along a curve whose parametric equations are
x= et y=2cos 3t,2= 2 sin 3t, where t is the time.

(@) Determine its velocity and acceleration at any time.
(b) Find the magnitudes of velocity and acceleration at t = 0.
(@) Since a vector r can be expressed in terms of rectangular components as
r=xi+yj+zk, '
therefore, the position vector of the moving particle at any time ¢ is
r=e’i+2cos3tj+2sin3tk,

Thus,thgvclocityv=%=-e‘i-6sin3tj+6cos3tk
2
tmdtl\cat:celerationvis%;‘1 = % =e'i-18 cos 3rj - 18 sin 3t k.
dr d*r
b) Att=0, — =-1i+ 6k and =i - 18j.
OYA=0.g =-1v hand Gz =0 - 18

~.  magnitude of veiocity ar=0is
dr

2t -0+ (67] = VB -

and magnitude of acceleration at ¢ = 0 is

arl. (1) + (-18)%] = 325)

Problem 66. A particle moves along the curve x =213,y =12 -4t,z=3t-35,
where t is the time. Find component of its velocity and acceleration at t = 1 in the
direction i - 3j + 2k.

The position vector of the moving particle at any time ¢ is
r=20%+(2-40)j+ (B-5k.

& velocity = -‘3—; =4i+(2-4)j+3k,
so that [ﬂ] =4i-2j-3k
dt Sy 1a

2 .
- and acceleration = ‘—:‘15 =4i+ 2j,

: d*r ,
so that ;-‘-r =4i+ 2j.
) i (=]
Now unit vector along i - 3j + 2k
i-3j+2k _i-3j+2k

e eey] Y

. Hence, component of velocity in the direction i - 3j + 2k is

973.(%21) (4:-2j+3k).7...=,(_
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and component of acceleration in that direction

[i-3j+2k]
-[ 5 )(4i+2j)

=- 2 == V14
V14 3
Problem 67. Prove the following relations:
@ v =u+fs
b) s =sop+ut +;—f:3.
© v =u?+2fs.
(a) Velocity is defined as rate of change of displacement,

ds
.e. = — (1
ie ve (0))
Acceleration is defined as rate of change of veclocity, i.e.
dv d(ds\ d*s :
frm—z =] — =
dt dl(dl) ? @
or . dV=fdt. "'(3)

Let initially at ¢ = 0, the velocity be u and after time ¢, letit be v.
Intergrating (3) we get
, [ldv=][ tdt

ie., v-u=f1
y ‘v=u+ft

(b) We have from (a), i"i-“- =u+f
Intergrating w.r.t.‘.to t,
s= u:+;-nz+n.

where B is constant of integration.
Ifatt=0,s =sothen B =s;-

s=sp+ ut +;-f¢2

ds d*s ds
2 8.5 5. 2.
dr .di* dt

- Integrating with respecltol we get
I v & 4= I 2.2 = > a&.
2 Lwdv:ZIobds'

[v-v].=2fs.
vi-u2=2f-s
vi=u2+2f-s.
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Problem 68. A particle of 1 kg. moving with initial velocity (i + 2k) metresisec.
- is-acted upon by a constant force (i + 2_| 2k) newtons. Calculate the distance and
velocity after 5 seconds.-Also find the time in which the particle reaches :he xy-plane

Mass of the particle = 1 kg.

Force acting on the particle = (i + 2j - 2k) newtons.
‘force i+ 2] 2k

Acceleration f = e = (i + 2J - 2k) metres/sec.
Initial velocnty u=(@{+ 2k)
t = 5 seconds.
~ Using v =u + ft we have

Velocity after 5 seconds = (i + 2k) + (i + 2j - 2k) 5
=i+2k +5i+10j - 10k
=6i + 10j - 8k

' So that v=V62+ 102 + 82 = V200
= loﬁmetres/sec.
Distance covered in S seconds,

s=ul+ 7!‘12= i+2k)S5+ 7(i+2,| 2k) 25
= 5i + 10k + T' + 25§ - 25k
= -Tl + 25§ - 15k
=17 5i + 25j - 15k
\ s=V((17-5)2 + (25)2 + (15)2)
= V(306 - 25 + 652 + 225)
=V(1156 - 25)

=34 metres.
Let ¢ be the ume when the particle reaches the xy-plane, i.e., when s is equal 0 zero.

Using equation s = uf + 3 fi2, we have
Isy+ jsy+ ks;="(i + 2k) 1+ 2(l +2j-2k) 2
Comparing coefficients of k,

=UA-2=0
“or t=2sec. ‘
Problem 69. If r = % - ¢j + (2t + Nk and s = (2¢ - 3)i + j - tk, find

d ’ d
(@ 709 ®) 3‘-(1' Xs),

d d ds
@ g€+ (9.
ds dr '
(@ --(r s)=r- E+E-s
= (Zi-¢j+ @+ 1)k} (2j-k)
+(2i-i+2K)(2-3)i+]-1k)
=22-2U-14+42-6t-1-3 ' K
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=612-111-1
=-6,whent=1,

ie. -‘i(r~s)=-6au= 1.
di

() %(rxls)=rx%:-+%xs

= (i-tj+ Q2+ 1)k) x (2i-k)
+(2Ui-j+2k) X (U -3)i+]-1tk)
=42+ Uk +1i +2 (20 + 1) j+ 2k + 283§
+U-Dk+i+22-3)]j-2
=2-2)i+(32+8-4)j+(61-3)k
=0i+7j+ 3kate=1.

Therefore -5— (r x S)ar=1= 1 + 3k,

dr ds
(3] —(l' S)-z"‘a‘

d
=—(2i -4 — - i-
d:[“ l_|+(2(+l)k]+d‘[(21 3)i+j-ik)

= (2 - j + 2k) + (2i + 0j - k)
=(U+2i-j+k
=4i-j+karr=1.

Thus %(r+s)=4i-j+kau=l.

@ s=(2t-3)i+j-
ds .
E’—2I—k

(rx$)= {i-tj+ 2o+ k) x {20 - Kk}

=02+ Ak +1i+ Q2+ 1)2j
=1+ (2 +40-2) j+ 2k,

——(rx—)=%[(i+(t’+4t+2)j + 2k}

=i+ (2+4)j+ 2k
=({+6j+2k)at =1

Thus d(rx-d—s)sn6,|+2k
dt dt .

) rxa .
Problem 70. Differentiate ——, a being a constant vector.
r-a

.Let v=

&-Ih. -

dv_
di
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_ (ra) (rxa) (rxa) (v-a)
[r-a)®
(rxa) (rxa) (i-a)
" (r-a) [r-a) dl
Problem 71. Find the derivative of the product r X s and deduce that

L.

2
;(rx-‘:—:-) r><‘:12 A [Agra,l%S]
For the derivative of r x s see Rule (2) of §1.17
ie. i(rxs)=£xs'-0-rxiii . ()
a - d dt _

For second part pbuing % in place of s in (1), we get

£ (o) dr dr 4 dr)
dt dt d d d\ d
d*v _dr ﬂ_o

='x?”7 pr

1.19. PARTIAL DIFFERENTIATION OF VECTORS

Let F be a vector function depending upon more than one scalar variables, say x, y, z;
then we write F = F (x, y, 2) and the partial derivative of F with respect to x defined as

oF .. F (x+ 8x,y,2)-F (x,y 2)
— = Lim .
ax 820 ox

if this limit exists.
Similarly partial derivatives of F with respect to y and z can be written as

a_pgu F(x, y+8y,2)-F (x, 5, 2)
dy 8z-0 Sy
F . F(xy2+8z)-F (x  2)
= Lim
az 820 Sz
pmwded these limits exist.

Note. If F=u (x,y,z,0)i+v(x,y,2,0)j+w (x,), 2, t) k, then the partial
derivatives of F with respect 10 x, y, 2, { respeclively, may be expressed as
O _ou dv ow,
dx dx dx° 9dx,
oF _du ....alj.;.gik
dy dy dy  0dy
oF du, dv. dw

FPRE TR PR Pl
.@E_Qf.i aj .B_W_k
ot ot

Higher order partial derivatives. The partial derivatives -g-li. gF gl: :

bemg themselves functions of the same set of scalar variables may again be partially
differentiated, giving second order partial derivatives such as
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2(E)2(m)2(m)2(m) o,
ox ax'a.y dy/) 9z \dz) ax \dy/) a9y \ox)"

FF ’F IF PF  IF
9x2' 3y’ 322’ 3xay’ ayox el
Further differentiation of second order partial derivatives may give third and higher
order partial derivatives.
Note 1. The two second order partial derivatives, viz.,
9’F 9*F '
and
oxdy dyox
are equal, if each of them is a continuous function, i.e.,
’F__ °F_
dxdy dydx ’
Note 2. 1f r =F (x,y) and x = f,.(1, 5), y = f2 (1, 5); then we have
ar_OF dx OF 2y
dt Jx dt Jy J¢
or _dF ax oF dy
and 3s ax s dy y s
These two results are similar to those of the results in ordinary calculus.
Total differentials. If F is a vector function of scalar variables x, y, z..., and we

assume that the values of the variables increase from x,y,z... to x + 8x,y + 8y, z +
8z..., when the corresponding change in F is F + 8F, then we write

F(x,y,2...) + 8F =F (x + 8x, y + 8y, z + 8z...,)
or OF =F (x+0x,y+8y,z+82...)-F (x,y,2...)
which may be expressed in the form,

which are denoted by —

SF = F (x+8x, y+8y, z+82. 5)x F(x, y+ 8y, z+dz.. ) 6x
.F (x, y#8y, 2+8z..)-F (x,y, 2+ 8z2..,) 8y bt

8y
Now if dx, 8y, 8z... tend to zero then 8F will also tend to zero; so that the
coefficients of dx, 8y, 8z...in the above expression tend to the limiting values
oF (x, y,z..) OF (x,y, z..) aF(x.y.z) '

dx ' dy ' Y

oF oF ,dF

3z’ 3y y' Az
As such the above expression can be written as

oF oF oF
GF-a—-B 8—8y+a -3z +...

Proceeding to the limit when §F—0, we have
oF oF oF
dF = —dx+ —dy+ —dz+...
TSl Tl T i

This gives the total dll‘ferenual of F for the scalar variables x, y, z...

or simply to
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" The total differential dF is given by
dF = dui + dvj + dwk

When F=u@y2itvixy2)j+wxy)k
ou ou ou
When = axdx+a—y~dy+ ‘a—z‘dZ'l'

d d d
_oaw ow  dw
=3 dx+ 3y dy+ P dz.

1.20. RULES FOR PARTIAL DIFFERENTIATION OF VECTORS
If r and s are functions of x, y, z, then

0 os or
1) 3x (r's)—r's;*sz.s.
() —(rxs):rx—-}ixs

d dox

3? _ 33 _a{' 3s ar}
® 555" ‘)'ay{ax(' ‘)}'ay "3t S

9% or 9 or I 9%

t——t ——+
dydx Jdy dx Jx dy OJydx
The proofs of these results are similar to those given in §1.18.

2. 32 2
Problem 72. Find aa—:fg—;.g—:;.a—y;.% for the following funciions:

=r.

- S.

d
@ r=x cos yi + x sin yj + ae™k.
() r=za(x+y)i+ b2 (x-y)j+zryk.

(©) r=xcosyi+xsinyj+clog (x+ v (x2-c?)) k.
(@) Given r =xcosyi+xsinyj+ae™k.

ar T

—=C0s yi+sin yj

dox

ar . . my

-a—y-=-xsm.y|+xcosy,|+amc k

%
=0

Erd

azl' . e 2 my
5;;=-xcosy|—xsnny_|+am e™k

’

2
L=-2— i = —sinyi+cosyj.
dxdy dx\dy
(b) Given r=da(x+y) i+ $b(x-y)j+3xyk
or

. =4[ai + bj +yk]
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r 9 (8r)=0‘
T = x cos yi + x sin yj + ¢ log {x+\/(x3-c2)]-k
N1 2 2-]/2
- (x2- 2x |k
[l+2 (x c) Zx]

i:co's yi+sinyj-c
x+ ‘l(xz- cz)

(¢) Given

ox

c
= €cOS yi + sin yj - —=——=
(=)

ar N .
—=-xsin yi+ x cos yj
dy

?r 1 k-2x _ 2xK
'37—2£(x2_ c’)ﬁ —(xz_ cz)m
2

9 T =-xcos yi-xsin yj
3y |

i:i o =-sin yi+cos yj.
dxdy dx\dy

Problem 73. If A = x%yzi - 2x23j + x2°k, B = 2zi+ yj - x%k, find
2
(AxB) at(1,0, -2).

d
oxdy
i i K
We have AxB=|x¥yz - 2x " x2
2z y -x .
= (20329~ xy22) - j (-x%yz - 2x2%) + k (x2y%z + x2%)

-a% (AxB)=i (-xzz)-j (—x‘z)-i—k (szyz)

2.
2

az d J - 2 3 4 4

. = e = = - +4 + x)'k

and — (AXB)= { (AXB)} 2%§ lxj z
=-4i-8jai(1,0,-2)

" Problem 74. If ¢(x, y, 2) = xy?z and r = xzi - xy?j + yz2k, find

3
ﬁ (¢r) at the point (2, -1, 1).
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Wehave  @(r) = (xy%) (xzi - xy?%j + y22%k
= x2y2 2% - x2y%2j + xy*2°k

?%l = 2x2y2zi - x2y4j + 3 xy32%k
il
az

and (¢r)= ) 4xy?zi-2xy%j+3y2%k

axaz

So that
i *(¢r)
ax’az(“) ax{ d0x0dz
=4i-2jat(2,-1,1)
ie. at x=2,y=-1,z=1.
Problem 75. If F depends on x, y, z, t where x, y, z depend on t, prove that
dF _ aF oF dx+aF dy oF dz

dit 9t ax dit dy di az o

} 4yzzi-2y‘j

Letuséupposethal
F=fi(x,y, 2,0+ fo(x,y, 2,0+ (x5, 2,0k ()]
So that dF = df\i + df> + dfsk ...@#)
14 8S1g 001, 00
Now df,= 32 dx+ 3y dy+ 32 dz+ Y dt

s 4 834,805, 30
4{,- 32 dx+ 3y dy+ 3, dz+ > dt

Putting the values of, df), df; dfs, in (i) we get
(34 M y+ 3140, 301 4 );
dF--(a dx+ dy+ 3, dz+ Y dt li+...+...

(Mi-i-?z + af’k)dxd-(af' -0-8"'z -ék)dy

dax 0 dy ay dy
o Fe +—ﬂ}“*(%’-‘*+—"1+a”")“
dF _(3, 3!’: af, e (3f, afz af, dy
* dt (a i+ j )dl (a j )dt
91,902, afa )dz (af.. §_f_; 9_[;)
(a:“ i+ dt a:” :j+ a:"

3Fdx oF dy aFdz 3F
T Aty ata:a
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iw(t-r/c)
Problem 76. Prove that F-= ———— satisfies the partial differential equation
’

+ —
ar: r ar c? .32

where a is a constant vector, w and ¢ are scalar consiants'and i= “J( -1).

We are given that

[ei m(l-r/c)]
F=a
r
OF [',eim/(t-r/e))< (-io/c)- eia){(:-rlc)]

T or r?
i iol-ric) giolt-rle)

=——3ge -
cr "2

® [reim/(l-rlc)x (-i(l) / C) _ eiol(l-r»/c)]
a J

r?

[rz 001N (i [ ¢) -2 eiml(l-rlg)]
-a- ; ry

iw/(i- (WA w/e-ric) - IO /- 28 /(-
io/(t r/c)+ em/(l r/c)+__2eml(l r/c)+_em)l(l rlc)

1

—-e

r cr . er r
1 iwi(i-ric), 2008 os(i-ric), 28 iw/(i-rlc)

r cr r

e
eim/(r-r/c)x 0= _"_(_0_3_’_85‘ w/(t-r/c)
r
and i;ztlz“ izc:za’ g ol=rie) _ _'_(2;3_ g oli-rle)
So that '
\ azF _ .oﬁeiml(l-rlc); _2_‘.__0_2)3_ei¢o/(l-i/c)+ zg_eim/(l-r/:) (D)

or? c*r crt r
E(B_F)__Zi(oaem/(:-r/c) ‘22 @/(-11e)
r\ar) e . 3

1(3%F)_ @& ;wi-ric ’

w {F)-Spemen

From (1), (2) and (3), it is evident that
?F 2 oF 1 d°F

— - —=
or: r 3r % a3

(2

- (3

1.21. THE SCALAR AND VECTOR FIELDS |

A physical quantity which is expressible as a continuous function and which can assume
one or more definite valles at each point of a region of space, is said 10 be a point
function in that region and the region specifying the physical quahtity is called as a field.
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S ———— umw ]hhtzldn dnd’ mmfr ‘,W %m&%
according to the nature of the quantity concemed. 0199V

s1alp BapolRt FapoRen. Ky each Poi Aor*d diain br Fegion i ion
denoted by f (P), or f (x, y, z) is known-¥8 & ﬁQlarfifb P fuhttion:' B% cjf’t?s’é“
region R lageshed wish theifunctianalindlubs £(P) constitute a scalar-field over R.

The examples absohlarificids ard thegemperature distribution in a ‘medium, the

gravitational potential of a W of asses, and the electrastatic mtcnuaﬂ of a system
of charges, eic. { ‘P A

(2) Vector-point functlon.‘)lf to éac‘h point P of a region R thcre is associated
a vector(E (P)ifie finction, i%(?)ﬁkgg;vn asa vector-pomt funcuon. anp points of R

together WitTUIESE VEgIprs CONSIULE d vegtdr field over R, . < —
The examples of v tor-f‘ clds m velocity of a moving particle, the electrostatic,

the mia Qfie electric intensity of force etc. < ¥
Continuity of Scalar and Vectqr_ﬁo;nt Functions 1 i
1 Scalar-point function. A scatds-point function f (P) is continuous at a point

Povifﬂ ady gnols Q 15 ovilgviiob I nmlomb ey boit vw ohwlinie yaibosoond
(®) f(P) is defined.

(i) Given a number e‘l‘U‘ﬁWe%r‘smalfmcre exists aposnlﬁ‘ & iaber xg'u?: T
91snibygo) ynol nonlnm inioy- 1()y(f)1()fgp9)lulgb Icnum)n(] (&;

10iBGREIEA 10 ovinFiTobal 5y uhere:d depends on.e and P bathuii o ynibosuon't e9xs
ie. S §(g; By -noidm ib svisizoq 2dy nt enotisnul

n other words, a scalar point f;mcuon f(P) is said ot be continubus aﬂa poim Py, if
lelp_.’of(l) )—}(PO) s 6 \b I(J -
The scalar-point function f(P) is continous in a regién 4fvifis b8y éVéry
point of emxxlmH A142) (3.0 noitoau)  Jaiog-1sisde
[ ectot-p omi-;{:noao%r e continuity of véﬂtbr‘pdmi‘ﬁn\fuaﬂyllsv ﬁéﬁﬁw“’
i:l oLysas in case of salar-pofit functions except malzdc])uas%g sy bns %8 g % mmi
rﬁu‘ Q sy asdr L m ) 91 OQ 1o 2umieos
1.22. DIRECTIONAL DERIVATIVES 1eds doue ‘\ inibq o1 1o eoisnibood
If £ (x, y, 2) be defined and differentiabld.at each point (z, y, z) in a certain £ den o

af (Wt
~ space, then the partial derivative —= is defin

the mf"nom"ﬁ?ﬁ‘fqom(fw‘r% )}ﬂ aunl

ox
direction of axis of x and called as the directional derivative. ebviv 9vitgvrio
P (1) Scalar-point funetion.-Copsider a
tergi line QP drawn in a scalar-fi of it

béing positive from Q to P. Let and jﬁ’) be

tfeo, (um)iondmhcs‘wmbomi Iuncgon s

at J'and Prespectively.

A+ + BlamsS 2ovitsvinoh 16nsq 2ugeRHTP RO el (B f(@) -
AR svad sw 15l oeq?‘r%ﬁtb?ﬁ]r BRQT vd Qpr‘rq")%%& Baos

called directional-derivative of thesczlm point Zinéuop a0 QFe. v s (v 1)

(2) Vector-point function. Th altderival we for vector-pou. functions
is defined similarly as in case of direc| S,nooel dem(auve for sc@[ar int functions except |

. A — N+
thaf is replaced by f for vector-pomt fuﬂ&xon ie.if an .az ) f(Q) exxsts it is
6 1o i@ 21 oo s v
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calied directional derivative of a vector-point function at a point along the direction of the
vector.

(3) Directional derivatives of scalar-pomt function along coordinate
axes. Referred to Fig. l .36, we have QP = &«

The deﬁmuon of directional derivative for

Y scalar-point function, then leads
(2,y.2103°8¢y.2 Lim f(P) - f(Q)
[ Y QP
Lim f(x+8x, y, 2)-f(x, y. 2)
8x—0 sx .
= partial derivative of f with respect 10 x
Fig. 136 291
dx
Proceeding similarly, we find that directional derivative at Q along the posn.ive
directions of axis of y and axis of z are = ai af respectively.

(4) Directional derivative of vector-point function along coordinate
axes. Proceeding as in case of (3), we may find that dircctional derivative of vector-point
functions in the positive directions of axes are

a o ar

ox' of' 9z

(5) Directional derivative
of scalar-point function
along any line. If QP be a line
in the space in positive sense being Q P
from 7o P, and the direction

respectively. Y

(%y,2) (x+1r,y+mr,z¢+0r)

cosines of QP are I, m, n, then the 9 > X
coordinates of the pdmt P such that
QP =r,are
(x+lr,y+mr, z+nr).
Thus the definition of directional z
derivative gives
' Limf(P)-f(Q) ) Fig. 137
P-og QP
=Limf(x+lr,y+mr.z+nr)-f(x. Y. 2) 0
r—0 r

If f (x, y, 2) possesses first order continuous partial derivatives then f (x + Ir, y + mr,
z + nr) can be expanded by Taylor's Theorem, so that we have

x+ir,y+mr,z+nr)=f(x,y,2) +1r g—f(x,.y,, ;)

d
emr 2o )+ (n 3 ) D

where (x,, y;, z;) is a point on QP
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s Lin L21=1@) 21
P QP

(x, Y 2)

+m—(x. Y, 2)+ n——(x. y, 2) [from (i) and )] |

- af of . df
| P +m 3y +n 3:
which follows that the directional derivatives along any line can be expressed.in terms of
those along three coordinate axes.

(6) Directional derivative for vector-point function along any line.
Just as in case (S), take the direction cosines of a line as, I, m, n and define a vector-point
function f in the region of line in terms of unit vectors i, j, k, as

'(x. Y, z) =fl (x’ Y 2) i +f2 (x- Y Z)j +f3 (xo Y Z) k.

If £ possesses first order continuous partial derivatives then us components fi, f2.f3
will also possess first order continuous partial derivatives. .

The definition of directional derivative for vector-point function, gives

(P)-£(0) _ [(P)=£(0) , | SAP)-12(0) , \ SAP)-1>(0)

1

l;f."; QP oP QP QP
S R
+k[l% aaj;’m E)af,] by (5)
=[i %ﬂ%{f*—k %]H[i aa—jy"-rjaa—j;’-a-k aa—f;’]m
[ af'+jafz+k aaf:]
=-aa-f; l+g—; m+%n

which is similar to the direction derivative of scalar-point function.

1.23. LEVEL SURFACES
Assuming that f is a continuous point-function, through any point P of the region
considered, we can draw a surface such that, at each point on it the function has the same
value as that at P. Such a surface is termed gs a level surface of the function.
The examples of level surface are: isothermal surfaces and equipotential surfaces for
semperature and potential respectively.

11.24. THE GRADIENT OF A SCALAR FIELD

| Consider a scalar function i.e. a function whose value depends: upon the values of co-
ordinates (x, y, z). Being a scalar its value is constant at a fixéd point in space.

The gradient of any scalar function ¢ is defined as

L2, 0,0 (120 0 ,
gad 9 =i AEFTRAFT (‘ax+jay+'»‘ag)" ()

=V¢
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el

where operator V is generally known as ‘del’ or ‘nablg’ operatar. an as ‘gradient’ or
Tﬁa PR

_ ‘grad’ in short. We have already mentioneg thgt a,gcalax -rgion; ih sphis the
scalar point function specifies the scalar physical qbantity likéQempepature, electric
potential, density etc. It is represgnted by a contipgous scalar function giving the valce of
tié:quamgity) aveadh poiot. 1n spafar (‘kld(allﬁlh@;ams having same value of ¢ can be
connected by means of surfaces, Which are callcd egual or level surfaces.

' ConsiQer a co-ordinate syste \ itk ax&f’suam ary level surfare lies in x-y plane
while z-axis is along the normal 16 that lebel surfabe. Since the value of ¢ does not
changealongthe Jayed surfacesie vas yocls 29visvizab isaoisstib ods sed) 2wollol doidw

0 d¢ Le9x8 218a1b1000 991l »nols s20rly
il qos gnois noitgpl T&;Q'to!aav 101 avitevitsb Ismoito91id (3)
IO I030v £ salot Los e 2ionil 610 2snie0 nobusb iy odes (€ 9282 ni2s tepl
therefore gradigi=ik oo sinu 1o 2mor i szil 1o noigsy oy i no.il.'ﬂ)ﬁ
S ARGy AFiGae =000
T,;\,;g?fgmaei is direcind, along a-Axis.idy AA0R& s neimaln)ths.levebgarfuce.
erefore equation (2) may be WHlGRAS, ., 11y zuouniingy 19bwo 12101 2252209 o2ls Hiw
001y g 8 jpiasY 01 sviggvnob [enoitdoib 1o nouinilsb odT 3
R OV T R T S T e
where n is unit veglyr aToné the normq_il\_t the Yevel surfagg at any point. 10 e
From_equatign (3) we,

1 lign. , may: state, “The magnjtude of grag ¢ at any point is rate of
gha{xg&"o};fuﬂawiwwim‘di&tmg arpng“ihc noﬁq;alwe Sﬁﬁevcl isurface at the point and
is directed along umit veciorn.” - | =% (o .20

_ Note.Iiisgo be nied thay gradiént of any scalar quantity is a vector.
(2) qd == W e E=e
Problem 77. Prove Vrn nrv2 (Agra, 1965)
r . Il'—_ ‘R- . -
W“ : i’_x"‘l_’l A ~r?¥:a:‘\_(_] ’:r \rn’_\__jé- ) \“F)La“}‘é ,‘ " ar
LHS& v"r‘;(ﬁ' 246 —;lL(x LAy LA L
SRR ax\(.’,}a-y 357 LAl rAR B v 7
i‘f;.‘i ,1~“.._‘.'- S
U *6 = inrn) ty—n+ jnr"’I -a—r- + knr"'lgﬁ

dx Iy, R 1w

B e )
=nr“'l{i .Q£+j .é:.;.k‘@i ‘(6 16
iz ol 5550l e0e Y@ s inot: acitssub ods o1 wslimia zi doidw

since r?= x%+ y+ 2% .‘d:‘mg{&ﬂﬁum:ﬁ’_ <1

HOTgt ot 4G ) Buen s 1ol aeineniog monffos’s A% SaifoA

sinny? Sy zad nmﬁxﬂfﬁ%ﬁ’{ mm&a);mm%nu Aoz 530N © WEth Abd W Dytobianed

Problem J8:4fir-is. te positioni veolar of,n peixt dedupthy Sahie Of erid (R
xoM'ngt,h_;n:ww(_phpvygus ghoitlue lurmiodiozi 1o1e soshwe loval 1o 2slqmexs odT

1 ylovirogest [siinsioq bas swis1eqmal

So that

P 2, o s A TUe .
(42 AP HAIADE £ 0 TVEIGASD BHT LI
200,10 guuki it Redipabiroaoh cule - vrody nobonut 61 noissnul wlssz 6 1wbiznod
a éra’& (:l)/ﬂ-vfﬁ'? Hoxil L Hhueand < sitlev 118602 6 3niod (s ¢ X) ¢91smibio

( 9 . 9 = bogz'j iy noiiprul wle vas 10 Jnoibgry odT

i—+j —+k —|{———————

x 0 2 ) ) oni/2

. xiy 0%, 20 20 g2 I
L AN E2 SRR ) i\




2ORREHSR&A ST AM AT A1 4.do

TAIOD-A4lAD2 OWT qO Mijer 5o TV’:H(IA O 4HT .a¢.I
=13 1 2 9 1 2/ 01D AU
muzaisd Yo 1n3ibe1g s ck?s,ﬂ‘yz; yzf/;oi a1 dginbd ;2 ymw;a)m wy 915 bia w1l

g noviy 2l

!:f‘ FN

) %
N .*"' b — l il + v
( n)t16 }.SL x&lwi[:_u__l__i_ﬁ}
(v +) A+ (v +u) -E- L+ (v +n) ._6_ i = (X+)’+z) .
16 \(\) X
if’_ *‘ ub  2x6 6,0 w6 2yub
——*—9——-——13—5 il ——
’(ﬁ’ 2#5’)' (x’3§2 2 }1)
A\
A+ - +—— l\+r(—x-\-3 A-f'-——'- L;-.E.G— ir =
36 ‘(6 ;6 ; L ) }E—k) . 2z }
’ / ; N T 2, 2. 22
u(—% >l+-—6—- l*i iwjﬁ-ul'—% ;j?.?;_ l,+'% J:2 (x+y +z)
: - xl+yf+zk’ ‘Sr Wr o

373 '—3',uV +uV =

Yo iz onl ol Inups 21 u(&\i’n)i\fn‘?o)\ Binde Kul o mut\o wsibong sdi ind grivwedl
21091bYty Vset

1.25. THE GRADHANT-OFR 'SCALXRPOINTS PUNBITON sbr 141

If #A , f
%@&%ﬁ#ﬁwmﬂe qt-sach Poing (1Y 'bvm: ;fgt??;q:gt: of space

riors 1(( ﬂ&)ignsaﬁngm RQ() 219 PRePg3 L k):oflﬁaﬁsoa :a&hunixaﬁxg ow) 9d v bag w1

d noviy el 1ubold)
Its R.H.S. is the scalar (pl;gd{u& g} chcg’orsijan(m)nq + nk) and

d d (
( ¢ ¢ —+k— at ), where the Wclor (i + mj + nk) is g unit vector along a line

ax’ 1oy W) — A+ (o) — |+ () —i=
whose direction cosines are l m hnd the seéhd vector Hépends only on the point

(x. y. m not op an} u@%\ v‘gconc that ;lgccta onal derivative along any
ol —ly+—uii=

3){_“_@3- M _5_5— ”%13’11 wi J@e unit. Vg(:lorh dgmi + k.

