Theory of Small Oscillations and
Coupled Oscillators

14.1 INTRODUCTION

In Chapters 3 and 4, we discussed the oscillatory motion of undamped, damped, and forced os-
cillators. As in the previous chapters where we extended the motion of single particles to the
motion of rigid bodies, we now investigate the oscillatory motion of system of particles. One of
the most deeply investigated concepts in modern physics is that of oscillatory motion of atoms
in the field of molecular physics and solids in the field of solid state physics.

We will describe the oscillatory motion of many coupled oscillators in terms of normal
coordinates and normal frequencies. Theory of small oscillations in analyzing coupled oscilla-
tory motion uses methods of Lagrange’s equations together with matrix tensor formulation. We
will close the chapter with the discussion of vibrations and beats in the vibrating systems. Also,
we will briefly touch the topic of dissipative systems under forced oscillators.

14.2 EQUILIBRIUM AND POTENTIAL ENERGY

To understand the general theory of vibrations, it is essential to know the relation between po-
tential energy and equilibrium that leads to the conditions of stable or unstable equilibrium of a
given system. To start, let us consider a system with n degrees of freedom, and let its configu-
ration be specified by the generalized coordinative: g, g,, . . . , q,. Furthermore, let us assume
that the system is conservative; hence the potential energy V is a function of the generalized co-
ordinates; that is,

V=Vq,q . --,9,) (14.1)

566




Sec. 14.2 Equilibrium and Potential Energy 567

The generalized forces Q, are given by

Qk=—67V, k=1,2,....n (14.2)
gy

If the system is in such a configuration that it is in equilibrium, it implies that all the general-
ized forces Q, must be zero. Thus the condition for an equilibrium configuration is

vV

99,
The system will remain at rest in this configuration if no external force is applied. Now let us
displace this system slightly from its equilibrium configuration. After displacement, the system
may or may not return to its equilibrium configuration. If after a small displacement the system
does return to its original equilibrium configuration, the system is said to be in a stable equilib-
rium. If the system does not return to its equilibrium configuration, it is in an unstable equilib-
rium. On the other hand, if the system is displaced and it has no tendency to move toward or
away from the equilibrium configuration, the system is said to be in neutral equilibrium.

We are interested in finding a relation between the potential energy function V and the sta-
bility of the system. Suppose, when the system is in an equilibrium configuration, it has kinetic
energy T, and potential energy V. Now the system is given a small displacement (by a small
impulsive force), and at any subsequent time the system has kinetic energy 7 and potential en-
ergy V. Since total energy is conserved, we may write

T, +V,=T+V

T—T. = —(V-V) (14.4)
= ] AN Y ASaaY

Q, = 0 (14.3)

Let us assume an arbitrary form of a potential function V versus ¢, as shown in Fig. 14.1. The
points A and B, where dV/dq is zero, are equilibrium points. Let us consider the nature of sta-
bility at these points.

Vig) 4

Figure 14.1 Arbitrary form of a potential function V versus g.
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Suppose initially the system is in equilibrium corresponding to the configuration at B
where the potential energy V; is maximum. Any displacement from this equilibrium will lead
to a potential energy V that is less than V. Thus V — V, is negative, and from Eq. (14.4) T — T,
will be positive; that is, T increases. Since T increases with displacement, the system never re-
turns to the equilibrium point B; hence B is a position of unstable equilibrium. Now let us con-
sider point A, where the equilibrium potential V; is minimum. If the system is displaced slightly,
the potential energy V,, increases to V; hence V — V, is positive. From Eq. (14.4), T — T, will
be negative; hence T decreases with displacement. Since T cannot be negative, it will decrease
till it becomes zero at some limiting configuration near the equilibrium configuration; the sys-
tem will start coming back to an equilibrium configuration. Thus the system is in stable equi-
librium. We conclude that for small displacements the condition for stable equilibrium is that
the potential energy V,, be minimum at the equilibrium configuration. Furthermore, at equilib-
rium dV/dg is zero, V — V, being positive means that d?V/dq? is positive at stable equilibrium.
At a position of unstable equilibrium, d?V/dg* will be negative because V — V,, is negative.

Applying the preceding discussion to a system with one degree of freedom, we may write

V= Wg) (14.5)
and at an equilibrium configuration
av
F=—-—=0 (14.6)
dq
The stability condition may be written as
ep s N drv
Stable equilibrium: V, is minimum — >0 (14.7)
dq
o : . d*v
Unstable equilibrium: V is maximum — <0 (14.8)
dg

For d?V/dg? = 0, we must examine the higher-order derivatives. If the first nonvanishing deriv-
ative is odd, the system must be in unstable equilibrium. If, on the other hand, the nonvanishing
derivative is of an even order, then the system may be in a stable or unstable equilibrium de-
pending on the value of the derivative (whether it is greater than zero or less than zero).

d"'v
If do #0, n>2andodd system is unstable (14.9)
q
d'v .
If 47 >0, n>2andeven system is stable (14.10)
d"'v .
If I <0, n>2andeven system is unstable (14.11)
q

A more general case of this situation will be discussed shortly.
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Example 14.1

Show that a bat of length / suspended from point O with a center of mass at a distance 4 from O is in a
stable equilibrium position as in (a) and an unstable equilibrium position as in (b).

Solution

The situation is as shown in Fig. Ex. 14.1, When the bat is displaced, the line OC makes an angle 6 with
the vertical as in Fig. Ex. 14.1(a). The center of mass is raised a distance  and the potential energy is

given by
(2) (b}
Potential energy VEm-gd-(1 - cos(8)) V=-mgd-(1- cos(8))
when the bat is v g
displaced. ﬂ=£im(m.g.d.(1 —cos(8))) d—e=£(-m'g'd'(1 - ¢08(0)))

do de

dv .
D e neged-sing0) g Edsn(®
de

0=0 d—V—O 0=0 ﬂ=O
de de
2 2
d—V2 =£i—~m~g-d-sin(9) ﬂ =g—-m-g-d-sin(9)
de” | 4o d92 de
S 9
CM \
d
¢ /
d
' cM
Jv_ij !

(a) (b)

Figure Ex. 14.1
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2 2

Taking the second gz—=m- g-d-cos(9) d—V2=- m-g-d-cos(8)
derivative and evaluating de de
at 9 = 0 reveals that
.. _ 5 )
‘(:})1;12 in stable equlibrium 6=0 d_y2 g0 om0 d_v2 - 40
(b) is in unstable equilibrium a0 a0
Stable unstable

From our discussion, we may conclude that if the center of mass lies below the point of suspension,
the system will be in stable equilibrium; and if the center of mass lies above the center of suspension, the
system will be in unstable equilibrium.

EXERCISE 14.1 The spherical or cylindrical object shown in Fig. Exer. 14.1 is placed on a plane hori-
zontal surface. The radius of curvature is a, and the center of mass is at a distance d, as shown. Show that
the system is in stable equilibrium.

TR RO Figure Ex. 14.1

14.3 TWO COUPLED OSCILLATORS AND NORMAL COORDINATES

As a simple example of a coupled system, let us consider two harmonic oscillators coupled to-
gether by a spring, as shown in Fig. 14.2. Each harmonic oscillator has a particle of mass m, and
the spring constant of one is k; and that of the other is k,. The two are coupled together by an-
other spring of spring constant £’. The motion of the two masses is restricted along the line join-
ing the two masses, say along the X-axis. Thus the system has two degrees of freedom repre-
sented by the coordinates x; and x,. The configuration of the sytem is represented by the
displacements measured from the equilibrium positions O, and 0,, respectively. The displace-
ments to the right are positive and those to the left are negative. If the two oscillators were not
connected, each would vibrate independently of the other with frequencies
ky Ky

wp =L and =y 2 (14.12)

When these oscillators are connected by a spring of spring constant k', the system vibrates with
different frequencies, which we wish to calculate now.
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Figure 14.2 Two harmonic oscillators coupled together by a spring of spring
constant &'.
The kinetic energy of the system is
| T =imi? + imi3 (14.13)
and the potential energy of the system is
V =2k + koxd + 3k (x, — x) (14.14)
Hence the Lagrangian function L of the system is
L=T-V=1im}+ imad — k= Jhoxd — 3K (x; — x)* (14.15)
The Lagrange equations of motion
d (oL oL d [ oL oL
— (—f) —— =0 and — (m) - — =0 (14.16)
dt \ax, ax, dt \ox, ox,
take the form
mx, + kx; + K (x, —x) =0 (14.17a)
mx, + kyx, + k'(x, —x) =0 (14.17b)

The third term in each of these two equations is the result of coupling between the two oscilla-
tors. If there were no coupling, these oscillators would vibrate with frequencies given by
Eq. (14.12). The preceding second-order linear differential equations may be written as

mi, + (k, + K)x, ~ K'x, = 0 (14.182)

mit, + (ky + k')x, — K'x, = 0 (14.18b)
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These equations will be independent of each other if the third term in each equation is not pres-
ent. That is, if we hold the second mass at rest, x, = 0, and the frequency of vibrations of the
first oscillator, from Eq. (14.18a), will be

ke, + &
w = kK (14.19a)
m

On the other hand, if the first mass is at rest, that is, x;, = 0, then the frequency of vibration of
the second oscillator, from Eq. (14.18b), will be

[

(14.19b)

m

The frequencies w; and w; given by Eqgs. (14.19) are higher than w;, and w,, given by
Eq. (14.12). The reason is that each mass is tied to two springs, not just one.

