System of Particles:
Conservatiion Laws and Collisions

31 INTRODUCTION

[n this and subsequent chapters we investigate the motion of a system of particles or body with
1 large number of particles. Whenever we are dealing with such situations, it is not only conve-
nient but essential to describe the motion in the center of mass coordinates. We must understand
the laws of conservation of linear momentum, angular momentum, and energy as applied to
such systems. These laws will then be applied to some physical systems of interest, such as the
motion of rockets and conveyor belts. We will show that the use of these laws is indispensable
in the investigation of scattering or collision problems, both elastic and inelastic. Such investi-
zations lead to an understanding of interactions between microscopic as well as macroscopic
systems.

3.2 SYSTEM OF PARTICLES AND CENTER OF MASS

Whenever we are dealing with a system containing a large number of particles, it is, as said,
both convenient and essential to describe the motion in the center of mass coordinates. Accord-
ingly, let us consider a system containing N particles labeled 1, 2, ..., N. The masses of these
particles are m;, m,, . . ., my and they are located at distances ry, r,, . . . , ry from the origin O,
as shown in Fig. 8.1. The velocities of these particles are ¥, £,, . . ., ¥, (O V1, V5, . . ., V), While
their accelerations are ¥, ¥,, . . ., F, (0T @, @,, . . . , ay), respectively. For such a system of par-
ticles, the center of mass is a point located at a distance R(X, Y, Z) from the origin and defined
by the relation

(m, +my, + -+ my)R =mr, + mr, + -+ mry,
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Figure 8.1 System of particles of var
ious masses at different distances from
the origin.

or

That 1s, R=—_—"=—"" 8.1

where M = X my is the sum of all the masses in the system and the summation X is from £ = 1
to k£ = N. In component form, we may write

1 1 1
X=M2mkxk, Y:_A}Emk)’k’ Zzﬂzmkzk (8.2)

It should be clear from Eq. (8.1) that the center of mass is a mass-weighted average position.
The velocity V(=R ) of the center of mass can be obtained by differentiating Eq. (8.1) with
respect to f; that is,

. 1 .
V=R=Mzmm (8.3)

while the components of the velocity of the center of mass may be written as

. 1 . . 1 : . 1 .
VX=X=ﬂkaxk, V,=Y ﬂzmkyk, V,=2 ﬁEmkzk 8.49)

The acceleration A of the center of mass is obtained by differentiating once more; that is,

. 1 .
A=R=M2mm (8.5)




Sec. 8.3 Conservation of Linear Momentum 293

or, in component form,

- | . - | . - 1 .
AXZXZME'"M, AYZY:HEmkyk’ AZ:Z:MEmek (8.6)

In the following sections, we shall find the description of motion of the center of mass coordi-
nates and motion in the center of mass coordinate systems both interesting and useful.

We shall discuss the following three conservation laws in detail as applied to a system of
particles:

1. conservation of linear momentum
2. conservation of angular momentum
3. conservation of energy

There are two approaches to this problem: (1) Newton’s laws, and (2) symmetry principles.

The conservation laws are the direct consequence of the definitions made in Newtonian
mechanics, that is, of Newton’s second law of motion. The validity of these conservation laws
holds to the extent that Newtonian mechanics provides an adequate description of nature. Fur-
thermore, since there is no such thing as a truly isolated system, these laws can only hold ap-
proximately. But ultimately, from a modern point of view, these conservation laws are the con-
sequence of underlying symmetries briefly discussed here and in detail in Chapter 12.

In general, a system is said to have symmetry when some characteristic in the system re-
mains unchanged even though the system is changed in a certain respect. For example, if the
system is given a linear displacement, the system remains invariant under linear displacement
or translation and the system is said to have translational symmetry. Similarly, a system is said
to have rotational symmetry if it remains invariant under rotation. There is a close relationship
between conservation laws and symmetry principles. The conservation of linear momentum is
a direct consequence of translational symmetry, that is, the homogeneity of space. The law of
conservation of angular momentum is the consequence of rotational symmetry, that is, the
isotropy of space, while the law of conservation of energy leads to the homogeneity of time. Ac-
tually, we may go a step further and state:

Any conservation law is a statement of invariance of some physical property during all
physical processes.

For the time being, we shall investigate the conservation laws from the viewpoint of Newtonian
mechanics.

8.3 CONSERVATION OF LINEAR MOMENTUM

For a single particle of mass m moving with velocity v and linear momentum p, Newton’s sec-
ond law is

F=" 8.7)
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where F is the net external force acting on mass m and

p=my (8.8

If m is constant and does not depend on time,

ap d dv

i dr (mv) =m 5 o ma 8.9
Furthermore, if F = 0, p = constant, which is the law of conservation of linear momentum for
a single particle.

We now extend these ideas to a system of N particles, as shown in Fig. 8.1. Let us con-
sider the motion of the kth particle of mass m,, which is at a distance r, from the origin, has ve-
locity r,( = v,), and acceleration r,. The total force F, acting on the kth particle is the sum of
the set of two forces: (1) the sum of the external forces F; applied to the kth particle, and (2) the
sum of the internal force F; on the kth particle by the remaining N — | particles in the system.
Thus the equation of motion for the kth particle, according to Newton’s law, is

F,=F +F =mf, k=12..N (8.10)
N

where F| = 2 | (8.11)
oy

and F%, is the force on the kth particle due to the Ith particle. Because of the vector nature of
Eq. (8.10), there are 3N simultaneous second-order differential equations to be solved. The mo-
tion of any particle k at r; is obtained by solving such equations in terms of 6/ arbitrary con-
stants (3N for the initial positions and 3N for initial velocities). No general methods are avail-
able for solving Eq. (8.10), which is extremely difficult to solve except in some special cases.
An alternative approach is to solve these problems by using the center of mass coordinates, as
will be explained later.
The momentum of the kth particle is given by

P = MY, = mry (8.12)
Using this, Eq. (8.10) takes the form
d ‘
% =F,=F +F 8.13)
Summing on both sides over all the N particles,
N d d N N N N )
> = Y n =Y F=YF+ SF (8.14)
= dt dri S k=1 k=1 k=1

Let P be the total linear momentum of the system of N particles and F be the total external force
acting on the system; that is,

i, (8.15)
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N
and F=>F (8.16)
k=1

Furthermore, we shall show that the sum of all the internal forces acting on all the particles of
the system is zero; that is

N .
S F.=0 8.17)
k=1

Combining Egs. (8.15), (8.16), and (8.17) with Eq. (8.14), we obtain

dp

—=F 8.18
dt (8:18)

This is the momentum theorem for a system of particles.

Conservation of Linear Momentum. The rate of change of total linear momentum is
equal to the total external applied force; thus, if the sum of all the externally applied forces
is zero, the total linear momentum P of the system will be constant.

That is,
P = constant, ifF=20 ' (8.19)

In terms of the center of mass coordinates, according to Egs. (8.3) and (8.13),
N .
P=>mr=MR (8.20)
k=1

which on substituting in Eq. (8.18) yields
MR =F (8.21)

Equations (8.18) and (8.21) are similar in form to Newton’s second law as applied to a single
particle. Thus, from Eq. (8.21), we may conclude:

The center of mass of a system of particles moves like a single particle of mass M (total
mass of the system) acted on by a single force F that is equal to the sum of all the exter-
nal forces acting on the system.

All these statements are true only if we can justify Eq. (8.17)—that is, the sum of all in-
ternal forces is zero. We now proceed to prove this by two different approaches: (1) Newton’s
third law, and (2) the principle of virtual work. According to Eq. (8.11),

N
Fi = > F, (8.11)
k=1

k#1
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where F}, is the force exerted on the kth particle by the /th particle. According to Newton’s third
law, the force exerted on the kth particle due to the /th particle is equal and opposite to that ex-
erted on [ by k; that is,

F - —F, (8.22)

This equation is a statement of Newton's third law in the weak form because it simply implies
that the two forces are equal and opposite, but not necessarily acting along the line joining the
two particles; the strong form implies that their line of action should be the same. Using
Eq. (8.11), the sum of all the internal forces is

N ) N N .
SF=>>F, (8.23)

The right side contains forces on all pairs of particles. For each pair, the total sum according to
Eq. (8.22) is zero; that is F,, + F, = 0. Hence the right side of Eq. (8.23) is zero, thereby prov-
ing that in Eq. (8.11) the right side is zero. That is, the sum of all the internal forces is zero.

In the preceding proof we had to assume that the internal forces come in pairs. We need
not make this assumption if we make use of the principle of virtual work or virtual displace-
ment. Let us assume that each particle in the system is given a small displacement Jr. Since each
particle in the system is given the same displacement, there is no relative displacement of the
system; hence no net work is done by the internal forces. No net total work is done because the
internal state of the system has not changed by this virtual or imaginary displacement. The work

A vy tha 1ntarnal Faenao TV 2 o crall virtiial dicnlarermient S Af tho Tl smndiala 1o
UUILIC UY UlC 1IIClilial 1U1Les L‘k 1l a dliidll viliudl UibplaCCllCLl 01 Ul UlC Ad] pPdIlicio 1>

W, =TF. - or (8.24)
The total work done by all the internal forces is
N N ) N .
W= > 0W, = (F. - ér) = or- [2 F;] (8.25)
k=1 k=1 k=1

or has been factored out because it is the same for all the particles. If the total work done by the
internal forces is zero for any displacement,

[0 o

k=

_—

Since Or is not zero, we must have

N . N N )
PRIEDISN S (8.26)

as required.
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i 4 CONSERVATION OF ANGULAR MOMENTUM

The angular momentum of a single particle is defined in terms of a cross product as
L=rXp=rXmr=rXmv (8.27)

Now we extend this definition to a system of N particles. The total angular momentum L taken
ibout the origin may be written as a vector sum:

