Gravitational Force and Potential

10.1 INTRODUCTION

In this chapter we shall investigate Newton’s universal law of gravitation and its application. We
introduce the concepts of gravitational field intensity (or simply gravitational field) g and grav-
itational potential V. We calculate these quantities for different mass distributions by applying
Newton’s law of gravitation. Gauss’s laws will be applied to calculate g and V for simple sym-
metrical mass distributions. Finally, gravitational field equations will be introduced, which are
differential equations satisfied by functions such as g and V. These equations provide a more
general procedure of interest.

10.2 NEWTON’'S UNIVERSAL LAW OF GRAVITATION

Newton’s universal law of gravitation (which is a law of force), together with Newton’s laws of
motion, has been applied by physicists to predict and calculate very precisely the motion of the
planets, moons, satellites, and other objects in the universe. in 1666, 23-year-old Isaac Newton
stated the universal law of gravitation in the following form:

Newton’s Universal Law of Gravitation. The gravitational force (or interaction) of at-
traction between any two objects in the universe is directly proportional to the product of
their masses and inversely proportional to the square of the distance between them.

Thus the magnitude of the force F' between any two objects of masses m; and m; separated
by a distance 7; is given by

- (10.1)
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M Figure 10.1 (a) Gravitational forces

between two masses m; and m;.
(b) Gravitational force on mass m due
(b to mass M.
where G is the gravitational constant; its presently accepted value is
G = (6.673 = 0.003) X 10" N-m?/kg? (10.2)
Referring to Fig. 10.1(a), we may write the law in vector form as

F,=G"00 T = g™y, (10.3)

)
rij r,-j rij

where F; is the gravitational force by which mass m; is attracted by mass m;, r; = r; — r; is the
distance between the two masses m; and m;, and F; is the force by which m; is attracted by mass
m;. According to Newton’s third law, we have

F,= —F,
£l = 7, = F = 65" (10.4)
From Fig. 10.1(b), mass m is attracted by mass M with a force F; we may write
F = —Gﬂﬁn a, (10.5)

where the unit vector @, is in the direction from M to m. The minus sign indicates that F is the
force of attraction with its line of action passing through a fixed point on the line joining the two
masszs. Thus the force is directed toward the center of mass M, and the gravitational force is a
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central force. The preceding equations are applicable to the situation in which the masses may
be considered point masses. This is possible only if the dimensions of the masses are negligible
compared to the distances between them.

Let us consider a point mass m at P attracted by an extended body of mass M, as shown
in Fig. 10.2. To calculate the force on m at P, we must assume that the gravitational field is a /in-
ear field. That is, the force at P may be calculated by the vector addition of the individual forces
produced by the interactions between the point particle m and the large number of particles in
the extended body. The force dF between m and a small element of volume dV" of mass dm is

mr‘fm i (10.6)
where dm = p(r) dV', p(r) being the density. The force F acting on m due to the extended body
of mass M may be obtained by integrating Eq. (10.6); that is,

F=—f G
v

where V' indicates integration cver the whole volume. If the extended body is a thin shell that
has a surface density or area density o so that dm = o dA, we may write

dF = -G

m’:z(r) 6 dv' (10.7)

r

r) .
F:-fcm ) & da (10.8)
L7
where A indicates the integration over the whole area. If the extended body is a line source with
a linear mass density A so that dm = A dL, we may write

Ar) L
F=—J ¢"™ " 5 ar (10.9)
. r

r

P
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Figure 10.2 Gravitational force on
mass m at P due to an extended body of
X mass M and volume V'.




390 Gravitational Force and Potential Chap. 10

If the extended body is replaced by a large number of discrete masses m,, nt,, ms, . . ., m;, the
force on mass m may be written as

F=-3G mr’;” 0 (10.10)

where i is the unit vector in the direction along the line joining m; and m.

According to Eq. (10.7), the system of forces acting on different portions of the extended
body due to mass m at P has a resultant force F acting along a line through the mass m. Ac-
cording to Newton’s third law, the force acting on m is —F, as shown in Fig. 10.3. On this line
of action of F, we locate a point CG at a distance » from m at P such that

M
F= G’% (10.11)

Under these conditions, the gravitational force between the body of mass M and the particle of
mass m is equivalent to a single resultant force F acting on M at CG and —F acting on m at P.
The extended body behaves as if all its mass is concentrated at CG. The point CG is called the
center of gravity of the body of mass M relative to the point mass m at P. If the position of m at
P changes, so will the position of CG. In general, CG does not coincide with the center of mass
of M; it may not even be on the line joining the center of mass of M with P. The center of grav-
ity will coincide with the center of mass under the following conditions: (1) If the mass m is far
away from M, the gravitational field will be uniform, different parts of the body will be acted on
by the same force, and the center of gravity will coincide with the center of mass; (2) for a sym-
metrical body, such as a uniform sphere, its center of gravity coincides with its center of mass.

We will encounter another complication if the mass m is also an extended body. In such
cases Egs. (10.6) and (10.7) must be rearranged, which will involve integrals of both m and dm.

Figure 10.3  Center of gravity CG of
an extended body of mass M relative to
mass m at point P.




Sec. 10.3 Gravitational Field and Gravitational Potentiai 391

10.3 GRAVITATIONAL FIELD AND GRAVITATIONAL POTENTIAL

As stated before, a gravitational force is a central force; that is, it is a purely radial force pass-
ing through a given point, the center of force. Furthermore, the gravitational force is spherically
symmetric, that is, the magnitude of the force depends only on the radial distance from the cen-
ter of the force and not on its direction. We shall show that spherically symmetric central forces
are conservative; hence the sum of the kinetic energy and the potential energy is constant. Con-
versely, if a central force field is conservative, it must also be spherically symmetric. (Note of
caution: A force that is conservative may or may not be both central and spherically symmetric.)

Suppose a particle of mass m is under the action of a spherically symmetric central force
F with its center of force at O, as shown in Fig. 10.4. In this situation, the force F has only a ra-
dial component F,, which is a function of r only and may be written as

F. = F(r) (10.12)
The work dW done by the central force F when m undergoes a small displacement ds, as
shown, is
dW =F -ds = Fdscos @ (10.13)
But dscos 6 = dr

where dr is the change of the radial distance from O when mass m undergoes a displacement
ds. Thus

aw = Fdr (10.14)

Since the magnitude of the force F depends only on 7 the total work done in going from A to B,
as shown in Fig. 10.4, will be

Wy = f F(r) dr (10.15)
Z A !
A
F
° ds \¢
Ty
r dr o
B
¥
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Y

Figure 10.4 Work done by a central
force F when a mass m is displaced

X from point A to point B.
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Since this integral and hence the work done depend only on the initial and the final values of r
(not on the path itself) the spherically symmetric force must be conservative.