To obtain different possible modes of vibrations, we must solve simultaneously the sec-
ond-order linear differential equations (14.18). The problem can be made somewhat simpler if
we assume the two oscillators to be completely identical, that is,

ki=k =k (14.20)
and Egs. (14.18) take the form
mx, + (k+ k')x, —k'x,=0 (14.21)
I g AT Bt (142N
IM2 FwR T A }Jbz [,% Jll - U \L1Felv i j

The trial solution of these equations can take any one of the following three forms:

x = A cos(wt + ¢) (14.23)
x =A, cos wt + A, sin wt (14.24)
x = Ae@*d (14.25)

where 6 is the initial phase factor. Let us assume Eq. (14.25) to be a trial solution, so that
X = Ae {wt+8,)) and X, = Bei(wt+82)

If we assume the initial phase factors to be zero, that is, §, = 8, = 0, then these two solutions
take the form

x, = Ae™ (14.26)

and x, = Be™ (14.27)
Substituting these in Eqs. (14.21) and (14.22), we obtain, after rearranging,

k+k —mohA —k'B=0 (14.28)
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—kA+ k+k —moHB =0 (14.29)

We have two algebraic equations with three unknowns A, B, and w. These equations can be
solved for the ratio A/B; that is,

A K kK~ me’

= 14.30
B  k+k — mw? k' ( )
We could solve for w from the last equality in Eq. (14.30); or we could solve directly
Egs. (14.28) and (14.29) by assuming that the determinant of the coefficients of A and B is zero;

that 1s,

k+k — mo’ -k
T 1430
This is called the secular equation. This may be written as
k+k —mw)?—k'?=0 (14.32)
k + 2k'
or (§~MX —wﬂ= (14.33)
m m
which yields the following two roots:
k 172
w=*w ==* () (14.34a)
m
k+ 2k \'"?
and w=*w, = :':( ) (14.34b)
m

In terms of the roots @, and ,, the general solutions of Egs. (14.21) and (14.22) may be
written as

x, =A™+ A_je T + A’ + A_e (14.35)
x, = Bie"" + B_,e”" + Bye™ + B_,e (14.36)

There are eight arbitrary constants for two differential equations, but these are not all indepen-
dent. Substituting Egs. (14.34a) and (14.34b) in Eqgs. (14.28) and (14.29) or in Eq. (14.30), we
can obtain the ratios of A/B for different values of w to be

fo=w, A=+B (14.37)
fo=w, A=—-B (14.38)
Combining Eqgs. (14.37) and (14.38) with Eqgs. (14.35) and (14.36), we obtain

x, =A™ + A_e T + At — A_ e (14.39)
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x, = A + A e " — A — A_e"™ (14.40)

Thus we have only four arbitrary constants, A;, A_,, A,, A_,, as expected from the general so-
lution of two second-order differential equations. The actual values of the constants can be de-
termined from initial conditions.

Normal Coordinates

After determining the constants in Eqs. (14.39) and (14.40), each coordinate (x, and x,) may de-
pend on two frequencies, w, and w,. Hence it may not be so simple to interpret the type of mo-
tion with which the system is oscillating. It is possible to find new coordinates X, and X,, which
are linear combinations of x, and x,, such that each new coordinate oscillates with a single fre-
quency. In the present situation, the sum and difference of x, and x, [using Eqs. (14.39) and
(14.40) give us the new coordinates; that is,

X, =x +x, =24 + A_je ") = Ce™" + De ™" (14.41)
X, = x, = X, = 2Ae’ + A_e ) = Ee'! + Fe i (14.42)

where C, D, E, and F are the new constants. The new coordinates X, and X, correspond to new
modes of oscillation, each mode oscillating with a single frequency. These are called the nor-
mal modes, and the corresponding coordinates are called the normal coordinates. One out-
standing characteristic of normal modes is that, for any given normal modes (X, or X}, all the
coordinates (x; and x, in this case) oscillate with the same frequency. Normally, all the normal
coordinates are excited simultaneously, except under special circumstances. If, however, one
mode is inititally not excited, it will remain so throughout the motion.

The nature of any one of the normal modes can be investigated if all the other normal
modes can be equated to zero. In the present situation, to study the appearance of the X, mode,

we must have X, = 0; that is, if X; # 0,
X, =0=x,—x, or x, =x, (14.43)

Thus X, is a symmetric mode, and, as shown in Fig. 14.3(a), both masses have equal displace-
ments, have the same frequency w, = (k/m)'2, and are in phase. On the other hand, the appear-
ance of the X, mode is made possible by letting X, = 0; that is, if X, # 0,

X, =0=x+x, or x,=—x, (14.44)

Thus X, is an antisymmetric mode and is as shown in Fig. 14.3(b). Both masses have equal and
opposite displacement (out of phase), but vibrate with the same frequency @, = [(k + k")/m] ',
In short,

k
Symmetric mode X: w =1\, X, =0:x, =x, (14.45)
m

. _ k + 2k'
Antisymmetric mode X,: W, = [/, X, =0x = —x, (14.46)
m
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v

Symmetrical mode X :
X,=0and x = x,

(a)

—_ el
-

.
’

Antisymmetrical mode X,:
X, =0andx, = —x,

A
Y

Figure 14.3 Modes of vibration of
the two coupled oscillators in Fig. 14.2:
(a) symmetrical mode, and (b) antisym-
(b) metrical mode.

It is clear that in a symmetric mode the two oscillators vibrate as if there were no coupling be-
tween them, and their frequency is the same as the original frequency. In the antisymmetric
mode, the result of the coupling is such that the oscillators oscillate out of phase, and their fre-
quency is higher than their individual uncoupled frequency. In general, the mode that has the
highest symmetry will have the lowest frequency, while the antisymmetric mode has the highest
frequency. As the symmetry is destroyed, the springs must work harder, thereby increasing the
frequency.

To excite a symmetric mode, the two masses should be pulled from their equilibrium po-
sitions by equal amounts in the same direction and released so that x, = x,(f) and x, = x,(f) take
the form

x,(0) = x,(0) and £,(0) = %,(0) (14.47)

For the excitation of an antisymmetric mode, the two masses are pulled apart equally in oppo-
site directions and then released, so that

x(0) = —x,0) and x,(0) = —x,(0) (14.48)

In general, the motion of the system will consist of a combination of these two modes.

Equations of Motion in Normal Coordinates.

We obtain expressions for kinetic energy and potential energy in terms of normal coordinates.
From Egs. (14.41) and (14.42),

X, +X
X, =12 (14.49)

(14.50)

and X, =
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Substituting this in Eqs. (14.13) and (14.14),

mi(X, +X\2 m(X, —X,\2 X \2 X
2 T ) o) s
2( 2 A ™ 2 ™ 2 (14.51)
:k(X1+X2)2+f(X1_X2)2+k’X§
2 2 2 2 2
k (X? k+ 2K\ (X2
yv= -2} + —2) 14.
o 2(2) ( 2 )(2 (14.52)
whereas
m - m - k k + 2k
L:T—V:IX%+4X§—ZX%-( 4 )Xg (14.53)

Note that the expressions for 7, V, and L do not contain cross terms. Thus the Lagrange equa-
tions of motion in normal coordinates,

d (9L oL d [ oL aL
dt (axl) ax, e (axz) aX, (14.54)
yield
. k 172
X, + ot X, =0, wherew, = () (14.55)
m
and
.. k + 2K\
X, + &5X, =0, wherew, = ( ) (14.56)
m

That 1s, an X; mode vibrates with frequency w;, and an X, mode vibrates with frequency w, in
agreement with the results derived previously. [Note that these equations can be obtained by di-
rectly substituting Eqs. (14.49) and (14.50) into Eq. (14.18).]

From our discussion, we can conclude the following about normal coordinates: No cross
terms are present when the kinetic and potential energies are expressed in terms of normal co-
ordinates; that is, both T and V are homogeneous quadratic functions. The differential equa-
tions are automatically separated; that is, there is one differential equation for each normal co-
ordinate. The solution of each differential equation represents a separated mode of vibration. In
the following, we shall establish the general procedure of transferring to normal coordinates and
hence to normal modes of vibrations.

14.4 THEORY OF SMALL OSCILLATIONS

Consider a system of N interacting particles with 3n degrees of freedom and described by a set
of generalized coordinates (g;, g3, - - - » ¢3,,)- Furthermore, let us assume that frictional forces are
absent and that the forces between particles are conservative. We shall demonstrate that the
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method of Lagrange’s equations can be used for the determination of the frequencies and am-
plitudes of small oscillations about positions of stable equilibrium in conservative systems.