N N
L= (r,Xp)=2 (r, X mr) (8.28)
k=1 k=1

The total angular momentum could have been taken about any point A instead of the origin O,
nut in that case we must replace r; by r; — r,, where r, is the distance of point A from the ori-
zin. For simplicity, we shall use expression (8.28). Taking the time dertvative of the angular mo-
mentum in Eq. (8.28) yields

dL N N

== D, X mry) + D (r, X myi) (8.29)

& k=1
The first term on the right vanishes because of the definition of the cross product (r X mr = 0),
while mr, from Eq. (8.10), is equal to the total force acting on the particle &; that is, we obtain

dL N N ) N N N )
zz[rkx(Fi+2F}c,)]zzrkxFi+EErkxF}d (8.30)
a = =1 k=1 k=1i-1

{#k 1#k

where, as before, F; is the total external force acting on the particle k, and F', is the internal force
acting on the kth particie due to the /th particie. We can prove the second term on the right to be
zero if we use the strong form of Newton’s third law; that is, the forces are equal and opposite
and their line of action is the same. The second term on the right contains a sum of pairs of
torques due to pairs of forces, which according to Newton’s third law are equal and opposite.
One such pair is

(r, X F) + (r, x F) (8.31)
Since F;, = —F},, we may write the expression in Eq. (8.31) as
(r,—r) X F,=r, X F, (8.32)

(see Fig. 8.2). Expression (8.32) is zero if the internal forces are central; that is, the forces act-
ing along the line joining the two particles cause the two particles to either attract or repel each
other. Thus the second term on the right in Eq. (8.30) vanishes, and the resulting equation is

dL N

— = r, X F; 8.33

dr ,Z kT ' (8.33)
Since r;, X F} is the torque or the moment of the external force Fi, the right side of Eq. (8.33) is
the total moment (or the total torque) of all the external forces acting on the system. If we de-
note T to be the torque on the kth particle and 7 to be the total torque, we may write

ey =S xF (8.34)
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ny

e
Figure 8.2 Relative distance ry,; be-
1) tween a pair of particles.
dL
and — =7 (8.35)
dt

which states that the time rate of change of the angular momentum of a system is equal to the
total torque due to all the net external forces acting on the system. Thus we may state the fol-
lowing principle:

Conservation of Angular Momentum. For an isolated—one on which no net external
forces act—the total torque Twill be zero; hence the angular momentum remains constant
both in magnitude and direction.

That is, if
dL
T =20, — =0
dt
N
and L = D r, X my, = constant (8.36)
k=1

8.5 CONSERVATION OF ENERGY
In many situations, the total force acting on any particle in a system of particles is a function of
the positions of the particles in the system. Thus the force F; on the kth particle is
F,=F, + F, = F(r,,r,,...,1r,), wherek=1,2,...,N 8.37)
The external forces F§ may depend on the position r; of the particle k, while the internal force

F; may depend on the relative positions of the other particles relative to k, that is, r,; = (r; — 1),
and so on. If the force F, satisfies the condition that

VXF,=curlF, =0 (8.38)

there exists a potential function

V=Wr,r,..,ry (8.39)
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such that

F——QK F—-a—v F——B—V here k = 1,2 N (8.40)
kx axk ’ ky ayk ’ kz aZk’ where — 1y Ly e .
Thus, under such conditions, we can derive the law of conservation of energy.
The motion of the kth particle is described by
mpr, = my, = F, (8.41)
which, on combining with Eq. (8.40), yields
d oV dv,, oV d oV
mie = Ly S 2L fe O (8.42)
dr 0x, dt oy, dt 0z,
Multiplying the first equation by v, (=dx,/dr), the second equation by v,, (=dy,/dt), and the
third equation by v,, (=dz/dr), and adding (using v} = v}, + vj, + v,), we get
d (1 d 0
dt ox, dt  Qdy, dt 9z dr

, =0, wherek = 1,2,...,N (8.43a)

Summing over all values of k gives

d (1 Mo [avd oV d 3V d
(IWQ+EG“+N—ﬁ+~f%=o (8.43b)
de (= \2 o1 \0x, dt  dy, dit 9z, dt
X1
where 2 (42— mkvz) =K  (kinetic energy) (8.44)
Nfovdx, aVd av d av
and E("+—ﬁ+——zﬁ): ad (8.45)
oy \ox, dt 9y, dt 9z, dt dt
Hence Eq. (8.43b) takes the form
d
_ + —
g ETN=0
or K + V = E = constant (8.46)

The total energy E, which is the sum of the kinetic and potential energy, is constant; hence
Eq. (8.46) is a statement of the law of conservation of energy or the energy conservation

theorem.
If the external forces are not position dependent, while the internal forces are derivable

from a potential function, then the energy conservation theorem takes the form

d N :
L&YV = > Fi- 1, (8.47)

k=1

Since we have assumed that in this case the internal forces are position dependent and the cor-
responding potential V’ depends on the relative positions of pairs of particles, that is,

Viy = Vi) = Vi(r, — 1) (8.48)
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N k-1
while Vi= D > Vi) (8.49)
k=11=1
we may conclude that
VL0V LV

F§;=—17—37—k

(8.50)
0x; ay, 0z,

It is necessary to point out that a potential function exists if the external forces are posi-
tion dependent and Eq. (8.38) is satisfied. As discussed in previous chapters, that is possible only
if the work done by the force between two points is independent of the path. Thus a closed sys-
tem, that is, one in which no external forces act on the system, leads to the law of the conserva-
tion of energy as given by Eq. (8.46).

Suppose a system is such that it has internal frictional forces. Such frictional forces de-
pend on the relative velocities of the particles and are not central forces. Thus the law of con-
servation of energy, Eq. (8.46), does not hold for such systems.

Example 8.1

Consider the following three particles of masses m1, m2, and m3 located at distances R1,
R2, and R3 from the origin.

ml =2kg m2 =3 kg m3=4kg
RI=2¢%i 4 3tj+ 4k Re=(1 465 it (24504 R3= {1428+ 36)i+ (3t 4k

Calculate the following quantities at time t = 10 sec. (a) The position of the center of mass,
(b) the velocity of the center of mass, (¢) the linear momentum of the system, and (d) the
kinetic energy of the system.

Solution
- . i=1 =1 k=1 .
(a) Ul represents a unit vector matrix. i 00
R1, R2, and R3 are expressed in matrix Ul=10j 0
form. R represents the position of the center = 10 00 k
of mass and may be calculated as shown. ml =2 m2:=3 m3 =4
2 2 | 2 3
247 0 0 1+t 0 o0 1+2t°+3:t7 0
R1:=| 0 3.t 0 R2:=| 0 24510 R3 = 0 0
0 0 4 0 0 0 0 0 3tqdt
3
1.501-10 0 o0
mt-Ul-R1+ m2-Ul'-R2 + m3-U1-R3
R:= i R=|0 24 0
m! + m2 + m3
0 0 192

IR| =6.916-10°
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(b) Differentiating R1, R2, and R3 with respect to t yield the velocities V1, V2, and V3.

visd <2-t2-i+ 3tj+ 4-k) V2=d—[ (1 + t2> it (2+ S't)-j} V3=§'[ (1 2+ 3~t3) i+ (3't+ 4-t2> ~k]
t

dt dt
VIEdtit 3 V2E2tit 5] V3Zatit Othit 3kt 8kt
4t 0 0 2t 00 4~t+9~t2 0 0
Vii={0 30 V2:={0 50 V3= 0 0 0
0 00 0 0o 0 0 3+ 8+t

The velocity V of the center of mass is
433333 0O 0

V=0 2333 0 |v| =3.73-10"
0 0 36.889

Voo ml-Ul-V1+ m2-U1-V2 + m3-Ul-V3
' ml + m2 + m3

(c¢) The linear momentum of the system is

39100 0 0
P -ml-Vi- m2-V2 . m3-V3 P=| g 21 0 ,
0 0 31 |P| =2.719-10

(d) The kinetic energy of the systemis K =L (ml Vil m2v2? s m3-V32)
2

1.769-10° 0 0
K=|0 465 0

0 0 137810

|K| =1.134- 10"

EXERCISE 8.1 Repeat the above example for the following three masses.
ml =24 kg m2 =3 kg m3=2kg

21=(1020030) 5+ Brrad) e re=(1+ )i+ 21505 Rr3=231 4305 + 4k

8.6 MOTION OF SYSTEMS WITH VARIABLE MASS: ROCKETS AND
CONVEYOR BELTS

We will now apply the conservation laws discussed in the previous section to some particular
situations. The conservation laws are applicable to any definite system of particles, which may
be chosen arbitrarily by including and excluding certain parts so long as it does not exclude the
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forces acting on the chosen part of the system. Another restriction concerns the law of conser-
vation of kinetic and potential energy. It holds good so long as no mechanical energy is con-
verted into other forms of energy, such as heat produced by frictional forces, unless such con-
verted amounts are taken into account.

Rocket Propulsion

Rocket technology is based on the simplest principle of conservation of linear momentum. A
rocket is propelled in a forward direction by ejecting mass in a backward direction in the form
of gases resulting from the combustion of fuel. Thus the forward force on the rocket is the re-
action to the backward force of the ejected gases (burned-out fuel). The problem is to find the
velocity of the rocket at any time after launching, or takeoff, from the ground. As shown in
Fig. 8.3, at a given time ¢ a rocket of mass m is moving with velocity v relative to some fixed
coordinate system, say Earth. Let the velocity of the exhaust gases from the rocket be u with re-
spect to the rocket: hence u + v with respect to a fixed coordinate system. Let us say thatin a
time interval between ¢ and ¢ + df the amount of fuel exhausted is |dm| = —dm (because dm is
negative; hence the rate at which the fuel is exhausted is |dm/dt| = —dmi/ds), while the mass of
the rocket is m + dm and its velocity v + dv.
The momentum of the system at time ¢ is

P(t) = mv (8.51)

Figure 8.3 Motion of a rocket at
some instant ¢. -
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and the momentum of the system at time ¢ + dt is

P +dy=P (t+dt)y=(m~+ dm)v + dv) + (—dm)(v + u) (8.52)

rocket

(t + do + P,

uel

The change in momentum in time interval df is
dP =P + dt) — P(t) =mdv —udm (8.53)

where we have dropped the second-order term dm dv. Since the rate of change of momentum
JP/dt is equal to the applied external force F, we may write Eq. (8.53) as

—=F=m——u—/—- (8.54)

mos = + F (8.55)

where F may be a gravitational force, the force of air resistance, or any other external force,
m(dv/dt) is called the thrust of the rocket engine. Since dm/dt is negative, the thrust is opposite
to the velocity u of the escaping gases. [The thrust of the rocket engine can be calculated by
holding the rocket stationary and burning the fuel at the rate of dm/dt. The force F needed to
hold the rocket stationary (dv/dt = 0 and also F = 0),

dm
F,= —u— 56
0 u dr (8.56)

will be the measure of the thrust.]

