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PREFACE TO THE THIRD EDITION

In preparation for the third edition, we sent an electronic mail questionnaire to every statistics

department in the United States with a graduate program. We wanted modal opinion on what

statistical procedures should be addressed in a statistical methods course in the twenty-first

century. Our findings can readily be summarized as a seeming contradiction. The course has

changed little since R. A. Fisher published the inaugural text in 1925, but it also has changed

greatly since then. The goals, procedures, and statistical inference needed for good research

remain unchanged, but the nearly universal availability of personal computers and statistical

computing application packages make it possible, almost daily, to do more than ever before.

The role of the computer in teaching statistical methods is a problem Fisher never had to face,

but today’s instructor must face it, fortunately without having to make an all-or-none choice.

We have always promised to avoid the black-box concept of computer analysis by

showing the actual arithmetic performed in each analysis, and we remain true to that promise.

However, except for some simple computations, with every example of a statistical procedure

in which we demonstrate the arithmetic, we also give the results of a computer analysis of the

same data. For easy comparison we often locate them near each other, but in some instances

we find it better to have a separate section for computer analysis. Because of greater

familiarity with them, we have chosen the SASw and JMPw, computer applications developed

by the SAS Institute.† SAS was initially written for use on large main frame computers, but

has been adapted for personal computers. JMP was designed for personal computers, and we

find it more interactive than SAS. It is also more visually oriented, with graphics presented in

the output before any numerical values are given. But because SAS seems to remain the

computer application of choice, we present it more frequently than JMP.

Two additions to the text are due to responses to our survey. In the preface to the first

edition, we stated our preference for discussing probability only when it is needed to explain

some aspect of statistical analysis, but many respondents felt a course in statistical methods

needs a formal discussion of probability. We have attempted to “have it both ways” by

including a very short presentation of probability in the first chapter, but continuing to discuss

it as needed. Another frequent response was the idea that a statistical analysis course now

should include some minimal discussion of logistic regression. This caused us almost to

surrender to black-box instruction. It is fairly easy to understand the results of a computer

analysis of logistic regression, but many of our students have a mathematical background a bit

shy of that needed for performing logistic regression analysis. Thus we discuss it, with a

worked example, in the last section to make it available for those with the necessary

†SAS and JMP are registered trademarks of SAS Institute Inc., Cary, NC, USA.
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mathematical background, but to avoid alarming other students who might see the

mathematics and feel they recognize themselves in Stevie Smith’s poem†:

Nobody heard him, the dead man,

But still he lay moaning:

I was much further out than you thought

And not waving but drowning.

Consulting with research workers at West Virginia University has caused us to add some

topics not found in earlier editions. Many of our examples and exercises reflect actual research

problems for which we provided the statistical analysis. That has not changed, but the research

areas that seek our help have become more global. In earlier years we assisted agricultural,

biological, and behavioral scientists who can design prospective studies, and in our text we

tried to meet the needs of their students. After helping researchers in areas such as health

science who must depend on retrospective studies, we made additions for the benefit of their

students as well. We added examples to show how statistics is applied to health research and

now discuss risks, odds and their ratios, as well as repeated-measures analysis. While helping

researchers prepare manuscripts for publication, we learned that some journals prefer the

more conservative Bonferroni procedures, so we have added them to the discussion of mean

separation techniques in Chapter 10. We also have a discussion of ratio and difference

estimation. However, that inclusion may be self-serving to avoid yet another explanation of

“Why go to the all the trouble of least squares when it is so much easier to use a ratio?” Now

we can refer the questioner to the appropriate section in Chapter 9.

There are additions to the exercises as well as the body of the text. We believe our students

enjoy hearing about the research efforts of Sir Francis Galton, that delightfully eccentric but

remarkably ingenious gentleman scientist of Victorian England. To make them suitable

exercises, we have taken a few liberties with some of his research efforts, but only to

demonstrate the breadth of ideas of a pioneer who thought everything is measurable and hence

tractable to quantitative analysis. In respect for a man who—dare we say?—“thought outside

the black box,” many of the exercises that relate to Galton will require students to think on

their own as he did. We hope that, like Galton himself, those who attempt these exercises will

accept the challenge and not be too concerned when they do not succeed.

We are pleased that Daniel M. Chilko, a long-time colleague, has joined us in this

endeavor. His talents have made it easier to update sections on computer analysis, and he will

serve as webmaster for the web site that will now accompany the text.

We wish to acknowledge the help we received from many people in preparation of this

edition. Once again, we thank SAS Institute for permission to discuss their SAS and JMP

software.

We want to express our appreciation to the many readers who called to our attention a flaw

in the algorithm used to prepare the Poisson confidence intervals in Table A8. Because they

alerted us, we made corrections and verified all tables generated by us for this edition.

To all who responded to our survey, we are indeed indebted. We especially thank Dr.

Marta D. Remmenga, Professor at New Mexico State University. She provided us with a

detailed account of how she uses the text to teach statistics and gave us a number of helpful

suggestions for this edition. All responses were helpful, and we do appreciate the time taken

by so many to answer our questionnaire.

†Not Waving But Drowning, The Top 500 Poems, Columbia University Press, New York.
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Even without this edition, we would be indebted to long-time colleagues in the Department

of Statistics at West Virginia University. Over the years, Erdogan Gunel, E. James Harner,

and Gerald R. Hobbs have provided the congenial atmosphere and enough help and counsel to

make our task easy and joyful.

Shirley M. Dowdy

Stanley Wearden

Daniel M. Chilko
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PREFACE TO THE
SECOND EDITION

From its inception, the intent of this text has been to demystify statistical procedures for those

who employ them in their research. However, between the first and second editions, the use of

statistics in research has been radically affected by the increased availability of computers,

especially personal computers which can also serve as terminals for access to even more

powerful computers. Consequently, we now feel a new responsibility also to try to demystify

the computer output of statistical analyses.

Wherever appropriate, we have tried to include computer output for the statistical

procedures which have just been demonstrated. We have chosen the output of the SASw

System* for this purpose. SAS was chosen not only for its relative ubiquity on campus and

research centers, but also because the SAS printout shares common features with many other

statistical analysis packages. Thus if one becomes familiar with the SAS output explained in

this text, it should not be too difficult to interpret that of almost any other analysis system. In

the main, we have attempted to make the computer output relatively unobtrusive. Where it

was reasonable to do so, we placed it toward the end of each chapter and provided output of

the computer analysis of the same data for which hand-calculations had already been

discussed. For those who have ready access to computers, we have also provided exercises

containing raw data to aid in learning how to do statistics on computers.

In order to meet the new objective of demystifying computer output, we have included the

programs necessary to obtain the appropriate output from the SAS System. However, the

reader should not be mislead in believing this text can serve as a substitute for the SAS

manuals. Before one can use the information provided here, it is necessary to know how to

access the particular computer system on which SAS is available, and that is likely to be

different from one research location to another. Also, to keep the discussion of computer

output from becoming too lengthy, we have not discussed a number of other topics such as

data editing, storage, and retrieval. We feel the reader who wants to begin using computer

analysis will be better served by learning how to do so with the equipment and software

available at his or her own research center.

At the request of many who used the first edition, we now include nonparametric statistics

in the text. However, once again with the intent of keeping these procedures from seeming to

be too arcane, we have approached each nonparametric test as an analog to a previously

discussed parametric test, the difference being in the fact that data were collected on the

nominal or ordinal scale of measurement, or else transformed to either of these scales of

measurement. The test statistics are presented in such a form that they will appear as similar as

possible to their parametric counterparts, and for that reason, we consider only large samples

*SAS is a registered trademark of SAS Institute Inc., Cary, NC, USA.
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for which the central limit theorem will apply. As with the coverage of computer output, the

sections on nonparametric statistics are placed near the end of each chapter as material

supplementary to statistical procedures already demonstrated.

Finally, those who have reflected on human nature realize that when they are told “no one

does that any more,” it is really the speaker who doesn’t want to do it any more. It is in accord

with that interpretation that we say “no one does multiple regression by hand calculations any

more,” and correspondingly present considerable revision in Chapter 14. Consistent with our

intention of avoiding any appearance of mystery, we use a very small sample to present the

computations necessary for multiple regression analysis. However, more space is devoted to

examination and explanation of the computer analyses available for multiple regression

problems.

We are indebted to the SAS Institute for permission to discuss their software. Output from

SAS procedures is printed with the permission of SAS Institute Inc., Cary NC, USA,

Copyright # 1985.

We want to thank readers of the first edition who have so kindly written to us to advise us

of misprints and confusing statements and to make suggestions for improvement. We also

want to thank our colleagues in the department, especially Donald F. Butcher, Daniel M.

Chilko, E. James Harner, Gerald R. Hobbs, William V. Thayne and Edwin C. Townsend.

They have read what we have written, made useful suggestions, and have provided data sets

and problems. We feel fortunate to have the benefit of their assistance.

Shirley Dowdy

Stanley Wearden
Morgantown, West Virginia

November 1990

xiv PREFACE TO THE SECOND EDITION



PREFACE TO THE FIRST EDITION

This textbook is designed for the population of students we have encountered while teaching a

two-semester introductory statistical methods course for graduate students. These students

come from a variety of research disciplines in the natural and social sciences. Most of the

students have no prior background in statistical methods but will need to use some, or all, of

the procedures discussed in this book before they complete their studies. Therefore, we

attempt to provide not only an understanding of the concepts of statistical inference but also

the methodology for the most commonly used analytical procedures.

Experience has taught us that students ought to receive their instruction in statistics early in

their graduate program, or perhaps, even in their senior year as undergraduates. This ensures

that they will be familiar with statistical terminology when they begin critical reading of

research papers in their respective disciplines and with statistical procedures before they begin

their research. We frequently find, however, that graduate students are poor with respect to

mathematical skills; it has been several years since they completed their undergraduate

mathematics and they have not used these skills in the subsequent years. Consequently, we

have found it helpful to give details of mathematical techniques as they are employed, and we

do so in this text.

We should like our students to be aware that statistical procedures are based on sound

mathematical theory. But we have learned from our students, and from those with whom we

consult, that research workers do not share the mathematically oriented scientists’ enthusiasm

for elegant proofs of theorems. So we deliberately avoid not only theoretical proofs but even

too much of a mathematical tone. When statistics was in its infancy, W. S. Gosset replied to an

explanation of the sampling distribution of the partial correlation coefficient by R. A. Fisher:†

. . . I fear that I can’t conscientiously claim to understand it, but I take it for granted that you

know what you are talking about and thankfully use the results!

It’s not so much the mathematics, I can often say “Well, of course, that’s beyond me, but

we’ll take it as correct, but when I come to ‘Evidently’ I know that means two hours hard

work at least before I can see why.

Considering that the original “Student” of statistics was concerned about whether he could

understand the mathematical underpinnings of the discipline, it is reasonable that today’s

students have similar misgivings. Lest this concern keep our students from appreciating

the importance of statistics in research, we consciously avoid theoretical mathematical

discussions.

†From letter No. 6, May 5, 1922, in Letters From W. S. Gosset to R. A. Fisher 1915–1936, Arthur Guinness Sons and

Company, Ltd., Dublin. Issued for private circulation.
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We want to show the importance of statistics in research, and we have taken two specific

measures to accomplish this goal. First, to explain that statistics is an integral part of research,

we show from the very first chapter of the text how it is used. We have found that our students

are impatient with textbooks that require eight weeks of preparatory work before any actual

application of statistics to relevant problems. Thus, we have eschewed the traditional

introductory discussion of probability and descriptive statistics; these topics are covered only

as they are needed. Second, we try to present a practical example of each topic as soon as

possible, often with considerable detail about the research problem. This is particularly

helpful to those who enroll in the statistical methods course before the research methods

course in their particular discipline. Many of the examples and exercises are based on actual

research situations that we have encountered in consulting with research workers. We attempt

to provide data that are reasonable but that are simplified for each of computation. We realize

that in an actual research project a statistical package on a computer will probably be used for

the computations, and we considered including printouts of computer analyses. But the

multiplicity of the currently available packages, and the rapidity with which they are

improved and revised, makes this infeasible.

It is probable that every course has an optimum pace at which it should be taught; we are

convinced that such is the case with statistical methods. Because our students come to us

unfamiliar with inductive reasoning, we start slowly and try to explain inference in

considerable detail. The pace quickens, however, as soon as the students seem familiar with

the concepts. Then when new concepts, such as bivariate distributions, are introduced, it is

necessary to pause and reestablish the gradual acceleration. Testing helps to maintain the

pace, and we find that our students benefit from frequent testing. The exercises at the end of

each section are often taken directly from these tests.

A textbook can never replace a reference book. But, many people, because they are

familiar with the text they used when they studied statistical methods, often refer to that book

for information during later professional activities. We have kept this in mind while designing

the text and have included some features that should be helpful: Summaries of procedures are

clearly set off, references to articles and books that further develop the topics discussed are

given at the end of each chapter, and explanations on reading the statistical tables are given in

the table section.

We thank Professor Donald Butcher, Chairman of the Department of Statistics and

Computer Science at West Virginia University, for his encouragement of this project. We are

also grateful for the assistance of Professor George Trapp and computer science graduate

students Barry Miller and Benito Herrera in the production of the statistical methods with us

during the preliminary version of the text.

Shirley Dowdy

Stanley Wearden
Morgantown, West Virginia

December 1982
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1 The Role of Statistics

In this chapter we informally discuss how statistics is used to attempt to answer questions

raised in research. Because probability is basic to statistical decision making, we will also

present a few probability rules to show how probabilities are computed. Since this is an

overview, we make no attempt to give precise definitions. The more formal development will

follow in later chapters.

1.1. THE BASIC STATISTICAL PROCEDURE

Scientists sometimes use statistics to describe the results of an experiment or an investigation.

This process is referred to as data analysis or descriptive statistics. Scientists also use

statistics another way; if the entire population of interest is not accessible to them for some

reason, they often observe only a portion of the population (a sample) and use statistics to

answer questions about the whole population. This process is called inferential statistics.

Statistical inference is the main focus of this book.

Inferential statistics can be defined as the science of using probability to make decisions.

Before explaining how this is done, a quick review of the “laws of chance” is in order. Only

four probability rules will be discussed here, those for (1) simple probability, (2) mutually

exclusive events, (3) independent events, and (4) conditional probability. For anyone wanting

more than covered here, Johnson and Kuby (2000) as well as Bennett, Briggs, and Triola

(2003) provide more detailed discussion.

Early study of probability was greatly influenced by games of chance. Wealthy games

players consulted mathematicians to learn if their losses during a night of gaming were due

to bad luck or because they did not know how to compute their chances of winning. (Of

course, there was always the possibility of chicanery, but that seemed a matter better

settled with dueling weapons than mathematical computations.) Stephen Stigler (1986)

states that formal study of probability began in 1654 with the exchange of letters between

two famous French mathematicians, Blaise Pascal and Pierre de Fermat, regarding a

question posed by a French nobleman about a dice game. The problem can be found in

Exercise 1.1.5.

In games of chance, as in experiments, we are interested in the outcomes of a random

phenomenon that cannot be predicted with certainty because usually there is more than one

outcome and each is subject to chance. The probability of an outcome is a measure of how

likely that outcome is to occur. The random outcomes associated with games of chance should

be equally likely to occur if the gambling device is fair, controlled by chance alone. Thus the

probability of getting a head on a single toss of a fair coin and the probability of getting an

even number when we roll a fair die are both 1/2.

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X # 2004 John Wiley & Sons, Inc.
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Because of the early association between probability and games of chance, we label some

collection of equally likely outcomes as a success. A collection of outcomes is called an event.

If success is the event of an even number of pips on a fair die, then the event consists of

outcomes 2, 4, and 6. An event may consist of only one outcome, as the event head on a single

toss of a coin. The probability of a success is found by the following probability rule:

probability of success ¼ number of successful outcomes

total number of outcomes

In symbols

P(success) ¼ P(S) ¼ ns

N

where nS is the number of outcomes in the event designated as success and N is the total

number of possible outcomes. Thus the simple probability rule for equally likely outcomes is

to count the number of ways a success can be obtained and divide it by the total number of

outcomes.

Example 1.1. Simple Probability Rule for Equally Likely Outcomes

There is a game, often played at charity events, that involves tossing a coin such as a 25-cent

piece. The quarter is tossed so that it bounces off a board and into a chute to land in one of nine

glass tumblers, only one of which is red. If the coin lands in the red tumbler, the player wins

$1; otherwise the coin is lost. In the language of probability, there are N ¼ 9 possible

outcomes for the toss and only one of these can lead to a success. Assuming skill is not a factor

in this game, all nine outcomes are equally likely and P(success) ¼ 1/9.
In the game described above, P(win) ¼ 1/9 and P(loss) ¼ 8/9. We observe there is only

one way to win $1 and eight ways to lose 25¢. A related idea from the early history of

probability is the concept of odds. The odds for winning are P(win)/P(loss). Here we say,

“The odds for winning are one to eight” or, more pessimistically, “The odds against winning

are eight to one.” In general,

odds for success ¼ P(success)

1� P(success)

We need to stress that the simple probability rule above applies only to an experiment with

a discrete number of equally likely outcomes. There is a similarity in computing probabilities

for continuous variables for which there is a distribution curve for measures of the variable. In

this case

P(success) ¼ area under the curve where the measure is called a success

total area under the curve

A simple example is provided by the “spinner” that comes with many board games. The

spinner is an arrow that spins freely around an axle attached to the center of a circle. Suppose

that the circle is divided into quadrants marked 1, 2, 3, and 4 and play on the board is

determined by the quadrant in which the spinner comes to rest. If no skill is involved in

spinning the arrow, the outcomes can be considered uniformly distributed over the 3608 of the

2 THE ROLE OF STATISTICS



circle. If it is a success to land in the third quadrant of the circle, a spin is a success when the

arrow stops anywhere in the 908 of the third quadrant and

P(success) ¼ area in third quadrant

total area
¼ 90

360
¼ 1

4

While only a little geometry is needed to calculate probabilities for a uniform distribution,

knowledge of calculus is required for more complex distributions. However, finding

probabilities for many continuous variables is possible by using simple tables. This will be

explained in later chapters.

The next rule involves events that are mutually exclusive, meaning one event excludes the

possibility of another. For instance, if two dice are rolled and the event is that the sum of spots

is y ¼ 7, then y cannot possibly be another value as well. However, there are six ways that the

spots, or pips, on two dice can produce a sum of 7, and each of these is mutually exclusive of

the others. To see how this is so, imagine that the pair consists of one red die and one green;

then we can detail all the possible outcomes for the event y ¼ 7:

Red die: 1 2 3 4 5 6

Green die: 6 5 4 3 2 1

Sum: 7 7 7 7 7 7

If a success depends only on a value of y ¼ 7, then by the simple probability rule the number

of possible successes is nS ¼ 6; the number of possible outcomes is N ¼ 36 because each of

the six outcomes of the red die can be paired with each of the six outcomes of the green die and

the total number of outcomes is 6 � 6 ¼ 36. Thus P(success) ¼ nS/N ¼ 6/36 ¼ 1/6.
However, we need a more general statement to cover mutually exclusive events, whether or

not they are equally likely, and that is the addition rule.

If a success is any of kmutually exclusive events E1, E2, . . . , Ek, then the addition rule for

mutually exclusive events is P(success) ¼ P(E1) þ P(E2) þ � � � þ P(Ek). This holds true with

the dice; if E1 is the event that the red die shows 1 and the green die shows 6, then P(E1) ¼
1/36. Then, because each of the k ¼ 6 events has the same probability,

P(success) ¼ 1

36

� �
þ 1

36

� �
þ 1

36

� �
þ 1

36

� �
þ 1

36

� �
þ 1

36

� �
¼ 6

36
¼ 1

6

Here 1/36 is the common probability for all events, but the addition rule for mutually exclusive

events still holds true even when the probability values are not the same for all events.

Example 1.2. Addition Rule for Mutually Exclusive Events

To see how this rule applies to events that are not equally likely, suppose a coin-operated

gambling device is programmed to provide, on random plays, winnings with the following

probabilities:

Event P(Event)

Win 10 coins 0.001

Win 5 coins 0.010
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Event P(Event)

Win 3 coins 0.040

Win 1 coin 0.359

Lose 1 coin 0.590

Because most players consider it a success if any coins are won, P(success) ¼
0.0001 þ 0.010 þ 0.040 þ 0.359 ¼ 0.410, and the odds for winning are 0.41/0.59 ¼
0.695, while the odds against a win are 0.59/0.41 ¼ 1.44.

We might ask why we bother to add 0.0001 þ 0.010 þ 0.040 þ 0.359 to obtain

P(success) ¼ 0.41 when we can obtain it just from knowledge of P(no success). On a play at

the coin machine, one either wins of loses, so there is the probability of a success,

P(S) ¼ 0.41, and the probability of no success, P(no success) ¼ 0.59. The opposite of a

success, is called its complement, and its probability is symbolized as P(�SS). In a play at the

machine there is no possibility of neither a win nor a loss, P(S)þ P(�SS) ¼ 1:0, so rather than

counting the four ways to win it is easier to find P(S) ¼ 1:0� P(�SS) ¼ 1:0� 0:59 ¼ 0:41. Note
that in the computation of the odds for winning we used the ratio of the probability of a win to

its complement, P(S)=P(�SS).

At games of chance, people who have had a string of losses are encouraged to continue to

play with such remarks as “Your luck is sure to change” or “Odds favor your winning now,”

but is that so? Not if the plays, or events, are independent. A play in a game of chance has no

memory of what happened on previous plays. So using the results of Example 1.2, suppose we

try the machine three times. The probability of a win on the first play is P(S1) ¼ 0.41, but the

second coin played has no memory of the fate of its predecessor, so P(S2) ¼ 0.41, and

likewise P(S3) ¼ 0.41. Thus we could insert 100 coins in the machine and lose on the first 99

plays, but the probability that our last coin will win remains P(S100) ¼ 0.41. However, we

would have good reason to suspect the honesty of the machine rather than bad luck, for with

an honest machine for which the probability of a win is 0.41, we would expect about 41 wins

in 100 plays.

When dealing with independent events, we often need to find the joint probability that two

or more of them will all occur simultaneously. If the total number of possible outcomes (N) is

small, we can always compile tables, so with the N ¼ 52 cards in a standard deck, we can

classify each card by color (red or black) and as to whether or not it is an honor card (ace, king,

queen, or jack). Then we can sort and count the cards in each of four groups to get the

following table:

Color

Honor Black Red Total

No 18 18 36

Yes 8 8 16

Total 26 26 52

If a card is dealt at random from such a deck, we can find the joint probability that it will be

red and an honor by noting that there are 8 such cards in the deck of 52; hence P(red and

honor) ¼ P(RH) ¼ 8/52 ¼ 2/13. This is easy enough when the total number of outcomes is
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small or when they have already been tabulated, but in many cases there are too many or there

is a process such as the slot machine capable of producing an infinite number of outcomes.

Fortunately there is a probability rule for such situations.

The multiplication rule for finding the joint probability of k independent events E1,

E2, . . . , Ek is

P(E1 and E2 and . . .Ek) ¼ P(E1)� P(E2)� � � � � P(Ek)

With the cards, k is 2, E1 is a red card, and E2 is an honor card, so P(E1E2) ¼
P(E1) � P(E2) ¼ (26/52) � (16/52) ¼ (1/2) � (4/13) ¼ 4/26 ¼ 2/13.

Example 1.3. The Multiplication Rule for Independent Events

Gender and handedness are independent, and if P(female) ¼ 0.50 and P(left handed) ¼ 0.15,

then the probability that the first child of a couple will be a left-handed girl is

P(female and left handed) ¼ P(female)� P(left handed) ¼ 0:50� 0:15 ¼ 0:075

If the probability values P(female) and P(left handed) are realistic, the computation is easier

than the alternative of trying to tabulate the outcomes of all first births. We know the

biological mechanism for determining gender but not handedness, so it was only estimated

here. However, the value we would obtain from a tabulation of a large number of births would

also be only an estimate. We will see in Chapter 3 how to make estimates and how to say

scientifically, “The probability that the first child will be a left-handed girl is likely

somewhere around 0.075.”

The multiplication rule is very convenient when events are independent, but frequently

we encounter events that are not independent but rather are at least partially related. Thus

we need to understand these and how to deal with them in probability. When told that a

person is from Sweden or some other Nordic country, we might immediately assume that

he or she has blue eyes, or conversely dark eyes if from a Mediterranean country. In our

encounters with people from these areas, we think we have found that the probability of

eye color P(blue) is not the same for both those geographic regions but rather depends, or

is conditioned, on the region from which a person comes. Conditional probability is

symbolized as P(E2jE1), and we say “The probability of event 2 given event 1.” In the case

of eye color, it would be the probability of blue eyes given that one is from a Nordic

country.

The conditional probability rule for finding the conditional probability of event 2 given

event 1 is

P(E2jE1) ¼ P(E1E2)

P(E1)

In the deck of cards, the probability a randomly dealt card will be red and an honor card is

P(red and honor) ¼ 8/52, while the probability it is red is P(R) ¼ 26/52, so the probability

that it will be an honor card, given that it is a red card is P(RH)/P(R) ¼ 8/26 ¼ 4/13, which
is the same as P(H) because the two are independent rather than related. Hence independent

events can be defined as satisfying P(E2jE1) ¼ P(E2).
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Example 1.4. The Conditional Probability Rule

Suppose an oncologist is suspicious that cancer of the gum may be associated with use of

smokeless tobacco. It would be ideal if he also had data on the use of smokeless tobacco by

those free of cancer, but the only data immediately available are from 100 of his own cancer

patients, so he tabulates them to obtain the following:

Smokeless Tobacco

Cancer Site No Yes Total

Gum 5 20 25

Elsewhere 60 15 75

Total 65 35 100

There are 25 cases of gum cancer in his database and 20 of those patients had used smokeless

tobacco, so we see that his best estimate of the probability that a randomly drawn gum cancer

patient was a user of smokeless tobacco is 20/25 ¼ 0.80. This probability could also be found

by the conditional probability rule. If P(gum) ¼ P(G) and P(user) ¼ P(U), then

P(UjG) ¼ P(GU)

P(G)
¼ (20=100)

(25=100)
¼ 20

25
¼ 0:80

Are gum cancer and use of smokeless tobacco independent? They are if P(UjG) ¼ P(U), and

from the data set, the best estimate of users among all cancer patients is P(U) ¼ 35/
100 ¼ 0.35. The discrepancy in estimates is 0.80 for gum cancer patients compared to 0.35 for

all patients. This leads us to believe that gum cancer and smokeless tobacco usage are related

rather than independent. In Chapter 5, we will see how to test to see whether or not two

variables are independent.

Odds obtained from medical data sets similar to but much larger than that in Example 1.4

are frequently cited in the news. Had the odds been the same in a data set of hundreds or

thousands of gum cancer patients, we would report that the odds were 0.80/0.20 ¼ 4.0 for

smokeless tobacco, and 0.35/0.65 ¼ 0.538 for smokeless tobacco among all cancer patients.

Then, for sake of comparison, we would report the odds ratio, which is the ratio of the two

odds, 4.0/0.538 ¼ 7.435. This ratio gives the relative frequency of smokeless tobacco users

among gum cancer patients to smokeless tobacco users among all cancer patients, and the

medical implications are ominous. For comparison, it would be helpful to have data on the

usage of smokeless tobacco in a cancer-free population, but first information about an

association such as that in Example 1.4 usually comes from medical records for those with a

disease.

Caution is necessary when trying to interpret odds ratios, especially those based on very

low incidences of occurrence. To show a totally meaningless odds ratio, suppose we have two

data sets, one containing 20 million broccoli eaters and the other of 10 million who do not eat

the vegetable. Then, if we examine the health records of those in each group, we find there are

two in each group suffering from chronic bladder infections. The odds ratio is 2.0, but we

would garner strange looks rather than prestige if we attempted to claim that the odds for

6 THE ROLE OF STATISTICS



chronic bladder infection is twice as great for broccoli eaters when compared to those who do

not eat the vegetable. To use statistics in research is happily more than just to compute and

report numbers.

The basic process in inferential statistics is to assign probabilities so that we can reach

conclusions. The inferences we make are either decisions or estimates about the population.

The tool for making inferences is probability (Figure 1.1).

We can illustrate this process by the following example.

Example 1.5. Using Probabilities to Make a Decision

A sociologist has two large sets of cards, set A and set B, containing data for her research. The

sets each consist of 10,000 cards. Set A concerns a group of people, half of whom are women.

In set B, 80% of the cards are for women. The two files look alike. Unfortunately, the

sociologist loses track of which is A and which is B. She does not want to sort and count the

cards, so she decides to use probability to identify the sets. The sociologist selects a set. She

draws a card at random from the selected set, notes whether or not it concerns a woman,

replaces the card, and repeats this procedure 10 times. She finds that all 10 cards contain data

about women. She must now decide between two possible conclusions:

1. This is set B.

2. This is set A, but an unlikely sample of cards has been chosen.

In order to decide in favor of one of these conclusions, she computes the probabilities of

obtaining 10 cards all for females:

P(10 females) ¼ P(first is female)

� P(second is female)� � � � � P(tenth is female)

The multiplication rule is used because each choice is independent of the others. For the set A,

the probability of selecting 10 cards for females is (0.50)10 ¼ 0.00098 (rounded to two

significant digits). For set B, the probability of 10 cards for females is (0.80)10 ¼ 0.11 (again

rounded to two significant digits). Since the probability of all 10 of the cards being for women

FIGURE 1.1. Statistical inference.
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if the set is B is about 100 times the probability if the set is A, she decides that the set is B, that

is, she decides in favor of the conclusion with the higher probability.

When we use a strategy based on probability, we are not guaranteed success every time.

However, if we repeat the strategy, we will be correct more often than mistaken. In the above

example, the sociologist could make the wrong decision because 10 cards chosen at random

from set A could all be cards for women. In fact, in repeated experiments using set A, 10 cards

for females will appear approximately 0.098% of the time, that is, almost once in every

thousand 10-card samples.

The example of the files is artificial and oversimplified. In real life, we use statistical

methods to reach conclusions about some significant aspect of research in the natural,

physical, or social sciences. Statistical procedures do not furnish us with proofs, as do many

mathematical techniques. Rather, statistical procedures establish probability bases on which

we can accept or reject certain hypotheses.

Example 1.6. Using Probability to Reach a Conclusion in Science

A real example of the use of statistics in science is the analysis of the effectiveness of Salk’s

polio vaccine.

A great deal of work had to be done prior to the actual experiment and the statistical

analysis. Dr. Jonas Salk first had to gather enough preliminary information and experience in

his field to know which of the three polio viruses to use. He had to solve the problem of how to

culture that virus. He also had to determine how long to treat the virus with formaldehyde so

that it would die but retain its protein shell in the same form as the live virus; the shell could

then act as an antigen to stimulate the human body to develop antibodies. At this point, Dr.

Salk could conjecture that the dead virus might be used as a vaccine to give patients immunity

to paralytic polio.

Finally, Dr. Salk had to decide on the type of experiment that would adequately test his

conjecture. He decided on a double-blind experiment in which neither patient nor doctor knew

whether the patient received the vaccine or a saline solution. The patients receiving the saline

solution would form the control group, the standard for comparison. Only after all these

preliminary steps could the experiment be carried out.

When Dr. Salk speculated that patients inoculated with the dead virus would be immune to

paralytic polio, he was formulating the experimental hypothesis: the expected outcome if the

experimenter’s speculation is true. Dr. Salk wanted to use statistics to make a decision about

this experimental hypothesis. The decision was to be made solely on the basis of probability.

He made the decision in an indirect way; instead of considering the experimental hypothesis

itself, he considered a statistical hypothesis called the null hypothesis—the expected outcome

if the vaccine is ineffective and only chance differences are observed between the two sample

groups, the inoculated group and the control group. The null hypothesis is often called the

hypothesis of no difference, and it is symbolized H0. In Dr. Salk’s experiment, the null

hypothesis is that the incidence of paralytic polio in the general population will be the same

whether it receives the proposed vaccine or the saline solution. In symbols†

H0: p I ¼ pC

†The use of the symbol p has nothing to do with the geometry of circles or the irrational number 3.1416 . . . .
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in which pI is the proportion of cases of paralytic polio in the general population if it were

inoculated with the vaccine and pC is the proportion of cases if it received the saline solution.

If the null hypothesis is true, then the two sample groups in the experiment should be alike

except for chance differences of exposure and contraction of the disease.

The experimental results were as follows:

Proportion with

Paralytic Polio

Number in

Study

Inoculated Group 0.0001603 200,745

Control Group 0.0005703 201,229

The incidence of paralytic polio in the control group was almost four times higher than in the

inoculated group, or in other words the odds ratio was 0.0005703/0.0001603 ¼ 3.56.

Dr. Salk then found the probability that these experimental results or more extreme ones

could have happened with a true null hypothesis. The probability that pI ¼ pC and the

difference between the two experimental groups was caused by chance was less than 1 in

10,000,000, so Salk rejected the null hypothesis and decided that he had found an effective

vaccine for the general public.†

Usually when we experiment, the results are not as conclusive as the result obtained by Dr.

Salk. The probabilities will always fall between 0 and 1, and we have to establish a level

below which we reject the null hypothesis and above which we accept the null hypothesis. If

the probability associated with the null hypothesis is small, we reject the null hypothesis and

accept an alternative hypothesis (usually the experimental hypothesis). When the probability

associated with the null hypothesis is large, we accept the null hypothesis. This is one of the

basic procedures of statistical methods—to ask: What is the probability that we would get

these experimental results (or more extreme ones) with a true null hypothesis?

Since the experiment has already taken place, it may seem after the fact to ask for the

probability that only chance caused the difference between the observed results and the null

hypothesis. Actually, when we calculate the probability associated with the null hypothesis,

we are asking: If this experiment were performed over and over, what is the probability that

chance will produce experimental results as different as are these results from what is

expected on the basis of the null hypothesis?

We should also note that Salk was interested not only in the samples of 401,974 people

who took part in the study; he was also interested in all people, then and in the future, who

could receive the vaccine. He wanted to make an inference to the entire population from the

portion of the population that he was able to observe. This is called the target population, the

population about which the inference is intended.

Sometimes in science the inference we should like to make is not in the form of a decision

about a hypothesis; but rather it consists of an estimate. For example, perhaps we want to

estimate the proportion of adult Americans who approve of the way in which the president is

handling the economy, and we want to include some statement about the amount of error

possibly related to this estimate. Estimation of this type is another kind of inference, and

it also depends on probability. For simplicity, we focus on tests of hypotheses in this

†This probability is found using a chi-square test (see Section 5.3).
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introductory chapter. The first example of inference in the form of estimation is discussed in

Chapter 3.

EXERCISES

1.1.1. A trial mailing is made to advertise a new science dictionary. The trial mailing list is

made up of random samples of current mailing lists of several popular magazines. The

number of advertisements mailed and the number of people who ordered the dictionary

are as follows:

Magazine

A B C D E

Mailed: 900 810 1100 890 950

Ordered: 18 15 10 30 45

a. Estimate the probability and the odds that a subscriber to each of the magazines will

buy the dictionary.

b. Make a decision about the mailing list that will probably produce the highest

percentage of sales if the entire list is used.

1.1.2. In Examples 1.5 and 1.6, probability was used to make decisions and odds ratios could

have been used to further support the decisions. To do so:

a. For the data in Example 1.5, compute the odds ratio for the two sets of cards.

b. For the data in Example 1.6, compute the odds ratio of getting polio for those

vaccinated as opposed to those not vaccinated.

1.1.3. If 60% of the population of the United States need to have their vision corrected, we

say that the probability that an individual chosen at random from the population needs

vision correction is P(C) ¼ 0.60.

a. Estimate the probability that an individual chosen at random does not need vision

correction. Hint: Use the complement of a probability.

b. If 3 people are chosen at random from the population, what is the probability that all

3 need correction, P(CCC)? Hint: Use the multiplication law of probability for

independent events.

c. If 3 people are chosen at random from the population, what is the probability that

the second person does not need correction but the first and the third do, P(CNC)?

d. If 3 people are chosen at random from the population, what is the probability that 1

out of the 3 needs correction, P(CNN or NCN or NNC)? Hint: Use the addition law

of probability for mutually exclusive events.

e. Assuming no association between vision and gender, what is the probability that a

randomly chosen female needs vision correction, P(CjF)?
1.1.4. On a single roll of 2 dice (think of one green and the other red to keep track of all

outcomes) in the game of craps, find the probabilities for:

a. A sum of 6, P(y ¼ 6)
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b. A sum of 8, P(y ¼ 8)

c. A win on the first roll; that is, a sum of 7 or 11, P(y ¼ 7 or 11)

d. A loss on the first roll; that is, a sum of 2, 3, or 12, P(y ¼ 2, 3, or 12)

1.1.5. The dice game about which Pascal and de Fermat were asked consisted in throwing a

pair of dice 24 times. The problem was to decide whether or not to bet even money on

the occurrence of at least one “double 6” during the 24 throws of a pair of dice. Because

it is easier to solve this problem by finding the complement, take the following steps:

a. What is the probability of not a double 6 on a roll, P(E) ¼ P(y = 12)?

b. What is the probability that y ¼ 12 on all 24 rolls, P(E1E2, . . . , E24)?

c. What is the probability of at least one double 6?

d. What are the odds of a win in this game?

1.1.6. Sir Francis Galton (1822–1911) was educated as a physician but had the time, money,

and inclination for research on whatever interested him, and almost everything did.

Though not the first to notice that he could find no two people with the same

fingerprints, he was the first to develop a system for categorizing fingerprints and to

persuade Scotland Yard to use fingerprints in criminal investigation. He supported his

argument with fingerprints of friends and volunteers solicited through the newspapers,

and for all comparisons P(fingerprints match) ¼ 0. To compute the number of events

associated with Galton’s data:

a. Suppose fingerprints on only 10 individuals are involved.

i. How many comparisons between individuals can be made? Hint: Fingerprints

of the first individual can be compared to those of the other 9. However, for the

second individual there are only 8 additional comparisons because his

fingerprints have already been compared to the first.

ii. How many comparisons between fingers can be made? Assume these are

between corresponding fingers of both individuals in a comparison, right thumb

of one versus right thumb of the other, and so on.

b. Suppose fingerprints are available on 11 individuals rather than 10. Use the results

already obtained to simplify computations in finding the number of comparisons

among people and among fingers.

1.2. THE SCIENTIFIC METHOD

The natural, physical, and social scientists who use statistical methods to reach conclusions all

approach their problems by the same general procedure, the scientific method. The steps

involved in the scientific method are:

1. State the problem.

2. Formulate the hypothesis.

3. Design the experiment or survey.

4. Make observations.

5. Interpret the data.

6. Draw conclusions.
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We use statistics mainly in step 5, “interpret the data.” In an indirect way we also use

statistics in steps 2 and 3, since the formulation of the hypothesis and the design of the

experiment or survey must take into consideration the type of statistical procedure to be used

in analyzing the data.

The main purpose of this book is to examine step 5. We frequently discuss the other steps,

however, because an understanding of the total procedure is important. A statistical analysis

may be flawless, but it is not valid if data are gathered incorrectly. A statistical analysis may

not even be possible if a question is formulated in such a way that a statistical hypothesis

cannot be tested. Considering all of the steps also helps those who study statistical methods

before they have had much practical experience in using the scientific method. A full

discussion of the scientific method is outside the scope of this book, but in this section we

make some comments on the five steps.

STEP 1. STATE THE PROBLEM. Sometimes, when we read reports of research, we get the

impression that research is a very orderly analytic process. Nothing could be further from the

truth. A great deal of hidden work and also a tremendous amount of intuition are involved

before a solvable problem can even be stated. Technical information and experience are

indispensable before anyone can hope to formulate a reasonable problem, but they are not

sufficient. The mediocre scientist and the outstanding scientist may be equally familiar with

their field; the difference between them is the intuitive insight and skill that the outstanding

scientist has in identifying relevant problems that he or she can reasonably hope to solve.

One simple technique for getting a problem in focus is to formulate a clear and explicit

statement of the problem and put the statement in writing. This may seem like an unnecessary

instruction for a research scientist; however, it is frequently not followed. The consequence is

a vagueness and lack of focus that make it almost impossible to proceed. It leads to the

collection of unnecessary information or the failure to collect essential information.

Sometimes the original question is even lost as the researcher gets involved in the details of

the experiment.

STEP 2. FORMULATE THE HYPOTHESIS. The “hypothesis” in this step is the experimental

hypothesis, the expected outcome if the experimenter’s speculations are true. The

experimental hypothesis must be stated in a precise way so that an experiment can be

carried out that will lead to a decision about the hypothesis. A good experimental hypothesis is

comprehensive enough to explain a phenomenon and predict unknown facts and yet is stated

in a simple way. Classic examples of good experimental hypotheses are Mendel’s laws, which

can be used to explain hereditary characteristics (such as the color of flowers) and to predict

what form the characteristics will take in the future.

Although the null hypothesis is not used in a formal way until the data are being

interpreted, it is appropriate to formulate the null hypothesis at this time in order to verify that

the experimental hypothesis is stated in such a way that it can be tested by statistical

techniques.

Several experimental hypotheses may be connected with a single problem. Once these

hypotheses are formulated in a satisfactory way, the investigator should do a literature search

to see whether the problem has already been solved, whether or not there is hope of solving it,

and whether or not the answer will make a worthwhile contribution to the field.

STEP 3. DESIGN THE EXPERIMENT OR SURVEY. Included in this step are several

decisions. What treatments or conditions should be placed on the objects or subjects of the

investigation in order to test the hypothesis? What are the variables of interest, that is,

what variables should be measured? How will this be done? With how much precision?

Each of these decisions is complex and requires experience and insight into the particular

area of investigation.

12 THE ROLE OF STATISTICS



Another group of decisions involves the choice of the sample, that portion of the

population of interest that will be used in the study. The investigator usually tries to utilize

samples that are:

(a) Random

(b) Representative

(c) Sufficiently large

In order to make a decision based on probability, it is necessary that the sample be random.

Random samples make it possible to determine the probabilities associated with the study.

A sample is random if it is just as likely that it will be picked from the population of interest as

any other sample of that size. Strictly speaking, statistical inference is not possible unless

random samples are used. (Specific methods for achieving random samples are discussed in

Section 2.2.)

Random, however, does not mean haphazard. Haphazard processes often have hidden

factors that influence the outcome. For example, one scientist using guinea pigs thought that

time could be saved in choosing a treatment group and a control group by drawing the

treatment group of animals from a box without looking. The scientist drew out half of the

guinea pigs for testing and reserved the rest for the control group. It was noticed, however, that

most of the animals in the treatment group were larger than those in the control group. For

some reason, perhaps because they were larger, or slower, the heavier guinea pigs were drawn

first. Instead of this haphazard selection, the experimenter could have recorded the animals’

ear-tattoo numbers on plastic disks and drawn the disks at random from a box.

Unfortunately, in many fields of investigation random sampling is not possible, for

example, meteorology, some medical research, and certain areas of economics. Random

samples are the ideal, but sometimes only nonrandom data are available. In these cases the

investigator may decide to proceed with statistical inference, realizing, of course, that it is

somewhat risky. Any final report of such a study should include a statement of the author’s

awareness that the requirement of randomness for inference has not been met.

The second condition that an investigator often seeks in a sample is that it be

representative. Usually we do not know how to find truly representative samples. Even when

we think we can find them, we are often governed by a subconscious bias.

A classic example of a subconscious bias occurred at a Midwestern agricultural station in

the early days of statistics. Agronomists were trying to predict the yield of a certain crop in a

field. To make their prediction, they chose several 6-ft � 6-ft sections of the field which they

felt were representative of the crop. They harvested those sections, calculated the arithmetic

average of the yields, then multiplied this average by the number of 36-ft2 sections in the field

to estimate the total yield. A statistician assigned to the station suggested that instead they

should have picked random sections. After harvesting several random sections, a second

average was calculated and used to predict the total yield. At harvest time, the actual yield of

the field was closer to the yield predicted by the statistician. The agronomists had predicted a

much larger yield, probably because they chose sections that looked like an ideal crop. An

entire field, of course, is not ideal. The unconscious bias of the agronomists prevented them

from picking a representative sample. Such unconscious bias cannot occur when experimental

units are chosen at random.

Although representativeness is an intuitively desirable property, in practice it is usually

an impossible one to meet. How can a sample of 30 possibly contain all the properties of a

population of 2000 individuals? The 2000 certainly have more characteristics than can
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possibly be proportionately reflected in 30 individuals. So although representativeness

seems necessary for proper reasoning from the sample to the population, statisticians

do not rely on representative samples—rather, they rely on random samples. (Large

random samples will very likely be representative). If we do manage to deliberately

construct a sample that is representative but is not random, we will be unable to compute

probabilities related to the sample and, strictly speaking, we will be unable to do statistical

inference.

It is also necessary that samples be sufficiently large. No one would question the necessity

of repetition in an experiment or survey. We all know the danger of generalizing from a single

observation. Sufficiently large, however, does not mean massive repetition. When we use

statistics, we are trying to get information from relatively small samples. Determining a

reasonable sample size for an investigation is often difficult. The size depends upon the

magnitude of the difference we are trying to detect, the variability of the variable of interest,

the type of statistical procedure we are using, the seriousness of the errors we might make, and

the cost involved in sampling. (We make further remarks on sample size as we discuss various

procedures throughout this text.)

STEP 4. MAKE OBSERVATIONS. Once the procedure for the investigation has been decided

upon, the researcher must see that it is carried out in a rigorous manner. The study should be

free from all errors except random measurement errors, that is, slight variations that are due to

the limitations of the measuring instrument.

Care should be taken to avoid bias. Bias is a tendency for a measurement on a variable to

be affected by an external factor. For example, bias could occur from an instrument out of

calibration, an interviewer who influences the answers of a respondent, or a judge who sees

the scores given by other judges. Equipment should not be changed in the middle of an

experiment, and judges should not be changed halfway through an evaluation.

The data should be examined for unusual values, outliers, which do not seem to be

consistent with the rest of the observations. Each outlier should be checked to see whether

or not it is due to a recording error. If it is an error, it should be corrected. If it cannot

be corrected, it should be discarded. If an outlier is not an error, it should be given

special attention when the data are analyzed. For further discussion, see Barnett and Lewis

(2002).

Finally, the investigator should keep a complete, legible record of the results of the

investigation. All original data should be kept until the analysis is completed and the final

report written. Summaries of the data are often not sufficient for a proper statistical analysis.

STEP 5. INTERPRET THE DATA. The general statistical procedure was illustrated in

Example 1.6, in which the Salk vaccine experiment was discussed. To interpret the data, we

set up the null hypothesis and then decide whether the experimental results are a rare outcome

if the null hypothesis is true. That is, we decide whether the difference between the

experimental outcome and the null hypothesis is due to more than chance; if so, this indicates

that the null hypothesis should be rejected.

If the results of the experiment are unlikely when the null hypothesis is true, we reject the

null hypothesis; if they are expected, we accept the null hypothesis. We must remember,

however, that statistics does not prove anything. Even Dr. Salk’s result, with a probability of

less than 1 in 10,000,000 that chance was causing the difference between the experimental

outcome and the null hypothesis, does not prove that the null hypothesis is false. An extremely

small probability, however, does make the scientist believe that the difference is not due to

chance alone and that some additional mechanism is operating.

Two slightly different approaches are used to evaluate the null hypothesis. In practice,

they are often intermingled. Some researchers compute the probability that the
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experimental results, or more extreme values, could occur if the null hypothesis is true;

then they use that probability to make a judgment about the null hypothesis. In research

articles this is often reported as the observed significance level, or the significance level, or

the P value. If the P value is large, they conclude that the data are consistent with the null

hypothesis. If the P value is small, then either the null hypothesis is false or the null

hypothesis is true and a rare event has occurred. (This was the approach used in the Salk

vaccine example.)

Other researchers prefer a second, more decisive approach. Before the experiment they

decide on a rejection level, the probability of an unlikely event (sometimes this is also called

the significance level). An experimental outcome, or a more extreme one, that has a

probability below this level is considered to be evidence that the null hypothesis is false. Some

research articles are written with this approach. It has the advantage that only a limited

number of probability tables are necessary. Without a computer, it is often difficult to

determine the exact P value needed for the first approach. For this reason the second approach

became popular in the early days of statistics. It is still frequently used.

The sequence in this second procedure is:

(a) Assume H0 is true and determine the probability P that the experimental outcome or a

more extreme one would occur.

(b) Compare the probability to a preset rejection level symbolized by a (the Greek letter

alpha).

(c) If P � a, reject H0. If P . a, accept H0.

If P . a, we say, “Accept the null hypothesis.” Some statisticians prefer not to use that

expression, since in the absence of evidence to reject the null hypothesis, they choose simply

to withhold judgment about it. This group would say, “The null hypothesis may be true” or

“There is no evidence that the null hypothesis is false.”

If the probability associated with the null hypothesis is very close to a, more extensive

testing may be desired. Notice that this is a blend of the two approaches.

An example of the total procedure follows.

Example 1.7. Using a Statistical Procedure to Interpret Data

A manufacturer of baby food gives samples of two types of baby cereal, A and B, to a random

sample of four mothers. Type A is the manufacturer’s brand, type B a competitor’s. The

mothers are asked to report which type they prefer. The manufacturer wants to detect any

preference for their cereal if it exists.

The null hypothesis, or the hypothesis of no difference, is H0: p ¼ 1=2, in which p is the

proportion of mothers in the general population who prefer type A. The experimental

hypothesis, which often corresponds to a second statistical hypothesis called the alternative

hypothesis, is that there is a preference for cereal A, Ha: p . 1=2.
Suppose that four mothers are asked to choose between the two cereals. If there is no

preference, the following 16 outcomes are possible with equal probability:

AAAA AAAB ABBA BBAB

BAAA BBAA ABAB BABB

ABAA BABA AABB ABBB

AABA BAAB BBBA BBBB
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The manufacturer feels that only 1 of these 16 cases, AAAA, is very different from what

would be expected to occur under random sampling, when the null hypothesis of no

preference is true. Since the unusual case would appear only 1 time out of 16 times when the

null hypothesis is true, a (the rejection level) is set equal to 1/16 ¼ 0.0625.

If the outcome of the experiment is in fact four choices of type A, then P ¼ P(AAAA) ¼
1/16, and the manufacturer can say that the results are in the region of rejection, or the results

are significant, and the null hypothesis is rejected. If the outcome is three choices of type

A, however, then P ¼ P(3 or more A’s) ¼ P(AAAB or AABA or ABAA or BAAA or

AAAA) ¼ 5/16 . 1/16, and he does not reject the null hypothesis. (Notice that P is the

probability of this type of outcome or a more extreme one in the direction of the alternative

hypothesis, so AAAA must be included.)

The way in which we set the rejection level a depends on the field of research, on the

seriousness of an error, on cost, and to a great degree on tradition. In the example above, the

sample size is 4, so an a smaller than 1/16 is impossible. Later (in Section 3.2), we discuss

using the seriousness of errors to determine a reasonable a. If the possible errors are not

serious and cost is not a consideration, traditional values are often used.

Experimental statistics began about 1920 and was not used much until 1940, but it is

already tradition bound. In the early part of the twentieth century Karl Pearson had his

students at University College, London, compute tables of probabilities for reasonably rare

events. Now computers are programmed to produce these tables, but the traditional levels

used by Pearson persist for the most part. Tables are usually calculated for a equal to 0.10,

0.05, and 0.01. Many times there is no justification for the use of one of these values except

tradition and the availability of tables. If an a close to but less than or equal to 0.05 were

desired in the example above, a sample size of at least 5 would be necessary, then a ¼
1=32 ¼ 0:03125 if the only extreme case is AAAAA.

STEP 6. DRAW CONCLUSIONS. If the procedure just outlined is followed, then our

decisions will be based solely on probability and will be consistent with the data from the

experiment. If our experimental results are not unusual for the null hypothesis, P . a, then
the null hypothesis seems to be right and we should not reject it. If they are unusual,

P � a, then the null hypothesis seems to be wrong and we should reject it. We repeat

that our decision could be incorrect, since there is a small probability a that we will reject

a null hypothesis when in fact that null hypothesis is true; there is also a possibility

that a false null hypothesis will be accepted. (These possible errors are discussed in

Section 3.2.)

In some instances, the conclusion of the study and the statistical decision about the null

hypothesis are the same. The conclusion merely states the statistical decision in specific

terms. In many situations, the conclusion goes further than the statistical decision. For

example, suppose that an orthodontist makes a study of malocclusion due to crowding of

the adult lower front teeth. The orthodontist hypothesizes that the incidence is as common

in males as in females, H0: pM ¼ pF. (Note that in this example the experimental

hypothesis coincides with the null hypothesis.) In the data gathered, however, there is a

preponderance of males and P � a. The statistical decision is to reject the null hypothesis,

but this is not the final statement. Having rejected the null hypothesis, the orthodontist

concludes the report by stating that this condition occurs more frequently in males than in

females and advises family dentists of the need to watch more closely for tendencies of

this condition in boys than in girls.
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EXERCISES

1.2.1. Put the example of the cereals in the framework of the scientific method, elaborating on

each of the six steps.

1.2.2. State a null and alternative hypotheses for the example of the file cards in Section 1.1,

Example 1.5.

1.2.3. In the Salk experiment described in Example 1.6 of Section 1.1:

a. Why should Salk not be content just to reject the null hypothesis?

b. What conclusion could be drawn from the experiment?

1.2.4. Two college roommates decide to perform an experiment in extrasensory perception

(ESP). Each produces a snapshot of his home-town girl friend, and one snapshot is

placed in each of two identical brown envelopes. One of the roommates leaves the

room and the other places the two envelopes side by side on the desk. The first

roommate returns to the room and tries to pick the envelope that contains his girl

friend’s picture. The experiment is repeated 10 times. If the one who places the

envelopes on the desk tosses a coin to decide which picture will go to the left and which

to the right, the probabilities for correct decisions are listed below.

Number of

Correct Decisions Probability

Number of

Correct Decisions Probability

0 1/1024 6 210/1024
1 10/1024 7 120/1024
2 45/1024 8 45/1024
3 120/1024 9 10/1024
4 210/1024 10 1/1024
5 252/1024

a. State the null hypothesis based on chance as the determining factor in a correct

decision. (Make the statement in words and symbols.)

b. State an alternative hypothesis based on the power of love.

c. If a is set as near 0.05 as possible, what is the region of rejection, that is, what

numbers of correct decisions would provide evidence for ESP?

d. What is the region of acceptance, that is, those numbers of correct decisions that

would not provide evidence of ESP?

e. Suppose the first roommate is able to pick the envelope containing his girl friend’s

picture 10 times out of 10; which of the following statements are true?

i. The null hypothesis should be rejected.

ii. He has demonstrated ESP.

iii. Chance is not likely to produce such a result.

iv. Love is more powerful than chance.

v. There is sufficient evidence to suspect that something other than chance was

guiding his selections.

vi. With his luck he should raise some money and go to Las Vegas.
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1.2.5. The mortality rate of a certain disease is 50% during the first year after diagnosis. The

chance probabilities for the number of deaths within a year from a group of six persons

with the disease are:

Number of deaths: 0 1 2 3 4 5 6

Probability: 1/64 6/64 15/64 20/64 15/64 6/64 1/64

A new drug has been found that is helpful in cases of this disease, and it is hoped that it

will lower the death rate. The drug is given to 6 persons who have been diagnosed as

having the disease. After a year, a statistical test is performed on the outcome in order

to make a decision about the effectiveness of the drug.

a. What is the null hypothesis, in words and symbols?

b. What is the alternative hypothesis, based on the prior evidence that the drug is of

some help?

c. What is the region of rejection if a is set as close to 0.10 as possible?

d. What is the region of acceptance?

e. Suppose that 4 of the 6 persons die within one year. What decision should be made

about the drug?

1.2.6. A company produces a new kind of decaffeinated coffee which is thought to have a

taste superior to the three currently most popular brands. In a preliminary random

sample, 20 consumers are presented with all 4 kinds of coffee (in unmarked containers

and in random order), and they are asked to report which one tastes best. If all 4 taste

equally good, there is a 1-in-4 chance that a consumer will report that the new product

tastes best. If there is no difference, the probabilities for various numbers of consumers

indicating by chance that the new product is best are:

Number picking new product: 0 1 2 3 4

Probability: 0.003 0.021 0.067 0.134 0.190

Number picking new product: 5 6 7 8 9

Probability: 0.202 0.169 0.112 0.061 0.027

Number picking new product: 10 11 12 13–20

Probability: 0.010 0.003 0.001 ,0.001

a. State the null and alternative hypotheses, in words and symbols.

b. If a is set as near 0.05 as possible, what is the region of rejection?What is the region

of acceptance?

c. Suppose that 6 of the 20 consumers indicate that they prefer the new product. Which

of the following statements is correct?

i. The null hypothesis should be rejected.

ii. The new product has a superior taste.
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iii. The new product is probably inferior because fewer than half of the people

selected it.

iv. There is insufficient evidence to support the claim that the new product has a

superior taste.

1.3. EXPERIMENTAL DATA AND SURVEY DATA

An experiment involves the collection of measurements or observations about populations

that are treated or controlled by the experimenter. A survey, in contrast to an experiment, is an

examination of a system in operation in which the investigator does not have an opportunity to

assign different conditions to the objects of the study. Both of these methods of data collection

may be the subject of statistical analysis; however, in the case of surveys some cautions are in

order.

We might use a survey to compare two countries with different types of economic

systems. If there is a significant difference in some economic measure, such as per-capita

income, it does not mean that the economic system of one country is superior to the other.

The survey takes conditions as they are and cannot control other variables that may affect

the economic measure, such as comparative richness of natural resources, population

health, or level of literacy. All that can be concluded is that at this particular time a

significant difference exists in the economic measure. Unfortunately, surveys of this type

are frequently misinterpreted.

A similar mistake could have been made in a survey of the life expectancy of men and

women. The life expectancy was found to be 74.1 years for men and 79.5 years for women.

Without control for risk factors—smoking, drinking, physical inactivity, stressful occupation,

obesity, poor sleeping patterns, and poor life satisfaction—these results would be of little

value. Fortunately, the investigators gathered information on these factors and found that

women have more high-risk characteristics than men but still live longer. Because this was a

carefully planned survey, the investigators were able to conclude that women biologically

have greater longevity.

Surveys in general do not give answers that are as clear-cut as those of experiments. If an

experiment is possible, it is preferred. For example, in order to determine which of two

methods of teaching reading is more effective, we might conduct a survey of two schools that

are each using a different one of the methods. But the results would be more reliable if we

could conduct an experiment and set up two balanced groups within one school, teaching each

group by a different method.

From this brief discussion it should not be inferred that surveys are not trustworthy. Most

of the data presented as evidence for an association between heavy smoking and lung cancer

come from surveys. Surveys of voter preference cause certain people to seek the presidency

and others to decide not to enter the campaign. Quantitative research in many areas of social,

biological, and behavioral science would be impossible without surveys. However, in surveys

we must be alert to the possibility that our measurements may be affected by variables that are

not of primary concern. Since we do not have as much control over these variables as we have

in an experiment, we should record all concomitant information of pertinence for each

observation. We can then study the effects of these other variables on the variable of interest

and possibly adjust for their effects.
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EXERCISES

1.3.1. In each of the research situations described below, determine whether the researcher is

conducting an experiment or a survey.

a. Traps are set out in a grain field to determine whether rabbits or raccoons are the

more frequently found pests.

b. A graduate student in English literature uses random 500-word passages from the

writings of Shakespeare and Marlowe to determine which author uses the

conditional tense more frequently.

c. A random sample of hens is divided into 2 groups at random. The first group is

given minute quantities of an insecticide containing an organic phosphorus

compound; the second group acts as a control group. The average difference in

eggshell thickness between the 2 groups is then determined.

d. To determine whether honeybees have a color preference in flowers, an apiarist

mixes a sugar-and-water solution and puts equal amounts in 2 equal-sized sets of

vials of different colors. Bees are introduced into a cage containing the vials, and the

frequency with which bees visit vials of each color is recorded.

1.3.2. In each of the following surveys, what besides the mechanism under study could have

contributed to the result?

a. An estimation of per-capita wealth for a city is made from a random sample of

people listed in the city’s telephone directory.

b. Political preference is determined by an interviewer taking a random sample of

Monday morning bank customers.

c. The average length of fish in a lake is estimated by:

i. The average length of fish caught, reported by anglers

ii. The average length of dead fish found floating in the water

d. The average number of words in the working vocabulary of first-grade children in a

given county is estimated by a vocabulary test given to a random sample of first-

grade children in the largest school in the country.

e. The proportion of people who can distinguish between two similar tones is

estimated on the basis of a test given to a random sample of university students in a

music appreciation class.

1.3.3. Time magazine once reported that El Paso’s water was heavily laced with lithium, a

tranquilizing chemical, whereas Dallas had a low lithium level. Time also reported that

FBI statistics showed that El Paso had 2889 known crimes per 100,000 population and

Dallas had 5970 known crimes per 100,000 population. The article reported that a

University of Texas biochemist felt that the reason for the lower crime rate in El Paso

lay in El Paso’s water. Comment on the biochemist’s conjecture.

1.4. COMPUTER USAGE

The practice of statistics has been radically changed now that computers and high-quality

statistical software are readily available and relatively inexpensive. It is no longer necessary to

spend large amounts of time doing the numerous calculations that are part of a statistical

analysis. We need only enter the data correctly, choose the appropriate procedure, and then

have the computer take care of the computational details.
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Because the computer can do so much for us, it might seem that it is now unnecessary to

study statistics. Nothing could be further from the truth. Now more than ever the researcher

needs a solid understanding of statistical analysis. The computer does not choose the

statistical procedure or make the final interpretation of the results; these steps are still in the

hands of the investigator.

Statistical software can quickly produce a large variety of analyses on data regardless of

whether these analyses correspond to the way in which the data were collected. An

inappropriate analysis yields results that are meaningless. Therefore, the researcher must learn

the conditions under which it is valid to use the various analyses so that the selection can be

made correctly.

The computer program will produce a numerical output. It will not indicate what the

numbers mean. The researcher must draw the statistical conclusion and then translate it into

the concrete terms of the investigation. Statistical analysis can best be described as a search

for evidence. What the evidence means and how much weight to give to it must be decided by

the researcher.

In this text we have included some computer output to illustrate how the output could be

used to perform some of the analyses that are discussed. Several exercises have computer

output to assist the user with analyzing the data. Additional output illustrating nearly all the

procedures discussed is available on an Internet website.

Many different comprehensive statistical software packages are available and the outputs

are very similar. A researcher familiar with the output of one package will probably find it

easy to understand the output of a different package. We have used two particular packages,

the SAS system and JMP, for the illustrations in the text. The SAS system was designed

originally for batch use on the large mainframe computers of the 1970’s. JMP was originally

designed for interactive use on the personal computers of the 1980’s. SAS made it possible to

analyze very large sets of data simply and efficiently. JMP made it easy to visualize smaller

sets of data. Because the distinction between large and small is frequently unclear, it is useful

to know about both programs.

The computer could be used to do many of the exercises in the text; however, some

calculations by the reader are still necessary in order to keep the computer from becoming a

magic box. It is easier for the investigator to select the right procedure and to make a proper

interpretation if the method of computation is understood.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain

why.

1.1. To say that the null hypothesis is rejected does not necessarily mean it is false.

1.2. In a practical situation, the null hypothesis, alternative hypothesis, and level of rejection

should be specified before the experimentation.

1.3. The probability of choosing a random sample of 3 persons in which the first 2 say “yes”

and the last person says “no” from a population in which P(yes) ¼ 0.7 is (0.7)(0.7)(0.3).

1.4. If the experimental hypothesis is true, chance does not enter into the outcome of the

experiment.

1.5. The alternative hypothesis is often the experimental hypothesis.
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1.6. A decision made on the basis of a statistical procedure will always be correct.

1.7. The probability of choosing a random sample of 3 persons in which exactly 2 say “yes”

from a population with P(yes) ¼ 0.6 is (0.6)(0.6)(0.4).

1.8. In the total process of investigating a question, the very first thing a scientist does is

state the problem.

1.9. A scientist completes an experiment and then forms a hypothesis on the basis of the

results of the experiment.

1.10. In an experiment, the scientist should always collect as large an amount of data as is

humanly possible.

1.11. Even a specialist in a field may not be capable of picking a sample that is truly

representative, so it is better to choose a random sample.

1.12. If in an experiment P(success) ¼ 1/3, then the odds against success are 3 to 1.

1.13. One of the main reasons for using random sampling is to find the probability that an

experiment could yield a particular outcome by chance if the null hypothesis is true.

1.14. The a level in a statistical procedure depends on the field of investigation, the cost, and

the seriousness of error; however, traditional levels are often used.

1.15. A conclusion reached on the basis of a correctly applied statistical procedure is based

solely on probability.

1.16. The null hypothesis may be the same as the experimental hypothesis.

1.17. The “a level” and the “region of rejection” are two expressions for the same thing.

1.18. If a correct statistical procedure is used, it is possible to reject a true null hypothesis.

1.19. The probability of rolling two 6’s on two dice is 1/6 þ 1/6 ¼ 1/3.

1.20. A weakness of many surveys is that there is little control of secondary variables.
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2 Populations, Samples, and
Probability Distributions

In Chapter 1 we showed that statistics often plays a role in the scientific method; it is used to

make inference about some characteristic of a population that is of interest. In this chapter we

define some terms that are needed to explain more formally how inference is carried out in

various situations.

2.1. POPULATIONS AND SAMPLES

We use the term population rather broadly in research. A population is commonly understood

to be a natural, geographical, or political collection of people, animals, plants, or objects.

Some statisticians use the word in the more restricted sense of the set of measurements of

some attribute of such a collection; thus they might speak of “the population of heights of

male college students.” Or they might use the word to designate a set of categories of some

attribute of a collection, for example, “the population of religious affiliations of U.S.

government employees.”

In statistical discussions, we often refer to the physical collection of interest as well as to

the collection of measurements or categories derived from the physical collection. In order to

clarify which type of collection is being discussed, in this book we use the term population as

it is used by the research scientist: The population is the physical collection. The derived set of

measurements or categories is called the set of values of the variable of interest. Thus, in the

first example above, we speak of “the set of all values of the variable height for the population

of male college students.”

This distinction may seem overly precise, but it is important because in a given research

situation more than one variable may be of interest in relation to the population under

consideration. For example, an economist might wish to learn about the economic condition

of Appalachian farmers. He first defines the population. Involved in this is specifying the

geographical area “Appalachia” and deciding whether a “farmer” is the person who owns land

suitable for farming, the person who works on it, or the person who makes managerial

decisions about how the land is to be used. The economist’s decision depends on the group in

which he is interested. After he has specified the population, he must decide on the variable or

variables, that characteristic or set of characteristics of these people, that will give him

information about their economic condition. These characteristics might be money in savings

accounts, indebtedness in mortgages or farm loans, income derived from the sale of livestock,

or any of a number of other economic variables. The choice of variables will depend on the

objectives of his study, the specific questions he is trying to answer. The problem of choosing

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X # 2004 John Wiley & Sons, Inc.
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characteristics that pertain to an issue is not trivial and requires a great deal of insight and

experience in the relevant field.

Once the population and the related variable or variables are specified, we must be careful

to restrict our conclusions to this population and these variables. For example, if the above

study reveals that Appalachian farm managers are heavily in debt, it cannot be inferred that

owners of Kansas wheat farms are carrying heavy mortgages. Nor if Appalachian farm

workers are underpaid can it be inferred that they are suffering from malnutrition, poor health,

or any other condition that was not directly measured in the study.

After we have defined the population and the appropriate variable, we usually find it

impractical, if not impossible, to observe all the values of the variable. For example, all the values

of the variable miles per gallon in city driving for this year’s model of a certain type of car could

not be obtained since some of the cars probably are yet to be produced. Even if they did exist, the

task of obtaining ameasurement from each car is not feasible. In another example, the values of the

variable condition of all packaged bandages (sterile or contaminated) produced on a particular

day by a certain firm could be obtained, but this is not desirable since the bandages would bemade

useless in the process of testing. Instead, we consider a sample (a portion of the population), obtain

measurements or observations from this sample (the sample data), and then use statistics to make

an inference about the entire set of values. To carry out this inference, the sample must be random.

We discussed the need for randomness in Chapter 1; in the next section we outline the mechanics.

EXERCISES

2.1.1. In each of the following examples identify the population, the sample, and the research

variable.

a. To determine the total amount of error in all students’ bills, a large university

selects 150 accounts for a special check of accuracy.

b. A wildlife biologist collects information on the sex of the 28 surviving California

condors.

c. An organic chemist repeats the synthesis of a certain compound 5 times using the

same procedure and each time determines the percentage of yield.

d. The Census Bureau distributes a special questionnaire to 1 out of every 20

households in the census and among other questions inquires about the number of

rooms in the dwelling.

e. A manufacturer examines the records of each of its employees to determine how

long each one has worked for the company.

2.1.2. Identify 3 different research variables that might be investigated for each of the

following populations.

a. All adults living in Colorado

b. All patients of a certain opthalmologist

c. All farms in Oklahoma

d. All veterans’ hospitals

2.1.3. For two years Francis Galton explored unmapped areas of South Africa. Thereafter, he

tried to explore unmapped areas of science. In both Africa and science, however, he

made some wrong turns. One of them was in the sampling procedure he used in his

study of the inheritance of genius. To simplify his study, he evaluated the number and
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quality of academic, artistic, musical, and other worthy “abilities” a notable person

displayed in his life, and the variable of interest was the man’s score on the scale

Galton used (see Exercise 2.3.5). He would then examine the life of that man’s father

and score his abilities in the same fashion. After gathering data on a number of son-

and-father pairs, he wanted to see if sons with high scores had fathers with high scores.

a. To obtain data, Galton used information from obituaries.

i. What is the target population, the population about which Galton wanted to

make inference?

ii. Tell why his data selection process meets the definition of a sample. Since it is a

sample, why is it of questionable use for making reliable inference?

iii. Give some ways in which his process could lead to biased results.

b. How would you have sampled the target population and what variable of interest

would you have used?

2.2. RANDOM SAMPLING

Most statistics departments have entire courses in which different sampling techniques and

their efficiencies are studied; only a brief description of sampling can be given here. If we

have a population of N items from which a sample of n is to be drawn and we choose the

n items in such a way that every combination of n items has an equally likely chance of being

chosen, then this is called a simple random sample.

In an attempt to ensure that all combinations are equally likely, we often use a lottery or other

gambling technique in drawing a sample. Thus, if we have 5 pairs of human twins in whomwewish

to compare 2methods of teaching speed reading,wemay toss a coin to decidewhich twin is assigned

to a particularmethod.Or a physiologistmay have 35 frogs andwant a sample of 10 for use in testing

an antispasmodic drug. In one technique, he paints with vegetable dye the numerals 1 through 35 on

the backs of the frogs and numbers 35 index cardswith the same numerals. He then shuffles the cards

and draws 10 cards. The 10 numbers determine which frogs will be in the treatment group.

Suchmethods are only as reliable as the gambling or lottery device used. A notably poor method

was used in the 1970military draft, when youngmenwere being called to fight in the VietnamWar.

Each date of the year was placed in a capsule, but the capsules were separated by month to ensure

that every day of every month was included. The first month’s capsules were checked and placed

in a container. The second month’s capsules were checked and added to the container, and both

groupsweremixed together. Then the thirdmonthwas checked, added, andmixed. This processwas

repeated for each of the succeeding months. Thus January was mixed 11 times, February 10 times,

March 9 times, and so on. Finally, the capsules were poured into a different container and the lottery

began. Young men of draft age were to be called into service in the order in which their birth dates

were drawn. However, later analysis of the order indicated that those born in certain months were

much more likely to be drafted than those born in other months. The Selective Service System was

criticized and was unable to defend the randomness of its procedure. In 1971 the procedure was

modified; itmade use of two containers, one holding a capsule for every date of the year and the other

the numbers from1 to 365. Two capsuleswere picked at each draw, one fromeach container, and the

number drawn indicated the order of call-up for the date drawn. This order was acceptably random.

Instead of a gambling device, the use of random numbers is usually advisable. If we have

access to a computer, it probably has a random-number generator. From this, we can obtain a

random listing of n of the available N numbered items. Some hand-held calculators produce

random numbers. If a computer or a random-number generator is not available, many tables of
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random numbers are in existence. Table A.1 in the Appendix of Useful Tables at the back of

this book is an example of a small table of random numbers. There are various ways to use a

table of random numbers; the example that follows illustrates one method.

Example 2.1. Using a Table of Random Numbers to Choose a Simple Random Sample

The physiologist who wants a random sample of 10 of his 35 frogs might use Table A.1 in the

following fashion:

1. He begins anywhere in the table, for example, at row 39 and column 14 (columns are

composed of single digits, the 5-digit groups are to aid in reading the table). He can read

the table in any direction, and he chooses to read it horizontally.

2. He reads the table as pairs of digits because the largest number for a frog (35) requires a

2-digit number. To save time, he may want to use not only 01 through 35 but also 36

through 70. To use this latter group, he subtracts 35 from each of its members, and the

difference indicates the number of the frog to be included in the sample. He does not

use values between 71 and 00 (100) because this group does not have 35 members. If he

used them similarly to 36 through 70, there would then be three ways in which frogs

1 through 30 could be in the sample but only two ways that frogs 31 through 35 could be

included, and the probability of selecting 1 through 30 would be higher than the

probability of selecting 31 through 35.

3. The pairs of digits as he finds them in Table A.1 are as follows, with parentheses around

the pairs that cannot be used:

04, (85), 50, 62, 67, (62), 24, (84), 14, (72), 26, 34, (74), 69, 03, 02

The frogs to be included in the sample are

04, 50� 35 ¼ 15, 62� 35 ¼ 27, 67� 35 ¼ 32, 24

14, 26, 34, (69� 35 ¼ 34), 03, 02

If only one random sample is going to be used in a study, the investigator can begin reading

the random-number table at any place. However, if several random samples are to be used in

the same study, it is important that different parts of the table are used so that the same set of

random numbers is not used more than once. One way to accomplish this is to mark the table

at the end of the first random sample, then begin at that point when the second sample is

selected, and so on, for all the necessary samples.

Table A.1 in the Appendix is suitable for most small or moderate-sized samples. Should a

very large sample be required, however, one would need a list of random digits generated by a

computer program or would need to refer to a published listing such as A Million Random

Digits with 100,000 Normal Deviates by the Rand Corporation.

Sometimes it is not possible to sample from the entire population of interest because part of

the population is not available for sampling. A geologist may be interested in the heavy minerals

in a certain layer of sandstone in a sequence of shale but the layer of sandstone is only available at

a few exposed ledges. The rest is buried and hidden from view. Similarly, a sociologist may be

interested in a characteristic of all of the families in a certain city but the only feasible list of

families for sampling purposes is a current commercially published city directory. Some families
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have moved into the city since the directory was compiled, and some have left. Using the

directory makes it impossible to include any of the new families in the sampling process. In

situations such as these, the researcher often modifies the description of the population so that it

coincides with the population available for sampling. Statistical inference from the sample is

made only to the available population, then a judgment is made from within the specialized area

whether or not the conclusion can be applied to the entire population of interest.

There are other methods of sampling besides simple random sampling. One is stratified

random sampling. This consists in dividing the population into groups, or strata, and then taking

a simple random sample from each stratum. This is done to improve the accuracy of estimates,

to reduce cost, or to make it possible to compare strata. The sampling is often proportional so

that the sizes of the samples from the strata are proportional to the sizes of the strata.

In this book, unless specified otherwise, all random samples are simple random samples. If a

sampling design other than simple random sampling is employed, then adjustments of the

techniques we describe are usually necessary. For more information about such adjustments, one

should consult a text on sampling such as those listed in SelectedReadings at the end of this chapter.

EXERCISES

2.2.1. Use Table A.1 to find the following.

a. Select 3 of 8 items if the starting point is row 35 and column 20 and you read

vertically.

b. Give the first 2 random digits if the starting point is row 38 and column 30 and you

read vertically.

c. Five of 45 items are to be selected at random. What are they if the starting point is

row 13, column 42, and you read vertically?

d. Select 4 of 25 items when the starting point is row 2, column 15, and you read

horizontally.

2.2.2. Use Table A.1 to pick a random sample of 15 people out of a group of 100 beginning at

row 41, column 31, and reading horizontally.

2.2.3. Use Table A.1 to pick a random sample of 5 mice out of a collection of 25 mice

beginning at row 1, column 1, and reading vertically.

2.2.4.

2.2.4. Heights (in Inches) of 50 Male Students

Student Number
(Units)

(Tens) 00 01 02 03 04 05 06 07 08 09

00 64 65 65 66 66 67 67 67 68

10 68 68 69 69 69 69 69 69 69 69

20 70 70 70 70 70 70 70 70 70 70

30 71 71 71 71 71 71 71 72 72 72

40 72 72 72 72 73 73 73 74 74 74

50 75

a. The accompanying table represents the values of the variable height for a

population of 50 male students. Use the table of random digits to draw a random

sample of 10 men from this population and record the corresponding sample data.
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b. Compute the arithmetic average of your sample data and compare it to 70, which is

the mean of the variable height for the entire population.

2.2.5. Body mass index (BMI) takes into account both the height and weight of individuals,

so large numbers represent those who are heavy for their height. It is a useful measure

for orthopedists when treating patients with pain in a weight-bearing joint such as the

knee. Suppose an orthopedist has been treating 40 patients with such severe knee pain

that all have agreed to submit to a form of experimental surgery, but prudence dictates

that the surgery be performed only on n ¼ 10, and in case of duplicates a computer-

generated random sample of 15 numbers between 1 and 40 is obtained. The random

digits are

8 39 16 11 37 39 22 22 2 3 33 21 35 3 39

The number of the 40 patients, their genders, and BMI values in a comma-delimited

format are

1,F,46 2,M,18 3,F,22 4,M,28 5,M,39

6,M,41 7,F,25 8,F,29 9,F,43 10,F,18

11,F,29 12,M,48 13,F,23 14,F,14 15,F,25

16,F,19 17,M,18 18,M,20 19,F,28 20,F,46

21,M,33 22,F,38 23,F,29 24,M,32 25,M,12

26,F,26 27,M,34 28,M,18 29,F,19 30,F,31

31,F,42 32,M,40 33,F,40 34,F,27 35,F,45

36,M,49 37,F,19 38,F,26 39,M,10 40,F,20

a. Use the computer-generated set of random digits to select the numbers of the 10

patients to receive the experimental surgery.

b. To evaluate the representativeness of the sample:

i. Compute the percentage of females and compare that to fact that 25 of the

original 40 are females.

ii. Compute the sample BMI average and compare it to the mean of 28.875 for all

40 patients.

c. Tell why you think the 10 chosen for surgery are (or are not) representative of the

original 40?

2.3. LEVELS OF MEASUREMENT

When we make observations about a sample from some population of interest, we are

collecting the sample data. These data may consist of lists of measurements, tallies of

particular categories, answers to questions, and so on. The attribute we are observing will take

on different values, or will vary, from observation to observation, so we have been calling

these attributes variables. Thus, collecting sample data consists in recording the various

values the variables assume for each member of the sample. We call this process

measurement.
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We often have a choice of levels when we are measuring. For example, a proctologist

collecting data on cancer of the colon could record information about polyps in patients using

different levels of measurement. She might simply record that polyps are present or not

present in the colon of a patient—a rough categorization involving a low level of

measurement. She might choose a higher level of measurement and rank her patients from the

one with the most polyps to the patient with the fewest. Another approach would be to record

the actual number of polyps, a higher level of measurement than ranks. There is an even

higher level of measurement; she could determine the percentage of the area of the colon

which is affected by polyps; this would locate the degree of invasion on a continuous scale.

A different level of measurement is used in each of these cases. These levels are called the

nominal scale, the ordinal scale, the discrete numerical scale, and the continuous numerical

scale, respectively.

Levels of Measurement Example

Numerical scales

Continuous Percentage of invasion

Discrete Number of polyps

Ordinal scale Rank among patients

Nominal scale Present/not present

We are using the nominal scale when we put observations into categories that have no

natural numerical relationship to each other. Examples are sex, occupation, color of eyes, and

state of residence. When choosing categories for a nominal scale, it is necessary that there be a

class for each observation and that no observation belong to more than one class.

The ordinal scale is a higher level of measurement than the nominal scale. We are using

the ordinal scale if we rank the observations. For example, we could rank the pelts of 10 foxes

from the lightest color to the darkest. When the ordinal scale is used, the ranks give some

numerical information about the categories, but the underlying classification need not be

numerical, as in this case of the color of the pelts. If the underlying categories are numerical,

the difference between any two consecutive ranks need not be constant. For example, if we

rank the weights of 5 research animals, the difference between the first and second weight

might be 3 ounces, while the difference between the second and third weight might be only

1 ounce. In this example there is more precise underlying information, but we choose not to

record it. If the only information available is on the ordinal scale, then it is not possible to

specify the underlying difference between any two ranks.

We are using the discrete numerical scale when the observations are naturally numerical,

the scale is uniform, and there is a built-in limit to how precisely the measurements can be

taken. If data are on a discrete numerical scale, there are only a finite number of values

possible, or possibly a countable infinity—as many as the counting numbers.† Examples are

the number of offspring in a litter, the number of rooms in a house, the number of quarts of

milk ordered by a supermarket (the count here could be in 1/4 quarts, but no more precise

measurement is usually possible), the values of various coins, shoe sizes (for a fixed width),

and the number of wells drilled until oil is found.

The continuous numerical scale is the highest level of measurement. A variable is

continuous when its values are “measurements” in the common meaning of that term; that is,

†The nominal and ordinal scales are also discrete.
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the scale is uniform and observations are as precise as we choose. Continuous variables

theoretically can assume as many values as there are real numbers. In practice, we measure in

whole numbers or to a few decimal places so the data are collected on the discrete numerical

scale, but theoretically there is a more precise underlying scale of measurement. Examples are

weight, blood pressure, age, length, and temperature.

If we have collected data using either numerical scale, it is possible to decrease the level of

measurement to the ordinal scale. For example, if the measurements are the heights in inches

of 5 men, these measurements can be reduced to ranks. The scale could even be reduced to a

nominal scale by classifying the men as tall or short.

Although we can reduce the scale from a higher to a lower level of measurement, it is

impossible for us to move the other way. If it is known that a certain number of men are tall

and another number short, there is no way of determining how many men are 69 in. tall. It is

important to be aware of this during the planning of an experiment. We must be sure to make

our observations at a level high enough to give us pertinent information. If data are collected

at too low a level of measurement, it is impossible to recover more precise information. On the

other hand, no one should go to extreme efforts to obtain a very fine measurement if this

information is not necessary or if it is distracting. For example, it is sufficient to know that an

insecticide kills termites within a 24-hour period. There is no advantage to knowing whether it

attains 100%mortality in 17 hours, 13 minutes, 49 seconds compared with another insecticide

that attains 100% mortality in 18 hours, 31 minutes, 11 seconds.

Knowledge of the different levels of measurement not only enables us to make decisions

about the desired level of precision but also helps us to choose the statistical procedures

appropriate for analyzing the data. One set of procedures applies only to the nominal scale,

another set to the ordinal scale, and still others are applicable to the discrete or continuous

numerical scale. Unless we can recognize the level of measurement being used, we will be

unable to choose an appropriate analysis. Chapters 3 through 5 deal mainly with procedures

for data collected on the nominal scale or reduced to the nominal scale after collection. The

remaining chapters deal with numerical data; however, at various points where appropriate,

procedures are also provided for data which were collected on the ordinal scale or reduced to

it. These alternative procedures will be identified as nonparametric statistics, with the term

defined in Section 3.4. For more extensive coverage of such procedures, the reader is referred

to one of the texts on nonparametric statistics in the Selected Readings, namely Conover

(1998), Daniel (1990), or Hollander and Wolfe (1999).

EXERCISES

2.3.1. Which is the highest level of measurement possible for each of the following variables?

a. Daily high temperature for a given year in Chicago

b. Marital status of the applicants for a particular job

c. Class standings at a university (freshman, sophomore, etc.)

d. Colors of roses

e. Weights of all American-made cars

f. Number in attendance per day at a particular high school

g. Birthdays of people in a certain group

2.3.2. Which of the following sets of categories are suitable for a nominal scale when

classifying persons? (There must be a unique category for each observation.)
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a. Female, only child, under 66 in. tall

b. Only child, has only brothers, has only sisters, has both brothers and sisters

c. Less than three children in a family, more than three children in a family

d. Left handed, right handed

e. Blue eyed, female, blond

2.3.3. Correct each of the unsuitable sets in Exercise 2.3.2.

2.3.4. In Exercise 2.2.4:

a. The level of measurement used to record height for this population is the numerical

scale. Is it discrete or continuous?

b. Could a higher level of measurement have been employed to record the data?

c. Could height have been measured more accurately?

2.3.5. Sir Francis Galton believed that manual skills are among the many abilities that are

inherited. Hence, even the young children of skilled laborers should show greater

manual dexterity than those of unskilled laborers. For evidence, suppose he watched 20

children of the age of 3 at play with toys requiring some manual ability. Ten of the

children are children of skilled laborers and the other 10 of unskilled laborers, but at the

time of measurement, he would not know to which group a child belongs. When

making subjective measures, Galton used the scale

x g f e d c b a A B C D E F G X

in which a lower-case x is the lowest possible measurement and an upper-case X the

highest. Assume this is used to measure the abilities of the 20 children and the

following data were obtained:

Father Children’s Scores

Skilled e b a B C D F G G X

Unskilled x g f d d c A B E F

a. What is the scale of measurement? Explain.

b. Galton would see evidence that the children of skilled laborers have greater

dexterity. Explain why.

c. How would you summarize the data, graphically or numerically, to support the idea

of greater ability for the group with skilled-laborer fathers?

2.4. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

In Example 1.7, a test of hypothesis is carried out to determine if there is a preference for type

A baby cereal over type B. The sample is a randomly chosen group of 4 mothers and the

variable is recorded on the nominal scale (A or B). The test of hypothesis amounts to

comparing the empirical results of sampling and recording outcomes in the real world with a

theoreticalmodel of what happens if the null hypothesis is true. The theoretical model is called

a probability distribution. In this section we discuss the nature of probability distributions and

how they act as models for studies that involve random sampling.

2.4. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 33



To develop the theoretical model for the test in Example 1.7 the possible outcomes of the

study are associated with numbers, the number of mothers out of the 4 in the sample who

prefer cereal A. The outcomes of this study are associated with 0, 1, 2, 3, or 4 (Figure 2.1).

Numbers of this type, that is, those that are associated with the possible outcomes of an

experiment or survey, are called the values of the random variable y. The random variable is

the process of association. The random variable in this example is a discrete random variable

because it has a countable number of values: 0, 1, 2, 3, 4.

To build the model, we assume that the null hypothesis is true and we determine the

probability of each of the values of the random variable. Since the null hypothesis in this

example is that the mothers have no preference between A and B (i.e., a randomly chosen

mother will prefer A with probability 1/2 and B with probability 1/2), the 16 outcomes in

Figure 2.1 are equally likely. The value of the random variable is 0 if no mothers prefer A; thus

the probability of 0 is 1/16 since there is only 1 outcome of this type (BBBB) among the 16

equally likely outcomes. We write p(0) ¼ 1/16 to indicate that the probability that the value

of the random variable will be 0 is 1/16.
To find P(y ¼ 1) ¼ p(1), we note that there are four cases in which exactly 1 mother out of

4 prefers A; thus p(1) ¼ 4/16. As we saw in Chapter 1, the general rule for calculating the

probability of an event when all outcomes are equally likely is

probability of success ¼ number of successful outcomes

total number of outcomes

FIGURE 2.1. Associating numbers with nominal data.
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In more general terms we can say:

probability of an event ¼ number of outcomes giving the event

total number of outcomes

All of the probabilities are summarized in the table of Figure 2.2a and in the graph of

Figure 2.2b.