For such a conservative system, let us express the potential energy by V(q,, 4>, . . -, ¢3,)-
Small oscillations take place about an equilibrium point whose generalized coordiantes are (g,
4 - - - » 43m0)- Expanding the potential energy about an equilibrium point in a multidimensicnal

Taylor series, we have

13 (9v
V(G 2 -5 @30 = V(G100 a0 -+ + > Q) T 1 E (8\) 4 — qp)
I=1 ql 9= 4y
57 ( ) — 0 @~ GGy — G T (14.57)
[21 ?‘1 LA T ’

Since the zero of the potential energy is arbitrary, the first term on the right is constant and may
be equated to zero without affecting the equations of motion. Also, because the system is in equi-
librium, the generalized forces Q, must vanish; that is,

Vv
Q=-——=0 [=12...,3n (14.58)

dq,

and the second term in the expansion vanishes. Thus, keeping the second-order term and drop-
ping the higher-order terms, we may write the potential energy to be

(V|

\aql aqm/ |q tq(:-o (q[ - qlo)(qm - qmo)

n 3n
/P . \_iv X
Y Y1 Yos - - 5 Y3p) 21 Al 4{

o~
S
:l;s
un
o
S

Introducing a new set of generalized coordinates 1; that represent the displacements from the
equilibrium,

3n 3n

1
V= V(n!) - 21 2 2 Vlm T’[ Mha (14'60)
I=1m=1
where m=1(q —qp and m, =(q, = G0
%
and Vin == ls = 4, = Vm = constant (14.61)
aql aqm ! y

G ™ G0

The constants V,,, form a symmetric matrix V. Since we are considering motioins about stable
equilibrium, the potential energy must be minimum; that is, V(7)) > V(0); hence the homoge-
neous quadratic form of V given by Eq. (14.60) must be positive. [That is, for a one-dimensional
case, (GZV/Gq 2)(17= w 0, the second derivative evaluated at equilibrium is greater than zero.]
Thus for a multidimensional system the necessary and sufficient conditions that a homogeneous
quadratic form be positive definite are (derivatives are evaluated about equilibrium)

— >0, [l =1,2,...,3n (14.62a)
q
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PV % =12 3
~—2 = ? y ’ n
91 0q10gm | 0, m=12...,3n (14.62b)
a*Vv ﬂ l#m
09, 0gm aqf,,
PV o 2
aqzl aqlan 5413613n
8V 9V
2
8q26q1 an aq26q3n =0 (14.62C)
% X% 4%V
9g3:9q1  9g3.9q; IG5,

or, in terms of matrix notation, the coefficients V,,, = V,, must satisfy the conditions

V>0
Vll V12 = 0
V21 V22
Vu V12 VIB,
V21 V22 V23 >0
V3l V32 V33
Vi Vi oo Vi
oV
V?l V? >0 (14.63)
V][ Vlz . b Vlm

where V,, are given by Eq. (14.61) and each individual V,,, need not be positive.

If the derivative V,, = 8°V/dgq, dq,, = 0 for all values of / and m, stable equilibrium is still
possible provided the first nonzero derivative of the potential is of an even order.

Let us now consider the kinetic energy of the system. In terms of Cartesian coordinates,
the kinetic energy of the system is

1.
T = 2 > m; x? (14.64)
j=1

The transformation equations from Cartesian to generalized coordinates may be utilized to ex-
press T in terms of generalized coordinates; that is,

X =x(q q - - -5 G D




7

Sec. 14.4 Theory of Small Oscillations 579
. 3n aX]‘ . axj

and xj=27—q,+r-
' =194 ot

Hence the kinetic energy given by Eq. (14.64) may be written as

1 3n 3n ox. . ax. 3n ax. . ax.
T=-3 m( Hig, + ﬂ)( g+ rxl) (14.65)
275 2199, 9t J\p=1 0w at

Upon expanding the right side, we find that T contains three types of terms: (1) terms that are
quadratic in generalized velocities, (2) terms linear in generalized velocities, and (3) terms in-
dependent of generalized velocities. We are interested in transformation equations that do not
contain time explicitly (terms such as dx;/dt contain time explicitly). This means that T from
Eq. (14.65) should contain only those terms that are quadratic in generalized velocities. (The
transformation equations involving other terms OCCUT, for example, in rotating coordinate sys-

tems.) Hence Eq. (14.65) for kinetic energy takes the form

3n 3n 3n ) .
=322 (E m o ax’) Qi (14.66)

I=1m=1 \j=1 ! 0q, 94,

For small oscillations about equilibrium, the term in parentheses may be expanded and writ-

ten as
3n 3n 3n 3n
dax; 0x; 0x; ax; 9 [0x; 0x;
S 20 S () ()« 3w 3o (~f ~) m o (467
iZ1 9999, j=1 Yo NGl g, =1 k=1 dq, \0q, 04,/ 4,

where 1, = (@, — G- Since we are interested in small oscillations, we need keep only those
g terms in T that are of the same order as ¢ in V. Hence, from Eqgs. (14.66) and (14.67), re-
membering that ¢, = n,and g, = n,, We may write

1 3n 3n .
T =22 2 Tin i (14.68)
=1 m=1
_1& (o) ()
where T,, m; T, (14.69)
2 J= aql 90 aqm Imo

and T, are the elements of a symmetric matrix T.
After obtaining the expressions for potential energy given by Eq. (14.60) and kinetic en-
ergy, Eq. (14.68), we are now in a position to write the Lagrangian:

1 3n 3n o
L=T-V=73 S T Ty M~ Vi ™) (14.70)
I=itm=1
Hence the Lagrange equations
d (oL oL
=] —--—=0 14.71
dt (an) on ( )




580 Theory of Small Oscillations and Coupled Oscillators Chap. 14

take the form

3n
2 (Tlm ﬁm —+_ Vlm nm) = 0’ l = 17 2’ AR 3n (14;723)
m=1

or T, ’;7'1 +Vym t 1 ﬁz T Vo t ot Ty, ﬁ3n + Vi M3, = 0 (14.72b)

Equations (14.72) represent 3n linear, coupled, second-order differential equations. From our
experience with the solution of a one-dimensional case, we may write the solution of Eq. (14.72)
to be

n, = A, cos(ot + ¢b,) (14.73)

where the amplitude A,, and the phase angle ¢, are to be determined from initial conditions,
while the natural frequency  is determined from the system’s constants. Substituting
Eq. (14.73) into Eq. (14.72a), we obtain

3n
> [V, A, cos(wt + ,) — 0T, A, cos(wt + )1 =0, 1=12,...,3n (14.74)

m=1

For a given w, all ¢,, must be the same, ¢,, = ¢; hence cos(wt + ¢) can be factored out; that is,
3n

cos(wt + ¢) 2, [V, 4, — 0T, A,1=0, [=12...,3n (14.75)
m=1

Since cos(wt + ¢) is not, in general, equal to zero, we must have

2.
JFi

> VA, — @’T,,A,]1 =0, 1=1,2,...,3n (14.76)
m=1
Thus we have a total of 3n linear, homogeneous, algebraic equations in A,, and w represented as
(Viy — Q)ZTII)AI + (Vi — szlz)Az + o+ (Vig, — szl.?m)ASn =0

(V3n.l - 0’2T3n.1)A1 + (VanAz - w2T3n.2)A2 + ot (Vsn.3n - “)2T3n.3n)A3n =0 (14-77)

For a nontrivial solution, the determinant of the coefficients of A,, in Eq. (14.77) must be zero;
that is,

Vi — szll) (Vi — w2T12) o (Vig, — w2T1.3n)
: : . : =0 (14.78a)

(Vay — o’ T3,1) (Vapa — o’ T32) 0 (Vauz, — o T3,3,)
IV — &?T| =0 (14.78b)

This results in a secular equation of a 3n-degree polynomial in «?. Each of the 3n roots of this
equation represents a different frequency. Thus the general solution, for small amplitude of os-
cillations, is

3n
m = > A, cos(wt + ) (14.79)
k=1
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where the values of w, are known from the secular equation, Eq. (14.78), while A, and ¢, are
determined from initial conditions.

If &? is negative (w? < 0), w will be complex and there will be no small oscillations. If w? =
0, the coordinate 7 remains constant, hence with no oscillations, only translation or rotation of
the whole system. Only if * > 0 will there be oscillation about the stable equilibrium. Thus

If wf > 0, N, = A’ + Be ' (14.80)
fo?=0, mn,=Cs+D, (14.81)
<0, 7 =Ee%+ Fe (14.82)

We have found the frequencies, while the task of calculating the amplitudes still remains.
The amplitudes A, are related by the algebraic equations (14.77). Substituting each value of w;
separately in Eq. (14.77), it is possible to determine all the coefficients Ay, except one, say A,,.
Thus it is possible to determine the coefficients A, in terms of A, in the form of ratios:

Ag A A (14.83)
Akl Akl Akl

We must determine 6n constants (3n are A,; and 3n are w,) from initial conditions.

14.5 SMALL OSCILLATIONS IN NORMAL COORDINATES

Let us once again consider an arbitrary system with r degrees of freedom. The system has small
oscillations about some stable equilibrium point. The potential energy is described in terms of
generalized coordinates (g}, g3, - - - , g;), While the equilibrium configuration is described by the
coordinates (g1, g3p, - - - » i) Where I = 1,2, ..., r. As explained in the previous section, for
stable equilibrium the only nonzero coefficient in the expansion of the potential energy

V(g3 95 - - - » q,)1s V,, given by

1 r r
V= > Vi M (14.84)
I=1 m=1
where =4 ~ i

N = G — Do

v
o= (20

——— = V_, = constant (14.85)
aql aqm

q’f = qu
Gm = 4mo

Thus the potential energy expression, as stated earlier, is not only a homogeneous quadratic but
is also positive definite for stable equilibrium. It cannot be negative and is zero only if all the
coordinates are zero. For such a system, the potential energy V may be written as

V=ayn’+apm’+ - +a,m”+ 2a,mn, + - (14.86)
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where every term is quadratic in the coordinates and the coefficients a,,, a5, . .., a,. @5, . . .,
and so on, are all constant. Note the presence of square terms as well as cross terms.

Similarly, we have seen that, if the kinetic energy T does not contain time explicitly, it will
be homogeneous in velocity coordinates and may be written as

T=byn’+byn®+ - +b,m7>+bynmy+ (14.87)

For small oscillations, the quantities b, b,,, . . ., b,,, b5, . . ., and so on, are constant; hence T
is positive definite. Once again, note the presence of cross terms.

