CHAPTER FIVE: VIOLATIONS OF THE CLASSICAL ASSUMPTIONS
5.1 MULTICOLLINEARITY

a) The nature of the problem

One of the assumptions of the classical linear regression model (CLRM) is that there is no
perfect multicollinearity among the regressors included in the regression model. Although the
assumption is said to be violated only in the case of exact multicollinearity (i.e. an exact linear
relationship among some of the regressors), the presence of multicollinearity (an approximate
linear relationship among some of the regressors) leads to estimation problems.

Multicollinearity does not depend on any theoretical or actual linear relationship among any of
the regressors; it depends on the existence of an approximate linear relationship in the data set at
hand. Unlike most other estimation problems, this problem is caused by the particular sample
available.

The existence of multicollinearity will affect seriously the parameter estimates. Intuitively, when
any two explanatory variables are changing in nearly the same way, it becomes extremely
difficult to establish the influence of each regressor on the dependent variable separately.

Consider the consumption-income model

Consumption; = Sy + f1 Income; + f> Wealth; + u;

It may happen that when we obtain data on income and wealth, the two variables may be highly,
if not perfectly, correlated: Wealthier people generally tend to have higher incomes. Thus,
although in theory income and wealth are logical candidates to explain the behavior of
consumption expenditure, in practice (i.e., in the sample) it may be difficult to disentangle the
separate influences of income and wealth on consumption expenditure.

Ideally, to assess the individual effects of wealth and income on consumption expenditure we
need a sufficient number of sample observations of wealthy individuals with low income, and
high-income individuals with low wealth. Although this may be possible in cross sectional
studies (by increasing the sample size), it is very difficult to achieve in aggregate time series
work.

In general, the problem of multicollinearity arises when individual effects of explanatory
variables cannot be isolated and the corresponding parameter magnitudes cannot be determined
with the desired degree of precision. Though it is quite frequent in cross section data as well,
multicollinearity tends to be more common and more serious problem in time series data.



b) Sources of multicollinearity

The data collection method employed, for example, sampling over a limited range of the
values taken by the regressors in the population.

Constraints on the model or in the population being sampled. For example, in the
regression of electricity consumption on income and house size there is a physical
constraint in the population in that families with higher incomes generally have larger
homes than families with lower incomes.

Model specification, for example, adding polynomial terms to a regression model,
especially when the range of the X variable is small.

An overdetermined model. This happens when the model has more explanatory variables
than the number of observations. This could happen in medical research where there may
be a small number of patients about whom information is collected on a large number of
variables.

An additional reason for multicollinearity, especially in time series data, may be that the
regressors included in the model share a common trend, that is, they all increase or
decrease over time. Thus, in the regression of consumption expenditure on income,
wealth, and population, the regressors income, wealth, and population may all be growing
over time at more or less the same rate, leading to collinearity among these variables.

¢) Consequences of Multicollinearity

i)

The case of perfect multicollinearity

consider a three-variable regression model in deviation form
Yi = BiX + BoXyi 4

From which it can be obtained
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Recall that ﬁlgives the rate of change in the average value of Y as X; changes by a unit, holding

X, constant. But if X; and X, are perfectly collinear, there is no way X, can be kept constant: As
X1 changes, so does X, by the factor k. What it means, then, is that there is no way of
disentangling the separate influences of X; and X, from the given sample.

Moreover, for a three variable model:
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Which shows that the variances of the estimates become infinite.

Therefore, in the case of perfect multicollinearity, the regression coefficients remain
indeterminate and their standard errors are infinite.

i) High but imperfect multicollinearity

The perfect multicollinearity situation is a pathological extreme. Generally, there is no exact
linear relationship among the X variables, especially in data involving economic time series.

Suppose in the three variable model
X, =kX;;+ vi where k# 0 and v; is the stochastic error term such that leivi =0.

In this case, it is poosiible to estimate the coefficients. However, in the case of near or high
multicollinearity, one is likely to encounter the following consequences:
1. Although BLUE, the OLS estimators have large variances and covariances, making
precise estimation difficult. For example, in a three variable linear regression,
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It is apparent from the above formula that as ri, (which is the coefficient of
correlation between X; and X;) tends towards 1, that is, as collinearity increases, the

variance of the estimator increases. The same holds for Var( ,82) and the cov ( ﬁl ,éz).

2. Because of consequence (1), the confidence intervals tend to be much wider, leading to
the acceptance of the “Zero null hypothesis” (i.e., the true population coefficient is zero).

3. Because of consequence (1), the t-ratio of one or more coefficients tends to be
statistically insignificant.

4. Although the t-ratio of one or more coefficients is statistically insignificant, R?, the
overall measure of goodness of fit, can be very high.

5. The OLS estimators and their standard errors can be sensitive to small changes in the
data.

d) Detecting Multicollinearity

Note that multicollinearity is a question of degree and not of a kind. It should also be noted that
since multicollinearity refers to the condition of the explanatory variables that are assumed to be
nonstochastic, it is a feature of the sample and not of the population. Therefore, we do not “test
for multicollinearity” but can, if we wish, measure its degree in any particular sample. The
following are some rules of thumb and formal rules to detection of multicollinearity.

i) High R? but few significant t-ratios. If R* is high, say in excess of 0.8, the F-test in most
cases will reject the hypothesis that the partial slope coefficients are simultaneously equal to
zero, but the individual t tests will show that none or very few of the partial slope
coefficients are statistically different from zero.

i) High pair-wise correlation among regressors. If the pair-wise correlation coefficient
among two regressors is high, say in excess of 0.8, then multicollinearity is a serious
problem.

lii) Auxiliary Regression. Since multicollinearity arises because one or more of the regressors
are exact or approximately linear combinations of the other regressors, one way of finding
out which X variable is related to other X variables is to regress each X; on the remaining X
variables and compute the corresponding R2. As a rule of thumb, multicollinearity may be a
troublesome problem only if the R? obtained from an auxiliary regression is greater than the
overall R? (that obtained from the regression of Y on all the regressors).

iv) Tolerance(TOL) and variance inflation factor (VIF)



For a linear regression with two explanatory variables(X; and X»)
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VIF shows how the variance of an estimator is inflated by the presence of multicollinearity. As

r2 approaches 1, the VIF approaches infinity. That is, as the extent of collinearity increases, the

variance of an estimator increases, and in the limit it can become infinite. If there is no
collinearity between X; and Xz, VIF will be 1.
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shows that the variances of ﬁl and ﬁz are directly proportional to the VIF.

