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1. Univariate Time Series Analysis and Forecasting 

1.1 Expectations, stationarity, Ergodicity and White Noise Process 

A time  series  ty  is a  process  observed  in  sequence  over  time,  t = 1, …, T .   To  

indicate  the dependence  on  time,  we adopt  new notation, and  use  the  subscript  t to  

denote  the  individual observation, and T to denote  the number  of observations. Because 

of the sequential nature of time series, we expect that ty and 1t−y  are not independent, so 

classical assumptions are not valid. We can separate t ime  series into two categories:  

univariate ( ) is scalar
t
∈ℝy ; and multivariate ( ) is vector-validn

t
∈ℝy . The primary 

model for univariate time series is autoregressions (ARs). The primary model for 

multivariate time series is vector autoregressions (VARs). 

Suppose we observed a sample of size T of some random variable Yt:  { }
1

T

t t=
y . The observed 

sample represents T particular number, but this T numbers is only one possible outcome of the 

underlying stochastic process that generated the data. Indeed, even if we were to imagine 

having observed the process{ }t t

∞

=−∞
y , this infinite sequence would still be viewed as a single 

realization from a time series process. Imagine we have N computers generating sequences

( ){ } ( ){ }1 2
, , ,t tt t

∞ ∞

=−∞ =−∞
…y y

( ){ }N
t t

∞

=−∞
y , and consider selecting the observation associated with date 

t from each sequence:
( ) ( ) ( ){ }1 2, , , N
t t t⋯y y y . This would be described as a sample of N 

realizations of a random variable Yt. This random variable has some density function, denoted 

by ( )
tY tf y , which is the unconditional density of Yt. 

The expectation of the tth observation of the time series refers to the mean of this probability 

distribution provided it exists: 

( ) ( )
tt t Y t tE Y f d

∞

−∞

= ∫ y y y                         [1.1.1] 

We might view this as the probability limit of the ensemble average: 

( ) ( ) ( )

1

plim 1
N

i
t t

N i

E Y N
→∞ =

= ∑y             [1.1.2] 

Sometimes for emphasis the expectation E(Yt) is called the unconditional mean of Yt, denoted 

by tµ . Note that this notation allows the general possibility that the mean can be a function of 

the date of the observation t. 
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The variance of the random variable Yt (denoted by 0γ ) is similarly defined as: 

( ) ( ) ( )2 2

0 tt t t t t Y t tE Y µ f dy

∞

−∞

= − = −∫ y yµγ           [1.1.3]  

Autocovariance at lag k of Yt (denoted by �k) is defined as: 

( )( )

( )( ) ( )
1,, , 1t t t k

kt t t t k t k

t t t k t k Y Y Y t t t t k

E Y µ Y µ

µ µ f d d d
− −

− −

∞ ∞

− − − −
−∞ −∞

 = − − 

= − −∫ ∫ …… …y y y y y y

γ

        [1.1.4] 

Again it may also be helpful to think of the autocovariance at lag k as the probability limit of 

an ensemble average: 

 ( ) ( )( ) ( )( )
1

plim 1
N

i i
kt t t t k t k

N i

N µ µ− −
→∞ =

= − −∑ y yγ           [1.1.5] 

Stationarity and Ergodicity 

Definition 1.1.1 { }ty is covariance (weakly) stationary if ( )tE µ=y is 

independent of t, and  

( ) ( )
,cov t t k κ− =y y γ is independent of t for all k. ( )κγ is the autocovariance function at lag k. 

( ) ( ) ( ) ( )0 corr ,t t kρ k k −= = y yγ γ is the autocorrelation function at lag k. 

 

Definition 1.1.2 { }ty is strictly stationary if the joint distribution of ( ), ,t t k−…y y is 

independent of t for all k. 

We have viewed expectations of a time series in terms of ensemble averages such as [1.1.2] 

and [1.1.5]. These definitions may seem a bit contrived, since usually all one has available is a 

single realization of size T from the process, which may be denoted by 
( ) ( ) ( ){ }1 1 1
1 2, , , T⋯y y y . From 

these observations, we would calculate the sample meany . This, of course, is not an ensemble 

average but rather a time average: 

( ) ( )1

1

1
T

t

t

T
=

= ∑y y              [1.1.6] 

Whether time averages such as [1.1.6] eventually converges to the ensemble average concept

( )tE y for a stationary process has to do with ergodicity 

Definition 1.1.3 A stationary time series is ergodic if ( )κγ ↑0 as k↑∞.   
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The following two theorems are essential to the analysis of stationary time series.  There 

proofs are rather difficult, however. 

Theorem 1.1.1 If ty is strictly stationary and ergodic and ( )1, ,t t tf −= …x y y is a random 

variable, then tx  is strictly stationary and ergodic. 

 

Theorem 1.1.2 (Ergodic Theorem).  If ty  is strictly stationary and ergodic and tE < ∞y , then 

as T↑∞ , ( )
1

1
.

T
p

t t

t

E
T =

→∑y y  

This allows us to consistently e st imate  p ara m e te r s  using time-series moments:  

The sample mean: 

1

1
ˆ

T

t

t

µ
T =

= ∑y  

The sample autocovariance 

( ) ( )( )
1

1
ˆ ˆ ˆ

T

t t k

t

k µ µ
T

−
=

= − −∑ y yγ  

The sample autocorrelation 

( )
( )
( )

ˆ
ˆ

ˆ 0

k
ρ k =

γ

γ
 

Theorem 1.1.3 If ty is strictly stationary and ergodic and ( )2 ,tE < ∞y  then as T↑∞  

1. ˆ p
µ µ→  

2. ( ) ( )ˆ p
k k→γ γ  

3. ( ) ( )ˆ p
ρ k ρ k→  

Proof of Theorem 1.1.3. Part (1) is a direct consequence of the Ergodic 

theorem. For part (2), note that  

( ) ( )( )
1

2

1 1 1

1
ˆ ˆ ˆ

1 1 1
ˆ ˆ ˆ

T

t t k

t

T T T

t t k t t k

t t t

k µ µ
T

µ µ µ
T T T

−
=

− −
= = =

= − −

= − − +

∑

∑ ∑ ∑

y y

y y y y

γ

 

By Theorem 1.1.1 above, the sequence t t-ky y is strictly stationary and ergodic and it has a 

finite mean by the assumption that ( )2
tE < ∞y . Thus an application of the Ergodic Theorem 

yields 
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( )
1

1 T
p

t t k t t k

t

E
T

− −
=

→∑y y y y  

Hence, 

( ) ( ) ( ) ( )2 2 2 2ˆ p
t t k t t kk E µ µ µ E µ k− −→ − − + = − =y y y yγ γ  

A covariance stationary process is said to be ergodic for the mean if [1.1.6] converges in 

probability to ( )tE y as
 

.T → ∞  Alternatively, if the autocovariance for a covariance-

stationary process satisfy 
1

,j

j

∞

=

< ∞∑ γ then { }ty is ergodic for the mean.  

Lp can be defined as the set of random variables X with 
p

E X < ∞ . When p is two, the set of 

random variables X satisfying ( )2E X < ∞  are said to be square integrable. The set of square 

integrable real random variable X is a normed linear spaceℝ  with norm ( )
1 2

2
X E X =   . 

Definition 1.1.4 Two variables  and x y such that ( )2E < ∞x  and ( )2
E < ∞y are said to be 

orthogonal with respect L2 if ( ) 0E =xy . 

 

Definition 1.1.5 A sequence of variables nx , satisfying ( )2E < ∞x converges to a variable x  

with respect L2 (or converges in mean square) if 0 as n n− → ↑ ∞x x . 

The function ( ):k k→γ γ , k being integer, is called autocovariance function. This function 

is 

i. Even: that is, ( ) ( ), ;k k k∀ − =γ γ  

ii. Positive since ( )
1 1 1

0,
j

n n n

j k j k j t

j k j

t t Var
= = =

 
φ φ − = φ >  

 
∑∑ ∑ xγ ∀ positive integer n, ,j k∀φ φ

real, and jt∀ integer. 

Theorem 1.1.4 If tx is a stationary process, and if ( ),  integeri iφ forms a sequence of 

absolutely summable real numbers with i

i

∞

=−∞

φ < ∞∑ , the new variable obtained by 

t i t i

i

∞

−
=−∞

= φ∑y x defines a new stationary process. 
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Proof: The series formed by i t i−φx is convergent in mean square since 

( )( )1 2
20i t i i t i i

i i i

µ
∞ ∞ ∞

− −
=−∞ =−∞ =−∞

φ = φ = + φ < ∞∑ ∑ ∑x x γ

 

The expression i t i

i

∞

−
=−∞

φ∑ x is an element of L2, yt so defined is square integrable. The moment 

of { }ty can be written as  

( ) ( )t i t i i t i i

i i i

E E E µ µ
∞ ∞ ∞

− −
=−∞ =−∞ =−∞

 
= φ = φ = φ = 

 
∑ ∑ ∑x yy x x  (Independent of t). 

( ) ( )

( ) ( )

, cov , cov ,t t k i t i i t k i i j t i t k j

i i i j

i j

i j

Cov

k i j k

∞ ∞ ∞ ∞

+ − + − − + −
=−∞ =−∞ =−∞ =−∞

∞ ∞

=−∞ =−∞

 
= φ φ = φφ 

 

= φφ + − =

∑ ∑ ∑ ∑

∑ ∑ x y

y y x x x x

γ γ

 

(Independent of t). 

White Noise Process: 

The building block for all the process considered in this chapter is a sequence { }t t

∞

=−∞
ε whose 

elements have mean zero and variance 
2 ,σ

 

( )
( )2 2

0t

t

E

E σ

= 


= 

ε

ε
             

[1.1.7] 

And for which the ε ’s are uncorrelated across time:  

  ( ) 0 for t τE t τ= ≠ε ε             [1.1.8] 

A process satisfying [1.1.7] and [1.1.8] is described as a white noise process. One may on 

occasion wish to replace [1.1.8] with slightly stronger condition that the ε ’s are independent 

across time:  

 and  are independent for .t τ t τ≠ε ε           1.1.9] 

A process satisfying [1.1.7] and [1.1.9] is called an independent white noise process. Finally, 

if [1.1.7] and [1.1.9] hold along with  

( )2
 0, ,t N σ∼ε           [1.1.10] 

then we have the Gaussian white noise process.  
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1.2 Autoregressive and Moving Average Processes 

In time series, the series { }1 2, , , , ,T… … …y y y are jointly random. We consider the conditional 

expectation ( )1t tE −y F where { }1 1 2, ,t t t− − −= y y …F is the history of the series or the 

information set at time t-1. An autoregressive (AR) model specifies that only a finite number 

of past lags matter. 

 ( ) ( )1 1 2,, ,t t t t t t kE E− − − −=y y y y y…�F  

A linear AR model (the most common type used in practice) specifies linearity: 

( )1 0 1 1 2 2t t t t k t kE ρ ρ ρ ρ− − − −= + + + +y y y y⋯F
 

Letting ( )1 ,t t t te E −= −y y F then we have the autoregressive model 

( )
0 1 1 2 2

1 0

t t t k t k t

t t

ρ ρ ρ ρ e

E e

− − −

−

= + + + + +

=

y y y y⋯

F  

The last property defines a special time-series process. 

Definition 1.1.6 et is a martingale difference sequence (MDS) if ( )1 0t tE e − =F . 

Regression errors are naturally a MDS. Some time-series processes may be a MDS as a 

consequence of optimizing behavior. For example, some versions of the life-cycle hypothesis 

imply that either changes in consumption or consumption growth rates should be a MDS. 

Most asset pricing models imply that asset returns should be the sum of a constant plus a 

MDS. 

The MDS property for the regression error plays the same role in a time-series regression as 

does the conditional mean-zero property for the regression error in a cross-section regression. 

In fact, it is even more important in the time-series context, as it is difficult to derive 

distribution theories without this property. A useful property of a MDS is that et is 

uncorrelated with any function of the lagged information 1t−F . Thus for k>0, ( ) 0t t kE e − =F . 

1.2.1 Stationary AR(1) Process 

 A first-order autoregressive process, denoted by AR(1), satisfy the following difference 

equation: 

1t t tα −= +φ +εy y
                        

[1.2.1] 

where, { }tε is white noise sequence. If 1φ ≥ , the consequences of the ε ’s for y  accumulate 
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rather than die out over time and hence there does not exist a covariance stationary process for 

ty  with finite variance that satisfy [1.2.1]. In the case where 1φ < , there is a covariance 

stationary process for ty  satisfying [1.2.1]. By repeated back-substitution, [1.2.1] can be 

expressed as 

 ( ) 1 2 31t t t t tα 2 3
− − −= − φ + + φ + φ + φε ε ε εy ⋯

         
[1.2.2] 

This can be viewed as an MA(∞) process. When ( )
0

1, 1 1
j

j

∞

=

φ < φ = − φ∑ . The remainder of 

this discussion of first-order autoregressive process assumes that 1φ < . This ensures that the 

MA(∞) representation exists and that the AR(1) process is ergodic for the mean.  

Theorem 1.2.1 If 1φ <  then ty  is strictly stationary and ergodic. 

Taking expectation of both sides of [1.2.2] yields the mean of AR(1) process given by: 

( ) ( )1tE µ α= = − φy                [1.2.3] 

Variance of a stationary AR(1) process is 

( ) ( ) ( )
( ) ( )

22

1 2 3

2 2

0

1 1

t t t t tE µ E

σ σ

2 3
− − −

2 4 6 2

= − = + φ + φ + φ

= + φ + φ + φ + = − φ

⋯

⋯

y ε ε ε εγ

        

[1.2.4] 

Covariance at lag k of a stationary AR(1) process is  

( ) ( )( )

( )
( )

( ) ( )

1 2 3 1 2

1 2

2 2
1

t t k

t t t t t k t k t k

t k t k t k

k

k E µ µ

E

σ σ

−

2 3 κ κ+1 κ+2
− − − − − − − −

2
− − − − −

κ κ+2 κ+4 2

= − − =

 + φ + φ + φ + φ + φ + φ +
 =
 + φ + φ + 

 = φ + φ + φ + = φ − φ 

ε ε ε ε ε ε ε

ε ε ε

y y

⋯ ⋯

⋯

⋯

γ

 

[1.2.5] 

From [1.2.4] and [1.2.5] it follows that the autocorrelation function at lag k of a stationary 

AR(1) is 

( ) ( ) ( )0ρ k k
κ= = φγ γ             [1.2.6] 

The moments for a stationary AR(1) process were derived above by viewing it as an MA(∞) 

process. The second way to arrive at the same results is to assume that the process is 

covariance- stationary and calculate the moments directly from [1.2.1]. Taking expectations 

of both sides of [1.2.1], 

( ) ( ) ( )1t t tE α E E−= + φ + εy y
           

[1.2.7] 

Assuming that the process is covariance stationary, 
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( ) ( )1t tE E µ−= =y y
            

[1.2.8] 

Substituting [1.2.8] into [1.2.7] 

( )0 1µ α µ µ α= + φ + ⇒ = − φ
            

[1.2.9] 

To find the second moment of ty in analogous manner, use [1.2.9] to rewrite [1.2.1] as 

( )
( ) ( )

1

1

1t t t

t t t

µ

µ µ

−

−

= − φ + φ + 


− = φ − + 

ε

ε

y y

y y
          

[1.2.10] 

Now square both sides of [1.2.10] and take expectations 

( ) ( ) ( ) ( )2 2 2
1 12t t t t tE µ E µ E µ E

2
− − − = φ − + φ − + ε εy y y

      
[1.2.11] 

Recall from [1.2.2] that ( )1t µ− −y is a linear function of 1 2, , :t t− −ε ε ⋯  

( )1 1 2 3t t t tµ
2

− − − −− = + φ + φ +⋯y ε ε ε  

But tε is uncorrelated with 1 2, ,t t− −ε ε ⋯ , so 
tε
must be uncorrelated with ( )1t µ− −y . Hence, the 

second term on the right hand side of [1.2.11] is zero: 

( )1 0t tE µ− − = εy
           

[1.2.12] 

Again, assuming covariance-stationarity, we have 

( ) ( )2 2

1 0t tE µ E µ−− = − =y y γ
          

[1.2.13] 

Substituting [1.2.12] and [1.2.13] into [1.2.11], 

( )2 2
0 0 0 1σ σ

2 2= φ + ⇒ = − φγ γ γ  

Similarly, we could multiply both sides of [1.2.10] by ( )t k µ− −y and take expectations: 

( )( ) ( )( ) ( )1t t k t t k t k tE µ µ E µ µ E µ− − − −     − − = φ − − + −     εy y y y y
     

[1.2.14] 

But the term ( )t k µ− −y is a linear function of 1 2, , , ,t k t k t k− − − − −ε ε ε ⋯ which, for k>0, will be 

uncorrelated with tε . Thus, for k>0, the last term on the right hand side of [1.2.14] is zero. 

