Rigid Body Motion: |i

13.1 INTRODUCTION

We continue our discussion of rigid body motion started in Chapter 9. We briefly summarize
the properties of rigid bodies as discussed there. A rigid body may be defined as a collection of
discrete point particles for which the distance between any pair of particles is constrained to re-
main constant with time. Actually, these point particles are atoms and molecules that are al-
ways in constant vibrational motion. But these vibrations are on a microscopic scale and may
be neglected. A perfectly rigid body will have no elastic deformation, and a mechanical pulse
signal (a blow) will travel with infinite velocity. In actual practice, all rigid bodies have elastic
properties and transmission velocities are = 10° m/s. In most situations we shall ignore elas-
tic deformation.

The motion of a rigid body can be described by using two coordinate systems, an inertial
coordinate system and a body coordinate system, that is, a coordinate system fixed with respect
to the body. Furthermore, to specify the position of the body, six coordinate must be specified.
Three of these are usually taken to be the coordinates of the center of mass of the rigid body
(usually the origin of the body coordinate system is taken to coincide with the center of mass),
and the other three coordinates are taken to be the angles that describe the orientation of the
body coordinate axes with respect to the inertial (or fixed) coordinate axes. One set of three
commonly used independent angles are the Eulerian angles, as will be described in this chapter.

13.2 ANGULAR MOMENTUM AND KINETIC ENERGY

Let us consider a rigid body B as shown in Fig. 13.1. The body is rotating about an axis passing
through a single fixed point O, while the coordinate system OXYZ is fixed in the body with its
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Figure 13.1 Rigid body B rotating
with angular velocity (w,, ®,, @,)
about an axis passing through a single
fixed point O.

origin at O. The instantaneous translational velocity v, of particle P of mass m;, which is at a dis-
tance r; from the origin O, is

S R It . PR B gy <

where  is the angular velocity of the body with its components (@,, w,, @,) as shown. The an-

gular momentum L relative to origin O, for a system of particles m; may be defined as
L= i mr; X v, (13.2)
i=1
Substituting for v; from Eq. (13.1),
L= i mx; X (o X r) (13.3)
i=1
Using the identity for a triple cross product,
A X (BXA)=AB - AA - B) (13.9)

we may write
X (wXr)=rio—r: o)

= @+ + 2o, + Jo, + ko)

- ('i\xj + jyi + l’(\zi)(xiwx + v, Tz w,) (13.5)
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Combining this result with Eq. (13.3) and rearranging,

L =1L, +JL, + kL,

n n n
_% 2 2 _
= l[wx E my; +z;) — w, Z muxy, — w, E ml-xizi]
i=1 i=1

i=1

n n 1
+ j[_ W, 2, mxy, + @y 2 mg +z) - sz miini:|
=1 i=1 =1

+k [— w, E mxz — w, 2 myz; + w, E mi(xf‘ + y?)} (13.6)
i=1 =1 i=1
We may obtain the same result by using a matrix expansion
i i k
r; X (wmXr)= X, ¥v; z 3.7

(wyzi —w,y) (wx~0z) (0y — wy'xi)

which on simplification and combining with Eq. (13.3) gives the same result as Eq. (13.6).
In short, we may write Eq. (13.6) as

L =1L +jL, + kL,
=ilol, — ol — ol ] +]jl-od,+ ol ~ ol

+k[—ol, - ol, + ol (13.8)

where the quantities I, I,,, and I, involve the sums of the squares of the coordinates and are
called the moments of inertia of the body about the coordinate axes; that is (the summation is
taken from i = 1 to »n),

I.= > mOt+2) =2, m(r’ — x*) = moment of inertia about the X-axis
I, = > mG? +2) = > m(r} — y}) = moment of inertia about the Y-axis

I, = Emi(x,.2 +y) = E m,(r} — 7'y = moment of inertia about the X-axis (13.9)

The quantities Iy, I, . . ., involve the sums of the products of the coordinates and are called the
products of inertia; that is,

1,=1,= E MYV, xy product of inertia (13.10a)
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I,=1,= 2> myz,  yzproduct of inertia (13.10b)

IL,=1,= E mzx, zx product of inertia (13.10¢)

It is clear from Eq. (13.8) that L is not necessarily always in the same direction as the in-
stantaneous axis of rotation; that is L 1s not always in the same direction as . For example, if
the Z-axis is the direction of rotation, @ = (0, 0, w); thatis, w, = @, = 0 and », = o, then from
Eq. (13.8)

L =—-1,0, Ly = —Iyzw, L =+Lw

That is, L has a component L, = I, w in the direction of rotation, but also has two other com-
ponents in the directions at right angles to the direction of rotation. Thus L and w are not in the
same direction. This point is further illustrated in Example 13.1.

The components of L given by Eq. (13.8) may be written in a compact form as

3
L, = ol (13.11)
i=1

where k = 1,2,3and [ = 1, 2, 3; that is x, y, and z have been replaced by 1, 2, and 3.

Now we are in a position to derive a general expression for the rotational kinetic energy
of a body. In simple cases, the axis of rotation always remains normal to a fixed plane. This need
not be the case, as we demonstrate now. Let us calculate the kinetic energy of a rigid body that
is rotating about an axis passing through a fixed point with an angular velocity w. A particle of

58S

mass ; at a distance r; has a velocity v;.
V, =@ XTI, 13.1)

Thus the kinetic energy of the whole body is given by

n 1 n 1 1 n
T=>, 2 mt = STV = D (@ X 1) - (my)] (13.12)
i=1 i=1 i=1
But in a triple scalar product, the dot and cross may be interchanged; that is,
AXB)-C=A-BxC (13.13)

or (@ Xr) mv,=w"*(r, X my,) (13.14)

For kinetic energy 7, we may write Eq. (13.12) as
1 n
T= > @ (r, X my) (13.15a)
i=1

Since w is the same for all particles, and from the definition of angular momentum given by
Eq. (13.2), we may write

T= ;m : [E (r, X m,-v,-)} (13.15b)
i=1
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1
or T= 5 - L (13.16)

It may be pointed out that unlike L, which is a vector and has three components, the rota-
tional kinetic energy T is a scalar (a dot product of %w and L). Also, this expression for 7 is anal-
ogous to the expression for the translational kinetic energy T,, given by

T

I R
wran — 2Ye " Pe

(13.17)

where v, is the velocity of the center of mass and p, is the linear momentum of the system. Using
the expression

o =lw, +]jo, + ko, (13.18)
and Eq. (13.8) for L in Eq. (13.16), we may write
T=lo L=loL + wL +iwlL,
=, +3 ylyy + 502l — vl — ool — wel, (13.19)

Instead of using (x, y, z), we may use k = 1,2,3 and [ = 1, 2, 3 and write T in a compact
form as

M

T = ool = oL (13.20)

1
1

I
—_—

In many practical situations, a rigid body consists of continuous mass with density p,
which may not be constant. In such cases, summation must be replaced by volume integration.
Thus the moment of inertia and the product of inertia may be written as

I, = f p(y* + z% dx dy dz
|4
= j p(x? + z) dxdydz
14
I = f o0 + ) dx dy dz (13.21a)
) |

I, = Jv pxy dx dy dz

= f pyzdxdy dz
v

1, = j pzx dx dy dz (13.21b)
v

zx
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Example 13.1

Two point masses of equal mass m are connected by a massless rigid rod of length 2a forming a dumb-
bell. The dumbbell is constrained to rotate with a constant angular velocity o about an axis that makes an
angle ¢ with the rod. Calculate the magnitudes and the directions of the angular momentum and the torque
that is applied to the system.

Solution

As shown in Fig. Ex. 13.1(a), let the dumbbell rotate with an angular velocity e about an axis AOA’ pass-
ing through O and lying in the inertial coordinate system. (AOA’ is also the direction of the axle and the
bearings are at 0.} The point O is the origin of the coordinate system. The angular momentum of the sys-
tem due to the two masses is

L=L, +L,=mr X(®wXr)+mr,X (0 Xr,) (1]

Note that both L, and L, point in the same direction as does L, as shown in Fig. Ex. 13.1(a). It is quite
clear that L is not in the same direction as m. As shown in part (b), if L is resolved into two components,
only Ly is in the direction of w, while L., although in a plane at right angles to w, is not zero. The mag-
nitude of the angular momentum is

2

L = ma*wsin ¢ + ma’wsin ¢ = 2ma’wsin ¢ = Iwsin ¢ (ii)

where [ is the moment of inertia of the dumbbell about an axis perpendicular to the length of the con-
necting rod.

A/

(b)
Figure Ex. 13.1
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Furthermore, the angular momentum vector L is continuously changing direction as it rotates about
. Thus L is not constant, and it is necessary to apply a torque T to maintain this motion. By definition

L .
T = %; =L (iii)

where L is a vector in the direction in which the tip (or head) of vector L is moving. In analogy to the re-
lation r = @ X r, we may write

L=wxL (iv)
Thus the magnitude of the applied torque is [substituting for L from Eq. (ii)]
7| = |L| = wLsin(90° — ¢) = 2ma’w” sin ¢ cos ¢ (v)

and the direction of the torque, from Eq. (iv), is perpendicular to the plane containing ® and L at any in-
stant. I[f—rather than having one dumbbell as in Fig. Ex. 13.1(a)—there are two dumbbells moving sym-
metrically, by drawing a simple diagram we can show that L and @ will be in the same direction.

EXERCISE 13.1 Discuss the motion of the double dumbbells if the masses of the one dumbbell are dif-
ferent from those of the other (say twice).

13.3 INERTIA TENSOR

We proceed to write expressions for kinetic energy and angular momentum in tensor notation.
Once again, we are considering a rigid body rotating about an axis passing through a fixed point

. located inside or outside the body. We shall use i, j for running indexes referring to the particies,
while £, [, and s will be used to refer to the coordinate axes. The expression for rotational kinetic
energy is

1 n
T=Tu=, > mw X r)? (13.22)
: i=1
Making use of the vector identity
(AXB)?2=(AXB):-(AXB)=A%B*—-(A-B)? (13.23)

In Eq. (13.22), we may write
1< 22 2
T=Ty=, > mlo¥? — (w17 (13.24)
i=1
The vector r; has components x;,, that is (x;;, X5, X;3), and @ has components w,(®,, ®,, @;). Thus

T T 0

i=1 k=1 s=1

Making use of the relation

W, = Zz w0y
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where [from Eq. (5.176)], we write 8, = 1 if Kk = [ and §,, = 0 if k # [, we may write
Eq. (13.25) as

1
T = 2 E 2 mi[wk W, 3k1(2 xlzs) - W wlxikxil]
&l

i Ky

Since all points in a rigid body have the same angular velocity, we may factor these out and write

1
T=2 002 m,-[skl 2 xt-kxﬂ] (13.26)
k.l i K
If we define I, to be the kith element of the sum over i, that is,
Iy = E mi[akl E ‘sz - xikxil} (13.27a)
i=1 s

or, noting that x> + x5 + x4 = r’, we may write
g il i2 i3 i y

L= mi[akzr? - x,«kxﬂ} (13.27b)

i=1

Then Eq. (13.26) for rotational kinetic energy becomes
|
T= > Lo, (13.28)
k1

I, given by Eq. (13.27), has nine components and constitutes the elements of a quantity I, called
the moment of inertia tensor or simply an inertia tensor of a rigid body relative to a body coor-
dinate system. | is very similar in form to a 3 X 3 matrix and, as we shall see shortly, it is a fac-
tor of proportionality between L and o and also between T and ww (a quantity called dyadic,
discussed in Section 13.7). The dimensions of | are (mass) X (length)?. The elements of | can
be obtained from Eq. (13.27) and may be written in a 3 X 3 array.

