Vibrating Strings and Fluids

15.1 INTRODUCTION

This chapter is a continuation of the study of mechanics of continuous media such as strings
and fluids (gases and liquids). Because a large number of particles are involved, it is cumber-
some to apply the laws of mechanics and investigate the resuitant motion. Some simplifying as-
sumptions must be made and an overall picture of the motion obtained. We shall divide our dis-
cussion into three parts. First, we investigate transverse vibrations of strings in one dimension.
To start, we shall consider a simple case but then generalize it by the methods of Lagrange for-
mulation. Second, we study sound waves, that is, longitudinal waves in a gaseous medium. In
both of these cases, the main problem involves setting up a wave equation describing the given
situation, followed by solving these differential equations by applying appropriate boundary
conditions.

Third, we investigate fluids at rest and in motion. We close the chapter by investigating the
motion of fluids in the presence of frictional forces (viscous forces).

15.2 VIBRATING STRING

We investigate the propagation of waves along vibrating strings. Our discussion is divided in
two parts: the equation of motion and the general solution (normal modes of vibration).

Equation of Motion
Consider a homogeneous string of length L that is fixed at both ends: x = 0 and x = L. The string

has a linear density (mass per unit length) w and is under tension T throughout the string. The
string is in equilibrium along the X-axis, as shown in Fig. 15.1(a). We are interested in investi-
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Figure 15.1 (a) A string of length L is horizontal when in equilibrium. (b) A
small portion ds of a string under a small displacement results in transverse
vibrations.

gating the motion of such a string following an initial lateral displacement from its equilibrium
position. Also, the displacements of the string are not large enough to change the tension T ap-
preciably. Furthermore, we assume that the force due to gravity (=uLg) is small compared to
the tension T and may be neglected.

To obtain a differential equation that describes the motion of the string, consider a small
portion AB of length ds and of horizontal length dx between x and x + dx, as shown in
Fig. 15.1(b). Since for small displacements the tension remains the same, we may write the X
and Y components of the tensions acting on this small element to be

E F,=Tcos 8, — Tcos 6, (15.1a)

> F, = Tsin @, — Tsin 9, (15.1b)

If 6, and 6, are small, cos 8, = cos 6,; hence there is no net horizontal force. This means there
is no longitudinal displacement of the string. That is, for small displacements of the string, we
are concerned only with the lateral or transverse motion (motion perpendicular to the length of
the string). That is, the string vibrates in the XY plane. Also, for small displacements or small
angles, we may replace the sine by the tangent; that is,

sin 6, =tan 6, and sin 6, = tan 6, (15.2)

Thus the resultant force in the Y direction is

E F, = Ttan 6, ~ Ttan 0, (15.3)

The motion of the string is described by a displacement function u(x, ) of each point x and at
an instant of time .




616 Vibrating Strings and Fluids Chap. 15

Let the vertical displacement of the string be u at x and u + du at x + dx. According to
Newton’s second law,

0%u
E Fy = ma, = m ? (154)

where m is the mass of a string of length AB, m = u dx, and u = u(x, 1), is the lateral displace-
ment of the string at position x and instant of time z. (Partial derivatives are used because u is a
function of both x and ¢.) Thus combining the preceding equations and assuming ds == dx,

62
,deag”— = Ttan 8, — Ttan 6, (15.5)
. ou
Using Ttan =T — (15.6)
ax
we may write the net vertical force as
d 0
Ttan 6, — Ttan 6, = T(“) - T(—”) 15.7)
dx/ g 0x/ 4

The slope of the string at B may be expanded by using a Taylor series; that is,

ou du 0°u
33, (25,

which, on substituting in Eq. (15.7) and combining with Eq. (15.5), yields

%u 0%u

dx— =T—d 15.9

Py o (15.9)
0%u 0%u

— =T— 15.10

or Y ax? ( )
0%u i o’u

— = 15.
ox> T of (15.11)

Since the dimensions of w are [ML™!'] and the dimensions of T are of force [MLT 2], the di-
mension of w/T are [L~2T?], that is, the reciprocal of velocity squared. Hence the wave equa-
tion of the vibrating string is

— — 5 .5 =0 (15.12)

T
where V=1 (15.13)
I

vis not simply a velocity of propagation; it has a much deeper physical interpretation, which we
shall seek later. Here v may be identified as the wave velocity with which the wave propagates
alon, the string.
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If there were an external vertical force F, per unit length acting on the string, Eq. (15.9)
would take the form
Zu 7
dx— =T—dx+ F d
P o2 T e ¥

82 62
or “T; = 7“ +F (15.14)

We shall not deal with these situations and shall return to Eq. (15.12) for further discussion.
General Solution: Normal Modes of Vibration
Equation (15.12) is a partial differential equation for the function u(x, ¢) that describes the mo-

tion of a vibrating string. To evaluate the function u(x, t), we make use of initial and boundary
conditions. Suppose at t = 0 the function u(x, 1) satisfies the following initial conditions:

u(x, 0) = uy(x) (15.15)
d .
[ﬁlzo = uy(x) | (15.16)

where u(x) is the displacement and 1(x) is the velocity of the string at t = 0, and both are func-
tions of position x. Since the string is tied at the ends, it must satisfy the following boundary
conditions:

4(0 !) = (]l N = (15.17)

(]

That is, the displacement at the ends is zero at all times.
We now proceed to find the solution u(x, t) of the differential equation (15.12). We make
use of the method of separation of variables. Let

u(x, ) = X(x)0O() (15.18)
where X is a function of x alone and O is a function of t alone. From Eq. (15.18),
a*u &’X 0*u e
R it d — =x-"— 15.19
o ae MY e dr’ (15.19)
Substituting these in Eq. (15.12) and rearranging, we obtain
X1 PO
T = (15.20)
X dd 0 dP

The left side of this equation is a function of x only, while the right side is a function of ¢ only.
This is possible for all values of x and only if each side is equal to a constant. Let this constant
be —w’. The minus sign indicates that the acceleration of the element of the string is always di-
rected toward the equilibrium position (position of the string when it is along the X-axis), that
is, the acceleration is opposite to the displacement. Thus, from Eq. (15.20),

i SR S,
X d?r

~—w° or ) + ;QfX =0 (15.21)
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and
1 &0 ) 4’0 )
— = — — +tw®=0 15.22
N A (15.22)
where w may be interpreted as the angular frequency. The solution of Eq. (15.21) is
X(x) = Ccos @ x + D sin @ x (15.23)
v v
and that of Eq. (15.22) is
@) = E cos wt + F sin wt (15.29)

where C, D, E, and F are the four constants of integration to be evaluated by using the initial
and boundary conditions given by Egs. (15.15) to (15.17).

Thus, by substituting for X(x) and ®(r) from Eqs. (15.23) and (15.24) into Eq. (15.18), we
get the general solution:

ulx, t) = (C cos @ x + Dsin @ x)(E cos wt + F sin wr) (15.25)
v v

We may now apply the boundary conditions to evaluate the constants C and D. At x = 0,
u(0, #) = O for all values of ¢; that is X(0) = 0 in Eq. (15.23):

0= Ccos(2 O) + D sin(9 O)
v v

which is possible only if C = 0; thus
. @
X(x) =Dsin—x (15.26)
v
Atx = L, u(L, 1) = O for all values of #; that is, X(L) = 0 in Eq.(15.26):
w
0=Dsin— L (15.27)

v

Since € = 0 and D cannot be zero because that would give a trivial solution, to satisfy
Eq. (15.27), we must have

sin2L=0 or L =nm (15.28)
v 1))

wheren = 1,2,3, ..., or, replacing wby w,, and v = VT/pu,

nmv nrwr |T
= —— = —/— 15.29
R ) \/; (15.29)

Thus, with C = 0 and letting DE = A, and DF = B,, we may write Eq. (15.25) to be

u(x, £) = (A, cos w,f + B, sin w#) sin ELE x (15.30)
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where w, = 27v,, v, being the normal frequencies of vibrations. For a given value of n, we
may write

nTX N nTX | NV
u(x,) =A, sin——cos——t+ B, sin——sin— 15.31

Equation (15.30) or (15.31) represents normal mode of vibration of the string in particular, the
nth mode. The velocity of the normal mode can be obtained by differentiating Eq. (15.31):

u(x, 1) = % u(x, 1)

= A sin| %) (- '”m) sin "t + B, sin(@) (@) cos Vs (15.32)
ML L L L)\L L

We can now evaluate the constants A, and B, of the nth mode of vibration by using the ini-
tial conditions that, at t = 0,

u(x,0) = uy(x) and wux,0) = uy(x) (15.33)

Using these conditions in Egs. (15.31) and (15.32), respectively, we obtain

. hmx
uy(x) = A, sin 7 (15.34)
nav
uyx) = —— B, sin (15.35)
L L

We know from the theory of differential equations that if u,(x, ) and u,(x, f) are any two
solutions that satisfy the boundary conditions given by Eq. (15.17), then u(x), which is a linear
combination of u,(x, f) and u,(x, t), that is

ulx, 1) = u(x, ) + uy(x, 1) (15.36)

is also a solution. A more general solution is obtained by adding together all the n particular so-
lutions using different constants A, and B, corresponding to different frequencies w,. Thus the
general solution of motion of a vibrating string is a linear combination of a large number of nor-
mal modes [from Eq. (15.30)] and is given by

- e
ulx, t) = 2 (An sin % cos w,t + B, sin nT sin wnt) (15.37)
n=1
where wn=%, n=123,...

which is a solution containing an infinite number of arbitrary constants. In initial conditions cor-
responding to different modes are given, thatis, at t = 0

u(x, 0) = uy(x) and u(x, 0) = uy(x) (15.38)
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then from Eq. (15.37) we obtain
) = S A, sin ”Tm (15.39)
n=1

oo

) = S ”Z” B, sin ”Z’“ (15.40)

n=1

Before we get involved in evaluating the constants, we show in Fig. 15.2 plots of u(x, ) versus
xforn = 1,2, 3, 4. The mode of vibration in which n = 1 is called the fundamental or first har-
monic. The mode of vibration for n = 2 is called the first overtone or second harmonic; simi-
larly, n = 3 corresponds to the second overtone or third harmonic. The frequency of the nth har-
monic is » times that of the fundamental frequency. In general, a string vibrates with several
modes simultaneously.

The general solution given by Eq. (15.37) consisting of sums of sines and/or cosines is
called a Fourier series. The general solution is completely known if the coefficients A, and B,
are known. These coefficients can be evaluated if the initial conditions, that is, the values of u,(x)
and u,(x), are known. We use the Fourier technique to evaluate these constants. Multiply both
sides of Eq.(15.39) by sin(mmx/L), where m is an integer; and integrate fromx = Otox = L.

L

L =
f () sin T dx = J > An(sin nmc) (sin @) dx (15.41)
0 L 0 n=1 L L

But all the terms on the right will vanish unless m = n. Thus integration yields

L

)

2 L
or A== f () sin o dx (15.42)
L), L

L
L
() SN dx = A f sin? T gy = A,
L . 2

Similarly, multiplying both sides of Eq. (15.40) by sin(mmx/L) and integrating from x = 0 to
x = L, that is,

L L »
. mx n nwx marx
u(x)sin — —dx = —— B sin——sin————dx
yields, as before,
2 k.
B =— f 100 sin 22X (15.43)
R Jy L

Thus Egs. (15.42) and (15.43) state that, if displacements u,(x) and velocity u(x) are given for
all points of the string at one time, A, and B, can be evaluated. Once these constants are known,
the motion of the string at all subsequent times is known.
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Figure 15.2

Below some possible modes of vibration of a string are shown. In general, a string vibrates
in a combination of several modes simultaneously.
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Example 15.1

A string of length L of mass per unit length w is fixed at two ends and is under tension 7. The string is ini-
tially displaced a distance & (h <€ L) at the middle of the string and then released. Evaluate the Fourier co-
efficients for the subsequent motion of the string.