Let us consider a special case of Eq. (8.55) that prevails when F = 0, that is, when no grav-
itational force or air resistance is present, which may be the case when the rocket is far in outer
space. Equation (8.55) for F = 0 is

dv dm
—=u_ 57
"a T a (8.57)
Multiplying both sides by dt/m and integrating,
v m dm
f dv=u f —
Yy iy m
V=V, = ulnmmu
Since my > m, it is preferable to write
V=v,—uln2 (8.58)

m

which states that the change in velocity v — v, or the final velocity v, depends on two factors.
A large value of v results from (1) large values of u, the velocity of the exhaust gases, and
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(2) large values of my/m, where my is the initial mass of the rocket and its fuel, while m is the
final mass when all the fuel has been used up. The final velocity is independent of the rate of burm-
ing fuel. Large values of my/m mean that we have a large fuel-to-payload ratio. To increase the
value of my/m by large amounts, staged rockets are used for launching satellites and spacecrafts.

Near Earth’s surface, we cannot neglect the force of gravitational pull. Thus, substituting
F = mg in Eq. (8.55), we obtain

m-—=u—- +mg (8.5%

which on rearranging and integrating,
v n 1 1
fdv:uj dm+gj dt
Y m, M 0
0 0

v=v,—uln %Q + gt (8.60)

results in

Assuming that at ¢ = 0, v, = 0, and since u is opposite to v, we may write Eq. (8.60) in scalar
form as

v = ulninf0 — gt (8.61)
m

Initially, the rocket thrust must be large enough to overcome gravitational force myg. Subse-
quently, the preceding equations will describe the motion of the rocket.

A Conveyor Belt

Consider the conveyor belt shown in Fig. 8.4. We are interested in calculating the force F needed
to keep the conveyor belt moving with horizontal uniform speed v, while sand or some other
material is continuously dropping on the belt from a stationary hopper at a rate dm/dt. Let M be
the mass of the belt and m be the mass of the sand on the belt. The total momentum of the sys-
tem, the belt, and the sand on the belt is

p=(m+ My (8.62)

Figure 8.4 Conveyor belt.
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Thus, according to the linear momentum theorem, since M and v are constants while m is
changing,

dp dm

F — E— = E—

e ' di

where F is the force applied to the belt. The power that must be supplied by the force to keep
the belt moving with uniform speed v is

(8.63)

d d d {1
Power = P = Fy = vzg = ;i;mv2= ZE(mvz)

dK

_, 41 2\ _ , dK
~2dt(2(m+M)v> 2 (8.64)

That is, the power needed is twice the rate at which the kinetic energy is increasing. This im-
olies that the law of conservation of mechanical energy does not apply here. The missing power
's used up in doing work against the friction force, as explained next.!

When sand hits the belt, it must accelerate from zero speed to the belt speed over a short
distance, during which some sliding must occur between the belt and the sand. To an observer
at rest on the belt, the falling sand would appear to have a horizontal motion with speed vin the
apposite direction to that of the belt. The belt exerts a horizontal force dFy on the sand of
mass dm to change its speed from —wv to 0. It does not matter whether the acceleration time is

I s or 1/100 s; the power developed by the frictional forces between the belt and the sand is ex-
actly one-half the power supplied.

> Example 8.2

A spherical raindrop falling through fog or mist accumulates mass due to condensation at a
rate proportional to its cross-sectional area and velocity. (a) Calculate the acceleration of
:he raindrop in terms of its radius and velocity. The raindrop starts from rest and has
ilmost zero size. (b) Suppose a raindrop falling from a height of 3000 m has a radius of 1
mm and a speed of 10 m/sec when it reaches the surface of Earth. Calculate the time it
:akes to reach the surface.

Solution
ra) For a spherical raindrop of radius r and

Jensity p, the cross-sectional Al m=p.4'”’r
area A and mass m are as shown. - -3
It k is the constant of proportionality, 4 m=kerdy (i)
the rate at which the raindrop gains dt

mass is

'Arom Mu-Shiang Mu, The Physics Teacher. April 1986.
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The initial momentum pi of a particle
of mass m moving with velocity v is

The final momentum pf after the drop
has gained mass dm and velocity dv, is

pf after neglecting the product dm dv is

The change in the momentum dp is

The change in the momentum is also

Combining the two equations

Substituting for m and dm, rearranging,
and noting that a = dv/dt, gives

Substituting for a = dv/dt and
v = dy/dt or writing y in terms of
double integral, we can solve for y.

Solving the above equation for t gives
two roots. The positive root yields the
expression for t given by Eq. (v).

(a) What is the significance of the
nnnnnnnnnn 9

ﬂusa{i Ve 1oot’
(b) Calculate the value of v and a as
a function of time t.

Given the values for the raindrop,
calculate the time t it takes to hit the
surface. (As a check, the value of y

is also calculated by using Eq. (iv) and
equals 3000 m.).

. . . 1 2 (4-gvp-r— 3vv2)
The resulting equation for y is ym—t 2/

r:=.001'm

p:=11
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pi=m-v

pf=(m+ dm)-(v+dv)

pfem-v+ m-dv + dm-v+ dm-dv

pf=m v+ v-dm + medv

dp=pf — pi=v-dm + m-dv (i)

dp=F-dt=m-g-dt (iii)

v-dm + m-dvem-g-dt

4 g (1) (kmrv)

dt m

2 5 2
a=g— —kmur or
m 4 (p1)

d2 3 v2
- y= g__. .k
di2 4 (pr)

2 2
[g_i. v :ldtdt=l.t2.g_§.t2. M

4 (p1) 2 8 (pr)

(oD (iv)

—AZ.J;.__JS_{ME
NA-gpT-3vk

B PO S W

4-g-pr— 3vhk

<

t=2-%-ﬁL.&.ﬁ )
A]4'g-p-r— 3v7k

V.= 10-—Ill
sec

y '=-3000-m

k:=.005

m

=98 —

£ 2
sec

t :2%*—N/;——\/;W/E t =4.257sec

4-gpr— 30k

Chap. 8
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-¢) Calculate the value of v and a just 3, 2

2
~efore the raindrop hits the ground. yimtog-—t:

k y=-310° -m
2 8 (pm)

EXERCISE 8.2 Repeat the above example for a raindrop that falls from a height

»f 5000 m and has a radius of 2 mm and a speed of 20 m/sec when it reaches the surface of
Farth. Calculate the time it takes to reach Earth's surface. The rest of the

constants have the same values as in the above example.

> Example 8.3

Consider a one-stage rocket, assuming constant g, having only a vertical thrust, a constant
-ate of change of mass k, and a constant exhaust velocity v0. (a) Graph the velocity and
‘he altitude as a function of time. (b) Calculate the final velocity v and the altitude z.

Solution
Atter defining constant k and substituting g—m=—k m-a= <§~v)~m=k-v0— m-g
. . . t t
‘or a and k, we may write the equation
‘or thf: rc.)ckt'at as mf mf
mi = initial mass vE-v0- LI, E.J 1dm
mf = final mass mi m k Jmi
solving for v, after integration and
amplification, gives v=(—vo-k-ln(mf) + vO-kIn(mi) + g-mf— g-mi)
k
. 1 1 .
v=-v0:-In(mf) + v0-ln(mi) + ?g-mf— EAgml
mf )
Using the definition v = dz/dt, we 2=|  -vOIn(mf) + vO-In(mi) +-gmf - i g-mi dm

2an write an expression for v, which on
integration yields the value of z.

mi

7=(-v0-k-In(mf) + vO-k-In(mi) + g-mf— g-mi ).ﬂ%‘“ﬁ
Using these expressions and the
values of mi, mf, v0, and k, we

can calculate the final values of

zand v.

mi :=60000 mf =45000 v0 = 6000 k=150 g:=9.8

2 1= (-vO-keIn(mf) + vO-k-In(mi) + g-mf— g-mi)- 2= 01

z=-1.11910"

v i=-v0-In(mf) + v0-In(mi) + —llz-g-mf— %-g-mi

v =746.092
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We graph the results. v0 :=6000 mi = 1000 k:=150 g'=-9.8
; mf
. n:=1.20 mfn!=n-E m_ = b
Looking at the graph and the data, 20 mi
answer the following questions. (mf, — mi)
z, = ( v0-k~ln(mfn> +v0-klIn(mi) + gmf, — gmi)- “k
(a) Why do the values of z and v
have opposite signs? . mf, — mi
pp & 7= v0-k-In Lm—‘-i-g-rnfn—g-mi ( i >
mf ! k
(b) What effect does the negative
value of g have on the value of z v, == vO-In{mf,} + vO-In(mi) + % gmf, - % g-mi
and v?
7 4
2, =~1.713°10 v, = 1.804'10 210
6 3
z, =~7.767"10 v, =9.709'10
6 3
Zg =-3.322*10 vg =5.537*10 7
e 0 ‘ﬁ%ﬁ
v_-1000 OOTRET
6 3 n
2, ="1.236"10 v}, =3.091°10 -
5 3
2,6 ="2.70410 vig = 1.352:10
2010/
7y, =0 Vyo =0 0 10 20
n
My, =1 mfy, =1°10°

EXERCISE 8.3 Show that the maximum height achieved by the rocket discussed in the example is

vi(In R)? ( InR )
e S 1
2g 1—R

(Hint: After burnout, the rocket will continue to climb without power; mgh = %mvi.)

o

8.7 ELASTIC COLLISIONS AND CONSERVATION LAWS

When two or more objects come close enough (with or without any physical contact) so that
there is some sort of interaction between them, with or without the presence of external forces,
we say that a collision has taken place between the objects. After a collision, the velocities of
the colliding objects may or may not be the same as before the collision. Very often we are in-
terested in describing the nature of the interaction (or the type of force) between microscopic
particles. If the particles are incident on a target, the paths and energies of the interacting par-
ticles will change. By measuring the energies and the angular distributions of these scattered
particles, we can gain information about their structure and the nature of the forces involved.