Similarly, for k-variable model

A o’ _ o’
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Where ,Bi:(estinnted) partial regression coefficient of regressor Xi

R2= R?in the regression of Xi on the remaining regressions

It is also possible to use TOL as a measure of multicollinearity in view of its intimate connection
with VIF.

1 2
OL;=\E=(1—Ri)

The larger the value of the VIF;, the more “troublesome” or collinear the variable Xi. As a rule of
thumb, if the VIF of a variable exceeds 10, which will happen if R”exceeds 0.90, that variable is
said to be highly collinear. In other words, the closer is TOL; to zero, the greater the degree of

collinearity of that variable with the other regressors. On the other hand, the closer TOL; is to 1,
the greater the evidence that X; is not collinear with the other regressors.

e) Remedial Measures

The existence of multicollinearity in a data set does not necessarily mean that the coefficient
estimators in which the researcher is interested have unacceptably high variance. Because
multicollinearity is essentially a sample problem there are no infallible guides. However one can



try the following rules of thumb, the success of which depends on the severity of the collinearity

problem.

a) Obtain more data: - Because the multicollinearity is essentially a data problem, additional
data that do not contain the multicollinearity feature could solve the problem. For example,
in the three variable model we saw that

Var(4,) = o’

lezi (1_r122)

Now as the sample size increases, Yxii> will generally increases. Thus, for a given ri,, the
variance of ﬁl decreases (thus, the standard error decreases), which will enable us to estimate 1
more precisely.

b) Transformation of variables: - In time series analysis, one reason for high multicollinearity
between two variables is that over time both variables tend to move in the same direction.
One way of minimizing then dependence is to transform the variables.

Suppose Yi = Bo + B1Xqt + B2Xot
This relation must also hold at time t-1 because the origin of time is arbitrary anyway.
Therefore we have
Yi1=Bo + B1Xut-1 + P2Xor1 + Ut
Subtracting this from the above gives
Yi— Ye1 = B1(Xae — Xae-1) + B2(Xat — Xot-1) + Vi
This is known as the first difference form because we run the regression, not on the original
variables, but on the difference of successive values of the variables. The first difference
regression model often reduces the severity of multicollinearity. Although the levels of X; and
X, may be highly correlated, there is no a priori reason to believe that their difference will also
be highly correlated.

Another commonly used transformation in practice is the ratio transformation.
Consider the model:

Yt =Bo + BaXut + PoXot+u
where Y is consumption expenditure in real dollars, X1 is GDP, and X2 is total population. Since
GDP and population grow over time, they are likely to be correlated. One “solution” to this
problem is to express the model on a per capita basis, that is,

gty g le U
~ =P )+'81(X2t)+'82+(x2t)

x2t X2t
Such a transformation may reduce collinearity in the original variables.

¢) Formalize relationships among regressors: - If it is believed that the multicollinearity
arises not from an unfortunate data set but from an actual approximate linear relationship
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among some of the regressors, this relationship could be formalized and the estimation
could then proceed in the context of a simultaneous equation estimation problem.
Combining cross-sectional and time series data: that is, the combination of cross
sectional and time-series data, known as pooling the data.

Drop a variable: - when faced with severe multicollinearity, one of the “simplest” thing to
do is to drop one of the collinear variables. But note that in dropping a variable from the
model we may be committing a specification bias or specification error. Specification bias
arises from incorrect specification of the model used in the analysis. Thus, if economic
theory requires some variables to be included in the model, dropping one of the variables
due to multicollinearity problem would constitute specification bias.



5.2 HETEROSCEDASTICITY

A) The Nature of Heteroscedasticity

The assumption of homoscedasticity (or constant variance) about the random variable u is that its
probability distribution remains the same over all observations of X, and in particular that the
variance of each U; is the same for all values of the explanatory variable. That is, the variation of
each u; around its zero mean does not depend on the value of X. Symbolically we have

Var(u) = E{(u - E(w)}* = E(u?) = ¢

If the above condition is not satisfied in any particular case, we say that the u’s are
hetroscedastic. That is,Var (u) = /.

The problem of heteroscedasticity is more serious in cross section data rather than time series
data. Suppose we have a cross-section sample of family budget from which we want to measure
the savings function. That means Saving = f(income). In this case, the assumption of constant
variance of the u;’s is not appropriate, because high-income families show a much greater
variability in their saving behavior than do low income families. Families with high income tend
to stick to a certain standard of living and when their income falls they cut down their savings
rather than their consumption expenditure. But this is not the case in low income families.
Hence, the variance of u;’s increase as income increases.

B) Causes of Heteroscedasticity

Heteroscedasticity can arise as a result of several cases.

e The presence of outliers: An outlying observation, or outlier, is an observation that is
much different (either very small or very large) in relation to the observations in the
sample. More precisely, an outlier is an observation from a different population to that
generating the remaining sample observations. The inclusion or exclusion of such an
observation, especially if the sample size is small, can substantially alter the results of
regression analysis.

e Incorrect specification of the regression model: Very often what looks like
heteroscedasticity may be due to the fact that some important variables are omitted from
the model. In such situation the residuals obtained from the regression may give the
distinct impression that the error variance may not be constant. But if the omitted
variables are included in the model, the impression may disappear.

e Skewness in the distribution of one or more regressors included in the model:
Examples are economic variables such as income, wealth, and education. It is well
known that the distribution of income and wealth in most societies is uneven, with the
bulk of the income and wealth being owned by a few at the top.

e Incorrect data transformation (e.g., ratio or first difference transformations).

e Incorrect functional form (e.g., linear versus log-linear models).



In summary, we may say that on a priori grounds there are reasons to believe that the assumption
of homoscedasticity may often be violated in practice. It is therefore, important to examine the
consequences of heteroscedaticity.