Hence, for k>0, [1.2.14] becomes: 

( ) ( ) ( ) ( )1 0k k k
κ= φ − ⇒ = φγ γ γ γ          [1.2.15] 
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The data for the simulated AR(1) processes with parameter φ equal to 0.5 and 0.9 are depicted 

in the following figures, combined with their autocorrelation function. All series are 

standardized to have unit variance and zero mean. If we compare the AR series with φ=0.5 and 

φ=0.9, it appears that the latter process is smoother, that is, a higher degree of persistence. The 

autocorrelation function show an exponential decay in both cases, although it takes large lags 

for the ACF of the φ=0.9 series to become close to zero. For example, after 15 periods, the 

effect of a shock is still 150.9 0.21= of its original effect. For φ=0.5 series, the effect at lag 15 

is virtually zero. 

             AR(1) with α=0 and φφφφ=0.5 

 
 

 

 
 

 

   AR(1) with α=0 and φφφφ=0.9 
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1.2.2 The Second-Order Autoregressive Process 

A second-order Autoregression, denoted by AR(2), satisfies: 

1 2t t t tα 1 − 2 −= + φ + φ +εy y y
         

[1.2.16] 

Or, in the lag operator notation, 

( )2
1 t tL L α1 2− φ − φ = + εy

         
[1.2.17] 

The difference equation [1.2.16] is stable provided that the roots of 

( )2
1 0z z1 2− φ − φ =

          
[1.2.18] 

lie outside the unit circle. When this condition is satisfied, the AR(2) process turns out to be 

covariance-stationary, and the inverse of the autoregressive operator in [1.2.17] is given by 

( ) ( ) 1
2 2 3

0 1 2 31 .ψ L L L ψ ψ L ψ L ψ L
−

1 2= − φ − φ = + + + +⋯
     

[1.2.19] 

The value of 'jψ s  can be found from the fact that  

( )( )2 2 3
0 1 2 31 . 1L L ψ ψ L ψ L ψ L1 2− φ − φ + + + + =⋯ .  

From this it follows that 0 1 1 21; ;  for j 2j j jψ ψ ψ ψ ψ1 1 − 2 −= = φ = φ + φ ≥ . 

Multiplying both sides of [1.2.17] by ψ(L) gives 

( ) ( )
t tψ L α ψ L= + εy

          
[1.2.20] 

One can easily show that 

( ) ( )1 21ψ L α α= − φ − φ
         

[1.2.21] 

and 
0

j

j

ψ
∞

=

< ∞∑
          

[1.2.22] 

Proof: taking expectation of both sides of [1.2.16] yields 

( ) ( ) ( )1 2t t tE α E E1 − 2 −= + φ + φy y y
 

Assuming that the process is covariance stationary, we obtain 

0
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( ) ( )1tE µ α 1 2= = − φ − φy
 

Taking expectation of both sides of [1.2.20] yields 

( ) ( )
tE ψ L α=y

 

The preceding two expression imply that 

( ) ( )1ψ L α α 1 2= − φ − φ  

This proves the result in [1.2.21] for a covariance-stationary second-order autoregressive 

process. 

Proof of [1.2.22] proceeds as follows: 

Factorizing a second-order polynomial in the lag operator, 

( ) ( )( )
1 12 1 2

1 2

1 2

1 1 1
1 1

c c
L L λ L λ L

λ L λ L

− −
1 2− φ − φ = − − = +   − −

 

1 2
1 2

1 2 2 1

Where    and 
λ λ

c c
λ λ λ λ

= =
− −

 

Assuming that the eigenvalues are inside the unit circle or the roots of the polynomial in the 

lag operator lie outside the unit circle, one would express the second order polynomial in the 

lag operator as 

( ) ( )( )
1 12 1 2

1 2

1 2

1 1 1
1 1

c c
L L λ L λ L

λ L λ L

− −
1 2− φ − φ = − − = +   − −

 

( ) ( )

( )

1 1 2 2

0 0

1 1 2 2

0

j j

j j

j j j

j

c λ L c λ L

c λ c λ L

∞ ∞

= =

∞

=

= +

= +

∑ ∑

∑
 

From this last expression it follows that 1 1 2 2
j j

jψ c λ c λ= + . Hence, 

1 2
1 1 2 2 1 1 2 2

0 0 0 0 1 21 1

j jj j
j

j j j j

c c
ψ c λ c λ c λ c λ

λ λ

∞ ∞ ∞ ∞

= = = =

= + ≤ + = + < ∞
− −∑ ∑ ∑ ∑  

This proves the expression in [1.2.22]. 

To find the second moments, write [1.2.16] as  

( )2 1 21t t t tµ 1 1 − 2 −= − φ − φ + φ + φ +εy y y  

( ) ( ) ( )1 2Or t t t tµ µ µ1 − 2 −− = φ − + φ − + εy y y
       

[1.2.23] 

Multiplying both sides of [1.2.23] by ( )t k µ− −y and taking expectations produces 

( ) ( ) ( )1 2    for 1,2,3,k k k k1 2= φ − + φ − = ⋯γ γ γ
      

[1.2.24] 
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Hence, the autocovariances follow the same second-order difference equation as does the 

process for ty . An AR(2) process is covariance stationary if the roots of the second-order 

polynomial in the lag operator lie outside the unit circle. If both roots are real and lie outside 

the unit circle, the autocovariance function ( )kγ is the sum of two decaying exponential 

functions of k. When both roots are complex and their modulus lie outside the unit circle, the 

autocovariance function ( )kγ  is a damped sinusoidal function. 

The autocorrelations are found by dividing both sides of [1.2.24] by ( )0γ : 

( ) ( ) ( )1 2    for 1,2,3,ρ k ρ k ρ k k1 2= φ − + φ − = ⋯
      

[1.2.25] 

In particular, setting k=1 yields 

( ) ( )1 1ρ ρ1 2= φ + φ  

( ) ( )Or 1 1ρ 1 2= φ − φ
          

[1.2.26] 

For k=2, ( ) ( )2 1ρ ρ1 2= φ + φ
          

[1.2.27] 

Variance of a covariance stationary second-order autoregressive process can be found by 

multiplying both sides of [1.2.23] by ( )t µ−y and taking expectations: 

( ) ( )( ) ( )( ) ( )2

1 2t t t t t t tE µ E µ µ E µ µ E µ1 − 2 −     − = φ − − + φ − − + −     εy y y y y y  

( ) ( ) ( ) 2Or 0 1 2 +    σ1 2= φ + φγ γ γ
        

[1.2.28] 

Equation [1.2.28] can be written as:  

( ) ( ) ( ) ( ) ( ) 20 1 0 2 0 +    ρ ρ σ1 2= φ + φγ γ γ
       

[1.2.29] 

Substituting [1.2.26] and [1.2.27] into [1.2.29] gives 

( ) ( )
( ) ( )

2

2

1  
0

1 1

σ2

2
2 2 1

− φ
=

 + φ − φ − φ 

γ  

1.2.3 The p
th

-order Autoregressive process 

A p
th

-order Autoregression, denoted by AR(p), satisfies 

1 2 3t t t t p t p tα 1 − 2 − 3 − −= + φ + φ + φ + + φ + εy y y y y⋯
       

[1.2.30] 

Provided that the roots of  

2 3
1 0

p
pz z z z1 2 3− φ − φ − φ − − φ =⋯

        
[1.2.31] 

all lie outside the unit circle, one can easily verify that a covariance stationary representation 

of the form 
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( )
t tµ ψ L= + εy

           
[1.2.32] 

exits where 

( ) ( ) 1
2 3

j

j=0

1   and  .
p

pψ L L L L L ψ
∞−

1 2 3= − φ − φ − φ − − φ < ∞∑⋯  

Theorem 1.3.1 The AR(p) process is strictly stationary and ergodic if and only if 1kλ > for 

all k. 

Assuming that the stationarity condition is satisfied, one alternative way to find the mean is to 

take expectations of [1.2.30]: 

 ( )1 pµ α 1 2= − φ − φ − − φ⋯
         

[1.2.33] 

Using [1.2.33], one can easily rewrite equation [1.2.30] as 

( ) ( ) ( ) ( )1 2t t t p t p tµ µ µ µ1 − 2 − −− = φ − + φ − + + φ − + εy y y y⋯
     

[1.2.34] 

One can easily find autocovariances by multiplying both sides of [1.2.34] by ( )t k µ− −y and 

taking expectations: 

( )
( ) ( ) ( )
( ) ( ) ( ) 2

1 2 + +    for 1,2,3,

1 2 + + +                for 0

p

p

k k k p k
k

p σ k

1 2

1 2

φ − + φ − φ − =
= 

φ + φ φ =

⋯ ⋯

⋯

γ γ γ
γ

γ γ γ

    

[1.2.35] 

Using the fact that ( ) ( )k k− =γ γ , the system of equations in [1.2.35] can be solved for γ 0, 

γ 1, … , γ p as functions of σ
2
, 1φ , 2φ , … , pφ . It can be shown that the ( )1p × vector 

( ) ( ) ( )( )/
, 1 , , 1p0 −⋯γ γ γ is given by the first p elements of the first column of the ( )2 2

p p×  

matrix ( )
2

12

p
σ I F F

−
 − ⊗ 
 

where F is ( )p p× matrix defined as 

1 2 1

1 0 0 0

0 1 0 0

0 0 1 0

p p

F

−φ φ φ φ 
 
 
 =  
 
 
 
 

⋯

⋯

⋯

⋮ ⋮ ⋯ ⋮ ⋮

⋯

and
 
⊗ indicates the Kronecker product. 

Dividing [1.2.35] by ( )0γ produces the Yule-Walker equations: 

( ) ( ) ( ) ( )1 2 + +    for 1,2,3,pρ k ρ k ρ k ρ k p k1 2= φ − + φ − φ − =⋯ ⋯
    

[1.2.36] 

Hence, the autocovariances and the autocorrelations follow the same p
th
-order difference 
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equation as does the process [1.2.30] itself. For district roots, their solutions take the form 

( )
1 1 2 2

k k k
p pk g λ g λ g λ= + + +⋯γ

         
[1.2.37] 

Where the eigenvalues ( )1 2, , , pλ λ λ⋯

 

are the solutions to 

1 2
1 2 0

p p p
pλ λ λ− −− φ − φ − − φ =⋯ . 

1.2.4 Stationary MA(1) process 

Let { }tε be a white noise process as in [1.1.7] and [1.1.8], and consider the process 

1t t tµ θ −= + +ε εy
           

[1.2.38] 

where μ and θ could be any constants. This time series process is called a first-order moving 

average process, denoted by MA(1). The term “moving average” comes from the fact that ty  is 

constructed from a weighted sum of two most recent values of ε . The expectation of ty  is 

given by 

( ) ( ) ( ) ( )1 1t t t t tE E µ θ µ E θE µ− −= + + = + + =ε ε ε εy
       

[1.2.39] 

We used the symbol μ for the constant term in [1.2.38] in anticipation of the result that this 

constant term turns out to be the mean of the process. The variance of ty  is: 

 
( ) ( ) ( ) ( ) ( )

( )

2 2 2 2 2
1 1 1

2 2

2

 = 1+

t t t t t t tE µ E θ E θE θ E

θ σ

− − −− = + = + +ε ε ε εε εy

        

[1.2.40] 

The autocovariance at lag 1 is 

( )( ) ( )( ) 2
1 1 1 2t t t t t tE µ µ E θ θ θσ− − − −   − − = + + =   ε ε ε εy y

      
[1.2.41] 

Autocovariance at lags larger than one are all zero: 

( )( ) ( )( )1 1 0  for all 1.t t k t t t k t kE µ µ E θ θ k− − − − −   − − = + + = >   ε ε ε εy y
    

[1.2.42] 

Since the mean and autocovariances are not functions of time, an MA(1) process is covariance-

stationary regardless of the magnitude of θ. Furthermore, an MA(1) process satisfies the 

condition that ( ) ( )2 2 2

0

1
k

k θ σ θσ
∞

=

= + + < ∞∑ γ . 

Hence, if { }tε is Gaussian white noise process, then the MA(1) process in [1.2.38] is ergodic for 

all moments. 

The autocorrelation at lag k of a covariance-stationary process (denoted by ρ(k)) is defined as 

its autocovariance at lag k divided by the variance: 
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( ) ( ) ( )0ρ k k=γ γ
           [1.2.43] 

Notice also that the autocorrelation at lag 0 is equal to unity for any covariance-stationary 

process by definition. From [1.2.40] and [1.2.41], the first autocorrelation for an MA(1) 

process is given by: 

( )
( ) ( )

2

2 2 2
1

1 1

θσ θ
ρ

θ σ θ
= =

+ +           

[1.2.44] 

Higher order autocorrelations are all zero. 

                    MA(1) with µ=0 and θ=0.5

 
 

 
        MA(1) with µ=0 and θ=0.9
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1.2.5 Stationary MA(q) process 

A q
th

-order moving average process, denoted by MA(q), is characterized by 

1 1 2 2t t t t q t qµ θ θ θ− − −= + + + + +ε ε ε εy ⋯
          

[1.2.45] 

where { }tε satisfy [1.1.7] and [1.1.8] and (θ1, θ2, …, θq) could be any real numbers. The mean 

of the process in [1.2.45] is given by: 

( ) ( ) ( ) ( ) ( )1 1 2 2t t t t q t qE µ E θ E θ E θ E µ− − −= + + + + + =ε ε ε εy ⋯
     

[1.2.46] 

The variance of an MA(q) process is: 

( ) ( ) ( )
( )

2 2

1 1 2 2

2 2 2 2
1 2

0

1

t t t t q t q

q

E µ E θ θ θ

θ θ θ σ

− − −= − = + + + +

= + + + +

⋯

⋯

y ε ε ε εγ

      

[1.2.47] 

For k=1,2, …, q, 

( ) ( )( )1 1 2 2 1 1 2 2

2 2 2 2
1 1 1 2 2 2

t t t q t q t k t k t k q t k q

k t k k t k k t k q q k t q

k E θ θ θ θ θ θ

E θ θ θ θ θ θ θ

− − − − − − − − − −

− + − − + − − − −

= + + + + + + + +  

 = + + + + 

ε ε ε ε ε ε ε ε

ε ε ε ε

⋯ ⋯

⋯

γ
    

[1.2.48] 

Terms involving ε ’s at different dates have been dropped because their product has 

expectation zero, and θ0 is defined to be unity. For k>q, there are no ε ’s with common dates in 

the definition of ( )kγ , and so the expectation is zero. Hence, 

( )
2

1 1 2 2    for 1,2, ,

0                                                             for 

k k k q q kθ θ θ θ θ θ θ σ k q
k

k q

+ + − + + + + =  = 
>

⋯ ⋯
γ

     

[1.2.49] 

For any values of (θ1, θ2, …, θq), the MA(q) process is thus covariance-stationary as 

( )
0k

k
∞

=
< ∞∑ γ and furthermore, for Gaussian tε  the MA(q) process is covariance-stationary 

and also ergodic for all moments. The autocorrelation function is zero after q lags. 

1.2.6 The Infinite-Order Moving Average Process 
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The MA(q) process can be written as 

0

0

 with 1
q

t j t j

j

µ θ θ−
=

= + =∑ εy .  