2 2
2, mlx, + x3) =2, mx;xp — 2, mx; X
2
I = — 2, mxpx; 2, mi(xizl + x33) — 3, mx Xy (13.29)
2 2
— 2, mX ;) — 2, mXpXp 2, myx;y +x5)

which for a single point mass m reduces to

2 2 )
X, T X3 TXX — XXy
2
l=m| —xx, x5 +x — X% (13.30)
o N 2 2
XX X3Xy X; + x5
or, in general,
Ly I, Iy

I=1,=|1, I, I, (13.31)
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The diagonal elements I,,, I5,, and I;, that is,

Ly = E m{r; ~ x3) (13.32)

i=1

are called the moment of inertia about the k-axis. The off-diagonal elements given by
Ly = I = = 2 mx,x, (13.33)
i=1

are called the product of inertia. Since the off-diagonal element are symmetric, [; = [, the in-
ertia tensor is a symmetric tensor. Hence only six elements of | are independent. Furthermore,
the tensor | has a positive definite form.

Let us consider a particular element /,; that is,

Iy = 2 mi(riz - x?l) = 2 m; xizl + xizz + X?s; - xizl) = E mi(xizz + xé) (13.34)
i=1 i=1 i=1
(x3, + x%) is the square of the distance from the ith mass point to the X;-axis; hence J, is always
positive or zero. In general, we may conclude that the diagonal elements /;;, are always positive
or zero. Iy, is zero only if all the masses lie on the kth axis. On the other hand, the off-diagonal
elements /,; may be positive, negative, or zero.
Another property of the inertia tensor is the additive property of the elements. That is, the
inertia tensor for a body can be considered to be the sum of the tensors for the various portions
for the body. Thus, for a continuous distribution, we may write, using Eq. (13.27),

J17

Iy = Jr jr Jf p(i’)[SH E .k? — xkx,} dv = Jr _}r Jr p(i*)[3k,r2 — xx]dV (1
1% § %

73]

3=\
IS )

where the volume elements dV = dx, dx, dx;, p(r) is the density, and the integration is taken
over the whole volume. Note that the indexes for the mass of the particles are not needed.

We may arrive at the same expression for the inertia tensor by starting with the expression
for angular momentum. That is, by definition

L= mrxy= D> omr; X (w X r) (13.36)
Using the vector identity
AX(BXA)=A4AB - AA-B) (13.37)
we get L= m[rle - r(r, - »)] (13.38)
i=1

Unlike 7, the angular momentum is a vector quantity, and hence for the kth component we
may write

L, = E mi[wkz xzzs' - xikE Xit w[] = Emi lE[“’r‘Skl Exlzs - wlxikxilil
5 ! i s

i

= E Wy E mi[ﬁkl 2 x%f - xikxil} (13.39)
! i K}
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As before, 1,, is defined as

Iy = 2 mf[ﬁkz 2% - xikxﬂ] (13.27a)
i=1 s
and we may write
L= I (13.40)
)
or in tensor notation
L=lo (13.41)

As mentioned earlier and shown in Example 13.1, L and o are not in the same direction.
The relation between L and T may be arrived at in the following manner. Multiplying both

sides of Eq. (13.40) by %wk and summing over k,

1 1
5; w, L, = EkEJIklwkwl =T
1 1
or T=_->wlL=-o-L (13.42)

Substituting for L from Eq. (13.41),
T=lo'L=Jo'I'w (13.43)

From Eq. (13.41), we may conclude that a product of a tensor and a vector is a vector; while
from Eq. (13.43) we conclude that the product of two vectors and a tensor is a scalar.

Calculate the components of a moment of inertia tensor for the following configuration.
Point masses of 1,2,3, and 4 units are located at (1,0,0), (1,1,0), (1,1,1), and (1,1,-1).

Solution
n =4, the numbel“ 0fp01.nt masse: ni=d is=lon Kol 3 i=1.3
m, = mass of the ith particle
1; = distance of the ith particle fromthe  _ < = % = % 1=
it i1 i,2'7 i3

origin
Xi1, Xiz, and x;y are the coordinates for
the particles i = 1,2,3,4. All quantities
are in arbitrary units. The masses and
the coordinates of the particles are
shown 1n the column matrices
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Calculating distance r,from the origin 1, = J (x, 1>2+ (xil)z + (’%,3)2
and the definition of SkJ function,

! 1 0 0
1
1414 8=10 10
1732 001
1.732
Using Eq. (13.27b), we can calculate
the moment of inertia tensor as shown. n 5
L= Z ml‘[f’k,j (E) Xi,k'xi,J
i=1
16 -9 1 16 -9 1
I=1-9 17 1 =_9 17 1
1 1 19 1 1 19

EXERCISE 13.2 Calculate | for point masses 4, 3, 2, and 1 units and located at (1,1,-1),
(1,1,1), (1,1,0) and (1,0,0).

Example 13.3

( at one corner and an axis

0
of the inertia tensor.

s cu r fe s 1 . T
directed along the edges as shown in Fig. Ex. 13.3, evaluate the element h

Figure Ex. 13.3

X3
|
|
1
!
|
|
[
|
|
|
ol ____ | ____ ,
-
-7 X2
-
-~




Sec. 13.4

Solution

Calculate the elements of
inertia tensor by using
Eq. (13.35).

k1

Since the cube is homogenous,
p is constant.

The diagonal elements of the
inertia tensor are all equal

and calculated as shown. (Integrate
and then substitute for p.)

Because of symmetry, all the off-
diagonal elements are equal and are
calculated as shown.

All diagonal elements = 111
All off diagonal elements =112

Using different given values,

we can calculate the moment of
inertia tensor. Note that

each element must be multiplied y.

0.667 —0.25 -0.25
I=[-025 0667 -0.25
—0.25 -0.25 0.667

Moment of Inertia for Different Body Systems {Steiner Theorem)

521

8k,l'Z (Xi>2 XK

} dx dy dz
i

p(r)-{

5, =if(k=1,1,0) M=p-L*

L L L
Ill=p-J J J
0 0 0

lHi=2p =2 ML
3 3

(y2 + zz) dz dy dx

L L L
112=p~J‘ J J x-y dz dy dx
o Jo Yo
12"l p L=l
4 4
ki=1.3 1'=1..3 M:=1 L:=) p=1
m=1..3 ni=1..3
2 2 -1 2
I11:=—M-L n2.=—M-L
3 4
1 = if(m=n,I11,112)
m, n
0.667 -025 -0.25
I=(-0.25 0.667 -0.25 |-y y=M-L’

-0.25 -025 0.667

EXERCISE 13.3 Repeat the example for a rectangular body of homogeneous density p and sides 2a, a,

and a.

13.4 MOMENT OF INERTIA FOR DIFFERENT BODY SYSTEMS
(STEINER THEOREM)

We have seen that if we choose a body coordinate system whose origin coincides with the cen-
ter of mass, it is possible to express the kinetic energy as a sum of the translational and rota-
tional kinetic energy. Hence, it is convenient to know the relationship between inertia tensors
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X3 A

Figure 13.2 Body coordinate system
with origin at Op having its axes ori-
ented parallel to the center-of-mass
coordinate axes with origin at Oy.

expressed in different body coordinate systems. Let | be the inertia tensor defined in a body co-
ordinate system with the origin fixed at Oy and I’ be the inertia tensor defined in a center-of-
mass coordinate system with its origin at the center-of-mass O, as shown in Fig. 13.2. Fur-
thermore, it is assumed that the Cartesian coordinate axes in the two systems are parallel to each
other as shown; that is, they have the same orientation. We wish to find the relation between |
and I'. The components ;; of the inertia tensor I, from Eq. (13.27a) are

Iy = E mi[SkJE xlzs - xikxi,] (13.27)
i=1 H
while the components [, of the inertia tensor |" are
u = Z mi[akl E XI{SZ - xi’kxi’l:I 13.449)
i=1 s .

Referring to Fig. 13.2, if the center of mass O is at a distance a from the origin Oy, the relation
between r and r’ is

r,=r +a (13.45a)

or, in component form,

x,=x.+ta, s=1273 (13.45b)
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Substituting this in Eq. (13.27) and rearranging,

=2 mi[Skl Dl +a)? - (xg + a)) + a,)]

I s

— 12 2 _

= E mi[akl 2 KXis ikxiz] + E mi[aki E a, akal]
i K i s

+2 2 mi[aklxi,szas] - 2 mx;a; = 2 m,x;d (13.46)

Each of the last three terms on the right side is zero because of the definition of the center of
mass with the origin at O,. That is,

Emirl.’:O or zmjx{szo
i 4

Thus Eq. (13.46) with the help of Eq. (13.44) takes the form

Li=1I+ mi[Sk, > a - aka,} (13.47)

If, instead of discrete particles, we had an extended rigid body, we would obtain the following
relation

I=1, + (5,2 ~ a,a) j f f pdV (13.48)

In either situation, the mass M is given by

M=Sm or szfjpdv
and Eq. (13.47) or (13.48) takes the form
L, = I, + M@a*, — aa) (13.49)

which is the required relation. It states that the difference in the elements /,, — I, is equal to the
mass M of the body multiplied by the square of the distance (a5, — a,a;).
As a special case, let us find the relation between the diagonal elements; that is,

Ly, = Iy + Ma* — a) = I, + Md} (13.50a)

where d, is the shortest distance from the axis of rotation in the body system to the center of
mass. The relation of Eq. (13.50a) is the statement of Steiner’s theorem.

The moment of inertia of a rigid body in a body coordinate system about a given axis is
equal to the moment of inertia of the body in the center-of-mass coordinate system about
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an axis parallel to the given axis plus the moment of inertia of M located at the center of
mass about the given body axis.

Note that if Oz and O coincide, d, = 0, which implies that the body will have a minimum mo-
ment of inertia in the center-of-mass coordinate system.
Let us consider a relation between the diagonal elements.

I, =01, +M@+ad+d-d)=1I,+Md +a) =1, + Mdi (13.50b)

where d; = a5 + a;. Equation (13.50b) states that the difference between elements I,, — I}, is
equal to the mass M of the body multiplied by the square of the distance between the parallel
axes. This is the special case of Steiner’s theorem and is called the parallel axes theorem.