It is possible to cause a linear transformation to new generalized coordinates n;, s, . . .,
7,, in which V and T will not contain cross terms. The original coordinates 7;, 75, . . ., M, by
their linear combination can result in new generalized coordinates 7;, 1,, . . ., 7),-

m=enn tepymt o te,mn
T = le n) + '622 my+ o+ .€2r n, (14.88)

nr = erl T’i + € né + ot e:'r 77;

so that V and T will take the following forms that do not contain cross terms:

V=3Oim t am o+ ) (14.89)
and

T=3mn +myms+ - +mn) (14.90)
where A’s and m’s are constants. The new linear combination 7;, 1,, . . ., 1, is called the ror-

mal coordinates of the system.
Now the Lagrangian equations for the normal coordinates 7, are

d (aL) _aL_ (14.91)
dt \om, on

where L = T — V. If Vand T are given by Eqgs. (14.89) and (14.90), the resulting equations of
motion for 7, are

M+ g, =0 (14.92)
where o, are the normal frequencies given by
2
o = A (14.93)
m
The quantities n,, 7, - . . , M, are normal coordinates, and w,, ®,, . . ., w, are the correspond-
ing normal frequencies. The solution of Eq. (14.92) is
If wf > 0, n, = Ae™ + Be " (14.94a)

or m, = A, cos(wt + ¢, (14.94b)
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If wf = 0, n, = Cit+ D, (14.95)
If w; <0, 17, = Ee®' + Fe ' (14.96)

where A, B, A, ¢, C,, D,, E,, and F, are all constants.

As pointed out earlier and as is clear from Eq. (14.92), each normal coordinate varies with
only one normal frequency w,; hence these are called normal modes of vibration and each nor-
mal coordinate 7, is given by Eq. (14.94). It is necessary to note that if a normal coordinate 7,
for which the associated frequency w? is not greater than zero, such a coordinate does not cor-
respond to oscillatory motion about the equilibrium. Thus, if @? = 0, as is obvious from the so-
lution in Eq. (14.95), the mode of motion is that of translation motion; that is, if the particle is
slightly displaced, there will be no restoring force, and the particle will simply translate about
the center of mass. On the other hand, if w,2 < 0, as 1s clear from Eq. (14.96), the motion is
nonoscillatory; it consists of increasing and decreasing exponentials, with the result that the mo-
tion grows without bounds.

14.6 TENSOR FORMULATION FOR THE THEORY OF SMALL
OSCILLATIONS

The problems of small oscillations discussed in the two previous sections can be presented and
solved more elegantly by using the techniques of tensor analysis similar to the one used in de-
scribing rigid body motion in Chapter 13.

For a system with 3n degrees of freedom, the expression for small oscillation about a sta-
ble equilibrium, the Lagrangian equations according to Eq. (14.76), are

3n
> VA, — @ T, Al=0, [I=12,...3n (14.97)
m=1
R4
where V,, = ( ) 0 =a0 = Vo (14.98)
0d, 99,/ g, =%,
1 0x; ox;
T, =< 1= =) =T 14.99
im 2 E m](aql)qm (aqm)qmﬁ ml ( )

Equation (14.97) is equivalent to the 3n linear equations of the form
Vi - o*T\ DA, + (Vi = &*T DA, + -+ + (Vis, — 0?Ti3,)A;, =0
(Vi = @ T3, DA + (Vapy — @' T0)A0 + - + (Va3 — @ Ty, 3,045, = 0 (14.100)

The quantities V,, are the elements of symmetric matrix V given by

V11 V12 vl,sn
Vo sz V2,3n

(14.101)
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and the quantities T}, are the elements of a symmetric matrix T given by

T, T, - Ty
e T
T - T.Zl T.22 2.3 (14.102)
T3n,1 T3n,2 o T3n,3n

while the Lagrange equations, Eqgs. (14.97) and (14.100), may be written in tensor form as

V- o*THIA =0 (14.103)
where A is a column vector:
Al
A= : (14.109)
A3n

For each frequency w,, there corresponds a vector A,: hence, as before, the general solu-
tion will be the linear combinations of individual solutions.

The next task is to determine the normal coordinates corresponding to each normal fre-
quency, that is, to determine the normal modes of vibrations. This involves transferring both V
and T to a new set of generalized coordinates in which both V and T matrices will be diagonal
(so that the off-diagonal elements will be zero). The existence of such a coordinate transforma-
tion that will cause simultaneous diagonalization of V and T is possible only if both the V and
T matrices are symmetrical with real elements, and V as well as T is positive definite (determi-
nant is greater than zero). Such a process of simultaneous diagonalization will change
Eq. (14.103) into

V' — @*THA =0 (14.105)
where
- szfl 0 0 0
V' — o™T) = 0 0 Vi, — @’Tjy 0
O O 0 t Vi;n,?)n - w2T3,n,3n
(14.106)

The diagonalization can be achieved in a manner explained in Chapter 13.
For each normal frequency w,,, there exists a solution of the form

n, = C,a,, cos(w,t + ¢,) (14.107)
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where C,, is the scale factor, ay, is the coefficient, and ¢,, is the phase angle. This solution is a
linear combination of two independent functions cos w,,t and sin w,t. Thus the most general so-
lution will be

1) = i a,,C,, cos(w,t + ¢,) (14.108)

m=1

which is a linear combination of 2n functions. Equation (14.108) may be written as

() = D [a,,(C, cos pcos @t — C,, sin ¢ sin w, 1] (14.109)

m=1

Defining
A,=C,cos¢d and B,= —C, sin¢

we may write Eq. (14.109) as

(@) = > (a4, cos w,t + B, sin @,1)] (14.110)

m=1

where the coefficients «a,,, form a set associated with the frequency w,, or the mth normal mode.
The constants in Eq. (14.110) may now be determined by the following procedure. First,
calculate the normal frequencies w,, from the characteristic equation

det |V — 7] = 0

Second, replace @ in
2 [Vlm - sz,m]alm = (), m=12...,n (14.111)
=1

by w,, and calculate the n sets of solutions (g,,,), one for each m. (One of the factors a;,, must be
assigned a unit value; otherwise, only the ratios of the coefficients will be calculated.) Third, A,,
and B,, may be calculated by using the initial conditions of the systems.

240) = 5y = D, 41,4, (14.112)
m=1

N0) = 7= ) = 2, a;,0,B, (14.113)
m=1

In a special case, if the number of degrees is very large and we impose the condition a;,, = 8,,;
then Egs. (14.110), (14.112), and (14.113) become

() = A, cos ot + Bt

N0) = 10 = 4
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and n/0) = vy = 0B,

This holds for normal coordinates; that is, it is possible to find a coordinate transformation such
that all ,(z) are normal coordinates as represented by this equation.

Example 14.2

Consider the situation of two coupled pendula, as shown in Fig. Ex. 14.2. Using matrix notation calculate
(a) the components V,,, of V, (b) the components 7, of T, (¢) the normal frequencies, and (d) the normal
modes. (e) Find the equations of motion and (f) the general solution.

Solution

As shown in Fig. Ex. 14.2, each pendulum is of length / and mass m, and equilibrium is where both are
vertical in which position x; = x, = 0. The two masses are tied by a spring of spring constant k. The dis-
placements x; and x, to the right are positive, while 6, and 6, are positive in a counterclockwise direction.

(a) The potential energy of the system is given by
V = mgl(1 — cos 6)) + mgl(1 — cos 8,) + 1k(x, — x,)?

For a small angle,
6? 6’
mgl(1 — cos 6) = mgl[l - (1 Y + )] = mgl?

_ m_gl(X)z _mg ,
2]

Therefore,

mg mg 1
Ve a Tty m ke = xy)?

2l
1 mg 1 mg .
= E(k + T)x% + E(k + l)x% — kxx, (i)
oV mg
— _a=lk+2x, kel . =0 i
ox 1 2§ ( ! )x‘ 2 o
oV mg)
Ty =0 =1k t+ — kxif, _ 0
o v ( VAR K
3%V 8%V
S o=k + T ad | =+ ™ (iif)
Xyl = o / oy [ Z g )
9%V ¢ and oy L i)
= = — an = — 1v
ax ax [} 2 § X1 X205, - 0
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I

! [ |
| X | 1 X, |
I | | I
I ! I I
|| xl = Xy I : Xy = Xy :
| I I |
I | | I
| I I |
| | | !
I I | I
I 1 I |
! | | [
0y —> O -0 O —>
X1 X3 Xj Xy
X3 12
VAAVAAVA (VAAVARVE
X Xy
VAAVARVA \VARVARE
Symmetric mode: x|, = X, . Antisymmetric mode: x; = —x,

Figure Ex. 14.2

Thus the required matrix for the potential energy is

V= \2)




588 Theory of Small Oscillations and Coupled Oscillators Chap. 14

Since this gives

Vl 1 Vl 2
VZ 1 V22

>0

the associated homogeneous quadratic form is positive definite.
(b)The expression for kinetic energy is

T = jmi] + ymi; (vi)

The components T, and T, are coefficients of ;x and x,x,,. Hence

m 0
T = .
[ 0 m} (vii)
Thus the Lagrangian for the system is
2 2 1 .
L=T-V=>73 ) (TyXiX,, — VXX, (vii)
I=1m=1
while the Lagrangian equations are
2
DTk + V) =0, m=12 (ix)
=1

That is,
Tyx, + Vi, + Ty, + Vipx, =0
Ty, + Vyx, + Xy + Vox, = 0

Using Egs. (v) and (vii) in the preceding equations, we get

mi, + (k + ’"lg)x‘ —kx, =0 x)

mi, + (k + mlg)x2 —kx, =0 (xi)