Consider the process that result as q↑∞: 

0 1 1 2 2 0

0

  with 1t j t j t t t

j

µ ψ µ ψ ψ ψ ψ
∞

− − −
=

= + = + + + + =∑ ε ε ε ε ⋯y

     

[1.2.50] 

This is described as an MA(∞) process. The infinite sequence in [1.2.50] generates a well 

defined covariance-stationary process provided that 

2

0

j

j

ψ
∞

=

< ∞∑
            

[1.2.51] 

It is often convenient to work with a slightly stronger condition than [1.2.51] given by: 

0

j

j

ψ
∞

=

< ∞∑
            

[1.2.52] 

A sequence of numbers { }
0j j

ψ
∞

=
satisfying [1.2.51] is said to be square summable, whereas a 

sequence satisfying [1.2.52] is said to be absolutely summable. Absolute summability implies 

square summability, but the converse does not hold.  

Proof of the result in [1.2.51]: 

We need to show that square-summability of a moving average coefficients implies that the 

MA(∞) representation in [1.2.50] generates a mean square convergent random variable. For a 

stochastic process such as [1.2.50], the question is whether 
0

T

j t jj
ψ −=∑ ε converges in mean 

square to some random variable ty as T↑∞. To prove this we use the Cauchy Criterion for a 

stochastic process which states that 
0 j t jj
ψ

∞
−=∑ ε converges if and if, for any 0ε> , there exists 

a suitably large integer N such that for any integer M N>  

2

0 0

M N

j t j j t j

j j

E ψ ψ ε− −
= =

 
− < 

 
∑ ∑ε ε

        

[1.2.53] 

Now, the expression on the left hand side of [1.2.53] can written

[ ] ( )2 2 2 2 2
1 1 1 1 1 1

2 2 2
j j

j=0 j=0

 =

M t M M t M N t N M M N

M N

E ψ ψ ψ ψ ψ ψ σ

ψ ψ σ

− − − + + − − − ++ + + = + + +

 
− 

 
∑ ∑

ε ε ε⋯ ⋯

     

[1.2.54] 
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But if 2

0 jj
ψ

∞

=∑ converges as required by [1.2.51], then by the Cauchy Criterion the right hand 

side of [1.2.54] may be made as small as desired by choice of a suitably large N. Hence, the 

infinite series in [1.2.50] converges in mean square provided that [1.2.51] is satisfied. 

Proof of the result that absolute summability implies square summability: 

Absolute summability of the moving average coefficients implies square summability. 

Suppose that { }
0j j

ψ
∞

=
 is absolutely summable. Then there exists an N <∞ such that 1jψ < for 

all j N≥ . Then  

1 1
2 2 2 2

0 0 0

N N

j j j j j

j j j N j j N

ψ ψ ψ ψ ψ
∞ − ∞ − ∞

= = = = =

= + < +∑ ∑ ∑ ∑ ∑
 

But

 

1 2

0

N

jj
ψ

−

=∑ is finite, since N is finite, and
jj N
ψ

∞

=∑ is finite since { }jψ is absolutely 

summable. Hence, 2

0 jj
ψ

∞

=
< ∞∑ , establishing the result that [1.2.52] implies [1.2.51]. 

The mean and variance of an MA(∞) process with absolutely summable coefficients can be 

calculated from a simple extrapolation of the results for an MA(q) process: 

( ) ( )0 1 1 2 2limt t t t T t T
T

E E µ ψ ψ ψ ψ µ− − −
→∞

= + + + + + =ε ε ε εy ⋯
      

[1.2.55]

( ) ( )

( )

( )

2

2

0 1 1 2 2

2 2 2 2 2
0 1 2

0

lim

lim

t

t t t T t T
T

T
T

γ E µ

E ψ ψ ψ ψ

ψ ψ ψ ψ σ

− − −
→∞

→∞

= −

= + + + +

= + + + +

ε ε ε ε⋯

⋯

y

       

[1.2.56] 

( ) ( )( )
( ) 2

0 1 1 2 2 3 3

t t k

k k k k

γ k E µ µ

ψ ψ ψ ψ ψ ψ ψ ψ σ

−

+ + +

= − −

= + + + +

y y

⋯
       

[1.2.57] 

Moreover, an MA(∞) process with absolutely summable coefficients has absolutely summable 

autocovariance: 

( )
0k

k
∞

=

< ∞∑ γ
            

[1.2.58] 

Hence an MA(∞) process satisfying [1.2.52] is ergodic for the mean. Proof of this result is as 

follows: 

Write [1.2.57] as ( ) 2

0 j k jj
k σ ψ ψ

∞
+=

= ∑γ . 
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Then ( ) 2 2

0 0

j k j j k j

j j

γ k σ ψ ψ σ ψ ψ
∞ ∞

+ +
= =

= ≤∑ ∑  

Hence, ( ) 2 2 2

0 0 0 0 0 0 0

j k j j k j j j k

k k j k j j k

k σ ψ ψ σ ψ ψ σ ψ ψ
∞ ∞ ∞ ∞ ∞ ∞ ∞

+ + +
= = = = = = =

≤ = =∑ ∑∑ ∑∑ ∑ ∑γ  

But there exists an M <∞ such that 
0 jj
ψ M

∞

=
<∑ , and therefore 

0 j kk
ψ M

∞
+=

<∑ for j=0, 1, 

2, …, meaning that ( ) 2 2 2

0 0 jk j
k σ ψ M σ M

∞ ∞

= =
< ⋅ < < ∞∑ ∑γ . Hence [1.2.51] holds and the 

process is ergodic for the mean. If the ε ’s are Gaussian, then the process is ergodic for all 

moments. 

1.2.7 Stationary ARMA(p,q) Process 

An ARMA(p,q) process includes both autoregressive and moving average terms defined as: 

1 1 2 2 1 1 2 2t t t p t p t t t q t qα θ θ θ− − − − − −= + φ + φ + + φ + + + + +ε ε ε εy y y y⋯ ⋯
     

[1.2.59] 

Or, in lag operator form, 

( ) ( )2
1 2 1 21 1

p q
p t q tL L L α θ L θ L θ L− φ − φ − − φ = + + + + + εy⋯ ⋯

     
[1.2.60] 

Provided that the roots of  

2
1 21 0

p
pz z z− φ − φ − − φ =⋯

          
[1.2.61] 

lie outside the unit circle, both sides of [1.2.60] can be dived by ( )2
1 21 p

pL L L−φ −φ − −φ⋯ to 

obtain 

( )

( )
( )
( )

( )

2
1 2

2
1 2

1 2

0

1
Where  

       and  =

t t

q
q

p
p

j p

j

µ ψ L

θ L θ L θ L
ψ L

L L L

ψ µ α
∞

=

= +

+ + + +
=

1− φ − φ − − φ

< ∞ 1− φ − φ − − φ∑

ε

⋯

⋯

⋯

y

 

Hence, stationarity of an ARMA(p,q) process depends entirely on the autoregressive 

parameters ( )1 2, , , pφ φ φ⋯ and not on the moving average parameters ( )1 2, , , qθ θ θ⋯ . It is often 

convenient to write the ARMA process [1.2.59] in terms of deviations from the mean: 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2t t t p t p t t t q t qµ µ µ µ θ θ θ− − − − − −− = φ − + φ − + + φ − + + + + +ε ε ε εy y y y⋯ ⋯  

[1.2. 62] 

Autocovariances are found by multiplying both sides of [1.2.62] by ( )t k µ− −y and taking 

expectations. For k > q, the resulting equations take the form 

( ) ( ) ( ) ( )1 21 2 ,   for 1, 2,pk k k k p k q q= φ − + φ − + + φ − = + +⋯ ⋯γ γ γ γ       [1.2.63] 
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Hence, after q lags the autocovariance function ( )kγ  (and the autocorrelation function ρ(k)) 

follow the p
th
-order difference equation governed by the autoregressive parameters. Note that 

[1.2.63] does not hold for k ≤ q, owing to the correlation between k t kθ −ε and t-ky . Therefore, 

an ARMA(p,q) process will have more complicated autocovariances for lags 1 through q than 

would the corresponding AR(p) process. For k > q with distinct autoregressive roots, the 

autocovariances will be given by: 

( )
1 1 2 2

k k k
p pk h λ h λ h λ= + + +⋯γ             [1.2.64] 

This takes the same form as the autocovariances for an AR(p) process [1.2.37], though because 

the initial conditions ( ) ( ) ( )( )0 , 1 , , q⋯γ γ γ differ for the ARMA and AR processes, the 

parameters hk in [1.2.64] will not be the same as the parameters gk in [1.2.37]. 

There is a potential for overparameterization with ARMA processes. Consider, for instance, a 

simple white noise process 

 t t=εy                [1.2.65] 

Suppose we multiply both sides of [1.2.65] by ( )1 ρL− : 

( ) ( )1 1t tρL ρL− = − εy
            

[1.2.66] 

Clearly, if [1.2.65] is a valid parameterization, then so is [1.2.66] for any value of ρ. Hence, 

[1.2.66] might be described as an ARMA(1,1) process with 1  and ρ θ ρφ = = − . It is important to 

avoid such a parameterization. Since any value of ρ in [1.2.66] describes the data equally well, 

we will obviously get into trouble trying to estimate the parameter ρ in [1.2.66] by maximum 

likelihood. Moreover, theoretical manipulation based on a representation such as [1.2.66] may 

overlook key cancellations. If we are using an ARMA(1,1) model in which θ1 is close to 1−φ , 

then the data might better be modeled as simple white noise process.  

A related overparameterization can arise with an ARM(p,q) model. Consider factoring the lag 

polynomial in [1.2.60] as 
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( )( ) ( )( ) ( )( ) ( )1 2 1 21 1 1 1 1 1p t q tλ L λ L λ L µ η L η L η L− − − − = − − − εy⋯ ⋯        [1.2.67] 

Assume 1iλ < for all i, so that the process is covariance-stationary. If the autoregressive 

operator ( )11 p
pL L−φ − −φ⋯ and the moving average operator ( )2

1 21 q
qθ L θ L θ L+ + + +⋯

have any roots in common, say i jλ η= for some i and j, then both sides of [1.2.67] can be 

divided by (1-λiL): 

( )( ) ( )
1 1

1 1
p q

k t k t

k k
k i k j

λ L µ η L
= =
≠ ≠

− − = −∏ ∏ εy           [1.2.68] 

Or,
 
 

( )( ) ( )
( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )

2 1 2 1

2 1
1 2 1 1

2 1
1 2 1 1

1 1

Where 1 1 1 1 1 1

1 1 1 1 1 1

p q
p t q t

p
p i i p

q
q j j q

L L L µ θ L θ L θ L

L L L λ L λ L λ L λ L λ L

θ L θ L θ L η L η L η L η L η L

∗ ∗ ∗ − ∗ ∗ ∗ −
1 2 −1 1 2 −1

∗ ∗ ∗ −
1 2 −1 − +

∗ ∗ ∗ −
1 2 −1 − +

− φ − φ − − φ − = + + + +

− φ − φ − − φ = − − − − −

+ + + + = − − − − −

⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

y ε

 

The stationary ARMA(p,q) process satisfying [1.2.60] is clearly identical to the stationary 

ARMA(p-1, q-1) process satisfying [1.2.68]. 

Wold’s Decomposition Theorem 

All of the covariance-stationary processes considered in this section can be written in the form 

0

t j t j

j

µ ψ
∞

−
=

= + ∑ εy            [1.2.69] 

where tε  is the white noise error one would make in forecasting ty as a linear function of 

lagged y and where 
2

0 jj
ψ

∞

=
< ∞∑ with 0 1.ψ =  

Proposition: (Wold’s Decomposition). Any zero-mean covariance-stationary process ty can be 

represented in the form 

0

t j t j t

j

ψ κ
∞

−
=

= +∑y ε            [1.2.70] 

where 0 1ψ = and 
2

0 jj
ψ

∞

=
< ∞∑ . The term tε  is a white noise and represents the error made in 

forecasting ty on the basis of a linear function of laggedy : 

( )1 2, ,t t t t tE − −= − ⋯ε y y y y           [1.2.71] 
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The value of tκ is uncorrelated with t j−ε for any j, though tκ can be predicted arbitrarily well 

from a linear function of past values of y : 

( )1 2, ,t t t tκ E κ − −= ⋯y y  

The term tκ is called the linearly deterministic component of ty , while 
0 j t jj
ψ

∞
−=∑ ε is called the 

linearly indeterministic component. If 0tκ ≡ , then the process is called purely linearly 

indeterministic. 

This proposition was first proved by Wold(1938). The proposition relies on stable second 

moments of y  but makes no use of higher moments. It thus describes only optimal linear 

forecasts ofy . 

Finding the Wold representation requires fitting an infinite number of parameters ( )1 2, ,ψ ψ ⋯

to the data. With a finite number of observations on ( )1 2, , , ,T⋯y y y this will never be possible. 

As a practical matter, we therefore, need to make some additional assumptions about the 

nature of ( )1 2, ,ψ ψ ⋯ . A typical assumption is that ( )ψ L can be expressed as the ratio of two 

finite-order polynomials: 

( )

( )

2
1 2

2
0 1 2

1

1

q
qj

j p
j p

θ L θ L θ Lθ L
ψ L

L L L L

∞

=

+ + + +
= =

φ − φ − φ − − φ
∑

⋯

⋯
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1.3 Use of Lag operator 

An algebraic construct which is useful for the analysis of autoregressive models is the lag 

operator. 

Definition 1.3.1 The lag operator L satisfies 1t tL −=y y . 

Defining 2 =L LL , we see that
2

1 2t t tL L − −= =y y y . In general, 
k

t t kL −=y y . The AR(1) model 

can be written in the format 

1t t tα −= + φ +εy y
 

( )or 1 t tL αφ = +- y ε
 

The operator
 

( ) ( )1L LΦ = − φ is a polynomial in the lag operator L. We say that the root of 

the polynomial is 1 φ , since ( )z 0Φ =
 

when
 

1z = φ . We call ( )LΦ the autoregressive 

polynomial of ty . From Theorem 1.2.1, an AR(1) is stationary iff  1φ < . Note that an 

equivalent way to say this is that an AR(1) is stationary iff the root of the autoregressive 

polynomial lies outside the unit circle or larger than one (in absolute value). 

We can write a general AR(p) model as 

( )
t tLΦ = εy  

Where ( )LΦ is a polynomial of order p in the lag operator L, usually referred to as a lag 

polynomial, given by 

( ) 2
1 21

p
pL L L LΦ = − φ − φ − − φ⋯  

We can interpret the lag polynomial as a filter that, if applied to a time series, produces a new 

series. So the filter ( )LΦ applied to an AR(p) process ty produces a white noise process tε . It is 

relatively easy to manipulate lag polynomials. For example, transforming a series by two such 

polynomials one after the other is the same as transforming the series once by a polynomial 

that is the product of the two original ones. This way we can define the inverse of a filer, 

which is naturally given by the inverse of the polynomial. Thus the inverse of ( )LΦ , denoted 

by ( )1 L−Φ , is defined so as to satisfy ( ) ( )1 1L L−Φ Φ = . If ( )LΦ is a finite-order polynomial 

in L, its inverse will be one of infinite order. For the AR(1) case we find 

( ) 1

0

1              provided that 1.
j j

j

L L
∞

−

=

− φ = φ φ <∑         [1.3.1] 
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This is similar to the result that the infinite sum
0

j

j

∞

=
φ∑ equals to ( ) 1

1  if 1,
−

− φ φ < while it 

does not converge for 1φ ≥ . In general, the inverse of a polynomial ( )LΦ exists if it satisfies 

certain conditions on its parameters, in which case we call ( )LΦ invertible. For example the 

AR(1) model can be written as 

( ) ( ) ( )1 1
1 1 1t tL L L

− −
− φ − φ = − φ εy  

Or  

0 0

j j j
t t t j

j j

L
∞ ∞

−
= =

= φ = φ∑ ∑ε εy             [1.3.2] 

which corresponds to (1.2.2) when α=0. 