Perpendicular Axis Theorem

As explained earlier, a plane lamina is a rigid body whose mass is distributed in a single plane:
that is, it has almost zero thickness. Suppose this plane lamina lies in the X; — X, plane; hence
x3 = 0. Let o be the mass per unit area of this body. Let dA be a small area element. In such sit-
uations, the diagonal elements of the inertia tensor 1 of a plane lamina are

1= [ e
Izzszo'x%dA
A
I, = f f o2 + 1) dA (13.51)
A

From these relations, we may conclude

which is the statement of the perpendicular axis theorem:

If for a certain rigid body in the form of a plane lamina the moments of inertia about the
X, and X, axes are 1, and I,,, the moment of inertia about the X axis is equal to I, + L.

Example 13.4

Consider the homogenous cube of density p, mass M, and side L discussed in Example 13.3. For a coor-
dinate system with its origin at the center of mass of the cube as shown in Fig. Ex. 13.4, evaluate the ele-
ments of the inertia tensor.
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X3 1\

X3

\ Figure Ex. 13.4

Solutien
To transform the elements of an inertia tensor from one coordinate system to another, we make use of the

ralatinn givan hy Ha (12 AQ
ICidauvil giVOIl DY L. (10.97

N\
)
Ikl are the elements of the inertia tensor

2
I =(I') +M|a™8 —a -a
I evaluated in Example 13.3. Thus ol ( otk l>

[2 1 1]
I =L, =1 zgz'M'L2 o
Tt T3 1 2 1 ;
T =l — -— =I.'Y
- =7 = o -1 2 4 3 4 k.1
I1,2‘11,3"12,3'13,1=12,1'13,2‘7'M'L 2
L1z eML
. 4 4 3|
The center of mass of the cube is )
at (L/2, L/2, L/2) in the X-system k=0.2 1:=0.2 a=0.2  M:=1
and the components of the vector ‘
a are a1 1] 4=
- - T -1
I, o 3 4 4 b
P 12 1 2 | a =,
[i=[-— = -— 1
Assuming L =1 and M =1, we 43 4 >
can assign values to I and a as 12 }1— |a| =0.866025
shown. L4 4 3] 5
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Using the values of the inertia 8, =if(k=L.1,0)

2 2
tensor I, we can calculate the It ;:M.[ l (8)7+ (a) ‘ By y- ak.al}
components of It.

0.25 -0.25 0.25
It=1{-025 025 -0.25
The transfer matrix It' components 025 025 0.25
may be calculated as shown. Note
that the diagonal elements are the , 0.416667 0 0
It=I-1t ,
only elements that are not zero. It=|0 0.416667 0
0 0 0.416667
Thus the transfer matrix It' may be ,
. . . =l g 2 I 10 0}
written by using the matrix Tu as r=—M-L-Iu  lui=—-o
6 0.417 wu=(0 1 0
shown.
0 0t

EXERCISE 13.4 Repeat the calculations for the case discussed in Exercise 13.3.

<

13.5 PRINCIPAL MOMENT OF INERTIA AND PRINCIPAL AXES

We have described the inertia tensor of a rigid body with respect to a set of coordinate systems
with the origin fixed in the body. A particular set of coordinate axes can be chosen such that the
product of inertia elements will be zero in such a set. A set of axes possessing this property is
called the principal axes. We shall find such a set of axes very useful in many situations in order
to understand the description of motion of a rigid body.

Three mutually orthogonal coordinate axes meeting at a point O are said to form a set of
principal axes provided all the product of inertia elements /,,, ,,, and I, of the rigid body are
zero as expressed in terms of these axes. The point O, the origin of these principal axes, is called
the principal point. Three coordinate planes, each of which passes through two principal axes,

are called principal planes at point O.
If the product of inertia elements is zero, then the inertia tensor consists only of diagonal

elements; that is,

I, 00
=10 1 O (13.53)
0 0 L
or in compact form we may write

Furthermore, the use of the principal axes leads to a considerable simplification in the expres-
sion for L and T. Thus

L= o= 8,0 = o, (13.55)
i !
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1 1 1
T==>Lww=—"L8yww="_"ILu (13.56)
2 [ 2 k! 2 k

Before proceeding to understand the mathematical procedure for finding the principal axes
so that the resulting moment of inertia will be diagonal, we shall present a physical description
of the process and some particular situations of common interest.

For some situations in rigid body dynamics, the principal axes may be determined by ex-
amining the symmetry of the body. For example, consider a plane laminar body in the XY plane
so that z = O for every particle. Thus

Furthermore, suppose the lamina has an axis of symmetry, say the X-axis as shown in Fig. 13.3,
such that the xy product in [ [ pxy dV consists of two parts of equal magnitudes but of oppo-
site sign. This results in Z,, = 0. Thus the inertia tensor is diagonal and the three coordinate axes
in this case are the principal axes for a laminar rigid body. This also leads to the fact (using the
definition of the product of inertia) that the coordinate axes will be the principal axes if the co-
ordinate planes are planes of symmetry. (A note of caution: A body does not have to be sym-
metrical for its product of inertia elements to be zero.) But symmetry of a rigid body is helpful
in determining the principal axes by inspection. For example, a cylindrical rod (which is a solid
of revolution) has one principal axis along the symmetry axis, say the Z-axis through the center
line of the cylindrical rod, and the two other principal axes are in a plane perpendicular to the
symmetry axis, as shown in Fig. 13.4. The placement of these two principal axes in the XY plane
is arbitrary.

Let us consider the relation between L and w for a rigid body when the coordinate axes
are the principal axes. In such situations, L takes the form

L =1L, + Lo, + kl,e, (13.57)

Figure 13.3 Plane laminar body in
the XY-plane with the axis of symmetry
along the X-axis, which has elements of
the product of inertia to be zero.
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Figure 13.4 Cylindrical rod with one
principal axis along the Z-axis and the
other two principal axes in a plane per-
pendicular to the Z-axis.

where I, I, and 1, are the principal moments of inertia. Let the body rotate about the Z-axis such

x>ty

that w, = w, while w, = w, = 0. Thus Eq. (13.57) takes the form
L=kl o, (13.58)

which states that the angular momentum is parallel to the axis of rotation; that is, L is in the
same direction as . Thus we may conclude: If L and w are in the same direction (that is, the
direction of rotation), then the axis of rotation is the principal axis. L. and @ will be in different
directions if the rotation axis is not the principal axis. An important application of this principal
is described next.

Dynamic Balancing

Consider a rotating device such as a fan blade or flywheel. This device will be statically bal-
anced if the center of mass lies on the axis of rotation. If the device is dyramically balanced,
the axis of rotation must be the principal axis; hence L and o will lie along this axis of rotation.
If the rotational axis is not a principal axis, the angular momentum varies in direction, as shown
in Fig. 13.5. Such variations require that there must be a torque acting on the body, that is,
7 = L = dL/dr, and the direction of this torque is at right angles to the direction of rotation.
This leads a rigid body, a rotor in this case, to be dynamically unbalanced, resulting in the vi-
brations and wobbling of the whole system.

Tioupe

n
K AUl v

such as a fan blade being dynamtcally unbalanced.

1358 L not beino in the same direction as « results in a rotatin
S L S A ¢ 4 sviiuan,

L not being in the same direction as e results in a rotating devi
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Determination of Principal Axes

We are given the moment of inertia and the product of inertia elements of a rigid body in terms
of arbitrarily chosen coordinate axes through point O. We wish to find the principal axes about
the origin at O. The process is called diagonalizing the matrix tensor. We make use of the fact
that if the rotation axis is the principal axis then both the angular momentum L and the angular
velocity w are directed along this axis and hence are proportional to each other. If / is the mo-
ment of inertia about the axis, we may write

L = lw = lo] + l0) + ok (13.59)
Thus, using Eq. (13.40), we may write
LX = ]wX = IXXwX + Ixywy + Ixzwz
L=lo,=lw+][ o+t o
L=lo,=lLo tl o+, (13.60)
or, after rearranging,
Uy - Do, + L o, +1[,0,=0
Lo+, Do +1,0,=0
Lo + Lo+ ,-Do,=0 (13.61)

For these equations to have nontrivial solutions, the determinants of the coefficients must van-
ish; that is,

L.—1 I, I,
I, IL,—1 I, |=0 (13.62)
A L,  A,—1I

FP+Bl+C=0 (13.63)
where A, B, and C are constants and depend on the values of the moment of inertia and product
of inertia elements. Each of the three roots [, /,, and I, (or I, I,, and [;) corresponds to the mo-
ment of inertia about one of the principal axes. These values of 1,, [, and I, are called the prin-
cipal moments of inertia. The direction of any one principal axis is determined by substituting
for I equal to one of the three roots I,, 1,, or I,, say I,, in Eq. (13.61) and determining the ratio
of the components of the angular velocity w, that is, to find o, : ®, : w,. Hence we can deter-
mine the directional cosines of the axis about which the moment of inertia is /.. A similar pro-
cedure can be followed for finding the directions of the principal axes corresponding to princi-
pal moments of inertia /, and /,. This procedure results in the directions of the axes. The

magnitude of the angular velocity is arbitrary and we are free to assume any value. The elements
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of the principal moment of inertia are generally called the eigenvalues or characteristic values
of the inertia tensor, The directions of the principal axes are the eigenvectors or the character-
istic vectors.

In most situations in rigid body dynamics, the body has some regular shape and the prin-
cipal axes may be determined by determining the symmetry of the body. The axis of symmetry
is the principal axis. Furthermore, if the body is a solid of revolution and has a moment of iner-
tia 1, along the symmetry axis, then I, = I,; hence the secular equation has two distinct roots.
Similarly, if the secular equation has a triple root, that is, I, = I, = I,, it is called a spherical top:
itis called an asymmetrical top if all the roots are distinct, thatis, I, # I, # I,. A body is a rotor
if I, = O and I, = I, such as a dumbbell and diatomic molecules.

From symmetry properties or otherwise, if one of the principal axes is known, then the
other two can be determined by the following procedure. Suppose one of the principal axes is
the Z-axis; then the other two principal axes must lie in the XY plane. Since the Z-axis is the
principal one, we must have

I,=1,= 0 (13.64)
and the first two equations in (13.61) take the form
(., — Dw, + Ixywy =0

Ioo, + (I, — Do, =0 (13.65)
Let us define
fan ¢ = > (13.66)
W

X

where ¢ is the angle between the principal axis and the X-axis. Substituting from Eq. (13.66)
into Eq. (13.65) and eliminating / from the resulting two equations,

21,
I, -1,

This equation gives two values of ¢ between 0° and 180°, and these are directions of the two
principal axes in the XY plane.

tan2¢ = (13.67)

Example 13.5

Consider a homogeneous cube of density p, mass M, and side L, as discussed in Example 13.3. Evaluate
the principal axes and their associated moment of inertia.