The values of a discrete random variable y together with their associated probabilities are

called a probability distribution, and p(y) is called the probability function. In order for p(y) to

be a probability function, two conditions are necessary:

1. 0 � p(y) � 1 for all values of y.

2.
X
y

p(y) ¼ 1, that is, the sum of p(y) over all values of y is 1.

Note that in the baby cereal example these two conditions are satisfied.

There are many functions that satisfy these two conditions. In Table 2.1, examples A

through D represent discrete probability distributions. In example D the random variable has a

countable infinity of values, and p(y) can be given by the formula p(y) ¼ (1/2)y. In many

cases it is possible to represent the probability function by a formula.

It is not difficult to find functions with the two properties required for a probability

function. However, a probability distribution will only be of value statistically if it

represents—models—a real-life situation. Some examples of probability distributions used as

models occur in Exercises 1.2.4 through 1.2.6. The method for determining the probabilities in

these examples is explained in Chapter 3. An example of a test of hypothesis that uses a

different type of discrete probability distribution follows.

Example 2.2. Testing a Hypothesis Using a Discrete Probability Distribution

A new salesperson for a company is told that the probability of making a sale on a single call is

1/4. The salesperson calls on 7 people and makes no sales. Finally, on the eighth attempt, a

FIGURE 2.2. A discrete probability distribution. (a) Tabular form. (b) Graph.
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sale is completed. The salesperson wonders if there is any evidence (at the 0.05 level of

significance) that the probability of 1/4 for a sale is too high.

The null hypothesis is H0: u ¼ 1/4; that is, the probability of a sale is 1/4 on a single

attempt.† The alternative is Ha: u , 1/4 because the salesperson is looking for evidence that

the figure is too high.

If the probability of a sale is 1/4, then the probability of no sale on a single trial is 3/4.
Using these values, the probability model can be found. The probability of a sale on the first

call is

p(1) ¼ 1

4

and the probability that the first sale occurs on the second call is

p(2) ¼ 3

4

� �
1

4

� �
¼ 3

16

since there is no sale on the first call and there is a sale on the second call. The probabilities

are multiplied because the calls are assumed to be independent of each other; that is, we

assume the customers are randomly chosen and do not influence each other and the

salesperson behaves the same way on each call.

Similarly,

p(3) ¼ 3

4

� �
3

4

� �
1

4

� �
¼ 9

64

and

p(y) ¼ 3

4

� �y�1
1

4

� �

is the general formula for the probability that the first sale occurs on the yth call. This

probability distribution is known as a geometric distribution.

†The Greek letter u is read “theta”.

TABLE 2.1. Four Discrete Probability Distributions

A B C D

y p(y) y p(y) y p(y) y p(y)

0 1/4 5 1/5 0.5 0.125 1 1/2

1 1/2 6 1/5 1.0 0.125 2 1/4
2 1/4 7 1/5 1.5 0.125 3 1/8

8 1/5 2.0 0.625 4 1/16

9 1/5 5 1/32
..
. ..

.

N 1/2N
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The beginning of the geometric distribution that is the model of this study can be

summarized as follows:

y p(y)

1 1/4 ¼ 0.2500

2 3/16 ¼ 0.1875

3 9/65 ¼ 0.1406

4 27/256 ¼ 0.1055 0.8665

5 81/1,024 ¼ 0.0791

6 243/4,096 ¼ 0.0593

7 729/16,384 ¼ 0.0445

9>>>>>>>>=
>>>>>>>>;

8 2,187/65,536 ¼ 0.0334
..
. ..

.

If u , 1/4, a larger number of calls will be necessary before the first sale than if u ¼ 1/4.
Thus the P value associated with this study is

P ¼ P(8 or more calls needed for the first sale)

¼ 1� P(1 through 7 calls needed for the first sale)

¼ 1� 0:8665

¼ 0:1335

Since P ¼ 0:1335 . a ¼ 0:05, the null hypothesis is accepted. There is no statistically

significant evidence that the figure given to the salesperson is too high.

If the data are recorded on a continuous scale, the variable of interest corresponds to a

continuous random variable. In this type of model it is not possible to represent the related

probabilities by a table or a line graph; instead, a smooth curve is used to indicate the

continuous probability distribution that is the model for the study.

Example 2.3. A Continuous Probability Distribution

One of the major problems in coal mining is roof collapse. Any procedure which will increase

the probability of a roof collapse must be used with great caution. A mining engineer questions

whether the drilling of air shafts affects the stability of the roof. In one area of the mine, two air

shafts are located 360 ft apart along a straight tunnel (Figure 2.3). The engineer reasons that if

the roof’s stability is unaffected by the air shafts, then the amount of debris from the roof that

falls to the floor will be uniformly distributed between the shafts. If, however, the air shafts are

causing instability, larger amounts of roof debris will appear close to the air shafts.

A uniform distribution of debris can be modeled by the graph in Figure 2.4. The random

variable y is the location along the floor between the shafts, a number on a continuous scale

between 0 and 360. The curve is a horizontal line which indicates that the debris is uniformly

deposited on the floor. This line, f (y) ¼ 1/360, is called the probability density function of the

random variable y. The curve (the horizontal line) is placed at 1/360 on the vertical axis so that
the area of the rectangle under the line and between 0 and 360 is equal to 1. The proportion of

debris between location 90 and 180 is represented by the area between 90 and 180 and under the
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curve; the proportion, or probability, is 1/4. The probability of debris between 0 and 95 is given
by the area under the curve and to the left of 95. The probability is 95/360 ¼ 19/72 (Figure 2.5).

Notice that the density function, unlike a probability function for a discrete random

variable, does not indicate a probability directly; rather the density function is used to find an

area that corresponds to the probability. Because areas correspond to probabilities, the

probability of debris at a particular point, say y ¼ 95, is 0. This becomes clear by noticing that,

rather than a region, there is only a vertical line segment at 95 and that a line segment has no

area. It follows that P(y � 95) ¼ P(y , 95) in a continuous probability distribution, but this

is not true in a discrete distribution.

In many models for continuous random variables, the continuous probability distribution

is given by a curve that is neither a straight line nor a figure formed from straight lines. In these

cases, areas are difficult to determine and calculus must be used. Fortunately, tables

are available for most of the commonly encountered distributions, and thus even those who

are not familiar with calculus are able to use continuous probability distributions that are

represented by curves. The first distribution of this type is discussed in Chapter 5.

EXERCISES

2.4.1.

y: 2 4 6 8 10

p(y): 1/6 2/6 1/6 — 1/6

FIGURE 2.3. Cross section of mine tunnel.

FIGURE 2.4. Continuous uniform probability distribution.
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a. If the table above represents a probability distribution, what is the value of p(8)?

b. Graph the probability distribution.

c. Find P(y � 6), P(y , 6), p(y ¼ 6), and p(y � 6).

2.4.2. If p(y) ¼ 1/5 for y ¼ 1, 2, 3, 4, 5:

a. Show that this is a probability distribution.

b. Draw the graph.

c. Find P(y . 3), P(y ¼ 3), P(y � 3), and P(y , 3).

2.4.3. Given the continuous probability distribution in Figure 2.6, imagine that the

distribution represents the probability that a certain expert dart thrower will hit a 1-ft

target within a certain distance y from the center 0.

a. What is the total area within the triangle?

b. What is the area of the shaded portion of the distribution?

c. What is the probability that the dart will hit at a point that is from 6 in. to 1 ft from

the center of the target?

d. What is the area of the unshaded portion of the distribution?

e. What is the probability that the dart will hit at a point that is less than 6 in. from the

center of the target?

2.4.4. An oil company believes that the probability of striking oil on a single random drilling

in a certain field is 1/3. They drill and hit oil on the sixth attempt. Is there any evidence

that the probability of a strike is less than 1/3?

2.5. EXPECTED VALUE AND VARIANCE OF A PROBABILITY

DISTRIBUTION

Since probability distributions are the key to statistical inference, it is helpful to study some of

their characteristics. Two useful characteristics of a probability distribution are its expected

value and its variance. Expected value is a measure of the location of the distribution, while

variance is a measure of its spread.

To introduce the idea of expected value, let us consider a certain electronic game that involves

hitting a random target. To make the game sufficiently challenging to hand-eye coordination, it

has been programmed so that the position of the target, themoment that the target appears, and the

number of targets that appear during the period of play all vary. The number of targets to appear

can be 11, 12, 13, 14, 15, or 16. They occur randomly and with equal frequency over a large

FIGURE 2.5. Shaded area indicates P(0 � y � 95).
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number of periods of play. A player of the game is unable to predict the number of targets that will

appear during any one playing period, but the player can determine the expected number of

targets, that is, the average number per playing session if the game is played many times.

The number of targets can be modeled by a discrete uniform probability distribution in

which the values of the random variable y are 11, 12, 13, 14, 15, and 16 and the probability

function p(y) is 1/6 for each of the values because they occur with equal frequency.

y p(y)

11 1/6
12 1/6
13 1/6
14 1/6
15 1/6
16 1/6

The expected number of targets, E(y), per playing period is

E(y) ¼ 11þ 12þ 13þ 14þ 15þ 16

6
¼ 81

6
¼ 13:5

FIGURE 2.6. Continuous triangular probability distribution.
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that is, the arithmetic average of the 6 equally frequent numbers. If many games are played, on

the average 13.5 targets will appear per session. Note that the expected value need not be one

of the possible values of the random variable; 13.5 targets never appear in a playing session.

Another way to compute the expected value is to use the formula

E(y) ¼
X

yp(y)

that is, the expected value of y is the sum of the products of the values of y times their

corresponding probabilities. The following table illustrates how this formula is used:

y p(y) yp(y)

11 1/6 11/6
12 1/6 12/6
13 1/6 13/6
14 1/6 14/6
15 1/6 15/6
16 1/6 16/6

E(y) ¼ P
yp(y) ¼ 81/6 ¼ 13.5

A third column is computed from the probability distribution. This third column is obtained by

finding the product of the corresponding elements in the first two columns. The expected value

of y is the sum of the products in the third column. The advantage of this second approach is

that it can be used to find an expected value even if the probabilities are not all the same. The

following example illustrates this general type of problem.

Example 2.4. The Expected Value of a Discrete Probability Distribution

A teacher gives frequent short quizzes that consist of 2 multiple-choice questions. Each question

is followed by 4 answers, and only 1 is correct. Because these quizzes are so short, the teacher

wonders if they are useful for determining which students have learned the material. The teacher

decides to find out how many questions a student can be expected to answer correctly if the

student has no knowledge of the material and is choosing answers in a random fashion.

On a single question, the probability of a correct guess is 1/4 because each answer is

equally likely to be chosen and only 1 answer is correct. For 2 questions, the number of correct

responses y can be 0, 1, or 2, and the probability distribution, which is a model of the number

of correct responses under guessing, is

y p(y)

0 9/16
1 6/16
2 1/16

The probabilities in this distribution are obtained by computing p(0) ¼ P(two

incorrect) ¼ (3/4)(3/4) ¼ 9/16 and p(2) ¼ P(two correct) ¼ (1/4)(1/4) ¼ 1/16; then p(1)

must equal 6/16 so that the sum of the probabilities is equal to 1.
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If a large number of quizzes of this type are given, then the expected number of correct

answers per quiz is

E(y) ¼
X

yp(y)

In tabular form:

y p(y) yp(y)

0 9/16 0

1 6/16 6/16
2 1/16 2/16

E(y) ¼ P
yp(y) ¼ 8/16 ¼ 0.5

On the average, the student will guess correctly only 0.5 of an answer per quiz. Although it is

impossible to get 0.5 of an answer correct on a single quiz, the expected value is meaningful

for a large number of quizzes.

The teacher decides that the quizzes are useful for distinguishing those who are guessing

from those who have knowledge of the material. For example, if 40 such 2-question quizzes

are given, then the student who is guessing is expected to answer correctly about 20 out of the

80 questions asked. A student who answers many more correctly, for example, 60 out of the

80 questions, demonstrates some knowledge of the material.

The expected value can be thought of as the location, or center, of the probability

distribution. This seems reasonable if we visualize a uniform calibrated bar on which we place

weights (all of equal heaviness): nine at 0, six at 1, and one at 2 (Figure 2.7). The bar will

balance at 0.5, the expected value.

Another useful characteristic of a probability distribution is its variance. Variance is a

measure of the spread of a distribution relative to its expected value. In the electronic game

example, the random variable y had values 11, 12, 13, 14, 15, and 16 with equal frequency.

The deviations of these values from the expected value of 13.5 are

y y 2 E(y)

11 11 2 13.5 ¼ 22.5

12 12 2 13.5 ¼ 21.5

13 13 2 13.5 ¼ 20.5

14 14 2 13.5 ¼ 0.5

15 15 2 13.5 ¼ 1.5

16 16 2 13.5 ¼ 2.5

The deviations are shown graphically in Figure 2.8.

We might expect to measure spread by averaging these deviations. However, since the sum

of the deviations from the expected value is always 0, this is not a useful measure. To obtain a

meaningful average, we use the squares of the deviations. The variance of a probability

distribution is the average squared deviation from its expected value. Using the probabilities,
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the formula for the variance of y is

V(y) ¼
X

½y� E(y)�2p(y)

In tabular form (using fractions to avoid rounding error), the computations are

y p(y) y 2 E(y) [y 2 E(y)]2 [y 2 E(y)]2 p(y)

11 1/6 22.5 ¼ 25/2 25/4 25/24
12 1/6 21.5 ¼ 23/2 9/4 9/24
13 1/6 20.5 ¼ 21/2 1/4 1/24
14 1/6 0.5 ¼ 1/2 1/4 1/24
15 1/6 1.5 ¼ 3/2 9/4 9/24
16 1/6 2.5 ¼ 5/2 25/4 25/24

V(y) ¼ 70/24

This formula is used even if the probabilities are not all equal.

FIGURE 2.7. Expected value as the balancing point.

FIGURE 2.8. Deviations from the expected value.
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Variance measures the spread of a distribution. The larger the variance, the larger the

spread. If we take the positive square root of the variance, we obtain the standard deviation of

the random variable, sd(y). In this example

sd(y) ¼
ffiffiffiffiffiffiffiffiffiffi
V(y)

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
70=24

p
¼ 1:71

If we are told only the expected value and standard deviation of a probability distribution, we

know a surprising amount about the nature of the distribution. Values of the random variables

that are more than two or three standard deviations from the mean have very low probabilities

associated with them. For example, in the case of the electronic game

E(y) ¼ 13:50

sd(y) ¼ 1:71

and

2½sd(y)� ¼ 3:42

Two standard deviations below the expected value is

E(y)� 2½sd(y)� ¼ 13:50� 3:42 ¼ 10:08

and the probability of 10 or fewer targets in a single playing period is very low; in fact, it is

0. Two standard deviations above the expected value is

E(y)þ 2½sd(y)� ¼ 13:50þ 3:42 ¼ 16:92

and the probability of 17 or more targets is 0.

In practice, the computation of the variance from the formula

V(y) ¼
X

½y� E(y)�2p(y)

is sometimes tedious because of the subtractions and squaring. A mathematically equivalent

formula may be used:

V(y) ¼
X

y2p(y)� ½E(y)�2

We illustrate this formula for the probability distribution of the 2-question multiple-choice

quizzes.

Example 2.5. The Variance of a Probability Distribution

For the short quizzes, a fourth column y 2p(y) is computed and summed after the computation

of the expected value. The fourth column is obtained by multiplying the elements in the first

column by the corresponding elements in the third column:

y p(y) yp(y) y 2p(y)

0 9/16 0 0

1 6/16 6/16 6/16
2 1/16 2/16 4/16P

y 2 p(y) ¼ 10/16
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Then

V(y) ¼
X

y2p(y)� ½E(y)�2

¼ 10

16
� 1

2

� �2

¼ 6

16

Note that in this example

E(y) ¼ 0:5

sd(y) ¼
ffiffiffiffiffiffiffiffiffiffi
6=16

p
¼ 0:61

and 2 standard deviations below and above the expected value are

E(y)� 2 ½sd(y)� ¼ 0:5� 2(0:61) ¼ �0:72

E(y)þ 2 ½sd(y)� ¼ 0:5þ 2(0:61) ¼ 1:72

There is 0 probability that the value of the random variable is below 20.72 and 1/16
probability that the random variable will have a value above 1.72. Using only these facts, if

a student frequently answered both questions correctly, the teacher decides that the model

based on guessing does not fit this student and the student probably has knowledge of the

material.

The main use of the variance (or standard deviation) is for purposes of inference. This

application is developed more fully in later chapters. The discussion in this section is

restricted to discrete random variables. It is also possible to consider the expected value and

variance of a continuous random variable; in such cases, calculus is usually needed to find

the values.

Procedure. Expected Value and Variance of a Probability Distribution

Expected value: E(y) ¼ P
yp(y)

Variance: V(y) ¼ P ½y� E(y)�2p(y)
Standard deviation: sd(y) ¼ ffiffiffiffiffiffiffiffiffiffi

V(y)
p

EXERCISES

2.5.1. Find the mean and the variance of the probability distributions A to C in Table 2.1.

2.5.2. In Mendel’s experiments on pea plants, he found that the trait of being tall is dominant

over being short. His theory indicates that if pure-line tall and pure-line short plants are

cross-pollinated and then the hybrids in the next generation are cross-pollinated, in the

resulting population approximately 3/4 of the plants will appear tall and 1/4 will
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appear short. If 4 plants are chosen at random from such a population, the best model

for the number of tall plants in 4 is

y: 0 1 2 3 4

p(y): 1/256 12/256 54/256 108/256 81/256

a. Find the expected value of this probability distribution.

b. Find the variance of the probability distribution.

c. What is the probability that the value of the random variable will be more than 2

standard deviations below the expected value?

d. What is the probability that the value of the random variable will be more than 2

standard deviations above the expected value?

2.5.3. A gambling game is played in which there is a group of 100 cards with one $25 winning

card, two $10 winning cards, and three $5 winning cards. After paying a certain fee, a

player selects one card at random. If it is one of the winning cards, the player receives

the designated amount. If it is one of the other cards, the player wins nothing. The card

is returned to the deck, the cards shuffled, and they are ready for the next play.

a. Find the probability distribution for y, the number of dollars won (use the rule for

equally likely events).

b. If a large number of plays are purchased, what are the expected winnings per play,

or in statistical terms, what is the expected value of y?

c. Would it be reasonable to pay $1 to play this game?

d. Find the variance of this probability distribution.

e. What proportion of the time will the winnings be within two standard deviations of

the expected value?

2.5.4.

y: 1 2 3 4 5

p(y): 1/5 1/5 1/5 1/5 1/5

a. Find the expected value of y.

b. Find V(y).

c. Compare your answers with those found in Exercise 2.5.1 for Table 2.1, distribution

B. Explainwhy there is a difference in the expected values but the variances are the same.

2.5.5.

y: 1 2 3 4

p(y): 1/4 1/4 1/4 1/4

a. Find E(y).

b. Compare this result with that of Exercise 2.5.4; find a simple general formula for the

expected value of a discrete uniform distribution of successive integers from a to b.
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REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false,

explain why.

2.1. The objective of statistics is to make inference about a population based on information

contained in a sample from that population.

2.2. A single population may have several variables of interest to the investigator.

2.3. A lottery device may be an acceptable way to obtain a completely random sample.

2.4. When using a random-number table to select a sample, always begin at the beginning of

the table.

2.5. The choice of sampling design has no effect on the choice of the procedure used for

statistical analysis.

2.6. When choosing categories for the nominal scale, the only condition is that there is a

category for each piece of data.

2.7. Data on the numerical scale can be easily changed to the nominal scale.

2.8. The ordinal scale is sometimes used even though more precise numerical information is

available.

2.9. Data on an ordinal scale can be easily changed to the numerical scale.

2.10. Barometric pressure is usually recorded on the ordinal scale.

2.11. Yearly wages to the nearest dollar are recorded on the discrete numerical scale.

2.12. In a continuous probability distribution, the total area between the curve representing

the distribution and the horizontal axis is 1.

2.13. In a continuous probability distribution, the probability of any particular value is the

vertical distance at the value between the horizontal axis and the curve representing the

distribution.

2.14. In a discrete probability distribution, the length of a vertical line at a certain value can

be interpreted as the probability that such a value will result from random sampling.

2.15. If a population is infinite in size, the variable of interest is continuous.

2.16. Random variables always have numerical values.

2.17. The expected value of a probability distribution can be thought of as the center of

balance.

2.18. The variance of a probability distribution is a measure of location, and the expected

value indicates the spread.

2.19. If 2 probability distributions have equal variances, then their expected values are equal

also.

2.20. The variance of a probability distribution can be defined symbolically as E[y 2 E(y)]2.
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3 Binomial Distributions

In many experiments and surveys in which the variable of interest is being recorded at the

nominal level, there are only 2 possible values or outcomes for the variable. For example, a

salesman either makes a sale or does not make a sale, a newborn child is either a girl or a boy,

and an insecticide may kill an insect or fail to kill it. Under certain conditions, samples

involving dichotomous variables of this type can be represented by a theoretical probability

distribution called a binomial distribution, binomial because of the two possible outcomes. In

this chapter we look at the statistical interpretation of experimental results that can be

modeled by binomial distributions.

3.1. THE NATURE OF BINOMIAL DISTRIBUTIONS

The population of human beings can be classified as “having type O blood” or “not having

type O blood.” There is no way that we can get exact information about the entire population,

since this group is so large. It has been estimated that the proportion of people with type O

blood is 0.40. Assume that the estimate is correct. If we observe a single person selected at

random, the probability that the person will have type O blood is 0.40 and the probability that

the person will not have type O blood is 0.60.

Now let us imagine that a large metropolitan hospital has a list of several thousand people

willing to donate blood. If 4 people are chosen at random from the list, how likely is it that

none have type O blood? One has type O? Two? Three? Four?

We first list the different possible outcomes for a sample of 4 people. Let O mean that a

person has type O blood, and let N mean that the person does not have type O blood. The

sequence of symbols indicates the results in the order in which they occur in the experiment,

so NNON is a different outcome from ONNN.

Number with

Type O Blood Possible Outcomes

0 NNNN

1 ONNN NONN NNON NNNO

2 OONN ONON ONNO NOON NONO NNOO

3 NOOO ONOO OONO OOON

4 OOOO

When we ask a question like “How likely is it that 2 persons out of 4 have type O blood?”

we have shifted our focus from the underlying variable of blood type (O or not-O) on the

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X # 2004 John Wiley & Sons, Inc.
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nominal scale to a count that is on the discrete numerical scale. Since it is numerical, the count

can be thought of as a random variable, and we are looking for the probability distribution of

this discrete random variable. We have already seen an example like this in the baby cereal

preference study (Example 1.7 and Section 2.4), except in that case the probabilities were all

equal.

Since not all of the 16 outcomes in this example are equally likely, to find the probabilities

associated with 0, 1, 2, 3, and 4, we must use binomial probability rules based on the

probability rules discussed in Chapter 1.

Binomial Probability Rules

1. If p is a probability, 0 � p � 1.

2. If A and �AA are two mutually exclusive events that together include all possible

outcomes, then P(A)þ P( �AA) ¼ 1. [Two events A and B are mutually exclusive if they

are nonoverlapping, that is, if P(AB) ¼ 0.]

3. Addition Rule. The probability of a specified outcome is the sum of the probabilities of

the mutually exclusive events making up that outcome.

4. Multiplication Rule. The probability of an event that is the simultaneous occurrence of

two or more independent events is the product of the probabilities of the events. [Two

events A and B are independent if the occurrence or nonoccurrence of A has no effect on

the probability of B and vice versa.]

We already used the second rule when we stated that P(N) ¼ 0.60. We reasoned that

P(N) ¼ 1 2 P(O) ¼ 1 2 0.40 ¼ 0.60. Now we find that the probability of zero out of four

having type O blood is

p(0) ¼ P(NNNN) ¼ ½P(N)�4 ¼ (0:60)4 ¼ 0:1296

and the probability that 1 out of 4 will have type O blood is

p(1) ¼ P(ONNN or NONN or NNON or NNNO)

¼ P(ONNN)þ P(NONN)þ P(NNON)þ P(NNNO)

¼ (0:40)(0:60)3 þ (0:60)(0:40)(0:60)2 þ (0:60)2(0:40)(0:60)þ (0:60)3(0:40)

¼ 4(0:40)(0:60)3 ¼ 0:3456

In a similar way, we find that

p(2) ¼ 6(0:40)2(0:60)2 ¼ 0:3456

p(3) ¼ 4(0:40)3(0:60) ¼ 0:1536

p(4) ¼ (0:40)4 ¼ 0:0256

In summary, for this example the probability distribution is as appears in Figure 3.1. The

discrete random variable with values 0, 1, 2, 3, 4 represents the number of people with type O

blood in a random sample of 4 people, and p(y) is the probability function of y. This

probability distribution is called a binomial probability distribution. Note that a binomial

probability distribution is a model of an experiment with only 2 possible outcomes. We
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concentrate on one of the outcomes, type O blood, and count the number of occurrences

(successes) in the sample. The probability of type O blood does not change from observation

to observation,† and the observations are independent of each other. We call such a survey or

experiment a binomial experiment.

A binomial experiment is an experiment in which

1. there are only 2 possible outcomes, success S or failure F, with P(S) ¼ p and

P(F) ¼ 1 2 p ;

2. the experiment is repeated n times, that is, there are n trials;

3. P(S) ¼ p is constant from trial to trial;

4. the trials are independent of each other; and

5. we are interested in y, the number of successes, with y ¼ 0, 1, 2, . . . , n.

The probability of success p is called the binomial parameter. A parameter is a numerical

characteristic of a population and the distribution which is used to model random sampling

from the population. In the blood-type example, p ¼ 0.40 is the proportion of the population

with type O blood. The parameter p also specifies the theoretical model for the experiment,

the binomial distribution with n ¼ 4 trials and P(S) ¼ p ¼ 0.40.

In the seventeenth century, members of the Bernoulli family found a formula to calculate

the binomial distribution for any number of trials and any probability of success. Before

examining their formula, it may be best to explain the notation that occurs in it.

The symbol pymeans (p)(p) � � � (p), that is, the product when p is used as a factor y times.

For example,

3

4

� �5

¼ 3

4

� �
3

4

� �
3

4

� �
3

4

� �
3

4

� �
¼ 243

1024

FIGURE 3.1. The binomial distribution with n ¼ 4, p ¼ 0.40.

†Each time we remove a person from the population the probability of type O blood does in fact change slightly.

However, since we are selecting only 4 people from several thousand, the changes are negligible.

3.1. THE NATURE OF BINOMIAL DISTRIBUTIONS 51



Similarly,

ð1� pÞn�y ¼ ð1� pÞð1� pÞ � � � ð1� pÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�y times

so that

1� 3

4

� �7�5

¼ 1

4

� �
1

4

� �
¼ 1

16

The symbol
n

y

� �
is read “the number of combinations of n things taken y at a time.” For

example, if there are 4 slips of paper marked A, B, C, and D in a box and 2 slips are drawn at

random, the possible combinations are

AB, AC, AD, BC, BD, CD

In this case
4

2

� �
¼ 6. We are not interested in which letter is drawn first, so AB and BA are

the same combination.

The symbol
n

y

� �
can also be applied to the blood-type example. Here

4

2

� �
means the

number of different places that two O’s can appear in a sequence of 4 symbols, that is, we are

picking 2 positions out of the 4 possible positions. If first, second, third, and fourth are the

positions, O can occur

1st and 2nd 1st and 3rd 1st and 4th

2nd and 3rd 2nd and 4th 3rd and 4th

or

OONN ONON ONNO

NOON NONO NNOO

In general,

n

y

� �
¼ n!

y!(n� y)!

where n! ¼ n(n 2 1)(n 2 2) � � � (2)(1), and n! is read “n factorial.” Some examples are

4

2

� �
¼ 4!

2!(4� 2)!
¼ 4 � 3 � 2 � 1

(2 � 1)(2 � 1) ¼ 6

and

4

0

� �
¼ 4!

0!(4� 0)!
¼ 4 � 3 � 2 � 1

1(4 � 3 � 2 � 1) ¼ 1

because 0! ¼ 1 by definition.

Table A.2 in the Appendix of Useful Tables is a table for n!, and Table A.3 is a table for

n

y

� �
, the binomial coefficients. It should be noted that

n

y

� �
¼ n

n� y

� �
since this will often

shorten calculations.
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The Bernoulli formula for calculating binomial probabilities will now be understandable.

To find b(y; n, p), the probability in the binomial distribution of y successes when the number

of trials is n and the probability of success on a single trial is p, we use the following formula:

b(y; n, p) ¼ n

y

� �
py(1� p)n�y

Thus the mathematical model in the blood-type example is the random variable y having

values 0, 1, 2, 3, 4 and probability function b(y; 4, 0.40). The probabilities are computed in

Table 3.1. This is the same result we previously computed by listing all possible experimental

outcomes.

Since the Bernoulli formula can be used for any sample size and any probability of

success, there is no need to go back to the list of all possible outcomes. If the number of trials

is 20 and p ¼ 0:30, then the probability of 7 successes out of 20 trials is

b(7; 20, 0:30) ¼ 20

7

� �
(0:30)7(1� 0:30)20�7

¼ 77,520(0:30)7(0:70)13

¼ 0:16

Most of the time it is not necessary to use this formula since tables are available for many

sample sizes and probabilities. Computers can easily be programmed to produce other tables

of binomial distributions. The website for this text presents an example of this. It is useful,

however, to know the formula so that the tables are meaningful.

Table 3.2 is an example of a table for 4 binomial distributions. The value of b(7; 20, 0.30),

which was calculated earlier in this section, can be found in the eighth row of the second

column.

Note that there are entries of 0.000 in some positions, for example, b(1; 20, 0.50). This

does not mean that there is zero probability of getting 1 successful outcome in a sample of

20 when p ¼ 0.50; rather it means that the probability of 1 successful outcome is smaller than

1/1000.

TABLE 3.1. Computing Binomial Probabilities

y b(y; 4, 0.4)

0
4

0

� �
(0.4)0(1 2 0.4)420 ¼ (1)(0.4)0(0.6)4 ¼ 0.1296

1
4

1

� �
(0.4)1(1 2 0.4)421 ¼ (4)(0.4)1(0.6)3 ¼ 0.3456

2
4

2

� �
(0.4)2(1 2 0.4)422 ¼ (6)(0.4)2(0.6)2 ¼ 0.3456

3
4

3

� �
(0.4)3(1 2 0.4)423 ¼ (4)(0.4)3(0.6)1 ¼ 0.1536

4
4

4

� �
(0.4)4(1 2 0.4)424 ¼ (1)(0.4)4(0.6)0 ¼ 0.0256
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The most likely outcome(s) for each value of p can be read from this table. If p ¼ 0.30, the

most likely outcome is 6 because it has the greatest probability. Similarly, for p ¼ 0.50, the

most likely outcome is 10; for p ¼ 0.70 it is 14; and for p ¼ 0.75 it is 15.

Since a binomial distribution is a probability distribution, we can find its expected value,

E(y), and variance, V(y), by using the formulas introduced in Section 2.5. However, because

of the special nature of the binomial distribution, shorter formulas exist. For a binomial

distribution

E(y) ¼ np

V(y) ¼ np(1� p)

Thus, for b(y; 20, 0.50)

E(y) ¼ 20(0:5) ¼ 10

V(y) ¼ 20(0:5)(0:5) ¼ 5

sd(y) ¼
ffiffiffi
5

p
¼ 2:24

If we consider an interval from two standard deviations below the expected value to 2 standard

deviations above the expected value, that is,

10+ 2(2:24)

TABLE 3.2. Four Binomial Distributions

y b(y; 20, 0.30) b(y; 20, 0.50) b(y; 20, 0.70) b(y; 20, 0.75) y

0 0.001 0.000 0.000 0.000 0

1 0.007 0.000 0.000 0.000 1

2 0.028 0.000 0.000 0.000 2

3 0.072 0.001 0.000 0.000 3

4 0.130 0.005 0.000 0.000 4

5 0.179 0.015 0.000 0.000 5

6 0.192 0.037 0.000 0.000 6

7 0.164 0.074 0.001 0.000 7

8 0.114 0.120 0.004 0.001 8

9 0.065 0.160 0.012 0.003 9

10 0.031 0.176 0.031 0.010 10

11 0.012 0.160 0.065 0.027 11

12 0.004 0.120 0.114 0.061 12

13 0.001 0.074 0.164 0.112 13

14 0.000 0.037 0.192 0.169 14

15 0.000 0.015 0.179 0.202 15

16 0.000 0.005 0.130 0.190 16

17 0.000 0.001 0.072 0.134 17

18 0.000 0.000 0.028 0.067 18

19 0.000 0.000 0.007 0.021 19

20 0.000 0.000 0.001 0.003 20
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or

5:52 to 14:48

we find a probability of 0.958 that a value of the random variable will be within this interval

and only a 0.042 probability that the value will be outside this interval.

In the next two sections we see how binomial distributions can help interpret the results of

experiments.

EXERCISES

3.1.1. In a certain large college course, past records show that grades of A, B, C, D, and F are

equally likely. If 1 student is chosen at random, find the following probabilities:

a. P(C)

b. P(A or B)

c. P(a grade higher than D)

d. P(A, B, C, D, or F)

e. P(B and D)

f. P(E)

g. P(not-A)

h. P(not-A and not-F)

3.1.2. If 2 people who do not study together take the course described in Exercise 3.1.1, find:

a. P(2 A’s)

b. P(same grade)

c. P(different grades)

d. P(both higher than D)

e. P(both fail)

f. P(one passes and one fails)

3.1.3. In a certain city, a fourth of the families take their children to the doctor for regular

checkups. Five families are chosen at random.

a. What is the probability that exactly 3 families out of the 5 take their children to the

doctor for regular checkups?

b. What is the probability that at most 2 families out of the 5 take their children for

regular checkups?

c. What is the probability that more than 1 family out of the 5 take their children?

3.1.4. Assume a standard deck of 52 cards is used in the following problems.

a. Find the probability of drawing a heart or a picture card when selecting 1 card at

random. Explain why P(heart or picture card) = P(heart) þ P(picture card).

b. Find the probability of drawing 2 cards of the same color if the first card is

randomly selected and kept out of the deck and the second card is then selected at

random. Explain why P(2 red cards) = (1/2)(1/2).
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3.1.5. In the game of Yahtzee, 5 ordinary dice are tossed.

a. How likely is it that a player will get exactly four 2’s on a random roll of the dice?

b. In this game, 50 points are awarded if all 5 dice show the same number. How

likely is this to happen on a random toss?

3.1.6. Find:

a. 4!

b. 0!

c. 5!

d. 1!3!

e. 2!(6 2 2)!

f. (10 2 2)!

3.1.7. Compute:

a.
4

4

� �

b.
3

2

� �

c.
5

0

� �

d.
5

3

� �

e.
5

1

� �

f.
4

3

� �

3.1.8. Use Exercise 3.1.7 to find the following without doing any further computations:

a.
5

5

� �

b.
3

1

� �

c.
5

2

� �

d.
5

4

� �

e.
4

1

� �

f.
4

0

� �

3.1.9. Compute:

a.
7

3

� �
(0.20)3(0.80)4

b.
8

0

� �
(0.70)0(0.30)8

c.
10

8

� �
(0.10)8(0.90)2
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3.1.10. Compute the following binomial probabilities:

a. b(y; 3, 0.25) for y ¼ 0, 1, 2, 3

b. b(y; 4, 0.30) for y ¼ 0, 1, 2, 3, 4

c. b(y; 5, 0.10) for y ¼ 0, 1, 2, 3, 4, 5

d. Use part b to find the binomial distribution b(y; 4, 0.70) without doing any further

computations.

3.1.11. Find the expected value and variance for the blood-type example.

a. Using the formulas given in Section 2.4

b. Using the special formulas for the expected value and variance of a binomial

distribution that are given in this section

3.1.12. An experimental psychologist has 20 volunteers for a sensory perception experiment

and wishes to draw a random sample of 10 of these volunteers. Suppose that he

decides to write all combinations of 10 names on index cards and then draw 1 of the

cards at random. How many combinations will there be?

3.1.13. A geneticist studying dairy cattle has 4 bulls and 8 cows that can be used in an

experiment. How many different matings are possible?

3.1.14. There are 6 teams in a baseball conference.

a. How many games are necessary before each team plays every other team once?

b. If there are no ties in standings, how many ways can the teams be ranked on the

basis of number of games won?

3.1.15. Twelve school photographs (all the same size) are placed in random order face down

on a table. Two of them are of identical twin boys. One of the twins is brought into the

room and asked to select a photograph.

a. What is the probability that he will select his own by chance?

b. What is the probability that he will select his own or his brother’s?

c. If he is asked to select 2 photographs, what is the probability that he will select his

own and his brother’s?

3.1.16. There is evidence that among lower forms of animal life behavioral charac-

teristics can be transferred from one individual to another along with the transfer

of the chemical substance known as RNA. In an experimental study of this

transfer behavior, 8 salamanders are divided at random into 2 equal-sized groups

of 4. One group will be the experimental group and the other the control group.

a. Show that there are 70 different ways the 2 groups can be formed.

b. What is the probability that the 4 fastest swimmers are all in the same group?

c. What is the probability that 3 of the 4 fastest swimmers are in the same group?

d. All of the salamanders in one group (called the experimental group) received RNA

from a salamander that has been trained to swim fast. The other group (called the

control group) receives RNA from an untrained salamander. Before one could

believe that behavior is transferred with RNA, what should the number of fastest

swimmers in the experimental group be? Explain.

3.1.17. Many candy manufacturers who use artificial chocolate claim that their customers

cannot tell it from real chocolate. Suppose 5 customers are selected at random and

each is allowed to taste a candy bar made with real chocolate and the same kind of bar
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made with artificial chocolate. They are not told which contains real chocolate, and

they are asked which one it is.

a. If the manufacturer is correct about their inability to tell real from artificial chocolate,

find the probability that a taster will correctly choose the one that is the real chocolate.

b. What is the probability that all 5 tasters will choose correctly?

3.1.18. A certain basketball player has a success record of 1 in 3 for making attempted field

goals. Suppose she attempts 7 field goals in a game.

a. What conditions must be true in order to use the binomial distribution to produce

reliable probability statements?

b. Assuming the necessary conditions are met, compute the probability that the

player will make exactly 4 field goals.

c. What is the expected number of field goals she will make?

3.1.19. A night watchman must check in at 9 stations in a warehouse during each round of

inspection. He decides to try all possible sequences of the 9 stations and use the

shortest of these as his routine round of inspection. There are 9! possible different

sequences of the stations.

a. Why are there 9! different sequences?

b. How many sequences must he try?

c. If he walks 4 rounds of inspection each night, how many nights will he require to

try all possible sequences?

3.1.20. A sociologist examines 6 northern cities that have the same percentage of racial

minorities. He is able to rank the cities according to employment opportunities for

high-school graduates from the minority groups. He then orders the cities on the basis

of truancy among minority high-school students.

a. How many ways is it possible to order 6 cities on the basis of truancy among

minority students?

b. If ordering by truancy and by job opportunities are unrelated, how likely is it that

truancy will have a perfect reverse ordering to job opportunities?

c. If the truancy ordering is the exact reverse ordering of that for job opportunities,

should the sociologist decide that this happened by chance and that there is no

relationship between the two?

3.1.21. A person claims the extrasensory ability of looking at a photograph and telling

whether the subject of the photograph is still living or has died. In an experiment to

test her claimed ability, she is shown 10 photographs of people unknown to her. (To

improve the experiment, the subjects should be of the same age and the photographs

taken at the same time; a high-school yearbook would meet both conditions.) She is

asked to point out the 5 subjects who are now dead.

a. How many ways can she select 5 of the 10 photographs?

b. How many ways can she select the photographs of the 5 dead subjects?

c. What is the probability of selecting the correct 5 photographs by guessing rather

than by extrasensory ability?

d. Why should this be a double-blind experiment?

3.1.22. The grading of laboratory reports is tedious, so a laboratory instructor decides that he

will grade only a randomly chosen 2 of the 5 reports that each student has submitted.
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If both are acceptable, the student will be given an A as his laboratory grade; if 1 is

acceptable, he will receive a B; a C will be given if neither is acceptable.

a. How likely is a student to receive an A when he has submitted 5 acceptable

reports? 4? 3? 2? 1? 0?

b. How likely is a student to receive a C when he has submitted 5 acceptable reports?

4? 3? 2? 1? 0?

3.1.23. In Exercise 1.1.6 the number of ways that all pairwise comparisons could be made

among 10 people was determined by counting all of the events, and the answer was

9 þ 8 þ 7 þ 6 þ 5 þ 4 þ 3 þ 2 þ 1 ¼ 45.

a. Use combinations to verify that answer.

b. Why do both procedures produce the same answer? Hint: Add the integers from

the ends toward the middle, (9 þ 1) þ (8 þ 2) þ � � � .

3.2. TESTING HYPOTHESES

We return to the basic statistical problem of using probability to make decisions about

populations that are not totally accessible. The following example shows how the probabilities

in a theoretical binomial distribution can help to interpret the results of an experiment.

(We have already seen an example in the baby cereal preference study, Example 1.7 and

Section 2.4.)

Example 3.1. Using a Binomial Distribution to Test a Hypothesis

Because dairy farmers need more cows than bulls, it would be advantageous for them if a

method could be found to change the approximately 1-to-1 sex ratio found in nature. Many

biological experiments have been performed in an attempt to alter sex ratio, either by trying to

separate the sperm cells which produce male offspring or by finding some way to inactivate

them so that they cannot fertilize an egg cell.

A reproductive physiologist believes that by treating the semen of the bull with a mild

acid and using artificial insemination he can change the sex ratio of calves. (This is the

scientific hypothesis.) He decides to perform an experiment and observe 20 calves that

have been produced by this method. He is going to use statistics in order to generalize the

result from these 20 calves to the entire population of calves that could be produced by

this method. Thus, the statistical procedure begins at this point, prior to the actual

experiment.

The steps in the statistical procedure are:

1. State the null hypothesis.

2. State the alternative hypothesis.

3. Establish a, the level of rejection, and the region of rejection.

4. Perform the experiment and observe the outcome.

5. Draw conclusions.

Step 1. State the Null Hypothesis. In this experiment, H0: p ¼ 0.5, that is, under chance

alone, the probability of a newborn calf being female is 0.5. In other words, the treatment has

no effect on the sex ratio. The theoretical probability distribution if the null hypothesis is true
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is b(y; 20,0.50). This experiment can be done in such a way that it satisfies the 5 conditions of

a binomial experiment: There are only 2 possible outcomes, a male calf or a female calf. There

will be a repeated number of trials, 20. If the null hypothesis is true, P(female calf) ¼ 0.5 for

each trial. The 20 cows can be selected at random, and the semen can also be selected at

random from different bulls, ensuring independence from trial to trial. The physiologist is

interested in the statistic y, in this experiment the number of female calves born.

Step 2. State the Alternative Hypothesis. In this experiment, the alternative hypothesis is

Ha: p = 0.5. Since the physiologist does not know ahead of time what effect the mild acid

will have on the sex of newborn calves, this is a two-sided test, or a two-tailed test. He will

reject the null hypothesis if the outcome is an extreme case in either tail of the binomial

distribution.

Step 3. Establish a, the Level of Rejection, and the Region of Rejection. Looking

at the binomial distribution b(y; 20, 0.50), he wants to set a rejection level as close to 0.05 as

possible (because this is a traditional level used). Since this is a two-tailed test, he wants to

reject the null hypothesis if he obtains an outcome with a probability of less than 0.025 at

either side of the distribution. He notes from Table 3.2 that

P(0 or 1 or 2 or 3 or 4 or 5)

¼ P(0)þ P(1)þ P(2)þ P(3)þ P(4)þ P(5)

¼ 0:000þ 0:000þ 0:000þ 0:001þ 0:005þ 0:015

¼ 0:021

and that

P(15 or 16 or 17 or 18 or 19 or 20)

¼ P(15)þ P(16)þ P(17)þ P(18)þ P(19)þ P(20)

¼ 0:015þ 0:005þ 0:001þ 0:000þ 0:000þ 0:000

¼ 0:021

so the actual a is 0.042. The region of rejection is all y such that 0 � y � 5 or 15 � y � 20, and

y is called the test statistic. Including any more values in the region of rejection would have

made a further from 0.05. The symbol y here stands for the number of female calves born

(alternatively, y could stand for the number of male calves born).

Step 4. Perform the Experiment and Observe the Outcome. The experiment is now

performed, and suppose 6 males and 14 females are born. If the null hypothesis is true, the

expected number of female calves would be E(y) ¼ np ¼ 20 � 0.5 ¼ 10. Since the number

of female calves observed in the experiment is y ¼ 14, the physiologist cannot be especially

encouraged by a deviation of only 4 from the number expected by chance alone. However, in

the statistical procedure, decisions are based on probability, and the probability of a deviation

of this magnitude (or greater) when the treatment is ineffective is needed.

Step 5. Draw Conclusions. The a level and the region of rejection merely specify, prior to

the experiment, those outcomes that can be considered plausible and those that would be

unusual when the null hypothesis is true. In this experiment, outcomes of less than 6 or more

than 14 occur only 0.042 of the time if the null hypothesis is true. Since y ¼ 14 is not in the

region of rejection, the physiologist does not reject the null hypothesis.
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The outcome of 14 deviates by 4 from the expected value of 10 under the null hypothesis

[np ¼ 20(0:5) ¼ 10]. The probability of a chance deviation this great or greater is

P(0)þ P(1)þ P(2)þ P(3)þ P(4)þ P(5)þ P(6) ¼ 0:058

plus

P(14)þ P(15)þ P(16)þ P(17)þ P(18)þ P(19)þ P(20) ¼ 0:058

So the P value is

P ¼ 0:058þ 0:058 ¼ 0:116

Thus the probability of obtaining a chance deviation of this magnitude (or greater) from the

expected 1-to-1 sex ratio is 0.116. This probability is greater than the a ¼ 0.05 chosen by the

physiologist, hence too large to claim that the experimental sex ratio of 14 to 6 is a significant

altering of the proportion of females from p ¼ 0.5.

Once again, let us remember that it is not known for sure whether or not the addition of a

mild acid to bull semen will alter the sex ratio of calves. An experiment based on more than 20

births might verify the change observed in the experiment. However, for this experiment, the

physiologist must decide that the experimental outcome is not improbable (P . a) under the
null hypothesis and chance alone.

This process of setting up the null hypothesis may still seem rather round-about since the null

hypothesis is usually the opposite of the decision the scientist is hoping to make. However, since

there is no information about the probability associated with the experimental hypothesis, the

null hypothesis must be set up so that known probabilities can be used.

Not all tests of hypotheses are two tailed. Sometimes the experimenter is looking for

evidence in a particular direction. The following example will illustrate a one-tailed test of

hypothesis.

Example 3.2. Testing a Hypothesis Using a Binomial Distribution

The staff of a reading clinic is interested in determining the sex ratio of children who have a

certain reading problem. The children reverse the letter sequences in words; for example, they

read “saw” for “was.” Someone has claimed that more than 70% of the children with this

disorder are boys. The staff decides to look at a random sample of 20 children who have this

reading problem. The null hypothesis is H0: p ¼ 0.7 and Ha: p . 0.7 because they are

looking for evidence to substantiate the claim. Assuming the null hypothesis is true, they use

the binomial distribution b(y; 20, 0.70) as the theoretical model. The number of boys in the

random sample of children with this disorder is represented by y.

The level of rejection in this survey is chosen to be as close to 0.05 as possible. Looking

at Table 3.2 in Section 3.1, the actuala is seen to be 0.036 and the region of rejection is 18, 19, 20.

Assume the survey reveals that 18 out of the 20 afflicted children are boys. Whether one

uses the fact that the test statistic, y ¼ 18, is in the region of rejection or that the P value of

0.036 is less than a, the null hypothesis is rejected and it is concluded that there is evidence

that more than 70% of the children with this disorder are boys.
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We have noted that with this type of test there is no way to be certain whether the null

hypothesis is true or false. Although the null hypothesis was rejected in the example above, it

is of course possible that it is actually true and a very unlikely outcome just happened to occur.

To reject a true null hypothesis is called a Type I error. The probability of committing a Type I

error in the survey above is 0.036 because a ¼ 0.036, that is, there is a 3.6% chance that the

null hypothesis is true and sample results lead to rejection of it. The probability of a Type I

error is always a, the level of rejection, and is chosen by the experimenter.

If the results had been different, the null hypothesis might not have been rejected. For

example, the survey might have shown that 15 out of 20 children displaying reading reversals

were boys. Since 15 is not in the region of rejection (and P ¼ 0.417), the null hypothesis

would not have been rejected, and it could be concluded that among the children with reading

reversals 70% or fewer may be boys. In this case, it is possible that the null hypothesis is false,

but it has not been rejected. To fail to reject a null hypothesis when it is false is called a Type II

error.

It is more difficult to determine the probability of a Type II error than of a Type I error. The

probability of a Type I error, rejecting a true null hypothesis, is a. The probability of a Type II
error is, in this case, the probability that y is not in the region of rejection of the null hypothesis

if p is not 0.70. This cannot be determined in this form because there is no specific value for

p; p = 0.70 is an infinity of values.

To determine the probability of a Type II error:

1. Choose a reasonable specific alternative value of the parameter, p ¼ pa, that is of

clinical importance.

2. Find b, the cumulative frequency in b(y; n,pa) for y in the acceptance region ofH0; that

is, b ¼ P(y is in the region of acceptance of H0 if p ¼ pa).

The probability b is the probability of failing to reject the null hypothesis when it is false by a

specific amount. In more positive terms, the power of the experiment or survey, that is, the

probability of detecting the specific alternative hypothesis, is 1 2 b. Thus power is related to

b, and depending on which is easier to compute, we find one from the other by

Power ¼ 1� b or b ¼ 1� Power

In the example above, in which 15 out of 20 children with reading reversals were boys, the

null hypothesis was not rejected. What is the probability that a false null hypothesis may have

been accepted? From knowledge of reading problems, the staff might agree that a reasonable

alternative value is pa ¼ 0.75. Power depends on the “degree of falseness” of the null

hypothesis, so they specify the smallest degree of falseness of practical interest. This means

that if in fact 75% of the cases of reading reversals occur in boys the clinic would examine

boys very carefully for this problem, but if fewer than 75% were boys they would not examine

boys more closely than girls. Referring to the table in the previous section under b(y; 20,

0.75), we find that the probability that 0 � y � 17 is b ¼ 0.909. This means that there is a

90.9% chance of failing to reject the null hypothesis if in fact 75% of the children with reading

reversals are boys! The chance of detecting the difference is only 1 2 0.909 ¼ 0.091; the

power of this survey is very low.

A powerful experiment generally means a power of 0.70 or greater, so the survey above is

very poor. This illustrates the need to design an experiment in such a way that there is a

reasonable chance of detecting a clinically important difference if it exists. To increase the
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power in this survey, a much larger sample size is necessary. Another way to increase the

power (decrease b) is to increase a.
In practice, many times we do not have enough information to choose a reasonable specific

alternative, and thus we are not able to compute b. Fortunately, the power of an experiment

usually increases with the size of the sample, so we work with samples that seem large enough

to make the experiment powerful. If we can specify the alternative value of the parameter, it is

possible to use a repetitive process (likely with the aid of a computer) to determine how large

the sample size must be in order to have a specified power. In the reading-reversal example, it

is necessary to use a sample size of n ¼ 501 to achieve a power of 0.80 in detecting pa ¼ 0.75

when the null hypothesis is H0: p ¼ 0.70 and a ¼ 0.05 (Buckalew, 1974, p. 61). This large

size is required because a relatively small difference is specified.

We usually try to achieve a balance between the a level and the power. We want a

moderately low a level (as 0.05) and try to get the power as high as possible, usually by taking

relatively large samples.

Which type of error is worse depends on the situation. For example, imagine that a medical

microbiologist is testing a new antibiotic for effectiveness against a particular bacterium.

Currently used antibiotics are known to have a cure rate of p ¼ 0.75. The two types of error

could occur under the following circumstances:

Type I. The microbiologist is testing H0: p ¼ 0.75 against Ha: p . 0.75. The new

antibiotic actually has a cure rate of 0.75, but the results of the experiment lead her to conclude

that it is better than the antibiotics currently used. If the new one is equal to the others in all

other respects, such as price and side effects, then this Type I error is not serious. If, however,

the price is higher or the side effects are more severe, then the Type I error is serious.

Type II. The microbiologist is again testing H0: p ¼ 0.75 against Ha: p . 0.75. Now,

however, let us assume that the new antibiotic is actually better but she fails to detect this from

the results of the experiment. The Type II error here means that a more effective medication

will not be used. The seriousness of the error depends on the seriousness of the illness and how

much better the new medicine would be. If p is actually 0.78, this would not be much of an

improvement so the error is not as serious as if p were 0.98 and a very effective medication

were not being used.

The diagram in Figure 3.2 summarizes the various possibilities that occur when testing

hypotheses. The specific probabilities listed refer to the reading-reversal study (Example 3.2)

used in this section.

Note that the probabilities in the columns of this diagram sum to 1. Also, once the decision

is made, only one type of error is possible. If the null hypothesis is rejected, there is then no

possibility of a Type II error. Similarly, if we fail to reject the null hypothesis, we no longer

need to worry about a Type I error.

FIGURE 3.2. Type I and Type II errors.
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In the discussion of hypothesis testing and errors in this section, we have used only

examples that fit the small table of binomial distributions given in Section 3.1. Two similar

but larger tables are found in Table A.4a for samples of size n ¼ 20 and Table A.4b for

samples of size n ¼ 25. These tables are used in the same manner as the smaller table in

Section 3.1.

If a ¼ 0.10 and the test is two tailed, the horizontal lines indicate the regions of rejection

and acceptance. If a ¼ 0.05 and the test is one tailed, the line in the appropriate tail may be

used to indicate the region of rejection. Other a levels can be used, but then the regions must

be determined by the user of the table. The probability of a Type II error can also be found

from these larger tables; the method is the one just described in this section.

Many other tables are readily available in statistics books and in reference books. If the

particular table needed is not available, it can be computed using the Bernoulli formula

possibly with the assistance of a computer (see the computer usage sections on the text’s

Internet site). Approximation methods are also possible; these are discussed in Chapter 7.

A brief summary of this section follows.

Procedure. Test of Hypotheses for a Binomial Parameter p

Region of Rejection Method

H0: p ¼ p0

Ha: p = p0 or p . p0 or p , p0

Significance level: a
Test statistic: y, the number of successes out of n trials

Using a table for the binomial distribution with probability function b(y; n, p0), determine the

region of rejection.

For Ha: p = p0, the region of rejection is 0 � y � cL and cU � y � n such that

XCL

0

b(y; n, p0) and
Xn
CU

b(y; n, p0)

are each as close as possible to a=2.
For Ha: p . p0, the region of rejection is cU � y � n such that

Xn
CU

b(y; n, p0)

is as close as possible to a.
For Ha: p , p0, the region of rejection is 0 � y � cL such that

XCL

0

b(y; n, p0)

is as close as possible to a.
Reject H0 if y is in the region of rejection.
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P-Value Method

For Ha: p = p0, compute P ¼ P(jy� np0j � jtest statistic� np0j).
For Ha: p . p0, compute P ¼ P(y � test statistic).

For Ha: p , p0, compute P ¼ P(y � test statistic).

Reject H0 if P � a.

Error

P(Type I error) ¼ a
P(Type II error if p ¼ pa) ¼ P(y is in the region of acceptance of H0 if p ¼ pa)

EXERCISES

3.2.1. Use Tables A.4a and A.4b in the Appendix to find the following:

a. P(4 , y , 8) when n ¼ 20, p ¼ 0.8

b. P(y � 2) when n ¼ 25, p ¼ 0.6

c. P(y � 4) when n ¼ 25, p ¼ 0.25

d. P(y . 15) when n ¼ 20, p ¼ 0.70

e. P(y , 19) when n ¼ 20, p ¼ 0.55

f. P(6 � y � 9) when n ¼ 25, p ¼ 0.35

3.2.2. A teacher gives a student a make-up test consisting of 20 true-false questions. The

intent of the test is to determine whether the student answers the questions correctly

through knowledge of the material or merely by making lucky guesses. Assume the

correct answers are a random sequence of “true” and “false” and that the student’s

guesses are also random.

a. State a null hypothesis based on the probability of guessing the correct answer to a

question.

b. State a one-tailed alternative hypothesis based on the probability of arriving at the

correct answer through knowledge.

c. Find the region of rejection when a is set as close to 0.05 as possible. (Remember

that the null hypothesis will be rejected only if an extreme value occurs on one

side of the distribution.)

d. If the student correctly answers 16 of the 20 questions:

i. What is the P value?

ii. What should the teacher conclude?

3.2.3. A carnival operator wants a game that can be won about 30% of the time. If the game

is won more frequently, it will not be economical for the operator; if winning is less

frequent, potential players will be reluctant to risk their money. He devises a dart-

tossing game that he thinks will suit his criterion and tests it on 20 random players.

a. State a null hypothesis based on his criterion.

b. State a two-tailed alternative hypothesis.

c. If the region of rejection is set at 0 � y � 2 and 11 � y � 20, what is the a level?

d. What conclusion should the operator draw about the game if there are 9 winners

among the first 20 players? What must be assumed about the players in order to

accept this conclusion?
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3.2.4. A campus parking lot contains 20 spaces, all reserved for faculty members. The

administration decides that students may park their cars in the lot after 4:00 PM if

faculty usage then drops to less than 70%. A random weekday afternoon is chosen to

sample the faculty usage after 4:00 PM.

a. State the null hypothesis.

b. State a one-tailed alternative hypothesis that would lead to student usage of the lot.

c. Find the region of rejection for a as close to 0.05 as possible.

d. If there are 18 faculty cars in the lot at the time of the survey:

i. What is the P value?

ii. What decision should be made about student parking?

e. Do you see any difficulties in the design of this survey? Suggest a better design.

3.2.5. In the experiment concerning the altering of the sex ratio in newborn calves

(Example 3.1), the null hypothesis isH0: p ¼ 0.5 andHa: p = 0.5. There are 20 trials

and the region of rejection is 0 � y � 5 and 15 � y � 20.

a. The physiologist would consider the experiment a success if the proportion of

female calves is 0.70. How likely is it that a change of this magnitude will be

detected by the statistical procedure described?

b. What would you suggest to the physiologist if he does not think that this

experimental design is powerful enough to detect this useful change?

3.2.6. In an effort to control mosquitoes without having to use dangerous insecticides,

entomologists have taken advantage of two factors in the biological nature of

mosquitoes: Male mosquitoes are not bloodsuckers and nearly all female mosquitoes

mate but once. Thus the entomologists release massive numbers of sterilized male

mosquitoes to reduce the probability of a female mating with a fertile male and

consequently producing more mosquitoes. After such a release, the entomologists

hypothesize that the probability of a female mating with a fertile male is H0:

p ¼ 0.30. If 20 females are captured and examined for fertile eggs:

a. Find the region of rejection if the alternative hypothesis is Ha: p . 0.30.

b. What is the power of the experiment if pa ¼ 0.50?

c. What is the power if pa ¼ 0.70?

3.2.7. A large corporation is going to purchase 150 company cars for its salesmen and

executives. The corporation has already eliminated many makes and models and now

must choose between two specific types of cars, A and B, which are comparable in

size, purchase price, and maintenance cost. The corporation will base its final decision

on the gasoline mileage of these two types. It is known that 70% of the cars of type A

average more than 20 miles per gallon, and it is strongly believed that car B has a

better record. If B is proved, better they will buy B; otherwise they will buy A.

a. State the two outcomes that should be considered for a random sample of cars of

type B.

b. State the null hypothesis in terms of cars of type B.

c. State the one-tailed alternative hypothesis for car B.

d. Which type of error should be kept to a minimum in this experiment? How can this

be accomplished?

3.2.8. A behavioral scientist feels that right-handed people have a tendency to make right-

hand turns when they have no other basis for choosing the direction in which they
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should turn. To conduct a statistical test, she draws a random sample of 20 right-

handed individuals from a large group of volunteers. To keep the subjects unaware of

the nature of the experiment, she pretends to be conducting a survey of family dietary

habits. She has the subjects brought into her office one at a time, questions them about

the eating habits of their families, and then directs them out by a different way from

the one by which they entered. They are told to go down a hall and out either door at

the end. The experimenter watches each subject leave and records whether the subject

chooses the door to the right or left as he or she exits.

a. State a null hypothesis which specifies that only chance leads to the choice of the

door to the right.

b. For a two-tailed alternative hypothesis, the region of rejection could be 0 � y � 5

and 15 � y � 20. What is the a level?

c. For a one-tailed alternative hypothesis, the region of rejection could be

14 � y � 20. What is the a level?

d. For the specific alternative pa ¼ 0.70, which is more powerful, the one-tailed or

the two-tailed test?

e. Comment on the deception involved in this experiment.

3.2.9. For a binomial experiment in which n ¼ 20 and H0: p ¼ 0.30:

a. Find the region of rejection with an a as near 0.05 as possible when Ha:

p = 0.30.

b. Find the region of rejection with an a as near 0.05 as possible when Ha:

p . 0.30.

c. For the specific alternative pa ¼ 0.50, how much more powerful is the one-tailed

test than the two-tailed test?

d. Which of the following statements is true?

i. The one-tailed test is more powerful because it has a greater a level.

ii. The one-tailed test is more powerful because it has a greater b.

iii. The one-tailed test is more powerful because there are more possible y values

in its region of rejection.

iv. The one-tailed test is more powerful because the sum of the probabilities

associated with the region of rejection is greater for the specified alternative

b(y; 20, 0.50).

3.2.10. After a flood or storm, insurance companies buy damaged goods from stores that carry

their policies. To recover some of the loss, they sell the damaged goods to salvage

companies. Suppose 30,000 flood-damaged highway safety flares are offered for

sale by an insurance company with the claim that 25% of them are too damaged to

ignite.

a. State a null hypothesis that would test the insurance company’s claim.

b. State the alternative hypothesis of greatest concern to the insurance company.

c. State the alternative hypothesis of greatest concern to a salvage company.

d. Suppose the insurance company’s statement about the 30,000 flares is correct.

Determine how likely it is that a random sample of 20 flares will have:

i. Exactly 10 flares that fail to ignite

ii. At least 10 (that is, 10 � y � 20) that fail to ignite
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e. Suppose the insurance company’s statement is incorrect and actually 40% are too

damaged to ignite.

i. What is the probability that exactly 10 will fail to ignite?

ii. What is the probability that at least 10 will fail to ignite?

f. Suppose H0: p ¼ 0.25 is being tested, what is the power of the test when a is as

near as 0.05 as possible and p is really 0.40?

3.2.11. Describe how a Type I or Type II error could occur in the following situations and

give some of the factors that would determine the seriousness of the errors.

a. A bookstore is trying to determine what proportion of the students buying a certain

textbook will also buy an optional student guide. In the past, 40% of the students

buying the text have also bought the guide. The bookstore wants to test H0:

p ¼ 0.40 against Ha: p . 0.40.

b. A seed company wants to claim on a certain seed package that at least 90% of the

seeds will germinate. The company decides to check this before the packages are

printed and test H0: p ¼ 0.90 against Ha: p , 0.90.

c. A recreation specialist is planning campsite facilities for a state forest and wants to

include several rustic tent-only campsites that will be inaccessible to campers on

wheels. He thinks that only 20% of the people camping in the area would desire

such facilities. He tests H0: p ¼ 0.20 against Ha: p = 0.20.

3.2.12. Archaeologists use pelvic bones to determine whether a skeleton is that of a man or

woman. Primitive cultures often buried their outstanding members (rulers, warriors,

athletes, and so on) with greater ceremony than ordinary members. Using this fact,

much can be learned about the status of women in an early culture by observing the

frequency of skeletons of females in ceremonial graves. Suppose that an archaeologist

discovers 20 graves that can be assumed to be a random sample of the ceremonial

graves of a Stone Age culture in Wiltshire, England.

a. What is the most logical statistical hypothesis to be tested?

b. Suppose the region of rejection is: The number of skeletons of females is less than

8. What is the value of a?

c. Suppose pa ¼ 0.30; what is the numerical value of b?

d. What assumption is necessary to use this test procedure?

3.2.13. A certain dental condition which can be corrected if detected early enough occurs in

the population with a frequency of p ¼ 0.20. An orthodontist believes that this

condition occurs more frequently in children who were born with cleft palates and that

parents of such children should be warned to watch for early evidence of the dental

condition. To test his hypothesis, she follows the dental development of a random

sample of 25 children born with cleft palates.

a. What is the most logical null hypothesis for the orthodontist to check? What

alternative hypothesis should she use?

b. Suppose she wants a to be as close to 0.05 as possible; what region of rejection

should she set for y, the number of children in the sample who develop this dental

condition?

c. Suppose 8 of the children in her sample develop the condition. What is the P

value? Should she reject the null hypothesis? Why, or why not? What conclusion

should she draw?
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3.2.14. Sickle-cell disease is a potentially lethal genetic disease in the Black race. It is

estimated that 30% of African-Americans in a certain Gulf Coast region have the

disease or carry the trait for it. This figure seems too large to a physician in the region,

so he takes a random sample of 25 of his African-American patients and examines

blood smears.

a. State the physician’s most logical null and alternative hypotheses.

b. What region of rejection would you suggest he use? What is the a level for this

region?

c. If the percentage in question is really 15%, what is the power of his test?

d. Which type of error is more serious in his study, Type I or Type II? Why?

e. Suppose 12 patients of his sample have the condition or seem to be genetic

carriers. Should he reject his null hypothesis or not? Why? What is the P value?

What conclusion should he draw about the proportion of sickle-cell disease in the

Black population?

3.2.15. Cryobiologists have been experimenting for many years with methods of freezing

human corneas so that, when thawed, the membranes can be safely used in “eye

transplants.” If corneas are suspended in ethylene glycol, 70% of membranes

survive freezing and thawing. Unfortunately the chemical compound is toxic,

and therefore a cornea soaked in it is unsafe for transplant. Suppose a cryobiologist

finds a nontoxic chemical that has similar protective properties. He wants

to compare its effectiveness with ethylene glycol in the freezing-thawing

process.

a. State the null and alternative hypotheses.

b. If 20 corneas are to be used in his experiment, give the region of rejection for

a ¼ 0.10.

c. Suppose y ¼ 10 is the number that survive; should the experimenter feel

encouraged or discouraged by the results? Give a reason for your answer.

3.2.16. Vegetable farmers try to avoid the use of insecticides because of expense and health

hazards. However, if crops become too heavily infested, it becomes necessary to

spray them. Suppose a farmer decides that she will spray her cabbages if their

infestation with moth larvae is significantly greater than 20%.

a. If the farmer samples the crop to determine the percentage of infested cabbages,

what is the null hypothesis?

b. What is the most logical choice for the alternative hypothesis? Why?

c. For n ¼ 20 and a as close to 0.05 as possible, choose the region of rejection that is

consistent with the alternative hypothesis.

3.2.17. In times of stress, some people hyperventilate to the point of dizziness and fainting.

To determine whether this behavior is equally likely in men and women, a researcher

takes a random sample of 25 cases from a hospital emergency room’s file on those

treated for hyperventilation.

a. What hypothesis should be tested about the percentage of males among those

treated?

b. What should the region of rejection be if a is to be as near 0.01 as possible?

c. If 16 of the 25 persons in the sample are men, should the researcher conclude

that men are more likely to hyperventilate than women? Why or why not?
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3.3. ESTIMATION

So far, our discussion of statistical methods has dealt with only one of the general problems of

statistics, decisions about hypotheses. Tests of hypotheses are possible only when we have

quite a bit of information about the experimental situations. For example, to analyze the

results of the experiment on the sex ratio of calves, the experimenter had to know the sex ratio

of newborn calves in an untreated population. In the early stages of experimentation, when

less information is available, the scientist often uses estimation (Figure 3.3).

Estimation will answer questions like “What proportion of ex-prisoners who have gone

through a certain group therapy program will be arrested again within the first two years after

release?” If we consider the entire population of prisoners who have gone through or will go

through the program during their incarceration and we use as the variable of interest whether

or not they are arrested again within two years after release, what is the appropriate value of p,
the proportion arrested again?

Since we cannot observe the entire population, we will instead examine a random sample

from it and count the number of subsequent arrests in the sample. Recall that this count, based

on the results of sampling, is called a statistic. Then, using the binomial distribution as a

model for this study, we will use the statistic to make a statement about the unknown

parameter p, the true proportion of ex-prisoners who will be arrested again (Figure 3.4).

In trying to estimate the unknown parameter, two types of estimates are possible.

1. A point estimate—a statistic based on a sample.

2. An interval estimate—an inference based on a statistic.

The natural point estimator of a proportion p is

p̂p ¼ y

n

in which y is the number of successes in a sample size of n. The estimator p̂p is read “p hat.” In

general, placing a caret, or “hat,” on a Greek letter indicates an estimator of the parameter.

The estimator p̂p is not only the natural point estimator but also the best estimator because

it has three desirable properties of an estimator:

1. p̂p is a maximum-likelihood estimator. That is, the estimate of p that we get using this

estimator makes the outcome that we obtained the one most likely to occur. We can see

this by using Table 3.2, where the value of y with the greatest probability, gives the best

estimate p̂p ¼ y=n of the binomial parameter p. In the distribution with probability

function b(y; 20, 0.30), y ¼ 6 is the most probable outcome and 6/20 ¼ 0.30; in b(y;

20, 0.50), y ¼ 10 is the most probable outcome and 10/20 ¼ 0.50; in b(y; 20, 0.70),

y ¼ 14, is the most probable outcome and 14/20 ¼ 0.70 (see Figure 3.5).

FIGURE 3.3. Types of inference.
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p̂p is unbiased. That is, if we were to repeat the estimation process, the average of all

possible estimates would be the true parameter p.

p has a minimum variance. That is, the possible estimates are clustered closer to p than for

any other unbiased estimator.

FIGURE 3.4. The inferential process.

FIGURE 3.5. The most probable outcome in three binomial distributions.
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Thus, if we observe a random sample of 20 prisoners who had gone through the therapy

program and we find that 6 of them have been arrested again, then the best point estimate of

the proportion of subsequent arrests is

p̂p ¼ 6

20
¼ 0:30

Because of the properties of this estimator, we can be confident that this is likely to be close to

the true value. Unfortunately, it will usually not be exactly the true value. A repetition of the

survey might yield

p̂p ¼ 8

20
¼ 0:40

Although we know that both of these estimates are close, we also know that probably neither

of them is exactly correct.

One way to avoid this difficulty is to use an interval estimate, an inference that the

parameter is between certain bounds. The confidence interval is obtained by asking “For

which values of p is p̂p a common or frequent estimate?”

We use the following steps to find an interval estimate.

Procedure. Central Confidence Intervals for p

1. Specify an a level.

2. Take a sample of size n.

3. Find y, the number of successes.

4. Give the interval of all values of p for which ywould fall in the region of acceptance for

a two-sided a-level test.†

For example, if a ¼ 0.10, n ¼ 20, and y ¼ 8, we use Table A.4a in the Appendix; 8 is in

the region of acceptance for p between 0.25 and 0.55. Thus p̂p ¼ 8=20 ¼ 0:40 is among the

90%most common estimates of all p values between 0.25 and 0.55. Since a ¼ 0.10, when we

use this procedure about 90% of the intervals obtained, will include the actual parameter being

estimated. The interval is written

CI0:90: 0:25 � p � 0:55

and is called the 90% confidence interval for p. This method yields a central confidence

interval since two-sided regions of acceptance are employed. Note that the best point estimate,

p̂p ¼ 8=20 ¼ 0:40, is within this interval.

For any given sample size, the method we just outlined gives the narrowest CI12a. The

confidence interval in this example is quite wide; this is because the sample size n ¼ 20 is small. If

a larger sample is used (and a remains constant), the same statistic p̂p ¼ y=n will yield a smaller

confidence interval. To see this, Tables A.5a through A.5e in the Appendix can be used. These

tables list the confidence intervals for various sample sizes and various a levels. (Instructions for

reading these tables precede the group.) To see the effect of increased sample size, let a ¼ 0.10,

n ¼ 100, y ¼ 40; then p̂p ¼ 40=100 ¼ 0:40 (as in the previous example), and from Table A.5c

CI0:90: 0:318 � p � 0:487

which is a smaller interval than the one found for n ¼ 20.

†The authors are indebted to H. C. Fryer for the graphic determination of confidence intervals in this section and in

Tables A.4a and A.4b.
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Tables A.5a and A.4b give slightly different 90% confidence intervals for sample size

n ¼ 25. This difference occurs because Tables A.5a through A.5e were calculated by a

different procedure than Tables A.4a and A.4b. The method for finding confidence intervals

used in Tables A.4a and A.4b is very instructive but lengthy to compute. The alternative

shorter method used for Tables A.5a through A.5e will not be explained here; it is an

approximate method and is known to produce reliable confidence intervals.

We can find one-sided confidence intervals as well as central confidence intervals. The

method is the same except that the region of acceptance for a one-sided a-level test is used in
step 4 of the Procedure given above. If Tables A.5a through A.5e were used, we refer to the a
column that is twice as large as the desired a level and use only one of the values L or U that

are given. (Example 3.3 demonstrates a one-sided procedure.)

Linear interpolation can be used to obtain confidence intervals for sample sizes between

those listed in the tables or it can be used for statistics that fall between values listed in the

tables. This method of interpolation of confidence intervals is a conservative estimate because

the confidence intervals actually decrease along curves within the straight lines along which

interpolation occurs. Since the interpolated values are outside the actual curves, they more

than preserve the a level of the tables (Figure 3.6).

As mentioned before, by using an interval estimate, we avoid the almost certain error of a

point estimate. If an interval estimate includes the true proportion, then it is correct. It is

possible for two different interval estimates to be correct. For example, two polls on the

proportion of the American population that approves of the president’s economic policy could

yield point estimates p̂p1 and p̂p2 and interval estimates as in Figure 3.7. If p is the true

proportion, both point estimates are wrong. However, both interval estimates are correct. In

this particular case, neither interval contains both point estimates but both intervals are still

correct.

The question of Type I or Type II errors does not apply to the inference of confidence

intervals since no decisions concerning hypotheses are being made. However, the reliability of

the estimate made by the confidence interval is expressed in the percentage of confidence. A

level of confidence of 95% means that 95% of the intervals that could be determined by this

method contain the true population parameter.

FIGURE 3.6. Linear interpolation yields conservative confidence intervals.

FIGURE 3.7. Confidence intervals for the same parameter obtained from different samples.
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Although Tables A.5a through A.5e list confidence intervals, they may also be used to test

hypotheses. This is demonstrated in the following example.

Example 3.3. Using Confidence Intervals to Test Hypotheses

It is generally felt that those opposed to the issuance of a new school bond are more likely to

go to the polls to vote than those who favor the bond. Thus a local school board feels that a

bond issue must be favored by more than 70% of the registered voters to have a chance of

being approved in the bond election.

Since the school board is concerned about detecting whether enough people are in favor of

the bond issue, it wants to determine a one-sided confidence interval on p that makes a

statement about the smallest possible value that p might be.

Suppose a random sample of n ¼ 250 registered voters is surveyed by the school board

and y ¼ 190 favor the bond issue while n 2 y ¼ 60 oppose it. Using Table A.5d and

y/n ¼ 190/250 ¼ 0.76, the table is entered at 1 2 0.76 ¼ 0.24 and the lower bound is

1 2 0.289 ¼ 0.711. The 95% confidence interval that puts a lower bound on p is

one-sided CI0:95: 0:711 � p � 1:00

(The 0.10 column is used because only the lower bound is needed.) This interval shows that

the school board can schedule an election and feel confident that the bond issue will pass.

If the board preferred to phrase its investigation in terms of a test of hypothesis, it would test

H0: p ¼ 0:70 (bond issue may not pass)

against

Ha: p . 0:70 (bond issue will pass)

The board would find the one-sided confidence interval for the lowest value of p and

conclude that the null hypothesis should be rejected at the 5% significance level because

p ¼ 0.70 is not in the interval.

Similar approaches can be used for two-sided alternatives and one-sided less-than

alternatives. The correspondence between confidence intervals and tests of hypotheses is

summarized in the following procedure.

Procedure. Testing Hypotheses Using Confidence Intervals

Confidence Interval Test

Central H0: p ¼ p0

CI12a: L � p � U Ha: p = p0

a level of rejection

Reject H0 if p0 is not in the confidence interval, that is,

p0 , L or p0 . U

Upper bound H0: p ¼ p0
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Confidence Interval Test

One-sided CI12a: 0 � p � U Ha: p , p0

a level of rejection

Reject H0 if p0 is not in the confidence interval, that is,

p0 . U

Lower bound H0: p ¼ p0

One-sided CI12a: L � p � 1.00 Ha: p . p0

a level of rejection

Reject H0 if p0 is not in the confidence interval, that is,

p0 , L

EXERCISES

3.3.1. In each case below, the sample size n, the statistic y, the level of confidence 1 2 a, the
lower confidence limitL, or the upper confidence limitU are given. Use tables for placing

a confidence interval on the binomial parameter p to fill in the missing values in each

case.

Case n y 1� a L U

1 50 20 0.99 — —

2 — — 0.95 0.300 0.423

3 250 80 0.95 — —

4 500 430 0.99 — —

5 50 16 0.99 — —

6 — — 0.95 0.102 0.258

7 500 31 0.90 — —

8 100 — — 0.216 0.374

9 — 30 — 0.036 0.093

10 20 — 0.90 0.250 —

3.3.2. In a random sample of 250 inmates of federal prisons, 175 are found to have

committed nonviolent crimes.

a. What is the best estimate of the proportion of such federal offenders?

b. Place a 95% confidence interval on the proportion of all federal prisoners

convicted of nonviolent crimes.

c. Can you deduce from this that the majority of inmates of all federal prisons have

been convicted of nonviolent crimes?

3.3.3. A random sample of 25 precocious readers is drawn and their family backgrounds

carefully studied. In 40% of the cases, the child’s father is at least 15 years older than

the mother. Place a 90% confidence interval on the proportion of such age disparities

between the parents of precocious readers.

a. Using Table A.4b

b. Using Table A.5a
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3.3.4. A random sample of 100 persons suffering from mental depression reveals that 75 of

them cannot properly evaluate their job skills.

a. Give the maximum-likelihood estimate of the binomial parameter.

b. Set up a 95% confidence interval for this parameter.

3.3.5. In a random sample of 50 kindergarten children, there are 7 who hold crayons in their

left hands while coloring a picture.

a. Give the best point estimate of the proportion of left-handed kindergarten

children.

b. Explain what “best” means in this exercise.

3.3.6. Selected at random, 125 schoolchildren are given their choice of candy made with

either light or dark chocolate, but otherwise the candy is the same. Only 30% of them

choose the dark chocolate. If a candymaker wants no more than a 1 in 100 chance of

being misled by sampling variability, what is the estimate of the proportion of

children who prefer dark chocolate?

3.3.7. Selected at random, 250 married couples are given sample ballots containing the

names of all candidates for contested offices in the coming election. Husband and wife

mark their ballots independently, and their ballots are compared; 130 couples are in

perfect agreement in their voting.

a. What is the estimated numerical value of the binomial parameter for the

distribution that models this situation?

b. Set up a 95% confidence interval for the binomial parameter.

3.3.8. In a random sample of 200 apples from an orchard that had not been sprayed with

insecticide, 162 apples bear evidence of insect damage.

a. What is the best estimate of the proportion of damaged fruit in the orchard?

b. In what range would you say the “true” proportion lies if you want to have only a

1-in-100 chance of being wrong?

3.3.9. In a random sample of 500 voters from a northern county in West Virginia,

265 of the voters indicate that they will vote for the Democratic candidate for

governor.

a. Set a 99% confidence interval for the proportion of voters in the county who will

vote for the Democratic candidate.

b. The Republican candidate claims that he will win the county by 1% of the votes.

i. State a null hypothesis for his claim.

ii. Does the confidence interval in part a lead to acceptance or rejection of this

null hypothesis? Why?

iii. With what a level was the hypothesis tested?

3.3.10. Francis Galton thought everything could be measured and tried to measure

everything. He was interested in hot-air ballooning and routinely measured

barometric pressure along with the direction and velocity of the wind. As a result,

his first major scientific contribution was in meteorology. In his measurements, he

noted that the flow of air around a high-pressure area was not counterclockwise

as it is around one of low pressure. Because he found it always to be

clockwise instead, Galton called the phenomenon an “anticyclone,” the term still in

use. His conclusion was based on the fact that the number of times there was

counterclockwise flow around the n high pressure areas measured by him
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was y ¼ 0. Had confidence intervals been available when he drew his

conclusion:

a. Why should he use a two-side interval when all recorded flows were clockwise?

b. Give the CI0.95 if his number of observations had been n ¼ 20, 25, 50, 100 and p is

the proportion of counterclockwise flows in high pressure areas.

c. Instead of using a confidence interval, why is it not possible to test either of the

following hypotheses?

i. H0: p ¼ 0 with Ha: p . 0?

ii. H0: p . 0 with Ha: p ¼ 0?

3.4. NONPARAMETRIC STATISTICS: MEDIAN TEST

By changing the scale of measurement, we can also use the binomial distribution to analyze

data originally recorded on the numerical scale. This is known as a nonparametric statistical

procedure because inference is made, not about the parameter (or parameters) of the original

data, but about the parameter for the new scale of measurement. Disadvantages can result

from reducing the scale of measurement, but nonparametric tests are often quick, convenient,

and useful statistical tools which need to be examined.

The one-sample median test is a nonparametric test in which numerical data are reduced to the

nominal scale and analyzed bymeans of the binomial distribution. Themedian (M) of a distribution

is the value which will divide the distribution into halves. Thus the probability is 1/2 that the

median will be exceeded by a random variable u from the distribution, that is, P(u .M) ¼ 1/2.
If a random sample of n observations is drawn from a numerical distribution with a known

median and we record only y equal to the number of values in the sample which exceed the

median, y is a binomial random variable with a b(y;n,1/2) distribution. If the median is not

known, we can state a hypothesized value and then use the binomial distribution to test

whether approximately half the sample values are greater than the hypothesized median. The

procedure will be demonstrated in the following example.

Example 3.4. The One-Sample Median Test

An oncologist has been studying cervical cancer and has learned that this disease is diagnosed

at a median age of 49.5 years (M ¼ 49.5). He begins a new study of uterine cancer and soon

speculates that this is a disease of older women. To test this belief, he hypothesizes that the

median age for victims of uterine cancer is the same as that for those with cervical cancer, and

the alternative hypothesis is that uterine cancer victims are older:

H0: P(u . 49:5) ¼ p ¼ 0:50

Ha: p . 0:50

He then obtains a random sample of 20 women with uterine cancer and finds that y ¼ 17 were

older than 49.5 years when their condition was diagnosed. This is in the region of rejection for

a test with the conventional a ¼ 0.05, so he rejects the null hypothesis and concludes that the

median age at diagnosis for victims of uterine cancer is greater than it is for those with cervical

cancer. In other words, the kind of cancer a woman may have will depend, in part, on her age.
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EXERCISES

3.4.1. In a certain large suburban housing development, all the houses were built at

approximately the same time, with the same size and initial cost of construction. The

median resale price of houses in the development has been established, but a real-estate

agent wants to determine if multiple ownership affects the resale price of a house. From

records at the county courthouse, she obtains a sample of the resale prices of 25 houses

which have had more than one owner. In the sample, 15 were sold below the median

price for houses in the area and 10 were sold above the median price.

a. Give the null and alternative hypotheses.

b. What is the value of P?

c. What conclusion should the agent make about the effect of multiple ownership on

the resale value of a house in the area?

d. What factors could affect the validity of the conclusion?

3.4.2. The National Center for Health Statistics has recently reported that the median life

expectancy of U.S. white males is 74 years (rounded to an integer value). A physician

in the U.S. protectorate of Guam want to see if the same life expectancy holds true for

U.S. white males on that island. He obtains a random sample of 20 recent death

certificates of U.S. white males, and the ages u of the deceased were

18 59 42 61 38 41 71 40 14 47

73 93 55 51 74 88 60 71 89 63

a. What hypothesis does the physician want to test?

b. Why might he want to use a two-sided alternative?

c. If the null hypothesis is true, what is the expected number of ages greater than

M ¼ 74? What is the observed number of ages greater than 74?

d. Compute the P value and compare it to an a of 0.05.

3.4.3. An airline is experiencing a median delay in arrival of 27 minutes and introduces new

measures in an effort to make improvements. After the measures have been in effect for

a month, a random sample will be taken of arrival times and the median test used to

evaluate the effectiveness of the changes.

a. Give the null and alternative hypotheses which will be used.

b. For an a as near 0.05 as possible, what will be the region of rejection if the number

of flights in the random sample is n ¼ 25? n ¼ 50? n ¼ 100?

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If the statement is false,

explain why.

3.1. In a binomial experiment, the outcomes fall into two mutually exclusive classes.

3.2. In a binomial experiment with n trials, y can take on any of n values.

3.3. Binomial distributions are not symmetrical, except when p ¼ 1 2 p.
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3.4. Because the binomial is a discrete distribution, the expected value will be an integer

value.

3.5. If the binomial parameter p is 0.60, the probability of exactly 60 successes out of 120

trials is greater than the probability of 72 successes out of 120 trials.

3.6. If A and B are mutually exclusive events, then P(A or B) ¼ P(A) � P(B).

3.7. The variance for discrete distributions can be computed by using the formula

V(y) ¼ np (1 2 p).

3.8. The addition rule of probability applies only to mutually exclusive events.

3.9. The binomial distribution is an example of a continuous probability distribution.

3.10. To calculate the probabilities in a binomial distribution, the number of trials n and the

binomial parameter p must be known.

3.11. The null hypothesis may be H0: p ¼ 0.05 and y/n ¼ 0.05, but the null hypothesis may

still be false.

3.12. A Type I error is defined as “the probability of rejecting the null hypothesis when it is

true.”

3.13. When the null hypothesis is true, the probability of making a Type I error is equal to a.

3.14. It is impossible to make a Type I error when the null hypothesis is false.

3.15. The symbol b represents the probability of rejecting H0 when H0 is false.

3.16. The power of a test of hypothesis is 1 2 a.

3.17. It is impossible to make a Type II error when the null hypothesis is rejected.

3.18. If large sample sizes are used, there is less likelihood of a Type I error and a Type II

error.

3.19. If an experiment is well designed and both a and b are small, it should be a good

experiment.

3.20. Even when a correct statistical procedure is used, it is possible to accept the null

hypothesis when it is false.

3.21. The greater the region of rejection, the more powerful the experiment.

3.22. The probability P(y is in region of rejection) ¼ a whether the null hypothesis is true or

false.

3.23. The best point estimate p̂p ¼ y=n of the parameter p will lie exactly in the middle of the

95% confidence interval for p.

3.24. If the degree of certainty is increased from 0.95 to 0.99, the confidence interval becomes

narrower.

3.25. Two methods of estimation are confidence intervals and tests of hypotheses.

3.26. Confidence intervals that are based on large samples are more likely to include the

population parameter than those based on smaller samples.

3.27. Other things remaining the same, the larger the value of p̂p , the wider the confidence

interval.

3.28. Other things being equal, the greater the level of confidence desired, the wider will be

the confidence interval.

3.29. Repeated samples of the same size from the same population will always produce 99%

confidence intervals of the same width on the binomial parameter p.