2+ =iVt Are— {+—1| 0=
36 (6 a&tG a¢ s%¢ (6 16
The v gor funcgon j— ax £ 5. is c%lled lh%grjdzent of a scalar-point
v

At 4 — — =
funcuon$ Mlswrnwksgm’ddorv mms\c) “16' *

V¢ grad¢-i 34) a¢ a¢¥va¢+v‘3¢1_

¢4 boninido 2 zum\anu’\\m@q‘m\ma)wa\@mxbaﬁ\ s:\x&g mstmg s\t 1ol griwad?,

" Itis clear that the gradRtdfRHERMo ﬂg BRI AR ARGy 24 2o vhut omer iy
Aolamd) sty Wy 19 bs\%s Vf iR (o) 0% msldord

In case, ¢ isa constapt,grad AFQisined 3-5-. x5 §ll will be zero in

X . o
- aovur st o) wniadihnoisg 10133«1 nw o bt (@)
W'm. gk}Weée is 15 o NS
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1.26. THE GRADIENT OR SUM OF TWO SCALAR-POINT
FUNCTIONS

If u and v are two differentiable scalar functions of x, y, z, then the gradient of their sum
is given by
a d d
V (u+ =(i—+ —+k—) u+v
(u+ ) dox j dx OJx (u+)

=j a—ax- (u+v)+j -9- (u+v)v+k _8_ (u+v)
_. ou . dv au v

"ax”a j M PR

J
3 ov
(i 5;+j 8 ) ( —+j —+k -a-;)
(i —a-+j-§—+k :) ( 9 j-a—+k %)v

dax
=Vu+ Vv,

Showmg that the grad:em of sum of twa scalar-point functions is equal to the sum of

their gradients.

This rule may be generalized for any number of scalar-point functions.

1.27. THE GRADIENT OF PRODUCT OF TWO SCALAR-POINT
FUNCTIONS

If u and v be two differentiable scalar-point functions of x, Y. 2, then the gmdnent of their
product is given by

V ()= (i ai” y+k 33-) (uv)

-i—(uv)+j (uv)+k —(uv)

= (u a—v--i-vﬂ)-l-.j (u av+v-a—'1)+k( a—"-4-vﬂ'-)

dx odx dy 9dy dz 0z
dv v v Ju Ju Jdu
=yl je— —+k i —+k —
“['a T az]+ [a T 8:]
) 9 L) ] d d
= (i-a-;+j a)'-i»k 3 )v+v(i-a—x-+j ay‘-t-k -5—)14
=uVv+vVu,

Showing that the gradient of the product of two scalar-point ﬁmcuons is obtained by
the same rule as is valid for derivatives of the algebraic functions.

Problem 79. () Find V ¢ and | V| for the function.
- ¢ = 2xz* - x2y at the point (2,-2,-1). ,
(b) Find a unit vector perpendicular to the surface x+ y*- z*=11 at the point
4.2,3). (Madurai, 1987)
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() Find the arigle between the surfaces x2 +y2 + 22 = 9 and x2 + y2 - 22 = 3 at the
point 2, -1, 2).

(@ Weknow by the definition of grad ¢ that

) d d
Vo=|t— —_— —_—
@ (i8x+j ay+k az)a
Here @ = 2xz4 - x2y '

201 2y 2o
V¢-(nax+j ay+k az)(sz %)

=i -a%— (2xz‘-x2y)+'j -(.f—x (2xz“—xzy')
+k % (2.::‘- xzy)

=1 [224 - 2xy] + j [- x?] + k [8x2)
=i2(-1)-2Q) -1+ [-+27
+kB8Q) (-1 atx=2,y=-2,2=-1
=i[2+8)+j[-4)+k[-16)
= 10i - 4j - 16k.

And Vel =V{(10)2+ (- 4)2+ (- 16)2)
= \/(372) =2 V(93).

(b) Here the level surface is @ = x2 + y2 - 22 = const. and V ¢ is perpendicular to the
level surface: V @ = 2 (xi + yj - zk)

=[Vglat(4,2,3)=2@+2j-3k)

uired unit vector Ve
Vi S emm—
req lVol
2(4i+2j-—3k) _4j+2j-3k

2 0@+ 3] P
(c) Proceeding just as in (b), the required angle say 6 is given between the two
(Vay)- (V)
—— gt (2,-1, 2
|Va, - Va,| ( )
__8
T
Problem 80. If u = x22 + e”*and v = 222y - xy2 find

@ V @u+v), (b)V (uv)at the point (1,0, -2).
We have

surface @1, @2, as cos 0’=

Vu+v)=sVu+Vy : (1)
Vuv)=uVv+vVu
Given that u = x2z + ¢
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oiti b gl - fa; Po% \8- s +3a X ) SR e 19wind signn o bt (9)
v Vu (a b By ay j(l éw) A5 .0 - .S nlog

§;m e beigic nummb)b odi ¢d woml oW (v)

..n— (x?2+ e”’)+,,| vy (16z+e’ ‘)+If (x 2+ e’

=i [2x1+ e”’X——]+ J [ W’ & x]’ qu]Q g15H

-i[z‘(t‘)(-‘z)ﬁ x——-?l rl¢+x ]‘”"‘(")

O
And vazrf 'xyz\ e RN

ST 0 d 0

RO V’W‘- f—+j —+k — | (2 2,_ 2

\ 5 Eax+'lay+ J(zy xy)

xV PECRES!

» ' a
=& 5'(2-’-)4 frx’)w —(2m a)”g(h’y-xy’)

= i [- )h] +j[2:2 fxy] +k [4:;]
-.[01+,t§(- 2i+5[d1azx 1 y =0,z=-2
= §;j. ...(3)
Putting the values of Vi Wl ) ffon’t ‘(2) dnﬂ (@3 ‘u\J(‘i)’ L‘kﬁt brA
@Vu+v=Vu+V,=(-4i #g%k)-&z8}=4—4p+ 9j+k
and ) Vu(uw) s Vever v M s (edz-+'elBY 8jr+ (228ye+ y?x)x(zz diveljodilyoH ()
=(-1)8=-8a(l1,0, - @j BT AR I 9ogtiue lovel
Problem 81. If A = 2x2i - 3yzj + xt% anid ¢ &25 =%y finl 18 (0 V1 =
(@) A. Vg (b) A xVg at the point ¢F, .1
Given @ =2z -x% 07|
g 1010 ;_S, ek
a( g {aﬂa(swm\,s

‘-.,‘wi sl doswsod nuiy a J (‘ P 3‘Y JQ "[;J‘(xp xTJ "(8% 28 Jeui gnibowdo1d (3)
=3i-j+ kaH)va,l xfﬁ .z-l

’ltg))JO‘-' nau bouupst

and A =2ul= 3y *’X{?}’_ﬁ" =0 200 28 50,18 90sT1we
-2i+3j+kat:t-l y=-1lz=1
@ .. A Vg =Qi+3j+ k) (i 4,& 2k)
=[6-3+ A= 3%
and (b) AxVg = (2!.'.".. 31!"-")_95;.(31 Thau2k) + Sx = u) .08 moldo1q
= [ - 2k —4j =Pk H 6k Jirkdlon 7 (¢) W+ VY ©
=Ti-j-11k. oved oW

”—V—“—z—“zi Providdds wor w0 V

MW7y +s Tu=(yV

. u - Ty Sy = Vit
Given P =-—=(uv ‘) s + 25y = ) naviO
v

(I)Problem 82. Prove V (3)-
\%
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s 10 noilom ol 19biznod 2u 19d
3. sldizesiqmosni bns zuonsgomod
- - d i1 i g 16 slsinsq big
v l)+j —(uv ')+k _(u‘\'.a it Yo 1ngtent ag Jg oluinsq bmq
dy oz ' anbnoqmod oy od w v w19l bns

He1sq yiioolsv ai o

8 ﬂoaes o | 5
53 v"gl‘fl-& j [ LAY PN [ LAY W-ﬁfm“]"
3 x Vv 3z nmasr ols Lne? 1deuznodz

. 1t 10 bygiqolstigisq slugnsios
+j ﬂ k _J+ v ( ,‘gﬁ..gflégﬁ +%. (ﬁ_% zobie diiw
x ' Amgo ot 26 (s,

P . N vib Yo noitet9rqioinl
()
dy dz

V¢=(i i...j —a_'*i‘ —
\ A

31:

)

X v d ] T ‘\as 10133/ wioofp] odT
=2 J—"'k—u*(dn:w[g
v dx
\az * A Q{u +in =
=-—Vv+ Vu--Vu--—- _{ﬂﬂﬂ&}o anonoqmos wo¥l
v v 4 sw? 1 . .x Y0 enoitanu} odl gnisd
Problem 83. 9}*& Wi ifferentiable funcuon of x, ¥, 2, prove Vudr = du. sved
GlVenu-u(x,y,z) RS R SR IR AR S S RUESY
fliw'aDn 'a’ }\a:usl oA Qgo Mgy 16 erxs-3. 03 Iullersq wivolev o snonoqmos sdT
ie. du= +—dy+ —dz o
ax dy dz p P
and r=xi+yj+ k. i3 ,-;—4.-7.}»3:
\ $ J

dr = dxi + dyj + dzk. 6
oRRAT 29iys T‘(dau)"’ [%1—; +{z.()us=
*o

Now Vyu=z=|j —+f —+k —
yiznsb =18 9 l?nfnz ni %y A q\z 561 901 10 100 ynizesq bisll odl 1o zesm odT
ogu 8 iGBu 9)31 meﬁ x08 Q K 9261 9ds o1 lsrmon yisolsy x biolt sdilo

S W TR T Y foﬁj_. ”]q:
" o \x6) ¢
= (i aﬁ’jﬂﬁﬂd‘e{w;u@xﬁﬁéxzfﬁdkbm 10 zesm ory ylwlimi2

wb) 46
-%‘idx gyd + a"d}‘f—% (BK 6) T “} a=
ie. 8, Qribps 8OCA 2395’! er dguonlt 1wo 2o22sq 16ty biull odilo z2sm ard) baA

1.28. THS n’wégxga ‘4191‘%“6 3 ‘l-lﬁvcnorv

(Agra, 1952, 65)
IfV(x,y,2) = Vi # Vyj + Vsk be a conunubﬁsiatj}ﬁén&aige Q&ctor-point function

X
sg cg}f ﬁ;’rﬁ gwf%’éﬁéﬁb{'g&w dw” f) ggt%no” defl z's'gdlaf% 21isq ow! 1910 o1 11

"‘ Jrs—+k 28 140
13
and is written as V v @r‘jv@dnﬁ reqd & diVerydnebw.0 * 6 <
2,18 orgia q&‘ﬂ ndo D 10 zesm lsjot odT
 paadlepsbagends biviaew g Me)b'u eom

u
13 18 T’ azig‘ésa( 163(}4-\5&8(613;-6(1-—

==Ll
ax 3y et N CIIIE ’78'“'1965)
which is clearly a scalar quantity. 1030 Yon —x-é E*R ]

Note. If V -V =0 then V is known as Solenoidal Vecior.
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Interpretation of div V.
Let us consider the motion of a Z
homogenous and incompressible
fluid particle at an instant of time ¢
and let u, v, w be the components
of its velocity parallel to axes of x, B B
¥, z respectively. wI 3] 0’

Construct an elementary r | T/
rectangular parallelopiped of fluid
with sides dx, 8y, 8z having P (x, A X A
Y, 2) as the centre. .

"The velocily vector at P is : —_—u
given by :

o
n-

, ) o)
V = ui + vj + wk. ;4

Now, components of velocity
being the functions of x,y, z, we Y
have

u=u(xyz2,v=vxyz,w=wx,y,2)
-The component of velocity parallel w x-axis at a point on the fare A’ D’ C’' B’ will

=“(x"’8—x' 2)
2’ Y

-t (xy. 5+ X 5"[3“] +... (by Taylor's Theorem).
2 Ldx

Fig. 138

be

The mass of the fluid passing out of the face A’ D’ C* B’ in small time 8¢ = density
of the fluid x velocity normal to the face A’ D’ C’ B’ x area of face A’D’ C’' B’ x time

du
= — X X X0t
p -u+ 5 (ax)] Syxdzxd
Similarly the mass of fluid that passes through the face ADCB

[ 8x (du
=p Lu- - (ax)]s &z d¢.

And the mass of the _flund that passes out through the faces ADCB and A’ D’ C' B’
=p|u+ 82 a“]s 82 51-p [u-s—" a—“]s 82 8¢

=p g Sx 8y &z d¢.

If the other two pairs of faces are consndaed then we have masses of fluid that moves
out as
dv

3-81 8y bz d8rand p aa Sxdydz bt

The total mass of fluid that moves out the elementary. parallelopiped in time 8¢

du dv ow
=p 3 Sx 8y Sz d1+p 3; Sx8y&8zdt+p 3. Sx8ydz 8¢

[a“ av aw]8x8y8381

M EFRE T
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The —Qolumé of the elémcma:y parallelopiped is 8x 8y 8z and so proceeding to the
limit when 8x, 8y, 8z, 8¢ all tend 10 zero we sec that an amount of fluid mass per unit
volume per unit time that passes through the point P (x, y, 2)

ou dv dw
[3x+3_ 3, ]6x8y8z81
Sxdy dzd¢

o[ 20, aw)
Bxay dz |.

. d d d
=p (u 8x+‘i ay+k az)~(ui+vj+wk)

=pV.V=pdivV.

1.29. THE DIVERGENCE OF SUM OF TWO VECTOR FUNCTIONS
If U and V be two vector-point functions expressed as

U=Ui+Uyj+Usk

V = Vii+ Vaj + Vik.

"~ Then -
V.(U+V)=(i 2 %).[(u,»fv,) 1+ Uyt V)i + (Ust VK]

= -a—-[U,+ v]+ -a—’[Uz‘L )+ i[U-_‘-n- Vi

(U, 3y, g_g;) v, 3% v
ax ay dz ax dy . 3:

. d 3 . .
-(i $+j ‘a—y"'k az) (U‘i"'Uzj“'U:k)

A

d d d
4{! $+j -a-y--l-k -a—z)-(v,nv,jw,k)
8V U+V V
=divU+divV.

Showing that the divergence of the sum of two vector functions is equal to the sum
of their divergences.
- This rule may be generaliscd for any number of vector functions.

. ’
1.30. THE DIVERGENCE. OF ‘PRODUCT
If the vector point function U is expressed as
U=U,i+ U, +Uskand Vs a scalar point-function.

S, 3 .. . 9 : '
ThenV-(UV)-(i 5‘.;*5.'3‘,“"37)’[(""*‘{25*”=“)V]
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o1 03 ymboosmng e Pai a?x " mazx b'xwpl Howa astasmols sii o smulov sdT
Jiw 1oq 2eset bl nrgﬁ-m»] iyl R h&J«[WIIMVUZIijUﬁg}/o 13 nodw remil
@)‘\ B o?é I duuotdr ¢ve2eq ot Sty Jing 19q smulov
) s E
=2=(V0) +3 (Vuz)\*ﬁ"%(%%l i 2L “5’- |
q 16

q=
=U‘ 2—‘_,.4.‘./ _aﬂ.'.uz av mm.p(v 2&_‘_‘/8”3
ax ax "3y dyr,p o @

=[U,a—V+U23—‘;+Ugaa—V [ M MT
z ) .

0x ‘
sy s T
=[i%!+_| i;(V' SV) (U,l4@/21+&§’k) 16
x Y Mwvibg=V Vq=

2AOITOVIA S1OTDAV O N | bV(!ggﬂI) Mg«j«(ﬁml{wﬂw)

n luemq/o snousuut fnog-100927 ows od Vobas Uil
=(W)-U+V (V.U AV + i) V=1

ie. div (UV) = (grad V) - U+Vd1vU. AN+l + i =V
Problem 84. (a) If V = x22i - 2y22%] + xy%zk find V - V at the point (1 54h 1).
. 6 (Agra, 1961, 63)
i i__..._' S T
(b)dﬁ-r —ﬂ-‘ﬁu}}ﬁ ‘} J\| A s i+ = l] (¥ +J)-V
() IfV=xcoszi+y lc{g\lxjg-ddzlrw({l«ateg\ﬂr-\‘ [N *'U]—\% =
(a) Given V= x2zi - y’z’] +x 2k,

T oRb MG J() 6 V6
V.v= (|—+1%+I&§)—ﬁxu zngxyzica-l
= e (i) R '

((s
(A + o] n?ri’";’ £6y%22 ‘b"yz S
= ~641--¥$alx=1(»,y}=—l z=1,
xi+yj
x+y Y-V +4Jd-V=
l&xvawb J

waizealt 03 Yoy 2 IYGM hogs ﬁ'Qlu ‘hkz r-rvr'ﬁw*b-az\ﬁsn niwond?
'5" 3‘*’ 8

* Xydsg 1svib 1isti Yo
3

L2001 g ;Buf. ux );)Jndfau Ly 1/] mlcumd od ysrm olut 2idT
+

—_—
~ax(x+ ydy AdFdt % 9ova0aaVIA AHT 06
(x+ y)-x + (%3 X ¥rq 0 o1 U noumaud 1niog 10100v ods 1
rl(xmfyﬁlrlxoq(u}tcy; 52id bas A + VW +1U=U
RIERSpEat U)‘.[ © Ll ’“—% ;J— (N'J)V nodT

16 ) X

(b) Given V=




YELIARS 1 ADIT AMAHT AL B A

(¢) Given V X COS 26 +y longJ - z%k
» 2 Sx-fsxd At (v bsig-w bmg) v
J i J
V.v=li —+j i-(k %xco&ﬁz y log xj- zk)
™ @%&sx) 8y (»saa)ai (3 - Swa) -
y 3 7.4V _2 svotd .T8 moldord
(¥ ot 231 m% s gl

= () ST sved sW

=cos z + lo 6 _
Problem 85. If g = 2x3 &9 htqind e ey ij =(w) ¥ osriw
) 16
(@) div(gradg), and

.Y ]
(b) Show that V .V g = V%&lher(é V%s‘az "“-i&g+aﬁ7-
b4

ay
(@) QE&OFﬁgj [ +——§n1+ l(-u-'() pl +1§u}—
68 (6 L'J.Ga 1.6 J24
{)‘ §_§_+ u%ﬂ u6a_ r +'.‘J-5;J (126)(1; z)
‘5 ‘(6 = (Efayzz‘)u + @lx’yiéﬁj + (BY2%) k

Vv+ueVus=

[, 9, .9 i WP N .
So that V-VQ-(I 3. ——-+k(—y '@JV&)‘V"’A(G::WS‘T” 8x3y223k).

ON u=v—<(ﬁv>x’rv‘h§-« R NN

= 1384V e ++zzvu y!z‘i’ HV
V + v
b) V. Vo= (,;sg-vﬂ Sy-mk( }

dap
iy JV—W&‘%-%Q in19ldor1d

(n V. [V Va R (v AY) oved oW
... -9 ( ) i£ » ﬁg N e
©)... 3x \3x) " Qykdy s 93kdz = (w7 4) - T ¢hslimiz bas

320 %9 9% 19y ow (1) mo1t () gnilosudul
vV . uv- a&@va V—€7+v$Vu=\qu) V-(wTw- -V
2 miVpuYuiVa=
=('5'7+3;§+5_i '-‘V% ity svor @8 msldoad

ST LN N i }m |
Note. V 5‘37'* 37 is known as Laplac bperalor

a 2
{d
¢ %ro?)%m 6. If u=23x2y, v=1xz2- 2y lhen gvaluale grad [(grad u) - (grad v)] _
‘6 s6
As gi overd oW
s given S\l S 4 ‘(-jﬁ 5"3"%6 T‘F az )
= 6xyi +
and = 2 wd
s\c VV( |Il ;— %av;*févagl? NS Y)
2xzk
Xyt + ?’5_212__(_.___1_*' 21& k)
r
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[ a..a . al,..
v ’(grad u- grad v)=[i -a:+j-a—y+k g] (16xyzz—'2xz)

= (6y22 - 4x) i + (6x22) j + (12xyz) k.
Problem 87. Prove V2 (uv) =u V2v+2Vu.-Vv +v V2y,
Wehave V2 (uv) =V [V (uv)] _
f(, @ . @ d
where, v (uv)-(l e +j 3y +k 3 +) (uv)

_[ v au]. [ v au]. [ ov au]
sly—+v—lit|u—+v—|j+|u—+v—1k
y dz 0dz
dv, dv, dv du, odu, du
—u[—;l j+—k]+v[a—x:+-a—yj+3: k]
=uVv+vVu T
V2wv)=V uVv+vVu
=VuvVv+9V vV
=uVVW+VvyVW+vVVu)+VuVyw
=uV2v+ Vv Vu+vV+VuVy
=uV2y+2VuVv+v V2,
Problem 88. Prove V- uVv-vVu)=uV2v-vV2,
Wehave, V- uVW)=u(V-(VV]+Vv.V ()
=uV2yv+Vyv.Vu (1)
and similarly V- (vVu)=vV2u+ Vu.Vy, . (2)
Subtracting (2) from (1), we get
V. V-V .vVu)=uV2v+Vv.Vu-vV2y-Vu.Vy
=uV2y-vy V24,
Problem 89. Prove that

where r2=x2+y?4+22 (Agra, 1957)
1 (a2 & 1

We have v? (-) =l s
F)E 3273 7 *372 (2 v z,)uz

But -2- ! X

Ax| (x2 y2 zz)‘ﬁ :-(xz,‘_ N zz)m

d? r 1 - _i9 -x
at (x%+ y2+ zz)”2 " ox (x%+ y2+ 2% !
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_ 3x2 1.
(x%+ y%+ zz)s' (x2+ y2e 22 3
and similarly
92 1 W - 3y?
O [(s%y2 %) " | (P4 y+2?) (24974 !
a2 [ . . 372 1
3_:5L(x2+ ¥+ zz) (x*+ %+ zz) (x2+ %+ z’) 2
A 1
3’ W 322 (xz-P yi+ zz)
_ 3 (x2+ y2+ zz) 3
(224 y2+ ) (xP+y*+ %)
3 3
(2+y2+ 22 (xP+y%+ 2% :
=0
ie v? (l)so
r
Note The equation V2g = 0 is known as Laplace's equation, and hence ¢ = l isa
solnuon of this equation.

Problem 90. Prove the following propositions:

(@) V = 3y*2% + 4x%12] - 3x%y2is a.solenoidal vector.

BV =(x+3y)i+(y-22)j+ (x+az) kis a solenoidal vector when a = - 2.

(c) U = 2x% + 8xy22)i + (3x3y = 3xy)j — (4y%22 + 2x32)k is not solenoidal vector.

But vector V = xyz2U is solenoidal.

By note on § 1.28, we know that if the dnvergencc of a vector is zero then the vector
is called solenoidal.

(a) Given  V = 3y*22} + 4x322 - 3x2y%k .

v V.V= (. -9-+j -a—+k )(3y‘z’i+3x’z i-3x%k)
X y )

-;;(y‘=’)+a (2 + o= (- 359

=0.
Hence the given vector V is solenoidal.
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(b) Given V = (x + 3y) F(y - 2)j+(x+ az) k
e 7T
MRS F[})aax ( 3‘(“‘,%_ )'[(x+3y)b i+(y-22) j+(x+az) k|

yhslime bas

=5plter 3+ pele e el

L

Y _,I \ ‘ N
lgntgécrglﬁat {'X)e inoada‘ vectbr. lv:: g\oqu ‘:ave ‘VJ {l( 0

ie. a+2=0 or q=-2 F
@m&udwwmwngz uxm k
R S S YL < R
{ V'Ui[l a( _| 9 +lk) i+gx+ ‘ 1)

T j(s )lfﬁ,l‘)L. xy) j - (4y%2% + 2x%)k]
=—(2x24(8“y z,é)Jr 5—?—‘*3.‘ y- 3xy) —‘(4yzz +2x%)

E4x+ 8y2£ + 3584 3&)—£8yzz - 232 0.
Hencél?ixg nat a sohnonaét veclor. <
But xyz2 U = y22 + 8x2y3z3) i+ (3x“yzz2 3x2y2z2) j - (4xy3z* + 2x%z3) k

'_(kc\_‘ +i’(3x‘y212 3x2y2z2)
LS, o ¢ dy

b _ - _8_ (4xy3z‘ + 2yz3) k

= 6x2yz2 + 16xy323 + &‘yﬁ-ﬂ—@x’y:z 16xy3z3 6x%yz?
= 0 N /
He[re xyz2 U is a solenoidal vector.

6 2f — =& sunud bis  nolioups 2 950iqod 28 nword zi 0 = 67 nousups 94T s10W
1.31. THE CURL OR RO%‘ATIO "OF A VECTOR POINT FUNCTION .

N9UERRR, ¥O530 6L 85
Let f(x,y,2) = fii + foj + f3k be a‘lcmum\ummmm vatwrpoinf fufttiér1then
the curl of f or rotation of f is giveRbYai, st 01 S fah - Sebad + iSe¥¢E = V (1)
- = b i \fn)zlabm( \3\3‘\: ci‘zl ‘ﬁlx; it -0+t +y) =V (Q)
361056 Iebiowsior Gon Bl @y t(\— Rkt - Vi, + izt + () = U (v)

9.1

and is written as curl for V x for rot f. Anksonstor 20 U fsyx = Vo oev w8
101397 sd) nods oy emojgava; 10 5igg¥ovib ors L 1sdl wond ow 8.1 ¢ no vjon d
ie, Vxf=|i 3% j3—+k 32 X(f‘|i+f2j+f3 ) Anhionslor bslled 2i
* y zA” SE - Bslab +iSstE = V asviO (v)
9fs _9f2), (3fx 3f3 o9 i
()B'y By L3d xC*az' VT(% 8:“ By } V-V
i j ,rkr . v 6 A N IR 6
J|2 9 TEY U o T T S(Agra, 196))
dx dy Jdz .
hH f2 [ =

It is clear that curl f or rotation f is a vedtor quanticy dnd’reatl B dePUrosd !

Note. If curl f=0, fis known as /rrotational Vector.
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~—

Interpretation of the curl f. If a rigid body is in motion, the curl of its linear
velocity at any point gives twice its angular velocity.

A (Agra, 1954, 72; Rohilkhand, 1976)

Consider the motion of a rigid body rotating
with angular velocity w about an axis OA; O,
being a fixed point in the body. Let r be the
position vector of any point P of the body. Draw
PQ perpendicular from P to the axis OA. Then,

Linear velocity V of P due to circular
motion = |V

= QP = wrsin 8 =& x r|

.i.e., V=@ Xr
where, r=xi+yj+:zk
O P13 and ® = 01 + @, + 03k,
But we know thatcurl V=V x V = V x (& xr)
i j K
=Vx|o, o, o,
x y 2
=V X [092 = 03y) | + (03x - 02) j + (1Y — 02x) k]
i i k
13 d 3
| oax dy 3z

Wa2-0,y Wyx— W2 Wy z-Wyx
2 [oi + 0) + @3K]
2@ Which proves the proposition.

~ 1,32, CURL OF THE SUM OF. TWO VECTOR-POINT FUNCTIONS
If u and v be two vector-point functions given by
u =l + uaj + usk
v =i+ vyf + vik
then VX (u+v)=Vx[(u+v)h+Uy+vy)j+us+vy)k)
i j k
9 9 9
ox dy , oz
WtV UtV Uyt vy

=i [;% (g + vs) - %(w Vz)] +§ [i—(uﬁ v)- %(uﬁ Va)]
+k [-;;(uff V)= :—y(uﬁ' Vx)]

duy du, [au, 81&,] du, Bul]
=f | —2-—= — 2 —_—
- [ay_ az]"j PP Pl Ml [P PR

-
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. [ﬁ_ﬂz}, [M_%ﬁ] [itz 2&]

dy 9d:z dz dx dy
i j k i J k
|2 9 ‘8f e 9 29
“{ox 3y adz| |ax 9y o:
| U Uy | V2 V3
=Vxu+Vxv, 0 (by the definition)

ie. curl (u+v)=curl +curl v.
Hence curl of sum of two vector point functions is equal to the sum of their curls.
This result may be gencralized for any number of vector-point functions.
Note. If r is the position vector of a variable point with respect to a fixed origin such

that r = xi + yj + zk then curl r = 0. (Agra, 1967)
Sincecurlr=(ix-aa—x+jx%+kx-:—z)x(xi+yi+zk) .
9 0 0 0 d d
=] = g — - — k| — -
[Z6- 200+ [Z0-Z0] k[0 Z )]
= 0. ' ,
1.33. CURL OF THE PRODUCT OF TWO VECTOR-POINT
FUNCTIONS

We have to consider the curl of the forms uv and u X v where u is a scalar and u, v
vector point functions.