Solution
2 1 1]
- 3 4 4
The moment of inertia tensor
of the cube with the axes directed I= i_ % %

along the edges, as evaluated in
Example 13.3, is

—_

wlro
L
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To evaluate the principal moment 2 . b
of inertia, we must solve the secular 3 4 4
equation Eq. (13.62), 1 2 1
— 21 = =
4 3 4 0
Simplifying this equation gives 1 12 I
4 4 3 |
Sotving for I gives three roots 2% T 420 1'=0
864 48
1

Now for each of these roots and the value of I 6
given above, we use the secular equation 11
Eq. (13.61), which gives the principal axes 12
corresponding to each root as 1

I1=1/6 2=13=11/12 12

({2 1 1 1
Substituate for the first root (5 - g)'(ﬂll —Z-(DZI -:0131
I1 =0.167 = 1/6 in the secular . ;g ,
equation, Eq. (13.62). S=0 S= =@l (_ _ —>-(x)21 w31
gives three equations,which when 4 36 4
solved give the three values Lol Lol (E B l}-co?,l
wli, 21, and w31. 4 4 3 6 ]
Given

(3 , l)‘collJr (—i-m21+-1-m31>=o

3 6 4 4

—1-0)11+ {(E - l)-0)21+ ~1-0)31}=0
4 3 6 4

Lotts-La21s (3 _ 1)-m31=o
4 4 3 6

Thus the first eigenvector @1 will

have all equal components. The oll
resulting eigenvector @l is as shown.  Find(011,021,m31) > [@11| wl=i+j+k
wll

Given

Repeat the above procedure

for the second root 12 =11/12 =0.917
. . 2 1 1 1

to obtain the eigenvector. Note that <— - —)-(D12+ <—Z-m22+ —Z-(o32)=0

the third root I3 is also 11/12 = 0.917.

3012
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1 2 11 1
Thus the eigenvector 2 has two equal _Z'(D12+ KE B E)-m22+ —Z-m32}=0

components and a third that is equal | . -
to the negative of the sum of the other two. —Z-w12+ —Z-w22+ (5 - E)-(MZ:O
®wl2
Find(®12, 022, ®32) = 22 w2=i—2-j+k
-012- @22

Since the two roots @2 and w3 are equal, the corresponding eigenvectors must lie in the same
plane. (Note that all the three roots are interchangeable, that is, naming them 1, 2, 3, is arbitrary.)

Alternate Direct Treatment

The moment of inertia tensor of the cube (o 1 1]
with the origin at the corner and axes 3 73
directed along the edges as evaluated
. . S P2 1
in Exercise 13.3 is (without a constant ) J=]-—— = -—— ¢ = eigenvals(I)
4 3 4
. 1 1 2 0.917
¢ = eigenvalues ¢ has three values, two - -z ¢ =l o017
v = eigenvector of which are equal L4 4 3] 0'167
v=lc
vl := eigenvec (I,C]) v2 = eigenvec(l,cz) v3 = eigenvec <I,c}>
' -0.615 -0.615 0.577
The three eigenvectors o _[ g ;s V2 ={-0.158 v3 = 0577
are as shown
0.773 0.773 0.577

visv2=-0.62-i +-0.16f + 0.77°k v3=058-i + 058-j + 058k

Thus the eigenvectors v1 and v2 are in the same plane, while v3 is perpendicular to them.

This implies that the principal axis corresponding to /; must lie along the diagonal of the cube, that is,
along OA as shown in Fig. Ex. 13.5. Since I} = I,, this means that the remaining two principal axes must
lie in a plane normal to the axis OQA. This plane is shown shaded in the figure. Thus the second principal
axis can be picked in any direction in this plane, while the third one will be perpendicular to the second

but in the same plane.

EXERCISE 13.5 Evaluate the principal axes and their associated moment of inertia for the inertia ten-
sor obtained in Exercise 13.3.
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X3

X, Figure Ex. 13.5

13.6 INERTIA ELLIPSOID

The inertia ellipsoid is helpful in visualizing the inertia tensor geometrically, thereby enabling
us to predict some inertial properties of rigid bodies without going deeply into mathematical de-
tails. The motion of a rigid body depends on three numbers: I, I,, and I3, the principal moments
of inertia. Bodies that have the same principal moments of inertia will move in exactly the same
manner independent of their shape and size (provided we ignore the effects of frictional force
and other forces that may be functions of the shape of the body). We show in the following that
the simplest geometrical shape of a body having three given principal moments of inertia is a
homogeneous ellipsoid. Hence, we may conclude that the motion of any rigid body can be rep-
resented by the motion of an equivalent ellipsoid.

Consider an arbitrary axis of rotation OA passing through a body, as shown in Fig. 13.6.
Let P be a point on the axis such that the distance OP is numerically equal to the reciprocal of
the square root of the moment of inertia I about OA. That is,

1
OP = W (13.68)

If the coordinates of P are x, y, and z and the directional cosines of line OP are I, m, and n, then

X y z
op NI om op VL n= o N (13.69)
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Figure 13.6  Axis of rotation OA
through an arbitrarily shaped rigid body
and passing through a point P,

Thus the moment of inertia of a rigid body about any line in terms of the directional cosines of
that line with its inertia elements for some coordinate system with its origin on the line is

=PI +mL, + 0L, + 2nml, + 2Inl, + 2mil (13.70)
Substituting for [, m, and n, Eq. (13.70), after rearranging, takes the form
XL+ Y, + 2L, + 2yz, + 2z, + 2xyl,, = 1 (13.71)

This is an equation of a surface (the locus of points P) as the direction of axis OA is varied. It
is the equation of a general quardratic surface in three dimensions, and the surface is bounded,
hence it must be an ellipsoid. If the coordinate axes are the principal axes. Eq. (13.70) takes
the form

I= lZI)Oc + mzlyy + nzlzz (13.72)
and the inertia ellipsoid, Eq. (13.71), takes the form

lel + y212 + 2213 =1 (13.73)
where 1,, 1,, and I; (which have replaced 1,,, /,,, and 1,,) are the principal moments of inertia.

The two inertia ellipsoids given by Egs. (13.71) and (13.73) are shown in Fig. 13.7(a) and (b).
Note that the semiaxes of the ellipsoid in Fig. 13.7(a) are

1 1 1
N/ —~—, and ——
Ill 122 V I

33

and the semiaxes of the ellipsoid in Fig. 13.7(b) are

1 1 1
-___a '\, and D
VI Vi, Vi,
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(a) (b)

Figure 13.7 (a) Inertia ellipsoid in a nonprincipal coordinate axes system given
by Eg. (13.71), and (b) inertia ellipsoid in a principal coordinate axes system
given by Eq. (13.73).

That is, the semiaxes are

1
— (13.74)

Xy \/I—k
Also, the ellipsoid in Fig. 13.7(b) can be obtained from Fig. 13.7(a) by causing proper rotations.
If two of the [, are equal, the inertia ellipsoid has rotational symmetry about the third axis.
Suppose I; = I,, then the intersection of the inertia ellipsoid with the X; — X, planes may be
drawn, all having the same moments of inertia. If [, = I, = I, the inertia ellipsoid reduces to
a sphere, and the moments of inertia about any axis passing through the origin are equal.

13.7 MORE ABOUT THE PROPERTIES OF THE INERTIA TENSOR

We start with the definition of an inertia tensor and tensors in general. Then we introduce a
slightly different way of defining an inertia tensor by means of a dyad product. And, finally, we
see the similarity in the treatment of tensors as matrices.

The relation between the quantities L and @ may be written as

= (13.75)

where [ is the quotient of two vector quantities. In general, the quotient of two vector quantities
is not necessarily a member of the same class as that of the two dividing factors. Hence, we do
not expect the ratio of the two dividing vectors to be a vector. As a matter of fact, it is altogether
a different quantity, called a tensor of the second rank.

In a Cartesian three-dimensional space, a Cartesian tensor T of the Nth rank may be de-
fined as (1) a quantity that has 3" components Tj; __y, and (2) under orthogonal transformation
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of coordinates it obeys the following rule:
ij (X)) = aqay Ay Oy Ty (x) (13.76)

where a;, aj,, . . . are the elements of transformation. Since we shall not be using any other co-
ordinates except Cartesian, we shall simply use the term tensor T instead of Cartesian tensor T.
Thus from this definition, for N = 0, 3° = 1. That is, a tensor of zero rank has only one com-
ponent; hence this quantity will be invariant under an orthogonal transformation. We may say
that a scalar is a tensor of zero rank and has only one component. On the other hand, if N = 1,
3! = 3; the tensor of first rank will have three components. These components transfer, accord-
ing to Eqg. (13.76), as

T, = a[T; (13.77)

1

which is similar to the transformation equation for a vector. Thus a vector is a tensor of the first
rank, and has three components. For N = 2, a tensor of second rank will have nine components,
which will transfer as

T; = aya;,T,, (13.78)

A “im
This transformation is similar to a 3 X 3 square matrix, except for one fundamental difference
between the two. Unlike a tensor of second rank, a matrix transformation is not limited only to
orthogonal transformation. In spite of these differences, we shall make use of the properties of
maftrices in tensors.
Another way of representing a tensor | is as a dyadic. We start with the definition of an-
gular momentum, Eq. (13.38):

n

2 1o -y, - o) (13.38)

Or we may write this as
L= (2 mirf)w - (2 miriri) ‘o (13.79)
i=1 i=1

The second term on the right has no meaning because we have not yet defined quantities of the
form r;r;. We define a dyad as a simple pair of two vectors written as AB. The quantity AB has
meaning only when it operates on other quantities. Thus we define the scalar dot product of a
dyad with a vector C as a vector quantity given by

(AB)-C=AB- () (13.80)
or C-(AB)=(C+AB (13.81)

where B - C is a scalar (= b,c, + b,c, + bsc3); hence (AB) - C is a vector. Similarly, C - (AB)
is a vector. But the two vectors given by Eqgs. (13.80) and (13.81), in general, will not be equal.
That is, dyad scalar multiplication is not commutative. If we let

T=AB (13.82)

then we may write

T-C=AB-0 (13.83)
C-T=(C-AB (13.84)
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Also, T - C+D)=T-C+T-D (13.85)
T:-(C)=cT-0) (13.86)

where ¢ is a constant.

A linear polynomial of dyads is called a dyadic, such as AB + CD + ---. Actually, any
dyad may be expressed as a dyadic if we express the vectors A and B in terms of unit vectors.
Thus, if

C= c,’i\ + czj + c3fl
A=aji+ azj + ak
B=b1+b,)+bk
then the dyad AB may be written as a dyadic:
T = AB = a,bil + a\bjj + abik + abji + ab,jk
+ a;b Kl + b k] + abkk (13.87)
Thus, in matrix notation, we may write
{Tu T, T, \ (albl a,b, aIbS\
T=|T7, T, Ty |=|ab ab, ab, (13.88)
\ Ty T3 Ty / \aSbl @b,  asby /

Any given component of T is written as T};.
In component form, we may write

C=> ¢, (13.89)

i=1

where @i; = ({i, @,, {i,) are the unit vectors; hence

(T-0), = é Tc; , (13.90)
j=1
3
(€ M), = ; Ty (13.91)
T,=8, - T-d8)=@@,-T)- 4§ (13.92)
while T= i T,.inAj (13.93)
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Now we may define a unit dyadic 1 as

1=1 +]) + kk (13.94)
and 1 behaves exactly like a unit matrix, giving the results

1-A=A-1=A (13.95)

We may also write 1 as a unit tensor such that

(13.96)

k.