3.30. If the confidence interval does not contain some hypothesized value p0 of the binomial

parameter, the hypothesis can be rejected.
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4 Poisson Distributions

In this chapter we look at a second family of probability distributions, Poisson distributions.

Poisson distributions are the appropriate probability model for certain types of experiments.

There is an interesting relationship between binomial distributions and Poisson distributions,

and this relationship provides a way to approximate some binomial probabilities that are very

difficult to compute directly.

4.1. THE NATURE OF POISSON DISTRIBUTIONS

Many scientific experiments involve the random sampling of one or more fixed time intervals,

lengths, areas, volumes, or other sampling units, and then observing the number of discrete

events per sampling unit. For example, a forester might count the number of white-oak trees

damaged by deer within sampling quadrants (square areas); an epidemiologist might count the

number of new cases of hepatitis in a certain county in one month; a quality control manager

might count the number of defects in 25-ft lengths of wire; an ecologist might count the

number of parasites per host. In each case the event of interest (damaged white oak, incidence

of disease, defect, parasite) is counted for a certain sampling unit (a quadrant, a month, 25 ft,

per host).

The outcomes in experiments of this type often have the characteristics of a Poisson

process. This process is named after Siméon-Denis Poisson (1781 to 1840), a French

mathematician who first studied variables of this type in 1837.

A Poisson process consists of discrete events that occur per unit (such as time, length, area,

volume, or on an object) and for which:

1. The probability of a single occurrence of the event is directly proportional to the size of

the interval, or sampling unit.

2. If the sampling unit is sufficiently small, the probability of two or more occurrences of

the event is negligible.

3. The occurrences of the event in nonoverlapping intervals or units are independent, that

is, what happens in one sampling unit has no effect on what happens in another

nonoverlapping unit.

If an experiment generates a Poisson process and the units are randomly and independently

obtained, then the appropriate probability model for the number of occurrences of the event in

the specified sampling unit is a Poisson distribution. The Poisson distribution is a discrete

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
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probability distribution with probability function

p(y; l) ¼ e�l(l)y

y!

for y ¼ 0, 1, . . . . In this probability function y is the value of the random variable, y! has the

usual meaning of y factorial, e is the constant which is the base of the natural logarithms†

(equal to 2.7183 if rounded to four decimal places), and l (the Greek letter “lambda”) is the

expected number of occurrences in the specified interval. Table A.6 in the Appendix of Useful

Tables gives values of e 2l for selected values of l.
To draw statistical inference from data modeled by a Poisson process, the appropriate

Poisson probability distribution is needed. As with binomial data, we will rely primarily on

the Poisson probability distributions given in the tables in this text. However, it is important to

see how these tables can be constructed through the application of mathematical procedures to

the probability distribution function.

Note that this probability distribution is completely determined by the parameter l. If we
know l, we can compute the distribution, as in the following example.

Example 4.1. A Poisson Probability Distribution

Suppose a certain city has a variable number of suicides per month but the mean is 3 suicides

per month. A mental health scientist wants to study this phenomenon and decides to use a

Poisson distribution to model the distribution of suicide data. The sampling unit is one month;

y is the number of suicides in that month, and E(y) ¼ l ¼ 3.0. Then, to compute the

probabilities of different numbers of suicides in any specific month, the mental health scientist

will use the formula

p(y; 3) ¼ e�3ð3Þy
y!

for y ¼ 0, 1, 2, . . . .

For example, the probability that there will be 0 suicides in a randomly chosen month is

P(y ¼ 0) ¼ p(0; 3) ¼ e�3(3)0

0!

Since both (3)0 and 0! are each equal to l, p(0; 3) ¼ e�3, which can be found in Table A.6 as

0.0498. Similarly, the probability of exactly one suicide in a randomly chosen month is

P(y ¼ 1) ¼ p(1; 3) ¼ e�3(3)1

1!
¼ e�3(3)

Further computations for the distribution are simplified if it is noted that p(1; 3) ¼
p(0; 3)(3=1), p(2; 3) ¼ p(1; 3)(3=2), and in general the probability of any value y can be

computed easily from the previous value, y 2 1,

p(y; l) ¼ p(y� 1; l)
l

y

� �

†The irrational number e can also be defined as the limit of the series ð1þ 1=nÞn; that is, ð1þ 1=1Þ1 ¼ 2:0000;

ð1þ 1=2Þ2 ¼ 2:5000; ð1þ 1=3Þ3 ¼ 2:3704; . . . :
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The following table is computed in this manner:

y p(y;3)

0 e 23.30/0! ¼ e 23 ¼ 0.0498

1 e 23.31/1! ¼ p(0)(3/1) ¼ 0.1494

2 e 23.32/2! ¼ p(1)(3/2) ¼ 0.2240

3 e 23.33/3! ¼ p(2)(3/3) ¼ 0.2240

4 e 23.34/4! ¼ p(3)(3/4) ¼ 0.1680

5 e 23.35/5! ¼ p(4)(3/5) ¼ 0.1008

6 e 23.36/6! ¼ p(5)(3/6) ¼ 0.0504

7 e 23.37/7! ¼ p(6)(3/7) ¼ 0.0216

8 e 23.38/8! ¼ p(7)(3/8) ¼ 0.0081

9 e 23.39/9! ¼ p(8)(3/9) ¼ 0.0027

10 e 23.310/10! ¼ p(9)(3/10) ¼ 0.0008

11 e 23.311/11! ¼ p(10)(3/11) ¼ 0.0002

12 e 23.312/12! ¼ p(11)(3/12) ¼ 0.0001

13 e 23.313/13! ¼ p(12)(3/13) ¼ 0.0000

and p(y) ¼ 0.0000 (rounded to four decimal places) for y . 13.

Poisson probability distributions have some interesting properties. The expected value of y

is equal to l and the variance of y is also l, that is, E(y) ¼ V(y) ¼ l. Also, the sum of two

Poisson random variables is a Poisson random variable; thus, if y1 and y2 are Poisson random

variables with parameters l1 and l2, respectively, then y1 þ y2 is a Poisson random variable

with expected value l1 þ l2. Thus, if we make the sampling unit larger than one month and if

we can assume that the number of suicides in one month will be independent from those in

another, we can find the expected number of suicides in 2 months as E(y1) þ E(y2) ¼
3 þ 3 ¼ 6, and the expected number during the 3-month summer period (again making the

assumption of independence) will be 3(3) ¼ 9. Similarly, if the sampling unit is made smaller,

reducing it by half, for example, we can say that the expected number of suicides in the first

half of the month will be E(y/2) ¼ E(y)/2 ¼ 3/2 ¼ 1.5. These relationships are important

because we usually have a sample of more than just one Poisson random variable.

EXERCISES

4.1.1. The expected number of water mites found on a host, the chironomid fly, is 2.5 and this

is a Poisson process.

a. Are the sampling units water mites, or chironomid flies? Explain.

b. What is the probability that exactly 1 mite will be found on a fly?

4.1.2. If the accident rate at a certain factory is 7.0 per year and this is a Poisson process:

a. Find the probability that fewer than 3 accidents will occur in a year.

b. Find the probability that 3 or more accidents will occur in a year.

4.1.3. The expected number of flaws in 20-ft intervals of wire is 5.0.

a. What is the number of discrete events, feet or flaws?
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b. What is the expected number in a random 10-ft interval?

c. What is the probability that there will be 4 flaws in a random 10-ft interval?

4.1.4. In Example 4.1 in this section, involving the number of suicides per month:

a. What is the probability that no suicides will occur in a month?

b. What is the probability that more than 6 suicides will occur?

c. What percentage of months will have at least 1 suicide but not more than 6 suicides?

4.1.5. Additives such as trace minerals, antibiotics, vermifuges, and insecticides are

incorporated into animal feeds in parts per million (ppm). For effective mixing, the

additives may be compressed into pellets the size of the ground grain in the feed and

then colored with vegetable dye for easy identification. Quality control for

thoroughness of mixing can be maintained by scooping out a known volume of the

mixed feed and counting the number of colored pellets of additives. If properly mixed

feed yields a Poisson process with l ¼ 2.5 per scoop, find:

a. The probability that a scoop will contain no pellets of additive

b. The probability that a scoop will contain exactly 1 such pellet

c. The probability that a scoop will contain at least 1 pellet

d. The outcomes that are most likely to occur approximately 80% of the time

4.1.6. In the feed-mixing problem described in Exercise 4.1.5, suppose customary quality

control procedures require 10 independently drawn scoops from each batch of mixture.

In 10 scoops of properly mixed feed, find:

a. The expected total number of colored pellets

b. The probability that there will be no such pellets

4.1.7. a. Compute the Poisson distribution for each of the following values of l: 0.25, 0.50,
1.00, and 10.00. Round the probabilities to four decimal places.

b. Graph the Poisson distributions of part a.

c. Describe the behavior of the graphs of part b.

4.1.8. a. Use the probabilities in Exercise 4.1.7a for l ¼ 0.25 to find the expected value of

that Poisson distribution. Why is this value slightly different from E(y) ¼ l
¼ 0.25?

b. Use the probabilities computed in Exercise 4.1.7a and E(y) ¼ 0.25 to find V(y) for

that Poisson distribution. Why is this value slightly different from V(y) ¼ l
¼ 0.25?

4.1.9. If y1 and y2 are independent Poisson random variables with l ¼ 0.25, then y1 þ y2 is

a Poisson random variable with l ¼ 0.50. Use Exercise 4.1.7 to show that this is true

for y1 þ y2 ¼ 3. [Hint: Remember that y1 þ y2 ¼ 3 when y1 and y2 are respectively

(0 & 3), (3 & 0), (1 & 2), or (2 & 1).]

4.2. TESTING HYPOTHESES

Using Table A.7 in the Appendix, which contains the Poisson distributions for selected values

of l, we can test hypotheses with a procedure similar to the one we used for the binomial

distribution.
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Example 4.2. Test of Hypothesis for a Poisson Parameter

A biologist studying yeast cells believes that after a certain treatment the cells will be present

at a rate of 0.55 per square of a hemacytometer (a microscopic plate usually used to count

blood cells). He finds 13 yeast cells in 20 squares and wonders if 13/20 ¼ 0.65 indicates that a

rate of 0.55 is incorrect. To determine whether 13 cells in the 20 squares are likely to occur if

his conjectured rate is correct, he uses the Poisson distribution.

The null and alternative hypotheses are

H0: l ¼ 0:55

Ha: l = 0:55

Since the sum of two Poisson random variables is also a Poisson random variable, if

l ¼ 0.55 for one square, then l ¼ 20(0.55) ¼ 11 for 20 squares. Using Table A.7, the

biologist finds that for a as close to 0.10 as possible the region of rejection is

y ¼ 0, 1, 2, 3, 4, 5, 17, 18, 19, . . .

if the test statistic is the number of yeast cells per 20 squares. The actual a level is 0.0933. The

count is 13 yeast cells in 20 squares after this treatment, and since 13 does not lie in the region

of rejection, the biologist concludes that after the treatment the mean number of yeast cells per

square may be 0.55.

Statistical computer programs more often provide a P value rather than a region of

rejection, so it may be useful to see again how this probability is obtained and how it is

used to make a decision about the null hypothesis. In Example 4.2, E(y) ¼ 20(0.55) ¼ 11

yeast cells in 20 squares, and the observed value was y ¼ 13, which is 2 yeast cells different

from the number expected under the null hypothesis. Because the alternative hypothesis is

two sided, the P value measures the probability of a difference from E(y) of 2 or more in

either direction, so

P ¼ P(y � 9)þ P(y � 13) ¼ 0:3405þ 0:3113 ¼ 0:6518

A P value of 0.6518 is very large; hence a difference of this magnitude or even greater

could occur easily by chance when the null hypothesis is true. The P value would have to

be equal to or less than a ¼ 0.10 before we would decide the null hypothesis is false.

For small values of l the Poisson distributions have relatively large probabilities in the

lower tail, so it may be impossible to designate a small a level for a two-tailed alternative or

for a one-tailed less-than alternative hypothesis. The technique of using several units—such as

the 20 squares in the above example—helps overcome this difficulty.

Table A.7 lists a limited number of values of l, and the necessary one may not be there. If

l is not too large, the necessary probability distribution can be calculated. For large l’s
approximation methods are available; these are discussed in Chapter 7.

Procedure. Test of Hypotheses for a Poisson Parameter

Region of Rejection Method

H0: l ¼ l0 (l ¼ expected number of occurrences in a specified interval)
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Ha: l = l0, l , l0, or l . l0
Significance level: a

Test statistic: y, the number of occurrences of the phenomenon of concern in a multiple of k

specified sampling units.

Using a table for the Poisson distribution with probability function p(y; l0k), determine the

region of rejection.

ForHa: l = l0, the region of rejection is 0 � y � cL and cU � y � 1 such that
PcL

0 p(y; l0k)
and

P1
cU
p(y; l0k) are each as close as possible to a/2.

For Ha: l , l0, the region of rejection is 0 � y � cL such that
P1

0 p(y; l0k) is as close as

possible to a.
For Ha: l . l0, the region of rejection is cU � y � 1 such that

P1
cU
p(y; l0k) is as close as

possible to a.

P-Value Method

For Ha: l = l0, compute P ¼ P(jy 2 l0kj � j test statistic 2l0kj).
For Ha: l . l0, compute P ¼ P(y � test statistic).

For Ha: l , l0, compute P ¼ P(y � test statistic).

Reject H0 if P � a.

EXERCISES

4.2.1. A physicist wants to verify whether a radioactive substance has a level of radioactivity

equal to 4 radioactive particles emitted per millisecond. He measures the radioactivity

with a Geiger counter, and it records 18 particles in 3 msec.

a. What is the expected number of radioactive particles per 3 msec?

b. Compute the P value for an observed value this far or even farther from the number

expected in 3 msec.

c. Using an a of 0.05, make a test of hypothesis to determine if the radioactivity level

is significantly greater than expected.

4.2.2. A certain area of the United States has a rate of 4.5 tornadoes per year. A local religious

cult claims that its rituals can reduce this rate. The cult members conduct their rituals

and that year 2 tornadoes hit. Use a test of hypothesis with a as close to 0.10 as possible

to determine if the rate is significantly less than 4.5 per year. What assumptions are you

making as you perform this test?

4.2.3. A hospital emergency center handled victims of automobile accidents at the rate of 10

per week when the local highway had a speed limit of 70 miles per hour. After the

speed limit was reduced to 55 miles per hour, 4 highway accident victims were

admitted in a randomly selected week. Does this indicate a reduction in emergency

admissions for automobile accidents? Could you conclude that lowering the speed limit

has reduced highway accidents? Why or why not?

4.2.4. Grain sorghum is a naturally tall-growing plant, but dwarf varieties have been

developed so that the crop can be harvested with conventional farm equipment.

However, back mutation occurs frequently and tall offspring reappear in a field with an

expected value of 1.5 tall plants per 200 ft2. With each development of a new grain

sorghum hybrid, plant breeders must satisfy the farmer that the amount of back

mutation has not increased. A hybrid seed company has many experimental hybrids
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under consideration at a time, and it decides to allot only three 200-ft2 plots per hybrid.

Set up a test of hypothesis for the amount of back mutation.

a. Give the null hypothesis for 3 plots.

b. Give the alternative hypothesis.

c. Give the region of rejection for a as close to 0.05 as possible.

d. Suppose that for a particular hybrid the back mutation doubles to la ¼ 3.0 per

200 ft2; what is the power of the test for 3 plots?

e. What is the power for la ¼ 3.0 if only 1 plot is used? Is it advisable to use more than

1 plot?

4.2.5. The rarest white blood cell is the basophil, which constitutes only 1% of the total white

blood cells. Students who are learning to perform white blood cell counts are inclined to

mistake other cells for basophils until they have seen them often enough to recognize

them. Thus a student’s proficiency in performing differential white blood cell counts can

be tested by checkingwhether toomany cells have been recorded as basophils. This can be

thought of as a Poisson process in which the interval is a count of 100 white blood cells.

a. State a null hypothesis indicating that the student can accurately identify the

different kinds of white blood cells.

b. State an alternative hypothesis indicating that the student mistakes other cells for

basophils.

c. The instructor decides that any student who records 4 or more basophils per 100

cells counted cannot yet distinguish these cells properly. How likely is it that a

student will record cells correctly but have an unusual random sample of cells?

d. The frequency of basophils increases after surgery. Suppose the student is counting

white blood cells from a blood smear taken under such conditions and l ¼ 2.4 per

100 cells. How likely is it that fewer than 4 basophils are among the 100 cells

counted? Should the instructor take precautions that the students are not using blood

smears from postoperative patients?

4.2.6. A new synthetic surface has been placed on a university football field, and the team’s

physician wants to decide whether it has had any effect on the number of knee injuries

suffered in a game. Since he has been with the team, it has experienced a mean of

l ¼ 0.7 knee injuries per game.

a. If the new surface has no effect, what is the expected number of knee injuries in the

first 5 games on the new surface?

b. State a null and alternative hypothesis.

c. Suppose that there are a total of y ¼ 7 knee injuries in the first 5 games, how likely

is a deviation from expected of this magnitude or greater to occur by chance?

d. If the team’s physician sets a ¼ 0.10, what should he conclude about the effect of

the new surface on knee injuries?

e. What caveats about the design should be taken into account when the conclusion is

being drawn?

4.3. ESTIMATION

The best point estimate of the Poisson parameter l is y, the number of occurrences of the event

of interest in a randomly selected sampling unit. If several units are sampled, the total number
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of occurrences is the best estimate for the combined units. Central and one-sided confidence

intervals can be found in a manner similar to finding confidence intervals for the binomial

parameter p. Table A.7 in the Appendix is used to find the confidence intervals for the Poisson
parameter. Because of the relatively large probabilities for low values of y, the horizontal lines

in Table A.7 are drawn so that a is as close to 0.20 as possible; thus these lines correspond to

approximate 80% central confidence intervals.

Example 4.3. A Central Confidence Interval for a Poisson Parameter

Foresters are concerned about the number of young trees destroyed by deer. Suppose a

forester chooses 4 quarter-acre quadrants at random and finds that in the four plots 8 young

trees have been destroyed by deer. She wants to estimate the damage rate per acre by an

approximate 80% confidence interval.

Using Table A.7, she finds that 8 is in the region of acceptance for l ¼ 5.0 to l ¼ 12.0, so

the confidence interval is

CI0:80: 5:0 � l � 12:0

in which l is the damage rate per acre.

The upper and lower bounds on the confidence interval are limited to column entries in Table

A.7 so, as was done with the binomial distribution, another table, Table A.8, is given for

obtaining more precise upper and lower limits for the confidence interval. Using the same data

above, the forester would enter Table A.8 with row entry y ¼ 8 and column entry 1 2 a ¼ 0.80;

she would find L ¼ 4.6561 and U ¼ 12.9947, and she obtains the confidence interval

CI0:80: 4:7 , l , 13:0

This confidence interval expresses the expected number of damaged trees on a per-acre basis;

if she wishes to return it to a per- (quarter-acre) quadrant basis, she divides the upper and lower

limits by k ¼ 4 and obtains

CI0:80: 1:2 , l , 3:2

The greatest row entry for Table A.8 is y ¼ 20, and this may not be sufficiently large for

some estimates of l. However, this problem will be addressed in Chapter 7, where it will be

seen that when l is large another distribution can be used to approximate the Poisson

distribution.

One-sided confidence intervals can also be determined.

Example 4.4. A One-Sided Confidence Interval for a Poisson Parameter

The architect for a new hospital in a small city needs to know the maximum number of

emergency cases that can be expected in a half-hour period in order to plan adequate facilities.

He examines the records at the existing city hospital, which is being replaced; a random

selection of 10 half-hour periods gives a total of 6 emergency cases. He can use Table A.7 to

find an approximate 90% one-sided confidence interval:

One-sided CI0:90: l � 9:0
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if l is for a 5-hour period because 9.0 is the largest value of l for which 6 would be in the

region of acceptance. Or he could write

One-sided CI0:90: l � 0:90

if l is for a half-hour period.

The one-sided confidence interval indicates that the largest expected value of the Poisson

distribution that is likely is 0.90; that is, the largest mean number of cases in a 30-minute

period is 0.90. Since 0.90 is the mean, some of the 30-minute periods will have more cases and

others less. Since the number of cases in a 30-minute period will usually be within two

standard deviations of the expected value l and in a Poisson distribution l ¼ V(y), the

architect can prepare for the worst situation,

l ¼ V(y) ¼ 0:90

sd(y) ¼
ffiffiffi
l

p
¼ 0:95

and the largest number of cases is not likely to be more than

lþ 2sd(y) ¼ 0:90þ 2(0:95) ¼ 2:80

To be safe, he plans to be able to accommodate 3 cases each half hour.

Procedure. Confidence Intervals for l

Central

1. Specify a.

2. Take a sample of k sampling units.

3. Observe y, the number of occurrences of the phenomenon of interest in the k units.

4. Give the interval of all values of l for which y would fall in the region of acceptance

for a two-sided a-level test from Table A.7 (or use Table A.8 to get the interval

directly).

5. Divide the confidence limits by k to determine the central confidence interval for the

rate l for intervals of the specified unit.

One-Sided, Upper Confidence Limit

Proceed as for a central confidence interval, but in step 4 use the region of acceptance for a

one-tailed less-than test of hypothesis in Table A.7 (or double a and use only the upper limit in

Table A.8).

One-Sided, Lower Confidence Limit

Proceed as for a central confidence interval, but in step 4 use the region of acceptance for a

one-tailed greater-than test of hypothesis in Table A.7 (or double a and use only the lower

limit in Table A.8).
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EXERCISES

4.3.1. If 3 noxious weeds are found in a 0.25-oz random sample of grass seed, use the Poisson

probability distribution to find an 80% confidence interval for the expected number of

weeds per 0.25 oz of seed. (Note that using the Poisson model here avoids the necessity

of counting all the seeds, a tedious task.) Compare the intervals obtained from

Tables A.7 and A.8.

4.3.2. If 8 defects are found in a production process during a random 5-minute interval,

find with 90% of confidence the largest mean number of defects that could be

expected to occur in a 5-minute period. Compare the intervals obtained from Table

A.7 and A.8.

4.3.3. It is found that there are 6 fatal accidents in an underground coal mine for a sample of

20,000,000 employee hours of exposure. Place an approximate 80% confidence

interval on the Poisson parameter if the interval is 100,000 employee hours.

4.3.4. In the quality control process described in Exercise 4.1.5, place an approximate 90%

confidence interval on the smallest mean number of pellets expected in 1 scoop if 7

pellets are found in 4 random scoops.

4.3.5. Sir Francis Galton (1822 to 1911), one of the early developers of experimental

statistics, believed everything could be measured, even boredom. His measure of

boredom was a Poisson statistic, the number of signs of unrest that an individual

would show per minute. Suppose a student wants to measure how boring a classmate

finds the statistics class, so he counts the number of times she yawns, fidgets, looks

at her watch, and so on, during 16 half-minute intervals of observation, and the total

is 10.

a. With regard to this survey:

i. Why must the friend be unaware that her behavior is being observed?

ii. Why can the time of observation not be for 8 consecutive minutes?

iii. Is it valid to assume that E(l) remains constant throughout the class period?

b. Place an 80% confidence interval on the number of signs of boredom she shows per

minute.

c. Do you think a survey of this nature is valid? Ethical?

4.3.6. Suppose the data on trees destroyed by deer in Example 4.3 had been obtained by

sampling a 100-acre forest.

a. What is the estimated number of young trees destroyed by deer in the entire forest?

b. Set an upper 90% confidence limit for this estimate to get an upper bound for the

total number of trees destroyed in the entire forest.

4.4. POISSON DISTRIBUTIONS AND BINOMIAL DISTRIBUTIONS

Besides being useful in its own right, the Poisson distribution is often used as an

approximation of the binomial distribution if the number of trials n is large and the probability

of success on a single trial p is small. The approximation is possible because it can be shown

mathematically that, if p becomes very small while n becomes very large and the product np
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remains constant, then the binomial distribution will be approximately a Poisson distribution

with l ¼ np and the Poisson sampling unit the set of n trials.

Example 4.5. Using a Poisson Distribution to Approximate a Binomial Distribution

A geneticist believes that in a certain experiment the mutation rate is 4 in 1,000,000. She

would like to find the probability that in a random sample of 25,000 she will observe no more

than one mutation. This experimental situation is appropriately modeled by the binomial

distribution b(y; 25,000, 0.000004) and she wants to compute

P(y � 1) ¼ b(0; 25,000, 0:000004)þ b(1; 25,000, 0:000004)

¼ 25,000

0

� �
(0:000004)0(0:999996)25,000

þ 25,000

1

� �
(0:000004)1(0:999996)24,999

This computation is not feasible directly, and logarithms or a calculator with a y x function

would have to be used to compute an approximate answer.

Instead, the geneticist could approximate this probability by using a Poisson distribution.

The Poisson parameter would be l ¼ np ¼ 25,000(0.000004) ¼ 0.100000; that is, the

expected number of mutations per 25,000 trials is 0.1. For the Poisson distribution

P(y � 1) ¼ p(0; 0:1)þ p(1; 0:1)

¼ e�0:1(0:1)0

0!
þ e�0:1(0:1)1

1!

¼ 0:904837þ 0:904837(0:1)

¼ 0:995321

Using this very simple computation, the geneticist can be relatively certain that in a random

sample of size 25,000 she will observe no more than one mutation.

This approximation of the binomial distribution by the Poisson distribution is good only

for small p and large n. Some statisticians suggest as a rule of thumb that l ¼ np should be

less than 7.

Procedure. Poisson Approximation of a Binomial Distribution

For np , 7, a binomial distribution may be approximated by a Poisson distribution: b(y; n, p)
is approximated by p(y; np).

It is important that we recognize the difference between a Poisson distribution and a

binomial distribution so that we use the proper one to model an experiment and so that we

know when it is appropriate to approximate a binomial by a Poisson. The following summary

may be helpful:
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Binomial Poisson

1. Random variable:

y ¼ number of successes in n trials

1. Random variable:

y ¼ number of successes in a specified

sampling unit

2. Number of trials:

n, a finite number

2. Number of trials:

infinite, since we count discrete events

(successes) in a unit

3. Two parameters:

p ¼ probability of success for a single

trial

n ¼ number of trials

3. One parameter:

l ¼ mean number of successes per

sampling unit

4. E(y) ¼ np
V(y) ¼ np (1 2 p)

4. E(y) ¼ V(y) ¼ l

EXERCISES

4.4.1. If it is known that the probability of having a bad reaction to a certain injection is 0.001,

what is the probability that more than 1 person in 100 will have a bad reaction?

4.4.2. If the rate of accidental drownings per year is 0.000003 (i.e., 3 per 1,000,000

population), what is the probability that there will be more than 2 drownings in a city

with a population of 400,000?

4.4.3. Amanufacturer ofTVsets initiates an inspection system to reduce the number of defective

sets leaving the plant. Prior to this system the proportion of defective setswas 1 in 80.After

the new system is in effect, in a random sample of 320 sets there are 2 defective sets. Use a

test of hypothesis to decide if the proportion of defects has been reduced.

4.4.4. Suppose routine blood typing for 400 army recruits reveals that 6 of them have AB-

negative blood.

a. What assumptions would you have to make for this to be considered a random

sample of army personnel? Of the entire country?

b. Place an approximate 80% confidence interval on the proportion with AB-negative

blood among army recruits.

c. Assuming it can be justified, place an approximate 80% confidence interval on the

proportion of those with AB-negative blood in the entire country.

4.4.5. Fish and game commissions measure the hunting pressure on large game in their states

by taking random samples of hunters and recording their successes during the hunting

season. The following data record the number of white-tailed deer taken by a random

sample of 50 Texas deer hunters:

Number of

Deer Killed Hunters

0 45

1 4

2 1
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Because the fish and game commission wishes to protect against overhunting, place an

approximate 90% of confidence interval on the largest mean number of deer taken per 50

hunters in the state.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If the statement is false,

explain why.

4.1. In a Poisson distribution, E(y) ¼ np and V(y) ¼ np (1 2 p).

4.2. Poisson data consist of discrete, countable observations.

4.3. Because E(y) is usually small for a Poisson distribution, a relatively large number of

sampling units is needed to estimate l effectively.

4.4. A unique characteristic of Poisson distributions is that for any specified distribution the

expected value will be numerically greater than the variance.

4.5. The Poisson distribution is sometimes called the “distribution of rare events” and hence

is seldom encountered in experimentation.

4.6. The shape of a Poisson frequency distribution is symmetrical around its expected value.

4.7. In testing a hypothesis about the Poisson parameter, the alternative hypothesis may be

one tailed or two tailed.

4.8. Confidence intervals for a Poisson parameter are symmetrical around the point

estimate y.

4.9. There is a separate Poisson distribution for every value of l and n.

4.10. The Poisson distribution can always be used to approximate the probabilities of a

binomial distribution.

4.11. Because l is usually small, small values of y are much more probable than large values

when sampling from a Poisson distribution.

4.12. The power of a test of hypothesis for the Poisson parameter is increased as the number

of units sampled is increased.

4.13. Because the random variable y can be an integer value between 0 and infinity, the

Poisson distribution is a continuous probability distribution.

4.14. A characteristic of the Poisson distribution is the relationship p(y; l) ¼ p(y 2 1; l)
(l/y).

4.15. The mean and standard deviation of the Poisson distribution are both l.

4.16. If certain conditions are met, arithmetic can be simplified by using the binomial

distribution to approximate the Poisson.

4.17. If there is only one sample unit, y is the best point estimate of the Poisson parameter.

4.18. The Poisson parameter must be a positive value.

4.19. One may have a countable number of discrete events which occur in a specified

sampling unit but still not have a Poisson process.

4.20. p(0;l) ¼ e 2l.
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5 Chi-Square Distributions

In this chapter we study some uses of a continuous probability distribution called the chi-square

distribution.Although this theoretical probability distribution is usually not a direct model of a

population distribution, it has many uses when we are trying to answer questions about

populations. For example, the chi-square distribution can be used to decide whether or not a set

of data fits a specified theoretical probability model—a “goodness-of-fit” test. It can also be

used to decide whether or not several samples came from the same population even when the

model of the population is unspecified—a chi-square test of homogeneity. It is possible to

make these and other decisions about populations because the chi-square distribution is often

a model for the distribution of some statistic obtained by sampling from the population.

5.1. THE NATURE OF CHI-SQUARE DISTRIBUTIONS

In 1876, Frederick R. Helmert did some of the early work on the theoretical chi-square

distributions. We can get some feeling for the nature of these distributions from the graphs of

their probability density functions (Figure 5.1). The symbol usually used for the chi-square

random variable is the compound symbol x2 (the exponent should not be confused with the

squaring operation).

If x2 is a random variable with a chi-square distribution:

1. x2 is a positive real number.

2. The density function f (x2) for x2 depends on only one parameter, v (pronounced “nu”),

called the degrees of freedom.

3. The expected value of x2 is equal to the degrees of freedom, that is, E(x2) ¼ v.

4. The variance of x2 is two times the degrees of freedom, that is, V(x2) ¼ 2v.

5. The maximum value of f (x2) is at x2 ¼ v 2 2 if v . 2.

6. The graph of f (x2) is not symmetrical but approaches symmetry as the degrees of

freedom increase.

Table A.9 in the Appendix of Useful Tables gives selected critical values for some of the

chi-square distributions. The degrees of freedom are listed at the left; thus each row is from a

different chi-square distribution. The headings at the top of the columns give a, the area to the
right of the chi-square values listed in the tables. For example, if x2 has a chi-square

distribution with 4 degrees of freedom, then a vertical line at x2 ¼ 0.484 divides the chi-

square distribution so that a ¼ 0.975 of the area under the curve is to the right of 0.484 and

1 2 a ¼ 0.025 of the area is to the left (see Figure 5.2). We write x20.975,4 ¼ 0.484. Critical

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X # 2004 John Wiley & Sons, Inc.
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values are used to determine regions of rejection because for continuous random variables

areas correspond to probabilities. The probability that a chi-square random variable with 4

degrees of freedom has a value greater than 0.484 is equal to 0.975.

Another example is given in Figure 5.3. If x2 is a chi-square random variable with 15

degrees of freedom, then 5% of the area is to the right of a vertical line at x2 ¼ 24.996 and

FIGURE 5.1. Chi-square distributions with v degrees of freedom. (Adapted from P. G. Hoel, Elementary

Statistics, 4th ed., Wiley, New York, 1979, p. 249.)

FIGURE 5.2. Meaning of values in the chi-square table.
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95% of the area is to the left of this line, or x20:05,15 ¼ 24:996. This distribution has a mean of

15, a variance of 30, and the graph has a maximum at 13.

Helmert studied these theoretical distributions with apparently no idea that they could be

used for a test of significance. In 1900 Karl Pearson was able to use Helmert’s chi-square

distributions to test hypotheses about multinomial experiments. A multinomial experiment is

a generalization of a binomial experiment.

A multinomial experiment is an experiment in which:

1. There are k possible outcomes and the probability of the ith outcome is pi withX
k
i¼1 pi ¼ 1.

2. The experiment is repeated n times, that is, there are n trials.

3. The pi’s are constant from trial to trial.

4. The trials are independent.

5. We are interested in oi, the number of times the ith outcome occurs;
X

k
i¼1 oi ¼ n.

Note that a binomial experiment is a multinomial experiment with p1 ¼ p, p2 ¼ 1 2 p in

which p is the probability of success on a single trial, and o1 ¼ y, o2 ¼ n 2 y in which y is the

number of successes in n trials. Like the binomial distribution, the expected number of

occurrences of the ith outcome is npi.

Example 5.1. A Multinomial Experiment

If palomino horses are bred to other palominos, they produce progeny in the ratio of 1 dark-

colored colt to 2 palominos to 1 light-colored colt. An experiment involving a random sample

of 96 colts of palominos would be a multinomial experiment.

1. There are k ¼ 3 outcomes: dark, palomino, light.

P(dark) ¼ 1/4 ¼ p1; P(palomino) ¼ 1/2 ¼ p2; P(light) ¼ 1/4 ¼ p3;

1/4 þ 1/2 þ 1/4 ¼ 1.

2. n ¼ 96.

3. The pi’s are constant from trial to trial.

4. Since this is a random sample, the trials are independent.

5. We are interested in the number of colts of each color type.

FIGURE 5.3. A chi-square distribution.
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If a geneticist questioned whether the ratios specified above were correct, he could use

Pearson’s approach to resolve the question. Pearson was looking for a simple statistic, a value

that could be easily computed and that would indicate whether the results of an experiment

deviated from expected results. He proposed the following statistic:

w ¼
Xk
i¼1

(oi � ei)
2

ei

in which ei ¼ npi, the expected value of oi. A small value of wwould indicate close agreement

of the experimental results with the theory and a large value would indicate disagreement with

the theory.

Pearson’s statistic is a discrete random variable since it is composed of arithmetic

operations on the discrete random variables o1, o2, . . . , ok. The probability distribution of w

can be shown to be approximately Helmert’s chi-square distribution with k 2 1 degrees of

freedom. Since the probabilities have been tabulated for the theoretical chi-square

distribution, it is possible to use Pearson’s statistic in a more precise way than just as a

descriptive statistic; we can do a statistical test of hypothesis. Since Pearson’s statistic is

approximately a chi-square random variable, many people write

x2 ¼
Xk
i¼1

(oi � ei)
2

ei

We also write x2 instead of w. It should be remembered, however, that the theoretical chi-

square distribution studied by Helmert is a continuous probability distribution, whereas

Pearson’s statistic, which arises from multinomial experiments, is a discrete random variable.

A test of hypothesis to check that specified probabilities in a multinomial experiment are

correct is called the multinomial chi-square test.

Example 5.2. A Multinomial Chi-Square Test

The geneticist mentioned above found that in the random sample of 96 colts of palominos

there are 21 dark-colored colts, 52 palomino colts, and 23 light-colored colts. He wants to

check whether p1 ¼ 1/4, p2 ¼ 1/2, and p3 ¼ 1/4 are correct parameters for a probability

model. Thus he decides to test

H0: p1 ¼ 1

4
, p2 ¼ 1

2
, p3 ¼ 1

4

against

Ha: p1 =
1

4
or p2 =

1

2
or p3 =

1

4

that is, at least one inequality. He will reject the null hypothesis if the experimental results are

unusual when the null hypothesis is true, that is, if they occur by chance alone less than

a ¼ 0.05 of the time.
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The expected number in each category is

e1 ¼ np1 ¼ 96
1

4

� �
¼ 24

e2 ¼ np2 ¼ 96
1

2

� �
¼ 48

e3 ¼ np3 ¼ 96
1

4

� �
¼ 24

He then uses the following table to organize his computations.

Observed Expected

Category oi ei oi 2 ei (oi 2 ei)
2 (oi 2 ei)

2/ei

Dark 21 24 23 9 0.375

Palomino 52 48 4 16 0.333

Light 23 24 21 1 0.042

x2 ¼ 0.750

Since there are k ¼ 3 categories, this statistic is distributed approximately as the chi-square

random variable with v ¼ 3 2 1 ¼ 2 degrees of freedom. Referring to Table A.9 and recalling

that large deviations from the expected values will give a large chi-square statistic, the

geneticist finds that for v ¼ 2 the theoretical chi-square value of 5.991 divides the lower 95%

of the distribution from the upper 5%. He will reject the null hypothesis if the chi-square

statistic is greater than or equal to 5.991. Since this is not the case, he concludes that there is no

evidence that the theory is incorrect and that the specified ratios may be correct.

If the geneticist in this example wanted to find the P value associated with this test, P

would equal P(x2 . 0.750). It is not possible to find the specific value of this probability from

Table A.9. Using the second row, for v ¼ 2, the most that can be said is that P . 0.05.

Since binomial experiments are a special case of multinomial experiments, the

multinomial chi-square test can be used to test the correctness of a binomial parameter. There

will be two categories, success and failure, and thus one degree of freedom. This procedure

has an advantage over the test given in Chapter 3; it is independent of sample size and the

specified binomial parameter, so a multitude of binomial tables is unnecessary—Table A.9 is

sufficient. If the experimenter had to rely on available binomial tables, he might be tempted to

tailor the experiment to fit the table. He might pick a sample size that appears in the table even

if it is not the best sample size; or he might discard data if he cannot control the sample size (as

in many genetics experiments) so that it fits the tables. Needless to say, these are not ideal

scientific procedures. The multinomial chi-square test helps to avoid these pitfalls.

There are two disadvantages, however, to using a multinomial chi-square test when testing

a binomial parameter. First, because of the nature of the chi-square statistic, one-tailed

alternatives are more involved than we will discuss here. Thus, if a one-tailed alternative is

desired, the exact binomial distribution should be used (in the case of large sample sizes, the

approximation procedure that will be explained in Chapter 7 may be used). The second

disadvantage is that the approximation of the discrete sampling chi-square distribution by the
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continuous theoretical chi-square distribution is not very good for 1 degree of freedom with

small sample sizes. For n � 25, a continuity correction should be made in the chi-square

statistic:

corrected x2 ¼
Xk
i¼1

(joi � eij � 0:5)2

ei

For degrees of freedom other than 1, there is no appropriate continuity correction.

However, except for very small samples, the approximation of the discrete chi-square

distribution by the continuous one is good. Some statisticians recommend that all expected

values should be at least 5 in order to have an acceptable approximation. Others feel this is too

conservative and indicate that no expected value should be less than 1, and not more than 20%

of the expected values should be less than 5. We suggest these latter guidelines. If these

conditions are not met, it is sometimes possible to combine categories to raise the expected

value. Care should be taken, however, that the experimental question can still be answered

when the categories are combined.

Besides being convenient, the chi-square test has another property to recommend it. In

many situations the chi-square test is the most powerful one available—that is, it is the test

that is most likely to detect a deviation from the null hypothesis if one exists.

Procedure. Multinomial Chi-Square Test

H0: p1 ¼ p10 , p2 ¼ p20 , . . . , pk ¼ pk0

Ha: At least one inequality

Significance level: a

Test statistic:

x2 ¼
Xk
i¼1

(oi � ei)
2

ei

oi ¼ observed number of outcomes inith category

ei ¼ npi0 with n ¼
Xk
i¼1

oi

Region of rejection: x2 � x2a,k�1

EXERCISES

5.1.1. Use Table A.9 in the Appendix of Useful Tables to find the following:

a. x20:01,7
b. x20:995,10
c. x20:025,70
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d. P(x2 . 31.410) if x2 is a chi-square random variable with 20 degrees of freedom

e. P(x2 , 27.488) if x2 is a chi-square random variable with 15 degrees of freedom

f. b if P(x2 . b) ¼ 0.05 and x2 is a chi-square random variable with 10 degrees of

freedom

g. b if P(x2 � b) ¼ 0.995 and x2 is a chi-square random variable with 22 degrees of

freedom

h. the degrees of freedom if P(x2 , 0.831) ¼ 0.025 and x2 is a chi-square random

variable

5.1.2. Computer programs for producing tables of random digits are often called pseudo-

random-number generators because there is no way to prove that the digits are in

random order. However, some properties of randomness can be tested. As an exercise,

suppose that the 50 digits in row 1 of Table A.1 in the Appendix are a random sample.

a. State a null hypothesis about the proportion of even digits if the table is random.

b. State an alternative hypothesis that would indicate a lack of randomness.

c. Use a multinomial chi-square test with a ¼ 0.05 to test the above null hypothesis.

5.1.3. Assume the first three rows of Table A.1 are a random sample of size 150 and test that

each of the digits 0, 1, . . . , 9 is equally frequent in the whole table by means of a

multinomial chi-square test (a ¼ 0.05). What is the P value associated with this test?

5.1.4. Within some populations the proportion of those who are carriers of the sickle-cell

trait is estimated to be 30%. A public health officer on a Caribbean island wonders

whether this estimate is correct for the citizens of that island. Assuming that it will be

a random sample, he requests that the next 150 blood tests performed in a certain

clinic also include amicroscopic examination for the sickling phenomenon. Given that

there are 57 cases of sickling in the sample, perform a multinomial chi-square test to

determine whether this proportion is correct. Use a ¼ 0.05. State the final conclusion.

5.1.5. When a certain red-flowering plant is self-fertilized, genetic theory indicates that the

plants developed from the resulting seed should be in the ratio of 3 red-flowering

plants to 1 white-flowering plant. If a random sample of 100 such seeds is collected

and 68 produce red-flowering plants, 29 produce white-flowering plants, and 3 do not

germinate, do these results agree with the theory? Use a multinomial chi-square test

with a ¼ 0.01. What assumption must be made about the nongerminating seeds for

this to be a valid test?

5.1.6. Analyze the data in part d of Exercise 3.2.3 by means of a multinomial chi-square test

at a ¼ 0.05. Since the sample size is below 25 and there is only 1 degree of freedom,

use the continuity correction. Does your conclusion agree with the conclusion you

reached in Exercise 3.2.3?

5.1.7. A congressional representative circulates a questionnaire to all constituents to

determine which national issue should be given the highest priority. A random sample

of 500 gives the following:

Issue

Number Who Felt This Issue

Deserves Highest Priority

Pollution 40

Economy 97

Energy 31
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Issue

Number Who Felt This Issue

Deserves Highest Priority

Medical care 85

Foreign policy 53

Defense 71

Questionnaire not returned 123

The representative wants to know if there is a preference for one of the issues. Test the

hypothesis that all of the issues are equally preferred against the hypothesis that some

preference exists. What is the P value? What conclusion should the representative

draw from this study? What assumption must be made about those who did not return

the questionnaire in order for this analysis to be valid?

5.1.8. On the basis of size, blue crabs are categorized by marine biologists as young,

juvenile, mature. In a healthy crab population that is being acceptably harvested by

commercial fishermen, the percentage of each type is

50% young 30% juvenile 20% mature

Deviations from these percentages usually indicate an unhealthy or overfished

population. Fish and game biologists can dredge the bottom of a bay or estuary with

nets to obtain a sample of crabs in an area close to commercial crabbing to determine

if there is an unacceptable distribution of ages. Suppose that a small bay is dredged

and the following categories of crab are netted:

58 young 33 juvenile 39 mature

a. Give the most logical null and alternative hypotheses for this study.

b. For this study, which is more serious, a Type I or Type II error? Why?

c. Perform a test of significance at a ¼ 0.05.

d. What is the experimental conclusion?

e. Suppose it is known that fishermen keep all mature and some juvenile crabs they net;

all others are released unharmed. It is also known that young crabs are most

susceptible to pollution, with juveniles the second most susceptible. Based on this

information and the test of significance, which of the following is the appropriate

action?

i. Allow continued harvesting of crabs in the bay.

ii. Close the bay to commercial crabbing because of overfishing.

iii. Close the bay due to possible pollution.

iv. Close the bay because of both overfishing and possible pollution.

5.1.9. In studying the genetic association between hair and eye color in human beings, a

geneticist might hypothesize that the genes for hair color and eye color are located on

the same chromosome. If a large group of dark-haired and brown-eyed people were to

intermarry with another large group of light-haired and blue-eyed people, Mendel’s

law could be used to predict the characteristics of the second generation if the genes

for hair color and eye color were on different chromosomes. The ratio of dark-haired

102 CHI-SQUARE DISTRIBUTIONS



and brown-eyed people to dark-haired and blue-eyed people to light-haired and

brown-eyed people to light-haired and blue-eyed people would be 9:3:3:1. If the

genes are on the same chromosome, this ratio does not appear.

a. What are the null and alternative hypotheses that should be used for this

experiment?

b. Assume 1317 offspring of this type are located and classified with the following

results:

Dark hair, brown eyes 782

Dark hair, blue eyes 234

Light hair, brown eyes 241

Light hair, blue eyes 60

What should the geneticist conclude?

5.1.10. In a certain state the distribution of the population by age is as follows:

Age

(years)

Population

(thousands)

Under 15 475

15–24 304

25–34 182

35–44 190

45–54 208

55–64 170

65–74 111

Over 74 72

a. Find the proportion of the population in each age group.

b. A certain planned city in this state claims that its inhabitants have the same

proportion of people in each age group as the state as a whole. What null and

alternative hypotheses should be used to test its claim?

c. If the city has a population of 12,500, compute the expected values for each age

category if the null hypothesis is true.

d. If the city has the following distribution of ages, complete the test at the 5%

significance level and state the conclusion.

Age

(years)

Population

(thousands)

Under 15 3016

15–24 2438

25–34 2037

35–44 2031

45–54 1253

55–64 977

65–74 585

Over 74 163
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5.2. GOODNESS-OF-FIT TESTS

The multinomial chi-square test discussed in Section 5.1 is one type of goodness-of-fit test. It

can be used to determine if the outcomes from a multinomial experiment fit a distribution with

specified proportions of responses in certain categories.

A similar procedure can be used to determine whether a response variable for some

population can be modeled by some other probability distribution. For the case in which the

parameters of the probability distribution are known, the test is very similar to the multinomial

chi-square test. If the parameters are unknown and must be estimated, an adjustment in the

degrees of freedom is necessary.

Example 5.3. Goodness-of-Fit Test with a Specified Parameter

Each day a salesperson calls on 5 prospective customers and she records whether or not the

visit results in a sale. For a period of 100 days her record is as follows:

Number of sales: 0 1 2 3 4 5

Frequency: 15 21 40 14 6 4

A marketing researcher feels that a call results in a sale about 35% of the time, so he wants to

see if this sampling of the salesperson’s efforts fits a theoretical binomial distribution for

5 trials with 0.35 probability of success, b(y; 5, 0.35). This binomial distribution has the

following probabilities and leads to the following expected values for 100 days of records:

y p(y) e ¼ 100p(y)

0 0.1160 11.60

1 0.3124 31.24

2 0.3364 33.64

3 0.1812 18.12

4 0.0487 4.87

5 0.0053 0.53

Since the last category has an expected value of less than 1, he combines the last two

categories to perform the goodness-of-fit test.

Category

Ai

Observed

Frequency

oi P(Ai)

Expected

Frequency

ei oi 2 ei (oi 2 ei)
2 (oi 2 ei)

2/ei

0 15 0.1160 11.60 3.40 11.5600 0.9966

1 21 0.3124 31.24 210.24 104.8576 3.3565

2 40 0.3364 33.64 6.36 40.4496 1.2024

3 14 0.1812 18.12 24.12 16.9744 0.9368

4 or 5 10 0.0540 5.40 4.60 21.1600 3.9185

x2 ¼ 10.4108
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In this goodness-of-fit test the hypotheses are:

H0: This sample is from b(y; 5, 0:35)

Ha: This sample is not from b(y; 5, 0:35)

The degrees of freedom are v ¼ k 2 1 ¼ 5 2 1 ¼ 4. The critical value is x20:05,4 ¼ 9:488. The
null hypothesis is rejected if this value is exceeded. Thus the marketing researcher rejects the

null hypothesis. The sales do not follow the pattern of this binomial distribution.

If the salesperson has no idea of the proportion of the times she is successful, she could

estimate p by dividing the total number of sales by the total number of visits, 187/500
¼ 0.374. She could then test to see if her sales fit b(y; 5, 0.374). The procedure is similar to the

above, except now the degrees of freedom are k 2 2 ¼ 5 2 2 ¼ 3. One additional degree of

freedom is lost because of the estimated parameter. In general, v ¼ k 2 1 2 r, where r is the

number of parameters that are estimated.

A goodness-of-fit test for a Poisson distribution can be done in a similar manner.

Example 5.4. Goodness-of-Fit Test with an Unspecified Parameter

If the same typesetter sets all the copy for a book, the error rate should be approximately the

same throughout the book. With this assumption, the number of misprints per page may be a

Poisson random variable. To check whether the Poisson model is correct, an efficiency expert

collects the following data from a random sample of 100 pages:

Number of mistakes per page: 0 1 2 3 4 5 6

Observed frequency oi: 13 24 31 18 11 2 1

He wants to test

H0: This sample is from a Poisson distribution

against

Ha: This sample is not from a Poisson distribution

To estimate l, the average number of errors per page, he computes the total number of errors

and divides by the number of pages, 200/100 ¼ 2.00. Thus 2.00 is an estimate of l in the

Poisson distribution. Looking at the Poisson distribution with l ¼ 2.00, he finds

Y Probability

0 0.1353

1 0.2707

2 0.2707

3 0.1804

4 0.0902

5 0.0361

6 0.0120

Over 6 0.0045
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If these 8 categories are used for a goodness-of-fit test, the expected values for the last

3 categories will all be less than 5. Since 3/8 ¼ 0.375, too many expected values are under

5. To take care of this, he can combine the last three categories and compute the chi-square

statistic as follows:

Category Ai Observed oi P(Ai) Expected ei

0 13 0.1353 13.53

1 24 0.2707 27.07

2 31 0.2707 27.07

3 18 0.1804 18.04

4 11 0.0902 9.02

Over 4 3 0.0526 5.26

100

and

x2 ¼
Xk
i¼1

(oi � ei)
2

ei
¼ 2:345

The null hypothesis will be rejected if this computed chi-square value is greater than or equal

to x20:05,4 ¼ 9:488. There are 4 degrees of freedom because v ¼ k 2 1 2 1 ¼ 6 2 2 ¼ 4; the

additional degree of freedom is lost because of the estimation of l. The efficiency expert does
not reject the null hypothesis in this study, and he concludes that the errors per page may be

modeled by a Poisson distribution.

Both of the examples used in this section concern discrete probability distributions. It is

also possible to do a chi-square goodness-of-fit test for continuous probability distributions.

An example is given in Exercise 7.1.7.

Procedure. Chi-Square Goodness-of-Fit Test

H0: This sample is from distribution A

Ha: This sample is not from distribution A

Significance level: a

Test statistic:

x2 ¼
Xk
i¼1

(oi � ei)
2

ei

oi ¼ observed number of outcomes in category Ai

ei ¼ nP(Ai) n ¼
Xk
i¼1

oi
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Region of rejection:

x2 � x2a,v

v ¼ k � 1� r

r ¼ number of parameters in distribution A estimated from the sample

EXERCISES

5.2.1. Sixty sample groups of 4 persons in each group contain the following distribution for

the number of persons with type O blood:

Number with type O: 0 1 2 3 4

Frequency: 8 18 21 8 5

Are these sample groups of four from the binomial distribution b(y; 4, 0.40)? What is

the P values?

5.2.2. Assume the number of defects in a hundred 20-ft sections of wire are

Number of defects: 0 1 2 3 4

Frequency: 88 10 1 0 1

Does this fit a Poisson distribution with l ¼ 0.10?

5.2.3. A campground has 5 rustic campsites not accessible to campers on wheels. Some

nights, some of these campsites are unoccupied because of the small number of

campers with equipment for such campsites. The ranger keeps track of the number of

unoccupied sites for 50 nights.

Number unoccupied: 0 1 2 3 4 5

Frequency: 22 20 7 1 0 0

Do these data fit a binomial distribution?

5.2.4. If the number of parasites found on 80 hosts are

Number of parasites: 0 1 2 3 4 5

Number of hosts: 20 28 19 9 3 1

does this fit a Poisson distribution?

5.2.5. It seems that the history of the Supreme Court with respect to the occurrence of

appointments within a year might be an example of a Poisson distribution (Kinney,
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1973; Wallis, 1936). Test the following data for Poissonness using a chi-square

goodness-of-fit test at the 0.05 significance level:

Number of

Appointments per Year

Number of Years

(1790–1972)

0 108

1 55

2 19

3 1

4 or more 0

5.3. CONTINGENCY TABLE ANALYSIS

With goodness-of-fit tests, we can determine whether a single sample comes from a

population that has a certain probability model. Sometimes we want to know whether or not

several samples all come from the same population and perhaps we do not even know the

appropriate model for the population. A chi-square test of homogeneity can often be used in

this case.

For example, a speech pathologist might want to know whether the proportion of males

among stammerers and the proportion of males among lispers are the same. Her null and

alternative hypotheses are

H0: pS ¼ pL

Ha: pS = pL

in which pS is the proportion of stammerers who are male and pL is the proportion of lispers

who are male. Note that the values of pS and pL are not specified in the null hypothesis. (The

proportions for females could also be included in the null hypothesis, but this is unnecessary

since there are only two classes, male and female, and the proportions must sum to 1.)

The speech pathologist collects information from two random samples, one of stammerers

and the other of lispers (that is, a stratified random sample), and arranges the data in the form

of a two-way table called a contingency table. (The following data are simplified in order to

keep the arithmetic simple in this first example.)

SAMPLES

Stammer Lisp

Male 32 28

Female 18 22

Total 50 50

The proportion of males in the sample of stammerers is 32/50 and the proportion of males

in the sample of lispers is 28/50. Are these sample proportions so different that they indicate

that the population proportions are not equal, pS = pL? To answer this, the speech
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pathologist computes the total number of males and females in the samples and uses these

totals to find the expected value for each of the cells in the two-way layout if the null

hypothesis is true.

OBSERVED EXPECTED

Stammer Lisp Total Stammer Lisp Total

Male 32 28 60 Male 30 30 60

Female 18 22 40 Female 20 20 40

Total 50 50 100 Total 50 50 100

The expected number of male stammerers is 30 because if the two populations are the

same, 60/100 ¼ 0.60 of the people with speech problems are males and 0.60(50) ¼ 30, that

is, there are 50 stammerers and 30 of them on the average should be males. There are two

ways that the rest of the cells can be filled with expected values. Each expected value can be

computed similarly to the one for the male stammerers; however, since the totals are known,

the remaining cells can be filled by subtraction. For example, the expected number of male

lispers is 60 2 30 ¼ 30.

To find the expected value for a cell directly from the totals, we divide the product of the

two corresponding marginal totals by the grand total. For the male stammerers this is

(50)(60)/100 ¼ 30. We can summarize this procedure by using the following symbols in

which i identifies the row and j the column.

OBSERVED Total EXPECTED

o11 o12 o1: e11 e12

o21 o22 o2: e21 e22

Total o.1 o.2 o..

eij ¼ (oi:)(o:j)

o::

Once we have found the expected value, the x2 statistic is computed in the usual way.

Class oij eij oij 2 eij (oij 2 eij)
2 (oij 2 eij)

2/eij

Male, stammer 32 30 þ2 4 0.133

Female, stammer 18 20 22 4 0.200

Male, lisp 28 30 22 4 0.133

Female, lisp 22 20 þ2 4 0.200

x2 ¼ 0.666

In a chi-square test of homogeneity, the degrees of freedom are v ¼ (r 2 1)(c 2 1) in

which r is the number of rows and c is the number of columns. In this illustration v ¼ 1. This
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corresponds to the fact that once we have computed one expected value from the totals in the

two-by-two layout, all of the other values are determined.

The critical chi-square value for 1 degree of freedom is x20:05,1 ¼ 3:841, and the null

hypothesis is rejected if the chi-square statistic is greater than or equal to this value. The

speech pathologist notes that the computed chi-square value is less than the critical value, and

she decides that the proportion of males among stammerers may be the same as the proportion

of males among lispers. She concludes that when males are tested for speech problems they

should not be tested for a specific problem such as stammering but should be given a general

test that would identify both stammerers and lispers.

A chi-square test of homogeneity is used to determine whether two or more samples are

from the same multinomial population. In the example just completed, the decision concerned

two samples from binomial populations. In the next example three multinomial samples will

be examined.

Example 5.5. Chi-Square Test of Homogeneity

A political scientist is interested in determining how important the promise of no tax increase

is for voters of different political affiliations. Using voter registration lists, she chooses

random samples of 100 from each of the groups, Democrats, Republicans, and Independents,

and she asks the subjects to rate the importance of no tax increase on a scale from 1 to 4. The

results are as follows:

Very

Important

Not

Important

1 2 3 4 Total

Democrats 42 26 19 13 100

Republicans 55 21 14 10 100

Independents 38 30 22 10 100

Total 135 77 55 33 300

In words, the hypotheses are

H0: Members of the three parties agree on the importance of no tax increase

(homogeneity)

Ha: Members of the three parties do not agree on the importance of no tax increase

(lack of homogeneity)

Note that in this example the three samples are in the rows, whereas in the previous example

about speech defects, the samples were in the columns.

Using the totals and the formula

eij ¼ (oi:)(o:j)

o::

the expected values are
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1 2 3 4 Total

Democrats 45.0 25.7 18.3 11.0 100 ¼ o
1.

Republicans 45.0 25.7 18.3 11.0 100 ¼ o
2.

Independents 45.0 25.7 18.3 11.0 100 ¼ o
3.

Total 135 ¼ o.1 77 ¼ o.2 55 ¼ o.3 33 ¼ o.4 300 ¼ o..

The x2 statistic is computed.

Class oij eij (oij 2 eij)
2/eij

Democrats

1 42 45.0 0.200

2 26 25.7 0.004

3 19 18.3 0.027

4 13 11.0 0.364

Republicans

1 55 45.0 2.222

2 21 25.7 0.860

3 14 18.3 1.010

4 10 11.0 0.091

Independents

1 38 45.0 1.089

2 30 25.7 0.719

3 22 18.3 0.748

4 10 11.0 0.091

x2 ¼ 7.425

Since there are 3 rows and 4 columns in the contingency table,

v ¼ (r � 1)(c� 1) ¼ (3� 1)(4� 1) ¼ 6

At the 0.05 level of rejection, the null hypothesis is rejected if the computed chi-square value

is greater than or equal to

x20:05,6 ¼ 12:592

Since this is not the case in this study, the null hypothesis is accepted and the political scientist

concludes that there is no evidence to indicate that the three samples are different with respect

to their opinions on the importance of no tax increase.

The chi-square test of homogeneity is applied to two or more samples when the samples

have been classified by one characteristic. There is a similar chi-square test that can be used to

analyze data from a single sample when the data have been classified by two characteristics.

For example, in a state in which party affiliation is not declared at voter registration, a single

sample of 300 registered voters could be selected at random and asked for their opinion on the
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importance of no tax increase and also for their party preference. The contingency table would

look similar to the table in Example 5.5 except that it is not likely that there would be exactly

100 from each party. The political scientist would be trying to determine whether party

affiliation is related to opinion about taxes, and the test procedure is called a chi-square test of

independence.

H0: Party reference is independent of opinion about the importance

of no tax increase

Ha: Party reference is related to opinion about the importance of

no tax increase

The test statistic and region of rejection are determined as in a test for homogeneity; the

difference is in how the sample was chosen. The test of homogeneity involves a stratified

sample. The test of independence involves a simple random sample.

A worked-out example follows.

Example 5.6. A Chi-Square Test of Independence

Football coaches feel that a football team has an advantage when it is playing a home game in

its own stadium. The enthusiasm of the crowd, familiarity with the field, and the lack of

fatigue from travel all seem to contribute to this assumed advantage. A coach wants to test this

theory at his school. If the theory is wrong, whether a game is won or lost is independent of

whether the game is played at home or away. The hypotheses are

H0: Winning is independent of where the game is played

Ha: Winning depends on where the game is played

The coach examines the records at his school over the past 31 years, a single sample. He

classifies the results as follows (ties and bowl games are omitted):

OBSERVED

Home Away Total

Won 97 69 166

Lost 42 83 125

Total 139 152 291

Intuitively the data seem to confirm the coach’s theory. Using the marginal totals, he

computes the following expected values:

EXPECTED

Home Away

Won 79.3 86.7

Lost 59.7 65.3
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He then computes the chi-square statistic:

Class oij eij oij 2 eij (oij 2 eij)
2 (oij 2 eij)

2/eij

Won/home 97 79.3 17.7 316.3 3.99

Lost/home 42 59.7 217.7 316.3 5.30

Won/away 69 86.7 217.7 316.3 3.65

Lost/away 83 65.3 17.7 316.3 4.84

x2 ¼ 17.78

Since x20:05,1 ¼ 3:841, the null hypothesis is rejected and the coach concludes that if these

31 years are a random sample of this school’s games, there is evidence that the probability of

winning depends on where the game is played.

To interpret the dependence, he would note that the predictor classification is the location

of the game (the column categories) and the predicted classification is the outcome of the

game (the row categories). He would then examine the proportions in the columns, the

predictor classifications. He finds that 97/139 ¼ 0.697 of the games at home are won while

only 42/139 ¼ 0.302 of the home games are lost. Also, only 69/152 ¼ 0.454 of the away

games are won, while 83/152 ¼ 0.546 of the away games are lost. From this he would

conclude that playing at home increases the probability of winning. There is evidence of a

home team advantage. Odds can also be used to summarize the data (see Section 5.4).

Since 2 � 2 contingency tables have 1 degree of freedom, the continuity correction should

be used to improve the approximation of the discrete sampling distribution by the continuous

theoretical chi-square distribution if n , 25.

As in goodness-of-fit tests, contingency table tests do not work well for small expected

values (below 5). In the 2 � 2 case, another test can be used when the expected values are

small, Fisher’s exact test. References to this test are given at the end of this chapter (Finney,

1948; Fisher, 1973; Latscha, 1955).

Procedure. Contingency Table Analysis

Chi-Square Test of Homogeneity

H0: The populations sampled are the same with respect to the categorization

Ha: The populations sampled are different with respect to the categorization

Chi-Square Test of Independence

H0: The row categories are independent of the column categories

Ha: The row categories and the column categories are dependent

Significance level: a
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Test statistic:

x2 ¼
X
i

X
j

(oij � eij)
2

eij

oij ¼ number of occurrences in the ijth cell

eij ¼ (oi:)(o:j)

o::

oi: ¼
X
j

oij

o:j ¼
X
i

oij

o:: ¼
X
i

X
j

oij

Region of rejection:

x2 � x2a,v v ¼ (r � 1)(c� 1)

r ¼ number of rows

c ¼ number of columns

EXERCISES

5.3.1. A serum thought to be effective in preventing colds is given to 300 persons. Their

records for one year are compared with those of 200 untreated persons with the

following results:

No Colds One Cold

More Than

One Cold

Treated 145 80 75

Untreated 80 70 50

Use a chi-square test of homogeneity to analyze these data.

5.3.2. A social scientist wants to determine if the feelings that parents have toward young

people “living together” are affected by the age of their youngest child.

Parents’ Feelings

Age of Youngest Child Approve Disapprove

Over 26 50 10

18–26 10 40

Under 18 60 30
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a. State the null hypothesis verbally in terms of independence.

b. Perform a chi-square test of independence at the 0.05 level of significance.

c. Which classification is the predictor? Which is the predicted?

d. Use the proportions of the predictor classifications to state a specific conclusion

about the dependency.

5.3.3. It is reported that offspring of users of a certain recreational drug may have a higher

incidence of birth defects than the general population. To obtain information about a

possible relationship between this drug and birth defects, 100 offspring of female rats

fed the drug and 100 offspring from untreated female rats are examined. The results are

given below:

Progeny

Females Birth Defects Normal

Treated 30 70

Untreated 20 80

Analyze these data. What do you conclude from the study? Is this a test of homogeneity

or independence?

5.3.4. A consumer’s union would like to compare three brands of flashlight batteries. Its

testers randomly select 100 batteries of each brand and classify them into 3 groups

depending on lifetimes:

Brand Less than 5 Hours

5 to

10 Hours

Over 10

Hours Total

X 30 60 10 100

Y 15 60 25 100

Z 30 30 40 100

a. State the null and alternative hypotheses to be tested.

b. Compute the chi-square statistic.

c. What are the statistical decision and the experimental conclusion?

5.3.5. An entomologist is interested in determining whether certain insecticides have a

differential effect on black flies. The results of his experiment are

Insecticide Dead Alive

A 165 35

B 172 28

C 173 27

a. What null hypothesis can be tested with these data?

b. If the entomologist sets the rejection level at 1%, how large must the chi-square

statistic be in order for him to reject the null hypothesis?

c. Compute the statistic.
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d. How likely is it that a sample as unusual as this will be obtained when the null

hypothesis is true?

e. What decision should the entomologist make about the null hypothesis? What

conclusion should be drawn?

5.3.6. A study is conducted on adult male cancer patients to determine whether there is any

association between the kinds of work they perform and the kinds of cancer they have.

The data are classified by the two categories as below:

Site of Malignancy

Occupation Skin Stomach Prostate

Professional 25 58 37

Managerial 34 90 36

Laborer 41 52 27

a. State the null hypothesis verbally.

b. Give the critical value of the test statistic for a ¼ 0.05.

c. Compute the expected value for the category laborer and stomach.

d. The computed value of x2 is 10.49. Which of the following statements are

appropriate to this survey?

i. The type of work one does causes certain kinds of cancer.

ii. The location of a cancer is independent of occupation.

iii. There is a significant association between occupation and kind of cancer.

e. Specify the predictor and predicted classification.

f. What specific conclusion can be drawn about the kind of cancer associated with

each of the occupations in the study?

5.3.7. Feminine beauty was another variable Francis Galton measured. He even tried to draw

a “beauty map” of Britain patterned after the weather maps he had already created.

Being a proper Victorian English gentleman, however, he wanted to observe and

record without being observed observing and recording. So he would tear a piece of

paper in the shape of a cross and put it in his jacket pocket along with a tailor’s straight

pin. Then upon seeing a woman in an area he had not yet mapped, he would use the pin

to put a hole in the top of the cross if she was attractive, in the arms of the cross if she

was of medium attractiveness, and in the bottom of the cross if she was unattractive.

Later, he would record the number of pin holes and their locations. He reported that he

found women in London more attractive than those in Aberdeen. Suppose that

conclusion was based on the following data:

City Attractive Medium Unattractive Total

Aberdeen 55 100 45 200

London 75 100 25 200

Total 130 200 70 400

a. Give the null and alternative hypotheses.

b. Perform the test of significance and draw conclusions.

116 CHI-SQUARE DISTRIBUTIONS



c. What are the odds Galton would encounter an attractive woman in London?

d. How could you compare the odds of encountering an attractive woman in each of

the two cities?

5.4. RELATIVE RISKS AND ODDS RATIOS

The contingency table analysis for 2 � 2 tables described in Section 5.3 tests the hypothesis

that p1 2 p2 is equal to zero. There are situations where the difference between the two

proportions might not be the best way to interpret the data. If p1 is the probability of an

unfavorable outcome for a treatment group and p2 is the probability of an unfavorable

outcome for a placebo group, then a difference of 0.1 when p1 ¼ 0.1 and p2 ¼ 0.2 might be

more important than a difference of 0.1 when p1 ¼ 0.4 and p2 ¼ 0.5.

Consider the following two examples.

1. The risk for heart attacks is relatively low for adults whose cholesterol is less than that

200 mg/dL. However the American Heart Association estimates that about 50% of

adult Americans have cholesterol greater than 200 mg/dL. Suppose a study shows that
a program of modest physical activity without any other lifestyle changes can reduce

the percentage of adults with high cholesterol to 40%.

2. The National Center for Chronic Disease Prevention and Health Promotion estimates

that 20% of American children and adolescents are overweight. Again suppose a study

shows that a program of modest physical activity can reduce the percentage of

overweight children and adolescents to 10%.

While the improvement is 10% for both populations, the 10% change for the overweight

children represents an improvement for 1 out of every 2 while the 10% change for the adults

with high cholesterol represents an improvement for only 1 out of every 5.

Many of the above situations also can be generalized as follows. There are two categorical

variables. One variable can be designated as the explanatory variable and the other as the

response variable. The explanatory variable has two categories and the response has two

categories. The numbers of individuals with each combination of the two categories are

counted. The counts are displayed in the 4 cells of a 2 � 2 table. By convention, the rows (the

side of the table) are assigned to the explanatory variable and the columns (the top of the table)

are assigned to the response.

The response variable is sometimes called the outcome variable. One category of the

outcome variable is called the primary outcome. For example, in a study of the effects of

smoking, the category lung cancer might be the primary outcome. No lung cancer would be

the other category. One of the categories of the explanatory variable is called a risk factor.

Smoker could be that category. Non-smoker could be the other category.

Many medical studies focus on the effectiveness of intervention procedures. For example,

a study might focus on the use of aspirin for preventing coronary heart disease. In such studies

one of the categories of the explanatory variable is the use of some drug or procedure as

prevention or treatment and the other category is a placebo. The risk factor is the placebo. The

primary outcome is a disease such as coronary heart disease.

The goal of these studies is to determine if the risk factor is related to the primary outcome.

The studies can be broadly classified as experimental or observational. In experiments,

explanatory factors are assigned to samples of subjects. In observational studies (surveys),

subjects from a target population are selected and the explanatory factors that are present are
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simply observed in each subject. The presence of one or the other of the outcomes is

determined for each subject.

There are two types of observational studies, prospective and retrospective. In each, two

random samples are selected for comparison. The primary difference has to do with whether

the samples were selected on the basis of the explanatory variable or on the basis of the

response variable.

In prospective studies, one of the random samples consists of subjects who have the risk

factor and the other random sample consists of subjects who do not. After a period of time the

subjects in both samples are examined to determine which have the primary outcome.

In retrospective studies, one of the random samples consists of subjects who have shown

the primary outcome (often called the cases) and the other random sample consists of the

subjects who have not shown the primary outcome (called the controls). The subjects are

examined to determine how many in each sample have the risk factor. The degree of

usefulness of retrospective studies is related to the selection of the random sample of subjects

not exhibiting the primary outcome. An attempt should be made to match the controls to the

cases as much as possible. If there is a difference in the proportion of subjects with the primary

outcome, there should be no uncertainty that the difference can be attributed to the risk factor.

Both prospective and retrospective studies have important roles in research. A prospective

study that follows random samples of smokers and nonsmokers might be useful, but it could

take a long time to complete because it could not be accomplished without following the

subjects through their entire lives. Prospective studies can be very expensive because very

large samples are required to get enough positive primary outcomes to allow for statistical

inference. With the current proactive attitude toward smoking cessation, such an experiment

could be viewed as unethical.

Example 5.7. A Retrospective Study on Relative Risk and Odds Ratio

A physician at a clinic in southern Appalachia is concerned about the number of underweight

newborns he sees in his practice. He gives health surveys to the mothers and observes that

many of the mothers with serious gum disease have underweight babies. He summarizes the

data in the following table:

Underweight Baby

Gum Disease Yes No Total

Yes 17 83 100

No 117 783 900

Total 134 866 1000

Are there more underweight babies born to mothers with gum disease? Unless there are an

equal number of babies born to mothers with gum disease and without gum disease, it is

difficult to make useful comparisons directly from the table. The question of interest is

whether the proportion of underweight babies is the same for each group of mothers. He can

calculate conditional proportions of underweight babies for each group. For the mothers with

gum disease, the proportion of underweight babies is 17/100 ¼ 0.17. For the mothers without

gum disease, the proportion of underweight babies is 117/900 ¼ 0.13. If the proportions are

multiplied by 100%, they are percentages. The number 0.17 might also be viewed as the

probability that a randomly selected mother with gum disease has an underweight baby.
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Because underweight babies are susceptible to more disease and developmental problems, the

proportions also are referred to as the risks of an underweight baby.

The relative risk of an outcome for two categories of an explanatory variable is the ratio of

the risk for each category. For the table above, the explanatory variable is gum disease or no

gum disease and the relative risk is 0.17/0.13 ¼ 1.31. It is usually expressed as a multiple. A

relative risk of 1.31 means the risk of an underweight baby for a mother with gum disease is

1.31 times the risk of an underweight baby for a mother without gum disease. A relative risk of

1 means the risk is the same for both categories.

Sometimes the increase in risk is presented as a percentage instead of a multiple:

% increased risk ¼ change in risk

original risk
� 100%

or

% increased risk ¼ (relative risk� 1)� 100%

¼ (1:31� 1)� 100% ¼ 31%

Mothers with gum disease have a 31% increased risk for underweight babies compared to

mothers without gum disease.

Odds are an alternative way to express that a randomly selected individual will fall into a

particular group for a categorical variable. The odds of an underweight baby is the number of

babies who are underweight divided by the number of babies who are not underweight. Again,

we can calculate the odds for each group of mothers. The odds for an underweight baby for

mothers with gum disease is 17/83 ¼ 0.205. The odds for an underweight baby for mothers

without gum disease is 117/783 ¼ 0.149. The odds ratio for an outcome for two categories of

an explanatory variable is the ratio of the odds for each category. For the table above, the odds

ratio is 0.205/0.149 ¼ 1.38.

Notice that risks and odds are two ways of looking at the same problem. If we know that

the risk of an underweight child for a mother with gum disease is 17/100, then the odds are

17/(100 2 17) ¼ 17/83. Likewise, if we know that the odds are 17/83, then the risk is 17/
(17 þ 83) ¼ 17/100. In addition, the relative risk and the odds ratio are about the same if the

risks are small for both groups. Note that in the example the relative risk is 1.31 and the odds

ratio is 1.38.

While the relative risk might be easier to understand, the odds ratio gives researchers a

wider range of statistical methods for binary data. The odds ratio is the only parameter that

describes the binary outcomes for the explanatory categories that can be estimated from

retrospective studies. Notice that the proportion of underweight babies in mothers with serious

gum disease provides no information about the proportion of mothers with gum disease

among mothers of underweight babies. Similarly, a retrospective study of smoking and lung

cancer cannot be used to estimate the individual proportions of smokers and nonsmokers or

their difference among those who get lung cancer.

The odds ratio is the same regardless of which variable is considered to be the response.

Consider the underweight baby example above. The odds ratio is the same regardless of which

variable, underweight baby or mother with gum disease, is considered as the response. The

odds of underweight babies among women with gum disease is 1.38 times the odds of

underweight babies among women without gum disease. The odds of gum disease among
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mothers of underweight babies is 1.38 time the odds of no gum disease among mothers of

underweight babies.

Procedure. Relative Risk and Odds Ratio

For 2 � 2 contingency tables of the form

Response Variable

Explanatory Variable Yes No

Yes o11 o12

No o21 o22

Relative risk ¼ o11=(o11 þ o12)

o21=(o21 þ 212)
¼ o11(o21 þ o12)

o21(o11 þ o12)

Odds ratio ¼ (o11)=(o12)

(o21)=(o22)
¼ (o11)(o22)

(o21)(o12)

EXERCISES

5.4.1. A serum thought to be effective in preventing colds is given to 300 persons. Their

records for one year are compared with those of 200 untreated persons with the

following results (see Exercise 5.3.1):

No Colds Colds

Treated 145 155

Untreated 80 120

a. Is this a prospective or a retrospective study?

b. What is the relative risk for cold for the untreated?

c. What is the odds ratio?

5.4.2. It is reported that offspring produced by users of a certain drug may have a higher

incidence of birth defects than the general population. To obtain information about a

possible relationship between this drug and birth defects, 100 offspring of female rats

fed the drug and 100 offspring from untreated female rats are examined. The results are

given below (see Exercise 5.3.3):

Progeny

Females Birth Defects Normal

Treated 30 70

Untreated 20 80
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a. Is this an experimental or an observational study?

b. What is the relative risk of birth defects for treated rats?

c. What is the odds ratio of birth defects for treated rats?

5.4.3. An aortic aneurysm is a marked dilation of the aorta either in its thoracic or abdominal

portion. A group of physicians has collected information from new patients for several

years. One item is the initial aneurysm size determined by radiology. Another item is

whether it ruptured. Their data can be summarized in the following table:

Rupture

Aneurysm Size Yes No

�5 cm 10 128

,5 cm 3 163

a. Is this an experimental or an observational study?

b. What is the relative risk of ruptures for the larger aneurysms?

c. What is the odds ratio for ruptures for the larger aneurysms?

5.4.4. For a one-year period the magistrate court in a certain city randomly assigned some of

the drivers found guilty of vehicular injury to a 4-week defensive driving course in

addition to the usual penalties. Drivers who appeared in court were identified as repeat

offenders and as participants of the course. A summary of this study is given in the

following table.

Second

Accident

Defensive Driving Course Yes No

Yes 18 30

No 22 30

a. Is this an experimental or an observational study?

b. What is the relative risk of a second accident for the non-participants of the

defensive driving course?

c. What is the odds ratio of a second accident for the non-participants of the defensive

driving course?

d. Comment on the utility of the defensive driving course.

5.5. NONPARAMETRIC STATISTICS: MEDIAN TEST FOR SEVERAL SAMPLES

Contingency chi-square procedures can also be used for a nonparametric test that several

populations all have the same median. Numerical data from several samples are reduced to the

nominal scale by recording only whether or not each value is greater than the median. Then,

the contingency chi-square procedure is used to determine whether there are any significant

differences, from sample to sample, in the proportions above and below the median.
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Example 5.8. Two-Sample Median Test

A cancer research team has two random samples, each of 20 women with cervical cancer. The

difference between the two groups is the kind of cancer cells involved, LCNK or SM. It is of

interest to know if there are differences between the two groups—to know whether younger

women tend to have one type of cancer cell and older women have the other.

The median age for the 40 women was found to be M ¼ 48 years. Among the 20 women

with LCNK cancer cells, there were 10 who were older than 48, 9 who were younger, and 1

who was 48. Among those with SM cells, there were 9 older than 48, 10 younger, and 1 who

was 48. Because the data are to be reduced to the nominal scale of “above” or “below” median

age, it is customary to discard any values which fall on the median. When this is done, the

following table is obtained:

Cell Type

LCNK SM Total

Above median 10 9 19

Below median 9 10 19

Total 19 19 38

The hypothesis is that the probability that a cancer victim will be above median age,

P(u . M) ¼ p, will be the same irrespective of which group she is in. The alternative

hypothesis is that there is an association between cell type and the probability she will be

above median age:

H0: p1 ¼ p2 ¼ 0:50

Ha: p1 = p2

The usual contingency chi-square analysis yields x2 ¼ 0.1053 with one degree of freedom,

which is clearly nonsignificant at any conventional a level. Thus there is no evidence of an

association between age and type of cancer cell.

Example 5.8 involved only two groups; hence it would be called a two-sample median test.

For any number of samples, the analysis is called a k-sample median test, but the procedure

remains essentially the same.

Procedure. Median Test

1. The median, or middle value, is found for all the observations irrespective of group.

2. Each numerical observation, u, is compared to the median and recorded on the nominal

scale as being “above” or “below” the median. All u ¼ M are discarded.

3. The data which have been transformed to the nominal scale are then summarized in a

2 � k table.

4. A contingency chi-square analysis is conducted.
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EXERCISES

1. A Peace Corps volunteer wants to see which of four species of fast-growing tropical

trees will do best in a reforestation program in Haiti. She plants enough trees to obtain

2-year growth data from a random sample of 30 trees of each species. Lacking

computing equipment for an analysis of data at the numerical scale of measurement, she

decides to perform a median test on the following transformed data:

Species

Growth A B C D

Above median 16 10 11 23

Below median 14 20 19 7

a. What null hypothesis can be tested with these data?

b. Give the alternative hypothesis.

c. What is the critical value of the test statistic for a ¼ 0.05?

d. Perform the test of significance and draw a conclusion.

2. The president of a nationwide accounting firm asks the personnel office to examine the

firm’s records to see whether inadvertent sexual discrimination has taken place with

regard to promotion. Among other data which are gathered, there are random samples

of 25 men and women respectively who were originally employed eight years earlier

and who still work for the firm. There is a record of the number of months each

employee worked for the firm before promotion to senior level. The data are given

below, ordered within sex for convenience:

Women Men

21 25 26 26 31 8 8 16 20 23

31 37 40 43 43 25 26 27 28 28

51 54 56 61 62 29 30 31 36 37

62 66 68 71 71 38 38 41 44 47

72 76 80 84 85 48 50 53 70 82

a. The median for an even number of observations is usually given as the value half-

way between the two middle observations, or in this example the value half-way

between the ordered 25th and 26th observations. Show how that value is found to be

40.5 months.

b. What percentage of the women in the sample were promoted to senior level within

their first 40.5 months of employment? What percentage of men? Are the two

percentages significantly different at the 0.05 level?

3. Although lacking any satisfactory numerical scale of measurement, behavioral

biologists can rank the members of a group according to behavioral attributes such as

aggressiveness and greediness. Wanting to determine whether there is any association

between these two attributes, a biologist is able to observe the behavior of a tribe of 64

adult tamarins (small South American primates) living under nearly natural conditions

at a modern zoo. She learns to identify each of the animals at sight and is able to give
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each a rank according to aggressiveness and a second rank according to greediness. She

wants to see whether those above median rank with respect to aggressiveness are also

above median rank with respect to greediness. The results are given below:

Aggressiveness

Greediness Below Median Above Median

Above median 12 20

Below median 20 12

a. State the null hypothesis in terms of independence.

b. Why is the expected value equal to (1/4)n for all cells?

c. Perform the test of significance and then draw conclusions about the relationship

between these two behavioral characteristics.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false,

explain why.

5.1. There is only one chi-square distribution.

5.2. The chi-square statistic does not have a continuous distribution, but the continuous

distribution attributed to Helmert provides reliable probability statements.

5.3. If the computed value of x2 is greater than the critical value, the null hypothesis is false.

5.4. H0: p ¼ 0.7 with Ha: p = 0.7 can be tested with either the binomial distribution or the

chi-square distribution; if the sample size is large, the conclusion should be the same for

the two tests.

5.5. If women are twice as likely as men to suffer spousal abuse, then the odds ratio is 2.0.

5.6. To say that a computed chi-square value is “significant” indicates that it is numerically

smaller than the critical value against which it is compared.

5.7. In a multinomial experiment to test H0: p1 ¼ 0.25, p2 ¼ 0.50, p3 ¼ 0.25, 3 degrees of

freedom should be used.

5.8. If the sample size is less than 25, a correction for continuity should be made when

testing a 1:2:1 ratio.

5.9. As the degrees of freedom for the chi-square distribution increase, the probability of

rejecting a true null hypothesis decreases.

5.10. With random sampling, a computed chi-square value greater than the critical value can

be obtained, even when the null hypothesis is true.

5.11. If there is close agreement between the observed and expected frequencies, the chi-

square statistic should be relatively large.

5.12. The critical value at a ¼ 0.05 for a multinomial chi-square test about a 27:9:9:9:3:3:3:1

genetic ratio is 14.067.

5.13. To test whether a set of samples can be modeled by a Poisson distribution, the

experimenter must specify the Poisson parameter before sampling.
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5.14. If the null hypothesis for a goodness-of-fit test is not rejected, it can be concluded that

the data are from a population with the specified probability distribution.

5.15. A chi-square contingency table analysis is not appropriate if it is suspected that the row

and column categories are not independent.

5.16. To reject the null hypothesis in a chi-square test of independence is to decide that the

categories in the rows are independent of those in the columns.

5.17. The chi-square test of homogeneity can be used if hypothetical ratios are unknown but

may be equal for all populations sampled.

5.18. A chi-square test of independence for a k � 2 table has k 2 1 degrees of freedom

associated with it.

5.19. A chi-square test of homogeneity can be used to test the equality of the parameters in

two binomial distributions.

5.20. The expected value and the variance of a given chi-square distribution are equal.
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6 Sampling Distribution of
Averages

In Chapters 3 through 5 we discussed techniques for analyzing certain types of data that are

collected on the nominal scale or were reduced to that scale. All of the procedures in those

chapters dealt with data that are in the form of counts. This chapter is a transition to data that

are collected on a numerical scale. The remainder of this book will deal mainly with data that

arise from measurements rather than frequency counts.

6.1. POPULATION MEAN AND SAMPLE AVERAGE

As in the case of count data, researchers use statistical analysis of measurement data to make

statements about populations that are not totally accessible from information obtained from

properly chosen samples.

One of the parameters of a population that is often of interest is the population mean,

because it is one way to describe the population’s center or location. If the population were

totally accessible, its mean would be computed by the formula

m ¼
X

y

N

in which m (the lower-case Greek letter mu) is the symbol for the population mean,
X

y is the

sum of all of the values of the variable of interest for the whole population, and N is the

number of elements in the population. We rarely have an opportunity to use this formula since

most of the populations we study are not totally accessible; they either are too large, perhaps

even infinite, or would be destroyed in the process of measurement.

Example 6.1. Computing a Population Mean

Historians often use the frequency of certain grammatical constructions to help identify the

writings of a historical person. For example, a historian might determine the number of

occurrences of a parallel series of adjectives such as “the worker was tired and weary” in

3000-word sections of a person’s known writings. Imagine that the population of all of the

known writings of the person can be arranged into 10 sections of 3000 words each, and the

number of occurrences are

19 21 18 24 19 21 22 19 22 22
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To find the population mean, the historian finds the sum of these data and divides by the

number of observations:

m ¼
X

y

N

¼ 19þ 21þ 18þ 24þ 19þ 21þ 22þ 19þ 22þ 22

10

¼ 20:7

That is, the mean number of parallel adjectives per 3000 words used by this author is 20.7.

If the population data are arranged in the form of a frequency distribution in which y is the

value of the variable of interest and f is the number of occurrences, then the population mean

can be computed by the formula

m ¼
X

yf

N

in which the summation is over the different values of y. To use this formula, a third column is

added to the frequency table and the sum is found:

y f yf

18 1 18

19 3 57

21 2 42

22 3 66

24 1 24

N ¼ 10 207 ¼
X

yf

and then

m ¼
X

yf

N

¼ 207

10

¼ 20:7

If relative frequencies are given in the population table where

relative frequency ¼ f ¼ f =N

then the computation of the population mean is simplified to

m ¼
X

yf
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Thus

y f yf

18 0.1 1.8

19 0.3 5.7

21 0.2 4.2

22 0.3 6.6

24 0.1 2.4

m ¼
X

yf ¼ 20.7

We could represent the population by a graph (Fig. 6.1), and then the mean m can be

interpreted as the balancing point of the distribution (Fig. 6.2).