C) The consequence of Heteroscedasticity

If the assumption of homoscedastic disturbance is not fulfilltd we have the following
consequences:

)] Heteroscedasticity does not destroy the unbiasedness and consistency properties of
OLS estimators.

i) The OLS estimates do not have the minimum variance property in the class of
unbiased estimators. That is, they are not BLUE.

i) In the presence of heteroscedasticity, the variances of OLS estimators are not
provided by the usual OLS formulas. But if we persist in using the usual OLS
formulas, the t and F tests based on them can be highly misleading, resulting in
erroneous conclusions.

D) Detecting the problem of Heteroscedasticity

As in the case of multcollinearity, there are no hard-and-fast rules for detecting
heteroscedasticity, only a few rules of thumb.

i) Informal method
Nature of the problem
As a matter of fact, in cross-sectional data involving heterogeneous units, heteroscedasticity may
be the rule rather than the exception. For example, in a cross-sectional analysis involving the
investment expenditure in relation to sales, rate of interest, etc., heteroscedasticity is generally
expected if small, medium and large-size firms are sampled together.

Visual Inspection of Residuals / graphical method

This is a postmortem approach when there is no a priori information as the existence of
heteroscdasticity. Hence, this approach examines whether the error term depicts some systematic
pattern or not. To this end, the residuals are plotted against the dependent or independent

variable to which it is suspected the disturbance variance is related. Although G’ are not the

same thing as Ui, they can be used as proxies especially if the sample size is sufficiently large.
i) Formal methods

Park Test
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Park formalizes the graphical method by suggesting that o is some function of the explanatory

variable X; .

The functional form he suggests is
Var(u) = oi? = o?Xe"

which could be written in logarithmic form as
Inoi® = Ino? + BInNX; +v;

where v; is the stochastic disturbance form.

Since oi” is generally not known, park suggests using 4’ as a proxy and running the following
regression:
G2 =Ina® + BInX; + v,
= o+ X + v
If B turns out to be statistically significant, it would suggest that heteroscedasticity is present in

the data. If it turns out to be insignificant, we may accept the assumption of homoscedasticity.
The park test is thus a two-stage procedure. In the first stage we run the OLS regression

disregarding the heteroscedasticity question. We obtain U, from this regression, and then in the

second stage we run the regression Ini? = Inc® + BInX; + V;,

Example: Consider a relationship between Compensation (Y) and Productivity (X). To illustrate
the Park approach, the following regression function is used.

Yi=pfo+ X+ Ui
Y = 1992.35+0.23 X;

se= (936.48) (0.099)
t= (213) (2.33) r’ =0.44

Suppose that the residuals obtained from the above regression were regressed on X; giving the
following results.

Ind’ = 35.82 - 2.81 InX;

se = (38.32) (4.22)
t = (0.93) (-0.67) r? = 0.46

10



In the above result, the coefficient of InX; is not significant. That is, there is no statistically
significant relationship between the two variables. Following the Park test, one may conclude
that there is no heteroscedasticity in the error variance.

Although empirically appealing, the Park test has some problems. For instance, the error term,V;
may not satisfy the OLS assumptions and may itself be heteroscedastic. Nonetheless, as a strictly
exploratory method, one may use the Park test.

Spearman’s Rank Correlation Test
This test requires calculating rank correlation where its coefficient can be used to detect
heteroscedasticity. The rank correlation coefficient is given by
Sy | 29

= {n(n2 —1)}
where d; = difference in the ranks assigned to two different characteristics of the i individual or
phenomenon and n = number of individuals or phenomena ranked. The steps required in this test
are stated as follows.
Assume Yi=Bo+ B1Xi + Ui

Step 1. Fit the regression to the data on Y and X and obtain the residualsu,

Step 2. Ignoring the sign of 4., that is, taking their absolute value |U; |, rank both |u, |

and X; (or \fi) according to an ascending or descending order and compute the

Spearman’s rank correlation coefficient.
Step 3. Assuming that the population rank correlation coefficient ps is zero and n > 8, the
significance of the sample rs can be tested by the t test as follows:

{= r,vn-2

J1-rZ

with df =n—-2

If the computed t value exceeds the critical t value, we may accept the hypothesis of
heteroscedasticity; otherwise we may reject it. If the regression model involves more than one X

variables, rs can be computed between |G, | and each of the X variable separately and can be
tested for statistical significance by the t-test given.

Example To illustrate the rank correlation test consider the regression Y; = Bo + B1Xi. Suppose
10 observations are used to this equation. The following table makes use of the rank correlation

approach to test the hypothesis of heteroscedasticity. Notice that column 6 and 7 put rank of |U, |
and X; in an ascending order.
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Table 4.1 Rank Correlation Test of Hetroscedasticity

Obser A X | Rank | Rank d (difference
V- Y X Y U=(Y- Y) - ) between the | 2
. of Ui | of Xi .
ation two ranking)
1 12.4 121 | 1137 |1.03 9 4 5 25
2 14.4 214 | 1564 |[1.24 10 9 1 1
3 14.6 184 | 144 0.20 4 7 -3 9
4 16 21.7 |1578 |[0.22 5 10 -5 25
5 11.3 125 [1156 |0.26 6 5 1 1
6 10.0 104 1059 |0.59 7 2 5 25
7 16.2 208 |[1537 [0.83 8 8 0 0
8 10.4 10.2 | 1050 |0.10 3 1 2 4
9 13.1 16.0 |13.16 |0.06 2 6 -4 16
10 11.3 120 |[11.33 |0.03 1 3 -2 4
TOTA 0 110
L
Then,
o e[
10(100-1)
= 0.33
and
t (0.33)/8
v1-0.11
= 0.99

Note that for 8 (=10-2) df, this t-value is not significant even at the 10% level of significance.
Thus, there is no evidence of systematic relationship between the explanatory variable and the
absolute value of the residuals, which might suggest that there is no heteroscedasticity.

The Goldfeld — Quandt Test
This popular method is applicable if one assumes that the heteroscedastic variance, o is
positively related to one of the explanatory variables in the regression model. The test is
commonly applicable to large samples. The observation must be at least twice as many as the
parameters to be estimated. The test assumes normality and serially independent disturbance
term, Uy’s. Consider the following:

12



Yi = Bo + B1Xui + PoXoi + ... LrXki + Ui

The hypothesis to be tested is
Ho: Ui’s are homoscedastic
Hi: Ui’s are heteroscedastic (with increasing variance)

To test this, Goldfeld-Quandt perform the following steps.