H
S O =
o = O
— o o

Finally, we take full advantage of the fact that a tensor of second rank is very similar to
a 3 X 3 square matrix in its representation. Hence transformation properties in orthogonal
Cartesian coordinates may be directly utilized here. Let us start with a vector L in space or fixed
in an inertial coordinate system so that

L = Lo, 13.97)
i

In a body coordinate system that is simply rotated with respect to space coordinates, the angu-
lar momentum L' must have an analogous form:

L = Lo, (13.98)

Using the transformation properties of vectors, we may write the transformation of L and w as
[note that from Eq. (5.166)

X = Aix! (5.166)
i
where A; is an element of the transformation matrix A]

L,=> AL (13.99)

and W = N (13.100)
J

Substituting these in Eq. (13.97), we obtain

> Ak = 2 0 2 N0 (13.101)
m ! ;
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Multiplying both sides by A; and summing over £,
E(E )‘ikAmk)Lr’n = 2 (E AikAklIkl)w; (13.102)
m k J k1l
This left side may be written as

2(2 AikAmk)Lrln = 2 6tmL;n =L
m k

That is, L=> (E ,\ik/\j,z,d) o (13.103)
j k.l
But this must be identical to Eq. (13.98). Comparing the two yields

I= 2 iy (13.104)
k1

Thus each element I, of inertia tensor | in a fixed coordinate system can be transformed into ro-
tated (body) coordinates resulting in elements 7 of inertia tensor I'. The preceding result may
be written as

I; = %: Al (13.105)

where A ; are the elements of a transposed matrix N’. Just as in matrix notation, we may write
i” = AINY (13.106)
Since for orthogonal transformations, ' = A~!, where A~ ! is the inverse matrix, we may write
I' = A\ (13.107)

which is the similarity transformation (1’ is similar to I).
These results indicate the method for transferring an inertia tensor from one system to an-

other rotated system by using the rotation matrix. Furthermore, we may utilize this method to
find the principal axes by determining the eigenvalues from the secular equation

IIml - I(Smll =0 (3.108)
That is,
Iy, —1 I .113
I, I, —1 I, =0 (13.109)
Iy I3, Iyy =1

which is the same as Eq. (13.62). These points are illustrated in the following example.

) Example 13.6

Diagonalize the inertia tensor of a cube by rotating the coordinate axes,
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bt X4

N

X5 = X}

/L/ .
X
cos ¢y =%, sin ¢, = %
(b)
Figure Ex. 13.6
Solution

As before, let the origin be at one corner of the cube. We have to perform a rotation in such a way that the
X,-axis will coincide with the diagonal of the cube. This can be achieved by means of two rotations:
(a) perform a rotation through an angle ¢, = 45° about the X;-axis, and (b) perform a rotation through an
angle ¢, = cos’l(\/Z_/g) about the X,-axis, as shown in Fig. Ex. 13.6.

@)
&1 = first angle of rotation o1 i=45-deg ¢1 =0.785-rad
about X3-axis
cos(¢l) sin(¢pl) O 0.707 0.707 ¢
Al = the matrix of first rotation Al :=|_sin(¢1) cos(¢l) 0| Al=[-0.707 0.707 O
0 0 1 0 0 1
(b)
_ ; 2
02 = second f?lngle of rotation 62 i=acos| |
about X2'-axis 3 %2 =0.615
A2 = matrix of second rotation cos(¢2) O sin(¢2) 0.816 0 0577
A2 = 0 | 0 A2=;0 1 0
_sin(¢2) 0 cos($2) -0.577 0 0.816
A = total matrix rotation A =A2-A1

0.577 0577 0577
A=|"0.707 0.707 0O
-0.408 -0.408 0.816

0.577 -0.707 —0.408
2 T=10577 0.707 —0.408
0577 0 0.816

AT = the inverse or
transform matrix
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I is from Example 13.3.

4 3 4 I'=7v1'7\.T

We can now calculate the inverse trasform matrix by substituting the values of A and AT and L.

2]
3 ¥ 4 4 !
5761773 5756886 5802 0.576 -0.707 -0.41
-1 2 -1
I'=| -.7068 7074 0 '—4—‘7 ;Y *4"“/ 40576 0.707 -041
-.41043348 -.41008536 .8145 ) | 5 0.58 0 0.815
L__Z_Y *4"‘/ 3’ Y
It is clear that ‘VVG ge‘:t 16667 0 0 1
the same matrix as in 2 -0167 11
Example 13.5. I'= 0 9165y 0 6 ~1—2 =0.917
0 0 9168y
The alternate treatment
(2 1 1]
. 3 4 4
The procedure is
1 2 1
self-explanatory. A= <3 0.917
E :=eigenvals(A) E=| 0917
1 1 2 0
d 43| 167
0917 0 0
diag(E) =10 0917 0O
0 0 0.167
The three columns are 0.711 ~0.401 0.577
—0.703 —0.416 0.577
0711 -0.401 0.577 wl1=0.577-1 +0.577-j +0.577-k
v=|-0.009 0.816 0.577 which gives @2=-0.401-1 + 0.816:] +-0.46k

-0.703 -0.416 0.577 . .
w3=-0.71-i - 0.01-j +0.71-k

EXERCISE 13.6 Diagonalize the inertia tensor of the rectangular body discussed in Exercise 13.3 by ro-
tating the coordinate axes.
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13.8 EULERIAN ANGLES

We are interested in evaluating a matrix that will enable us to cause transformation from one co-
ordinate system to another. Let us say we want to transfer from coordinates X' of a fixed or in-
ertial coordinate system to coordinates X of a body coordinate system. The transformation may
be represented by a matrix equation

X =AX’ (13.110)

where the rotation matrix N completely specifies the relative orientation of the two systems.
Such a rotation matrix should contain three independent angles. Of the several possible choices
for these angles, the most common and convenient ones to use are the Eulerian angles repre-
sented as ¢, 6, and .

To go from an X’ system to an X system, the following sequence of rotations of three an-

gles is followed, as demonstrated in Fig. 13.8:

1. The first rotation is counterclockwise through an angle ¢ about the X;-axis and in the X}-X,
plane, transforming the axes X; — X7, as shown in Fig. 13.8(a). The transformation ma-
trix for this rotation in the Xj-X; plane is

cos¢ sing 0
R,=| —singp cos¢p 0 (13.111)
0 0 1

The angle ¢ is called the precession angle.

2. The second rotation is counterclockwise through an angle 6 about the X7-axis and in the
X3-X; plane, transforming the axes X; — X", as shown in Fig. 13.8(b). The transforma-
tion matrix for this rotation in the X3-Xj, plane is

1 0 0
R,=|0 cosf siné (13.112)
0 —sin@ cos @

The angle 6 is called the nutation angle.

3. The third rotation is counterclockwise through an angle s about the X3'-axis and in the
X{'-X7' plane, transforming the axes X" — Xl, as shown in Fig. 13.8(c). The transforma-
tion matrix for this rotation is

cosyp sinygr O
R,=| —siny cosy O (13.113)
0 0 1

The angle i is called the body angle.

The line NN’ formed by the intersection of the planes containing the X;-X, axes of the
body system and the X|-X} axes of the fixed system is called the line of nodes. The transforma-
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T%zn X=X

A

N’\Bé
Xj = Xy

Line of nodes

(a) ®

1"
X3

XYll e X!lll
Line of nodes

©

Figure 13.8 Sequence of three angular rotations employed in going from an X’
system to an X system.

tion from the fixed coordinate system X; to the body coordinate system X; is given by the rota-
tion matrix A obtained by the product of the three individual matrices R # Ry and R, given pre-
viously. That is,

A=RRR, (13.114)
Ai Ap A
A=Ay Ay Ay
A An Ay
cos ¢ cos ¢ cos rcos ¢ sin ¢ sin 6
—Cos fsin ¢ sin + cos 6 cos ¢ sin
A =| —sincos —sin ¢ sin ¢ cos i sin ¢ (13.115)

—cos O sin ¢ cos ifr + cos §cos ¢ cos Y
sin 6 sin ¢ —sin 6 cos ¢ cos 6
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All infinitesimal rotations can be represented by vector notation. This enables us to rep-
resent the three time derivatives of rotation, that is, ¢> 8, and nj/, as the components of an angu-
lar velocity vector w(wy, wg, wy). The three components of w are not all either along the fixed
axes or the body axes. Actually,

Wy = qb is directed along the X (fixed) axis
wy = 6 is along the line of nodes
w, = x[; is directed along the X, (body) axis (13.116)

It is not very convenient to use these components to describe the motion of a rigid body.
Rigid body equations of motion are described in terms of a body coordinate system. Thus we
must calculate the angular velocity vector w(w,, @,, ws) in the body coordinate system. To do
this, we must first resolve ¢, 8, and ¢ along the body axes; that is,

d;l = qS sin 6 sin ¢ along X;-axis
ci)z = qb sin 6 cos ¢ along X,-axis
b5 = ¢ cos 8 along X;-axis (13.117)
él = 6 cos i along X,-axis
éz = —@sin 1V along X,-axis
@)3 =0 along X;-axis (13.118)
4/.’1 =0 along X;-axis
=0 along X,-axis
lﬁ3 = ¢/ along X;-axis (13.119)

Using these results, we get the components of ® to be
¢1+91+¢12 q’>.sm951n¢:+ Bcosdt
<;[)2+0 +¢:2 qbsmOcosl/f—Bsmd;
= ¢+ 0, + ;= peos O+ ¢ (13.120)

These equations are called Euler’s geometrical equations. We can make use of these to describe
rigid body motion using body axes.

It is important to emphasize that the angular displacements and other rotational quantities
may be represented as vectors only if these quantities are infinitesimally small; then they obey
the law of vector addition. The exception is the case in which the rotations are in the same plane.
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13.9 EULER’S EQUATIONS OF MOTION FOR A RIGID BODY

The translational motion of a rigid body is described by the equations

dpP
F= 0 where P = MV (13.121)

F is the resultant force acting on the body, P is its linear momentum, M is its mass, and V is the
velocity of its center of mass. The rotational motion of a body is described by

_dL
dt’

T is the net torque acting on the rigid body, L is its angular momentum, o is its angular veloc-
ity, and | is the inertia tensor. The methods used for solving equations of translational motion
can be directly extended to those for rotational motion only for the special case in which the ro-
tational motion is restricted about a fixed axis. For a general case, this is not true.