Suppose, u = u;i + usj + usk
v =i+ v+ vik
anduisa sc@lar point function.

Then, curly(uv) = V x (uv) = (ix%+jxa—ay+ kxaiz-) (uwy i + uvy j + uvyk)
=V X (uvyi + uvyj + u v1k)
i i k
|2 2 2
“lax 3y a:

= [aiy(&v;,) - -(.,a—z‘(uvz)]i2+ [-ai:.(“vn) - %(“Vs)] i ¥ [ga;‘(“"z) - ba—y(“"l)] k

[ ovy  u \3v3 du [av, u _ dvy Bu]
-[u —u—3 - ]i+ u +vlaz-ua’x-v33; J

+uﬁ+va—u—uav'—va“k
ax  *ax ay ‘'ay

NCETNCEAREES)

dz O0Jx
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+ (ﬂv--aﬁ-v i+(a—u v-a—uv) '+(-a—u-'v—a—uv') k |
ay’az’ az‘ax”ax’ay‘~

i i k i i k
a8 9 9 |,|3 du -du
dx dy 9dz| |dx dy 9z

Vi o] V3 ] 4] Vi
=ucurl v+ (grad u) x v
ie. Vxuv)=uVxv+ (Vu)xv. (Agra, 1955,57,61, 63,83)
Againcurl (uxv)=V x(uxv)
i § ok

=Vx|u uy  uy
i V2 v

=V x [(vaua- valuz) i + (vilt3 - vauy) j + (Vo= viu3) K]

i i k
9 9 9
ax Ay 3z

("3“2‘ Vally)’ (Vlus‘ Vs“n) (Vzun' "1“2) ,

J 0 d 9 d
= '[5;(“2“1" vilp) - E("x“s" | "'3)] + j[g("a“z' Valky) = ‘a-;("zul" ¢! “2)] )

d d
+k[-é—x-(v, uy- v3i4)) - a—y(v,uz— Vzug):l

av du v, du v du av ou
=i —2 —_— o =Ly =2y =Ly 2 3 1]

g, v A vy du, By, dv]
”[“’az”’ dz “ dz "2 d:z “ ox "2 ax”' ax”" dx |

L L N L SR . SV-L B |
fk ["’ax”‘ ax 2ax 4 '8y+v2 dy i ay
d

=(uli+u2j+u3k) [(i 'a'a';'+j 3;+k %J-(V,i"'"zj"‘ ng)]

=udivv-vdivu+(v - VYu-u-V)v
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Aliter Curl f-ixﬂw x—- ﬂcx—_z x-qL
dx ox
Now Curl (uxv)= z.xa[;xv]
av du |
-Zix[ x$+vx5;-]

av . Ju
-Zix(uxs.-;)f&x(vx-a—;)

s (02 uos s g (120
-Z(i g) u-Z(l'u)-a—x-+Z(l v)ax Z[i ax)v

[By vector triple product)

=[(zi.- %)]u -[z(i-u)]%+ [Z(i-‘v)lg'i--[i(i-%)]v

=udivv-vdivu+s (v - V)u-(u-V)v,

1.34. TO EXPRESS GRADIENT OF SCALAR PRODUCT IN TERMS
OF CURL

. -We have to show that
grad (u-v)=uxcurlv+vxcurlu+(u-V)v+(v-V)u
We know that

grad (u-v)=2Xi -ég- (u-v)
X

-zi (o 2)ezi (v 2] e

=uxcurlu+ gu Vv v...(2)'
Similarly ¥ (v-g-i-) i=vxcurl u+(v-V) u ...(3)

Substituting values of (2) and (3) in (1) we find,
grad (w-v)=uxculv+ (u-V)v+vxcurlu+ (v-V)uw
=uxcurlv+vxculu+(u-V)v+(v-V)u
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1.35. TO EXPRESS DIVERGENCE OF VECTOR PRODUCT IN
TERMS OF CURL

We have to show that div(uxv)=culu-v-curlv-u.
(Meerut, 1985; Agra, 1971, 64, 61, 59)
We know that,

div(uxv)= Zi--a— (uxv)

= XYi- [-é-;xv+ux§—1]
=[Zi (—x v)+ yi- (uxév-)]
ox
-Zix-g—"-'v-i-iji uxg—:t
’ (interchanging dot and cross)
=(Zixg—:)-v+(2ix%)-u :
=curlu-v-curlv-u.
Problem 91. Prove the followmg
() divgradg=V2gp,
@) curlgradp=Vx(Vg)=0 (Meerut, 1982, 87; Agra, 1956, 67)
@) diveurlf=V - (VxN=0 (Meerut, 1982, 87; Agra, 1956, 67, 71)

@v) cwrlcurlf=Vx(Vxf)=graddivf-VH ,
(Meerut, 1980, 81; Agra, 1959, 61 64,69)

(v) gradvidV =V (V-V)=curlcurl V + V2V,
() divgradg=V.(Vg) _
d d 9 d . 99 o9
(‘ 3x+j +k 3:) (i .9x+" ay+k az)
a% a’¢ a’
g ay az
-
(ax Yt a’}’)”
=V%
Note. This follows that

di L 2 S '
v grad = -a—-f+ 3 —t+— Py =V* i.e., Laplacian operator.

’

(i) curl grad ¢ = V x (Vp)
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(2 ), (e ) (P s
dydz dzdy dz0x 0x0z dxdy dydx

@) diveurl £=V . (V x1).
of af of

) ) o) (
=|j — —_—+t k. -] — — K X —
(' PR T az) SRR T 3:)

(Taking f = fii +f) + f3k)

1.86

e~ N

i 2y 2 2)[(2L 28
'('a + ay+k az) _(ay az)l

af, 35 (3% 4
+(32 ,ax)“(ax ay) ]

i ﬂz]i[a_fli]_a.[a_fza_f]
T x dy dyLdz dx] dz[dx dy
_oy 3 3 35 3 3

"~ dxdy dxdz dydz dydx dzdx T dzdy

=0.
(iv) curlcurlf=Vx (VX

S O RPN R W AT -
. (u +j +k 3; )x(uxax jxay+kxaz)A

d . 0 dfy 9/f,
= — —_— K —
(' ax 4oyt az)x[(ay az)

{34541

dz 0x ox dy

| (afz af _a_(y_,_a_f,,)i
ay dx ay dz\dz dx :

+[i (afs_a_f.z)-_a_(a_f.z_ﬂl)
dz \dy 9z ) dx\dx 9y
+i(% 3/3) 3(3/'3 afz) K
dx \dz dx) dy\dy oz
3fy ALy 3’f1+3’f1 |
ayax dzdx 3y? | 3z

26,20 (2h, 80
323y -9xdy 322 axt

af 3 af 3
+[(8xalz Byaz] "'(axﬁ oy ) K
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7/
3?f 3’f 3fs

(On adding and subtracting —5 2 3y ,. 3
bracket)

azf a’f azf azf azf 32f o
| l 2 3 1 \ \
[(ax axay+axaz i- x2 + 3y + 32 + two similar terms.
= afi 3fr 3fs)_ 3L 4
o ax(a 3y )t 3’“3;44 2 )|
=graddivf-Vf
Note. Iflefso [hengraddivfgoagdso

curl curl f = - V2f, (Aéra. 1975)
) zrad vid VeV (V. V),

é(i )Lk %) (n KAY a—v+k..i!J
(on taknt;g V= Vii+ Vyj+ V3k)
9 d df, 3fz afs
(i 8x+" 8y+k Bz)[ax ay Q2
_(3h, 3 3 & f a’fz s
-(3x2+3x3y+8xaz M ETTAET +ayaz

G258

azax azay Fra

—=-respectively in second factor of each

B P ATR LLi
ax? axay dxdz

2 f 27 )
-Z( i+i j+i 3333 )

k]+twosimilartcnns.

a’f ‘
-2 7+ VX (Vx0)=V+ curl curl f.

Problem 92. Find curl of lhe following functions
@ f=Xi*tyi
x+y
(b f=xcoszi+ylogxj-2z2%k '
© f=x%+y%+ 2%k
Let f=fii +f,j +f3k; then
curlf = lxif-+jx—ar-+kx-@!-

dx dy 9z

a3 . 2 a).
(l-a—;+j-a—y+k3-z-)>'<f
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(i 2] —a;+k —) (fil+ £23+ £3K)

=(2&-2&)“(M_2ﬁ), (3fz af,)
dy 0z dz Jx dx dy

(@) We have f=v_.‘t_.i+_y_j+0k’

x+y x+y
=2 - =
fl- +y fz x+yo f) 0
ofs O.a—fz 0;M=0'M=0
dy 92 dz x
9/, Yy 3f x

ox - (x+ y)2 : y (x+ y)z

Y y x
curl f = 0i + 03+[- ™ y)2 + ™ y);| k
X-X)
(x+y)’
(b): We have f = x cos zi + y log xj — z2k
fi=xcos z,f=ylog x,fy=- 22,

%go afz OM

so that 3y : P 37 =-xsin z;
9fys_qo.9f2_Y _f_=
Px  ax " 9y

curl f = 0i - x sin zj+l
x

(c) Wehave  f=x2i +y2j + 22k
- h=xhf=yfi=20
9fs_qo 9f2_o 9S1_
So that | j-a—y—O, 3: 0, 3.
9fs _ 9f3_o 9S1_
S2=0, -a—xl- 0, -a-l- 0
curl f=0i +0j + Ok,=0.
Problem 93. If u=x%z,v=xy - 322 find
@V [(Vu) - (VV))
®) V- [(Vu) x (Vv)]
‘ (c) VX [(Vux Vv)).
Given u =x2yz,

(i 2y 2k 2) (2
Vu-(. 3x+j ay+k az)(‘ yz)

= (2xy2) i+ (x%2) j + (x%y) k
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i Ly ik L) (-3
Vv-(lvax-u ay+k Bz) (xy 3:)

= yi + xj - 6zk.
Sothat  (Vu)-(Vv) = [(2xyz) i + (x22) j + (x22) K] - [yi + xj - 62k]
= 2xy2z + x32 - 6x2yz (1)
and (Vi) x (V)] = (2xyzi + x32j + x2yk) X (yi + xj - 62k)
. = (- 6x222 - x2y) i + (x2y2 + 12xyz2) j
+ (2x%yz - x%y2) k .2
Thus,

V=i Lt ] Lok 2| 2ry2es 2o 622
@- V[Vu Vv]-[i 6x+j ay+k ax] [ny 2+ x2-6x yz]

= [2y%z + 3x2z - 12xyz) i + [4xyz - 6x2z2) §
+ [2xy2 + x3 - 6x2y) k
B)V . [VuxVy)

12 es 2ok 2) [ 60 1o (o)
+(2x2yz- x’yz)] k
_ % (- 6522 x)+ % (2212 xyzz)...%(szyz— x’yz)

= [ = 12x22- 3x2y + 2x2y + 12x22+ 2x3y - x2y)
) =0,
(c) V-x [Vu x Vv]

. =(i %+j —+k -—) [( 6xz xzy) i+(x2y2+ 12xyz2) j

+(2 xzyz- xzyz)] k
= [33;- (2xy2- x%yz) - -aa; (x2y%+ leyz’)] i
+[% (6x%2%- ‘xzy) - -aa—x (2x%2- x’yz)] J

.,.[-a_ (x%%+ leyzz)-—a- (- 62%2%- xzy)] k

= (2% - x%2 - 24xyz) i + [ - 12x%2 - dxyz + 2xy2) §
+ [2xy2 + 12yz2+ x3) k
= (x2z - 24xyz) i - (12x2z + 2xyz) j + (2xy2 + x3+ 12yz2)k.
Problem 94. If u = y22i - 3x2%j + 2xyzk and v = 3xi + 42 - xyk
- and @ = xyz find, .
(@) ux(Ye)
(b) (ux V)p
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() (Vxu)xv
dv-Vxu.
Given ® =2xyz ,
d d d
Vo= [i -a-;+j -;+k a—] (xyz)
: = yzi + zxj+ xyk.
Thus,

(@) ux(Vg) = (yz2i - 3x22j + 2xyzk) X (yzi + 2xj + xyk) ,
= [ - 3x2yz2- 2x2y22] | + [2xy222 - xy22?] j + [xyz® + 3xyz’] k
= - 5x%y2%i + xy22j + 4xyz3k.

—(ve?§ - 3 xs2 9, i3kl
®)  uxVs=(y?i-3x?j+ 2xy2k)x (i =<+ ay+k az)

d d d d
= _ 2__ o . - _ 2_ .
-( 3xz 3 2xyzay).|+(2xyzax yz az) j

So that [(uxV)]¢=[( Ixz ai_nyz_a_a_;) i

(nyzsé-—yzzaa) J+(yz —+3xz J ](xy’)
= (- 3x%y22 - u%y2?) i + (Zry’z’ - xy’z’)j .
L+ (xyz3+ 3xyz3) k
= - Sx%yz? i + xy22%j + dxyz’k.

© qu:(i i+j 9 —) (y22i - 3xz’j+2xyzk)
ox " dy

=[aay (2xyz)-—( 3n2)] i
{20r)- 2] 1+[Z(- 357)- 2071

= [2xz + 6xz) i + [2yz - 2yz]j +[- 3:2 -22)k
= 8xzi + 0f - 422k,

s [V x u) x v = (8xzi + 0j- 422k) X (3xi + 4zj- xyk)

= 1622 + ( - 12xz2+ 8x%yz) j + 32x22k

= 162% + (8x2yz - 12x22) j + 32x2%k.
@  Vxus=8xzi+0j-422k [by ()]
o v+ (V xu) = Bxi + 4zj - xyk) - (8xzi + 0j — 422k)

= 24x%z + 4xyz?,
Problem 9S8. Prove the following relations:
@) V- -[VuxVv]=0.
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! (b)V-[axr]=
' ‘(©Vx[axr)=2a
(a) Suppose that Vu=Uand Vv=V,
Sothat V. (Vux Vv)=V.(UxV)
=V (VxU)-U-(VxV)
=Vv. (VxVu)-Vu.(Vx V)
=0( curlgradu=0etc.)
(b) If a = a,i + a,j + a;k and r = xi + yj + zk,

then V-[axr]=[i a%-o-j %-ﬁk]'[a,i+a2j+a3k)x(xi+yj+z'k]

[i -58—4- j a—a- +k -58-] (@22 - a3y) i + (a3x - @12) j + (a1y - ap0)k]

0 0 0
=3 (ay2- azy)+ S (a3x-ayz) + 3 (@y-2ox)

=0.
(c)‘We have, .
Ux(axr)= |—a—-+j—3—+k—a—- [(az—ay)i+(ax—az)j
dx- 3y a2 . v

+(a,y- a,x) "]

=['a%‘ (ay- a,x)-sa; (agx- a,'z)] i

) ] .
+|:$ (a32- asy) - 3; (ayy-a, x)] j

‘ +[3§; (a3x- a,z)—-a—a; (ayy- azx)] k
= 2a;i + 2a,j + 2a:k = 2 (a,i + azj+ a3k) = 2a.
Problem 96. If € is a unit vector, prove that
(@) W.(i.r)é=1. b Vx(é-r)é=0
© V.[éxr)xé]=§. B @ Vx[(éxr)xé]=0.
Taking e, e, €3 as the components of € alung principal axes, we have

& =e)i + eqf + €3k where €] = \/e,2+ ed+el =1 (1)

and let r=xi+yj+zk ..(2)
(a) We have,

V-[(&-7)E] = V - Kei + €2 + e3k) - (xi +yj + 2K))(eyi + €3] + €3k)

, 0 a‘ 9 \ .
=(| 3 —_—+ — ay +k -5—2-)-(e,|+e2,|+e,k)(e,x+e2y+egz)
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(el aa +eéy— aa + - aa )(e1x+ e y+ 631)

=e2+ef+el=1 by(l)

(b) We have,
vx[(é-r)e]= (i —a-+3 Ikl ) ()i + 2§+ esk)ex+ e,y+ €52)
dax dy . 9z
asin (a)
=i [eze3- e2e3] + j leres - ere3] + k [ee2 - e2¢))
) =0,
(c) We have,

V-[(éxr)xé] =V - [{(e)i + ea) + €3k) X (xi + yj + 2K)} X (e,i + e2) + e3k)]
=V - [{i(e2z - e3y) +j (e3x - €12) + k (€1 - €2x))
X (e,i + e5j + e3k)]

= (l -ai +j —+k —] . [i{e;(e,x- e2)-eey- ezx)}

+ Jlen(eny ex) — e3 (€22 - e3y)) + k (ex(e2z - eay)
- ey(exx - €)2))
= (e32 + €22 + (6,2 + €32) + (€24 ¢4?)
. = 2(e;2+ €32+ e32) = 2 by (1)
(d) We have,

. . 9 ) 0 . ‘
Vx[(ex r)xe]:( o —+j —+k a—) [I{Gg(t;X-C,Z)
- ex(ery - exx)) + jley(ery - exx) - ex(ezz - eay))
+ k {ez(e2z - eay) - ey(e3x — ey2)}] as in (¢)
=i[ - eze3 + esea] + j[ - eze) + eje3] + K[ - 12 + €2¢1]

=0.

Problem 97. Ifr = (x2 + y2 + 22)12 gnd ( ) is a solution of LapIaces equation

r

show that v’(i) =0. (Agra, 1957)
r

Hence or otherwise, evaluate V x (L,)
' ’ ’

i (a) Givenr = (a2 +y2+ 222

3?2
Via| —+—+—
ad ( 3y a:’)
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Buit -2- ! = X
dx \(xz-b-‘ 2+ zz) Py zz)jﬁ
(
02 1 d -x '
3 778 e ST )
dx (%4 %+ zz)” Ox| (x2+ y2+ 22)3/2
3x? 1

- 32

TPy ) (BT
0% 3y? 1
Similarly — = -
e [(x 2 y24 22 )1/2} (x2+ y2+.zz)s/.2 (x%+ Y%+ 2 )3/2

iz_ 1 _ 322 _ 1
az? (x2+ y*+ z’)”2 B (x?+ y2+ 22)512 (x2+ y2+ z’):"2

Vz(l) 3(x +y +z)
r/ (x +y+z2) (x+y+z“)/2
- 3 R
(x2+ y2+z) (x + y’+z’) -

(b) Suppose that r'=xi+yj+zk
and given r=(x2+y2+ 222

v x(;’f) =V x [0 +y2 + 22 (xd + yj + 2K))

[V (x2 + y2 + 227! X [xi + yj + zK]
+ (x24 y2+ 22)7 [V x (xi + yj + zk))

-[V(?le?-)] x (»\'l+yj+zk)smce V x (xi +)j+zk)=0 by Noteon § 1.32

2 .9 aY 1 :
_[(i -a—+J ay-+k azIx2+y2+zz)]x[xi+yJ+zk]

z[xi+'yj+zk] [xi+yj+zKk]
(x’+y 2?)
=0 [Vector product of two equal vectors being zero].
Prdblem 98. Ifa = a,i + a,j + a3k, b = b;i + byJ + bk and r = xi + yj + zk
then prove that grad [(r xa) - (r xb)]=(bxr)xa+(@axr)xb.

grad [(rxa) - (rxb)l=grad[r> (@a-b)-(a-r)(b-r))
=grad [ (a - b)) -grad [(a-r) (b - 1))

=(a-b)grad P+ r2 grad (a - b)
-(-r)grad(a-r)-(a-r) grad (b-r)
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=@-b)2r-(-r)a-(a-r)b
=(@a-b)r-(a-r)b+(b-a)r-(b-r)a
=-ax(xr)-bx(axr)
=(xr)xa+(@xr)xb.
Problem 99. If r and r have their usual meaning show that
@) divrr =(n+3) r, (b) curl rr = 0. (Agra, 1974)
Suppose that r*r = 4V then
div (r*r) = div (uV) =udivV + (grad u). V
=ridivre+(gradr’) - r
=rr@3)+(mr-ir).r
=3+ nrr2=(n+3) rr.
(b) curl (rr) =curl (uV)
=(gradu)xV +ucurl V
=(grad r)xr + rcurlr
=(rr)xr+0 cculr=0
=0 asrxr=0.
Problem 100. /f a = axi + Byj + yzk, show that
(@V(@-r)=2a. '
(b) If r and r have their usual meaning prove
curl(a-r)a=0.
@ a-r=(oxi+ Byj+yzk) - (xi+yj+2zk)
= (ox?+ By? + v29)

giad(a-r) =(i —a—"'.i "a"'"'" i) (@x’+By*+v2?)
dx dy 0z

= (2ouxi + 2Byj + 2yzk) = 2a.
b) If a=aji+aj+ak - and r=xi+yj+:zk
then a-r=(ax+ayy+asz)
So that (a-r)a=(ax+ayy + ay2) (a)i +ayj + ask)
= (@1X + @y + asz) ayi + (a1x + agy + as2) ayf
"+ (a1x + ayy + asz) ask

and hence
J . d ]
curl((@a-r)al=|i —+j —+k — | X[(aix+ayy +a32) a)i +...+...]
: dx dy dz ‘
3 ’ d |
= {a_y [(a,x+ ayy+ a,z)a,] -3 [(a, X+ ayy+ay z? az]}i oot
=(a2a3-a3ax) i +...+...
=0.
Problem 101. If u, V, w are point functions and uV = Vw, prove that

V.curl V=0.
We are given that '
uV =Vw,
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Taking curl of both sides we have
: curl (kV) = curl (grad w) =0
‘ or (gradu)xV+ucurl V=0 byProb 9l(ii)
 Multiplying by V scalarly, we find
V.(gradu)xV+V.ucurl V=0
“V.ucurl V=0asV-(gradu)xV =0
V-curl=0 asu#0.
Problem 102, If a is a constani unit vector show that
a-[V(V-a)-Vx(Vxa)]=V.-V=divV
We have grad (A ‘B)=(A-V)B+(B-V)A+AxcuwlB+Bxcurl A
V((v-a)=(V-V)a+(@ - V)V+Vxcurla+axcurl V
) =(V-V)a+(@-V)V+axcurl V (D)
Buta being a constant vector curl a = 0.
Also we have curl (AxB)=(B-V)A-(A-V)B+AdivB-B div A
Sothat Vx(Vxa)=(@-V)V-(V.V)a+Vdiva-adivV
=@ -V)V-(V.-V)a-adivV ..(2
"+ diva =0, a bcing constant
Subtraction of (2) from (1) yields
V(V-a)-V>(Vxa)=2(V-V)a+excurl V+adivV

Where (V- V)a = (v,ai+ vz-a%-+ v,%) a;if V=vi+vyj+vik
= 0, a being constant
chce. a-{V(V-a)-Vx(Vxa))=a-{axcurl V+agdivV)
=a-axcurl V+a-adivV
=divV - a-.a=1,abeing unit vector
Anda-axcurl V=axa-curl V=0 '
Problem 103. Prove that div (u grad v) = u V2v + (grad u) - (grad v) where u and v
both are scalar point functions.
We have div (u grad v) =div (uV) where V = grad v.
' =udivV+V.gradu
= u div (grad v) + (grad v) - (grad )
=u V. (Vv)+ (grad v) - (grad u) .
=u V2v + (grad v) - (grad u).
- ' Problem 104. Pravcthatcurl(ugradv) = Vyx Vv =—curl (vgradu) where u andv
both are scalar point functions. ’
_ ' Wehavt
curl (u grad v) = curl (4 V) where V= grad v
=ucurl V-V xgrad u.
- =ucurl (grad v) - grad vx grad u
=0 - grad v x grad u.
=grad u x grad v .
== Vux Vv=«(Vvx Vu) =-curl (v grad u)
Problem 105. Prove that V - (SV xA) = (V x A) - (V §).
We have V - (§ V x A) =div (S curl A)

] ]
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=div(SV) wherecurl A=V
=SdivV+(gradS) -V
= § div (curl A) + (grad S) - (curl A)
=0+ (grad S) - (curl A)
= (VXA)'(VS).
Problem 106. Prove that
curl(VuxVv)y=Vuy(V.vy)-Vy(V.Vu)+ Vv V)Vu-(VuV)Vy
where u and v both are scalar point functions.
Suppose that Vu = A and V v =B then,
curl (VuxVv)=curl (AXxB)
= A div B -B div A + (B grad) A - (A grad) B
=VuV - V)-VyV.-V)+ (VvV)Vu-Vuv)v,
Problem 107. Prove that the values of div F and curl F are independent of the
choice of rectangular axes i.e. they are invariant. (Lucknow, 1952, 59)

Taking the mutual direction cosines of two sets of rectangular axes as shown in
adjoining scheme and (x, y, 2), (x’, y’, 2’) as corresponding coordinates, we have

x y 2
i’=hi+mj+nk } (D) i k
x' =hx+ my+nz etc 'L o om n

Andi=hi'+ L +bk’ } @ Y ¥k mom
xX= I, x'+ Izy'+ 13 Z'elc. 2’ ' k’ l: my ny

3 _ 9 9x aay adr , 9 o 9
LA = : =2
i ar ox T dy ax arax axthaythay

o d d 9 .9 d o ..
R T P T P PR P T P

Als

Using )2+ L2+ [32= 1 etc. and [ym, + lymy + lsm3 = 0 etc.,
We have F = Fyi + Foj + Fak = Fy (4i'+ lof + 11Kk +...+...
= (llFl + m,Fz + ang) i'+ (le‘ + szz + nng)j'

+ (lgF]‘l' M3F2 -Irngl"g)k'

9 0
~Sothat (dvIF)..,. ™ 3 (WF +mF +'\F))"’3y”(’2".l +mFy +mF)
, (4
"'57(13"'1"' my Fy+ my Fy)

J J J
= (11-3—;74- 12'374'13-97] F|+...+...°

d d J .
=w Fl-&--a—);'; F+ — Fy,=(divF)

2z
Similarly (curl F),’,. ;= (curl F) . , ,
Which show the required invariance.

X, v, 2
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Problem 108. Find div grad r™ and verify that V x Vr==0,
Ifr= Irl,r being position vector of a point, then
Vrn= mrm-2r, v
Also,divgrad m=V.(Vrm)
= V. (mrr)
=mV . ()
=m(Vr2.r+r2divr]
=m[m-2)r"1r.r+rm2.3) « divr=3
“=m(m-2)r*4r2+3mr™?
=m(m-2)r2+3mrm-?
=m(m+1) ;"’2.
and curl grad r™ =V x (mrm-2r)
=V x [mr™2xi + mr™2yj + mrm2 k)

= ix-é--rjxi-rkx-é- (mrm=2xi + mr™2yj + mr2 zk]
dx dy d:z

O [ m- 0/ m-
=[a—y-(mr 22)-5;(”1" Zy)] i +...+...
=[m (m=2) r™3: or _ m(m-2) r™3y ﬁ] i ++
dy 9z

=[m (m-2) r"3: L~ m(m-2)r"y 5] it
r r

= 0i + 0j + Ok = 0.
Problem 109. Show that (V - V) V =2V V2-V xcurl V.
(Allahabad, 1958)
We have grad (@a-b)=axcurlb+bxcurla+(a-V)b+(b-V)a
Putting a = b =V, this becomes -
grad (V) = V x curl V+chuer+(VéV)V +(V-V)V
or VV2=2Vxcurl V+2(V-V)V
or (V:-V)V=iVV2-VxcurlV.

Problem 110. (a) Show that l-:='L2 is irrotational.
r
(b) If A and B are irrotational, prove that A X B is solenoidal.

r _xi+yj+:zk
rr xl+yi 22

As given, E

In order to show that E is irrolational, we have (o prove that

'r
VX(7)=0
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r =Vx xi+yj+zk
? x+y+z

d ) d x
—(i a"'j -a—y'+k E)X[——xz+yz+zz i

2
) i+ : 2k]

+
24y 22 7 xlyles

‘Now,

[ (rria)- 2]

+_a_ X __a_( Z )j
3z \(X+y+ 1) ax x!+,y5+z!