Sec. 8.7 Elastic Collisions and Conservation Laws 309

By applying conservation laws, many details of a collision can be predicted without
xnowing much about the nature of the interaction or force. Collisions may be divided into two
~road categories: elastic collisions, in which both linear momentum and kinetic energy are con-
served, and inelastic collisions, in which conservation of linear momentum holds good, but ki-
aetic energy is not conserved. Thus, if P; and K; are the initial linear momentum and kinetic en-
ergy before collision, while P, and K are the final linear momentum and kinetic energy after

collision, then

For elastic collisions: P = Pf and K = Kf (8.65)
For inelastic collisions: P,=P, and K; # K, (8.66)

In this section, we limit our discussion to elastic collisions.

Let us consider an elastic collision between two objects, as shown in Fig. 8.5. An object
of mass m, moving with a velocity v,;, called the incident particle, strikes an object of mass m,
it rest, called the rarget particle, both being along the X-axis. (Nothing is lost in generality by
issuming one of the masses to be at rest. If both masses were moving, we could view the colli-
sion from a reference frame that is moving with the same velocity as that of one of the masses,
say m,. In that frame of reference, m, will be at rest.) After collision, mass m, is moving with
velocity v, making an angle # with the X-axis, and mass m, is moving with a velocity v,;, mak-
ing an angle ¢ with the X-axis, as shown in Fig. 8.5(b). Remember that if v,is in the XY-plane,
then v, also must be in the same XY-plane. This is because if v,,is not in the XY-plane there
will be a component of velocity, after collision, in the Z direction; but this cannot happen be-
cause there was no Z component of velocity before the collision, hence leading to nonconser-
vation of linear momentum.

The conservation of linear momentum and energy requires

P = Pf and K, = K, (8.67)

(a) Before (b) After

Figure 8.5 Elastic collision between two objects: (a) before, and (b) after
collision.
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where P, and P, are the initial and final linear momenta, while K; and K, are the initial and final
kinetic energies. That is,

Py + Pu = Pyt Py (8.68)
and K, + Ky =K+ Ky (8.69)

where

P = MV, P =0, Py = MV Doy = MyVy

S D — R 1 2
Ky, = ympuy, Ky =0, K= ymyvip, Ky = smyv5,

Using these and writing Eq. (8.68) in component form along the X- and Y-axes with the help of
Fig. 8.5, we obtain

myvy; = myv;cos § + myvycos ¢ 8.70)
0 = myv;esin 6 — myvysin ¢ (8.71)

and, from Eq. (8.69), we get
%mlv%i = %mlv%f + %mzvgf (8.72)
In most situations, m,, m,, and v,; are known, while v, vy, 6, and ¢ are the unknown quanti-
ties. Thus we have three equations [(8.70), (8.71), (8.72)] and four unknowns. We can eliminate
one of the four unknowns, say ¢, and find the relations between the other three, vy, vy, and 6.

We may write Egs. (8.70) and (8.71) as

m v, sin 0 = m,v,,.sin ¢
Squaring and adding these equations and dividing by m? yield
v + vj; — 2uyv,.c08 6 = () v (8.73)
while from Eq. (8.72) we obtain
2= LR - 0] 8.74
4 m (v ), ) 8.79)
2

Substituting for vﬁf from Eq. (8.74) into Eq. (8.73) resulting in a quadratic equation in v, YU
which when solved gives

2 _ .2
o T [cos o+ \/cos2 o - (-’"l—iﬂ)] (8.75)
v, m +m,
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This equation reveals a great deal of information about elastic collisions. In the following dis-
cussion we must keep in mind that the quantity under the radical sign cannot be negative be-
cause that would yield complex value for vy, which is physically meaningless.

Case (@) 0 = 0: These are collisions in one dimension; that is, they correspond to a
head-on collision. Substituting # = 0 in Eq. (8.75) yields

1)) v m, — m
A =1 o H=-1 72 (8.76)
Viy Uyy my + m,

Substituting these in Eq. (8.74) yields

v =0, if Y= 8.77)
f y ,

which corresponds to no collision; and

2m,
. n, —m
if vy = Am—i—;—m—z vy (8.79)

Thus Egs. (8.78) and (8.79) represent head-on collisions, that is, collisions in one direction. Let
us consider a few special cases of these two equations for head-on collisions.

(i) Suppose m; = m,. Equations (8.78) and (8.79) give
(8.80)

v,=0 and wvy=vy,

That is, the incident particle comes to a stop, while the target particle starts moving with
the velocity of the incident particle.
(i) If m; <€ m,, we get

vp= v, and vy =0 (8.81)

That is, the incident particle is reflected back with the same speed, while the target parti-
cle hardly moves.
(iii) If m; > m,, we get

vy = vy and vy = 2y, (8.82)

That is, the incident particle keeps moving as if nothing happened, while the target parti-
cle takes off with twice the velocity of the incident particle.

All the preceding situations are illustrated in Fig. 8.6.
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my o my )
@m=m G O @ O >
vy ;=0 vy =0 Uy = vy
m "y m 1y
omm g N O
Yii vy; =0 v = Ty vy =0
m, my
m2 Moy
e - W SE— - o—
Y [T 0 Ulf =y sz o= 21;“
Before collision After collision

Figure 8.6 One-dimensional elastic collision between two objects.

Case (b) m; > m,: For v, to be real, the quantity under the radical sign must be posi-
tive; that is,

2 _ 2
my — m,

(8.83)

cos’6 = >

m,

Furthermore, the quantity under the radical sign will be zero (minimum), say for 6 = 6,,, which
according to Eq. (8.83) is

2 _ .2 2
cos?h, =" =1 -2 g<g <7 (8.84)
m; mj 2
The scattering angle 6 must be less than 6, because, if 8 > 6,, and /2 < 0 < m, the quantity
under the radical sign will be negative. Thus 6, represents the maximum angle = 6,,,; hence

(because cos ¢ decreases with increasing )

0<6. and 0<g. . <~ (8.85)

max max 2
Figure 8.7 shows the plot of maximum scattering angle 6,,,, versus m,/m;. Note that if m; > m,,
the scattering angle will be very small (a very large mass can hardly be expected to be deflected
by a small mass at rest). Furthermore, for 6 < 8,,,,, there will be two values of v /v,;; the larger

value corresponds to be glancing collision, whereas the smaller value corresponds to a head-on
collision. '

Case(c) m; <mjy: For this case there is no restriction on the value of the scattering an-
gle, which can be anywhere from O to 7. A situation in which #is greater than /2 is called back-
scattering. If 6 = 0, v ;/v); = 1, which corresponds to no collisions. If # = 0 and ¢ = 0, we get
[as in case (a)]

v m, —m v 2m
M= Tl 2 and A= (8.86)
v, My tom, v, omy tom,
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>Figure 8.7

Consider an elastic collision between a particle of mass m1 moving with velocity vl and a
particle of mass m2 at rest. The graph of the scattering angle 6 as a function of the mass
ratio m = m2/ml where m1 > m2 is shown below.

According to Eq. (8.84) cos(6)2=1 - m2 and 0<9<§ where mes—

Solving for 9 gives cos(8)=n1 — m” acos(«} 1- m2)=9

Solve for N = 20 different values

N o . N =20 1:=0..N
of m, resulting in 20 different values
of 8. . -
(a) When m is about 0, that is, m, ;:% 6, i=-acos| 1— <mi)2]-?
ml >> m2, the value of the *
scattering angle 6, is 0 degree. 0
(b) When m =mz, and m =1, —éz 30
the scattering angle is maximum, § ﬂ \
that is, Omax = 90 degree = /2. 3 60
% 0 0.25 0.5 0.75 1
Mass iatio
We can also show that for head-on collisions
m 2K, 2K, 12
= [(«ﬂ— 1) - 1} (8.87)
m, KZf K2f

Case (d) m; = m,: By muliiplying Eq. (8.70) by cos 6 and Eq. (8.71) by sin 6 and
adding, we get

v; €08 8 = v, + vyec08(0 + ) (8.88)

Since m; = m,, Eq. (8.75) yields
vy = vy, cos & (8.89)

From Egs. (8.88) and (8.89), we obtain

cos(B+ ) =0 or 6+ ¢= g (8.90)
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That is, the two particles leave at right angles to each other. The example of such a collision is
observed on a pool table when a cue ball is seen to leave the struck ball at a right angle.

8.8 INELASTIC COLLISIONS

In many situations in both the microscopic and macroscopic worlds, the kinetic energy of the
system before collision is not the same as after collision; that is, kinetic energy is not conserved.
For example, atoms, molecules, and nuclei possess internal kinetic and potential energies. When
such particles collide, kinetic energy may be absorbed or released. Collisions in which the final
kinetic energy of the system is less than the initial kinetic energy (that is, energy is absorbed by
the system), are called endoergic or first kind reactions or collisions. Collisions in which the
final kinetic energy is more than the initial kinetic energy (that is, energy is released), are called
exoergic or second kind reactions or collisions. Thus if the initial Kinetic energy is K; and the
final kinetic energy is K, the disintegration energy Q of the reaction is defined as

Q=K —K, (8.91)
IfQ >0 exoergic, inelastic second kind (8.92a)
If Q <0 endoergic, inelastic first kind (8.92b)
IfQo=0 elastic collision (8.92¢)

In all of these cases, the law of the conservation of linear momentum holds good. The law of
conservation of energy will hold good only if all internal energies, as well as any other energy,
such as heat by friction, are taken into account. Furthermore, in inelastic collisions the nature
of the particles after collision may be completely different from those before collision.