Let us now proceed to obtain Euler’s equations of motion for a rigid body in a force field.
Equation (13.22), which describes the motion of a rigid body as viewed from a fixed, inertial,
or laboratory coordinate system (LCS), may be written as

. _
dt

Note that | changes as the body rotates. To overcome this difficulty, we refer Eq. (13.123) to a
set of axes that are fixed with the rotating body. Let d'/dt be the time derivative with respect to
the coordinate axes fixed in the body. Using the results given in Chapter 11 [Eq. (11.26)],
Eq. (13.123) takes the form

T where L = lo (13.122)

L

;it(l W) =T (13.123)

dL d'L

—=—-+@wXL= 13.124
dt a T ( )
Since L. = | - @, where | is constant relative to the body axes, we may substitute in Eq. (13.124)
to obtain
dd-
% +toX(l-w)=r1
deo dl '
l- +—otoX(l o= .
o g ete l-w) =~ (13.125)
d'l dw do
But — =10 d = — 13.126
! dt a7 ar (13.126)
which when substituted in Eq. (13.125) yields
dw
l' —dFox(l-0)=r1 (13.127)

dt

il
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For convenience, choose the body axes to be the principal axes so that
L=I =1L, +}L, + kL,

Also L = Lo,

That is, L =1lw, L,=lLw, and L,=Lw,

Using these relations, Eq. (13.127) may be written in component form as

Lo, + (I, — Doyw, = 7 (13.128a)
Lo, + (I, — Dww, = T, (13.128b)

These are known as Euler’s dynamical equations or simply Euler’s equations for the motion of
a rigid body in a force field. In the absence of a torque, Eqgs. (13.128), take the form

Loy + (I — Dayw, =0 7,=0 (13.129a)
Lo, + (I, - Rw,w, =0  1,=0 (13.129b)
Las+ (I, — oo, =0 1,=0 (13.129¢)

Furthermore, for the net zero external torque, the angular momentum must remain con-

ctant in hath maonimde and diractinn For thic Fulay? s equa atiAng rarnnrn t1f 1\ =% ) than
iU 1l UL LaRillluul ala Uit uioal, © or LD, Luivi 5 Cyuauiviin ivjuie uAuL i1 7o WU, LIl

Wy, = = 0, and if w, # 0, then w; = w; = 0. These results imply that for no net external
torque, onIy rotations about the body’s principal axes are possible.

As is clear from our discussion, the three principal moment of inertia elements [}, 1,, and
I; determine the motion of a rigid body. Any two rigid bodies that have the same principal mo-
ment of inertia will have the same behavior regardless of their structure and shape. Motions of
such bodies are described by means of an equivalent ellipsoid constructed with principal mo-
ment of inertia elements, as discussed in Section 13.6.

13.10 FORCE FREE MOTION OF A SYMMETRICAL TOP

We can solve Euler’s equations, Eqgs. (13.128), for the special case in which T = 0. Furthermore,
we limit our discussion to the case in which the body is symmetrical, that is, a symmetrical top
in which two of the principal moments of inertia are the same. We choose the X;-axis to be the
symmetry axis so that I} = I, = I, # I;. Thus Egs. (13.128) reduce to

o, + (I, = [)w,0, = 0 (13.130)

Iy, + (I, — L)ww, = 0 (13.131)
Lin =0 (13.132)
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Before solving these equations, two points must be made clear. First, since the motion is force
free, the center of mass of the body is at rest or moving with uniform velocity. There will be no
loss of generality if we assume that the center of mass is at rest and is located at the origin of a
fixed or laboratory coordinate system. Second, assume that the angular velocity @ does not lie
along one of the principal axes of the body coordinate system, because if it does the problem
will be a trivial one.

From Eq. (13.132), since I; # 0,

w; =0
which on integration gives

w5(#) = constant (13.133)

This equation states that for any rigid body rotating with angular velocity ® the component of
angular velocity along the symmetry axis, w,, remains constant. (If @ were along the X;-axis,
the principal axis, the entire angular velocity e would remain constant.)

Equations (13.130) and (13.131) may be written as

13_11

w, + 2 wyw, = 0 (13.134)
12
< I — I —
and ®, w,w;, =0 (13.135)
12
Let us define () (or {15 to be more specific),
IL—1
Q=" 0, = yo, (13.136)
I,
and rewrite Eqs. (13.134) and (13.135) as
w, + Qpo, =0 (13.137)
w, — Qyw, =0 (13.138)

These are two first-order coupled equations and can be solved by the usual procedure for such
equations. Multiply the second equation by i and add te the first, that is,

(0, + iwy) — iQp(w, + iw,) =0 (13.139)
Substitute n = w t+iw, (13.140)
and N = +io, (13.141)

into Eq. (13.139), resulting in

n—iQm=0 (13.142)
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Assuming that the phase angle & = 0 when ¢t = 0, the solution of Eq. (13.142) is
n(E) = Ae'™
or w; + iwy, = Acos (gt + iA sin )yt
where A is an arbitrary constant. Comparing the two sides,
w,(f) = A cos (gt
wy(1) = A sin (gt
Squaring the two equations and adding,

o + o = A’

Chap. 13

(13.143)
(13.144)

(13.145)
(13.146)

(13.147)

That is, the sum of the squares of the angular velocity components o; and w, is constant and is
equal to A%. Furthermore, according to Eq. (13.133), w, is constant; therefore, the magnitude of

w is also constant; that is,

o =|o| = Vol + &} + &} = VA2 + @ = constant

(13.148)

Equations (13.145) and (13.146) are parametric equations of a circle, and w; and w, are
the components of w in the X, X, body plane. Thus the components w, and w, of w trace out a
circle with time in the XX, plane, which implies that the angular velocity vector m precesses in
a cone about the X;-axis (the body symmetry axis) with a constant angular frequencey (g, as
shown in Fig. 13.9, while w; remains constant around the symmetry axis. The net result is fo an

33

Figure 13.9(a) The angular velocity
vector o precesses in a cone about the
X;-axis, the body symmetry axis, with a
constant angular frequency (g. ¢gis
the half-angle of the body cone.
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Figure 13.9(b)

Assuming arbitrary values, we can show the angular velocity precessing in a cone.

n:=1.26 m:=1 I1:=2 12:=2 112:=2 I3:=3 w.=3
wz =1 _B- 112'(0 QB =035 A = /u)z— (mz )2
m 112 " " n
v n 3 1 n 0
ox = A -cos QBm-E) O, o .=An-s1n(QBm-3> Z“’m .=cozn-1t-2

WX, 0y,Z
Precessing cone

observer in the body coordinate system, 0 traces out a cone around the body symmetric axis.
This is called the body cone, and in the body reference frame its half angle, ¢g, is

2 +' N\ 172 A
tan ¢, = AT T _ A (13.149)

Ws w;

as shown in Fig. 13.9(a) and (b).

Remember, we have been considering the force free motion of a rigid body. As viewed
from the inertial system, there should be two constants of motion, the angular momentum and
kinetic energy. Thus, as viewed from the fixed, LCS, or inertial coordinate system,

L(t) = constant (13.150)
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"

&

Figure 13.10 As viewed from a fixed,
[0) > LCS, or inertial coordinate system, the
X; angular vector @ moves in such a way
that its projection on the angular
momentum vector L or the X3-axis is
constant. ¢; is the half-angle of the
Xi space cone.

and is fixed about the X}-axis, as shown in Fig. 13.10. Since the center of mass is fixed, the ki-
netic energy is all rotational and constant; that is,

T

rot

= 1o + L = constant (13.151)

We know that L is constant; 7, will be constant only if ® moves in such a way that its projec-
tion on the angular momentum vector L or the Xj-axis is constant. As shown in Fig. 13.10, the
angle ¢, between w and L is given by [using the definition of the dot product and Eq. (13.151)]

-L 2T
cos ¢, = %)L— = wz“ = constant (13.152)

Angle ¢, remains constant and is the half-angle of the laboratory or space cone. This cone is
the result of precession of w about the constant angular momentum L as viewed from the iner-
tial or LCS reference frame, L, w, and the X3(body)-axis all lie in one plane, and since L has
been designated to be along the X;(L.CS)-axis, it has resulted in @ precessing around the X;-axis
when viewed in the LCS or inertial coordinate system. On the other hand, when viewed from
the body coordinate system,  precesses around the X;(body or symmetry)-axis. The situation
1s shown in Fig. 13.11(a) and (b) and may be described as one cone rolling on another; that is,
the body cone is rolling without slipping around the LCS cone and the line of contact is the di-
rection of the angular velocity ®, which precesses around the X;-axis when viewed from the
body reference frame and around the X}-axis when viewed from the LCS frame. The angular
frequency of precession of w about the X,-axis (the symmetry axis), as stated earlier, is
Eq. (13.136)

Wy = Y, (13.136)
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X3

LCS or
fixed cone L @

Figure 13.11 Body cone rolling around a LCS cone without slipping. Depend-
ing on the values of I, and I, the body cone may roll (a) outside or (b) inside the
LCS cone.

and the angular frequency of precession of w about the X;-axis (or L) is

sin
Q= Yo ZZB (13.153)
L

Depending on the values of I}, and I;, the body cone may roll outside or inside the LCS cone,
as shown in Fig. 13.11.

One striking example is the application of the above theory to the rotating Earth. Earth is
known to be slightly flattened near the poles, resulting in an oblate spheroid shape. This gives
I3 =1, and I > I, resulting in -

being very small as compared to w;, such that =~ w,/300. Since the period of Earth’s rotation
18 (1/w) = 1 day and w; = w, we get (1/£2 = 300 days)

2ar 2wl 1 day
T, = “—=——-~""12 . "% _ 13954 13.154
PT0  wfl,— Iy 000327 2 13159
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The measured value is = 440 days. The disagreement is not due to lack of knowledge of I; or
I;,, but to the fact that Earth is not a perfect rigid body nor an oblate spheroid in shape. Actu-
ally, the shape of Earth resembles a flattened pear. Thus Earth’s rotation axis precesses about
the North Pole in a circle with a radius of =10 m and with a period of about 430 days. Since
latitude is dependent on the rotation axis, a measurable change in latitude results. Such changes
in latitude are called the Chandler wobble and were discovered by S. C. Chandler in 1891.

Another and more familiar precession, Earth’s axis about a cone with a half-angle 23.5°,
is the result of the external gravitational torques due to the Sun and Moon. (That is, the rota-
tional axis is inclined at 23.5° to the plane of Earth’s orbit around the Sun.) This results in a slow
precession of Earth’a axis. The period of such precessional motion is 26,000 years. This means
that, as time passes, different stars become the polar star. Today the North Star (Polaris) is the
polar star; in 3000 B.c., Thuban was the polar star; in 14,000 a.p., Vega will be the polar star.
This is due to the precession of the rotational axis of Earth resulting from the gravitational forces
of the Sun and Moon.