Solution

Figure Ex. 15.1(a) shows the initial configuration of the string. Hence the initial conditions are

L u h 2h
F 0< < — _ = — = — i
or x 5" B I or u 3 X (§}]
L u h 2h
F — < < L , _- = — (L — 3
or 5 X ., 5 or u 3 ( x) (ii)
Att =0, —d“;f‘) = 1y(x) = 0 (iif)

Substituting the value of uy(x) from Eq. (iii) in Eq. (15.43) reveals that B, = 0 for all ». The values of A,
can be determined by using the initial conditions given by Eqs. (i) and (ii). Substituting these in Eq.(15.42),

2 [2n (¥ 2k (*
4 = Z[Lfo xsin%dx+ - uz(L—x)sin%dx] (iv)

Evaluating integrals for different values of n, we obtain
A, =0, if nis even v)

8h n
A, = ;sin —LE if n is odd (vi)

Substituting these in Eq. (15.37), we obtain the general solution of the form

8h . m™ nvt 1 | 3mx vt 1 8k Smx Sarut
u(x, 1) = ?smfcosT + ? sin —— cos —

I I 52 2 sin T cos T + e (vii)

Figure Ex. 15.1(a)
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Note that only the odd harmonics have

623

been excited. The plots of the first three odd harmonics are shown

in Fig. Ex. 15.1(b), and it is clear that none of the harmonics have been excited that would have a nade at
the midpoint. the modes shown and others are usually excited simultaneously.

The integration of expression

. . L
of Eq. (iv) yields the value of 2 2h o 2h X
A . Substituting diff A=—.| . X-sin dx+ — (L - x)'sin dx
o+ Substituting difterent "L L L L
values of n, we can calculate 0 L
the values of different A . 2
(2-sin<%‘n-rc) - sin(n~n))
A =4-h- h
. . n A=81
n=1.5 i=6.19 t:=i (n2-1t2> ! 3'52
L:=50 h:=2 Ae =0 (2~sin<%~n~n)— sin(n~n)) A3=§£
A '=4-h- 9 n2
' (n””)
2h n-n
vi=dr X, :=-I-—-(L—1) As 8
=
. T X. v-i. 25 2
U1i !=8—;1-s'm(u—l)‘cos(—1 n
n L L
n An 8h . 3'1‘C'Xi 3'V'Ii
1.621 U31 = -Sin -COS|
2 2 L L
0 3m
-0.18 gn (Smx) [t
4 0 U5, = 2~sm\ ) cos\S-v —)
0.065 (5-1) L L
04
ul,
1
U3,
max(Ul) =0.305 -
U5i
*
max(U3) =0.091 U, o N > 5
(-U3),
max(US) =0.046 -
. (-US5).
Explain why there are only IV
odd numbers of segments. Ac
—04

Fig. Ex 15.1(b)
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15.3 WAVE PROPAGATION IN GENERAL

Wave motion is not limited to the vibration of strings. It is a phenomenon that occurs in many
different branches of physics and involves such cases as sound waves, waves on a liquid sur-
face, and electromagnetic waves. With the advent of quantum mechanics, in which we deal with
such abstract ideas as probability waves, the study of wave motion has assumed a much more
important and fundamental role. One may be tempted to say that wave motion deals with those
phenomena that exhibit periodicity or oscillations. But this is not always true in general. For ex-
ample, a pulse that travels on a rope or a tidal wave does not exhibit periodicity.

A better definition of wave motion is discussed in terms of energy transport; when a wave
reaches a portion of a medium, it sets the particles of the medium into motion. After the wave
has passed the particles come to rest, while neighboring particles are set in motion. From this
we may conclude that one of the common characteristics of all wave motion is the following:

Wave motion provides a mechanism for transfer of energy from one point to another with-
out physical transfer of any material between the points.

It may be pointed out that wave motions in solids, liquids, and gases do need a medium to trans-
fer energy, while electromagnetic waves can transport energy without requiring a medium to
carry them. Thus it is essential that we adopt a more basic viewpoint of wave motion (a kine-
matical viewpoint instead of the dynamical one stated previously).

Let us discuss the propagation of a single pulse in one dimension. Consider a stretched
rope that has been shaken at one end, resulting in a pulse traveling along its length and taking
the form shown in Fig. 15.3. This pulse, wave, or disturbance travels along the rope, say along
the X-axis, without distortion in form; that is, it has the same shape at ¢, as at any other later
time, ¢,. We have assumed an ideal case in which the form of the pulse does not change. In ac-
tual practice, because of damping, there will be some change in form. The pulse form travels
with a constant velocity. The same remarks can be made about any wave disturbance or wave

0 X
O’ (moving with v) Xo X+ Axg £ —>
Att,
X
X x+ Ax
u, — ) O' (moving with v) §—

k.
- y

Figure 15.3 Pulse in a rope traveling to the right and viewed by an observer
moving with velocity v along an axis parallel to the rope.
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motion. Thus we may define it as follows:

Wave motior: is a disturbance that propagates itself with constant velocity without chang-
ing its form or pattern.

Suppose a pulse or disturbance is traveling along the +X-axis with constant velocity v.
Now we view this pulse from the &-axis, which is moving with velocity v along and parallel to
the X-axis. Furthermore, if the origins of the X-axis and é-axis coincide at t = (0, we may write

E=x—u (15.44)

Thus, to an observer in the £ system, the form and position of the disturbance remains un-
changed; that is, the disturbance has such a time dependence that it is a function of ¢ alone. Thus
the wave propagating to the right is

u(x,t) = & =fix — w) (15.45)

where f(§) is a completely arbitrary function. Equation (15.45) guarantees that it is a wave trav-
eling to the right. Thus, as # increases, x must increase so that & remains constant; hence f{£) rep-
resents a wave traveling to the right. Similarly, we define

n=x-+u (15.46)
and a wave propagating to the left is given by
ulx,t) = g(n) = gx + w) (15.47)

where g(7) is another arbitrary function. Once again, as ¢ increases, x must decrease so that
is constant, and then g(m) represents a wave propagating to the left. fand g given by Eqs. (15.45)
and (15.47) are referred to as wave forms and represent the most general type of one-dimen-
sional motion.

By direct substitution of f and g from Eqgs. (15.45) and (15.47) into Eq. (15.12), we can
show that these satisfy the wave equation.

The general expression for u is a combination of two functions, one of which depends only
on £ and the other only on 7; that is, the sum of the two linear functions of ¢ and 7 [individual
functions f(£) and g(n) are also solutions as long as they are linear] is

ux,n) =f(&€ + gn) = fix —v) + glx + v (15.48)

Thus the most general solution of the wave equation, Eq. (15.12), is given by Eq. (15.48) or any
other /inear combination of f{¢) and g(7). That Eq. (15.48) is a general solution is consistent
with the fact that the general solution of a second-order differential equation contains two ar-

bitrary functions.
Let us now proceed to evaluate these functions using initial conditions; that is, at r = 0,
u=uyx) and u = uyx) (15.49)
gives u(x, 0) = fix) + gx) = uylx) (15.50)

[ au‘l [ df dg1
and { J = [— vty fJ lig(%) (15.51)
=0 t=0

ot d¢ ' dy




626 Vibrating Strings and Fluids Chap. 15

Att = 0, § = n = x, and Eq. (15.51) takes the form

d .
va [—fx) + g()] = ug® (15.52)
which on integration gives
L.
0 + g =~ f i) dx + C (15.53)
0
where C is a constant of integration. Adding and subtracting Egs. (15.50) and (15.53), we obtain
1 1.
fx) = {uo(x) - = f (%) dx — c} (15.54)
2 v Jg
1 1.
glx) = 5 uy(x) + ;j uyx)dx + C (15.55)
0

Since these solutions hold for any value of x, we may replace x by £ or m. Also, the constant C
may be dropped because it may be eliminated in linear combinations of solutions. Thus

1 1 (¢,

Ao = 5[%(6) ~ fo uy(6) dg] (15.56)
1 1,

g(m) = 2[“0(71) + » fo RG] dn] (15.57)

Our next step is to see the connection between the general solution obtained in this sec-
tion and those in the previous section concerning vibrations of strings. The partial differential
equation Eq. (15.12) was separated into two differential equations, Eqgs. (15.21) and (15.22);
that is,

d’X 2

pE) + % X=0 (15.21)
0

‘;7 + 0’® =0 (15.22)

Instead of writing the solutions in the form of sines and cosines as given by Egs. (15.23) and
(15.24), we may write the solutions of these equations in the following alternative form:

X(x) = Cel@n 4 Deitux (15.58)
) = Ee™ + Fe~'o (15.59)

where C, D, E, and F are the constants to be determined from the boundary conditions. Thus the
general solution will be of the form

ux, ) = X(x)0@) = Ae* @M= e

= Ae +i(wh)(xtut)

(15.60)
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where A is a constant. This states that the general solution u(x, #) is a linear combination of the
following terms:

* i{wl)(xEvr) (15.61)

Note that these solutions already contain the quantities that are functions of x + vf and x — vz.
By taking the real part or by adding the complex conjugate and dividing by 2, we obtain the
solutions

u(x, ) = A cos %(x — w) (15.62)
u(x, 1) = A cos %(x + o) (15.63)

and by adding the imaginary parts or subtracting the complex conjugate and dividing by 2i, we
obtain

u(x, 1) = A sin %(x — ) (15.64)

u(x, 1) = A sin %(x + ) (15.65)

The solutions containing x — v represent waves traveling to the right. While those containing
x + vt represent waves traveling to the left. These solutions do not satisfy the boundary condi-
tions because they represent traveling waves down the string or medium.

Furthermore, these equations are not satisfied by only one particular value of —?; many
more are possible. Thus the general solution is not only a linear combination of harmonic terms
given by Eq. (15.60), but also must be summed over all possible frequencies. Thus the most gen-
eral solution is

u(x, f) = DA, e (15.66)

Once the boundary conditions are known, the constants can be evaluated in a manner similar to
the case of evaluation of coefficients in infinite Fourier series. For our discussion, we shall write
the solution in the following form, it being understood that the complete solution is summed
over all frequencies:

ux, 1) = Ae'“MeTw (15.67)

The quantity &, called the propagation constant or angular wave number or simply wave
number (number of waves per unit length) has dimensions of reciprocal length and is defined as

(15.68)
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Thus the wave equation for X, Eq. (15.21) and its general solution Eq. (15.67) take the forms

d’x

— 4+ kX =0 15.69

P ( )
and u(x, 1) = Ae™ w0 = ppitx=wn) (15.70)

If vis the frequency of vibration so that @ = 27w, then the wavelength A is defined as the dis-
tance for one complete vibration of the wave

2 2
A== 2T (15.71)
v 27y W

Combining this with Eq. (15.68), we get
k= — (15.72)

Let us see what happens if we superimpose two waves, both of the same frequency and
amplitude, but one traveling to the right and the other to the left. Thus
u=u + u, = AP + Ae'Er (15.73)
u = 2Ae " cos kx (15.74)
The real part of this equation yields

u(x, t) = 2A cos kx cos wt (15.75)

This wave has the property that it does not propagate forward with time. This superposition of
waves leads to the formation of standing waves. There are certain points where there is no mo-
tion at all because of the cancellation of one wave by the other. Such points are called nodes.
Since at nodes no motion is possible, no energy is transmitted from one side to the other; hence
the pattern is named standing waves. From Eq. (15.75), we can obtain the condition for the po-
sition of the nodes to be

x=Qn+ 1): = @n+ 1) % (15.76)

Before concluding this section, let us talk about phase velocity and dispersion. To start, let
us say that we have a wave motion of a single wave (or frequency) given by Eq. (15.70):

u(x, t) = Ae'&— " (15.70)
The quantity kx — wt is defined as the phase ¢ of the wave represented by u(x, ); that is,

¢ = kx — ot (15.77)
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The wave pattern or form will remain unchanged in time if ¢ remains constant. For ¢ to remain
constant, we must have

d¢p=0 or kdx —wdt=0 (15.78)

That is, we define the phase velocity v, to be the velocity with which the wave pattern travels;
it is given by

dx w
B T Y (15.79)
That is, for a simple wave the phase velocity v, is equal to the wave velocity v. This is not true
in general. The phase velocity is usually a function of frequency; that is, in a given medium the
phase velocity is frequency dependent, v, = v,(k). Such a medium is called a dispersive medium.
In a dispersive medium the phase velocity is not equal to the wave velocity. (As an example, for
electromagnetic waves in a given refractive medium, the velocity of the waves is a function of
the wavelength.) Thus, in such cases, the wave pattern is modified; it does not remain constant.
But even such a pattern will appear unchanged to an observer who is moving with a velocity v,
given by (w being a function of k)

v, = % (15.80)

where v, is called the group velocity.