Under appropriate conditions, the converse is also possible and we can write a moving average 

model in autoregressive form. Using the lag operator, we can write the MA(1) process as 

( )1t tθL= + εy  

and the general MA(q) process as  

( ) ,t tθ L= εy  

Where  

( ) 2
1 21

q
qθ L θ L θ L θ L= + + + +⋯  

Now, if ( )1θ L− exists, we can write   

( )1 ,t tθ L
− = εy  

which in general, will be an AR model with infinite order. For the MA(1) case, we use, 

( ) ( )1

0

1 ,    provided that 1.
j j

j

θL θ L θ
∞

−

=

+ = − <∑          [1.3.3] 

Consequently, an MA(1) model can be written as  

( )
1

0

j

t t j t

j

θ θ
∞

− −
=

= − +∑ εy y             [1.3.4] 

A necessary condition for the infinite AR representation (AR(∞)) to exist is that the MA 

polynomial is invertible, which, in the MA(1) case, requires that 1θ < . Particularly for 

making predictions conditional upon an observed past, the AR representations are very 

convenient. The MA representations are often convenience to determine variances and 

covariances. 
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For a more parsimonious representation, we may want to work with an ARMA model that 

contains both an autoregressive and moving average part. The general ARMA model can be 

written as 

( ) ( )
t tL θ LΦ = εy , 

Which (if the AR lag polynomial is invertible) can be written in MA(∞) representation as 

( ) ( )1
t tL θ L

−= Φ εy  

or (if the MA lag polynomial is invertible) can be written in AR(∞) form as 

( ) ( )1
t tθ L L

− Φ = εy  

Both ( ) ( )1
L θ L

−Φ and ( ) ( )1
θ L L

− Φ are lag polynomials of infinite lag length, with 

restrictions on the coefficients. 

1.4 Invertibility of Lag Polynomials  

As we have seen before, the first order lag polynomial 1 L− φ is invertible if 1φ < . This 

condition can be generalized to higher-order lag polynomials. Let us consider the case of a 

second-order lag polynomial, given by 
2

1 21 L L− φ − φ . Generally we can find values 1 2 and λ λ

such that the polynomial can be written as  

( )( )2
1 2 1 21 1 1L L λ L λ L− φ − φ = − −            [1.4.1] 

It can easily be verified that 1 2 and λ λ can be solved from 1 2 1λ λ+ = φ  and 1 2 2λ λ = −φ . The 

conditions for invertibility of the second-order polynomial are jus the conditions that both the 

first-order polynomials 11 λ L− and 21 λ L− are invertible. Thus, the requirement for 

invertibility is that both 1 2<1 and 1λ λ < . These requirements can be formulated in terms of 

the so-called characteristic equation. 

( )( )1 21 1 0λ z λ z− − =              [1.4.2] 

This equation has two solutions, z1 and z2, referred to as the characteristic roots. The 

requirement <1iλ corresponds to >1iz . If any solution satisfies 1iz ≤ , the corresponding 

polynomial is noninvertible. A solution that equals unity is referred to as a unit root. 
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The presence of a unit root in the lag polynomial ( )LΦ can be detected relatively easily, 

without solving the characteristic equation, by nothing that the polynomial ( )zΦ evaluated at 

1z = is zero if 
1

1
p

jj=
φ =∑ . Thus, the presence of a first unit root can be verified by checking 

whether the polynomial coefficients sum to one. If the sum exceeds one, the polynomial is not 

invertible. 

As an example, consider the following AR(2) model 

1 21.2 0.32t t t t− −= − +εy y y             [1.4.3] 

The AR(2) model in equation [1.4.3] can be written as 

( )( )1 0.8 1 0.4 t tL L− − = εy             [1.4.4] 

with characteristic equation 

( )( )2
1 1.2 0.32 1 0.8 1 0.4 0z z z z− − = − − =          [1.4.5] 

The solution (characteristic roots) are 
1 1 0.8 1.25z = = and

2 1 0.4 2.5z = = , which are both 

larger than one. Consequently, the AR polynomial in [1.4.3] is invertible. Note that the 

following AR(1) model 

11.2t t t−= +εy y              [1.4.6] 

describes a noninvertible AR process. 

Invertibility of a lag polynomial is very important for several reasons. For moving average 

models, or more generally, models with moving average component, invertibility of the MA is 

important for estimation and prediction. For models with an autoregressive part, the AR 

polynomial is invertible if and only if the process is stationary. 

1.5 Problem of Common Roots of Lag Polynomials  

Decomposing the moving average and autoregressive polynomials into products of linear 

functions in L also shows the problem of common roots or cancelling roots. This means that 

the AR and MA parts of the model have roots that are identical and the corresponding linear 

functions in L cancel out. To illustrate this, consider the model described by 

 ( ) ( )2
1 21 1t tL L θL− φ − φ = + εy            [1.5.1] 

Thus we can write this as 
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( )( ) ( )
1 21 1 1t tλ L λ L θL− − = + εy            [1.5.2] 

Now, if 1θ λ= − , we can divide both sides by ( )1 θL+  to obtain 

( )21 t tλ L− = εy              [1.5.3] 

which is exactly the same as [1.5.2]. Thus, in the case of one cancelling root, an ARMA(p,q) 

model can be written equivalently as an ARMA(p-1, q-1) model. 

As an example, the following ARMA(2,1) model 

1 2 10.25 0.5t t t t t− − −= − + −ε εy y y            [1.5.4] 

which can be rewritten as  

( )( ) ( )1 0.5 1 0.5 1 0.5t tL L L− − = − εy            [1.5.5] 

This reduces to an AR(1) model given by 

( )1 0.5 t tL− = εy              [1.5.6] 

which describes the same process as [1.5.4]. 

The problem of common roots illustrates why it may be problematic, in practice to estimate an 

ARMA model with an AR and an MA part of a high order. The reason is that identification and 

estimation are hard if roots of the MA and AR polynomials are almost identical. In this case, a 

simplified ARMA(p-1, q-1) model will yield an almost equivalent representation.  

1.6 Autocovariance Generating Function 

For each covariance-stationary process ty we calculated the sequence of autocovariances

{ }j j

∞

=−∞
γ . If this sequence is absolutely summable, then one way of summarizing the 

autocovariances is through a scalar-valued function called the autocovariance-generating 

function: 

( ) j
j

j

z z
∞

=−∞

= ∑yg γ              [1.6.1] 

This function is constructed by taking the j
th
 autocovariance and multiplying it by some 

number z raised to the j
th
 power, and then summing over all the possible values of j. The 

argument of this function is taken to be a complex scalar. Of particular interest as an argument 

for the autocovariance-generating function is any value of z that lies on the complex unit 

circle, 
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( ) ( )cos sin
iω

z ω i ω e
−= − =  

Where 1i = − and ω is the radian angle that z makes with the real axis. If the autocovariance-

generating function is evaluated at iωz e−=  and divided by 2π, the resulting function of ω, 

( ) ( )1 1

2 2

iωj
j

j

ω z e
π π

∞
−

=−∞

= ∑y yS = g γ  

is called the population spectrum of y. For a process with absolutely summable 

autocovariances, the function ( )ωyS  
exits and can be used to calculate all of the 

autocovariances. This means that if two different processes share the same autocovariance-

generating function, then the two processes exhibit the identical sequence of autocovariances. 

As an example of calculating an autocovariance-generating function, consider the MA(1) 

process. From equations [1.2.40] to [1.2.42], its autocovariance-generating function is  

( ) [ ] ( ) [ ] ( )2 1 2 2 0 2 1 2 1 21 1z θσ z θ σ z θσ z σ θz θ θz− −   = + + + = + + +   yg  

This expression could alternatively be written as 

( ) ( )( )2 11 1z σ θz θz
−= + +yg             [1.6.2] 

The form of expression [1.6.2] suggests that for the MA(q) process,  

( )2
1 21 q

t q tµ θ L θ L θ L= + + + + +⋯ εy  

The autocovariance generating function might be calculated as 

( ) ( )( )2 2 1 2
1 2 1 21 1q q

q qz σ θ z θ z θ z θ z θ z θ z
− − −= + + + + + + + +⋯ ⋯yg       [1.6.3] 

This conjecture can be verified by carrying out the multiplication in [1.6.3] and collecting 

terms by power of z: 

( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

2 1 2
1 2 1 2

1 2
1 1 2 1 1 2

1 2 2 2 0
1 2 1 3 2 1 1 2

1
1 2 1 3 2 1

1 1

1

q q
q q

q qq
q q q q q q

q q q

q
q q q

θ z θ z θ z θ z θ z θ z

θ z θ θ θ z θ θ θ θ θ z

θ θ θ θ θ θ θ z θ θ θ z

θ θ θ θ θ θ θ z θ z

− − −

− −
− − −

−

− −
−

+ + + + + + + +

= + + + + +

+ + + + + + + + + + +

+ + + + + + +

⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯

       [1.6.4] 

Comparison of [1.6.4] with [1.2.47] or [1.2.49] confirms that the coefficient on k
z in [1.6.3] is 

indeed the k
th
 autocovariance. 



Econ 654: Univariate Time Series Analysis, 2010/11 Academic Year 

 

29 

 

This method for finding ( )zyg extends to the MA(∞) case. If  

( )
t tµ θ L= + εy              [1.6.5] 

with  

( ) 2
0 1 2θ L θ θ L θ L= + + +⋯             [1.6.6] 

and 

0

,j

j

θ
∞

=

< ∞∑               [1.6.7] 

then 

( ) ( ) ( )2 1
z σ θ z θ z

−=yg             [1.6.8] 

For example, the stationary AR(1) process can be written as 

( ) 1
1t tµ L

−
− = − φ εy  

which is in the form of [1.6.5] with ( ) ( ) 1
1θ L L

−
= − φ . The autocovariance-generating function 

for AR(1) process could therefore be calculated from 

( )
( )( )

2

11 1

σ
z

z z
−

=
− φ − φ

yg             [1.6.9] 

To verify this claim, expand out the terms in [1.6.9]: 

( )( )
( )( )

2
2 2 2 3 3 1 2 2 3 3

1
1 1 ,

1 1

σ
σ z z z z z z

z z

− − −
−

= + φ + φ + φ + + φ + φ + φ +
− φ − φ

⋯ ⋯  

From which the coefficient on k
z is 

( ) ( )2 1 2 2 2 2
1

k k k kσ σ+ +φ + φ φ + φ φ + = φ − φ⋯ . 

This indeed yields the k
th

 autocovariance as earlier calculated in equation [1.2.5]. 

The autocovariance-generating function for a stationary ARMA(p,q) process can be written as: 

( )
( )( )

( )( )
2 2 1 2

1 2 1 2

2 1 2
1 2 1 2

1 1

1 1

q q
q q

q q
q q

σ θ z θ z θ z θ z θ z θ z
z

z z z z z z

− − −

− − −

+ + + + + + + +
=

− φ − φ − − φ − φ − φ − − φ

⋯ ⋯

⋯ ⋯
yg     [1.6.10] 

Filters 

Sometimes the data are filtered, or treated in a particular way before they are analyzed, and we 

would like to summarize the effects of this treatment on the autocovariances. This calculation 

is particularly simple using the autocovariance-generating function. For example, suppose that 



Econ 654: Univariate Time Series Analysis, 2010/11 Academic Year 

 

30 

 

the original data yt were generated from an MA(1) process, 

( )1t tθL= + εy         [1.6.11] 

with autocovariance-generating function given by [1.6.2]. Let’s say that the data as actually 

analyzed, tx , represent the change in yt over its value the previous period: 

( )
1 1t t t tL−= − = −x y y y           [1.6.12] 

Substituting [1.6.11] into [1.6.12], the observed data can be characterized as the following 

MA(2) process, 

( )( ) ( )[ ]2 2
1 21 1 1 1 1t t t tL θL θ L θL θ L θ L

−  = − + = + − − = + + ε ε εx      [1.6.13] 

with ( )
1 1θ θ≡ − and 2θ θ≡ − . The autocovariance-generating function of the observed series 

tx can be calculated by direct application of [1.6.3]: 

( ) ( )( )2 2 1 2
1 2 1 21 1z σ θ z θ z θ z θ z

− −= + + + +xg        [1.6.14] 

It is often instructive, however, to keep the polynomial ( )2
1 21 θ z θ z+ + in its factored form of 

the first line of [1.6.13], 

( ) ( )( )2
1 21 1 1 ,θ z θ z z θz+ + = − +  

in which case [1.6.14] could be written as 

( ) ( )( )( )( )

( )( ) ( )

2 1 1

1

1 1 1 1

1 1

z σ z θz z θz

z z z

− −

−

= − + − +

= − −

x

y

g

g
        [1.6.15] 

Of course, [1.6.14] and [1.6.15] represent the identical function of z, and which way we 

choose to write it is simply a matter of convenience. Applying the filter ( )1 L− to ty thus 

results in multiplying its autocovariance-generating function by ( )( )11 1z z−− − .  

This principle readily generalizes. Suppose that the original data series { }ty satisfies [1.6.5] 

through [1.6.7]. Let’s say the data are filtered according to  

( )
t tx =h L y             [1.6.16] 

with  
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( )   and  .
j

j j

j j

h L h
∞ ∞

=−∞ =−∞

= < ∞∑ ∑h L  

Substituting [1.6.5] into [1.6.16] , the observed data tx are then generated by  

( ) ( ) ( ) ( )* *1 ,t t tµ θ µ θ= +ε εx = h +h L L L  

where ( )* 1µ µ= h and ( ) ( ) ( )*θ θL = h L L . The sequence of coefficients associated with the 

compound operator { }*
j

j
θ

∞

=−∞
turns out to be absolutely summable and the autocovariance-

generating function of tx can accordingly be calculated as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 * * 1 2 1 1 1
z σ θ z θ z σ h z θ z θ z h z h z h z z

− − − −= = =x yg g     [1.6.17] 

Applying the filter ( )h L to a series thus results in multiplying its autocovariance-generating 

function by ( ) ( )1h z h z−
. 

1.7 Trend Stationarity 

0 1t tµ µ t S= + +y             [1.7. 1]

1 1 2 2t t t k t k tρ S ρ S ρ S− − −= + + + +⋯ εS          [1.7. 2] 

Or 

 0 1 1 1 2 2t t t k t k tα α t ρ ρ ρ− − −= + + + + + +⋯ εy y y y         [1.7. 3] 

There are two essentially equivalent ways to estimate the autoregressive parameters( )1, , .kρ ρ⋯  

• You can estimate (1.7.3) by OLS. 

• You can estimate (1.7.1)-(1.7.2) sequentially by OLS. That is, first estimate (1.7.1), get 

the residual ˆ
tS , and then perform regression (1.7.2) replacing St with ˆ

tS . This procedure 

is sometimes called Detrending. 

Seasonal Effects 

There are three popular methods to deal with seasonal data. 

• Include dummy variables for each season.  This presumes that “seasonality” does not 

change over the sample. 

• Use “seasonally adjusted” data.   The  seasonal  factor  is typically  estimated by a two-

sided weighted  average  of the  data  for  that season  in  neighboring  years. Thus the 
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seasonally adjusted data is a “filtered” series. This is a flexible approach which can 

extract a wide range of seasonal factors.  The seasonal adjustment, however, also alters 

the time-series correlations of the data. 

• First apply a seasonal differencing operator. If s is the number of seasons (typically s= 

4 or s = 12); 

,s t t t s−∆ = −y y y  

or the season-to-season  change.  The series s t∆ y is clearly free of seasonality.  But the 

long-run trend is also eliminated, and perhaps this was of relevance. 

 

1.8 Testing for Omitted Serial Correlation 

For simplicity, let the null hypothesis be an AR(1): 

1t t tα ρ u−= + +y y                  [1.8. 1] 

We are interested in the question if the error ut is serially correlated.  We model this as 

an AR(1):  

1t t tθ e−= +u u                                                                  [1.8. 2] 

with te a MDS. The hypothesis of no omitted serial correlation is 

0

1

: 0

: 0

θ

θ

=

≠

Η

Η

 

We want to test H0 against H1 : 

To combine (1.8.1) and (1.8.2), we take (1.8.1) and lag the equation once: 

1 2 1t t tα ρ u− − −= + +y y  

 

We then multiply this by θ  and subtract from (1.8.1), to find 

1 1 2 1,t t t t t tθ α αθ ρ θρ u θu− − − −− = − + − + −y y y y  

 Or  

( ) ( ) ( )
1 21 2t t t tα θ ρ θ θρ e AR− −= − + + − + =y y y  

Thus under H0, ty   is an AR(1), and under H1 it is an AR(2).  H0 may be expressed as the 

restriction that the coefficient on 2t−y  is zero. An appropriate test o f H0 against H1 is 

therefore a Wald test that the coefficient on 2t−y   is zero (a simple exclusion test). 