Let us consider an inelastic collision between a particle of mass m, moving with velocity
vy; with a particle of mass m; at rest, as shown in Fig. 8.8. The collision between these two par-

(a) Before (b} After

Figure 8.8 Ineclastic collision between two particles: (a) before, and (b) after
collision,
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ticles results in two new particles of mass m; and m, moving with velocities v5,and v,,, making
angles 6; and 6, with the initial direction of the velocity of the incident particle m,, which is the
X-axis. Let K, K, (=0 in this case), K, and K, be the kinetic energies of particles m,;, m,, ms,
and m,, respectively, and Q the disintegration energy. From the laws of conservation of mo-
mentum and kinetic energy, we may write

mv; = myvycos 8y + myu,,cos 6, (8.93)
and K +0=K,+K, (8.95)

6, can be eliminated from Eqgs. (8.93) and (8.94) by rearranging, squaring, and adding, result-
ing in

(M) = (m)* + (my3)* — 2mymyv, vy c0s 6 (8.96)
Combining Egs. (8.95) and (8.96) and using the relations

K = ;mpu}, Ky=,myui, K,=;myvy
we may obtain the following value for Q:

mm,K K,
2

172
O=K +K,—K, = K3(1 + ﬂ@) - K1(1 - ’"1) - 2( ) cosf,  (8.97)

4 my my

Thus, when a particle of mass m; and known velocity vy; collides with mass m,, Eq. (8.97) al-
lows us to calculate the value of Q by measuring 6; and the velocity vy, of a particle of mass m;
with additional knowledge of mass m,. Note that we have eliminated the quantity v, because it
is usually, especially in nuclear reactions, very hard to measure this quantity.

Consider an inelastic collision in one dimension between two objects. Such collisions are
always endoergic, as we will show now. Suppose an object of mass m; moving with velocity v,
collides with an object of mass m, at rest, the two objects stick together after the collision (such
as a bullet striking a piece of wood and becoming embedded), and now move together with ve-
locity v,. Thus, according to the law of conservation of momentum,

mu, = (m, + myv,

my,

or v, = 8.98
2 omy + o, 695
Kinetic energy is not conserved in this case; hence \
Q= K, — K, = %(ml + mz)vg - %m,vf
Substituting for v, from Egs. (8.98), we obtain
-m
0=K 2 (8.99)

1
m; + m,
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which is a negative quantity; hence the collision is endoergic. The amount of energy changed
into heat is equal to Q‘. In our discussion we have assumed that no rotational energies are in-
volved. Equation (8.99) also requires that the minimum kinetic energy K, needed to start an en-
doergic reaction be greater than |Q| by a factor 1 + m,/m,. Thus the minimum energy is called
the threshold energy.

(Kl)lhres = (1 + ﬁ)|Q| (8.100)
",

For endoergic reactions in general, K; mustbe = (K))yres-

Finally, let us define another commonly used term regarding collisions, the coefficient of
restitution. Consider a head-on elastic collision between two masses, as shown in Fig. 8.9. The
laws of conservation of momentum and energy require that

MUy + My, = vy T myvy, (8.101)
smvi; + ymyvs, = gmyvl + gmyv3, (8.102)
Solving these two equations yields
Uy = Uy = ) — Uy (8.103a)
(V) = = (W); (8.103b)
Speed of recession = speed of approach

This results states that the ratio of the relative velocity after collision to the relative velocity be-
fore collision between the two bodies in a head-on collision is constant. This may be written as

where e is called the coefficient of restitution. As is obvious, if the collision is elastic, e = 1,
while for a perfect inelastic collision (in which two bodies move as one after collision) e = 0.
For other inelastic collisions, e varies between 0 and 1.

& m, my )
O @—>O0———>
0 i vy Vi Vi 7 X
—_— —_—
Vi — Vo = — (V)i Vo T Vi = (Vrel)f
= _(vrel)i
{(a) Before (b} After

Figure 8.9 One-dimensional elastic collision between two masses, m, and m,,
showing that (V,q); = —(V,a).
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8.9 TWO-BODY PROBLEM IN CENTER-OF-MASS COORDINATE
SYSTEM

In many situations we find it quite convenient and useful to describe the motion of a system con-
sisting of two bodies as observed in a center-of-mass coordinate system (CMCS, or CM sys-
tem) instead of in a laboratory coordinate system (LCS, or LAB system). Furthermore, we shall
describe the collisions between two objects as viewed from a CMCS. The advantage of using a
CMCS is that under special circumstances the two-body problem can be reduced to two single-
body problems described as (1) the motion of the center of mass, and (2) the relative motion
(that is, the motion of either particle with respect to the other). The CMCS was discussed in
Chapter 7, but we shall consider further details of the system in this chapter.

Let us consider a system consisting of two bodies of mass m, and m, at distances r, and
r- from the origin O, as shown in Fig. 8.10. Let F{ and F; be the external forces acting on m,
and my,, respectively, while F|, is the internal force acting on body m; due to m,, and F, the in-
ternal force acting on m1, due to m,. According to Newton's third law, force f may be defined as

F,=—-F, =f (8.105)
while the total external force acting on the system is
F=F +F (8.106)
According to Newton’s second law, the motion of the two bodies in the LAB system may be
written as
mr, = F + Fi, (8.107)
myx¥, = F§ + F, (8.108)

To change now from a LAB system to a CM system, we use the following relations, which were
discussed in Chapter 7. The center-of-mass coordinate R is given by (from Section 7.2)

_ mr, + mpr,

R

(8.109)

m; + m,

Figure 8.10 Center of mass and rela-
tive motion for a system consisting of
> two particles.
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and the relative coordinate r is given by

r=r, —r, (8.110)
while the reverse transformations are given by

n,

r]=R+;1 o r (8.111)
1 2
m
=R—-— 1 8.112
r, p— r ( )

We want to rewrite the equations of motion of the two bodies m; and m, in terms of the CM
coordinates R and the relative coordinates r. To do this, we first add Egs. (8.107) and (8.108):
that 1s,

myx, + mr, =F; + F, + F, + F,
Using Eqgs. (8.105) , (8.106), and (8.109), the preceding equation may be written as
(m, + m)R = F
or MR = F (8.113)

where M = m; + m, is the total mass and F is the total external force acting on the system. This

is first of the two equations we are looking for.
Now multiply Eq. (8.107) by m, and Eq. (8.108) by m, and subtract:

N w _ e __ e i 1]
mymy(r; — 1) = mF) — mF5 + m)F), — mF;,

Using the result given in Eq. (8.105), we may write this equation as

. F;, F;
mim,(r, — ry) = mlmz(—L - ~2) + (m; + m)f (8.114)
m; m,
Let us consider a special case in which either
Fi=F =0 (8.115)
F, F
or —L==2 (8.116)
mym

That is, the external forces acting on the objects are proportional to their masses; hence
Eq. (8.114) may be written as ~

mmy(t, — 1) = (m; + m)f (8.117)
Introducing the quantity reduced mass u, defined as

o= (8.118)

m, t m,
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and using Eq. (8.110), r = r; — r,, we may write Eq. (8.117) as
pur = f (8.119)

Thus Eqgs. (8.113) and (8.119) are the two required equations. Equation (8.113) is the familiar
equation for the motion of the center of mass according to which mass M is acted on by the total
external force F, producing an acceleration R, while Eq. (8.119) is the equation of motion of
mass u acted on by an internal force f = F,, producing an acceleration r. Equation (8.119) may
also be described as the motion of particle of mass u at the position of m, as viewed from the
position of m,, assuming m, to be at rest.

We may also write an expression for the linear momentum P, angular momentum L, and
total kinetic energy K in terms of CM coordinates. Using Egs. (8.109) through (8.112), we may
write the center-of-mass velocity V as

. r, + myr r, + myr
V=R= ’"1m1+2“: ™ 1M’"2 2 (8.120)
1 2

and the relative velocity v as
V=r=T,—T, (8.121)

And for the inverse transformation, we may write

v=f =R+ 2 ¢=R+*>; (8.122)
my + m, m
. . m T T
=f,=R-—"—f=R-F£ 8.123
270 m, +m, r m, r ( )
The total linear momentum of the system is
P = m;r, + mr, = MR (8.124)

and the total angular momentum L of the system is
L =m(r, Xr,) + m(r, Xr,) : (8.125)
Substituting for r, and r, from Egs. (8.122) and (8.123), we obtain
L=MRXR) + ju(r X 1)
or L=MRXYV)+ ur X v) (8.126)
while the total kinetic energy K is given by ‘
K =3imr? + Imyp? (8.127)

Substituting for r, and r,, we get

K=1MR>+ 1 u? (8.128)
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or K=13MV*+1 uv? (8.129)

This equation states that the kinetic energy of a system is equal to the sum of the kinetic energy
of mass M moving with velocity V of the center of mass (kinetic energy of the center of mass)
and the kinetic energy of the reduced mass u moving with a relative velocity v (kinetic energy
of relative motion).

8.10 COLLISIONS IN CENTER-OF-MASS COORDINATE SYSTEM

In previous sections, we discussed elastic and inelastic collisions between two objects from the
point of view of an observer at rest with respect to the coordinates fixed in a laboratory coordi-
nate system (LCS). In many circumstances, it is convenient to make observations from a coor-
dinate system that is moving with respect to the LCS. One such coordinate system commonly
used is the center-of-mass coordinate system (CMCS) as discussed previously. Collisions are
observed by an observer at the center of mass, hence moving with the same velocity as the cen-
ter of mass. We start with the discussion of elastic collisions between two objects as observed
from the center of mass.