Step 1: The observations are ordered according to the magnitude of the independent variable
thought to be related to the variance of the disturbances.

Step 2: A certain number of central observations (represented by c) are omitted, leaving two
equal-sized groups of observations, one group corresponding to low values of the chosen
independent variable and the other group corresponding to high values. Note that the
observations are omitted to sharpen or accentuate the difference between the small variance and
the large variance group.

Step 3. We fit separate regression to each sub-sample, and we obtain the sum of squared
residuals from each of them and the ratio of their sum of squared residuals is formed. That is,

TU;?

residuals form the sub-sample of low values of X; with [(n-c)/2] — k degrees of freedom,
where Kk is the total number of parameters in the model.

ZUf residual from the sub sample of high values of X, with the sample degree of freedom,

[(n-c)/2] -
If each of these sums is divided by the appropriate degrees of freedom, we obtain estimates of

the variances of the U's in the two sub samples.
Step IV : Compute the ratio of the two variances given by

UZ/[{(n-c)/2}- U2
YU ln-0)2-K] Y
>U2/{(n-c)2}- ZU 2
has an F distribution (with numerator and denominator each [{n-c-2k}/2] degrees of freedom,
where n = total number of observations, ¢ = central observations omitted, k = number of

parameters estimated from each regression). If the two variances are the same (that is, if the U's
are homoscedasticc) the value of F~ will tend to one. If the variance differ, F~ will have a large

value (given that by the design of the test ZU§> ZUf. Generally, the observed F~ is compared

with the theoretical value of F with (n-c-2k)/2 degrees of freedom (at a chosen level of
significance. The theoretical value of F (obtained from the F-tables) is the value of F that defines
the critical region of the test.

13



If F* > F we accept that there is heteroscedasticity (that is we reject the null hypothesis of no
difference between the variances of U’s in the two sub samples). If F~ < F, we accept that the U’s
are homoscedastic (in other words we accept the null hypothesis). The higher the observed F
ratio the stronger the heteroscedasticity of the U’s.

Example: Suppose that we have data on consumption expenditure in relation to income for a
cross section of 30 families. Suppose we postulate that consumption expenditure is linearly
related to income but that heteroscedasticity is present in the data. Suppose further that the
middle 4 observations are dropped after the necessary reordering of the data. Suppose we obtain
the following result after we perform a separate regression based on the two 13 observations.

- 1536.%1
377.1%1

*

F- 4.07
Note from the F- table in the appendix that the critical F value for 11 numerator and 11
denominator df at the 5% level is 2.82. Since the estimated F* value exceeds the critical value,
we may conclude that there is heteroscedasticity in the error variance.

Note, however, that the ability of the Goldfeld-Quadent test to perform successfully depends on

how c is chosen. Moreover, its success depends on identifying the correct X (i.e., independent)
variable with which to order the observations.

14



Breusch-Pagan(BP) test

The Breusch-Pagan test is a Lagrange multiplier test for heteroscedasticity. The main
characteristics of Lagrange multiplier tests are that they do not require that the model is
estimated under the alternative and that they are often simply computed from the R? of some
auxiliary regression.

To illustrate this test, consider the k-variable linear regression model
Yi=Bo+BrXiit oo+ BrXui F Ui i (1)

The Breusch-Pagan test for heteroscedasticity is carried out as follows:
1. Estimate equation (1) by OLS, and obtain the residual, U, .

2. Run the auxiliary regression U°=c,+a, X, +a, X, +...+ X, +v and obtain the R-

squared from this regression, Ru?z.

2 —
3. Form either the F statistic: F = M
1-R?/(n—k)

or the LM statistic: LM =n Rni

Under the null hypothesis, LM is distributed asymptotically as »2, ,, that is, chi-square

with degrees of freedom equal to number of regressors (excluding the intercept). If the p-
value is sufficiently small, that is, below the chosen significance level, then we reject the
null hypothesis of homoscedasticity.

The White Test

White (1980) proposed a test for heteroscedasticity that adds the squares and cross products of
all of the independent variables. The test is explicitly intended to test for forms of
heteroscedasticity that invalidate the usual OLS standard errors and test statistics.

Suppose a model with three explanatory variables
Y= Lo+ BX B X, 4 o Xy U i, 2)

Steps
1. Run regression on the Eg.(2) and obtain G
2. Run the auxiliary regression:
0% =y +a, X, +a, X, + @ X+, X2+ ag X2 +ag X2 +a, X X, + oy X X5 +ag X, X, +U

and obtain R’ .
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The rationale of including the independent variables, their squares, and cross products is
that the variance may be systematically correlated with either of the independent
variables linearly or non-linearly.

The null hypothesis is that: Ho: o=, =a,=...= q

3. Form LM statistic: LM = nRui ~ 2 with nine degrees of freedom. If we fail to reject

the null, we conclude that there is homoscedasticity. We can also use an F test of this
hypothesis; both tests have asymptotic justification.

D) Remedial Measures

Heteroscedacticity does not destroy the unbiasedness and consistency properties of the OLS
estimators, but they are no longer efficient, not even asymptotically (i.e., large sample size). This
lack of efficiency makes the usual hypothesis testing procedure of dubious value. Therefore,
remedial measures are clearly called for. There are two approaches to remediation: when oi® is

known and when i is not known.
When ;2 is Known: The Method of Weighted Least Squares (WLS)

If 6;®> is known, the most straightforward method of correcting heteroscedasticity is by means of
weighted least squares. The OLS method assigns equal weight or importance to each
observation. However, a method of estimation known as generalized least squares (GLS) takes
such information into account explicitly and is therefore capable of producing estimators that are
BLUE. Though WLS is just a special case of the more general estimating technique, GLS, in the
context of heteroscedasticity, one can treat the two terms WLS and GLS interchangeably. To see
how this is accomplished, consider the familiar two-variable model:

Yi=Bo+P1Xi+y

Yi = Bo Xoi + B1Xi + Ui where Xp;=1 for each i.