In general, if the null hypothesis is that ty  is an AR(k), and the alternative is that the error is an 
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AR(m), this is the same as saying that under the alternative ty is an AR(k+m), and this is 

equivalent to the restriction that the coefficients on 1, ,t k t k m− − − −⋯y y  are jointly zero. An 

appropriate test is the Wald test of this restriction. 

1.9 Stationarity and Unit Roots 

Stationarity of a stochastic process requires that the variances and autocovariances are finite 

and independent of time. It is easily verified that finite-order MA process are stationary by 

construction as they correspond to a weighted sum of white noise processes. Of course this 

result breaks down if we allow the MA coefficients to vary over time, as in 

( )
1t t tt −= +ε εy g              [1.9.1] 

      where ( )tg is some deterministic function of t. Now, we have 

( ) ( )2 2 2 2 ,t σ t σ= +E y g   

which is not independent of t. Consequently, the process in [1.9.1] is non-stationary. 

Stationarity of autoregressive or ARMA processes is less trivial. Consider, for example, the 

following AR(1) process 

1 ,t t t−= φ +εy y                     [1.9.2] 

with 1φ = . Taking variances on both sides gives ( ) ( ) 2
1var vart t σ−= +y y , which has no 

solution for the variance of the process consistent with stationarity, unless 
2 0,σ = in which 

case infinity of solutions exists. The process in [1.9.2] is a first-order autoregressive process 

with a unit root ( )1φ = , usually referred to as a random walk without a drift. The 

unconditional variance of ty does not exist, i.e., is infinite and the process is non-stationary. In 

fact, for any value of φ  with 1φ ≥ , [1.9.2] describes a non-stationary process. 

We can formalize the above result as follows. The AR(1) process is stationary if and only if the 

polynomial 1 L− φ is invertible, i.e., if the roots of the characteristic equation1 0z− φ = lies 

outside the unit circle. This result is straightforwardly generalized to arbitrary ARMA models. 

The ARMA(p,q) model 

( ) ( )
t tψ L θ L= εy              [1.9.3] 

corresponds to a stationary process if and only if the solutions 1, , pz z⋯ to ( ) 0ψ z = lie outside 
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the unit circle, that is, when the AR polynomial is invertible. 

For example, the ARMA(2,1) process given by  

1 2 11.2 0.2 0.5 ,t t t t t− − −= − + −y y y ε ε
           

[1.9.4] 

is non-stationary because 1z = is a solution to 21 1.2 0.2 0z z− + = . A special case that is of 

particular interest arises when one root is exactly equal to one, while the other roots are larger 

than one. If this arises, we can write the process for ty as 

( )( ) ( ) ( )* *1 ,t t tψ ψ θ L= ∆ = εL -L y L y
          

[1.9.5] 

where ( )*ψ L is an invertible polynomial in L of order p-1, and 1 L∆ ≡ − is the first-difference 

operator. Because the roots of the AR polynomial are the solutions to ( )( )* 1- 0ψ z z = , there is 

one solution z=1, or in other words a single unit root. Equation [1.9.5] thus shows that t∆y can 

be described as a stationary ARMA model if the process for ty has one unit root. Consequently, 

we can eliminate the non-stationarity by transforming the series into first-differences. Writing 

the process in [1.9.4] as 

( )( ) ( )1 0.2 1 1 0.5t tL L L− − = −y ε
 

shows that
 t∆y is described as a stationary ARMA(1,1) process given by 

1 10.2 0.5t t t t− −∆ = ∆ + −y y ε ε
 

A series that becomes stationary after first-differencing is said to be integrated of order one, 

denoted by ( )1 .I  If t∆y is described by  stationary ARMA(p,q) model, we say that ty is 

described by an autoregressive integrated moving average (ARIMA) model of order p, 1, q, or 

in short an ARIMA(p,1,q) model. 

First differencing quite often transforms a non-stationary series into a stationary series. In 

particular this may be the case for aggregate economic series or their natural logarithms. In 

some cases, taking first-differences is insufficient to produce stationary series and another 

differencing step is required. In this case the stationary series is given by ( ) 2
t t∆ ∆ = ∆ =y y

1t t−∆ −∆y y . If the series must be differenced twice before it becomes stationary, then it is said 

to be integrated of order two, denoted by ( )2I , and it must have two unit roots. Thus, a series 

ty is ( )2I  if t∆y is non-stationary but 
2

t∆ y is stationary.  
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In general, the main difference between ( )0I and ( )1I processes can be summarized as 

follows. An ( )0I series fluctuates around its mean with a finite variance that does not depend 

on time, while an ( )1I series wanders widely. Typically, it is said that an ( )0I series is mean 

reverting, as there is a tendency in the long run to return to its mean. Furthermore, an ( )0I

series has a limited memory of its past behavior (implying that the effects of a particular 

random innovation are only transitory), while an ( )1I series has infinitely long memory 

(implying that an innovation will permanently affect the process). This last aspect becomes 

clear from the autocorrelation functions: for an ( )0I series the autocorrelation function 

declines rapidly as the lag length increases, while for the ( )1I process the estimated 

autocorrelation coefficients decay to zero very slowly. 

The last property makes the presence of a unit root an interesting question from an economic 

point of view. In models with unit roots, shocks (which may be due to policy interventions) 

have persistent effects that last forever, while, in the case of stationary models, shocks can 

only have a temporary effect. Of course, the long-run effect of a shock is not necessarily of the 

same magnitude as the short-run effect. The fact that the autocorrelations of a stationary series 

die out rapidly may help in determining the number of times differencing is needed to achieve 

stationarity. In addition, a number of formal unit root test has been proposed in the literature. 

1.9.1 Testing for Unit Roots in a First-order Autoregressive Model 

Consider the AR(1) process 

1t t tµ ρ −= + +εy y              [1.9.6] 

where 1ρ=
 corresponds to a unit root. It seems obvious to use the estimate ρ̂ for ρ from an 

OLS procedure (which is consistent, irrespective of the true value of ρ ) and the corresponding 

standard error to test the null hypothesis of a unit root. However, as shown in the seminal 

paper of Dickey and Fuller (1979), under the null hypothesis that 1ρ = the standard t-ratio does 

not have a t-distribution, not even asymptotically. The reason for this is the non-stationarity of 

the process invalidating standard results on the distribution of the OLS estimator ρ̂ . To test for 

the presence of a unit root in AR(1) the null and the alternative hypothesis are given by 

0

1

: 1

: 1

ρ

ρ

=

<

Η

Η
 

It is possible to use the standard t-statistic to test the above hypothesis, where the t-statistic is 
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given by 

( )
ˆ 1

ˆ
ˆ

µ

ρ
τ

se ρ

−
=               [1.9.7] 

Where ( )ˆse ρ denotes the usual OLS standard error. Critical Values, however, have to be taken 

from the appropriate distribution, which under the null hypothesis of non-stationarity is 

nonstandard. In particular, the distribution is skewed to the left (with a long left-hand tail) so 

that critical values are smaller than those for (the normal approximation of) the t-distribution. 

Using a 5% significance level in a one-tailed test of 0 : 1ρ=Η (a unit root) against 1 : 1ρ<Η

(stationary), the correct critical value in large samples is -2.86 rather than -1.65 for the normal 

approximation.  

Usually, a slightly more convenient regression procedure is used, in which case, the model is 

written as: 

( ) 11t t tµ ρ −∆ = + − + εy y             [1.9.8] 

From which the ˆµτ -statistic for 1 0ρ − = is identical to the ˆµτ above. The reason for this is 

that the least squares method is invariant to linear transformations of the model. Under the null 

hypothesis of a unit root the above model turns out to be 

t tµ∆ = + εy               [1.9.9] 

which is known as a random walk with drift, where µis the drift parameter. In the model for 

the level variable ty , µcorresponds to a linear time trend as [1.9.9] implies that ( )tE µ∆ =y . 

Hence for a given initial value 0y , ( ) 0tE µt= +y y . This shows that the interpretation of the 

intercept term in [1.9.9] depends on the presence of a unit root. In the stationary case, µ

reflects the nonzero mean of the series, while in the unit root case it reflects a deterministic 

trend in ty . Because in the latter case first-differencing produces a stationary time series, the 

process for ty is referred to as difference stationary. 

It is also possible that non-stationarity is caused by the presence of a deterministic time trend 

in the process, rather than by the presence of a unit root. This happens when the AR(1) model 

is extended to 

1t t tµ t ρ −= + + +y y εγ           [1.9.10] 
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with 1ρ < and 0≠γ . In this case we have a non-stationary process because of the linear trend

tγ . This non-stationarity can be removed by regressing ty upon a constant and t, and then 

considering the residuals of this regression, or by simply including t as an additional variable 

in the model. The process for ty  
in this case is referred to as being trend stationary. Non-

stationary process may thus be characterized by the presence of a deterministic trend or a 

stochastic trend implied by the presence of a unit root or both. 

It is possible to test whether ty  
follows a random walk against the alternative that it follows the 

trend stationary process as in [1.9.10]. This can be tested by running the regression 

( ) 11t t tµ t ρ −∆ = + + − +y y εγ
         

[1.9.11] 

The null hypothesis one would like to test is that the process is a random walk given by 

0 : 1 0µ ρ= = − =H γ . Instead of testing this joint hypothesis, it is quite common to use the t-

ratio on ˆ 1ρ − , denoted by τ̂τ , assuming that the other restrictions in the null hypothesis are 

satisfied. Although the null hypothesis is still the same as in the previous unit root test, the 

testing regression is different and thus we have different distribution of the test statistic. It 

should be noted that if the unit root hypothesis 1 0ρ − = is rejected, we cannot conclude that 

the process for ty is likely to be stationary. Under the alternative hypothesis γ may be nonzero 

so that the process for ty is not stationary (but only trend stationary). 

If a graphical inspection of the series indicates a clear positive or negative trend, it is most 

appropriate to perform the Dickey-Fuller test with a trend. This implies that the alternative 

hypothesis allows the process to exhibit a linear deterministic trend. If we are unable to reject 

the presence of a unit root, it does not necessarily mean that it is true. It could just be that there 

is insufficient information in the data to reject it. 

Kwiatkowski, Phillips, Schmidt and Shin (1992) propose an alternative test where stationarity 

is the null hypothesis and the existence of a unit root is the alternative. This test is usually 

referred to as the KPSS test. The basic idea is that a time series is decomposed into the sum of 

a deterministic time trend, a random walk and a stationary error term (typically not a white 

noise). The null hypothesis (of trend stationarity) specifies that the variance of the random 

walk component is zero. The test is actually a Lagrange multiplier test, and computation of the 

test statistic is fairly simple. First run an auxiliary regression of ty  
upon an intercept and a time 
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trend t. Next, save the OLS residuals te  
and compute the partial sums 

1

t

t ss
S e

=
=∑ for all t. 

Then the test statistic is given by 

2 2 2

1

ˆ ,
T

t

t

KPSS T S σ−

=

= ∑             [1.9.12] 

where 2
σ̂ is an estimator of the error variance. This latter estimator 2

σ̂ may involve corrections 

for autocorrelations based on the Newey-West formula. The asymptotic distribution is 

nonstandard, and Kwiatkowski, Phillips, Schmidt and Shin (1992) report a 5% critical value of 

0.146. If the null hypothesis is stationary rather than trend stationary, the trend term should be 

dropped from the auxiliary regression. The test statistic is computed in the same fashion, but 

the 5% critical value is 0.463. 

1.9.2 Testing for Unit Roots in Higher-order Autoregressive Models 

A test for a unit root in higher-order AR processes can easily be obtained by extending the 

Dickey-Fuller test procedures. The general strategy is that lagged differences, such as 

1 2, , ,t t− −∆ ∆ ⋯y y are included in the regression, such that its error term corresponds to white 

noise. This leads to the so called augmented Dickey-Fuller tests (ADF tests), for which the 

same asymptotic critical values hold as those of the Dickey-Fuller tests.  

Consider the AR(k)  model 

( )

( )
1 21 .

t t

2 k
k

ρ L µ

ρ L ρ L ρ L ρ L

= +

= − − − − −⋯

εy

     
[1.9.13] 

As we discussed before, ty  
has a unit root when ( )

1 2 k1 0,  or 1.ρ ρ ρ ρ= + + + =⋯  

In this case,  ty    is non-stationary.   The ergodic theorem a n d  MDS CLT do not apply, and 

test statistics are asymptotically non-normal. 

A helpful way to write the above equation is using the so-called Dickey-Fuller (DF) 

reparametrization: 

( )0 1 1 2 1 1t t t k tt k
µ α α α− − − − −∆ = + + ∆ + + ∆ +y y y y ε⋯

           
[1.9.14] 

These models are equivalent linear transformations of one another.   The DF parameterization 

is convenient  because  the  parameter 0α  summarizes  the  information  about  the  unit  root,  

since ( )
01ρ α= − . To see this,  observe that the lag polynomial  for the ty  computed from 

(1.9.14) is 
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( ) ( ) ( )2 1
0 1 11

k - k
kL α L α L L α L L−− − − − − − −⋯

 

But this must equal to ( )ρ L , as the models are equivalent.  Thus 

( ) ( ) ( ) ( )
0 1 1 01 1 1 1 1 1 1kρ α α α α−= − − − − − − − = −⋯ . 

Hence, the hypothesis of a unit root in ty  can be stated as 

0 0: 0H α =  

Note that the model is stationary if 0 0α < .  So the natural alternative is 

1 0: 0H α <  

Under H0 , the model for ty   is 

( )1 1 1 1t t k tt k
µ α α− − − −∆ = + ∆ + + ∆ +⋯ εy y y

 

which is an AR(k-1)  in the  first-difference  t∆y .  Thus if ty   has a (single) unit root, then     

t∆y   is a stationary AR process.  Because of this property, we say that if ty  is non-stationary 

but   
d

t∆ y  is stationary, then  ty   is “integrated of order d”, or I (d). Thus a time series with 

unit root is I (1). 

Since 0α  is the parameter of a linear regression, the natural test statistic is the t-statistic for H0 

from OLS estimation of (1.9.14).  Indeed, this is the most popular unit root test, and is called 

the Augmented Dickey-Fuller (ADF) test for a unit root. 

It would seem natural to assess the significance of the ADF statistic using the normal table. 

However, under H0, ty  is non-stationary, so conventional   normal asymptotics are invalid. An 

alternative asymptotic framework has been developed to deal with non-stationary data.  We 

do not have the time to develop this theory in detail, but simply assert the main results. 

Theorem 1.9.1 Dickey-Fuller Theorem  

Assume 0 0α = . As ,T → ∞  

( )

( )

0 1 2 1

0

0

ˆ 1

ˆ

ˆ

d
k µ

d
µ

Tα α α α ρ

α
ADF τ

se α

−→ − − − −

= →

⋯

 

The limiting distributions of µρ  and µτ  are non-normal.   They are skewed to the left, and 

have negative means. 
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The first  result  states  that 0α̂  converges to its true  value (of zero) at  rate  T , rather than  

the conventional  rate  of 
1
2T . This is called a “super-consistent” rate of convergence. 

The  second result  states  that the  t-statistic for  0α̂  converges to  a limiting  distribution 

which is non-normal,   but  does not  depend  on  the  parameters. This distribution has been 

extensively tabulated, and may be used for testing the hypothesis H0 . Note:  The standard 

error ( )0
ˆse α is the conventional (“homoscedastic”) standard error.  But the theorem does not 

require an assumption of homoscedasticity.  Thus the Dickey-Fuller test is robust to 

heteroscedasticity. 

Since the  alternative hypothesis  is one-sided,  the  ADF  test  rejects  H0   in  favor  of H1   

when ADF c< , where c is the critical  value from the ADF table.  If the test rejects H0 , this 

means that the  evidence points to ty  
being stationary. If the test does not reject H0, a common 

conclusion is that the data suggests that ty  is non-stationary.  This is not really a correct 

conclusion, however. All we can say is that there is insufficient evidence to conclude whether 

the data are stationary or not. 