Once we know that the force is conservative, we can proceed to define a potential energy
function U(r) of an object in such a spherically symmetric central force field. Thus, in going
from A to B, the change in potential energy of an object is

AUZ%*%z—mer (10.16)

A

From Eqgs. (10.15) and (10.16), we obtain
Wyp=—-AU=—(Ug— Uy (10.17)
But the work done is also equal to change in kinetic energy; that is,
Wi =Ky — K, =—(Ug— Uy (10.18)
Thus, if £ is the total energy, Eq. (10.18) yields
K,+U, =K, +Uy,=F (10.19)

which 1s the law of the conservation of energy.
Since the gravitational force is an inverse square law force,

C
F) = fir) =5 (10.20)
where C is a constant. Substituting this in Eq. (10.16), we get
TB C
%—m:—Lﬁm
which on integration gives
1 1

B T4
As is usually done , we define U, = 0 when r, — o and U, = U(r) where rz = r; thus
we get

Ulry = (: (10.22)

which states that the potential energy of a particle in a central force field is a function of the dis-
tance r from the force center. The constant C is negative for attractive forces and positive for re-
pulsive forces. Since the gravitational force is attractive and has the general form

GMm C
T = 2 where C = GMm (10.23)

F(r) = —
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the potential energy of m in the field of M at a distance r from M is

U = - Qfﬁ (10.24)

If M is a continuous mass distribution of arbitrary shape, the potential energy of m at a dis-
tance r is

UG = — j Gmepte) gy (10.25)
v r
To make the preceding three equations independent of m: (the test mass), we introduce the con-
cepts of gravitational field and gravitational potential.

The gravitational field intensity, or gravitational field vector, or simply gravitational field,
g, is defined as the force per unit mass exerted on a particle in the gravitational field of mass M.
That is,

F GM
g=—=——"1u, (10.26)
m r
or, for an extended body of mass M, we may write
Gp(r) .
[ GG v (10.27)
Vf rz

where g has the dimensions of force per unit mass, that is, acceleration. The magnitude of this
gravitational acceleration on the surface of Earth is approximately 9.8 m/s.

Whenever there is a conservative vector field, as is the gravitational force field, we can al-
ways introduce a gravitational potential (which is a scalar quantity) to represent this field, pro-
vided certain conditions are satisfied. The condition required is that the curl of the vector field
g must be zero. Since g is proportional to 1/¢2,

curlg = VXg=0 (10.28)

(as proved in Chapter 6). This condition will also be satisfied if g is equal to the gradient of a
scalar; that is,

g = —gradV = -VV (10.29)

(remembering V X VV = 0), where V is called the gravitational potential and has the dimen-

sions of energy per unit mass. Since g is only r dependent, V will be only r dependent. Substi-
tuting for g from Eq. (10.26) into Eq. (10.29), we get

GM , 4V,

a, = i
P dr '
which on integration gives

Vi) = — QFM (10.30)
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It is not necessary to have a constant of integration in Eq. (10.30) because we assume that
V(r) 5 0asr— o,
The gravitational potential due to a continuous distribution of mass M may be written as

Vir) = — f GO (10.31)

v r

We may summarize this discussion as follows:

Force:
F= _f ¢™0 & v (10.7)
v r
Potential energy:
G.
U = — f Gmp) (10.25)
v r
Gravitational field:
G A
S (10.27)
NS
Gravitational potential:
V(r) = — f Selm) e (10.31)
v T
Also,
F = mg (10.32a)
U=mV (10.32b)
g=—-VV=—gradV (10.32¢)
F=-VU= —grad U (10.32d)

Whenever a mass m is placed in the field of M, it is conventional to speak of the potential en-
ergy of mass m even though such potential energy resides in the field and not in the mass itself.

10.4 LINES OF FORCE AND EQUIPOTENTIAL SURFACES

The lines of force and equipotential lines in two dimensions and equipotential surfaces in three
dimensions are very helpful in visualizing a force field. Let us consider a mass M that produces
a gravitational field in the surrounding space and that may be described by the gravitational field
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Field lines

Potential lines

V(r)

Figure 10.5(a) Gravitational field
lines (boldface lines) and equipotential
lines due to a sphere of mass M. The
graph shows the relative value of V(r)
Versus 7.

vector g. We start from an arbitrary point and draw an infinitesimal line element in the direction
of the vector g at that point. At the end of this line element, we draw another line element in the
direction of g at this new point. We continue this process, and when we join these small line el-
ements, we obtain a smooth line or curve called the line of force or force field line. We can draw
a large number of such lines in the space surrounding a mass, as shown in Fig. 10.5(a). [See also
Fig. 10.5(b).] These lines start from the surface of a mass and extend to infinity. For a single
mass point, the force lines are straight lines (or radial} extending to infinity as shown. This is
not true in all mass configurations and may be very complicated. For example, Fig. 10.6 will
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Figure 10.5(b)
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show potential curves resulting from two unequal masses. The force field lines will be perpen-
dicular to potential curves at every point.

This picture of the lines of force may be used to describe the direction and magnitude of
the field vector g. A tangent drawn at any point to the field line gives the direction of the force
field (of F or g) at that point. The density of these lines, the number of lines passing through a
unit volume (the volume being small, but including the point), gives the magnitude of the vec-
tor field g at that point. No two field lines cross each other because g is a single-valued func-
tion; that is, it has only one value at any given point. It may be pointed out that these field lines
have no real existence, but give a vivid picture depicting the properties of the force field.