Since it is often impossible to obtain the population mean, statistical inference is used to

estimate m or to test a hypothesis concerning m. The basic tool for these inferences (as in the

case of count data) is a probability distribution that is a model of the population. We are

already familiar with the concept of the expected value E(y) of a probability distribution (see

Section 2.5). If a certain probability distribution is the appropriate model for a population,

then E(y) will coincide with the population mean m. Because of this, the expected value of a

probability distribution is often called its mean, and we write m ¼ E(y). We should recall at

this point that the expected value of a discrete probability distribution can be computed by the

formula

E(y) ¼
X

yp(y)

This is analogous to the formula for a population mean if the values are arranged in a

relative frequency distribution:

m ¼
X

yf

Statistical inference about a population mean requires, in addition to a probability

FIGURE 6.1. A population distribution.
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distribution to model the population, some information obtained from a sample of the

population. A reasonable statistic to use is the sample average. The sample average is

analogous to a population mean. If �yy is used as the symbol for a sample average,† then

�yy ¼
X

y

n

in which y is the value of the variable of interest for each of the members in the sample, the

sum is over those values, and n is the number of observations in the sample. (The symbol �yy is

read “y bar.”) As in the case of population means, this formula can be modified for data

arranged in a frequency table; then

�yy ¼
X

yf

n

If the data are in a relative frequency table, then

�yy ¼
X

yf

Example 6.2. Computing a Sample Average

A random sample of 100 high-school students is taken prior to their senior year and the

number of books they read that summer is recorded:

y f

0 0.15

1 0.20

2 0.30

3 0.15

4 0.10

5 0.05

6 0.02

7 0.02

8 0.00

9 0.00

10 0.01

†To avoid confusion, the expression “average” will be used for a sample and “mean” for a population.

FIGURE 6.2. The population mean as the balancing point.
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The sample average is computed by adding a third column to the relative frequency table and

summing:

y f yf

0 0.15 0.00

1 0.20 0.20

2 0.30 0.60

3 0.15 0.45

4 0.10 0.40

5 0.05 0.25

6 0.02 0.12

7 0.02 0.14

8 0.00 0.00

9 0.00 0.00

10 0.01 0.10

�yy ¼
X

yf ¼ 2:26 books

A sample average �yy is used as an estimator of the populationmeanm.Wewrite �yy ¼ m̂m (which

is read “mu hat”) when we want to indicate that the sample average is an estimator of the

population mean. The sample average is usually a maximum-likelihood estimator. It is usually

also unbiased and has a minimum variance among unbiased estimators (see Section 3.3).

Procedure. Measures of Location

Ungrouped Data Grouped Data

Frequency

Distribution

Relative Frequency

Distribution

Population Mean m ¼
X

y

N
m ¼

X
yf

N
m ¼

X
yf

N ¼ population size N ¼ population size f ¼ relative frequency

f ¼ frequency

Sample Average �yy ¼
X

y

n
�yy ¼

X
yf

n
�yy ¼

X
yf

n ¼ sample size f ¼ relative frequency

f ¼ frequency

Expected Value of a

Discrete Probability

Distribution

E(y) ¼
X

yp(y)
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EXERCISES

6.1.1. Find the population mean for the heights of the 50 male students given in Exercise 2.2.4.

6.1.2. Use the data in Exercise 2.2.4 for the following:

a. Arrange the heights into a population frequency distribution.

b. Compute the population mean from the population frequency distribution.

c. Find the population relative frequency distribution.

d. Compute the population mean from the relative frequency distribution.

6.1.3. The following data from a random sample of 5-year-old children in the United States

represent the number of cavities in their teeth:

4 0 1 0 3 2 1 0 4 3 2 3 4 2 2 3 2 1 1 2

a. Find the sample average from this ungrouped data.

b. Arrange the data into a frequency table.

c. Find the sample average from the frequency table.

d. Estimate the mean number of cavities for the population of all 5-year-old children

in the United States.

6.1.4. At a certain university a total census is made of all graduating seniors to determine how

many courses they have failed during their undergraduate education. The population is

as follows:

y: 0 1 2 3 4 5

f: 0.870 0.071 0.031 0.012 0.011 0.005

Find the population mean.

6.2. POPULATION VARIANCE AND SAMPLE VARIANCE

A second population parameter that is often of interest is s2, the population variance.

Variance is a measure of the spread of the population. Suppose we want to choose between

two investment plans and are told that both have mean earnings of 10% per annum; we might

conclude that they were equally good. However, suppose we learn that plan A has a variance

twice as large as plan B. This gives us additional information on which to base a choice. If we

want to be relatively certain that our earnings are close to 10%, we would select plan B. If we

are willing to gamble that our earnings might be considerably in excess of 10% (or possibly

considerably below 10%), we would choose plan A.

A population variance can be computed from ungrouped data or from data that are grouped

into a frequency or relative frequency distribution if the population is of the accessible variety.

For ungrouped data, a population variance is defined to be

s2 ¼
X

(y� m)2

N
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in which s2 is read “sigma squared” and represents the population variance. In practice, it is

more convenient to use an equivalent computational form of this formula, especially when

using a hand-held calculator or electronic spreadsheet—hence called the “machine equation”:

s2 ¼
X

y2 �
X

y
� �2

N

N

Example 6.3. Computing a Population Variance from Ungrouped Data

Consider again the small population of sections of all known writings of a historical person.

The number of usages of parallel adjectives per 3000-word sections are

19 21 18 24 19 21 22 19 22 22

and the mean usage is m ¼ 20.7. The population variance is the average squared deviation

from the mean. In tabular form, the computations are as follows:

y y� m (y� m)2

19 19 2 20.7 ¼ 21.7 2.89

21 21 2 20.7 ¼ 0.3 0.09

18 18 2 20.7 ¼ 22.7 7.29

24 24 2 20.7 ¼ 3.3 10.89

19 19 2 20.7 ¼ 21.7 2.89

21 21 2 20.7 ¼ 0.3 0.09

22 22 2 20.7 ¼ 1.3 1.69

19 19 2 20.7 ¼ 21.7 2.89

22 22 2 20.7 ¼ 1.3 1.69

22 22 2 20.7 ¼ 1.3 1.69X
(y� m)2 ¼ 32.10

and

s2 ¼
X

(y� m)2

N
¼ 32:10

10
¼ 3:210

This process can be shortened by using the machine equation, the equivalent

computational formula that is more adaptable to a calculating device:

s2 ¼
X

y2 �
X

y
� �2

N

NX
y ¼ 207

X
y2 ¼ 4317 N ¼ 10

so

s2 ¼ 4317� (207)2=10

10

¼ 3:210
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Sometimes population data are grouped into frequency or relative frequency tables. In

these cases the formulas can be adapted. For a frequency table,

s2 ¼
X

(y� m)2f

N
¼

X
y2f �

X
yf

� �2
N

N

and for relative frequency tables,

s2 ¼
X

(y� m)2f ¼
X

y2f �
X

yf
� �2

This last formula is analogous to the computation of the variance of a discrete probability

distribution:

V(y) ¼
X

½y� E(y)�2p(y)

¼
X

y2p(y)�
X

yp(y)
h i2

If a probability distribution is used to represent a population and a certain probability

distribution is an appropriate model, then s2, the variance of the population, will be the same

as V(y), the variance of the probability distribution. Because of this, s2 is often used when

speaking of the variance of a probability distribution.

Usually we will be estimating the population variance by using a statistic from a random

sample of the population. The statistic that is an estimator of the population variance is the

sample variance, or s 2:

s2 ¼
X

(y� �yy)2

n� 1
¼

X
y2 �

X
y

� �2
n

n� 1

Note that the denominator of s 2 is n 2 1, an unusual way to “average” the squared deviations

from the sample average. This modification is necessary so that the sample variance will be an

unbiased estimator of the population variance. We write

s2 ¼ ŝs2

to indicate that the sample variance is an estimator of the population variance.

The formula for sample variance can be modified for data that are grouped into a frequency

table:

s2 ¼
X

(y� �yy)2f

n� 1
¼

X
y2f �

X
yf

� �2
n

n� 1
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Example 6.4. Computing a Sample Variance from Grouped Data

In the high-school reading study (Example 6.2) of Section 6.1, the frequency table can be

expanded to find
P

yf in the third column and
P

y2f in the fourth column:

y f yf y 2f

0 15 0 0

1 20 20 20

2 30 60 120

3 15 45 135

4 10 40 160

5 5 25 125

6 2 12 72

7 2 14 98

8 0 0 0

9 0 0 0

10 1 10 100

n ¼ 100
X

yf ¼ 226
X

y2f ¼ 830

Thus

s2 ¼
X

y2f �
X

yf
� �2

n

n� 1

¼ 830� (226)2=100

99

¼ 3:22

A summary of the computational procedures for variances follows.

Procedure. Measures of Spread

Grouped Data

Ungrouped Data Frequency Distribution

Relative Frequency

Distribution

Population Variance

s2 ¼
X

(y� m)2

N

¼
X

y2
X

y
� �2

N

N

s2 ¼
X

(y� m)2f

N

¼
X

y2f �
X

yf
� �2

N

N

s2 ¼
X

(y� m)2f

¼
X

y2f �
X

yf
� �2

N ¼
X

f

N ¼ population size f ¼ frequency f ¼ relative frequency
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Grouped Data

Ungrouped Data Frequency Distribution

Relative Frequency

Distribution

Sample Variance

s2 ¼
X

(y� m)2

n� 1

¼
X

y2 �
X

y
� �2

n

n� 1

s2 ¼
X

(y� m)2f

n� 1

¼
X

y2f �
X

yf
� �2

n

n� 1

Convert relative

frequencies to frequencies

and method to the left user

n ¼
X

f

n ¼ sample size f ¼ frequency

Variance of a Discrete Probability Distribution

V(y) ¼
X

½y� E(y)�2p(y)

¼ E(y2)� ½E(y)�2

¼
X

y2p(y)�
X

yp(y)
h i2

We might wonder at this point about the meaning of the numerical value of population and

sample variances. Larger variances indicate a larger spread for the distribution, but can more

than this be said? One approach is to use the result worked out by the Russian mathematician

P. L. Chebyshev (1821 to 1894).

Chebyshev used the standard deviation, a measure related to the variance. A population

standard deviation is the positive square root of the population variance:

s ¼
ffiffiffiffiffi
s2

p

And a sample standard deviation is the positive square root of the sample variance:

s ¼
ffiffiffiffi
s2

p

The standard deviation has the advantage of being in the same units of measurement as the

data, whereas the variance is in squared units that often have no intuitive meaning (as

“squared books” in Example 6.4).

Chebyshev proved that in any collection of data at least three-fourths of the values lie

within two standard deviations of the mean (or average) and at least eight-ninths of the values

lie within three standard deviations of the mean (or average). In general, the theorem states
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that for real numbers k, k . 1, at least 1 2 1/k 2 of the values lie within k standard deviations

of the mean (or average). Table 6.1 summarizes this result.

Note that the theorem is true for any population or sample. Although this theory gives only

a lower bound for the proportion of the data within certain intervals, it is applicable to all data

sets regardless of the shape of their distribution and regardless of their size.

If a population or a large sample is symmetrical and mound shaped, an estimate is possible

for the proportion of the data within certain intervals. The estimates in Table 6.2 are often

called the empirical rule. (These proportions are determined from the standard normal

distribution; see Section 7.1.)

EXERCISES

6.2.1. Find the population variance for the heights of the 50 males given in Exercise 2.2.5.

6.2.2. Use the height data and the tables found in Exercise 6.1.2 for the following:

a. Compute the population variance from the population frequency distribution.

b. Compute the population variance from the relative frequency distribution.

6.2.3. Use the sample data from Exercise 6.1.3 for the following:

a. Find the sample variance from the ungrouped data.

b. Find the sample variance from the frequency table.

TABLE 6.1. Chebyshev’s Theorem for Some Values of k > 1

At least this

proportion of the

data:

Lies within this interval:

Population Sample

1 2 1/22 ¼ 3/4 m + 2s �yy+ 2s

1 2 1/32 ¼ 8/9 m + 3s �yy+ 3s

1 2 1/42 ¼ 15/16 m + 4s �yy+ 4s

1 2 1/k 2 m + ks �yy+ ks

TABLE 6.2. The Empirical Rule

Approximately this

proportion of the data:

Lies within this interval:

Population Large Sample

0.682 m + 1s �yy+ 1s

0.954 m + 2s �yy+ 2s

0.997 m + 3s �yy+ 3s
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6.2.4. Use the data from the population in Exercise 6.1.4 and find the population variance.

6.2.5. Consider the following three samples:

I 1 2 2 3 3 3 4 4 5

II 7 8 8 9 9 9 10 10 11

III 1 1 1 2 2 3 4 4 5 5 5

a. Graph the frequency distribution for each of the three samples.

b. Compute the average of each sample.

c. Compute the variance of each sample.

d. Compare the average of samples I and II. What characteristic of the two data sets

explains the difference in the averages?

e. Notice that the variances of sets I and II are equal. What geometric property of these

two distributions accounts for this equality?

f. Note that sets I and III have the same average. Why is this possible for two data sets

that seem so different?

g. Compare the shape of distributions I and III. Why would you expect the variance of

I to be smaller than the variance of III?

6.2.6. Each mating season, birds of a certain species usually lay a clutch of 6 eggs in their

nests. A biologist notices, however, that clutch number deviates from the usual when

the birds feed on a certain kind of berry containing a narcotic alkaloid. He examines the

nests of 7 such birds and finds the following numbers of eggs:

8 2 5 7 4 10 6

a. Is there evidence that the alkaloid causes the birds to lay fewer eggs than usual?

b. Compute the variance of the sample.

6.2.7. Show that Chebyshev’s theorem is true for the population in Exercise 6.1.4 for k ¼ 2

and k ¼ 3.

6.3. THE MEAN AND VARIANCE OF THE SAMPLING DISTRIBUTION OF

AVERAGES

When dealing with binominal data, the useful statistic for inference is the number of

occurrences in a certain category. This count summarizes the entire sample. Similarly, when

dealing with numerical data, there is a useful statistic which summarizes all of the

measurements from the sample; this statistic is �yy, the sample average. In many types of

inference, we use the summary statistic �yy rather than the actual values obtained from the

individuals in the sample. Since we use the sample average, it is necessary to further develop

the properties of this statistic.

The first thing we should note is that �yy is a random variable; that is, it has a numerical value

that is associated with the outcome of an experiment or survey. The sample average �yy depends
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upon the particular random sample chosen and varies for different samples, even those from

the same distribution.

Because �yy is a random variable, it has a probability distribution. The probability

distribution associated with �yy is called the sampling distribution of sample averages. This

sampling distribution consists of all possible values of �yy for a fixed sample size and the

probabilities associated with these values of the random variable.

If the random variable is discrete and has a finite number of values, we can actually display

the sampling distribution of averages. For example, if the population consists of the numbers

1, 2, 3, 4 and all of these values are equally likely, then the population can be represented by

the following probability distribution:

y 1 2 3 4

p(y): 1/4 1/4 1/4 1/4

This probability distribution could be the model for several different experiments. For

example, imagine a lottery device that contains 4 lightweight balls numbered 1, 2, 3, and 4. Air

randomly forces one of the balls to be displayed. This probability distribution would be a

model of the infinite population of possible outcomes when the variable is the number of the

ball displayed. Another experiment modeled by this distribution consists in selecting a card at

random with replacement from a deck containing 10 cards of each of 1, 2, 3, and 4 and

observing the number on the card. Sampling with replacement means that after the card is

selected and the number is observed the card is returned to the deck before the next card

is selected. Sampling with replacement effectively creates an infinite population from a

finite one.

If samples of size 2 are selected at random from an infinite population represented by this

probability distribution (or from a finite population with replacement), then the averages of all

possible samples of size 2 are given in the body of the following table:

Observation 2

�yy 1 2 3 4

1 1 3/2 2 5/2
Observation 1 2 3/2 2 5/2 3

3 2 5/2 3 7/2
4 5/2 3 7/2 4

If the random variable is continuous or has an infinite number of values, we cannot

enumerate all of the averages but we can still think about them. To illustrate the properties of

sampling distributions of averages, we will use the above small discrete example; however,

the same properties are true for all sampling distributions of averages.

Since the sampling distribution of averages of all samples of a fixed size is a probability

distribution, it has an expected value (mean) and a variance, and these parameters are related

to the mean and variance of the underlying population.
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In the discrete example concerning equally likely numbers, the mean of the population is

my ¼ E(y) ¼
X

yp(y)

¼ (1þ 2þ 3þ 4)
1

4

� �

¼ 5

2

and the variance of the population is

s2
y ¼ V(y) ¼

X
y� 5

2

� �2

p(y)

¼ 5

4

To find the mean and the variance of the sampling distribution of averages of all samples of

size n ¼ 2, we first give the probability distribution in tabular form:

�yy: 1 3/2 2 5/2 3 7/2 4

p(�yy): 1/16 2/16 3/16 4/16 3/16 2/16 1/16

The graph of the sampling distribution of averages appears in Figure 6.3. The mean is

m�yy ¼ E(�yy) ¼
X

�yyp(�yy)

¼ 1
1

16

� �
þ 3

2

� �
2

16

� �
þ � � � þ 4

1

16

� �

¼ 5

2

FIGURE 6.3. A sampling distribution of averages.
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and the variance is

s2
�yy ¼ V(�yy) ¼

X
�yy� 5

2

� �2

p(�yy)

¼ 5

8

We should note the following about this example of a sampling distribution of averages:

1. The sampling distribution of averages has the same mean as the underlying population.

2. The sampling distribution of averages has a smaller variance than the underlying

population.

3. The sampling distribution of averages is symmetric and unimodal.

One particular illustration, of course, does not prove that these properties always hold.

However, it can be proved mathematically that for all sampling distributions of averages:

1. m�yy ¼ my.

2. s2
�yy ¼ s2

y=n:

3. If the sample size n is sufficiently large, then the distribution of �yy is symmetric and

unimodal or approximately so.

Another property of sampling distributions of averages is taken up in Chapter 7 after the

discussion of normal distributions. In Chapters 7 and 8, the sampling distribution of averages

is used for making an inference about the population mean.

In this section, as well as in the rest of this book, unless specified otherwise, we assume that

sampling is from an infinite population or from a finite population and the sampling is with

replacement. If the sampling is without replacement and from a finite population, we assume

that the sample size is 5% or less of the population size. Many of the properties discussed in

this text do not hold if sampling is without replacement from a finite population and the

sample size is more than 5% of the population size.

EXERCISES

6.3.1. Let y be a discrete random variable with the following distribution:

p(y) ¼ 1

3
for y ¼ 5, 7, 10

p(y) ¼ 0 elsewhere

a. Draw the graph of this probability distribution.

b. Find E(y) and V(y).

c. Find the sampling distribution of averages of all samples of size n ¼ 2 from a

population that is modeled by this distribution. Graph the sampling distribution of

averages.
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d. Compute E(�yy) to show that it is equal to E(y).

e. Compute V(�yy) to show that it is equal to V(y)/n.

6.3.2. Let x and y be two independent random variables each with the distribution described

in Exercise 6.3.1. Show that:

a. E(x þ y) ¼ E(x) þ E(y)

b. E(x 2 y) ¼ E(x) 2 E(y)

c. E(3y) ¼ 3E(y)

d. V(x þ y) ¼ V(x) þ V(y)

e. V(x 2 y) ¼ V(x) þ V(y)

f. V(3y) ¼ 9V(y)

6.3.3. The properties of expected value and variance illustrated in Exercise 6.3.2 are true in

general:

E(xþ y) ¼ E(x)þ E(y)

E(x� y) ¼ E(x)� E(y)

E(ay) ¼ aE(y), for a constant a

V(xþ y) ¼ V(x)þ V(y), if xand y are independent

V(x� y) ¼ V(x)þ V(y), if x and y are independent

V(ay) ¼ a2V(y), for a constant a

Use these properties to show that in general, if �yy ¼
X

y=n in which the y’s are

independent, then:

a. E(�yy) ¼ E(y)

b. V(�yy) ¼ V(�yy)=n

6.3.4. For the population of heights given in Exercise 2.2.4:

a. What is E(�yy) for all random samples of size 10? (See Exercise 6.1.1).

b. What is V(�yy) for all random samples of size 10? (See Exercise 6.2.1).

6.3.5. Six female college students have heights (in inches) as follows: 62, 64, 65, 66, 65, 68. If

these 6 students are considered to be a population from which sampling is done with

replacement:

a. Draw the frequency distribution of the population.

b. Find the sampling distribution of averages for all samples of size 2 (with

replacement) taken from this population. Draw its graph.

c. Find the population mean.

d. Find the mean of the sampling distribution of averages and confirm that it is the

same as the population mean.

e. Find the variance of the population.

f. Find the variance of the sampling distribution of averages for samples of size n ¼ 2

from the population variance.
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6.4. SAMPLING WITHOUT REPLACEMENT

The previous section provided a discussion of sampling distributions for infinite populations

or for finite populations when the sampling is with replacement. In sampling with

replacement, p(y) for a particular value of y remains constant even though that value may

already have been selected. There is another situation called sampling without replacement

which is frequently encountered in the social sciences.

Consider again a variable y with values 1, 2, 3, 4 in equal frequency. We saw that, when

selection is with replacement and the sample is of size n ¼ 2, E(�yy) ¼ 5=2 and V(�yy) ¼ 5=8.
This time, however, consider these 4 integers as a finite population, so that once any one of

them has been selected for the first member of a sample of size n ¼ 2, it is no longer available

to be the second number in that sample. We could think of a set of 4 cards each containing one

of the numbers 1, 2, 3, or 4. Two cards are to be selected at random, and after the first one is

chosen, it is not returned to the set. Hence we call this sampling without replacement. The

possible sample means are then

Observation 2

�yy 1 2 3 4

1 3/2 2 5/2
Observation 1 2 3/2 5/2 3

3 2 5/2 7/2
4 5/2 3 7/2

We can readily verify that

m�yy ¼ E(�yy) ¼
X

�yyp(�yy)

¼ 3

2

� �
2

12

� �
þ 2

2

12

� �
þ � � � þ 7

2

� �
2

12

� �

¼ 5

2

and the variance is

s2
�yy ¼ V(�yy) ¼

X
�yy� 5

2

� �2

p(�yy) ¼ 5

12

We notice that E(�yy) remains the same whether or not we sample with replacement, but V(�yy)

is smaller when we sample from a finite population without replacement. There is a constant

relationship between the variances for the two types of sampling; if the variance among

sample averages is s2
�yy for sampling with replacement, then the variance for sampling without

replacement is

(N � n)

(N � 1)
s2
�yy
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where N is the size of the population and n is the size of the sample. We can verify the

relationship for our demonstration population and compute the variance of the sample means

for sampling without replacement as

(N � n)

(N � 1)
s2
�yy ¼

(4� 2)

(4� 1)

5

8

� �
¼ 5

12

The multiplier (N 2 n)/(N 2 1) is called the finite population correction factor and is

often written as (1 2 n/N) because when N is large N � 1 is almost equal to N. Notice that

this correction factor is close to 1 if n is small relative to N. If n/N is less than 1/20, then the

correction faction is greater than 0.95, that is, it is almost 1; effectively this means that the

finite population correction factor can be dropped from the formula if n/N is less than 1/20.

EXERCISES

6.4.1. A finite population is of size N ¼ 8, with m ¼ 8 and s2 ¼ 5.25.

a. What is V(�yy) if sampling is with replacement and n ¼ 1, 3, 5, 8, respectively?

b. Use the formula with the finite population correction faction to find V(�yy) if sampling

is without replacement and n ¼ 1, 3, 5, 8.

6.4.2. Chimpanzees have no known numbering system, but they may have a sense of

quantity. To test this, a behavioral biologist presents a hungry chimp with 7 bunches of

bananas containing, respectively, y ¼ 1, 2, 3, 4, 5, 6, 7 bananas. The chimp has been

trained to understand that it may choose any 2 bunches of bananas.

a. How many combinations of 2 bunches are there?

b. Would this situation constitute sampling with or without replacement?

c. If it chooses at random, that is, it has no sense of quantity, what is the expected

average number of bananas per bunch for the chimp’s choice of two bunches? What

is V(�yy)? What outcomes lie within two standard deviations of E(�yy)?

d. Suppose the chimp chooses the bunches with six and seven bananas. How many

ways can this particular choice be made? What is the probability that this is just a

random choice, meaning the chimp has no sense of quantity? Is there evidence that

the animal has a sense of quantity?

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false,

explain why.

6.1. It is appropriate to compute the average of a set of data collected on a nominal scale.

6.2. The sample average is always one of the values in the sample.

6.3. For any sample,
X

(y� �yy) ¼ 0.

6.4. If y is measured in inches, the unit of measurement for the standard deviation is squared

inches.

6.5. If for each value y in a sample x ¼ y þ 10, then �xxþ 10 ¼ �yy.
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6.6. If for each value y in a sample x ¼ y þ 10, then the variance of y is equal to the variance

of x.

6.7. If for each value y in a sample x ¼ ay, then �xx ¼ a�yy and the variance of x is a 2 times the

variance of y.

6.8. If y1 and y2 are random variables with the same probability distribution, then

E(y1 2 y2) ¼ 0 and V(y1 2 y2) ¼ 0.

6.9. If two populations have the same mean, then they also have the same variance.

6.10. For many random samples the sample average �yy is not equal to the mean m of the

population from which the sample was chosen.

6.11. Because �yy is an unbiased estimator of m, �yy ¼ m.

6.12. A sample average is computed in the same manner as a population mean.

6.13. A sample variance is computed in the same manner as a population variance.

6.14. If a population has a mean of 10 and a standard deviation of 2, then the sampling

distribution of averages of samples of size n ¼ 2 has a mean of 10 and a standard

deviation of 1.

6.15. The variance of a sampling distribution of averages is larger than the variance of the

underlying population because �yy has more distinct values than y.

6.16. Chebyshev’s theorem shows that in all samples most of the data lie within three

standard deviations of the average.

6.17. One of the advantages of using a sample average instead of a single observation to

estimate the population mean is that the sample average is more likely to be close to the

population mean.

6.18. The empirical rule cannot be applied to skewed distributions.

6.19. If the sampling is with replacement, the expected value of the sampling distribution of

averages is different from the expected value when the sampling is without

replacement.

6.20. A public opinion poll in which no person can be interviewed more than once is an

example of sampling without replacement.
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7 Normal Distributions

In Chapters 3 and 4 we discussed two types of discrete distributions, binomial and Poisson, that

may be appropriate models for some discrete variables encountered in research. In Chapter 5

we discussed a continuous probability distribution, the chi-square distribution, which is not

usually a direct model for a population but which can be used in an indirect way to answer

questions about populations. In this chapter we discuss a second type of continuous probability

distribution, the family of normal distributions. A normal distribution is sometimes the

appropriate model for a population with a variable of interest that is continuous.

7.1. THE STANDARD NORMAL DISTRIBUTION

Some continuous variables can be modeled by a bell-shaped theoretical probability

distribution called a normal distribution, also called a Gaussian distribution after Carl

Friedrich Gauss (1777 to 1855), who investigated its mathematical properties.

For example, the sample of heights of 100 women measured to the nearest inch, as given in

Table 7.1, can be grouped into a relative frequency distribution:

y f y f

60 0.01 67 0.14

61 0.04 68 0.08

62 0.03 69 0.01

63 0.07 70 0.01

64 0.26 71 0.01

65 0.19 72 0.01

66 0.14

We should like to find a continuous probability distribution that can be used to model the

population from which this sample was taken. Looking at the graph of the sample (Figure 7.1),

we see that it is not perfectly bell shaped, but the departures are not extreme. A sample of size

100 will resemble the population from which it was taken, but it will not be exactly like the

population. It seems possible that the population of heights could be modeled by a theoretical

normal distribution (Figure 7.2), with the following density function:

f ( y) ¼ 1

s
ffiffiffiffiffiffi
2p

p e�( y�m)2=2s2

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
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The density function f(y) gives the height of the curve above the y axis. In this density

function, y is the random variable; y has all real numbers for its values. There are three

constants in the density function: 2, p, and e. The constant p is the irrational number equal to

approximately 3.14 (this use of p is not related to the binomial parameter), and the irrational e,

approximately equal to 2.72, is the base of natural logarithms. There are two independent

parameters in the density, m and s2; m can be any real number and s2 can be any nonnegative

real number. In any particular normal density function, m and s2 are fixed; thus there is a

different normal distribution for each pair m, s2.

The normal density function describes a curve that is

1. unimodal,

2. symmetrical,

3. asymptotic to the y axis, and

4. bell shaped.

The normal distribution has

1. E(y) ¼ m,

2. V(y) ¼ s2,

3. inflection points at m 2 s and m þ s,

4. total area between the curve and the y axis equal to 1, and

5. more than 99% of the area between m 2 3s and m þ 3s.

FIGURE 7.1. Heights in a sample of 100 women.

TABLE 7.1. Heights in a Sample of 100 Women

66 65 68 67 68 67 67 64 64 68

65 60 64 64 64 64 63 67 64 65

70 64 64 68 65 64 65 62 65 66

64 65 66 72 66 66 67 64 65 67

65 66 67 66 71 67 67 64 63 65

66 62 68 61 69 63 66 61 65 64

64 65 67 65 64 68 67 64 66 67

68 63 63 67 68 65 64 65 66 62

65 65 63 64 66 61 64 67 64 64

63 66 61 64 65 66 64 64 64 65
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In the sample of women’s heights given above, the sample average �yy is 65.2 and the sample

variance s 2 is 4.392. Thus, this sample might be from a population that can be modeled by a

normal distribution with E(y) ¼ m ¼ 65.2 and V(y) ¼ s2 ¼ 4.392. We write N(65.2, 4.392)

to represent this theoretical distribution. (In Exercise 7.1.7 a goodness-of-fit test is described

which can be used to check whether or not this is a good model; it is.)

Probabilities related to continuous random variables are represented by areas. Calculus (in

particular, numerical integration) is necessary to find the areas of various sections under the

normal curve. Tables, however, have been derived for the normal distribution N(0, 1), called

the standard normal distribution. These tables can also be used to find the areas of sections

under any normal curve by means of a standardization process.

The standard normal random variable is usually represented by z to distinguish it from

other random variables. Table A.10 in the Appendix of Useful Tables gives the probabilities

that the random variable z is greater than a designated value between 0 and 3.09. For example,

if P(z . 1.36) is desired, the table is entered at row 1.30 and column 0.06, and the entry in the

body of the table indicates that 0.087 of the area under the curve is to the right of z ¼ 1.36

(Figure 7.3). To make this more practical, imagine that we have a freezer with temperatures

that follow a standard normal distribution when measured on the Fahrenheit scale (the mean

temperature is 08F and the standard deviation is 18F); then 8.7% of the time the temperature is

above 1.368F. Or we could say that the probability is 0.087 that the temperature is above

1.368F. Areas relative to negative z values can be found by using the symmetry of the normal

distribution. For example, P(z , �1:36) ¼ P(z . 1:36) ¼ 0:087.
If y is normally distributed with a mean of m and variance s2, then y can be standardized by

the formula

z ¼ y� m

s

FIGURE 7.2. The normal distribution N(m, s2).

FIGURE 7.3. P(z . 1.36) ¼ 0.087.
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Since z is the number of standard deviations y is from m, z is sometimes called the standard

normal deviate. If wewant to find the probability that y is between 3 and 6 inN(2, 4), we compute

z ¼ 3� 2

2
¼ 0:5 and z ¼ 6� 2

2
¼ 2

Then

P(3 � y � 6) ¼ P(0:5 � z � 2)

¼ 0:309� 0:023

¼ 0:286 (Figure 7:4)

Another example follows.

Example 7.1. Using the Standard Normal Distribution to Find Probabilities

Assume that an ecologist is studying the lungs of wild rabbits for possible contamination from

a local power station. He has to build a trap to catch the rabbits, and he wants to make the door

wide enough to catch a good percentage of them. Assume he knows that the mean width of

rabbits’ shoulders is m ¼ 3.80 in. with a variance of s2 ¼ 0.36 in.2 If he makes the door 5 in.

wide, what percentage of rabbits will be able to go through the door? That is, what is P(y , 5)?

He finds that the standard normal deviate is

z ¼ y� m

s
¼ 5:0� 3:8

0:6
¼ 2:00

So the door is 2.00 standard deviations wider than the mean width of rabbits’ shoulders. Using

Table A.10, he finds that P(z , 2.00) ¼ 1 2 0.023 ¼ 0.977. This means that the area under

the standard normal curve to the left of 2.00 is 0.977. It also means that, in the normal

distribution N(3.80, 0.36), 0.977 of the area under the curve is to the left of 5; so 97.7% of the

wild rabbits will fit through the door.

EXERCISES

7.1.1. Use Table A.10 to find:

a. P(� 1 � z � 2)

b. P(� 3:02 , z , 0)

FIGURE 7.4. Standardization preserves area.
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c. P(� 0:5 , z , 0:5)

d. P(z . 2:34)

e. P(z . 0)

f. P(z � �1:58)

g. P(0:56 , z � 0:98)

h. P(� 2:44 , z , �0:12)

i. P(jzj . 1)

j. P(jzj . 2)

k. P(jzj . 3)

7.1.2. Use Table A.10 to find:

a. P(y , 4) if y is distributed as N(5, 0.64)

b. P(10 , y , 13) if y is distributed as N(12, 4)

c. P(y . 13) if y is distributed as N(15, 9)

d. P(y , 0 or y . 3) if y is distributed as N(1, 9)

7.1.3. In N(100, 400), find:

a. The proportion of the values greater than 70

b. The values of y within the central 90% of the distribution

c. The smallest value of y that exceeds 85% of the distribution

d. The largest value of y that is below 60% of the distribution

7.1.4. Assume that Graduate Record Examination (GRE) scores follow a normal distribution

with a mean of 1000 and a standard deviation of 200.

a. What percentage of graduates who take this exam have GRE scores greater than

750?

b. What GRE score separates the upper 30% of graduates from the other 70%?

c. Between what values are the scores of the central 90% of the graduates?

d. How likely is it that a randomly selected graduate will be one who has a GRE score

greater than 1000?

e. How likely is it that a random sample of 10 graduates will contain more than 7 who

have GRE scores greater than 1000?

f. Suppose that a group of 10 graduates contains 8 who have GRE scores greater than

1000.

i. Does this appear to be a random sample?

ii. Why?

7.1.5. The greater the sulfur content of coal, the less desirable it is as a heating fuel. Given

that the variability among assays for sulfur in coal from a certain mine is s ¼ 6 lb/ton
and that they follow a normal distribution, answer the following:

a. Mines that assay 80 lb of sulfur per ton are considered worthless for heating fuel.

How likely is it that a mine with mean sulfur content of m ¼ 62 lb/ton will be

placed in the worthless category on the basis of one random 1-ton sample?

b. Some cities will not permit the sale of coal within the city limits if its assay for

sulfur is as great as 34 lb/ton. How likely is it that coal with m ¼ 40 lb/ton will be

allowed to be sold within the city limits on the basis of one random 1-ton sample?
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7.1.6. A researcher in industrial relations notices that many men who receive high salaries are

tall of stature. She decides to investigate the question whether height is related to

salary. She wants to classify a man as tall if he is in the upper 10% of the heights of

adult males. If adult male heights are normally distributed with a mean of 68 in. and a

variance of 1.44 in.2, what is the shortest height (to the nearest inch) that this researcher

will classify as tall?

7.1.7. In the sample of women’s heights given in this section, the sample average is �yy ¼
65:2 in. and the sample variance is s 2 ¼ 4.392, or s ¼ 2.1 in. Use these sample values

as estimates of m and s2 in the normal distribution and perform a chi-square goodness-

of-fit test. Since two parameters are estimated, the degrees of freedom will be

k 2 1 2 2. Use the categories 59.5 to 60.5, 60.5 to 61.5, and so on. Expected values

can be computed by finding the probability that a height is in such a section and

multiplying by the sample size. If necessary, combine categories to prevent the

expected values from becoming too small.

7.1.8. In Francis Galton’s time some political candidates included in their campaign material

the “total marks” (score) they had received in a grueling (44 hours over 8 days) but

prestigious mathematics examination. Galton felt many politicians claimed higher

scores than they received. He obtained marks actually given on two successive

examinations and found them to compare favorably to a N(m, s2) distribution. His data

consisted of the scores received by 800 men, and only 6.7% of them were greater than

1500 marks, which was minimally sufficient to be awarded the title of “wrangler of

mathematics.”

a. If the data are from a normal distribution with m ¼ 900, show how to find

s2 ¼ 1600.

b. The one of the approximately 400 students who receives the greatest number of

marks is called “senior wrangler.” If scores are normally distributed, what score is

likely to qualify for that distinction. Hint:What z value will have 1/400 of the area
under the standard normal curve to the right of it?

c. To address the concern Galton was investigating, suppose 140 candidates have

reported scores they claim they received on the examination.

i. What assumptions must be made in order to use the normal distribution for

inference?

ii. If the assumptions can be made, what is the expected number with scores

greater than 1500 marks

iii. Suppose 24 of the 140 claim they received scores greater than 1500 marks, what

would you conclude about the truthfulness of the scores claimed?

7.2. INFERENCE FROM A SINGLE OBSERVATION

Whenever possible, we use samples consisting of several observations in order to make

inference about a population. However, there are times when it is necessary to make a

judgment about an unknown parameter from a single observation.

One example in which multiple observations are not feasible is a test of a certain type of

concrete slab to determine its load-carrying capacity. Since it is expensive and time
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consuming to construct the slab and since it will be destroyed by the test, it is desirable to draw

whatever inferences are possible from a single trial.

Imagine that a civil engineer measured the number of pounds per square inch (psi) required

to crack a certain type of slab and found it to be 2500 psi. Is it possible that these slabs crack at

values that are from a normal distribution with m ¼ 2300 and s2 ¼ 6400? To answer this

question, he could standardize 2500 as discussed in Section 7.1. Then

z ¼ y� m

s
¼ 2500� 2300

80
¼ 2:5

The standardized value could then be compared with the 95% most common z values which

would occur if the distribution is N(2300, 6400). In the standard normal distribution 95% of

the area is between21.96 and 1.96. We write z0.025 ¼ 1.96 to indicate that 2.5% of the area is

to the right of 1.96. Thus 21.96 ¼ z0.975 ¼ 2z0.025 (Figure 7.5).

The value of 2500 corresponds to a z value of 2.5; that is, it is 2.5 standard deviations above

the mean. Since this is to the right of 1.96, it would be a very unusual result from a distribution

which is N(2300, 6400) and the engineer would conclude that the mean is not 2300 psi. It

appears that this concrete slab has a higher load-carrying capacity.

If the population mean is unknown, it is possible to carry out a test of hypothesis from a

single observation (we stress, however, that, whenever possible, a larger number of

observations should be used).

Example 7.2. Testing a Hypothesis about a Mean with a Sample of One Observation

Suppose a person showed many of the symptoms of hypothyroidism (an underactive thyroid

gland). At one time her physician would have sent her to the hospital for a basal metabolism

test. The test was fairly involved and somewhat lengthy and required that the patient be in a

fasting condition. Thus the decision whether or not to administer thyroid extract depended on

a single observation of the patient’s basal metabolism rate.

The mean basal metabolism rate for people with properly functioning glands is 40 calories

per square meter per hour; a person suffering from hypothyroidism will have a reduced basal

metabolism rate. Thus the null and alternative hypotheses are

H0:m ¼ 40 and Ha:m , 40

The variability in basal metabolism rate among people with properly functioning thyroids

is also known, and for this example it is assumed that the population of such rates is

distributed as N(40, 16). If the physician did not want more than 0.05 probability of a

FIGURE 7.5. The standard normal distribution.
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misdiagnosis of a person with a properly functioning thyroid (a ¼ 0.05), he would compute

the test statistic

z ¼ y� m0

s
¼ y� 40

4

in which m0 is the value of m in the null hypothesis and s is the known standard deviation.

Evidence that the null hypothesis is false would be a large negative value of z since low

basal metabolism rates are transformed to the left tail of the standard normal distribution

(Figure 7.6). This z statistic is compared with the critical value of z0.95 ¼ 21.64; if

z � 2 1.64, H0 is rejected.

If the physician did not understand how to carry out this test of hypothesis, he might ask a

biostatistician to find the basal metabolism rate y that divides the area under the N(40, 16)

curve into the lower 5% of the area and the upper 95% of the area. This is done by placing the

critical value of z in the equation and solving for y. Thus

�1:64 ¼ y� 40

4
y ¼ 40� 1:64(4) ¼ 33:44

The physician would then make y ¼ 33.44 his decision point. If the patient’s basal

metabolism rate was less than or equal to 33.44 calories, the diagnosis would be

hypothyroidism and thyroid extract would be prescribed. In statistical terms, the null

hypothesis of normal thyroid function would be rejected. If the patient’s basal metabolism rate

was greater than this value, the hypothesis would not be rejected, and the physician would

investigate something other than the thyroid as the cause of the symptoms.

Procedure. Inference About a Single Observation from a Normal Distribution

Test of Hypothesis

H0: m ¼ m0

Ha: m = m0 or m . m0 or m , m0

Significance level: a
Test statistic:

z ¼ y� m0

s

Region of rejection: jzj � za/2 or z � za or z � 2 za, respectively.

FIGURE 7.6. Low values in N(40, 16) which occur only 5% of the time.
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EXERCISES

7.2.1. Use Table A.10 in the Appendix to find:

a. z0.05

b. z0.95

c. z0.01

d. z0.99

e. z0.005

f. z0.995

7.2.2. Assume that the temperatures of healthy infants follow an N(99, 1) distribution when

measured on a Fahrenheit scale.

a. If a particular infant has a temperature of 100.58F, should his temperature be

considered “normal”? That is, test the hypothesis H0: m ¼ 99 against Ha: m = 99 at

a ¼ 0.05.

b. Give the P value.

7.2.3. Legend has it that Archimedes made his discovery concerning specific gravity

(Archimedes’ principle) while trying to determine whether the king’s crown was made

of pure gold or an alloy. Working with metal samples which he knew to be pure gold or

alloys, he found that his device for measuring specific gravity produced a mean

determination of m ¼ 19.3 for pure gold, whereas all alloys tested yielded lower mean

specific gravities. For the sake of this problem, suppose Archimedes’ measuring device

followed an N(m, 0.09) distribution.

a. What would be a suitable null hypothesis for such an experiment?

b. What would be the most logical alternative hypothesis?

c. If a ¼ 0.05, what should be the region of rejection for this experiment?

d. How likely is it that a random sample of an alloy with a specific gravity

determination of 18.7 would be mistakenly called pure gold in this experiment?

7.2.4. A dairy farmer buys a heifer (female calf) from a Holstein-Friesian herd that is thought

to be genetically superior to others in the region. The quantity of milk production

among mature cows in the herd is normally distributed with m ¼ 18,000 lb/year and
s ¼ 2500 lb/year. Assuming the new owner can provide feed, shelter, and other

environmental factors equivalent to those for the herd from which the calf was bought:

a. Give the numerical value of E(y), the expected milk production of the calf when it

reaches maturity.

b. What is the probability that the calf will produce at a greater rate than the mean of

the herd from which it was bought?

c. What is the probability that it will produce at a rate greater than the breed mean of

m ¼ 14,000?

7.3. THE CENTRAL LIMIT THEOREM

Although normal distributions occur frequently in experiments, many random variables are

not normally distributed, and it would be inappropriate to use a normal distribution as the

model. In spite of this, if the samples are large enough, a normal distribution can often still be

used to find certain probabilities associated with the experiment because of some results that
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are known from the mathematical theory of statistics. The theory relevant to this use concerns

the properties of the sampling distribution of averages.

In Section 6.3we noted that the sampling distribution of averages has the following properties:

1. m�yy ¼ my; that is, the mean of the sampling distribution of averages is the same as the

mean of the underlying population.

2. s2
�yy ¼ s2

y=n; that is, the variance of the sampling distribution of averages is equal to the

variance of the underlying population divided by the sample size.

3. If n is sufficiently large, then the sampling distribution of averages is symmetrical and

unimodal or approximately so.

The third property can now be made more explicit. If a population is normal, the sampling

distribution of averages is normal. If a population is not normal, the sampling distribution of

averages is approximately normal for large n.

This last property is known as the central limit theorem. It is because of this property that

normal distributions come into play in many statistical analyses. With very few exceptions,†

no matter what form the underlying population distribution takes, as n increases, the sampling

distribution of averages approaches a normal distribution; thus the normal distribution can be

used to approximate probabilities in cases of reasonably large samples (n � 30) from

nonnormal distributions.

Usually in statistics we observe a sample and use the data collected to make decisions

about the population. If we compute the sample average, we have one value from the sampling

distribution of averages. Using the three properties just discussed, we can answer probability

questions about sample averages. If the underlying population is normally distributed, the

sampling distribution of averages is also normally distributed and has the same expected value

as the population distribution and a variance that is 1/n of the population variance. If the

underlying distribution is not normal, the sampling distribution of averages for large n is

approximately normal and has the same expected value as the population distribution and a

variance of 1/n times the population variance.

Example 7.3. Probabilities Associated with a Sample Average

An educational psychologist is working with a random sample of 5 adults. They are going to

take a standardized intelligence (IQ) test with scores that are normally distributed with a mean

of 105 and a standard deviation of 15. The psychologist wants to know how likely it is that the

average score of the 5 subjects will be greater than 108, that is, P( �yy . 108).

Since she is working with a sample average, she has a single value from the sampling

distribution of averages that is normally distributed with a mean of 105 and a variance of

s2
�yy ¼ s2

y=n ¼ 152=5 ¼ 45. Thus

P( �yy . 108) ¼ P(z . 0:45) ¼ 0:326

because

z ¼ �yy� m�yy

s�yy
¼ �yy� my

sy=
ffiffiffi
n

p ¼ 108� 105ffiffiffiffiffi
45

p ¼ 0:45

The psychologist concludes that the probability is 0.326 that the average scores of her 5

subjects will be above 108.

†It is sufficient that the distribution have a finite variance.
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EXERCISES

7.3.1. If the basal metabolism rate for people with properly functioning thyroid glands can be

modeled by a normal distribution with mean 40 calories per square meter per hour and

a standard deviation of 4, find:

a. The probability that a healthy person chosen at random will have a rate less than 35

b. The probability that 5 healthy persons chosen at randomwill all have a rate less than

35

c. The probability that the average rate of 5 healthy persons chosen at random is less

than 35

7.3.2. A certain aptitude test for job trainees follows a normal distribution with a mean of 80

and a standard deviation of 16.

a. What is the probability that a random sample of 4 trainees will all have scores above

88?

b. What is the probability that the average score for a random sample of 4 trainees will

be above 88?

7.4. INFERENCES ABOUT A POPULATION MEAN AND VARIANCE

Although it is sometimes necessary to make decisions on the basis of a single observation (as

in Section 7.2), in general this is not the preferred procedure. Larger samples yield more

information on which to base decisions. If we are interested in making a decision about m or

an estimate of m, then using �yywith n . 1 instead of a single observation has the advantage that

�yy is less variable than y. A smaller variance increases the probability of obtaining a sample

value close to the true population mean. Another advantage of using averages of samples is

that, even if the original population does not have a normal distribution, the sampling

distribution of averages for large n is approximately normal (central limit theorem).

Tests of hypotheses based on averages are analogous to the procedure for an individual

observation. For a single observation, the standardization procedure is

z ¼ y� m

s

For averages of samples of size n, the standardization procedure is

z ¼ �yy� m

s=
ffiffiffi
n

p

because the mean of the sampling distribution of averages is the same as the original mean and

the standard deviation of the sampling distribution is s=
ffiffiffi
n

p
. (This denominator is sometimes

called the standard error. “Error” in this context implies, not a mistake, but variability due to

sampling.)

Example 7.4. Using the Standard Normal Distribution to Test a Hypothesis about m

An aneurysm is a weakness in an artery that causes it to balloon and possibly burst. If it is in

the blood vessel receiving blood as it is pumped out of the heart (called a TAA for thoracic

aortic aneurysm), it is almost always life threatening. Corrective surgery is possible, but it too
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is risky, so rather than chance an unneeded operation, surgeons prefer to wait until there is

evidence that the aorta is in danger of bursting. Fortunately the size of the aneurysm provides a

good indication of its danger of bursting. So, to gain useful information, thoracic surgeons at a

medical center conduct a study on the sizes of aneurysms at first diagnosis. Suppose they

obtain the following TAA information on 30 patients randomly sampled from a nationwide

database:

cm mm

7 0 2 5

6 2 5 6 8

5 1 4 5 5 5 6 8 9

4 0 1 2 3 5 6 7 8 9

3 0 6 6 8 9

2 9

The aneurysm sizes are presented in a stem-and-leaf plot, a useful graphic summary

of the measures which retains all values as well as shows something about how they are

distributed. The first column shows the first digit of a measurement and the second

column gives the rest of the measurement. So the first row of data represents three

patients with aneurysms 7 cm or greater in diameter. The values of these measures are

7.0, 7.2, and 7.5 cm, respectively. The usual terminology for a stem-and-leaf plot is to

call the entry in the first column the stem, or node, and those in the second column the

leaves.

The plot shows that the distribution of measures is unimodal, with more data located on the

4.0- and 5.0-cm stems than on any others. It is also somewhat symmetric, but it’s best to say

only that it resembles a normal distribution. Still, by taking advantage of the central limit

theorem, the standard normal distribution can be used to make statistical inference about the

mean size of TAA at first diagnosis.

Suppose the standard text on thoracic surgery reports median TAA as 4.7 cm and the

surgeons want to test whether that is the mean value of the population from which their sample

is drawn. So they would like to testH0: m ¼ 4.7 against the alternativeHa: m = 4.7. They will

compute a z value as their test statistic, and for a test at the 5% level of significance, they will

reject H0 if jzj � z0.025 ¼ 1.96. But before they can compute z they must obtain the sample

average

�yy ¼
X

y

n
¼ 153:0

30
¼ 5:1

and because the population variance is unknown, it is estimated (ŝs2) by the sample variance,

ŝs2 ¼ s2 ¼
X

y2 �
X

y
� �2

n

n� 1
¼ 825:78� (153:0)2=30

29
¼ 1:568
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Once they have these two sample statistics, they can make the test of hypothesis:

z ¼ �yy� m0

ŝs=
ffiffiffi
n

p ¼ 5:1� 4:7

1:25=
ffiffiffiffiffi
30

p ¼ 1:12

Since 1.12 , 1.96, the sample average does not deviate significantly from the hypothesized

mean. The surgeons do not reject the null hypothesis and conclude that the mean TAA at first

diagnosis could indeed be 4.7 cm.

Confidence intervals on m can also be determined from samples with n . 1.

Example 7.5. Using the Standard Normal Distribution to Find a Confidence

Interval on m

Assume that a researcher at an agricultural experiment station knows that the variance in

butterfat production for Holstein-Friesian dairy cattle is s2 ¼ 6400 (lb/year)2. He treats a

group of dairy cattle by adding inorganic nitrate to their diet because he knows the bacteria in

cows’ rumens can metabolize inorganic nitrogen and thereby possibly reduce the cost of

having to feed cattle more expensive sources of nitrogen. However, not knowing what effect it

may have on production, he wants to know the mean butterfat production for this treatment

group, that is, the value of m. He would perform a test of hypothesis to get some information

about m, the mean for the treatment group. If the null and alternative hypotheses are

H0:m ¼ m0

Ha:m = m0

and a ¼ 0.05, he would use the formula

z ¼ �yy� m0

s=
ffiffiffi
n

p

He would not reject the null hypothesis if

�1:96 � �yy� m0

s=
ffiffiffi
n

p � 1:96y

or, the equivalent, if

�yy� 1:96
sffiffiffi
n

p � m0 � �yyþ 1:96
sffiffiffi
n

p

Thus the 95% confidence interval on m is

CI0:95: �yy+ 1:96
sffiffiffi
n

p

†Strictly speaking, we do not reject the null hypothesis if �1:96 , z , 1:96. Since this is a continuous distribution,

however, Pðz ¼ 1:96Þ ¼ 0 and the two types of inequalities are equivalent.
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and if �yy ¼ 465 and n ¼ 25, then

CI0:95: 465� 1:96
80

5

� �
� m � 465þ 1:96

80

5

� �

433:64 � m � 496:36

for the treatment group.

If the population variance s2 is unknown (as is commonly the case), it can be estimated by

the sample variance

s2 ¼
X

( y� �yy)2

n� 1
¼

X
y2 �

X
y

� �2
n

n� 1

If the sample size is large (n � 30), s 2 can be used in place of s2 in inferences concerning m.

Procedure. Inferences about a Population Mean

Assumptions: 1. n , 30, population normal, and s known, or

2. n � 30

Confidence Intervals

CI1�a: �yy� za=2
sffiffiffi
n

p � m � �yyþ za=2
sffiffiffi
n

p

if s is known. If s is unknown and n � 30, estimate s by s.

Test of Hypothesis

H0: m ¼ m0

Ha: m = m0 or m . m0 or m , m0

Significance level: a
Test statistic:

z ¼ �yy� m0

s=
ffiffiffi
n

p

if s is known. If s is unknown and n � 30, estimate s by s.

Region of rejection: jzj � za/2 or z � za or z � 2 za, respectively.

Sometimes the parameter of interest is not the population mean, but rather the population

variance. Several examples follow. A teacher is interested in the variability of the grades for a

class; a large variance may indicate that although the class as a whole is performing well some

individuals may not be performing at an acceptable level. During the manufacturing of drugs,

the variance of the potency is of concern and also the variance of the purity level. During the

machine filling of boxes or bottles with a product, the variance of the quantity put into the

container is of concern. Variability of sentence length has been used to establish authorship.

These are only some of the areas in which the investigator needs information about the

variance.
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It is possible to test hypotheses and determine confidence intervals for a population

variance if the population is normal. These procedures make use of the fact that

X
( y� �yy)2

s2
¼ (n� 1)s2

s2

is distributed as a chi-square distribution with n 2 1 degrees of freedom if y is normally

distributed.

Example 7.6. Inference about the Variance of a Normal Population

In a certain city, the mean electric consumption for residence is 7.2 thousand kWh with a

variance of 2.25 thousand kWh2. Differences in home consumption are due to the energy

efficiency of the house and the life-style of the occupants.

In a sample of 101 homes from an area in which all of the residences are of equal size and

equal energy efficiency, the sample variance is 1.21 thousand kWh2. Does this indicate that

uniform energy-efficient homes significantly lower the variance of electric consumption?

The null and alternative hypotheses are

H0:s
2 ¼ 2:25 Ha:s

2 , 2:25

The test statistic is

x2 ¼ (n� 1)s2

s2
0

with n 2 1 ¼ 100 degrees of freedom. At a ¼ 0.05 the region of rejection is

x2 � x20:95,100 ¼ 77:929

The value of the test statistic is

x2 ¼ 100(1:21)

2:25
¼ 53:778

Thus the null hypothesis is rejected and there is evidence that uniform housing significantly

reduces the variability of electric consumption. This result suggests that a program to

encourage persons to make their homes more energy efficient might be worthwhile.

If desired, a central confidence interval can be determined for s2 for the population of

uniform residences of the type sampled:

CI0:95:
(n� 1)s2

x20:025,n�1

� s2 � (n� 1)s2

x20:975,n�1

100(1:21)

129:561
� s2 � 100(1:21)

74:222

0:93 � s2 � 1:63

The inferences relative to the variance of a normal population can be summarized as

follows.
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Procedure. Inferences about a Population Variance

Assumption: Normality

Confidence Intervals

CI1�a:
(n� 1)s2

x2a=2,n�1

� s2 � (n� 1)s2

x21�a=2,n�1

Test of Hypothesis

H0:s
2 ¼ s2

0

Ha:s
2 = s2

0, or s
2 . s2

0 or s
2 , s2

0

Significance level: a
Test statistic:

x2 ¼ (n� 1)s2

s2
0

Region of rejection: x2 � x21�a=2,n�1 or x2 � x2a=2,n�1, or x2 � x2a,n�1, or x2 � x21�a,n�1,

respectively.

EXERCISES

7.4.1. On an IQ test which is distributed as N(100, 225), the average IQ score for a certain

second grade in a private school in Victoria, Texas, is �yy ¼ 106. If a ¼ 0.05, how often

might a deviation this large or larger occur by chance in a random sample of 25?

7.4.2. A certain intelligence test has an N(100, 100) distribution. To see whether intelligence

is inherited, tests are given to the eldest child of each of a random sample of 16

acclaimed scholars. The average score of the children is 105.

a. Give the null hypothesis to be tested.

b. Give the alternative hypothesis.

c. Perform the test.

d. How likely is it that data like these represent a sample from a population in which

the null hypothesis is true?

7.4.3. A synthetic female hormone (DES) has been used to fatten livestock. If this substance

appears in the meat, it affects the sexual maturity of young animals eating the meat.

Biological assays can be used to test for the presence of DES in meat. Young female

rats are fed the suspected meat, and if they mature earlier than expected, it is probably

because of DES in the meat. Suppose for a given strain of rat that time until sexual

maturity in the females follows an essentially normal distribution with a mean of 90

days and a variance of 144.

a. What is the probability that a randomly selected female rat will reach sexual

maturity before 90 days? Before 86 days?

b. What is the probability that the average time until sexual maturity of nine female

rats will be less than 90 days? Less than 86 days?

c. A random sample of nine female rats is fed a diet including meat suspected of

containing DES.

i. What are the most logical null and alternative hypotheses?
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ii. If a ¼ 0.05, which values of the sample average will lead to the rejection of the

null hypothesis?

iii. Suppose for female rats on a diet containing DES sexual maturity follows an

N(86, 144) distribution; what is the probability of making a Type II error?

7.4.4. A coal research scientist has discovered that West Virginia coal contains an ore rich

in aluminum. Although it is present in coal only as a trace mineral, it may be

economically practical to recover the ore from the ash left when coal is burned in

large boilers of power plants. To estimate the quantity of the ore in coal, the

scientist takes a random sample consisting of 100 observations and computes the

following: X
y ¼ 8400 ppm

X
y

� �2
¼ 70,560,000 ppm2

X
y2 ¼ 715,500 ppm2

a. What is the best estimate of the mean content of aluminum ore inWest Virginia coal?

b. Show that the sample standard deviation is 10 ppm.

c. A coal economist calculates that the recovery of the ore will be profitable if it is

present to an extent greater than 82.3 ppm in the coal burned in the boilers. On the

basis of these data, would you recommend attempting to recover the ore?

7.4.5. The following stem-and-leaf plot gives the weight in kilograms of 30 stalks of an

experimental variety of plantain fruit that has been genetically altered to contain a

greater level of protein:

kg kg/10

9 8

8 2 4 6

7 3 5 7 8

6 0 1 3 7 8

5 1 2 3 4 7 8 8

4 1 2 4 6 7

3 0 1 3 5 7

a. Compute s 2.

b. Find a 95% confidence interval for s2.

c. Perform a test of hypothesis at the 5% level of significance to determine whether or

not this sample came from a population that has a variance of 3.0.

d. Find a 95% confidence interval for m using s 2 to approximate s2.

7.4.6. Many organic phosphorous compounds are effective insecticides, but they are also

chemically stable and likely to get into the human food chain. They have even been

detected in the digestive tracts of recently born infants, but it is not known to what

extent this is via mother’s milk and to what extent these compounds pass through the
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placental membrane prior to birth. To get answers to these questions, a medical

research team draws samples of amniotic fluid from the wombs of 64 pregnant women

and performs chemical analyses for a certain organic phosphorous insecticide. The

following data are obtained:

X
y ¼ 320:00 ppm

X
y2 ¼ 1761:28 ppm2

a. Estimate the mean ppm of the compound found in amniotic fluid.

b. Show that the sample variance is 2.56 ppm2.

c. Place a 95% confidence interval on the mean.

d. Place a 95% confidence interval on the variance.

7.4.7. It can be illustrated that s2 ¼
X

( y� �yy)2=(n� 1) is an unbiased estimator of s2 by the

following special case. Let the population be an equally likely distribution of 1, 2, 3,

4. This population was discussed in Section 6.3.

a. List all possible samples (with replacement) of size 2.

b. Compute the sample variance of each sample.

c. Find the relative frequency of each different sample variance found in part b.

d. Find E(s 2) and show that E(s 2) ¼ s2.

7.5. USING A NORMAL DISTRIBUTION TO APPROXIMATE OTHER

DISTRIBUTIONS

A normal distribution can sometimes be used to approximate the probabilities associated with

response variables that follow a binomial or a Poisson distribution.

In the case of a binomial distribution, the central limit theorem implies that if n is fairly

large (n � 25) and p is fairly close to 0.5 (0.2 � p � 0.8), then the binomial random variable

y can be transformed into a random variable that is distributed approximately as the standard

normal random variable

z ffi y� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1� p)

p

Note that np ¼ m is the mean of the binomial distribution and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1� p)

p
is the standard

deviation.

Example 7.7. Using a Normal Distribution to Approximate Probabilities for a

Binomial Random Variable

A sociologist studying families headed by a single parent would like to know the probability

of finding 40 or more such families in a random sample of 100 families if 30% of families are

of this type.
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Since E(y) ¼ np ¼ 100(0.30) ¼ 30 and V(y) ¼ np(1 2 p) ¼ 100(0.30)(0.70) ¼ 21, then

P( y � 40) ffi P z � 40� 30ffiffiffiffiffi
21

p
� �

¼ P(z � 2:18)

¼ 0:015

Thus, if the sociologist needs at least 40 cases for a study, a sample of 100 families will

probably not be sufficient.

Since the binomial distribution is discrete and the normal distribution is continuous, the

approximation will be poor in the case of small sample sizes. To compensate for this, a

continuity correction of 0.5 is often made. If we represent the binomial probabilities by bars of

unit width so that the area of the bar centered over y is the probability of y and we represent the

normal distribution by a smooth curve, we can see (Figure 7.7) that using 40 as the cutoff point

in the above example does not take into consideration half of the bar below 40. Thus, instead

of finding P(y � 40), we should find P(y � 39.5). The sociologist above would then find

P( y � 39:5) ffi P z � 39:5� 30ffiffiffiffiffi
21

p
� �

¼ P(z � 2:07)

¼ 0:019

The additional accuracy may be important in some experiments.

A test of hypothesis can also be done about the binomial parameter, making use of the fact

that ( y� np)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1� p)

p
is approximately standard normal. This procedure is especially

helpful for large sample sizes since exact binomial tables may not be available.

Example 7.8. Using a Normal Distribution to Test a Hypothesis About p

Most people have a dominant eye which looks directly ahead while the other eye adjusts to it

in order to bring a viewed object into focus. A reading specialist wants to determine whether

there is any tendency for one eye to be dominant in children with a certain reading problem.

She takes a random sample of 225 children with the reading problem and determines the

dominant eye for each of them. Suppose she finds that for 144 of the children the right eye is

FIGURE 7.7. Approximating a binomial distribution by a normal distribution.
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dominant. The null and alternative hypotheses are

H0:p ¼ 0:5 and Ha:p = 0:5

The test statistic is

z ffi y� np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0(1� p0)

p

¼ 144� 225(0:5)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
225(0:5)(0:5)

p

¼ 4:2

At a ¼ 0.05, she will reject the null hypothesis if jzj � 1.96. Since j4.2j . 1.96, she rejects

the null hypothesis and concludes that more than half the children with this reading problem

have a dominant right eye.

If the specialist in the above example would like to find a confidence interval for p, she
could make use of the fact that

z ffi y� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1� p)

p ¼ y=n� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)

n

r

and that y/n is the best point estimate of p. Analogous to confidence intervals on m, the
confidence interval on p would be

CI1�a: y=n+ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)

n

r

However, since p is unknown, it must be estimated in the standard error by y/n, giving

CI1�a: y=n+ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( y=n)(1� y=n)

n

r

In the sample, since y ¼ 144, she would find

CI0:95:
144

225
+ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(144=225)(1� 144=225)

225

r

0:640+ 1:96(0:0320)

0:640+ 0:0627

0:577 � p � 0:703
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If desired, the statistic

z ffi y=n� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0(1� p0)

n

r

can be used for tests of hypothesis. This is equivalent to the method illustrated in the example.

Procedure. Normal Approximation of a Binomial Distribution

Assumptions: n � 25 and 0.2 � p � 0.8

Confidence Intervals

CI1�a: y=n� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( y=n)(1� y=n)

n

r
� p � y=nþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( y=n)(1� y=n)

n

r

Tests of Hypotheses

H0: p ¼ p0

Ha: p = p0 or p . p0 or p , p0

Significance level: a
Test statistic:

z ffi y� np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0(1� p0)

p ¼ y=n� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0(1� p0)=n

p

Region of rejection: jzj � za/2 or z � za or z � 2 za, respectively.

The normal distribution can also be used to approximate probabilities related to variables

that follow a Poisson distribution. This approximation arises from the central limit theorem. If

y is a Poisson random variable and l is large, y can be transformed into a random variable that

is distributed approximately as the standard normal random variable

z ffi y� lffiffiffi
l

p

Note that l is the mean and
ffiffiffi
l

p
the standard deviation of the Poisson distribution.

Example 7.9. Using a Normal Distribution to Approximate Probabilities for a Poisson

Random Variable

A traffic control specialist wants to know the probability that more than 30 vehicles will pass a

given intersection in a 3-minute period at 3:00 PM if the expected number of vehicles to pass

that intersection in 3 minutes at that time is 25:

P( y . 30) ffi P z .
30:5� 25ffiffiffiffiffi

25
p

� �

¼ P(z . 1:1)

¼ 0:136
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This computation is much simpler than working with the exact Poisson distribution. Note that

a continuity correction is used because the discrete Poisson distribution is being approximated

by the continuous normal distribution.

Tests of hypotheses about l can also be done with a z statistic using the fact that

( y� l)=
ffiffiffi
l

p
is approximately standard normal for large l.

Procedure. Normal Approximation of a Poisson Distribution

Test of Hypothesis

H0: l ¼ l0
Ha: l = l0 or l . l0 or l , l0
Significance level: a
Test statistic:

z ¼ y� l0ffiffiffiffiffi
l0

p

Region of rejection: jzj � za/2 or z � za or z � 2 za, respectively.

When two populations have proportions p1 and p2 with corresponding odds v1 and v2, a

useful alternative to comparing the difference in proportions (p2 2 p1) is the odds ratio f:

f ¼ v2

v1

¼ p2=(1� p2)

p1=(1� p1)

We can estimate the odds from randomly sampled data summarized in a 2 � 2 contingency

tables of the form

Response variable

Explanatory variable Yes No Sample sizes

Yes o11 o12 n1

No o21 o22 n2

The estimated odds ratio is

f̂f ¼ v̂v2

v̂v1

¼ p̂p2=(1� p̂p2)

p̂p1=(1� p̂p1)
¼ o11=o12

o21=o22
¼ (o11)(o22)

(o21)(o12)

The estimated odds ratio is not normally distributed; however, the sampling distribution of the

natural log of the estimated odds ratio is approximately normally distributed if the sample

sizes n1 and n2 are large. The mean and variance of the natural log† of the estimated odds ratio

†The natural log (loge) has e as its base rather than the more common log (log10) which has 10 as its base. The

relationship is loge(y) ¼ 2.3026 log10(y). Table A.17 provides values of log10(y).
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are

E( loge f̂f) ¼ loge f

V( loge f̂f) ¼
1

n1p1(1� p1)
þ 1

n2p2(1� p2)

The variance of the distribution of the log odds ratio depends on p1 and p2, which are

unknown. For confidence intervals, the proportions p1 and p2 will be replaced by their

individual sample estimates, and the standard error of estimate is

s.e.( loge f̂f) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n1p̂p1(1� p̂p1)
þ 1

n2p̂p2(1� p̂p2)

r

For testing hypothesis about the equality of the odds in two populations, each proportion will

be replaced by the estimate of the common proportion

p̂pc ¼ o11 þ o21

n1 þ n2

and the standard error of estimate is

s.e.( loge f̂f) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n1p̂pc(1� p̂pc)
þ 1

n2p̂pc(1� p̂pc)

r

We will perform statistical inference for the log odds ratio by using a normal approximation

and then restate the results for the odds ratio.

Example 7.10. Using the Normal Distribution for Inference about an Odds Ratio

The results of Dr. Jonas Salk’s experiment of his polio vaccine were as follows:

Proportion with

Paralytic Polio Number in Study

Inoculated group 0.00016 200,745

Control group 0.00057 201,229

To test the hypothesis that the odds ratio for Dr. Salk’s vaccine is greater than 1:

H0: loge f ¼ 0 i.e.;f ¼ 1

Ha: loge f . 0 i.e.;f . 1

The test statistic is

z ¼ loge f̂fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=n1p̂pc(1� p̂pc))þ (1=n2p̂pc(1� p̂pc))

p ¼ 1:27

0:164
¼ 7:74
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where

f̂f ¼ p̂p2=(1� p̂p2)

p̂p1=(1� p̂p1)
¼ 0:00057=(1� 0:00057)

0:00016=(1� 0:00016)
¼ 3:56

loge f̂f ¼ loge 3:56 ¼ 2:3026 log10 (3:56) ¼ 2:3026(0:5514) ¼ 1:27

p̂pc ¼ o11 þ o12

n1 þ n2
¼ 32þ 115

200,745þ 201,229
¼ 0:00037

s.e.( loge f̂f) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n1p̂pc(1� p̂pc)
þ 1

n2p̂pc(1� p̂pc)

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

74:4
þ 1

74:2

r
¼ 0:164

z ¼ 1:27

0:164
¼ 7:74

With a ¼ 0.05, we will reject the null hypothesis if z . 1.645. Since z . 1.645, we reject the

null hypothesis and conclude that the odds of paralytic polio is greater for the control group

than for the inoculated group.

In Dr. Salk’s experiment the odds for members of the unvaccinated group was f̂f ¼ 3:56
times greater than those for those receiving the vaccine. However, this is a point estimate, and

for inference an interval estimate is preferred. The formula for a confidence interval for the log

odds ratio is

CI1�a: loge f̂f+ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1p̂p1(1� p̂p1)
þ 1

n2p̂p2(1� p̂p2)

r

and the formula for a confidence interval for the odds ratio is

CI1�a: f̂f+ e
za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1p̂p1(1� p̂p1)
þ 1

n2p̂p2(1� p̂p2)

q

For Dr. Salk’s data the 95% confidence interval is

3:56+ e
1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

32:1 þ 1
114:6

q
¼ 3:56+ 1:48

2:08 � f � 5:04

With 95% confidence it could be concluded that people who have not been vaccinated are 2.08

to 5.04 times more likely to contract paralytic polio than are those who received the vaccine.

Procedure. Normal Approximation for the Log Odds Ratio

Confidence Intervals:

CI1�a: f̂f+ e
za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1p̂p1(1�p̂p1)
þ 1

n2p̂p2(1�p̂p2

q
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Test of Hypotheses

H0: f ¼ 1

Ha: f . 1

Significance level: a
Test statistic:

z ¼ loge f̂fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1p̂pc(1� p̂pc)
þ 1

n2p̂pc(1� p̂pc)

r

where

f̂f ¼ p̂p2=(1� p̂p2)

p̂p1=(1� p̂p1)
and p̂pc ¼ o11 þ o12

n1 þ n2

Region of rejection: z . za

EXERCISES

7.5.1. A physical education professor claims that 35% of third-grade children can do a

handstand. If this claim is true:

a. Find the probability that 10 or more third-grade children out of a random sample

of 25 can do a handstand.

i. Use the exact binomial distribution.

ii. Use the normal distribution without a continuity correction.

iii. Use the normal distribution with a continuity correction.

b. Find the probability that 40 or more third-grade children out of a random sample

of 100 can do a handstand.

i. Use the normal distribution without a continuity correction.

ii. Use the normal distribution with a continuity correction.

c. Based on the results of parts a and b, is the correction for continuity more

important in large or in small samples?

7.5.2. A customer relations bureau located in a large eastern city claimed that 80% of the

complaints registered with it were settled to the satisfaction of the customers. The

local newspaper, doubting whether the percentage was really that large, takes a

random sample of 40 complainants and asks them whether they had received

satisfaction. Only 12 indicate that they had. Use the normal approximation to make a

test of significance at a ¼ 0.01.

7.5.3. In a certain Midwestern community, 25% of the population consists of third-

generation descendants of one Finnish immigrant family. Within the community there

is a remittent nervous disorder that may be transmitted genetically. There are 75 cases

of the disorder on which to base studies.

a. If the disorder is not genetic or in any way associated with ethnic origin, what

percentage of those with the disorder are likely to be third-generation descendants

of that family?
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b. What are the most logical null and alternative hypotheses to test whether the

disorder is genetically controlled?

c. If 28 of the 75 cases are third-generation descendants of the Finnish family, carry

out the test at the 0.05 level of significance.

7.5.4. A random sample of 100 high-school dropouts in Pittsburgh aged 17 to 19 revealed

that 20% of them were unemployed.

a. Place a 95% confidence interval on the percentage of all similar people in that area

who are unemployed.

b. The average unemployment rate for the entire work force in Pittsburgh is 7.0%. Is

the unemployment rate among high-school dropouts significantly higher than for

the entire work force? Justify your answer.

7.5.5. Many people claim they can distinguish the difference in taste between fish that has

been frozen and fish that is prepared fresh. In an experiment, a random sample of 100

consumers is presented with two portions of cooked fish, one of each kind. Of these

consumers, 64 can correctly distinguish between the fresh and the frozen fish.

a. Use a point estimate to estimate the proportion of people in the population who

can make this distinction.

b. The answer to part a is an estimate and thus subject to variability. What is the

estimated variance of this estimate?

c. Use the normal approximation to the binomial distribution in order to place a 95%

confidence interval on the proportion.

d. Is there statistically significant evidence that some people can distinguish fresh

fish and are not just guessing? Explain.

7.5.6. The theory of radioactive decay predicts that a certain material is expected to emit 40

radioactive particles in 10 msec.

a. What is the probability that at least 35 particles will be emitted in 10 msec?

b. What is the probability that between 30 and 35 particles (inclusive) will be

emitted?

7.5.7. A nuclear physicist suspects that a counter is missing some radioactive particles

because it has a certain “dead” period as it counts; that is, if two particles are emitted

very close together, the counter misses the second one. Assume that the theory

correctly states that the expected number of radioactive particles emitted in 10 msec

from a certain material is 40. If a counter counts 26 particles in 10 msec, does the

physicist have evidence that the counter is giving undercounts?

7.5.8. A serum thought to be effective in preventing colds is given to 300 persons. Their

records for one year are compared with those of 200 untreated persons with the

following results:

No Colds Colds

Treated 145 155

Untreated 80 120

Construct a 95% confidence interval for the odds ratio for colds in the untreated group

compared to the treated group.

7.5.9. It is reported that offspring of users of a certain recreational drug may have a higher

incidence of birth defects than the general population. To obtain information about a
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possible relationship between this drug and birth defects, 100 offspring of female rats

fed the drug and 100 offspring from untreated female rats are examined. The results

are given below:

Progeny

Females Birth Defects Normal

Treated 30 70

Untreated 20 80

Using a 0.05 level of significance, is there statistical evidence to support the

experimental hypothesis that the odds ratio for birth defects in the treated group

compared to the untreated group is greater than 1?

7.5.10. In Exercise 7.1.8, the proportion of scores on a mathematics examination that are high

enough to achieve prestigious recognition is p ¼ 0.067, but 24 of 140 politicians

claim they received such scores. What is the probability of so many of them in a

random sample of 140 people?

7.6. NONPARAMETRIC STATISTICS: A TEST BASED ON RANKS

There are situations in which data are not normally distributed but the mean and variance of

the distribution are known. An especially useful distribution of this sort is the distribution of

the N consecutive ranks from 1 to N. This is a discrete uniform distribution with m ¼ (N þ 1)/
2 and s2 ¼ (N 2 2 1)/12. (The denominator 12 is a constant which arises in the computation

of s2 and is not related to the number of ranks involved.)

If we are concerned about the average rank �rr in a random sample without replacement of n

of the N consecutive ranks, the expected value and variance of the average rank in the sample

will be

E(�rr) ¼ m ¼ N þ 1

2

and

V(�rr) ¼ s2

n
¼ (N � n)(N þ 1)

12n

With this knowledge and a sample sufficiently large for the central limit theorem, we can

compute the probability of obtaining a given average rank in a random sample from N

consecutive ranks with

z ¼ �rr � (N þ 1)=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N � n)(N þ 1)=12n

p

Example 7.11. Applying the Central Limit Theorem to Rank Data

There is strong consumer preference for clear fruit juices, so food chemists often evaluate

different methods of clarifying the juices and nectars of fruits. Suppose a chemist is
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comparing the effectiveness of filtration with and without prior enzyme treatment. He takes a

large volume of apple juice as it comes through the company’s presses, divides it into

subsamples, and applies the methods of clarification using 20 vials of juice per method.

When he attempts to obtain quantitative measures of the optical density (or clarity), he

discovers that his optical density reader is producing faulty results and requires repair. The

experiment will need to be repeated, but to salvage whatever results possible, he holds each

vial of juice to the light and discovers that he can satisfactorily rank the 40 vials from clearest

to cloudiest. Ranks 1 through 40 are assigned to the vials according to their clarity and the data

below are obtained:

Treatment Rank Average

Enzyme 1 3 5 6 7 8 9 10 13 14

15 16 19 21 22 28 29 31 32 36 16.25

Control 2 4 11 12 17 18 20 23 24 25

26 27 30 33 34 35 37 38 39 40 24.75

It appears that the vials containing juice without enzyme treatment have greater ranks (greater

cloudiness) than the other, but a statistical test is still desired for the probability statement it

provides.

Under the null hypothesis, the vials of juice treated with enzyme are simply a random

sample of 20 of the ranks from 1 through 40, and hence the expected average rank is

E(�rr) ¼ N þ 1

2

¼ 40þ 1

2

¼ 20:5

and it can be shown that the variance is

V(�rr) ¼ (N � n)(N þ 1)

12n

¼ 20(40þ 1)

12(20)

¼ 3:42

If the conditions for the central limit theorem hold, the hypothesis

H0:E(�rr) ¼ 20:5

versus

Ha:E(�rr) = 20:5
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can be tested using the normal variate z as the test statistic,

z ¼ �rr � E(�rr)ffiffiffiffiffiffiffiffiffi
V(�rr)

p ¼ 16:25� 20:5ffiffiffiffiffiffiffiffiffi
3:42

p

¼ � 4:25

1:85

¼ �2:30

The P value ¼ P(jzj . 2.30) ¼ 2(0.011) ¼ 0.022 is less than the conventional a ¼ 0.05;

hence the null hypothesis can be rejected, and it can be concluded that apple juice which is not

treated with the enzyme prior to filtration has a significantly greater rank for cloudiness than

does that which receives the enzyme treatment.

The example above is a variation of the Mann–Whitney–Wilcoxon test, and the procedure

is the basis of the group of nonparametric procedures known as rank tests. Even when data are

recorded on the continuous numerical scale, they can be transformed by replacing them with

their ranks and a hypothesis tested about average rank. It is generally advised that at least one

of the samples be 20 or larger before the central limit theorem applies. For both samples less

than 20, it has been suggested that the continuity correction be used,

z ¼ �rr � 1=2� E(�rr)ffiffiffiffiffiffiffiffiffi
V(�rr)

p

Also, there are tables for the exact distribution of a related statistic when both samples are

less than 20 [see Conover (1998) or Daniel (1990)].

Procedure. Rank Test for Sample of n of Integers 1 to N

H0: E(�rr) ¼ (N þ 1)=2 (This is a random sample of n of the integers 1 to N.)

Ha: E(�rr) = (N þ 1)=2 (The ranks in the sample tend to be lower or higher than a random

sample.)

Significance level: a
Test statistic:

z ¼ �rr � (N þ 1)=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N � n)(N þ 1)=12n

p

Region of rejection: jzj � za/2 or z � za or z � 2 za, respectively.

EXERCISES

7.6.1. The consecutive ranks from 1 to N ¼ 50 are randomly sampled.

a. What is the numerical value of E(�rr) when n ¼ 10, 20, 30, 40, respectively?

b. What is the numerical value of V(�rr) when n ¼ 10, 20, 30, 40, respectively?
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7.6.2. Odor is used in the identification of certain organic chemical compounds, and because

women are thought to have a keener sense of smell than men, they may have a natural

advantage in being able to identify these chemicals. To test this, all of the organic

chemistry graduate students in a large department are given the same dilution of an

aromatic organic compound to smell. They are asked to tell their professor the name of

the compound as soon as they think they have identified the odor. The order in which

female (F) and male (M) students correctly identified the compound is given below,

from first to last:

(First) F F M F F F M F M M

M M M M M M F F F F

M M M M M M M M M M (Last)

a. What is the highest scale of measurement available here: nominal, ordinal, or

numerical?

b. If there is no difference between men and women with respect to keenness of smell,

what is the expected average rank of the 10 women in the study?

c. What is the variance of a random sample of 10 of the consecutive integers from 1

through 30?

d. What null and alternative hypotheses would be appropriate?

e. Using a ¼ 0.05, make the test of significance and draw conclusions.

7.6.3. Given below are particulate data from samples of the flumes of two coal-burning

generators. The two are adjacent, using coal from the same mine, and otherwise

identical, except that a scrubber has been installed on one in an effort to reduce

particulate emission.

With Scrubber Without Scrubber

0.40 0.50 0.65 1.41 1.87 2.10 3.55 3.57 3.82 3.94

2.32 2.45 2.46 2.73 4.27 4.32 4.53 4.65 4.70 4.73

3.19 3.20 4.75 4.77 5.06 6.33 6.51 7.09 7.57 9.63

Rank the data and make a 0.05 test of the effectiveness of the scrubber in reducing

particulate level.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain

why.

7.1. Neither of the parameters of a normal distribution can be negative.

7.2. All bell-shaped distributions are normal distributions.

7.3. In a normal distribution, if m has a large numerical value, then s2 will also tend to be

large.

7.4. In a normal distribution, about 95% of the values lie within 22 to þ2.
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7.5. If the variance of a population that follows a normal distribution is known, then, if

necessary, a test of hypothesis concerning the mean can be performed from a sample of

size n ¼ 1.

7.6. If possible, samples of size larger than 1 should be used for purposes of inference.

7.7. According to the central limit theorem, if n is large, the sampling distribution of

averages is closely approximated by a normal distribution.

7.8. The central limit theorem can only be applied to symmetrical distributions.

7.9. A test of hypothesis involving the z statistic is frequently used because most

experimental populations follow normal distributions with known variances.

7.10. If a population has variance s2 ¼ 12, then the variance among the averages of all

samples of size 3 drawn at randomwith replacement from the population will be s2
�yy ¼ 4.

7.11. For a test of hypothesis using a z statistic, the region of rejection is uniquely determined

by the alternative hypothesis and the sample size.

7.12. The danger in misusing a one-tailed test when a two-tailed test should be used is that it

makes a larger than for the proper test.

7.13. The danger in misusing a two-tailed test when a one-tailed test should be used is that it

makes b larger than for the proper test.

7.14. Other things being equal, in a test of hypothesis, the larger the sample size, the smaller

the a level.

7.15. Other things being equal, in a confidence interval, the larger the sample size, the

narrower the interval.

7.16. If a population distributed as N(m, s2) is randomly sampled and (�yy� m)=(s=
ffiffiffi
n

p
) is used

to compute a z statistic, the probabilities will be reliable only if n is large.

7.17. If the 1 2 a central confidence interval on m does not contain the value of m in the null

hypothesis, then a two-tailed test would lead to rejection of the null hypothesis at the a
level of significance.

7.18. If the variance of a normal distribution is unknown and is estimated by s 2, then two

separate random samples of the same size could produce two confidence intervals of

different widths.

7.19. Hypotheses about the binomial parameter p tested by the exact binomial distribution

and by the normal approximation give exactly the same probabilities.

7.20. When n is large and p is near 0.5, the binomial distribution is approximately a normal

distribution.
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8 Student’s t Distribution

In most experimental situations, the population variance is unknown. In Chapter 7 we noted

that if a population variance is unknown and the sample size is 30 or more, the population

variance can be estimated by the sample variance and then the standard normal distribution

can be used for inference. If the sample size is below 30, this procedure will not give reliable

probabilities. We discuss the appropriate procedure for such situations in this chapter.

8.1. THE NATURE OF t DISTRIBUTIONS

At the beginning of the twentieth century, William Sealy Gosset (1896 to 1937) was an

employee of the Guinness brewery in Dublin, where he interpreted data and planned barley

experiments. In 1906 and 1907 he was sent to University College, London, to study statistics

with Karl Pearson. In 1908 he published a paper in which he noted that if random samples of

size less than 30 are taken from a normal distribution and the samples used to estimate the

variance, then the statistic

�yy� m

s=
ffiffiffi
n

p

is not normally distributed. The probabilities in the tails of this distribution are greater than for

the standard normal distribution (Figure 8.1).

This is reasonable since

z ¼ �yy� m

s=
ffiffiffi
n

p

contains only one random variable �yy, while

�yy� m

s=
ffiffiffi
n

p

contains two random variables �yy and s. Gosset also noticed that as n increases this new

distribution approaches the standard normal distribution.

Gosset published his findings under the pseudonym “Student” because of the Guinness

company’s restrictive policy on publication by its employees. The sampling distributions he

studied are called Student’s t distributions, and we write

t ¼ �yy� m

s=
ffiffiffi
n

p

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
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The density functions for Student’s t distributions are known, and a description of the

curve may be helpful (see Figure 8.2).

Student’s t distributions are

1. unimodal;

2. asymptotic to the horizontal axis;

3. symmetrical about zero, E(t);

4. dependent on n, the degrees of freedom (for the statistic under discussion, v ¼ n 2 1);

5. more variable than the standard normal distribution, V(t) ¼ v/(v 2 2) for n . 2;

6. approximately standard normal if v is large.

Table A.11 in the Appendix of Useful Tables gives many of the critical values of the t

distributions needed for inference. The t distributions are listed by degrees of freedom. In the

table, a corresponds to the probability that t exceeds the tabular value; thus P(t . 1.721 if

v ¼ 21) ¼ 0.05. We write t0.05, 21 ¼ 1.721.

Since the t distribution is symmetrical, critical values for the lower tail can be obtained

from the upper tail, t1�a,v ¼ �ta,v

FIGURE 8.1. Comparison of the standard normal distribution and a t distribution.

FIGURE 8.2. Student’s t distributions.
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Thus

t0:95,16 ¼ �t0:05,16 ¼ �1:746

It should be emphasized that the t statistic arises only when we are sampling from a

population with a normal distribution and when s2 is estimated by s 2. Whether the sample

size is large or small,

�yy� m

s=
ffiffiffi
n

p

has a t distribution. However, since the t distribution is quite close to the standard normal for

n � 30, it is common to approximate the probabilities in the t distribution by the standard

normal for large sample sizes. If more accuracy is desired and the appropriate table or

computer program is available, the t distribution can be used.

It is permissible to use the t distribution to estimate probabilities when we are sampling

from a distribution that is not normal if the distribution is at least symmetrical, unimodal, and

with a variance that is not inordinately large. In this case, the t distribution is a good estimate

of the actual sampling distribution.

EXERCISES

8.1.1. Use Table A.11 to find:

a. t0.01, 10

b. t0.99, 10

c. t0.025, 7

d. t0.975, 7

e. t0.005, 23

f. t0.995, 23

8.1.2. Use Table A.11 to find:

a. P(t . 2.145 if v ¼ 14)

b. P(t , 2.518 if v ¼ 21)

c. P(t , 21.782 if v ¼ 12)

d. P(t . 21.363 if v ¼ 11)

e. P(22.120 � t � 2.120 if v ¼ 16)

f. P(jtj � 2.831 if v ¼ 21)

8.1.3. A random sample is taken of 16 women who are the sole support of their families, and

information is obtained about their annual income (in dollars):

X
y ¼ 128,000

X
y2 ¼ 1,177,600,000

Assume that the distribution of incomes is normal.
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a. Find the best point estimate of the mean income of all women who are the sole

support of their families.

b. Estimate the population variance.

c. If m is actually $6400, compute

t ¼ �yy� m

s=
ffiffiffi
n

p

d. How likely is it that a t statistic of this magnitude or larger will arise when choosing

random samples of size 16 from this population?