13.11 MOTION OF A SYMMETRICAL TOP WITH ONE POINT FIXED
(THE HEAVY TOP)

A rigid body rotating about some fixed point O under the influence of a torque produced by its
weight (in the gravitational force field) is called a keavy top. We shall limit our discussion to a
special case of a symmetrical top in which I; > I, = I, (=1,,). Furthermore, the fixed point O
does not coincide with the center of mass, but still lies on the symmetry axis. Such a situation
is shown in Fig. 13.12. The fixed point is O, which coincides with the origins of the fixed and
body coordinate systems. Because of the coincidence of the origins of the body and fixed sys-

b X

Line of node

Figure 13.12 Heavy symmetrical top with one point fixed.
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tems, the translational kinetic energy will be zero because v = r = 0. The Xj(fixed)-axis corre-
sponds to the vertical, and the X;(body)-axis is the symmetry axis of the top. The tip of the top
is stationary at Q. The only two forces acting are the reaction force F passing through point O,
which does not produce any torque, while the gravitational force Mg produces a torque 7 that is
parallel to the line of nodes, as shown. We can use the Euler angles to describe the motion of

the symmetrical top. The torque 7 on the symmetrical top is

T=rX Mg (13.155)

thus 7= Mgl sin 0 (13.156)

The torque 7 that is along the lines of node may be resolved along the body axes, as shown in
the insert in Fig. 13.12, resulting in

T, = Mgl sin 0 cos ¢ (13.157)
T, = Mgl sin 0 sin s (13.158)
7, =0 (13.159)

Using the values of w;, w,, and w; from Eqs. (13.120) and the Euler equations given by
Eqgs. (13.128), we obtain the following Euler’s equations for a symmetrical top:

112%“15 sin @sin § + 6 cos ) + (I, — 112)(4') cos 8 + )
X (¢ sin B cos ¢ — 6 sin ) = Mgl sin 0 cos ¢ (13.160)
Iu%(q.ﬁ sin 6 cos f — 6 sin ¥ — (I, — 112)(9{5 cos 0 + ‘i’)

X (d; sin ¢ sin ¢ + 6 cos ) = — Mgl sin ¢sin (13.161)

13%(4} + deos ) =0 (13.162)

In principle, Euler’s equations can be solved to obtain three first integrals (two angular momenta
and one energy); hence the three Euler angles. Since this is quite cumbersome, we will simply
summarize the results.

The kinetic energy of the symmetrical top is

1 1 1
r= EE Lo} = 5112(‘“% + @) + 513(»% (13.163)

T=11,($%sin> 6+ 62 + L L(d cos 6§ + ) (13.164)
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while the potential energy is
V = Mglcos 0 (13.165)
Thus the Lagrangian L is
L=L06,¢,04)=T—-V (13.166)

We notice that ¢ and i are ignorable or cyclic coordinates. Therefore, the momenta con-
jugate to these coordinates are constants of motion. The cyclic coordinates are angles; the con-
jugate momenta are angular momenta. Thus

oL : : ]
Py = 5$ = I,,¢ sin® 6 + I cos (b cos 8 + ¢ ) = constant (13.167)
_oL _ + ) = tant
P, = ﬁ = I,(¢ cos O + ¢ ) = constan (13.168)

These are the two first integrals of motion. Another first integral is the total energy E. Since the
symmetrical top is in the gravitational force field, which is conservative, the total energy is a
constant of motion and may be written as

E=T+ V=11, + wd) + } Lw} + Mglcos §

=1 1,($?sin? 0 + 6% + 1 I,(d cos 6 + §)? + Mgl cos § = constant (13.169)
From Eq. (13.168),
Py = 3(ql; cos 6 + (,b) = L,w; = constant (13.170)
and 1I w: = L‘Zb = constant (13.171)
27772 |

Thus not only E, but E’ = E — 1Lw? is also a constant of motion. Substituting the values of é
from Eq. (13.75) in Eq. (13.168) and after rearranging, we get

E =11,6%+ V6 (13.172)
where V(0) = Po — Pyt T v (:203 + Mgl cos 0 (13.173)
21, sin” 6

and V(6) is called the effective potential. From Eq. (13.172),

N 2 172
0 = (l [E' — V(O)]) (13.174)
12
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which on integration gives

do
16) =
© f VQI)IE — V(6)]

(13.175)

This equation, in principle, can be solved to obtain &(7). These values of 6(¢) can be used to yield
the values of ¢(r) and y(¢). Thus we have all three Eulerian angles that specify the orientation
of arigid body. Hence, the problem at hand is completely solved. Unfortunately, the integration
of these equations involves an elliptic integral and the procedure becomes complicated. Hence,
it becomes essential to limit ourselves to a qualitative discussion, similar to the one used in de-
scribing the motion of a particle in a central force field.

Steady Precession

Figure 13.13 shows the plot of effective potential V(6) [given by Eq. (13.173)] versus 6 between
the physically acceptable range of 0 << 6 < . This energy diagram with a minimum effective
potential is similar to the diagram for the central force field. For any energy value E' = Ej, the
motion is limited between two extreme values, which are similar to the turning points, that is,
between 6 = 6, and @ = 0,, as shown. This implies that the symmetrical axis OX; of the rotat-
ing top can vary its inclination 6 to the vertical between 8, < 6 < 6,. If the energy of the top is
such that E" = Ej = V., the value of @ is limited to a single value of 8 = 6, as shown. The re-
sulting motion is a steady precession at a fixed angle of inclination 6,. This is an interesting spe-
cial case of steady precession in which the axis of the gyroscope or heavy top describes a right

E

I > Figure 13.13 Energy diagram: plot of
effective potential V(8) versus 6 (0 <
0 — # < ) for a heavy symmetrical top.

0o 6 b, 2 o

(%)
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circular cone about the vertical (Xj-axis). Before discussing the general situation, we shall dis-
cuss this case in some detail. We can evaluate the value 6, by setting the derivative of the effec-
tive potential V(6) equal to zero at 6,. (Note that, in general, 7(8) = dV(6)/d6.) Hence, from
Eq. (13.173),

oV
) =|— -
" l 86y—s,
- 2 _ — 2
_ (py = pycos 6,)" cos 6 . (57,,, Py Cos By) pysin” 6, + Mglsin6,=0  (13176)
I}, sin” 6,
Let us define
Y = Py — Pycos b, (13.177)
and rewrite Eq. (13.176) as
(cos 6,)y” = (p, sin” Bp)y + (Mgll,, sin* 6;) = 0 (13.178)

This is a quadratic in -y, which has two values. For the given value of 8 = 6, let us discuss
the value of ¢. The precessional angular velocity cf)o has two possible values, one for each value
of y given by solving Eq. (13.178). A large value of yresults in fast precession and a small value
in slow precession; that is,

do(t) = ¢ — fast precession
(,1)0(_) = ‘f;oS — slow precession (13.1
It is this slow precessional angular velocity, that is usually observed in gyroscopes.

Thus, for the symmetry axis at 8 = 6, and less than 71/2, the top is rotating about the sym-
metry axis at frequency w, and the symmetry axis can precess about the fixed axis with two pos-
sible frequencies ¢. A special case is in order. If the top is spinning sufficiently fast and is in the
vertical position, the axis of the top will remain fixed in the vertical direction. This condition is
called sleeping, and the top is a sleeping top. If the top slows down due to friction or other
causes, the top starts undergoing a nutation (as discussed later) and eventually will topple over.

Let us now discuss the case in which 6, > 7/2. In such a case, the fixed tip of the top is
at a position above the center of mass. The symmetrical top is hanging with its axis below the

horizontal. Furthermore, the values of d}(]f and cfﬁOs have opposite signs. That is, for 8, > 7/2,
the fast precession d)of is in the same direction as that for §, < 7/2, while the slow precession

¢,, takes place in the opposite sense.

6 Motion: Nutation

As discussed earlier in connection with the effective potential V(6) versus 0 plot in Fig. 13.13,
the motion of the symmetrical axis is limited between 6, < 6 < 6, for any given energy E' of
the top. As 6 varies between these limits, the value of ¢ may or may not change sign. If there is




Sec. 13.11 Motion of a Symmetrical Top with One Point Fixed (The Heavy Top) 557

no change in the sign of ¢, the top precesses monotonically around the fixed, inertial, or LCS
X;-axis, while the X;(symmetry)-axis of the body oscillates between 6 = 6, and 6 = 8,. This
motion of the top is called nutation. The path desribed by the body symmetry axis when pro-
jected on a unit sphere in the fixed system is shown in Fig. 13.14(a). On the other hand, if é
does change sign between the limiting values of 6, the precessional angular velocity must have
opposite signs at 8 = 6, and # = 6,. In this situation the nutational-precessional motion results
in a looping motion of the symmetry axis, as shown in Fig. 13.14(b), which is a projection of
the symmetry axis on a unit sphere. Note that the changes in ¢ are not only due to the values of
pgeand p,, . If these values are such that at § = 6,,

(py — Pycos B)]y_y =0 (13.180)

then $lo-s =0, lyey =0, and i = o (13.181)

The resulting motion of the projection of the symmetry axis on a sphere is cusplike, as shown
in Fig. 13.14(c). (a) and (c) are redrawn for arbitrary values in Fig. 13.14(d).

(@) (b) ©

Figure 13.14 6 motion (nutation), the motion of the symmetrical axis limited
between 8, < 6 < 6,. The diagrams show the path of a body symmetry axis as
projected on a unit sphere in a fixed system. (a) monotonic precession, (b) loop-
ing motion, and (c) cusplike moticn of the symmetry axis about a fixed axis.
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Figure 13.14(d)

Assuming arbitrary values, we can show the angular velocity precessing in a cone.
The two cases (a) and (¢) above are redrawn here.,

n:=1.60 m:=] I1:=2 12:=2 112:=35 1I13:=4 @®:=40
®z =5 QB :=w-mz QB =0.714 , 2 2
m 112 m A=Ao - (0z)
. L 2m . 2m
() ::A~sm<§2B -m)-sm n—- wy :=A~sm<QB ~m)-c0s n—
n,m m 60 n,m m 60
Za, . ::4«cos(an<n) +60 Ze, =4 ’cos(QBm-nN +60

X, @y, Zc

WX, Oy, ”7Za
Precessing cone

Precessing cone

Compare these with (a) and (c) and explain the difference.

PROBLEMS

13.1. Combine Eq. (13.7) with Eq. (13.3) to obtain the results in Eq. (13.6).
13.2. Prove the following identities.
(@ AXBXA) =AB— AA-B)
b)) AXB)-CxD)=(A-OB-CO)—-B-CA-D)
© AXB?2=AXB) - AXB =A-A)B-B)— (B-A)A-B)=A4%B>2-(A-B)?
13.3. Find the angular momentum and kinetic energy for the rotation of a uniform square lamina of side
L and mass M about a diagonal with an angular velocity .
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13.4. Consider a uniform rectangular lamina of sides a and b and surface density (mass per unit area) o.
It is rotating about a diagonal with constant angular velocity w. Find the magnitude and the direc-
tion of the angular momentum about an axis passing through (a) its center, and (b} one of its cor-
ners. Also calculate the rotational kinetic energy.

13.5. A uniform disk of radius R and mass M is rotating with uniform angular velocity « about an axis
that makes an angle 6 with the axis of the disk. Calculate (a) the angular momentum (magnitude
as well as direction), and (b) the total rotational kinetic energy.