We now seek to investigate the relation between the force field lines and the gravitational
potential lines. Suppose we know the gravitational potential V in the space surrounding a mass.
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Since the gravitational potential V is defined for each point in space and is a single-valued func-
tion, we may write

V=Vxvy2 (10.33)

Suppose we join all the points having the same value of gravitational potential V. The equation
representing these points is

V= V(x,y,2z) = V, = constant (10.34)

This is the equation of a surface, called an equipotential surface. We can draw a surface for each
different value of V;, hence resulting in a large number, or a whole family, of equipotential sur-
faces. In a two-dimensional case instead of equipotential surfaces, we get equipotential lines.
Once again, since V(x, y, z) is a single-valued function, no two equipotential surfaces or lines
will cross each other. Suppose we move a mass m from one point to another point on an equipo-
tential line. By definition, no work will be done. This leads us to the conclusion that the lines of
force are everywhere perpendicular (or orthogonal) to the equipotential lines. This is true be-
cause g = —VYV; it means that g cannot have a component along an equipotential surface be-
cause V is constant. Thus every line of force must be normal to the equipotential surface, as
shown in Fig. 10.5(a). We shall elaborate on this point shortly. Meanwhile, Fig. 10.6 shows
equipotential lines resulting from two masses M, and M,. The equipotential surfaces in this case
are defined by the equation

M M.
L+ J\ = constant (10.35)
i r,

v=—q
\

Consider a mass at point P and let it be displaced a distance ds. The change in its poten-
tial energy, which is equal to the work done, is given by

dU= —F -ds = —F, ds (10.36)

where F is the component of the force in the direction of the displacement ds. Equation (10.36)
may be written as

F,=- a (10.37)
ds

This equation states that the component of ¥ in dany direction is equal to the negative rate of
change of potential energy with distance in that direction. The right side of Eq. (10.37) is called
the directional derivative because its value will depend on the direction of ds relative to F. For
example, consider two equipotential energy lines Uy and U, + AU or two equipotential lines V,,
and V;, + AV, as shown in Fig. 10.7. If we move form P to Q, which is on the same equipoten-
tial line, dU/ds will be zero. But if we move from P to R;, R,, or R on a different equipotential
line, dU/ds will be different for different paths, such that dU/ds > dU/ds,, dU/ds,, . . . . In this
case, dU/ds is maximum when ds is the shortest and hence perpendicular to the equipotential
line at that point. The particular direction for which dU/ds is maximum in the direction of the
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Figure 10.6

Below is a graph of the gravitational potential lines (only three are shown drawn)
due to two nearby unequal masses located at the center of the circles (not shown).
The force field lines, not shown, are perpendicular to potential lines at every point.
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line of force, and the maximum magnitude of dU/ds is the magnitude of the vector force at that
point. The maximum value of dU/ds and its direction is called the gradient of the potential en-
ergy and is equal to the force F; that is,

F=—gradU (10.38)
Since F = mg and U = mV, we may write
g=—gradV=—-VV (10.39)
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V,+ AV

Figure 10.7 Gradient of the potential energy. The magnitude of the gradient is
AU/As.

10.5 CALCULATION OF GRAVITATIONAL FORCE AND
GRAVITATIONAL POTENTIAL

We shall start by calculating the gravitational force between a uniform spherical shell of mass
M and a point mass m. We shall show that any spherical shell may be treated as a point mass lo-
cated at the center of the shell. Actually, this is true for any uniform spherically symmetric dis-
tribution of matter. In any of these situations, instead of calculating the force (which is a vector
quantity), it is easier to calculate gravitational potential (which is a scalar quantity). Once the
gravitational potential is known, the gravitational force may be calculated from it. We shall elab-
orate on both these procedures.

Spherical Shell

Consider a thin uniform shell of mass M and radius R, as shown in Fig. 10.8. A particle of mass
m is placed outside the shell at point P a distance r (r > R) from the center of the shell. We
divide the shell into a large number of circular rings like the one shown shaded in the figure.
We can calculate the force between one of these rings and mass m and then sum over all the
rings. As shown in the figure, the width of the shaded ring is R d6, while the radius of the ring
is R sin 0, The circumference of the ring is 27R sin 6, while the area dA of the circular strip or
shaded ring is

dA = (27R sin §)R d8 = 27R? sin 6 d6 (10.40)
If o is the density per unit area of the material of the shell, then the mass of the whole spherical
t shell is
M
M = (47RH)o, o = - (10.41)

while the mass dM of the shaded ring is

: dM = o dA = o27R? sin 0460 = % sin 0 d6 (10.42)
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Figure 10.8 Gravitational force between a point mass s and spherical shell of
mass M and radius R.

Point Q, or any other point on the shaded ring, is at the same distance s from the point mass m
at P. The force dF; on m due to any small section of this ring, such as at Q, points toward that
section [see Fig. 10.8(b)]. This force can be resolved into transverse component dF; sin ¢.
which is perpendicular to PO, and another component dF; cos ¢, which is parallel to PO. Due
to the symmetry of the situation, all the transverse components resulting from considering the
whole ring add up to zero, while the force components parallel to PO due to the whole ring add
up to give

Gm dM
&2

dF = > dF, =,

or, substituting for dM, we have

cos ¢ (10.43)

_ GMm

dF 22 sin 8 df cos ¢ (10.44)
§
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The force due to the entire shell is
mGM 9 de
F= de f GMmsin 66 < 4

0d6
or F = GMm f cos d’“f (10.45)
S

From triangle OPQ, using the law of cosines, we obtain
s2=7r>+ R?—2rRcos @ (10.406)
Since r and R are constants, differentiation yields
2s ds = 2rR sin 6d6 (10.47)
and, similarly, from the same triangle OPQ, we obtain

R?= s>+ r? — 2srcos ¢

or cos ¢ = B (10.48)

Substituting for sin 6 d6 and cos ¢ from Eqs. (10.47) and (10.48) into Eq. (10.45) and chang-
ing the limits by using Eq. (10.46) from 0 — 7rto r — R — r + R, we obtain

GMm "R r* — R?
F= 1+ d 10.49
4r’R ( 5 ) > ( )
which on integration yields
GMm
F=— 10.50
2 ( )
In vector notation, this may be written as
GMm
F=- -v--’-gﬂ 4, forr>R (10.51a)
GM
and g=~ 5 i, forr>R (10.51b)

where 1, is the unit radial vector from the origin O. This result indicates that a uniform spheri-
cal shell acts as if the whole mass of the shell were concentrated at the center. A solid uniform
spherical body may be assumed to consist of a large number of concentric shells. Each shell may
be treated as if its mass is concentrated on the center; hence the mass of the whole sphere may
be assumed to be at the center.
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To calculate the force on a point mass m placed inside the shell, all we must do is change
the lower limit » — R to R — r and the upper limit » + R to R + r. Integrating Eq. (10.49) with
appropriate limits is

GM R2 2\ |R+Tr
F = 2m (s + r ) =0
4r°R § R—r
Thus F=0 and ¢g=0, forr<R (10.52)

It must be kept in mind that this result (for » << R) is true only for a spherical shell and not for a
solid sphere.
Using the relation given by Eq. (10.16), that is,

AU = —f F(r) dr = —f F-dr (10.16)
and Egs. (10.51a) and (10.52), we can calculate the potential energy to be
GM, GM,
U:_f (_ —m)dr:— m, forr > R (10.53)
r r
and U = constant = C, , forr <R

We can evaluate the constant by substituting » = R in Eq. (10.53), that is,

U= — =C, forr <R (10.59)

while the gravitational potential V(= U/m) is

M
V= —G— R forr > R (10.55)
r
GM
V = constant = C, = — R forr <R (10.56)

The variation is g and V for this case is shown in Fig. 10.9.