8.2. INFERENCE ABOUT A SINGLE MEAN

Under the following conditions, t distributions may be used for inference about m:

1. The population distribution is normal (or at least symmetrical and unimodal).

2. The population variance is unknown and estimated by the sample variance.

3. The sample is random.

Tests of hypothesis about a population mean m and confidence intervals for m using

t distributions are analogous to using the standard normal distribution.

Example 8.1. Using a t Distribution to Find a Confidence Interval for m

After running about 17 miles, marathon runners encounter a form of physiological stress

which they call “hitting the wall.” To better pinpoint where in a race to expect this pheno-

menon, a sports physiologist has 12 male marathon runners race until each feels this

stress. The variable of interest is the number of miles run until the stress occurs.

These are

15:8 16:5 15:3 16:2 17:1 16:4
17:5 17:3 16:9 16:6 17:0 17:7

The physiologist would like to use a t distribution to find a 95% confidence interval

on the mean distance a marathon runner covers before “hitting the wall.” He finds thatX
y ¼ 200:4 miles and

X
y2 ¼ 3,352:08. He computes a point estimate for the mean,

�yy ¼ 200:4

12
¼ 16:70

and the sample variance is

s2 ¼
X

y2 �
X

y
� �2

n

n� 1
¼ 3352:08� (200:4)2=12

11
¼ 0:4909
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The sample standard deviation is s ¼ 0.70 and the standard error of the mean is

s=
ffiffiffi
n

p ¼ 0:70=
ffiffiffiffiffi
12

p ¼ 0:20. Since there are 12 subjects, the degrees of freedom are

n 2 1 ¼ 12 2 1 ¼ 11. Thus

CI0:95: �yy+ t0:025,11
sffiffiffi
n

p

16:70+ 2:201(0:20)

16:70+ 0:44

16:26 � m � 17:14

For this to be valid, the physiologist must be able to assume that the variable of interest is

normally distributed, or at least approximately so. Perhaps he might be able to base the

assumption on some theoretical knowledge of the physiological changes that occur during

running, but more likely he will need empirical evidence. If he has been observing this

phenomenon for some time in the course of his other investigations of marathon runners, he

may have accumulated enough rough measurements to draw a graph and check on the

symmetry and unimodality. Two graphical representations of data are often included in

statistical packages to provide some visual evidence about the assumption. For the 12

observations in the sample, these are shown in Figure 8.3, where the experimenter would find

the familiar histogram along with another graphic.

The histogram would show him that there is only one mode, but it might cause him to be

concerned about symmetry, and the second schematic is provided for visual examination of

the validity of that assumption. Above the histogram is a box-and-whisker plot, often simply

called a box plot. Using the same horizontal scale as the histogram, the vertical line in the

middle of the rectangle gives the location of the median, and the edges of the rectangle locate

FIGURE 8.3. Graphics used for examining distribution of data.
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the upper and lower quartiles. Thus the n observations in the sample are divided, as nearly as

possible, into n/4 equal portions so that approximately half of the sample data lie within the

range of the box, one-fourth lie to the left of the rectangle, and the remaining one-fourth to the

right. The lines extending from the right and left of the box are called whiskers, and they

extend, respectively, to the largest and smallest numerical values in the sample. Consequently,

if the data were perfectly symmetrical, the physiologist would see a “mirror-image” diagram

centered at the median. Although there is some evidence of lack of symmetry, the visual

evidence from the two graphics† should lead him to feel his sample satisfies the assumption. If

he is unable to justify the assumption, he will have to be cautious about how much faith he has

in the accuracy of the interval.

Another condition for the validity of this confidence interval (as well as for other

inferences) is that the subjects are a random sample from the population of interest. To obtain

a completely random sample of 12 runners from the population of all male marathon runners

in this country is not feasible. Often the investigator must rely on local volunteers. It would be

better if he could find a list or runners from across the country and try to obtain a sample of

distance runners from this group. If only local runners are feasible, the generalization to all

runners is not as credible. There could be some local condition that affects the variable of

interest, for example, altitude.

At a later state in the experimentation, the physiologist may want to test a hypothesis about

the distance until stress occurs. For example, he might decide to extend his investigation to

female runners. An immediate question would be whether the distance until stress for women

is also 17 miles.

Example 8.2. Using a t Distribution to Test a Hypothesis about m

The sports physiologist would like to testH0:m ¼ 17 againstHa:m = 17 for female marathon

runners. In a random sample of 8 female runners, he finds

�yy ¼ 18:2 and s2 ¼ 0:65

Since n ¼ 8, the degrees of freedom are v ¼ 7, and at a ¼ 0.05 the null hypothesis will be

rejected if jtj � t0.025,7 ¼ 2.365. The test statistic is

t ¼ �yy� m0

s=
ffiffiffi
n

p ¼ 18:2� 17ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:65=8

p ¼ 4:21

Thus he rejects the null hypothesis and concludes that for women the distance until stress is

more than 17 miles.

A two-tailed test was used in the above example. If the physiologist had some previous

information that stress occurs later, if at all, for women, then a one-tailed test in the upper tail

would have been appropriate. Using Ha: m . 17, at a ¼ 0.05 the region of rejection is

t � t0.05, 7 ¼ 1.895.

It is possible to make inference about another type of mean, the mean of the difference

between two matched groups. For example, the mean difference between pretest scores and

†Both graphics are needed because data can be symmetric but not unimodal.
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post-test scores for a certain course or the mean difference in reaction time when the same

subjects have received a certain drug or have not received the drug might be desired. In such

situations, the experimenter will have two sets of sample data (in the examples just given,

pretest/post-test or received/did not receive); however, both sets are obtained from the same

subjects. Sometimes the matching is done in other ways, but the object is always to remove

extraneous variability from the experiment. For example, identical twins might be used to

control for genetically caused variability or two types of seeds are planted in identical plots of

soil under identical conditions to control for the effect of environment on plant growth.

If the experimenter is dealing with two matched groups, the two sets of sample data

contain corresponding members—thus he has, essentially, one set consisting of pairs of data.

Inference about the mean difference between these two dependent groups can be made by

working with the differences within the pairs and using a t distribution with n 2 1 degrees of

freedom in which n is the number of pairs.

Example 8.3. Matched-Pair t Test

Two types of calculators are compared to determine if there is a difference in the time required

to perform a certain common statistical calculation. Twelve students chosen at random are

given drills with both calculators so that they are familiar with the operation of each type.

Then the time they take to complete the calculation on each device is measured in seconds

(which calculator they are to use first is determined by some random procedure to control for

any additional learning during the first calculation). The data are as follows:

Student

Calculator

A

Calculator

B

Difference

yd

(Difference)2

y2d

1 23 19 4 16

2 18 18 0 0

3 29 24 5 25

4 22 23 21 1

5 33 31 2 4

6 20 22 22 4

7 17 16 1 1

8 25 23 2 4

9 27 24 3 9

10 30 26 4 16

11 25 24 1 1

12 27 28 21 1X
yd ¼ 18

X
y2d ¼ 82

The null hypothesis is H0: md ¼ 0 and Ha: md = 0 in which md is the population mean for

the difference in time on the two devices. Thus

�yyd ¼
X

yd

n
¼ 18

12
¼ 1:5

s2d ¼
X

y2d �
X

yd

� �2
n

n� 1
¼ 82� (18)2=12

11
¼ 5
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The test statistic is

t ¼ �yyd � md0

sd=
ffiffiffi
n

p ¼ 1:5� 0ffiffiffiffiffiffiffiffiffiffi
5=12

p ¼ 2:325

Using a ¼ 0.05 and v ¼ 12 2 1 ¼ 11, t0.025,11 ¼ 2.201, and since t . 2.201, the test is

significant and the two calculators differ in the time necessary to perform the calculation.

Looking at the data, since �yyd is positive, the experimenter concludes that the calculation is

faster on machine B.

In the above example, the experimenter was interested in whether there is a difference in

time required on the two calculators; thus md ¼ 0 was tested. The population mean specified

in the null hypothesis need not be zero; it could be some other specified amount. For example,

in an experiment about the reaction time the experimenter might hypothesize that after taking

a certain drug reaction times are slower by 2 seconds; then H0: md ¼ 2 would be tested, with

yd ¼ yafter 2 ybefore. The alternative hypothesis may be one-tailed or two-tailed, as appropriate

for the experimental question.

Using a matched-pair design is a way to control extraneous variability. If the study of the two

calculators involved a random sample of 12 students who used calculator A and another random

sample of 12 students who used calculator B, additional variability would be introduced because

the two groups are made up of different people. Even if they were to use the same calculator, the

means of the two groups would probably be different. If the differences among people are large,

they interfere with our ability to detect any difference due to the calculators. If possible, a design

involving two dependent samples that can be analyzed by amatched-pair t test is preferable to two

independent samples. The analysis proper for two independent samples is discussed in Section 8.3.

If confidence intervals are desired for the mean of the difference between two dependent

samples, they can also be computed:

CI1�a: �yyd + ta=2,n�1

sdffiffiffi
n

p

Procedure. Inference About a Mean Using a t Distribution

Assumptions: normality, or at least symmetry and unimodality; unknown population variance

Confidence Intervals

CI1�a: �yy� ta=2,n�1

sffiffiffi
n

p � m � �yyþ ta=2,n�1

sffiffiffi
n

p

Test of Hypothesis

H0: m ¼ m0

Ha: m = m0 or m . m0 or m , m0

Significance level: a
Test statistic:

t ¼ �yy� m0

s=
ffiffiffi
n

p

Region of rejection: jtj � ta/2,n21 or t � ta, n21 or t � 2 ta, n21, respectively.
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EXERCISES

8.2.1. From a random sample of 16 applicants for certain graduate fellowships, the

following statistics are obtained about their GRE scores:

X
y ¼ 16,000

X
y

� �2
¼ 256,000,000

X
y2 ¼ 18,400,000

a. Give the best point estimate of the population mean.

b. Estimate the standard error of this estimate.

c. Place a 95% confidence interval on this population mean.

8.2.2. The mean pulse rate for active males of college age is 72 beats per minute, but it is

thought to be greater for less active men of the same age. A physician at a student

health center questions her male patients on whether they participate in leisure-time

sports and measures the pulse rates of a random sample of 12 who do not. The

following pulse rates, in stem-and-leaf format, are obtained:

Tens Units

9 1

8 1 3 6

7 2 4 5 5 6 8

6 6 7

a. Criticize the sample on the basis of the population it may represent.

b. Assuming some valid inference can be made, prepare for a test of hypothesis by

giving:

i. The most logical null and alternative hypotheses

ii. The critical region of the test statistic for a ¼ 0.05

c. Conduct the test of significance by computing:

i. The sample average and variance

ii. The value of the test statistic

d. Assume the inference is valid; what would you conclude from this study?

8.2.3. Distance runners are known to have lower pulse rates than their contemporaries.

Suppose pulse rates are measured on a random sample of 25 runners 5 minutes after

they have completed a 10-kilometer run. The data yield �yy ¼ 58:2 beats per minute and

s 2 ¼ 72.25.

a. Compute the standard error of the average.

b. Use the standard error to set a 95% confidence interval for the mean pulse rate of

distance runners.

8.2.4. Fruit flies (Drosophila melanogaster) are attracted to light. This phenomenon is called

positive phototaxis, and it may be an inherited behavior. Suppose a geneticist

measures the phototactic response of all flies for one generation and finds a mean
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response time of 80 seconds. He then mates the male and female that showed the

fastest response times. The following data are obtained on the phototactic response

times of their offspring:

n ¼ 30

X
y ¼ 2136 seconds

X
y2 ¼ 155,225:2

a. If phototactic behavior is inherited, should the offspring of the male and female

that showed the most rapid response have an average response time greater or less

than that of the previous generation?

b. Use the answer to part a to set up the most logical null and alternative hypotheses.

c. Perform the test of significance and state the conclusion.

8.2.5. Organic phosphorous insecticides are very stable chemically and are known to collect

in the soil and water and eventually to enter the food chain of human beings. In a study

made in an agricultural region in the Orient, the milk of 40 nursing mothers was

examined and found to have an average of 4.2 ppm of organic phosphorous

insecticides. The sample standard deviation was 1.2 ppm.

a. Place a two-sided 99% confidence interval on the mean level of these compounds

in mothers’ milk in the region.

b. Place a one-sided 99% confidence limit on the worst the mean contamination

might be.

8.2.6. The mean score on the Graduate Record Exam is 1000 for all students who take the

exam. No extensive study has been made to determine whether higher or lower mean

scores are attained by students 30 years of age or older. A pilot study is done, and the

following data are obtained:

n ¼ 18

X
y ¼ 18,972

X
(y� �yy)2 ¼ 435,200

a. Prepare for a test of significance by giving:

i. The most logical null and alternative hypotheses

ii. The critical value for the test statistic for a ¼ 0.05

b. Compute the average and variance.

c. Conduct the test of significance and state the conclusion.

8.2.7. At a certain university, an English proficiency test must be passed before under-

graduates can receive their degrees. Some students have been known to take the test

twice before passing it. A random sample of 25 such students was taken, and the

number of “comma errors” was counted on the first and second tests. The average

difference on the two tests was a decrease of 2.4 errors. The standard deviation was

6.0.

188 STUDENT’S t DISTRIBUTION



a. If a college administrator wants to test to show that there was no improvement,

what are the null and alternative hypotheses?

b. Perform the test.

8.2.8. One side of the brain is dominant over the other. A psychologist wishes to determine

whether the reaction time for voluntary movement is more rapid for the hand

controlled by the dominant side of the brain. Fifteen random subjects are given five

instructions for each hand in random order and the difference in total reaction time for

each hand is recorded for each subject.

a. Give the most logical null and alternative hypotheses.

b. What is the test statistic?

c. Give the degrees of freedom and the critical value at a ¼ 0.05.

8.2.9. Agronomists have identified 7 different geographical areas with respect to raising

corn in West Virginia and have managed to obtain an experimental farm in each area.

To see if a single variety of corn can be recommended for the entire state, the two

leading varieties are compared for yield at all 7 localities. The following yields in

bushels per acre are obtained:

Geographical Area

Variety 1 2 3 4 5 6 7

A 45 41 58 60 42 32 57

B 47 44 62 63 46 35 59

(B 2 A) 2 3 4 3 4 3 2

(B 2 A)2 4 9 16 9 16 9 4

a. Why is it a good design to compare the two varieties at each location?

b. What is the average difference in the yields?

c. Show that the estimated standard error of this difference is 0.309.

d. The seed company that sells variety B claims it will exceed variety A in yield by

more than 2 bushels per acre. Test this claim at a ¼ 0.05.

e. What is your conclusion about the seed company’s claim?

f. Find a 95% central confidence interval on the mean difference in yield of the two

types of seed. How is this confidence interval related to the test in part d?

8.2.10. An industrial psychologist devises a 50-point questionnaire to measure a worker’s

attitude toward his job; the higher the score, the more favorably the worker views

it. The industrial psychologist is concerned that attitude may be affected by the

relationship of the day questioned to payday, with a worker responding

more favorably if he has been recently paid. To evaluate the effect of payday,

she draws a random sample of 16 workers and gives them all the same

questionnaire the day before (with score y1) and the day after (with score y2) they

are paid. The difference in each worker’s two scores (yd ¼ y1 � y2) is the

variable analyzed.

a. Give the most logical null and alternative hypotheses.
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b. Use the sample data X
y1 ¼ 512

X
y2 ¼ 608

X
(yd � �yyd)

2 ¼ 1500

and a ¼ 0.05 to give the critical value of the test statistic. Make the test of significance.

c. Is there a payday effect?

8.2.11. Listed below are the gains in pounds of a random sample of pairs of twin lambs in

which one member of each pair is treated with an antibiotic and the other remains

untreated (control).

Pair: 1 2 3 4 5 6 7

Treated: 33.5 29.0 29.0 20.0 30.0 33.0 15.0

Control: 30.0 34.0 18.0 16.5 25.0 19.5 15.0

yd : 3.5 25.0 11.0 3.5 5.0 13.5 0.0

Pair: 8 9 10 11 12 13 14

Treated: 15.0 21.0 31.0 20.5 22.0 22.0 29.0

Control: 18.0 23.0 24.0 28.0 18.0 26.0 20.0

yd : 23.0 22.0 7.0 27.5 4.0 24.0 9.0

Pair: 15 16 17 18 Total

Treated: 26.0 22.0 38.0 25.0 461.0

Control: 18.0 32.0 32.0 16.0 413.0

yd : 8.0 210.0 6.0 9.0 48.0

a. If
X

y2d ¼ 890:0, compute s2d .

b. If you had no knowledge before this experiment of the effect of antibiotics on

weight gain, give the most logical null and alternative hypotheses.

c. Conduct the test at a ¼ 0.05, stating your decision about the null hypothesis and

your experimental conclusion.

d. Place a 95% confidence interval on the mean difference in weight gain and explain

how this confidence interval could be used to test the null hypothesis.

8.3. INFERENCE ABOUT TWO MEANS

At the end of Section 8.2 we discussed a matched-pair t procedure for two dependent samples.

In this section we discuss the appropriate procedure for two independent random samples that

meet the following conditions:

1. The experimenter is interested in the difference of two population means, m1 2 m2.

2. The two samples, one from each population, are independent.
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3. Both populations are normal, or at least approximately so.

4. The population variances are unknown but are the same for both populations,

s2
1 ¼ s2

2 ¼ s2.

Example 8.4. Group Comparison t Test

Chemical compounds that are carcinogenic tomammals also commonly cause genetic mutations

in lower organisms. Thus preliminary screening of possible cancer-producing compounds can be

performed by testing whether these compounds increase the mutation rate of microorganisms.

Suppose an experimenter uses this procedure as the first safety screening of an aromatic

hydrocarbon that could be used as an industrial solvent. He adds the compound to a medium of

an Ascomycetes fungus in several petri dishes and compares the mutation rate of this group

(the treatment group) with the control group (untreated group).

The variablemeasured is the number ofmutant colonies per petri dish. The experimenter realizes

that this discrete random variable probably is not normally distributed but rather has a Poisson

distribution. Since hewould like to use a t test tomake the comparison, he first transforms his counts,

x, by letting y ¼ log10 x. [If there are any zero counts, he will use y ¼ log10 (x þ 1).] Experience

has shown him that in this situation his transformationwill yield distributions that, although discrete,

are approximately normal. After the transformation, his data are summarized as follows:

Control Group Treatment Group

Sample Data 2.13 1.59 1.14 1.77 1.42 1.73 1.57 1.49

1.36 1.46 1.19 2.52 1.83 1.35 1.53

From his previous work he believes that the variances of the two populations, although

unknown, are in fact equal. The closeness of the sample variances seems to confirm this. (If he

were in doubt, he could apply the test to be described in Section 8.4 to the sample variances in

order to test the hypothesis s2
1 ¼ s2

2.) Since he believes the two variances are equal, the best

point estimate of this common variance will be an average of the two sample variances

weighted by the degrees of freedom. This weighted average is called the pooled sample

variance and is computed as follows:

s2p ¼
X

(y1 � �yy1)
2 þ

X
(y2 � �yy2)

2

(n1 � 1)þ (n2 � 1)

¼ (n1 � 1)s21 þ (n2 � 1)s22
n1 þ n2 � 2

In this experiment,

s2p ¼
6(0:12)þ 7(0:14)

7þ 8� 2
¼ 0:131

He would like to test

H0: m1 � m2 ¼ 0 against Ha: m1 � m2 , 0
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In other words,

H0: m1 ¼ m2 against Ha: m1 , m2

The test statistic has v ¼ n1 þ n2 2 2 ¼ 13 degrees of freedom, corresponding to the

denominator of the pooled sample variance, and

t ¼ (�yy1 � �yy2)� (m1 � m2)0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

n1
þ s2p

n2

s ¼ (1:52� 1:68)� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:131

7
þ 0:131

8

r ¼ �0:85

The critical value at a ¼ 0.05 is t0.95,13 ¼ 21.771. Thus the null hypothesis is not rejected,

and the experimenter concludes that there is no evidence that this aromatic hydrocarbon

increases the mutation rate of the fungus.

Note that the t statistic, although different from the statistic used for one-sample or

matched-pair tests, is still of the same form:

t ¼ (Estimate of the parameter)� (Hypothesized value of the parameter)

(Estimated standard error of the estimator)

The estimator of m1 2 m2 is �yy1 � �yy2. Since the variances of the two groups are equal

(s2
1 ¼ s2

2 ¼ s2) and the samples are independent,

V(�yy1 � �yy2) ¼ V(�yy1)þ V(�yy2)

¼ s2

n1
þ s2

n2

This is estimated by

s2p

n1
þ s2p

n2

and the standard error of the estimator is estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

n1
þ s2p

n2

s

A caution about this procedure: The test is not reliable if the variances of the two groups

are unequal. If there is doubt, this should be checked by the method to be described in the next

section. If the variances prove to be unequal and the sample sizes are small (n1 , 30 or

n2 , 30), then there is no exact test available and an approximation procedure such as the one

in the next section should be used.

The test in this section is the appropriate one for two independent samples. Two

independent samples should not be analyzed by means of a matched-pair procedure, for the

degrees of freedom will be lower, increasing the magnitude of the critical value and reducing

the power of the test.

If the combined sample size is large (n1 þ n2 � 30), the critical value may be estimated by

a z value for convenience. If both samples are large (n1 � 30 and n2 � 30), the test statistic
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may be replaced by

z ¼ (�yy1 � �yy2)� (m1 � m2)0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s

eliminating the need to pool the sample variances. Whether or not the population variances are

equal, this z statistic is valid for two large samples. If the actual population variances are

known, then

z ¼ (�yy1 � �yy2)� (m1 � m2)0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

s

is the appropriate statistic for all sample sizes.

Confidence intervals for m1 2 m2 may also be computed. For n1 , 30 or n2 , 30 with

s2
1 ¼ s2

2 and s2
1, s

2
2 unknown, use

CI1�a: �yy1 � �yy2 + ta=2,n1þn2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

n1
þ s2p

n2

s

For n1 � 30 and n2 � 30 with s2
1, s

2
2 unknown, use

CI1�a: �yy1 � �yy2 + za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s

If s2
1 and s2

2 are known, use

CI1�a: �yy1 � �yy2 + za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

s

regardless of sample size.

Procedure. Inference About Two Independent Samples

Assumptions: normality or at least symmetry and unimodality

s2
1, s

2
2 unknown, s2

1 ¼ s2
2, and n1 or n2 , 30

Confidence Interval on m1 2 m2

CI1�a: �yy1 � �yy2 + ta=2,n1þn2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

n1
þ s2p

n2

s

with

s2p ¼
(n1 � 1)s21 þ (n2 � 1)s22

n1 þ n2 � 2
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Test of Hypothesis

H0: m1 � m2 ¼ (m1 � m2)0

Ha: m1 � m2 = (m1 � m2)0 or m1 � m2 . (m1 � m2)0

or m1 � m2 , (m1 � m2)0

Significance level: a
Test statistic:

t ¼ �yy1 � �yy2 � (m1 � m2)0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

n1
þ s2p

n2

s with s2p as above

Region of rejection: jtj � ta=2,n1þn2�2 or t � ta,n1þn2�2 or t � �ta,n1þn2�2, respectively.

Assumptions: n1 and n2 � 30

Confidence Interval on m1 2 m2

CI1�a: �yy1 � �yy2 + za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

s

Use s21 and s22 to estimate s2
1 and s2

2 if the population values are unknown.

Test of Hypothesis

H0: m1 � m2 ¼ (m1 � m2)0

Ha: m1 � m2 = (m1 � m2)0 or m1 � m2 . (m1 � m2)0

or m1 � m2 , (m1 � m2)0

Significance level: a
Test statistic:

z ¼ �yy1 � �yy2 � (m1 � m2)0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

s

Use s21 and s22 to estimate s2
1 and s2

2 if the population values are unknown.

Region of rejection: jzj � za/2 or z � za or z � 2 za , respectively.

EXERCISES

8.3.1. After an extended dry period, measurements are taken on atmospheric pollution in

urban and rural locations. The data are summarized as follows:

Urban Rural

n 7 5

�yy 26.0 ppm 12.2 ppm

s 2 91 126
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a. Compute the pooled variance.

b. What are the null and alternative hypotheses if the experimenter is looking for

evidence of higher pollution in the urban locations?

c. Perform the test of significance at a ¼ 0.05 assuming that the variables meet the

assumptions for a group comparison t test.

d. Place a 95% confidence interval on the maximum difference between the two means.

8.3.2. A study is done on insecticide residues on fruit. Normal spraying practices are followed in

an apple orchard. After the fruit is picked, a random sample of 16 apples is washed

individually by hand. A second sample of 16 is washed mechanically. The experimenter is

unsure which method would be more effective in removing insecticide residues. The level

of insecticide present on each fruit is determined chemically, yielding the following data:

By Hand By Machine

�yy ¼ 3:5 ppm
X

y ¼ 48 ppmX
y2 ¼ 200:5

X
(y� �yy)2 ¼ 5:1

Test for a significant difference of insecticide residue at the 0.01 level of significance.

8.3.3. A certain industrial solvent absorbs atmospheric moisture very rapidly. The absorbed

moisture dilutes the solvent and lessens its usefulness. Two types of containers are used

in an effort to find a method of storage that will retard moisture absorption. After two

months of storage, 10 containers are chosen at random from each kind and are

examined for moisture content:

Container A Container BX
y 100 120X
y 2 1012 1450.5

Place a 99% central confidence interval on the difference in the moisture content of the

two types of containers.

8.3.4. In a study of the effect of protein quality in the diet, two groups of juvenile female rats

are fed diets of the same caloric content, but they differ in the quality of the protein.

The experimenter believes that by the end of the experiment the rats on a high-quality

protein diet will gain on the average more than 5 grams more than those on a low-

quality diet. The experiment begins with equal numbers of rats on each diet, but some

are mistakenly assigned to another experiment and have to be eliminated from the

protein experiment. Data on the weight gain (in grams) of the remaining rats are

collected and summarized:

High Quality Low Quality

Sample size 12 7

Sample average 119.7 101.2

Sample standard

deviation

21.4 20.6
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a. Give the most appropriate null and alternative hypotheses for this experiment.

b. What assumptions are necessary in order to apply a t test for two independent

groups?

c. Assuming the two populations have the same variance, test the null hypothesis.

d. What do you conclude about the diets?

8.3.5. At a certain university, Graduate Record Exam scores are compared for doctoral

students who completed their PhD work within 7 years of their bachelor’s degree and

those who did not complete their work within that time. Random sampling provides the

following results:

Completed Work

Did Not

Complete Work

Sample size 25 25

Average score 1056 912

Standard deviation 295 270

Is there any evidence that those who finish their PhD work within 7 years score higher

on the GRE than those who do not finish within that time? Do you believe that lower

GRE scores can be used to predict those who will have difficulty completing their

doctoral work on time? Why or why not?

8.3.6. An environmental chemist is performing a study of iron in atmospheric particulate

measured downwind from a steel mill. She is concerned that wind velocity at the time

of measurement may affect the readings, so she decides to obtain observations on 30

randomly chosen days during the period of peak operation of the mill and compare

measurements taken on days when the wind is calm (velocity �5 knots) with

measurements taken on windy days (velocity .5 knots). The data and some summary

information are presented below:

Calm Days Windy Days

0.68 0.74 0.88 0.25 0.29 0.30 0.43 0.45 0.50 0.60

y 0.89 0.97 1.00 0.65 0.69 0.74 0.80 0.87 0.87 0.89

1.17 1.25 1.27 0.91 0.92 0.93 0.95 1.01 1.03 1.16X
y 8.85 15.24X
(y� �yy)2 0.3592 1.4347

a. What hypothesis can be tested about the effect of wind velocity on the measurement

of iron in atmospheric particulate?

b. What assumptions must be made in order to perform a t test on these data?

c. Find the pooled sample variance.

d. Perform the t test and draw a conclusion.

8.3.7. Two experimentalmethods of controlling acid drainage from coalmines are compared. The

data are as follows, with greater numerical values indicating the more effective method:
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Method A Method B

Average 5.60 6.70

Variance 0.98 0.85

Sample size 6 9

a. Place a 95% confidence interval on the difference between the means for the two

methods.

b. Using the confidence interval, what decision would you make about the equality of

the means for the two methods?

8.3.8. An educator thinks that engineers, although known to be equal to physical scientists in

quantitative skills, have less verbal ability. To test this, GRE verbal scores are compared for

large random samples of engineering and physical-science seniors.

Engineering Physical Science

Average 414 422

Standard deviation 30 40

Sample size 100 100

a. State the most logical null and alternative hypotheses.

b. Take advantage of the large sample sizes and perform the appropriate z test.

c. What conclusion should be drawn from this study?

8.4. INFERENCE ABOUT TWO VARIANCES

In Section 8.3 we described procedures for analyzing data from two populations having equal

variances. There are situations, of course, in which the variances of the two populations under

consideration are different. The variability in the weights of elephants is certainly different

from the variability in the weights of mice, and in many experiments, even though we do not

have these extremes, the treatments may affect the variances as well as the means.

The null hypothesis H0:s
2
1 ¼ s2

2 is tested by using a statistic that is in the form of a ratio

rather than a difference; the statistic is s21=s
2
2. Intuitively, if the variances are equal, this ratio

should be approximately equal to 1, so values that differ greatly from 1 indicate inequality.

It has been found that the statistic s21=s
2
2 from two normal populations with equal variances

follows a theoretical distribution known as anF distribution. The density functions forF distributions

are known, andwe can get some understanding of their nature by listing some of their properties. Let

us call a random variable that follows an F distribution F; then the following properties exist:

1. F . 0.

2. The density function of F is not symmetrical.

3. F depends on an ordered pair of degrees of freedom v1 and v2; that is, there is a different

F distribution for each ordered pair v1, v2. (v1 corresponds to the degrees of freedom of

the numerator of s21=s
2
2 and v2 corresponds to the denominator.)
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4. If a is the area under the density curve to the right of the value Fa,v1,v2 , then

Fa,v1,v2 ¼ 1=F1�a,v2,v1

5. The F distribution is related to the t distribution:

Fa,1,v2 ¼ (ta=2,v2 )
2

Table A.12 in the Appendix gives upper critical values for F if a ¼ 0.050, 0.025, 0.010,

0.005, 0.001. Lower-tail values can be found using property 4 above.

Example 8.5. Testing for the Equality of Two Variances

Both rats and mice carry ectoparasites that can transmit disease organisms to humans. To

determine which of the two rodents presents the greater health hazard in a certain area, a

public health officer traps (presumably at random) both and counts the number of ecto-

parasites each carries. The data are presented first in side-by-side stem-and-leaf plots and then

as side-by-side box-and-whisker plots:

Mice Rats

Tens Units Tens Units

3 3 0 4

2 2 0 0 0 1 2 3 3

1 0 1 2 2 6 8 1 3 3 5 5 5 5 5 5 6 6 6 7 7 7 8 8

0 7 8 9 0 3 6 7 8 8 8

n s 2 �yy

Rats 31 43.4 16.3

Mice 9 13.0 11.4

He wants to test for the equality of means with a group comparison t test. He assumes that these

discrete counts are approximately normally distributed, but because he is studying animals of

different species, sizes, andbody surface areas, he has somedoubts about the equality of the variances

in the two populations, and the box plots seem to support that concern. Thus he first must test

H0: s
2
1 ¼ s2

2 against Ha: s
2
1 = s2

2

with the test statistic F ¼ s21=s
2
2 ¼ 43:4=13:0 ¼ 3:34. Since n1 ¼ 31 and n2 ¼ 9, the degrees of

freedomfor the numerator are v1 ¼ n1 2 1 ¼ 30and for the denominator v2 ¼ n2 2 1 ¼ 8. InTable

A.12 he finds

F0:05,30,8 ¼ 3:079 and F0:05,8,30 ¼ 2:266
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thus the region of rejection (Figure 8.4) at a ¼ 0.10 is

F � F0:05, 30,8 ¼ 3:079 and F � F0:95,30,8 ¼ 1

F0:05,8,30
¼ 1

2:266
¼ 0:441

Since the computed F equals 3.34, the null hypothesis is rejected, and the public health officer

concludes that the variances are unequal. Since one of the sample sizes is small, he may not perform

the usual t test for two independent samples.

One-tailed tests of hypotheses involving the F distribution can also be performed, if

desired, by putting the entire probability of a Type I error in the appropriate tail.

Central confidence intervals on s2
1=s

2
2 are found as follows:

CI1�a:
s21
s22

1

Fa=2,v1,v2

� s2
1

s2
2

� s21
s22
Fa=2,v2,v1

Although the public health officer cannot perform the usual t test for two independent

samples because of the unequal variances and the small sample size, there are approximation
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methods available. One such test is called the Behrens–Fisher, or the t 0 test for two

independent samples and using adjusted degrees of freedom.

Example 8.6. Testing m1 � m2 if s
2
1 = s2

2

To test H0: m1 ¼ m2 against Ha: m1 = m2 at a ¼ 0.05, the health officer uses the test statistic

t 0 ¼ (�yy1 � �yy2)� (m1 � m2)0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s ¼ (16:3� 11:4)� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
43:4

31
þ 13:0

9

r ¼ 2:90

with adjusted degrees of freedom

n ffi
s21
n1

þ s22
n2

� �2

s21
n1

� �2

n1 � 1
þ

s22
n2

� �2

n2 � 1

¼
43:4

31
þ 13:0

9

� �2

43:4

31

� �2

30
þ

13:0

9

� �2

8

¼ 24:93

With v ¼ 25 H0 will be rejected if jt 0j � t0.025,25 ¼ 2.306. Since jt 0j ¼ 2.90 . 2.060, the null

hypothesis is rejected, and the public health officer concludes that on the average there are

more ectoparasites on rats than on mice.

If not an integer value, as in the example, the adjusted degrees of freedom may be rounded

to the closest integer or interpolation may be used in the t table for a more accurate critical

value. Since this t0 test is only an approximate procedure and is usually very conservative

(rejection is difficult), it should be avoided if possible. Instead, larger sample sizes should be

obtained when feasible.

Survey sampling texts, for instance (Lohr and Schaeffer et al., listed in the Selected

Readings of Chapter 2) deal with optimum allocation of sample size when variances are

FIGURE 8.4. Regions of rejection in an F distribution.
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unequal. When population sizes are very large compared to sample sizes and costs per

observation are about the same for each group, sampling theory advises that larger samples are

needed from more variable populations. This is also intuitive, for we seem to know that if

a population is not too variable, the average of even a small sample will be quite reliable. For

example, we need count the number of intact ears of only a few maras (large South American

rodents) to know that, along with other mammals, �yy ¼ 2 is a reliable estimate of the mean

number of ears for the species. Similarly, we know that when the variable of interest has a

large variance we must have a large sample in order to obtain a satisfactory estimate of m.
Thus, if we wish to estimate the mean weight of Equus caballas, the horse species, we must

plan for a very large sample that will measure weights from those of dog-sized ponies to huge

dray horses.

When the assumption of equal variances can be made, a t-test with n1 ¼ n2 will have the

smallest standard error. However, when variances are unequal, the smallest standard error is

obtained when the sample size for each group is proportional to its variance,

n1

n2
¼ s2

1

s2
2

Experience and simulation studies have also shown that the t-test is reasonably robust when

this condition is met. A statistically robust t-test is one that gives fairly reliable P values even

when certain of the assumptions of the test are not met. Because the t 0-test is so very

conservative, when sample sizes are proportional to variances, a better test might be the t-test

with s2p replaced with s21 and s22, respectively. However, when variances are unequal, it is

always best to have large samples from each group as well as being proportional to group

variances.

A summary of several test statistics in the form of a flowchart for making a decision

about the appropriate procedure is given in Figure 8.5. Degrees of freedom involved in the t,

F, and x2 procedures are indicated by subscripts; for example, tn21 means that the test has

n 2 1 degrees of freedom. Since a matched-pair t test is essentially a one-sample pro-

cedure (the set of differences is a single sample), this test does not appear explicitly in

the flowchart.

EXERCISES

8.4.1. Use Table A.12 to find:

a. F0.01,11,7

b. F0.01, 7,11

c. F0.05, 20, 15

d. F0.95,15, 20

e. F0.99, 8, 3

8.4.2. The writings of different authors can be partially characterized by the variability in the

lengths of their sentences. Two manuscripts, A and B, are found by a historian and she

wants to know whether they have the same author. Several sentences from each are

chosen at random, and word counts are taken; the variable of interest y is the number of

words per sentence.
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FIGURE 8.5. Flowchart of test statistics.
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Manuscript A Manuscript B

n 15 15X
y 141 210X
y 2 1327 2942

Is there evidence of different authorship at the 0.02 level of significance?

8.4.3. A highway engineer wishes to compare the resin content of asphalt from a Caribbean

source with those from a North American source. The following statistics are obtained:

Average

Sample Value

Variance Size

Caribbean 21.4 0.44 10

North American 22.0 0.11 8

Given only this information, perform the appropriate test of hypothesis to determine if there

is a difference in the mean resin content from the two sources (use a ¼ 0.10).

8.4.4. A nutritionist wishes to study vitamin B production by bacteria in the caecum (a portion

of the digestive tract) and wishes to use either mice or meadow voles, whichever have the

larger mean caecum volume. The sample data on which he must make his decision are:

Mice Voles

Number of observations 16 11

Average caecum volume 6.5 8.9

Variance 4.6 13.1

a. Should he use a t test or a t 0 test? (Use a ¼ 0.10.)

b. Test to see if there is a significant difference in the average caecum volumes. (Use

a ¼ 0.10.)

c. What would you suggest to the nutritionist?

8.4.5. The following values were computed from the length of life of two brands of light

bulbs (in hours):

Brand A Brand B

n 9 16

�yy 1560 1573X
(y� �yy)2 440 1860

a. Is there a difference in the variability of lifetimes for the two brands of bulbs? (Use

a ¼ 0.02.)

b. Find a 98% confidence interval on the ratio of the two variabilities.
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8.5. NONPARAMETRIC STATISTICS: MATCHED-PAIR AND TWO-SAMPLE

RANK TESTS

Two of the most commonly used rank tests are the nonparametric counterparts of the

matched-pair and two-sample t tests. As we have seen before, data may be recorded on the

ordinal scale of measurement or data on the numerical scale may be reduced to the ordinal

scale by replacing observations with their ranks. Whether the ranks are obtained as the

original scale of measurement or as transformations from the numerical scale, statistical

inference is based on whether or not the ranks seem to be randomly distributed among the

experimental groups. This is the null hypothesis for rank tests; the alternative hypothesis is

that observations in one group tend to rank higher than those in another.

There are many conveniences to rank tests. The computations are relatively simple and

straightforward, especially when sample sizes are not too large and there are few observations

that tie for the same rank. The mean and variance of the original data need not be known. With

the transformation to the ranks from 1 to N, the value of E(�rr) and V(�rr) under the null

hypothesis are known rather than estimated. The original data need not have a normal

distribution. The rank tests are almost as powerful as the corresponding z or t test when the

original data are normally distributed, and they have been shown to be even more powerful for

certain non-normal data. Consequently, rank tests are useful analytical tools for research

workers.

The Wilcoxon signed-rank test is the counterpart in rank statistics to the matched-pair

procedure covered earlier in this chapter. It tests the hypothesis that plus and minus signs

are randomly assigned to the integers 1 through N. When the null hypothesis is true, the

difference between the members of pairs are just random and the difference yd ¼ B 2 A will

be positive or negative by chance alone. It would be as though we recorded the absolute

difference between the members of all pairs and then tossed a coin and assigned a plus sign in

front of the difference if the coin showed a head or a minus sign if the coin showed a tail.

Under these conditions, E(yd) ¼ 0. In the Wilcoxon test we simply replace the jydj with their

ranks, reattach the observed plus or minus signs, and then test to determine whether the

average rank is significantly different from zero.

Using this technique, when the null hypothesis is true,

E(�rr) ¼ m ¼ 0

and it has been shown that

V(�rr) ¼ (N þ 1)(2N þ 1)=6N

Consequently, when the sample size is large enough to meet the conditions of the central limit

theorem, we can use the normal distribution to test the null hypothesis

H0:m ¼ 0

against either a one- or two-sided alternative. The test statistic will be

z ¼ �rr � m0ffiffiffiffiffiffiffiffiffi
V(�rr)

p ¼ �rr � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N þ 1)(2N þ 1)=6N

p
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Example 8.7. Wilcoxon Signed-Rank Test

Suppose that a college dean is interested in whether there is any predictable change in the

academic performance of international students from the first to the second semester of their

first year at a U.S. university. She selects a random sample of 20 such students and obtains

their first- and second-semester grade point averages, GPAs.

Student First Second Sign

jydj ¼ jF � Sj ¼
jDifferencej Rank

Signed

Rank

A 1.53 3.67 2 2.14 19 219

B 2.00 2.74 2 0.74 11 211

C 1.93 3.50 2 1.57 17 217

D 3.90 3.27 þ 0.63 8 þ8

E 2.14 1.97 þ 0.17 3 þ3

F 1.52 1.54 2 0.02 1 21

G 0.91 3.42 2 2.51 20 220

H 1.95 1.04 þ 0.91 13 þ13

I 3.00 2.45 þ 0.55 6 þ6

J 1.67 2.09 2 0.42 5 25

K 2.78 2.00 þ 0.78 12 þ12

L 1.21 3.00 2 1.79 18 218

M 1.66 1.78 2 0.12 2 22

N 1.75 2.31 2 0.56 7 27

O 2.96 2.25 þ 0.71 10 þ10

P 1.50 2.20 2 0.70 9 29

Q 2.25 0.91 þ 1.34 16 þ16

R 2.66 1.52 þ 1.14 15 þ15

S 1.87 1.61 þ 0.26 4 þ4

T 3.50 2.56 þ 0.94 14 þ14

Sum 28

Average 20.40

The signed-rank value for studentA is obtained by first finding the difference between the GPA

for the first semester and that for the second semester, yd ¼ F 2 S ¼ 1.53 2 3.67 ¼22.14.

The negative sign is recorded in the column for signs and the absolute difference of 2.14 is

recorded in the next column. After all the absolute values are entered, they are ranked

and student A has the 19th greatest difference. In the last column the negative sign

is reattached, giving 219 as the signed rank for student A. The same procedure is followed

for each student.

The null hypothesis that there is no difference between the first- and second-semester GPA is

H0:m ¼ 0

and because there is no prior information about whether the second-semester GPA should be

greater or smaller than that for the first semester, the alternative hypothesis is

Ha:m = 0
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The test statistic is computed as

z ¼ �0:40� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(20þ 1)(40þ 1)=6(20)

p ¼ �0:40ffiffiffiffiffiffiffiffiffiffiffi
7:175

p ¼ �0:40

2:679
¼ �0:15

The P value for a two-sided alternative hypothesis is P(jzj . 0.15) ¼ 2(0.440) ¼ 0.880,

indicating that results such as these could easily be attributed to chance. Hence there is no

statistical basis for rejecting the null hypothesis, and the dean concludes that there is no

difference between the first- and second-semester GPA of international students during their first

year of study in the United States.

In all the rank tests which are examined, we use data which are recorded on the ordinal

scale or which have been transformed from the numerical scale to rank data. Under these

circumstances, we are dealing with the integers 1 to N, and the expected value and variance

are mathematically known for a statistic, such as �rr, which is derived from a random grouping

of these consecutive integers. If the null hypothesis is true, the grouping of ranks with plus or

minus signs is truly random, so we commonly use the expression “under the null hypothesis”

when we talk about the values of m and s which are used in the z test.

To use the normal distribution in a rank test, N must be large enough for the central limit

theorem to hold true. For Wilcoxon’s signed-rank test, it is generally recommended that N be

at least 20; however, it is suggested that fairly reliable P values can be obtained when N is

smaller if the continuity correction is used:

z ¼ �rr � 1=2� m0ffiffiffiffiffiffiffiffiffi
V(r)

p ¼ �rr � 1=2� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N þ 1)(2N þ 1)=6N

p

Also, for small values of N, tables are available for the exact distribution of a small sample test

statistic.

When data are measured on the continuous numerical scale, strictly speaking, there will be

no ties, but the same recorded value does occur in experimental data because these are

rounded values. Thus it is important to know how to handle tied observations in rank tests. In

the Wilcoxon test, there are two types of ties to consider:

1. Both members of a pair are the same.

2. There are tied differences between pairs.

When both members of a pair are the same, the difference yd ¼ 0, and since zero is neither

positive nor negative, it has no sign. Therefore differences of zero must be discarded and the

value of N reduced accordingly.

When differences are tied, they should received the same ranks, and it is customary to give

them the average of the ranks they occupy as a group. In the example above, students O and P

have very nearly the same absolute difference between the first- and second-semester GPA.

Had the absolute differences been exactly the same, say jydj ¼ 0.70 for both students, then

they would be tied for ranks 9 and 10, and the average rank of 9.5 would be entered for each

student in the column of ranks.

Ties of this nature cause the variance to become smaller. The reduction in the size of the

variance depends on the number of ties and the number of members in a tie. The computation

of the variance can be found in textbooks on nonparametric statistics [see Conover (1998) or
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Daniel (1990)]. However, the presence of tied observations usually causes little change in the

computed value of z, and in practice the reduction in the size of the variance due to ties is

unimportant unless there are a great number of ties or unless z is very near the critical value

before the reduction is applied.

Procedure. Rank Test for Matched Pairs

To obtain the average signed-rank of the difference between pairs:

1. Find the difference between pairs.

2. Record the sign of the difference in one column and the absolute value of the difference

in another.

3. Rank the absolute differences from smallest to largest.

4. Reattach signs of differences to their respective ranks to obtain signed ranks, which are

then averaged to obtain �rr.

Test of Hypothesis

H0:E(�rr) ¼ m ¼ 0

Ha:m = 0 or m . 0 or m , 0

Significance level: a
Test statistic:

z ¼ �rr � m0ffiffiffiffiffiffiffiffiffi
V(�rr)

p ¼ �rr � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N þ 1)(2N þ 1)=6N

p
for N � 20 or

z ¼ �rr � 1=2� m0ffiffiffiffiffiffiffiffiffi
V(�rr)

p ¼ �rr � 1=2� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N þ 1)(2N þ 1)=6N

p
for N , 20.

Region of rejection: jzj � za/2 or z/za or z , 2za , respectively.

The rank test counterpart for testing the difference between means of two groups has

already been discussed in Section 7.6. However, even though there are two groups, we need to

compute �rr for only one group and test whether it is significantly different from E(�rr). This is

because the transformed data consist of the ranks 1 through N, and if �rr is known for one of the

groups, then we could always find the corresponding average for the other group.

More precisely, if the two groups have sample sizes n1 and n2 and their averages are �rr1 and

�rr2, respectively, then

n1 �rr1 þ n2 �rr2 ¼ N(N þ 1)

2

where n1 þ n2 ¼ N, because N(N þ 1)/2 is the sum of the consecutive integers from 1 to N.

So generally we compute whichever average seems easier and then perform the z test,

z ¼ �rr1 � (N þ 1)=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N � n1)(N þ 1)=12n1

p
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or

z ¼ �rr2 � (N þ 1)=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N � n2)(N þ 1)=12n2

p

as is appropriate.

EXERCISES

8.5.1. One of the side effects of cancer chemotherapy is that the treatment may interfere

with nerve action. An oncologist is evaluating the effect of a heavy metal compound

as a treatment for cervical cancer, and on each patient a measurement is taken

on ulnar sensory nerve amplitude (in microamperes) before treatment begins and

after the patient has been on treatment for 6 months. A significant decrease in

nerve amplitude would indicate that the treatment has a potentially harmful side

effect.

Patient: 1 2 3 4 5 6 7 8 9

Before: 6.7 7.0 7.1 9.0 9.8 10.0 10.1 10.9 11.0

After: 7.6 3.3 9.1 9.3 10.7 7.2 12.3 6.7 9.5

yd : 20.9 3.7 22.0 20.3 20.9 2.8 22.2 4.2 1.5

Patient: 10 11 12 13 14 15 16 17 18

Before: 11.3 11.5 11.7 11.9 12.4 12.5 12.6 12.8 14.0

After: 7.9 11.3 14.2 11.0 5.0 10.3 9.4 8.8 14.0

yd : 3.4 0.2 22.5 0.9 7.4 2.2 3.2 4.0 0.0

Patient: 19 20 21 22 23 24 25 26

Before: 14.2 14.6 14.8 15.0 15.0 15.6 16.6 18.1

After: 8.5 12.5 11.7 16.0 12.6 14.4 15.8 14.4

yd : 5.7 2.1 3.1 21.0 2.4 1.2 0.8 3.7

a. Why would the Wilcoxon signed-rank test be appropriate for analyzing these

data?

b. What would be the most appropriate null and alternative hypotheses?

c. Show that �rr ¼ 8:48.

d. Perform the test of significance and draw conclusions about whether or not the

treatment has a harmful side effect on nerve activity.

8.5.2. Use a nonparametric test to analyze the data in Exercise 8.2.11.

8.5.3. Use a nonparametric test to analyze the data in Exercise 8.3.6.

8.5.4. In Exercise 2.3.5 the following fictitious data were presented as supporting Galton’s

idea that skills are inherited and hence young children of skilled laborers should show

greater manual dexterity than those of unskilled laborers:
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Frequencies of Dexterity Skill Scores

Father: x g f e d c b a A B C D E F G X

Skilled: 0 0 0 1 0 0 1 1 0 1 1 1 0 1 2 1

Not: 1 1 1 0 2 1 0 0 1 1 0 0 1 1 0 0

On this scale lowercase x is the lowest possible measurement and an uppercase X the

highest.

a. Why can rank order statistics be used for a nonparametric test to compare the skills

of the two groups of children?

b. What assumptions of that test should be of concern for a statistical analysis of these

data?

c. Give the null hypothesis for the nonparametric test and the alternative that agrees

with Galton’s experimental hypothesis

d. Test the null hypothesis and draw conclusions about the skills of the two groups of

children.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain

why.

8.1. The t distribution is appropriate for small sample sizes irrespective of whether or not the

variance is known.

8.2. For each positive-integer degree of freedom, there is a different t distribution.

8.3. Gosset discovered that when n is small s2 tends to overestimate s2.

8.4. For a one-sample t test, the region of rejection is uniquely determined by the alternative

hypothesis and sample size.

8.5. For a fixed a level, as the degrees of freedom increase in a t test, the absolute value of

the critical value increases.

8.6. CI0:95: �yy+ t0:025s=
ffiffiffi
n

p
contains 95% of all population means.

8.7. �yy+ ta=2,vs=
ffiffiffi
n

p
is narrower than the corresponding interval based on the standard

normal distribution �yy+ za=2s=
ffiffiffi
n

p
.

8.8. If two samples consist of pairs of data, the experimenter may choose between the

matched-pair t test or the t test for two independent samples.

8.9. In the matched-pair t test, the parameter in the null hypothesis must equal zero.

8.10. In a paired comparison t test involving 20 pairs of twins, there are 38 degrees of

freedom.

8.11. A paired comparison t test should always be used when s2
1 ¼ s2

2.

8.12. If a t test determines that the difference between two sample averages is significant, then

the experimenter should conclude that two different populations were sampled.

8.13. If in a two-sample t test m1 ¼ m2, then the computed value of t will be exactly zero.
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8.14. If for two populations s2
1 ¼ s2

2 the best estimate of the common variance is (s21 þ s22)=2
irrespective of other considerations.

8.15. If H0: m1 ¼ m2 is true, then for the group comparison t test the t statistic should be close

to 0.

8.16. If s2
1 ¼ s2

2 is true, then the F statistic should be close to 0.

8.17. When s2
1 and s

2
2 are unequal and unknown and the samples are small, there is no exact

test for a hypothesis of equality of means from the two populations.

8.18. There are many F distributions, one for each ordered pair of degrees of freedom.

8.19. In a box-and-whisker plot, the “box” is constructed so that 50% of the observations lie

within it.

8.20. 1/F0.005,6,8 ¼ F0.995,8,6.
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9 Distributions of Two Variables

Thus far our discussion of inference has focused on the values of a single variable of

interest obtained from a random sample. We saw in Chapter 2, however, that it is possible

to consider more than one variable associated with a given population. For example, two

variables from the same population that might be considered are age and blood pressure.

Other examples are height and weight, caloric intake and weight loss, and hours of study

and grade on an exam. In this chapter we consider pairs of variables and possible

relationships between these variables. In all of the sections except 9.5 both variables are

numerical. In Section 9.5 the variables are nominal. It is also possible to study the

relationship among several variables; for example, blood pressure is related to age, weight,

and exercise. Relationships among more than two variables are discussed in Chapter 14.

Relationships between two variables, one of which is nominal and the other numerical, are

also discussed in Chapter 14.

9.1. SIMPLE LINEAR REGRESSION

A question often asked about a pair of variables x and y is, “How do changes in x affect the

value of y?” For example, as a man ages five years, how will this affect his blood pressure? Or

we might ask a related question, “What is the expected value of y for a certain value of x?” For

example, if a man is 30 years old, what is his expected blood pressure?

The x variable age is called the independent variable or the predictor variable, and the

y variable blood pressure is called the dependent variable or the response variable. If x

and y have a relationship with each other, to predict y from x, we have to be able to find a

model for the relationship. The simplest model of a relationship is a straight line. If a

straight-line model is appropriate, the line is called the regression line and we say that we

are regressing y on x. This type of regression is called simple linear regression; “simple”

indicates that there is only one independent variable and “linear” indicates that the model

is a straight line.

When dealing with pairs of variables, we have the same difficulty as with a single variable,

namely, we usually are unable to measure all possible members of the population. In the

single-variable case, we solved this difficulty by using a random sample to make inference

about the population. We do the same for pairs of variables. For example, if we are interested

in studying a possible linear relationship between age and blood pressure in adult males, we

use a random sample of men, obtain sample data about age and blood pressure, and then see if

a straight line fits the data.

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X # 2004 John Wiley & Sons, Inc.
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Say a random sample of 10 adult males yields the following data:

Age x: 28 23 52 42 27 29 43 34 40 28

Systolic blood

pressure (mm Hg) y:

70 68 90 75 68 80 78 70 80 72

We begin our analysis by plotting the pairs x, y as points (Figure 9.1). This graph is called a

scatter plot. The points certainly do not fall exactly on a straight line, but there does appear to

be a general linear upward trend such that higher ages are associated with higher systolic

blood pressure. Regression is used to fit a straight line to such data in a unique way so that the

line can be used to predict systolic blood pressure from age.

It is possible, of course, that two variables are related in some other manner than by a

straight-line relationship, or perhaps they are not related to each other at all. Thus our

discussion of simple linear regression must include a method for determining whether or not a

straight line is the appropriate model for a given set of data (Section 9.2).

Since the simplest possible relationship between two variables is a straight line, it is natural

to try to use this model before considering more complex models. Sometimes, even if the true

relationship is something other than a straight line (as in Figure 9.2), a straight line may be

close enough to the true relationship for a preliminary analysis. A straight line is convenient to

use because the mathematics involved is relatively simple.

Sometimes the true relationship is definitely not linear and a straight line is a very poor

model of the relationship. One example is the relationship between the amount of nitrogen

fertilizer used on a field and the yield of the crop. The true relationship is quadratic and would

be represented by a parabola. In this example, however, economy limits the amount of

fertilizer that the farmer would consider using, and in the economical range the relationship

might be approximated by a straight line (Figure 9.3). Unfortunately, not every curvilinear

relationship will have such a subset of x values that are the main interest of the investigator.

Curvilinear relationships are discussed in Sections 14.6 and 14.7.

To understand how a straight line is fitted to a set of data that consists of pairs of values

obtained for two variables, we consider an overly simplified example. Imagine that an efficiency

expert is investigating a possible linear relationship between the number of hours of instruction

employees receive about a certain assembly procedure in a factory and the number of units they

are able to produce per hour. The following data are collected from five employees:

FIGURE 9.1. A scatter plot of age and systolic blood pressure.
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Hours of Instruction x Units per Hour y

1 5

2 4

3 6

4 8

5 7

In a real study the investigator would take a random sample of several employees from the

groups of employees with the different levels of instruction. However, to keep this illustration

simple, we imagine a random sample of just one employee at each level. The approach is the

same for several employees at each level.

The first thing the investigator does is graph the scatter diagram (Figure 9.4). If there are

enough points in the scatter diagram, it may indicate the general shape of the curve or line that

can possibly be used as a model for the variables. A generalized random scatter may indicate

that there is no relationship between the variables.

FIGURE 9.3. A relationship that is approximated by a straight line in a certain region of the independent

variable.

FIGURE 9.2. A relationship that is approximated by a straight line.
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Even if the relationship is linear, not all of the points will lie exactly on the line. The model

(Figure 9.5) is of the form

y ¼ aþ bxþ 1

The regression line is given by the function

f (x) ¼ aþ bx

FIGURE 9.5. A regression line.

FIGURE 9.4. Scatter diagram for the production study.
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in which a is the y intercept and b is the slope† (the change in y per unit increase in x). The

term 1 indicates the vertical deviation of a particular point from the line, that is, the line

represents the mean y response at a given x value, but individuals will deviate from the mean

response due to random variability.

Returning now to the factory example, if the investigator thinks the relationship is linear,

the problem is to specify the line that characterizes the relationship by finding the equation of

the line. Since only a sample is available, the parameters a and b must be approximated. One

approach is simply to draw a line that seems to fit the data; however, this would not be a

unique solution. Another approach is to draw a line that has an equal number of points above

and below; this is not unique either. Or the line might be drawn such that the vertical

deviations would sum to zero; but again, this is not unique.

The problem of approximating the true regression line is solved by using the least-squares

trend line, also called the sample regression line. The least-squares trend line is that unique

line for which the sum of the squares of the vertical distances of the sample points from the

line is as small as possible (Figure 9.6). Assume that the least-squares line is of the form

ŷy ¼ aþ bx

in which a is the y intercept and b is the slope. We minimize the function

f (a, b) ¼
X

( y� ŷy)2

in which y is an observed value and ŷy is the value predicted by the line for the corresponding x.

That is, we find a and b such that this sum is as small as possible. This is done using calculus

and leads to two simultaneous equations called the normal equations:

anþ b
X

x ¼
X

y

a
X

xþ b
X

x2 ¼
X

xy

Solving these two equations simultaneously, the slope is

b ¼
X

xy�
X

x
� � X

y
� ��

n

X
x2 �

X
x

� �2�
n

FIGURE 9.6. A vertical deviation from a least-squares line.

†Note that this use of a and b is entirely different from the use of these symbols in connection with Type I and Type II

error.
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and

a ¼ �yy� b�xx

The denominator of the slope should be familiar; it is similar to the computational form for

the sum of squared deviations that appears in a sample variance,

X
(x� �xx)2 ¼

X
x2 �

X
x

� �2�
n

The numerator of the slope can be shown to be a sum of products:

X
(x� �xx)( y� �yy) ¼

X
xy�

X
x

� � X
y

� ��
n

Because expressions of this type are used so frequently in regression, it is convenient to use

some brief symbols to represent them. We use

Sxx ¼
X

(x� �xx)2 ¼
X

x2 �
X

x
� �2�

n

and

Sxy ¼
X

(x� �xx)( y� �yy) ¼
X

xy�
X

x
� � X

y
� ��

n

for the sum of the squared x deviations and for the sum of the products of deviations. Then the

estimated slope is

b ¼ Sxy

Sxx

The least-squares line has the property of containing the point (�xx, �yy), in which �xx is the

sample average of the x values and �yy is the sample average of the y values. This point may or

may not be one of the sample points; in this example it happens to be a data point (Figure 9.7).

Since one of the points on the line is known, (�xx, �yy), the line can be determined once we know

its slope. The slope is given by the formula

b ¼ Sxy

Sxx
¼

X
xy�

X
x

� � X
y

� ��
n

X
x2 �

X
x

� �2�
n

so it can be computed as follows:

x y x 2 xy

1 5 1 5

2 4 4 8

3 6 9 18

4 8 16 32

5 7 25 35

15 30 55 98

b ¼ 98� (15)(30)=5

55� (15)2=5
¼ 8

10
¼ 0:8
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The slope indicates that as x increases one unit y increases 0.8 units. An additional hour of

instruction increases mean productivity by 0.8 units per hour. Using the slope and starting at

(�xx, �yy) ¼ (3, 6), we move one unit to the right and 0.8 unit up to locate a second point on the

line (if the slope had been negative, we would move down). Since two points determine a

unique straight line, the least-squares trend line can now be drawn.

The y intercept can be found from the formula

a ¼ �yy� b�xx

¼ 6� 0:8(3)

¼ 3:6

Thus the equation of the line is

ŷy ¼ 3:6þ 0:8x

This is the sample regression line, and assuming that it is the proper model for the

investigation, it is used to predict y for a given x; that is, it can predict the number of units per

hour that would be produced if an employee had a certain number of hours training. Only

values between 1 and 5 may be specified for the independent variable x, since data were

collected only for that range. Extrapolation outside the range of the x variable is not reliable

since the relationship may not be linear in other regions.

Remember that a sample regression line may be used for prediction only if the model is

appropriate. It is always possible to compute the least-squares line; its usefulness for

prediction is a different question, which will be dealt with in the next section.

The slope of the least-squares line gives us some information about the nature of the

relationship. If b is close to zero, it may be approximating a true slope of b ¼ 0. A slope of

b ¼ 0 indicates that there is no relationship between x and y, or that the y means have a

FIGURE 9.7. The least-squares trend line.
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constant value, or it could indicate a nonlinear relationship (however, not all nonlinear

relationships have b ¼ 0). If x and y are linearly related and increase together, then b

approximates b . 0. If y decreases as x increases, then b approximates b , 0 (Figure 9.8).

Note that the slope of the least-squares line is not a pure number, but it is expressed in

certain units of measurement. For example, if the variables are x, height in inches, and y,

weight in pounds, then b is expressed in

(inches)(pounds)

(inches)2
¼ pounds

inch

FIGURE 9.8. Various types of scatter diagrams with population regression lines.
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that is, in pounds per inch. If the same subjects were measured in centimeters and kilograms, b

would have a different value because it would be in different units of measurement. Because

of this, the magnitude of the slope cannot be used as a measure of the strength of the linear

relationship. A measurement used to express the degree of association between x and y is the

correlation coefficient. This is discussed in Section 9.4.

Further, we should note that the equation

ŷy ¼ aþ bx

is the sample regression line for the regression of y on x. The regression of x on y is usually a

different line. Thus, if x is hours of sleep per night and y is pounds overweight, we might

regress pounds overweight on hours of sleep; that is, we would want to predict pounds

overweight from hours of sleep (if in fact there was a linear relationship). On the other hand,

we might be interested in the regression of hours of sleep on pounds overweight; that is, we

would want to predict hours of sleep from pounds overweight. In most studies, the two lines

would be different.

Procedure. The Least-Squares Trend Line

Given n pairs of observations x, y, the least-squares trend line or sample regression line for the

regression of y on x is

ŷy ¼ aþ bx

To find this line, compute

X
x,

X
x2,

X
y, and

X
xy

and then compute

�xx ¼
X

x=n

�yy ¼
X

y=n

Sxx ¼
X

x2 �
X

x
� �2�

n

Sxy ¼
X

xy�
X

x
� � X

y
� ��

n

The slope is

b ¼ Sxy

Sxx

and the y intercept is

a ¼ �yy� b�xx
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EXERCISES

9.1.1. Which of the following completes the statement correctly? In the equation

ŷy ¼ aþ bx, the value of a:

a. Can never be negative

b. Determines the slope of the trend line

c. Determines the point at which the trend line intersects the y axis

d. Determines the point at which the trend line intersects the x axis

9.1.2. Draw a scatter diagram and find the least-squares trend line for the following sample

data.

Number of hours of study x: 4 5 6 7 8 9 10 11 12

Grade on exam y: 55 60 50 70 70 70 80 90 85

9.1.3. If x is measured in pounds and y is measured in days, what are the units of

measurement for the slope of the least-squares trend line?

9.1.4. In each case below, use the information given to obtain the numerical value of the

slope of the least-squares trend line.

a. ŷy ¼ 5 if x ¼ 10, and ŷy ¼ 10 if x ¼ 20.

b.
X

(x� �xx)( y� �yy) ¼ 30,
X

( y� �yy)2 ¼ 10, and
X

(x� �xx)2 ¼ 5:

c. ŷy ¼ �3þ 15x.

d. �yy ¼ 10, �xx ¼ 13, and ŷy ¼ 15 if x ¼ 15.

9.1.5. A botanist studying Arabadopsis thaliana notes a relationship between the number of

branches on the plant and the number of seed pods it produces. A preliminary analysis

yields the following data:

Branches x: 14 15 16 17 18

Seed pods y: 50 60 70 100 120

a. Find
X

(x� �xx)( y� �yy).

b. Compute the slope of the trend line.

c. Give the equation of the trend line.

d. What is the predicted number of seed pods on a plant with 16 branches?

9.1.6. Obesity in mice is inherited. For every gram above mean mature weight that a female

mouse is in her generation, the mean of her daughters’ mature weights is 2/5 g above
the mean weight in their generation.

a. What is the slope of the regression line?

b. Predict the mature weight of a daughter if her mother’s weight is 28 g, the mean

for the mother’s generation is 23 g, and the mean for the daughter’s generation is

20 g.

c. Predict the mature weight of a daughter if her mother’s weight is 23 g, the mean

for the mother’s generation is 20 g, and the mean for the daughter’s generation is

22 g.

220 DISTRIBUTIONS OF TWO VARIABLES



9.1.7. A study of nursing activities is conducted in a 100-bed hospital in Kansas. The

nursing staff remains constant through the study, but the patient load varies, so it is

possible to observe how nurses allocate their duty time with different patient loads.

One of the nursing activities observed and measured is patient care and another is the

time spent on records and reports. A separate study is made for each hospital ward,

and the data below represent the minutes per staff duty hour spent on these activities

by the nurses in the surgery ward under varying patient loads:

Patient load: 2 3 4 6 7 8

Patient care: 44.7 53.0 71.7 111.3 129.4 159.9

Records and reports: 15.8 16.0 13.3 10.4 7.2 9.3

a. Examine the relationship between patient load and time spent in patient care.

i. What sort of linear relationship seems logical, positive or negative?

ii. Do the data tend to support the experimental hypothesis?

iii. Compute the slope of the least-squares trend line that shows how an increase in

patient load affects staff time allocated to patient care.

iv. What are the units of measurement for the slope of the trend line?

v. Find the equation that would allow surgery-ward nurses to predict the amount

of time they have to allocate per staff duty hour for a given number of patients

in their ward.

vi. Use the equation to estimate the amount of time required for patient care if

there were only one patient in the ward. (Since one patient is outside the range

of the data collected, this may be a poor estimate.) Use it to estimate the time

required for 5 patients.

b. Examine the relationship between patient load and time spent on records and

reports.

i. Does the linear relationship appear to be positive or negative?

ii. Does such a relationship seem intuitively logical prior to the survey or is the

relationship one that can be rationalized after the data are collected?

iii. Compute the least-squares trend line that shows how an increase in patient

load affects the staff time allocated to records and reports.

iv. Suppose that a minimum of 5 minutes per staff duty-hour is required for

necessary records and reports. Assume that the trend can be extrapolated and

estimate the point at which patient load becomes so heavy that the surgical

nursing staff no longer has adequate time for record keeping.

9.1.8. When a straight line is fitted to data that follow a binomial distribution, a special

procedure known as probit analysis is employed. This procedure takes into account

such conditions as the relationship between the mean and the variance of the binomial

distribution and the fact that the trend is rarely linear over the full range of p.
However, the first step in probit analysis is to fit a “provisional” line to the data, and

this can be done by employing the least-squares procedure developed in this section.

Suppose an advertising firm wants to determine the relationship between the number
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of times a commercial is shown on national television and the percentage of viewers

who have seen the commercial.

Number of times commercial shown x: 10 15 20 25 30

Percentage of viewers y: 13 32 35 53 67

a. Use least-squares procedures to find the slope of the trend line.

b. Give the equation of the “provisional” line.

c. Use the equation to estimate how many times a television commercial must be

shown before 50% of the viewers have seen it. (This is called the 50% effective

dose, or ED50, in probit analysis.)

9.1.9. Francis Galton extended least-squares techniques by employing them in a study of the

relationship between mature heights of fathers and their sons. He collected hundreds

of observations, plotted them on graph paper, and noted a straight-line relationship

among average heights. Some of his data in inches might be as follows:

Fathers’ height: 65 66 67 68 69 70 71

Average height of sons: 66.9 67.8 68.0 67.9 69.6 69.2 70.1

a. What is the average height of the fathers’ generation?

b. What is the average height of the sons’ generation?

c. If a group of fathers are each 1 in. above average height for their generation, what

is the expected average deviation of their sons from the average height of their

respective generation?

9.1.10. A study is made to determine the rate of disappearance from the environment of

radioactive chemicals after a nuclear accident. Strontium 85 is released in an alfalfa

field in a simulated accident. Twenty goats are allowed to graze the field, and at 30-

day intervals the level of strontium 85 is measured in dried samples of alfalfa as well

as in the goats’ milk. The alfalfa data are given below:

Days after release x: 30 60 90 120 150

Strontium level in dried

alfalfa y, ppm:

1.85 1.43 1.21 1.19 1.37

a. Compute the least-squares trend line.

b. What are the units of measure for the slope? For the y intercept?

c. The measured level of strontium 85 in alfalfa on day 150 seems somewhat

contrary to the trend shown in the other data. Compute the predicted level for

x ¼ 150. Compute the deviation of the observed value from this point on the trend

line.

9.1.11. Fit a straight line to the age and blood pressure data given in this section.
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9.2. MODEL TESTING

The least-squares line can always be computed for any set of two or more points with different

x values. It may not be appropriate, however, to predict from this line. For prediction, two

conditions are necessary:

1. The straight-line model fits the data.

2. The straight line being estimated is not horizontal (b = 0); that is, the regression line is

a better predictor of y than �yy.

In this section we discuss each of these conditions in turn.

First we need to be more precise as we speak of a regression line being a model for a

certain research situation. Two variables x, y (Figure 9.9) meet the conditions for the

regression of y on x if:

1. The x values are fixed by the experimenter and are measured with negligible error.†

2. For each x value there is a normal distribution of y values. (This assumption is

necessary for inference.)

FIGURE 9.9. The regression model.

†Regression analysis is also possible in cases where x is a random variable (see Section 9.4).
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3. The distribution of y for each x has the same variance, symbolized as s2
y�x and read as

the “variance of y independent of x” to indicate that the variance around the trend line is

the same irrespective of the value of x.

4. The expected values of y for each x lie on a straight line.

Another way to express these conditions is to say that the variables satisfy the model

y ¼ aþ bxþ 1

in which the 1’s are normally distributed with a mean of zero and a variance of s2
y�x and the 1’s

are independent of the x’s and independent of each other.

One way to test for violations of these assumptions is by an examination of the residuals

y� ŷy ¼ e that result from fitting the least-squares line to the sample data. In the small example

about employee training used for illustration purposes in Section 9.1, the residuals could be

computed as follows:

x y ŷ y 2 ŷ ¼ e

1 5 3.6 þ 0.8(1) ¼ 4.4 0.6

2 4 3.6 þ 0.8(2) ¼ 5.2 21.2

3 6 3.6 þ 0.8(3) ¼ 6.0 0.0

4 8 3.6 þ 0.8(4) ¼ 6.8 1.2

5 7 3.6 þ 0.8(5) ¼ 7.6 20.6

Since the e’s estimate the 1’s in the model, to check for normality, an overall plot of the

residuals can be drawn as a dot diagram (Figure 9.10). In this unrealistically small example it

is difficult to check for departures from normality because of the small number of points.

Some patterns that appear with larger samples are illustrated in Figure 9.11.

Linearity can be checked by plotting the residuals e against the predicted values ŷy (Figure

9.12). A linear relationship is reflected in a random scatter about a horizontal line at e ¼ 0. If

the relationship is nonlinear, it usually results in a systematic plot that has some pattern. A

systematic pattern could also indicate that another independent variable is affecting y.

Equality of variances can be checked by plotting the residuals e against the predicted

values ŷy or the independent variable x (Figure 9.13). Equal variances result in a horizontal

band of points, whereas variances that depend on the magnitude of xwill result in a fan-shaped

distribution. In situations where the variance of y is proportional to the magnitude of x and the

trend line passes through the origin, the trend line is usually estimated by the ratio of the two

means, �yy=�xx (see Section 9.7).

The regression model assumes independence of the 1’s. This means that the random error

in one observation does not affect the random error in another observation. This assumption is

sometimes violated. If the observations have a natural sequence in time or space, the lack of

independence is called autocorrelation.

FIGURE 9.10. An overall plot of residuals.
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Autocorrelation may occur for several reasons: The dependent variable may follow

economic trends; an instrument may be drifting out of calibration; batch processes in a reactor

system may leave some of the product to be carried over to the next batch; observations may

be from adjacent experimental plots that have similar conditions. These are only some

examples. Diagnosis is difficult, but this type of dependence can sometimes be detected

by plotting the residuals against the time order or the spatial order of the observations

(Figure 9.14).

The visual inspection of the original scatter diagram of the data and the various types

of residual plots is an important first step in any regression analysis and should not be

omitted. Statistical programs on computers make it possible to inspect these diagrams

with little labor. If the diagrams reveal any departures from the assumptions required

for regression, a different model may be necessary, or perhaps a transformation can be

used on the data before the regression analysis (Sections 14.6 and 14.7). If the visual

inspection does not turn up any departures from assumptions, we have not proved that

the model is correct, but at least there is no overwhelming evidence that it is wrong.

Besides these visual checks of the assumptions, there is a statistical test that can be

performed to see if there is a significant lack of fit with a straight line. Repeated observations

are necessary at each x value to carry out such a test (see Draper and Smith 1998). This test for

lack of fit is found in some statistical computer packages such as SAS and JMP.

If we decide that a straight line seems to be a reasonable model, then we need to determine

that the line is not horizontal. A horizontal line indicates that x does not make a significant

FIGURE 9.11. Checking overall plots of residuals for violations of normality.
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contribution to the prediction of y; that is, there is no linear relationship. To test whether the

line is horizontal, we test

H0:b ¼ 0

in which b is the slope of the population regression line. Rejection of this hypothesis is

evidence that the line explains a significant portion of the variability in y. Acceptance of this

hypothesis means that there is no advantage to considering the values of x as we attempt to

predict y. We could do just as well by using the model ŷy ¼ �yy.

The test statistic is a t statistic in which b is the estimator of the parameter b. To estimate

the standard error of the estimator b for the denominator of the t test, we first must consider

the variance of the y values about the sample regression line. We use the residuals and

compute the sum of the squared residuals, and then we divide this sum by the degrees

of freedom that are n 2 2 for simple linear regression (thus a minimum of 3 points is required

for this test).

FIGURE 9.12. Residuals plotted against predicted values to check for a linear relationship.

226 DISTRIBUTIONS OF TWO VARIABLES



It may be helpful to explain why the degrees of freedom in the denominator for the variance

around the sample trend line are n 2 2 rather than the n 2 1 we use when computing the variance

around the sample mean. The explanation begins by remembering that the sample trend line is

ŷy ¼ aþ bx

so the sum of squared deviations around the trend line is

X
( y� ŷy)2 ¼

X
( y� a� bx)2

Since a and b, respectively, are estimates of a and b, the two parameters of the straight line, we

simply continue the practice we first began in Section 5.2 of subtracting a degree of freedom for

each parameter we estimate.

FIGURE 9.13. Residuals plotted against the independent variable to check for equality of variances.
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For example, in the employee training example, the variance of the observations about the

least-squares line is computed as follows:

y 2 ŷ (y 2 ŷ)2

0.6 0.36

21.2 1.44

0.0 0.00

1.2 1.44

20.6 0.36

3.60

and

s2y�x ¼
X

( y� ŷy)2

n� 2
¼ 3:60

5� 2
¼ 1:2

in which n is the number of pairs of data. Variance about the trend line is the variance in y

when we have removed the effect of the x variable. In the employee training example, before

FIGURE 9.14. Residuals plotted against the order in which they were observed.
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we have removed the effect of the x variable, the variance in y is

s2y ¼
X

( y� �yy)2

n� 1
¼ 10

4
¼ 2:5

This represents the variance of the data points about �yy. In contrast, s2y�x is the variance about
the trend line and is the variance in y independent of x.Note that 2.5 is reduced to 1.2 when the

effect of x is removed (Figure 9.15).

In practice, it is usually easier to use the short computational formula

X
( y� ŷy)2 ¼

X
( y� �yy)2 �

X
(x� �xx)( y� �yy)

h i2�X
(x� �xx)2

¼ Syy �
S2xy

Sxx

¼ Syy � bSxy

in which

Syy ¼
X

( y� �yy)2 ¼
X

y2 �
X

y
� �2�

n

Using s2y�x, the standard error of b can be shown to be

sy�xffiffiffiffiffiffi
Sxx

p

FIGURE 9.15. Deviation of an observed y value from the average y value and from a predicted y value.
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and the t statistic for a test of H0: b ¼ 0 is

t ¼ b� b0

sy�x=
ffiffiffiffiffiffi
Sxx

p

with n 2 2 degrees of freedom.

In the training example, to test H0: b ¼ 0 against Ha: b . 0 at a ¼ 0.05, we would reject

the null hypothesis if t � t0.05,3 ¼ 2.353. A one-tailed test is used because additional training

is expected to increase productivity if it is of any effect at all. Then

t ¼ 0:8� 0ffiffiffiffiffiffiffi
1:2

p
=

ffiffiffiffiffi
10

p ¼ 2:31

and the null hypothesis is not rejected. Thus the line seems to be horizontal and the equation of

the trend line should not be used for prediction. Note that the t statistic of 2.31 is very close to

the critical value, so it is possible that a larger sample size might provide evidence that the line

does contribute significant information about y. We repeat again that the small sample size

here is unrealistic and is used only to keep the computations to a minimum.

If it is possible to reject b ¼ 0, then prediction from the least-squares line is appropriate.

Prediction may be done only for values of x within the range of the collected data.

Extrapolation outside of that range is not reliable.

Values other than zero may be used in the null hypothesis when testing the slope parameter

if this is reasonable for the experiment. The test procedure is analogous.

Procedure. Testing the Slope Parameter

Assumption: y ¼ a þ bx þ 1 with the 1’s independently normally distributed with a mean of

0 and a variance s2
y�x

Test of Hypothesis

H0: b ¼ b0

Ha: b = b0 or b . b0 or b , b0

Significance level: a
Test statistic:

t ¼ b� b0

sy�x=
ffiffiffiffiffiffi
Sxx

p

with

b ¼ Sxy

Sxx
and s2y�x ¼

Syy � bSxy

(n� 2

Region of rejection: jtj � tn�2
a=2 , or t . ta,n�2 or t , �ta,n�2, respectively.
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EXERCISES

9.2.1. For the data in Exercise 9.1.2:

a. Carry out a residual analysis.

b. Show that s2y�x ¼ 33:57.

c. To test the significance of the least-squares line:

i. Give the most logical null and alternative hypotheses.

ii. Give the critical value.

iii. Compute the test statistic and state the conclusion.

9.2.2. Explain the difference between y and ŷy.

9.2.3. If y is the number of fish caught in x hours of fishing, give the units of measurement for:

a. The slope of the trend line

b. A predicted y value

c. The point in which the trend line meets the y axis

9.2.4. Some species of tropical fish bear their young alive rather than lay eggs. An aquarium

keeper wants to determine whether the number of young increases with each parity

(time when young are produced). The following data are available for study:

Order of parity: 1 2 3 4 5

Number of young: 7 11 9 13 15

a. Find the slope of the sample regression line.

b. Compute the sample variance about the trend line.

c. What are the most logical null and alternative hypotheses about the slope of the

regression line?

d. Why is a two-sided alternative inappropriate?

e. To perform the test:

i. What assumptions must be made about the distributions of x and y?

ii. If the assumptions are valid, what conclusion should be drawn?

9.2.5. Review Exercise 9.1.7 of this chapter, in which there is a discussion of the effect of

patient load on nursing activities in a hospital.

a. Conduct a test of hypothesis to see if patient load can be used to predict the time

spent on patient care.

i. Give the null hypothesis in symbols and in a complete sentence.

ii. Why should the alternative hypothesis be one-sided?

iii. Give the critical value of the test statistic for a ¼ 0.05.

iv. Perform the test of significance.

b. Conduct a test of hypothesis about patient load as a predictor of the time available

for records and reports.

i. Give the null hypothesis.

ii. Why should the alternative hypothesis be two-sided?

iii. Perform the test of significance at a ¼ 0.01.
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9.2.6. When experimentation with lysergic acid diethylamide (LSD) first began, the

hallucinogenic effect was noted as so similar to the symptoms of schizophrenia that

medical scientists thought they had discovered a chemical cause of the mental disorder.

Because an increase in the level of copper in the blood is frequently (but not always)

associated with schizophrenia, a study was made to see whether the level of blood

copper increased with the administration of increasing dosages of LSD.

a. What null hypothesis would be used in an analysis of this experiment?

b. What would be the alternative hypothesis?

c. Dosages were calibrated according to the percentage of those receiving the dosage

who hallucinate. The level of blood copper was measured at each dosage. The data

obtained were as follows:

Effective dosage (%): 0 25 50 75 100

Level of blood copper

(mg/liter):
0.87 0.98 0.70 0.90 1.05

i. Compute the slope of the least-squares trend line.

ii. Test the b ¼ 0 at a ¼ 0.5.

iii. Draw conclusions, answering the following questions: Do increasing dosages of

LSD cause significant increases in blood copper level? Because increased blood

copper is a common condition in schizophrenia, is there significant evidence

that LSD may be a chemical cause of schizophrenia?

9.2.7. Review Exercise 9.1.10 in which a nuclear accident is simulated by releasing strontium

85 in an alfalfa field.

a. Compute
X

( y� ŷy)2 by using the short computational formula.

b. Compute
X

( y� ŷy)2 by finding the expected value on the trend line for each value

of x and subtracting it from the observed value.

c. In performing a test of significance of the least-squares trend line:

i. What is the null hypothesis?

ii. Why is the alternative Ha: b , 0?

iii. What is the critical value of the test statistic for a ¼ 0.05?

iv. What is the decision about the null hypothesis? What should be concluded?

9.2.8. In Exercise 9.1.9 involving the relationship between fathers’ and sons’ heights:

a. Compute the expected height of sons y of fathers of each height x given in the

experiment.

b. Compare observed height y with expected height �yy and compute:

i. The sum of the deviations from the trend line,
X

( y� ŷy)

ii. The sum of the squared deviations from the trend line,
X

( y� ŷy)2

c. Compare observed height y and expected height ŷy in terms of how they deviate from

the average; compute:

i. The sums of the deviations from the average,
X

( y� �yy) and
X

(ŷy� �yy)

ii. The sums of the squared deviations from the average,
X

( y� �yy)2 andX
(ŷy� �yy)2
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d. Use the above computations to empirically verify the following mathematical

identities:

i. The sum of squares from the average equals the sum of squares due to the linear

trend plus the sum of squares from the trend line:

X
( y� �yy)2 ¼

X
(ŷy� �yy)2 þ

X
( y� ŷy)2

ii. The sum of squares due to the linear trend is

X
(ŷy� �yy)2 ¼

X
( y� �yy)(x� �xx)

h i2
X

(x� �xx)2
¼ S2xy

Sxx
¼ bSxy

iii. The sum of squares from the trend line is

X
( y� ŷy)2 ¼

X
( y� �yy)2 �

X
( y� �yy)(x� �xx)

h i2
X

(x� �xx)2
¼ Syy � bSxy

9.3. INFERENCES RELATED TO REGRESSION

The term “regression” originated with the work of Francis Galton. The studies of inheritance

inspired by Darwin’s work led Galton to believe that everything could be studied

quantitatively. One of his studies involved the linear trend between the heights of fathers and

their sons. The slope of the trend line in this particular study was positive but less than 1, so

Galton called the relationship a “regression toward the mean.” The term “regression” was then

applied to any linear trend. It was an unfortunate term, however, because the slope of a least-

squares trend line need not be less than 1.

TABLE 9.1. Inferences Related to Regression

Parameter

Test Statistic

n ¼ n 2 2

1 2 a Central Confidence

Interval

a t ¼ a� a0

sy�x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nþ �xx2=Sxx

p a+ ta=2,n�2sy�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ �xx2

Sxx

s

b t ¼ b� b0

sy�x=
ffiffiffiffiffiffi
Sxx

p b+
ta=2,n�2sy�xffiffiffiffiffiffi

Sxx
p

m�
y ¼ E( y if x ¼ x�) t ¼ ŷy� (m�

y )0

sy�x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nþ (x� � �xx)2=Sxx

p ŷy+ ta=2,n�2sy�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ (x� � �xx)2

Sxx

s
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Several types of inference are possible in relation to the regression line. Confidence

intervals and tests of hypotheses are possible for parameters a and b and for

m�
y ¼ E( y if x ¼ x�), the expected value of y for a specific value x� of x. These procedures

are summarized in Table 9.1.

The following example will illustrate the use of some of these procedures.

Example 9.1. Inferences Related to Regression

If the efficiency expert in Section 9.1 had obtained the following data instead of that

previously given,

x: 1 1 2 4 4 5 6 6 7

y: 3 6 4 3 6 5 9 10 8

he could organize the regression analysis as follows:

n ¼ 9
X

x ¼ 36
X

x2 ¼ 184X
xy ¼ 248

X
y ¼ 54

X
y2 ¼ 376

�xx ¼
X

x=n ¼ 36=9 ¼ 4:0

�yy ¼
X

y=n ¼ 54=9 ¼ 6:0

Sxx ¼
X

(x� �xx)2 ¼
X

x2 �
X

x
� �2�

n ¼ 184� (36)2=9 ¼ 40

Syy ¼
X

( y� �yy)2 ¼
X

y2 �
X

y
� �2�

n ¼ 376� (54)2=9 ¼ 52

Sxy ¼
X

(x� �xx)( y� �yy) ¼
X

xy�
X

x
� � X

y
� ��

n ¼ 248� (36)(54)=9 ¼ 32

The estimated slope is

b ¼
X

(x� �xx)( y� �yy)X
(x� �xx)2

¼ Sxy

Syy
¼ 32

40
¼ 0:80

The y intercept is

a ¼ �yy� b�xx ¼ 6� 0:8(4:0) ¼ 2:8

The least-squares trend line is

ŷy ¼ 2:8þ 0:8x

Assuming that a residual analysis uncovers no deviations from the assumptions, it is valid to

predict from this line because, testing

H0: b ¼ 0 against Ha: b . 0
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at a ¼ 0.05, we find

s2y�x ¼
X

( y� ŷy)2

n� 2
¼ Syy � S2xy=Sxx

n� 2

¼ 52� (32)2=40

7
¼ 3:78

sy�x ¼
ffiffiffiffiffiffiffiffiffi
3:78

p
¼ 1:95

and

t ¼ b� 0

sy�x=
ffiffiffiffiffiffi
Sxx

p ¼ 0:8

1:95=
ffiffiffiffiffi
40

p ¼ 2:595

with

t0:05,7 ¼ 1:895

The 95% central confidence interval on b is

CI0:95: b+ t0:025,7sy�x=
ffiffiffiffiffiffi
Sxx

p

0:8+ 2:365(1:95)=
ffiffiffiffiffi
40

p

0:8+ 0:73

If the researcher wants to find the average productivity with 3.5 hours of instruction, he

finds

ŷy ¼ 2:8þ 0:8x ¼ 2:8þ 0:8(3:5) ¼ 5:6

This is the estimate of the average productivity for 3.5 hours of instruction, E(y if x ¼ 3.5).

