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BINARY CHOICE PRACTICAL NOTES 

 
1. OBJECTIVE: 

 
Get hands-on-experience in specifying, estimating and interpreting 
results from major binary choice models.  Specifically the practical 
focuses on;  

(i) Specification of LPM, logit and probit models 
(ii) Estimation of these models 
(iii) Interpretation of the models 
(iv) Diagnostic statistics 
(v) Presentation of the results 

 
 
2. DATA: 
 
This data is the one used in Green (listed in appendix Table F14.1) 
on programme effectiveness covering 32 cross-sections.  The data 
is taken from Spector and Mazzeo(1980).  The details are  
                        Obs=Observation 
                         GRADE=grade improvement dummy 

                    GPA =the student’s grade point average 

                     TUCE=previous knowledge of material 

                           PSI=dummy for personalized system of  
                                    instruction teaching method 

• The main research problem is to examine whether a new 
method of teaching economics, the PSI significantly 
influence performance in later economics courses.   

                                                                                                                                            
 



• The dependent variable used is GRADE, which indicates 
whether a student’s grade in intermediate macroeconomics 
course was higher than that in the principle course.  

• The data is in an excel file called binary choice data.xls 
 
3. SOFTWARE 
Use Stata Release 9 software.  Introduction to stata 9 notes are 
provided separately. 
 

 
 
4. LOADING THE DATA 
The steps to load the data are as follows: 

• Open the file 
• Safe the data in an ASCII type, for instance the text text(tab 

delimited) 
 



 
 
• Close the file in excel 
• Start the stata 
• Go to File/import/ASCII data created by a spreadsheet 



 
• Browse to locate your file location 

 



•  
• Select text files(*.txt)  in the file type 
• Click OK 
• The file will be loaded 
• If you have done it well, you will see the following 



 
 
 
   The blue background (yours is black) is simply the setting in my 
machine. You could change yours by simply right clicking 
anywhere on the black screen and setting your preferences. 
 
4. IMPLEMENTING LPM IN STATA 
 
LPM is simply an OLS that is applied to Binary choice (response) 
model (BMR)  
 
4.1 Specification of the LPM model 
 
Specify the model for our data 

iiiii tucepsigpagrade εββββ ++++= 3210  
           32,...,2,1=i  



 
Note the following: 

• The dependent variable GRADE is an interval/binary choice 
variable 

• The independent variables GPA, PSI and TUCE are a linear 
combination 

• The independent variables are non-stochastic 
• The model is linear 
• ( ) iiiii tucepsigpagradeE εββββ ++++= 3210  
• ( ) 0=iE ε  
• We know from basic probability theory that  

[ ] [ ] [ ] [ ]1Pr0Pr01Pr1,, ===⋅+=⋅= iiiiiii gradegradegradetucepsigpagradeE  
      

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]2222
iiiiiii gradeEgradeEgradeEgradeEgradeEgradeEE −=−=−=ε  

Factoring out ( )igradeE  we find that  
( ) ( ) ( )[ ] [ ] [ ]( )1Pr11Pr1 =−==−= iiiii gradegradegradeEgradeEE ε  

This implies heteroscedasticity 
 
4.2 Estimation of LPM Model 

• The LPM uses the moment based estimation methods that do 
not require an assumption about the probability distribution 

• Consequently, the LPM can work with small samples as 
compare to Logit or Probit models 

 
• LPM estimation in stata is using OLS with standard regress 

command.  In our case  
 
 
Before we start let’s create a log file to track all the steps we 
follow for your review later 
 
 
In the command space type 



Regress GRADE GPA PSI TUCE  
 
The results are 
regress grade gpa psi tuce 
 
      Source |       SS       df       MS              Number of obs =      32 
-------------+------------------------------           F(  3,    28) =    6.65 
       Model |  3.00227631     3  1.00075877           Prob > F      =  0.0016 
    Residual |  4.21647369    28  .150588346           R-squared     =  0.4159 
-------------+------------------------------           Adj R-squared =  0.3533 
       Total |     7.21875    31  .232862903           Root MSE      =  .38806 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   .4638517   .1619563     2.86   0.008     .1320992    .7956043 
         psi |   .3785548   .1391727     2.72   0.011     .0934724    .6636372 
        tuce |   .0104951   .0194829     0.54   0.594    -.0294137    .0504039 
       _cons |  -1.498017   .5238886    -2.86   0.008    -2.571154   -.4248801 
------------------------------------------------------------------------------ 