We can obtain the preceding results by first calculating the potential energy U(r) and then
calculating F(r) from the relation F = —dU/dr, as shown next.

The potential energy of mass m at P due to the circular ring of mass dM given by
Eq. (10.42) at a distance s (each point of the ring is at the same distance s) is (see Fig. 10.8)

_ GmdM B GMm sin 8d0
5 2 K

dUu (10.57)

while the total potential energy of m at P is

B GMm ™ sin 0d0

Ury = ) S (10.58)
0
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> Figure 10.9

Below is the graph of the variation
in g(r) and V(r) versus r in the case
of a spherical shell.
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(a) Explain the variations in the values of g and V for the values of r given above.

(b) Since max(V) = 0 and max(g) = 0, what do the variations in V and g mean?

From the triangle OPQ in Fig. 10.8, we obtain
s?=r*+ R>~2rRcos 6 (10.46)
Differentiating, while keeping in mind that r and R are constants, and rearranging, we get

sin 40 iif
s Rr
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Substituting in Eq. (10.58) yields
GMm
ury= - —— 10.59
r 2Rr J ds ( ’

The limits of integration will depend on the position of the point mass m, as discussed next.

Case (i) r > R. Thatis, the point mass m at P is outside the shell. As before, the lim-
its 0 — @ change to S, = ¥ — R = Spax = ¥ + R. Thus

GMm "R GMm
Un=-——1 ds=- 2R
) N A 2Rr
GM
gives U(r) = el , forr > R (10.60)
¥

That is, the potential energy varies as 1/r, while

P _4au _i(_GMm)
dr dr r
gives F= _Q_gﬂ , forr >R (10.61)
We may also write
Vir) = — G;M forr > R (10.62)
and gn) = _(j,[zw , forr >R (10.63)

Case (ii) r<<R: Thatis, the point mass m at P is inside the shell. Hence the limits of
integration 0 — 7 change to s,,;,, = R — r — §,,,. = R + r. Thus

GMm *t" GM,
Ulr)y = — " ds = — m 2r
2Rr Jp_, 2Rr
. GMm |
gives Ury = TR forr <R (10.64)

That is, the potential inside the shell is constant, while

F =0, forr <R (10.65)
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as expected. We may also write

GM
Vi) ===, forr<R (10.66)

g(r) =0, forr <R (10.67)

These results are graphed in Fig. 10.9, as already mentioned.
Solid Sphere

The results derived for a spherical shell may be extended to a solid sphere. The only require-
ment is that the distribution of matter, that is, the density, be spherically symmetric. Further-
more, the problem becomes simple if the density is uniform.

Case (i) r> R: Thatis, mass mis at r outside a solid sphere of mass M and radius R.
The sphere may be divided into a large number of shells, each behaving as if the mass of the
shell were concentrated at the center. Independent of the variation in density with radial distance
(that is, symmetric but not necessarily uniform), as in the case of a shell, we obtain

GMm
F=-=2~ for>k (10.68)
GM
g(r) = —7 , forr > R (10.69)
GM
Uiy = -2 forr>R (10.70)
r
GM
Viry= ——, forr > R (10.71)
r

The graphs of V(r) and g(r) are shown in Fig. 10.10.

Case (ii) r<<R: Thatis, the mass m is inside a solid sphere of mass M. Once again we
draw spherical shells. All the shells that are outside a sphere of radius r give zero contribution
to the force, while the shells inside r contribute to the force. For convenience, let us assume that
the density is uniform; that is, the sphere is homogeneous. The fraction of the mass contained
within r is

(4al3)r'p _ r

@w/3)Rp R

(see Fig. 10.11) where p is the density of the material. Thus the mass concentrated at the center
is MP/R3. Hence the force at r is given by

Om (W) _ _ g
m (M7

F(ry=— r, forr<<R (10.72)

P 7
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Figure 10.10

Below is the graph of V(r) and g(r) G=6.672-10""! M=5.98.10> R=6.37.10°
versus r due to a solid homogeneous
sphere of radius R and mass M. 6721071 24 10°
p G = 5672 i? M :5_98.1024 g 63710
107 10 10°
Before graphing, we .d1V1ded the G 6672 M = 5.98 R =637
constants by appropriate powers
of .10 to make the graphs easier N =100 n=l.N _n 0 —g
to interpret. 2 50
Graphing y versus x gives a circle. Xq ::R'COS<9H> Yo = (R‘Sin(en))
.. [GM _ GM 2 2 .
Vln.——( - ) V2, ——E{}R — (1) ] Vv, =if{r,<R, V2, V1)
-GM _-GM s
gl = 5 g2, = P gn‘—lf(rn<R,g2n,g1n>
(x) R
Vand g versusr
10
min( V) =-9.376 |
5
min(g) =-0.944 Y
Vl’l
max(V) =0 -+ 0
L W | ]
-e—
max(g) =0 —5 fmw
-10 w""/
=10 =5 0 5 10 15 20
n'n'n

(a) How do you think the plot for F will differ from these? Explain.

(b) Explain the variations in the values of g and V.

~

The potential energy U(r) of the mass inside the sphere may be calculated by using

Eq. (10.72). For r < R, we obtain

R
U(r)—U(R)=-—f Fdr=—

k GMm
R3

rdr

r
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M

Figure 10.11 Fraction of mass of a
sphere of radius  inside a homoge-
neous sphere of radius R and mass M.