The 95% central confidence interval on this parameter is

CI0:95: ŷy+ t0:025,7sy�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ (x� � �xx)2

Sxx

s

5:6+ 2:365(1:95)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9
þ (3:5� 4)2

40

s

5:6+ 1:58

If an experimenter is interested in predicting the next y observation at a given level x� of x,
the point estimate is the same as for the expected y value at that level:

ŷy ¼ aþ bx�
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However, the formula for the prediction interval on the next observation is slightly different

than the formula for the confidence interval on the expected value:

PI1�a: ŷy+ ta=2,n�2sy�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ (x� � �xx)2

Sxx

s

These prediction intervals are wider than the corresponding confidence intervals, and this

seems logical because we are trying to predict a single value rather than the population mean

for all values of y with a common x�. Both types of intervals are narrowest at x� ¼ �xx

(Figure 9.16).

EXERCISES

9.3.1. The linear relationship between weight y (in grams) and age x (in days) has been

studied in a strain of inbred guinea pigs. The following values have been computed.

The guinea pigs ranged from 8 to 14 days of age.

n ¼ 16, b ¼ 5:0, �xx ¼ 11, �yy ¼ 87X
(x� �xx)( y� �yy) ¼ 200,

X
( y� �yy)2 ¼ 1,126

a. Find
X

(x� �xx)2.

b. Compute the variance about the least-squares trend line.

c. Place a 95% confidence interval on the mean weight of 8-day-old guinea pigs.

FIGURE 9.16. Prediction intervals and confidence intervals.
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9.3.2. A random sample of 27 college men yields the following data in a study of the

relationship between arm length x (in inches) and leg length y (in inches):

X
x ¼ 675

X
y ¼ 810 b ¼ 1:2

X
(x� �xx)2 ¼ 25

X
( y� �yy)2 ¼ 136

a. Compute the variance around the sample regression line.

b. Make a test of significance of this line against the most logical alternative.

c. Find a 95% confidence interval for b.

d. Predict the leg length of a man with arms 25 in. long.

e. Find the 95% prediction interval for this length.

9.3.3. In an effort to find a method of predicting the dental work required by army recruits, an

army dentist studies the dental records of a random sample of 10 recruits completing

their service. She computes the relationship between the number of cavities filled in the

first two years of service y with the number of cavities filled in the two years before

service x.

a. State the null hypothesis that should be used to test for the usefulness of the

regression line.

b. Give the alternative hypothesis you would suggest to the dentist and the reason for

that alternative.

c. Give the critical value.

9.3.4. Suppose the following statistics are computed for the dental study in Exercise 9.3.3:

X
x ¼ 50,

X
y ¼ 52,

X
xy ¼ 321

X
(x� �xx)2 ¼ 68,

X
( y� �yy)2 ¼ 75:6

a. Find the estimate of the slope of the trend line.

b. Find the standard error of the estimate of the slope.

c. Find 95% central confidence intervals for:

i. The slope of the trend line.

ii. The average number of cavities an enlistee will have filled during his first two

years of service.

d. Find the 95% prediction interval for the number of cavities to be filled in the teeth of

a new enlistee who in the previous two years had 3 new fillings.

9.3.5. In an experiment involving 12 female mice and their first litters, a study is made of the

relationship between the rate of weight gain (gain divided by original weight) of the

female during pregnancy x and the birth weight y of her litter. The following statistics

are computed:

�xx ¼ 0:10, �yy ¼ 20:00,
X

xy ¼ 24:48

X
(x� �xx)2 ¼ 0:16,

X
( y� �yy)2 ¼ 15:84
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a. Find b.

b. Find the sample variance about the trend line.

c. Test the significance of the trend line against the most logical one-sided alternative

hypothesis.

d. Estimate the average birth weight of a litter for a mouse that gained 0.12 during

pregnancy.

e. Place a 95% confidence interval on this estimate.

f. Find the intersection of the trend line with the y axis.

g. Place a 90% confidence interval on a.

h. Comment on the validity of parts d through g.

9.3.6. Refer again to Exercise 9.1.7, which discusses the effect of patient load on nursing

activities.

a. Place a one-sided 95% confidence interval on the lowest value of the slope of the

trend line that relates time spent on patient care with patient load.

b. Place a two-sided 95% confidence interval on the slope of the trend line relating

time spent on records and reports with patient load.

9.3.7. For Exercise 9.2.6, which examines the relationship between LSD dosage and blood

copper level:

a. Compute a 90% two-sided confidence interval on the slope.

b. Compute a 90% central confidence interval on the y intercept.

c. Compute a 90% confidence interval for the lowest mean copper level of those

receiving a 50% dosage.

d. Find the 90% prediction interval for the lowest copper level of an individual who

would receive a 70% dosage.

e. Is it valid to use these intervals?

9.3.8. For Exercise 9.1.10, which involves a simulated nuclear accident:

a. Place a 95% central confidence interval on the mean ppm of all alfalfa samples that

could be taken on the 150th day.

b. Place a 95% central prediction interval on the ppm of a single sample that could be

taken that day.

c. How does the observed sample correspond to these intervals?

d. The data do not record the amount of strontium 85 released and immediately

available to the alfalfa at the start of the experiment.

i. Estimate this from the data available.

ii. Place a 99% confidence interval on this estimate.

iii. Would you have any hesitation about using these estimates?

9.4. CORRELATION

The main use of regression is prediction. Suppose our example involving the efficiency expert

reflected a practical situation. We would want first to test to determine whether there is a
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significant linear relationship between the hours of instruction an employee receives and the

number of units per hour that employee can produce. Once armed with a significant linear

trend, we would then want to choose a sensible number of hours of instruction, x� (which does
not extrapolate beyond the data used in the analysis), and predict the resulting mean hourly

production, m�
y . However, there are situations in which the x variable is not “fixed” or readily

chosen by the experimenter but instead is a random covariate to the y variable; that is, x and y

vary together. In such situations, we may be more interested in determining the strength of the

linear relationship than in prediction, and the sample correlation coefficient r is the statistic

employed for this purpose.

In Example 8.3 in the previous chapter, we used the matched-pair t test because we

anticipated a strong linear association between the length of time required by a student to

perform a calculation using calculator A and the length of time required by the same student to

perform a similar calculation using calculator B. In mathematical terminology, length of time

for calculation on A (the x variable) and length of time for calculation on B (the y variable) are

covariates and are said to have a linear bivariate distribution, simply meaning that we can use

a straight line to model the manner in which they vary together. Furthermore, the variance of

difference in time, d ¼ x 2 y, is found to be

V(d) ¼ V(x� y) ¼ s2
x þ s2

y � 2rsxsy

in which s2
x is the variance of x, s2

y is the variance of y, and r is the correlation coefficient.

This equation, containing the correlation coefficient r as a parameter of the linear bivariate

distribution of x and y, shows why the variance of the differences will be small when r is large.
In correlation studies, we are interested in the strength of the linear relationship between

two variables, so we estimate the correlation coefficient, make statistical inference about it,

and see how the variability in the experiment is affected by association between the two

variables.

To demonstrate how the sample correlation is computed, we will turn again to the data in

Example 8.3 giving the times for each student when similar calculations are performed on

different calculators:

Student number: 1 2 3 4 5 6 7 8 9 10 11 12

Calculator A, x: 23 18 29 22 33 20 17 25 27 30 25 27

Calculator B, y: 19 18 24 23 31 22 16 23 24 26 24 28

The same sample statistics are computed as in regression analysis, namely

Sxx ¼ 262:67 Sxy ¼ 199:67 and Syy ¼ 191:67

and with these, we can compute the sample correlation coefficient

r ¼ Sxyffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p ¼ 199:67ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(262:67)(191:67)

p ¼ 0:89

Unlike the regression coefficient b, the correlation coefficient has no units of measurement

associated with it. Thus, from the magnitude of the absolute value of r, we can get a feeling of

the strength of the linear association. In all cases21 � r � þ 1. If r ¼ 21, there is a perfect
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negative relationship and all the data points are on a sample regression line with negative

slope. If r ¼ þ1, the relationship is a perfect positive one with all sample points on a

regression line with positive slope. As r gets closer to zero, there is less association between

the variables. Thus the direction and, to some degree, the strength of association can be judged

simply by looking at the sign and magnitude of r. With a sample correlation coefficient

r ¼ 0.89, we can see that there is a positive and relatively strong linear association between

the students’ respective computing times using each calculator. Because of this strong

correlation, the variance of differences will be small, and hence the matched-pair t test is a

very efficient method of analysis.

In the matched-pair t test, we deal with x 2 y, which is a linear combination of the two

covariates, and V(x 2 y) is estimated as the random variation in the experiment. In regression,

for the estimate of random variability, we estimate the variance of a different linear

combination of x and y, namely V(y 2 a 2 bx). In these two situations, and in others to follow

in later chapters, we anticipate that there is a linear association between x and y, and if there is,

the experimental variance will be smaller after we have explained the variability due to the

correlation between x and y.

When we discuss the variability in ywhich is explained by the linear association between x

and y, we frequently use another statistic which is related to the sample correlation coefficient.

This is the sample coefficient of determination r 2. The coefficient of determination has the

following interpretation:

The proportion of variability

in y unexplained by the

linear relationship

8><
>:

9>=
>; ¼

X
( y� ŷy)2X
( y� �yy)2

¼
X

( y� �yy)2 �
X

(x� �xx)( y� �yy)
h i2�X

(x� �xx)2X
( y� �yy)2

¼ 1� S2xy

SxxSyy
¼ 1� r2

and so

r2 ¼ 1� the proportion of unexplained variability in the population

¼ the proportion of variability in y which is explained by the linear relationship

Thus r 2 indicates the proportion of the variability in y explained by the linear bivariate

association with x. If r 2 is large (close to 1), most of the variability is explained by the

relationship, and knowledge of the numerical value of the x variable is almost as efficient as

knowledge of y. If r 2 is close to zero, then there is little linear association between the two

variables, and information about the size of the x variable provides very little information

about the size of the y variable. There are studies in which r 2 is the most meaningful statistic

to be computed, and even in regression analysis it is frequently the first statistic which is

computed in order for the experimenter to determine whether a regression equation will be

useful for predicting y.

In the data from Example 8.3, we found that r ¼ 0.89, and hence r 2 ¼ 0.79. Thus 79% of

the variability among the students’ computing times with calculator B can be explained on the

basis of the linear relationship between their respective computing times on the other
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calculator. While we cannot predict perfectly how long it will take a student to perform a

calculation on B, there is evidence that anyone who is fast when using calculator Awill also be

fast when using calculator B, and vice versa.

We have seen that in a regression or correlation analysis, we apportion the sum of squares

for experimental variability into two parts:

X
( y� �yy)2 ¼

X
( y� ŷy)2 þ

X
(x� �xx)( y� �yy)

h i2
X

(x� �xx)2

where

X
(x� �xx)( y� �yy)

h i2
X

(x� �xx)2
¼ sum of squares due to the trend line

and

X
( y� ŷy)2 ¼ sum of squares around the trend line:

When there is no correlation between the variables x and y, these two sums of squares can

be divided by their degrees of freedom and provide two independent estimates of s2
y , the

variance of y. We have seen that there are n 2 2 degrees of freedom associated withX
( y� ŷy)2. We have also seen that bSxy is an alternative method of computing the sum of

squares due to regression; hence there is one parameter estimated and consequently 1 degree

of freedom associated with that sum of squares. Thus we can use an F test to determine

whether these two terms are simply independent estimates of the same variance or whether the

linear association explains significant variability in the y variable. The F test is

F ¼ (S2xy=Sxx)=1

(Syy � S2xy=Sxx)=(n� 2)
¼ r2

(1� r2)=(n� 2)

if both numerator and denominator are divided by Syy. This F test is a routine part of most

regression analyses performed on a computer. It will be examined in further detail in Section

9.6 on JMP analysis, and it is an integral part of multiple regression analysis, which is covered

in Chapter 14.

Notice that

F ¼ (S2xy=Sxx)=1

(Syy � S2xy=Sxx)=(n� 2)
¼ (Sxy=Sxx)

2Sxx

s2y�x

¼ b

sy�x=
ffiffiffiffiffiffi
Sxx

p
� �2

¼ t2

that is, the F test for the significance of the correlation coefficient is equivalent to the t test for

a zero slope.

Care should be taken in the interpretation of regression and correlation. If there is a

significant linear relationship, this in itself does not indicate that changes in the x variable

cause changes in the y variable. In the efficiency example, it is possible that increased
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instruction causes increased productivity; however, the significance of the regression line

alone does not prove this. Causality must be demonstrated by an argument outside the

statistical analysis. In many cases there may be no causality involved. If there is a strong linear

association between length of upper arm and that of lower arm, it would be difficult to claim

that a long upper arm is the cause of a long lower arm. Instead, both variables reflect the

growth pattern of the individual. Furthermore, in Example 8.3, there is probably no causality,

but instead the calculating times on each calculator are just two different measures of a

student’s manual dexterity.

The foregoing discussion of correlation and regression indicates that they are different but

not mutually exclusive techniques. Roughly, regression is used for prediction, whereas

correlation is used to determine the degree of association.

Besides the different functions served by regression and correlation, different assumptions

are used to develop the theory behind these procedures (see Table 9.2 and Figure 9.17). As a

result of these models, the following guidelines should be used. All regression procedures

(Sections 9.1 to 9.3) may be applied to both models.

Also, the computation of the sample correlation coefficient and the coefficient of

determination may be applied to both models. However, inference about the population

correlation coefficient should only be made if the experimenter believes the variables are

bivariate normal (fit the correlation model); for example, the statistic r may be used as an

estimate of the population correlation coefficient r. If r ¼ 0 for a bivariate normal

distribution, then there is no useful linear relationship and we can also conclude that x and y

are independent in the statistical sense. (Recall that in regression analysis, if b ¼ 0, it is still

possible that x and y are related by some type of relationship other than a linear one.)

The hypothesis H0: r ¼ 0 is tested with a t statistic having n 2 2 degrees of freedom:

t ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

n� 2

r

TABLE 9.2. Difference between Regression and Correlation

Regression Model Correlation Model

1. x is fixed at levels chosen by the

experimenter. (Scientists call this an

independent variable.) At each fixed x level,

subjects are chosen at random and y is

measured. (Scientists call y the dependent

variable.)

1. Subjects are sampled at random and the x, y

measurements are recorded.

2. x is measured without error; that is, there is no

sampling variability in x. Only y contains

sampling variability.

2. Both x and y contain sampling variability.

3. For each value of x there is a normal

distribution of y.

3. For each value of x there is a normal

distribution of y, and for each value of y there

is a normal distribution of x.

4. Each distribution of y has the same variance. 4. The x distributions have the same variance.

The y distributions have the same variance.

5. The expected value of the normal y

distributions lie on a straight line.

5. The joint distribution of x and y is the

bivariate normal distribution.
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Example 9.2. Inference from the Sample Correlation

Some people have life-threatening reactions to vaccines, so an immunologist is looking for a

measurement which can be made on a patient before vaccination and which will be highly

correlated with the patient’s reaction to the vaccine. Suppose that the following (fictional) data

are obtained when a small amount of a hepatitis vaccine is used in a skin test on a random

FIGURE 9.17. The different assumptions for regression and correlation.
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sample of patients and then their skin test results are compared to their reactions when the

vaccine is administered subcutaneously:

Patient: A B C D E F G H

Skin test, x: 10 19 17 9 5 4 8 16

Reaction, y: 22 26 22 18 20 17 15 30

The following sample statistics are computed:

Sxx ¼ 224 Sxy ¼ 148 and Syy ¼ 170

and these are then used to compute the sample correlation coefficient

r ¼ Sxyffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p ¼ 148ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(224)(170)

p ¼ 0:76

Because a positive association would be anticipated, the hypotheses would be H0: r ¼ 0

and Ha: r . 0. The critical value for an a ¼ 0.05 test is t0.05,6 ¼ 1.946 and the test of

significance is

t ¼ 0:76� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (0:76)2

8� 2

r ¼ 2:864

As may have been anticipated from the sizes of r and r 2, there is a significant linear

association between skin test and vaccine reaction, and the relatively large value of

r 2 ¼ 0.5776 indicates that a fairly useful prediction of vaccine reaction can be made if based

on the least squares equation in which the x variable is the result of the skin test.

Frequently in research papers we find that the correlation coefficient or the coefficient of

determination will be computed and tested for significance even in situations where the x and

y variables do not have a bivariate normal distribution. The t test, or its F test counterpart, will

be valid with the usual assumptions (independent random sampling, normality, and equal

variances) only for the y variable at each level of x in the experiment. The interpretation is

different than for a bivariate normal population. If there is a bivariate normal population and

an investigator wants to learn more about the relationship between the two variables (perhaps

height and weight) in that population, he draws a random sample of members of the

population and computes r as an estimate of r. In contrast to this, an agronomist may select 6

increasing levels of fertilizer x and then compute the correlation with yield of corn y. He is

using the correlation coefficient as the square root of the coefficient of determination, or as an

index of how well a linear relationship fits the experimental data. He can use the t test to

determine whether the levels of fertilizer explain a significant portion of the variability in corn

yield, but the value of r is not an estimate of correlation between yield and levels of fertilizer.

The experimenter who wishes to use correlation procedures needs to be aware of an

unusual feature about r. This t test is valid only to decide whether x and y are independent or

whether there is a useful linear relationship between x and y, that is, the specific null

hypothesis r ¼ 0. It cannot be used to test a hypothesis such as r ¼ 0.5. Furthermore, the
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analogy between the t test and confidence interval, which we have observed in other

situations, does not hold true with regard to the correlation coefficient.

This situation arises because the correlation coefficient is bounded between 21 and þ1,

and therefore the distribution of the sample estimates, the r’s, is symmetrical only when

r ¼ 0. If the value of r is very close to þ1, then the range of overestimates is small but the

range of underestimates is relatively large. The opposite is true if r is closer to 21. Thus,

when r is not zero, the sampling distribution will be skewed to the right or left depending upon

whether r is negative or positive, respectively. Furthermore, the sample correlation coefficient

r is a biased estimate of the parameter r when the latter is nonzero. Thus it is obvious that the
sampling distribution of r is not a normal distribution when r = 0, and therefore a t test

cannot be used because, as we have seen, such a test requires that the sampling distribution be

normal.

A solution to the difficulty was first presented by R. A. Fisher (1890 to 1962), whose early

theoretical research in statistics involved the sampling distribution of the correlation

coefficient. Three of Fisher’s findings are of particular use to us:

1. Although we assume a bivariate normal distribution of the x, y data points when we

estimate the population correlation parameter r, when this parameter has a value of 0,

the distribution of r does not depend on the distribution of x but only on that of y. This is

important here because it means that, since y has a normal distribution, the two tests for

a useful linear relationship are equivalent:

t ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

n� 2

r and t ¼ bffiffiffiffiffiffiffi
s2y�x
Sxx

s

Thus we may use whichever is more convenient when testing r ¼ 0.

2. No matter what the value of r, there is a transformation

zr ¼ loge
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ r)=(1� r)

p

that provides a near-normal sampling distribution and permits the use of procedures

involving the normal distribution.

3. The variance of the transformed value zr
† is practically independent of r and r and can

be considered a known parameter s2 ¼ 1/(n 2 3). Because the variance is known, we

use the normal distribution rather than the t distribution when dealing with the zr
transformation.

As a consequence of points 2 and 3, we can make the following kinds of statistical

inference about the correlation coefficient.

Example 9.3. Confidence Interval for r

In a study of obesity, the sample correlation coefficient for weights of 28 mature obese

brother–sister pairs is computed to be r ¼ 0.64. A nutritionist wishes to place a 95%

confidence interval on the population correlation coefficient r.

†We use the symbol zr to avoid confusion with the standard normal deviate.
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A confidence interval is first found on the transformed parameter zr using zr, and then the

confidence limits are transformed back to r values:

CI1�a: zr � za=2(1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
) � zr � zr þ za=2(1=

ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
)

Since r ¼ 0.64 is transformed to zr ¼ loge
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ 0:64)=(1� 0:64)

p ¼ 0:758 (see Table A.13a
in the Appendix),

CI0:95: 0:758� 1:96(1=5) � zr � 0:758þ 1:96(1=5)

0:366 � zr � 1:150

Using Table A.13b, the corresponding r values are

zr ¼ 0:366 ! r ¼ 0:350

zr ¼ 1:150 ! r ¼ 0:818

Thus

CI0:95: 0:350 � r � 0:818

A similar approach is used to test whether the population correlation coefficient is some

nonzero value.

Example 9.4. Test of H0: r ¼ r0 with r0 = 0

The nutritionist in the previous example wants to testH0: r ¼ 0.5 againstHa: r = 0.5 because

of some prior theory or available evidence. The test is a z test with statistic

z ¼ zr � zr0
1=

ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p

Since r ¼ 0.64, it follows that zr ¼ 0.758, and r0 ¼ 0.5 is transformed to zr0 ¼ 0:549 (Table

A.13a). Thus

z ¼ 0:758� 0:549

1=5
¼ 1:048

The null hypothesis is rejected at a ¼ 0.05 if jzj . 1.96, so the nutritionist concludes that r
may be 0.5.

Fisher’s transformation can also be used to compare two correlation coefficients.

Example 9.5. Testing r1 ¼ r2

Suppose that the nutritionist has data on 23 brother–sister pairs of conventional mature

weight in addition to the data above for obese pairs where r1 ¼ 0.64. For the conventional
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sample, r2 ¼ 0.38. To test whether the correlation is the same for both populations at

a ¼ 0.05, the following test is used:

H0: r1 ¼ r2 against Ha: r1 = r2

is tested with

z ¼ zr1 � zr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1 � 3
þ 1

n2 � 3

r

Thus

z ¼ 0:758� 0:400ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

25
þ 1

20

r ¼ 1:193

Since za/2 ¼ 1.96, there is no significant difference between the two correlation coefficients.

The correlation between weights of brother–sister pairs may be the same for obese siblings as

for those of conventional weight.

The various types of inference about correlation coefficients are summarized below.

Procedure. Inferences about Correlation Coefficients

Assumption: bivariate normal distribution

Tests of Hypotheses

Significance level: a

1. H0: r ¼ 0

Ha: r = 0 or r . 0 or r , 0

Test statistic:

t ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

n� 2

r

Reject H0 if jtj � ta/2,n22 or t � ta,n22 or t � 2 ta,n22, respectively.

2. H0: r ¼ r0 with r0 = 0

Ha: r = r0 or r . r0 or r , r0
Test statistic:

z ¼ zr � zr0
1=

ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p using Table A.13a for zr and zr0

Reject H0 if jzj � za/2 or z � za or z � 2 za, respectively.

3. H0: r1 ¼ r2
Ha: r1 = r2 or r1 . r2 or r1 , r2
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Test statistic:

z ¼ zr1 � zr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1 � 3
þ 1

n2 � 3

r

Reject H0 if jzj � za/2 or z � za or z � 2 za, respectively.

Confidence Interval on r

Compute CI1�a: zr + za=2(1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
), then use Table A.13b to transform the lower and upper

limits back to r values.

There are many other statistical tests of association or “correlation.” Some of them employ

data on the ordinal scale of perception, and to distinguish them from the method studied here,

they are sometimes called rank correlation procedures (see Section 9.5). Conversely, the

procedure to be used for bivariate normal data is sometimes called the Pearson product

moment correlation, in recognition of Karl Pearson’s original contributions. By convention,

however, when the unmodified term “correlation” is seen, it is assumed that Pearson’s

procedure is the one under discussion.

EXERCISES

9.4.1. Given the scatter diagrams for x, y pairs in Figure 9.18, select the best answer for each

diagram.

Statistic Diagram 1 Diagram 2

a. Slope of trend line 22, 21, 0, þ1, þ2 22, 21, 0, þ1, þ2

b. Intercept of y axis 0, 2, 4, 8, 10 0, 1, 2, 3, 4

c. Correlation coefficient 20.9, 20.4, 0,

þ0.4, þ0.9

20.9, 20.4, 0,

þ0.4, þ0.9

d. t test for r ¼ 0 Significant,

nonsignificant

Significant,

nonsignificant

FIGURE 9.18. Scatter diagrams for Exercise 9.4.1.
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9.4.2. Test H0 concerning the population correlation coefficient:

a. H0: r ¼ 0, Ha: r = 0, n ¼ 20, r ¼ 0.550, a ¼ 0.01

Would the H0 be accepted or rejected? What does this mean?

b. H0: r ¼ 0, Ha: r . 0, n ¼ 18, r ¼ 0.43, a ¼ 0.05

Would the H0 be accepted or rejected? What does this mean?

c. H0: r ¼ 0.4, Ha: r = 0.4, n ¼ 28, r ¼ 0.62, a ¼ 0.05

Would the H0 be accepted or rejected? What does this mean?

9.4.3. Twenty-six newborn baby boys are weighed and measured for length. The standard

deviation of weight is 2 lb, but usual linear regression techniques reveal that 40% of the

variability in weight can be explained by the relationship between weight and length.

Make a test to determine whether the relationship explains a significant (a ¼ 0.05)

portion of the variability in weight.

9.4.4. In a study involving 25 dairy cattle, the correlation between milk yield from first and

second lactations was found to be 0.42.

a. Test the significance of the relationship (a ¼ 0.05).

b. How useful do you think the relationship would be in predicting milk yield for

second lactation?

9.4.5. Given the scatter diagrams in Figure 9.19:

a. Which diagram has the greater b value?

b. Which diagram has the greater r value?

c. For diagram 1, does �yy ¼ 1, 2, 3, or 4?

d. For diagram 2, does �yy ¼ 1, 2, 3, or 4?

An oncologist wants to evaluate the usefulness of the CAT scan for uterine tumor diagnosis.

For 12 women with fibroid tumors, certain measurements are taken by CAT scan techniques

prior to surgery and then compared with other measurements taken on the tumors in the

pathology laboratory after they had been surgically removed. Suppose the paired

measurements on tumor mass are

FIGURE 9.19. Scatter diagrams for Exercise 9.4.5.
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Patient A B C D E F G H I J K L

CAT scan, x 18 17 28 20 11 24 16 15 19 24 23 13

Pathology, y 20 4 25 16 19 21 22 10 23 27 18 11

and the statistics computed are

X
(x� �xx)2 ¼ 278

X
( y� �yy)2 ¼ 498

X
(x� �xx)( y� �yy)X

(x� �xx)2
¼ 0:723

X
(x� �xx)( y� �yy)

h i2

X
(x� �xx)2

¼ 108:58

a. Find the sample correlation coefficient.

b. State the most logical hypotheses about the correlation between the CAT scan

measurement of tumor mass and that obtained at pathology.

c. Give the critical value for an a ¼ 0.05 test of your null hypothesis.

d. Perform the test of significance.

e. Do you think the relationship would be useful in being able to use the CAT scan

information to predict fibroid tumor mass prior to surgery?

Using the data in Exercise 9.1.7, place a 90% confidence interval on the correlation coefficient

for the relationship between x ¼ patient load and y ¼ time available for records and reports.

9.5. NONPARAMETRIC STATISTICS: RANK CORRELATION

When we record data at the ordinal scale of measurement or reduce numerical data to the

ordinal scale by transforming them to ranks, we can perform the computational procedures of

correlation on the ranks. The resulting coefficient, which is given the symbol rs and called

Spearman’s rank correlation in recognition of the psychologist C. E. Spearman, who

popularized the procedure, has much the same meaning as the correlation coefficient we have

already studied. It provides a measure of linear association between the ranks of the x variable

and those of the y variable. The bounds on the coefficient are the same:21.0 � rs � þ 1.0. If

rs is fairly large and positive, then there is close positive agreement between the ranks of the

two variables. If rs is close to 21.0, then, when one variable has a high rank, its companion

tends to have a low rank, and vice versa. Also, when rs is near zero, the ranks of the x and y

variables are nearly independent.

To demonstrate the computational procedures, we will designate rx as the rank of an x

variable and ry as the rank of its companion y variable; then

rs ¼
X

(rx � �rrx)(ry � �rry)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
(rx � �rrx)

2
X

(ry � �rry)
2

q

However, with respect to both rx and ry, we are dealing with the ranks from 1 to N, so

�rrx ¼ �rry ¼ (N þ 1)=2, and
X

(rx � �rrx)
2 ¼

X
(ry � �rry)

2 ¼ N(N2 � 1)

12
:
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Therefore we can employ some moderately mundane mathematical manipulation and arrive at

the following equation which simplifies the computations:

rs ¼ 1� 6
X

d2

N(N2 � 1)
,

where d ¼ rx 2 ry is the difference in ranks assigned to an x, y pair.

Under the null hypothesis that rx and ry are independent,

E(rs) ¼ 0 and V(rs) ¼ 1

N � 1

and it is generally agreed that if there are 10 or more x, y pairs the distribution of rs can be well

approximated by a normal distribution. Therefore, we can test the null hypothesis H0:

E(rs) ¼ 0 with a z test:

z ¼ rs � 0ffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

r ¼ rs
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p

For samples smaller than 10, tables for the exact distribution of rs or
X

d2 can be found in

most textbooks on nonparametric statistics.

Example 9.6. Spearman’s Correlation

Color indicators are frequently used to detect the level of certain chemical compounds in

water or other liquids, and then further action is based on how dark the color becomes when

the indicator is added to a sample of the liquid. Suppose that there are two chemists who

regularly make decisions about the treatment of a city’s water and they want to be sure that

they are in close agreement about their evaluations of the darkness of a color indicator, which,

depending on the level of the impurity in the water, will range from a light pink to a cherry red.

So the two chemists prepare 10 bottles of water each containing different quantities of the

impurity. Then they have a third person randomly assign identifying letters to the bottles so

that they can independently sample the bottles, apply the color indicator, and rank their

samples from lightest to darkest:

Bottle of water: A B C D E F G H I J

Rank by chemist 1, x: 5 2 1 7 3 6 9 8 10 4

Rank by chemist 2, y: 4 3 2 8 1 7 10 6 9 5

d ¼ rx 2 ry: 1 21 21 21 2 21 21 2 1 21

d 2: 1 1 1 1 4 1 1 4 1 1

rs ¼ 1� 6
X

d2

N(N2 � 1)
¼ 1� 6(16)

10(100� 1)
¼ 1� 96

990
¼ 0:903

and they can test the null hypothesis H0: E(rs) ¼ 0, choosing Ha: E(rs) . 0 as the alternative

because they expect there to be agreement between the rankings of the two chemists. The test is

z ¼ rs � 0ffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

r ¼ rs
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
¼ 0:903(3) ¼ 2:709
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If the null hypothesis were true, the probability of a value of z as large or larger than 2.709

would be P ¼ 0.003. Because the P value is much smaller than the conventional a ¼ 0.05,

they would reject the null hypothesis and claim that there is a positive association between the

ranks which they give to the water samples. They seem to agree quite well on the lightness or

darkness of the color indicator in a water sample.

When data are on the ordinal scale, as in the previous example, we expect no ties to occur.

However, when we use the rank transformation on numerical data and find that certain

recorded numerical values are identical, we follow a procedure similar to that which we used

before for ties. We need to remember that we are concerned only about ties which occur

among the numerical values of the x variable and among those of the y variable. Thus, if two

numerical values of the x variable are tied for the second and third rank, we use the average of

the ranks to be assigned to the ties, and rx ¼ (2 þ 3)/2 ¼ 2.5 is assigned to each of the

members of the tie. We also follow the same procedure in obtaining ry when there are ties

among the numerical values of the y variable.

For reasons other than just its computational simplicity, Spearman’s rank correlation is a

very useful nonparametric procedure. Even if paired x, y data have a bivariate normal

distribution, and thus are suitable for conventional correlation procedures, rs and r will be

similar in numerical value, and the test of hypothesis for rs will be almost as powerful as that

for r. When data do not have a bivariate normal distribution, rs is frequently superior to r in

detecting association between the x and y variables.

Procedure. Spearman’s Rank Correlation

H0: E(rs) ¼ 0 (The ranking of the x variable is independent of that of the y variable.)

Ha: E(rs) = 0 or E(rs) . 0 or E(rs) , 0

Significance level: a

Computation of the rank correlation coefficient:

The measurements on the x variable are ranked from 1 to N and designated as rx.

The measurements on the y variable are ranked from 1 to N and designated as ry.

rs ¼ 1� 6
X

d2

N(N2 � 1)

with d ¼ rx 2 ry, the difference in ranks which are assigned to an x, y pair.

Test statistic:

z ¼ rs � 0ffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

r ¼ rs
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p

Region of rejection: jzj � za/2 or z . za or z , 2za, respectively.

EXERCISES

9.5.1. An anthropologist has a choice of two different methods of determining the age of

pottery fragments of ancient civilizations, and she wants to know if both procedures
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will yield the same results. Using each method, she determines the age (recorded in

thousands of years) for 10 pottery fragments of different ages and then compares the

results:

Fragment: A B C D E F G H I J

Method x: 10.5 15.3 12.4 12.9 14.4 11.6 12.9 13.6 10.8 14.6

Method y: 10.7 15.6 12.2 12.7 14.5 11.3 13.0 14.0 10.6 14.5

a. Compute Spearman’s rank correlation.

b. If Spearman’s rank correlation is to be tested for significance:

i. What are the most logical null and alternative hypotheses?

ii. What is the critical value for a ¼ 0.05?

c. Make the test of significance and draw inference.

d. Compute Pearson’s correlation and compare its value to rs.

A physician examines the blood constituents of 12 patients who have become sick from a

toxic amount of heavy metal in their drinking water. Among several variables of interest are

the following measurements of albumen and magnesium in their blood:

Patient: A B C D E F G H I J K L

Albumen: 4.5 5.0 5.2 4.8 4.9 4.6 4.9 3.5 5.1 3.7 4.7 4.3

Magnesium: 1.7 1.2 1.3 1.5 1.6 0.8 1.0 1.6 1.2 1.4 1.1 1.9

a. Show that
X

d2 ¼ 405.

b. What null and alternative hypotheses would you suggest for this study? Why?

c. Compute the rank correlation coefficient and perform the test of significance at

a ¼ 0.05.

Use the data in Exercise 9.4.6 to perform Spearman’s rank correlation.

a. How does the rank correlation coefficient compare to that obtained using conventional

procedures?

b. Using a ¼ 0.05, is the decision about the respective null hypothesis the same for both

test procedures?

9.6. COMPUTER USAGE

Scatter Plots

In Example 9.1 an efficient expert is investigating a possible linear relationship between the

number of hours of instruction employees receive and the number of units they produce per

hour. He enters the data into a JMP data table and names it “training”:
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To produce a scatter diagram the investigator uses the “Fit Y by X” item in the Analyze

menu. He selects Units as the Y;Response variable and Hours as the X;Factor in the dialog
box.

If there are enough points in the scatter diagram, they may indicate the general shape of the

curve or line that can possibly be used as a model for the variables. A generalized random

scatter may indicate that there is no relationship between the variables. Here the scatter plot

indicates a linear relationship.

Regression

To find the regression line, test the slope, and produce a graph that contains the regression line,

he uses the “Fit Line” item in a pop-up menu labeled “Bivariate Fit of Units by Hours.” The

output window is shown on the next page.

The values of interest are the F Ratio;Prob . F, and RSquare. The F Ratio is the

statistic described in Section 9.5 and is used to test whether there is a significant linear

relationship between hours and units. The Prob . F is the P value of the F statistic. In this

case there is a significant linear relationship at the 0.05 level of significance because Prob .
F is 0.0352. Rsquare is the coefficient of determination, that is, the square of the correlation

coefficient.
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The estimates of the regression coefficients are found in the table of

Parameter Estimates. The parameter estimate listed for Intercept is a, the estimate of the

intercept, and the parameter estimate listed for Hours is b, the estimate of the slope. The

t Ratio column gives the value of the test statistics for the t tests for a ¼ 0 and b ¼ 0. Notice

the t value of 2.61 is the square root of the F ratio in the Analysis of Variance table.
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Correlation

A correlation analysis is done by choosing the “Density Ellipse” option in the “Bivariate Fit”

pop-up menu. The output contains a graph and a correlation report.

The bivariate density ellipse plot views the relationship between hours and units as a

bivariate normal probability distribution. The plot is an ellipse that encloses 0.95 of the

probability. The Correlation text report gives the estimates of the five parameters of the

bivariate normal distribution. The sample correlation coefficient is 0.701646 and the P value

for the test of whether r ¼ 0 is 0.0352. Notice that this number is also the P value for the F and

t statistics.

9.7. ESTIMATING ONLY ONE LINEAR TREND PARAMETER

When we try to fit a trend line to data, especially for estimation, we generally use least-squares

regression to obtain an estimate of b the slope and of a the intercept of the line. Then with

these two estimates, we can predict the value of y for a specified value of x with the prediction

equation

ŷy ¼ aþ bx

However, there are times when we can assume that either the intercept or the slope is known,

and need not be estimated. For each of these situations, there are special statistical procedures

that are used instead of the least-squares methods examined in earlier sections of this chapter.

The first of the special methods is familiar and commonly used even by those unfamiliar

with least-squares estimation. It is ratio estimation and simply assumes that y increases

proportionally with x. Suppose a recipe for a fruit punch calls for 2 quarts of fruit juice to

prepare enough punch for 10 people, but 20 are expected to be at the picnic. Then we estimate

that it will require 4 quarts of juice to have enough punch for 20 people. That is all there is to
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predicting y (quarts of juice) for a specified x (number of people). The slope of the line is the

only parameter estimated when ratio procedures are used, for a ratio carries the automatic

assumption that the intercept is zero. To say that the intercept is zero is to say that when x ¼ 0,

y ¼ 0, and this seems reasonable in the case of quarts per person, for if no people attend the

picnic no juice is needed.

The second procedure, called difference estimation, is also familiar and in common use. It

is used when y is predicted simply by adding a constant to x. Everyone who watches television

news has had to suffer through one or another commercial for a diet medication that promises,

“You will lose seven pounds the first week!” According to that prediction, one’s weight next

week (y) will be this week’s weight (x) less 7 lb. To test the advertiser’s claim, only the

intercept of the line has to be estimated, for difference estimation assumes that the slope of the

linear relationship is equal to 1.0.

There are special advantages to ratio estimation and difference estimation besides their

familiarity and ease of use. In practice, one of the most difficult conditions data must meet for

the legitimate use of least-squares procedures is the assumption that the variance of y is the

same no matter what x it is associated with. It was noted in the discussion of least squares in

Section 9.2, that it is necessary to assume that variability of y from the trend line is the same

for all values of x. However, in many areas of study, y is often more variable for large values

of x than it is for smaller values. For example, the variability in weight (y) among people

whose height is x � 5 ft will usually be less than that among those for x � 6 ft, and the

variability in length of forearm will be greater for tall people than for short ones. This

assumption is not required for statistical inference in ratio estimation, and in difference

estimation it is part of the basic assumption about a common difference between x and y.

However, all conditions except the third stated in Section 9.2 for least-squares line analyses

(the equal-variance condition) must be met for inference based on either ratio estimation or

difference estimation. For inference based on either ratio estimation or difference estimation,

the fourth condition of linearity must be specified as a positive linear relationship.

For all methods of trend analysis, the variance of interest is that of the deviations of y

values from the trend line, that is the variance of the e, where e ¼ y� ŷy. The sample variance

among these deviations is computed as

s2e ¼
X

( y� ŷy)2

n� 1

The degrees of freedom are n 2 1 rather than the n 2 2 used for the sample variance in least-

squares procedures. This is because only one parameter, either the slope or the intercept, of the

trend line is being estimated, whereas both parameters are estimated for a least-squares trend

line. To avoid confusion over the nature of the line or the degrees of freedom, we use different

subscripts to designate the variance from the trend line when only one parameter is estimated.

As with least-squares methods, inference requires computation not only of the variance but

also of the standard error of the estimates involved. Computational procedures will be shown

in the examples explaining the use of each of these estimation procedures.

Example 9.7. Ratio Estimation

The threat of attacks by terrorists using anthrax spores is a concern to U.S. health officials.

Because there are also health risks associated with the use of protective vaccines, health

officials want to avoid mass vaccination of all citizens unless necessary. Instead, they keep the
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anthrax vaccine available at well-located health care facilities around the country, ready for

use if needed.

At each facility, an inventory is kept on the number of vials of vaccine in storage.

However, some are used for people who may have been exposed to naturally occurring

anthrax, other vials are accidentally broken, and others are discarded when the vaccine in the

vial becomes cloudy or otherwise appears to have spoiled. In all such cases the inventory

should be changed to reflect the loss, but this can be forgotten when the demands of health

care are more important than record keeping. So a public health worker conducts a study to

learn how to use the number of vials shown in the inventory to estimate the actual number of

vials available at a health care facility.

She takes a random sample of 20 facilities where anthrax vaccine is being kept. Then she

visits each facility in the sample in order to record howmany vials of vaccine are shown on the

inventory (x) and to count the number of vials actually available (y) in the storage refrigerator.

Her data and partial work are as follows:

Facility Inventory (x) In Storage (y) ŷ ¼ 0 þ 0.875x e ¼ y 2 ŷ

a 36 33 31.500 1.500

b 78 67 68.250 21.250

c 101 91 88.375 2.625

d 65 57 56.875 0.125

e 21 17 18.375 21.375

f 84 73 73.500 20.500

g 10 7 8.750 21.750

h 13 9 11.375 22.375

i 31 29 27.125 1.875

j 26 23 22.750 0.250

k 25 21 21.875 20.875

l 11 11 9.625 1.375

m 82 72 71.750 0.250

n 22 22 19.250 2.750

o 96 84 84.000 0.000

p 88 78 77.000 1.000

q 52 45 45.500 20.500

r 75 66 65.625 0.375

s 8 5 7.000 22.000

t 36 30 31.500 21.500

Sum 960 840 840.000† 0.000

So that it will not be mistaken as the least-squares slope, the public health worker may

choose to symbolize the estimated slope for ratio estimation by br, and compute it as

br ¼ �yy

�xx
¼ 42

48
¼ 0:875, or equivalently br ¼

X
yX
x
¼ 840

960
¼ 0:875

†br ¼
P

y/
P

x, hence
P

(brx) will always equal
P

y; this provides a check of arithmetic.
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She sees that, on the average, 0.875 is the proportion of vials shown in inventory that are

actually in storage, and she can estimate the number of vials in storage at any facility by using

the equation for a straight line,

ŷy ¼ aþ brx

¼ 0þ 0:875x

To compute the variance from the ratio trend line, she first subtracts the expected number

of vials ( ŷy) at each facility from the observed number (y) to obtain the deviations (e) given in

the last column of her work sheet. The desired variance is that among the 20 deviations,

s2e ¼
X

( y� brx)
2

n� 1
¼ 43:0625

20� 1
¼ 2:2664

This method of computing is fairly easy here because there are only three decimal places

associated with br and only 20 pairs of values, but instead she could have used algebra to

obtain an equation some find more useful for calculators,

s2e ¼
X

( y� brx)
2

n� 1
¼

X
y2 þ b2r

X
x2 � 2br

X
xy

n� 1

¼ 50902þ (0:875)265812� 2(0:875)(57855)

20� 1

¼ 43:0625

19
¼ 2:2664

Once s2e is obtained, for statistical inference, she still must compute the standard error of

the ratio, and this requires the equation

s:e:(br) ¼
ffiffiffiffiffiffiffi
s2e
n�xx2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:2664

20(48)2

s
¼ 0:007

A confidence interval is the statistical inference the public health worker likely wants to make,

so she uses the estimate br and its standard error to compute a CI0.95 in the usual fashion:

CI1�a: br + ta=2,n�1

seffiffiffiffiffiffiffi
n�xx2

p

0:875+ 2:093(0:007)

0:875+ 0:015

To express proportions as percentages, she would multiply values in the CI0.95 by 100. Then

based on her random sample, she can conclude that only 87.5% of the mean number of vials of

anthrax vaccine shown on health center inventories are actually in storage. To include the

width of the confidence band, she would give the margin of sampling error as +1.5%.

If she wanted to predict the number of vials available at a particular facility where the

number on inventory is x�, remembering the intercept is assumed to be zero, she would make

the prediction

ŷy ¼ brx
�
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To compute a prediction interval for a single facility, she would use

PI1�a: ŷy+ ta=2,n�1se

The mathematical procedure for difference estimation has already been studied in

Example 8.3, where the matched-pair t-test was discussed. So we need only to look at how the

same procedures can be used in linear estimation. The example pertained to a random sample

of 12 students who each used two different types of calculators, and the study was to

determine if the mean difference in speed of calculation on the two machines was significantly

different from zero.

To reexamine that study as one in linear estimation, we remember that the equation for

using a straight line for estimation is

ŷy ¼ aþ bx

Then, because in difference estimation we assume that the slope of the linear relationship is

b ¼ 1.0, only the intercept a needs to be estimated. The computation of a is the same as �yyd in

Example 8.3, and the sample variance around the trend line is the same as s2d in that example.

The same data are used again in Example 9.8 to demonstrate the difference estimation

procedure.

Example 9.8. Difference Estimation

We want to see if we can use a student’s speed of calculation on Calculator A (x) to predict his

speed using Calculator B (y). The data are

Student Machine A (x) Machine B (y) d ¼ (y 2 x)† d 2 ¼ (y 2 x)2

1 23 19 24 16

2 18 18 0 0

3 29 24 25 25

4 22 23 1 1

5 33 31 22 4

6 20 22 2 4

7 17 16 21 1

8 25 23 22 4

9 27 24 23 9

10 30 26 24 16

11 25 24 21 1

12 27 28 1 1X
d ¼ �18

X
d2 ¼ 82

†The signs of the differences are reversed from Example 8.3 because the subtraction here is B 2 A.
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If we wish to use a different symbol for the intercept to distinguish it from the least-squares

intercept, we can give the equation to compute it as

ad ¼
X

( y� x)

n
¼

X
di

n
¼ �18

12
¼ �1:5

The variance from the trend is computed as before in the matched-pair t test

s2d ¼
X

d2 �
X

d
� �2�

n

n� 1
¼ 82� (� 18)2=12

11
¼ 5

and the standard error of the estimate of the intercept is

sdffiffiffi
n

p ¼
ffiffiffiffiffi
5

12

r
¼ 0:645

As we have seen before, once we have an estimate of a parameter and the standard error of

the estimate, we have the two numerical values necessary for statistical inference, a test of

hypothesis, confidence interval, or prediction interval.

Procedure. Linear Trend Estimation

Assumption: y ¼ aþ bxþ 1 with the 1’s independently distributed as N(0, s2)

Estimation: A value of y can be estimated for a specific x� with the linear equation

ŷy ¼ aþ bx�

For each method of trend fitting, the intercept and slope must be estimated or assumed to be a

specified value.

The variance of the 1’s is estimated by ŝs2 ¼ S( y� ŷy)2=n, where n is the degrees of freedom

Method Intercept Slope Estimated Variance

Least squares a ¼ y 2 b�xx b ¼ Sxy/Sxx sy�x
2 ¼ (Syy 2 bSxy)/(n 2 2)

Ratio a ¼ 0 br ¼
X

y/
X

x se
2 ¼

X
(y 2 brx)

2/(n 2 1)

Difference ad ¼
X

( �yy 2 �xx) b ¼ 1 s2d ¼
X

d2 �
X

d
� �2�

n

n� 1

Standard errors of the estimates are as follows:

Method Standard Error for Intercept Standard Error for Slope

Least squares sy�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ �xx2

Sxx

s
sy�xffiffiffiffiffiffi
Sxx

p

Ratio No estimate involved
seffiffiffiffiffiffiffi
n�xx2

p

Difference sd=
ffiffiffi
n

p
No estimate involved
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EXERCISES

9.6.1. Use algebra to verify that when br ¼
X

y/
X

x, for any set of bivariate data,
X

br x

will be equal to
X

y.

9.6.2. Using the same data set as in Examples 8.3 and 9.8:

a. Compute the least-squares trend line and ratio trend line.

b. Compare the values of
X

( y� ŷy)2 for each trend line; why should it be smallest for

the least-squares trend line?

Using the data in Example 9.7:

a. Compute the least squares trend line and difference trend line.

b. Compare the numerical values of intercepts and slopes for each method.

c. Which method would you use to estimate the number of vials of vaccine? Explain why.

U.S. attack helicopters are difficult to maintain in good flying condition in arid, sandy terrain.

When based in such areas, there will usually be some that are not ready to fly until repaired. A

general in command of 15 squadrons of helicopters at various bases in an arid, sandy region

knows that on most days each squadron will have a few craft that are being repaired and not

ready to fly. He wants to estimate the mean number per squadron that will not be flight-ready.

On a randomly chosen day, the following data were obtained from these squadrons:

Squadron 1 2 3 4 5 6 7 8

Copters 20 26 24 22 28 27 25 25

Ready 13 21 18 15 21 25 25 24

Squadron 9 10 11 12 13 14 15 Sum

Copters 17 18 29 25 30 18 29 363

Ready 11 17 27 18 30 11 24 300

a. What must be assumed about the data in order to make valid statistical inference about

the mean number of helicopters that will not be flight-ready on a given day?

b. Difference estimation is attractive because it is easy to use for estimating the mean

number of unready helicopters per squadron. Estimate the mean number of helicopters

that will not be ready to fly. Then estimate those that will be ready.

c. Set a confidence interval for the mean number not ready to fly.

d. The general feels that to wage a successful campaign at least 276 of the 363 helicopters

under his command must be ready to fly on the day they are needed. At the 0.05 level, is

there statistically significant evidence that he will have that minimum number ready to

fly?Hint:What is the average number of flight-ready craft per squadron necessary for a

total of 276?

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain

why.
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9.1. The sample regression line is called the least-squares trend line because for itX
( y� ŷy)2 is smaller than for any other straight line fitted to the sample points.

9.2. The trend line always passes through the origin (0,0).

9.3. If the slope of the regression line relating cake volume to amount of baking powder is

3.22 cm3/g, this means that for each additional gram of baking powder the mean

increase in the volume of the cake will be a 3.22 cm3.

9.4. It is possible to fit a line other than the least-squares trend line so that
X

( y� ŷy) ¼ 0.

9.5. The experimenter would test H0: b . 0 if he thought that the slope of the trend line was

positive.

9.6. Since
X

( y� ŷy)2 �
X

( y� �yy)2, it follows that s2y�x � s2y .

9.7. The better the line fits the sample points, the smaller
X

(x� �xx)2 will be.

9.8. Units of measurement can affect both the magnitude of the slope and the significance of

the slope of the least-squares trend line.

9.9. There can be a strong dependent relationship between y and x that will not be detected

by linear regression analysis.

9.10. s2y�x=
X

(x� �xx)2 is to b as s 2/n is to �xx.

9.11. The phrase “regression of y on x” indicates a negative relationship between the y and x

variables.

9.12. The confidence interval for E(y if x ¼ x�) will be greater at x� ¼ �xx than for any x� = �xx.

9.13. Confidence intervals can be set for the true slope of the regression line, the true intercept

on the y axis, and the true mean of y for any given value of x.

9.14. When computing a correlation coefficient, the experimenter assumes that there is a

cause-and-effect relationship between x and y.

9.15. If
X

( y� ŷy)2 is large relative to
X

( y� �yy)2, this indicates that a large portion of the

variability in y is attributed to the linear relationship between y and x.

9.16. The greater the magnitude of r, the stronger the relationship between x and y.

9.17. One of the assumptions made in regression analysis is that the dependent variable

follows a normal distribution.

9.18. In testing b for significance, it is assumed that y has the same variance for each fixed

value of x.

9.19. For the same data set, because it has n 2 1 degrees of freedom, the variance around the

ratio trend line can be smaller than that around the least-squares trend line.

9.20. As the strength of the relationship between two variables increases, the regression line

becomes a better fit for the points.
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10 Techniques for One-Way
Analysis of Variance

In Chapter 8 we discussed a group comparison test for two independent samples that came

from normal populations with possibly different means but with the same variance. The

hypothesis H0: m1 ¼ m2 was tested. In this chapter we test similar hypotheses for three, four,

or more independent samples taken from normal populations with possibly different means

but a common variance.

10.1. THE ADDITIVE MODEL

A psychologist studying factors that influence the amount of time mice require to solve a new

maze might be observing 4 groups of 3 mice each. Each group has had a different amount of

previous experience at maze solving, and the psychologist is looking for evidence of learning.

The mice in the first group have had 1 previous experience in maze solving; those in the

second group have solved 2 mazes; the third group has solved 3; and the fourth group has

solved 4. Each mouse is now placed in a new maze, and the amount of time (in minutes)

required to solve the maze is recorded.

The data (simplified for this example) might be as follows:

Group

1 2 3 4

11 7 6 5

9 9 5 3

10 8 7 4

Before a formal analysis of these data, we plot the values as in Figure 10.1 and add the sample

averages ( �yy1, �yy2, �yy3, �yy4) to the graph.

Learning would be indicated by a decrease in the time required to solve the maze. The graph

does seem to indicate a decrease in time for increased experience. However, the apparent

differences in the graph could be due to sampling variability rather than learning. We need a

method for deciding whether the differences in the sample averages are significant. If there is no

learning, the four populations from which the samples were taken will all have the same means,

m1 ¼ m2 ¼ m3 ¼ m4. The analysis of variance is a formal method for testing this hypothesis.

To be able to speak more precisely about these data, in this text the symbol yij is used for

the jth observation from the ith group. The first subscript i is reserved for the treatment group
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number irrespective of whether groups are displayed in columns or in rows. Experimenters

differ in how they display and label their data, so four groups of three observations each may

be displayed as in Table 10.1 or as in Table 10.2. When reading books and articles, be careful

to check how the subscripts are being used since the notation is not consistent.

In the example under consideration, the number of groups is a ¼ 4 and the number of

observations within each group is n ¼ 3. We assume in all of the examples (until stated

otherwise) that each group contains the same number of observations, n observations.

The psychologist in the present example wants to know if the amount of previous

experience changes the time required to solve a maze. He wants to test H0:

m1 ¼ m2 ¼ m3 ¼ m4 (that is, each of the samples comes from a population with the same

mean) against Ha: At least one inequality (that is, m1 = m2 or m1 = m3 or m1 = m4 or

m2 = m3 or m2 = m4 or m3 = m4). He is assuming that the four populations have a common

variance s2.

It would be possible to test the equality of each pair of means by a t test; however, 4
2

� � ¼ 6

separate t tests would be required for the null hypothesis under consideration. Besides being

tedious, 6 separate t tests on the same data would have an a level much higher than the a used

in each t test. A possible alternative procedure involves comparing the sample variance among

FIGURE 10.1. Data on time required to solve the maze.

TABLE 10.1. Treatment Groups Displayed in Columns

Group

y1j y2j y3j y4j

y11 ¼ 11 y21 ¼ 7 y31 ¼ 6 y41 ¼ 5

y12 ¼ 9 y22 ¼ 9 y32 ¼ 5 y42 ¼ 3

y13 ¼ 10 y23 ¼ 8 y33 ¼ 7 y43 ¼ 4

Total: 30 24 18 12
X
i

X
j

yij ¼ 84
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groups with the sample variance within groups. This test is possible because if the null

hypothesis is true, both of these statistics are estimates of s2.

To understand why the test is based on variance, it will be helpful if we consider the

different types of averages associated with these data.

The grand average: �yy ¼
X
i

X
j

yij=an ¼ 84=12 ¼ 7

The group averages: �yy1 ¼
X
j

y1j=n ¼ 30=3 ¼ 10

�yy2 ¼
X
j

y2j=n ¼ 24=3 ¼ 8

�yy3 ¼
X
j

y3j=n ¼ 18=3 ¼ 6

�yy4 ¼
X
j

y4j=n ¼ 12=3 ¼ 4

The average of the group averages ¼ The grand average ¼ �yy ¼ 7

If we consider the population parameters related to these sample averages, each

observation can be thought of in terms of an additive model consisting of three terms,

yij ¼ mþ ai þ 1ij

in which m (estimated by �yy) is the mean time for all mice, ai (estimated by �yyi � �yy) is the mean

treatment effect, or adjustment, for all mice in the ith group, and 1ij is a random effect due to

the individual mouse. The data could then be written as

Group 1 Group 2

11 ¼ 7 þ (10 2 7) þ 1 7 ¼ 7 þ (8 2 7) þ (21)

9 ¼ 7 þ (10 2 7) þ (21) 9 ¼ 7 þ (8 2 7) þ 1

10 ¼ 7 þ (10 2 7) þ 0 8 ¼ 7 þ (8 2 7) þ 0

Group 3 Group 4

6 ¼ 7 þ (6 2 7) þ 0 5 ¼ 7 þ (4 2 7) þ 1

5 ¼ 7 þ (6 2 7) þ (21) 3 ¼ 7 þ (4 2 7) þ (21)

7 ¼ 7 þ (6 2 7) þ 1 4 ¼ 7 þ (4 2 7) þ 0

TABLE 10.2. Treatment Groups Displayed in Rows

Group Total

y1j y11 ¼ 11 y12 ¼ 9 y13 ¼ 10 30

y2j y21 ¼ 7 y22 ¼ 9 y23 ¼ 8 24

y3j y31 ¼ 6 y32 ¼ 5 y33 ¼ 7 18

y4j y41 ¼ 5 y42 ¼ 3 y43 ¼ 4 12P
i

P
j

yij ¼ 84
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In terms of the additive model, the null hypothesis can be written in a different manner

now:

H0: a1 ¼ a2 ¼ a3 ¼ a4 ¼ 0, or H0: ai ¼ 0 for all i

with

Ha: At least one inequalty, or Ha: ai = 0 for some i

The development of the F test that follows, comparing the variance among groups with the

variance within groups to test the above hypothesis, assumes this additive model. It also

assumes that all treatments of interest to the experimenter are being used, that each treatment

group is normally distributed, that all groups have the same variance, and that the

experimental units are randomly assigned to the treatment group. For example, in this

experiment the 12 mice should be chosen at random from those available and randomly

assigned to groups 1, 2, 3, and 4. This type of analysis of variance is called a one-way

completely randomized ANOVA (analysis of variance). In symbols, the assumptions are

written

yij ¼ mþ ai þ 1ij

with X
i

ai ¼ 0

and

1ijIND(0, s
2)

that is, the 1ij are independently normally distributed with a mean of zero and a common

variance of s2.

Returning now to the three types of sample averages, there are three types of sample

variances that can be obtained by considering deviations from these sample averages.

A sample variance is an average squared deviation from a sample average in which the

averaging is achieved by dividing by the corresponding degrees of freedom. Thus the three

types of sample variances are as given in Table 10.3.

The within-group variance is a pooled variance as in Chapter 8. The multiplication by n in

the among-group variance is necessary if this variance is to be compared with the within-

group variance. The among-group variance estimates the dispersion in the sampling

distribution of averages of all samples of size n (that is, s2/n), so the among-group variance

must be multiplied by n to estimate the dispersion of the original distribution.

The three types of deviations considered above are illustrated in Figure 10.2. The straight

lines at right angles indicate the deviations of the observations from the grand average; these

will be used for the total variance. The braces indicate the deviations of the observations from

their respective group average; these will be used for the within-group variance. The dashed

lines indicate the deviations of the group averages from the grand average, and these will be

used for the among-group variance. If the null hypothesis is true, �yy1, �yy2, �yy3, and �yy4 are not

significantly different from �yy, and the within-group variance will be approximately the same

as the among-group variance. However, if the null hypothesis is false, then the among-group

variance will be larger because of the significant deviations of the group averages from the

grand average.
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In the maze example, the sum of squares (SS) or numerator of the variance in each case is

as follows:

Total SS
X
i

X
j

(yij � �yy)2 ¼ 42 þ 22 þ 32 þ � � � þ (� 4)2 þ (� 3)2

¼ 68

Within SS
X
i

X
j

(yij � �yyi)
2 ¼ ½12 þ (� 1)2 þ 02� þ � � � þ ½12 þ (� 1)2 þ 02�
¼ 8

Among SS n
X
i

(�yyi � �yy)2 ¼ 3½32 þ 12 þ (� 1)2 þ (� 3)2�
¼ 60

TABLE 10.3. Three Types of Variance

Type of Variance Formula Meaning

Total variance

X
i

X
j
(yij � �yy)2

na� 1
The average squared deviation of the

observations from the grand average

Within-group variance

X
i

X
j
(yij � �yy)2

a(n� 1)
The average squared deviation of the

observations from their respective

group average (the pooled variance)

Among-group variance n

X
i
( �yyi � �yy)2

a� 1

" #
The average squared deviation of the

group averages from the grand

average multiplied by the number

of observations in each group

FIGURE 10.2. Three types of deviations.
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This example illustrates that the total sum of squares can be partitioned into two parts, the

among-group sum of squares and the within-group sum of squares.

Total SS ¼ Among SS þ Within SS

68 ¼ 60 þ 8

This relationship among the total, among-group, and within-group sum of squares leads to

a shorter computational method, to be developed later. For now, the computation of the sum of

squares just given will be used for the test. To change the sums of squares into variances

(mean squares, or MS), they must be divided by their degrees of freedom.

The degrees of freedom are also partitioned as the sums of squares:

Total df ¼ Among df þ Within df

na 2 1 ¼ a 2 1 þ a(n 2 1)

11 ¼ 3 þ 8

A conventional form used is a work table, as follows:

Source df SS MS

Among groups a 2 1 ¼ 3 60 60/3 ¼ 20

Within groups a(n 2 1) ¼ 8 8 8/8 ¼ 1

Total an 2 1 ¼ 11 68

If the null hypothesisH0: m1 ¼ m2 ¼ m3 ¼ m4 is true, the amongMS and the within MS are

both estimates of s2. This is because we are sampling from the same population (Figure 10.3).

The variance among the averages estimates s2/n so n times the variance among the averages,

or the among-group variance, estimates s2.

FIGURE 10.3. Within-group and among-group variances.
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The test of hypothesis about the equality of means is therefore an F test for the equality of

two variances:

F ¼ among MS

within MS
¼ 20

1
¼ 20

is computed. This F statistic is compared with the critical value F0.05,3,8 and leads to rejection

if F � 4.066. This is a one-sided F test since if the null hypothesis is false, the among MS is

greater than the within MS. In this example, F � 4.066, so the null hypothesis is rejected and

it is concluded that the sample came from 4 populations among which there is at least one

inequality; that is, prior experience does affect the time required for the mice to solve a new

maze.

EXERCISES

10.1.1. Compute the total sum of squares, among sum of squares, and within sum of squares

for the following data:

Group

1 2 3

1 2 3

1 1 2

0 1 2

0 0 3

0 1 1

Show that the total SS ¼ among SS þ within SS.

10.1.2. Four groups, each comprising 4 randomly selected persons, are asked to perform a

simple mechanical task. Prior to the task, group A is given a strong depressant, group

B a mild depressant, group C a mild stimulant, and group D a strong stimulant. The

times (in seconds) required to complete the task are as follows:

Group

A 4 2 3 2

B 2 3 3 2

C 2 2 3 1

D 1 2 1 1

a. Graph these data and add the group averages to the graph.

b. Do the drugs seem to affect the time required to complete the task?

c. Test the hypothesis H0: mA ¼ mB ¼ mC ¼ mD using an F test.
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10.1.3. Four pea plants of a certain variety are grown without fertilizer, and 4 plants of the

same variety are grown with fertilizer. The mature heights (in feet) are recorded

below:

Without: 0.9 1.0 0.8 1.2

With: 1.5 1.2 1.6 1.3

a. Test H0: m1 ¼ m2 by the ANOVA technique described in this section.

b. Test H0: m1 ¼ m2 by a two-sample t test.

c. What is the relationship between the F statistic and the t statistic?

10.1.4. In the maze example developed in this section, show that the average of the group

averages is equal to the grand average. Why is this always true?

10.2. ONE-WAY ANALYSIS-OF-VARIANCE PROCEDURE

The procedure explained in Section 10.1 is a one-way ANOVA. In this section, we develop a

shorter computational method for this procedure.

This short method depends on the fact already noted:

Total SS ¼ Within SSþ Among SS

This fact is used with an approach similar to the computational formula for the sample

variance (Section 6.2):

s2 ¼
X

y2 �
X

y
� �2

=n

n� 1

In the computational formula, the sum of squares (the numerator) is found by considering the

sum of the squared deviations from the origin,
X

y 2, and subtracting the correction factor,X
y

� �2
=n, to get the sum of the squared deviations from the sample average. This method is

used because it is simpler to compute with the deviations from the origin (the actual values)

than with deviations from the average.

In ANOVA, a similar computational approach is used. We illustrate this using the mouse

study of Section 10.1:

y1j y2j y3j y4j

11 7 6 5

9 9 5 3

10 8 7 4

Totals 30 24 18 12 Grand total 84
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When analyzing these data, we can consider three types of totals:

1 total of 12 observations
X
i

X
j

yij: 84

4 totals of 3 observations
X
j

yij: 30, 24, 18, 12

12 totals of 1 observation yij: 11, 9, . . . , 3, 4

For the short computational method, these totals will be squared, divided by the number of

observations per total, and summed. Table 10.4 summarizes this procedure.

The ANOVA can then be computed from these uncorrected sums of squares as follows:

Source df SS MS

Among groups a 2 1 ¼ 3 SSa ¼ A 2 CF ¼ 60 60/3 ¼ 20

Within groups a(n 2 1) ¼ 8 SSe ¼ T 2 A ¼ 8 8/8 ¼ 1

Total an 2 1 ¼ 11 SSt ¼ T 2 CF ¼ 68

To aid memory, it should be noted that the degrees of freedom and the number of squared

values (totals) can be used to determine the sum of squares in the ANOVA table. For example,

the among SS has a 2 1 degrees of freedom, and among SS ¼ A 2 CF, in which A contains a

squared values and CF contains 1 squared value. The within SS has a(n 2 1) ¼ an 2 a

degrees of freedom, and within SS ¼ T 2 A, with T containing an squared values and A

containing a squared values. Similarly for the total SS.

In articles in professional journals, the sums of squares column is not usually given, nor is

the row for the total. However, the sums of squares are often used to compute a statistic that

gives information similar to that of coefficient of determination discussed in Section 9.4. If it

is useful for the experimenter to know how much of the variability among the maze-solving

times of the 12 mice can be attributed to being grouped by experience it can be expressed as

1� unexplained variability

total variability
¼ SSa

SSt
¼ 60

68
¼ 0:882

TABLE 10.4. Uncorrected Sums of Squares for Equal-Sized Groups

Name Symbol

Number

of Totals

Observations/

Total Formula

Numerical

Value

Uncorrected

total SS

T an ¼ 12 1
P
i

P
j

y2ij 112 þ 92 þ � � �
þ 42 ¼ 656

Uncorrected

group SS

A a ¼ 4 n ¼ 3
P
i

P
j

yij

 !2�
n 302/3 þ 242/3 þ

182/3 þ 122/3 ¼ 648

Correction

factor

CF 1 an ¼ 12
P
i

P
j

yij

 !2�
an 842/12 ¼ 588
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Because this statistic serves a purpose similar to the coefficient of determination, it is

identified as Rsquare.

Another, more realistic, example of a one-way ANOVA follows.

Example 10.1. One-Way Completely Randomized ANOVA with Equal

Sample Sizes

In a study of the physiological stress resulting from operating hand-held chain saws,

experimenters measured the kickback that occurs when a saw is used to cut a 3-in.-thick

synthetic fiber board. The variable of interest was the angle (in degrees) to which the saw is

deflected when it begins to cut the board. Below are the angles of deflection recorded for 5

random saws from each of 4 different manufacturers’ models. A graph of the data and group

averages appears in Figure 10.4.

Chain Saw Model

A B C D Totals

42 28 57 29

17 50 45 40

24 44 48 22

39 32 41 34

43 61 54 30X
j

yij 165 215 245 155 780

X
j

y2ij 5,999 9,965 12,175 4,981 33,120

X
j

yij
� �2

27,225 46,225 60,025 24,025 157,500

FIGURE 10.4. Angles of deflection for four types of chain saws.
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The hypothesis to be tested is

H0: aA ¼ aB ¼ aC ¼ aD

against

Ha: At least one inequality

T ¼ 33:120

A ¼ 157,500

5
¼ 31,500

CF ¼ 7802

20
¼ 30;420

Source df SS MS

Among groups a 2 1 ¼ 3 SSa ¼ A 2 CF ¼ 1080 MSa ¼ SSa/(a 2 1)

¼ 360

Within groups (error) a(n 2 1) ¼ 16 SSe ¼ T 2 A ¼ 1620 MSe ¼ SSe/a(n 2 1)

¼ 101.25

The test statistic is F ¼ 360/101.25 ¼ 3.56 and F0.05,3,16 ¼ 3.239. The null hypothesis is

rejected. There is a significant difference among the average kickbacks of the four types of

saws. The proportion of variability in kickback that can be attributed to the different models of

saws is

Rsquare ¼ 1� SSe

SSt
¼ 1� 1620

1620þ 1080
¼ 0:60

A significant portion of the variability among the data has been explained by the differences

among the group means.

To determine which of the models are different with respect to kickback, a follow-up

procedure will be needed. This procedure is developed in the next section.

We can summarize the one-way ANOVA procedure for equal group sizes as follows. The

symbol SSe is used for the within-group sum of squares because this quantity represents the

variability due to random sampling, that is, the sampling error.

Procedure. One-Way Completely Randomized ANOVA with Equal Sample Sizes

H0: a1 ¼ a2 ¼ � � � ¼ aa ¼ 0, or H0: ai ¼ 0 for all i

Ha: At least one inequality, or Ha: ai = 0 for some i

yij ¼ jth observation in the ith treatment group
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i ¼ 1, . . . , a j ¼ 1, . . . , n

Compute:

T ¼
X
i

X
j

y2ij

A ¼
X
i

X
j

yij

 !2�
n

CF ¼
X
i

X
j

yij

 !2�
an

Source df SS MS F

Among groups a 2 1 SSa ¼ A 2 CF MSa ¼ SSa/(a 2 1) MSa/MSe
Within groups

(error)

a(n 2 1) SSe ¼ T 2 A MSe ¼ SSe/a(n 2 1)

Total an 2 1 SSt ¼ T 2 CF

Reject H0 if F � Fa,a21,a(n 2 1)

Many times the experimenter has no control over sample size, and an unbalanced

design is necessary. This can happen in a genetics experiment in which the experimenter

has no control over the number of offspring, in wildlife experiments that depend on the

number of animals trapped, in a botany experiment in which some plants die (from causes

extraneous to the experiment), or in situations where cost restricts equalizing the sample

sizes. The one-way ANOVA can also be used if the sample sizes are unequal, although

there may be some loss of power. The sums of squares needed for the computations are as

in Table 10.5.

TABLE 10.5. Uncorrected Sums of Squares for Unequal-Sized Groups

Source Symbol

Number of

Squared Values Observations/Square Formula

Uncorrected

total SS

T N 1
P
i

P
j

y2ij

Uncorrected

group SS

A a ni
P
i

P
j

yij

 !2�
ni

Correction

factor

CF 1 N
P
i

P
j

yij

 !2�
N

Note: ni is the number of observations in the ith group and N ¼P
i

ni.
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Example 10.2. One-Way Completely Randomized ANOVA with Unequal Groups

A psychologist is studying several types of behavioral disorders in children and has reached a

stage where she can classify children as belonging to one of 7 types, depending on certain

behavioral characteristics. She has a feeling that the mean level of intelligence may differ

in some of these groups, so she begins to examine the IQ scores of children in these 7

categories. In her files she finds cases of all 7 types. There is some question in her mind

about the randomness of these data and also whether they meet the other assumptions

of an ANOVA. However, as a preliminary investigation, she would like to test

H0: a1 ¼ a2 ¼ � � � ¼ a7; that is, that there is no difference among the mean IQ of children

in the different categories. Since the psychologist has no control over the number of cases in

her file, the groups have unequal sizes.

Disorder

1 2 3 4 5 6 7

105 115 103 124 115 85 79

98 109 96 127 112 106 87

110 121 105 118 98

130 107 111

112X
j

yij 313 475 523 369 227 400 166

ni 3 4 5 3 2 4 2X
j

yij
� �2

ni
32,656.3 56,406.2 54,705.8 45,387.0 25,764.5 40,000.0 13,778.0

P
j

y2ij 32,729 56,647 54,843 45,429 25,769 40,386 13,810

X
i

ni ¼ 23
X
i

X
j

yij ¼ 2473
X
i

X
j

y2ij ¼ 269, 613

T ¼
X
i

X
j

y2ij ¼ 269, 613:00

A ¼
X
i

X
j

yij
� �2

�
ni ¼ 268, 697:80

CF ¼
X
i

X
j

yij
� �2

�
N ¼ 265, 901:26

Source df SS MS F

Critical Value

a ¼ 0.05

Among groups a 2 1 ¼ 6 2,796.54 466.09 8.14 2.741

Within groups N 2 a ¼ 16 915.20 57.20

The null hypothesis is rejected, and the psychologist concludes that there seems to be a

difference among the mean IQ of the children in the different categories.
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The procedure for unequal groups can be summarized as follows.

Procedure. One-Way Completely Randomized ANOVA with Unequal Sample Sizes

H0: a1 ¼ a2 ¼ . . . ¼ aa ¼ 0 or H0: ai ¼ 0 for all i

Ha: At least one inequality or Ha: ai = 0 for some i

yij ¼ jth observation in the ith treatment group

i ¼ 1, . . . , a; j ¼ 1, . . . , ni;
X
i

ni ¼ N

Compute:

T ¼
X
i

X
j

y2ij

A ¼
X
i

X
j

yij

 !2�
ni

CF ¼
X
i

X
j

yij

 !2�
N

Source df SS MS F

Among groups a 2 1 SSa ¼ A 2 CF MSa ¼ SSa/(a 2 1) MSa/MSe
Within groups

(error)

N 2 a SSe ¼ T 2 A MSe ¼ SSe/(N 2 a)

Total N 2 1 SSt ¼ T 2 CF

Reject H0 if F � Fa,a21,N 2 a .

EXERCISES

10.2.1. Five groups of 4 men each are randomly assigned diets. At the end of a week, the

following changes in weight (in pounds) are observed.

Diet

1 2 3 4 5

þ3 þ2 þ4 þ3 þ1

22 0 0 0 21

0 þ2 þ1 21 22

22 þ1 þ2 þ1 21

Perform an ANOVA to see if there is any difference among the effects of these diets.
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10.2.2. Five brands of lawnmowers are compared on the basis of hours of trouble-free

operation. Eight randomly chosen mowers of each type are used in the study.

Complete the following ANOVA table:

Source df SS MS

Among brands — 140 —

Within brands — — 11

Give the null and alternative hypotheses to be tested by these data. Draw conclusions

concerning the hypotheses.

10.2.3. Given the information below about the life (in months) of 3 types of light bulbs,

graph the data and complete the ANOVA table.

Brand

A B C

7.0 13.4 9.5

11.8 15.0 13.6

10.5 14.6 10.6

12.6 17.3 13.5X
j

yij 41.9 60.3 47.2

�yyi 10.5 15.1 11.8

X
j

(yij � �yyi)
2 18.35 7.99 12.86

41:9þ 60:3þ 47:2 ¼ 149:4

(41:9)2 þ (60:3)2 þ (47:2)2 ¼ 7,619:54

(149:4)2 ¼ 22,320:36

What is the hypothesis about the means of the brands? Would the hypothesis be

accepted? What conclusion do you draw about the light bulbs?

10.2.4. Tomato plants are treated with 5 different fertilizers, and the sum of the weight

(in pounds) of the ripe fruit is recorded for each plant that matures:

Fertilizer: A B C D E

Number of

mature plants:

4 7 6 5 6

X
j

yij: 81 111 138 96 101

X
j

y2ij: 1649 1775 3184 1850 1715

Perform an ANOVA to test for equality of means. What assumptions are necessary

for this analysis to be valid?
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10.2.5. Three difference methods of processing orange juice are compared. The amount of

vitamin C per 8-oz serving is the variable of interest (in milligrams). Five servings

are chosen at random from each process.

Processing Method

A B C Totals

96 123 76

87 115 78

85 122 79

92 118 77

90 122 80X
j

yij 450 600 390 1,440

X
j

yij
� �2

202,500 360,000 152,100 714,600

X
j

y2ij 40,574 72,046 30,430 143,050

What null hypothesis can be tested? Graph the data. Does the null hypothesis appear

to be true? If a ¼ 0.05, what is the critical value of the test statistic? Show that the

correction factor for these data is 138,240. Complete the ANOVA table. Should the

null hypothesis be rejected? What conclusion do you draw?

10.2.6. Given the following information, complete the analysis of variance to test for

equality of group means:

Source

Number of

Squared Values

Observations per

Squared Value

Numerical

Value

X
i

X
j

y2ij 30 1 1565

X
i

X
j

yij
� �2

�
n 6 5 1325

X
i

X
j

yij
� �2

�
an 1 30 1200

10.2.7. Live traps are set to capture samples of rabbits at 5 different locations in a large

wooded area. The weights (in ounces) are as follows:

Area

1 2 3 4 5

37 29 49 40 50

40 33 47 38 46

46 34 42 49

31 39

41

Use box plots to graph the data and the group averages. Do the box plots and the size

of Rsquare suggest that the mean weights of the rabbits differ at some of the
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locations? Test a hypothesis about locations at the 1% level of significance. What

assumptions are necessary about the rabbits?

10.2.8. A dean at a small college believes there may be a difference in the mean age of his

faculty in different departments. He obtains the following information about faculty

ages:

Mathematics 28 35 31 32

English 45 37 42 38 36

Foreign languages 27 32 29

History 43 39

a. Are there significant differences in the average ages for these 4 departments?

b. What assumptions must be made in order for ANOVA techniques to be valid for

this study?

10.2.9. A forest entomologist has isolated 7 insecticides that are reasonably safe to the rest

of the environment when used to control gypsy moths. She wants to determine

whether any one of them produces significantly greater mortality than the others

when applied topically to adult gypsy moths. Using standard bioassay techniques,

she applies a given insecticide to the abdomen of each of 100 moths. This procedure

is repeated 5 times for each insecticide, with new solutions being prepared each

time. Per cent mortality is recorded after 24 hours for each insecticide trial. Assume

that the data, although distributed in a binomial fashion, will approximate the normal

distribution adequately for ANOVA procedures.

a. Although 3500 moths are used, why are there only 34 degrees of freedom

associated with the experiment?

b. In using the yij notation, does the j subscript refer to the insecticide or the trial?

c. What are the assumptions for an ANOVA?

d. Use this information to complete the accompanying ANOVA table:

X
i

X
j
yij

� �2
an

¼ 143,360
X
i

X
j

y2ij ¼ 144,334

Source df SS MS

Insecticides — — 55

Trials within insecticides — — —

e. Give the null and alternative hypotheses.

f. Give the critical value (a ¼ 0.05) for a test of the above hypothesis and draw

conclusions about the experiment.
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10.2.10. The following linear model is used in a study involving 5 artists and 4 paintings per

artist:

uij ¼ lþ vi þ dij

in which i ¼ 1, . . . , a ¼ 5 and j ¼ 1, . . . , n ¼ 4. The data below give the number of

smudges per picture:

Artist

A B C D E

7 2 4 11 2

6 4 6 7 0

8 4 6 8 3

7 4 2 4 5

Total 28 14 18 30 10

a. To perform an ANOVA on these data, what must be assumed about vi and dij?

b. What is the numerical value of u23 and
X

j
u3j?

c. Given that 72 þ 62 þ 82 þ . . . þ 52 ¼ 630 and 282 þ 142 þ 182 þ 302 þ
102 ¼ 2304, complete a table for the uncorrected sums of squares giving the

number of squared values, the number of observations per squared value, and the

numerical value of the uncorrected sum of squares.

10.2.11. Suppose that a building contractor wants to test 3 types of wooden beams for weight-

bearing capacity. Five beams of each type are broken by stacking lead weights on

them, and the weight required to break each beam is recorded.

a. Given the mathematical model

zhi ¼ cþ d þ j

in which zhi ¼ the breaking strength of beam i within type h

d ¼ the symbol of the type effect

j ¼ the symbol of the beam within type effect,

fill in the blanks with the appropriate subscripts.

b. What assumptions must be made about d and j ?

c. What is the largest numerical value that can be taken by each subscript in the model?

d. If the computations made on the experimental data are

X
h

X
i

z2hi ¼ 3,620,000

X
h

X
i

zhi

� �2 ¼ 18,040,000

X
h

X
i

zhi

� �2 ¼ 54,000,000

complete the ANOVA.
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10.3. MULTIPLE-COMPARISON PROCEDURES

In Sections 10.1 and 10.2 of this chapter, the ANOVA procedure is developed to test H0:

m1 ¼ m2 ¼ � � � ¼ ma (or H0: a1 ¼ a2 ¼ � � � ¼ aa). If the null hypothesis is rejected, we

conclude that there is at least one inequality among the means of the treatment groups

(or among the treatment effects).

If the treatment groups under consideration exhaust the cases that are of interest to the

experimenter (as we have been assuming in this chapter) and the F test is significant, the

experimenter may want to draw some further conclusions. She may want to decide which

pairs of treatments are different or she may want to contrast one treatment effect with the

average of some other treatment effects or she may want to estimate some of the parameters in

the experiment.

In this section we discuss several procedures for deciding which pairs of means are

different. In general, these techniques are called multiple-comparison procedures. Contrasts,

estimation, and Bonferroni procedures, which have gained widespread use, are discussed in

Sections 10.4 to 10.6.

Several multiple-comparison procedures are available to researchers. We discuss 5

different approaches and their relative merits for various experimental situations. In all cases

we assume equal sample sizes for the treatment groups.

Some Multiple-Comparison Procedures

1. Fisher’s least significant difference

2. Duncan’s new multiple-range test

3. Student–Newman–Keuls’ procedure

4. Tukey’s honestly significant difference

5. Scheffé’s method

1. Fisher’s Least Significant Difference. R. A. Fisher’s multiple-comparison procedure is

known as the least significant difference. It is based on a t test. If the treatment groups are all of

equal size n, then two sample averages, �yy1 and �yy2 for example, can be tested for a significant

difference by the statistic

t ¼ �yy1 � �yy2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2p=n)þ (s2p=n)

q ¼ �yy1 � �yy2ffiffiffiffiffiffiffiffiffiffiffi
2s2p=n

q

in which s2p is the pooled sample variance as in Chapter 8. Thus Fisher said the difference

�yyi � �yyj is significant if

j�yyi � �yyjj � ta=2,a(n�1)

ffiffiffiffiffiffiffiffiffiffiffiffi
2MSe

n

r

since MSe in the ANOVA is a pooled estimate of the common variance of the treatment

groups and MSe has a(n 2 1) degrees of freedom.

In order to protect the overall Type I error rate for the experiment, Fisher’s procedure

requires a prior significant F test in the ANOVA.With this condition, the overall error rate has

been shown by simulation to be approximately the a level of the F test.

10.3. MULTIPLE-COMPARISON PROCEDURES 283



Example 10.3. Fisher’s Least Significant Difference

In the chain saw study, Example 10.1 of Section 10.2, the sample averages are

�yyA ¼ 165

5
¼ 33 �yyC ¼ 245

5
¼ 49

�yyB ¼ 215

5
¼ 43 �yyD ¼ 155

5
¼ 31

The experimenter wants to test
a

2

� �
¼ 4

2

� �
¼ 6 hypotheses

H0:mA ¼ mB H0:mB ¼ mC

H0:mA ¼ mC H0:mB ¼ mD

H0:mA ¼ mD H0:mC ¼ mD

to locate the specific difference or differences he believes exist because of the prior significant

F test.

If Fisher’s test is used, the differences between all pairs of sample averages must be

compared with

ta=2,a(n�1)

ffiffiffiffiffiffiffiffiffiffiffiffi
2MSe

n

r
¼ t0:025,16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(101:25)

5

r

¼ 2:120(6:36)

¼ 13:5

at a ¼ 0.05.

To keep track of all possible differences between sample averages, he arranges them in

order according to size, from the smallest to the largest,

31 33 43 49

and forms a table listing the ordered averages on the left omitting the largest and across the top

omitting the smallest:

A B C

33 43 49

D 31

A 33

B 43

If the top average is larger than one on the left, he subtracts the average on the left from the

average on the top and enters the difference in the table:

A B C

33 43 49

D 31 2 12 18

A 33 10 16

B 43 6
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These differences are then compared with the least significant difference 13.5, which

was computed earlier. He begins at the right of the top row of differences. There he finds

18, which is greater than 13.5, so he marks 18 with an asterisk and concludes that

mD = mC. The next entry in the top row is 12, which is less than 13.5, so he goes no

further in that row. He then treats the second and third rows in the same manner. The final

table has the following form:

A B C

33 43 49

D 31 2 12 18�

A 33 10 16�

B 43 6

The only pairs of means that are different are mD = mC and mA = mC.

In a journal, in order to save space, he would report that at the a ¼ 0.05 level by Fisher’s

least significant difference any two averages not underlined by the same line segment are

significantly different.

D A B C

31 33 43 49

Since the middle line is already indicated by the first line, it can be omitted:

31 33 43 49

Fisher’s test has a drawback; it requires that the null hypothesis be rejected in the ANOVA

procedure. It is possible that the F test will fail to detect a single significant difference among

several treatment groups. In a case like this, Fisher’s least significant difference cannot be

used. The other multiple-comparison procedures to be discussed do not require a significant F

test; they protect the Type I error rate by different approaches.

2. Duncan’s NewMultiple Range Testy. We will not go into the details of Duncan’s method

for protecting the error rate. Briefly, he considers the error rate for each pairwise comparison

(rather than an overall rage) and allows a higher rate for pairs of sample averages that are

further apart when ordered by size. Thus, if

�yy1 �yy2 �yy3

are three sample averages arranged from smallest to largest, a test of m1 ¼ m3 would have a

higher error rate than the test of m1 ¼ m2. Because of this, Duncan’s procedure will involve

several different critical differences, in contrast to Fisher’s single least significant difference.

†Duncan (1955) is the most common reference to his test, and while hardly a recent publication, “New” is still retained

in its title to avoid confusion with other tables in the literature.

10.3. MULTIPLE-COMPARISON PROCEDURES 285



To reject H0: mi ¼ mj when �yyi, �yyj span r ranked sample averages, it is necessary that

j�yyi � �yyjj � da,r,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r

in which da,r,a(n21) is found in Tables A.14a and A.14b in the Appendix. The a is the

significance level set by the experimenter; Duncan makes the necessary adjustments in his

table. Note also that the radical does not contain the factor of 2 found in the t test; it has been

absorbed into the d value. If we are dealing with adjacent sample averages,

da,2,v ¼ ta=2,v
ffiffiffi
2

p

Example 10.4. Duncan’s New Multiple-Range Test

Using the table of differences of sample averages for the power saw data, we see that the

lowest diagonal consists of differences of adjacent ranked averages,

A B C

33 43 49

D 31 2 12 18

c spans 4 ranked averages

A 33 10 16

c spans 3 ranked averages

B 43 6

c spans 2 ranked averages

that is, a span of two ranked averages. The second diagonal consists of differences of averages

separated by one average, that is, the difference spans three ranked averages. The remaining

difference spans four ranked averages. Using Table A.14a in the Appendix, the experimenter finds

d0:05,2,16

ffiffiffiffiffiffiffiffiffi
MSe

n

r
¼ 2:998(4:50) ¼ 13:5

d0:05,3,16

ffiffiffiffiffiffiffiffiffi
MSe

n

r
¼ 3:144(4:50) ¼ 14:1

d0:05,4,16

ffiffiffiffiffiffiffiffiffi
MSe

n

r
¼ 3:235(4:50) ¼ 14:6

Comparing the differences with these critical values, he finds two significant differences:

A B C

33 43 49

D 31 2 12 18� Compare with

c 14.6

A 33 10 16�

c 14.1

B 43 6

c 13.5

His conclusion would be identical with the one reached with Fisher’s procedure.
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Duncan’s test is slightly more conservative than Fisher’s; that is, it will sometimes find

fewer significant differences. However, there is about 95% agreement between the two

procedures. It may be tempting to use the da,r,a(n21) values in the table for similarly

conservative confidence intervals for differences between pairs of means, mi 2 mj, but it is

inappropriate to do so. This is because, as noted before, a is allowed to increase as we

compare averages farther apart in ranked order; hence there would not be a constant 1 2 a
value for all confidence intervals. Proper procedures for simultaneous confidence intervals,

intervals for all mi 2 mj pairs, are discussed in Section 10.5.