 
 
 
4.3 Interpretation of the LPM 
 

• The 2R  and the F-statistic shows that the model fits the data 
well.  

 
• We can interpret the coefficients in a straightforward manner 
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• The gpa and psi are statistically significant 
• Gpa increases the performance by 0.46 
• The new method of teaching, psi, increases the performance 

by 0.38 
• But 
• What do 0.46, 0.38 and 0.01 mean? 
• They are not the actual changes in predicted probability of 

improvement in grade 



• What can we say about our initial research problem with 
these numbers? 

• This is the fundamental problem with the linear probability 
model 

 
 
4.4 Other limitations of the LPM 
 
(i) Heteroscedasticity 
Recall the variance of a Bernoulli distribution 

( ) ( ) ( )iiiiiiiiii tucepsigpatucepsigpaegradegrad εββββββββσ varˆˆˆˆ1ˆˆˆˆˆ1ˆˆ 32103210 =−−−−+++=−=

  
To implement this in stata the commands are the follows 
 
Predict yhat 
Generate sigmahat=sqrt(yhat*(1-yhat)) 
 
You can plot the sigma using the graphics menu 
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It is heteroscedastic 
 
(ii) Predicted values outside the 0,1 range 
 
We can plot our yhat 
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You see that there are negative probabilities. 
 
You can also see the same problem with a few steps 
Predict xb, xb 
Label var xb “xb(index)” 
Draw the scatter graph using the command 
scatter grade yhat xb, msymbol( + o) jitter(2)  title("Linear 
Prediction & Actual Outcome") 
 
You will get 
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What you see is that there are negative probabilities 
 
 
 
5. ESTIMATING LOGIT  
 
5.1 Specification of the Logit model 
 
Specify the model for our data 
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The probability density function for the logit is 
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In effect there are three possible specifications 
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Which is the odds-ratio 
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5.2 Estimation of Logit Model 

• The Logit model uses the MLE that requires an assumption 
about the probability 

• Consequently, it requires a large sample to take advantage of 
the asymptotic properties 

 
    In the command space type 

logit grade gpa psi tuce  
 
The results are 
logit grade gpa psi tuce  
 
Iteration 0:   log likelihood =  -20.59173 
Iteration 1:   log likelihood = -13.496795 
Iteration 2:   log likelihood = -12.929188 
Iteration 3:   log likelihood = -12.889941 
Iteration 4:   log likelihood = -12.889633 
Iteration 5:   log likelihood = -12.889633 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 



 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432 
         psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195 
        tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988 
       _cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613 
------------------------------------------------------------------------------ 

 
• These results are similar to the ones in table 17.1 of Greene 

(2011)  
 

• Let’s substitute the results in the probability formulation of 
the logit model  
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Can we say anything about the probability here?  Not much  
 
What about in the log-odds ratio version? 
Let’s do it 
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We may be able to interpret the probability by arguing that since 
log is a monotonic transformation then 
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 i.e. a student with a higher gpa increases the 

likelihood that such student will record a high performance by 2.8 
times 
 
 
The same can be done for the other variables 
 



5.3 Interpretation of the Logit model 
  

The basic logit commands reports coefficient estimates and the 
underlying standard errors.   
 