GM
that is, wﬂ—wm=—-mfmtw% (10.73)
But at r = R, from Eq. (10.70), we obtain
UR) = — GMm
R

Substituting this in Eq. (10.73), we get

GM

U = — 2R;" (BR2— 7Y, forr<R (10.74)

GM

or Vir) = — R (3R2 — ), forr <R (10.75)

We can calculate U(r) and V(r) at r = 0, that is, at the center

Uy = —GMm tr=0 (10.76)
2R . atr N
and V() = —% . atr=20 10.77)

The graphs of g(r) and V(r) for r > R and r < R are shown in Fig. 10.10.

Shell of Finite Thickness

Consider a shell of finite thickness of inner radius R, and outer radius R,, as shown in Fig. 10.12.
We want to calculate the potential at point P at a distance r from the center of the shell. By de-
finition, the potential V(r) at P is

Vir) = —Gf B(;R—)dV’ (10.78)
v

where dV’ is a small volume element at R:

dV' = (R sin 0 d¢)(R d) dR = R” sin 6 dR d8 d¢ (10.79)
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Figure 10.12 Potential and force on a point mass m at P due to a shell of finite
thickness.

Because of the symmetry about the line connecting O with P, the azimuthal angle ¢ may be
eliminated by integrating over d¢; that is, [ d¢ = 2. Also, p(R) = p = constant for a homo-
geneous sphere. Thus

R, T o 9
Vi) = —27Gp f RYdR f Y 16 (10.80)
R, g S
From triangle OPQ (Fig. 10.12), we obtain
s?=R*+ r* — 2Rrcos @ (10.81)

where R and r are constants; hence differentiating gives
2s ds = 2Rr sin 040

sin Gdg _ é
s Rr

or

Substituting this in Eq. (10.80) yields

RZ ‘Ymax d
Vir) = —2nGp f R?dR f @ (10.82)
R, - Rr
From Eq. (10.81), if # = 0, s,,, = r — R, and if 6 = 7, 5,,, = r + R. Therefore, for r > R,,
27TG R, r+R
Vi) = =P j R dR f ds (10.83)
rJg, r—R
47G

R,
- - pf R* dR
r R,

47 G
That is, Vi) = — ?WTP (R — R (10.84)
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Since - p(R3 R) (10.85)

we get the following expression for the gravitatlonal potential outside the shell:

M
Vir) = — T s forr > R, (10.86)

Thus the gravitational potential at any point outside a shell or sphere with a spherically sym-
metric mass distribution is independent of the distribution. It behaves as if the whole mass were
located at the center.

For a point inside the shell, changing the limits in Eq. (10.83) (as we did in a previous
case), we get, forr < R,

27TG R, R+r
V)= —"=B | R4rR| ds (10.87)
r R, R-r
RZ
= —4nGp f R dR
which gives
V(r) = —27Gp(R: — R} = constant, for r < R, (10.88)

Thus the potential inside (» < R;) the shell is constant and is independent of the position.

The potential inside (R, < r < R,) the shell is a little bit tricky to calculate. But an easy
approach to this problem is to change the lower limit by replacing R, by r in Eq. (10.87) for V(r)
for r < Ry, and to change the upper limit by replacing R, by r in Eq. (10.83) for V(r) for r > R,.
Thus, combining the two gives the potential inside the shell:

47G
VR, < r<R) = —2nGp(R% — r*) — TFP (r — RY)

That is,
R, R 7~
VIR, <r<R, = —477'Gp( - =1 - —) forR, <r <R, (10.89)
2 3r 6
The field mtensuy vector g can be calculated from the relation g = —dV/dr for each of the three
regions by using Eqs. (10.86), (10.89), and (10.88). That is,
GM
gn) = ——% . r>Rr, (10.90)
r
4nGp (R
g =" g (r—; = r) R, <r<R, (10.91)
g(r) =0, r <R, ‘ (10.92)

The plots of V(r) using Eqs. (10.86), (10.88), and (10.89) and of g(r) using Eqs. (10.90), (10.91),
and (10.92) are shown in Fig. 10.13. Let us make some important observations. The potential
function V(r) plotted in Fig. 10.13 is continuous across the points » = R, and r = R,, and its gra-
dient dV(r)/dr, which is force g(r), is also continuous, as shown. If the potential function V(r)
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-V ;

Figure 10.13 Variation of V(r) and
g(r) versus r for a shell of finite
r—» thickness.

were not continuous, its derivative would be infinite. That is, the force would be infinite, which
has no meaning. Thus the potential function must be continuous for the force to have any phys-
ical meaning. (Note that the derivative of the force function is not continuous.) That the poten-
tial function is continuous may be seen mathematically as follows. In Eq. (10.89), if we substi-
tute r = R,, we get the same result as from Eq. (10.84). Similarly in Eq. (10.89), if we substitute
r = R,, we get the same result as from Eq. (10.88).

Example 10.1

Consider a homogeneous circular disk of radius R, thickness ¢, and average density p (mass per unit vol-
ume). Calculate the gravitational potential and gravitational field intensity at a point outside the disk and
on the axis of symmetry.

Solution

A circular disk of radius R is shown in Fig. Ex. 10.1(a). Its mass is given by

M = pV' = p(wR*)t )
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where ¢ is the thickness of the disk. Let us consider a ring of radius r and width dr, as shown in
Fig. Ex. 10.1(a). As shown in Fig. Ex. 10.1(b), any small element of this ring is at the same distance s from
point P. We shall calculate potential at point P due to this ring. The point P is at the same distance from
all parts of the ring and lies on the axis of the disk. The mass of the ring is

dm = pdV' = pQ2mrdri) (i)
Hence the potential at point P due this ring is

Gdm G27p tr dr

s 7+ )" (i)
Refer to two small elements of the ring at A and B in Fig. Ex. 10.1(b). The intensity at P due to these is
given by g, and g, pointing along the lines PA and PB, respectively. When g, and g, are resolved, the hor-
1zontal components cancel. Because of the symmetry of the situation, all the horizontal components can-
cel and the vertical components add.

// p) ) 25} g

dr—»' ‘<— r—>0<—r——>| |¢dr
D R > R >

(b) ‘
Figure Ex. 10.1
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Using the value of dV from Eq. (iii), R
we can calculate V by integrating it as _J' Ldv v=-2-1p-Gt- dr
shown. it

0

v=2-n:p-Gt- <—« z2 + R2 + z)

To calculate g, we have two alternatives: direct integration or the definition g = dV/dz

R
-G-dm 2 npGtezr

g= — 4 —(—j-—V g=- g——Z'n-p-Gt-(—r\}zzﬁ— R2+ Z)
2 3 dz dz

2

(2247
0 ( 2 2 )
=2 Gr Nz tR +7)
22+R2

SN

g=2.n.p.G.t.;_Z_Lli_tZ_ g=2-mp-Gtf-1+ v,
/\ZZ+R2 z2-p—R2

How will the graphs of V and g versus z look?