Suppose at a given instant a particle of mass m; at x; is moving with velocity v;;, while a
particle of mass m, at x, is at rest, as shown in Fig. 8.11. The center of mass x, is given by

(m; + m)x, = mx, + myx, (8.130)
while the velocity of the center of mass obtained by differentiating Eq. (8.130) is
(my, + myv, = mx, + myx, (8.131)

where v. = dx /dt, while for the situation shown in Fig. 8.11, x; = v;; and x, = 0. Thus the ve-
locity of the center-of-mass v, with respect to the LCS is given by

muy;
b =i B (8.132)
m,+m, m,
where u is the reduced mass.
Let the collision between m, and m, be observed by an observer moving with velocity v,
of the center of mass; that is, the observer is in the CMCS. The velocities of mass m, and m,

my CM my -
{ ). . V)
Ny - ~

\
W
i ‘
[}
L

LCS

Figure 8.11 Velocity of m, and m, and their center of mass in the laboratory co-
ordinate system (LCS).
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m, CM my
ﬂ - - L.
O —
Vi =V~ Ve Vi = —V,
CMCS

Figure 8.12 Motion of particles m, and m, in the center-of-mass coordinate sys-
tem (CMCS).

with respect to the CMCS are v;; and v;; (prime indicates that the quantity is described in
the CMCS):

=, (8.133)

r _ _ g T S
Vi = Vi = U = Uy Lt Y

v =y 0. =0 -y = = v < ﬂvl- (8.134)

Figure 8.12 shows the motion of these two particles with respect to the CMCS. The corre-
sponding momentum of each particle before collision in the CMCS is

nmhn,

Dy = 8.135
pll 1Yl ml + m2 Li ( )
, , m\ni,
N CUCTN 8.136
Pai 2Y2 m, + m, Ii ( )

Thus the total linear momentum of the system in the CMCS before collision is

m,m m,m
Pl =p,+py= l_g“__v”___l :
m; + m, m, + m,

v, =0 (8.137)
That the total linear momentum before collision is zero is one of the most important character-
istics of the CMCS. This implies that to conserve linear momentum the total linear momentum
in the CMCS after collision must also be zero. That is, as viewed from the CMCS, two particles
of mass m; and m, approach each other in a straight line and, after collision, recede from each
other in a straight line with the same initial velocities, as shown in Fig. 8.13(a). The line join-
ing the receding particles can make any angle 6, (in CMCS), as shown. For the sake of com-
parison, Fig. 8.13(b) shows the collision as viewed from the LCS.

We may now look at the following problem. First, how do we get back from the CMCS to
the LCS? Second, what is the relation between the angles the particles make after collision with
their initial direction in both the LCS and the CMCS?

In the CMCS, the final velocity and direction of the particles after collision are shown in
Fig. 8.13(a). To find the final velocities of the particles in the LCS, we may reverse the proce-
dure used for changing from the LCS to the CMCS. This is achieved by adding to the final ve-
locities vi; (=v;; — v,) and vy, (=v,), the velocity v, of the center of mass shown in Fig. 8.14.
Thus the velocity v,,and v,;of m; and m,, respectively, in the LCS are

V=V, (8.138)
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Figure 8.13 Collision between two particies of mass m, and m, as viewed from
(a) the CMCS and (b) the LCS.
Vo = VoV, (8.139)

With the help of Fig. 8.14, we can find the relation between angles 6, and ¢, in the LCS and 6,
in the CMCS. For example, let us consider Eq. (8.138) and the top half of Fig. 8.14. Resolving
into components, Eq. (8.138) may be written as

v;;C08 6, = v, + vj;co8 O (8.140)
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Y
0
’ X
Var
Figure 8.14 Relation between angles
6; and ¢, in the LCS and 6, in the
v, CMCS after collision.
v, 8in 6, = vj,sin 6, (8.141)
Dividing one by the other,
v, sin 6 sin 6
tang, = — 41— =€ (8.142)
v, + vjcos 6, (vfu) + cos B
in 6,
or tan §, = —C_ (8.143)
vy + cos 6,
where
) velocity of the center of mass in LCS
y=e= 00 o (8.144)
vy velocity of m after collision in CMCS
The values of v, and vj, are given by Eqs. (8.132) and (8.133). From Egq. (8.132)
m M
= v, = U 8.145
Ve m, + m, vy m, Yy ( )

where u is the reduced mass and vy; is the initial relative velocity (=v;;, — vy; = v;; — 0 = vp)).
vj; (=vy,), the final relative velocity, from Eq. (8.133) is equal to

m 155 -
V= v,= 0 8.146
v m; + m, I m, i/ ( )

Thus combining the preceding three equations (and noting that final velocities are equal to ini-
tial velocities in the CMCS), we get

y= ¢ =1l (8.147)
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For inelastic collisions, v; # vy;, Eq. (8.143) becomes

in 6,
511 %c inelastic collisions (8.148)

tan 0, = )
L (myvimyv ) + cos 6

For elastic collisions, v|; = vy, and Eq. (8.148) takes the form

sin 6

tan 6, = elastic collisions (8.149)

(my/my) + cos 6"

Let us consider some special cases of Eq. (8.149) for elastic collisions.

Case (a): If m; = m,, as is the case in collisions between neutrons and protons, we may
write Eq. (8.149) as

in 6 2 sin(#/2) cos(H/2 6
an g, = b _ 25002 costbl2) _ B (8.150)
1 + cos 6, 2 cos“(6/2) 2
0
That is, 6, = ?C (8.151)

Since, in the CMCS, 6. may have any value of between 0 and 7, 6, can have a maximum value
of 7/2, in agreement with the previous discussion.

Case (b). If m, > m,, we may write Eq. (8.149) as

in 6
tan 6, = ~0C = tan g, (8.152)
cos b,
That is, 8, = 0, (8.153)

which states that, for heavy targets, the scattering angle in the LCS is the same as in the CMCS.

Case (c): Ifm; > m,, the incident particle 1s heavier than the target particle. In this case,
6; must be very small, no matter whatever the value of 6. This correctly corresponds to the
situation in Eq. (8.85), where it was noted that 6; cannot be larger than a certain maximum
value 6,,,.

8.11 AN INVERSE-SQUARE REPULSIVE FORCE:
RUTHERFORD SCATTERING

Most of our efforts have been devoted to the study of motion of particles in an attractive inverse
square force field. There is an important class of physical applications in which the motion of
the particle is in an inverse-square repulsive force field. Such situations involve the deflection
or scattering of fast-moving atomic particles such as protons and alpha particles by positively
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()

Figure 8.15 (a) Hyperbolic trajectory of a positively charged particle g in the
field of a positively charged force center 0, that is, in a repulsive force field. Note
that @ is the scattering angle and b is the impact parameter. (b) Same as in (a), but
also showing the relation between r, r;,, b, and 6.

charged nuclei. Paths of such scattered particles are hyperbolic. The first such experiments in-
volving the scattering of alpha particles by nuclei were carried out by Geiger and Marsden
(Rutherford’s students) and analyzed by Rutherford and will be discussed at some length.

As shown in Fig. 8.15(a) and (b), a positively charged particle of charge g, mass m, and
velocity v, is incident on a target nucleus of positive charge Q and mass M at rest. The inverse-
square repulsive force between the two particles is

Qg K

F = k7 =2 (8.154)

where k = 8.99 X 10° N-m*C? and K = k(Qq is positive; hence F is a repulsive force.
In the particular case of alpha particle scattering by nuclei, g = 2e and Q = Ze, where Z
is the atomic number of the nuclei and e is the charge of the electron. Since e = 1.6 X 107 C
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Figure 8.15(c)

The path of the scattered particle is shown N:=20 i=0.N
using the numerical values for e and a. The

calculations for different parameters are given
below.

0 = scattering angle = 1 — 20

oa=m —6/72

b = impact parameter

r0) = the distance of closest approach

“::acosﬁ 6 ::zvatan(ﬁ>

e ~1
01 =n-2-« L, ="125 0
o =0.841 rad 09 =1.459rad 01 =1.459+rad b Sy sin( 8) 10 :=min(r)
o =48.19-deg 0 =83.621*deg 01 =83.621+deg b =-124.226 ) =-292.705

(C = coulomb),

K = kQq = 2kZe* = (4.6 X 10" B N-m)Z (8.155)
K being positive. Equation (7.106) for the eccentricity e,
2EL?

e = \/ L+ (7.106)

suggests that e > 1; hence the trajectory of an incident alpha particle will be hyperbolic, as
shown in Fig. 8.15(a). This is the negative branch trajectory of the hyperbola. The repulsive
force center is at F. The scattering angle 6, the angle between the two asymptotes, is

0=m—2a (8.156)
Therefore, |
0
tan — = tan(w - a) = cota (8.157)
2 2
In the equation for a hyperbola (from Chapter 7) given by

_a@ -1

1 —ecos

(7.113)
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and for the particle at infinity, r = %, § = «, the above equation yields

1
cosa = — (8.158)
e

where e is the eccentricity. Thus, combining Egs. (8.157) and (8.158),

. 7] " COs « 1/e
an — = o - e
2 YT sina (1- 1A

1
tan b_ 1 (8.159)

2 \/e2—1

Substituting for ¢? from Eq. (7.106), we obtain

0 mK?
tan 5 = SEL? (8.160)

Referring to Fig. 8.15(b), when the alpha particle is at infinity, its potential energy is V = K/r =
K/ = 0; hence the total energy E is all kinetic and is given by

E= % mvg (8.161)

Since the alpha particle is headed toward the force center F in the absence of any force it will
not be deflected but will pass the force center at a distance b. This distance b by which the par-
ticle misses the force center is called the impact parameter for the collision. Also, the angular
momentum of the particle is

L = mypb (8.162)

which will remain constant during all its motion due to the law of conservation of angular mo-
mentum. Substituting for E and L from Eqs. (8.161) and (8.162) into Eq. (8.160),

mK?
ta’n: = A\ Al 2\ 182
Z V 25 My imvgo)
Hence t k (8.163)
en an — = .
2 mugp
where K = k(Qq. Relation (8.163) may be written as
K f
b=—cot— 8.164
mv20 2 ( )

my
or 0=2 arccot[(-K‘)bjl (8.165)
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The scattering angle 8 can be measured experimentally; hence the impact parameter b can be
calculated from Eq. (8.165). Equation (8.164) also states that as b increases 6 decreases—that
is, the smaller the impact parameter, the larger the scattering angle. In actual practice, we mea-
sure the number of particle N(8) scattered at different angles. Hence we must find a way to elim-
inate b in Eq. (8.165) and find the relation between N(6) and 6. This leads us to the concept of
a cross section, as discussed next.