3. Student–Newman–Keuls’ Procedure. Student–Newman–Keuls’ procedure is still more

conservative than Duncan’s. Like Duncan’s test, different critical values are used depending

on the span of the two ranked averages being compared. However, this test protects the Type I

error rate using a constant level for each diagonal.

Two sample averages which span r ranked averages are significantly different if

j�yyi � �yyjj � qa,r,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r

in which the q values are found in Tables A.15a and A.15b in the Appendix, the Studentized

range.

Example 10.5. Student–Newman–Keuls’ Procedure

Using the chain saw data of Example 10.3 and Table A.15a in the Appendix, the investigator

finds:

q0:05,2,16

ffiffiffiffiffiffiffiffiffi
MSe

n

r
¼ 2:998(4:50) ¼ 13:5

q0:05,3,16

ffiffiffiffiffiffiffiffiffi
MSe

n

r
¼ 3:649(4:50) ¼ 16:4

q0:05,4,16

ffiffiffiffiffiffiffiffiffi
MSe

n

r
¼ 4:046(4:50) ¼ 18:2

The table of differences is

A B C

33 43 49

D 31 2 12 18 Compare with

c 18.2

A 33 10 16

c 16.4

B 43 6

c 13.5

Thus, none of the differences are significant using this procedure.
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This procedure is so conservative that it located no differences, whereas the F test in the

ANOVA indicated that a difference exists. As mentioned in the discussion of Duncan’s new

multiple-range test, tabular values for a multiple-range test cannot validly be used to replaceffiffiffi
2

p
ta=2,a(n�1) for conservative simultaneous confidence intervals. Using a q value in place of a

t value, there is an appropriate confidence interval only for the difference between the largest

and smallest averages, as is seen in Section 10.5.

4. Tukey’s Honestly Significant Difference. Tukey’s procedure is still more conservative.

It uses a single critical difference:

qa,a,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r

that is, the largest critical difference in Student–Newman–Keuls’s procedure. The error rate is

for the entire experiment.

Example 10.6. Tukey’s Honestly Significant Difference

For the chain saw data (see Example 10.3), two averages �yyi, �yyj are significantly different if

j�yyi � �yyjj � q0:05,4,16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101:25

5

r

¼ 4:046(4:50)

¼ 18:2

Thus, none of the pairs of averages is significantly different according to this procedure.

Multiple-range procedures discussed are designed as simultaneous tests of H0: mi ¼ mj for

pairwise comparison of all averages in the experiment. We have noted that for a single t test of

the difference between two sample averages there is a correspondence between

t ¼ �yy1 � �yy2ffiffiffiffiffiffiffiffiffiffiffi
2s2p=n

q and CI1�a: ( �yy1 � �yy2)+ ta=2:2(n�1)

ffiffiffiffiffiffiffi
2s2p

n

s

However, we have noted that, while this is true for the t test and confidence interval

involving just two means, it may not hold for simultaneous tests and confidence intervals

involving the a . 2 means in an ANOVA. Fisher’s and Tukey’s procedures are not really

multiple-range tests because the same q value is used to test all averages, irrespective of

relative rank, and with the same q value in all confidence intervals there is no question

concerning the actual size of 1 2 a. As we might suspect, and as we see in Section 10.5,

confidence intervals using qa,a,a(n�1) rather than ta=2:a(n�1)

ffiffiffiffiffiffiffiffiffiffiffi
2s2p=n

q
are very wide, hence very

conservative.
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5. Scheffé’s Method. Scheffé’s method can be used to compare means and also to make

other types of contrasts. For example, we might want to test

H0:m1 ¼
m2 þ m3

2

that is, that treatment 1 is the same as the average of treatments 2 and 3. The error rate a in

Scheffé’s procedure applies to all possible contrasts.

To compare two means using this method, �yyi and �yyj are significantly different if

j�yyi � �yyjj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a� 1)Fa,a�1,a(n�1)

p ffiffiffiffiffiffiffiffiffiffiffiffi
2MSe

n

r

Example 10.7. Scheffé’s Method for Comparing Means

In the chain saw study, the critical difference is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3F0:05,3,16

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(101:25)

5

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(3:239)

p ffiffiffiffiffiffiffiffiffi
40:5

p
¼ 19:8

Again this yields no significant difference.

Scheffé’s is the most conservative of the methods we have discussed. It is very likely to

miss detecting a real difference that exists. Scheffé’s approach is used more often for the other

contrasts; in these cases an adjustment is needed in the standard error. For example, to test

H0:m1 ¼
m2 þ m3

2
or the equivalent, H0:m1 �

m2

2
� m3

2
¼ 0

the standard error is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3MSe=2n

p
. The coefficient 3/2 is the sum of 12 þ (21/2)2 þ (21/2)2,

that is, the sum of the squares of the coefficients in the linear combinations of the m’s in the

null hypothesis. Thus, in the chain saw example, if we wanted to test whether the kickback of

model A was significantly different from the average of models B and C, we would compute

the critical difference

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3F0:05,3,16

p ffiffiffiffiffiffiffiffiffiffiffiffi
3MSe

2n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(3:239)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(101:25)

2(5)

s
¼ 17:180

Since

�yyA �
�yyB
2
� �yyC

2

				
				 ¼ 33� 43

2
� 49

2

				
				 ¼ j � 13j ¼ 13

we would conclude that the difference is not significant.
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The 5 procedures we have just outlined are only some of the multiple comparisons

available to the researcher. Which procedure should be used depends upon which type of error

is more serious. In the chain saw example, assume the prices are approximately the same.

Then a Type I error is not serious; it would imply that we decide one model has less kickback

than another when in fact the two models have the same amount of kickback. A Type II error

would imply that a difference in kickback actually exists but we fail to detect it, a more serious

error. Thus, in this experiment we want maximum power and we would probably use Fisher’s

least significant difference. The experimenter should decide before the experimentation which

method will be used to compare the means.

Table 10.6 lists the five tests indicating decreasing power and increasing error rate. The

five procedures can be summarized as follows.

Procedure. Multiple-Comparison Procedures

H0: m1 ¼ m2, H0: m1 ¼ m3, and so on, for all pairs of group means, or in general terms, these

hypotheses can be written as H0: mi ¼ mj for all i = j.

Ha: m1 = m2, Ha: m1 = m3, . . . or in general notation, Ha: mi = mj for some i = j.

Compute �yy1, �yy2, . . . , �yya, the a sample averages, and arrange them in order from the smallest

to the largest:

�yy(1), �yy(2), . . . , �yy(a)

Form a table of differences:

�yy(2) �yy(3) ... �yy(a)

�yy(1) �yy(2) � �yy(1) �yy(3) � �yy(1) ... �yy(a) � �yy(1)
�yy(2) �yy(3) � �yy(2) ... �yy(a) � �yy(2)
. ...

. ...

. ...

�yy(a�1)
... �yy(a) � �yy(a�1)

TABLE 10.6. Comparison of Multiple-Comparison Procedures

Multiple-Comparison

Procedure Power Type I Error Rate

Fisher’s Highest Highest

Duncan’s

Student–Newman–

Keuls’ E
More conservative, less

likely to detect real

differences

E More likely to indicate

false differences

Tukey’s

Scheffé’s Lowest Lowest
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Determine the critical difference or differences:

Fisher’s ta=2,a(n�1)

ffiffiffiffiffiffiffiffiffiffiffiffi
2MSe

n

r
Apply to all differences

Duncan’s da,2,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r
Apply to bottom diagonal

da,3,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r
Apply to second lowest diagonal

..

.

da,a,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r
Apply to top diagonal

Student–Newman–Keuls’ qa,2,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r
Apply to bottom diagonal

qa,3,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r
Apply to second lowest diagonal

..

.

qa,a,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r
Apply to top diagonal

Tukey’s qa,a,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r
Apply to all differences

Scheffé’s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1ÞFa,a,a(n�1)

ffiffiffiffiffiffiffiffiffiffiffiffi
2MSe

n

rs
Apply to all differences

Only Fisher’s procedure requires a prior significant F test for the ANOVA.

In each procedure, reject H0 if j�yyi � �yyjj � critical difference.

It is possible to modify Fisher’s and Scheffé’s procedures for unequal sample sizes. The

standard error becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

ni
þMSe

nj

s

For Duncan’s, Student–Newman–Keuls’, and Tukey’s procedures an approximation

approach is possible by letting n be

~nn ¼ a

1=n1 þ 1=n2 þ � � � þ 1=na

This approximation is best when the ni are similar in size.
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EXERCISES

10.3.1. An ANOVA is conducted to compare the yields of several different varieties of

blight-resistant corn.

Source df SS MS

Among varieties — — 598

Within varieties 20 3600 —

Variety: C A D B E

Average yield: 60 80 82 85 93

a. Complete the ANOVA table.

b. Show that the standard error of a sample average is 6.0.

c. Would it be appropriate to use Fisher’s least significant difference to compare

variety means in this experiment?

d. Perform Fisher’s test at a ¼ 0.05.

10.3.2. Five kinds of insecticides are used in an effort to control insect damage to a certain

crop. Damage is measured in terms of square centimeters of leaf area destroyed. The

data are summarized as follows:

Insecticide: 1 2 3 4 5 Totals

Plants examined: 4 4 4 4 4 20X
j

yij: 24 19 29 67 34 173

X
j

y2ij: 178 97 237 1313 342 2167

X
j

yij
� �2

: 576 361 841 4489 1156 7423

X
j

yij
� �2


n: 144.00 90.25 210.25 1122.25 289.00 1855.75

a. Show that the correction factor is 1496.45.

b. Perform an ANOVA and test H0 at a ¼ 0.05.

c. Use Fisher’s procedure to test for differences among the means.

10.3.3. A behavioral biologist subjected spiders to different stressful conditions and then

measured the number of gaps in their webs.
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Condition

1 2 3 4

11 13 21 10

4 9 18 4

6 14 15 19

21 36 54 33

X
i

X
j

y2ij ¼ 2086

X
i

X
j

yij
� �2 ¼ 5742

X
i

X
j

yij
� �2 ¼ 20,736

a. Complete the ANOVA at a ¼ 0.01.

b. Would it be valid to use Fisher’s procedure to test for a difference between group

means? Why or why not?

c. Use Scheffé’s procedure to test for a difference between means.

10.3.4. Five male students are selected at random from each of 5 colleges in a study to

determine whether there is an association between sentimentality and the selected

field of study. They are shown a movie about a little crippled orphan, his blind dog,

and a senile grandfather who is trying to care for them in his cabin, which is in the

path of a strip-mine operation. Polygraph equipment is used to record emotional

response to the picture. The F test for differences among colleges is

F ¼ among-college MS

within-college MS
¼ 50:00

11:25

a. Show that the standard error of a college average is 1.5.

b. Use Duncan’s procedure to test for differences in emotional response among the

college means.

College: Law Business Agriculture

Arts and

Sciences Engineering

Sample average: 3 7 14 15 21

10.3.5. To see whether 3 commonly used weed killers may have differential effects on the

yield of rye, each is sprayed on 6 different plots of rye at the seedling stage. The

within-spray MS is 96, and the average yields are

Weed killer: I II III

Average: 10 20 30
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a. Use Student–Newman–Keuls’ procedure to determine whether there are any

differences in the mean yields.

b. If the agronomist conducting the experiment wants to use Fisher’s least

significant difference, how large would the F value have to be in order for her to

be justified in using the procedure? Does the computed F value exceed this critical

value?

c. How could the experimenter test whether the plot sprayed with weed killer III

produces an average yield that is significantly different from the average of the

other two?

10.3.6. Consider a significant result from ANOVA in which a ¼ 6, n ¼ 5, MSe ¼ 33.78,

and the treatment averages are

Treatment average: 39.3 45.2 48.4 50.4 55.5 58.2

Treatment: A B C D E F

Use all five multiple-comparison procedures at a ¼ 0.05 on these data and form a

table indicating the different conclusions reached by each test.

10.4. ONE-DEGREE-OF-FREEDOM COMPARISONS

The multiple-comparison procedures in Section 10.3 are known as a posteriori tests, that is,

they are after the fact. After the experiment is completed, the investigator decides to look for

possible pairwise differences.

There is also an a priori approach, that is, contrasts that are planned before the experiment.

The experimenter believes prior to the investigation that certain factors may be related to

differences in treatment groups. For example, in the chain saw experiment (Example 10.1 of

Section 10.2), suppose that models A and D are lightweight chain saws for home use and that

B and C are heavy-duty industrial types. The investigator might want to know if the kickback

from the home type is the same as the kickback from the industrial type. In addition, he might

also be interested in any differences in kickback within types.

Comparison H0 to Be Tested

1 Home vs. industrial
mA þ mD

2
� mB þ mC

2
¼ 0

2 Home model A vs. home model D mA 2 mD ¼ 0

3 Industrial model B vs. industrial model C mB 2 mC ¼ 0

Each of the null hypotheses is a linear combination of the treatment means:

Linear Combination

1 (1/2)mA 2 (1/2)mB 2 (1/2)mC þ (1/2)mD

2 (1)mA þ (0)mB þ (0)mC 2 (1)mD

3 (0)mA þ (1)mB 2 (1)mC þ (0)mD
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A set of linear combinations of this type is called a set of orthogonal contrasts or

orthogonal comparisons. A set of linear combinations must satisfy two mathematical

properties in order to be orthogonal contrasts:

A. The sum of the coefficients in each linear combination must be zero; this makes the

linear combination a contrast.

In 1: 1/2 2 1/2 2 1/2 þ 1/2 ¼ 0

In 2: 1 þ 0 þ 0 2 1 ¼ 0

In 3: 0 þ 1 2 1 þ 0 ¼ 0

B. The sum of the products of the corresponding coefficients in any two contrasts must

equal zero; this makes the contrasts orthogonal.

In contrasts 1 and 2:
1

2

� �
(1)þ �1

2

� �
(0)þ �1

2

� �
(0)þ 1

2

� �
(� 1) ¼ 0

In contrasts 1 and 3:
1

2

� �
(0)þ �1

2

� �
(1)þ �1

2

� �
(� 1)þ 1

2

� �
(0) ¼ 0

In contrasts 2 and 3: (1)(0)þ (0)(1)þ (0)(� 1)þ (� 1)(0) ¼ 0

In general, if

L ¼ a1m1 þ a2m2 þ � � � þ aama

and

M ¼ b1m1 þ b2m2 þ � � � þ bama

are two linear combinations, then L and M are orthogonal contrasts ifX
i

ai ¼ 0,
X
i

bi ¼ 0, and
X
i

aibi ¼ 0

A set of contrasts is mutually orthogonal if every pair of contrasts is orthogonal. An

experiment involving a treatments can have several different sets of mutually orthogonal

contrasts, but each set consists of at most a 2 1 orthogonal contrasts.

If the experimenter is able to plan reasonable comparisons of this type prior to the

experiment, then the tests can be done within the ANOVA procedure. If contrasts are not

incorporated into the design of the experiment but are suggested during the data gathering or

analysis, Scheffé’s procedure can be used instead of the procedure discussed here. Also,

Scheffé’s procedure can be used when the contrasts of interest are not orthogonal. (In Section

10.6, there is discussion of Bonferroni techniques which serve purposes similar to Scheffé’s

procedure.) Generally, however, such tests will not be as powerful as those for planned

orthogonal contrasts, and it seems reasonable that experiments which are well designed and

which test specific hypotheses will have the greatest statistical power.

Example 10.8. One-Degree-of-Freedom Comparisons

Five toothpastes are being tested for their abrasiveness. The variable of interest is the time

in minutes until mechanical brushing of a material similar to tooth enamel exhibits wear.
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The 5 toothpastes are all the same except for the absence or presence of certain additives.

The material is assigned randomly to the treatments.

Toothpaste Additive

I Whitener

II None

III Fluoride

IV Fluoride with freshener

V Whitener with freshener

Group totals and the basic ANOVA table are as follows for 4 observations per treatment

group:

Toothpaste: I II III IV V

Ti ¼
P
j

yij: 197.4 199.0 211.3 215.8 186.5

Source df SS MS F

Among toothpastes 4 136.8 34.20 39.8

Within toothpastes 15 13.0 0.86

The investigator deliberately chose these 5 toothpastes so that the following a 2 1

orthogonal contrasts could be made:

Comparison H0 to Be Tested

Additive vs. no additive
m1 þ m3 þ m4 þ m5

4
� m2 ¼ 0

Whitener vs. fluoride
m1 þ m5

2
� m3 þ m4

2
¼ 0

Whitener vs. whitener with freshener m1 2 m5 ¼ 0

Fluoride vs. fluoride with freshener m3 2 m4 ¼ 0

To test these comparisons within the ANOVA procedure, the among SS is partitioned into

a 2 1 components which are each sums of squares for a one-degree-of-freedom F test. The sum

of squares for additive vs. no additive is found as follows. The null hypothesis is rewritten as

H0:m1 þ m3 þ m4 þ m5 � 4m2 ¼ 0

by multiplying by 4. The contrast is then in an equivalent form without fractions:

L1 ¼ m1 þ m3 þ m4 þ m5 � 4m2
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The coefficients are

a1 ¼ a3 ¼ a4 ¼ a5 ¼ 1 and a2 ¼ �4

The sum of squares is

SSL1 ¼

X
i

aiTi

� �2

n
X

i
a2i

¼ ½197:4þ 211:3þ 215:8þ 186:5� 4(199)�2
4½12 þ 12 þ 12 þ 12 þ (� 4)2� ¼ 2:8

Similarly, the sum of squares can be found for the other three contrasts:

Whitener vs. fluoride:

H0: L2 ¼ m1 þ m5 � m3 � m4 ¼ 0

SSL2 ¼
(197:4þ 186:5� 211:3� 215:8)2

4½12 þ 12 þ (� 1)2 þ (� 1)2� ¼ 116:6

Whitener vs. whitener with freshener:

H0:L3 ¼ m1 � m5 ¼ 0

SSL3 ¼
(197:4� 186:5)2

4½12 þ (� 1)2� ¼ 14:9

Fluoride vs. fluoride with freshener:

H0:L4 ¼ m3 � m4 ¼ 0

SSL4 ¼
(211:3� 215:8)2

4½12 þ (� 1)2� ¼ 2:5

The ANOVA table is then enlarged as follows:

Source df SS MS F F0.05

Among toothpastes 4 136.8 34.20 39.8� 3.056

Additive vs. no

additive

1 2.8 2.8 3.3 4.543

Whitener vs. fluoride 1 116.6 116.6 135.6� 4.543

Whitener vs. whitener and fluoride 1 14.9 14.9 17.4� 4.543

Fluoride vs. fluoride and freshener 1 2.5 2.5 2.9 4.543

Within toothpastes 15 13.0 0.86

These comparisons show a significant difference between the abrasiveness of the whitener

and the fluoride; the whitener is more abrasive. There is also a significant difference between

the whitener alone and the whitener with freshener, the latter being still more abrasive.
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It should be noted in the above example that the among SS has been partitioned, that is,

divided into nonoverlapping parts, by the orthogonal contrasts. This has an advantage over the

multiple-comparison procedures of the previous section in that the partition can be used to

determine the percentage of variability that is due to the different factors. In this example, the

difference between the whitener and the fluoride is responsible for 116.6/136.8 ¼ 85% of the

sums of squares among toothpastes.

A significant F test is not a prerequisite for these one-degree-of-freedom tests. In fact, the

ANOVA procedure need not be carried out. Also, if MSe is used for s
2
p, five t tests can be used

rather than the five F tests. It is essential, however, that the contrasts be planned before

examining the data; otherwise the investigator may be biased by what he sees.

A priori tests of this type are not always possible because there may be insufficient

information to set up reasonable contrasts. The experimenter needs a great deal of information

to be able to choose treatment groups in such a way that a set of orthogonal contrasts relevant

to the experiment will exist. When possible, these contrasts usually answer more relevant

questions than multiple comparisons.

The one-degree-of-freedom comparisons can be summarized as follows.

Procedure. One-Degree-of-Freedom Comparisons

To test a set of a 2 1 mutually orthogonal comparisons, write each contrast in the form

L ¼ a1m1 plus;a2m2 þ � � � þ aama with integer coefficients. Then the sum of squares for each

contrast is found by the formula

SSL ¼

X
i

aiTi

� �2

n
X
i

a2i

in which Ti is the ith treatment group total and n is the number of observations in each group.

This sum of squares has one degree of freedom. The contrast is tested with the statistic

F ¼ MSL

MSe

and the comparison is significant if F � Fa,1,a(n21).

The procedure described in this section applies only to groups of equal sample sizes.

If desired, the sums of squares for the one-degree-of-freedom tests can be computed from

the group averages instead of the group totals. In that case the formula becomes

SSL ¼

X
i

ai �yyi

� �2
n

X
i

a2i

EXERCISES

10.4.1. In the chain saw experiment, test the 3 comparisons proposed at the beginning of this

section by means of one-degree-of-freedom F tests.

10.4.2. Certain people convicted of crimes return to prison over and over again while others seem

to be rehabilitated. To determine whether this may be related to the nature of the first
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offense, a sociologist sampled prison records of former inmates of the same age. She

recorded the nature of the first offense and the total number of times theywere imprisoned:

Nature of crime: Assault Rape Fraud Embezzlement

Average number of

imprisonments:

7.5 5.5 4.5 2.5

a. Make the following orthogonal comparisons if n ¼ 10 and MSe ¼ 15:

Assault vs. rape

Fraud vs. embezzlement

Violent vs. nonviolent

b. What conclusions can be drawn from this analysis?

10.4.3. A study is done on the effectiveness of various types of analgesics. There are 6 treatment

groups, one of which is a control group and receives a placebo. Five persons who have

pain are chosen at random for each treatment. All patients take the medication in capsule

form and do not knowwhich of the 6 groups they are in. The capsules that contain aspirin

(with or without something else) all contain the same amount of aspirin. The variable of

interest is the amount of time (in hours) until relief from pain is felt.

Group Treatment

X
j

yij
X
j

yij
� �2 X

j

y2ij
�yyi

1 Placebo 20 400 105 4.0

2 Aspirin, brand 1 5 25 6 1.0

3 Aspirin with caffeine 10 100 19 2.0

4 Aspirin, brand 2 6 36 7 1.2

5 Aspirin with buffer 8 64 10 1.6

6 Aspirin with buffer and caffeine 11 121 22 2.2

Totals 60 746 169

a. State the null and alternative hypotheses.

b. Perform the ANOVA at a ¼ 0.01.

c. Make the following orthogonal comparisons:

Placebo vs. analgesic

Pure aspirin vs. aspirin with additives

Aspirin 1 vs. aspirin 2

Aspirin with caffeine (alone) vs. aspirin with buffer (with or without caffeine)

Aspirin with buffer vs. aspirin with buffer and caffeine

d. Show that the set of comparisons in part c are mutually orthogonal.

e. What part of the sum of squares among groups is caused by the difference

between pure aspirin and aspirin with additives?

f. What should the experimenter conclude from the above analyses?
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10.5. ESTIMATION

Often an investigator wants to obtain one or more estimates of parameters after an ANOVA.

He may want to estimate m (the overall mean), m þ ai (the ith treatment mean), or ai (the ith

treatment effect). He might also be interested in the difference of two parameters as a1 2 a2

or some other linear combination of parameters as m1 2 (m2 þ m3)/2. Usually he wants the

estimate in the form of a confidence interval.

The following table summarizes the point estimators and the estimators of the standard

errors needed to form these confidence intervals.

CI1�a: Point Estimator+ ta=2,N�a (Standard Error)

Parameter Symbol Point Estimator Standard Error

Mean m �yy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe=N

p

Treatment mean mi ¼ m þ ai �yyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe=ni

p

Treatment effect ai �yyi � �yy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

N � ni

niN

� �s

Difference between

treatment means

mi � mi0 or ai � ai0 �yyi � �yyi0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

ni
þMSe

ni0

r

A linear combination

of means

X
i

aimi with
X
i

ai ¼ 0
X

i
ai �yyi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

X
i

a2i
ni

� �" #vuut

All of the standard errors except the one for the treatment effect can be seen to follow from

the properties of the variance of a linear combination of random variables. The standard error

for the treatment effect is different because �yyi and �yy are dependent.

Example 10.9. Confidence Intervals Related to ANOVA

In the chain saw study, Example 10.1 of Section 10.2, the averages are

�yyA �yyB �yyC �yyD �yy

33 43 49 31 39

n ¼ 5 and MSe ¼ 101.25. Some of the possible point estimates are given in Figure 10.5.

The experimenter wants to find 95% confidence intervals for the overall mean, for the

mean of model B, for the model B effect, for the difference between models A and D, and for

the difference between the oldest model, model A, and the average of the three newer models.
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Overall Mean, m

CI0:95: �yy+ t0:025,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

N

r

39+ 2:120

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101:25

20

r

39+ 4:77

Mean of Model B, mB

CI0:95: �yyB + t0:025,a(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r

43+ 2:120

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101:25

5

r

43+ 9:5

Model B Effect, aB

CI0:95: �yyB � �yy+ t0:025,a(n�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

(N � nB)

nBN

r

(43� 39)+ 2:120

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101:25

(20� 5)

5(20)

s

4+ 8:27

Since this interval contains zero, model B does not differ significantly from the overall mean

of all four models.

FIGURE 10.5. Point estimators of parameters in ANOVA.
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The Difference between the Means of Models A and D, mA 2 mD

CI0:95: �yyA � �yyD + t0:025,a(n�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

n
þMSe

n

r

(33� 31)+ 2:120

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(101:25)

5

r

2+ 13:49

Since this interval contains zero, models A and D do not differ significantly with respect to

kickback.

The Difference between the Mean of Model A and the Average of the Means of the Other

Three Models, mA 2 (mB 1 mC 1 mD)/3

aA ¼ 1, aB ¼ aC ¼ aD ¼ � 1

3

X
ai ¼ 0

CI0:95: �yyA �
�yyB þ �yyC þ �yyD

3
+ t0:025,a(n�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

X
i

a2i
n

s

33� 43þ 49þ 31

3
+ 2:120

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101:25

12 þ 3(� 1=3)2

5

� �s

� 8+ 11:0

Thus the older one (model A) does not seem to be significantly different from the average of

the three newer ones.

The investigator should remember that repeated estimates within the same experiment will

not preserve the original a level. By chance alone, one or more of the intervals may fail to

cover the parameter. There are several ways to guard against this:

1. If an experiment-wide confidence no greater than 1 2 a is needed, Scheffé’s procedure

can be used rather than the conventional confidence interval based on ta/2,a(n21).

2. If confidence intervals for pairwise differences between all group averages are wanted,

it is possible to use Tukey’s honestly significant difference procedure wherein the

confidence interval ta/2,a(n21) is replaced with qa,ma(n21), where m is the number of

confidence intervals to be constructed. The formula for this procedure thus will be

( �yyi � �yyj)+ qa,ma(n�1)

ffiffiffiffiffiffiffiffiffi
MSe

n

r

but note that that it is appropriate only when the sample size n is the same for all

samples.

3. Ifm confidence intervals are involved, then ta/2m,N2a is used for each individual confidence

interval. The set of intervals is then calledmultiple-t confidence intervals. A t table that lists

very small values of a is necessary to find most multiple-t confidence intervals. This is one

of the Bonferroni procedures discussed in greater detail in Section 10.6.
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EXERCISES

10.5.1. In the insecticide study of Exercise 10.3.2:

a. Place a 95% confidence interval on the overall experimental mean.

b. Place a 99% confidence interval on the effect of the third insecticide.

c. Place a 90% confidence interval on the difference between the second and fourth

insecticides.

d. Place a 95% confidence interval on the fifth treatment mean.

10.5.2. In the spider study of Exercise 10.3.3:

a. Place a 95% confidence interval on the mean of the second treatment.

b. Place a 95% confidence interval on the difference between the mean of the first

and the third treatments.

c. Place a 95% confidence interval on the difference between the first and second

treatment effects.

10.5.3. Four normal populations with homogeneous variances give rise to the following

data from random samples:

Group

1 2 3 4

52 40 38 48

41 28 33 36

52 27 38

39 33 38

39 48

49

36

38

47

a. Perform an ANOVA.

b. Estimate m1 2 m3 with a 90% confidence interval.

c. Estimate m with a 90% confidence interval.

d. Estimate a3 with a 90% confidence interval.

e. Estimate (m1 þ m4)=2� (m2 þ m3)=2 with a 90% confidence interval.

10.5.4. Use Tukey’s procedure to place a set of simultaneous 95% confidence intervals on

the differences between all pairwise kickback averages in Example 10.1. (This will

require that q0.05,16 be used rather than a t value.) How do the conclusions drawn

from the confidence intervals compare to those for the pairwise tests of averages?

10.6. BONFERRONI PROCEDURES

The procedures discussed in this section are said to date from the middle of the last century

when they were suggested by the Italian mathematician Carlo E. Bonferroni (1892 to 1960).
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However, they gained little attention until 1961 when Olive J. Dunn published a table of t

values with small a levels suitable for the procedures. This brief history is given to explain

why we discuss a procedure attributed to someone but do not give a reference to his work.

Readily available high-speed computing and sophisticated statistical computer packages have

made the procedures readily accessible, so they are frequently mentioned in research papers

and need to be part of the statistical arsenal with which researchers are armed. Luckily the

added armor is light and not too difficult to use if the proper statistical software is available.

In Sections 10.3 to 10.5 we expressed the need for concern about the global a level (aG),

the overall a level for all hypotheses tested in an experiment. Although the consequences are

not as drastic, the likelihood of mischance can be compared to playing Russian roulette.

Whether justified or not, that adventure is attributed to young noblemen in Czarist Russia who

tested their courage by placing a single cartridge in one of the six chambers in the cylinder of a

revolver, spinning the cylinder, placing the handgun to their heads and pulling the trigger.

Assuming the spinning process is random, the probability of an imminent funeral is 1/6, and if
the experiment is repeated after a new spin of the cylinder, it remains 1/6 because the trials are
independent. However, if one’s courage needs to be tested m times in one evening,

P(funeral) ¼ 1 2 (5/6)m. When m ¼ 1, the probability is 0.167, but if m is increased to 6, the

probability increases to 0.665, and something unpleasant is most likely to occur. Similarly, if

we have a research experiment with m independent t tests each with a ¼ 0.05, the probability

that at least one will show significance by chance alone is 1 2 (0.95)m. Whenm ¼ 1, P(Type I

error) ¼ 0.05, but ifm increases to 6, the probability of at least one chance difference is 0.265,

so again something unpleasant is quite likely to occur.

The analogy used to explain the dire consequences of repeated testing, whether it be of

courage or null hypotheses, is not perfect. We have no cylinder to spin between tests of

hypotheses among the same set of averages, so the tests are not independent. In fact, in the

chain saw experiment that is becoming tattered from overuse, �yyA, and every other group

average, is used in three of the six pairwise tests of difference between averages. Yet even

without complete independence it is intuitive that with repeated tests of hypotheses

probability will increase for at least one difference being significant by chance alone. Thus the

experiment-wide a level will be greater than the 0.05 customarily claimed by the

experimenter. When it is important to maintain the global aG level for all simultaneous tests or

confidence intervals at a set level is when Bonferroni procedures are most useful.

The statistical procedures are the same as we are accustomed to using for t tests and

confidence intervals; the only difference is that we change the value of ta,n that will be used for

statistical inference. If we revisit the chain saw experiment using Bonferroni procedures to

perform m ¼ ( 4
2
) ¼ 6 simultaneous t tests or construct m ¼ 6 simultaneous confidence

intervals, each test or confidence interval will have its own ai level, but they must be chosen

so that

a1 þ a2 þ � � � þ am � aG

This requirement poses the greatest difficulty in using the procedure because it means that we

will often need t tables for a levels that seem bizarre. In the case where m ¼ 6 and aG ¼ 0.05

is divided equally among the 6 t tests, the critical t value for each two-sided test will be one

with a(n 2 1) ¼ 16 degrees of freedom and an ai ¼ aG=2m ¼ 0:05=2(6) ¼ 0:0042. Tables of
the t distribution for such a value likely do not exist, and that is why computers with

sophisticated statistical programs are usually needed for Bonferroni procedures. How this can

be done with such a statistical package (JMP) will be demonstrated in Example 10.10.
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Example 10.10. Simultaneous Bonferroni t tests

When the 4 models of chain saws are compared with Bonferroni t tests, 6 separate t tests are

performed in the usual fashion:

t ¼ �yyi � �yyjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSe=n

p

The critical value used is the only thing that is different. Rather than the t0:025,a(n�1) that would

be used for Fisher’s least significant difference at the 0.05 level of significance, to maintain a

global aG level of 0.05 for the 6 tests, we need a critical t value for ai ¼ 0.05/2.6 ¼ 0.0042

for each test. Even if tables for such t values exist, they will likely be difficult to find. There are

statistical computer packages that would allow us to compute t0.0042,16, but since most

statistical computer routines give the P values for tests, we can use the P value for each of the

6 t tests and see if it is equal to or less than ai ¼ 0.0042. The averages for the models are

ordered again and arranged in the same sort of table used for multiple comparisons, and within

the table are the six t tests and their respective P values:

�yyA ¼ 33 �yyB ¼ 43 �yyC ¼ 49

�yyD ¼ 31 t ¼ 0.3134 t ¼ 1.8856 t ¼ 2.8284

P ¼ 0.7574 P ¼ 0.0776 P ¼ 0.0121

�yyA ¼ 33 t ¼ 1.5713 t ¼ 2.5142

P ¼ 0.1357 P ¼ 0.0230

�yyB ¼ 43 t ¼ 0.9428

P ¼ 0.3598

None of the P values is equal to or smaller than ai ¼ 0.0042, so none of the differences

between model averages can be considered statistically significant.

The Bonferroni t tests just considered are the usual a posteriorimultiple-comparison tests for

differences among all averages. This set of tests is required for multiple-comparison procedures

such as Duncan’s or Student–Newman–Keuls’, but not for Bonferroni t tests. The experimenter

is free to use whatever set of m tests he chooses; the t tests need not be the
a

2

� �
set used for

multiple comparisons; they need not be an orthogonal set; they do not require equal sample sizes;

they can be single sample t tests of a hypothesized m; and after computing the appropriate

standard error, they can be for comparing averages of several groups with those of others.

However, the set of tests should be chosen in advance of the experiment. The researcher will be

violating the intent of maintaining a global a level if he looks at the data and then decides what

tests might lead to significance. To demonstrate some of the versatility, the t tests and P values

that have already been attained can be used for a different set of m simultaneous t tests.

Suppose even before any data were gathered the experimenter knew that model C had such

strong kickback it might become a safety risk if used by frail or elderly people. Thus he chose the

other three models as possibly safer alternatives. The set of m tests of interest to him would

be the comparison of each of the averages of the other models to that for model C to see if one may

have significantly less average kickback.Hewould need only three t tests to test the three hypotheses

H0:mC ¼ mA with Ha:mC . mA

H0:mC ¼ mB with Ha:mC . mB

H0:mC ¼ mD with Ha:mC . mD
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Thus, if he wishes to maintain a global aG ¼ 0.05, each Bonferroni t test would have an ai ¼
aG/m ¼ 0.05/3 ¼ 0.0167. He would not use ai ¼ aG/2m because the alternative hypotheses are

one sided; he wants to find a model with significantly less kickback. The tabulation of t tests and

P values is

�yyA ¼ 33 �yyB ¼ 43 �yyD ¼ 31

�yyC ¼ 49 t ¼ 2.5142 t ¼ 0.9428 t ¼ 2.8284

P ¼ 0.0230 P ¼ 0.3598 P ¼ 0.0121

The P value for the t test of the difference between models C and D averages is less than

ai ¼ 0.0167, so those two models differ significantly with respect to kickback and he can

recommend model D for people who need a saw with significantly less kickback.

Example 10.10 demonstrated that Bonferroni t tests are computed in the same fashion as

we have computed other t tests. The only difference is in the critical value of t that is used for

inference. There may be no table with the t values we need, but if we have a computer program

that gives the P values for t tests, we can use them to make tests of significance. Another idea

to be gained from the example is the extreme versatility of Bonferroni t tests; they can be used

for any set of m tests with their respective ai, values which may even be of different sizes so

long as the global a is maintained by

a1 þ a2 þ � � � þ am � aG

When multiple-comparison procedures were discussed in Section 10.3, it was noted that the d

values for Duncan’s tests could not be substituted for the t value to construct the confidence

interval for the difference between group averages. It was similarly noted that the q value could be

used in place of a t value for a confidence interval only for the difference between means largest

and smallest in rank. This is because the comparison of largest and smallest is the same whether

one uses Student–Newman–Keuls’ or Tukey’s procedure. As mentioned in Section 10.5,

Tukey’s procedure uses only qa/2,a,a(n21) for all statistical inferences involving differences

between group averages, hypothesis testing, or interval estimation and thereby provides a known

global a. Bonferroni simultaneous confidence intervals, like their t-test counterparts, offer greater

versatility as well as familiarity.We can choose a set ofm confidence intervals among those given

in Section 10.5 or any other sensible intervals and also choose the ai level we want to use for each

interval, with the only condition that a1 þ a2 þ � � � þ am � aG. Then, again, if we refer to

Section 10.5 and compute the appropriate standard errors (s.e.), each confidence interval will be

+tai ,n(s.e.)

So the only difference between a Bonferroni interval and those demonstrated in Section 10.5 is the

t value that is used to compute the interval. Finding the t value for an unusual ai is no longer a

problem with those who have access to sophisticated statistical computer packages. Example

10.11 will demonstrate the use of Bonferroni simultaneous confidence intervals for the ubiquitous

chain saw data.

Example 10.11. Simultaneous Bonferroni Confidence Intervals

Suppose that in the experiment described in Example 10.1 the experimenter wants to maintain

a global a of 0.05 while constructing simultaneous confidence intervals for the mean kickback
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of each of the four models. If he wants all the m ¼ 4 intervals to have the same 1 2 ai

confidence, ai would be aG/2m ¼ 0.05/2.4 ¼ 0.00625. Because this is not one of the

probability levels found in conventional ttables, the experimenter would have to interpolate

between the t values given in Table A.11 for a ¼ 0.01 and a ¼ 0.005 or else use a statistical

computer program. Using JMP, the necessary t value is found to be +2.813 for two-sided

confidence intervals, and each of the simultaneous confidence intervals is

+tai ,n(s.e.) ¼ +t0:00625,16

ffiffiffiffiffiffiffiffiffi
MSe

n

r
¼ +2:813

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101:25

5

r
¼ +12:66

The common interval is quite wide, so reporting that the estimatedmean kickback for modelC is

49+12.66, or between 36.34 and 61.66 degrees, is not especially useful, but the experimenter

must remember that he has a relatively small experiment and only 5 observations on model C.

Interval estimates with narrow bounds almost always require large sample sizes.

Because of his concern about the safety of model C saws, suppose he wants a narrower

bound for his interval estimate of the mean kickback for that model. However, to accomplish

that using the same data, he would have an ai for model C that is different from that used for

other saws. Thus he sets aC ¼ 0.02 and aA ¼ aB ¼ aD ¼ 0.01 in order for the four ai levels to

sum to the desired global a of 0.05. Because the ai are not the same for all simultaneous

intervals, he must compute two confidence intervals, one for model C using t0.02/2,16 ¼ t0.01,16
and t0.01/2,16 ¼ t0.005,16 for the other three intervals. Fortunately both of the desired t values

can be found in Table A.11 and do not have to be computed.

The confidence interval for mean kickback of model C saws is computed as

�yyC + t0:01,16

ffiffiffiffiffiffiffiffiffi
MSe

n

r
¼ 49+ 2:583(4:50) ¼ 49+ 11:62

That for each of the other saws is

+t0:005,16

ffiffiffiffiffiffiffiffiffi
MSe

n

r
¼ +2:921(4:50) ¼ +13:14

The confidence intervals in Example 10.11 may seem disappointingly wide, but we need to

remember that asking, “Is there a significant difference between the means of two groups?” is

quite different from asking, “How great is the difference between the two means?” The first

question is answered by hypothesis testing and the second by interval estimation, and large

sample sizes are usually needed for a narrow confidence interval.

We have seen that Bonferroni simultaneous t tests and confidence intervals are not new

computational procedures to be learned. They employ the same computations as the t tests and

confidence intervals we have encountered before. The difference lies in the t values needed for

statistical inference, and these usually must be computed rather than obtained from a table.

We learned in Chapter 8 that when degrees of freedom increase, the t distribution converges to

the standard normal z distribution. Thus we might believe that with moderate degrees of

freedom we could use a z value from Table A.10 to approximate the t value we would

otherwise have to compute. Unfortunately, this is another instance where we can cite the old

proverb about the danger of a little learning.
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The t distributions are said to have “fat tails,” meaning that there is a greater area under the

extreme tails of a t distribution than under the standard normal distribution. Because it is in

these tails that we find Bonferroni t values, they do not agree well with z values for the same a.
For example, in the standard normal distribution P(z . 2.5758) ¼ 0.005, so 2.5758 should be

the approximate numerical value of t0.005,n when n is large enough to substitute z0.005 for

t0.005,n. So we can examine the last column of Table A.11 to see how large the degrees of

freedom must be before t0.005,n is near 2.5758. We find that it is only when an experiment has

n ¼ 120 degrees of freedom that t0.005,120 and z0.005 both can be rounded to 2.6. If we wish to

maintain a global a for an experiment and choose to do so with Bonferroni procedures, it seems

that we cannot avoid the need of a computer program to compute the t values that are required.

EXERCISES

10.6.1. Given that t0.0042,16 ¼ 3.0045, use the data in Example 10.1 to compute the

minimum significant difference between kickback averages when the Bonferroni

procedure is used. (Remember that the t value is multiplied by the standard error of

the difference between two means.) Compare the computed value with that for

Tukey’s test and tell which procedure is more conservative.

10.6.2. An experiment is performed to compare the economy of operation of three types of

“hybrid” automobiles that operate by both a gasoline engine and electricity. Six

autos of each type are driven for 500 miles in the same city, and the variable of

analysis is total costs of gasoline, electricity, and maintenance. The data and some of

the analysis are given below:

Hybrid car: D E F

20.3 24.5 21.0

19.8 20.8 17.8

21.1 22.0 18.1

18.7 23.1 19.4

20.0 23.5 17.5

20.1 24.1 20.2

Sum 120.0 138.0 114.0

a. If the uncorrected sums of squares are T ¼ 7762.7, A ¼ 7740.0, and CF ¼ 7688,

show that MSe ¼ 1.51.

b. If average costs of operation of hybrid car types are to be compared by

Bonferroni t tests with a global a of aG ¼ 0.06, what will be ai for each

Bonferroni t test?

c. Perform the tests and decide which types are significantly different from each

other.

d. Construct simultaneous confidence intervals for each of the three types.

e. Suppose we knew in advance that type E cars had a more powerful gasoline

engine than cars of the other two types. So, using MSe, we want to perform two

Bonferroni t tests: (1) the average of type E compared to the combined average of

the other two and (2) the average of typeD compared to that of type F. The global
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a can be maintained at aG ¼ 0.06 if we choose a1 ¼ 0.05 and a2 ¼ 0.01. Why

might we want a greater a1 for testing the average of type E compared to the

combined average of the other two?

f. Perform the two Bonferroni t tests and draw conclusions.

10.7. NONPARAMETRIC STATISTICS: KRUSKAL–WALLIS ANOVA

FOR RANKS

In Section 10.1, we noted that the sample variance among group averages is an estimate of s2/n
under the null hypothesis. Because the within MS also estimates s2, we obtained the two

independent estimates of variance which are necessary for an F test from the ratio

F ¼ n½Variance among sample averages�
Pooled variance within groups

¼
n
X

i
( �yyi � �yy)2=(a� 1)

h i
X

i

X
j
( yij � �yyi)

2=a(n� 1)

W. H. Kruskal andW. A.Wallis have shown that a very similar analysis can be performed on rank

data. Thus, once again, after examining a procedure designed for normally distributed data, we are

able to discuss a similar nonparametric procedure for ordinal data or numerical data which have

been transformed to the ordinal scale. However, this procedure is not simply a matter of replacing

original observations with ranks and then performing the ANOVA and an F test. Because ordinal

data consist of the integer values from 1 to N, under the null hypothesis, the E(within MS)

¼ N(N þ 1)/12. It may be recalled from Chapters 7 and 8 that an F statistic is the ratio of two

independent estimates of the same variance, whereas chi square is the ratio of a sample sum of

squares divided by a known variance. Thus, because the withinMS for ranks is known, we employ

the chi-square distribution in the Kruskal–Wallis test. The test statistic, usually symbolized asH, is

the among-group SS computed from the rank data divided by N(N þ 1)/12:

H ¼ n½Sum of squares among sample rank averages�
N(N þ 1)=12

¼
n
X

i
(�rri � (N þ 1)=2)

2
h i

N(N þ 1)=12

and H is compared to x2a,a�1 for the test of significance.

The chain saw data in Example 10.1 may have become somewhat tiresome, but they lend

themselves very well for a demonstration of the Kruskal–Wallis test. First, the original data

must be transformed into ranks, as is done in the table shown below.

Model:
A B C D

Measurement: Degrees Rank Degrees Rank Degrees Rank Degrees Rank

42 12 28 4 57 19 29 5

17 1 50 17 45 15 40 10

24 3 44 14 48 16 22 2

39 9 32 7 41 11 34 8

43 13 61 20 54 18 30 6

Sum of

ranks (Ri):

38 62 79 31

Average

rank (�rri):

7.6 12.4 15.8 6.2
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For the rank data, the hypotheses are

H0:E(�rri) ¼ N þ 1

2
for all i

and

Ha:E(�rri) =
N þ 1

2
for some i

Because the mean of the 20 ranks is (20 þ 1)/2 ¼ 10.5, the sum of squares among groups for

the rank data is

5½(7:6þ 10:5)2 þ (12:4� 10:5)2 þ (15:8� 10:5)2 þ (6:2� 10:5)2� ¼ 293:0

This sum of squares can also be obtained by using the rank data to perform the computational

procedures introduced in Section 10.2. For the ranks:

A ¼
X

R2
i

n
¼ 382 þ 622 þ 792 þ 312

5
¼ 2498

and

CF ¼ ½N(N þ 1)=2�2
N

¼ 2205

We note, again, that because the ranked data consist of the integers from 1 to N, under the null

hypothesis the within MS for the ranked data estimates N(N þ 1)/12 ¼ 20(21)/12 ¼ 35.0,

which is the denominator in the computation of the test statistic:

H ¼
n
X

i
(�rri � (N þ 1)=2)2

h i
N(N þ 1)=12

¼ 293:0

35:0
¼ 8:371

When H ¼ 8.371 is compared to x20:05,3 ¼ 7:815, we reject the null hypothesis and conclude

that at least one model of chain saw tends to outrank another with respect to degree of

kickback.

If we wish to determine which models of chain saws are different from others, it is

suggested that we utilize mean separation techniques similar to those discussed in Sections

10.3 and 10.4. These procedures differ only in that E(within MS) ¼ N(N þ 1)/12 under the

null hypothesis, and since we are dealing with a known variance, we employ the normal and

chi-square distributions rather than the t and F distributions, which are used when s2 is

estimated rather than known.

For an a posteriori procedure similar to Fisher’s least significant difference, we can

use

z0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½N(N þ 1)�

12n

r
¼ z0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N(N þ 1)

6n

r
¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffi
20(21)

6(5)

r
¼ 7:33

Thus we may conclude that there is a significant difference between any two models of the

chain saws if the difference between their average ranks is 7.33 or greater. This test may be
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somewhat conservative because when the null hypothesis is false, the ranks within groups will

be of similar magnitude hence the within MS for the rank will be less than N(N þ 1)/12. Still,
for the chain saw data we find the same significant differences among models that were

obtained when Fisher’s and Duncan’s procedures were used on the original data.

Orthogonal contrasts can be used in an a priori procedure for finding significant

differences among the models of chain saws. When there is sufficient information in advance

of the experiment, one can construct a 2 1 sets of orthogonal contrasts which can be used to

partition the test statisticH and its a 2 1 degrees of freedom into a 2 1 orthogonalH statistics

each with one degree of freedom. Each of the orthogonal H values is computed by

H ¼
X

aiRi

h i2
=n
X

a2i

N(N þ 1)=12

Thus, if we knew prior to the experiment that models A and D were chain saws designed

for home use and that models B and C were intended for industrial use, we could compare the

average rank of the two “home” models to that of the two “industrial” models with the original

contrast:

H ¼ ½(� 1)38þ (þ 1)62þ (þ 1)79þ (� 1)31�2=5½(� 1)2 þ (þ 1)2 þ (þ 1)2 þ (� 1)2�
20(21)=12

¼ 5184=20

35
¼ 7:406

When test statistic H is compared to x20:05,1 ¼ 3:841, we see that there is a significant average
difference in rank between home and industrial saws. This result agrees closely to the results

obtained when the same orthogonal contrasts are used in the analysis of the original numerical

data. Such will frequently be the case, because even when a rank transformation is performed

on data which are normally distributed, these rank test procedures will usually lead to

the same conclusions that one would obtain from an analysis of the original data with the

ANOVA procedures discussed earlier in this chapter. Furthermore, rank procedures should be

superior when data are not normally distributed; however, the other assumptions of ANOVA

must still hold, namely (1) random, independent samples, (2) a linear model, and (3) equal

variances within groups.

Procedure. Kruskal–Wallis One-Way ANOVA for Ranked Data

H0:E(�rri) ¼ N þ 1

2
for all i

Ha:E(�rri) =
N þ 1

2
for some i

Rank the data from 1 (the smallest observation) to N (the largest), irrespective of the group in

which they are found. If two or more observations are tied for the same numerical value,

assign to each the average rank for which they are tied.

Let �rri ¼ the average rank of group i; i ¼ 1, . . . , N.

10.7. NONPARAMETRIC STATISTICS: KRUSKAL 311



Compute:

H ¼
n
X
i

�rri � N þ 1

2

� �2
" #

N(N þ 1)=12

Reject H0 if H � x2a,a�1

EXERCISES

10.7.1. A clockmaker is designing a decorative clock which will require only a small

battery-powered motor and a flexible strip of metal for its operation. There are three

types of alloys (labeled A, B, and C here) which seem to fit all requirements for the

strip of metal, so the one to be used in the design will be the alloy which can be

flexed for the longest period of time without breaking. A random sample of four

strips of each type of alloy is obtained and all 12 strips are placed on a device which

will continue to flex them until all break. They are observed periodically, and a

record is kept, by alloy, of the order in which the strips break:

(First) A B A A B A B C B C C C (Last)

a. State the null and alternative hypotheses?

b. What is the critical value of the test statistic for an a ¼ 0.05 test?

c. Compute the test statistic H and make the test of significance.

d. Use the procedure similar to Fisher’s least significant difference to determine

whether any alloy tends to outrank another with respect to length of time it can be

flexed before breaking.

10.7.2. Business school students often have difficulty in their first course in accounting. The

instructor thinks this is because of differences in the students’ mathematics

achievements in high school. To test whether this is the case, the instructor takes a

random sample of four students from among those receiving each of the letter grades

in the accounting course and then compares them on the basis of their high-school

grade point averages in mathematics courses. The data are given below:

Grade in Accounting High-School GPA in Math

A 3.5 3.0 3.6 4.0

B 3.2 2.8 3.8 3.1

C 2.8 3.0 3.4 3.3

D 2.2 2.8 2.9 3.1

F 2.5 2.6 2.7 2.9

a. Transform the 20 math grade point averages to ranks.

b. Use the rank data to compute the among SS using ANOVA procedures and as the

numerator of H and show that it is 367.25 for both procedures.

c. Make the test of significance.
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10.7.3. Use the Kruskal–Wallis procedure to analyze the data in Exercise 10.2.3.

a. When would a nonparametric procedure be preferred for data such as these?

b. Suppose it is known in advance of the experiment that bulbs of brands A and C

both contain the same kind of filament but brand B bulbs have a different kind of

filament. Use orthogonal contrasts to complete the analysis of the rank data.

10.7.4. In addition to his interests in science, Francis Galton was a social reformer, but

surprisingly he did not consider the castelike social classes of his time to be unjust.

Instead, he said they were “ordained by evolution.” He believed the number and

quality of “abilities” a man had determined the class in which he belonged. His

descendants would remain in that class because they would inherit his skills. Galton

believed a man could rise above the class in which he was born, but only by the

improbable luck of inheriting nearly all of the abilities of both his father and mother.

(On the other hand, a woman was of the class into which she married, and Sir Francis

expressed concern because so many politicians married the daughters of wealthy

merchants. He feared the consequence on the next generation would be deterioration

in Britain’s commerce rather than an improvement in its politics.) To see if class

status is genetically determined, suppose Galton’s scale for measuring abilities given

in Exercises 1.1.3 and 8.5.3 is used to compare eight children from each of three

classes and the results are

Class: x g f e d c b a A B C D E F G X

Nobility: 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0

Merchants: 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1

Laborers: 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 0

The scale is ordered with lowercase x the smallest possible score and uppercase

X the greatest possible score.

a. Why would it be appropriate to analyze using the Kruskal–Wallis test rather than

an ANOVA?

b. Give the null and alternative hypotheses.

c. Is there a statistically significant difference among the classes?

d. In Galton’s time the nobility and merchants were probably more similar than

either was with laborers, so what is the most sensible set of orthogonal contrasts.

e. Perform the contrasts and draw conclusions about Galton’s experimental

hypothesis.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain

why.

10.1. In an ANOVA, there is a degree of freedom associated with each squared total in the

uncorrected sums of squares.

10.2. The standard deviation among sample averages is called the standard error and is

computed from an ANOVA procedure by (within MS)/n.
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10.3. Either a t test or an ANOVA may be used if only two treatment groups are being

compared.

10.4. In ANOVA the uncorrected total sum of squares will be equal to or greater than any

other corrected or uncorrected sum of squares.

10.5. An ANOVA uses both sides of the F distribution for critical values because the

alternative hypothesis contains =.

10.6. An ANOVA cannot be done if the treatment groups are unequal in size.

10.7. An ANOVA requires that all treatment groups have the same variance, and this

variance is estimated by MSe.

10.8. If the null hypothesis is rejected in an ANOVA, we can conclude that the group with

the smallest sample average has a mean that is different from all of the other group

means.

10.9. In an ANOVA, the data from a control group are handled in a manner different from

the treatment groups.

10.10. Fisher’s least significant difference requires equal treatment group sizes.

10.11. When sample sizes are unequal Fisher’s procedure is the only multiple-comparison

procedure available to the researcher.

10.12. A confidence interval on the difference between two treatment means is the same as a

confidence interval on the difference between two treatment effects.

10.13. The method of one-degree-of-freedom comparisons is an example of a multiple-

comparison procedure.

10.14. The correction factor is the average variability from the overall average.

10.15. Multiple-comparison procedures and orthogonal contrasts are both methods for

drawing conclusions from experiments in which H0 is not true.

10.16. It is common to imbed a set of multiple comparisons into the design of an experiment

for which ANOVA will be used.

10.17. A set of mutually orthogonal contrasts can be used to make all pairwise contrasts

among a set of group means.

10.18. Although the F test involves variances, when it is used in ANOVA, it is to test

hypotheses about means.

10.19. An F test is used to decide whether Duncan’s test should be used to find significant

differences among group means.

10.20. Orthogonal comparisons can be used to divide the treatment mean square into

independent parts the sum of which equals the treatment mean square.
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11 The Analysis-of-Variance
Model

Now that we are familiar with the basic ANOVA procedure, we need to look more closely at

the underlying model and its assumptions.

11.1. RANDOM EFFECTS AND FIXED EFFECTS

The one-way ANOVA discussed in Chapter 10 can be applied to many different experiments.

For example, it could be used to pick the least corrosive chemical from among 6 chemicals

that are all effective for melting ice. Or it could be used to test whether there is significant

variability among the achievements of introductory economics classes when they use the

same method and materials but are taught by different teachers.

In Chapter 10 we assumed experimental situations similar to the ice-melting chemical

example. That is, we assumed that all treatments of interest, the 6 chemicals, were included in

the experiment. This type of ANOVA is based on a model called the fixed-effects model

(FEM). In this model the experimenter—usually in the latter stages of experimentation—

narrows down the possible treatments to several in which he has a special interest. In the case

of the chemicals, for example, tests would already have been completed to determine that

these 6 were all available, suitable for melting ice, and economically feasible. Now a final

choice is to be made on the basis of corrosiveness. In the FEMwe are usually trying to pick the

best of several possibilities. The inference made is restricted to the treatments used in the

experiment.

The fixed effects model is sometimes called Model I. It is referred to as fixed because if the

investigator decided to repeat the experiment he would use the same treatments in the

repetition.

The achievement of economics classes taught by different teachers is an example of Model

II, or the random-effects model (REM); it is also called the components of-variance model.

The random effects model assumes that the treatments are a random sample of all of the

treatments of interest. It does not look for differences among the group means of the

treatments being tested, but rather asks whether there is significant variability among all

possible treatment groups. For example, if 5 teachers were used in the study, these 5 teachers

would be the treatments and the grades of their students on some standardized test might be

the variable of interest. The investigator would be interested in the variability among all

economics teachers using this method and these materials. The 5 teachers in the experiment

are a random sample from all of the treatments of interest. If the experiment were to be

repeated, 5 different teachers chosen at random would be used.
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When the REM is used, the investigator is interested in s2
A, the variance among all possible

treatment groups. The ANOVA procedure can be used to test H0:s
2
A ¼ 0. If this null

hypothesis is rejected, there is evidence of variability among groups. In the teacher example,

if the null hypothesis is rejected, teachers do have an effect on the achievements of

introductory economics classes. The inference is to all economics teachers, not just the five

involved in the study.

In Chapter 10 we did not consider examples that follow the REM model. The assumptions

for the underlying mathematical additive model yij ¼ mþ ai þ 1ij differ for fixed effects and

random effects. However, the numerical procedure for the one-way ANOVA is identical for

both models.

The following table summarizes the two models.

yij ¼ mþ ai þ 1ij

i ¼ 1, 2, . . . , a

j ¼ 1, 2, . . . , n

Fixed-Effects Model (FEM) Random-Effects Model (REM)

H0: a1 ¼ a2 ¼ � � � ¼ aa H0: s2
A ¼ 0

Ha: At least one inequality Ha: s2
A . 0

m: A constant, the mean of all possible

experiments using the a designated

treatments

m: A constant, the population mean for

all experiments involving all

possible treatments of the type

being considered

ai: A constant for the ith treatment

group, the deviation from the mean

due to the ith treatment:
P
i

ai ¼ 0

ai: A constant for the ith treatment

group, a random deviation from the

population mean. The ai’s are

normal, with E(ai) ¼ 0 and

V(ai) ¼ s2
A

1ij: A random effect containing all

uncontrolled sources of variability.

The 1ij’s are IND (0, s2), that is,

they are normally distributed with

a mean of zero and a variance s2

and they are independent of each

other and of the ai’s.

1ij: Same as for FEM

MSa: Estimates s2 þ n
P
i

a2
i =(a� 1) MSa: Estimatess2 þ ns2

A

MSe: Estimates s2 MSe: Estimates s2

In both models we assume that the experimental units are chosen at random from the

population and assigned at random to the treatments. Frequently these assumptions are not

completely met. Sometimes it is almost impossible to obtain a random sample from the entire

population of interest. For example, the investigator may want to make inference about all

white mice but must use a random sample of the white mice received from distributors. Or a

researcher may be studying the effect of exercise on blood pressure in human males and may

want to make inference to all males but may have to use volunteers with no opportunity to

choose subjects at random. In both of these examples, however, it is possible to assign the
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subjects at random to the treatments. In some other investigations, even this second stage of

randomization is not possible. For example, in a study of the effect of different teaching

methods on the learning of college students, the investigator may have to utilize for the

treatment groups the classes in which the students have enrolled. In this example there is no

opportunity for a random choice of students or for a random assignment of the students to the

treatments.

The ANOVA procedure is reliable if the assumptions are met. The more the experiment

deviates from the assumptions, the less reliable are the conclusions. An investigator should

mention any shortcomings of this type in the report of the study.

The follow-up procedures after ANOVA will differ depending upon whether the FEM

or REM is being used. For the FEM we use multiple comparisons, orthogonal contrasts, or

estimation of parameters (or linear combinations of parameters). For REM we are

interested in the intraclass correlation, sometimes identified by the acronym ICC, as an

estimate of the percentage of the total variance that is due to the differences among the

treatments.

The ICC serves a function similar to that of the coefficient of determination which we

examined in our study of linear trend or to the Rsquare statistic given in Chapter 10. The ICC

gives the proportion of the variance that is explained by the groups or treatments in the model.

If the effects ai are on the numerical scale, we could compute the coefficient of determination

r 2, but it would never be greater than the intraclass correlation rI. That is because r
2 gives the

percentage of variance explained by a linear relationship, whereas rI provides the percentage

explained by any relationship. Another advantage of rI is that the groupings or ai effects can

be on the nominal scale and we can still obtain a statement of relationship of the treatments to

the y variable and have an estimate of the variance explained by the method of groupings

employed in the experiment.

Example 11.1. One-way ANOVA for the Random Effects Model

As with the rest of the U.S. population, obesity is a major health problem in Appalachia. In

a preliminary investigation, a nutritionist is looking for familial differences in body shape

and plans to use body mass index (BMI) as the variable of interest. She selects 30 three-

child families at random and then weighs and measures the height of each child in each

family in order to obtain the 90 measures needed for her ANOVA. Gender differences

among the children in her study are a lesser concern because BMI measures body density

allowing for examination of weight while accounting for height. Still it would be better if

she could undertake two studies, one of families with 3 girls and the other of families with

3 boys.

The 30 families are her treatment groups. Each group has a sample size of 3. These 30

families are a random sample of all families in Appalachia, so this is the REM.

The ANOVA is carried out as in Chapter 10 except that the null hypothesis is H0:s
2
A ¼ 0.

Source df SS MS F

Among families a 2 1 ¼ 29 4,779.2 164.8 7.01

Within families a(n 2 1) ¼ 60 1,410.0 23.5

Since F0.05,29,60 ¼ 1.656, H0 is rejected and there is significant variability among the BMIs of

the families; that is, there is some evidence of familial differences in body density.
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Since MSa estimates s2 þ ns2
A and MSe estimates s2, the investigator computes the

intraclass correlation rI as follows:

ŝs2 ¼ MSe ¼ 23:5

ŝs2
A ¼ MSa �MSe

n
¼ 164:8� 23:5

3
¼ 47:1

r1 ¼ ŝs2
A

ŝs2
A þ ŝs2

¼ 47:1

47:1þ 23:5
¼ 0:667

that is, 66.7% of the total variance in BMIs is due to the differences among the families. The

causes may be heredity, environment, or both, but a significant percentage of the variance of

BMIs can be attributed to family differences.

The nutritionist could not have used bivariate correlation r and the coefficient of

determination r 2 instead of the ICC because she had 3 rather than 2 members. Furthermore,

even if the number per family had been n ¼ 2, only the variability due to linear association

between family members would have been obtained.

She would not have used Rsquare because its computation is

Rsquare ¼ 1� SSe

SSt

which gives the percentage of the explainable sums of squares among the na ¼ 90 individuals

in the study. To show the difference between Rsquare and the ICC, for a one-way ANOVA the

ICC can be expressed as

rI ¼ 1� ŝs

ŝst

, where ŝst ¼ ŝsA þ ŝs

Thus it estimates the percentage of the BMI variance explained by families in the target

population, the population of Appalachian families.

There are many experimental situations in which the random effects model is used and the

intraclass correlation is calculated. For example, in an environmental study on the amount of

lung damage in wild animals in a heavily industrial region, the region is divided into sections,

random sections chosen, and traps set to capture a sample of animals. The random sections are

the treatments and the intraclass correlation indicates the amount of variability in lung damage

due to the different sections.

For another example, the REM would be used in a preliminary study to see if bees are

attracted to color. Alfalfa blossoms range in color from dark purple to yellow to white. A

random sample of alfalfa plants with different colored blossoms is chosen. The number of

visits of bees to the different plants is the variable of interest. If the null hypothesis is rejected,

plans can be made to conduct experiments that would reveal the specific color or colors that

attract bees.

When the ICC is computed, the investigator is interested in the percentage of the total

variance due to the treatments. The specific percentage that is meaningful depends on the

experiment. If the investigator is looking for evidence of repeatability, as in a lab test to

measure blood sugar where the treatment groups are different samples of blood, he will want a
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high ICC, perhaps 95%. In many other situations a lower value is meaningful; an example

might be a study to see if a high level of low density cholesterol (LDC) runs in families. In an

ANOVA where families are treatment groups, it is possible that the procedure leads to a

significant F value, but at the same time rI is small. However, because there is strong clinical

evidence that LDC is associated with the blood clotting that leads to coronary artery blockage,

even a small but significant rI could be of value. It could suggest lines of further study on

LDC, or at least alert physicians to the need for frequent blood tests for LDC among those

with a relative who suffered coronary blockage.

As we examine more complex models, it will become very important to know what is

estimated by each mean square in an ANOVA. We must know what a mean square estimates

in order to determine what is a valid F test for the hypothesis we wish to test, and as we have

seen, we need this information in order to obtain the ICC. The value or linear combination of

values estimated by a mean square is called the expected value of the mean square and is

symbolized as E(MS) with a subscript identifying the MS under consideration.

We have seen that in the FEM, we want to test the hypothesis

H0: a1 ¼ a2 ¼ � � � ¼ aa ¼ 0, or Ha: ai ¼ 0 for all i

If the null hypothesis is true, all the ai ¼ 0, meaning that group averages are not signifi-

cantly different from the overall mean, then also
X

a2
i ¼ 0, and E(MSa) ¼ s2þ

n
X

a2
i =(a� 1) ¼ s2. Similarly for the REM, we want to test the hypothesis that s2

A ¼ 0;

thus under the null hypothesis E(MSa) ¼ s2 þ ns2
A ¼ s2 because s2

A ¼ 0. We can see, then,

for either model, when the null hypothesis is true, both MSa and MSe are independent

estimates of the same variance and thus can be validly tested using the F distribution.

The mean square which estimates random variability will always be given as MSe, and

E(MSe) ¼ s2. Other E(MS) will contain s2 plus terms representing other sources of

variability, and the final term will be one about which we want to make a test of hypothesis.

Thus, depending on the model, E(MSa) is written as s2 þ n
X

a2
i =(a� 1) or as s2 þ ns2

A,

and when the null hypothesis is true, the last term in E(MSa) becomes zero. We can see that

when we want to test the hypothesis that there is only random variability among group

averages, we need an F test which is the ratio of two mean squares whose expectations are the

same except for the term which becomes zero when the null hypothesis is true:

Expectations of Mean Squares

Source Fixed Model Random Model If Null Hypothesis Is True

Among

groups

s2 þ n
X

a2
i =(a� 1) s2 þ ns2

A n
X

a2
i =(a� 1) and ns2

A are 0

Within

groups

s2 s2

For either model, F ¼ MSa/MSe is the appropriate F test.

Because the notation
X

a2
i =(a� 1) is awkward to write, we will use u2A ¼

X
a2
i =(a� 1)

instead. With this symbolism, the expectations of mean squares will look more nearly alike,

but it must be remembered that s2
A represents the variance among a large population

of groups which has been randomly sampled, whereas u2A represents the sum of a set of

constants.
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The ICC procedure can be summarized as follows.

Procedure. Intraclass Correlation

Perform the ANOVA as in Chapter 10.

Estimate s2
A and s2 as follows:

ŝs2 ¼ MSe

ŝs2
A ¼ MSa �MSe

n

Then rI, the ICC, is

r1 ¼ ŝs2
A

ŝs2
A þ ŝs2

0 � r1 � 1

The ICC can be interpreted as the proportion of the total variability due to the differences in all

possible treatments of this type.

EXERCISES

11.1.1. Decide whether each of the following is using the FEM or the REM.

a. A professor is trying to select a textbook for a sociology course from 4 different

ones which are available. He divides his students at random into 4 groups and

assigns the textbooks to the groups at random. After using the different books for

the course, all students still enrolled take the same examination. ANOVA is used

to analyze the results.

b. A manufacturer builds a piece of equipment to turn out machined parts. To study

the performance of her machines, she selects 8 machines at random and then

selects 10 parts at random from the production of each of these machines. She

measures the lengths of the 80 pieces and performs an ANOVA.

c. An educator wishes to study the competence in algebra of all New York City

students who have just completed the ninth grade. Five junior high schools are

selected at random, and within each school a random sample of ninth-grade

students are given examinations. Using these scores, the hypothesis that there is

variability among the schools is tested.

d. Worms are classified into three groups by a structural characteristic: small,

medium, or large ventral flap. Three random samples of 11 worms are taken from

each group and the weight of each worm is recorded. The hypothesis is tested that

the mean weight of each group is the same.

e. A psychologist devises an examination in such a way that the final score depends

almost entirely upon the ability of the subject to follow instructions. The test is

given to 40 students who have been divided into 4 equal groups at random. The

instructions are given in the following 4 ways:

Group I written and brief

Group II oral and brief

Group III written and detailed

Group IV oral and detailed
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An ANOVA is performed.

11.1.2. An ANOVA is used to study the effect of seam differences on variability in the sulfur

content of coal. Seams and samples from seams are taken at random.

Source df SS MS

Among coal seams 24 2400 100

Within coal seams 125 5000 40

a. Do differences among seams contribute significantly to the variability in the

sulfur content of coal?

b. What percentage of the variability in the sulfur content of coal is attributable to

seam differences?

c. Would you advise coal producers in search of low-sulfur coal to seek low-sulfur

seams or to seek other factors that might affect variability? Justify your answer on

the basis of the above analyses.

11.1.3. The following data are from a (fictional) study of obesity on 10 families each of

which have 3 brothers:

Brothers

Family Pounds Overweight Total

A 50 58 72 180

B 80 96 100 276

C 60 72 84 216

D 89 80 77 246

E 82 95 90 267

F 96 75 78 249

G 102 88 86 276

H 79 100 85 264

I 85 72 89 246

J 98 79 84 261XX
y2ij ¼ 209,769

X X
yij

� �2�
n ¼ 207,849

XX
yij ¼ 2481

a. Complete the ANOVA.

b. Compute the ICC.

c. What is the target population, the population about which inference is to be

made?

d. What conclusions do you draw about obesity being a characteristic of some

families?

11.1.4. Given the following ANOVA, compute the ICC.

Source df SS MS

Among treatments 10 4368 436.8

Within treatments 33 4320 130.9
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11.1.5. Suppose a physiologist is working on a new method to measure blood sugar. Blood

samples are taken from 10 people, and two assays are done on each sample.

Source df SS MS

Among persons 9 1710 190

Within persons 10 100 10

a. Which model is being used?

b. What is the null hypothesis?

c. Should the null hypothesis be rejected?

d. Compute the ICC.

e. Does this new method seem to be reliable?

11.1.6. Fifteen varieties of corn are chosen at random from all available varieties, and plots

are planted of each variety. At maturity, five random plants are chosen from each

plot and yield is measured, leading to the following analysis:

Source Df SS MS

Among corn varieties 14 4368 —

Within corn varieties — — 72

a. Complete the ANOVA.

b. Compute the ICC.

c. Interpret the ICC.

11.2. TESTING THE ASSUMPTIONS FOR ANOVA

In both the fixed effects and random effects models we assume the observations fit the additive

model

yij ¼ mþ ai þ 1ij

in which the 1ij’s are IND(0, s2). In practice, this means:

1. The treatment groups are normally distributed (this is required so that the 1ij’s will be

normally distributed).

2. The treatment groups all have the same variance (this is required so that the 1ij’s will

have the same variance for each i).

3. The experimental units are picked at random and assigned at random to the

treatment groups (this is required so that the 1ij’s are independent of each other and the
ai’s).

We discuss each of these conditions in turn.
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Normality The normality of the treatment groups can be roughly checked by constructing

histograms of the sample from each treatment group. Histograms reveal skewness and

bimodality. Another approach is to plot the cumulative percentages on normal probability

paper; a normal distribution leads to a straight line. Unfortunately, a large number of

observations are needed for both of these procedures. The ANOVA, however, leads to valid

conclusions in some cases where there are departures from normality. For small sample sizes

the treatment groups should be symmetric and unimodal. For large samples, more radical

departures are acceptable since the central limit theorem comes into play. Thus if there is

doubt about normality, one solution is to use a large number of observations.

Some traditionally small experiments lead to nonnormal distributions:

1. Data composed of small counts, even into the hundreds, such as the number of parasites

on wildlife

2. Data composed of very large counts, such as bacterial counts

3. Proportions, or percentage data

4. Arbitrary scales, such as a 10-point taste test

5. Weights of very small things

In the first three cases, not only is the assumption of normality invalid but the variances of

the treatment groups may be unequal and there may be a lack of independence between the

random effect and the treatment effect. One approach in these cases is to transform the data

and perform the ANOVA on the transformed values; this is discussed in Section 11.3.

In experiments involving arbitrary scales, as the taste test, normality can be approximately

achieved by using several tasters (5 or more) and recording their average ratings.

Weights of very small things are often not normally distributed because of the limits of the

accuracy of the weighing process. Weighing objects in groups can sometimes overcome this

difficulty.

Equality of Variances. AnANOVA assumes homogeneity of variances (homoscedasticity);

that is, all of the treatment groups have the same variance. The F tests are robust with respect

to departures from homogeneity; that is, moderate departures from equality of variances do

not greatly affect the F statistic. If the experimenter fears a large departure from homogeneity,

several procedures are available to test

H0: s2
1 ¼ s2

2 ¼ � � � ¼ s2
a

Unfortunately, most of these tests rely on the assumption of normality.

We discuss here only one test for homogeneity of variances, theFmax test developed byHartley

(1950). Hartley’s test is one of the simplest; it may be used when all treatment groups are the same

size and involves comparing the largest sample variance with the smallest sample variance.

Example 11.2. Fmax Test for Homogeneity of Variances

In the chain saw study (Example 10.1), the investigator wants to test

H0: s2
A ¼ s2

B ¼ s2
C ¼ s2

D
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He first computes the sample variance for each treatment group:

Group

D A B C

X
j

yij 155 165 215 245

X
j

y2ij 4981 5999 9965 12,175

�X
j

yij

�2

=n 4805 5445 9245 12,005

s 2i 44.0 138.5 180.0 42.5

The Fmax statistic is

Fmax ¼ largest treatment variance

smallest treatment variance

¼ 180

42:5
¼ 4:24

Here, Fmax is significant if it exceeds the value given in the table computed by Hartley, Table

A.16 in the Appendix of Useful Tables. This table is entered by a, the number of treatment

groups, and v ¼ n 2 1, in which n is the number of observations per treatment group. In this

example

Fmax0:05:a:v ¼ Fmax0:05:4:4 ¼ 20:6

Thus the null hypothesis of homogeneity of variances is accepted.

Hartley’s procedure can be summarized as follows.

Procedure. Hartley’s Test for Homogeneity of Variances

To test:

H0: s2
1 ¼ s2

2 ¼ � � � ¼ s2
a against Ha: At least one inequality

when each of the a populations is normal and there is a random sample of size n from each

population, compute

s21, s
2
2, . . . , s

2
a

and calculate

Fmax ¼ largest s2i
smallest s2i

Here, Fmax is significant if it equals or exceeds the value Fmaxa,a:v in Hartley’s table, Table

A.16 in the Appendix, with a the number of populations and v ¼ n 2 1.
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Because of the sensitivity of this test to departures from normality, if Fmax is significant, it

indicates either unequal variances or a lack of normality.

Two other commonly used tests of homogeneity of variances are those of Cochran (1947)

and Bartlett (1937). In most situations, Cochran’s test is equivalent to Hartley’s. Bartlett’s test

has a more complicated test statistic but has two advantages over the other two: It can be

applied to groups of unequal sample sizes, and it is more powerful. Scheffé has a test that is

less sensitive to departures from normality. For a discussion of these tests see Winer (1971,

pp. 205–220).

If the experimenter finds that only one or two of the treatment groups have a different

variance, he might discard these samples and work only with the remaining ones. However, if

discarding these treatment groups makes it impossible to answer the experimental questions,

another approach may be needed. One possibility is to transform the data as described in

Section 11.3; another would be a nonparametric technique in place of ANOVA. This does not

imply that there are no assumptions to be met for nonparametirc analyses. For instance, in

addition to random and independent samples, rank order tests such as the Kruskal—Wallis test

require that all the sampled distributions have the same shape. When that assumption is met,

they are more powerful than ANOVA for a number of nonnormal distributions.

Independence. The random effects (1ij’s) in the additive model must be

1. independent of each other and

2. independent of the treatment effects (ai’s).

If these conditions are missing, it will be difficult to detect real differences that may exist.

The first condition is usually satisfied if the experimental units are randomly chosen and

randomly assigned to the treatments. If the treatment groups already exist, such as members of

a certain profession, the experimenter does not have the opportunity to assign the subjects at

random to the treatments. In such cases he uses random samples from each treatment group.

It is not usually acceptable to use ANOVA on repeated observations on the same subject

unless precautions are taken to avoid a systematic effect caused by the repetition of the

experiment, for example, learning by the subject who repeats the same task. Sometimes lack

of independence occurs because of instrument wear or drift. This type of dependence within

groups can be detected by plotting the data in the order in which they were collected.

The second condition, that the random effect is independent from the treatment effect, can

be checked by plotting the sample means against the sample variances (Figure 11.1).

Independence will lead to an unpatterned scatter around a horizontal line, while dependence

FIGURE 11.1. Visual test for the independence of the error term and the treatment effect.
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usually takes the form of some curve. A transformation can sometimes be used to remove this

type of dependence.

EXERCISES

11.2.1. Given below are the calculations from an experiment involving the breaking

strengths of 6 different fabrics:

Nylon Rayon Linen Dacron Cotton SilkX
j

yij 144 96 119 168 98 140

n 10 10 10 10 10 10X
j

y2ij 2080.8 1063.8 1449.4 2904.4 1018.0 1979.8

X
j

yij
� �2�

n 2073.6 921.6 1416.1 2822.4 960.4 1960.0

a. Test to decide whether the different fabrics have a common variance for breaking

strength.

b. Which variances are significantly different from each other? (Hint: Test all pairs of

variances by using a two-way table similar to the table for multiple comparisons;

however, use the ratios of the variances and Fmax tests along each diagonal.)

11.2.2. In the light bulb experiment, Exercise 10.2.3, test whether the variances of the 3

brands are equal.

FIGURE 11.2. Data that may be improved by a log transformation.
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11.2.3. In the orange-juice experiment, Exercise 10.2.5, show that there is no evidence that

the variances of vitamin C are different among the 3 methods of processing orange

juice.

11.3. TRANSFORMATIONS

If we find that the variances are not homogeneous, or if we find a lack of normality, or if there

is a dependence between the treatment effects and the random effects, it is sometimes possible

to use a transformation to get the data into a form for which the ANOVA is valid. A

transformation replaces each observed value uij by another value yij according to a certain

rule, for example, yij ¼ log uij. It is essential that any transformation preserve the order of the

data values; thus, if u1 and u2 are transformed to y1 and y2, respectively, and u1 , u2, then

y1 , y2. Since the order of the observations is not changed by the transformations we use, any

conclusion about differences in the transformed data are true for the original data. This

technique, however, has the disadvantage that we must report results in unusual units of

measure, as the log of a length or the square root of the number of fish.

Various transformations are available, and sometimes the nature of the data, together

with a plot of sample averages against sample variances, will provide clues to help the

experimenter decide which transformation to use. If the data span several log scales, that is, if

they contain both relatively small and relatively large observed values, one usually looks at

the graph for an exponential relationship between sample means and variances (Figure 11.2).

This relationship frequently occurs when the data arise from large counts (such as blood cells

or bacterial counts). Each observation uij is transformed to yij ¼ log(uij) or to yij ¼ log(uij þ c)

with c . 0 if zero or negative numbers are in the data. Logs with either base 10 or base e may

be used. Table A.17 in the Appendix is a table of logs base 10. A log transformation will

preserve the order of the data and the order of the averages, but the log transformation can

make the variances more nearly alike and thereby break up the strong relationship between

sample averages and sample variances. The ANOVA is carried out as usual, except that the

transformed values yij replace the corresponding original observations uij. Before performing

the ANOVA, however, it is wise to check the transformed data for the properties of normality,

homogeneity of variance, and independence.

Example 11.3. The Log Transformation

As an alternative to dangerous insecticides, a chemist is working on a synthetic pheromone (a

type of hormone involved in mating behavior) to be used as a bait to attract destructive insect

into traps. In a field experiment, 6 different levels of the synthetic hormone are used, with 10

traps per level. The 60 traps are placed at random in a peach orchard, and the observed values

below (uij) represent the number of Mediterranean fruit flies trapped during the same 4-hour

period.

Level: 1 2 3 4 5 6

uij 2 12 22 28 24 17

4 9 12 17 25 54

10 5 11 9 36 24

15 10 7 39 17 33

3 3 4 15 38 27

2 7 7 33 19 41
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Level: 1 2 3 4 5 6

4 5 8 11 65 76

2 16 17 12 18 109

5 6 6 15 42 36

3 2 11 21 16 33

Average (�uui): 5.0 7.5 10.5 20.0 30.0 45.0

Variance (s2i ): 18.00 18.50 30.6 102.22 240.00 785.78

The plot of sample averages against sample variances for these data is given in Figure 11.2.

As can be seen, the data closely fit a curvilinear relationship suggesting a log transformation:

Level: 1 2 3 4 5 6

yjj ¼ log(uizzzzz þ 1) 0.4771 1.1139 1.3617 1.4624 1.3979 1.2553

0.6990 1.0000 1.1139 1.2553 1.4150 1.7404

1.0414 0.7782 1.0792 1.0000 1.5682 1.3979

1.2041 1.0414 0.9031 1.6021 1.2553 1.5315

0.6021 0.6021 0.6990 1.2041 1.5911 1.4472

0.4771 0.9031 0.9031 1.5315 1.3010 1.6232

0.6990 0.7782 0.9542 1.0792 1.8195 1.8865

0.4771 1.2304 1.2553 1.1139 1.2788 2.0414

0.7782 0.8451 0.8451 1.2041 1.6335 1.5682

0.6021 0.4771 1.0792 1.3424 1.2304 1.5315

Average: 0.7057 0.8769 1.0194 1.2795 1.4491 1.6023

Variance: 0.0605 0.0533 0.0393 0.0403 0.0384 0.0545

FIGURE 11.3. Box plots of data before and after log transformation.
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After the log transformation has been performed on the data, the sample averages of the yij
have the same order as averages of the uij but the variances are very similar from one group to

another, and not even in the same order as the averages. Thus averages and variances for the yij
appear to be independent. Figure 11.3 shows box plots of the data for each level before and

after transformation. The box plots of the yij provide evidence that necessary conditions are

satisfied, or nearly, so an ANOVA of the transformed data should provide an approximate, but

reasonably good, test of a hypothesis about the effect of different concentrations of the

synthetic pheromone in attracting insects.

FIGURE 11.4. Data that may be improved by a square-root transformation.

FIGURE 11.5. Data that may be improved by an angular transformation.
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A graph that frequently appears when sample averages are plotted against sample

variances for small counts is a straight line with a 458 angle (Figure 11.4). The graph often

indicates a Poisson distribution in which mi ¼ s2
i ¼ li. The transformation that often helps is

to replace uij with yij ¼ ffiffiffiffiffi
uij

p
oryij ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

uij þ c
p

. The data from which Figure 11.4 was plotted

can be found in Exercise 11.3.3. Those with further interest in this transformation may want to

examine these data to verify the straight-line relationship between sample average and

variance for the original data, and to observe how this relationship is affected by the square-

root transformation.

If the data are from a population with a binomial distribution (percentage or proportion

data), the mean and the variance are not independent,

mi ¼ npi and s2
i ¼ npi(1� pi)

The diagram in this case has the form found in Figure 11.5. A transformation often used in this

case, especially if p , 0.2 or p . 0.8, is arc-sin
ffiffiffiffiffi
uij

p
in which uij is expressed as a proportion.

Tables are available for this transformation. Table A.18 in the Appendix is one such table. In

Table A.18, uij is entered as a percentage and the transformed value is in degrees.

Since ANOVA was designed for continuous variables and proportions arise from discrete

variables, the investigator should remember that ANOVA may not be the best way to analyze

data of this type. In fact, an F test with or without a transformation may be less powerful than

the appropriate procedure. Sometimes the investigator may decide to use ANOVA because of

its convenience or for reporting results in a uniform way when ANOVA is being used on other

variables in the study. This approach, however, is at most second best.

Many transformations are available in addition to the ones discussed in this section. Some

computer packages offer several to the investigator. It is invalid to transform the data by each

available transformation and perform ANOVA in order to pick out the transformation that

leads to significant results. However, several transformations can be used on the data, and the

one that best equalizes the ranges of the samples can be used for ANOVA since the ranges are

closely related to the variances. If the ranges are not very different, then the variances may be

homogeneous.

In the discussions of nonparametric procedures found earlier in the text, data which were

measured on the numerical scale were transformed either to the nominal or to the ordinal

scale. It can be noted that the rank transformations used in some of these nonparametric tests

often have the same benefits sought here. The rank transformation will not change the order

of two observations; the group means of the ranks will usually have the same order as those

of the original observations; also the variances of the ranks are usually of similar magnitude,

and the plot of sample averages and variances does not tend to show a strong relationship

between the two. Consequently, the rank transformation may also be considered as one

which will make data suitable for ANOVA as well as nonparametric procedures. As before,

the observations are ranked from smallest to largest, and observations having the same

numerical value are assigned the average of the ranks for which they tie. After the

observations in each group have been replaced by ranks, rather than a nonparametric test, an

ANOVA procedure is performed on the ranks. Also, the null hypothesis is tested by F rather

than chi-square. This is because in many complex designs (see Chapter 12) it is difficult or

impossible to know the value of the variance needed for chi-square. Although ranks do not

have a normal distribution, the procedure is considered to be robust, meaning that the true

level of significance is reasonably close to that obtained from the F table after the ANOVA.
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To use this procedure, however, all assumptions for the ANOVA (except for normal

distribution) must still be met by the rank data. For further discussion of this technique see

Conover and Iman (1976).

EXERCISES

11.3.1. Using the data from Example 11.3:

a. Show how to obtain the transformed value y14 ¼ 1.2041.

b. Compare the Fmax test performed on the original observations (uij) with that

performed on their transformed values (yij).

c. Using the transformed values, plot the sample averages against the sample

variances and compare your plot to that in Figure 11.2 to see if there is still an

obvious relationship between averages and variances.

11.3.2. In a certain experiment in graph reading, subjects take the following amounts of time

(in seconds divided by 10) to answer a set of questions:

Group

A B C

28 16 31

17 13 22

18 16 16

21 12 21

13 13 13

29 12 16X
j

uij 126 82 119

X
j

u2ij 2848 1138 2567

a. Show that the variances of the groups are unequal using Hartley’s Fmax test.

b. Use a square-root transformation on the times.

c. Does the transformation correct the lack of homogeneity of variances?

d. Perform ANOVA on the transformed data.

e. How would the results of the ANOVA be reported?