EXERCISE 10.1 Repeat the example for the case of a circular ring of radius R and a linear
mass density A, but with the same mass as the disk. Compare the two results.

Consider a thin rod of length L and mass M. Calculate the gravitational potential and

gravitational field intensity at a point P that is at a distance r from the center of the rod and
perpendicular to the rod as shown. Make a plot of F versus r.
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Solution
We can apply Eq. (10.31) using M/L as 5
linear density, and replacing the volume = GM U
element dV by the length element dx and L N
r by the perpendicular distance from L T
the rod. The gravitational potential energy V is Ty
(_1 <L AL+ 4 2) 1 <_L AL+ 4 2))
Given the value of V, we can vaGm TN TR T R P

calculate the value of g by -

differentiating V. Simplifying the ( ( [z , 2 ( [ 2 2))
2 piirying g=-9—G~M» In\L + /L"+ 41" 4 In\-L+AL" + 41

expression for g gives the value of dar L
F (= mg).
The graph of F versus r is as shown.  8=8-GM:

T

vl vad oo freas]]

1:=0..10 L =1

G:=6.67210"" M:=5 m:i=1 L:=10
h
F,l =8GM-m-
2 2 2
-l ]
How do you explain F
the variation in the - -1.202°10 28
value of F for — H/{
(a)r=0, -6.542:10 -3.333°10 | |
-11
(b) r very small as -3.097-10 5
a 11
compared to L and 190710 " ~6.667°10
(c) r very large?as 1302107 o
—i*10
compared to L7 541610 . 4. s s 1
I.
-7.119-10 o
Graph V and g 12 Gravitational force field versus r
-5.54-10
Versus r. 2
-4.42-10 ‘
3610 min(F) =-6.542-10 ! max(F) =0
2984107

EXERCISE 10.2 Repeat the example for the case of a cylindrical rod of radius a, length L,
and mass M.
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10.6 GAUSS'S LAW

Gauss’s law is used extensively in connection with electric fields in electrostatics. Actually,
Gauss’s law is applicable to any situation that involves the inverse-square force law; it is fair
to say that Gauss’s law is a compact form of the statement of the inverse-square law. Since
gravitational force is an inverse-square force, let us apply Gauss’s law and see its usefulness in
calculating gravitational field intensity g in simple situations.

Let us consider a point mass M. The gravitational field g at a distance r from M is given by

GM
gr)=— ;- &, (10.93)
2
Draw a sphere of radius r with point mass M at the center. We define the radially outward di-

rection as positive. A quantity flux ¢ of the gravitational field g through the surface of the sphere
is defined as, using Eq. (10.93),

b = 4mrlg, = —47GM (10.94)

where g, is the radial component of g and 477 is the surface area of a sphere of radius r. We
shall show that the total flux due to any mass is independent of the distance r.

Let us consider a mass M that is completely enclosed by an arbitrarily shaped surface, as
shown in Fig. 10.14. Such an arbitrary surface is called a Gaussian surface (GS). Let us con-
sider a point P on this surface where the outward normal to the surface makes an angle 6 with
r from M to P. Resolve g into two components, a radial (or normal) component and a transverse
component (component parallel to the surface). It is only the normal component that contributes
1o the flux ¢. Since the normal component of g is —(GM/r?) cos 6, the flux d¢ through an ele-
ment of area dA is

GM ~
d¢=*7cosBdA=g-dA=n-gdA (10.95)

n

Figure 10.14 Mass M enclosed by a
Gaussian surface (GS).
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The projection of dA perpendicular to r is dA cos 6 = i - dA, while dA cos 0/r* = d(), where
dQ) is the solid angle subtended by dA at M, as shown. Thus Eq. (10.95) may be written as

dd = —GM df} (10.96)

The total flux ¢ due to g is obtained by integrating Eq. (10.96) in which contributions from all
the solid angle elements are taken into consideration. Remembering that the complete solid
angle is 411, we get

b = qub = —GMfdQ = —4nGM (10.97)

This is the same result we obtained using a spherical surface, as in Eq. (10.94).
From Fig. 10.14 and Egs. (10.95) and (10.96), we may conclude that the flux d¢ is a scalar
product of g and dA; that is, '

dp=g-dA =1 -gdA (10.98)

where i * dA = dA cos 6 = projection of area dA perpendicular to g or r.
Let us extend our discussion to a large number of masses M|, M,, M, . . ., inside an arbi-
trary closed surface. At any point P on this surface, the total gravitational field is

g=g tgtg+- (10.99)
while the total gravitational flux through the enclosed surface is
¢=fg-dA=fﬁ-gdA (10.100)
Combining Egs. (10.99) and (10.100),

¢=fg1-dA+fg2-dA+---=—477G(M1+M2+---)

IfMLOtal = Mi + M2 + Y then
¢ = _47TGMt01al (10'101)

Equation (10.101) is a statement of Gauss’s law, and its validity is based on the fact that the force
is an inverse-square law. Once the flux is calculated by using Eq. (10.101), we can use
Eq. (10.100) in simple symmetrical situations to calculate g, as illustrated in Example10.3.

Example 10.3

By using Gauss’s law, calculate the gravitational field intensity at a distance x from an infinite plane sheet
having a surface mass density o.
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Figure Ex. 10.3

Solution

Draw a Gaussian surface in the form of a right circular cylinder, as shown in Fig. Ex. 10.3. The two end
caps of the cylinder each have a surface area A. The total flux through the cylinder is due to the three sur-
face areas (right, left, and curved) and is given by

g dA + g-dA—I—f g dA )

right left curved

Jﬁ.gdA:jg.dA:

g will always be perpendicular to the sheet. One the curved surface of the cylinder, an element like dA;
(as shown in Fig. Ex. 10.3) will be perpendicular to g; hence there is no flux through the curved surface;
that is,

f g-dA=fgdAcosQO°=() (ii)
curved
At the end caps, g is always antiparallel to the areas as shown; hence

—-gA (iii)

Il

j g-dA = JgdAcos 180°
right

f g-dA = fgdA cos 180° = —gA (iv)
left
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Thus the total flux is
o= g dA = —2gA (v)
total

where A is the area of each cap, which is also equal to the area of the sheet enclosed.
The mass of the enclosed sheet is M, = gA. Hence the total flux according to Gauss’s law is

® = —4nGM,,, = —47G(cA) (i)

otal
Combining Eqs. (v) and (vi) gives
—2gA = —47G(0A)
or g = 27Go (vii)

Thus g is independent of the distance from the plane sheet; that is, it is the same everywhere and is di-
rected toward and perpendicular to the sheet.