These are two coupled equations.
(¢) To determine the normal or characteristic frequencies, we use Eq. (14.78b), that is,

V- «’T| =0
Thus
k+ﬂl‘g — mw? -k
=0
—k k+ %5 ~ mw?
mg 2
or k + 7T mwz) —k*=0 (xii)
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m
Either k=-l£—mw2-—k=0
which gives
12
ol = o = % or w = t(%) (xiii)
m
or k+-?g—mw2+k=0
which gives
2k 2K\ "7
I m I m
As before, we try the solutions
x, = A’ and x, = Be™ (xv)
Substituting these in Eqgs. (x) and (xi), we get
mg 2 _
(k + - mow )A — kB =
(k+—g—mw2)3—kA=
2 2.8 — .
fw =w =", we getA = B (xvi)
)
2k
fw=w= &, =, we getA = —B (xvii)
{ m
Hence, using these, the general solution becomes
X, = AE + A e + A + A_,e (xvii)
X, = A + A€ — A — A_je (xix)

These two equations contain four constants, as they should for two linear differential equations. These
constants are determined from initial conditions.
(d)We now proceed with Eq. (14.103) or (14.76) to determine the normal coordinates

V- DA=0
2
or SV, - 0,4, =0, =12
m=1
That is, for w? = w% = g/l,
kT8 -8 —k
a
( 11) 0
—k K+ mg mg [\dp;;
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gives Ifa, =1, a, =1 (xx)

Similarly, for 0 = @} = (g/) + (2k/m),
AL
That is, fa, =1, a, =—1 (xxi)
Thus the normal modes are
N = apx; toagsx,

M= ayX) 1 ayX,

Substituting these values of a,,, a,,, a,,, and a,, from Eqs. (xx) and (xxi) and x, and x, from Egs. (xviii)
and (xix), we get

M =X X = 2A N A Al e (xxii)
M=% — X = 2Ae + A_e (xxiii)

Thus each normal mode depends only on one frequency. Furthermore, we can see the physical meaning
of these modes as before.
For the n, mode, we take 1, = 0; therefore,

x—x=0 o x =ux (xxiv)

In order to really understand and illustrate the natural modes and normal modes of
vibrations, we graph for arbitrary numerical values.
normal modes: X1 with frequency ®1 and X2 with frequency ®2
natural modes: x1 (= X1 + X2) and x2 (= X1 - X2)
We will first graph the normal modes and then the natural modes.

X1 and X2 (or n1 and 12) determine the normal coordinates with the characteristic
frequencies @1 and w2.

X1=A22-exp(-1'®wl-t) + All-exp(i-wl-t) X2=Al12-exp(-i-@2-t) — A21l-exp(i-w2-t)

Let us now follow the reverse process, that is, find the values of natural displacements x1 and
x2 from the relation X1 = x1 + x2 and X2 = x1 — x2 and then make the plots of x1 and x2.
Note that we are going to use prime (') for the variables; otherwise we will get the numerical
results because the values of the constants are already given.

Given

xl+ x2=2- (A12:6791 4 A12ee Y 1 xom2(A21ne 24 A2
A22exp(-i-@2"t') + Al2-exp(i-@l"t') + Al2"exp(-i-wl"t') + A21"exp(i-®2"t')

- A22exp(-i-@2"t") + Al2"exp(i-@l't) + Al2"exp(-i-w1't") — A21"exp(i-@2"t)

—i‘a)2'-t')

Find(x1,x2) >

x1=A22"exp(~i-w2"-t') + A12"exp(i-m1-t') + Al2-exp(-i-@1"t") + A21"-exp(i-w2'-t")

x2=- A22exp(-i-w2"t') + A12"exp(i-w1"t'y + Al2"exp(-i-w1"-t') — A21"exp(i-@2"t)
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This is the same result that we obtained earlier. We will use the original equations with the
arbitrary numerical values and graph them.

Let us now make the graphs, as shown in Figure Ex.(14.2) (b) and (c), by using the arbitrary
values given below.

All =4 Al2:=2 A21:=2 A22:=4 g:=938 1:=2 k=1 :
Ni=200 0:=0.N t =— ol ::[ﬁ ol =2214 2= Bi2X 22627
10 1 1 m
X1, :=A11-exp(i-ml'tn) - A12-exp(_i-m1~t“> X2 = <A21-exp(—i~co2~tn) + A22-exp(i-a)2-tn))
xl,:=A22exp(-i-02t,) + Allexp(i-ol 't} + Al2exp(-iolt,) + A2l-exp(i-w2-t,)

x2, = A22exp(- w2t ) + Allexp(iolt) + Al2exp(-i-al-t ) - A2lexp(i-02t,)

20 T T T
10 A—
(X1) , o
_ 0 ANFAY x1
(X2) VAV RVIAVAVIY, - i
. Lo x2
-5 — n
- 1
10 _
0 10 20 10 VI
t
n
Y [ 1 |
0 5 10 15 20
Figure Ex. 14.2(b) t

10 T

X1
M NAA A A A
o, \/\/\/\/\/\/T/

—sf

<

Figure Ex. 14.2(c) n

Normal antisymmetric modes X1 and —X?2 and natural antisymmetric modes x1 and —x2
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Answer the following by looking at the two graphs.
Do the symmetric modes repeat themselves for each mass?
Do the antisymmetric modes repeat themselves for each mass?

What is the difference between the two types of modes with respect to their frequencies and
the amplitudes?

EXERCISE 14.2 For the system shown in Fig. 14.2 and discussed in Section 14.3, find the normal fre-
quencies and normal modes using the matrix method discussed above.

- Example 14.3

Find the frequencies of small oscillation for a double pendulum, as shown in Fig. Ex. 14.3(a). We may as-
sume that

m=m,=m and [, =1=1

(%2, ¥2)

SO NANNNNN
/
/ /
/ /
e S
o 1 ‘ &
\\ Ve

(b) Antisymmetric mode (c) Symmetric mode

Figure Ex. 14.3
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Solution

Let (x,, y,) and (x,, y,) be the coordinates of the two masses of the pendulums such that the lengths of the
pendulums make angles 8, and 6, as shown. From Fig. Ex. 14.3(a),

x, =1, sin §,
x, =1, sin 6, + [,sin 6,
¥y, =1, cos 9,
¥y, =1,cos 8, + I,cos 0,

Thus the potential energy of the system is

V= —mgy, — mgy, = —mglcos 8, — mgl(cos 6, + cos 6, (i)
A% 1%
—g =g =0 d —|, - 0
06, 2;;3 o 06, 23;(0)

The components V,, are

and V=V, =0

Thus v ( (i)

Vll V12

>0 (i)
VZ] V22

Since

Therefore, the associated homogeneous quadratic form is positive.
The components T, of T are calculated as follows:

T = jm(xt + y]) + §m(i] + y))
= Imil cos 6, 8,1> + Lm[i(—sin 66,12
+ Lmflcos 6, 8, + Lcos 6, 6,]> + ‘m{l(—sin 6,)0,1> + [I(—sin 6,)8,]?
= 1mi®6% + Im[126% + 1262 + 217 cos(8, — 6,)6, 6,] (iv)
At the equilibrium point, 8, = 8, = 0,
T = 12mH6? + mi*62 + mi’6, 6, )
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The components T; and T, are the coefficients of % 0? and @),ém; that is,
T, =2ml* Typ=m  T,=T,=m

Therefore,

2 2
T- (2ml mi ) i)

mi* mi?

The normal frequencies of the double pendulum are given by

V- &T| =0 (vii)
2mgl — w2mlP  —&’ml | 0
—w’ml’ mgl — wml®
which gives
o = (2 — \/5)% and of = (2 + \fz)—“;’~ (viii)

The normal modes for a double pendulum for * = «? are

[omgl - @ -V)Eomr -@-VDEmr |\,

) =0 (i%)
k ~@-V2imf  mgl- Q- \/i)§m12) )

which reduces to

@2 —2Va, + 2 - V2ay, =0 (x)
@~ V2a, + (1 —V2ay, =0 (xi)
and
Ifa, =1, ay=V2 (xii)
Similarly, for w? = w%, we get
Ha,=1  ap=-V2 (xiii)

a,; and a,, correspond to particle 1, and a,; and a,, correspond to particle 2. The two modes are

M= apX tapk, =x tx (xiv)

N = X T aypx, = \/i(xl - x) (xv)
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In mode 7,, the particles oscillate out of phase and it is an antisymmetric mode, as shown in
Fig. Ex. 14.3(b). In mode 7,, they oscillate in phase and it is a symmetric mode, as shown in
Fig. Ex. 14.3(¢c).

The above remarks are illustrated using numerical values. Below are graphed the
natural modes x1, x2; normal modes X1, X2; and the sum of natural modes x1 + x2
and sum of the normal modes X1 + X2.

All =2 Al2:=4 A2l =3 A22:=¢6 kl:=35 k2:=15 m:=2
K .
Ni=50 1=0.N ol = 8 1=1581 2= 9FR2 o312 =4l
m m
xl =ALLe A1) T AL T D A2 ()T X =2 ALl M p 2 AL O
x2, = (All-ej“”"‘+ A12~e‘i'°’“) ~ A1 9T Anp. iR X2, 1=2.A21¢ 7 4 2.A22.6
(a) In each of the graphs, 20 T T T T T
explain the differences 1 13.333 1= 7]
. . 6.667
(in terms of frequencies, ' L
amplitudes, and phase X2, —6.667
differences) between: — —3am
Xl and X2 _200 l5 II(] ; 2|0 ;5 30
15
X1 and X2
x1 +x2 and X1 + X2 l

(b) What are the
outstanding features of
normal modes as shown
by these graphs?