We have described the test for the setting with an intercept. Another popular setting includes 

as well a linear time trend.  This model is 

( )1 2 0 1 1 1 1 1t t t k tt k
µ µ t α α α− − − − −∆ = + + + ∆ + + ∆ +⋯ εy y y y

    
[1.9.15] 

This is natural when the alternative hypothesis is that the series is stationary about a linear time 

trend.  If the series has a linear trend (e.g.  GDP, Stock Prices), then the series itself is non- 

stationary, but it may be stationary around the linear time trend.  In this context, it is a silly 

waste of time to fit an AR model to the level of the series without a time trend, as the AR 

model cannot conceivably describe this data.   The natural solution is to include a time trend in 

the fitted OLS equation.  When conducting the ADF test, this means that it is computed as the 

t-ratio for 0α from OLS estimation of (1.9.15). 

If a time  trend  is included,  the  test  procedure  is the  same,  but  different  critical  values 

are required.  The ADF test has a different distribution when the time trend has been included, 

and a different table should be consulted. 

Most texts include as well the critical values for the extreme polar case where the intercept has 

been omitted from the model. These are included for completeness (from a pedagogical 
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perspective) but have no relevance for empirical practice where intercepts are always included. 

If too many lags are included, this will somewhat reduce the power of the tests, but, if too few 

lags are included, the asymptotic distributions from the table are simply invalid (because of 

autocorrelation in the residuals), and the tests may lead to seriously biased conclusions. It is 

possible to use the model selection criterion or statistical significance of the additional 

variables to select the lag length in the ADF tests. 

A regression of the form [1.9.14] can also be used to test for a unit root in a general 

(invertible) ARMA model. Said and Dickey (1984) argue that when, theoretically, one lets 

the number of lags in the regression grow with the sample size, the same asymptotic 

distributions hold and the ADF tests are also valid for an ARMA model. The argument 

essentially is that an ARMA model (with invertible MA polynomial) can be written as an 

infinite order autoregressive process. This explains why, when testing for unit roots, 

people usually do not worry about MA components. 

Phillips and Perron (1988) have suggested an alternative to the augmented Dickey-Fuller 

tests. Instead of adding additional lags in the regressions to obtain an error term that has 

no autocorrelation, they stick to the original Dickey-Fuller regressions but make 

nonparametric adjustments to the Dickey-Fuller statistics to take into account of potential 

autocorrelation pattern in the errors. Phillips-Perron tests are nonparametric in nature and 

applicable to a wide class of weakly dependent and heterogeneously distributed 

innovations. 

If the ADF test does not reject the null hypothesis of one unit root, the presence of a 

second unit root may be tested by estimating the regression of 2
t∆ y  on 2

1 1, , ,t t− −∆ ∆ ⋯y y

2
1,t p− +∆ y a n d  comparing the t-ratio of the coefficient on 1t−∆y with the appropriate critical 

value. Alternatively, the presence of two unit roots may be tested jointly by estimating the 

regression of 
2

t∆ y  on 2
1 1 1, , , ,t t t− − −∆ ∆ ⋯y y y and computing the usual F-statistic for testing the 

joint significance of 1 1 and t t− −∆y y . This test statistic, under the null hypothesis of a double unit 

root, has a distribution that is not the usual F-distribution. Critical values of this distribution 

are tabulated by Hasza and Fuller (1979). 

A stochastic process may be non-stationary for other reasons than the presence of unit roots. A 

linear deterministic trend is one example and structural breaks in the series may also mimic the 

presence of unit root non-stationarity. Without going into details, it may be mentioned that the 



Econ 654: Univariate Time Series Analysis, 2010/11 Academic Year 

 

42 

 

recent literature on unit roots also includes discussions on stochastic unit roots, seasonal unit 

roots, fractional integration and panel data unit roots. A stochastic unit root implies that a 

process is characterized by a root that is not constant but stochastic and vary around unity. 

Such a process can be stationary for some periods and explosive for others (see Granger and 

Swanson, 1977). A seasonal unit root arises if a series becomes stationary after seasonal 

differencing. Fractional integration starts from the idea that a series may be integrated of order 

d, where d is not an integer. If 1 2d ≥ , the process is non-stationary and said to be fractionally 

integrated. Finally, panel data unit root tests involve tests for unit roots in multiple series, for 

example GDP in ten different countries. 

1.10 Estimation of ARMA Models 

Suppose we know that the data series 1 2, , , T⋯y y y
 
is generated by an ARMA process of order 

p, q. Depending upon the specification of the model, and the distributional assumptions we are 

willing to make, we can estimate the unknown parameters by ordinary or nonlinear least 

squares or by maximum likelihood. 

1.10.1 Least Squares 

The least squares approach chooses the model parameters such that the residual sum of squares 

is minimal. This is particularly easy for models in autoregressive form. Consider the AR(p) 

model 

1 1 2 2t t t p t p tα − − −= + φ + φ + + φ +⋯y y y y ε

        
[1.10.1] 

where tε is a white noise error term that is uncorrelated with anything dated t-1 or before. 

Consequently, we have 

( ) 0  for  1, 2,3, , ,t j tE j p− = = ⋯y ε

 
that is, error terms and explanatory variables are contemporaneously uncorrelated and OLS 

applied to [1.10.1] provides consistent estimates. Estimation of an autoregressive model is thus 

not different from a linear regression model with lagged dependent variable. 

Estimation of the AR(p) process 

( )
( )

/

1 2

/

1

Let  1, , , ,

, , , ,

t t t t p

p

− − −

2

=

= φ φ φ

⋯

⋯

y y y

β α

x

 

Then the AR(p) model can be written as
/

t te= +y xt β . The OLS estimator of the model is then 

given by ( ) 1
/ /ˆ

−
=β X X X y .To study properties of β̂ , it helpful to define the process te=xt tu . 
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Note that ut is a MDS, since 

( ) ( ) ( ) 0t -1 t t -1 t t -1E E e E e= = =t t tu x xF F F . 

By Theorem 1.1.1, it is also strictly stationary and ergodic. Hence, 

( )
T T

t

1 1
e E

T T
= → =∑ ∑x

p
t t tu u

t=1 t=1
0

         

[1.10.2] 

The vector x t is strictly stationary and ergodic, and by Theorem 1.1.1, so is 
/

x xt t . Therefore 

by the Ergodic Theorem, 

( )
1

1 T
p

t

E
T =

→ =∑ t tx x x x
/ /
t t Q  

Combined with [1.10.2] and the continuous mapping theorem, we see that 

1

-1

1 1

1 1ˆ =
T T

p

t t

e
T T

−

= =

   
= + → +   

   
∑ ∑t tx x x

/
t tβ β β βQ 0 . 

We have shown the following: 

Theorem 1.10.1 If the AR(p) process ty is strictly stationary and ergodic and ( )2
tE < ∞y , then 

ˆ  as 
p

T→ ↑ ∞β β . 

Asymptotic Distribution 

Theorem 1.10.2 MDS CLT. If tu is strictly stationary and ergodic MDS and ( ) = Ω < ∞/
t tE u u

, then as T ↑ ∞ ,  

( )
1

1
,

T
d

t

N
T =

→ Ω∑ tu 0 . 

Since et tx is a MDS, we can apply theorem 1.10.2 to see that 

( ) ( )
1

1
, ,       Where  

d 2
t

t

e N E e
T

T
/

t t t t

=

→ Ω Ω =∑x x x0 . 

Theorem 1.10.3 If the AR(p) process yt is strictly stationary and ergodic and ( )4
tE < ∞y , then 

as T ↑ ∞ , ɵ( ) ( )1 1,
d

T N
− −− →β β 0 Q QΩΩΩΩ . 
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This is identical in form to the asymptotic distribution of OLS estimator in cross-section 

regression. The implication is that asymptotic inference is the same. In particular, the 

asymptotic covariance matrix is estimated just as in the cross-section case. 

Estimation of MA Process 

For moving average models, estimation is somewhat more complicated. Suppose that we have 

an MA(1) model 

1t t tα θ −= + +y ε ε  

Because 1t −ε is not observed, we cannot apply regression techniques here. In theory, ordinary 

least squares would minimize  

( ) ( )2

1

2

t t

t

θ α α θ −
=

− −∑
T

S , = y ε  

A possible solution arises if we write 1t−ε in this expression as a function of observed tsy . This 

is only possible if the MA polynomial is invertible. In this case we can use 

( ) ( )1 1

0

j

t t j

j

θ α
∞

− − −
=

= − −∑ yε  

and write 

( ) ( ) ( )
2

1

2 0

j

t t j

t j

θ α α θ θ α
∞

− −
= =

 
− − − −  

 
∑ ∑
T

S , = y y  

In practice, ty  
is not observed for 0, 1, ,t = − ⋯ so we have to cut off the infinite sum in the 

above expression to obtain an approximate sum of squares 

( ) ( ) ( )
2

2

1

2 0

t
j

t t j

t j

θ α α θ θ α
−

− −
= =

 
− − − −  

 
∑ ∑ɶ
T

S , = y y        [1.10.3] 

Because, asymptotically, if T goes to infinity the difference between ( )θ αS , and ( )θ αɶS ,

disappears and minimizing [1.10.3] with respect to α and θ gives consistent estimators ˆˆ  and α θ

. Unfortunately, [1.10.3] is a higher-order polynomial in θ and thus has very many local 

minima. Therefore, analytically  [1.10.3] is complicated. However, as we know that 1 1θ− < <

, a grid search can be performed. The resulting nonlinear least squares estimators for α and θ 

are consistent and asymptotically normal. 

1.10.2 Maximum Likelihood Estimation 

Consider an ARMA model of the form 
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1 1 2 2 1 1 2 2t t t p t p t t t q t qα θ θ θ− − − − − −= + φ + φ + + φ + + + + +⋯ ⋯y y y y ε ε ε ε     [1.10.4] 

with tε  
white noise: 

( ) 0tE =ε             [1.10.5] 

( )
2 for 

0   otherwise
t τ

σ t τ
E

 =
= 


ε ε           [1.10.6] 

This section explores how to estimate the values of ( )2
1 1, , , , , , ,p qα θ θ σφ φ⋯ ⋯ on the basis of 

observations ony . The primary principle on which estimation will be based is maximum 

likelihood.  Let ( )2
1 1, , , , , , ,p qα θ θ σ

′≡ φ φ⋯ ⋯θ denote the vector of population parameters. 

Suppose we have observed a sample of size T ( )1 2, , , T⋯y y y . The approach will be to calculate 

the probability density 

( )
1 1, , , 1 1, , , ; ,

T T T Tf
− −⋯ ⋯y y y y y y θ          [1.10.7] 

which might be viewed as the probability of having observed this particular sample. The 

maximum likelihood estimate (MLE) of θ is the value for which this sample is most likely to 

have been observed; that is, it is the value of θ that maximizes [1.10.7]. This approach requires 

specifying a particular distribution for the white noise process tε . Typically we will assume 

that tε is Gaussian white noise: 

( )2i.i.d. 0, .t N σ∼ε            [1.10.8] 

Although this assumption is strong, the estimates of θ that results from it will often turn out to 

be a sensible for non-Gaussian processes as well. Finding the maximum likelihood estimates 

conceptually involves two steps. First, the likelihood function [1.10.7] must be calculated. 

Second, values of θ must be found that maximize this function. 

The Likelihood Function for a Gaussian AR(1) Process 

A Gaussian AR(1) process takes the form 

1 ,t t tα −= +φ +y y ε            [1.10.9] 

with ( )2i.i.d. 0, .t N σ∼ε For this case , the vector of parameters to be estimated consists of 

( )2, ,α σ
′≡ φθ . 

Consider the probability distribution of 1y , the first observation in the sample.  From equations 

[1.2.3] and [1.2.4] this is a random variable with mean 
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( ) ( )1 1E µ α= = −φY  and variance ( ) ( )2 2 2
1 1E µ σ− = − φY  

Since { }t t

∞

=−∞
ε is Gaussian, 1Y  

is also Gaussian. Hence, the density of the first observation 

takes the form 

( ) ( )

( )
( )

( )

1 1

2
1 1

2

1

2 22 2

; ; , ,

11
  exp

2 12 1

Y Yf f α σ

α

σπ σ

= φ

  − − − φ  =  
− φ − φ  

y y

y

θ

      [1.10.10] 

Next consider the distribution of the second observation 2Y  
conditional on observing 1 1=Y y . 

From [1.10.9],  

2 1 2,Y α Y= + φ +ε          [1.10.11] 

Conditional on 1 1Y =y , ( ) ( )2
1 1 1,2Y Y N α σ= + φ∼y y . Hence, 

( ) ( )
2 1

2

2 1
2 1 22

1
; exp

22
Y Y

α θ
f

σπσ

 − − −
 =
 

y y
y y θ      [1.10.12] 

The joint density of observations 1 and 2 is then just the product of [1.10.10] and [1.10.12]: 

( ) ( ) ( )
2 1 12 1, 2 1 2 1 1; ; . ;Y Y YY Y

f f f=y ,y y y yθ θ θ  

Similarly, the distribution of the third observation conditional on the first two is 

( ) ( )
3 2 1

2

3 2
3 2 1 22

1
; exp

22
Y Y ,Y

α θ
f

σπσ

 − − −
 =
 

y y
y y ,y θ  

from which, 

( ) ( ) ( ) ( )
2 2 1 13 2 1 2 1, 3 2 1 3 2 1 2 1 1; ; . ; . ;Y ,Y Y YY Y ,Y Y Y

f f f f=y ,y ,y y y ,y y y yθ θ θ θ  

In general, the values of 1 2 1, , , tY Y Y −⋯ matter for tY
 
only through the value of 1tY − , and the 

density of observation t conditional on the preceding t-1 observations is given by 

 

( ) ( )

( )
1 2 1 11 2 1 1

2

1

22

; ;

1
                                          = exp

22

t t t t t
t t t t tY Y ,Y , ,Y Y Y

t t

f f

α θ

σπσ

− − −− − −

−

=

 − − −
 
 

⋯
⋯y y ,y , ,y y y

y y

θ θ

  [1.10.13] 

The joint density of the first t observations is then 

( ) ( ) ( )
1 1 21, , 1 1 1 , , , 1 2 1; ; . ;

t t 1 t t 1t t
Y ,Y Y t t t t Y Y Y t tY Y

f f f
− − −−− − − −=
⋯ ⋯

⋯ ⋯y ,y , ,y y y y ,y , ,yθ θ θ   [1.10.14] 

The likelihood of the complete sample can thus be calculated as 
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( ) ( ) ( )
1 1, , 1 1 1 1

2

; ; . ;
T T 1 1 t t

T

Y ,Y Y T T Y t tY Y
t

f f f
− −− −

=

= ∏⋯
⋯y ,y , ,y y y yθ θ θ

   
[1.10.15] 

The log likelihood function (denoted by ( )θLLLL ) can be found by taking logs of [1.10.15] 

( ) ( ) ( )
11 1

2

log ; log ;
1 t t

T

Y t tY Y
t

f f
− −

=

= +∑y y yθ θ θLLLL
     

[1.10.16] 

Substituting [1.10.10] and [1.10.13] into [1.10.16], the log likelihood for a sample of size T 

from a Gaussian AR(1) process is seen to be 

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )

2

12 2

2 2

2

12

2
2

11 1
log 2 log 1

2 2 2 1

1 1
    log 2 log

2 2 2

T
t t

t

α
π σ

σ

αT T
π σ

σ

−

=

 − − φ  = − − − φ − 
− φ

 − − φ− −
 − − −
 

∑

y

y y

θLLLL

   
[1.10.17] 

The MLE θ̂ is the value for which [1.10.17] is maximized. In principle, this requires 

differentiating [1.10.17] and setting the result equal to zero. In practice, when an attempt is 

made to carry this out, the result is a system of nonlinear equations in θ and ( )1 2, , , T⋯y y y for 

which there is no simple solution for θ in terms of ( )1 2, , , T⋯y y y . Maximization of [1.10.17] 

thus requires iterative or numerical procedures. 