A typical experiment setup is shown in Fig. 8.16. A beam of charged particles coming from
source S is incident on a thin foil that is the target. The particles are scattered in different direc-
tions after colliding with the target nuclei. Suppose the particles with impact parameter b are
deflected through an angle 6; then those particles with an impact parameter b + db will be de-
flected through an angle 6 + d6, where d8 is negative, as shown in Fig. 8.17. Suppose there are
N particles incident on the target foil and the foil contains » nuclei per unit area; that is, there
are n scattering centers per unit area. (The foil is considered thin enough so that nuclei do not
hide one behind the other.) Thus the number of alpha particles dN that will be scattered through
an angle #and 6 + d0is proportional to the scattering centers » and the number of incident par-
ticles N; that is,

dN = nN do (8.166)

where do is defined as the cross section for scattering through an angle 6 and 6 + dé. do can
be thought of as the effective area surrounding each scattering center, which the incident parti-
cle must hit in order to be scattered. Thus the total sensitive area for scattering in a unit target
area is n do; hence the justification for Eq. (8.166). [Note that if the incident particles have im-

e

Slit
Detector
Target

(thin foil)

@ Nuclei
. Electrons

Figure 8.16 Typical experimental setup for investigating the scattering of
charged particles from a target of thin foil.




Sec. 8.11 An Inverse-Square Repulsive Force: Rutherford Scattering 329

m A\

Figure 8.17 (a) A particle with im-
pact parameter b is scattered through an
angle 6. (b) Particles with impact para-
meters between b and b + db are scat-
tered through angles between 0 and

(b) 60— de.

b+de7 b#

pact parameters between 0 and b the particles will be scattered through an angle 6 or greater
than 6. The cross section in this cases is o and is equal to the area of a disk of radius b in
Fig. 8.17(a) with the center at F:

o= b’ (8.167)
hence do = 2mb db (8.168)

as we shall see next.]

Referring to Fig. 8.17(b), the incident particles approaching the scattering center F have
an impact parameter between b and b + db. These particles will be scattered through an angle
between 6 and 6 — d@ if they hit an area of a ring around F of inner radius b and outer radius
b + db. Thus the area of the ring is the cross-sectional area do; that is,

do = 2nwb db (8.168)
We can express b and db in terms of @ and 46 by using Eq. (8.164), according to which
K 0
b=—5c0s < 8.164
o2 cos 5 ( )
and, differentiating this, we get
K 1
db = (8.169)

 2mg sinX(612)
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We may also use Eq. (8.164) to write b as
K sin 6
2mv§ sin?(6/2)

Substituting for db and b from Eqgs. (8.169) and (8.170) into Eq. (8.168), we get, after omitting
the negative sign,

b (8.170)

K \? sin#
_ 5 8.171
do W(va%) sin*(6/2) (8.171)
Remembering K = k(Qgq, we get
kQq )2 sin @
=2 8.172
do ”(2mvg sin*(6/2) (8.172)

which is the Rutherford scattering formula. do can be measured experimentally by using
Eq. (8.166) and can be compared with the theoretical value calculated by using Eq. (8.172).

Rutherford used the derived formula to make an interpretation of his experiment on the
scattering of alpha particles (g = 2e) by target nuclei (Q = Ze) in the form of thin foils. Ex-
pression (8.172) held good as long as the perihelion distance (a + ae) was larger than 10 ~ " m.
From this he concluded that the positive charge of the nucleus must be concentrated in a sphere
with a radius of less than 10~'% m, The incident alpha particle can come closest to the nucleus
for an impact parameter of » = (. This will result in a minimum distance of the perihelion; and
at this distance all the kinetic energy of the incident alpha particle is changed into potential en-
ergy, and the particle starts turning back. Thus

K=V=—"" (8.173)

The use of Eq. (8.173) can give some idea about the magnitude of the nuclear radius. Deviations
from the Rutherford scattering formula will occur if the kinetic energy K of the incident parti-
cle is greater than the minimum potential energy at a distance r,;,. From such observations,
Rutherford concluded that the nuclear radius was 10~ m.

In the preceding discussion, it was assumed that the target was heavy as compared to the
incident particle and hence was assumed to be at rest during the collision. If the target nucleus
is not heavy, the nucleus itself will move during the collision, as shown in Fig. 8.18. The diffi-

/
/
o~ Figure 8.18 Scattering by a target of
g mass m,, which is almost equal to the
incident particle of mass m;; that is,

my = m, m; = m,.
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culty can be overcome by considering the collision in the CM coordinate system. The final re-
sult can be obtained by replacing m by the reduced mass p [= mM/(M + m)} and 6 by 6. in
Eq. (8.171); that is,

K \* si
) S0 g, (8.174)

do =2 ’
7 7’( sin“(6,12)

21

In the case where m; = m,, we have shown, Eq. (8.151), 6, = 26, = 20; hence

K \2sin2
) sin 26 (8.175)

do = 4n|="—
o W(z,wg sin* @

PROBLEMS

8.1. Find the center of mass, the velocity of the center of mass, the linear momentum, and the kinetic
energy of the following system:

m =1kg, r,=i+2] +3k v, =2+3]
m, = 2kg, r2='i\—j+ﬁ, v2:2.]+3ﬁ
8.2. Consider the following three particles:
m, =1lkg, r, =24 +3] +4k
m,=3kg, r,=(+M1+ @+ 5]
my=5kg, r,=(1+29 + 4%k

Calculate the following atz = O and z = 10 s.
(a) The position of the center of mass, (b) the velocity of the center of mass, (c) the linear mo-
mentum, and (d) the kinetic energy of the system.

8.3. Find the velocity and acceleration of the center of mass of a system consisting of the following two
objectsatr =0andt = 10s.

m, =2kg, 1, =2 +3]+4ar’k
m, = 4 kg, r, =14+ 5] + 6k

8.4. A projectile of mass m is fired with a velocity of 50 m/s at an angle of 60° with the horizontal. At
the top (maximum height), it explodes into two fragments, creating an additional energy E, with
the result that one fragment is observed to be moving directly upward. What is the direction of the
other fragment? Calculate the velocity of both fragments.

8.5. A projectile of mass M (=m, + m,) is fired with velocity v making an angle & with the horizontal.
At the top it explodes into two masses, m; and m,, creating an additional energy E. Show that the
two fragments strike the ground at a distance apart equal to

H 12
vsin § [ZE( RIS )}
8 m ms
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8.6. If a projectile explodes at the top (maximum height) with an additional energy E, under what cir-
cumstances will one of the fragments land at the starting position?

8.7. A fire boat draws water from a bay through a vertical inlet and sprays it out at a rate of 10 m/s. The
diameter of the nozzle of the fire hose is 20 cm. Calculate the horizontal force from the propellers
necessary to keep the boat stationary. The density of water is 1020 kg/m?>.

8.8. A bucket of 0.5 kg is placed on a spring scale and water is added to it from a height of 2 m at a rate
of 5 ml/s. Find the scale reading as a function of time.

8.9. A chain of length L and mass M is held vertically so that the bottom of the chain just touches the
horizontal table top, as shown in Fig. P8.9. If the upper end of the chain is released, determine the
force on the table top, as the function of the length of the chain above the table top, while it is falling.

|

VILIIIII AT, 4

AL = 08 Figure P8.9

8.10. For the falling chain in Fig. P.8.10, show that when all of the chain clears the table the speed of the
chain is

v =V(/L(L* - &)

where y = g, when t = 0.

4—————L—y‘>l

S

Figure P8.10

8.11. A raindrop as it falls through fog or mist collects mass at a uniform rate. The drop starts from rest
with zero radius and remains spherical at all times. Show that the acceleration with which it fails
is g/7.

8.12. A raindrop of initial mass m, is falling under the influence of gravity. Due to condensation from
fog or mist, the mass of the drop increases at a rate directly proportional to its instantaneous mass
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%.13.

8.14.

8.15.

8.16.

8.17.

8.18.

o
-
o

8.20.

8.21.

8.22.

8.23.

8.24.

and velocity. Show that eventually the speed of the drop becomes constant. Derive an expression
for this terminal velocity. Graph the velocity versus time.

Consider a spherical raindrop of initial mass my falling through fog or mist. Due to condensation,
the raindrop increases in mass at a rate proportional to its mass and velocity. In addition to the force
of gravity, the force of friction is present, which is proportional to the velocity and mass of the drop;
that is, Fr = —kmu. Calculate the velocity of the drop as a function of time. Graph v versus f.

A raindrop of initial mass m,, falls vertically through fog or mist. Due to condensation, the mass of
the raindrop increases linearly with time; that is, m = my + At. The frictional drag force on the
mass m is proportional to its mass and velocity; that is, F; = —kmuv. Calculate the velocity of the
raindrop as a function of time, assuming the presence of gravitational force and frictional drag.
Graph v versus ¢.

Calculate the thrust of a test jet engine if it takes in air at a rate of 100 kg/s and exhausts it at a
speed of 500 my/s,

A rocket has an initial mass of 60,000 kg, and the speed of the burned exhaust gases is 6000 m/s.
What should be the minimum mass flow rate of the gases to ensure life-off from the surface of
Earth?

A rocket of 60,000-kg mass is burning gases at a rate of 150 kg/s, and the speed of the exhaust
gases 18 6000 m/s. If the rocket is fired vertically upward from the surface of Earth, what will be
its height and speed after 45,000 kg of fuel is expended? Graph the velocity and height as a func-
tion of time.