(¢) What is the significance 1
of the maximum and
minimum values of the two

50 T T ] T T

graphs?
(d) What do you conclude
from these graphs? - N | | A |
0 5 10 15 20 25 30

EXERCISE 14.3 Consider the situation shown in Fig. Exer. 14.3. Mass M is constrained to move on a
smoother frictionless track AB. Another mass m is connected to M by a massless inextensible string of
length J. Calculate the frequencies of small oscillations. Draw graphs similar to those in Exercise 14.3.
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«\_—

Figure Ex. 14.3

14.7 SYMPATHETIC VIBRATIONS AND BEATS

Let us consider two simple oscillators each of length [ and mass m that are coupled by a spring
constant k, as shown in Fig. Ex. 14.2. If the spring offers a small resistance to the relative mo-
tion of the two pendulums, we say that the system has weak coupling, whereas if the spring of-
fers a greater resistance, the system is said to have strong coupling. If the pendulums are not ex-
actly equal in length or in mass, we say that the two pendulums are out of tune or detuned.
For the present, let us assume that the two pendulums are exactly of equal length and mass.
and they are weakly coupled by a spring. We assume that they oscillate in the same plane. Let
us further assume that the one pendulum is excited by giving an initial displacement while the
other pendulum is at rest. As time passes, the resulting oscillations of the two pendulums are as
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Figure 14.4

Below the resonance between two weakly coupled oscillators such as pendulums is shown.
We may use Eqs. (14.119) and (14.120) or (14.121).

n =200 i=0.n £ = A:=10 All:=10 A12:=10
20
2 — ol 2-
©l =88 ©2:=90 00:=22"%  go=1 T:=2F  T=6283
2 0
X1 ::A11~cos(co] ~ti) - A12~cos(w2~ti) X2, 1= (A11~cos<m1-ti) + A124cos(w2-ti))

First oscillator:

20

S 1m0
e 111

min(x1) =-19.604

Second oscillator:

20

I T T
B L U\/U "

min(x2) =—19.636

(a) What determines the amplitude of the oscillations in the two cases?

(b) In the two graphs draw the envelope of the oscillations.

(¢) How will the increase or decrease in frequency affect the resonance?

(d) How will your increase or decrease in the amplitude affect the resonance?

(e) How do the above graphs illustrate the transfer of energy from one oscillator to the
other and vice versa?

shown in Fig. 14.4. As is clear, the oscillations are modulated, and the energy is continuously
being transferred from one pendulum to the other. When one pendulum is oscillating with max-
imum amplitude, the other pendulum is at rest, and vice versa. This is the phenomenon of res-
onance or sympathetic vibration between two systems. The alternation of energy between the
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two pendulums can be shown mathematically as explained next. This is the theory of resonance,
as illustrated in Fig. 14.4. A slight detuning leads to the phenomenon of beats, as we shall see
later.

Suppose, for the case in Fig. Ex. 14.2, at t = 0, we have x; = 0, )'c] =0,x, = A, and
x, = 0. Applying these conditions to Egs. (xviii) and (xix) in Example 14.2, that is, we get {or
for the system shown in Fig. 14.2, resulting in Eqs. (14.39) and (14.40)]

x, () =A™ + A_je " + A’ + A e ' (14.114)
() = A + A_jeTi — At — A_e (14.115)
we obtain, at t = 0,
Al+tA_[+A+A,=0 (14.116a)
Aj+A | —A—A,=A (14.116b)
iw(A, —A_) tiw(A, —A ) =0 (14.117a)
iw(Ay — A_) —iwy(A, —A ) =0 (14.117b)

Solving these equations yields

A A
4 4
Substituting these in Egs. (14.114) and (14.115), we obiain
A . . - s
xi(0) =, [ + &7 — (e + e ")
A_ . . »
BB = U™ + e + (e + e ™)
Since 2 cos 8 = e* + e~ '%, we may write
A
X = (cos w;t — cOs w,t) (14.119)
A N
=7 (cos w,t + oS wyt) (14.120)
Equations (14.119) and (14.120) may also be written as
, Wy, — . [y T oo,
x; = Asin 5 t)sin —2——t (14.121)

- +
x, = A c:cos(w2 5 it t) Cos(m1 @2 t) (14.122)

2
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Let (w, + )2 = wyand w, = w,;; then we may write

X = A s,in(922i“’1 r) sin wyf (14.123)

X, =A cos(iu%wj- t) cOS wyl (14.124)

Note that, at t = 0, x; = 0, and x, = A, as it should be. These equations state that x; and x, are
executing oscillatory motions sin @yt and cos w,t, with their slowly varying amplitudes given
respectively by

A sin(ﬂz%"l t) (14.125)

and A cos(f”z—;ﬂ r) (14.126)

This implies that, as the amplitude of x, becomes larger, that of x, becomes smaller and smaller,
and vice versa. This is demonstrated in Fig. 14.4. This means that there is a transfer of energy
back and forth. The period T of this energy transfer is
. L (14.127)
w Wy — (,01

If the two pendulums are slightly detuned (have slightly different frequencies), the energy
exchange will still take place, but this exchange is not complete. The initially excited second,
pendulum reaches a certain minimum amplitude, but not zero amplitude. The first pendulum ini-
tially at rest, does reach zero amplitude during its oscillations. This results in the phenomenon
of beats, as shown in Fig. 14.5. Thus sympathetic vibration or resonance is upset by slight de-
tuning. We can apply these considerations to another example, that of the double pendulum, as
discussed in Example 14.3. If the two masses and the two lengths are equal, we still can have
sympathetic resonance vibrations. But suppose the upper mass (and hence weight) is much
larger than the lower mass. This leads to slight detuning and to the formation of beats. Suppose
we set the pendulum in motion by pulling the upper mass slightly away from the vertical and
releasing it. In the subsequent motion, at regular intervals, the lower mass will come to rest,
while the upper mass will have a maximum amplitude, or the upper mass will have a minimum
amplitude (different from zero) when the lower mass has maximum amplitude. This is the phe-
nomenon of beats, as illustrated in Fig. 14.5. Once again, due to slight detuning, there is an in-
complete transfer of energy.

If instead of looking at the normal modes, we look at the motion of the two separately, the
resulting natural modes of the two are as was shown in Fig. 14.4. It is clear that when one has
maximum displacement, the other has minimum and vice versa.

If in the preceding examples, both pendulums were set in motion simultaneously either
(1) in the same direction or (2) in opposite directions, we would find that there would be no en-

arayv avrha a hatwaan tha twn nandinlhiime ‘xfn oafr tha nay al mndee af vihratinne ac dicenecad
vigy vAvliaus\.« ULLYYLLILR LIV LYWU P\Aluuluulo YYL EVL UV normai: MOAacs 1 VIoTrations as discussea

in Section 14.3 and in Example 14.2.
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Figure 14.5

Chap. 14

Below the phenomenon of beats resulting from two slightly detuned, weakly coupled
oscillators (pendulums in this case) are shown.

n =200 i=0.n  ol=12 @2=13
T A=10 00 =220 o=
T’:% |T| =0.503
x1, 1=(A) sin[ mZ; ml-(tj+ 5)}-sin(m0~tj + 5)} X2, 1= A-cos mZ; ol -ti>-cos(m0-ti)

10

ﬁfﬂi reead Wﬁ
il 0 R L

—10

0 2 4

1

Upper mass displaced at =0

x2,=10

max(x2) = 10

min(x2) =-9.921

What is the b
significant difference Lower mass not displaced at t=0
between the two graphs?

The preceding discussion for coupled mechanical oscillating systems can be extended to
electrical systems. Sympathetic oscillations are of great importance in electrical circuits. In elec-
trical systems, we have a primary and a secondary circuit that are usually inductively coupled
with each other. Thus, if the primary circuit is excited, the secondary circuit will also oscillate
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Figure 14.5 (continued)

The transfer of displacement is equivalent to transfer of energy, between two lightly coupled
oscillators. Thus if we graph x1 and x2 separately, it illustrates the trasfer of energy between
the two lightly coupled oscillators as shown below.

n =100 i:=0..n t. =i A:=10 ol =40 w2 =42
2
0o = 22Tl w0 =41
2
2 — ol 2 — ol
xli ::A-sin(m 5 © -ti)sin(u)o-ti) X2i =A-cos @ .ti)-cos(mo.ti)

. W nn Ll
KA

OA/\J\A AAAI\M Ll

~10

(a) How do you explain that when x1 is minimum x2 is maximum and vice versa?
(b) What is the phase relation between x1 and x2 and how do you explain it?

strongly if there is a resonance. Unlike the coupled pendulums considered previously, in elec-
trical circuits damping must be included. As discussed in Chapter 4, damping is equivalent to
ohmic resistance, mass corresponds to the self-inductance, and restoring force to the capaci-
tance effects. Furthermore, in electrical oscillations, we deal not only with “position coupling”
but also with “velocity and acceleration coupling.”
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14.8 VIBRATION OF MOLECULES

We shall consider possible modes of vibrations for diatomic and triatomic molecules. A typical
diatomic molecule may be regarded as equivalent to two masses m,; and m, connected by a mass-
less spring of spring constant k and of unstretched length a, vibrating along the line joining the
two masses, as shown in Fig. 14.6. Let x, and x, be the coordinates of m, and m, measured from
a fixed point O. The potential energy and kinetic energy of the system are