Conditional maximum Likelihood Estimates of AR(1) Process 

An alternative to numerical optimization of the exact likelihood function is to regard the value 

of 1y as deterministic and maximize the likelihood conditioned on the first observation, 

( ) ( )
1 11 2 1 1, ,

2

; ; ,
T T 2 1 t t

T

T T t tY ,Y Y Y Y Y
t

f f
− −− −

=

= ∏⋯
⋯y ,y , ,y y y yθ θ

    
[1.10.18] 

the objective function then being to maximize 

( )
( )

( )
( )

( )

1

2
1 2 1, ,

2

1

2
2

1 1
log ; log 2 log

2 2

                                                             
2

T T 2 1
T TY ,Y Y Y

T
t t

t

T T
f π σ

α

σ

− −

−

=

− −
= − −

 − − φ
 −
 

∑

⋯
⋯y ,y , ,y y

y y

θ

  
[1.10.19] 

Maximization of [1.10.19] with respect to α and φ is equivalent to minimization of 

( )2

1

2

,
T

t t

t

α −
=

− − φ∑ y y          [1.10.20] 

which is achieved by OLS regression of ty on a constant and its own lagged value. The 
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conditional maximum likelihood estimates of α and φ are therefore given by 

1

1 12 2

2
1 -1 12 2 2

1ˆ
,

ˆ

T T

t tt t

T T T

t t t tt t t

Tα
−

− −= =

− −= = =

   −     = 
   φ     

∑ ∑

∑ ∑ ∑

y y

y y y y

 

The conditional maximum likelihood estimate of the innovation variance is found by 

differentiating [1.10.19] with respect to 2σ and setting the result equal to zero: 

( ) ( )2

1

2 4
2

ˆˆ1
+ 0,

ˆ ˆ2 2

T
t t

t

αT

σ σ

−

=

 − − φ−  − =
  

∑
y y

 

or 

( )2
2

1

2

1 ˆˆˆ .
-1

T

t t

t

σ α
T

−
=

= − − φ∑ y y  

In contrast to the exact maximum likelihood estimates, the conditional maximum likelihood 

estimates are thus trivial to compute. Moreover, if the sample size T is sufficiently large, the 

first observation makes a negligible contribution to the total likelihood. The exact MLE and 

conditional MLE turns out to have the same large sample distribution, provided that 1.φ <  

when 1,φ > the conditional MLE continues to provide consistent estimates, whereas 

maximization of [1.10.17] does not. This is because [1.10.17] is derived from [1.10.10], which 

does not actually describe the density of 1Y when 1.φ >  For these reasons, in most applications 

the parameters of an autoregression are estimated by OLS (conditional maximum likelihood) 

rather than exact maximum likelihood. 

Conditional maximum Likelihood Estimates of AR(P) Process 

A Gaussian AR(p) process takes the form 

1 1 2 2 ,t t t p t p tY α Y Y Y− − −= + φ + φ + + φ +⋯ ε
      

[1.10.21] 

with ( )2i.i.d. 0, .t N σ∼ε In this case , the vector of parameters to be estimated consists of 

( )2
1 2, , , , , .pα σ

′≡ φ φ φ⋯θ  

Maximization of the exact log likelihood for AR(p) process must be accomplished numerically. 

In contrast, the log of the likelihood conditional on the first p observations assumes the simple 

form 
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( )
( ) ( ) ( )

( )

1 1 1 1, ,

2

2

1 1 2 2

2
1

log ;

log 2 log
2 2

2

T T p+1 p 1
T T p pY ,Y Y Y , ,Y

T
t t t p t p

t p

f

T p T p
π σ

α

σ

− − +

− − −

= +

− −
= − −

 − − φ − φ − − φ
 −
  

∑

⋯ ⋯
⋯ ⋯

⋯

y ,y , ,y y , ,y

y y y y

θ

    
[1.10.22] 

The values of 1 2, , , , pα φ φ φ⋯ that maximizes [1.10.22] are the same as those that minimize 

 ( )2

1 1 2 2

1

.
T

t t t p t p

t p

α − − −
= +

− − φ − φ − − φ∑ ⋯y y y y       [1.10.23] 

Thus, the conditional maximum likelihood estimates of these parameters can be obtained from 

an OLS regression of ty on a constant and p of its own lagged values. The conditional 

maximum likelihood estimate of 2σ turns out to be  

( )2
2

1 1 2 2

1

1 ˆ ˆ ˆˆˆ .
T

t t t p t p

t p

σ α
T p

− − −
= +

= − − φ − φ − − φ
− ∑ ⋯y y y y  

The exact maximum likelihood estimates and the conditional maximum likelihood estimates 

again have the same large sample distributions. 

Conditional Likelihood Function for a Gaussian MA(1) Process 

Calculation of the likelihood function for a moving average process is simple if we condition 

on initial values for the s′ε . Consider the Gaussian MA(1) process 

1t t tY µ θ −= + +ε ε
         

[1.10.24] 

with ( )2i.i.d. 0, .t N σ∼ε Let ( )2, ,µ θ σ
′≡θ denote the polynomial parameters to be estimated. If 

the value of 1t −ε were known with certainty, then  

( )2
1 1, .t t tY N µ θ σ− −+∼ε ε  

Or 

( ) ( )
1

2

1
1 22

1
; exp

22
t t

t t
t tY

µ θ
f

σπσ
−

−
−

 − − −
 =
 

ε

ε

ε θ
y

y

     

[1.10.25] 

Suppose that we knew for certain that 0 0.=ε  Then 

( ) ( )2
1 0 0 , .Y N µ σ= ∼ε
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Moreover, given observation of 1y , the value of 1ε is then known with certainty as well. 

1 1 µ= −ε y
 

allowing application of [1.10.25] again: 

( ) ( )
2 1 0

2

2 1
2 1 0, 0 22

1
, 0; exp

22
Y Y

µ θ
f

σπσ
=

 − − −
 = =
 

ε

ε

ε θ
y

y y

 
Since 1ε is known with certainty, 2ε can be calculated from 

2 2 1µ θ= − −ε εy
 

Proceeding in this fashion, it is clear that given knowledge that 0 0=ε , the full sequence 

{ }1 2, , , T⋯ε ε ε can be calculated from { }1 2, , , T⋯y y y by iterating on  

1t t t= µ θ −− −ε εy
         

[1.10.26] 

for 1,2, , ,t T= ⋯ starting from 0 0=ε . The conditional density of the tth observation can then be 

calculated from [1.10.25] as 

( ) ( )
1 2 1 0 11 2 1 0 1, 0

2

22

, 0; ;

1
                                                                     exp

22

t t t t t
t t t t tY Y ,Y , ,Y Y

t

f f

σπσ

− − −− − −= = =

 
=  

 

⋯
⋯

ε ε



ε ε

ε

y y ,y , ,y yθ θ

   

[1.10.27] 

The sample likelihood would then be the product of these individual densities: 

 

( )

( ) ( )

1 1 0

1 0 1 2 1 0

1 1 0  0

1 0 1 2 1 00 , 0
2

, 0;

0; . , 0;

T T

t t t

T TY ,Y , ,Y

T

t t tY Y Y ,Y , ,Y
t

f

f f

−

− −

−=

− −= =
=

=

= = =∏

⋯

⋯

⋯

⋯

ε

ε ε

ε

ε ε

θ

θ θ

y ,y , ,y

y y y ,y , ,y

  

 

The conditional log likelihood is 

( ) ( )

( ) ( )

1 1 0 1 1 0  0

2
2

2
1

log 0;

 log 2 log
2 2 2

T T T TY ,Y , ,Y

T
t

t

f

T T
π σ

σ

− −=

=

= =

= − − −∑

⋯
⋯y ,y , ,y

ε



ε

ε

θ θLLLL

           

[1.10.28] 

For a particular numerical value of θ, we thus calculate the sequence of s′εimplied by the data 

from [1.10.26]. The conditional log likelihood function [1.10.28] is then a function of the sum 

of squares of these s′ε. The log likelihood is a complicated function of µ and θ, so that an 
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analytical expression for the maximum likelihood estimates of µ and θ is not readily 

calculated. Hence, even the conditional maximum likelihood estimates for MA(1) process 

must be found by numerical optimization.  

Iteration on [1.10.26] from an arbitrary value of 0ε will result in  

( ) ( ) ( ) ( ) ( ) ( )12 1
1 2 1 01 1

t tt t
t t t t= µ θ µ θ µ θ µ θ

− −
− −− − − + − − + − − + −⋯ε εy y y y

 

If θ  is substantially less than unity, the effect of imposing 0 0=ε will quickly die out and the 

conditional likelihood [1.10.27] will give a good approximation to the unconditional likelihood 

for a reasonably large sample size. By contrast, if 1θ > , the consequence of imposing 0 0=ε  

accumulate over time. The conditional approach is not reasonable in this case. If numerical 

optimization of [1.10.28] results in a value of θ that exceeds one in absolute value, the results 

must be discarded. The numerical optimization should be attempted again with the reciprocal 

of θ̂ used as a starting value for the numerical search procedure. 

Conditional Likelihood Function for a Gaussian MA(q) Process 

For the MA(q) process 

1 1 2 2 ,t t t t q t qY µ θ θ θ− − −= + + + + +⋯ε ε ε ε
      

[1.10.29] 

A simple approach is to condition on the assumption that the first q values for ε were all zero: 

0 1 1 0.q− − += = = =⋯ε ε ε
        

[1.10.30] 

From these starting values we can iterate on  

1 1 2 ,t t t t q t q= µ θ θ θ− − −− − − − −⋯ε ε ε εy
      

[1.10.31] 

for 1,2, , .t T= ⋯  Let 0ε  
denote the ( )  1q × vector ( )0 1 1 .q− − +

′⋯ε ε ε  The conditional log 

likelihood is then 

( ) ( )

( ) ( )

1 1 0 1 1 0  0

2
2

2
1

log 0;

 log 2 log
2 2 2

T T T TY ,Y , ,Y

T
t

t

f

T T
π σ

σ

− −=

=

= =

= − − −∑

⋯
⋯y ,y , ,y


ε

θ θLLLL
ε

ε

    

[1.10.32] 

where ( )2
1 2, , , , , .qµ θ θ θ σ

′≡ ⋯θ  Again, expression [1.10.32] is useful only if all values of z for 

which 
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2
1 21 0q

qθ z θ z θ z+ + + + =⋯
 

lie outside the unit circle. 

Conditional Likelihood Function for a Gaussian ARMA(p,q) Process 

A Gaussian ARMA(p,q) process takes the form 

1 -1 2 -2 - 1 1 2 2 ,t t t p t p t t t q t qY α Y Y Y θ θ θ− − −= + φ + φ + + φ + + + + +⋯ ⋯ε ε ε ε
               

[1.10.33] 

where ( )2i.i.d. 0, .t N σ∼ε  The objective is to estimate the vector of population parameters

( )2
1 2 1 2 .p qα θ θ θ σ

′≡ φ φ φ⋯ ⋯θ  

The approximation to the likelihood for an autoregression is conditioned on the initial values 

of the s′y . The approximation to the likelihood function for a moving average process is 

conditioned on initial values for the s′ε . A common approach to the likelihood function for an 

ARMA(p,q) process conditions on both s′y and s′ε . 

Taking initial values for ( )0 0 -1 - 1p+
′≡ ⋯y y yy and ( )0 0 -1 - 1q+

′≡ ⋯ε ε εε as given, the 

sequence { }1 2, , , T⋯ε ε ε can be calculated from { }1 2, , , T⋯y y y by iterating on 

1 -1 2 -2 - 1 1 2 2 ,t t t t p t p t t q t q= α θ θ θ− − −− − φ − φ − − φ − − − −⋯ ⋯ε ε ε εy y y y
   

[1.10.34] 

for 1,2, , .t T= ⋯  The conditional log likelihood is then 

( ) ( )

( ) ( )

1 1 0 0 1 1 0 0  ,

2
2

2
1

log , ;

 log 2 log
2 2 2

T T T TY ,Y , ,Y

T
t

t

f

T T
π σ

σ

Y− −

=

=

= − − −∑

⋯
⋯y ,y , ,y


ε

θ θLLLL
ε

εy

    

[1.10.35] 

One option is to set initial s′y and s′ε equal to their expected values. That is, set

( )1 21s pα= − φ − φ − − φ⋯y for 0, 1, , 1s p= − − +⋯ and set 0s =ε  for 0, 1, , 1,s q= − − +⋯ and 

then proceed with the iteration in [1.10.34] for 1,2, , .t T= ⋯  Alternatively, Box and Jenkins 

(1976) recommended setting s′ε to zero but s′y equal to their actual values. Thus, the iteration 

on [1.10.34] is started at date 1t p= +  with  1 2 p⋯y y y set to the observed values and 

-1 1 0.p p p q− += = = =⋯ε ε ε  

Then the conditional log likelihood is calculated as 
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( ) ( )

( ) ( )

1 1 1 0

2
2

2
1

log , , , 0, , 0;

 log 2 log
2 2 2

T T p p p p q

T
t

t p

f

T p T p
π σ

σ

− + − +=

= +

= = =

− −
= − − − ∑

⋯ ⋯ ⋯y ,y , ,y y y


ε

θ θLLLL ε ε

 

As in the case for the moving average processes, these approximations should be used only if 

all values of z satisfying 

2
1 21 0q

qθ z θ z θ z+ + + + =⋯
 

lie outside the unit circle. 

1.11   Model Selection and Diagnostic Checking 

Most of the time there are no economic reasons to choose a particular specification of the 

model. Consequently, to a large extent the data will determine which time series model is 

appropriate. Before estimating any model, it is common to estimate autocorrelation and partial 

autocorrelation coefficients directly from the data. Often it gives some idea about which 

models might be appropriate. After one or more models are estimated, their quality can be 

judged by checking whether the residuals are more or less white noise, and by comparing them 

with alternative specifications. These comparisons can be based on statistical significance tests 

or the use of particular model selection criteria. 

The Autocorrelation Function 

The autocorrelation function (ACF) describes the correlation between ty and its lag t-ky as a 

function of k. The k
th
-order autocorrelation coefficient is defined as 

( )
( )

k
cov ,

var

t t k
k

t

ρ
−= =

y y

y 0

γ

γ
 

The sample autocorrelation function gives the estimated autocorrelation coefficient as a 

function of the lag k and estimated by 

( )( )
( )

1

1

21

1

ˆ

T

t t kT k t k
k T

tT t

ρ
−− = +

=

− −
=

−

∑
∑

y y y y

y y
         [1.11.1] 

where ( )
1

1
T

tt
T

=∑ y denotes the sample average. Alternatively, it can be estimated by 

regressing ty on a constant and t k−y which will give a slightly different estimator as the 

summation in the numerator and denominator will be over the same set of observations. It will 

usually not to be the case that ˆ
kρ is zero for an MA model of order .q k<  But we can use ˆ

kρ to 



Econ 654: Univariate Time Series Analysis, 2010/11 Academic Year 

 

54 

 

test the hypothesis that 0kρ = using the result that asymptotically 

 ( ) ( )ˆ 0,
d

k k kT ρ ρ N ν− →  

where 2 2 2
1 21 2 2 2   if .k qν ρ ρ ρ q k= + + + + <⋯  

Testing MA(k-1) versus MA(k) is done by testing 0kρ = and comparing the test statistic 

2 2 2
1 2 1

ˆ

ˆ ˆ ˆ1 2 2 2

k

k

ρ
T

ρ ρ ρ −+ + + +⋯
         [1.11.2] 

with critical values from the standard normal distribution. Typically, two-standard error 

bounds for ˆ
kρ  based on the estimated variance 

2 2 2
1 2 1

ˆ ˆ ˆ1 2 2 2 kρ ρ ρ −+ + + +⋯ are graphically 

displayed in the plot of the sample autocorrelation function. The order of a moving average 

can in this way be determined from an inspection of the sample ACF. At least it will give us a 

reasonable value for q to start with, and diagnostic checking should indicate whether it is 

appropriate or not. 