EXERCISE 10.3 By using Gauss’s law, calculate the gravitational field intensity just outside a spherical
shell having a mass M, radius R, and surface density o.

10.7 GRAVITATIONAL FIELD EQUATIONS

We have briefly outlined the procedure for calculating g and ¢ by using Gauss’s law for sym-
metrical mass distributions and also by the direct application of the inverse-square gravitational
force law. A more general procedure of interest will be to find differential equations that are sat-
isfied by the gravitational field intensity g(r) and the gravitational potential V(r). Thus, from
Eqg. (10.29), we know the relation between g and V to be

g(r) = —VV(r) (10.102)
Taking the curl on both sides, and noting that the curl of a gradient is zero, we get
VXg=-VXVV=0 (10.103)
That is,
VXxgr=0 (10.104)

This vector equation is a set of three differential equations giving relations between the com-
ponents (g,, g,» &) of g; that is,

0 ag, d 0 d dJ
98, 98 _ & _ 9% _, 9% _ 9% _, (10.105)
dy 0z 0z ax 0x dy

These equations are satisfied by any gravitational field. For a unique determination of g, we need
. a relation between g and the distribution of mass. This can be achieved as follows.
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Figure 10.15 Mass m enclosed by a
volume V' of surface area A.

As shown in Fig. 10.15, let us consider a mass m enclosed by a volume V' having a sur-
face area A. Thus the flux ¢ through this area is

¢ = Hﬁ - gdA (10.106)
A
But ¢ is also given by Eq. (10.97); that is,
¢ = —47GM
or for a continuous mass distribution
o= [[[4ncam = ~[[[4nGoav (10.107)
V' v

where dm = p dV’, p being the mass density. Equating the preceding two equations gives

”ﬁ CgdA = —j”mr(;pdw (10.108)
A v’

Gauss’s divergence theorem applied to any vector B is (see Chapter 5)

”ﬁ-BdA=—”fV-BdV’ (10.109)
A v’

Applying this to the left side of Eq. (10.108), we obtain

”ﬁ-gdAz—f”v-gdv' (10.110)
A v

Substituting this in Eq. (10.108) gives

JijV-ng’z—I£J4wﬁpdV’
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r f f f (V- g+ 47Gp)dV' = 0 (10.111)
/

Since this holds for any arbitrary volume V', we may write

V-g+4nGp =0
or V-g=—4nGp (10.112)
which is the required relation between g and the mass distribution described by the density
p(x, y, 2). In Cartesian coordinates, Eq. (10.112) may be written as

) ag, 9
98 4 T8y 4 B8 _4nGp (10.113)
0x dy 0z

Knowledge of p(x, ¥, 2), using Egs. (10.105) and (10.113) and the boundary condition that g —
0 as r - o, will uniquely determine g.
Substituting g = —VVin Eq. (10.112) yields

V-g=V:(—VV) = —47Gp
or V2V = 47Gp (10.114)
Rewriting in Cartesian coordinates gives

%V 9V 9V
™ + P + = 4mGp (10.115)

This equation is called Poisson’s equation and uniquely determines the value of V(r) with the
boundary conditions that V(r) — 0 as r — < . The general solution of Eq. (10.114) is

V(r) = J' f f gi(fz av’ (10.116)

where p(r) is the density of the volume element dV"'. This is in agreement with the value of V(r)
given earlier by Eq. (10.31).

In short, Newton’s theory of gravitation may be completely summarized by a set of three
equations [(10.26), (10.29), (10.114)]; that is,

F
g(r) = o g=—-VV, and V?V=—41Gp (10.117)
or, alternatively, Eqgs. (10.26), (10.104), and (10.112); that is,
F
gr) = —, VXg=0, and V-g= —47Gp (10.118)
m
PROBLEMS

10.1. Starting with Kepler’s laws of planetary motion and Newton’s laws of motion, derive Newton’s
universal law of gravitation.

10.2. Consider a planet of mass M and radius R and with a uniform density p. A tunnel is bored through
this planet to connect any two points on its surface. An object of mass m is thrown in this tunnel.
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10.3.

104.

10.5.

10.6.

10.7.

10.8.

10.9.

10.10.

10.11.

10.1%.
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(a) Show that the motion of this object is simple harmonic and calculate the time period of this
motion.

(b) Calculate the time period if the planet were Earth.

(c¢) Calculate the time period if the hole were drilled through the Moon.

In Fig. 10.3, if there are a large number of forces acting on M, the result of combining them should

be a single force and a torque. Why is there no torque? (Hinz: Take an arbitrary point P and show

that the forces pass through it.)

An object of mass m released at a very large distance from Earth falls toward Earth’s center. Cal-

culate the time it will take (a) to reach halfway to Earth’s center, and (b) to reach from halfway to

Earth’s center. Compare the two time intervals. Assume Earth to be a point mass.

Using the expression U(r) = —GMm /r for r > R, show that as a mass m is moved from the sur-

face of Earth to a height & the change in the potential energy is =mgh.

A particle of mass m in a certain force field given by F = — k/x* is moving toward the center of

the force. Calculate the time it will take the particle to move from a point at a distance D from the

center to the center of the force.

Suppose an object is dropped from a height s (& <€ Ry, where Ry is the radius of Earth). Show that

the speed with which it will hit the ground is

2 h(l ! h)
U: _—
8 2R,

An object has a free fall in the gravitational field of Earth from infinity to Earth’s surface, while
another object falls from a height 2 = R with constant acceleration g. Show that they both arrive
at Earth’s surface with the same speed.

Draw gravitational field lines and equipotential lines for a thin rod of finite length. What can you
say about the equipotential surfaces of the rod?
The gravitational potential at any point P due to two masses M, and M, is given by (see Fig. P10.10)

GM,  GM,

n r;

Vir)y = —

Suppose M| = nM,, where n = 2 or 3. Outline a method for drawing equipotential lines, and draw
them for these two cases.