U (R S |
Xy + 22 ) 0y\xt+ yi+ 22

=| 2 + 2z i+...+
ey ey at|
. =0.
showing that E is an irrotational vector.
(b) If A and B are irrotational, then
' curl A =0and curl B=0.
In order to prov= that A x B is solenoidal, we have to show that
div (A XB)=0.
Now div (A xB) = (curl A) -B - (curl B) - A =0.
Hence A x B is solenoidal.
Problem 111. Show that r*. r is an irrotational vector for any value of n, but is a
solenoidal only if n = - 3. (Agra, 1959, 79)
We have curl r*r = r*curl r — r X grad r* : :
=-rXx(nr*2r) ascurlr=0
=rxr(nr2)=0.
showing that r*r is an irrotational vector for any .value of n.
Again divrr=rtdivr+r-gradr
=3r+r- (nr*?r)
=3rr 4 nr-2r2=(n + 3)r
which is zeroif n+3=0 or n=,-3
This shows that r*r is solenoidal when n=-3,
Problem 112. Prove that V x (V x A) = - V2A + V (V . A).
Take V=R _ .
Sothat Vx(VxA)=Rx(RxA)
But ax(xc)=b(@-c)-(a-b)c
RXx(RxA)=R(R-A)-(R-R)A
or Vx(VxA)=V(VA)-(V.-V)A
=V (V.A)-V247,

+
—
)
hIQ"
VoS
)
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Problem 113, If V-E=0,V-H =0,V xE =;-€;—l:-,VxH§-aa—";:-.shgy that
. 2 o%u ‘ |
E and H satisfy Vu = 37
As given, -
Vx(VxE):VX(-Qﬂ)
at
d
=-=— (VxH
57 (VxH)
- __3_(25)- _JE
or\ ¢ a:?
But by Problem 112, we have
Vx(VxE)=-V2E+V (Y -E)=-V2E
o’E
So that VIE=—.
o1’
. i JoE
Similarly V x (V. x H) =V x 3
s ~d ( oH I
=— (VXE)ze— | =« =— |== .
81( xE) a:( a:) Frd
Bt Vx(VYxH)=-V2H+V(V.H)=-V2H
M
So that Vzl'l = ——
a?
, . . 2 d’u
ie. - E and H satisfy the cquation V u=a—‘2--
Problem 114. Show that the solution to the Maxwell's equations \
Vxl-l:l-%%, Vv x E=-l-%—l"'-, V.-H=0, V-E=4np where p is a function of
c ¢ ,
X, Y, z and c is the velocity of light assumed to be constant, are given by
=_V¢_l§é.' H:VXA
¢ dt ’
where A and @ called the vector and scalar potentials respectively, satisfy the equations
1 09 2 1 3%
1 V.A+=-—=0, 2 Vg - —— =4np,
0 ¢ at @ ? ¢t P
1 3%A
3 VAz——F.
3 =57
Maxwell's cquations are given to be -
vxH=12E | (1),

c, ot
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vxE= -1 9H . 2)
c dt
V.H=0 )]
and V.E=4np . (4)
We have to show that the solutions of these equations are given by '
P::-Vo)-l 2‘1
c at ...(5)
and H=VxA ...(6)
. . 1 0p :
where A and ¢ are given by V-A+Z 3, =% ..(D
1 9
Vig-— — =4np, ..(8
¢ o P (,)
2
and ViA = a_l"zl. .+ 9)
c _ :

Putting H = V x A from (6), we have
LHS. of 3)=V-VxA

=[VVA]

=0 by the property of scalar triple product.
This shows that the cquation (6) is a solution of ).
Againputting H= V x A in(2), we get A

10
VXxE=———(V XA
X ca:( xA)

or ' Vx(E +1 %—A)= 0 which shows that the bracketed
, ¢ dt
expression is the gradient of some scalar function say @ and therefore,
'E+l 94 __ grad ¢=-Vg
c dt o
ie. = - VG - lié.
¢ dit

which is the equation (5) showing that equation (5) is a solution of (2).

1.36. CURVILINEAR CO-ORDINATES
We know that the equations
u=filx,y,2),v=L(xy,2):w=f5x,y,2)

where u, v, w are paramelers, represent three families of surfaces when expressed in the
form

u =cost., v = cost., w = const., (D)
where u, v, w are continuously differentiable functions defincd in any region R of space.
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Suppose that the three surfaces u = const., v = const., w = const., intersect in a poimt -
P of the region R. The values of u, v, w for the three surfaces intersecting at P are called
the curvilinear co-ordinates of the point P. The three surfaces are then known .as co-
ordinate surfaces. The three surfaces intersect pairwise in three curves known as.co-
ordinate curves. Only one co-ordinate is variable on each of the co-ordinate curves. The
curve on which u varies known as u-curve and similarly v-curve and w-curve are those on
which v and w respectively vary. One variable is constant on each of the co-ordinatc
surfaces. The surface on which u is constant is known as u-surface and similarly v-surface
and w-surface are those on which v and w respectively are constant.

Using the equation (1) the rectangular co-ordinates (x, y, z) and thercfore the position
vector r of any point in the region of space may be expressed in terms of curvilinear co-
ordinates. Since there is a one 1o one corrcspondcnce belween x,y,zand u, v, w the
position vector r is a vector function of u, v, w

Note. The loci of u=C,v=C,y, w=Cy; C,, C,. C5 being constants represent the
co-ordinate surfaces and the equations of the co-ordinate curves then are

V—Cz,w C;.w C;.u Cl.ll Cl.V-C2

1.37. ORTHOGONAL CURVILINEAR CO-ORDINATES .

A system of orthogonal curvilincar co-ordinates is one which corresponds to the points of
interscction of a triply orthogonal sysiem of thrce families of surfaces

u (x,y, ) = const., v (x,y, z) = const., w (x, y, 2) = const.

which are such that, through each point P in any region R of space passes one and only
one member of each family, each of the three surfaces cutting the other two orthogonally.
In short the curvilincar co-ordinates i, v, w are said to be orthogonal if the co-ordinate
curves are mutually perpendicular at every point P (x, y, z) of space. -

Let us suppose thal e;, e,, e form a right handed system of unit vectors tangent 10
the co-ordiante curves u. v, w rcspecuvely at P and direcied towards increasing u, v, w.
Then we have

e, =e,Xe, e,=¢e;Xe, ande;=¢, xe, M

el'é2=e2-e3=e3-e,=0 o

Let the arc lengths measurcd along the co-ordinate curves in the positive directions of

u, v, w be respectively sy, s5, s3. Now consider an infinitesimal parallelopiped whose

diagonal is the element of arc ds along a curve tangent to PQ at P and faces coincide with
plancs u, v or w and length of edges are ds, ds,, ds4. Therefore,

dSz =ds;2+ds2 + dsy3. . ' (2)
Let us now introduce the threc numbers k,, hy, 3 known as metrical coefficients
with the property ’ ,
ds, dSz
du ’ h2 h3 v
ie. ds, = h,du. dsz = hy dv. ds3= hydw. )

Substituting, the values of ds,, ds,, ds; from (3) in (2) we get ‘
d32 = hlz duz + hzz de + h32 sz.
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Fig. 1.40 ' . Fig.141

Now if r be the position’ vector of P, referred to the origin of a rectangular co-
ordinate sysiem, the tangents to the co-ordinatc curves at P are parallel to the directions of
), €3, e, and have thc magnitudes h,, hy, hy respectively. Therefore,

%:ﬁ, e, -g—r;:h; e :—;=h3 e ...(5)'
These give, g—:x%=h,hz e xe,
= hihaey from (1)
ie. %x%:%% from (S)1
Similarly 'aq%xz%_:%% | .(6)
and % %=%§% "

1.38. CONDITION FOR ORTHOGONALITY
We have mentioncd that the curvilinear co-ordinates of a point in space are determined by
three continuously differentiable scalar fynctions

u=fixy. 2 v=fo(x.y.2),w=£3(xy,2)
when these functions u, v, w are not functionally related, then these equations can be
solved to give x, y, z in terms of.u, v, w such that

X=g8) (u, v, W)v)' =82 (“’ v, W), 4 =83(uv v, W)
where x, y, z are continuously diffcrentiablc functions of u, v, w.

Now the position vector r of any point in space, referred to the origin of rectangular
axes along which the unit vectors are i, j, k is expressed as
' r=xi+yj+zk
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=g, (4, v, w) + jga (u, v, w) + kg3 (4, v, w)
-=F (u, v, w) say.
Now if u = C),v = C,, w = Cywhere Cy, Cy, Cy are constants, represent the co-
ordnatc surfaces, then the co-ordinae curves are
szz,WBC;,,w=C3,u=C1.u=C1.V-C2
The co-ordinate curve v = C,, w = C; through (C,, C,, C;) is the same as
r = F (4, Cy, C3), u being the parameter.

Now the tangent to the curve v = C,, w = C; is parallel to the vector -ai

ou
Similarly the tangents to the curves w = Cyhu=Crand u = Ci,v=_Csare
respectively parallel to the vectors & and .2". 3
av ow

Since the dot product of two parallel vectors is zero, it 1hcrcfore follows that the
curvilinear co-ordiante system will be orthogonal if

Or dr OF dr _odr or

" — D e ¢ e— D e— —

u v av.aw dw du (1)
These are the required conditions for orthogonality.
COROLLARY. The line element ds derived in relation (4) of § 1.37, may be deduced
from the conditions of orthogonality.
We haver = F (4, v, w)

so that dr=g—;du+-§£dv+% dw ‘
. dr-dr={g:du g%dv %d } {%du -givdv+%dw}
(G e () (3 o
23’ g'd dv 23’ :'d dw 2(.?—"0 giawdu e

Applying the conditions of orthogonality, this reduces to

(dr)2=(g—:;)z (g’) (aw) av? ’V )

Putting (dr)? = |dr I2=ds2 L

(g_:) o (av)' "‘2( )2 g

au
The relation (3) yields
ds? = h,2du? + hy2dv? + hy? dw?.

1.39. RECIPROCAL SETS OF TWO TRIADS OF MUTUALLY
ORTHOGONAL VECTORS ,

If u, v, w be a set of curvilinear co-ordinates of a point P whose position vector.is v with

respect to the origin of a rectanguld# co-ordinate system, then the two sets of trigds of
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or ar

or
3 3 3 are reciprocal to each

mutually orthogonal veciors, Vu, Vv, Vw and —

other.

We have shown in equation (7) of §1.37 that if e;, e,, e; form a right handed system
of unit vectors tangent to the co-ordinate curves u, v, w respectively at P and directed
towards increasing u, v, w, then

ar or or
[3‘7 x 57]_;;, b o)

Now Vu, Vv, Vw arc the vectors lying along the normals to the co-ordinatc surfaces
which are the level surfaces of the functions u, v, w. But the curvilinear co-ordinate
system is orthogonal, therefore the conditions of orthogonality stated in §1.38 when
applied 1o the orthogonal systcm of vectors Vu, Vv, Vw, yicld

Vu-Vv=0,Vv.Vw=0,Vw.Vu=0. ..(2)

Let us now assume that the mutually orthogonal unit vectors arc -

Vu Vv Vw
|Vu|' |Vv|' | Vw|
which form a right handed sysiem.

Here | Vu ! is the directional derivative of u along the dircction of the normal to the
surface u = C, i.c. along the tangent to the curve v = Cy, w = C3. Hence if ds, represents
the differential of Icngth along this curve, then we can state

|Vu|=2.
ds,
But from the Corollary of §1.38 the line clcment ds, along the curve v=Cy, w=C4
will be obtained by putting dv = 0, dw = 0 in ds? = h,2du? + h2 dv? + hy2 dw?, whence
we have

..(3)

. d.ﬁz = h.’du’
giving ﬂ =y l,
ds b
so that |Vu|=l, ie. b= L.
hy | V“I
Similarly, and hy = ...(4)
I V I I V VWl
Since, e, ez, e is a sysiem of orthogonal unit vectors therefore (3) and (4) give
v v
u =—u=e, i.e.’ V“=&
I V“ I ]/hl hl
and similarly V=2 vy=58. ..(5)
h hy

Sothat [Vu Vv Vw]=(VuxVv).Vw

=[&x2}ﬂ
W hy) by
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e; e,
=—3.-3 age,xe;=ejand e3- ey = 1 ...(6)

hhy h
| hhyhy’
Multiplying (1) and (6), together, we get
YuVvV Jar or .
[Fuvvvw] [a v aw
which follows that Vu, Vv, Vw form a set of vectors reciprocal to
dgr oJr or
u' v ow

1.40. GRADIENT IN TERMS OF ORTHOGONAL CURVILINEAR
COORDINATES
‘Let @ (4, v, w) be any scalar point function given in terms of orthogonal curvilinear

coordinates u, v, w.
Since u, v, w may be supposed to be the functions of rectangular Cartesian

coordinates x, y, z, therefore

B _ddu By, 30w o
0x Oudx Jvdx OJwadx
P _diu av 99 ow (2)
3y dudy avdy dw dy

d _d0du d0dv, 393w .(3)

3: Qudz 0vdz owaz

Let us now suppose that i, j, k are the unit vectors along the rectangular axes x, y, z
respectively and e, e,, e; are the mutually orthogonal unit vectors along the. tangents (o

the coordinate curves u, v, w. Then by relation (5) of §1.39, we have

e

Vu=-L, Uy Vw-— ...(4)
h hz ) '

Now multiplying (1) by i, (2) by j and (3) by k and then adding all 1ogether we.get

(ii“ i+k a)o ao(i a+j a+k -89-)
4

dx dy dz dx\ dx dy
) 0 09 d
Bv( j_ ké?)”*aw( j" "a_z)
. TR T T
ie., Vo= 3 Vu+ ava» ™ Vw,
lﬂ 1 a¢ l de —e; by (4) ...(5)

“hou T mav how
which is the requircd. expression. It is obvious that the components of grad ¢ i.e. Vg
along the unit vectors e, e,, e, are respectively
1 3¢ 100 120¢
Agra, 1971
hl a u hg a V h; 3 \V ( 8 )
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1.41. DIVERGENCE IN TERMS OF ORTHOGONAL CURVILINEAR
COORDINATES (Agra, 1971)
Let F (u, v, w) be a vector point function gwen in terms of orthogonal curvilinear
coordinates u, v, w and let FFy, F,, F3 be the components of F along e, e, e, the unit
vectors along u, v, w axes. Then,
F=F,e + Fye; + Faeq

=Fie;xey+ Fieyx e, + Fiep X ey since e, ey, ey are
mutually orthogonal véctors

= Fihyhy VvxVw+ thghl Vwx Vu + F;h,hZVu x Vv )
by (5) of §1.39

V.-F=V. F, h2h3VVX Vw+l'zh3h, Vw x Vu+F3h thMXVV)-
= V - (Fihhy Vv x Vw) + V - (Fahshy Vw x Vi)
+ V. (Fahyhy Vux V) ..(1) °

By the properties of divergence and curl, we have
V . (F1hah3Vv X Yw) = F hshy V - (Vv x Vw) + Vv x Vw . V (F hyhs)

where V- (Vv x Vw) = Vw - curl Vv - Vv . curl Vw
=0

| L9 3 3 o
ad Y (Fhyh) = (Rhah) Tt <o (Flph)Vv+ =2 (Flghs)Vw
So that V - (Fyhyhs Vv x Yw)
3
=Vyx Vw {5; (Flhzhs) Vu+av(rh h3) Vvs 2L aw(F /5;:3) Vw}

=Vvx Vw.Vu ai (F,h2h35 other terms vanish, by the property of scalar
u .

triple product.
&,8 ﬂ_
A3 (Rhyhy) by (S) of §1.39.
e,eqe h
"1 " h3[ 2€3 l] (Rhyhs)
= mﬁa—a‘;(ﬁ@h‘,) Jsincc e), €,, €3 being unit vectors [e;e,e,] =1
Similarly V. (F3h|h2 Vw x Vu) = h2h3 a 2'13’!])
and V - (Fshyhy Vux Vv) = h,h,h«, 3w ( 3h,h2)
- Substituting these values in (1) we get
1 0 '
h,hzh,[ (Rhahs) + v(”z"s"n)“'ﬂ‘(rshn’b)] .(2)

which gives the required expression for div F.
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i.‘,Z.KZU’RE IN'TERMS OF ORTHOGONAL CURVILINEAR |
COORDINATES (Agra, 1971, 74)

Let F (u, v, w) be a vector function glvcn in terms of orthogonal curvilinear coordinates
u, v, wand let Fy, Fj, F3 be the components of F along e, e, 3 the unit vectors along
u, v, w axes. Then,
F=Fe +Fye,+ F3C3
= th]V“ + hoF, v+ hiFy Vw by (5) of §1.39
Vv x F= vV x [h|F| Vu+thsz+ hyFy Vw])
=V X (0F, Vu) + V X (hF3 V) + V x (hyF3 Vw) (1)
But, we have by the propertics of curl
Vx(hF Vu)=V.(hF)x Vu+ bFV xVu
=V (F,) % Vusince Vx Vu=0

={i (W R) V“"'-a-(f;.l"l) Vv +-aiw-(hll~',) Vw}'x Vu

=ai(hr)vaVu+5—(h, 1) Vw x Vu,
’ - the other term vanishes
1 0 1 9
=71|—h; 3 (mAR) ezxe,+a-h; I (mF) esxe
by (5) of §1.39
1 9 .
v -5—-( F,) e+ — h,h, (hnf’n)ez
Similarly
1 0 1 o
VX(MF2VV)=—E—,;-— (’IQFZ) e1+m a—u (h,F,)e,
nd Vx(h,r,vw)--ﬁ = (IF) &+ ,% 2 (e

Substituting thesc values in (I). we get

v x F-—[-a—( hyF3) - — (hzrz)]¢|+_[—(hn l)‘_ (hsfs)]ez |

YR
L [ J 7 ze)" (th)]es

Tt
"1‘1 hey  hes
2 o
h,hzh, v dw
hn"'n hFy, kB
which is the required expression for curl F.

This result may also be expressed as
, h.ae. hzaez h%e:
VxF=——r| — - — since e, - F = Felc,

Ju ov ow
h|e,'-F hzez'p h’ea'F

...(2)
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1.43. LAPLACIAN (V2)IN TERMS OF ORTHOGONAL
CURVILINEAR CO-ORDINATES

By (5) of §1.40, we have

Vool 20 1, 10
moaw T h o W
Vp=V.Vg

=(e_"’_+e—"-+ei) 1% 13,12,
"au 2ov Cow) (B du ' h v maw

1 (hzhs a«») 3 (mh ﬂ}i hhy gg)
h,h,h, oul h odu) ovl b, ov) ow\ hy Ow
which is the required expression. '

1.44. EQUIVALENT EXPRESSIONS FOR Vg, V.F AND V x F IN
RECTANGULAR CO-ORDINATES

In §§1.40 1.41 and 1.42 we have derived the cxpressions for Vg, V . Fand V x F in

terms of curvilinear co-ordinate system as follows:

1 op 13(6 13(6

V¢=T'1-E 1 I|2 a h3 a | 1)
1 d
v F—h,hz_h,[au( lhzhs) (F2h3hl) (Fshlhz)] )
and vxp- 2 (- ——wz)]e,

il hR) - (F)

hl hz[ (m z)" (hnﬁ)]ea ...(’3)

where e,, e,, e;are unit vectors along u, v, w axes.
In order to get the equivalent expressions for these quantities in cartesian rectangular
co-ordinates, if we use the transformations,
Uu=xv=y w=z
we have ds? = dx?+ dy*+ dz?
so that - h, =hz=h3=l.,
and the unit vectors e,, e,, e;are taken as usual unit vectors i, j, k.
' Wilth these substituu’ons. the relations (1), (2) and (3) become
9% . 9%

Vﬂ-a— i+— 3y j+ az
3K 3K, 3R
dx dy 9z

and VxF:(i’E_.a_Fz.) i+(ﬁ_%) j+(y3_.aﬂ) k.
-’ . \dz dx

ik

V.F=

dy 9z dx Iy

w ¥
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1.45. CYLINDRICAL CO-ORDINATES AS A SPECIAL
CURVILINEAR SYSTEM

Let P be a point in space such that its z

curvilinear co-ordinates are (u, v, w)

and cartesian co-ordiantes are (x. Y, 2).

Let the projection of P in the z- plane 0' T

be Q whose polar, co-ordinates in the : PN

plane are (r, 6). Then the circu/ar or i ~ )

cylindrical co-ordinates of the point P
are specified by
u=r,v=0,w=z
- These co-ordinates . are trans-
formed to cartesian co-ordinates by the
help of the relations

=i
o/

x=r=cos 6, T
y=rsinf,z=z _ e he

i.e.r'2=)c7‘-o-yz,0=lan"-Z z=2. y Q

x
Since x is a function of 7, 6, z, /

we have 3 X
X ax ox
_a,d' 0 a6+ azd Fig. 1.42
=cos 8dr —-rsin 8d6.
Similarly dy =sin@dr+rcos@do
and dz=dz.
Therefore, the relation  (ds)?= (dx)? + (dy)? + (dz) gives
(ds)* = (cos Odr - rsin 8d6)2+ (sin 8dr + r cos 8 d6)? + (dz)?
= (dr)+ r2 (d9)%+ (dz)?
Also from relation (4) of §1.37, we have
ds?.= hy2du?+ h2 dv? + h3? dw?
which when transformed by the substitutions u = r, v= 6, w =z, becomes
ds? = h|2d72+ h22d92+ h32d22
Comparing (1) and (2), we get
h|= 1, h2=f. h3= 1.

=t---w-ooo

(1)

.2 '

With these substitutions, the functions Vg, V2g, V . F and V x F in cylindrical

coordinates become

dz
% 13% g 130
Vig=
9 87*' 2392 022 +r8r

1 0 1 oF BF ;
V.F=- 2 273 (Rohilkhand, 1976, 93)
F r or ( l) rr39 29z
laF 95 0F, O0F
VxF=|- =2 33
X (r 9 9z )e (az . or

1 0
+{;— ‘a—r I‘F)

(Agra, 1974, Rohtlkhand. 1976)
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1.46. SPHERICAL POLAR COORDINATES AS A SPECIAL
CURVILINEAR SYSTEM
Z Let P be a point in space -
i such that its curvilinear
coordinates are (u, v, w,) and
, cartesian coordinates are (x,
o] y, 2). Then the spherical
- polar coordinates of the point
Parespecnﬁed by
u=r, v=6, w=g
P ~ where r (= OP) is the dis-
23 tance of the point P from the
origin, 8 is the angle
e /T 32 between OP and the z-axis
8 and ¢ is the angle included
0 Y between the xz plane and the
o plane OPZ.. .
These coordiantes are
transformed to cartcsian

9&&

lK coordinates by the help of
A the relations
/ x = r sin 6 cos @,
X y = r sin 8 sin @,
Fig. 1.43 2= r cos 6.

We have,
ox dx

dox
dx—s—‘ dr+ —33 d9+a— de

= sin 6cos @ dr +'r cos Gcosado-rsin Osin ¢ dg.

Similarly
dy=sin @singdr+r cos 0smod0+rsm 6@cos ¢ do
and dz = cos @dr - rsin 6d6.
(ds)? = (dx)2 + (dy)? + (dz)? gives , L :
- (ds)? = (dr) + r2(d6)2 + r?sin20 (dp)2. (1)
Also with these transformations, the relation (4) of §1.37 in view of (2) of §l 45
becomes
(ds)? = hy2(dr)? +hy? (d6)? + h3?(de)* (2
‘Comparing (1) and (2) we get

hy=1, hy=r, hy=rsin 6.
With these subs.itutions, the functions Vy, V2y,V -Fand V xF in spherical

polar coordinates baecome N oy
1 \y 1
v =_"’ - e — X
Voor 30 rsine a0

02\41 1432 1 3%y 2 dy  cotfdy
Viy = = £ N U 0Y
V=t 302+sin8 ao A . T
1 9 1 aF
V- F=—as — o ]
r? or (’ ') rsme 80 3¢ (sin 6 A)+ rsin @ 08

(Rohilkhand, 1976, 93)
1—

r Sln

[ (sm 6 F)- a—F’-]e,

VxF=




41 [_a-i’ﬁ - i(m,)]e, +1 [i(rpz) -2 _]e,.

sin@ dg dr ar
(Rohilkhand, 1976)
Problem 115, Find an expression for dstin curvilinear coordinates u, v, w. Then
determine ds? for the special case of an orthogonal system.

Let the position vector of a point in space be r, where r is a vector function of «, v,
w. Then.

ds? = dr - dr (by the assumption in §1.38)
= (ﬁ'—dtﬂ idv+ idw)z
du av aw

or 2 al') 2 (al’) 2, iﬁ
(au) du (av Y W) Mg MY
or or or or

I AL *aL.a
dv awd vdw 2aw aude

But by §1.38 the conditions of onhogonalily are
or or or or or

-—_—.——_—.__»

M dv ov dw dw dv
So that the above relation becomes

2
ds’=(%) du’+ (g‘;) dv +(aa;) dw?.

Problem 116. If x = uv cos w,y = uv sin w, z = (u2 - v2); find hy, hs, hsand

show that ds?= (u®+ v2) (du? + dv®) + uv dw?,
We have
dx dox ox

dx--a-—d Edv+3‘-v-dw

=gcos w ? + vk:osaw dv - uv sin w dw
=2+ D g+ 2
dy 3 du+ v dv+ ™ dw
-gsin wdg-c»vsinawdv+uvcoswdw
dz= P du+ 3 dv+ ” dw
=udu-vdv+0-dw.
ds?= dx2+ dy? + dz?
= (ucos w du + v cos w dv - uv sin w dw)?
+ (u sin wdu +vsin wdv+ uv cos w dw)?+ (u du - v dv)?
= (W2 + v?) du? + (u? +v?) dv + uPv? awl.
Now comparing this relation with
dst= hlz dud + h22 dv?+ h32 aw?.
Weget  hy= V(u? + v2), hy = V(u?+ v2), hy = uv.
Problem 117, [fu=2x+3,v=y -4, w=12+ 2, show that u,v,w are
orthogonal and find ds® and the metrical coefficients hy, hy, hs.
The given relations can be expressed as
u 3
.gc=-§---2—. y=v+é4, z=w-2,
Then, if r be the position vector of a point in space,
r=xi+yj+zk
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=(ﬁ--§-) i+(v+4) j+ (w=-2) k

or , ., odr or
Sothat — == i, —=j, —=k.
2"y T aw
The system of coordinates u, v, w to be orthogonal, we must have

or or ar or or or

FPR PRl P " TP P
ar or
H — =3
ere 3% 3y 2140
or ar or or
Similarly —- =.Z-o0
imilarly - 73, =0 and 3555 =0

Hence u, v, w are orthogonal.
Now, to find ds? we have
dx dx dx
= xdd-ﬁ- —v dv+ a—w' dw
= %m
Similarly dy=dv,and dz = dw
ds?= dx®+ dy? + d2?
= Tdu? + dv? + dw?,
Again (o find hy, hy, hylet us compare the last relation with
ds?= h2du?+ hy2dv + hy? dw?,
Whence, we get
hy= -f,hz- 1, hy= 1.
Problem 118. For spherical coordinates
x=rsin 0cos¢,y-rsin Osing,z=rcos 6.
ar or

' 38" 38 are given by

(@) Prove that the components of

—g—':- = sin 8cos¢i+sin Osingj+cos 6k
r .

-5-—=rco.s'0cos¢i+rcos€sin¢j—rsin0k _
or , P P

3 =—rsm8sm¢1+rsm9€os¢).

or or
TS

(¢) Find expressions for Vr, Ve, Vg and then show that they constitute a set of
ar or

36" 3
If r be the posmon vector of a point in space, then
r=uxi+yj+zk.

(b) Verify the mutual orthogonality of

vectors reciprocal lo
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(a) We have

or ar'+$
= sin @cos g i + sin @sin g j + cos 8 k
o _dx, 3y 3

and 3638 T3 1t X
=rcos@cospi+rcos@singj—rsin k.
ar_dx
d¢ 0Jo
=-rsin@singi+rsin@cosgj+0-k.

or or or

») Taking the values of 37' 3% and .8_5 from (a) we have
or

ﬁ-g—;=(sin Gcospi+sinfsing j+cos 8k)-(rcos 8cosgi

dy 9z
also +3¢ j+a¢ k

) +rcos @sing j-rsin 6k)
- =rsin 6cos 8cos?d + rsin 8cos Osin2@ - r sin Ocos 8
=rsin 8cos 8- rsin Ocos 6

=0.
. dr odr or or
Similarl —+—=0and — —=0.
S TR % or
. Lol : or or or
Since all the scalar products vanish, it follows that the vectors

—, —, — are
dr 96 o¢
mutally orthogonal. .

(c) We have
r’=x2+y24 22, 6 =cos™ andg = tan' 2.
, (x24+ y2+ %) x
or or ar
Vrze i+— j+— k
=ty e
X ..y .. 2 . : L.
== i+= j+— k=sinfcospi+sinfsingj+cos Ok
r r r
VG:Q-O- i+_a_9_ .+_8__9_ k=cosacos¢ i._'_c:'oso snma._.smok
dx dy dz r r r
dp de 00
Vg=— i+— j+— K
? dx ayj dz ’
__.Sing . _cosp j+0-K.

r sin 8 r sin 6
So that (Vr VO V@] = (Vrx V@) . Ve

=(_smo {4 0S8 j+0-k)-(- sx.nﬂ i+ cc?sa j+0-k)
o r ; rsin 8 rsin 8

_sin’g cos’p 1
r¥sin@ r%sin@® r’sin@

— D
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o[22, 2 20) (3, 3r)
dr' 36" g or dp) dp

=(-rsinpi+rcos@gj+0-k)-(-rsin@singi+rsin 6cosoj)

= r2sin @sin2@ + r2sin O cos2g

= rZsin 6.

or or or
Vrve vl — — —
[vrve vl [a 36 39]
which shows that Vr, V6, Vg is a sct of vectors reciprocal 1o
o & or

Fral iy

1.47. INTEGRATION OF A VECTOR

We know that integration is the reverse process o differentiation. Thus if F and r be two
vector functions such that the dcrivative of F with respect 1o ¢ is equal to r,

ie. .d_?.—r

dt
then F + C is called the indefinite integral or simply the integral of r with regard 10 ¢
and is denoted by
[rdt=F+C
where the constant vector C is known as the constant of integration.

. In order 10 apply the intcgration to definitc problems the valuc ol' C _may be
detcrmined (rom some initial or gcometrical conditions.

The process of finding a vector F whose derivative with repect 1o ¢ is equal to r is
known as integration of a vector.

In gencral the nalurc of thc constant of intcgration is the same as that of the
integrand.

We thus writc down the valucs of the following integrals :

ds dr .
r- ;—+q — | dt=r-s+c whcrc cis a scalar
t

J7r — di= J—dl-r7+c-r r + ¢, ¢ being a scalar.

zdr_drd dr dr ' (dr
dt . di? dt di

2
-d—) + ¢, ¢ being a scalar
t

dr dr
rX—s di=rx— + ¢, where cisa vector,
di? di

?