15.4 LAGRANGE FORMULATION OF A VIBRATING STRING:
ENERGY AND POWER

If we calculate the kinetic energy and potential energy of a vibrating string, we can set up the
Lagrangian L and the Lagrange equations; hence we can calculate the normal modes of a vi-
brating string. Furthermore, we know the total energy stored in the string and also the rate at
which the energy is being transferred from one portion of the string to the other.

Let us reconsider the vibrating string shown in Fig. 15.1, which has length L and is fixed
at both ends. As shown in Fig. 15.1(b), the element of length dx when in equilibrium is stretched
to length ds when vibrating. The tension in the string is 7 when it is vibrating. Thus the amount
of potential energy stored in this vibrating element of the string is, assuming the potential en-
ergy to be zero when the string is unstretched,

dV =T(ds — dx) = T(j—s - 1) dx (15.81)
x

d a 27172
where ﬁ - [1 + (?Z) ] (15.82)
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Substituting this in Eq. (15.81), assuming du/dx < 1, and using the binomial theorem for ex-
pansion, we obtain

T {du\?
dv = (‘“) dx (15.83)

Thus the total potential energy stored in the string may be obtained by integrating Eq. (15.83);
that is,

L P 2
y= T J (“) dx (15.84)
2 Jg \0x

The mass of an element of length dx is w dx; hence its kinetic energy is (in order to avoid
confusion we will start using K for kinetic energy instead of T, which we are using for tension)

1 ou\?
dK = —wdx|l— 15.85
5 M x(ar) ( )

while the total kinetic energy of the string is obtained by integrating Eq. (15.85):
L 2
M Ju
K= - —] d 15.86
2 L (at) * ( )

To evaluate V and K, we make use of the solution given by Eq. (15.30),

u(x, ) = ® (#) sin 9vﬁ (15.87)

where O.() = A,cos wt + B, sinwyt (15.88)

and we have used the relation given in Eq. (15.29),

narv nir T
= —— = — [ — 15.29
o= =T\, (15.29)

Thus, from Eqs. (15.87) and (15.29), we obtain (for all solutions)

U T nmx

=X ® cos — 15.
ox L;::ln , COS I (15.89)
W _ S G sin I (15.90)
ar =t )

Substituting Eq. (15.89) into Eq. (15.84), we get

2T @ o . L
V= 15 2 2 (nm(“)n@mf cos mcos @dx) (15.91)
2L n=1m=1 0 L L
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On integrating, we find that only those terms are nonzero for which m = n, and each of these
terms on integration yields L/2. Thus

w = 1% 2’ 39 s (15.92)
4L ;=

Similarly, substituting Eq. (15.90) into Eq. (15.86), we obtain
o @ L
S (@n@)m f sin 77 gin X dx) (15.93)
2 n=1m=1 0 L L

Once again, on integrating we find that only those terms are nonzero for which m = n, and each
of those terms on integration yields

L )
k=3 @ (15.94)

while the Lagrangian of the system may be written as

ad T
L= =1 2 ( e — o n293,) (15.95)
Note that the potential energy is the sum of quantities of the form A, 2, and the kinetic energy
hao tarme of the fo D o2 The | aerangian equati
11AD LCLLLLD UL LIv lUllll D Un. LIV A 5 ans ail i uauvuo
d L oL
—N =) =0 15.96
il 26~ 6. 1599
take the form
2
.. T
6, + ~ 310, =0 (15.97)
ML

where 0, is the dependent variable and # is the independent variable. The solutions of these yield
the normal coordinates ®,. Since n varies from 1 to o, the number of normal coordinates for a
vibrating string is infinite.

It is now a simple matter to write the total energy E by using Egs. (15.92) and (15.94):

1 & : T 22
E=K-+ V—ZE ,LLL@n—O-Tn 62 (15.98)

Since L. = M (the mass of the string), and from Eq. (15.29),

2 2
pl’el ML
T= = 15.99
f’l2'7'T2 7’127T2 “n ( )
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and, using Eq. (15.88), we may write Eq. (15.98) in the form

_M

E= i [wiA; + B (15.100)
=1

4n

where A, and B,, are constants (see Problem 15.16).

Finally, let us calculate the rate of flow of energy, that is, power £, delivered from the left
to right across any point x along the string. To calculate power, we make use of the definition
that P = Fu, where F is the magnitude of the driving force F. F is equal in magnitude to ten-
sion T and must be applied in a direction tangent to the string. Thus the component of F in the
direction of transverse displacement at point x is

:
F,=~Tsinf=-Ttanf=~T (15.101)
dx

while the component of velocity u at the point x is du/dt. Therefore,

. au\ [0
P=Fg= (— T—“)(l) (15.102)
ox/\ ot

The value of P can be evaluated by using the values of du/dx and du/dt given by Egs. (15.89)
and (15.90), respectively.
Let us calculate P for a particular case. Consider a wave traveling to the right and given by

u= flx —v) = (15.103)
Suppose fis a sinusoidal function of the form
u=fé&) = Acos(kx — wit) (15.104)
Evaluating ou/dx and du/ot and substituting in Eq. (15.102) yields
P = ko TA® sin’(kx — o) (15.105)

Since the average value of sin’(kx — ) is % the average power P transmitted from left to right
will be

(P) = JkwTA” (15.106)

15.5 SYSTEM OF PARTICLES: THE LOADED STRING

In previous discussions we considered an idealized string that is characterized by its linear mass
density u. Actually, a string is made up of a finite number of particles. We can view the situa-
tion as a number of identical particles each of mass m placed at regular intervals on an elastic
string, as shown in Fig. 15.4(a). There are N particles where the equilibrium distance between
adjacent particles is d, and the attractive force between adjacent particles is 7. Thus the length
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f— L=N+1d ﬁf

(a)

(b

Figure 15.4 (a) A large number of identical particles each of mass m placed at
regular intervals constitutes an elastic string. (b) Transverse displacements of
point masses.

of the string, as shown, is L = (N + 1)d. Such a string is tied at both ends and is horizontal when
in equilibrium. We are interested in investigating a small transverse displacement and hence the
oscillations of the particles about equilibrium positions.

Consider small vertical displacements of particlesj — 1, j, andj + 1, each of mass m, and
vertical displacements u;_, u;, and u;,,. Assuming the displacements to be small means that the
angles a; are small, and the slopes are small; hence we may replace sin a; by tan «,. For a small
displacement, the resultant X component of the force on the jth particle is

_ o~ 1 2 2y
Tcos a;_; + Tcos o =3 T(aj_1 o) = 0

The resultant Y component of force on the jth particle for small displacements may be written as

Fy=—-Tsina;_| + Tsine; = —Ttane;_, + Ttan o
U, — U; Ui — Uy
= 1% AR S 15.107
p d ( )
. d’u;
Since F,=mi =m dT‘zj (15.108)

the equation of motion of the jth particle is (F; = F))

" ap d

If the number of particles is taken to be very large, we may then assume the string to be smooth
and write

@ — T(uj+1d— ‘uj — uj — uf']) (15.109)

u(jd, t) = uj(t) = u(x, )
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while the linear mass density is w = m/d. Thus Eq. (15.109) takes the form

d2uj T (Hj+1 — U i — uj—l)
= — 15.110
¢ pd\ d d ( )

Before proceeding to solve Eq. (15.110), we shall show that it represents a wave equation.
For the right side of Eq. (15.110),

1(uj+1 . uj—l) _ 1 [(%) - (3“) } = (62”) (15.111)
d d d d L\OX )+ 1 OX )~ 12 ox’ d .

Substituting in Eq. (15.110), we obtain the familiar wave equation

&%u 1 0%
S > =0 15.12
o 7 or 112
Let us look at Eq. (15.110), which describes the motion of the jth particle, and try to find
a possible solution. Let

T

g = 0 (15.112)
and write Eq. (15.110) as the general wave equation:
ih; + 200w, — @iy, +u,) =0 (15.113)

Since these are N particles, we can write a set of N differential equations, each being similar to
Eq. (15.113). Note that we have assumed that u, = Oand 4;,; = 0.

Before solving the general equation, Eq. (15.113), we shall first consider some simple
cases. Suppose there is only one particle; that is, N = 1. Then Eq. (15.113) takes the form

— o+ 2wpu; = 0 (15.114)

which represents transverse harmonic motion of a single particle oscillating with an angular fre-
quency of \/iwo. This situation is shown in Fig. 15.5(a). If we had two particles, thatis, N = 2,
Eq. (15.113) would yield

d’u
thl + 2wiu, — wFZ,MQ =0 (15.115)
d’u
?1}2_2 + 20l — &lu; = 0 (15.116)

These are coupled equations, similar to those for two coupled oscillators or pendula, having the
same natural frequency ;. Thus there are two normal modes for N = 2. The lower mode has
an angular frequency @ = @, and the higher mode has an angular frequency @ = V3w, as
shown in Fig. 15.5(b)(i) and (ii), respectively.

Let us go back to Eq. (15.113) and try to find the normal modes of oscillation for N par-
ticles. Basically, we apply the same technique as used for two particles. For each normal mode,
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@A N=1

o =\ 2w,
G N=2

@ = 0y

Lower frequency mode

(b)

({yN=2 Figure 15.5 Normal modes of
» =1/3w, vibration for (@) N = 1, and (b) N =
Higher frequency mode 2 particles.

we seek a sinusoidal solution so that each particle oscillates with the same frequency. Let such
a solution be

ult) = A;cos o, j=123....N (15.117)

where A; and w are the amplitude and frequency of the jth particle. We could have equally started
with a solution of the form

u(n) = Ae™ (15.118)

(see Problem 15.23). Thus, if we know A; and w, a set of differential equations for Eq. (15.1 13)
can be solved. Furthermore, a solution of the type given by Eq. (15.117) assumes that each par-
ticle has zero velocity at ¢ = 0. This is obvious if we differentiate Eq. (15.117), which gives

du:
V= —apsinet, j=123..N (15.119)

Thus, if t = 0, L'tj = 0. Substituting the trial solution, Eq. (15.117), in Eq. (15.113), we obtain
(—0? + 20DA, — of(Am, +ALD =0, j=1,23... N (15.120)
which is equivalent to the following set of equatiohs:

(—w? + 2004, — (A, + A =0
(—w? + 20)A, — oiA, + Aj) =0

(—0® + 20DA;, — of4;_, T AL) =0

(—w® + 20))Ay — Wf(Ay_, T Ay 1) =0 (15.121)



636 Vibrating Strings and Fluids Chap. 15

To have a nontrivial solution, the determinant of the coefficients in Eqs. (15.121) must be zero.
That is,

(— 0>+ 2a}) — o 0 0 0
—wg (—o* + 2w)) — W} 0 0
0 — (—o* + 20}) — ) 0 - 1=0
0 0 - wg (—0?+20}) —w]

(15.122)
For N = 1, we get
l—0? +20%0| =0 > 0= \/_2_0)0
For N = 2, we get

2
(—w® + 2a?) —w;

=0
—w(z) (—? + 263)

which gives the frequencies of the two normal modes to be
w=w o w= \/gwo

These are the results we predicted. This method is simple enough for calculating the frequen-
cies of normal modes as long as we are dealing with a small number of particles. For a very
large number of particles, this method is cumbersome. The following alternative approach is
desirable.