M, M, Figure P10.10

In Problem 10.10, if the masses are not point masses but are spheres of finite sizes, what changes
will take place in the equipotential lines?

Draw lines of force and equipotential lines due to two masses M, and M, when (a) M, = M,, and
b)M, > M,.
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10.13. Explain the steps necessary to arrive at Eq. (10.89).

10.14.

10.15.

10.16.

10.17.

10.18.

10.19.

10.20.

Consider a uniform hemispherical shell of radius R and mass M with its center at z = 0. Let the Z-
axis be its symmetry axis. Calculate the gravitational potential and field intensity at any point on
the Z-axis. Graph V(r) and g(r). How do these compare with those due to a full (solid) shell?
Consider a uniform solid hemisphere of radius R and mass M with its center at z = 0. Let the Z-
axis be its symmetry axis. Calculate the gravitational potential and field intensity at any point on
the Z-axis and graph the results.

Consider a planet of radius R, and mass M that is surrounded by a cloud of mixed gases with an
average density p. Calculate the gravitational potential and the gravitationa] field intensity in re-
gions I, 11, and III (see Fig. P10.16). Graph V(7) and g(r) for different regions.

Figure P10.16

Consider a sphere of radius R having a variable density given by p = pye™* for r < R, where a is
a constant. Calculate the gravitational potential and intensity at some point r inside and outside the
sphere.

In a tunnel at a distance h below Earth’s surface, the density of Earth’s material is p,. What will be
the change in the time period of a clock pendulum, that is, A7/7, at this depth? Will the clock run
fast or slow? Calculate your answer in terms of s, M, Ry, and p;,. If we measure AT/T experimen-
tally, can we determine Earth’s mass, knowing the other variables?

Consider a thin cylindrical rod of length L, radius @, and mass M. Calculate gravitational potential
and the gravitational field intensity at a distance r from the center of the rod and in a direction per-
pendicular to the rod. Graph the results.

Consider a thin rod of length L and mass M. Calculate the gravitational potential and gravitational
field intensity at a point P that is at a distance r (>L) from the center of the rod and making an an-
gle # with the rod, as shown in Fig. P10.20. Calculate only to the second order in L/r. Graph the
results and compare them with the results derived in the text.

P

. L ]
]

Figure P10.20
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10.21. Calculate the gravitational potential and the gravitational field intensity due to a thin circular ring
of mass M and radius R at a point in the plane of the ring. For large distances from the ring, expand
the expression for the potential and find the first-order correction term. Draw the corresponding
graphs.

10.22, Calculate the gravitation potential and the gravitational field intensity due to a thin circular ring of
mass M and radius R for a point P on the Z-axis at right angles to the plane of the disk, as shown
in Fig. P10.22. Assume z > R, and expand the expression for the potential, keeping terms only in
the second order in R/z. Graph V(z) and g(2).

4

Figure P10.22

10.23. Calculate the gravitational potential and the gravitational field intensity due to a thin circular ring
of mass M and radius R at a point P at a distance r from the center of the disk and making an angle 6
with the Z-axis, as shown in Fig. P10.23. Assume that r > R, and expand the expression for the po-
tential, keeping only the second-order terms in R/r. Graph V(r) and g(r).

Z A

Figure P10.23

10.24. Calculate the gravitational potential and the gravitational field intensity due to a thin circular disk
of mass M and radius R for a point in the plane of the ring. For large distances from the ring, ex-
pand the expression for the potential and find the first-order correction term. Graph V() and g(r).
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10.25.

10.26.

10.27.

10.28.

10.29.

Calculate the gravitational potential and the gravitational field intensity due to a thin circular disk
of mass M and radius R for point P on the Z-axis at right angles to the plane of the disk. Assume
z > R, and expand the expression for the potential, keeping terms only of the second order in R/z.
Graph V{(z) and g(2).
Calculate the gravitational potential and the gravitational field intensity due to a thin circular disk
of mass M and radius R at a point P at a distance r from the center of the disk and making an an-
gle 6 with the Z-axis, similar to Fig. P10.23. Assume that 7 > R, and expand the expression for the
potential, keeping only the second-order terms in R/r. Graph V(r) and g(r).

Consider a body that has a cylindrical symmetry with density p(r, 6) for r < Rand p = Q for r >
R. Calculate the gravitational potential at a point (#, @) far away from the body. (Expand in powers
of R/r.)

Consider a system of binary stars, each of mass M and separated by a distance 2r. These stars or-
bit about their common center of mass. A mass m is located at a point £, as shown in Fig. P10.28.

(a) Calculate the gravitational potential and gravitational field intensity and force at point P.

(b) Repeatpart (a)ifz>randz <r.

(c) Suppose the mass m is at point O and then is slightly displaced. Show that it executes simple

harmonic motion.

Figure P10.28

A and B are two thin concentric shells of radii R, and R, and masses M, and M,, respectively. A
point mass m is located at a distance r from @. Calculate the gravitational potential and field in-
tensity in the three regions shown in Fig. P10.29. If a mass m is released from infinity, what will
be its speed when it reaches O?

EJW

Figure P10.29
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10.30.

10.31.

10.32.

10.33.

10.34.

10.35.

10.36.

10.37.

Gravitational Force and Potential Chap. 10

By applying Gauss’s law, calculate the gravitational field and gravitational potential due to a ho-
mogenous sphere of radius R.

Calculate the gravitational field intensity and gravitational potential at a distance x from an infinite
sheet of surface density o in the XY plane.

A mass m is placed at a depth % in a tunnel in Earth. Show by using Gauss’s law that the force ex-
erted on this mass is due to the mass of the spherical portion below the tunnel. What will be the
force on m at one-half the radius of Earth?

By using Gauss’s law, calculate the gravitational field intensity inside and outside an infinitely long
cylindrical shell of radius R and mass M.

By using Gauss’s law, calculate the gravitational field intensity at a distance x from an infinitely
long cylindrical rod of mass density o per unit length.

Show that if we consider a mass M outside an enclosed surface, then the net flux through this sur-
face is zero,

Show that the equations V X g = 0, V - g = —47Gp, and V>V = 47rGp are all satisfied by the
gravitational field intensity and gravitational potential in Problems 10.30 and 10.31.

Show that curl g = 0.
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