J(.‘. ﬂ_ﬂ%) di = -+c-r+c. ¢ being a veclor.
rodi dir r

When a is a constaat vector, then we have

dr . "
aXT dt=axr+c,cbecing a vector.
I
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2
Problem 119. Find r from the equation % =at+ b, where aand b arc known
t

. . dr , .
constant vectors; given that both v and -&— vanish when += 0—____
. -

The given vector equation is ¢

d*r
=at+b.
rd
Integrating with regard 10 1 we get
d’r I
—=a—+br+ec. : (1
de? 2 M
Initially when (=0, ar_ =0,
di
R c=0.
Thus the equation (1) becomes
2
ar = a‘—- + b1,
di 2 *
Inicgrating it again with regard 10 ¢,
3 2
{
r=a —+b —+d
, 2
when t=0,r=0,
2 d=0.
Hence r=<a 4 3b

2
Problem 120. Solve for r : the equation a x %= b, where a and b are

constant.
d’r
Here ax -3 = b.
dt
. dr
Integrating ax o =bt+c
Integrating again

axr=z bil+cr+d -
?

where ¢ and d are constant vectors.
Problem 121. Given that r (1) = 2i - j + 2k when ( = 2, and
r(t)=4i-2j+ 3k when 1 = 3.

3
Show that Lr'% di=10.

Hecre



1.116 MATHEMATICAL PHYSICS

=1 (40 -2j+ 3K)2 - Qi - j + 2k)2)
=3 (16+4+9-(4+1+4)=

Problem 122. Evaluate the integral J'FF-dr

where F =c | -3a sin*0 cos 0i+ a (2 sin 8- 3 sin @) j + b sin 20 k) and the curve T
is given by r =a cos i+ asin 8+ bOk, 0 varying from n/4 to /2.
Given r=acos@i+asinfj+bok.

ﬂ:—asin9i+acos8j+bk.
deo
Now
er dr= ://:F :; 9=J;,:c[—3a sin?@ cos 6 i
+a(2sin 0-3sin?6) j+ bsin 20k)
(- asm8i+acos0j+bk)d0

=cr/ {3a2sin? O cos 6 + a2(2 sin 8- 3 sin? 6) cos 0+ b2sin 2 8) dO
r/4

=c JRM (a%(3 sin® B cos 6+ 2 sin 6 cos 8- 3 sin? O cos 6) + b2sin 20) d
L4

.2 . x/2
= c(a2+ bY) L“ sin 20 d0 = ¢ (a2+ b?) [- cos 29]

2w

=& (a2, p2
—5 (a +b,)-
Problem 123. Evaluate jF-dr when F=xyi+ yzj+ 2xk, wherecis the

. 4
curve r = (i + 1§ +-°k, t varying from -1 1o + 1.
Equating coefficients of like vectors in
r=xi+yj+2k =i+ 2+ 0k,
we get the parametric equations of the curve as
x=1l,y=1,2=0.
Now from r = (i + *j + 13k we have

?

-‘-i—[-l-o- 2tj + 3e2k.

dt
jF dr I F. —dc
=J1 Goyi + y2j + x2K) - G + 21 + 307%) )

1
= j ‘ (xy + 2tyz + 3t22x) dt
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= j'l (%4 266+ 36) dt = J"l (& + 56 di

¢ 57 115(5)10
= | -t — e mem | = | = —
4 1), 4 4 7 \07) 7
2 2
Problem 124. Evaluate Jl (A-BxC) di andjl Ax(BxC)

where A =t(i-3j+2tk,B =i-2j+2kand C = 3i+ (j- k.

We have B xC = (i -2j+ 2k) x (3i + 1j - k)
=QR-2)i+@6+1) j+@+6)k
=2(1-0i+7j+(+6)k

sothat, A -(BXC) =(li-3j+2k)-[2(01-0i+7+(+6)K]
=(A-2)-21+22+ 12
=141 - 21.

j‘z[,@ (BXC)] di ='[12(14:-21) d

= [71?— 21:]12

=28-42-74+21=0.
Again AxX(BxC)=B(A-C) -C(A-B)
whe{e i A-C=(li-3j+2k) - (i+tj-k)
‘ =3-3-2 =-21.
(i-2j+2k)(-2)
- 2i+ 41§~ 4tk
(ti- 3j + 2k) - (i - 2j + 2k)
=1+6+4
= (5¢+ 6).
Sothat C(A-B)=@i+¢j-k)(5t+6)
= (15¢ + 18) i + (5¢2+ 61) j- (51 + 6) k.

2 2 2
Thus, jl A x (nxcm:jl B(A-C)au-jl C(A-B)di

Sothaa B(A-C)

and (A-B)

2 2 2
. - - . - 2 . . .
.jl( 18 ”‘)d‘”L (+2 5¢)d:+|\jl @t +6) di

1w 2P s 3 2 1 2
i [-18:-712Jl +j [-12--;1 ]1 +k [;l~+ 6:]l

=i [-36+l8-34+%]+j [-4+1-1;3+§]+k [2—%“2-6}

2
le(_ i + 41 - 4K) di - L [(150+ 18) i + (S2+ 61) j - (5t + 6) K] dt
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1.48. THE LINE INTEGRAL
The integration of a vector along a curve is known as line integral.

Suppose that F (r) is a continuous vector point function and r = r (s) is the given
-curve. Take any arc C of.the given curve between two points A and B, for which length s
of the arc has the values a and b respectively. If ¢ is a unit tangent at a point of the curve,
then F - t gives the resolute of F in the direction of the vangent. The definite intcgral of
F - t with respect to s, between the limits a and b, is called the line integral of the vector
F along the curve from A to B and is writicn as

j:F-t ds = LimiPt 8s ()

But we know that t = -d—':
ds
*. (1) becomes. .

s B
j F-dr=Lim ZF-&'

where A and B are the end points of arc of i lmcgrauon and dr is the infinitesimal vector,
Sst parallel to the tangent at the point considered.
The integration round a closed curve is denoted by the symbol § while in mechanics

this integral is known as the circulation of F about the closed curve C, being the velocity
of the fluid.

Problem 128. Compute 1 -j (xdy- ydx) over the

(@) Straight line y = x from (0,0) 10 (1, 1)
(b) Parabola y = x* from (0,0) to (1, 1)

(c)CircIex:acosl.ysl+sint;—§ <t1<0
(d) Integrate also round the square (0,0) ; (1,0); (1,1); (0, ).
(a) The line integral / = j (x dy - y dx) over the line
y =x,dy = dx, is given by
I (xdx-ydx)= I (x dx - x dx) limits of x are from 0 10 1.
=Loa=a
(b) The line integral ,
I= j (x dy - y dx) over the parabola y = x2, dy = 2x dx
is 1= I (2x% dx - x2dx) limits of x being from 0 to 1

= J: x2dx

f4l-

|~
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0 .
(© I=I [cos2 t+(4 sin () sin t] dt as x=acost,y=1+sint

-x/2

n

={=-1
5]
! 0 )

@ I=0+J0 dy-jl dx + 0 the figure being a square and

intcgration is along straight lines.
=l+1=2.
Problem 126. Find the rondilion that the line integral

j?dr i L

di

taken between the poinis A and B is independent of the curver=r (1) j jommg the points
on a smooth curve.

We observe that, if I F - dr is independent of path in a certain region then § F.dr
= 0 for all closed curves in the region.

’ 8 For if AP, BP,A is a.closed curve, then
§-F-dr=J F-dr+J F-dr
AR B BRA
A
P =J' F-dr-I F-dr
ARB AR B
Fig. 1.44 =0.

Hence, if J qFodr is independent of path then § F.dr=0.
. " . .

Conversely, if § F - dr = 0 over all cloﬁcd curves of the region, then j F .dr

is the same over any two paths from A o B that do not cross.

Problem 127, If dvr is the infinitesimal vector and v =r (1) is the equationv of a
curve, then evaluate the integrals

ja dr  (b) IPdf

along the curve C where F is a continuous vector and ¢ is a continuous pouu function.
If . r=xi+yj+zk

then dr=idx+jdy +ka:,
Thus

B
@ La dr=j B (idx+jdy+kds)

-.La ¢x+jj¢dy+k odz

where A and B are initial and final points of the curve wuh coordinates (xy, y), z;) and
(%2, y2. 22). Thus the integral I @ dr can be evaluated when y and z are known in térms
of x for points on the curve C. ‘
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(b) If F (x, y, 2) = f1i + fj + f3k then as in (@), we find
ch.dr=f,jc dx+ f, L dy+ f J'C dz

Problem 128. If F = Vg everywhere in a region R of space, defined by a, S x <
a3, by Sy Sb,, ¢y Sz Scy, where @ (x, y, 2) is single valued and has continubus derivative
in R, then show that

3., -
0) L F - dr is independent of path C in R joining A and B.
(ii) The converse of (i) is true

B
(i5) L F - dr =0 around any closed curve C in R.

We have
. o o o
=Vop=|i — —_— —_—
® gradp =Vp (l r?x+j ay+k az)
and dr = dxi + dyj + dzk

8 LA . . A
LF-dr-J [n 7;+Ja—y'+k E)-(dxudyjfdzk)

=0 (B)-0(A)
=0 (x2,¥2, 22) = 8 (X, Y1, 21) (1)
(x1, y1, 7)) and (x3, y2, 22) being co-ordinatcs of A and B respectively.

It follows from (1) that the integral depends only on points A-and B and not on the
path joining them. This is true if only @ (x, y, 2) is single valued at all points.

Note. If L F - dr is independent of the path C joining A and B then F is called a

conservative field Thus if F = Vg then Vg is conservative vector field aad ¢ is its scalar
potential. .

(ir) Conversely, if L F - dr is indcpendent of the path C joining any two points

then there cxists.a function @ such that F = Vg,
Supposing the line integral to be indepeadent of path, we have

((xy2) o
¢(x.y.z)-I Xh . Zl) F.dr

_(y) oodr
S B E

Differentialing we get -‘;—s- =F. 4 . ...(2)

ds

do dr .
d al ha —-=V —_ ...(3
and also we veds ?- % )]
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Subtracting (2) from (3), we find
dr
Ve-F). Z—=0
(Va-F) %

This will hold independent of %5-. if

Ve-F=0
or F = Vg.
(iii) We have from (1)

I:Fodr=¢(8)—ﬂ(A).

If the integration is taken round the closed curve i.e. when the points B and A
coincide then ‘

J:F-dr=J:P-dr=¢(A)—o(A)
=0
o $ vo-ar=o.

Problem 129. If C is a simple closed curve in the xy plane not enclosing the
origin. Show that

§ F-dr=0
¢
iy+ jx
where F= yz "2
. : =Yy . .
Given that F= i+
2+yt Xyt J
ad dr = dxi + dyj when r = xi + yj
-ydx+ xdy
F-dr= .
. X+ )
: . xdy-ydx
that : F.dr= .
So tha jc 'dr jc‘—i_x+y2

Let us change to polars by putting x =r cos 8,y = r sin 8 i.e.,

x2+y2=r2and 6= 1an-' 2,
x

so that
dg=—1 - xdy-zydx
1+ o
2

_ xdy-ydx
' x4+ y? B
- But the curve being closed, if there is a point P on it such that lower limit of 6 at P
is @ (say), then its upper limit will also be @.
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§F-dr=j:do
=[]

=p-0=0.
Problem 130. Show that

-y X i -
J'C[x,”z e e j] dr=2x

where C is the circle x>+ y2= | in the xy plane described in the counter-clockwise
direction.

We have
[ el o = j] [axi+dyj]= [ . dx+x2:y2 dy]
|2y o] [ (250)
x°+y° x°+y c\ x+y
= j:’aa changing to polars
=2r.

Problem 131. (@) If V xF =0 (i.e. F is irrotational), prer that Fis
conservalive.

Bb)IfF is conservative fieid, prove that curl F=VxF=0ie. (F is irrotational).

B
We know that if j F-dr is independent of path C joining A and B then F is called
A

a conservative field. ,
Suppose, F = fii + f2j + f3k.
Then V xF =0 gives |i j k |=0
9 9 3
dx dy 0z
H fa )i
9fs 9fs 9f, 9f; dfy _9fi),_
of (3‘; a,) (75:'3:)1*(3;’ ay) 0

This will hold only if,
oy af_o M 220, 2h
dy 0z 9z ox ax Ay

afs_3f, a,_df,

ie. —-—= =—f—3
dy 9z 9z odx' ax 9y
then, we have to show that F = Vg
Now workdonc=jcl"dr=jc (fidx + f,dy + f3 dz) where C is the path from (x,,

Y1, 21) 10 (x, y, 2). Take in particular the path joining along straight line (x,, y,, 2;) 10
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(x, y1, 2;) then 1o (x, y, 2;) and then to (x, y, 2) and denote the work done along this path
by @ (x, y, z). We thus have -

sy )= [ fiwnwd [ sy [ sy nd.
n ] h
Which follows that
&0 -
5, =fix.2)

=fy (%3 2)+ j fs(x y.2) de
=f, (x. ¥ 21)"‘J"lla—f:'(x- y. 2) dz
=y A Gy,

=fa(x y. 2)
. g_‘:=f,(x. X 21)“'J”ﬂ-2 (x. 5. 2) dy +j‘%‘-f-’--(x. y. 2) dz

'fl(X:Yl'zl)'*I L2 (. Y. z) +I o5 (x,y.2) dz
=filx % 2) + [fl (X- Yoy ]n*[fl (. y. l)],l

=fi(x.y.2)
dp dg . 0¢
Then —f|i+f2j+f3k-3-i+$ j+-a—k VO

(b) If F is a conservative ficld
F=Vp
o curl F=VxVg=0.
Problem 132. If F = cos yi - x sin yj - cos Kk, show that the ﬁeld is
conservaltive.
F is conservative if

VxF=0
Here F = cos yi - x sin yj - cos zk
VxF=|i °j k
2 2 29
dx dy dz

Cosy =-xsiny cosz

-il2 _i _ 9 _9
-i[ay (cos 2) (xsmy)]+j[ (cos y) 32 (cosz)]

d . d
+k [s-x- (-x sin y)—s-y- (COS y)]
=0i+0j+(-siny+siny)k =0.

|
|
|
4
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1.49. THE SURFACE INTEGRALS
We know that the parametric equations of a surface x =x (4, v),y=y (u, v), 2=z (u, v)
may be combined into a single vector equation r = xi + yj + zk = f (&, v)

A surface r = f (i, v) is termed as smooth if f (1, v) possesses continuous first
order partial derivatives. In the following discussion we shall assume that the surface
under consideration is smooth.

~ Let a smooth surface S be r4 4 =7
given by F (r) =r =1 (u,v).
Consider S to be the two sided ds
surface one side of which bemg :
treated as the positive side. If S isa
closed surface the outer surface may
be taken as positive surface. Let n
be an outward drawn unit normal
vector to any point of the posmve
side of S.

Let us divide S into any finite o]
number of elementary sub-surfaces
and take a point (x,, y,, 2,) in an
elementary sub-surface. Let n, be
the unit normal vector to this sub-
surface at (x,, yp. 2,) drawn on the  x Fig, 1.45
positive side of S.

If AS,, be the magnitude of the area of the sub-surface under consideration, then the
vector area of this sub-surface S,

AS,=n,AS,
Multiplying both sides by F (x,, y, z,). we get
F (x5, ¥p, 2,) - 88, = F (x5, ¥,,2,) - 0, AS,
Consider the sum
p=M
I F (2.2 p) a8, = Z F (x5 2 ) n,4S,
p=l
where summation extends as to include all sub-surfaccs of§.

Take the limit of this sum as M — oo in such a way that the largest dimension of
each AS, approaches to zero. This limit, if it exists, is lcrmed as the surface integral
of the normal component of F (r) over § and is denoted by

LF (r)~dS=LF-ndS

(72)

et

<

2
f

Axbld'

or simply J’S F-dS:jsFmdS

« [pasffras -
or HsFlds=Hs U (% 3, 2) dy dz + f, (&, 3. 2) dz dx + fy(x, y, 2) dx dy)]

when F=fitx.y,)i+fr(x.y.2)j+fi(x,y.2) k
We sometimes usc surface intcgral HS F - ndS 10 call as the flux of F over S.

The notation §§ is used to indicate integration over closed surface S.

Other forms of surfacc intcgrals are:
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(@) H 8dS (b) H ondS (o) H F x dS

where ¢ isa scalar function.
Note . IfF=f, (x,y,2) i + f3 (x. y.2) j + f3 (x, y. 2) k then it can be verified that

Hs FxdS=i J'  (hdxdy~fydz

+if[ v dr-fiaxdy ok [[ has de - fydy ds)

H o ndS = jj ¢~dS-iH ¢dydz+jjj odzdx+kH odx dy

Note 2. Solenoidal vector function. A vector point function is called

solenoidal in a region if its flux i.e., the surface integral j F - dS across every closed

surface in the region is zero.
Problem 133. Supposing that the surface S has projection R on :he xy plane

[ Fonas=[[ £-n l‘::-?l

The surface integrals, may be conveniently cvaluated by expressing them as double
integrals taken over the projccied arca of the surface S on onc of the coordinate planes.
This is only possible if a linc perpendicular to the coordinate plane (chosen) meets the
surface in only onc point. :

Referred to the Fig. 1.45 and § 1.49, we know that the surface integral is the limit of
sum

| show that

p=M
2 F (x50 3, ’p')'"rAsp'
p=l

Now the projection of AS, on xy plane is i
ln,a5,| -k 1)

[As projected area = original area (cosine of anglc between the normals of surface and
coordinate plane)]

= AS, | n,-k |
Also the area of projection of AS,on xy plane
= Ax, Ay, (i.e. dx,- 8y,) ...(2)
From (1) and (2), we get, AS, 'n,,- k| = Ax, Ay,
Ax, A Yo
|n, k|
Thus the limit of sum becomes

AS,=

Proceeding to the limit, when M—0, Ax, and Ay, both—0
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Hsl"-n d.S;=J"[kF~n ﬁ‘x‘:‘yl .
Problem 134. Evaluate

mPnﬁ

where, F=18zi-12j+ 3yk
S is that part of plane 2x + 3y + 6z = 12 which is located in the first octant.
The projection of the plane
z 2x+ 3y +62=12
on z=0planc is
2x+3y=12

"i.e. referred to Fig. 1.46 the projcction of the
planc ABC on xy planc is OAB. -

By thc problem, 133 we have

Hl- n ds= ”Fndxdy

Also wc know that V¢ is a vector

perpendicular to the surface.
~ 0 (x,y, 2) = constant.
Fig. 1.46 As such a normal vector perpendicular to the
planc
2x+ 3y +62=12
. 2 2 d
is V(2x+3y+62)=|i —+j —+k — | (2x+3y+62)
dx ox dx
=2i + 3j + Ok.
Unit vector along 2i + 3j + 6k
_ 21+3j+6k
;;(4+9+36)
2 3 6
=5 i+3 j+7 k
2 ..3 .. 6 6
Now (n-k)= (7 i+3 J+:,. )‘k=:,-~
Also Fons= (1820 - 12 + 3yk) - (§ ;j+§ u)
_362-36+18y'
7
But we have, = l2-_2bx-_ﬁ

_6(12-2x-3y)-36+18y 36-12x
- 7 ST
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36-12x) dxdy
Henc . j FondS= j ( ) L4
Hence JlFnas=[] - ;
=HR (6 - 2x) dx dy
To integrate it considcr the rclation
2x+5y=12
ie y= 12-2x
€., 3
To cover the whole arca BOA
y varies from 0 to 12-2x
and x varics from () 10 6.
. x=6 py=(12-2x)/3
Hsl--n ¢9..”“0 o (6 - 2x) dxdy
x=6
=J’ [6y- 2xy]g2--z;)/3 dx
x=0
=6
= r [24 -4x-8x+ %xzjl dx
x=0
=j [24- I2x+;x‘] dx
0
2 376
=|24x- Eﬁ— + i _X_
2 3 3],
=144 - 216 + 96 =24,
Problem 135, Evaluate L % + y3j+ 2K) - dS
where 8§ is the surface of the sphere
2+y?ei=1,
The projection of x2+ y2+ 22= 1
on the planc 2 = 0 is «.(1)
Aayl=] ... (2)
A normal veetor to the surface (1) is
0 » 0 2
Vo = -L-+'—— k — LI
('(x Ja)' r)z)(x yre

=2 [ix + jy + kz|
Unit normal vector along 2 [ix + jy + kz] is given by
n= Qix+2jy+2kz
2/(x2+ y%+ 2%)
=ir+ jy+ k2
n-k=(x+jy+ ks k=z

where x2+ y2+22=1
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So that F-n =(x’i+’y’j+z’k)-(ix+.iy4kl)
=xi+ y + 284,
. dx dy
3 3 3 . = .
Thus, L(xi+yj+z k- ds 2]ij "

=2 Hn A+ y*+ 29 dx7dy
224yt (1- 23 yz)2
oA,

\/(l -x%-
To cover the whole area of x2+ y=1
y varies from = V(1 - x2) to + V(1 - x2)
and x varies from - 1 1o + 1.

L (x3j+ yij+ z’k)-dS

J:x-lJ'y=+ (1-2?) x+y+ l x-y) i dy

\K' %) (l x2- )
JJ\['_’[ - x! 2) (—%){y’ (—2y)‘(l'-x2-y2)-m}

x’-y

+1- x*- yz)m]dx dy

=8 J; [% x*-0- {y. (1- 2 yz)slz}(\)/(—T)
), = (' -y aye JOJ(:T) (1- 2y " ay ] dx

j'[ +2j‘[-'_'— )Y dJ

Put y'= V(I - x2) sin 8
ly =¥ (1 - x2) cos-0d0

=8 L: [ %x‘-&- 2]:/2(1 - x’)zocos‘ede)dx]

_g ['[® 4 n2 F'(s12)rar2) 1
=8 fo[zx +2(1-x) -.._.__2’_3 ]dx

v



VECTORS ~ 1.129

-8][ 2+ (1+ x*-2x%) n]dx'

j (4 +3+ 34— 6x%) dx

=n [ (3-6x%71) &

!
=n [Bx- 2x%+ i,v:"’]
T

= |3-2+2|=2p
=n [3—2"'5]‘ ST

Problem 136. Evaluate Hs (= yz) dy dz - 2x?y dz dx + 2 dx dy) over the

surface of a cube bounded by the coordinate planes and the planes
x=y=z=a.

Here the surface is the cube in positive octant. To evaluate the given integral let us
project the given surface on the three coordinate planes.

Now,
H [(x*- y2) dy dz-2x ydzd.x+zdxdy]

= HS (x3-yz)dydz + Hs - 2x2y dz dx + Hs 2 dx dy

For the first imégral
b
H (3 -yz) dy dz f z=a
s d # QI

Unit normal vector to the face: ] /
0QQ’0O’ in the outward direction is - i. , :

And unit normal vector to the A 8 ,,xz-?
opposite face ABB‘A’ in the outward -
direction is + i.

(s) —Y

I (x3 -yz) dy dz Q

s N y=a -

= Hs (3 - y2) dy dz AT b, B

forx=0andx=a X ,

=|-iHs (x’—yz)dydz+i-i”s(x3-yz)dydz
x=0 x=a

=[] (0-y2) dyds+ [[ (- y2) dyas
= J:-o :-o yz dy dz+ j:-o f_o(ds- yz ) dydz

= Io‘ J: ady dz = a’.

Fig. 1.47
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Similarly other parts of integral are
[ 2y aras=-[[fi-c=p2oyardc [[i-jony i ax
y=0 y=a
= -J:j:Zaxz dx dz = —%a’.

and Hszd}édy=ﬂs k.(-k)zdxdy-l»Hs (k - k) z dx dy

z=0 z=a
=LJ adxdy=a’.

Hence the value of the integral is = %a’ +ads.
Problem 137. If F = dxzi - y2j + yzk evaluate

[f Fonas

where S is the surface of the cube bounded by x=0,x=1,y=0,y=1,2=0,2=1.
For the face ORR'O

n=-i,x=0.

j jou'o'F nds

= [[-r4eym - (-Day 2z

v
14

\
N~ Fig. 1.48 / For the face PQQ'P’.

n=ix=1
F-ndS=£J: (42i-y2j+y2K)-j dydz

=4 J:J:zdydz'=2.

For the face POO'P’
ns= -j' y = 0

..UpooopaF",'dS=J: J; (4xv3i)'z -j) dxdz
=ﬂ£oma=a

For the face QRR'Q’
n =vj'y =1

Ijekn'cp'nd‘(;:.[; Jol (4xzi- j+ 2K)-(J) de s

[

f

J ijQ'p'
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=7J2 j(:dx dz=-1.

For the face OPQR
n=-k,z=0

‘UOPQRF ‘ndS = L: J: (-2%1)- (k) dzdy

=_[;j: dx dy =0.

For the face O'P'Q'R’
n=kandz=1

IIO'P'Q'R'F -ndS= I(:J:(4xi - y2j + yk) - k dx dy

ffpannd

Adding all together, .
” F-ndS=2+0-1+0+5+0=>.
s
Problem 138. If F = yi + (x - 2y2)j - xyk, evaluate
“S(v xF) - n dS

iwhere S is the surface of the sphere x2+ y? + 22 = a2,

Given .
F =yi+ (x - 2y2) j - xyk.
VxF=curl F=| i j K
9 9 9
dx dy dz
y (x=2y2) -xy

=xi + yj - 2zk.
Thus to evaluate, v
T ope _f L dxdy
. LI (xi+xj-2:zk) ndS-J'RI/(iﬁy +,z_k),w|-'r7‘-»|
Normal vector '
0 d ) 2. 2 2
Vo=li —+j —+k — +y°+
] ['3x+" ay s az)(x Yy z)
= i + 2yj + 2zk.
Unit normal vector n along 2xi + 2yj + 2zk
' _2Axi+yj+zk) |
24/x%+ y2+ 22
_xi+yj+zk
" a

(xd + yj - 22k) - = (xi + ) - 2ek)- (_X_‘+yj+zk)
a

o x2+y2+22=a2
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_x*+y2-222
a

n.k=(w).k=i.
a a

Hence the required integral

24 y2o22
'=LI( o)k
J::jajy“( )x+y 2(0 - x3- y)

"\I(‘z"'z) \l(a - x2-
I IW 3 (x4 y7)- Zaz -

x=aly=- (n’ x?) \/az_ X2 yz)

“ 3r3-24?

ﬁ= rdrd@
0

L.oj,.o'%’ dedr

S R

= J:jo[(az- rz):”2 -a?; (az— r2) ]: .d ]
- j::o[at o’ d6
Problem .139. Evaluate
(a)LI (VxF)-n ds

® [ [on as

where F = (x + 2y) i - 3zj + xk and 9 ="4x + 3y - 2z and S is the surface 2x + y + 2z =
6 bounded by x=0,x=1,y=0,y=2.

(a) Given

dxdy as x?+y?+22=aq?

putx=rcos 6,y =rsin 6.

-(x+2y)|—32j+¥lg
VxF=i [— (x) - P (-3:)]4-; [Ba (x+2y)-— (x)]

+k [‘a—; (-31")'-.3—)" (x+ 2y)] 4
= 3i-j-2k.
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s

Now normal vector to the surface 2x + y + 2z = 6 is

V (2x+y+22)= ( aa +j aay”‘ -aa—] (2x+y+22)
=2i+j+2k
and unit normal vector n along 2i + j + 2k

C2i+j+2k  2i+j+2k
\/(7+1+4) 3

(VxF)-n:(Bi—j-2k)-(§+—‘;iyi)

“ligi1-4y=L
=36-1-41=3,

[Z‘Lﬂ].k'=3.
3 3

Projecting the given surfacc on the plane z = 0, we find
J' j (VxF)-ndS = J' j (VxF).n &Y

L[] e "
RJ 3 2
3

o
- -[xso y:OdXdy

n-k

dx dy

n.[.”“ n K|
-JJ

) (2i+ j+2k) dxdy

3 2
3

(4x+3y-2

_ _ '
=1 ij' (4x+3y-6+2x+y) (2 +J + k) dx dy

L [? (6x e dy-6] (2 k] dx d
5.["0.[,.0[” y = 6] [2i +j+ k] dx dy

o) -

J" 2c+8-12) [2i + + k) dx

j' (12x-4) Qi+ j+ W) dx l,

o) -

sle-hRivjekl=24j+k.