Dividing both sides by o

Y. Xoi X, u,

—= ﬂo(_OI) +ﬁ1 _I) + (_I)

Oj O O O

which for ease of exposition, can be written as

Yi* = Bo* + BLEXI* + Uyt
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What is the purpose of transforming the original model? To see this, notice the following feature
of the transformed error term u*

Var(u*) = E(ui*)? :E(i)Z:iZE(ui)z since o’ is known
o, lof

o since E(u,)*=0,

which is a constant. That is, the variance of the transformed disturbance term u* is now
homoscedastic. Since we are still retaining the other assumptions of the classical model, ui* is
homoscedastic suggests that if we apply OLS to the transformed model it will produce estimators
that are BLUE. In short, the estimated Bo* and B1* are now BLUE and not the OLS estimators

fpard

To obtain GLS estimators, we minimize

Zaiz* :Z(Yi*_,égxgi _,él*xi*)z

o o Vi a Koy a Xy P
2 =Xl - A A ]
Which can also be written as:
Zwiaiz ZZWi (Yi _ﬁgXOi _:81*Xi)2

Where w. = iz
O

Thus, in GLS we minimize a weighted sum of residual squares with wi = 1/i* acting as the
weights, but in OLS we minimize non-weighted or (what amounts to the same thing) equally
weighted RSS. In GLS, the weight assigned to each observation is inversely proportional to its
oi, that is, observations coming from a population with larger o; will get relatively smaller weight
and those from a population with smaller o; will get proportionately larger weight in minimizing
the RSS.

When g2 Is Not Known: White’s Heteroscedasticity-Consistent Standard Errors

If true &;* are known, we can use the WLS method to obtain BLUE estimators. Since the true o
are rarely known, there is a way of obtaining consistent (in the statistical sense) estimates of the
variances and covariances of OLS estimators even if there is heteroscedasticity. White has shown
that this estimate can be performed so that asymptotically valid (i.e., large-sample) statistical
inferences can be made about the true parameter values. White’s heteroscedasticity-corrected
standard errors are also known as robust standard errors.
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Note: In addition to the above measures, a log transformation such as
InY; = ﬁo + B1|nXi + Uj
very often such transformation reduces heteroscedasticity when compared with the regression
Yi=Bo + B1Xi+ U
This result arises because log transformation compresses the scales in which the variables are
measured. For example, log transformation reduces a ten-fold difference between two values
(such as between 8 and 80) into a two-fold difference (because In 80 = 4.32 and In 8 = 2.08).
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5.3 AUTOCORRELATION

a) The Nature of Autocorrelation
The term autocorrelation may be defined as “correlation between members of series of
observations ordered in time [as in time series data] or space [as in cross-sectional data]. An
important assumption of the classical linear model is that there is no autocorrelation or serial
correlation among the disturbances entering into the population regression function. This
assumption implies that:
Cov(UiY)) =E{[Ui- E(UD)][Uj - E (U)H]}

=E(UY)

=0 (fori=j)
If this assumption is violated, the disturbances are said to be autocorrelated.

Since autocorrelated errors arise most frequently in time series models, the discussion in the rest
of this chapter is couched in terms of time series data.

There are a number of time-series patterns or process that can be used to model correlated errors.
The most common is what is known as “the first order autoregressive process” or AR(1)
process.

Consider

Yi=Bo+PBrXt +
where, t denotes data or observation at time t (i.e., a time series data) with this one can assume
that the disturbances are generated as follows.

U = pl-1 + €
where p is known as the coefficient of autocovariance and e: is the stochastic term such that it
satisfies the standard OLS assumptions, namely

E(e) =0

Var(e;) = o°

Cov (&t, €t4+5) =0
where subscript ‘s’ represent the exact period of lag.

The above specification is of first order because the regression of u; is on itself lagged one period
(where the coefficient p is the first order coefficient of autocorrelation). Note that the above
specification postulates that the movement or shift in u consists of two parts: a part pw-1, which
accounts for systematic shift, and the other ; which is purely random.

Relationships between u;’s can be shown as:
Cov (U, U-1) = E[(u — E(w) (-1 — E(W-1)]
= E[ur U]
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by substituting u = pu-1 + <t we obtain:
= El(pu-1 + et) 1]
= pE[WPt1] + E[et 1]

Note that E(e;) = 0 thus E(e; Ur.1) =0

Since with the assumption of homoscedasticity (i.e., constant variance) Var(w) = Var (U.1) = o°
the result would be

Cov (u, U.1) = po’

Now, correlation of u, U1 is given by
2

Corr (U, Ury) = Cov(U,,U.,) po
3 -1) — =
o Jvar(U,) var(U,_,) Var(U,)
_ PO _

=P where -1<p<1

(o)
Hence, p(rho) is simple correlation of the successive errors of the original model.
Note that when p > 0 successive errors are positively correlated and when p < 0 successive errors
are negatively correlated. It can be shown that corr(U;, Us) = p° (where s represents the exact
period of lag). It implies that the correlation (be it negative or positive) between any two period
diminishes as time goes by; i.e., as s increases.

b) Sources of Autocorrelation

e Inertia: A salient feature of most economic time series is inertia, or sluggishness. As is
well known, time series such as GNP, price indices, production, employment, and
unemployment exhibit (business) cycles. Starting at the bottom of the recession, when
economic recovery starts, most of these series start moving upward. In this upswing, the
value of a series at one point in time is greater than its previous value. Thus, there is a
“momentum’” built into them, and it continues until something happens (e.g., increase in
interest rate or taxes or both) to slow them down. Therefore, in regressions involving time
series data, successive observations are likely to interdependent.

e Data manipulation: published data often undergo interpolation or smoothing, procedures
that average true disturbances over successive time periods.

e Specification bias
+«+ Specification Bias: Excluded Variables Case. In empirical analysis the researcher

often starts with a plausible regression model that may not be the most “perfect” one.
After the regression analysis, the researcher does the postmortem to find out whether
the results accord with a priori expectations. For example, suppose we have the
following demand model:
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Yt = fo + f1X1t + foXot + f3Xat + Uy

However, for some reason we run the following regression:

Yt = fo + f1Xat + foXor +

Now if the first model is the “correct’”” model, running the second is tantamount to letting v; =
P3X3t + U To the extent that X3 affects Y;, the error term v will reflect a systematic pattern, thus
creating (false) autocorrelation. A simple test of this would be to run both models and see
whether autocorrelation, if any, observed in the second model, disappears when the first model is
run.