• These coefficients are the index coefficients and do not 
correspond to the average partial effects 

 
iii tucepsigpaindexLogit 09.04.28.20.13 +++−=  

 
 
What we are looking for are the marginal effects 
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• Notice the use of the difference operator for the psi instead of 

the partial derivative 
 
Theory tells us that  
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These marginal effects differ for each observation 
 
In stata these marginal effects can be computed using the mfx 
command 
 
mfx 
 
Marginal effects after logit 
      y  = Pr(grade) (predict) 
         =  .25282025 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
     gpa |   .5338589      .23704    2.25   0.024   .069273  .998445   3.11719 
     psi*|   .4564984      .18105    2.52   0.012    .10164  .811357     .4375 
    tuce |   .0179755      .02624    0.69   0.493  -.033448  .069399   21.9375 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 
 

 
 

• The marginal effects vary depending on the values of the 
independent variables.  

• Consequently, it is appropriate to choose baseline for the 
independent and dependent variables 

• Mean values are often used  
• But median is more informative when variables are skewed 
• The interpretation of the effects is as follows 
• Recall that for one unit increase in the dependent variable 

from the baseline, the probability of an event is expected to 
increase/decrease by the magnitude of the marginal change 
holding other variables constant 

• In our case one unit increase in GPA from the baseline mark 
of 3.11 increases the probability of grade improvement by 
53.3% 



• One unit increase in the previous knowledge of the material 
from the baseline (21.93) increases the probability of grade 
improvement by 1.8 % 

• What about the psi? 
• Let’s deal with it later 
 

 
6. ESTIMATING PROBIT  
 
6.1 Specification of the Probit model 
 
Specify the model for our data 
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Notice there is no closed-form expression as in logit model since 
the function involves integrals 
 
Recall that we can not be able to estimate each of the parameters 
and the variance separately, Hence we normalise the variance as 

1=σ  
            
 
6.2 Estimation of Probit Model 

• The Probit model uses the MLE that requires an assumption 
about the probability 

• Consequently, it requires a large sample to take advantage of 
the asymptotic properties 

 
    In the command space type 



probit grade gpa psi tuce  
 
 
Iteration 0:   log likelihood =  -20.59173 
Iteration 1:   log likelihood = -13.315851 
Iteration 2:   log likelihood = -12.832843 
Iteration 3:   log likelihood = -12.818826 
Iteration 4:   log likelihood = -12.818803 
 
Probit regression                                 Number of obs   =         32 
                                                  LR chi2(3)      =      15.55 
                                                  Prob > chi2     =     0.0014 
Log likelihood = -12.818803                       Pseudo R2       =     0.3775 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |    1.62581   .6938818     2.34   0.019     .2658269    2.985794 
         psi |   1.426332    .595037     2.40   0.017     .2600814    2.592583 
        tuce |   .0517289   .0838901     0.62   0.537    -.1126927    .2161506 
       _cons |   -7.45232   2.542467    -2.93   0.003    -12.43546   -2.469177 
------------------------------------------------------------------------------ 
 

 
Let’s substitute the results in the probability formulation of the 
Probit model model  
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What we can only say is the direction of the effect and partial 
effects on the Probit index/score 
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6.1Pr
=

∂
∂

igpa
indexobit  

 
6.1Pr

=
∂

∂

ipsi
indexobit  

 
05.0Pr

=
∂

∂

ituce
indexobit  

 
6.3 Interpretation of the Probit Model 

  



The basic probit commands report coefficient estimates and the 
underlying standard errors.   
 
These coefficients are the index coefficients and do not correspond 
to the average partial effects 
 
What we are looking for are the marginal effects 
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Theory tells us that for Probit model 
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Notice the use of the difference operator ( )∆  for the discrete 
changes and not the partial derivative operator ( )∂  
 

 
In stata these marginal effects can be computed using two methods 
 

• dprobit command 
• Mfx compute command 
 

Lets compute and see what happens 
 



(i) dprobit results 
 
dprobit grade gpa psi tuce 
 
. dprobit grade gpa psi tuce 
 
Iteration 0:   log likelihood =  -20.59173 
Iteration 1:   log likelihood = -13.315851 
Iteration 2:   log likelihood = -12.832843 
Iteration 3:   log likelihood = -12.818826 
Iteration 4:   log likelihood = -12.818803 
 