1.50. THE VOLUME INTEGRALS '
Let F (r) be a continuous vector point runctibn‘ and V a region enclosed by a surface
r="0(u,v).
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Let us subdivide the region’

z V into N cubes having volumes
AVk= Axy - Ayk - Az, k=
c 1,2,3..N .

as shown in figure 1.49,
Take a point (xy, Yi, 22)
within this cube and consider the
AV =AXE AV AZy g,

N
ZF (%0 Mo 22) AV x
k=]

Y taken over all possible cubes in
the region. Thelimit of the sum
when N —+0 in such a way that
the dimensions of AV, tend to
zero, if exists, is denoted by the

symbol J'V F (r) dV or simply

. JV F dV or JJJV F dV and
Fig. 149 termed as the volume integral or
space integral.
Its cartesian equivalence is

jv Fdv =i ” Fidxdyds + ] my Fydx dy dz my Fydxdy dz
If @ is a continuous scalar-point function in V, then,
fI], 0av
is also known as volume integral or space integral.
Problem 140. Evaluate JHV Fadv

where F = 2xzi - xj + y2k
and V is the region bounded by the surfaces
x=0,y=0,y=6,2=x2,2=4.
The given solid is a parabolic cylinder with its axis parallel to y axis. The part of
volume to be determined is shown in figure 1.50.
It we sub-divide the given volume into a large number of cubes and consider an
elementary cube of volume 3V, then the required integral is

”deV N

= ”JV (2xzi - xj + y*k) dx dy dz | B =Y a
=i ”jvzrzdxdydz B 1 @ Ey=6
- Jff xcra ot Sy
2 wxee —_—)
+k J'J’Iv }’2 dxdydz. ;C .-o---g',/’ D

Now to cover the whole volume, x varies from
0 to the line in which z = x2 meets the plene z = 4
i.e., x varies from 0 to x2=4 or x = 2. Fig. 1.50
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\ And y varies 0 to the plane y = 6 i.e. limits of y are from 0 to 6. Also z varies from
x lo 4,

H Fav=2i j:-oj:-oj:-x 2 dedy de~J ‘_oj':.oj:", xdx dyds
+k L-o«[,-of-.’ y? dx dy dz
=2i r .[6 x[-z_z]‘ dx dy - j J.s x[z]‘; dx dy
Jx=0dy=0 | 2 <2 x=0 0 '
+k L‘Jy.oyz[z]:z dx dy
=2 j:.oj:_o(lsx- %) dxdy - j:_oj:_o(4x- %) dxdy
[ oo e
=i jio[%x-sx’] dx- j j:_o[uxfef] di

4k jz 72 (4- %) dx

372
= i[48x-x%] - j{12x- 3 ] +kl4x-=
[ x-x ] 3[ x [ 3 ]o
= 120i - 24j + 384k.
Problem 141. Let ¢ = 45x2y and let V .denote the closed region bounded by the
planes 4x + 2y +z2=8,x=0,y =0, z = 0 evaluate

[[f, pav

Referred to the figure 1.49 we have,
my pav = jv 45y de dy ds

z varies from O to 8 - 4x - 2y
y varies from 0 to 4 - 2x
x varies from 0 to 2.

« [ff,pav =,f,,or hjmm’ 45y dedyde
J.no.‘;.o 45x2y (8 - 4x - 2y) dx dy

_4sj [4y 2xy—-y]: dx

=45 o? (12 (4 - 2x)2- 6x (4 - 2x)2
-2(4-2)% dx
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_4sj (4-2x)° [12-6x-2 (4-21)] dx
=45 : ?(4—2X)3 dx

=15 [Fy2 2_ g
=15 [ X7 (64 - 32x + 1622 - 8x') dx

2
=15 J'o [64x2 - 3263 + 16x* - 8x] dx

=15 64):3_32x‘_._l6x5_8_)c62
3 4 5 6 o
1S [64x8_128+l6x32 4x64]

. 5 3
=[64x8x5-128x15+16x32x3- 4x64x5]
= 128.
Problem 142. Evaluate
@ va (v-F) av. & [[[ (7xF)av

where V is the closed region bounded by the planes
x=0,y=0,2=0and 2x + 2y + 2= 4,
F = (2x2-32)i=2xyj-4xk.

Given F=(2x2-32)i-2xyj-4xk
; d d
V.l-=( P +3$+k—)[(2x 3:)1 2,\'yJ—4xk]

= [Ea;(Ltz-32)+7y-(-2xy)+-a—z-(-4x)]

=4x-2x
=2x.

ad VF-:[—( 4x)——(-2xy)]+j[ —(2x%-32)

“a—I (-4 x)] + k[x(&xy) - % (2x- 3:)]

=i[0)+ j|-3+ 4]+ k[-2y]=j-2yk.
Now, z varics from 0 10 4-2x - 2y

y varics from 0102 - x

x varics from 0 to 2,

I, 0@ [[] 2x o o a

J= J’-()JM 2‘.‘ 2y21 dx dy dz
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2. p2-x
=j 2x(4 - 2x-2y)dxdy
x=0Jy=0

- J’z 2:(4-2x) (2-2)-(2- 2]

,=J'2 2x[8—4x— 4x+2x2-4+4x- ledx
=0 :

X

= ‘[2802 x[4 -4x+ xZ] dx

x

= 2j: [42- 427+ %] x

(b) IHV(VXF)JV=HIV‘[j-2yk]’dxdydz
[l

2 p2-x
=j°J'o (j-2yk) (4-2x-2y) dxdy

4-2x-2
j ) "[i-2yk] dxdyd:
= .

2-x

- J':[J{(.‘% -2x)y-y*}- k{(4 -2x)y*-4 y3}]o dx -

- [[ie-20 2-0-@- 27} - 20 - 02- g2 27}

= .[oz[j{s ~8x+ 222 4~ x% 4x} - k {16 - 2 x4 1202 26°
-3(8-12x+6x2- x’)}] dx

=j:[j{4 - 4x+ 2% _§{16-24x+ 12,:_“,}] "

2
- 2, 2| k 2,43 1 _4
-[j{4x-2x +,-§-}-§{16x- 12x°+4x -7 X }L

=i{8-8+§}'—§ {32-48+32 -8}

k=

]
w {oo
W |oo

8 .
Ji- (J-k).
1.51. GAUSS’ DIVERGENCE THEOREM (Agra, 1958, 66)

This theorem gives us a powerful device to transform the volume integral into surface
- imtegral and its statement is:
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If F is a continuous differentiable vector-point function and S is a closed surface
énclosing a volume V, then

LF-n ds=jv div F dV.

when n is the unit normal drawn outward.

In other words, "The normal surface integral of a function F over the
boundary of a closed region is equal to the space integral of divergence
of F taken throughout the enclosed space."

Taking i, j, k as the unit_ vectors, along the
4 axes of x, y and z respectively, we have

A F=F (x,y 2)i+Fyj+Fsk
F,,F, ,F, and their derivatives in any

direction being assumed to be uniform, finite and
continuous.

Suppose S is a closed surface such that any

line parallel to the coordinate axes cuts it at the

_ most in two points. Let the z coordinate of these
two points be

z=f; (x,), 2=/5(x,y) respectively.

X x3y As such the lower and upper portions S, and
S, of § are given by

Fig. 1.51 z=fp(x,y)and z =f; (x, y) respectively.
Now consider the integral

I, 52 e f,[['52 ] o

(R being projection of S on xy plane)
[ e )
=IIR [F3 (I, b fl)- F3 (X, Y fz)] dxdy
=Hﬁs (x. . f1) dx dy- LJ (x. y. fa) dxdy

For §;, we have
' dxdy=cos Y, dS,= k-n, dS,
where n, is a unit normal vector to the surface dS; in outward direction.
For §,, we have
dx dy = cos ¥, dS, = - k-n, d§,
where n, is a unit normal vector o the surface dS, in outward direction.

J]R F(x, y. f)) dxdy=”;1F3 k-m, dS

m [, B n) ddy=-f[ Rk, g,
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So that
[[ A Goys) exay-[[ A (5 512) axdy

=J'J Fik-n dS,+”" Fy k-n, dS,
j Fy k-(n; dS\+n, dS,)

=Hs Fk-ndS; [+ nS=mS+n,5,)

Consequently
mv 95 4 gy dz_J'sF,k-nds (D)
Similarly pro;ccting S on other coordinate planes, we may find ,
m'v ‘;’;2 dx dy dz-jsﬁzj-pds. ' 2
_UJ'V LI dz-Jsﬁj-n ds. .0

Adding (1), (2) and (3), we get

J15, (38 25+ 28] arape

=H [[«‘li.n+F2j-n+F'3 k-n] ds

Iil, ( *J—'”‘ azJ (Ri+ Fj+Fk) dedyds

=Hs[ﬁn+F,j+ﬁ,k]-nds

mvdivp dV=Hs F-n dS=HsF-dS

 Note. The theorem can be extended to surfaces which are such that lines parallel to
the coordinate axes meet them in more than two points. This is also true for multiply
connected regions.

1.52. DEDUCTIONS FROM GAUSS’ THEOREM

(1) The volume integral of the gradient of a scalar point function may be expressed in
terms of the values assumed by the function at the boundary of the region i.e.

JIf,vo av= H, on ds ’ (Agra, 1960, 56)
Gauss’ divergence theorem, is '

[[f div ¥ dV=HsF~n ds

Assume F = pa
where a is a constant vector. Then it becomes

H . V.(oa)av = J'J's ga-n dS
Since V. (#a) = (Vg).a=a.(Vg) and ¢ a.n=a.(gn)
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[{f,2(59) av =[] a.(om) as
or a. I‘Uv VQ dV=a. -”s on dS, abeing constant

or [ff,v8 av=[f on as.

- (2) The dot product of Gauss' divergence theorem is replaced by cross product i.e.

[ff,vxaav=[] nxaas=[] asxa.

Putting F = a X A in Gauss’ divergence theorem, we get,

[ff, give av= Hs Fon dS

where a is a constant vector,

or H V.V-(axA)dVv=Us (a;x'A)-n ds.
Since V.axA)=-a.(VxA)
and (axA).n=a.(Axn)=(A xn).a.
_Iﬁva (VxA)av =Usa.(A xn) dS.
or - -a. “ VVxA dV=a.HsAxn dS, a being constant
o _J'J'J'VVxA dV=”SAxndS
or | J'J'VVxA dV=—JLAxndS=”.nxAdS.
Note. Definition of grad @, div F and curl F can be put as
[moas
(l), grad¢=l‘7_'_u.l(1) 3 v
J' n.F dS
(2) divF=Lim 3 -
I nxF dS
s

(3) curlF=Lim
: V=0 )
we here below prove (1), the other two can be proved on similar lines.
Let us take a point P encloscd iny a small region of volume V. bounded by a surface S.
Then the first deduction of §1.52 gives _
L ng ds= jv Vo dv =V[(Ve),+e]
where (V@), denotes the value of Vg at P and e—0 as V—0

npdS

: S — =
{’..l_'rr(; T (V9), = grad @.
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1.53. PHYSICAL INTERPRETATION OF GAUSS’ DIVERGENCE
THEOREM

The Gauss’ Theorem can be staled as
J' V.n dS=I divV av,
v

where the vector point function V denotes the velocuy vector of an incompressible fluid
of unit density and S denotcs any closed surface drawn in the space of the fluid, enclosmg
a volume V.

Since the scalar product V.n represents the velocity-component at a point of the.
surface S in the direction of the outward drawn normal, therefore, V.n 8S expresses the
~ amount of fluid flowmg out in unit time through the element of surface &S. As such the

izitegral round the surface S, ie., f V nds gwcs the amount of fluid flowing out of the

s
surface S in unit tinie. But in order to maintain the continuity of the ﬂow the total
amount of fluid flowing outwards must be continually supplied‘so that inside the region
there are sources producing fluid.

Now the div V at any point rcpresents the amount of fluid passing through that point
per unit time per unit volume. So div V may be regarded as the source-intensity of the
incompressible fluid at any point. Thus the integration round the volume V,i.e.,

I div V 4V denotes thc amount of fluid supplied by the sources inside S per unit time.

Hence the equaluyj V.ndS= J div V dV is justified.

ie., the lolal volume per second of @ moving fluid flowing out from a closed sulface Sis
equal 1o the total volume per second of fluid flowing out from all volume elements in S.

‘1.54. GAUSS’ THEOREM
If S be a closed surface and r be the position vector of a point (x, y, 2) with respect to on

origin O, then
[
is equal 1o 0 or 4 according as O lies outside or inside of S.
First case. When origin O lies outside the closed surface S, the divergence theorem

B NOPS/SOP
But v-(ﬂ: v.(r?r)

=(Vr'3)-r +(r'3)V-r
=-3r3.r- (r'.’) (3)
=3r3+3,r3=0

ie. v. (_ri_) is zero-cverywhere inside V
, .
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Provided r#0in Vie., 0 is outside the closed surface S.

~ Then I — L ds=0.
s

Second case. When O lies inside the closed surfaces.

Here F is not defined at the point O within S, so we cannot apply divergence
theorem. To overcome this difficulty let us surround O by a small sphere of radius a and
surface §, with its centre at O-and lying within S. For S; outward drawn normal will be
directed towards O and (unction F will be continuous and differentiable at all points
within § and § 1.

The divergence theorem can now be applied to the two closed surfaces S, and § i.e.

2 e 25 e 25 = [ o(5) -0

(O being outside the rcgion 88))
n-r
.5 «=-Il,%
r

ButonS,; r=a and n=-=

r
n r_(Z)'r rr_at 1 v
R R
nr 1
Hence .”s =l ds-Hs.;ﬁ ds ( s,

1 @
) .Us s
-1 2 .
" a? (4na’) Fig: 1.52
=4nr.

1.55. TWO GREEN’S IDENTITIES
First identity. If @ and y are scalar point functions having continuous derivatives of
the second order at least, then

] 67+ v0-55) a= [ 5w

The divergence theorem is

m'vv.F dV:UsF.n ds.

Taking F = oVy, we have
HJV V-(aVy) dv = HS (Vy)-n dS = HV (sVy) ds.
But V (2eVy) =0 (V- Vy)+(Ve)-(Vy)

=0 (V?6)+(Va)-(Vy)
I”VV'(Q’V‘V) dV=HIV [0V2y + Vo Vy] av
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or va [6V2w + Vo Vy) av = HS (#Vy)- dS
Second identity:
I 67w -ves) av= [ (37 -yee
Putting F=yVg, in divergence theofem, we get-
J”V V.(yVg) dV = Hs (wVg)-ndS= ”s (wVe)- ds
But V- (vV8)=y(V- Vg)+(Vy): (Vo)
=yV?g + (Vo) (Vy)

[[f,v-(wve) av = [[[ [wo?s+ (Ve)-(vv)] av

a [[f [woo+(ve): (V)] av = [[ [vVs]- a5
Green's first identity, is '

HL [on\y +(Ve)- (Vv)] dv = Hs [eVy]-dS .. (2)
Subtracting (1) from (2), we find :

JHV [avzv - VV2¢] dv = Hs [8Vy -yV8e]-dS.

Problem 143. Verify divergence theorem for F = x2 i + y2 j + 2%k taken over the
cube 0<x,y,zs 1.

The divergence theorem is

ffora=flras

F=x2i+y2j+22k

.. (1)

We have

Zz
2 = .
o Yed
; x=0
T A
y=0—- }_5-__ ... |8
. ey
’}‘ !
X Xxmf ‘zao A
Fig. 1.53
2 d d )
V-F=|i—+ j—+ k— |- (x%i+ y?j+ 2%k
(a 13 az)(‘ Y1+ 2k)

=2x+ 2‘y+ 2z.
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Now the volume integral

my V.Fdv= my 2x+ y+ 2) drdyds
- j:'o .[,lgoj,l.oz(” y+2) dxdyd:
=2 ‘[:.0 L’.O(H y+ g) dx dy
“of (s+14d)
- 2[% +ls g]

=3 (1)
The surface integral is contributed by six faces of the cube, i.e.

HFndS H F.n dS, j F.n dS, +j F.n dS,
'(face x=0) *(face x=1) (face y=0)

+J's F-n dS, +H FondSs H F-n dS,
*(face y=1) *(face z=0) (facez 1)
Forface §,, x=0,n=-i

Hs, F-n a!s,=jjsl -1 ds,

1ol
= J 0 dS,=0
y=0 Ja=0
For face S, x=1, n=i.

‘USZF‘“ ds, = .ng(xzi-ryzj-c- 2%k)-(i) dS,

= Hszxz dSz=j szds,

1 1
= j dx dz=1.
y=0 J2=0 :

For face S5, y=0, n=4j
Hs, F-n dS;= ﬂsso dS,,
=0
For face S,, y=1n=j

ST

1 1
=] dx dz=1.
x=0 J3=0
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[ — -
[]

ForfaceS,.‘ z2=0, n=-Kk

Ijs"l-‘-n dS,=jL’0 dSs.

For face S, z=1,n=k

HSGF-n dsﬁjs, dSs.

1 1
= dxdy=1
LSO y=0 d)’

Therefore, ISF-n daS=0+1+0+1+0+1

=3, -2
From (1) and (2) it follows that the volume integral = Surface integral.
Problem 144. Evaluale ” r-nds

where r is the position vecior of any point on the closed surface

The dnvergcnce theorem is
[ e[ v o
Given F=(xi+yj+zk)
str-n ¢9=jjjvv.(xi+yj+'zk) av.
Now V. (xi+yj+:zk)= li-+,| 9 ki < (xi + yj + zk)
ax dy dz )

Therefore Hsr-n dS=JHV.3dV=3V
where V is the volume of solid bounded by closed surface S.

Problem 14S. (a) State and prove Gauss' theorem
(b) If p denotes the charge density and j the current density due to the charges, show

that the equation -a—‘: +div j =0 expresses conservation of the total charge.
' (Agra, 1966)
* (a) If N be the outward flux of electrostatic. intensity E through any closed surface S,
then
N~=j E-dS=4nQ,
s

where Q denotes the total charge enclosed by the surface S. N

~ According o the definition the outward flux of electric intensity through any closed
surface is proportional to the total ¢harge within the surface.-
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We know that the flux of a vector E across the surface element 4S is defined as he
scalar E-dS. Therefore, if S be any surface, closed or open, the flux of E across § is

jE-ds.
s

Now the electrostatic intensity or the electrostatic field vector, i.e., E at a point due
to n charges ey, e,,...¢, is defined as

n
e.
E= 2 "T;'r".
i=1"

where r; denotes the position vector of the point relative to the ith charge e;.

J’Edsj -d§= }:ej'

i=1 ‘ i=1

n n
=2 e,J dw;= ¥ euw;
i=1 i=1 .
(since the solid angle dw subtended at a point by a surface element of area dS
is given by dw = —5 -dS) '

where & is the solid angle subtended by the closed surface at the ith charge. But @;=4x
or 0 according as e; is inside or outside the surface and Ze; = Q.

Hence j E-dS=4nQ.

(b) Suppose that a charge of density p is
flowing with mean velocity V.

The charge crossing the surface element
dS in a unit time is

—_ S pV -dS =j.dS (1)
where j is given to be current density vector
Fig. 1.54 or conduction current vector.

Now the current say iacross any surface S drawn in the medium is given by
i= I j - dS while the total charge insige a closed surface S enclosing a volume v is

givenby Q = I p dv.

Assummg that there are no sources or sinks inside the surface, the rate at which the
charge is decreasing is

j ® 4. )
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~ Since this is due to the outward flow of charge, we'have from (1) and (2),
ap N
_!E 4dv-:!j'd8- !dw; dv
by Gauss' divergence theorem §1.51

ap . . _
“‘: (-5-;-+dxvj) dv=0.

The volume being arbitrary, the integrand must vanish identically and thus we have
the equation of continuity or the equation of conservation of charge as

or

%%+divj=0.

Problem 146. Prove that J's Vo x Vy -dS =0.

Put F = Vg x Vy in Gauss' divergence theorem

Hs (Vo x Vy) - dS = Hs F.dS= mvv-l-‘ v
= J:UV v. ‘(Vo x Vy) dV.
But V. (Vo x Vy) = Vy curl Vg - Vg curl Vy = 0.
my V. (VoxVy)aV= mv [Vy curl Vg = Vo curl Vyj dV
=0.
Hence L (Ve x Vy).dS =0.
Problem 147, (a) If H = curl A, prove that
L H - n dS = 0 for any closed surface S.
(b) If n is unit outward normal to any closed surface of area S show that
[[f, divnav=s..

(a) Given H = curl A, The Divergence Theorem gives

flopon as=[ff,vnav,

But V.-H=V - (curl A)
=0
jj H.ndS=0.
s

(b) The Divergence Theorem gives

[}, divnav= _Us n-nds
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= Ijs ds ='S.
Problem 148. Prove that
@ LF .VgdV= L oF - dS - jv gV .FdV.

(b)j Vo.curl FdV = j (F x Vg) dS.
s S
(a) The divergence theorem gives
jv F.Vpdvs= IVV-(QF)dV-IV¢V-FdV

=j'g¢v.|-‘-l-*-w14v-j'ov-wv

v v

=j oVF-av+ [ F-Voav- | oV .FdV
1’4 v v

= jv F.Vgav.
(b) Applying divergence theorem in R. H. S. of
IV Ve curl FdV = J‘s (F x Vg). dS, we get

[ voculFav=] v.#xveav
14 v
=_[v [Vé - curl F = F - curl Vg] dV

= IV Vg . curl FdV as curl Vg = 0.
Problem 149, Show that volumé enclosed by the surface S is
=4 .
Vel §s Vr2 . ds

where r is the position vector to a point of dS.
The divergence theorem gives

J’s Vr2.dS = L V. (V) av
=J'V V. R v
=2jvv.(r)dv' ‘
=2 3av
=6[ av=6v

=1 2,
V=1 §SVr ds.



ECTORS '1.149

" Problem 180. Prove the following :

@ [l 5=15
(b) Hs r*n dS-IHvSr rav.

(a) The divergence theorem gives
()= =17 (R
[l Gr)o
e
= [l Fe fll e o
= L %2 0 %=1
(b) We have -

U r'n dS= mv(r’)dv
=[[f [sr*2e]av=s []f, e av.

Problem 181, Show that Green's second tdenmy can be written as

[ ove-veror=[[[s32-3 o
The Green's identity is

JIf, @v-vvraava Hs [0V - yVa) - 4S.

= [[, @vv-vVo) -n s
' where n is unit normal vector.

oy BD
V -— e—— - Sem——
a{rl y-n n Vo.n 3

o [ orv-vomava ] (62 -y Eas

1.86. GREEN'S THEOREM IN THE PLANE

Let R be a closed region in the x - y plane bounded by a simple closed curve C and ¢ and
W be two continuously differentiable functions of x and y, then Green s theorem in the

plane is stated as
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§ vazraan=f (9-3-—]

dx dy
where C is traversed in positive (anti-clockwise) direction.

' Let the region R be bounded by sirhple closed curve C having the property that any
straight line parallel to the axes cuts € in at most two points and let the parallels AM
(say x = a), BN (say x = b), QF (say yw5 c) and DE (say y = d) limit the curve C in the xy
plane as shown in Fig. 1.55.

Suppose the equations of the curves AQB and ADB are respectively
y=fi(x)andy =/, (x).

”n Iy A= L-J ,::()z) g‘;
y = [T (< ) o

= j: v (x.f2) -y (x,f1)) dx

IS | ST Y
;"b -I:‘V(x-f 2) dx]
x- vy -~ X
Y = fc v dx
Fig. 1.5 - e i—"’dxz'ﬂn g_\lf,

(1)
Again if the equations to the curves DAQ and DBQ are

x=F,(y)and x= F,(y), respectively. then

HR 35 &Y J‘y-cj -r,(y)ax
- [ )]2’5,’,’
= L (8 (F2.5) -8 (Fi, ) dy
=f¢ (Fa y). dy + J:: 8 (Fyy)dy
o

ie. $oay=|f % dx dy. )
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.Adding (1) and (2), we find that

§ (v dres )= '[.[/Q— v )dxdy

1.57. VECTOR FORMS OF GREEN’S THEOREM IN THE PLANE
Vector treatment of Green's Theorem yields two different forms.
Form 1. If f =i + gj and r = xi + yj, then Green's theorem takes the form

i_f-dr:ﬂR(fo)-k ds.

" Green's theorem in the plane is
§(w dx+ ¢ dy)= ” (—x-—)dxdy A1)
Given r=xi+yj
ie., dr = dxi + dyj,
Y dx + ¢ dy = (yi+ 0j) - (dxi +dyj)
o=fdr -(2)
- and Ust=|i j  k|=-28i.2 j+(a° ﬂ]k
F) 3 9 dz dx dy
ax 3y oz
vy o 0
) dg dy
V . — e—— e e—— (XX
so that (Vxf)-k 3% 3y ' 3

Substituting values from (2) and (3) in (1), we get
§ l"dS:H (Vxf)-k dS

where  dS = dx dy represents the elements of area.

Form 2. If f=vyi + @j,dS = dx dy, g =X k and n be the outward drawn unit
normal to C, then Green's theorem gives

fova-ll7e

where ds is an element of the curve. |

Let r be the position vector of any point P and T be the unit tangent vector to the
curve, then

r=xi+yj, sothatdr=dxi+dyjand
dr : ,
T==".
- ds
Now n and k, both being vectors normal to the tangent at any point of the curve, the
definition of cross product yields
kxn=T.
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So that, y dx + ¢ dy
= (i + @j) - (dxi + dyj)
=f.dr '
dr

=f.==ds
ds

dr
=t-Tds | T=—
T (- 7=

=f.(kxn)ds

=(fxk)-nds

(- in a scalar triple product
dot and cross can be

x

interchanged) .. -l.
=g-nds. Z
Also g=fxk'+ (yi+gj)xk
= gi - yj Fig. 1.56
so that V~g=(§x- i+aiy j+%)-(¢i—wj)
3,
T 9x dy

Substituting these values in Green's theorem i.e.

§ov devo an=|[ (a—°-3‘1) dy

dx

foroeflras

Note. Physical Interpretation of Form 1. Vcctor form 1 of Green's theorem
is

we get

§Cr.dr=j (V1)K ds.
Assuming that f represents a force ficld acting on a particle whose position vector is
r, the integral i_ f - dr may be interpreted as expressing work done in moving the

particle around the closed path C and it may be evaluated by the value of V x f.

As a particular case if V xf=0i.e. if f= V8, 8bcing scalar; then the integral
around a closed path is zero. It follows that the work done by a particle in moving from
one point of the planc to the other poine of the plane is indcpendent of the path traced in
moving from one point to another in the plane. In other words this fact can be expressed
by saying that the force field is conservative.

Conversely, if the lmegral around a closed path is mdcpcndcm of the path joining any
two points in the plane i.e., the integral around the closed path is zero, then V x f =0
wbere f=vyi+gj.

o0 av (ao aw)k 0

i.e. —_— i+ ==
dx OJdy

Giving —=—-
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1.58. GREEN’'S FORMULA

Suppose that y = -:- is a scalar point function which has uniform finite and continuous

derivatives upto the second order in a region V enclosed by a closed surface §.

- Take a fixed point P within the region, such that r is
distance from P 10 a variable pomt of the region and r its n

position vector relative 1o P. Now since y becomes infinite at P, ‘
thereforc 10 remove this difficulty enclosc P by small sphcrc of
redius €. Take surfacc of this sphere as §,. Clearly in the region
V, bounded by S and §;, y is twice continuously differentiable.

But we know that,

(1 1
and Viy=V (-;}):o.

Thus, applying Green’s 1dcnuty 10 the region bounded by §
and S,, we get Fig. 1.57

1 o2 _ d (1) 109
Iv[—: v ﬂ+9]dV-J‘S [05(;)—75] ds
d (1) 10¢
J[om(3)-12] s -0

As the surface S, the dircction of unit normal drawn outward from the region
considered will be towards P, so that

) s3]

-y

- ] .
?’
“ a1l
s.”'a_n-( ) N j(d dSI
Taking to the limit as €—0, we find
Lim,_,, ¢ai(:) lS,-4n—e¢(l’) an ¢ (P) (2
. 1 de
and L.mr,_,(,j - 24s=0 .3
r on

I
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In the limiting case when €0, (1) yields with the help of (2) and (3),

: 12 ] (l) 130]
.-—V = — | - | - —
IV r # dv JS [ﬂan r) ron ds+ 4n o(P)

, (108 01 1 o2
Thus 4n ¢(P)—L _;H_g-é;(:)] dS-J‘v - Ve av
r
or 4r ¢(P)=L %Vﬂ-oV(%)]-n dS—IV% V’p dv

1 1 1
4 P)=| |-Vp-¢gV|—-|]-dS-] - V°p 4
n ¢(P) L_ra ¢(r)] er 9 dv
which is known as Green's formula.

1.59. POISSON'S EQUATION WITH ITS SOLUTION
Let ¢ be a scalar point function vanishing outside a finite region, then the equation

V2 =-4np,
is known as Poisson’s equation.
Poisson's equation is Vg = - 4np (1)
Green’s formula is
1 1 1.2
=| |-Vg-9V| - -] =V :
an o(P) L [r 6-9 (r) as- |, -V’ dv e
(for a region bounded by a surface S)
=J' [lV¢-¢v(l)]-dS+4nJ'B dv by (1) .3
Slr r r

In case the region V tends to infinity S also recedes to infinity.

Supposing that for large values of r, ¢ is of the form L where A remains bounded, °
r.

| vg | is of the form -k?
r

So that J [l Vo - GV(l)] -dS—-0.
Str r
Then 4n g(P)=4n J' -':-dv
or o(P)= j .
r

The volume integral being carried over the whole space remains the same as the
volume integral over the region outside at which p is zero.

‘Vector equivalent

If f =fli+fzj'+f3kg
and F =Fi+ Fayj + Fik
‘where V2F = -4nrf,

Then F (P)= Hdv.
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V2F = - 4nf is equivalent to
Vzpl = - 4ﬂf|; v2F2=' - 47Cf2; V2F3 = - 4nf,
Thus for a point P of the region -

ﬁ(P)=j !;‘-dv; F (P)=J % dv;: F (P):j é dv.

Imposing suitable conditions on f;, f3, f3, and multiplying these relations by i, j, k
respectively and then adding, we have

PPy +§ FaP) + K Fs(P) = [ 6+ B3 + Kf3) }dv

F (P)=I-§ dv.

1.60. LAPLACE’S EQUATION WITH ITS SOLUTION
If for a twice differentiable scalar point function , V2 ¢ = 0 is true for every point of the
region, the function ¢ is said to be harmonic in the region. .