¢+ Specification Bias: Incorrect Functional Form. Suppose the “true’’ or correct model
in a cost-output study is as follows:

Marginal cost; = B + 1 output; + > outputi® + uj
But we fit the following model:
Marginal cost; = ap + a1 output; + v;

Because the disturbance term v; is, in fact, equal to output® + u; , it will catch the
systematic effect of the output’ term on marginal cost. In this case, v; will reflect
autocorrelation because of the use of an incorrect functional form.

e Lags. For instance, in a time series regression of consumption expenditure on income, it
is not uncommon to find that the consumption expenditure in the current period depends,
among other things, on the consumption expenditure of the previous period. That is,
(Consumption)= Sy + p1( income); + S (consumption).—1 + Ut

A regression like this is known as autoregression because one of the explanatory
variables is the lagged value of the dependent variable. The rationale is consumers do not
change their consumption habits readily for psychological, technological, or institutional
reasons. Now if we neglect the lagged consumption in the model, the resulting error term
will reflect a systematic pattern due to the influence of lagged consumption on current
consumption.
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¢) Consequences of Autocorrelation

)] As in the case of heteroscedasticity, in the presence of autocorrelation the OLS
estimators are still linear unbiased as well as consistent and asymptotically normally
distributed, but they are no longer efficient (i.e.,, minimum variance). As a
consequence, the usual t, F, and 2 tests cannot be legitimately applied.

i) The prediction based on ordinary least squares estimate will be inefficient with
autocorrelated errors. This is because of larger variance as compared with predictions
based on estimates obtained from other econometric techniques.

d) Testing (Detecting) for Autocorrelation

Autocorrelation is potentially a series problem. Hence, it is essential to find out whether
autocorrelation exists in a given situation. Since the population disturbances U;, cannot be

observed directly, we use its proxy, the residual Utwhich can be obtained from the usual OLS

procedure. The examination of Ut can provide useful information not only about autocorrelation
but also about heteroscedasticity, model inadequacy, or specification bias.

1) Graphical Method

Some rough idea about the existence of autocorrelation may be gained by plotting the residuals
either against time or against their own lagged variables.

For instance, suppose plotting the residual against its lagged variable bring about the following
relationship.

U,

Figure 5.1 U, and UH

As the above figure reveals, most of the residuals are bunched in the first and the third quadrants
suggesting very strongly that there is positive correlation in the residuals. However, the graphical
method is essentially subjective or qualitative in nature. There are quantitative tests that can be
used to supplement the purely qualitative approach.
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i) Durbin-Watson d Test
The most celebrated test for detecting serial correlation is the one developed by Durbin and
Watson. It is popularly known as the Durbin-Watson d-Statistic and it is defined as

Z::(th _Ut—1)2
—_ t=
0
t=1

which is simply the ratio of the sum of squared differences in successive residuals to the residual

sum of squares, RSS. Note that in the numerator of the d statistic the number of observations is
n-1 because one observation is lost in taking successive differences.

The proof of d-statistic is as follows:

n

~ ~ 2
Z:(Ut2 +Ut712 _ 2UtUH) ZUtz +Zut2_1 —ZZUtUH
- t=2 t=2

d — 1=2 - t=2

C 72 1~y
.U >U;
=1 t=1

~ ~ n ~
however, for large samples Zuf , Zuil and ZUf are approximately equal.
t=2 t=1

t=2
Therefore, it can be written as

dx 2>°0% 230U,

DYDY R

d~ 2(1—ZU—t}J2tl)
2V

d~ 20— p)

The assumptions underlying the d-statistic are:
a) the regression model includes an intercept term
b) the explanatory variables are non-stochastic or fixed in repeated sampling
c) the disturbances U are generated by the first order autoregressive scheme.

Ui = pUi1 + €. Therefore, it cannot be used to detect higher-order autoregressive
schemes.

d) The error term u; is assumed to be normally distributed.
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e) the regression model does not include lagged value(s) of the dependent variable as one of
the explanatory variables
f) There are no missing observations in the data.

In the absence of the autocorrelation we can expect to d take a value close to 2, when negative
autocorrelation is present a value in excess of 2 and may be as high as 4, and when positive
autocorrelation is present a value lower than 2 and may be close to zero.

The Durbin-Watson statistic tests the hypothesis that Ho: p = 0 (implying that the error terms are
not autocorrelated with a first order scheme) against the alternative. However, the sampling
distribution for the d-statistic depends on the sample size n, the number of explanatory variables
and also on the actual sample values of the explanatory variables. Thus, the critical values at
which we might, for example, reject the null hypothesis at 5 percent level of significance depend
very much on the sample we have chosen. Unfortunately, it is impracticable to tabulate critical
values for all possible sets of sample values. What possible however is, for given values of
sample size and number of explanatory variables, to find upper and lower bounds such that
actual critical values for any set of sample values will fall within these known limits.

The Durbin-Watson test procedure in testing the null hypothesis of p = 0 against the alternative
hypothesis of positive autocorrelation is illustrated in the figure below.

The decision criterion for the Durbin-Watson test is therefore, of the following form.

- for d < d°L reject the null hypothesis of no autocorrelation in favor of positive
autocorrelation;

- for d > d’y do not reject null hypothesis, ie., insufficient evidence to suggest positive
autocorrelation;

- ford’L<d<dy:inconclusive.

Because of the symmetry of the distribution it is also possible to use the tables for d”| and d'y to
test the null hypothesis of no autocorrelation against the alternative hypothesis of negative
autocorrelation, i.e. p <0. The decision criterion then takes the form.
- for d > 4 - d'_ reject the null hypothesis of no autocorrelation in favor of negative
autocorrelation.
- for d < 4 - dy do not reject null hypothesis, i.e., insufficient evidence to suggest negative
autocorrelation
- for4-dL > d >4-d"y:inconclusive.