V=3k(x, — x; ~ a)’ (14.128)
T = 3mx? + ymoi; (14.129)
The expression for the potential energy is not a homogeneous quadratic function; hence a lin-

ear transformation to normal coordinates is not possible. But this difficulty can be overcome by
making the substitution

u=x,—a and u=x, (14.130)
Substituting these in Eqgs. (14.128) and (14.129),
V= 2k(u — x,)° (14.131)
T =1mx®+ imu? (14.132)
By using x; and u as generalized coordinates, we can solve the Lagrangian equation for x,;

and u. By using proper linear combinations of x; and u, we can find the normal coordinates X,
and X, corresponding to w; and w, respectively. Thus

X ="y +u and X,=x —u (14.133)

m,
If mode X, is excited, then X, must be suppressed; that is,

For mode X: X,=x,—u=0

or X, =u=x—a (14.134)

N
N
N
N
N
N
N
N
N
N
N

my

k
—————— -o—l\/\/\/\/\/\/\ _—

X2

Y

Figure 14.6 Schematic of a system
equivalent to a diatomic molecule.
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m
L w=w =0

(a) X;: Uniform translation

__0___>____<__‘___

m, my Figure 14.7 Two possible normal

modes of vibration of the system of
(b) X,: Oscillations Fig. 14.6.

which corresponds to uniform translation motion of the system, as shown in Fig. 14.7(a). Sim-
ilarly, if mode X, is excited, then X, must be suppressed; that is,

m
Formode X, X,=—x +u=0
m,

-y T g (14.135)
m, m

or X

which indicates that the two masses oscillate relative to the center of mass, as shown in
Fig. 14.7(b).

The results obtained can be arrived at by an inspection of the situation and recognizing the
basic physical problem. Let us demonstrate this in the case of a triatomic molecule such as CO,,
as shown in Fig. 14.8. CO, is a linear molecule, and if the motion is constrained along a line, it
will have three degrees of freedom and hence three normal coordinates.

M m M
‘_‘/\/\/\,\/\/\_0_‘/\/\,\/\/\/\_o
0%~ C4+ 02~

9— *— 9 —
02— C4+ 02—
(a) w = o = 0: Translation

o— o ~—
02‘ C4+ 02—
(b) @ = w,: Osciliations, 3 ¢,x;

‘ ‘ Figure 14.8 A triatomic molecule
0"

4+ - . .
C 0? and its three possible normal modes of
(¢) w = w5: Oscillations, 3, ¢;x, vibration.
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14.9 DISSIPATIVE SYSTEMS AND FORCED OSCILLATIONS

So far in the discussion of small oscillations, we neglected the effects of viscous or frictional
forces. A common situation is one in which the viscous damping forces are proportional to the
first power of the velocity. In such situations, the motion of the ith particle may be described by
Newton’s second law as

mr = F, — cr; (14.136)
which in component form may by written as

mx, = F,, — ¢,X; (14.137a)

my, = F, — ¢y, (14.137b)

mz, = F, — ¢z, (14.137¢)

where c; are constants and F,,, F; , and F, are the components of a resultant force F, that are de-

ix* %
rivable from a potential, and the potential is a homogeneous quadratic function of the coordinates.
Suppose the system has [ degrees of freedom and is described by / independent coordinates:

Gy qy -+ 4 (14.138)

The relations between these and the x, y, and z coordinates are given by the following 3n equa-
tions for n particles.

X = x(qy G - - > 41

Yi = ¥Aq1 G2 - -+ @1

%= Zgh g - G (14.139)
Note that there is no explicit dependence on time ¢ because kinetic energy T is a homogeneous

quadratic function of time. Multiply each of Egs. (14.137), respectively, by the quantities
dx/dq;, dy/dq;, and 8z/dq;; adding all three and summing over all the » particles yields

c . 0x; L0y, . 0z
PN E R At B
i=1 dq; dg; dg;

" ox, &y, 3 o ex . dy, . oz
- E(F,.x faxi +F, 24 F, i) - ci(xi Py Py i’) (14.140)
i=1 4; i=1

where

0q dq;
. , oV . :
First term on the right = — Py = @, the generalized force, excluding
4 the dissipative forces
0 S 9F,

iy

(33 52+ | -

aqj
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and F, = %Eci()%? + y7 + 77} is the dissipative function named by Rayleigh and represents one-
half the rate at which the energy is being dissipated through the action of frictional forces. Thus
Eq. (14.140) may be written as

d{oT oT oV oF
_( _,)_ LA (14.141)
di\dq’; aq; a4 0q;
Since L =T — V, Eq. (14.137) or (14.141) takes form
L JaL
d( oL ) .y (14.142)
dr\dq’; aq’; J
where Q,; is the generalized damping force
oF
Q; =~ =/ (14.143)
8qj
For sufficiently small motions, the expressions for V, T, and F, may be written as
V=a,q*+ +a,q* +2a,9/q, + (14.144a)
T=b,q* + -+ b,q> +2bqiq} + (14.144b)
F =c, 4> + -+ cyq;* + 2c,41q; + - (14.144c¢)

where ay, ..., by, ..., and ¢y, . .., are constants.

The resulting differential equations of motion obtained from Eq. (14.141) or (14.142) are
similar to the undamped case, except that terms of the form g are present. To calculate normal
modes, we must find new coordinates that are linear combinations of gy, g3, . . . , g/ so that V,
T, and F,, when expressed in terms of coordinates 7, 1,, . . ., 1;, do not contain cross terms;
that is, they contain the sum of the squares of the new coordinates and their time derivatives,
Because of the presence of F,, it is not always possible to find such new coordinates. In some
situations it is possible to find a normal coordinate transformation, and the resulting differential
equations are of the form

mjﬁj + cjﬁj + kjnj =0 (14.145)
which have solutions of the form
m, = Ae Vcos(wt + ) (14.146)

Thus, unlike the case of undamped motion in which one observes oscillations, in the present
case the motion may be underdamped, critically damped, or overdamped, as the case may be;
hence the motion may be nonoscillatory. The normal coordinates and their phases are the same
as in the corresponding problem of undamped motion. The amplitude decreases exponentially
with time, while the frequencies are different from the ones in the undamped case.

First, we must assume that the driving forces are small enough so that the squares of

the forces are constant, such as a system under gravitational force, the only change is in the
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equilibrium position about which the oscillations take place. If the driving force is periodic, it
is possible to discuss motion in terms of normal coordinates. For convenience, let us assume that
a single harmonic force of the type Q,,,cos wt or Q,, e it is applied. The resulting equation of
motion in normal coordinates is of the form (in the presence of a linear restoring force, dissi-
pative force, and driving force)

mai, + e, + k= Qe (14.147)

If the driving frequency is equal to one of the normal frequencies of the system, the corre-
sponding normal mode will assume the largest amplitude in the steady state. Furthermore, if the
damping constants are small, not all normal modes are excited to any appreciable extent; only
one normal mode that has the same frequency as the driving force will be excited.

Let us consider once again the situation of two coupled pendula, as discussed in Example 14.2. Let us as-
sume that the driving force is F cos wt, and the frictional force proportional to velocity is cx, where ¢ is a
constant. Discuss the solution of this problem.

Solution

The equations describing the system are

.. mg .

mx, + —x, + k(x;, — x;) = —cx; + Fcos ot
!

T A — x) = —cx. + Fcos wt

LA, T Ay R Ay Ay LAy T 47 LU

Equations involving normal coordinates X; and X, are (n, = X; = x; + xand n, = X, = x; — x3)

4

2F
X, = —cos ot
l m

. Cc -
X+ X +
m
. . 2%
X, + 5%, + (g+)xzzo
m ! m
We should be able to recognize these differential equations, which have the following solutions:

2F cos(wt — o)
[mZ(wé _ (1)2)2 + wZCQ] 12

X] - e*(C/Zm)r(Aleiwit +A_le—imil) 4+

and

X, = ef(c/zm)r(Azemﬁt +A_2e7"“'5 9

g 12 g C2 ir2 g 2% C2 12
""’:(z) ’ “’1=(z‘4mz) ’ wé:[(z*z)‘w]

we

where

for g/l > cY4
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Both X, and X, contain transient terms. Only X, possesses a steady-state term, and only X, will remain ex-
cited (for any initial conditions) with the same frequency as the driving frequency, which is similar to a
system having one degree of freedom, X, will decay in a short interval. These points are illustrated in the

foliowing graphs.

Assuming the following values and graphing with and without the driving force, X1
and X2, respectively, gives

g:=98 1:=1 ¢:=05 m:=| k=2 n:=0..60 t i=n i::«/j
Al =4 Al12:=2 A2 :=15 A21:=10 F:=5
= n
% , 1 =3 ¢::5
w0 = |8 g c w2 = §+§ - w0 =3.13
! eLET T L
' 4m ol =3.12
< ®2 =3.706

_<'_).‘ i@lt -i-ml-t 2-F-cos({wt -¢
X1 =e T n'(Al-e " AlZe ")+ A

JE_ (coOz— co2> P

XZn =e -\A2-e + A2l-e

20

Both X1 and X2
contain transient
terms. Only X1
possesses a
steady-state term
and remains
excited for any
initial condition

—2
with the same 0 20 40 60

frequency as the n
driving frequency.

X2 will decay

away in a short time.

EXERCISE 14.4 Repeat the above example with the applied force equal to F sin(wt). What are the sim-
ilarities and differences between the two?

PROBLEMS

14.1. A cube of side 2a is balanced on top of a rough spherical surface of radius R. Show that the equi-
librium is stable if R > g and unstable if R = g. What happens if R = a? Find the frequency of
small oscillations.
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14.2. In Problem 14.1, if the cube is replaced by a homogeneous solid hemisphere of radius r, show that
for stable equilibrium r < IR.