Probit regression, reporting marginal effects           Number of obs =     32 
                                                        LR chi2(3)    =  15.55 
                                                        Prob > chi2   = 0.0014 
Log likelihood = -12.818803                             Pseudo R2     = 0.3775 
 
------------------------------------------------------------------------------ 
   grade |      dF/dx   Std. Err.      z    P>|z|     x-bar  [    95% C.I.   ] 
---------+-------------------------------------------------------------------- 
     gpa |   .5333471   .2324639     2.34   0.019   3.11719   .077726  .988968 
     psi*|    .464426   .1702806     2.40   0.017     .4375   .130682   .79817 
    tuce |   .0169697   .0271198     0.62   0.537   21.9375  -.036184  .070123 
---------+-------------------------------------------------------------------- 
  obs. P |     .34375 
 pred. P |   .2658081  (at x-bar) 
------------------------------------------------------------------------------ 
(*) dF/dx is for discrete change of dummy variable from 0 to 1 
    z and P>|z| correspond to the test of the underlying coefficient being 0 
 
 

 
(ii) Marginal effects using mfx command 
 
. mfx compute 
 
.  mfx compute 
 
Marginal effects after dprobit 
      y  = Pr(grade) (predict) 
         =  .26580809 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
     gpa |   .5333471      .23246    2.29   0.022   .077726  .988968   3.11719 
     psi*|    .464426      .17028    2.73   0.006   .130682   .79817     .4375 
    tuce |   .0169697      .02712    0.63   0.531  -.036184  .070123   21.9375 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 
 
 

• There are no major differences in the results except in the z 
score.   

• The mfx uses X represent mean values whereas the dprobit 
uses x-bar 



• The marginal effects for both models are essentially the 
same 

• The probability at the mean values is 0.26580809 
• The interpretations are the same as the one for Logit model 
 
7. DISCRETE CHANGE VS MARGINAL EFFECTS 
 
• Discrete changes are important in two respects 
(i) Dummy variables 
(ii) When we wish to focus on predicted probability changes 

for a particular range of independent variables 
 
Discrete changes are computed as follows 

[ ] [ ] [ ]kiki
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Notice the use of X vector for independent variables 
 
• The discrete changes can be interpreted as follows 
• For a change in kX  from kX  to δ+kX   
• Notice that we use discrete changes for psi and not 

marginal changes.   
• This is interpreted that the probability of grade improvement 

is expected to change by the magnitude of the indicated 
changes, holding all other variables at the given levels 

•  For our psi, the movement is from 0 (not exposed to the 
personalised system of instruction  to 1 (exposed to 
personalised system of instruction) 

• That is why you see the star (*) in the results to warn you 
that we are dealing with discrete changes 

• The interpretation is that a student that exposed to the new 
method has a probability of grade improvement of 0.46 
greater than another student who is not exposed to the same 
method  

 



This applies to the logit model results as well 
 
8. TESTING OF HYPOTHESIS 
 
8.1 Test the Significance of the covariates 
We could test the significance of each of the variables as well as 
the joint significance 
 
Single covariate 
test gpa 
 
 ( 1)  gpa = 0 
 
           chi2(  1) =    5.49 
         Prob > chi2 =    0.0191 
 
test psi  
 
 ( 1)  psi = 0 
 
           chi2(  1) =    5.75 
         Prob > chi2 =    0.0165 
 
test tuce 
 
 ( 1)  tuce = 0 
 
           chi2(  1) =    0.38 
         Prob > chi2 =    0.5375 

 
More than one variable (Wald test) 
 
test gpa tuce psi 
 
 ( 1)  gpa = 0 
 ( 2)  tuce = 0 
 ( 3)  psi = 0 
 
           chi2(  3) =   10.39 
         Prob > chi2 =    0.0155 

 
Likelihood Ratio test 
Estimate unrestricted equation 
logit grade gpa psi tuce 
Store the model parameters 
 



