CHAPTER FOUR: MULTIPLE LINEAR REGRESSION
4.1 Introduction

In a simple regression, a dependent variable is a function of only one explanatory variable.
However, in economics you hardly found that one variable is affected by only one explanatory
variable. Hence, a two variable model is often inadequate in practical works. The multiple linear
regression is concerned with the relationship between a dependent variable and two or more
explanatory variables.

4.2 The three-variable model: specification and assumptions

Consider a regression model with two explanatory variables.
Y =1(X1, X2)

Example: Demand for a commodity may be influenced not only by the price of the commodity
but by the consumers’ income. Since the theory does not specify the mathematical form of the
demand function, we assume the relationship between Y, and the regressors (Xi, and Xz) is
linear. Hence we may write the three variables Population Regression Function (PRF) as follows:
Yi=Bo + P1Xui + P2Xoi +Ui

Where Y is the quantity demanded

Xz and X; are the price and income respectively

B, is the intercept term

B1 is the coefficient of X; and its expected sign is negative (due to the law of demand)

B is the coefficient of X, and its expected sign is positive assuming that the good is a

normal good.

Interpretation of partial regression coefficients

Given Y = Bo + P1Xui+ P2Xoi +U;
The meaning of partial regression coefficient is as follows: ;1 measures the change in the mean
value of Y, E(Y), per unit change in X;, holding the value of X, constant. Likewise, B> measures

the change in the mean value of Y per unit change in X, holding the value of X; constant.



Consider also a model relating a person’s wage to observed educ (years of education), exper
(years of labor market experience), tenure (years with the current employer) and other
unobserved factors.

Wage = S, + pieduc + Srexper + u
For instance, Bimeasures the change in hourly wage given another year of education, holding
experience fixed. Similarly, B> measures the change in hourly wage given another year of

experience, holding education fixed.

To complete the specification of our simple model we need some assumptions about the random
variable U. These assumptions are the same as those assumptions already explained in the simple

linear regression model.

Assumptions of the model
1. Zero mean value of U;
The random variable U has a zero mean value for each X; that is, E(Ui/X1j, X2i) = 0 for each
i
2. Homoscedasticity: The variance of each U; is the same for all the X; values
Var (Up) = E(U?) = o}
3. Normality: The values of each U; are normally distributed. That is, Ui ~ N(0, &%)

4. No serial correlation: The values of U; (corresponding to X;) are independent of the values
of any other U; (corresponding to X;).
Cov (Ui, U))=0for i#]j
5. Independence of U; and X;: Every disturbance term U; is independent of the explanatory
variables. That is, there is zero covariance between U; and each X variables.
Cov(Ui, X1j) =Cov (Ui, X2i) =0
Here the values of the X’s are a set of fixed numbers in all hypothetical samples.
6. No perfect multicollinearity (No collinearity between the X variables): The explanatory
variables are not perfectly linearly correlated. That is, there is no exact linear relationship
between X; and X..



7. Correct specification of the model: The model has no specification error in that all the
important explanatory variables appear explicitly in the function and the mathematical form

is correctly defined.

4.3 Estimation: the method ofleast squares

Suppose the sample regression function (SRF)
Yi=Bo+ B Xy + By Xy 40

where ,8’0, /A}l and £, are estimates of the true parameters £,, f,and g,
U, is the residual term.

But since U, is unobservable the above equation becomes

A A

Y. =p6,+ ﬁl Xy + ﬁAz X, is the estimated regression line.
In the least squares estimation, the estimates will be obtained by choosing the values of the

unknown parameters that will minimize the sum of squares of the residuals. (OLS requires the

>0, be as small as possible). Symbolically,
Min lei2 =2(Yi- Y’\i )= Z (Yi- Bo— B Xy =5 X2i)2
A necessary condition for a minimum value is that the partial derivatives of the above expression

with respect to the unknowns (i.e. 5,, 3, and S, ) should be set to zero.
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After differentiating, we get the following normal equations:

SYi=ng, + B, Xi+ f,5%i
2XiiYi = ,%olei + ,%lzlei + ,gzleiXZi
2 X0i Y = ,ZA?ozxzi + ,2312 X1iXoi + 2322X22i
Solving the above normal equations we can obtain values for ﬁo, &1 and ,%2
B=Y B X=X,
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where the variables x and y are in deviation forms.

Derivation

U=y, -V
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After rearranging ,

zyixli :léllezi +,Bzleixzi
ZinZi :BlleiXZi +BZZX22i

Solving these two equations simultaneously we will get the values of ,81 and ,32 given above.