Let us refer back to Eq. (15.120). The requirement that both ends are fixed leads to the
boundary conditions

Ay=0 and Ay, =0 (15.123)

The existence of normal modes, that for each mode all particles vibrate with the same frequency,
imposes certain restrictions on the ratios of the amplitudes. Equation (15.120) may be written as

A+ A —w’ + 20k
mt DAL T TS 12,3, N (15.124)

2 b
A y W

Since for a given mode ” is constant, the right side is constant. Thus, if A;_; and A, are given,
A; . can be evaluated. For example, if Ay = 0 and A, is given, A, can be calculated.

Furthermore, Eq. (15.124) implies that since the right side is constant the left side must be
constant. Let us not forget that we want to get the value of @’. A neat method of doing this is to
assume the following form of a solution for A;:

A; = Csin j# (15.125)
where 0 is some angle. With similar expressions for A;_;, we may write

+ A, = Csin(j — D)6 + Csin(j + 1)8 = 2C sin j& cos 8 = 2A; cos 8 (15.126)

A

j—1
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which may be rewritten as
A.

J
The right side is independent of j. Thus, if we could evaluate 6, we would have the value of the
constant needed for 2 cos 6, which we can substitute in Eq. (15.124) and thus evaluate w. To do
this, we make use of the boundary conditions that A; = 0 for j = O and j = N + 1. From
Eq. (15.125), we see that if j = 0 and for j = N + 1, A, will be zero only if (N + 1)01is an inte-
ger multiple of 7 that is,

= 2cos 8 (15.127)

(N+ 1)6 = n, n=1,2,3,... (15.128a)
nar
= 15.128b
or 6 Nt ( )
Substituting this in Eq. (15.125),
A= Csin( L ) (15.129)
N+1

Using Eqs. (15.124), (15.127), and (15.128), we get the frequencies of the possible normal
modes:
Aj—l + Aj+] N _(1)2 + 2(,()(2)

ni
=2 15.1
A o COS( N+ 1) (15.130)

Therefore, the relation for the frequencies of the normal mode (independent of j) is ob-
tained by solving for w?*:

niw . nar
w? = 2w(2)|:1 - COS(N n 1)] = 4(06 sz(Z(N-i—l)) (15.131)
Taking the square root, we have the required frequencies:
w = 20, sin(L) (15.132)
AN+ 1)

From Eq. (15.112), substituting the value of w,, and since different values of » correspond to a
different normal mode with the corresponding frequency, we may replace w by w, and write

the normal mode frequencies as
T nm
=24/ sin{ - 15.1
R Sm(z(zv + 1)) (15.133)

The same type of procedure can be carried out for the longitudinal oscillations where 7/d
is replaced by £, the spring constant. After replacing 7/d by k. Eq. (15.133) yields the frequen-
cies of the two normal modes of two coupled oscillators after substituting N =2 and n = 1, 2.

For all practical purposes, we have solved the problem of N coupled oscillators. We must
look closely at the motion these equations describe so that we can obtain a physical interpreta-
tion of the situation. To describe the displacement of the jth particle when a collection of N par-
ticles is oscillating in the nth mode, Eq. (15.117) must be written in the following form:

u;, = A, Cos w,t (15.134)
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where A, is obtained by substituting Eq. (15.128b) in Eq. (15.125) and replacing A, by A;, and
Cby C,, we obtain

” N+ 1

A;, represents the amplitude of the jth particle in the nth mode of the system, w, represents the
frequency of the nth mode and is given by Eqs. (15.135) or (15.133); that 1s,

A, =C, sin( 2T ) (15.135)

) nir
w, = 2w0 Sln(m) (15.136)
The solution given in Eq. (15.134) assumes that at time ¢ = O the particle is at rest. But this dif-
ficulty can be overcome and any arbitrary initial conditions can be satisfied by adding a phase
factor ¢,; that is,

Wy = A, cos(w,t — ob,) (15.137)

First, we would like to know the number of possible normal modes. We shall now show
that for N oscillators there are only N independent modes; that is, n = N and the corresponding
amplitudes and frequencies are A;, and w,. For modes beyond n = N, that is, forn = N + 1,
N+ 2,...,and so on, the preceding equations do not lead to new physical situations. We shall
show that for values greater than n = N the amplitudes and frequencies of the normal modes re-
peat themselves.

Figure 15.6 shows a plot of mode frequency w, (always taken to be positive) versus mode
number n [for convenience written as n/2(N + 1) instead of n]. If we substitute n = O or N +
1 in Eq. (15.135), the amplitude factors A;, turn out to be zero. These values of n are called null
modes. For n = 1 ton = N, we have N different characteristic frequencies as discussed, reach-
ing a maximum value of w_,, = 2w, from Eq. (15.136), forn = N + 1, because sin(7/2) be-
comes 1. But for this maximum value of the characteristic frequency, the corresponding ampli-
tude for n = N + 1 from Eq. (15.135) is zero. Let us calculate the characteristic frequency for

the mode n = N + 2. From Eq. (15.136), we get

AN+ D7 ) Nm ) N7
Wy, = 2wy sin| —————| = 2wy sinf7m — | = 2aysin| | = wy

2N + 1) 2N+ D 2N + 1)
That is, Wy, = Wy
Similarly, Wyyy = Oy
wN+4 - wN—ZV (15 138)

Thus there are only n = N number of independent modes; for any further values of n, the modes
repeat themselves.

The same is true for the amplitudes as well; that is, the relative amplitudes of the particles
in a normal mode repeat themselves. That is, from Eq. (15.135)

Aj(N+2) = AjN
Ajw+zy = Ajn-

Ajwray = Ajn-2)
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Figure 15.6

Three frequency spectrums are shown below:

(a) the graph of the mode frequency  versus the mode number n,
(b) the graph of the square of the mode frequency o versus n, and
(¢) the graph (b) for N =5 (string loaded with 4 masses).

. ) n:=0..100 N:=5 jELLN tF] ®0 =2
Equation (15.136) gives the J

frequency of the n modes n-x

o =2 w0 sin|
n 2:(N+1)

max(w) =4
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o, =3.464 o) =12 TN
b) (c) Showing only a small region of (b)
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15 /.-/

)210 /

0 12.5 25

Note that n = 2N + 2 gives the next null mode. Thus there are only N distinct modes, and if n
increases beyond N, it simply duplicates the normal mode for smaller N. The conclusion of this
discussion is illustrated in Fig. 15.7, which shows the normal modes of a vibrating string for
N = 12. Note that n = 13 is a null mode, while modes for n = 14, 15, 16, 17, 18 repeat the pat-
tern of n = 12, 11, 10, 9, 8 with opposite sign. The sinusoidal curves represent the variation in
the amplitude A;, for various values of n. One must be careful to note that the frequencies of
these sine curves have no relation to the frequencies of the vibrating particles.
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Figure 15.7

Below the normal modes of a vibrating string for N = 12 particles are shown.
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Let us now discuss specific modes of vibrations, assuming that there is a large number of
particles N. The particle displacement corresponding to the mode n = 11s, from Egs. (15.134)
and (15.135),

_ T
u; = C,sin N

T 1)005 wt, j=123...,N (15.139)

This equation implies that at any given time the C, cos w;t factor is the same for all particles,
while the displacements of different particles are given by the factor sin[j7/(N + 1)]. The bold-
face curve in Fig. 15.8(a) is a plot of sin[j#/(N + 1)] versus jforj = Oto N + 1 and gives the
amplitudes of different particles. As time passes, the particles have different displacements and
oscillate with frequency ,, as shown in Fig. 15.8(b). The dotted curves give the positions of
the particles at different times. For the n = 2 mode, the situation is as shown in Fig. 15.9, where
the amplitudes are given by the boldface curve, while the dotted curves give the positions of the
particles vibrating with frequency w,; that is,

T :
ujz = C2 sin N cos Cl)zt, ] = 1’ 2’ 31 e 7N (15.140)

+1

(a)

Figure 15.8 (a) Plot of sin[j#/(N +
)] versusj forj = 0to N + 1 shown
by the boldface curve (for seven parti-
cles). (b) The dotted curves give the po-
sitions of the particles at different times
vibrating with frequency ;.

Figure 159 For n = 2 modes, the
amplitudes are shown by a boldface
curve, while the dotted curves give the
positions of the particles vibrating with
frequency ..
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15.6 BEHAVIOR OF A WAVE AT DISCONTINUITY: ENERGY FLOW

As an example of discontinuity, consider two semi-infinite strings of different linear mass den-
sities tied together at x = 0, as shown in Fig. 15.10. The string that extends over —o < x < 0
has a linear mass density u,, and the wave traveling along this string has a velocity v,, while the
string that extends over 0 < x < oo has a linear mass density u,, and the wave traveling along
this string has a velocity v,. Let the tension in the string be 7. We want to investigate the effect
of a sudden change in density at x = 0 on a continuous harmonic wave.

Let an incident wave traveling from the left for x < O be represented by

u; = A;cos(tkix — wt) (15.141)

where A, is the amplitude of the incident wave, k, = w/v,, v, being the wave velocity. When this
wave reaches x = 0, the point where the two strings join (the point of discontinuity), part of the
wave is reflected back along the first string, while the remaining wave is transmitted. The re-
flected wave is represented by

up = Ag cos(kx + wr) (15.142)
where A is the amplitude of the reflected wave. The transmitted wave is given by
ur = Apcos(kx — wr) (15.143)

where A7 is the amplitude of the transmitted wave and k, = w/v,, v, being the velocity of the
wave on the second string to the right of x = 0. It may be noted that we could have used solu-

tinno ~f tha Fallagrinag Farm:
LU Ul uIu lUllUWllls 1uiinn.
u; = Re A=) (15.144)

where Re stands for the real part of the expression.

Our aim is to evaluate the reflected and transmitted amplitudes Ag and A7 in terms of the
incident amplitude A,. This can be done by imposing the boundary conditions that at the junc-
tion of the two string (x = 0) the displacement u and its derivative du/0x must be continous.
These are the continuity conditions and are valid for any other types of wave motion, such as
sound waves. The first condition satisfies the requirement that there is no break in the string,

Y
A
HR
-
Ur
—_—
4
> . o
iy Figure 15.10 Two semi-infinite
-——— —————>  strings of different linear mass densities
-X # x=0 tied together at x = 0.
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while the second condition implies that the restoring force resulting from a displacement y is
the same on each side of the junction. If this were not true, then a finite force acting on a van-
ishing small mass element would produce an infinite acceleration. Thus the boundary conditions
may be written as

(u; + oo = 17]cp (15.145)
d d d
and (”1 + i"ﬁ) - (—‘ﬁ) (15.146)
ox x /i, 0X /|=o
Using Eqgs. (15.141), (15.142), and (15.143), the continuity of u, Eq. (15.145), yields
A+ A=A, (15.147)
while the continuity of du/dx, given by Eq. (15.146), yields
k(A — Ap) = kA (15.148)
Solving these two equations for A,/A; and A;/A,,
A k, —k
E=—2 (15.149)
A 2k
T = (15.150)
A,k Tk

Since kK = w/vand v = V T/u, we may write these results as

Ap _ 0=y _ L v (15.151)
A oyt Vi, + Vi,
Ar_ 2w 2V (15.152)
A vty \//*Tl T Vi,

It is clear that the ratio A/A, is always positive; hence the transmitted wave is always in phase
with the incident wave. If the second medium is lighter, v, > v, or w, < u,, the ratio Ag/A, will
be positive; hence the reflected wave will be in phase with the incident wave. On the other hand,
if the second medium is denser than the first, v, < v, or, g, > u,, Ag/A; will be negative. This
means that the refiected wave is out of phase by # with respect to the incident wave. This type
of behavior is typical of many kinds of wave motion.