13.6. A particle of mass m is rotating in a vertical plane with angular velocity @, which lies in the XY
plane and makes an angle of 45° with the X-axis, as shown in Fig. P13.6. Calculate velocity v, an-
gular momentum L, and the rotational kinetic energy. Are @ and L in the same direction? What
does this imply?

Figure P13.6

13.7. A thin uniform disk of mass in, radius r, and thickness 4 rolls without slipping about the Z-axis. It
is supported by an axle of length R through its center (as shown in Fig. P13.7) and circles arcund
the Z-axis with angular velocity {}. Calculate the instantaneous angular velocity o of the disk and
its angular momentum L. Are o and L parallel to each other?

Z A

Figure P13.7

13.8. The axis of symmetry of a misaligned armature makes an angle ¢ with the rotation axis, as shown
in Fig. P13.8. If the rotational angular velocity of the armature is 6, what are the reactions at the
bearings at A and B? The disk has a radius of R, thickness 4, and mass M.
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13.9.

13.10.

13.11.

13.12.

13.13.

13.14.

13.15,

13.16.

Rigid Body Motion: |l Chap. 13

Figure P13.8

Calculate the components of a moment of inertia tensor for the following configuration, Point
masses 2, 3, 1, and 5 units located at (0, 0, 1), (0, 1, 1), (1, —1, 1), and (1, —1, —1).

Calculate the components of a moment of inertia tensor for the following configuration. Point
masses 2, 3, 6, and 8 units located at (0, 1, 2), (0, 2, 2), (2, 2, 2), and (2, —2, —2).

Find the elements of the inertia tensor of a rod of mass M and length I. The origin of the coordi-
nate system is at its center, the X-axis is along the length of the rod, and the Z-axis is perpendicu-
lar to the rod.

Find the inertia tensor for a square lamina of length L and mass M for a coordinate system whose
origin is located (a) at one corner, and (b) at the center of the lamina.

Find the inertia tensor of a rectangular lamina of sides L and W and mass M for a coordinate sys-
tem whose origin is (a) at one corner, and (b) at the center of the lamina.

Consider a homogeneous sphere of mass M and radius R. Find a coordinate system whose origin
is at the center of the sphere, calculate the moments of inertia /,, [,, and I;.

Show that for any homogeneous regular polyhedron the principal moments of inertia will all be
equal for a coordinate system whose origin is at the center of the polyhedron. Find the radius of a
homogeneous solid sphere of the same mass that has the same moment of inertia elements.

Find the inertia tensor of a rectangular block of mass M and dimension @ X b X c¢. The origin of
the axes coincides with the center of mass, the Z-axis is parallel to the thickness ¢, and the Y-axis
is parallel to a diagonal of rectangular @ X b, as shown in Fig. P13.16. Find the relation between
the coordinates axes and the principal coordinate axes.

Figure P13.16
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13.17. Consider a right triangular solid of mass M and length L along the X,-, X,-, and X;-axes, as shown
in Fig. P13.17. Calculate the elements of the inertia tensor for these axes.

X Figure P13.17

13.18. Six particles, each of mass m, are fixed at the end of massless rods of length 2/. The rods are per-
pendicular to each other, as shown in Fig. P13.18. For the axis along the three rods, calculate the
elements of the inertia tensor for this configuration. Show that these axes are the principal axes.

X3

!

T m
Figure P13.18

13.19. Show that any one of the three principal moments of inertia cannot be greater than the sum of the

other two.
13.20. Consider a uniform density object of mass M in the shape of an ellipsoid whose equation is
£y 2
;5 + bﬁz + C—2 =1

where the axes 2a > 2b > 2c are the dimensions of the solid. Find the principal moments of in-
ertia I, I,, and I, and the principal axes.
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13.21.

13.22.

13.23.

13.24.

13.25.

13.26.

13.27.
13.28.
13.29.

13.30.

13.31.

13.32.

13.33.

Rigid Body Motion: Il Chap. 13

Consider a homogeneous cone of mass M, height k, and radius R. Let the origin be at the apex of
the cone and the X,;-axis be along the axis of symmetry of the cone. Calculate the elements of the
inertia tensor. Now make the transformation so that the center of mass of the cone is also the ori-
gin of the coardinate axes. Find the principal moment of inertia about this new coordinate system.

Show that in a plane rectangular lamina the direction of the principal axis at a corner is given by

2(Mab/4) 3ab

@n2¢ =0 — Mb)@ — B

For the following two cases, draw a sketch of the ellipsoid of inertia: (a) a uniform circular disk of
radius R and mass M; (b) a solid rectangular parallelepiped of mass M and sides g, 2a, and 4a.

Draw a sketch of the ellipsoid of inertia of a solid right circular cylinder of radius R and length L
{ = 8R). What should be the ratio R/L so that the ellipsoid of inertia at the center is a sphere?

Find the principal moment of inertia and principal axes for the right triangular solid discussed in
Problem 13.17 and shown in Fig. P13.17. What types of rotation and rotation matrices are needed
to go from the given axes to the principal axes?

Consider a right elliptical cylinder of mass M. The cylinder is bounded by plane ends withZ = —¢
and Z = +c, while its wall is an elliptical surface defined by (x/a)? + (y/b)?> = 1. Calculate the
moment of inertia for rotation of the cylinder about the Z-axis.

In Problem 13.12, transfer from (a) to (b) by a proper rotation matrix.
In Problem 13.13, transfer from (a} to (b) by a proper rotation matrix.

The trace of a tensor | is defined as the sum of the diagonal elements; that is, trace | = %,/ By
performing a similarity transformation, show that the trace is invariant under a coordinate trans-
formation; that is, trace | = trace I’, where I’ is the tensor in a coordinate system rotated with re-
spect to the coordinate system of I.

Show that the determinant of the elements of a tensor is invariant under different coordinate sys-
tems rotated with respect to each other.

Consideratensor T = AB + BA, where A = 101, — 61, + 41i, and B = {i, + 2ii,. Transform
this tensor into a coordinate system rotated 45° about the X;-axis. Diagonalize the resulting tensor.

Diagonalize the following tensor and find the principal axes:

7 Ve  —-V3
T=| V6 2 -5\V2
-V3 —5v2 -3

Consider a thin homogeneous plate of mass M and of dimensions ! and w that lies in the X-X,
plane. Show that its inertia tensor has the following form:

A -C 0
T=1-C B 0
0 0 A+B

Calculate the value of A, B, and C in terms of M, [, and w.
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13.35.

13.36.

13.37.

13.38.
13.39.

13.40,

13.41.

Now rotate the coordinate axis through angle # about the X;-axis, Show that the new inertia
tensor takes the form

A —-C 0
T={-C B 0
0 0 A+8

Calculate the values of A’, B', and ' in terms of A, B, and C and 6.
Show that if the angle of rotation 8 is given by the expression
0= 1 tan ! ¢
2 B-A
then the X,- and X;-axes will be the principal axes.
Obtain the components of angular velocity @ directly from the transformation matrix A given by
Eq. (13.115).
Obtain the inverse transformation matrix of A given in Eq. (13.115), and then obtain the compo-
nents of @',
By using Fig. 13.8, obtain the components of w along the fixed X]-axes; that is, calculate w;, w),
and w;.
Derive Eq. (13.153).
Find the componets of a tensor that corresponds to a rotation by an angle 8 about the Z-axis and
followed by a rotation by an angle ¢ about the Y-axis.
Consider a homogeneous sphere with moments of inertia I, = I, = ;. Find the equations of mo-
tion of the sphere by using Euler’s equations.
A uniform rod of length [ and mass m is mounted on a horizontal frictionless axle through its cen-
ter. The axle is mounted on a platform that is rotating with angular velocity (), as shown in
Fig. P13.41. The axis of the platform passes through the center of the rod. Using Euler’s equations,
calculate the angle 0 that the rod makes with the horizontal as a function of time. Show that for a
small # the motion of the rod is simple harmonic with angular frequency {(I; — L)/I,]'*Q.

Figure P13.41
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13.42.
13.43.

13.44.

13.45.

13.46.

13.47.

13.48.

13.49.

13.50.

13.51.

13.52.

13.53.

Rigid Body Motion: Il Chap. 13

Derive Eqs. (13.198) and (13.199).

Consider the force free motion of a symmetrical top and show that the angular velocity w, the an-
gular momentum L about the fixed (space) X;-axis, and the body X;-axis are coplanar.

A circular disk of mass M and radius R is rotating freely under no external torque. The angle be-
tween the axis of symmeltry of the disk and the angular velocity w is ¢. Calculate the time in which
the axis of symmetry describes a cone about the direction of L, that is, about the invariable line.

Consider the force free rotation of a plane lamina. By using Euler’s equations, show that the com-
ponent of the angular velocity in the plane of the lamina is constant in magnitude. Under what con-
ditions will the component of the angular velocity normal to the plane of the lamina be constant?
Consider a symmetrical rigid body moving freely in space and powered by two jet engines that are
symmetrically placed with respect to the symmetry body axis (that is, X;-axis) and supply a con-
stant torque T about the symmetry axis. Find the general expression for the angular velocity w as
a function of time. Show that @ increases in magnitude with time, and its components perpendic-
ular to the X;-axis describe a constant ellipse.

Consider a rigid body with three different principal moments of inertia, I, > I, > I;, rotating freely
about its center of mass. Show by using Euler’s equations that the rotational motion of the body is
stable about either the axis of greatest moments of inertia or the axis of least moment of inertia.
A symmetrical rigid body rotates freely about a fixed point frec of any external torque. Let 0 be the
angle between the axis of rotation and the axis of the system. The moment of inertia /, about the
symmetry axis is greater than the moment of inertia /, about an axis normal to the symmetry axis.
Show that the angle between the axis of rotation and the invariable line (the L vector) is

van -1 [(Is — I )tan 9]
an 't
I+ I tan® 0

What is the maximum possible value for this angle?

A flywheel (a disk of mass M and radius R) is mounted with its axis vertical in a truck and works
as a stabilizing gyroscope. Suppose the disk is rotating at full speed . Show that the torque needed
to make it precess in a vertical plane is T = % MR?w(), where () is the frequency of precession.
Suppose a heavy top is spinning in a stable configuration. What is the effect of friction on the mo-
tion as friction gradually reduces the value of w;?

A simple gyroscope consists of a disk of 0.2-kg mass and has a radius of 0.06 m; it is mounted
at the center of a light rod of length 0.12 m. It is set spinning such that precessional frequency is
0.2 revolution per second. Calculate approximately the spinning frequency.

A symmetrical rigid body rotates with an angular velocity w in three-dimensional motion about its
center of mass. If there is a frictionai torque —bw due to air drag, show that the component of w
in the direction of the symmetry axis decreases exponentially with time.

To investigate the turning points of the nutational motion of a symmetrical top, we substitute
8 = 0. Show that the resulting equation is a cubic in cos 6 with two real roots and one imaginary
root for 6.
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