4.4 The Mean and Variance of the Parameter Estimates

The mean of the estimates of the parameters in the three-variable model is derived in the same
way as in the two-variable model.

The estimates are unbiased estimates of the true parameters of the relationship between Y, X;
and Xo.

E(B,) =B E(B)=p EB,=5

The variance of ,&O,ﬁl and ,%zare also given as follows
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Where 6% = Zui , (in the three variable model, k = 3).

n—k

Note that x; and x» are in deviations form.

4.5 The multiple coefficient of determination (R?) and the Adjusted R?

In a two variable regression model, the coefficient of determination (r°) measures the goodness
of fit of the regression equation. This notion of r> can be easily extended to regression models

containing more than two variables.

In the three-variable model, we would like to know the proportion of the variation in Y explained
by the variables X; and X, jointly. The quantity that gives this information is known as the
multiple coefficient of determination. It is denoted by R?, with subscripts the variables whose
relationships are being studies.



Example: R?,xx,- shows the percentage of the total variation in Y explained by the regression
plane, that is, by changes in X; and X;.
R = 2 _ TS
2 XYY
o> RSS
=1-— —=1-
Z Y; TSS

where: RSS - residual sum of squares

TSS — total sum of squares
Recall that

V= ﬁlxli + ﬁz X, (the variables are in deviation forms)
Yi= ¥+,
S02 =30 - =50 Bixai- By X, )
orXi =30, . 0 = X0 (i- BXii- B, X,)
=X yi- &lzui Xij - ﬁzzl]i X2i
but 220, X1i =20, X2i=0
Hence 0. = XU, y;
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By substituting the value of Zdizin the formula of R?, we get
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The value of R? lies between 0 and 1. The higher R? the greater the percentage of the variation of

, Where Xij, X2 and y; are in their deviation forms.

Y explained by the regression plane, that is, the better the goodness of fit of the regression plane
to the sample observations. The closer R? to zero, the worse the fit is.

An important property of R%is that itis a nondecreasing function of the number of explanatory variables or
regressors present in the model; as the number of regressors increases, R? almost invariably increases
and newver decreases. Stated differently, an additional X variable will not decrease R2.

To see this, recall the definition of R?

oy DU

Z:yi2

It is clear that Yyi® is independent of the number of X variables in the model because it is simply

>(Y; - Y ) The residual sum of squares (RSS), leiz, however, depends on the number of
explanatory variables present in the model. It can be noticed that as the number of X variables
increases, leiz is bound to decrease (at least it will not increase), hence R® will increase.

Therefore, in comparing two regression models with the same dependent variable but different
number of X variables, one should be very wary of choosing the model with the highest R°. An
explanatory variable which is not statistically significant may be retained in the model if one
looks at R? only.

Therefore, to correct for this defect, we adjust R* by taking into account the degrees of freedom,

which clearly decreases as new regressors are introduced in the function.

=2_ _Zdiz/(n—k)
AR SIS Py

or R°=1-(1-R) (:_1)

where k = the number of parameters in the model (including the intercept term)

n = the number of sample observations

—2 . . -
It is immediately apparent from the above equation that for k > 1, R < R? which implies that as the

number of explanatory variables increases, the adjusted R? is increasingly less than the
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unadjusted RZ. The adjusted R?, ie.R’, can be negative, although R? is necessarily non-negative.

In this case its value is taken as zero. If n is large, R and R® will not differ much. But with

small samples, if the number of regressors (X’s) is large in relation to the sample observations,

R’ will be much smaller than R2.

4.6 Partial Correlation Coefficients

In the two variable regression model, we have used the simple correlation coefficient, I, as
measure of the degree of linear association between two variables. For three variables case, we
can compute three correlation coefficients: ryx; (correlation between y and xi), ryxe, and ryixo —
these are called gross or simple correlation coefficients, or correlation coefficients of zero order.
But, for example, ryx1 does not likely reflect the true degree of association between Y and X; in
the presence of X,. Therefore, what we need is a correlation coefficient that is independent of the
influence, if any, of X, on X; and Y. Such a correlation coefficient is known as the partial
correlation coefficient. Conceptually, it is similar to the partial regression coefficient.

fyx1.x2 = partial correlation coefficient between Y and Xy, holding X, constant

fyx2.x1 = partial correlation coefficient between Y and Xz, holding X; constant

I'xix2.y = partial correlation coefficient between X; and X, holding Y constant.