The intensity, the rate of energy flow, for any type of wave motion is proportional to the
square of the amplitude. For this purpose, we define the reflection coefficient, R, to be the frac-
tion of the incident energy that is reflected back; that is,

2 _ 2 _ 2
r = (%@) (’ﬁ_&) _ (M) (15.153)
I

k, + k, v, + v,
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While the transmission coefficient, T defined as the fraction of the incident energy that is trans-
mitted, must satisfy the condition

R+T=1 (15.154)

4v,v,

m (15.155)

or Ts|1—R‘E

(Note: From Eq. (15.153), R becomes larger and larger as the difference between v, and v, be-
comes larger, while correspondingly 7 becomes smaller.]

Finally, let us calculate the rate of energy flow dE/dt across the junction at x = 0. This is
equal to the work done by the adjacent portion of the string on the particle at x = 0 and is equal
to the product of the restoring force — 7(du/dx) and the velocity of the particle du/dt both eval-
uated at x = (. Then

dE
. (— T%) (@f) (15.156)
dt 0x/,-g\0t /),y

If we want to calculate the energy transmitted to the left of the string at x = 0, we let
w=u t u,
= A, cos(k;x — wf) + A, cos(kx + wi) (15.157)

Substituting this in Eq. (15.156), we get

dE
(dt) = wk,T(A7 — A2) sin* wt (15.158)

Similarly, if we use
u = up = Apcos(kyx — wr)
in Eq. (15.156), we get energy transmitted to the right as
dE 2 in2
— | = wk,TA7sin” wt (15.159)
dt /.

Since the average value of sin? wt over one complete cycle is 5, we may write Egs. (15.158) as

dE 1 , 1 ,
o = JokTA} = ok TA; (15.160)

where the first term on the right is the mean rate at which the energy is incident on the junction,
whil= the second term is the mean rate at which the energy is reflected back. Similarly, the mean
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rate at which the energy is transmitted, from Eq. (15.159), is

dE 1
- = —wk,TA2 15.161
[(dt )+:|ave 2"’ ? r ( )

This is the net rate at which the energy is supplied to the junction from left to right (see Prob-
lem 15.28).

15.7 SOUND WAVES: LONGITUDINAL WAVES

So far we have been dealing with transverse waves in solids. These waves consist of crests and
troughs. We now start with the discussion of sound waves, which are basically longitudinal in
nature and consist of compressions and rarefaction. Sound waves can travel in solids and fluids
(liquids and gases) and propagate in general in three dimensions. For simplicity, we will deal
with sound waves in fluids traveling only in one dimension, say along the X-axis. We use a sim-
ple procedure using the results derived already.

We showed that the net upward force acting on a small element of length of a string is,
from Eq. (15.101) (replacing F, by F),

F= _T(Lu (15.162)
ox

while the upward velocity at a point of such an element is

,_ o

- 15.163
= ( )

Note that u is the particle velocity and is not to be confused with the wave velocity v. Also, from

Eq. (15.9),
3*u a8 [ du
o= (T 15.
pdxE = o (T ax) dx (15.9)
Using the preceding three equations, we can show
oF u
e (15.164)
ar ax
ou 1
and e _ _1OF (15.165)
ot Mm Ox

Equation (15.164) states that the time rate of change of F is proportional to du/dx (= the dif-
ference in the velocities at the ends of the line segment divided by the length of the line seg-
ment). Equation (15.165) states that the acceleration of the string is proportional to dF/dx (= the
difference in the forces at the ends of a line segment divided by the length of the line segment).
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We can conclude that, for a small amplitude, for the quantities F and u, the time rate of change

of either is proportional to the space derivative of the other.
Starting with Egs. (15.164) and (15.165), and taking derivatives,

oF on 9°F a%u
RE— .__Ti’ _— = —

ot dx or* at ox
di_ 1oF ok _ 13
ot w ox’ dx ot Mo0xt

Combining these equations, we get

9°F 1 92 T
LA =5 15.166
o 2 U\ (15.166)
0% 1 d%u

and, similarly L (15.167)

x> v af

Thus, instead of writing the usual wave equation, Eq. (15.12), where the displacement u(x, f) is
the variable, here we have two wave equations with F and u as the two independent variables.

As an application of Eqgs. (15.166) and (15.167), let us consider plane sound waves trav-
eling in air in the X direction. This will be equivalent to, as an example, sound waves traveling
in an organ pipe. In Eq. (15.166), F is replaced by p, the pressure in excess of atmospheric pres-
sure, while u represents the velocity of the volume element of air at any point, u by p, the den-
sity of air, and T by B, the bulk modulus. Thus Eqgs. (15.164) and (15.165) take the form

ap du

=—-B— (15.168)
ot ox
ou 1
and o __lop (15.169)
dt p ox
Both p and u satisfy the equations
%p 19
Y = 15.170
ax* v af ( )
ou 1 9%
— 15.171
PERNIPE: (117D
B
where v= \/7 (15.172)
p

The power transmitted in the X direction from left to right may be written as (making use
of the definition P = Fu)

P =pu (15.173)
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Note that p is pressure in excess of atmosphere pressure, while u is the particle velocity (and
not the wave velocity).

Suppose a pipe of infinite length and cross-sectional area A is placed along the X-axis.
When air (or any other fluid) in the pipe is undisturbed, the pressure at any point is py and the
mass density is p,. If the pressure changes to p = p, + Ap while the density changes to
p = p, + Ap, then according to the definition of the bulk modulus, B, we may write

Ap dp. B 1

or — (15.174)

B = -
Aplpy dp py Kpy

where K is the compressibility. Thus the velocity of wave propagation

B [1
v = \/l =2 = (15.175)
dp Po Kpy
This relation is good only for propagation of waves in liquids. In gases, the situation is
quite different. A small change in pressure will cause a considerable change in temperature. The
compressions and rarefactions take place so rapidly that there is no time for heat to flow out or

in; hence the process may be assumed to be adiabatic. For such situations, assuming an ideal
gas, we have the relation

p = Bp? (15.176)

where 1y is the ratio of the specific heat of the gas at constant pressure to the specific heat of the
gas at constant volume; that is, v = C,/C,. Combining the above equations and using the ap-
proximation |dn/dx| < 1, we get

d
P (15.177)
dp Po
Using the ideal gas equation,
RT
= 17
P=" P (15.178)

where R is the gas constant, M the molecular weight, and T the absolute temperature, and using
Eq. (15.177), we may write the wave propagation velocity to be, from Eq. (15.175),

Po M

which clearly indicates that the temperature 7 alone determines the velocity of the propagation
of sound waves in an ideal gas.

If we extend out discussion of sound waves to their propagation in three dimensions, we
get the following equations (as compared to Eqs. (15.170) and (15.171) for one dimension):

0’ _dp ,
e 15.1
o dt Ve (15.180)
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%p _dp _,
7F _* 15.181
o dt V’p (15.181)

where, for example, p = p(x, y, z, 1) = V{x, y, 2)0@) and ¥(x, y, 2) = X(x) Y(y) Z(2).

15.8 FLUID STATICS

A fluid is a substance that does not have a fixed shape. It consists of a continuum of matter and
will undergo a finite displacement when an infinitesimal shear stress is applied. A small volume
of a fluid can be treated as a continuum if it contains such a large number of molecules that the
average distance traveled by molecules between collisions is much smaller than the size of the
volume of the fluid. Fluids are characterized by physical and mechanical properties, such as den-
sity, pressure, temperature, and velocity. Both liquids and gases are fluids, but there are funda-
mental differences between the two. Liquids are not easily compressed and hence may be con-
sidered to have fixed volumes and densities. This is not so with gases, which can be easily
compressed. Gases do not have any fixed shape; they simply fill up any container. Liquids do
not have any definite shape, but they do have a distinct surface.

Hydrostatics or fluid statics deals with fluids at rest and Aydrodynamics or fluid dynamics
deals with fluids in motion. If the fluid flow is time independent, it is said to be steady. The fluid
flow is laminar or streamlined if different layers of fluids move past each other with no mixing.
If mixing between layers takes place, the flow is said to be turbulent.

In this section, we limit our discussion to fluid statics, while fluid dynamics will be in-
vestigated in the following sections. Newton’s laws and conservation laws will be applied to flu-
ids, since after all fluids are merely a collection of a iarge number of particles.

Let us consider a fluid in static equilibrium. Thus each elemental volume of fluid is at rest
and the velocity at each point in the fluid is zero. We now discuss two characteristics of fluid
statics: (1) A fluid exerts equal pressure in all directions, and (2) pressures at equal depths are
the same.

Consider a very small triangular prism, as shown in Fig. 15.11. Let F, F,, and F, be the
forces acting on the three surfaces of areas A, A,, and A, respectively, as shown. These forces
must act normal to the surfaces. If any forces acted tangent to the prism surfaces, the fluid would
be set In motion, which is contrary to our assumption of a static fluid.

Thus the only forces acting are the normal forces and the weight W of the fluid. For equi-
librium, the forces acting in the ¥ and Z directions are zero. (We have assumed no forces along
the X-direction.)

DF,=Fsin6—F,=0 (15.182)

XF,=F,—Fcos6— W=0 (15.183)

If P, P,, and P, are the pressures (normal force per unit area) acting on the three surfaces, and
W = pgl(dx dy dz)/2], we may write Egs. (15.182) and (15.183) as

dx dz

P

sin@ — P dxdz =0 (15.184)
sin
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z 4r
o >
Y
Figure 15,11 Small fluid element (in
the shape of a small triangular prism) in
X static equilibrium.
dx dz dx dy dz
and Pdvdy ~ P "~ cosf— pg 7L =0 (15.185)
sin

where p is the density of the fluid and dx dy dz/2 is the volume of the prism. As dx, dy, and dz
go to zero, the last term in Eq. (15.185), the weight term, becomes negligible compared to the
pressure term. Hence, from the preceding equations, we conclude

P=P =P, (15.186)
__F_F, _F,

P = =2 =

A A A

which states that the pressure is independent of the direction; that is, pressure is the same in all
directions and is a scalar quantity. Equation (15.186) is the statement of Pascal’s law.

Let us now derive an expression for the variation of pressure with vertical position in a

static fluid. Consider an infinitesimal volume dx dy dz of fluid, as shown in Fig. 15.12. Since the

(15.187)

z

7 P(z + dz) dx dy

W= pgdxdydz

Figure 15.12 Infinitesimal volume
dx dy dz of a fluid in equilibrium.

P(z) dx dy
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fluid is in equilibrium, the sum of the forces in the Z direction must add up to zero; that is,

EFZ =P(2)ydxdy — P(z + dz)dx dy — pgdxdydz = 0 (15.188)

The second term, when expanded in a Taylor series about z to the first order, takes the form

dP
P(z + dz) = P(2) + 2 dz + - (15.189)
4
Substituting this in Eq. (15.188) yields
il A (15.190)
dz

which, on integration, assuming the fluid to be incompressible and P = Py at z = 0, gives
P(z) = P, — pgz (15.191)

Since z is taken to be positive upward, this equation states that P increases as z decreases. Also,
it states that the pressure at any depth of a column is equal to the sum of the pressure P, at the
top of the column and the weight of the liquid column.

An alternative approach to this treatment is the following. Let w = pg be the weight den-
sity, that is, the weight per unit volume acting in the direction of g. Consider two points 1 and 2
in a fluid where the pressures are P, and P, and separated by an infinitesimal distance dr. Let us
construct a right circular cylinder of cross-sectional area dA and length dr, as shown in Fig. 15.13.
The only forces acting on the cylinder are due to the liquid pressure and gravity. Since the lig-
uid is in equilibrium, the sum of the components of the forces along dr must be zero; that is,

P dA — PydA + w+drdA =0 (15.192)

where dr dA = dV is the volume of fluid inside the cylinder. Thus the differences in pressure AP
between the two points is

AP=P,~ P, =w-dr (15.193)

Figure 15.13 In a fluid, point 1 at
pressure P, is at a distance dr from
point 2 at pressure P,.
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If the two points 1 and 2 are located at distances r, and r,, then the pressure between the two
points is obtained by integrating Eq. (15.193); that is,

P,—P = J W - dr (15.194)

This line integral implies that the pressure difference between two points in a fluid depends on
gravitational forces and the spatial orientation of the two points. Furthermore, this equation
states that “any change in pressure at one point will be transmitted to every point in the fluid,”
which is the statement of Pascal’s law.