A rocket propulsion type of car has a mass m, without fuel, and its fuel has mass m. The ejecting
fuel has a velocity V with respect to the rocket, and the fuel burns at a rate of k = dm/dt. Find the
acceleration and velocity as a function of time and the velocity when all the fuel has burned out.
Graph a and v versus f.

. As arocket ascends it loses mass at a rate proportional to its instantaneous mass; that is, dm/dt =

bm, where b is a constant. The motion of the rocket is retarded by air resistance proportional to its
velocity; that is, F' r= —kv, where k 1s constant. Find the velocity of the rocket as a function of time.
Graph and discuss the outstanding features.

During the first second of its flight, a rocket exhausts % of its mass with a velocity of 2000 m/s.
Calculate the acceleration of the rocket. If the rocket exhausts at a constant rate, will it be possible
to attain a constant acceleration?

A rocket of mass M + m, where m is the mass of the fuel, rises vertically and ejects gases at a rate
of g and with an exhaust velocity of u. Calculate the velocity and the acceleration as a function of
time and graph them for the values given next. The initial mass is 4 X 10* kg, ¢ = 600 kg/s, and
u = 2000 m/s. If the fuel burns out in 50 s, calculate the accelerationat r = 0s, 20 s, 40 s, and 50 s.

A rocket has a mass of m, and a mass ratio of R, burns at a rate of dm/dt, and has an exhaust ve-
locity of v,. Find how long after ignition of the engines it will take the rocket to lift off from the
ground. Calculate for the case in which m;is 5 X 10* kg, R is 3, the burning rate is 120 kg/s, and
the exhaust velocity is 1000 m/s.

A lunar landing craft is hovering over the Moon’s surface. One-third of its mass is fuel, while the
exhaust velocity u is 1200 m/s. How long will it take before the craft runs out of fuel? Assume that
the acceleration due to gravity on the surface of the Moon is one-sixth of that on Earth.

Suppose a two-stage rocket starts with a mass m;. At the end of the first stage, the mass of the rocket
is m,. Before the second stage engines are ignited, some of the mass is discarded, and the starting
mass is m,. The final mass when the engines of the second stage are shut down is m,. Assuming
that the exhaust velocity in both stages is vy, find the terminal velocity of the second stage.
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An empty truck of mass M starts from rest under an applied force F. At the same time, coal begins
to drop into the truck at a rate of b = dm/dt. What is the speed of the truck when a mass m of the
coal has fallen in?

An open truck is traveling at a constant speed of 90 km/h and is collecting water from a rainstorm.
If it picks up 50 kg of water over a distance of 1000 m, calculate the force and the power required
to maintain a constant speed.

A freight car of mass m contains a mass of coal m. At r = (), a force F is applied. As the car starts
rolling, the coal starts dropping at a rate of b = dm/dt. What is the speed of the car when all the
coal has dropped out?

A chute discharges sand at the rate of 500 kg/min onto a conveyor belt that is inclined at an angle
of 12° to the horizontal and is moving at a rate of 4 m/s. The sand falls at a speed of 5 m/s. Calcu-
late the force necessary to keep the belt moving at a constant speed.

Consider a conveyor belt inclined at an angle 6 from the horizontal so that the belt forms an in-
clined plane. At the bottom end of the belt, material, deposited at a rate of dm/dt, travels a distance
[ and then is taken off the upper end of the incline. Calculate the power needed to keep the belt
moving at a steady speed v.

Consider a conveyor belt inclined at an angle 8 from the horizontal so that the belt forms an in-
clined plane. At the top end of the belt, material is deposited at a rate of dm/dt, travels a distance /,
and then falls off the lower end of the incline. Assuming a constant force of friction f; calculate the
steady speed of the belt.

Derive Eqgs. (8.86) and (8.87).

In Fig. 8.6(a) if vy; # 0, show that after the collision v; = vy; and vy = vy;.

A neutron of mass m; moving with velocity v collides with an atomic nucleus of mass m, at rest.
Calculate the maximum fractional loss in kinetic energy of the neutron if the atomic nucleus is
(a) hydrogen, (b) carbon, (¢) iron, and (d) lead.

A particle of mass m, and velocity vy, collides with a particle of mass m, moving with velocity v,
exactly in the opposite direction. If, after collision, mass m, leaves at an angle 6, with the initial
direction, what is the value of v,?

A particle of mass m; moving with velocity v, collides elasticity with a particle of mass m, at rest.
At what scattering angle will be momentum of the mass m, be half its initial value? What are the
restrictions in terms of m,/m,?

A billiard ball of mass m collides with an identical ball at rest. After collision, the two balls leave
at angles * # with the initial direction. Prove that for this to happen the two balls have a rotational
kinetic energy of [1 — (cos % 9)/2]K;, where K, is the initial kinetic energy. Assume that there are
no frictional losses in energy.

Consider a perfect elastic collision between two balls, one of mass m and the other of unknown
mass, each moving with a speed v, but in opposite directions. After collision, the ball of unknown
mass comes to rest. Calculate the unknown mass and the velocity of the ball of mass m.

A ball of mass m with energy E strikes a ball of mass M at rest. After collision, the ball of mass m
is scattered at an angle of 90° from its original direction. Calculate the energy of mass M after
collision.

A particle of mass m; moving with velocity v, collides with a particle of mass m, moving with a
velocity v,, both having the same initial kinetic energy. Find the conditions in terms of v,/v, and
my/m, so that mass m, is at rest after collision.

A particle of mass m moving with velocity v, collides with a mass M moving in the opposite di-
rection. After collision, the mass m has velocity vy/2 and moves at right angles to the initial direc-
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8.41.

8.42.

8.43.

8.44.

8.45.

8.46.

tion, while mass M moves in a direction making an angle of 30° with the initial path of m. Find the
ratio m/M.

A particle of mass m, has a head-on collision with a particle of mass m, at rest. If the coefficient
of restitution is e, calculate the energy loss in this collision.

A ball of mass m is dropped from a height / onto a horizontal surface. Show that the vertical height
through which the ball rises before it stops rebounding is (1 + ¢2)/(1 — %), where e is the coef-
ficient of restitution.

Show that the loss in kinetic energy when two objects collide is % uVH1 — e?), where p is the re-
duced mass, V is the relative speed before collision, and e is the cocfficient of restitution.

A particle of mass m; moving at right angles to mass m, collides as shown in Fig. P8.44. Calculate
the velocity of each particle after collision, assuming that the coefficient of restitution is 0.4, m, =
3 kg, m, = 2kg, v;; = 2 m/s, and v,; = 3 m/s.

Y A YA m,

o)
3
[\
<Y
<
¥

M

Figure P8.44

Consider the situation shown in Fig. P8.45. Ball A of mass 2m is raised to a height of & so that its
string makes an angle of 45° with the vertical, and it is then let go. To what height will ball B of
mass m tise if the coefficient of restitution is 0.57

LU,

45°

—————————————— Figure P8.45

A ball of mass m moving downward with a velocity of v and making an angle 6 with the horizon-
tal strikes a flat surface and rebounds at angle ¢, as shown in Fig. P8.46. Calculate the velocity of
the ball, angle ¢, and the change in the kinetic energy. Assume that the surface is smooth and the
coefficient of restitution is e.

m

4 ¢

AL SIS I LSS SIS LA AT s Figure P8.46
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8.47.

System of Particles: Conservation Laws and Collisions Chap. 8

A ball of 1-kg mass moving with a speed of 2 m/s strikes a wooden bar of 2-kg mass moving to
the right, with a center-of-mass velocity of 1.5 m/s, as shown in Fig. P8.47. If the coefficient of
restitution is 0.4, and the plane is which this collision takes place is smooth, calculate the follow-
ing quantities just after collision: (a) velocity of the ball, and (b) linear velocity and angular ve-
locity of the bar.

1 kg

i

8.48.

8.49.
8.50.

8.51.
8.52.

8.53.

8.54.

8.55.

*—f * —t——
GK 1.5 m/s \ / e
I I
2kg Figure P8.47

A neutron in a nuclear reactor moving with an initial speed of 120 m/s collides with a deuteron
(heavy hydrogen in which the nucleus is made of a proton and a neutron) at rest. The neutron is
scattered at an angle of 30°. Calculate the recoil angle for the deuteron and the speed of both the
neutron and deuteron after the collision. Draw a diagram showing this collision in the CMCS and
the corresponding angles in the CMCS.

Repeat Problem 8.48 if the deuteron is replaced by a carbon atom with a mass of 12 u.

An alpha particle of mass 4 u moving with a velocity 2000 m/s collides with a carbon atom of mass
12 u at rest. The alpha particle is scattered through an angle of 30°. Considering the collision to be
perfectly elastic, calculate the velocities of both particles after collision and the scattering angle of
the recoiling carbon. Describe this collision in the CMCS.

Derive an expression for the Rutherford scattering cross section in terms of the recoil angle.

Obtain an expression for the Rutherford scattering cross section for the case in which the mass of
the incident particle is very large compared to the mass of the target particle.

Somewhere in outer space a star of mass # moving with velocity v, is headed toward a star of mass
2m at rest. The impact parameter in this case is ». Calculate the speeds and the direction of the two
stars.

Show that the differential scattering cross sectiorn of mass m from a fixed force center

F=\r§r

is given by

B ka¥(m — 0)
7 = mup0* (27 — 6)*sin 6

A spaceship of mass m moving with velocity v, approaches the Moon (M > m). The distance of
closest approach is b, and the velocity v, is perpendicular to the orbital velocity V of the Moon.
Show that if the spaceship passes behind the Moon it gains kinetic energy as it leaves the Moon.
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8.56. Obtain an expression for the differential scattering cross section in the CMCS for the case where
the target particle is much heavier than the incident particle.

8.57. A particle of mass m moving with velocity v, collides with a particle of mass m at rest. M is scat-
tered through an angle 6. in the CM system. What is the final velocity of m in the LCS? Calculate
the fractional loss of kinetic energy of m.
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