We can compute the partial correlations from the simple or zero order correlation coefficients as
follows.

r,—r,r

yx1 yx2 "x1x2

fyx1.x2 =
\/(1_ ry2><2)(1_ rx21x2)

Fix2

fyx2.x1 =
Ja-riya-ri,

Faxe — ryxl ryx2

Mxix2y =
Ja-ri)a-rz,)

Note: By order we mean the number of secondary subscripts. For example, ryxixox3 is the

- ryxl Feoxs

correlation coefficient of order two, whereas ryxi1xoxaxa represents the correlation coefficient of

order three, and so on.



4.7 The Confidence Interval for g,

The principle involved in constructing the confidence is identical with that of simple regression.

4.8 Test of significance in multiple regression

4.8.1 Hypothesis Testing about Individual Partial Regression Coefficients

We can test whether a particular variable X; or X; is significant or not holding the other variable
constant. The t test is used to test a hypothesis about any individual partial regression coefficient.
The partial regression coefficient measures the change in the mean value of Y E(Y/X2,X3), per
unit change in Xz, holding Xs constant

t= Lﬁ%(n ~k) (=0,1,2 ...,k
se(B))

This is the observed (or sample) value of the t ratio, which we compare with the theoretical value

of t obtainable from the t-table with n — k degrees of freedom.

The theoretical values of t (at the chosen level of significance) are the critical values that define

the critical region in a two-tail test, with n—k degrees of freedom.

let us postulate that
Ho: B, =0
Hi: S,# 0 orone sided (5,> 0, 4,<0)
The null hypothesis states that, holding X, constant, X; has no (linear) influence ony.

If the computed t value exceeds the critical t value at the chosen level of significance, we may

reject the hypothesis; otherwise, we may accept it (£, is not significant at the chosen level of

significance and hence the corresponding regression does not appear to contribute to the

explanation of the variations in Y).

Example. Suppose the estimated hourly wage equation is given as follows:

log(wage) = .284 + .092 educ + .0041 exper + .022 tenure



se (.104) (.007) (.0017) (.003)
n = 526, R? =.316,

Test whether the return to exper, controlling for educ and tenure, is zero in the population,
against the alternative that it is positive. That is, HO: 4, .. = 0 against H1: g, . >0.

4.8.2 Testing the Overall Significance of a Regression
This test aims at finding out whether the explanatory variables (X1, X2, ...Xk) do actually have
any significant influence on the dependent variable. The test of the overall significance of the
regression implies testing the null hypothesis

Ho: B, = B,=...= B, =0
Against the alternative hypothesis

Hi: not all g,’s are zero.

If the null hypothesis is true, then there is no linear relationship between y and the regressors.

The above joint hypothesis can be tested by the analysis of variance (ANOVA) technique. The
following table summarizes the idea.

Source of variation Sum of squares | Degrees of freedom Mean square
(SS) (Df) (MSS)
Due to regression (ESS) Z e k-1 Z &
k-1
. ~ 2
Due to Residual (RSS) 20_2 n-k Z U;
n—k
Total Z y? n-1
(Total variation)

Therefore to undertake the test first find the calculated value of F and compare it with the F

tabulated. The calculated value of F can be obtained by using the following formula.

/\.2 k—l _
po 2 /(D) ESS/(K=1) g e F disribution with k-1 and n —k df

~ S762/(n—k) Rss/(n-k)

where k — 1 refers to degrees of freedom of the numerator

n — Kk refers to degrees of freedom of the denominator
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k —number of parameters estimated

Decision Rule: If Feaculated > Fravulated (Fo(k — 1, n= K)), reject Hy: otherwise you may accept it,

where F,(k — 1, n — k) is the critical F value at the o level of significance and (k — 1) numerator
df and (n — k) denominator df.

Note that there is a relationship between the coefficient of determination R? and the F test used in

the analysis of variance.

From the above:
F_ (n—k)ESS
(k —1)RSS

_ (n-k)ESS/TSS
(k—1)(1— ESS /TSS)

_ (n-Kk)R®
~ (k-D(-R?)

_ R¥(k-1)
(L-R?/(n-k)
When R? = 0, F is zero. The larger the R?, the greater the F value. In the limit, when R? = 1, F is
infinite. Thus the F test, which is a measure of the owverall significance of the estimated
regression, is also a test of significance of R®. Testing the null hypothesis is equivalent to testing

the null hypothesis that (the population) R? is zero.
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