Integration of Eq. (15.194), assuming P; = Py at z = 0 and P, = P(2) is the pressure at a
distance z above point 1, yields (w * dr = — pg dz)

P(z) = Py, — pgz (15.191)

which is the same as Eq. (15.191). Thus, if at the surface of a lake or pond the atmospheric pres-
sure is P,[=1.103 X 10°Pa(1Pa=1 N/m?)], the pressure at a depth  below will be (z= —h)

P(h) = P, + pgh (15.195)

In Eq. (15.191), we have assumed that the density of the fluid is constant. This is not true,
especially in the case of gases. Thus, if there is a change in pressure, it will result in a change
of volume. If B is the bulk modulus of the gas,

dapP av daP

B=- or —=-—
dviv 14

(15.196)

2
i

The minus sign is due to the fact that as P increases V decreases. If m is the mass of a gas of vol-
ume V, the density is p = m/V. Hence

dv
dp = -nldVZp(—g)

oy %
dv d
or AL A (15.197)
4 p
Combining Eq. (15.197) with Eq. (15.196), we have
dp dP
@ _ < (15.198)
p B

For an ideal gas, the equation of state is

PV = nRT (15.199)

where n is the number of moles given by n = m/M, M being the molecular mass, R =
8.134 J/mol-K, and T is the absolute temperature of the gas. Thus

_m _ mP _MP
P~V " WRT RT

(15.200)
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Let us apply this expression for pin calculating the variation of pressure in our atmosphere
as a function of altitude z. From Eq. (15.190), substituting the value of p from Eq. (15.200)
yields

dp Mg
e = _pp=_-%p 15.201
p P8 RT ( )

Thus, if Py is the pressure at sea level, integrating Eq. (15.201) yields
P(z) = Pye Me/RDz (15.202)

We may define, providing the temperature remains constant, for an isothermal atmosphere, the
atmosphere scale height H as

RT
H = M7g (15.203)
Thus Eq. (15.202), the atmospheric pressure variation with z, takes the form
P(z) = Pe ™™ (15.204)
while the variation in the density takes the form
p(2) = pe ™ (15.205)

Thus H may be defined as the distance in which the density or the pressure decreases by 1/e of
its initial value. Note that, for a constant density, Eq. (15.204) reduces to the familiar expression
for P(2). Assuming zto be small, so that p will not change, expanding Eq. (15.204) yields, [using
Eq. (15.201)],

zZ zZ V4
P(2) =PO(1 -+ ) =Py = Py = Py~ pgH = P, — pgz

Archimedes’ Principle

Let us consider the weight of a fluid of volume V, so that

w=f£fde=f£fpgdv (15.206)

Since the fluid is at rest, the weight (or force) is balanced by the forces of pressure exerted by
the surrounding fluid on the surface of this volume; that is,

F, = f f A Pda (15.207)
S
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For a fluid at rest F, must be equal and opposite to W; that is,
sz—w=-fffpgdv=—pgv (15.208)

Thus the buoyant force F, on a volume Vin a i;/uid is equal to the weight of the fluid inside the

volume V. This is Archimedes’ principle, which states that the buoyant force on a body immersed
in a fluid is equal to the weight of the volume of the fluid displaced.

15.9 FLUIDS IN MOTION

The study of fluids in motion can be divided into two parts: fluid kinematics and fluid dynam-
ics. We shall first investigate kinematics. There are two approaches, both suggested by Euler, by
which fluids in motion may be investigated. The first approach is the direct application of New-
tonian mechanics to a system of particles. Time 7 is considered to be the only independent co-
ordinate, and the coordinates (x, y, 2) are expressed in terms of the initial coordinate (x,, yg, 2p)
at time ¢, and time ¢. The resulting equations are called Lagrangian equations (this approach is
also called Lagrange’s method). The resulting equations are so numerous that this method of
keeping track of each fluid particle becomes cumbersome. The second approach, also due to
Euler, is equally cumbersome, but manageable.

According to the Eulerian system for fluids, we describe such properties of fluids as den-
sity p(x, y, z, 1), velocity v(x, y, z, 1), and pressure P, at different positions (x, y, z) and time ¢
along the path of the fluid. Thus we are focusing our attention on a point in space where the fluid
is flowing, instead of the fluid particles themselves. This leads us to define two different time
rates of change for any quantity such as p, v, or P. The partial time derivative (3/9t) is the time
rate of change of a quantity measured at a point fixed in space. The total time derivative is the
time rate of change of a quantity as measured with respect to a particle moving with the fluid.

As an example, for the velocity vector v,

v = v(x, y, 2) (15.209)
the change in velocity vector is given by
dv=vx +dx,y+dy,z+dz t +dt) — v(x, y,2t)

3 3 9 ]
=Y+ Dy + St + S (15.210)
ox ay dz ot

In the limit as dt — 0, we may write the total time derivative of v as

dv ov ov ov v
- = -_ IR + R

=, v, — tu, (15.211)
dt ax 7 ay 0z ot

Similarly, for the total time derivative of pressure P, we may write

dapP aP oP aP  oP
—— =y —tuv— tv,—+ (15.212)
dt ax Y 9y dz ot
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Quantities v,, v, and v, (= dx/dt, dy/dt, and dz/dt) are the components of the fluid velocity v at
any point (x, y, z) and time . Relations of the form of Eqs. (15.211) or (15.212) hold for any
quantity describing the fluid. These equations in concise form may be written as

dv av

— = Vv + — 15.213

dt V- Vv ot ( )

dP aP

— =(v- V)P + — 15.214
and dr (v-V) o ( )

From these two equations, we may reduce a common operator
d d
— =W -V)+ - 15.215
& (v-V) Py ( )

called the substantial derivative. This operator is applicable to both vector and scalar quantities.
We now apply these ideas by dividing our discussion into three parts:

1. Continuity equation
2. Equation of motion for an ideal fluid flow
3. Bernoulli’s equation

Continuity Equation

We can arrive at the continuity equation by applying the law of conservation of mass to a Euler-

ian system. Consider a small differential volurr’llekelement dx dy dz of fluid surrounding a point
(x, ¥, 2), as shown in Fig. 15.14. The velocities of the fluid at different faces are as shown. The

mass flowing in across face I (shown shaded) in the time dt is

dm, = p(x,y,z, O (x, y, z, t) dy dz dt (15.216a)

where p is the mass density, and v, is the x component of the velocity, which is normal to the
area dy dz. The mass flowing out from face II in time dt is

dmy = p(x + dx,y,z, Ou(x + dx, y,z 1) dy dz dt (15.216b)
Thus the net mass of the fluid leaving the volume element in the X direction is

dmy; —dm, = [plx + dx,y,z, Hv(x + dx,y,2,t) — p(x, y, 2, Hu(x, y, z, 1)] dy dz dt
(15.217)

Using the following expansions,

a 9 b ,t
Pxy.z0 L

pix t dx,y,z,t) = plx, y, z, 1) + 3
X

+ ..

a y y ’t
WD
0x

v(x +dx,y,z1t) = v yz1t)+
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v, (y)

dz
vix +4d

X

dy
v,(z + dz)

Figure 15.14 Motion of fluid across a small differential volume element
dx dy dz of fluid surrounding a point (x, y, z).

in Eq. (15.217) and neglecting the higher-order terms, we obtain
ap v,
dmy, — dm, = o U dxdy dzdt + p?dx dy dz dt (15.218)
X X

Applying the same procedure to the remaining faces, the net total mass leaving the volume el-
ement dx dy dz in time dt is

X

0 d d 0 d d
dm = (—ev +£v +—pvz+p~&+p-ﬂ+ p*gz)dxdydza’t (15.219)
dx dy 7 oz ax dy iz

This net mass leaving the volume element must be equal to the decrease in mass within the el-
ement So as to conserve mass; that is,

?
dm = — (a—’;) dx dy dz dr (15.220)

Equating Egs. (15.219) and (15.220), we obtain

ad ad ad Jv A v d
P+ Py + Py Dy O 0% 0P (15.221)
ax dy ¥ oz ax dy 0z ot

or, in vector notation, we may write this as
ap
Vepv+—=0 (15.222)

Equations (15.221) and (15.222) are the statements of the continuity equation and simply rep-
resent the law of conservation of mass. Matter is nowhere created or destroyed, and the mass
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density in any volume element dV (=dx dy dz) moving with the fluid remains constant. The
quantity pv is the mass flux (also called the momentum density or mass current), defined as the
mass of the fluid leaving the volume element in a unit time through a unit area. Thus Eq. (15.222)
states that the divergence of the mass flux leaving a volume is equal to the rate at which the mass
density decreases.

We now look at a further interpretation of Eq. (15.222). The mass flow can be determined
by integrating over a fixed volume V bounded by a surface A with outward normal n; that is,

fffv‘(PV)dV+fff?;dV=0 (15.223)
v v

We rewrite the first term by using Gauss’s divergence theorem, Eq. (5.129), and we can take the
time differentiation outside the second term because V is a fixed volume. Thus Eq. (15.223)
takes the form

JAf A - (pv)dA = —%f”pdv (15.224)

This equation states that the outward flow of mass across the surface is equal to the rate of de-
crease of mass inside the volume V.

For a steady flow, dp/0t = 0; hence the mass entering is exactly equal to the mass leaving.
Thus Eq. (15.224) takes the form

[8 - (mda=0 (15.225)
JA o
Furthermore, if in addition to a constant fluid density the velocity is constant at the flow areas
and is perpendicular to such areas, Eq. (15.225) yields

VA = pA, (15.226)
and if the fluid is incompressible so that p; = p,,
vA; = v,A, = constant (15.227)

That is, the volume flux vA is constant for incompressible fluid and steady flow.
Let us consider again the case for an incompressible fluid flow, that is, p = constant;
Eq. (15.222) takes the form

V:ev=0 (15.228)

We know that the divergence of the curl of the vector is zero. Therefore, v is derivable from a
vector potential ®. That is, if

v=VX® (15.229)
then V.- (VX®) =0 (15.230)

These equations are similar to the equations for vector potentials associated with magnetic
fields.
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In describing fluid flow, the curl of the velocity, V X v, is useful, as we explain now. Con-
sider the relation

”ﬁ -(VXV)dAzjgv-dr (15.231)
A

The expression on the left represents the integral over the surface area A of the normal compo-
nent of curl v, while the right side is obtained by using Stokes’ theorem [see Eq. (5.224)]. Fig-
ure 15.15 shows two examples of fluid flow, a vortex and a transverse velocity gradient. In both
examples, the line integral $v - dr is nonzero. Hence the curl of the velocity (=V X v) must be
nonzero. The quantity (V X v) may be considered to be a measure of the rate of rotation of the
fluid per unit area. In Fig. 15.15(a), the curl v has a nonzero value around a vortex. In
Fig. 15.15(b), even though there is no vortex and the fluid does not actually circle a point, but
because of the transverse velocity gradient, the curl v is nonzero. The fluid motion is said to
have rotational properties.

If the curl v 1s zero everywhere in the fluid, the motion is said to be irrotational. That is,
if about a given point

Vxv=0 (15.232)

the particles of the fluid will have no angular velocity about that point. Furthermore, if the curl v
is zero, then v is derivable from a scalar potential ¢. Since the curl of a gradient of a scalar is
zero, we must have

v=-V] (15.233)

VXVd =90 (15.234)

The equation represents the irrotational flow.