For autoregressive models the ACF is less helpful. For AR(1) model we have seen that the 

autocorrelation coefficients do not cut off at a finite lag length. Instead they go to zero 

exponentially corresponding to
k

kρ = φ . For higher-order autoregressive models, the 

autocorrelation function is more complex. An alternative source of information that is helpful 

is provided by the partial autocorrelation function.  

The Partial Autocorrelation Function 

The k
th
 order sample partial autocorrelation coefficient is defined as an estimate for kφ in an 

AR(k) model. We denote this by ɵ kφ . So, estimating 

1 1 2 2t t t k t k tα − − −= + + + + +⋯ εφ φ φy y y y
  

yields ɵ kφ , the estimated coefficient for t k−y in the AR(k) model. The partial autocorrelation 

coefficient ɵ kφ measures the additional correlation between ty and t k−y after controlling for the 

effects of other regressors 1 1, , .t t k− − +⋯y y
 

Obviously if the true model is an AR(p) process, then estimating an AR(k) model by OLS gives 

consistent estimators for the model parameters if .k p≥  Consequently, we have 

ɵplim 0  if .k k p= >φ            [1.11.3] 

Moreover, it can be shown that the asymptotic distribution is normal, i.e., 

ɵ( ) ( )0 0,1   if .
d

k N k p− → >Τ φ          [1.11.4] 
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Consequently, the partial autocorrelation coefficients can be used to determine the order of AR 

process. Testing an AR(k-1) model versus and AR(k) model implies testing the null hypothesis 

that 0k =φ . Under the null hypothesis that the model is AR(k-1), the appropriate standard error 

of ɵ kφ  
based on [1.11.4] is 1 T , so that 0k =φ is rejected if ɵ 1.96k >φΤ . This way one can 

look at the PACF and test for each lag whether the partial autocorrelation coefficient is zero. 

For a genuine AR(p) model the partial autocorrelation will be close to zero after the p
th
 lag. 

For a moving average model it can be shown that the partial autocorrelations do not have a 

cut-off point but tail off to zero just like the autocorrelations in an autoregressive model. In 

summary the AR(p) process is described by: 

• an ACF that is infinite in extent (it tails off). 

• a PACF that is (close to) zero for lags larger than p. 

For an MA(q) process we have: 

• an ACF that is (close to) zero for lags larger than q. 

• a PACF that is infinite in extent (tails off). 

In the absence of any of these two situations, a combined ARMA model may provide a 

parsimonious representation of the data. 

Diagnostic Checking 

As a last step in model-building cycle, some checks on the model adequacy are required. 

Possibilities are doing a residual analysis and overfitting the specified model. For example, if 

an ARMA(p,q) model is chosen, we could also estimate an ARMA(p+1, q) and an ARMA(p, 

q+1) models and test the significance of the additional parameters. 

A residual analysis is usually based on the fact that the residuals of an adequate model should 

approximately be white noise. A plot of the residuals can be a useful tool in checking for 

outliers. Moreover, the estimated residual autocorrelation are usually examined. For a white 

noise series the autocorrelations are zero. Therefore the significance of the residuals 

autocorrelations is often checked by comparing with approximate two-standard error bounds

2 T± . To check the overall acceptability of the residual autocorrelations, the Ljung-Box 

(1978) portmanteau test statistic 

( ) 21

1

2
K

k kT k
k

Q T T r
−

=

= + ∑           [1.11.5] 

is often used. Where kr  are the estimated autocorrelation coefficients of the residuals t̂ε , and K 
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is the number chosen by the researcher. Values of Q for different K may be computed in the 

residual analysis. For an ARMA(p,q) process, the statistic kQ  is approximately Chi-squared 

distributed with K-p-q ( )where K p q> + degrees of freedom under the null hypothesis that the 

ARMA(p,q) is correctly specified. If the model is rejected at this stage, the model-building 

cycle has to be repeated. 

Criteria for Model Selection 

Economic theory does not provide any guidance to the appropriate choice of 

models, some additional criteria can be used to choose from alternative models that 

are acceptable from statistical point of view. What is the appropriate choice of p in 

practice?  This is a problem of model selection. One approach to  model selection is to 

choose p based on a Wald test. 

Another i s  to minimize the AIC or BIC information criterion assuming constant is included 

in the AR(p) model, e .g . 

( ) ( ) ( )2 2 1
ˆlog

p
AIC p σ p

T

+
= +

         
[1.11.6] 

where ( )2σ̂ p is the estimated residual  variance  from an AR(p). 

One ambiguity in defin ing the AIC criterion is that the sample available for estimation 

changes as p changes. (If you increase p, you need more initial conditions.) This can induce 

strange behaviour into the AIC. The best remedy is to fix an upper value p , and then reserve 

the first p  as initial conditions, and then calculate the models AR(1), AR(2), …, AR( p) on this 

unified sample. Alternatively one can use the BIC given by 

( ) ( ) ( )2 2 1
ˆlog log

p
BIC p σ p T

T

+
= +       [1.11.7] 

If one is to choose between alternative ARMA(p,q) models, the AIC and BIC information 

criteria are given by 

( ) ( )

( ) ( )

2

2

2 1
ˆlog

2 1
ˆlog log

p q
AIC σ p q

T

p q
BIC σ p q T

T

+ +
= + +

+ +
= + +

 

Both criteria are likelihood based and represent a different trade-off between ‘fit’, as measured 

by the loglikelihood value, and ‘parsimony’, as measured by the number of free parameters, 

1p q+ + , (assuming the models include a constant). Usually the model with the smallest AIC 

or BC value is preferred, although one can choose to deviate from this if the differences in 
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criterion values are small for a subset of the models.  

While the two criterion differ in the trade-off between fit and parsimony, the BIC criterion can 

be preferred because it has the property that it will almost surely select the true model, if 

T →∞, provided that the true model is in the class of ARMA(p,q) models for relatively small 

values of p and q. The AIC criterion tends to result asymptotically in overparameterized 

models. 

1.12   Predicting with ARMA models 

The main goal of building a time series model is predicting the future path of economic 

variables. One can note that ARMA models usually perform quite well in prediction and often 

outperform more complicated structural models. Of course ARMA models do not provide any 

economic insight in one’s predictions and are unable to forecast under alternative economic 

scenarios. 

The Optimal Predictor 

Suppose we are interested in predicting T hY +  at time T, the value of tY
 
h-periods ahead. A 

predictor for T hY + will based on an information set, denoted by TF , that contains the 

information that is available and potentially used at the time of making the forecast. Ideally it 

contains all the information that is observed and known at time T. In univariate time series 

modeling we will usually assume that the information set at any point t in time contains the 

value of tY and all its lags. Thus we have 

{ }1, , ,T T TY Y Y−∞ −= ⋯F           [1.12.1] 

In general, the predictor ˆ
T h TY +  (the predictor for T hY + as of time T) is a function of the 

information set TF . Our criterion for choosing a predictor from the many possible ones is to 

minimize the expected quadratic prediction error 

( )2
ˆ

T h TT h T
E Y Y+ +
 −  

F

           
[1.12.2] 

Where ( ). TE F denotes the conditional expectation given the information set TF . It can be 

shown that the best predictor for T hY +  
given the information set at time T is the conditional 

mean of T hY +  
given the information set. We denote this optimal predictor as 
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( )ˆ
T h TT h TY E Y ++ ≡ F

           
[1.12.3] 

The conditional expectation of T hY +  given an information set T
′F , where T

′F  is a subset of 

TF , is at best as good as ˆ
T h TY + based on TF . In line with this intuition, it holds that, the more 

information one uses to determine the predictor, the better the predictor will be. For example, 

( )1, ,T h T TE Y Y Y+ − ⋯ will usually be a better predictor than ( )T h TE Y Y+ or ( )T hE Y + (an empty 

information set. 

To simplify things, assume that the parameters of the ARMA model for TY  are known. In 

practice, one would simply replace the unknown parameters by their consistent estimates. 

Now, how do we determine these conditional expectations when TY
 

follows an ARMA 

process? To simplify the notation, consider forecasting T h+y , noting that T h T T h T
Y µ+ += +y . 

As a first example, consider an AR(1) process where 

1 1T T T+ += +εy yφ
 

Consequently, 

( ) ( )1 1 1 1 1ˆ , , , ,T T T T T T T T TE E+ + − + −= + =⋯ ⋯εy y y y y y y y= φ φ
     

[1.12.4] 

To predict two periods ahead ( )2h = , we write 

2 1 2T T T+ + += +εy yφ
 

from which it follows 

( ) ( ) ( )2 2 1 1 1 2 1ˆ , , , , , ,T T T T T T T T T T TE E+ + − + − + −= + =⋯ ⋯ ⋯εy y y y y y y y y y2= φ φΕ
    

[1.12.5] 

In general, we obtain ˆ h
T h T+y y=φ . Thus, the last observed value Ty  

contains all the 

information to determine the predictor for any future value. When h is large, the predictor 

ˆT h+y  converges to 0 (the unconditional expectation of ty ), provided that 1<φ . With a nonzero 

mean, the best predictor for T hY +  is directly obtained as ( )ˆ .h
TT h T

µ µ Y µ+ = + −+ y φ  Note 

that this differs from .
h

TYφ  

As a second example, consider an MA(1) process where 

1t t tθ −= +ε εy
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Then we have 

( ) ( )1 1 1, , , ,T T T T T T TθE θ+ − −= =⋯ ⋯ε εE y y y y y
 

Where implicitly, we assumed that Tε  
is observed (contained in the information set TF ). 

Assuming that the MA process is invertible, we can write 

( )
0

j

T T j

j

θ
∞

−
=

= −∑ε y  

and determine the one-period ahead predictor as 

( )
1

0

ˆ
j

T jT T

j

θ θ
∞

−+
=

−∑y = y           
[1.12.6] 

predicting two periods ahead gives 

( ) ( ) ( )2 1 2 1 1 12
ˆ , , , , , , 0T T T T T T T T TT T E θE+ − + − + −+ = + =⋯ ⋯ ⋯ε εy = E y y y y y y y

     
[1.12.7] 

Which shows that the MA(1) model is uninformative for predicting two periods ahead: the best 

predictor is simply the (unconditional) expected value of ty , normalized at zero. This also 

follows from the autocorrelation function of the process, because the ACF is zero after one lag. 

That is, the ‘memory’ of the process is only one period. 

For the general ARMA(p,q) model 

1 2 1 1t t t p t p t t q t qθ θ− − − − −= + + + + + + +⋯ ⋯ε ε εy y y y1 2φ φ φ
 

We can derive the following recursive formula to determine the optimal predictors: 

11 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆp qT h T T h T T h T T h p T T h T T h T T h q T

θ θ+ + − + − + − + + − + −= + + + + + + +⋯ ⋯ε ε εy y y y1 2φ φ φ
    

[1.12.8] 

where T̂ k T+ε is the optimal predictor for T k+ε at time T, and 

ˆ if 0

ˆ 0 if 0

ˆ if 0

T k T T k T

T k T

T kT k T

k

k

k

+ +

+

++

= ≤

= >

= ≤

 

ε 

ε ε

y y

 

where that latter innovation can be solved from the autoregressive representation of the model. 

For this we have used the fact that the process is stationary and invertible, in which case the 

information set { }1, ,T T− ⋯y y is equivalent to { }1, ,T T − ⋯ε ε . That is, if all tsε are known from -∞ 

to T, then all tsy are known from -∞ to T, and vice versa. 

To illustrate this, consider an ARMA(1,1) model that takes the form 
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1 1t t t tθ− −= + +ε εy yφ
 

The optimal predictor for 1T +y is then given by 

1 1
ˆ ˆT T T TT T T T

θ θ+ += + + = +ε ε εy y yφ φ
 

Assuming invertibility 

( )
1 1t t tθL−− = + εy yφ

 

Can be written as 

( ) ( ) ( ) ( )-1

1 1

0

1
j

t t t t t

j

θL θ
∞

− −
=

+ − = − −∑ε = y y y yφ φ  

we can write for the one-period-ahead predictor 

( ) ( )11
0

ˆ
j

T T TT T

j

θ θ
∞

−+
=

= + − −∑y y y yφ φ         
[1.12.9] 

Predicting two period ahead gives 

2 1 2 1 1
ˆ ˆ ˆ ˆ ˆ
T T T T T T T T T T

θ+ + + + += + + =ε εy y yφ φ
       

1.12.10] 

Note that this does not equal to 2
.Tyφ  

Prediction Accuracy 

In addition to prediction, it is important to know how accurate this prediction is. To judge 

forecasting precision, we define the prediction error as ˆ ˆT h T hT h T T h TY Y+ ++ +− = −y y and the 

expected quadratic prediction error as 

( ) ( )2
ˆ varh T h T h TT hT

C E + ++= − =y y y F
      

[1.12.11] 

Where the latter step follows from the fact that ( )ˆ T h TT h T
E ++ =y y F . Determining hC , 

corresponding to the variance of the h-period-ahead prediction error, is relatively easy with the 

moving average representation. To start with the simplest case, consider an MA(1) model. 

Then we have 

( ) ( ) ( ) 2
1 1 1 1 1 1var , , var , , varT T T T T T T TC θ σ+ − + − += = + = =⋯ ⋯ε ε ε ε εy y y

 

Alternatively, we explicitly solve for the predictor, which is 1
ˆ TT T

θ+ =y ε , and determine the 

variance of 1 11
ˆT TT T+ ++ =y - y ε , which gives the same result. For the two-period-ahead 

predictor we have 
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( ) ( ) ( )2 2
2 2 1 2 1 1var , , var , , 1 .T T T T T T TC θ θ σ+ − + + −= = + = +⋯ ⋯ε ε ε εy y y  

As one would expect, the accuracy of the prediction decreases if we predict further into the 

future. It will not, however, increase any further if h is increased beyond 2. This becomes clear 

if we compare the expected quadratic prediction error with that of a simple unconditional 

predictor: 

( ) ( )1ˆ 0T h T h T hT h T
E E θ+ + + −+ = = + =ε εy y  

For this predictor we have 

( ) ( ) ( ) ( )2 2 2
10 var var 1h T h T h T h T hC E θ θ σ+ + + + −= − = = + = +ε εy y

 

Consequently, this gives an upper bound on the inaccuracy of the predictors. The MA(1) model 

thus gives more efficient predictors only if one predicts one period ahead. More general ARMA 

models, however, will yield efficiency gains also in further ahead predictors. 

Suppose the general model is ARMA(p,q), which we can write as an MA(∞) model,  with jα

coefficients to be determined: 

0

0

        with 1t j t j

j

α α
∞

−
=

= =∑y ε  

The h-period ahead predictor (in terms of tsε ) is given by 

( ) ( )1 1

0

ˆ , , , ,T h T T j T h j T T j T h jT h T

j j h

E α E α
∞ ∞

+ − + − − + −+
= =

= = =∑ ∑⋯ ⋯y y y y ε ε ε ε  

such that 

1

0

ˆ
h

T h j T h jT h T

j

α
−

+ + −+
=

− = ∑y y ε  

Consequently, we have 

( )
1

2 2 2

0

ˆ
h

T h jT h T

j

E σ α
−

+ +
=

 − =  ∑y y        [1.12.12] 

This shows how the variance of the forecast errors can easily be determined from the 

coefficients of the moving average representation of the model. Recall that, for the 

computation of the predictor, the autoregressive representation was most convenient. 

As an illustration, consider the AR(1) model where j
jα = φ . The expected quadratic 

prediction error are given by 

( ) ( )2 2 2 2 2 4
1 2 2, 1 , 1 ,C σ C σ C σ= = + = + +φ φ φ etc.  
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For h = ∞, we have ( ) ( )2 2 4 2 21 1 ,C σ σ∞ = + + + = −⋯φ φ φ which is the unconditional 

variance of ty . Consequently, the informational value contained in AR(1) process slowly 

decays over time. In the long run the predictor equals the unconditional predictor, being the 

mean of the ty series.
 

In practical cases, the parameters in ARMA models are unknown, and replaced by their 

estimated values. This introduces additional uncertainty in the predictors. Usually, however, 

this uncertainty is ignored. The motivation is that the additional variance that arises because of 

estimation error disappears asymptotically as the sample size becomes sufficiently large.  