14.3. A homogeneous rectangular slab of thickness d is placed atop and at right angles to a fixed cylin-
der of radius R with its axis horizontal. Assuming no slipping, show that the condition for stable
equilibrium is R < d/2. Draw a potential energy function versus the angular displacement 6, and
show that there is a minimum at 8 = 0 for R > d/2 but not for R < d/2. Find the frequency of small
oscillations about equilibrium.

14.4. A homogeneous disk of mass M and radius R rolls without slipping on a horizontal surface and is
attracted toward a point that lies at a distance d below the surface. The attractive force is propor-
tional to the distance between the center of mass and the force center. Is the disk in stable equilib-
rium? If so, find the frequency of small oscillations.

14.5. Two identical springs each of natural length ], and stiffness constant k have their upper ends tied
at two points A and B, which are a distance 2a apart. The two lower ends are tied together at C, and
a mass m hangs it, as shown in Fig. P14.5. Find the position of equilibrium. Is it a position of sta-
ble equilibrium? Find the frequency of small oscillations.

[ 2a >i
A.\' /.B

i '/ y h '\'
! My, A

m
mg
Figure P14.5
14.6. A mass m is subject to a force whose potential energy function is

V = V,exp[(5x? + 5y + 82% — 8yz — 26ya — 8za)/a’]

where V; and a are constants. Find, if any, positions of stable or unstable equilibrium. Find the nor-
mal frequencies of vibration about the minimum.

14.7. A particle of mass m moves along the X-axis under the influence of a potential energy given by
V(x) = —Axe ¥, where A and k are constants. Make a plot of V(x) versus x. Find the position of
equilibrium. Also calculate the frequency of small oscillations.

14.8. Consider a rod of length . and mass m supported by two springs, as shown in Fig. P14.8. Assum-
ing that the rod remains in the vertical plane, calculate the normal frequencies of oscillation. Graph
the normal modes.

AR AAY

= = Figure P14.8

14.9. For the configuration of two masses and two springs as shown in Fig. P14.9, calculate the normal
frequencies and normal coordinates, assuming that the motion is restricted to the vertical plane.
Graph the natural as well as normal modes,
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<
s
=
<
o
Figure P14.9

14.10. Three identical masses and four identical springs are connected as shown in Fig. P14.10. If the sys-
tem is displaced from its equilibrium position along the line joining the masses, calculate the nor-
mal frequencies and normal coordinates for small oscillations. The unstretched length of each
spring is a and k is its spring constant. Graph the natural as well as normal modes.

A B

N
k k k k
/\/\/\/\/\/\—-‘—-‘/\/\/\/\/\/\—‘—-‘/\/\/\/ \/\/\—’—‘/\/\/\/\/\/
a a a a

m m m

N Figure P14.10

14.11. In Problem 14.10, there is a tension T in the spring at points A and B. Calculate the normal frequen-
cies and normal coordinates for small transverse oscillations. Graph the tension versus displacement.

14.12. A light rod OA of length r is fixed at O, and a mass M is attached to the other end, as shown in
Fig. P14.12. It is forced to move in the XY-plane. A pendulum of length / and mass m attached at
A can oscillate in the YZ-plane. Find the normal frequencies and normal modes of vibration. Graph
the normal modes of vibrations.

Z A

m @ B Figure P14.12
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14.13.

14.14.

14.15.

14.16,

Theory of Small Oscillations and Coupled Oscillators Chap. 14

Three oscillators of mass m each are coupled in such a way that the force between them is given
by the potential energy function

V=12 + 3D + I + k(xx + 5x))

where k, = (2kk,)*. Find the points of equilibrium and their stability. Find the normal frequen-
cies of the system and normal modes of vibration. Graph the normal modes. Is there any physical
significance of the null mode?

Three masses M, m, and m are connected by identical springs of stiffness constant k and placed on
a fixed circular loop in space, as shown in Fig. P14.14. Calculate the normal frequencies and nor-
mal coordinates. What happens if M = m? Also describe the type of motion of these masses. Draw
the polar graphs of the motion of the mass m and M.

M
N o vy
N ’ 7y
Ry 7

< Z
=~ Z
= =
= =
e s
m m

/// I p l/\/ \/\I\'V\‘

Figure P14.14

A particle of mass m is moving in a force field that is represented by the potential energy given by
V)= —ax)e™, x=0

where « is a positive constant. Find (a) the equilibrium points, (b) the nature of the equilibrium
points, and (c) the frequency for small oscillations about equilibrium, Graph V and F versus x and
displacement versus time.

A mass m is attached to a mass M by a light string of length /. The mass M slides without friction
on a table, while the other mass hangs vertically through a hole in the table, as shown in
Fig. P14.16. Find the steady-state motion, normal frequencies, and normal modes for small oscil-
lations. Make appropriate polar graphs to describe the motion of masses m and M. What happens
when M touches the whole in the table?
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14.17.

14.18.

14.19.

14.20.

611

m Figure P14.16

Suppose two identical harmonic oscillations are coupled via a force that is proportional to the rel-
ative velocity of the two masses (instead of a force proportional to distance). Find the normal fre-
quencies and normal modes of vibrations.

A thin wire of mass M bent in the form of circle of radius R is suspended from a point on its cir-
cumference. A bead of mass m is attached to the wire and constratned to move on it (frictionless).
Find the normal frequencies and normal modes of vibrations if the wire is free to swing in its own
plane. If M = m, show that

1
\/_\/ and @, = \Vf /

Do the normal modes describe any physical situation?

Consider a double pendulum that consists of one pendulum of length /; and mass m,, and the other
of length [, and mass m,. Calculate the normal frequencies. Also find the normal modes. For what
initial conditions will the system oscillate in its normal modes? Draw the appropriate graphs to de-
scribe the motion.

Find the normal frequencies and normal modes for the system shown in Fig. P14.20, which con-
sists of three springs and two masses forming a right-angled triangle. What type of motion is ex-
pected if one of the masses is displaced in the XY-plane?

Y

MR

// /
L»\J\IW\:\/\/\/\MAOQ

Figure P14.20
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14.21.

14.22.

14.23.

14.24.

14.25.

14.26.

14.27.
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rounded by a viscous medium which exerts a retarding force proportiona
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Consider a symmetrical rigid body mounted in weightless, frictionless gimbal rings. One ring ex-
erts a torque — k¢ (b is the Euler angle) about the Z-axis. (This is done by attaching a hair spring.)
Investigate the steady-state motion for small vibrations.

Derive expressions for the normal frequencies and the normal modes of vibration for the triatomic
molecule discussed in Section 14.8, that is, CO,. The mass of carbon is m, and that of oxygen is
m,, and assume that the force between adjacent atoms can be represented by a spring of spring con-
stant k and that there is no interaction between the end atoms.

Consider a plane triatomic molecule consisting of equal masses at the vertices of an equilateral tri-
angle, as shown in Fig. P14.23 (stretched and unstreched). The unstretched length of each spring
is a, and the spring constant is k. Consider small osciliations in the plane of the triangle. How many
normal modes do you expect and how many of these have zero normal frequencies? Find the fre-
quency of small oscillations for a mode in which all three springs stretch symmetrically, as shown.

_ AAAAAAARA
N YYYvVvyvyy N

VWA

Figure P14.23

Two simple pendulums are coupled by a weak attractive force given by K/r?, where r is the dis-
tance between the two particle masses. Show that, for a small displacement from equilibrium, the
Lagrangian has the same form as that for two coupled oscillators. Furthermore, if one pendulum
is set into oscillations while the other is at rest, then eventually the second pendulum will oscillate,
and the first will come to rest. The process will repeat with time. Draw graphs that describe this
motion.

As in Problem 14.24, let us once again consider the problem of two linearly coupled pendula, ex-
cept that the lengths of the two are not equal. Find the normal frequencies and normal modes of
vibrations. Show that, unlike the situation discussed in Problem 14.24, the energy of the system is
never completely transferred to either of the pendula. Draw graphs to demonstrate this.

Two identical pendula coupled by a spring as shown in Fig. Ex. 14.2 are moving in a viscous
medium that produces a retarding force proportional to its velocity. Find the normal frequencies
and normal coordinates. Draw graphs to show the motion.

Three equal masses m are joined by two identical springs of spring constant k. The system is free
to oscillate and move along the line joining the masses. The system is placed in a viscous medium
that exerts a retarding force proportional to its velocity. Find the normal frequencies and the nor-
mal modes of oscillations. Draw graphs describing the motion.
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tension of 7T in the springs at A and B. One mass is held and the second is displaced a distance d
vertically, and then both are released. Find the normal frequencies and the normal modes of vi-
bration. Draw graphs that describe the motion of the masses.

A B

k m k m k

AN /\/\/\/\—o-—\/\/\/\/\/\/\——e—-—\/\ ANNN
a a a

N

Figure P14.28

14.29. In Problem 14.24, the system 1s surrounded by a viscous medium that produces a retarding force
proportional to its velocity. Find the normal frequencies and the normal modes of vibrations. As-
sume proper initial conditions.

14.30. Consider the system shown in Fig. P14.28. The unstretched length for each spring is a. (a) Find
the normal frequencies and normal modes of vibration. (b) Suppose each mass m is subjected to a
force F' = F, sin wt at time ¢ = 0 when the system is at rest. Discuss the motion using normal co-
ordinates and draw graphs of this motion.

14.31. In Problem 14.30, each mass is subject to a frictional force — bmux|. Discuss the motion of the sys-
tem and draw a graph of it.
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