A
/‘—_c \ 4 ¢

\ b
@l

—_—
() (b)

Figure 15.15 Two examples of fluid flow: (a) a vortex, and (b) a transverse ve-
locity gradient. In both cases, V X v is nonzero; hence both have rotational flow.
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Equation of Motion for an Ideal Fluid Flow

Once again we assume that we are dealing with an ideal fluid; that is, the fluid does not support
any shear stress when in equilibrium. But any flowing fluid has viscosity, no matter how small,
and hence will have some shearing stress. Thus we assume that an ideal fluid will have no
viscosity.

A fluid in motion must not only satisfy the continuity equation, but must satisfy Newton’s
laws as well. Consider a fluid of volume dx dy dz, as shown in Fig. 15.16, for which the net force
acting on the body is not zero. Let us assume that, in addition to pressure, the fluid is acted on
by a general body force of f per unit volume. Thus the total body force acting on the volume el-
ement is f dx dy dz. The force due to the pressure on face I is p(x, y, z t) dy dz, and that due to
face Il is p(x + dx, y, z t) dy dz. Thus, applying Newton’s second law in the X direction,

dF,=f,dxdydz+ p(x,y,z,t)dydz — p(x + dx,y,z, ) dy dz

Expanding p(x + dx, y, z, f) to the first order in dx dy dz, we obtain

d
dF, = ( f - 5‘9 ) dx dy dz (15.235)
X
Also, from Newton’s second law,
d(mv) d
dF = — % = — dxdyd 15.236
T g (P drdy dz ( )
Equating these two equations, we get
ap d
- = — 15.237
fom gy T g4 (PY ( )

with similar expressions for the other two directions.

Zz

& e+ dd)

Figure 15.16 A fluid of volume dx dy dz on which the net force acting is not
zero. Besides pressure, the body force per unit is f.
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In vector notation, these three equations can be combined into one as
d
f—-Vp= -Jt (pv) (15.238)

Making use of the relation in Eq. (15.215), that is,

d ad
— =W :-V)+— 15.215
dt v-V) ot ( )
Eq. (15.238) may take the form
9
f=Vp = Vpm +_ (pv) (15.239)
1
or Woivewvs typ=t (15.240)
ot p P

Equation (15.238), (15.239), or (15.240) is Euler’s equation of motion for a fluid. The quantity
f/p is the body force per unit mass. If the density p depends only on pressure p, the fluid is said
to be homogeneous.

If the body force f is given, we still have five unknowns: density, pressure, and the three
components of velocity. The continuity equation and Euler equation provide us with four scalar
equations only. If the density (or one other unknown quantity) is known, the problem can be
solved.

Bernoulli’s Equation

The law of conservation of energy when applied to the motion of the fluid as given by the Euler
equation results in Bernoulli’s equation. The scalar product of Euler’s equation, Eq. (15.238),
with velocity vector v gives

d
f-v~vp-v=pd—:-v (15.241)

The product f - v (force per unit volume times velocity) is the power per unit volume supplied
by the body force f. The second term may be written as

9 op dy 9 9
_Vp.v:_lﬁ_ll_—p‘fiz—lerl (15.242)
dx dt dy dt oz dt dt ot

and the last term in Eq. (15.241) may be written as

dv _d 1l )\ _dfl 2)_12d_P
p ( U)_dt( pv 2v (15.243)

a Y P a2
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Thus Eq. (15.241) takes the form

dp op d (1 2) 1 ,dp
f-y— £ 4 2 2 - — —p? = 15.244
v dr ot dt 2pv 2v dr ( )

Since the fluid is incompressible (dp/dt = 0) and the flow is steady (dp/dt = 0), Eq. (15.244)
takes the form

f-v— . _ % (lpvz) = (15.245)

Now Euler’s equation is in a form that can be integrated. Multiplying both sides by df and inte-
grating, we get

1
f (£ v)dr = p — - pv* = constant (15.246)

The first term on the left is the work done by the body force per unit volume. If the body force
f is derivable from a scalar potential ® so that

f=—VO (15.247)

where @ is the potential energy per unit volume, we may write the first term in Eq. (15.246) as
W=f(f-v)dt=Jf-dr=f(—vq>)-dr=—cb (15.248)

Then Eq. (15.246) takes the form
p + 5 pv*> + ® = constant (15.249)

which is the general form of Bernoulli’s equation.
If the body force is the gravitational force, @ = pgz, Eq. (15.249) takes the form

p + 3 pv? + pgz = constant (15.250)

This equation, which is a statement of the conservation of energy, is known as Bernoulli’s equa-
tion and is applicable to steady flow of incompressible fluid in a gravitational field. The ﬁrst
term, pressure p, represents the work done per unit volume by the fluid, the second term 1 5 pv°
represents the kinetic energy per unit volume of the fluid, and the last term pgz is the potential
energy per unit volume of the fluid.

15.10 VISCOSITY AND VISCOUS FLOW

In previous discussions, we have assumed that the fluid was nonviscous; hence there was no fric-
tion between different layers of fluid when in motion. When adjacent layers of fluids are mov-
ing, the shearing force tends to reduce their relative motion. The existence of frictional force is
illustrated as follows.
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Figure 15.17 Velocity distribution in the case of viscous fluid flow.

Let us assume that the velocity of the fluid is in the Y direction. The fluid is flowing in lay-
ers that are parallel to the XY plane, as shown in Fig. 15.17, while the velocity v, is a function
of z only; that is, v, = f{z). Suppose plate A is in contact with the upper layer of a fluid and is
moving with velocity v in the Y direction. A constant force F is needed to maintain a constant
velocity, indicating the presence of a frictional force within the fluid. A layer that is in contact
with the moving plate moves with the velocity of the plate so that there is no relative velocity
between them. Similarly, a fluid layer next to a stationary layer will be at rest. That is, there is
zero relative velocity between the solid-fluid interface, leading to zero slip at these surfaces.

As shown in Fig. 15.17, the velocity gradient is v, /dz and is positive to the right. The vis-
cous friction produces a positive shearing stress F,, acting from left to right across an area A and
parallel to the XY plane such that the normal to this plane is parallel to the Z-axis. The coeffi-

cient of viscosity 1 is defined as the ratio of the shearing stress to the velocity gradient; that is,
F,/IA

== 15.251
K dv,/oz ( )

Actually, the presence of a velocity gradient implies the existence of a shearing force acting on
different layers of the fluid. Equation (15.251) takes a simple form if ¥, = F and dv,/dz = v/a;
thus

_PA

(15.252)
via

Ui

This definition implies a simple type of distribution in which the shear stress is propor-
tional to the first power of the velocity gradient. This is Newtonian flow. In most situations, flow
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is non-Newtonian and viscosity is a much more complicated function, resulting in a complicated
shearing stress. We shall limit our discussion to Newtonian flow and illustrate the preceding de-
finition by applying it to a laminar flow (fluid flows in layers) in circular pipes.

Consider a steady flow of fluid through a circular pipe of cross-sectional area A = 77},
where r, is the radius of the pipe. The velocity everywhere is parallel to the axis of the pipe. As
shown in Fig. 15.18, the axis of the pipe is taken along the Y-axis, and the velocity v, is a func-
tion only of the distance r from the axis of the pipe; that is, the velocity gradient is dv,/dr. Con-
sider a fluid cylinder of radius r and length L so that A = (27rr)L. Thus the force exerted on this
cylinder from the fluid outside this cylinder is

F = n(2mL) % (15.253)

The only forces acting on these fluids are the viscous force and the pressure difference AP be-
tween the two ends that are a distance L apart. In the absence of a body force and no accelera-
tion, the sum of these two forces must be zero; that is,

AP(mrH) + F=0 (15.254)
Substituting for F from Eq. (15.253) and rearranging, we get

dv, _ _ AP (15.255)
dr 2nL d )

We integrate this outward from the cylinder axis, assuming v = yyatr = 0,and v = vatz=r:

v, AP 7

fv R e (15.256)
AP

R wis (15.257)

If we assume that the fluid is at rest at the walls, that is, v, = 0 at r = r,, we get the maximum
velocity:

(15.258)

Figure 15.18 Laminar flow in a cylindrical pipe.
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Substituting this in Eq. (15.257) yields

AP
= — (- r? 15.259
Uy 47]L ( 0 r ) ( )

Since A = wr?and dA = 27 dr, the total fluid current 7 or mass flow through the pipe is
given by

1= pyaa=2m [ orar (15.260)
A 0

Substituting for v, from Eq. (15.259) and integrating, we obtain

I 4
L= %’z AP (15.261)
p 87

which is the statement of Poiseuille’s law. Equation (15.261) contains measurable quantities;

hence 7 can be calculated from it.

We can find the average velocity v of the fluid by using the definition of mass flow. Con-
sider the expression

puA = p j y, dA = mass flow (15.262)

Substituting for v, from Eq. (15.259), dA = 277 dr, and integrating from r = 0 to r = ry, we
obtain

AP
2qLry

U=

f "2 = Prdr— o Ap (15.263)
0 8L

which gives the relation between the pressure drop and the average velocity.

Laminar (Streamline) and Turbulent Motions

Let us now investigate the motion of an object in a fluid and its relation to frictional forces. Sup-
pose a sphere of radius r is moving with a small constant velocity v in a liquid of viscosity 7. It
is assumed that the velocity is small enough so that we can have a streamlined motion. Since
the sphere is moving with uniform velocity, the applied forces must be equal to the frictional
force F. We can evaluate F' by means of dimensional analysis. Let us assume that the frictional
force F is a function of r, v, and 7. Thus we may write

F = Kr'vby© (15.264)

where K is a dimensionless constant that cannot be evaluated from dimensional analysis. Sub-
stituting the dimensions of various quantities, we get

[MLT %] = [L]ILT "1°[ML 'T ']° (14.265)
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which gives
(15.266)

=}
Il
[yl
Il
o
1
—_

Hence
F = Krvny (15.267)

The value of K can be determined experimentally. This is done by measuring the force required
to pull a sphere of known radius through a liquid of known viscosity. X is found to be 6. Thus
Eq. (15.267) takes the form

F = 6mrvm (15.268)

which is known as Stokes’ law.
We can now discuss the motion of a small sphere falling through a viscous fluid at con-
stant velocity. According to Archimedes’ principle, the net weight of the sphere is

41
Fra = 5 r’(p, = p)g (12.269)

where p, and p, are the densities of the material of the sphere and that of the liquid, respectively.
This force must be equal to the frictional force given by Eq. (15.268). That is,

dm
bmrvm = = rips P

2
= B (o, — p)r? (15.270)

That is,
is v on

Thus, by measuring v, since all the other quantities are known, we can calculate 7. It is impor-
tant to remember that the preceding results are applicable only if the motion is laminar or
streamlined. For example, a stone falling through glycerine may have streamlined motion, but
not if falling through water.

Sir Osborne Reynolds found that, as the velocity of an object through any liquid increases,
there is a critical velocity when a sudden change from laminar motion to turbulent motion oc-
curs. This critical velocity v, depends on the density p of the liquid, its viscosity 7, and diame-
ter d of the cylindrical tube in which the liquid is flowing. Thus we may once again make use
of dimensional analysis and write

v, = R p*n’d* (15.271)

where R, is a dimensionless quantity called the Reynolds number. Substituting dimensions for
different quantities, we obtain

[LT'] = ML) ML~ ' T '}°IL)¢

which yields a=—1, b=1, and c¢c=—1
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Therefore, u =R, (15.272)
pd

and R, = P (15.273)
m

Thus, using cylindrical tubes, knowing d, p, and 7, we can measure v, and hence calculate R,.
Since the velocity of a liquid in a tube varies from a maximum along the axis to zero at the edges,
we must use average velocities over the whole cross section in order to calculate critical veloc-
ity. From his experimental work using the flow of liquids through glass tubes, Reynolds con-
cluded that the flow of liquids is laminar if R, < 2000, whereas the flow of liquids is turbulent
if R, > 4000. For a liquid where the predominantly viscous forces damp out any fluctuations,
Reynolds numbers have low values. On the contrary, if the viscous forces are significant,
Reynolds numbers will be large, indicating the existence of turbulent flow.