Note that tables for d*U and d*|_ are constructed to facilitate the use of one-tail rather than two tail

tests. The following representation explains better the actual test procedure which shows that the
limits of d are 0 and 4.
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Reject | | | |
Ho | : Reject |
| | | H,
: | | | 0
P e J le vle s
| | |
|
| | |
+ve : Zone of ¢ :|Zoneof I -yve
| indecisiorl lindecision |
autocor I : Do not reject HOor H” | : auto_cor
relation : | orboth | | relation
. I I I d
0 do du 2 4-dy 4-d 4

Note:
Ho: No positive autocorrelation
Ho : No Negative autocorrelation

Note that from the above presentation we can develop the following rule of thumb. That is, if d is
found to be closer to 2 in an application, one may assume that there is no first order
autocorrelation either positive or negative. If d is closer to O it is because p is closer to 1
indicating strong positive autocorrelation in the residuals. Similarly the closer d is to 4, the
greater the evidence of negative serial correlation. This is because p is closer to —1.

Example: Suppose in a regression involving 50 observations with 4 regressors, the estimated d
statistic was 1.43. From the Durbin Watson table we find that at the 5% level, the critical d value
are d. = 1.38 and dy = 1.72. On the basis of the d test we cannot say whether there is positive
autocorrelation or not because the estimated d value lies in the indecisive range.

iii) The Breusch-Godfrey (BG) Test

To avoid some of the pitfalls of the Durbin-Watson d test of autocorrelation, statisticians
Breusch and Godfrey have developed a test of autocorrelation that is general in the sense that it
allows for:

= nonstochastic regressors, such as the lagged values of the regressand

= higher-order autoregressive schemes, such as AR(1), AR(2), etc.; and

= simple or higher-order moving averages of white noise error terms

Consider Yi = B0+ B1Xt F Ut ouiiiiiiiiiiiiiiiiiieiaaainannns (1)
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Assume that the error term u; follows the p™ order autoregressive, AR (p), scheme as follows:
Ut = p1Ue1 +pooUk2 +p3Ues +. .. +opUep + & Where & is a white noise error term.

The null hypothesis Hg to be tested is that:
H01p1:p2:...:pp20 .......................................... (2)

The BG test involves the following steps:

)] Estimate equation (1) by OLS and obtain the residuals, U, .

i) Regress U, on the original X; (if there are more than one X variables in the original
model, include them also) and 0,_,, 0, ,, . .., U_,, where the latter are the lagged

values of the estimated residuals in step 1. Note that to run this regression we will
have only (n — p) observations.

In short, run the following regression:

U =y +a, X+ Pl + 0 5+t Pl )+ &, (3)

and obtain R* from this (auxiliary) regression.
i) If the sample size is large , Breusch and Godfrey have shown that (n-p)R? ~ ;(,f

If (n — p)R? exceeds the critical chi-square value at the chosen level of significance,
we reject the null hypothesis, in which case at least one rho in equation(3) is
statistically significantly different from zero. That is, there is autocorrelation.

A drawback of the BG test is that the value of p, the length of the lag, cannot be specified a
priori.

e) Remedial Measures
With time series data, autocorrelated residuals are often indications of some error in the way we
have specified the regression equation than genuine autocorrelation in the disturbances. Mostly,

positive autocorrelations in economic data are caused by omission of relevant variables.
Incorrect functional form may also be the cause for autocorrelated residuals.

Therefore, we should find out if the autocorrelation is pure autocorrelation and not the result of

mis-specification of the model. If the source of the problem is suspected to be due to omission of
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important variables, the remedy is to include those omitted variables. Besides if the source of the
problem is believed to be the result of misspecification of the model, then the solution is to

determine the appropriate mathematical form.

If it is pure autocorrelation, one can use appropriate transformation of the original model so that
in the transformed model we do not have the problem of (pure) autocorrelation. As in the case of
heteroscedasticity, we will use some type of generalized least-square (GLS) method. In large
samples, the Newey-West method can be applied to obtain standard errors of OLS estimators

that are corrected for autocorrelation.

)] The method of generalized least squares (GLS)

Knowing the consequences of autocorrelation, especially the lack of efficiency of OLS
estimators, we may need to remedy the problem. The remedy depends on the knowledge one has
about the nature of interdependence among the disturbances, that is, knowledge about the
structure of autocorrelation.

Consider the two-variable regression model:

Yi = Lo+ L1XeF Ut oo i ceeeee e (I)
And assume that the error term follows the AR(1) scheme, namely

Ut= pUp1 + & where -1<p<1

There are two cases:
e when pis known and
e whenp is not known but has to be estimated.

When p is known

The serial correlation problem can be satisfactorily resolved if the coefficient of autocorrelation,
p, Is known.

Recall the two variables model.

Yi = Lo+ LiXeF Ut i i i e e e e s e e neennees (1)
At time t-1 the above model will be
Yi1 = ,30 + ﬂlxt_l + Uq (II)
Multiplying both sides by p, we obtain
PYt-l :pﬂo + pﬂlxt-l + ,OUt-l (III)
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Subtracting (iii) from (i) gives
(Yt - pYi1) = (Bo - pPo) + (BrXt - pPrXe1) + (Ut - pUr1)

= ﬂo (1-,0) + ,Bl(Xt -pXt_l) T G e, (lV)
where &= U - pUr.1

The transformed model can be expressed as
YiZ B0+ F1IXTH G cccieensiscesssssessesssnsenns (v)
Where Y"1 = Yi - pYe1, Bo=Po-pPo, X=X - pXe1) and 1=

Since e, satisfies the OLS assumptions, one can apply OLS to the transformed variables Y* and
X" and obtain estimators with all the optimum properties, namely BLUE. Regression of the
transformed model is equivalent to using generalized least squares (GLS). In short, GLS is
nothing but OLS applied to the transformed model that satisfies the classical assumptions.
Regression of equation (iv) is known as the generalized, or quasi, difference equation. It
involves regressing Y on X, not in the original form, but in the difference form, which is obtained
by subtracting a proportion (= p) of the value of a variable in the previous time period from its
value in the current time period. Note that in this differencing procedure we lose one observation
because the first observation has no antecedent.

When pis not known
Although straight forward to apply, the method of generalized difference is difficult to run
because, p, population correlation coefficient is rarely known in practice. Therefore, alternative
methods need to be devised.