Est store A 
 
 
Restricted equation 
logit grade gpa tuce 
 
Store the results 
est store B 
 
Perform likelihood ratio test 
lrtest A B, stats 
 
lrtest A B, stats 
 
Likelihood-ratio test                                  LR chi2(1)  =      6.20 
(Assumption: B nested in A)                            Prob > chi2 =    0.0127 
 
------------------------------------------------------------------------------ 
       Model |    Obs    ll(null)   ll(model)     df          AIC         BIC 
-------------+---------------------------------------------------------------- 
           B |     32   -20.59173   -15.99148      3     37.98296    42.38017 
           A |     32   -20.59173   -12.88963      4     33.77927    39.64221 
------------------------------------------------------------------------------ 
 

 
Let’s test for tuce, which is already statistically insignificant 
We just need to change the restricted model as  
 
logit grade gpa psi 
est store B 
lrtest A B, stats 
 
 
lrtest A B, stats 
 
Likelihood-ratio test                                  LR chi2(1)  =      0.47 
(Assumption: B nested in A)                            Prob > chi2 =    0.4912 
 
------------------------------------------------------------------------------ 
       Model |    Obs    ll(null)   ll(model)     df          AIC         BIC 
-------------+---------------------------------------------------------------- 
           B |     32   -20.59173   -13.12657      3     32.25315    36.65035 
           A |     32   -20.59173   -12.88963      4     33.77927    39.64221 
------------------------------------------------------------------------------ 
 

 
 



As you can see this is not statistically significant 
 
8.2 Heteroscedastic probit model 

• Heteroscedasticity is an important statistical problem to deal 
with 

• One way of dealing with it from a probit perspective is to 
relax the assumption that the error term is homoscedastic, by 
writing the variance of the error term as ( )[ ]2exp gx  where x is 
any of the covariates.   

• In this case g is a parameter to be estimated (note: if g=0 we 
have homoscedasticity) 

• We can get this in stata using the hetprob command  
• For instance if we would like to know if the variance of hte 

error term falls or rises with psi i.e.responsible for the 
heteroscedasticity, we can use the following command 
 
hetprob grade gpa psi tuce,het(psi) 

hetprob grade gpa psi tuce,het(psi)  
 
Fitting probit model: 
 
Iteration 0:   log likelihood =  -20.59173 
Iteration 1:   log likelihood = -13.315851 
Iteration 2:   log likelihood = -12.832843 
Iteration 3:   log likelihood = -12.818826 
Iteration 4:   log likelihood = -12.818803 
 
Fitting full model: 
 
Iteration 0:   log likelihood = -12.818803   
Iteration 1:   log likelihood = -12.080094   
Iteration 2:   log likelihood = -11.965838   
Iteration 3:   log likelihood = -11.896545   
Iteration 4:   log likelihood = -11.895852   
Iteration 5:   log likelihood = -11.895851   
 
Heteroskedastic probit model                    Number of obs     =         32 
                                                Zero outcomes     =         21 
                                                Nonzero outcomes  =         11 
 
                                                Wald chi2(3)      =       3.33 
Log likelihood = -11.89585                      Prob > chi2       =     0.3438 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
grade        | 
         gpa |    3.12155   1.760869     1.77   0.076    -.3296887    6.572789 
         psi |    2.34322   1.670631     1.40   0.161    -.9311565    5.617597 



        tuce |   .1237515   .2134227     0.58   0.562    -.2945493    .5420523 
       _cons |  -14.28904   8.860899    -1.61   0.107    -31.65609    3.077997 
-------------+---------------------------------------------------------------- 
lnsigma2     | 
         psi |   1.093371   .8805796     1.24   0.214    -.6325333    2.819275 
------------------------------------------------------------------------------ 
Likelihood-ratio test of lnsigma2=0: chi2(1) =     1.85   Prob > chi2 = 0.1743 
 
.  

• Clearly there is no evidence here that the variance of the error 
term rises with  psi 

• This is because it is not statically significant 
• If it is significant, one should consider adding a squared psi 

to the model and check if the squared term is significant or 
not 

 