When an object is moving below the critical velocity v, the motion is laminar, and the
frictional force is caused by viscosity. As soon as the velocity is greater than the critical veloc-
ity, the motion is turbulent; eddies are set up in front of the moving object. The frictional force
now mainly depends on the pressure difference between the front and back of the object and
very slightly on the viscosity. Since the pressure difference depends on the cross-sectional area
of the object, we may write the frictional force as

F = KvipbA°© (15.274)
Once again dimensional analysis yields
F = KpAv* (15.275)

where K depends on the shape of the body and may have a value varying from 0.9 to 0.01.

PROBLEMS

15.1. Derive Eqgs. (15.34) and (15.35).

15.2. A string of length L and mass m is tied at both ends. The midpoint of the string is pulled a distance
h = L/10 in the vertical direction and released. Find an expression that describes the motion of the
string,

15.3. A untform string of length L and linear mass density g under tension T, is displaced initially

(h < L), as shown in Fig. P15.3. Find the general solution of the equation that describes the mo-
tion of the vibrating string and evaluate the coefficients by using initial conditions.

o

‘N
Figure P15.3
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154.

15.5.

15.6.

15.7.

15.8.

15.9.

15.10.

15.11.
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A uniform string of length L and linear mass density u, under tension 7, is initially in an equilib-
rium position but has a velocity given by

- 0<x<Et
v = ax, x 2

L
v=oa(x — L), E<x<L

where a is a constant. Find the general solution of the equation that describes the motion of the vi-
brating string and evaluate the coefficients by using initial conditions. Make graphs to describe the
nature of the vibrating string.

A string of length L and mass m is tied at x = 0 and the end x = L is tied to a ring that slides with-
out friction on a vertical rod. Show that the boundary condition at end x = L is (du/dx),.; = 0,
and find the normal frequencies and normal modes of vibrations. Make the graphs to describe the
nature of the vibrating string.

Find the general solution for the equation of motion and normal modes of vibrations of a string
with the following initial conditions:

. 3mx .
u{x, ) = A sin *L* and u(x,0) =20

A stretched string of length L and mass m is set into vibration by striking it over a length 24 at the
center. The situation is described by the following initial conditions:

ux,0) =0

14

W, 0) =0, forx< = —a mdx>§+a

(SR

Describe the motion of the string.
Calculate the characteristic frequencies and its amplitudes for different modes for a vibrating string
under the following initial conditions:

Ax(L — .
umm:i%fﬂ and  4(x.0) = 0

A string of length L and mass m, under tension T, is fixed at both ends. If the string is pulled in
such a way that it has a parabolic shape given by y = a(L — x)x and then released, investigate the
motion of the string by graphing different vibrating modes.

Consider a string of length L and mass m. The end x = L is tied, while at the end x = 0 a sinusoidal
force of a sin wyt (a and w, are constants) is applied. Find the solution in which all portions of the
string vibrate with the same frequency ey; that is, find the solution of the equation for steady-state
motion. Discuss the nature of vibrations by graphing.

Consider a stretched string of L and mass m tied at both ends. A force proportional to the position
of the string, that is,

. RTX
F(x, 1) = Fysin _L - cos wt

where n is an integer, is applied along the length of the string. Investigate the steady-state motion
of the string by assuming a similar dependence for u(x, ).
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15.12.

15.13.

15.14.

15.15.
15.16.
15.17.
15.18.
15.19.

15.20.

15.21.

15.22,

15.23.
15.24.

15.25.

15.26.

15.27.

Solve Problem 15.11 for a more general situation in which the applied force has the form F(x, t) =
Fo(x) cos wt, where Fiy(x) is zero at both ends of the string.

If the wave function u(x, £) = Ae"®*) is such that the quantities w and v are complex, while & is
real, then such a wave is damped in time. (Assume @ = « + i and v = u + iw, where «, 8, u,
and w are real.)

Solve Problem 15.2 (pulled L/10 at the midpoint) by superimposing waves flx — ¢z} and g(x + cf).
Draw wave forms at different time intervals.

Derive Eqs. (15.92) and (15.94).

Derive Eq. (15.100).

Evaluate P given in Eq. (15.102) by using Egs. (15.89) and (15.90).

Dertve Eq. (15.109) by first evaluating K, V, and L; then use the Lagrange equation.

In a vibrating string fixed at both ends, if p, is the generalized momentum conjugate to 6,, what is
the Hamiltonian function H?

Consider a uniform string of length L and linear mass density u, tied at both ends and under ten-
sion 7. A force of a cos wt (¢ and w being constants) is applied at x = L/2. Initially, the string is
at rest with its middle point having a displacement of &2 (=L/20). The retarding frictional force is
proportional to the velocity (= — bx) and acts all along the string. Find the solution of the motion
of the vibrating string for the underdamped case.

In Problem 15.20, suppose the string is vibrating in the nth mode. Calculate (a) the rate at which
the driving force is doing work, and (b) the average rate of doing this work.

Consider a string fixed at both ends and vibrating tn a viscous medium. The damping force on any
portion of the string is directly proportional to the velocity (=— bx). Show that the general solu-
tion of the motion of the vibrating string is satisfied by

X
ulx,t) = e “sin w( — t)
v

where « is a constant.

Obtain the solution of Eq. (15.113), starting with Eq. (15.128) instead of Eq. (15.127).

Show that the equations of motion for longitudinal vibrations of a loaded string are exactly of the
same form as transverse vibrations, provided we replace T/d by £, the force constant of the string.

Discuss the wave propagation atong a string loaded with two different types of particle masses that
alternate in their positions:

{ m,,  forjeven
m., =
! m,,  forjodd

Show that the w — k curve has two branches in this case.

Consider the situation discussed in Problem 15.5, where the right end of the string is attached to a
ring around a vertical rod. Once the string is set into vibration, discuss the reflection of waves from
the right end for (a) a massless and frictionless ring, (b) a ring of smali mass and little friction, (¢) a
ring of small mass and large friction, and (d) a very heavy ring.

Suppose, in Section 15.6, the incident wave in coming from the right and meets a junction between
two strings of different densities. Calculate the relative amplitudes and intensities for the reflected
and transmitted waves. Also calculate the energy being transmitted from one string to the other,
and vice versa.
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15.28.

15.29.

15.30.

15.31.

15.32,

15.33.

15.34,

15.35.

15.36.

15.37.

15.38.

15.39.

15.40.

15.41.
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In connection with Eq. (15.161), show that this is the rate at which the energy is supplied to the
junction from left to right.

Consider a infinitely long string, as shown in Fig. P15.29. For x < 0 and x > L, the linear mass
density of the string is u,, and for 0 << x < L, the linear mass density is @, ( > w,). A wave of am-
phitude A, and frequency w is incident from the left side. Find the reflected and transmitted inten-
sities at A and B. How do these values change for a relative change in the values of u, and u,?

“y(Zpy) B ~y

RS
e >

0 x=L
Figure P15.29

A stretched string of infinite length is under tension 7. A wave of frequency w and velocity w/k is
incident from the left. Calculate the reflected and transmitted amplitudes when mass M is attached
(a)atx = 0. and (b) atx = L.
An electrical transmission line has a uniform inductance L per unit length and a uniform capaci-
tance C per unit length. Show that the alternating current / in such a transmission line satisfies the
wave equation
2, 2;

9*; = *15 L 'l, where v = 1/\/L—C

ax v ar
Show that the spherical wave p = f{r — vf)/r satisfies the longitudinal wave equation for sound
waves.
Consider a right circular cone of half-angle ¢, height 4, and mass density p,. The cone is floating

it

in a liquid of density p,. Show that the cone will be in stable equilibrium only if the vertex points
vertically upward. Determine the frequency of small oscillations for this system.

We know that the density of air in the atmosphere varies with the altitude. Let us assume that the
density is constant and equal to 1.3 kg/m?, that is, the density at standard temperature and pressure
at sea level. What would be the total thickness of the atmosphere?

For an incompressible fluid, if two components of velocity are given, how would you determine
the third? If v, = 3x”y’z” and v, = x’y’2%’, calculate v,.

Rewrite Euler’s equations (15.238) and (15.240) for the motion of the fluids in cylindrical polar
coordinates.

Rewrite Euler’s equations (15.238) and (15.240) for the motion of the fluids in spherical polar
coordinates.

Show that the velocity v for an ideal incompressible fluid that experiences irrotational flow may be
derived from a scalar potential satisfying Laplace’s equation; that is, V¢ = 0, where v = —V ¢.
Using Gauss’s divergence theorem where appropriate, write (a) the continuity equation in integral
form, and (b) Euler’s equation in integral form.

Consider a sealed cubical container half filled with water and half with air. A small hole is made
in the base of the container. Determine the velocity of efflux of the water as a function of the wa-
ter level. How does this compare with the results obtained for an open container? You may assume
that the water is incompressible and that the entire process is isothermal.

A container of cross-sectional area A and height H is filled with an ideal incompressible fluid. The
fluid is drained through a small hole of cross-sectional area a. Calculate the time required to drain
half of the fluid.
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The velocity distribution v for an incompressible fluid in a turbulent flow through a circular pipe
of radius r; is given by
( . r ) 177
v=1l 1 — -
Q ro

where v is the velocity at the axis. Calculate the volumetric flow rate.

Using Euler’s equation, Eq. (15.240), derive an expression for the conservation of angular momentum.
The function ¢ = ¢/r, where c is a constant and 7 is a distance from a fixed point, satisfies Laplace’s
equation V2 ¢ = 0 except at » = 0. Discuss the nature of the fluid flow if ¢ represents the veloc-
ity potential.

A circular pipe of length ! and radius r;, open at both ends, is held vertically. Air is blown across
the top open end. What is the differential equation for the sound waves set up in the pipe? Using
the appropriate boundary conditions, determine the normal modes of vibrations along the axis of
the pipe.

Repeat Problem 15.45 if the lower end of the pipe is closed.

Show that the force F resulting from the fluid viscosity may be written as

F=ffnvv-dA
A

Calculate the body force f, that is, the force per unit volume.

Find the increase in the density of water 30 m below the surface of a lake. The bulk modulus of
water is 2 X 10* atm and its density is 1000 kg/m>. For each 10-m depth, the pressure increases by
1 atm.

Let P, be the pressure at sea level and P at the top of a column of air A meter in height. Assuming
a uniform temperature of T K, show that log, P, — log,q P = C[H/T], where C is a constant. As-
suming pressure at sea level to be 1.013 X 10° N/m? and the density of air at 0°C to be 1.29 kg/m®.
Consider a streamlined flow of water. At some fixed point, the velocity of the water is 60 cm/s and
the rate of change of velocity with distance is 12 cm/s/cm. Calculate the acceleration of the water
at the fixed point.

A horizontal tube 20-cm long and 1.0 ¢cm in diameter is connected at one end to a water tank whose
constant-level height is 2 m. Calculate the coefficient of viscosity if 500 cm?® flows through the tube
in 5 min.

Consider a horizontal capillary tube of length L and radius R connected to an airtight vessel of vol-
ume V. Air escapes from the vessel through the capillary tube, and in time f the air pressure reduces
from P, to P,. If the atmospheric pressure is P, show that the coefficient of viscosity is given by

(P = P)(P, + Py)
¢ (P2 — PO)(Pl + PO)

(Hint: Consider a small section of a capillary tube of length dx where pressure is P, and then inte-
grate over the whole length and use Boyle’s law.)

Using the expression derived in Problem 15.52, calculate the coeflicient of viscosity for the fol-
lowing data: L = 1 m, R = 0.05 m, V = 0.5 m*, the original pressure is 81 cm of mercury, the fi-
nal pressure after 30 s is 79.5 cm of mercury, the atmospheric pressure is 76 cm of mercury, and
the temperature is assumed to be constant throughout.
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15.54. Assuming a Reynolds number of 1200 for a cylindrical pipe of 2.5-cm radius, calculate the criti-
cal velocity of (a) water and (b) glycerin, both at 20°C.
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