The First-Difference Method. Since p lies between 0 and %1, one could start from two extreme
positions. At one extreme, one could assume that p = 0, that is, no (first-order) serial correlation,
and at the other extreme we could let p = £1, that is, perfect positive or negative correlation.

As a matter of fact, when a regression is run, one generally assumes that there is no
autocorrelation and then lets the Durbin-Watson or other test show whether this assumption is
justified. If, however, p = +1, the generalized difference equation in equation (iv) above reduces
to the first-difference equation:

(Yi - Y1) = BL(Xt - X1) + (Ut - pUra)
AYt = ﬂl AXt + &

The first difference transformation may be appropriate if the coefficient of autocorrelation is
very high, say in excess of 0.8, or the Durbin—Watson d is quite low. Strictly speaking, the first-
difference transformation is valid only if p = 1. Maddala has proposed this rough rule of thumb:
Use the first difference form whenever d < R?. An interesting feature of the first-difference model
is that there is no intercept in it. Hence, we have to use the regression through the origin.
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Computing p from Durbin-Watson d Statistic. If we cannot use the first difference
transformation because p is not sufficiently close to unity, we have an easy method of estimating
it from the relationship between d and p as follows:

d

~1- —
p 2

Thus, in reasonably large samples one can obtain rho and use it to transform the data as shown in
the generalized difference equation. However, the relationship between p and d may not hold
true in small samples.

Estimating p from the residuals. If the AR(1) scheme u; = pui1 + & is valid, a simple way to

A

estimate rho is to regress the residuals U, on U, ,, for G, the are consistent estimators of the true

Ut. That is, we run the following regression:
L’jt =p at—l +V;

where, U, are the residuals obtained from the original (level form) regression and where v; are the

error term of this regression. Note that there is no need to introduce the intercept term, because
the OLS residuals sum to zero.

Iterative Methods of Estimating p. All the methods of estimating p explained above provide us
with only a single estimate of p. But there are the so-called iterative methods that estimate p
iteratively, that is, by successive approximation, starting with some initial value of p. Among
these methods are:

= Cochrane—Orcutt iterative procedure,

=  Cochrane-Orcutt two-step procedure,

=  Durbin two-step procedure, and

= Hildreth-Lu scanning or search procedure.

Of these, the most popular is the Cochrane—Orcutt iterative method. One advantage of this
method is that it can be used to estimate not only an AR(1) scheme, but also higher-order
autoregressive schemes. Having obtained the two rhos, one can easily extend the generalized
difference equation.

The Cochrane-Orcutt interative Procedure

This procedure helps to estimate p from the estimated residuals Utso that information about the
unknown p will be derived.

To explain the method, consider the two-variable model
Y; = ﬁo + ,lei F Ui e e (a)
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and assume that U is generated by the AR(1) scheme namely
Ut = pUt—l Ll = PP (b)
Cochrane and Orcutt then recommended the following steps to estimate p:
Step 1: Estimate the two variables model by the standard OLS routine and obtain the residuals

Ut

Step 2: Using the estimated residuals, run the following regression
th = wt—l +Vt

Step 3: Using p obtained from step 2 regression, run the generalized difference equation as
follows

(Yt- pYr1)=Bo (1-p) + Br(Xe - p Xe-1) + (Ut - p Ut1)
orYi=po+p X+ U/

Step 4: Since a priori it is not known that the o obtained from the regression in step 2 is the best
estimate of p, substitute the values of ,80 and /?l* obtained from the regression in step 3
into the original regression (a) and obtain the new residuals, say U:* as

U™ =Ye- By - Bi%
Note that this can be easily computed since Y, X;, ﬂo and /3, are all known.

Step 5: Now estimate this regression
U= 07+ W

Where ,Sis the second round estimate of p.

Since we do not know whether this second round estimate p is the best estimate of p, we can

go into the third estimate, and so on. That is why the Cochrane-Orcutt method is said iterative.
But how long should we go on? The general procedure is to stop carrying out iterations when the
successive estimates of p converges. Thus, we select that chosen p to transform the model and
apply a kind of GLS estimation that minimizes the problem of autocorrelation.

Note that:

1. Since the OLS estimators are consistent despite autocorrelation, in large samples, it
makes little difference whether we estimate p from the Durbin-Watson d, or from the
regression of the residuals in the current period on the residuals in the previous period, or
from the Cochrane—Orcutt iterative procedure because they all provide consistent
estimates of the true p.
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2. The various methods discussed above are basically two-step methods. In step 1 we obtain
an estimate of the unknown p and in step 2 we use that estimate to transform the variables
to estimate the generalized difference equation, which is basically GLS. But since we use
p instead of the true p, all these methods of estimation are known in the literature as

feasible GLS (FGLS) or estimated GLS (EGLS) methods.

3. It is important to note that whenever we use an FGLS or EGLS method to estimate the
parameters of the transformed model, the estimated coefficients will not necessarily have
the usual optimum properties of the classical model, such as BLUE, especially in small
samples. In short, whenever we use an estimator in place of its true value, the estimated
OLS coefficients may have the usual optimum properties asymptotically, that is, in large
samples. Also, the conventional hypothesis testing procedures are, strictly speaking, valid
asymptotically. In small samples, therefore, one has to be careful in interpreting the
estimated results.

4. In using EGLS, if we do not include the first observation (as was originally the case with
the Cochrane Orcutt procedure), not only the numerical values but also the efficiency of
the estimators can be adversely affected, especially if the sample size is small and if the
regressors are not strictly speaking nonstochastic. Therefore, in small samples it is
important to keep the first observation a la Prais Winsten.

1)) The Newey-West method of correcting the OLS standard errors

Instead of using the FGLS methods, we can still use OLS but correct the standard errors for
autocorrelation by a procedure developed by Newey and West. This is an extension of White’s
heteroscedasticity-consistent standard errors. The corrected standard errors are known as HAC
(heteroscedasticity- and autocorrelation-consistent) standard errors or simply as Newey—
West standard errors.

This method is strictly speaking valid in large samples and may not be appropriate in small
samples. Therefore, if a sample is reasonably large, one should use the Newey—West procedure
to correct OLS standard errors not only in situations of autocorrelation only but also in cases of
heteroscedasticity, for the HAC method can handle both, unlike the White method, which was
designed specifically for heteroscedasticity.
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