The equation V2g = 0...(1) is called Laplace’s equation. Green’s formula is

41|:¢(P)=L [% Vo - gV (-:-)]ds-j % Vig dv

-f [1 Vo - oV (1)]-43 by (1)
sir r

which follows that the harmonic function ¢ at any point within the region can be
a0

expressed in terms of the values of ¢ and 3
n

at any poitit of the surface enclosing the

region.
Problem 152, Verify Green's theorem in the plane for

§C (xy + y) dx + x2dy ’

where C is the closed curve of the region bounded by
y=x%andy=x.
The shaded region shown in Fig. 1.58, represents the positive direction traversed by
the closed region C made up of a parabola and a straight line.
Given, ¥ =(xy +y?) and ¢ = x2
Evaluating the integral along z = x2, we have,

Y Iw dx+9 dy

= -x2 + x%) dx
) I, [(x-x* +x%) +ly dy)
= J‘“o(x2+ X‘)/ de+ L-o ydy

e

SRR
, x L4 sk L2,

Fig. 1.58
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Evaluating the line integral

along y

= xwe have

[ v e dy= [[(x% £?) ax+ yz“’]"f.nz"zm -[yo-ly @

1

- the required integral = — -1= -5
Also -aﬁ-uand v =x+2).
ox Ay

me [f,(32-35) o

H [2x-x-2y|dxdy=j j

=-1,

(x=2y) dxdy

j’"‘" [xy yZ] dx = L.o[" - x%-x+ x‘] dx

- fLalet ) e

It is evident that I\y dx +¢ dy= ‘U(i‘;.-a_‘") dx dy =-L.

Thus Grecn's thcorem is verified.

dy 2

Problem 153. Evaluate §c [(y - sin x) dx + cos x dy) where C is the triangle

whose vertices are (0, 0) ; (-125 .O): (g 1 )

(a) directly, (b) by using Green's theorem in the plane.

(a) The line integral along OQ on which y =0 and x varies

n ®/2 .
0w 5- = L_OSIn xdx=-1

The linc intcgral along QP on which

X =§ any y varies from 0 to 1

1
=j (-1)0+0dy) =
y=0 ,
The line integral along PO for which

y= -2—xand x varics {rom il 1w 0,
n 2

0 o)
=J. {("—x-—sin z)d)&-Z cos xd.x}
n/2 n A n

2 0
x .
=|—+Cc0$ x+— sin x =]-
n T

®/2 4

Hence the line integral along C=-1+0+1

2
n

from

(5 1)

(39

Flg. 1.59
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(b) In order to use Green's theorem we have

. oy 9 .
=y-sin x, p=¢c0S X, = =1, —=-sin x
v=y dy ox

§ (y dr+p dy)= H(ﬂ-ﬂ) H -y sin x-1) dedy

rlzj.jm‘ [(~sin x-1) dy) ax= I -y sin x- y)a*'" dx

I7)
=r (--2-5 sin x - 2_x) dx
() n n
v 2 ®/2
=[-—3- (=x cos x+sin x) -Ai-jl
n T Jo
2 n

- e @

1c 4
Problem 154. Compute § {(xy - x2) dx + x2y dy) over the triangle bounded by

lines y=0,x =1,y = x and verify by Green's theorem.
The line integral along OP where y = 0 and x varies from 0 to 1.
' [ -xde=-t.
- Ixao * dx - 3

The line integral along PQ for which x = 1 and y varies from 0 to 1
! 1
-L_o{(y— )O+ydy}=3-
The line integral along QO for which x = y and y varies from 1 to 0
| =f°{(y’- YY) dy+y* dy}=-f° Ydy=--
1 1 4

Y : 1) Thus the total integral allong c
1.1 1_ _
4@ =-3tiTeTTT

Now, by Green's theorem, we have
[0y -5 axs Py

. H[m-%m— x=>] dx dy

Q )

y=x
Fig. 1.60 = L_OL_O [22y- x] dxdy.
L S E AN A |
‘L.o[" ¥lde=| m-F (=%
which verifies the Green's theorem.

1.61. STOKES’ THEOREM IN SPACE
This states that if, F is a vector function, which is uniform, finite and continuous along
with its derivative in any direction, then the tangential line integral of F over any closed
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surface S bounded by a curve C is equal to the normal surface integral of curl F over S;

ie.,

fraee [ xmn e [ xn s

where n is the unit normal vector at any paint of S drawn in the sense in which a right

handed screw would move when rotated in the sense of description of C.

(Agra 1956; Vikram, 1969)
Consider a surface S such that its projections on the xy, yz, zx planes are regions

bounded by simple closed curves as shown in Fig. 1.61.
Take the equation of surface as
f(y,2)=0ie.,
4 =fl (X, y)
o  y=fr(x,2)orx=f3(y,2)
IfF = Fi+ Faj + Fak,
then we have 10 prove that

_”s V X (Fyi + Faj + F1K) - n dS

#§CF'dr X

Let us first consider,
(V x (F,D)] - ndS

=[(i 22, i)xf.i]-n ds

ox ay 9z
dF, . dF
= | — -—— kI
[az’ 3y ]""S
Z|9h . 9A
-l:azlljl aynk]ds

and r=xi+yj+zkéxi+yj+f,(x,y)k

So that -ai=j+M k sincez= fi(x, y).
dy dy

Now -gf- is perpendicular ton as ,-g:- is the langchl 10 the surface S.
y

Givingn~j=—a—f’- n‘k=--§-z- n-k.
dy dy
As such (1) yields

. off dz OFR
[VX(FH)]"I ds=—[—é-'zl-a—y+-a—yl:| n-k ds
But on the surface S, we have

Fi@,y.2)=F x, 3. /i &N =F (x.y)

(1

«..(2)
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OF dF dz oF
—l 1

TR TR TRET] .(3)
The relation (2) with the help of (3) gives
[Vx(Ri)]-n as=-3F nwas=_9F gy
' dy dy
JJ 9% (E)-n as =[] -—dxdy )

where R is the projection of S on xy piane.
i Green's theorem in plane gives

’ Fdx=-” 9F ix dy where G, s the boundary of R.
1

Now at each point (x, y) of the curve C, the value of F being the same as that of F,
at each point (x, y, z) of C and dx being the same for both the curves C and C,, we
conclude that

§ Fx =§ R dx
ie.  §Ra=-f]3 —dxd A5
The equations (4) and (5), nge A
[[[7x(A1)-nds=¢ Fax . (6)
Similar contributions are made by the projections on the other planes, therefore
Us [Vx(Fd)]-n ds=§cp',dy | )
[l lvx(ew)]nas=§ Fa: (8

Adding (6), (7) and (8), we find
HS [Vx(Ri+Fj+FK)|n d.s'=§c(p, dx+ F, dy+ F, dz)

[, 7xF)as=[[ (VxF)ngs=§ F-ar.

Problem 155. If ¢ is continuously differentiable scalar point function thcrtu show

§C¢ dr=”’snxVo ds

Put F = ag, where a is a constant vector, in the Stokes’ theorem
L(ao)-dr = Hs A4 x(a'o)]-nds

But we know that '
Vx(ag)=gradg xa+gcurla=Vgxa
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a-jco dr:”s(Vgxa)-n ds
=fJ‘J‘saxV0-n ds

=_‘Usa-V¢xn d.9=a-jLV¢X“ as

Since a is a constant vector

Jca dr=-HsV¢xn dS=HsnxV¢ ds.
Problem 156. Show that

Ldr xF= HS (nx V)xFdS.

Puuting f=axF, abeing a constant vector;
Stokes’ theorem gives

, J-C(axF)-dr:J.L[Vx(axF)]-n ds

But we know that
Vx@xF)=aV.(F)-FV.@)+((F-V)a-(@-V)F
=aV-.-F-@-V)F
and [(a-VYF]l-n=(a-V)(F . n)

I (axl-‘)-dr:”s[a (V-F) nxa-V (F-.n)] dS

ie. a-J.l-‘xdr=a~Hg[(V-F)n—V(F-n)]dS
(Sincc a is a constant veelor) '

Il-‘xdr:”s [(V-F) n-V (F-n)] ds
=”s -[(nx V)xF] ds
or Jdrxl-‘:ﬂs[(nxV)xF]dS‘

Note. Stokes’ thecorem in the plane is sometimes known as Green's Theorem in the
plane.

Problem 157. Verify Stokes' theorem for F = (2x-y) i - y2%j - y2zk, where § is

the uppper half surface of the sphere 2% + y2 + 22= 1 and C is its boundary.

. (Meerut, 1980)

Stokes’ thcorem is
Jcl-‘-drsﬁs (VxF)-n dS.

In 2 = 0 plane the boundary C of the surface § is a circle x2+ y2 = 1.
Put x =cos ¢,y = sin tand z = O for which 0< ¢ $2x so that these form the
parametric cquations of C.

_[Cr-ar=jc[(2x-y) i) [dxi+ dyj+ dzk]=jc(2x-y) dx

2x
=j 0|2 cos ¢~ sin ¢] (-sin ¢ dr)
=
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e
. 2x
=].,@ sin ¢ cos ¢ — sin? () dt
=z
) )
VxF=i|=—(-y*s)-=(-
and xF ‘[ay(?‘) 9z yz)]
e 92 D (cy?)-2 (2o
* [az (@x-9)- 52y ’)]“‘[ax( ) -5y % y)]
=0l +0j+k=k.

HS(VXF)-ndS=Hsk-ndS

=dexdysince k-ndS=dxdy
R being the projection of S on xy plane

mu [fasr= [T
=J.o\/_17=4z;—-1r

which verifies Stokes’ theorem.
Problem 188. Evaluate I (VxF).-ndS for
F=(y-z+2)i+ (yz+4)j- xk,

where S is the surface of the cube x=y=2=0;x=y=z=2 above the xy plane.-
Stokes’ theorem is '

J' F.dr=j (VxF)-n dS

Here the boundary C of the surface § is a square bounded by the lines x=0, x = 2,
y=C, y =2 in the xy plane. So

: ICF'dr'Iorp-'d”ImF'd”IQnF'd”LoF'd'

X Along, OP,y = 0 and x varies from 0
to 2.

R . :
0,2) —(22) N ML [CEXNRED

as dy=0anddz=0
=2 ‘2 dx=4.

z=0

c ‘Along PQ, x = 2 and y varies from 0
—— = =
0 (2’0) P X to2sothatdx=0,dz=0. |

[, Far=] lo+aisal @]

Fig. 1.62 -4 J" dy=8.
0 Y

Along QR, y = 2 and x varies from 2 t0 0; so that dy = 0, dz = 0.
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J'mp.drsj [41) - [dx1)

.
=4 de=-s.
Along RO, x=0and y varies from 2 to O so thatdx =0,dz =0
0
edenf e [ e

chchCF-dr=4+8-8-8‘=-4.

Problem 159, Verify Stokes’ theorem for the vector F = (2, x, y) taken over the
half of the sphere x* + y*+ 22= alying above xy plane.
The projection of the surface on z = 0 plane is a circle x2 + y2 = a2, of boundary C

(say),
and F=zi+xj+yk

Lp-dr
= L (0i + xj + yk) - (dxi + dyj)

- J-yuax d

y=-o

= J:-_‘ + ,’(a’- yz) dy

=2 [*|(a-») @,
put x.= a sin 8, so that

dx=acos 6d6

12
=2 r a*cos® 6 d8 ==na?

0

Bu VxF=| i j k|=(-j+k)
9 9 3
dx dy 0z
z x y

Hs (VxF)-n ds=ﬂs(i-j+’k)-n ds
=”S(i~n-j'n+k'n) ds

=Hsi-n dS-”sj-n dS+Hsk-n ds
(], - f], & e &
[l

R, ,R; , R, being projections on zy, yz, xy planes, respectively and projection on zy
plane being the same as that on xz plane, the first two integrals cancel out.
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Thus Hs (Vx F)-n ds = f._, I et d!x dy

--V(az-xz)

=2j_ V(a®-x?) dx dy

=4jo' V(a*-x2) dx
=41ta—2=yttaz
7 :
Hence IIS(VxF)-n dS=ICF-dr

which verifies Stokes’ theorem.
Problem 160. Prove that

freer=2 [

where S is a diaphragm enclosing a circuit C.
Putting F = a X r, where a is a constant vector, in Stokes’ theorem, i.e.

Icy.d.-g”s (VxF)-n ds,
We get
’ Ic(axr)-dr=HSVx(axr)~dS
Buua Vx(axr)=aV.r-(aV)r=3a-2a=2a.
Ic(a'-r)x.dr=ﬂs 2a-dS
a-j rxdr=Za-J s ds

Since a is an arbitrary constant vector.

[ rxdr=2 Hs ds.

Problem 161. Prove that a necessary and sufficient condition that
$Fodr=0

for every closed curve C is that V x F = 0 identically. (Rajasthan, 1978)
The condition is sufficient :
Since if VxF=0
Then Stokes’ theorem gives at once,

§CF'dr=HS(VxF)-ndS=0.

Also the condition is necessary: Since if §C F-dr=0 round any closed

curve C, then taking V x F # 0 at some point P, there will be a region with P.as an
interior point where V x F # 0 provided V x F is continuous. Assuming S to be the
surface contained in this region whose unit normal n at each point has the same direction

-—
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as ihat of V x F, we may express V x F = An where A is a positive constant. Thus
Stokes' thcorem gives

§c Pdr:”s(VxF)-ndS:len-n dS=l”dS¢.0

i.e., it yiclds positive contribution.
This is contrary to our hypothesis and hence Vx F = 0.

Thus necessary and sufficient condition for IC F.dr=0 is that

VxF=0.
Problem 162. Prove the following:

(a) J‘Cr-dr=0..
®) [ [ov0]-dr=0.

© L_ [0Ve)-dr= -L vVg-dr.
@  ByStokes' theorem

J‘gr-dréﬂs [Vxr]-n dS=0 as Vxr=0.
) By Stokes’ thcorcm

L [0V0)-dr= Hs [V x(8Vg)]-n ds.

BuuVx@Ve)=9Vx(Vg)+ (Vo) x(Vg)
=0+0=0

j (eVg)-dr=0.
(© By Stokes’ thecorem
Jc [0Vy] -dr= Hs [V (V)] n as.

But Vx (g Vy) =9 Vx(Vo)+ (Vo) x(Vy)
=VoxVy

Jc[oVw]-dr=Hs (Vex Vy)-n ds

=-{[ (vy xVa)-n a5 .

’

and -JC WVg-dr= —Hs Vx(yVe)-n dS
: (by Stokes’ theorem)
= -Hs {\yV x (Vo) + V\y x Vo} -n dS
=--J‘J‘s (Vw x Vg)-n dS

as yVx(Vg)=0 )
It is evident from (1) and (2), .

Jcovw -dr= -L_ww.dr.
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r
£

" Problem 163. If§ E-dr=-1 —_U H.dS,

where S is any surface bounded by curve C, show that

1 oH
VUXE=-— 2%,
xE C ait
1 oH )
Let : VXEze= — : ... Q
X C ot M

Then Stokes® theorem yields :
§CE-dr=H (VXE):n dS=H (VXE)-dS

H (-l ) -as v

the integral being independent of 1.

Problem 164. If the normal surface integral of a vector point function G over
every open surface is equal to the tangential line integral of another function F round its

bowndary, prove that
G =curlF.
We know that the normal surface intcgral of a vector point function G is given by
H G-ds
where S is a surface.
And the tangential line integral of vector point function F is given by fc F-dr.
Now we are given that
[[.G-as=[ F-ar. | 1)
s c
Stokes’ theorem, yields

J’cp-dr=HS(pr)-n d?:fj's(VxF)v-dS

ie. ”SG-dS=Hs(VxF)-dS by (1)
which follows that
. G=Vx F

ie. " G=curl F.

1.62. SOME THEOREMS

THEOREM 1. The necessary and tuff cient condition that a veclor pomt function F be an

Irrotational vector function in a simply connected region is that curl F =0 at

every point of the region.

ha The condition is nécessary. since if F be irrotational then there exists a scalar ¢ such
t F=
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curlF=curl(V¢)=VxV¢=0
The condition is also sufficient, smce if curl F = 0 then it follows from Stokes’
theorem that

ICF-dr=LcutlF-dS=0

showing that F is irrotational.

THEOREM 2. The necessary and sufficient condition that a vecior point function F
be a Solenoidal vector function in a simply connected region is that div F = 0 at
every point of the region.

The condition is riecessary, since if F be solenoidal then at any point, we have by
$1.52 (note)

divFe Lin II. ELS,O

showing that F is solenoidal.
The condition is sufficient, since if div F = 0 then Gauss' divergence theorem yields,

LF‘dS=jvdideV=0

showing that the Flux f F -dS across every closed surface is zero.

~ Note. div curl F = 0 = divergence of every curl is zero i.e., curl of every function is
solenoidal.

THEOREM 3. If F is a continuously differentiable vector point funclion such that
div F=0, then there exists another vector point function € such that F = curl (.

Firstly to show that f is any function whose curl is F, take a general function f + V
@ whose curl is F, ¢ being continuously differentiable scalar point function.

Assuming that curl f = F = curl g, we have curl (g-f) =0
which follows that g-f is the gradient of some scalar ¢ i.e.
g-f=Vogiving g=f+Vp
But if @ be any scalar point function, then
cul(f+Vg)=curlf+curlVg
=F+VxVg=F
which proves the proposition.
Now to prove the main theorem: let us suppose that
F=Fii+ Fyf + Fqk

F=fil + 2] + f3k

Then, curlf=Vxf= i j K
| 2 00 2
9x dy Od:
fi o h

(- 2 (35
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So that F = curl f gives on éomparision of the coefficients of i, j, k,
P TR TP TR T T )
Jdy 0z az d9x dx Jy
Also HL ifz _aﬁ =0
dx dy o0z
If we suppose that f; =0, then (1) gives

_ 0fy .. _
R=- 3, 5Ving fa-'Lon de+g(y. 2)

d - x )
and F:FT’?‘ giving fz=J Fy dx+vy (y. z), y, z being parameters

We get from (3) and (4), =2 s, dx*’ag'
dy " 3y oy
o 3 ["36 4. 0¥
0z x0 Az £
f; 9f, oF, OF o0 dy
=d3_22__ —24+2 5.
So that R 3y 9: I ( 3z )d dy 3z
= [* 85 4 92 Y Lih the help of (2)
b {1} ax a}’ az
9 oy
"Fl (X, »z ) rl (Xo, I )+a)‘ Jz
ie. F (0 y, )= 22

dy 0z
If we now supposc that y = 0, then

gy R (x. . 2) giveso= J F (xo, y. 2) dy
As such we find from (3) and (4) etc.
fi=0. '
. -
fa=] B odx
%0
x ?
f3="J Fy dx+g(y. 2),
X0

where (. z)=j; Fxo. 3. 2) dy

)

. (2

. )

..'(4)

. (8)

... (6)

It is evident that f, , f . f3 as determined here are the components of a vector f whose

curl is F.
Hence divF=0=F =curl f.
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1.63. THE CLASSIFICATION OF VECTOR FIELDS
(Kanpur,'1968; Agra, 1954, 63, 65)
If curl F=0i.e. V x F = O then F = grad ¢ or F is called as a Lamelle, Field or a Zero .
Curl Field. Also if div F=0i.e. V.F =0 then F = curl f or F is called as a Solenoidal
field. It is conventional to classify the vector ficlds into four:
1) When curl F = 0 and div F = 0, then the first R
cond(iti)on shows the f ield to be lameller or irrotational

since curl F= 0 ::,F grad ¢ and in view of
second condition it gives div grad @ =0 i.e. V2p=0

i.e. Laplace’s equation showing that the field is —:——V
solenoidal or incompressible. On the whole such a T—
field is termed as a type of field, which is irrotational V.F=0, VXF=0
motion of incompressible fluid as shown in Fig.
1.64(a). Fig. 1.64(a)
' (2) Whencurl F=0butdivF 0. Thencurl F=0
, gives F = grad ¢ and in view of second condition this
< ° > yields, V grad ¢ #0 i.e., V2 g # 0. So this field is

X?’= termed as the type of field which is irrotational motion of
\Y% o compressible fluid as shown in Fig. 1.64(b).

-
V.-F+0 (3) When curl F 20 butdivF =0. ThendivF =0
gives F = curl f which in view of first condition yields

Fig. 1.64(b) curlcurl f£00r Vx (VY xN =0
ie., grad div f- V20 —
This shows- that if f is solenoidal
then we must have div f = 0, so that o VXF=/=O
.grad div f = 0 and as such V2 fz 0. F=O

Hence such a ficld is termed as the type

of field which is rotational motion of _—
incompressible fluid as shown in Fig.
1.65. Fig. 1.65

(4) When curl f # 0, also div F # 0. This
type of vector (iclds is most general and it is
tcrmed as the type of ficld which is rotational

2. F*O motion of compremble fluid as shown in Fig.

/ 1.66.
v: F+0 In fact this fleld is made up of two ficlds
namely (f) Lamcller vector field (i.e. having no
curl but may have div only), (i{) Solcnoidal

vector ficld (i.e. having no div but may have curl
Fig. 1.66 only). Mathematically.
F=gradg +curl f
So that div F =div (grad ¢ + curl )
' =divgradg - divcurlf=0
= V2 ()]
But div.F#0, thereforc V2@ #0 which dctermincs @.
Again curlF=curl (grado + curl D =curlcurl f - curlgradp=0
=-V2f
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But cul F 20, . V2f20, where f is solcnoidal vector ficld and this
determines .

Such a decomposition of vector field comprising Lameller and solenoidal field is
known as Helmholtz's theorem.

ADDITIONAL MISCELLANEOUS PROBLEMS
Problem 16S. Prove that if A. B and C are three non-coplanar vectors, then any vector
F can be put in the form F=aBxC +BCxA +YA xB
Determine a, B and . (Agra, 1971)
Given that A, B, C are non-coplanar vectors and we have to show that B x C, C'x
A and A x B are also non-coplanar. They will be so if their scalar triple product is not
zero, ie..if [BXxC,CxA, AxB)=20
Now [BxC,CxA,AxB] =(BxC)-(CxA)x (A xB)
=(BxC)- ([CAB]A -[CAA]B)
=[BCA] [CAB] " [CAA]=0
= [ABC] [ABC])
=|ABC]? e ()
But [A, B, C] # 0 since A, B, C are non-coplanar.
It therefore follows from (1) that (B xC,C xA, A xB] # 0

i.e.B xC,C xA,A xB are threc non-coplanar vectors and as such-any vector F can be
expressed in the form

F=aBxC+BCxA +yAxB . ()
Now to determinc , B, ¥, multiply (2) scalarly by A

A.F =a A.B x C, other two scalar triple products vanish

. o= A.F
gving IABC]
Similarly multiplying (2) scalarly by B and C successively we find
B.F C.F
= — d = ——
P=Tanq ™ Y™ Tanq

Problem 166. If A (t) be a vector function of the scalar variable t and be of
canstant length, then show that % A (1) is a vector perpendicular to A (1). (Agra, 1968)
»

Given vector A is of constant length i.c., |A]=constant and is a function of 1. We
know that A.A-Az-lAlz-Az.' A being module of A.

Diffcrentiation gives, 2A. aA =.2A “
dt dt
=0 .d—A = () when A = constant.
or A()-L A =0
/ — =
dt

which follows that A (1) is a vector perpendicular to % A(L).
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Problem 167. Show that div (Vu x Vv) =0 (Agra, 1960)
By §1.35. div (Vux Vv)=V v curl Vu - Vu.. curl Vv
= Vv.curl grad u - Vu. curl grad v
= 0 as curl grad « = curl grad v = 0 by Problem 91 (ii)
Problem 168. Show that V. (a x r) =0, a being a constant vector. (Agra, 1958)
Take a =ayl +az) +a3 k, r=xl+yj+zk and verify it

Problem 169. /n the gravitational field of a mass m, the potential is given b --"—'.
: r

where r is the distance from the mass, given by r? = x2 + y2 + 22, Obtain the componenis
of force vector by differentiation. Find the curl of the force and show that it is zero.
(Rohilkhand, 1977; Agra, 1955)

Here ifv=--':‘- then F,=-:—‘; etc. and F = F 1+ FJ+Fk.

It is easy o verify Vx F = 0.

Problem 170. Find the Cartesian components of vector C which is ,perperidicular lo
the vectors A (21 -J -4k)and B (31 - J - k). {Agra, 1953)

It is easy to find the components of A x B which is perpendicular to A and B both.
Ans. -3, -10, 1
Problem 171. Prove that (A x.B) - (C x A) = (A-C) (B-A) - (B-C) (A-A)
(Agra, 1962)
Problem 172. The rectangular components of a vector A are

VAN YR Y Y T Y
R PR vl Rkl il *3y Tax

Where f is given function of (x, y, z).
Express A as vector product of two vectors and evaluate A.r and A. grad f
(Agra, 1962)

Here A = Al +A)J +Ak = (xl +yj +2k) x Vf=r x Vf etc. and it is easy to show
that A.r =0=A. grad /.
Problem 173. Establish Poisson’s and Laplace's Equations.
Gauss' theorem, for a volume distribution of density p, gives
NsL AndS=4n J‘v p dv,

where N is the flux of the clectrostatic intcnsity A at a point of closed surface S on which
the positive unit normal is n.

With the help of divergence theorem, we find
L (div A)dv = 4n j., pdv
or Iv (div A-4mp) dv =0,

which is true for all volumes however small.
div A -4np =0, ie, div A =4np

or V.A =4np.
S V(VA)=-dnp
or V2A = - 4np. (Agra, 1961, 65)

This is known as Poisson’s equation.
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In free space, p =0
. ~VZA =0
This is known as Laplace’s equation.

Problem 174. Show that curl 2—?:-—.54--; (a.r), where a is a constant vector
r r r

and r = x| +yj + zk.

axr axr d ) axr
H . l-—-——V l—v— _
e A r (3 az) r
d (axr 9 (axr d (axr
—_— —— | — e | . (1
=l 3:( r )Hxay( 3 )+kxaz( r ) M
9 (axr 3 9r 1 or 3x a
Now x(—r-s—)=-r—‘- -é;-axr-o--’—;- (IX-—X)=?7 IXI‘+-;5X‘ )

r=six+yj+zk gfves -QI-:I
dax

2

. r
and r =J:2+y2-i-z2 gives -a—=£
. ax r

lx-:—x(ﬁrr)- -—-5- [lx(axr)]+— i1x(axi)
=-7 [(l‘r)a-(ba)r]-t--’-s- [(1-na=(i-a)i]-

= _3_: [xa-(lxa)r]+-lg [04(1'“)']

3x2 . (i-a)

3 (axr)_ _3_)«: 35 e (1)
Similarly, Jx (_f')", a+ (]ya)+ _;3_.

r
Ix2 (2.3‘_')+ ,xi(ix_r),, kx> (0_")
ax \ 3 oy\ 3 9z \ 3
2

3(x +y2+'zz)
- a+—3-'{xl+yj+zk} a+—-—— [(1-a) 1+(5-8) S+ (k-a) K]
3a 3 .
=-~5+r—; r.a+-r—3---'% smcenfa:a,l+a;j+f13k.
I'a =a,.Ja=a5 ka=a;.
(-a)l+(a)J+(ka)k=al +ay] +a3k =2
a 3r 4
=—-;-s+7f(l'l'). ‘--(2)

.Hence from ( 1) and (2).

axr
Cur] ____+_ ar
73 I‘J r ( )
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Problem 175. Give example in support that vector methods have been used to give
results in a simple and elegant form. *

Ever since the deveclopment of Quaternion analysns by W.R. Hamilton and of the
‘Ausdehnungslehre’ by Grassman, it has been a growing fecling that new methods and ideas
be applied more simply and more directly to many of the conceptions of geometry,
mechanics and mathematical physics, than those long accepted. The methods of Vector
Analysis are adopted on the grounds of naturalness, simplicity and directness.

As an example, Faraday the great physicist with his mind's eye visualized the lines of
force cmerging from thc magnet and so he had a visual conception of the manner in which
the electro-magnetic waves werc travelling lhtough the ether around him and so divergence
and divergence theorem to him had simple meaning.

Numecrous other examples can be quoted from geometry, mechanics and mathcmancal'
physics.

Problem 176. Show that

(a) The vecior product of two vectors is a veclor.

(b) The gradient of a scalar function is a veclor.

(c) The divergence of a veclor funclion is a scalar. (Agra, 1965)
Problem 177. What is Green's theorem,. Use it lo solve the equation. '
2 2 (Agra, 1965)
9_\,21+a\v+8 =4np (x, y. 2)
9x2 9y? a3z’

Problem 178. (ayProve that (A X V)x R = - 2A

find (A X V).R where A is any vector field and R is a vector drawn from the origin to a
point P :(x,y,z2).
(L) Find the directional derivative of the function # (x,y.z) = 2xy + 22 in the
direction of the vector | +2J + 2k at the point (1, - 1, 3).

(c) If the divergence of a veclor field H vanishes, show that it can be expressed as the
curl of a vector field A. (Bombay, 1965)

(@ Let A=A;i+AyJ+A,k and R =xl +y) +2k

V=
ten X L TR (a4, aa, (22 20,24 ),
_3: i’ i Bz oy dx 9z dy ax
dx dy dz

- P} 2 A, 9A, A, 0A
So that (AxV)xR:{(azA, ayA,)H( 32 —5z—)j+( 3 ax) }x(xl+yj+zk)
=-2(A,I+A,j’+/\,k)=_2A :

It is also casy to show that (A xe)'R =0

(b) # = 2y + 22
Va:(l-aé;ﬂaiyﬂ(%) (20y+2%) = 2yi+2x)+22k

=-2i+2j+6Kkatx=1y=-1,2=3
i1+2j+2k

A unit vector in the direction of i +2j +2K is
12422422

= % (1+2j+2k).
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Since the directional derivative along a unit vector u is u-grad ¢ i.e., u-Vg, therefore
the required directional derivative in the existing case is

=%(l+2]+2k)-(-2l+2j+6k)
=§[-2+4+12]= %-

(c) It is easy to show that div H = 0 = H = curl A"by Theorem (3) of §1.62.
Problem 179. (a) Prove the divergence theorem of Gauss.

(b) Prove that Hs (NxF) dS= va(é x F) av

where F is a vector field and N is the normal unit vector 1o surface S enclosing the volume.

(Bombay, 1955)
These are well known theorems. .

Problem 180. (a) Prove the following by using vector methods:

(1) The medians of a triangle meet in a point of trisection of each other.

(2) sin (o + B) = sin & cos P + cos & sin P

(b) Prove that

) [AxB]x[AxC]:([AxB] C)A

2 d (40 1 3 d 1 82

@) v'= r? or ( 3r)+r sin@ Fr) (sma 30) r? smze 8¢2
(a) - (1) See Problem 14 (b). (Nagpur, 1965; Agra, 1966)
(2) Take |, J unit vectors along OX, OY two
mutually perpendicular axes and consider two
coplanar lines OA and OB making angles o and §

with OX. If 4 and b be unit vectors along OA and
OB respectively then

d=cosal+sinal
b=cosPil-sinf)

If € be a unit vector perpendicular to | and [
both, then '

bxa=1l-1sin(x+p)E
ie, sm(a+B)c = (cos BI-sinP))
x(cosal«smaj)

=(smacosﬂ+cosasmb)€
vix)=¢
~. sin (@ + B) = sin & cos B + cos @ sin B. Fig. 1.67
(b)(1) L.H.S =[AxB]x[AxC]
=((AxB]-C)A-([AxB]J-A)C

=(([AxB]-C)A “[AxB]-A=[ABA]=0.
2 2 2

(2) We have Vz--aa?- aa 7 -a-a—z- in cartesian coordinates.

y

The transformations to polar coordinates are

x=rsinfcosg, y=rsin Osing, z=rcos 8 ' 4 «..(1)
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Let us first change x, y, z to «, @, z (cylindrical coordinates) by the transformation

X=ucosg y=using, 2=2 .(2)
So that u=1/x2+yz andg = tan" l
du du O _ _sing Jp _cose
Also, ax-oo @, a—yssm.a, 3. ay -
ov dvdu dv de sing v v dv cosp dv
Now, ax- P 3x+6¢ P = %" sumlarly ay-smoa“ %

(g:) +(§§) (a:) (1av) B )

2 .
Again — v 3 (av)-(cosa i-ﬂi) (oosa i-ﬂg--a-:)

sz dx ou u 0p ou o0
=cosgl coss OY v smo v sinoi! _'sino
dut u duoe u
cos 8 d%v —sin ogx_snno_a_"’_v_coso'a_v
dudeg or u 982 u oo
={ cos?a 82v_2 singcosg 9%v +sin 032v+sin2¢i!
%l p Juds  u op2 u du
,2singcosg gl)
u? o0
v 9%2v 2singcoss 9%v  cos?g v
l —-- —
Similarly 352 =90 R Tt T

cos?g dv _2singcosg Jv
¥ Ou u? o0

?v 2%v_3%v .193v 1 3%v
Adding —5+ - - 4)
e d W ou® udu :5?
3%y . .
Adding a—f on either side of (4),
z
vy = 9%v 1 9%v 3% lﬂ ‘ (5)

—t sttt —
du? w? 3p? 3% uou .

Now by putting u = r sin 6, z = r cos /8, the transformations (2) reduce to the form (1)
and by applying (4), we get .

v v % 1% 13y : (6
du? 922 ar? r230% ror
10v 1 dv cosf ov
d —_—= inf — —_— )
n uou rsine(sm 6r+ r 39) M

Substituting values from (6) and (7) in (5) we find
62v+28v+1_82+c010_2+ 1 _Biv_
9r2 rdr r236% % 3r r2sin?6 3e?




VECTORS 1.175
=l__a_(,2ﬂ)+ 1 _a_(sina ﬂ).’._—l___.a_z-‘i
r2ar\ 9r) r%sing 06 00 ) r? sin? @ d0%
19(,9 1 93 ) 1 92
o 3ottt S
723r ( ar ) 7 sne a0 """ 36) 7 sn® 0 297

Problem 181 Evaluate the following:

(4)—j¢° P

@i 2n )3I II e‘ ker dx’dy dz [r = sz-n» y2+22, r=(x, z)]

2
Problem 182. (a) Starting from the definition V2y = %-‘-‘2‘-4-
x

V2y in polar and cylindrical coordinates.

(Agra, 1966)

?y- %y

y

—8—7 + .5_2- express

(b) Write the general solution of the equation V2y = 0 in polar coordinates.

(Scc Problem 180).
Problem 183. (a) Prove the following identities :

@) V-(Vxv)=0, (i) Vx(V o)=0

(Agra, 1966)

(b) Show lhat if a scalar point function ¢ depends only on the magnitude of the

. : s . _d . . . L
. position vector r, then Vg = ;’- er, er being the unit vector in the direction of r.

(c) Show that Vxr=0

(Here v is a vector function of v and V=1 -53;4 § %H& 2 in the usual notation)

a2

(Agra, 1967)

Problem 184, (a) Define (i) The dot product and (ii) The cross product of two

vectors. Show that A X (BxC)=B(A-C)-C(A-B)
(b) If o is any scalar and A any veclor, then show that
() diveA =A- -grad ¢ + p div A

(i) curlp A =gcurl A-A X ggad ¢

[Vikram 1967, (i) 69 also)
Problem 185. Explain how the Laplacian operator V2can be expressed in any

system of orthogonal curvilinear cooordinates. Hence express it in cylindrical and spherical

. polar coordinates.

Sec §1.45 and §1.46.

(Vikram, ‘1967)

Problem 186. Using the Theorem of Gauss prove the following identities:

0 jv v ¢41=§s o n dS, (ii) jv 6x1-‘dr=§s nxF dS

the surface elemerus dS.

Here S is a closed surface enclosing the volume V and n is the unit normal vector at

(Agra, 1968)
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Problem 187. Explain the meanings of the operations 6. V.and V x.Show that
VxAxB)=(B:-V)A - (AYW)B-B (V.A)+A (V-B) (Agra, 1972)

Meanings are clear from §1.24, §1.28 etc. For second part see §1.33.

Problem 188. (a) Prove the Green's theorem

2 2 3\[1 dp
Il svrv-vwis)ac=[], (o S-v )
(b) A vector field is given by A = (x2+ xy?) i + (y2 + x2y)
Show that the field is irrotational and find the scalar potential. (Bombay. 1970)
First part is the well known theorem and for second show V x A = 0.

Problem 189. Establish an expression for the components of the curl of a vector A
in orthogonal curvilinear coordinates and hence obtain the radial component of curl A in

spherical polar coordinates (r, 6, g). (Agra, 1974)
See §1.42, §1.46.
Problem 190. Find the divergence, the gradient of the divergence and the curl of the
vector r* t, where rt is a position vector.
Sec Problem 99.
Problem 191. If div A = 0, show that curl curl A = - V2A (Agra, 1975)

Problem 192. (a) Clearly explain the physical significance of divergence and curl
and express them in spherical polar and circular cylindrical coordinates.

(b) If a vector function F depends on both space coordinate (x y z) and time t show
that

dF = (d rﬁ) F+% F di (Rohilkhand, 1976, 83)

Problem 193. Define Selonoidal and Irrotational vector fuelds. Show that r*r is an
irrotational vector for every n, but is solenoidal only if n = - 3, where r is the position
vector of a pariicle.

(Agra, 1979)

In the gravitational field of mass m, the potential at a distance r is given by —=-
r

Obtain the components of force and show that its curl is zero.
See §1.63 and Problems 111 and 169. (Rohilkhand, 1977)
Problem 194. Show that the componenis of vector a along and perpendicular to

(a-:z) b mdbx(:;‘b) respectively, where b = Ivl.
(Rohilkhand, 1984; Agra, 84)

Problem 195. If ¢ is ‘a scalar function which is a solution of Laplace’s equation V2

@ =0 in a volume V bounded by a piecewise smooth surface S, then apply Gauss-divergence

theorem to u = V¢ to prove that ’
Hs n-Vg dS =0,

where n is the unit vector normal 10 S. . ’ (Meerus, 1971)
Hint: For u = Vg, Gauss-divergence theorem

N
= H Vo-n dS = mV(Vo)dv

vector b may be expressed as

= jj n-Ve ds=m V26 4V =0 a5 V2p =0,
S : v



CHAPTER 2 °

MATRICES

2.1 DEFINITIONS AND NOTATIONS

A set of mn numbers, real or complex, arranged in a rectangular array of m rows and n
columns such as

a,, B2 eevnene a1 .
ay Ay e a2,
a,n d.z cevenes a”

is called a matrix of order mx a.

In other words a scheme of dotached coefficients ay amnzed in mrows and n
columns is called a matrix of order m by nor an m x n matrix or a matrix of
type m X a,

In case m = a, the reclangular array becomes a square and so the matrix having
number of rows and number of columns equal is called a Square Matrix of order a.

Any matrix obtained by deleting any number of rows and any number of columns
from a given matrix is said to be a Sub-Matrix of the given matrix.

The mn numbers ap(i=1,2,...m j=1,2,..nl#j) constituting themxn_
matrix are called its elements or constituenu‘ The elements a; (i = /) of a square
matrix A are called its diagonal elements and their sum as trace of A denoted by

tr. Aazay

A matrix. is usually denoted by capital letters like A (in clarendon type) or [ay],
where a., represents the (i, )th elemem i.e., the element i in the ith row and Jjth column of
the matrix.

Thus an m X n matrix may beexprcssedas
A= [a,,] =[ay a2 ... a. whetelSsz
Gy Gy ... a.land1lsj<na
et eevees e | butiej
Oy Gpa eeoees Gon /

Wchavesofarusedonlyapauofbrackusze [ ]iodenoteamatnx.bulapmrof
puemheses i.e. ( ) and double bars i.e. Il I, are also sometimes used to mdncate a
matrix. .
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A matrix having all of its elements zero is said to be a Null Matrix and ’dcnoted by

Oe.g.
000 00 0
00001'00o
000

A square matrix of order n having all its diagonal elements unity and zero élements
everywhere €lse is called a unit matrix or an identity matrix and denoted by I,.
Thus :

IL,=[1 0 0 .. O]
0 l 0 LN} 0

00 1..0

'0 o 0 oo 1-

It is possible that a matrix may have only a single row or a single column such as
b

[a,. a, .. a,]andl;2

by
the first onc being a matrix of order 1 x p is called a row matrix ‘and the second one
being a matrix of order ¢ x 1 is called a column matrix.

A single element constitutes a matrix of order 1 x 1.

In relation to matrices, the numbers are usually known as scalars; for they behave as
operators exactly like qrdinary numbers as multipliers and hence are called scalars.

ILLUSTRATIVE EXAMPLES

. j _: ';_ is a matrix of order 2 x 3,
2.2 -3 4
S 6 -2]is asquare matrix of order 3.
|1 0 4]
> 0 3 203 -1 2
4 5'6]isasub-mau'ixofthemau'ix 4 56 7 8
y v 942 1 5§
4. 4,0, 6 are the diagonal elements of the matrix
4 S5 6
A=|2 0 3|whoscelementsare4, 5, 6, 2,0, 3, 2, -5, 6
2 -5 6
_[4 5 6
i.e.if[aﬁ]= 2 0 3|then g, =4, a;,=5, a;3=6cel.
: 2 -56
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Also trace of Aie.trA=4+0+6=10.
5. [0 01 isa3x 2 null matrix,

0

0]

00

1 0] is a unit matrix qf order 3.

01 C

3 S)isalx 3 row matrix,

)

0
0
1
0
0
72012
8 M2

['is & 4 %1 column matrix.

K7

4'\.

2.2 EQUALITY OF. MATRICES .
Two matrices A and B defined as
A =[a;) and B = [by)
tg:be-equal {f both are of the same order m x n i.e. A has the same number of
row: and columas as B and each element a; of A is equal to the corresponding element
by of Bi.e. a;= by for each pair of subscripts i and .

Hence for equality, the two matrices must be identical in every respect or broadly
speaking, the two matrices are equal if and only if one is a duplicate of the othér.

ILLUSTRATIVE EXAMPLES

L ay o, by b
IfA = |ay ap|andB = by by
Gy; a3y by by

-uen A = B if and only if

- @4y = b1, 812 = by, 8y = by, ap = by, 8y, = by, 83, = by,
" 2. The matrices [} 2] [1 2 5]beingofdiffaemordetamnotcompamble

: 3 4 3 40
i for equality.
' 3. Thematrices[2 3]and[2 37 afé comparable but not equal as the element of
' 01 6 1
|5 4 S 4.

: the 2nd row and 1st column of the first matrix is not equal to the corresponding element
1of the second matrix.

4. The matrices 72 1 § and[z 1 §]areequal.
o9 '7] t0 9 7]'
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5. The matrices 4 5 271and[ 92 g 33)arcequal.
[6 0 3] ’ [3,.2 0 «/5]

COROLLARY. Equivalance Relation on Matrices

If there are three matrices A, B, C such that they satisfy the following three
properties.

(1) Reflexivity A=A

(2) Symmetry A =B implies that B = A

() Transitivity ~ A=Band B =Cimply that A=C

Then the equality of matrices is said to form an equivalence relation.

23 ADDITION OF MATRICES

Two matrices A = [a;] and B.= [b;] are said to be conformable for addition if they are of
- the same order i.e. they have the same number of rows and the same number of columns.
The sum of the two matrices A and B is then defined as the matrix each of whose
elements is the sum of corresponding elements of A and B i.e.

A +B = [ag] + [b) = la; + b;]

For example
G B3 e G, by by e b,
ifA = az" az: AAARA A az. andn = h‘ % AR RS bZQ
Qi Bm2  ceeeene Ga: b1 bmz e Oma
then
ap+by o apthy . 4t ba
A +B = a+ bZl “zz"'bzz seeenee GQat bz.
Qi+ by Buatbpy  ienn Gt b,
As another example if '
2 0 3 -1 2 0
A‘[.4 1 s]“"“'[3 -4 -s]
2-1 0+2 340 1 2 3 :
u‘°"‘“B'[-4+3 1-4 s-s]'[-’_y 3 o] '

B4
- COROLLARY l.t&r(A+B)=trA+uB

, a2 2 3
eg. lfA-[2 3]andB=|:0 l].

thentr(A+B)=(-1+2)+(3+1)ie 1 +4=5=2+3=1rA+irB

COROLLARY 2. Subtraction. The difference of two matrices A and B which are
conformable for addition may be defined as the sum of the two matrices A and (-B) where
(-B) is the matrix obtained by multiplying every element of B by -1. Thus

A-B=A+(-B)
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iie. the elements of the difference matrix A — B are obtained by subtracting the elcmems
rof B from the corresponding elements of A,

Soif A ={[a;]andB = [b;], then
A - B =(g;] - [b;] = [a;; - by]
As an illustrative example

o [2 5 -3 4 03
I L PO

2-4 5-0 -3-3]_[-2 s -6]

me""‘”"’[o._(-z) 7-0 8-5] "2 7 -3

CUROLLARY 3, Multiplication of a matrix by a number (scalar)
If A is a matrix of any order say m x n defined as

an a,: ....... a‘ A
: a Q3 eeeeen.
A= 22 24
Qmi  Guz e Qpun
then the addition law follows
F ay (7 JETTYITN a, an alz C eeeeees Q)
Ay e a Gy Gy e
A+A= a2 22 21 |9 ay 25
LBm1  Gm2  coeeeee Qua] 1Gm1 Gm2  ceeeees a,,
G, G e a,. 2aq;; 245 ... 2aq,,
: a Gy . e 2a 2a5 ... 2a,
or2a= 2| 22 G| _ 21 an n
.a,,” B2 eeenes am_ 20,,. 20,,.2 ....... 20,“
Similarly
an [} T a5 3011 30)2 ....... 30“,

a
2A+A=3A=3 . =

-------------------------

L T T .| {36, 3a,2 ... 3a,,,

“or in general if k is a number, rcal or complex and A is a matrix then kA the matrix
- obtained by multiplying every element of A by & is said to be the scalar multiple of A.

0o 2 3
As an illustrative example if A = [ 1 ], then

5 4
0 2 3 0 4 6
24 =2 [-1 s 4] = [.z 10 s]
0 2 3 [0 6 9
=3 [-1 5 4] B [-3 15 12]
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It is easy to verify that
A+A=2A =5A-3A clc.
and similarly 3 + i)A = A + A(1 + i) + Acetc., wherot = V=1
COROLLARY 4. Linear Combination of Matrices
The same law of addition can be applied to combine any number of matrices. Thus if

A BC,........ K be a finite number of matrices each of order m X n (say) and o, B,
D ATTTTTTU x be scalars then , :
0A +BB +YC +............ +xK = [aa; + b + Yc;; +......... + xk;;)
Where A =-[a;,]. B= [b;,']. C = [C'q'].., .......... N K= [k‘I]

As an illustrative example if ,
2 3 0 1 -2 3 2 -1 5
A=[4, -1 2]"’,= [o 4 5],0-—.[3 0 ~4]
6-4+4 9-(-8)+(-2) 0-12+10
12-0+6 -3-16+0 6-20+8

6 15 =2
18 -19 -6

COROLLARY 5. tr. (NA) = Atr. A, A being scalar e.g. if*A = [2 _2] $O

then
31‘ - 4B + 2C = [

0 -l
AA = [2% .2%]clearly tr. AMA)=2A-A = A and A tr. A=A (2-1) = A

sotr.AA = Atr. A.

24 PROPERTIES OF MATRIX-ADDITION

(1} The Commutative Law
If A and B are two matrices of the same order say m x n, then

A+B=B+A
Let A =[a;] and B = [b;), i=1,2,..m
i=1L2,..n

We have )
A + B =[ay]+ (bl = [d;+ b}
= [by + a;) since by and a;; are scalars
= (bl + (ay] - ’
=B+ A
i.e. the commutative law of addition holds.

(2] The Associative Law

If A, B, C are three matrices of the same order say m X n, then
(A+B)+C=A+(B+0)

Let A =[a;], B= (byl.andC = [cy), i=1,2,...m, j=1,2,...n

We have (A+B)+C =([a)+ b)) + [cy)
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= ([a; + byl + [c;])
= [(ay+ by) + ¢
= [a; + (b5 + c;)), a;;, by, ¢, being scalars
= [a;] + ([b; + ¢;}))
=A+(B+C)
i.e. the associative law of addition holds.

[3] The Distributive Law
If A and B are two matrices of the same erer say m X n and k is a scalar then
k(A+B)=kA + kB
Let FlajandB=[b), i=1,2,. j=12,..n
We have. k(A+B) =kla;+b;
= [k (a; + b))
= [kay) + [kb;]
= kla;] + k[b;], k being a scalar
=kA + kB
i.e. the distributive law of addition holds.

(4] Existence of Additive Identity

If A be a matrix of any order say m x n and O a null matrix of the same order such
that when it is added to A, leaves it unchanged

ie. A+O=A
then O is said to be the additive identity of A.
" Its proof immediately follows from the fact that 1f A = [g;] and O is a null matrix
i.e. a matrix having each of its elements zero, then
A+0O =[a;+0]
= [ay] since a zero added to any scalar leaves it unchanged.
=A
Because of this fact 0i is said'to be an additive identity of A.

[S] Existence of Additive Inverse

If A be a matrix of any order say ri x n, and there exists a matrix —A of the same
order such that if it is added to A giveSa nall matrix O.

ie. A+(-A)=0
then (-A) is said to be the additive inverse of A.
Let A =[a) )
Then, =A== =[-q)
Sothat A + (-A) =[ay] + [-a;)
v = [a.-, - a,-,]
=0

Because of this fact (-A) is said to be an additive inverse of A.



28 , MATHEMATICAL PHYSICS

(6] The Cancellation Law
If A, B, C are three matrices conformable for addmon then the relation
A+B=A+C -
holds ifandonlyif B=C
Let A=[gj),B=[bl,andC=[cy}, i=1,2,..m
Jj=12,..n

Then the relation A + B = A + C follows that (i, j)th elements on cither side are
identically equal i.e.

aj+bj=a;+c;
which yields
by = cysince ay;, by, c;;all are scalars.
i.e. (i, )th element of B = (i, j)th element of C for all values of i and j.
Assuch B=C
Hence the relation A + B ='A + C holds if and only if B=C.

- - 4
Probleml.,lfAs[l 2 3],3:[3 l.z]andC=[ ! 2]

5 0 2 4 25 0 3 2
then find ' ' ' '
® A+B
) A-C
(i) -2A
(iv) 2A + 3B -4C
()) We have '
1 2 - 3 -1 2
ArB=ls. ¢ 2"[4 2 s]
[1+3 2-1 -=3+2
“ls+4 0+2 '2+5]
41 -l
Tl 2 7]
(if) We have
102 -3 [4 1 2
A-C=1s o 2]'[0 3 2],,
C[r-4 2-1 3-2
~|s-0 o0-3 2-2]
3 1 -5 °
“ls -3 -o]

(iii)) We have :
24 = _2[1 2 -3]

‘-2-4 6
<100 0 4
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(iv) We have
' 1 2 -3 3 -1 2 4 1 2
2A+3B—4C=2[5 0 2]+3[4 2 5]-4[0 3 2]
2+49-16 4-3-4 -6+6-8
=[10+12._o 0+6-12 4+15-8]
_[-5 -3 -8]
‘[22 -6 11
Problem 2. If
1 23] . [3 -1 2 4 12
A=|5 0 2[(B=|(4 2 S|landC =|0 3 2
1 -1 1 2 0 3 1 23
Verify that A+ (B-C)=(A+B)-C
and determine the matrix D such that A+D =B
' We have -
7 T 2 -3 3 -1 2] [4 1 2
‘A+B-C=|5 0 2|+{4 2 s|-[lo 3 2
1 -1 1 2 0 3 |1 2 3
1 2 3] [-1 -2 0
=(5 0 2|+|4 -1 3
1 -1 1] 1 2 0
[0 0 -3
=l9 -1 5 ..(1)
2 1 0]
1 2 -3 3 -1 2 4 1 2
(A+B)-C=<[S 0 2 +[4 2 slb-|0 3 2
tr -1 1 (2.0 3 1 2 3
4 1 -1 [4. 1 2
={9 2 7/-|0 3 2J
3 a1 4] |1 2 3
(0 0 -3 :
=[9 -1 5 ‘ 2
. ' 2 1 0 '

From (1) and (2) it follows that
) A+(B-C)=(A+B)-C
-Hence the required relation is verified.
. Now given that
' A+D=B
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Adding (-A) to both sides, we get
A+D-A=B-A
or D +A -A=B-A by commutative law
or D =B - A since A - A =0 by existence of additive inverse.

3 -1 2 1 2 3
=4 2 5|-1|5 0 2
2 0 3 1 -1 1
(2 -3 5
=|-1 2 3
(112

Which is the required matrix.

2.5 MULTIPLICATION OF MATRICES

Two matrices A and B are conformable for multiplication if and only if the number of
columns in A is equal to the number of rows in B. The product of the two matrices A
and B denoted by AB is then defined as the matrix whose elements in the ith row and jth
column is the algebraic sum of the products of the elements in the ith row of A by the
corresponding elements in the jth column of B.

In. other words the product AB of two matrices conformable for multiplication, is the
matrix whose element in ith row and jth column is the inner or scalar product of the ith
row of A by the jth column of B, while the inner product or scalar product of two
numbers x and y with components x,, x,, ...x, and y;, ¥3, ...y, is equal to

XYy +X2y2 +ooiinnn + Xpn)a

It should be noted that inner product of two numbers with unequal numbers of
components is not defined.

As an illustrative example if
a4 G2 a4y

by by
ap a

A= | 92 BB < by by
gy 4y 4y

by by

G4 Qs Gy

then it is clear that the two matrices are conformable for multiplication since the number
of columns in A is equal to the number of rows in B.

anbut apby+ asby  a bt @byt a3by,
| Gt anby+ anbsy 6y byt apbyut ayby
aynby+ Gybyt ayby  aybiat a3bp+ ayyby
aq b+ agoby+ by ag gt Geabyt agby,

It is worth noting that the product BA is not defined, since the’number of columns
in B is not equal to the number of rows in A.

~ In the product AB, the matrix A is known as Prefactor and B as Post factor.
As an illustration in generansed form if
A = [a;), @'matrix of .order m X n
= (b;), a matrix,of order n X p
then AB = C (say) is a matrix of order m X p

. AB =



ie. C = [c;:] is a matrix of order m X p such that
: A
C"* = ZG,I blk
i
=a; bu +4a; bu *oiina +a;, b,‘k i=1,2,..m andj =1, 2, P
Thus :
th G2 - Gy
C = Cy Cp ... CZp
Cmi C".'2 « Cmp

CdkOLLARY. tr (AB) = tr (BA), all matrices being sqaure of order a.
If A = [a;), B = [b;] then AB = C say = [c;]]

¢ = 20‘1 by;

k=l

‘where

. A
Let BA =D = [dy] where d; = Y by ay,
k=l

Thus tr. (AB) = Zc“ = 2(2%%]
i k

i
L]

= Z Za,-, b,; (on interchanging the order of summation)
ku] (=]

3 (§0e)

k=l \ im]

= Zd“ = tr. (BA)
k=l

which proves the proposition.

3.6 PROPERTIES OF MATRIX-MULTIPLICATION
(1] The Commutative Law for Multiplication does not hold in general
Consider the matrices
1 =2

A=|2 Band'Bs[(; (: i]
3 01
"These are conformable for multiplication and so
[ 1+0 0-2 2-6 1 2 -4
AB=|2+0 0+3 4+49[=|2 3 B
. [-3+0 0+1 6+3] |3 1 -3
[140-6 -2+0+2 -5 0
and BA =lo+2-9 0+3+3]=[-7 6]
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It is apparent that the product matrix AB is of order 3 x 3 while the product matrix
BA is of order 2 x 2 and therefore the two product matrices are quite different i.e.,
AB #BA
This follows that the commutative law of multiplication does not hold.

Had the order of the matrices AB and BA been the same, then it would be possible
that AB = BA if every or at least one element in AB would differ from the
corresponding element in BA. Though there are a few exeptions in which case the
commutative law holds good. Such cases will be considered in the discussion of special
matrices.

In fact for a given pair of matrices A and B it is possible that the products AB and
BA may not be conformable. For example if A is of order m x n and B of order n x P
then the product AB is conformable and will be of order m X p while the product BA is
not conformable since number of columns in B is not equal to number of rows in A
Thus the product AB exists while BA does not. .

[2] The Distributivé Law for Multiplication holds good

If A, B, C be three matrices of suitable orders such that the producis A (B + C) and
AB, AC are conformable then

AMB+C)=AB +AC.
Suppose that
A =[a;]isof orderm x n
B = [b;) is of order n x p
and C =[cyl isof order n x p
Then, (B + C) is of order n X p and A is of order m x n so that A (B + C) is
conformable and of order m X p. Also AB and AC both are of order m X p so that the

sum matrix (AB + AC) is of order m x p. Hence the matrices A (B + C) and AB +
AC are of the same order so that they are comparable for equality.

Now,

(i, k)thelementof A(B + C) = Z"ii by + cp)

j=l

n n
Zaij by + Zaij Cjk
Jj= j=l
(i, k)th element of AB + (i, £)th element of AC
= (i, k)th clement of (AB + AC)
. foralli=1,2,......... mandk=1,2, ......... P
~ A(B + C) = AB + AC ' :
A similar procedure will show that
B+C)A=BA +CA
where B, C, A are of orders m X n, m X n, n X p respectively.
Hence the matrix multiplication is distributive with respect to addition.

(3] The Associative Law for Multiplication holds Good
If A, B, C be three matrices of suitable orders such that the products (AB) C and
A (BC) are conformable then
(AB)C=A (BO)



Suppose that
= [a;) is of order m X n
B = [b) is of order n x p
and = [cy] isof order p x ¢

Then, (AB) is of order m X p and C of order p X g so that (AB) C is of order m x q.
Also (BC) is of order m x q and A of order m x n so that A (BC) is of order m x q.
Hence the matrices (AB) C and A (BC) are of the same order so that they are comparable

. for equality.

Now, G, k)th element of AB = Za bj

=

So that, (z, )th element of (AB) C = i{Za b,,} Cu

kel | j=)

= 2204, bjk C

k-lj-l

Also, (J, l)t.h element of (BC) = i "

k=]
:gi

So that (i, !)th elementof A (BC) = 2{
I

bjk Cu} av
i

L]
= 2 iav' b}‘ Cn

jul ksl

L)
= i Za” blk Cy

kal jml
= (i, th element of (AB) C
foralli=1,2,..m,l=1,2,..p
. A(BC) = (AB)C
Hence the matrix multiplication is associative.

(4] If A be a matrix of order m x n and O a null matrix of order n x p then the
product AO is another null matrix of order mx p i.e.

AO.,,-O,..,,

Also if O be an m x n null matrix and A a matrix of order n x p then their product
is a null matrix of order mxpie.

OnaA=0,,
-Conclusively if A be an n-rowed square matrix and O an n-rowed null matrix, then
A0O=0A=0

[S) If the product of two matrices A and B is a null matrix then it is not essential
that either of them is a null matr