11.3.3. A dermatologist wants to study the effectiveness of sunscreens in providing

protection for the skin of inveterate sunbathers. Six different formulations of

sunscreens are to be compared, and sufficient random sampling is done among

volunteers in order to have 10 sunbathers for each formulation. The volunteers are

examined every two weeks and at the end of the summer, and for each the

dermatologist has the total number per subject (uij) of skin lesions attributable to

exposure to the sun. These are given below, along with the transformed values (yij)

to be used in the ANOVA:
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Formulation

A B C D E F

uij
4 12 12 18 30 49

4 9 11 17 33 34

8 5 10 19 29 45

10 9 7 29 32 31

3 4 14 24 36 36

5 7 7 23 27 41

4 5 9 15 32 46

3 11 17 22 18 39

5 6 7 15 38 46

4 7 11 18 25 33

Average (�uui) 5.0 7.5 10.5 20.0 30.0 40.0

Variance (s2i ) 5.11 7.17 10.72 19.78 32.89 40.22

Formulation

A B C D E F

yij
2.236 3.606 3.606 4.359 5.568 7.071

2.236 3.162 3.464 4.243 5.831 5.916

3.000 2.449 3.317 4.472 5.477 6.782

3.317 3.162 2.828 5.477 5.745 5.657

2.000 2.236 3.873 5.000 6.083 6.083

2.449 2.828 2.828 4.899 5.292 6.481

2.236 2.449 3.162 4.000 5.745 6.856

2.000 3.464 4.243 4.796 4.359 6.325

2.449 2.646 2.828 4.000 6.245 6.856

2.236 2.828 3.464 4.359 5.099 5.831

Average ( �yyi) 2.416 2.883 3.361 4.560 5.544 6.386

Variance (s2i ) 0.181 0.208 0.224 0.225 0.291 0.248

a. Identify the transformation which was used, and tell why you think it was chosen.

b. What evidence is there that the transformation has changed the strong relationship

between sample average and sample variance which can be seen in Figure 11.4?

c. If for the original data
XX

uij ¼ 1130, why is it that with this transformationXX
y2ij ¼ 1130þ 60 ¼ 1190?

11.3.4. Four groups of subjects were given a certain task to perform. The number of

mistakes out of 18 trials is recorded.

Group Errors Out of 18 Trials

1 0 0 0 0 1 3 0 0

2 5 3 2 11 3 0 0 0

3 1 1 0 0 2 3 0 0

4 3 0 1 0 4 1 1 2

334 THE ANALYSIS-OF-VARIANCE MODEL



a. Convert the number of errors to percentage of errors.

b. Show that the groups have unequal variances when the variable is percentage of

errors.

c. Use arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%� 0:01

p
to transform the data.

d. Check the transformed data for homogeneity of variance.

11.3.5. Holly is a broadleaf evergreen that is very attractive in landscaping, but many nurseries

do not attempt to raise it because of the difficulty in getting its seed to germinate. In an

effort to improve germination, a horticulturist uses 6 different seed treatments. For

each treatment she prepares 10 seed beds with a hundred seeds in each bed. The data

below represent the number of seeds which germinate in each of the seed beds.

Seed Treatment

I II III IV V VI

uij

6 6 12 20 27 37

5 5 8 14 24 38

3 9 11 27 32 36

4 4 6 17 29 42

5 8 11 18 34 50

3 13 16 19 30 35

2 6 8 24 33 38

6 7 10 22 39 45

9 10 13 16 27 36

7 7 10 23 25 43

Average (�uui) 5.0 7.5 10.5 20.0 30.0 40.0

Variance (s2i )

(Figure 11.5) 4.44 6.94 8.06 16.00 21.11 23.56

Seed Treatment

I II III IV V VI

yij
yij ¼ arcsin 14.18 14.18 20.27 26.57 31.31 37.46ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uij � 0:01

p
12.92 12.92 16.43 21.97 29.33 38.06

9.97 17.46 19.37 31.31 34.45 36.87

11.54 11.54 14.18 24.35 32.58 40.40

12.92 16.43 19.37 25.10 35.67 45.00

9.97 21.13 23.58 25.84 33.21 36.27

8.13 14.18 16.43 29.33 35.06 38.06

14.18 15.34 18.43 27.97 38.65 42.13

17.46 18.43 21.13 23.58 31.31 36.87

15.34 15.34 18.43 28.66 30.00 40.98

Average ( �yyi) 12.66 15.70 18.76 26.47 33.16 39.21

Variance (s2i ) 7.907 7.841 7.103 8.221 8.166 7.986
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a. For the transformed data, plot the sample averages against the sample variances

to see if there is any evidence of a relationship between the two.

b. The SAS output for an ANOVA and Fisher’s least significant difference on the

transformed data is as follows.

What conclusions can you draw from this output?

The SAS System

The GLM Procedure

Class Level Information

Class Levels Values

Treat 6 1 2 3 4 5 6

Number of observations = 60

The GLM Procedure

Dependent Variable: Y

Source DF Sum of Squares
Mean

Square F Value Pr . F

Model 5 5455.745683 1091.149137 138.63 ,.0001

Error 54 425.021775 7.870774

Corrected Total 59 5880.767458

R-Square Coeff Var Root MSE Y Mean

0.927727 11.53305 2.805490 24.32566

Source DF Type I SS Mean Square F Value Pr . F

Treat 5 5455.745683 1091.149137 138.63 ,.0001

Source DF Type III SS Mean Square F Value Pr . F

Treat 5 5455.745683 1091.149137 138.63 ,.0001

The GLM Procedure

t Tests (LSD) for Y

NOTE: This test controls the Type I comparisonwise error rate, not
the experimentwise error rate.
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Alpha 0.05
Error Degrees of Freedom 54
Error Mean Square 7.870774
Critical Value of t 2.00488
Least Significant Difference 2.5154

Means with the same letter are not significantly different.

t Grouping Mean N Treat

A 39.209 10 6

B 33.157 10 5

C 26.468 10 4

D 18.763 10 3

E 15.696 10 2

F 12.661 10 1

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain

why.

11.1. The REM could be called the component-of-variance model because the experimenter

is more interested in causes of variation than in comparing means.

11.2. Because of a general lack of knowledge about the nature of effects, the REM is

probably more common than the FEM.

11.3. The experimenter does not test for homogeneity of variance unless he has reason to

doubt this customary assumption for the ANOVA.

11.4. If Hartley’s test is significant when performed on the original data, a suitable

transformation will result in nonsignificance when the test is performed on the

transformed data.

11.5. The proper transformation should provide a more powerful F test than one based on

the original data that do not meet the conditions for an ANOVA.

11.6. If in a scientific journal an ANOVA is based on the additive model yij ¼ p þ ui þ dij,
the reader has enough information to distinguish whether or not it was a FEM.

11.7. When the model is yij ¼ m þ ai þ 1ij, the same F test will be performed whether the

ai’s are fixed or random.

11.8. Multiple-comparison procedures such as Tukey’s honestly significant differences are

used to determine differences among fixed effects, but for random effects the

investigator is more interested in whether there is variability among the effects than in

making comparisons among them.

11.9. If the sample sizes are large, the experimenter should always check for normality prior

to an ANOVA.

REVIEW EXERCISES 337



11.10. Transformations can correct nonnormality, unequal variances, and lack of

independence between the 1ij’s and the ai’s.

11.11. In an ANOVA, if the overall average of the experiment is zero, the numerical value of

the correction factor will be zero.

11.12. Heterogeneity of variance is more likely in a REM, in which groups are randomly

drawn from a large population, than in a FEM, in which groups are carefully selected.

11.13. When means are correlated with variances in an experiment, a suitable transformation

can result in homogeneity of variance but still permit heterogeneity of means.

11.14. Transformations are used as second-best procedures when certain conditions such as

homogeneous variances, independent effects, and random sampling do not occur in the

experiment.

11.15. A significant negative ICC means that there are marked dissimilarities among

individuals in the same group.

11.16. If the null hypothesis is true, E(MSa) ¼ E(MSe).

11.17. In the FEM, if the null hypothesis is true, E(MSa) ¼ s2 because s2
A ¼ 0.

11.18. When using the log transformation, it must be remembered that the log of a negative

number is obtained by subtraction.

11.19. After a transformation is used, the group averages and variances for the transformed

data should be plotted to see if the problem of dependence has been solved.

11.20. One does not need to be concerned about the assumption of equal variances when the

data are transformed to ranks and a nonparametric procedure is used.
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12 Other Analysis-of-Variance
Designs

The one-way analysis of variance described in Chapters 10 and 11 is only one of many designs

for an experiment. Many experiments have a more complex design than the one-way

completely randomized design. The investigator may be using replications or subsamples.

There may be a need to control extraneous factors or there may be interest in more than one set

of treatments. In this chapter, we illustrate several different designs. In each case we discuss

when they should be used and how the analysis is carried out.

12.1. NESTED DESIGN

A nested design (or hierarchal design) is used for experiments in which there is interest in one

set of treatments and the experimental units are measured more than once or are subsampled.

For example, if 3 diets are being tested for their effect on blood cholesterol level and 4

volunteers are assigned at random to each diet (a total of 12 volunteers), the investigator might

want to obtain 2 lab determinations of cholesterol level for each volunteer (24 determinations)

because of variability in the measurement of this variable (Figure 12.1). In this example, there

are repeated observations of the subjects.

If 4 dyes are being tested for colorfastness on cotton, each dye might be used on 2 bolts of

material (a total of 8 bolts) and then 6 swatches of material from each bolt selected at random

(48 swatches) for the test. In this example the experimental units (bolts) are subsampled.

Other examples of nested designs:

1. Three drugs are each used at 2 different clinics (a total of 6 clinics) and are given to 5

patients at each clinic.

2. Ten roosters are each mated to 5 different hens, and a random sample of 6 chicks from

each hen is examined for a certain genetic characteristic.

3. Four fungicides are used on a certain type of tree. Each fungicide is applied to 3 trees,

and 10 leaves are examined from each tree.

4. Each of 3 methods of teaching geometry is used by 2 teachers (6 teachers are in the

experiment), and a random sample of 10 students of each teacher is tested.

The additive model for these nested designs is

yijk ¼ mþ ai þ bij þ 1ijk

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilk.
ISBN 0-471-26735-X # 2004 John Wiley & Sons, Inc.
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with i ¼ 1, . . . , a

j ¼ 1, . . . , b

k ¼ 1, . . . , n

The terms in this model have the following meanings:

m: A constant, the mean for all experiments of this type.

ai: A constant for the ith treatment group, the effect of the ith treatment.

If the treatments are fixed effects,
P
i

ai ¼ 0; if the treatments are random effects,

ai is IND(0, s
2
A).

bij: A random effect due to the ijth experimental unit; bij is IND(0, s
2
B) for each i.

1ijk: A random effect due to the ijkth observation. It contains all uncontrolled

variability; 1ijk is IND(0, s
2).

In the examples given above, all of the treatments are fixed effects except the roosters in

example 2. The ANOVA is computationally the same whether the treatments are fixed or

random. We consider only cases in which the experimental units are random effects (if they

are fixed, the F test is different).

The ANOVA for the nested design is an extension of the one-way design. The main

hypothesis to be tested is H0: a1 ¼ a2 ¼ . . . ¼ aa ¼ 0 for the FEM and H0: s
2
A ¼ 0 for the

REM. A secondary hypothesis can be tested to determine if there is variability among the

experimental units, H0: s
2
B ¼ 0.

Subscripts ijk are used in the following manner. The first subscript i refers to the treatment

group. The second subscript j refers to the jth experimental unit within a treatment group. The

third subscript k refers to the kth subsample or replicate within an experimental unit.

In the diet example at the beginning of this section, the diets are the treatments, so i ¼ 1, 2,

3. The volunteers are the experimental units, so j ¼ 1, 2, 3, 4. The lab determinations are

replications, so k ¼ 1, 2. Thus y241 is the cholesterol level from the first determination for the

fourth person on diet 2.

Diet

Volunteer 1 2 3

y111 y211 y311
1 y112 y212 y312

T11. T21. T31.

FIGURE 12.1. A nested design.
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Diet

Volunteer 1 2 3

y121 y221 y321
2 y122 y222 y322

T12. T22. T32.

y131 y231 y331

3 y132 y232 y332
T13. T23. T33.

y141 y241 y341
4 y142 y242 y342

T14. T24. T34.

T1.. T2.. T3.. T... ¼
X

i
Ti::

There are four types of totals:

yijk ¼ the individual observations, a total of one observation

Tij. ¼ the subsample of replicate totals

Ti.. ¼ the treatment group totals

T. . . ¼ the grand total

These four types of totals lead to four uncorrected sums of squares, as shown:

Uncorrected Sums of Squares

Sum of Squares Formula Symbol Number of Totals Observations/Total

Uncorrected total
X
i

X
j

X
k

y2ijk T abn 1

Uncorrected treatment
X
i

(T2
i::=bn) A a bn

Uncorrected

experimental unit

X
i

X
j

(T2
ij:=n) B ab n

Correction factor T2
...=abn CF 1 abn

The corrected sum of squares, as for the one-way ANOVA, are found by computational

formulas in which the number of totals in the uncorrected sums of squares correspond to the

degrees of freedom.

Corrected Sums of Squares

Sum of Squares Symbol df Definition

Computional

Formula

Total SSt abn 2 1
X
i

X
j

X
k

(yijk � �yy)2 T 2 CF

Among treatments SSa a 2 1 bn
X
i

(�yyi � �yy)2 A 2 CF
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Corrected Sums of Squares

Sum of Squares Symbol df Definition

Computional

Formula

Among units within

treatments

SSb a(b 2 1) n
X
i

X
j

( �yyij � �yyi)
2 B 2 A

Among samples (or

replicates) within units

SSe ab(n 2 1)
X
i

X
j

X
k

(yijk � �yyij)
2 T 2 B

In the definitions,

�yy ¼ T...=abn is the overall experimental average

�yyi ¼ Ti::=bn is the ith treatment average

�yyij ¼ Tij:=n is the ijth experimental unit average

Example 12.1. Nested ANOVA

A taxicab company is going to choose among 5 types of cars for its fleet. The company has

already determined that these 5 are comparable in initial cost and maintenance, and it wants to

make a decision based on gas mileage in heavy city traffic. Ten cars are available for the

experiment, 2 of each type. Each car is to be tested 3 times. Thus a ¼ 5, b ¼ 2, and n ¼ 3.

Type of Car

Car A B C D E

15.8 18.5 12.3 19.5 16.0

1 15.6 18.0 13.0 17.5 15.7

16.0 18.4 12.7 19.1 16.1

Ti1. 47.4 54.9 38.0 56.1 47.8

13.9 17.9 14.0 18.7 15.8

2 14.2 18.1 13.1 19.0 15.6

13.5 17.4 13.5 18.8 16.3

Ti2. 41.6 53.4 40.6 56.5 47.7 Total

Ti.. 89.0 108.3 78.6 112.6 95.5 484.0X
j

X
k

y2ijk 1326.10 1955.59 1031.44 2115.44 1520.39 7948.96

Uncorrected SS

T ¼
X
i

X
j

X
k

y2ijk ¼ 7948:96 B ¼
X
i

X
j

T2
ij:=n ¼ 7944:95

A ¼
X
i

T2
i::=bn ¼ 7937:81 CF ¼ T2

:::=abn ¼ 7808:53

344 OTHER ANALYSIS-OF-VARIANCE DESIGNS



Source df SS MS

Among types a 2 1 2 ¼ 4 SSa ¼ A 2 CF ¼ 129.28 MSa ¼ SSa/(a 2 1) ¼ 32.32

Among cars

within types

a(b 2 1) ¼ 5 SSb ¼ B 2 A ¼ 7.14 MSb ¼ SSb/a(b 2 1) ¼ 1.43

Among trials

within cars

ab(n 2 1) ¼ 20 SSe ¼ T 2 B ¼ 4.01 MSe ¼ SSe/ab(n 2 1) ¼ 0.20

Total abn 2 1 ¼ 29 SSt ¼ T 2 CF

In this design,

MSa estimates s2 þ ns2
B þ bn

X
i

a2
i =(a� 1)

MSb estimates s2 þ ns2
B

MSe estimates s2

so the F tests take the following form:

Source F F0.05 H0

Among types MSa/MSb ¼ 22.60 5.192 a1 ¼ a2 ¼ � � � ¼ a5 ¼ 0

Among cars

within types

MSb/MSe ¼ 7.15 2.711 s2
B ¼ 0

Thus, there is at least one significant difference among the average mileages for the types. A

secondary conclusion is that there is significant variability among the different cars within

types.

The term expected mean square, E(MS), is used to indicate the parameter being estimated

by the mean square. These expected values will differ for treatments that are fixed or random

(they are fixed in the car example). However, in both cases MSb estimates everything in

E(MSa) except for the term that is being tested in the null hypothesis, so the main F test has the

form MSa/MSb.

Expected Mean Squares

Source FEM (Treatments) REM (Treatments)

Among treatments s2 þ ns2
B þ bn

P
i

a2
i =(a� 1) s2 þ ns2

B þ bns2
A

Among units within treatments s2 þ ns2
B s2 þ ns2

B

Among trials within units s2 s2

If desired, multiple comparisons can be done following ANOVA to find specific differences

among the treatment means. Only one modification is necessary: The standard error of the

difference of two means is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSb=bn

p
instead of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSe=n

p
. Estimation of parameters or

linear combinations of parameters can also be carried out, again substituting MSb for MSe.

The degrees of freedom are a(b 2 1).
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The procedure for ANOVA for a nested design is summarized as follows.

Procedure. Nested ANOVA for Equal Sample Sizes

Main Hypothesis

H0: a1 ¼ a2 ¼ . . . ¼ aa ¼ 0 or H0: s
2
A ¼ 0 against

Ha: At least one inequality or Ha: s
2
A . 0

Secondary Hypothesis

H0: s
2
B ¼ 0 against Ha: s

2
B . 0

Model:

yijk ¼ mþ ai þ bij þ 1ijk

i ¼ 1, . . . , a

j ¼ 1, . . . , b

k ¼ 1, . . . , n

Compute:

T ¼
X
i

X
j

X
k

y2ijk

A ¼
X
i

T2
i::=bn

B ¼
X
i

X
j

T2
ij:=n

CF ¼ T2
...=abn

Source df SS MS F

Among treatments a 2 1 SSa ¼ A 2 CF MSa ¼ SSa/(a 2 1) MSa/MSb
Among units within

treatments

a(b 2 1) SSb ¼ B 2 A MSb ¼ SSb/a(b 2 1) MSb/MSe

Among trials with units ab(n 2 1) SSe ¼ T 2 B MSe ¼ SSe/ab(n 2 1)

Reject the main H0 if F ¼ MSa/MSb � Fa, a21,a(b 2 1). Reject the secondary hypothesis if

F ¼ MSb/MSe � Fa, a(b21),ab(n 2 1).

It is possible to analyze a nested design with unequal sample sizes. Modifications are

necessary in the uncorrected sums of squares and the degrees of freedom.

Many statistical packages will contain procedures for various types of ANOVA. In the

SAS System, PROC ANOVA can be used to analyze data collected using a nested design. The
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following program will perform the analysis of the mileage data in Example 12.1:

DATA TAXIS;

DO TYPE ¼ 1 TO 5;

DO CAR ¼ 1 TO 2;

DO REP ¼ 1 TO 3; INPUT MILES @@; OUTPUT

END;

END;

END;

CARDS;
15.8 15.6 16.0 13.9 14.2 13.5
18.5 18.0 18.4 17.9 18.1 17.4
12.3 13.0 12.7 14.0 13.1 13.5
19.5 17.5 19.1 18.7 19.0 18.8
16.0 15.7 16.1 15.8 15.6 16.3
;
PROC ANOVA;

CLASS TYPE CAR REP;
MODEL MILES=TYPE CAR (TYPE);
TEST H ¼ TYPE E=CAR (TYPE);

The data set created by this program contains four variables, TYPE, CAR, REP, and MILES
with 30 observations. The variable TYPE has five values, 1, 2, 3, 4, and 5, corresponding

respectively to typesA, B, C,D, and E in the experiment. CAR has values 1 and 2 for the two cars

of each type which were used. REP has values 1, 2, and 3 for the three repetitions on each car.

The SAS program uses the PROC ANOVA procedure to perform the analysis of variance.

The CLASS statement identifies the variables which correspond to the treatments, the

experimental units, and the repetitions—TYPE, CAR, and REP, respectively, in this example.

The MODEL statement indicates that the variable of interest is MILES, that the variable TYPE
will identify the treatment groups, and that CAR is nested within TYPE [indicated by the

notation CAR (TYPE)].

The SAS System
The ANOVA Procedure

Class Level Information
Class Levels Values
TYPE 5 1 2 3 4 5
CAR 2 1 2
REP 3 1 2 3
Number of observations 30

The ANOVA Procedure
Dependent Variable: MILES
Source DF Sum of Squares Mean Square F Value Pr . F
Model 9 136.4133333 15.1570370 75.53 ,.0001

Error 20 4.0133333 0.2006667
Corrected
Total 29 140.4266667
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R-Square Coeff Var Root MSE MILES Mean
0.971420 2.776601 0.447958 16.13333

Source DF Anova SS Mean Square F Value Pr . F
TYPE 4 129.2766667 32.3191667 161.06 ,.0001
CAR(TYPE) 5 7.1366667 1.4273333 7.11 0.0006

Tests of Hypotheses Using the Anova MS for CAR(TYPE) as an
Error Term

Source DF Anova SS Mean Square F Value Pr . F
TYPE 4 129.2766667 32.3191667 22.64 0.0021

EXERCISES

12.1.1. Ring-necked pheasants establish breeding colonies, each consisting of one male

(cock), several hens per cock, and several chicks per hen. If adult males and females

can be identified by wing band, a wildlife biologist can locate the nests of female

pheasants in a hunting reserve, and he can collect eggs through random sampling in

such a manner that they will represent the breeding colonies of 5 cocks, 3 hens per

cock, and 2 eggs per hen. The eggs will be marked and incubated, and chicks are

weighed at 28 days of age.

a. Given that the linear model for this study is

yijk ¼ mþ ai þ bij þ 1ijk

i. What does ai represent? Is it a fixed or a random effect?

ii. What does bij represent? Is it a fixed or a random effect?

b. Given the computations

X
i

T2
i::=6 ¼ 918:0

X
i

X
j

T2
ij:=2 ¼ 1833:0

X
i

X
j

X
k

y2ijk �
X
i

X
j

T2
ij:=n ¼ 7:5 T2

...=30 ¼ 900

complete the ANOVA and test for significance of variability due to males.

12.1.2. Soda crackers lose their crispness in damp climates unless they are packaged in

containers that protect them from humidity. A bakery firm wishes to compare 5

methods of packaging (including a cardboard box control). Four boxes are selected

at random from each method of packaging, assigned numbers, and placed in a

chamber in which the humidity is maintained at 80% for 24 hours. The boxes are

opened and 3 crackers are selected from each box at random to be measured for
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moisture content. The measurements on the 60 crackers are below given in

milligrams:

Control Box Wax Paper Box

11 12 13 14 21 22 23 24

73 81 70 67 60 64 63 53

75 77 62 69 61 67 59 50

77 73 63 62 65 61 55 56

225 231 195 198 186 192 177 159

Metal Foil Box Plastic Box

31 32 33 34 41 42 43 44

46 49 54 59 60 49 39 52

49 54 60 53 66 43 40 55

46 56 57 53 60 52 44 49

141 159 171 165 186 144 123 156

Metal Foil and Plastic Box

51 52 53 54

38 45 60 50

36 46 55 47

40 50 53 44

114 141 168 141

a. Give the linear model and the assumptions.

b. State the null hypothesis of greatest concern.

c. Given that
P
i

P
j

P
k

y2ijk ¼ 195, 988, perform the ANOVA.

d. Are there significant differences among the methods of packaging?

e. Which method of packaging do you recommend?

f. Is there significant variability among boxes receiving the same method of

packaging?

12.1.3. In the taxicab study in this section, Example 12.1, use Fisher’s least significant

difference to locate the pairs of means that are different. Which type or types would

you recommend?

12.1.4. In the taxicab study of this section, Example 12.1, estimate m, a4 2 a5, and

m4 2 (m1 þ m2 þ m3)/3 with 95% confidence intervals.

12.1.5. Prior to reforestation projects, provenance studies are performed in an effort to find

the best source of seeds to be used in reforestation. In such a study, a forester selects

forests at a different locations as possible sources of seeds. In each forest, b seed-

bearing trees are selected at random, and enough seeds are selected at random from

each tree to produce n seedlings for planting. The seeds are germinated in a

greenhouse and the resulting seedlings planted in a completely random design at the
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reforestation site. Suppose in such a study the SAS analysis below is that of the first

year’s growth of the seedlings:

Source DF
Sum of
Squares Mean Square

F
Value Pr . F

Model 41 107.748 2.628 4.171 ,.0001
Error 168 105.840 0.630
Corrected Total 209 213.588

R-Square Coeff Var Root MSE GROWTH Mean
0.504467 0.46 0.7937 1.715

Source DF Anova SS
FORESTS 5 32.333
TREES(FORESTS) 36 75.415

Use the computer output to answer the following questions:

a. Assuming this is a balanced experiment, give the numerical values for the number

of forests (a) sampled, the number of trees (b) per forest, and the number of

seedlings (n) used from each tree.

b. What percentage of the sums of squares among the 210 seedlings can be attributed

to differences among forests or differences among trees within forests?

c. Show how to compute the value F ¼ 3.087, which tests for differences among

forests.

d. Give the numerical value for
P
i

P
j

P
k

(yijk � �yy)2.

12.2. RANDOMIZED COMPLETE BLOCK DESIGN

An experimenter uses a randomized complete block design if he is interested in one set of

treatments and wants to control an extraneous source of variability. For example, a

physiologist studying the effect of 4 different drugs A, B, C, and D on mice might feel that the

responses will be influenced by the particular litter from which the mice came. He would not

want this litter effect to interfere with the analysis of the drug effect. To remove this nuisance

variability, he can use litters as blocks, an extension of matched pairs. He chooses 4 mice at

random from each litter, and each drug is assigned at random to 1 mouse from each litter

(Figure 12.2). The design is called complete because each treatment appears in each block

exactly once.

FIGURE 12.2. Four treatments assigned at random within three blocks.
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Other examples of a randomized complete block design:

1. Four varieties of corn are each planted on sections of 5 different farms (the farms are

chosen at random and the sections assigned at random), and yields are measured. The

farms are the blocks. This design makes it possible to remove any differences in yield

due to differences in fertilities.

2. Five dyes are each applied to portions of 8 random strips of cloth from a bolt (the strips

are chosen at random and the portions assigned at random to the dyes), and the dyes are

tested for permanence. The strips are the blocks. This design makes it possible to

remove any differences due to variability of the cloth.

3. Three social studies textbooks are used in 3 classes at each of 4 different schools (the

assignment of textbook to a class is random), and average class performance is

measured. Schools are the blocks.

4. Four formulas for sun protection are tested on the skin of 5 subjects. Each formula is

applied to different randomly chosen portions of skin of each subject. The subjects are

the blocks.

5. Six different bacteria to be treated with a drug are cultured in a medium which is

prepared in 4 batches. Each type of bacterium is cultured once in a portion of each batch

of medium. The batches are the blocks.

In all of these examples the investigator is primarily interested in the treatment effects

(varieties of corn, dyes, textbooks, formulas, bacteria), and the blocking is done to avoid

extraneous variability (from different fertilities on the farms, from differences in the cloth in

different parts of the bolt, from differences in schools, from differences in skin types, from

differences in batches of medium). If this extraneous variability is not removed, it will show

up in the MSe, making it difficult to detect treatment differences.

The additive model for a randomized complete block design is

yij ¼ mþ ai þ bj þ 1ij

i ¼ 1, . . . , a

j ¼ 1, . . . , b

in which the terms have the following meanings:

m: A constant, the overall mean of experiments of this type.

ai: A constant for the ith treatment group, the deviation from the mean due to the ith

treatment;
X
i

ai ¼ 0 if the treatments are fixed effects or ai IND(0, s
2
A) if the

treatments are random.

bj: A constant for the jth block, the deviation from the mean caused by the jth

block;
X
j

bj ¼ 0 if the blocks are fixed effects or bj IND(0, s
2
B) if they are

random.

1ij: A random deviation associated with the ijth observation, containing all

uncontrolled sources of variability; 1ij IND(0, s
2).

Data for a randomized complete block design are arranged as follows, in which i

designates the treatment and j the blocks:
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Treatment (i)

1 2 3 4 Totals

1 y11 y21 y31 y41 T.1

Block ( j) 2 y12 y22 y32 y42 T.2

3 y13 y23 y33 y43 T.3

Totals T1. T2. T3. T4. T.. ¼ Grand Total

Sometimes rows and columns are interchanged for convenience of presentation, but we will

continue to use i for the treatment and j for the blocks even in that case. Treatment group totals

are represented by Ti., indicating that the summation was over j. Block totals are T.j and the

grand total is T... The corresponding averages are �yyi:, �yy:j, and �yy::.

The uncorrected sums of squares, corrected sums of squares, and ANOVA procedure are

as follows. In a block design the error sum of squares is sometimes called the residual sum of

squares.

Uncorrected Sums of Squares

Sum of Squares Formula Symbol Number of Totals Observations/Total

Uncorrected total
X
i

X
j

y2ij T ab 1

Uncorrected

treatment

X
i

T2
i: =b A a b

Uncorrected block
X
j

T2
:j=a B b a

Residual T2
:: =ab CF 1 ab

Corrected Sums of Squares

Sum of Squares df Symbol Definition

Computational

Formula

Total ab 2 1 SSt
X
i

X
j

(yij � �yy::)
2 T 2 CF

Treatment a 2 1 SSa b
X
i

(�yyi: � �yy::)
2 A 2 CF

Block b 2 1 SSb a
X
j

(�yy:j � �yy::)
2 B 2 CF

Residual (a 2 1)(b 2 1) SSe
X
i

X
j

(yij � �yyi: � �yy:j þ �yy::)
2 T 2 A 2 B þ CF

As in the one-way design, the short computational formulas correspond to the degrees of

freedom. For example, the residual degrees of freedom are (a 2 1)(b 2 1) ¼ ab 2 a 2 b þ 1,

and the terms T 2 A 2 B þ CF contain ab, a, b, and 1 total, respectively.
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Procedure. Randomized Complete Block ANOVA

Main Hypothesis

H0: a1 ¼ a2 ¼ � � � ¼ aa ¼ 0 or H0:s
2
A ¼ 0 against

Ha: At least one inequality or Ha:s
2
A . 0

Model:

yij ¼ mþ ai þ bj þ 1ij

i ¼ 1, . . . , a

j ¼ 1, . . . , b

Compute

T ¼
X
i

X
j

y2ij B ¼
X
j

T2
:j=a

A ¼
X
i

T2
i: =b CF ¼ T2

:: =ab

Source df SS MS F

Among

treatments

a 2 1 SSa ¼ A 2 CF MSa ¼ SSa/(a 2 1) MSa/MSe

Among blocks b 2 1 SSb ¼ B 2 CF MSb ¼ SSb/(b 2 1) MSb/MSe
Residual (a 2 1)(b 2 1) SSe ¼ T 2 A 2 B þ CF MSe ¼ SSe/(a 2 1)(b 2 1)

Total ab 2 1 SSt ¼ T 2 CF

It is also possible to test for a block difference, H0: b1 ¼ b2 ¼ . . . ¼ bb ¼ 0 or

H0: s
2
B ¼ 0. These hypotheses are tested by F ¼ MSb/MSewith the corresponding degrees of

freedom. The form of the F test can be determined in each case by the expected mean squares.

The denominator of the F test must estimate everything except the term being tested.

Expected Mean Squares for Randomized

Complete Block Design

MS
E(MS)

Fixed Random

MSa s2 þ b
P
i

a2
i =(a� 1) s2 þ bs2

A

MSb s2 þ a
P
j

b2
j =(b� 1) s2 þ as2

B

MSe s2 s2
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Example 12.2. Randomized Complete Block ANOVA

A psychology experiment involving 3 treatments is planned with a randomized complete

block design, the random subjects being the blocks. The 3 treatments are administered on 3

difference days and the order in which each subject receives the treatment is random. There

are 4 subjects and the random variable is the length of time required to complete a certain task.

Treatment

1 2 3 T.j

1 4.7 9.4 6.3 20.4

Subject 2 3.5 7.6 5.1 16.2

3 0.1 5.3 1.8 7.2

4 1.6 6.2 3.6 11.4

Ti. 9.9 28.5 16.8 55.2 ¼ T..

a ¼ 3

b ¼ 4X
i

X
j

y2ij ¼ 331:46

T ¼ 331:460 B ¼ 286:800

A ¼ 298:125 CF ¼ 253:920

Source df SS MS F F0.05

Among

treatments

a 2 1 ¼ 2 A 2 CF ¼ 44.205 22.102 290.8 5.143

Among blocks b 2 1 ¼ 3 B 2 CF ¼ 32.880 10.960 144.2 4.757

Residual (a 2 1)(b 2 1) ¼ 6 T 2 A 2 B þ CF ¼ 0.455 0.076

Since the F statistic for treatment is significant, there is evidence of differences among the

treatments.

Although the psychologist in the example above is not interested in block differences for

their own sake, the fact that the F for blocks is significant shows that this design is appropriate

for the experiment. The decision to use a block design must come before the experiment. The

experimenter knows from previous experience that an extraneous source of variability is

present and designs the experiment so that this effect can be removed and the statistical

procedure can be more powerful.

It is not always advantageous to use a block design instead of a completely random design.

When a block design is appropriate, along with the reduction of the error sum of squares there

is also a reduction in the associated degrees of freedom, but the F value is still larger.

However, if blocking is used when there is really no block effect, the reduction in the error

sum of squares will not be sufficient to offset the reduction in power due to the loss in degrees

of freedom in the denominator.
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The power of the randomized complete block design will also be reduced if the treatment

effect and block effect are not simply additive, as implied in the model:

yij ¼ mþ ai þ bj þ 1ij

Additivity is not present if there is an interaction between treatments and blocks. An

interaction is an additional boost or reduction due to the particular combination of a block and

treatment. For example, in the psychologist’s experiment, subject 1 may be much faster than

the average person under treatment 1 but much slower than average under treatment 2,

whereas subject 2 may be just the opposite. An absence of interactions means that although

there are different reaction times for individuals, the general pattern is the same. If an

interaction effect is present, there is no specific term for it in the block design. Since the

variability due to the interaction will be in the total sum of squares and will not be removed by

the treatment sum of squares or the block sum of squares, it will be left in the error sum of

squares:

SSt � SSa � SSb ¼ SSe

Thus the error sum of squares may contain not only variability due to sampling but also

variability due to the interaction effect. (This is the reason for calling SSe the residual sum of

squares.) If an interaction is present, the power of the test is reduced because of the inflated

SSe, which contributes to the denominator of the F statistic. If interactions are suspected, the

randomized complete block design should not be used. The two-factor model described in

Section 12.4 makes specific provision for an interaction effect.

A randomized complete block design with fixed treatment effects can be followed by

multiple comparisons, one-degree-of-freedom F tests, or estimation of the fixed effects.

The MSe is used in the standard error, and n must be replaced by a or b, whichever is

appropriate in the formulas given in Chapter 10. Intraclass correlations can be computed

for the random effects. The total variance is s2 þ s2
A þ s2

B. Example 12.3 shows how this

is done.

Example 12.3. Intraclass Correlation in a Two-Way ANOVA

Following a shoulder injury, even after corrective surgery, patients must undergo physical

therapy to regain use of the injured member. One sign of success of the therapy is how well

patients can elevate the arm that was injured, so this may be one of the first measurements a

physical therapist makes when a patient returns for treatment. There are gauges to measure

how many degrees above horizontal the patient can elevate his or her arm, but there is still a

certain amount of subjectivity in how the therapist reads a gauge. Thus it is possible that one

therapist will make measurements that consistently tend to be high and another consistently

low. This could create a problem in evaluating patients’ progress if a patient does not have the

same therapist at every visit for therapy.

The chief therapist at a medical center wants to see if there is significant variability among

the center’s many therapists in the way they read the gauge. This would reduce the reliability

of measures taken by different therapists. She takes a random sample of a ¼ 5 of the

therapists, explains the problem to the patients, and asks if they will volunteer to participate in

an experiment to provide data. Nearly all do, so she takes a second sample of b ¼ 6 patients,
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and each therapist measures the arm elevation of each of the patients in random order. The

ab ¼ 30 measurements are

Therapist

Patient A B C D E T.j

1 69 58 60 61 52 300

2 85 77 78 84 72 396

3 81 71 74 81 73 380

4 48 42 43 51 41 225

5 59 46 51 52 44 252

6 60 51 54 61 54 280

Ti. 402 345 360 390 336 1833 ¼ T..

Degrees of freedom and sums of squares are computed in the same way as for all two-way

designs, and the ANOVA, F tests, and expectations of mean squares are

Source df SS MS F P value E(MS)

Therapists 4 541.2 135.30 27.95 ,0.0001 s2 þ 6s2
A

Patients 5 4752.7 950.54 196.39 ,0.0001 s2 þ 5s2
B

Residual 20 96.8 4.84 s2

She wants to know if the variance among therapists is significant, so the hypothesis of is H0:

s2
A ¼ 0, and that hypothesis is rejected with a P value ,0.0001. In addition to this test of

hypothesis, however, she is also interested in the size of rI, the intraclass correlation (ICC), to

know the reliability of different measures on the same patient when the measures are taken by

different therapists. To compute the ICC, she must first estimate the three variances associated

with measurements:

ŝs2 ¼ Residual MS ¼ 4:84

ŝs2
A ¼ MSA � Residual MS

b
¼ 27:95� 4:84

6
¼ 21:74

ŝs2
B ¼ MSB � Residual MS

a
¼ 196:39� 4:84

5
¼ 189:14

With these estimates she can compute the intraclass correlation for her experiment:

rI ¼ ŝs2
B

ŝs2
B þ ŝs2

A þ ŝs
¼ 189:14

189:14þ 21:74þ 4:84
¼ 0:877
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Because 87.7% of the total variance is among patients and the remaining 12.3% is attributable

to differences among therapists or unexplained causes, the reliability of a measurement is

reasonably good irrespective of other factors, including the therapist who made the

measurement. However, she must decide whether that is sufficient reliability. With training

and experience the therapists can learn to make measures that are independent but still more

similar than those in this experiment. That would lessen the size of the estimate of s2
A and

thereby increase the size of the intraclass correlation.

Sometimes, in carrying out a blocked experiment, an observation is missing for reasons

extraneous to the experiment. For example, a plant dies because of an accident in the

greenhouse, a subject leaves town or is ill and cannot complete the experiment (assuming the

illness is not related to the treatment), or the data are lost or erased. One way to handle this

situation is to remove the entire block that contains the missing value. The analysis is then

carried out with b 2 1 blocks.

Another approach is to estimate the missing value yij by

ŷyij ¼ aTi: þ bT:j � T::

(a� 1)(b� 1)

and to decrease the residual degrees of freedom by 1.

For example, in the psychology example in this section (Example 12.2), if y23 were

missing, it could be estimated as follows:

Treatment

1 2 3 T.j

1 4.7 9.4 6.3 20.4

Subject 2 3.5 7.6 5.1 16.2

3 0.1 — 1.8 1.9

4 1.6 6.2 3.6 11.4

Ti. 9.9 23.2 16.8 49.9 ¼ T..

ŷy23 ¼ 3(23:2)þ 4(1:9)� 49:9

(3� 1)(4� 1)
¼ 4:55

The residual degrees of freedom would be 5.

If there are several missing values, an iterative procedure may be used. For example, if

there are three missing values a, b, and c, we guess values for b and c and then approximate a

as above. Using the approximation of a and the original guess of c, b is approximated as

above. Finally, c is approximated using the approximated values of a and b. The cycle is then

repeated to obtain second approximations of each of the three values. Repetition of the cycle

continues until there are no noticeable changes in the approximations. The total degrees of

freedom and residual degrees of freedom are reduced by 1 for each missing value. For further

details, see Cochran and Cox (1957).
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EXERCISES

12.2.1. Four varieties of hybrid corn have been developed for resistance to the fungal

infection known as smut. However, nothing is known about their potential for grain

yield. Each hybrid is planted at each of 5 locations within the state, and the following

yields are obtained.

Location

Hybrid NW NE C SE SW

FR-11 62.3 64.0 64.3 65.0 66.4

BCM 63.3 62.7 66.2 66.8 64.5

DBC 60.8 64.3 65.2 62.2 65.1

RC-3 55.4 56.0 59.8 58.0 58.8

a. Give the linear model and the assumptions.

b. Perform the appropriate ANOVA.

c. Are there differences in yield among the means of the hybrids?

d. Are there differences that can be attributed to location?

e. If a smut-resistant hybrid is used, which do you recommend?

12.2.2. In a study of reaction time under the influence of alcohol, age is thought to be another

variable that could affect the time. A randomized complete block design is used, and

reaction time is measured in seconds.

Amount of Alcohol

None 1 oz 2 oz T.j

20–39 0.42 0.47 0.65 1.54

Age 40–59 0.51 0.62 0.66 1.79

60 or over 0.57 0.73 0.79 2.09

Ti. 1.50 1.82 2.10 5.42 ¼ T..

X
i

X
j

y2ij ¼ 3:3818

a. Complete the ANOVA table.

b. Is there any difference in reaction time among the alcohol groups?

c. Use the Student–Newman–Keuls’ procedure to compare the alcohol means.

d. Is there a significant difference in reaction time due to age?

12.2.3. A large company is going to buy cars to be used by employees on business trips.

Five models of cars are tested for mileage per gallon in 5 different randomly
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chosen cities. Five cars of each model are used and assigned to the cities in

random order:

City

Model 1 2 3 4 5 Totals

A 15.83 17.56 21.11 20.48 26.04 101.02

B 14.80 16.22 21.30 20.84 19.27 92.43

C 17.43 19.54 17.67 22.58 19.86 97.08

D 16.60 16.34 17.01 15.82 16.57 82.34

E 21.24 21.29 20.34 19.43 25.05 107.35

Totals 85.90 90.95 97.43 99.15 106.79 480.22

a. What is the ANOVA model for this investigation?

b. Is the model effect random or fixed?

c. Is the city effect random or fixed?

d. What is the hypothesis of main interest to the investigator?

e. Complete the ANOVA.

f. Are there any differences in mileage among the models?

g. Which mean separation procedure seems appropriate for this investigation? Why?

h. Use Fisher’s least significant difference to find the best model or models.

i. Is there significant variability due to cities?

j. What percentage of the total variability is due to the cities?

12.2.4. An experiment was conducted involving 6 schools and 3 teaching methods per school.

a. Identify the sources of variability represented by the sums of squares.

Source

Number of

Squared Values

Observations/Squared
Value

Numerical

Value

_________ 1 18 125

_________ 3 6 151

_________ 18 1 236

_________ 6 3 180

b. Complete the uncorrected sum of squares table and the ANOVA table.

c. Could Fisher’s least significant difference be used to test for differences among

teaching methods? Justify your answer.

12.2.5. Given the following ANOVA:

Source df SS MS

Treatment 3 150.0 50.0

Block 4 56.0 14.0

Residual 12 86.4 7.2
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a. What are the values of a and b?

b. What is the numerical value of the standard error of a treatment average?

c. Use Duncan’s procedure to compare the treatment means.

Treatment: 1 2 3 4

�yyi:: 6 9 12 13

12.2.6. a. Estimate the missing value in the block design.

b. Complete the ANOVA.

Blocks

3 4 5

1 2 2

Treatments 3 — 7

5 8 2

4 6 5

12.3. LATIN SQUARE DESIGN

Sometimes the investigator is aware of two causes of nuisance variability, and a blocked

design is not adequate for the experiment. For example, in addition to a litter effect in a drug

experiment on mice, there may also be a size-of-mouse effect. If there are no interactions

present, and the experimenter is working with 4 drugs (A, B, C, D), 4 litters, and 4 sizes of

mice, then a Latin square design may be used (Figure 12.3).

In a Latin square, each treatment appears exactly once in each row and column. This is a

very economical design because it avoids the necessity of working with every combination

possible. For example, in the mouse experiment, if all combinations of drug, litter, and size of

FIGURE 12.3. A Latin square design.
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mouse were used, 64 mice would be needed. In addition, litters of the proper number and with

the needed assortment of sizes probably would not exist.

The smallest Latin square that can be analyzed is 3 � 3. Squares larger than 9 � 9 are

rarely used because of the difficulty of finding equal numbers of categories for the rows,

columns, and treatments.

Standard Latin squares can be found in Fisher and Yates (1963). If more than one is

available, the standard square should be selected by a random process, and the rows and

columns should be randomized. For example, if

A B C

B C A

C A B

is the standard Latin square, two random sequences of the digits 1, 2, 3 are chosen, say (2, 1, 3)

and (3, 1, 2). Then the columns are rearranged by the first sequence and the rows by the second

(Figure 12.4).

Latin squares were originally used for agricultural experiments. Treatments were applied

to a field in a Latin square design in order to randomize for any differences in fertility in

different sections of the field. However, the design is very useful in other disciplines, and it is

not necessary that the treatments be applied physically in a Latin square design. The mouse

experiment which controls for litter and size is a typical nonagricultural application.

Other examples of a Latin square design are the following:

1. Yield is measured for 4 varieties of wheat that were planted on 4 different farms and in

4 different corners of the farms, NE, NW, SE, and SW.

2. Miles per gallon are measured on 6 models of cars using 6 brands of gasoline, each

model used in 6 different cities.

3. The strength of coated paper is measured for 4 different coatings applied at 4 positions

down the roll and 4 positions across the roll to control for variability in the strength of

the uncoated paper.

4. A psychological experiment consists of 6 treatments given to 6 subjects in 6 different

orders to control for learning.

FIGURE 12.4. Randomizing columns and rows.
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5. Drug response is measured for 3 drugs given in 3 dosages and analyzed by 3 different

lab technicians.

6. Time of assembly is measured for 4 products, 4 assemblers, and 4 positions in the

assembly line.

The additive model for the Latin square design is

yijk ¼ mþ ai þ bj þ gk þ 1ijk

i ¼ 1, . . . , a

j ¼ 1, . . . , a

k ¼ 1, . . . , a

in which the terms have the following meanings:

m: A constant, the overall mean for all experiments of this type.

ai: A constant for the ith treatment;
X
i

ai ¼ 0 if this effect is fixed or ai IND(0, s
2
A) if

it is random.

bj: A constant for the jth first extraneous effect;
X
j

bj ¼ 0 if this effect is fixed or bj

IND(0, s2
B) if it is random.

gk: A constant for the kth second extraneous effect;
X
k

gk ¼ 0 if this effect is fixed or

gk IND(0, s
2
C) if it is random.

1ijk: A random effect due to sampling; 1ijk IND(0, s
2).

To use this model, we must be able to assume that there are no interactions between the ai’s

and bj’s, ai’s and gk’s, and bj’s and gk’s.
Data for a Latin square design are arranged as in Figure 12.5, with the indicated notation.

Treatments are indicated in parentheses within the cells. It does not matter which effect is

placed in the rows, in the columns, or across the face of the table or which symbol, ai, bj, or

gk, is assigned to a particular effect. The arrangement in Figure 12.5 is traditional because of

the agricultural origins of this design, but other arrangements are common.

FIGURE 12.5. Notation for the Latin square design.

362 OTHER ANALYSIS-OF-VARIANCE DESIGNS



Averages are indicated by a notation corresponding to the totals, for example, �yy:2: ¼ T:2:=a
and �yy... ¼ T...=a

2.

Uncorrected Sums of Squares

Sum of Squares Symbol Formula

Number of

Totals

Observations/
Total

Uncorrected

total

T
X
j

X
k

y2ijk a 2 1

Uncorrected

treatment

A
X
i

T2
i::=a a a

Uncorrected b
effect

B
X
j

T2
:j:=a a a

Uncorrected g
effect

C
X
k

T2
::k=a a a

Correction factor CF T2
...=a

2 1 a 2

Corrected Sums of Squares

Source df Symbol Definition Computational Formula

Total a 2 2 1 SSt
X
i

X
j

(yijk � �yy...)
2 T 2 CF

Treatment a 2 1 SSa a
X
i

( �yyi:: � �yy...)
2 A 2 CF

b effect a 2 1 SSb a
X
j

( �yy:j: � �yy...)
2 B 2 CF

g effect a 2 1 SSc a
X
k

( �yy::k � �yy...)
2 C 2 CF

Residual (a 2 1)(a 2 2) SSe
X
i

X
j

X
k

(yijk � �yyi::

��yy:j: � �yy::k þ 2�yy...)
2

T 2 A 2 B 2 C þ 2CF

Note that in the definition of SSe not all the combinations of ijk exist. The missing terms can

be thought of as having zero value.

Procedure. Latin Square ANOVA

Main Hypothesis

H0: a1 ¼ � � � ¼ aa ¼ 0 or H0: s
2
A ¼ 0

Secondary Hypotheses

H0:bi ¼ � � � ¼ ba ¼ 0 or H0:s
2
B ¼ 0

H0: g1 ¼ � � � ¼ ga ¼ 0 or H0:s
2
C ¼ 0
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Model:

yijk ¼ mþ ai þ bj þ gk þ 1ijk

i ¼ 1, . . . , a

j ¼ 1, . . . , a

k ¼ 1, . . . ; a

Compute:

T ¼
X
j

X
k

y2ijk C ¼
X
k

T2
k::=a

A ¼
X
i

T2
i::=a CF ¼ T2

:::=a
2

B ¼
X
j

T2
:j:=a

Source df SS MS F

Among

treatments

a 2 1 SSa ¼ A 2 CF MSa ¼ SSa/(a 2 1) MSa/MSe

Among b
effects

a 2 1 SSb ¼ B 2 CF MSb ¼ SSb/(a 2 1) MSb/MSe

Among g
effects

a 2 1 SSc ¼ C 2 CF MSc ¼ SSc/(a 2 1) MSc/MSe

Residual (a 2 1)(a 2 2) SSe ¼ T 2 A 2 B

2 C þ 2CF

MSe ¼ SSe/(a 2 1)(a 2 2)

Total a 2 2 1 SSt ¼ T 2 CF

The F tests take the form given above because of the expectations of the mean squares:

Expected Mean Squares

E(MS)

MS Fixed Random

MSa s2 þ a
X
i

a2
i =(a� 1) s2 þ as2

A

MSb s2 þ a
X
j

b2
j =(a� 1) s2 þ as2

B

MSc s2 þ a
X
k

g2k=(a� 1) s2 þ as2
C

MSe s2 s2
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Example 12.4. Latin Square ANOVA

An audiologist is studying 3 difference devices that help hearing in a certain type of

deficiency. Three subjects with this type of hearing loss take hearing tests using each of the 3

devices. To control for learning, a Latin square design is used. Scores on the test are recorded.

Devices are given in parentheses.

Order of Test (gk)

First Second Third

1 74 57 50 T.1. ¼ 181

(1) (2) (3)

Subject (bj) 2 6 94 78 T.2. ¼ 178

(3) (1) (2)

3 40 29 112 T.3. ¼ 181

(2) (3) (1)

T..1 ¼ 120 T..2 ¼ 180 T..3 ¼ 240 T. . . ¼ 540

Device totals: T1.. ¼ 280 T2.. ¼ 175 T3.. ¼ 85

The uncorrected sums of squares are:

T ¼ 41,166 B ¼ 32,402 CF ¼ 32,400

A ¼ 38,750 C ¼ 34,800

Source df SS MS F H0

Among devices 2 6350 3175 453.6 a1 ¼ a2 ¼ a3 ¼ 0

Among subjects 2 2 1 0.1 s2
B ¼ 0

Among orders 2 2400 1200 171.4 g1 ¼ g2 ¼ g3 ¼ 0

Residual 2 14 7

Since F0.01,2,2 ¼ 99.000, the audiologist concludes that there is a significant difference among

the devices and there is a significant learning effect at the 0.01 level.

EXERCISES

12.3.1. A marketing expert for a publishing house wants to measure reader preference for 5

different covers of the same paperback novel. Five newsstands are selected at random

and the novel is displayed at each newsstand for 5 weeks, one for each cover. One

week is sufficient to determine sales potential because a new cover makes its impact

immediately, followed by a pattern of diminishing returns. The number of sales are

listed below with the cover given in parentheses:
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Week

Newsstand 1 2 3 4 5

I (D) 200 (C) 290 (A) 280 (E) 230 (B) 265

II (C) 260 (B) 280 (E) 245 (A) 285 (D) 245

III (A) 250 (D) 245 (C) 280 (B) 250 (E) 180

IV (B) 260 (E) 190 (D) 230 (C) 205 (A) 200

V (E) 340 (A) 335 (B) 265 (D) 270 (C) 230

a. Give the most logical null hypothesis with respect to covers.

b. Perform the ANOVA.

c. What should be concluded about covers?

d. Comment on the usefulness of the design employed.

e. Make simultaneous interval estimates of the means of the 5 covers using

Bonferroni procedures when aG ¼ 0.05.

12.3.2. A test is done on the miles per gallon for 5 models of cars using 5 brands of gasoline

and tested in 5 different cities.

Brand of Gasoline

A B C D E Totals

I 30.8 30.9 32.9 32.3 28.3 155.2

(1) (4) (2) (5) (3)

II 33.1 32.5 33.5 33.5 31.3 163.9

(2) (5) (1) (3) (4)

Model III 33.5 33.2 32.9 32.1 34.2 165.9

(3) (2) (5) (4) (1)

IV 28.9 27.8 31.1 31.9 31.7 151.4

(4) (1) (3) (2) (5)

V 26.1 27.6 26.5 32.7 29.8 142.7

(5) (3) (4) (1) (2)

Totals: 152.4 152.0 156.9 162.5 155.3

City Total: (1) (2) (3) (4) (5)

159.0 160.9 154.0 149.7 155.5

X
i

X
j

y2ijk ¼ 24, 413:35

a. What is the treatment of interest?

b. Why might the cities cause nuisance variability?

c. Carry out the ANOVA and compute Rsquare.
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d. Test for differences among the models of cars.

e. Use Fisher’s least significant difference to find the best car or cars.>

12.3.3. The National Occupational Safety and Health Act was a comprehensive effort to

improve industrial health and safety in this country. Part of this act requires detailed

reporting of industrial accidents. The data gained thereby can lead to the identification

and elimination of unsafe practices in industry. With such a goal in mind, a safety

engineer in a large chemical plant finds that the plant carries out 5 basic operations.

Because he has to monitor each operation personally to record the number of unsafe

incidents within a 5-day work week, he decides to take a random sample of 5 weeks in

order to have a Latin square design.

a. Give the additive model for the experiment, using subscripts i for weeks, j for

days, and k for operations.

b. List the assumptions of this design and tell whether you feel it is appropriate in this

case.

c. Given the following computations, complete the ANOVA:

X
i

X
j

y2ijk ¼ 10,990
X
i

T2
i::=5 ¼ 2,750

T2
:::=25 ¼ 2,250

X
j

T2
:j:=5� T2

:::=25 ¼ 710

X
k

T2
::k=5� T2

:::=25

 !
=4 ¼ 195

d. What hypothesis can be tested about the operations?

e. Are weeks random or fixed? Days? Operations?

f. What conclusions can the safety engineer draw from this analysis?

12.3.4. An apiarist conducts an experiment to determine the best method of insulating hives

for winter survival of bee colonies. She has 16 hives and decides to expose 4 to each

direction of the compass. She has colonies of 4 different origins and she compares

4 different insulating materials. She uses a design in which each combination of

direction, colony, and material is assigned once and only once to the 16 hives.

a. What design is the apiarist using?

b. What special assumption is necessary for this ANOVA design?

c. What is the null hypothesis for material effects?

d. What is the expected mean square for colonies?

e. What is the critical value at a ¼ 0.05 for a test of direction?

f. Complete the ANOVA table.

Source df SS MS F

Directions 3 105 35 ___

Colonies ___ 90 ___ ___

Materials 3 75 25 ___
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Source df SS MS F

Residual ___ ___ ___ ___

Total 15 330

12.3.5. Why is it impossible to analyze a 2 � 2 Latin square?

12.4. a 3 b FACTORIAL DESIGN

Often an investigator is interested in the combined effect of two types of treatments. For

example, a study might be about weight loss for various diets combined with various levels of

jogging per day (Figure 12.6).

This design differs from blocking in that neither of the treatments (diet or jogging) is

considered extraneous to the experimental question. Subjects are assigned at random to each

of the 12 combinations, and interest is in the combined effect as well as diet considered

separately and jogging considered separately. This is an economical design since it

accomplishes several things at once.

The sets of treatments are called factors or main effects, and the different treatments within

the sets are called levels. If diet is factor A, it has a ¼ 4 levels, and if jogging is factor B, it has

b ¼ 3 levels. (The levels need not be quantitative; the diets in this case have the same calories

but different food group proportions.) A design of this type is called a two-factor design or,

more precisely, an a � b factorial design.† In this example, the design is 4 � 3 factorial. (In

this text the first number, 4, refers to the number of levels of factor A. It could refer to either

the number of rows or the number of columns in the diagram, depending upon how the

diagram is specified.)

In a factorial design, the factors may be treatments in the strict sense or they may be certain

classifications of existing populations. The following examples illustrate some of the many

different types of study that follow this design:

1. In the jogging–diet example, both factors are treatments; the factor diet is qualitative

and the factor jogging is quantitative.

FIGURE 12.6. A two-factor design.

†Some statisticians prefer to call this a factorial experiment because combinations of treatments can be assigned in any

kind of design.
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2. If change in blood sugar level is measured for various dosages of vitamin C combined

with various dosages of aspirin, both factors—vitamin C and aspirin—are quantitative

treatments.

3. If sales of a certain product are recorded in several Standard Metropolitan Statistical

Areas and at several different types of chain stores, the factors—area and chain—are

classifications and they are both qualitative.

4. If the lifetimes of tires made by different companies are measured on several different

road surfaces, the factormanufacturer is a qualitative classification and the factor roads

is a qualitative treatment.

In all cases, randomization is necessary. In the jogging–diet and vitamin C–aspirin examples,

subjects must be assigned at random to each combination of levels. In the sales example,

stores must be chosen at random from the chain stores in the areas. In the tire example, tires

from the companies are assigned at random to the type of road.

The tire example is not clearly distinct from a randomized complete block design; in

fact, it can be thought of as a block design. However, if the investigator is interested in

differences caused by various surfaces as well as differences in brand, and especially if he

is interested in any interactions between road surface and brand, then it is a factorial

design.

An interaction is an additional effect due to the particular combination of the two levels.

For example, certain combinations of level of diet and level of jogging may produce a weight

loss in excess of the sum of the effects of the two levels involved. Or a particular combination

may produce less weight loss than expected. To be able to analyze the data for possible

interactions, the investigator must observe more than one subject at each combination of

levels.

Geometrically, the absence of interactions yields parallel lines when the means of the

response variable are graphed for the various combinations of levels of the factors.

Interactions are indicated by deviations from parallelism; Figure 12.7 illustrates the effect of

interactions in the blood sugar experiment.

In the jogging–diet study, n ¼ 2 subjects are assigned to each combination of levels, and

the data are represented by the scheme and notation in Figure 12.8.

FIGURE 12.7. Effect of interaction on subclass means.

12.4. a � b FACTORIAL DESIGN 369



The model for an a � b factorial design is

yijk ¼ mþ ai þ bj þ abij þ 1ijk

i ¼ 1, . . . , a

j ¼ 1, . . . , b

k ¼ 1, . . . , n

m: The overall mean for all experiments of this type.

ai: The effect of the ith level of factor A; the levels may be fixed or random.

bj: The effect of the jth level of factor B; the levels may be fixed or random.

abij: The interaction effect between the ith level of factor A and the jth level of factor B.

(ab is a single symbol and is not a product.)

1ijk: A random effect due to sampling; 1ijk IND(0, s
2).

Uncorrected Sums of Squares

Sum of Squares Symbol Formula

Number of

Totals

Observations/
Total

Uncorrected

total

T
X
i

X
j

X
k

y2ijk abn 1

Uncorrected A

factor

A
X
i

T2
i::=bn a bn

Uncorrected B

factor

B
X
j

T2
:j:=an b an

Uncorrected

subclass

S
X
i

X
j

T2
ij:=n ab n

Correction factor CF T2
:::=abn 1 abn

FIGURE 12.8. Notation for a two-factor design.
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Corrected Sums of Squares

Source df Symbol Definition

Computational

Formula

Total abn 2 1 SSt
X
i

X
j

X
k

(yijk � �yy...)
2 T 2 CF

Factor A a 2 1 SSa bn
X
i

( �yyi:: � �yy...)
2 A 2 CF

Factor B b 2 1 SSb an
X
j

( �yy:j: � �yy...)
2 B 2 CF

A � B (a 2 1)(b 2 1) SSab n
X
i

X
j

( �yyij: � �yyi:: � �yy:j: þ �yy...)
2 S 2 A 2 B þ CF

Error ab(n 2 1) SSe
X
i

X
j

X
k

(yijk � �yyij:)
2 T 2 S

Procedure. a 3 b Factorial ANOVA

Hypotheses

H0:a1 ¼ � � � ¼ aa ¼ 0 or H0:s
2
A ¼ 0

H0:b1 ¼ � � � ¼ bb ¼ 0 or H0:s
2
B ¼ 0

H0:ab11 ¼ ab12 ¼ � � � ¼ abab ¼ 0 or H0:s
2
AB ¼ 0

Compute

T ¼
X
i

X
j

X
k

y2ijk S ¼
X
i

X
j

T2
ij:=n

A ¼
X
i

T2
i::=bn CF ¼ T2

:::=abn

B ¼
X
j

T2
:j:=an

Source df SS MS

Factor A a 2 1 SSa ¼ A 2 CF MSa ¼ SSa/(a 2 1)

Factor B b 2 1 SSb ¼ B 2 CF MSb ¼ SSb/(b 2 1)

A � B (a 2 1)(b 2 1) SSab ¼ S 2 A 2 B þ CF MSab ¼ SSab/(a 2 1)(b 2 1)

Error ab(n 2 1) SSe ¼ T 2 S MSe ¼ SSe/ab(n 2 1)

Total abn 2 1 SSt ¼ T 2 CF
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The appropriate F test depends upon whether factors A and B are fixed or random.

The F test can be determined by the expected mean squares. The denominator of the

F test must estimate everything that the numerator estimates except for the term being

tested.

Expected Mean Squares

MS A and B Fixed F

A s2 þ nb
X
i

a2
i =(a� 1) MSa/MSe

B s2 þ na
X
j

b2
j =(b� 1) MSb/MSe

A � B s2 þ n
X
i

X
j

ab2
ij=(a� 1)(b� 1) MSab/MSe

MS A and B Random F

A s2 þ ns2
AB þ nbs2

A MSa/MSab

B s2 þ ns2
AB þ nas2

B MSb/MSab

A � B s2 þ ns2
AB MSab/MSe

MS A Fixed, B Random F

A s2 þ ns2
AB þ nb

X
i

a2
i =(a� 1) MSa/MSab

B s2 þ nas2
B MSb/MSe

A � B s2 þ ns2
AB MSab/MSe

MS A Random, B Fixed F

A s2 þ nbs2
A MSa/MSe

B s2 þ ns2
AB þ na

X
j

b2
j =(b� 1) MSb/MSab

A � B s2 þ ns2
AB MSab/MSe

Example 12.5. a 3 b Factorial ANOVA

In times of energy shortages, oil companies consider secondary and even tertiary recovery

methods for obtaining more petroleum from exhausted oil wells. These methods attempt to

free the oil from porous rock so that it can be pumped from the ground. To compare 3 such

methods, an oil company takes a random sample of 4 exhausted oil fields and tries each
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method on 2 different wells randomly selected from each field. The results (in barrels of oil

per day) are given below.

Oil Field (Factor B)

1 2 3 4
Totals

Mechanical 2 4 3 1

fracture 1 2 1 1

Method
3 6 4 2 15

(Factor A) Carbon 4 3 6 6

dioxide 5 3 7 5

9 6 13 11 39

Pressurized 6 8 7 5

steam 4 8 8 6

10 16 15 11 52

Totals 22 28 32 24 106

T ¼ 596 B ¼ 478 CF ¼ 468.17

A ¼ 556.25 S ¼ 587

Methods are fixed because there are only three methods of interest. Fields are random, and

whatever inference can be made from this experiment is to be extended to the entire

population of exhausted oil fields from which this random sample was drawn.

Source df SS MS F F0.05

Method 2 88.08 44.04 MSa/MSab ¼ 12.62 5.143

Field 3 9.83 3.28 MSb/MSe ¼ 4.37 3.490

M � F 6 20.92 3.49 MSab/MSe ¼ 4.65 2.996

Error 12 9.00 0.75

All three F values are significant. At least one method is superior to another in all the fields,

but because of the significant interaction, the degree of superiority varies from field to field.

By modifying the CLASS, MODEL, and TEST statements, many different types of analysis

of variance can be carried out by the SAS System. The following program and output is for the

a � b factorial design in Example 12.4:

DATA OIL;

DO METHOD ¼ 1 TO 3;

DO FIELD ¼ 1 TO 4;

DO REPS ¼ 1 TO 2; INPUT BARRELS @@; OUTPUT;

END;

END;

END;

CARDS;
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2 1 4 2 3 1 1 1
4 5 3 3 6 7 6 5
6 4 8 8 7 8 5 6

;

PROC ANOVA;
CLASS METHOD FIELD;
MODEL BARRELS ¼ METHOD FIELD METHOD�FIELD;
TEST H ¼ METHOD E ¼ METHOD�FIELD;

In the MODEL statement for a factorial design the main effects are listed, METHOD and

FIELD in this example, as well as the interaction METHOD�FIELD. If both effects are fixed,

then the TEST statement would be unnecessary; however, if one or both effects are random,

then a separate TEST statement is needed for each of the F tests which require a special

denominator.

The SAS System
The ANOVA Procedure

Class Level Information

Class Levels Values
METHOD 3 1 2 3
FIELD 4 1 2 3 4

Number of observations 24

The ANOVA Procedure
Dependent Variable: BARRELS

Source DF
Sum of
Squares Mean Square

F
Value Pr . F

Model 11 118.8333333 10.8030303 14.40 ,.0001
Error 12 9.0000000 0.7500000
Corrected Total 23 127.8333333

R-Square Coeff Var Root MSE BARRELS Mean
0.929596 19.60812 0.866025 4.41667

Source DF Anova SS Mean Square F Value Pr . F
METHOD 2 88.08333333 44.04166667 58.72 ,.0001
FIELD 3 9.83333333 3.27777778 4.37 0.0268
METHOD�

FIELD 6 20.91666667 3.48611111 4.65 0.0115

Tests of Hypotheses Using the Anova MS for METHOD�FIELD as
an Error Term

Source DF Anova SS Mean Square F Value Pr . F
METHOD 2 88.08333333 44.04166667 12.63 0.0071

EXERCISES

12.4.1. Twenty-four men, each approximately 40 lb overweight, are assigned to the 24

treatments that arise from 4 diets and 3 levels of jogging. Each man consumes the
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same number of calories per day, but the diets differ in their proportions of protein,

fat, and carbohydrate.

Diet

Normal HP HF HC Totals

0 mi. 8.5 15.5 8.5 15.5

11.5 16.5 7.5 13.5

20.0 32.0 16.0 29.0 97.0

1 mi. 14.0 20.0 13.0 21.0

Jogging 16.0 23.0 11.0 18.0

30.0 43.0 24.0 39.0 136.0

2 mi. 24.5 27.0 22.0 24.5

19.5 24.0 27.0 27.5

44.0 51.0 49.0 52.0 196.0

Totals 94.0 126.0 89.0 120.0 429.0

a. Are the diets random or fixed?

b. Are the jogging levels random or fixed?

c. Carry out the ANOVA.

d. What hypotheses can be tested?

e. Are there significant differences related to the diets?

f. Are there significant differences related to jogging?

g. Are interactions present?

h. Which regimen should be recommended for maximum weight loss?

12.4.2. The Council of Graduate Schools is an organization representing more than 700 U.S.

institutions with graduate programs. Its member schools are used in a study of the

difference in verbal Graduate Record Examination scores between males and females

in mathematics graduate programs in the United States. Twelve institutions and 6

students of each gender are sampled in the study.

a. Are the effects due to the gender of student random or fixed?

b. Are the effects due to institution of student random or fixed?

c. Complete the ANOVA table.

Source df MS E(MS) F

Institution ___ 132,250 ______ ____

Gender ___ 52,900 ______ ____

I � S ___ 26,450 ______ ____

Error ___ 13,225 ______ ____

d. Are any of the effects significant?

e. What is the final conclusion?

12.4.3. The State Road Commission decides to make a study of the soil erosion on hillsides

that have been cut into in order to prepare roadbeds. A random sample is taken of
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native species of plants that can serve as ground cover. A random sample is selected

among the affected hillsides around the state, and each species is planted on each

hillside. After the plants are established, 5 observations on erosion are made on each

plant and hillside combination.

a. Complete the following table:

Source df MS E(MS) F

Plant species 5 410 _____ ____

Hillside ___ 416 _____ ____

P � H 20 80 _____ ____

Error ___ 12 _____ ____

b. Test the interaction variance for significance.

c. Compute Rsquare.

d. Which contributes more to the total variability, plant species or hillside? Give

numerical values to support your answer.

12.5. a 3 b 3 c FACTORIAL DESIGN

The a � b factorial design can be generalized to three or more factors. In this section, we

discuss the case of the a � b � c factorial design, that is, the three-factor design.

The weight loss problem of Exercise 12.4.1 becomes a three-factor design if we add an

exercise program to the diet and jogging factors (Figure 12.9). Diet is factor A, and there are

a ¼ 4 levels. Amount of jogging is factor B, with b ¼ 3 levels. Exercise is factor C, with c ¼ 2

levels. Thus, this is a 4 � 3 � 2 factorial design.

Some other examples of designs with 3 factors:

1. The amount of sales of a certain product at several different times of the year, both

before and after an advertising campaign, using several different advertising media.

FIGURE 12.9. A three-factor design.
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2. The achievement of foreign language classes taught by 4 different instructors using

2 different methods and involving 3 different workbooks.

3. The yield of a certain crop with various amounts of fertilizer, various amounts of water,

and using various amounts of spacing between plants.

4. The quality of a certain product when inspected by 3 different inspectors using 2

different methods and at 3 different times of the day.

There is some resemblance between this diagram and a Latin square design. However, in

the a � b � c factorial design, it is not necessary that a ¼ b ¼ c; multiple observations are

made at each combination of the three factors, and it is possible to test for interactions.

FIGURE 12.10. Notation for a three-factor design.
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Each of the 3 factors may be fixed or random. The model may be entirely fixed, entirely

random, or mixed with one or two random factors. In mixed models, it is not always possible to

use the usualF test to test for the effect of each factor; in some cases, an exactF test does not exist.

We consider here only a � b � c factorial designs in which the same number of subjects n

are assigned at random to each combination of levels of the three factors. In the weight loss

problem, if n ¼ 2, then the data are represented as in Figure 12.10.

The model for an a � b � c factorial design is as follows:

yijkl ¼ mþ ai þ bj þ gk þ abij þ agik þ bgjk þ abgijk þ 1ijkl

i ¼ 1, . . . , a

j ¼ 1, . . . , b

k ¼ 1, . . . , c

l ¼ 1, . . . , n

m: The overall mean for all experiments of this type.

ai: The effect of the ith level of factor A; the levels may be fixed or random.

bj: The effect of the jth level of factor B; the levels may be fixed or random.

gk: The effect of the kth level of factor C; the levels may be fixed or random.

abij: The interaction effect between the ith level of factorA and the jth level of factorB.

agik: The interaction effect between the ith level of factorA and the kth level of factorC.

bgjk: The interaction effect between the jth level of factorB and the kth level of factorC.

abgijk: The interaction effect among the ith level of factor A, the jth level of factor B,

and the kth level of factor C.

1ijkl: A random effect due to sampling, 1ijkl IND(0, s
2)

Uncorrected Sum of Squares

Sum of Squares Symbol Formula

Number of

Totals Observations/Total

Uncorrected total T
X
i

X
j

X
k

X
l

y2ijkl abcn 1

Uncorrected

subclass

S
X
i

X
j

X
k

T2
ijk:=n abc n

Uncorrected B � C BC
X
j

X
k

T2
:jk:=an bc an

Uncorrected A � C AC
X
i

X
k

T2
i:k:=bn ac bn

Uncorrected A � B AB
X
i

X
j

T2
ij::=cn ab cn

Uncorrected C C
X
k

T2
::k:=abn c abn

Uncorrected B B
X
j

T2
:j:=acn b acn

Uncorrected A A
X
i

T2
i:::=bcn a bcn

Correction factor CF T2
::::=abcn 1 abcn
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Corrected Sums of Squares

Source df Symbol Definition Computational Formula

Total abcn 2 1 SSt
X
i

X
j

X
k

X
l

( yijkl � �yy...:)
2 T 2 CF

A a 2 1 SSa bcn
X
i

( yi... � �yy...:)
2 A 2 CF

B b 2 1 SSb acn
X
j

( y:j:: � �yy...:)
2 B 2 CF

C c 2 1 SSc abn
X
k

( y::k: � �yy...:)
2 C 2 CF

A � B (a 2 1)(b 2 1) SSab cn
X
i

X
j

( �yyij:: � �yyi... � �yy:j:: þ �yy...:)
2 AB 2 A 2 B þ CF

A � C (a 2 1)(c 2 1) SSac bn
X
i

X
k

( �yyi:k: � �yyi::: � �yy::k: þ �yy::::)
2 AC 2 A 2 C þ CF

B � C (b 2 1)(c 2 1) SSbc an
X
j

X
k

( �yy:jk: � �yy:j:: � �yy::k: þ �yy...:)
2 BC 2 B 2 C þ CF

A � B � C (a 2 1)(b 2 1)(c 2 1) SSabc n
X
i

X
j

X
k

( �yyijk: � �yyij:: � �yyi:k:

��yy:jk: þ �yyi::: þ �yy:j:: þ �yy::k: � �yy::::)
2

S 2 AB 2 AC 2 BC þ
A þ B þ C 2 CF

Error abc(n 2 1) SSe
X
i

X
j

X
k

X
l

( �yyijkl � �yyijk:)
2

T 2 S

Procedure. a 3 b 3 c Factorial ANOVA

Hyotheses

H0:a1 ¼ � � � ¼ aa or H0:s
2
A ¼ 0

H0:b1 ¼ � � � ¼ bb or H0:s
2
B ¼ 0

H0: g1 ¼ � � � ¼ gc or H0:s
2
C ¼ 0

H0:ab11 ¼ � � � ¼ abab or H0:s
2
AB ¼ 0

H0:ag11 ¼ � � � ¼ agac or H0:s
2
AC ¼ 0

H0:bg11 ¼ � � � ¼ bgbc or H0:s
2
BC ¼ 0

H0:abg111 ¼ � � � ¼ abgabc or H0:s
2
ABC ¼ 0

Compute:

T ¼
X
i

X
j

X
k

X
l

y2ijkl

A ¼
X
i

T2
i:::=bcn

B ¼
X
j

T2
:j::=acn

C ¼
X
k

T2
::k:=abn
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AB ¼
X
i

X
j

T2
ij::=cn

AC ¼
X
i

X
k

T2
i:k:=bn

BC ¼
X
j

X
k

T2
:jk:=an

S ¼
X
i

X
j

X
k

T2
ijk:=n

CF ¼ T2
::::=abcn

Source df SS MS

A a 2 1 A 2 CF SSa/(a 2 1)
B b 2 1 B 2 CF SSb/(b 2 1)
C c 2 1 C 2 CF SSc/(c 2 1)
A � B (a 2 1)(b 2 1) AB 2 A 2 B þ CF SSab/(a 2 1)(b 2 1)
A � C (a 2 1)(c 2 1) AC 2 A 2 C þ CF SSac/(a 2 1)(c 2 1)
B � C (b 2 1)(c 2 1) BC 2 B 2 C þ CF SSbc/(b 2 1)(c 2 1)
A � B � C (a 2 1)(b 2 1)(c 2 1) S 2 AB 2 AC 2 BC

þ A þ B þ C 2 CF
SSabc/(a 2 1)(b 2 1)(c 2 1)

Error abc(n 2 1) T 2 S SSe/abc(n 2 1)

Total abcn 2 1 T 2 CF

Expected mean squares vary depending upon whether the factors are fixed or random. The

expectations can be found by constructing a table such as Table 12.1. For convenience, the

variability among fixed effects is symbolized by u2, but it must be remembered that if a, b,
and g are all fixed

u2A represents

X
i
a2
i

(a� 1)
u2B represents

X
j
b2
j

(b� 1)
u2C represents

X
k
g2k

(c� 1)

u2AB represents

X
i

X
j
ab2

ij

(a� 1)(b� 1)
u2AC represents

X
i

X
k
ag2ik

(a� 1)(c� 1)

u2BC represents

X
j

X
k
bg2jk

(b� 1)(c� 1)
and u2ABC represents

X
i

X
j

X
k
abg2ijk

(a� 1)(b� 1)(c� 1)

The rules followed in constructing a table such as 12.1 are as follows:

1. s2 is found in every E(MS).

2. The coefficient for any s2 or u2 will contain n and a, b, or c if those letters are not also

found in the subscript of the s2 or u2.

3. The coefficient for an interaction s2 or u2 will also contain f(a), f(b), or f(c) if the letter
is found in the subscript of the s2 or u2 but not in the subscript of the MS.

In the coefficients f(a) ¼ 0 ifA is fixed and f(a) ¼ 1 ifA is random; similarly for f(b) and f(c). An

interaction term is written as the fixed form (u2) only if all factors in the interaction are fixed.
One of the principal purposes for obtaining the expected mean squares is to determine the
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appropriate F tests, if they exist. Remember, the MS in the denominator of an F test must

estimate everything that the numerator MS estimates except for the term being tested.

Example 12.6. a 3 b 3 c Factorial ANOVA

The freezing of bull semen became a commercial possibility in the 1950’s when it was found,

by accident, that a solution of egg parts, glycerin, and a buffer provided protection during the

freezing and thawing process. The investigators wanted to try other “antifreezes” besides

glycerin, and they wanted to know whether the same level of buffer should be used with each

of them. Suppose they designed an a � b � c factorial experiment which involved 3 levels of

the buffer (a fixed effect), semen from 2 bulls (a random effect), 3 randomly chosen

antifreezes (a random effect), and samples of size n ¼ 4. The design would enable them to test

for interactions along with main effects. (Small samples of random effects are used to keep

computations manageable in this example but would not be appropriate in a real experiment.)

The model is

yijkl ¼ mþ ai þ bj þ gk þ abij þ agik þ bgjk þ abgijk þ 1ijkl

in which yijkl is a measure of viability, ai is the buffer effect, bj the bull effect, gk the antifreeze
effect, and the other terms are the interactions.

Buffer Factor A (fixed)

A1 A2 A3

Antifreeze Factor C (random) C1 C2 C3 C1 C2 C3 C1 C2 C3

3 2 12 7 17 10 10 7 9 B
1 6 6 3 7 9 4 10 11 Totals

B1 8 1 11 1 13 5 14 5 6
4 7 3 6 8 3 17 6 9

Bull Factor B (random) 16 16 32 17 45 27 45 28 35 261

3 6 14 14 15 11 8 8 1
2 2 8 4 14 6 15 10 3

B2 8 4 16 10 9 8 4 3 8
1 10 10 2 11 12 10 7 2
14 22 48 30 49 37 37 28 14 279

A Totals 148 205 187 540
Grand
Total

TABLE 12.1. Expected Mean Squares for a 3 b 3 c Factorial Design

Fixed: u2 u2ABC u2BC u2AC u2AB u2C u2B u2A
Terms: Random: s2 s2

ABC s2
BC s2

AC s2
AB s2

C s2
B s2

A

MSa 1 nf(b)f(c) — nbf(c) ncf(b) — — bcn

MSb 1 nf(a)f(c) naf(c) — ncf(a) — acn

MSc 1 nf(a)f(b) naf(b) nbf(a) — abn

Coefficients MSab 1 nf(c) — — nc

MSac 1 nf(b) — nb

MSbc 1 nf(a) na

MSabc 1 n

MSe 1
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AC Total

C1 C2 C3

A1 30 38 80

A2 47 94 64

A3 82 56 49

159 188 193

C Totals

BC Total

C1 C2 C3

B1 78 89 94

B2
81 99 99

a ¼ 3, b ¼ 2, c ¼ 3, n ¼ 4

T ¼
X
i

X
j

X
k

X
l

y2ijkl ¼ 5360:00

A ¼
X
i

T2
i:::=bcn ¼ 1482 þ 2052 þ 1872

24
¼ 4120:75

B ¼
X
j

T2
:j::=acn ¼ 2612 þ 2792

36
¼ 4054:50

C ¼
X
k

T2
::k:=abn ¼ 1592 þ 1882 þ 1932

24
¼ 4078:08

AB ¼
X
i

X
j

T2
ij::=cn ¼ 642 þ � � � þ 792

12
¼ 4202:83

AC ¼
X
i

X
k

T2
i:k:=bn ¼ 302 þ � � � þ 492

8
¼ 4518:25

BC ¼
X
j

X
k

T2
:jk:=an ¼ 782 þ � � � þ 992

12
¼ 4083:67

S ¼
X
i

X
j

X
k

T2
ijk:=n ¼ 162 þ � � � þ 142

4
¼ 4654:00

CF ¼ T2
:::=abcn ¼ 5402

72
¼ 4050:00

AB Total
B1 B2

A1 64 84

A2 89 116

A3
108 79

C Totals
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Source df SS MS

A a 2 1 ¼ 2 A 2 CF ¼ 70.75 35.38

B b 2 1 ¼ 1 B 2 CF ¼ 4.50 4.50

C c 2 1 ¼ 2 C 2 CF ¼ 28.08 14.04

A � B (a 2 1)(b 2 1) ¼ 2 AB 2 A 2 B þ CF ¼ 77.58 38.79

A � C (a 2 1)(c 2 1) ¼ 4 AC 2 A 2 C þ CF ¼ 369.42 92.35

B � C (b 2 1)(c 2 1) ¼ 2 BC 2 B 2 C þ CF ¼ 1.09 0.54

A � B � C (a 2 1)(b 2 1)(c 2 1) ¼ 4 S 2 AB 2 AC 2 BC þ A

þ B þ C 2 CF ¼ 52.58

13.15

Error abc(n 2 1) ¼ 54 T 2 S ¼ 706.00 13.07

Total abcn 2 1 ¼ 71

Mean Squares E(MS) F

Critical

Value F

MSa s2 þ 4s2
abc þ 8s2

ac þ 12s2
ab þ 12

P
a2
i No appropriate F test —

MSb s2 þ 12s2
bc þ 36s2

b MSb/MSbc ¼ 8.333 18.513

MSc s2 þ 12s2
bc þ 24s2

c MSc/MSbc ¼ 26.000 19.000

MSab s2 þ 4s2
abc þ 12s2

ab MSab/MSabc ¼ 2.950 6.944

MSac s2 þ 4s2
abc þ 8s2

a MSac/MSabc ¼ 7.023 6.388

MSbc s2 þ 12s2
bc MSbc/MSe ¼ 0.041 3.170

MSabc s2 þ 4s2
abc MSabc/MSe ¼ 1.006 2.544

MSe s2

The buffer effect cannot be tested with this design. In an a � b � c factorial experiment in

which there is more than one random effect, there will always be main effects which cannot be

tested. However, an experimenter usually knows before the experiment whether or not there

are significant differences among the levels of a main effect; hence the principal use of the

factorial experiment is to study interactions. There are no significant differences between the

bulls, but in a factorial experiment such as this, the goal is to learn whether there are

interactions involving bulls and the other factors in the experiment. Since no interaction

involving bulls is significant, there is evidence that the semen of all bulls can be treated the

same. There are significant differences among antifreezes, portending further experimentation

to find the best one, and there is a significant interaction involving buffers and antifreezes,

indicating that the optimal level of buffer can differ from one antifreeze to another.

EXERCISES

12.5.1. When land is in continuous production, it needs to be treated with a complete

fertilizer, that is, one combining nitrogen (chemical symbol N), phosphorus (P), and

potassium (K, from the Latin kalium). So, shortly after a new variety or hybrid is

developed, an NPK factorial experiment is conducted in order to learn something

EXERCISES 383



about its response to fertilizers. Suppose there is developed a fescue grass hybrid

which is resistant to white grubs, and it will be sold for use on lawns and golf courses.

Before marketing, however, an NPK experiment is conducted so that fertilizer

recommendations can be made. Forty-eight plots containing mature stands of grass

are assigned at random to each of 24 different combinations of fertilizer, 2 plots to

each combination. The fertilizer is applied and given time to have an effect. Each plot

is mowed, and the clippings are dried and weighed to provide the data below:

Potassium

0 cwt/acre 3 cwt/acre

Plot

Nitrogen Phosphorus 1 2 1 2

0 cwt 0 cwt 91 54 80 85

3 cwt 56 72 62 90

6 cwt 103 154 158 175

3 cwt 0 cwt 254 266 262 258

3 cwt 173 252 238 317

6 cwt 383 392 340 465

6 cwt 0 cwt 243 303 239 345

3 cwt 238 303 287 252

6 cwt 389 394 384 403

9 cwt 0 cwt 252 175 114 229

3 cwt 263 281 205 241

6 cwt 295 244 271 380

a. Give the linear model.

b. Which effects are fixed and which are random?

c. Compute a one-way ANOVA with the following sources of variation and degrees

of freedom:

Source df

Fertilizer 23

Within 24

d. From the sum of squares for fertilizer, break out the effects of N, P, and K and all

of their interactions.

e. Give the expectations of mean squares for the three-factor ANOVA above.

f. Make F tests that are valid and draw conclusions.
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12.5.2. In an effort to learn more about the shrinkage of cotton knit undershirts when washed

and dried at military base laundries, the U.S. Army Quartermaster Corps takes a

random sample of 4 brands of shirts from several hundred available for purchase.

They further randomly sample enough shirts to have 2 from each brand to be washed

at each of 2 water temperatures and dried at each of 3 temperatures. The results,

measured by shrinkage of length (in centimeters), are given below.

Cold-Water Wash Drying Temperature Hot-Water Wash Drying Temperature

Brand 2108F 2188F 2268F 2108F 2188F 2268F

A 1.9, 2.1 3.3, 3.7 7.5, 7.9 3.4, 3.6 8.0, 7.6 7.5, 7.7

B 2.2, 2.4 4.8, 5.0 9.8, 9.2 4.6, 4.4 9.3, 9.5 10.1, 9.7

C 2.8, 3.2 6.5, 6.6 13.2, 13.0 5.7, 6.3 12.9, 13.3 13.1, 13.3

D 3.1, 3.7 4.5, 4.8 10.8, 11.2 5.6, 5.0 10.9, 10.7 11.4, 11.7

a. Which effects are random and which are fixed?

b. Give the expectations of mean square.

c. Perform the ANOVA and make all valid F tests.

d. Draw conclusions about the washing and drying procedures that minimize

shrinkage.

12.5.3. Holly trees are attractive and desirable for landscaping, but their propagation

presents many problems. Individual trees are either male or female, so there is no

production of seed through self-fertilization. Furthermore, once seed are produced,

they lie in the ground for about two years before the germination and emergence of

the seedlings that begin the next generation of trees. In an effort to find ways to

speed up the process, a horticulturist takes a random sample of 4 male trees and

another of 4 female trees and makes all possible cross-pollinations. When seeds are

produced, he divides the seeds from each of the 16 crosses into 2 groups at random.

The seeds in one group are used as a control, and those in the other are scarified

because it is claimed this process frequently promotes germination. Seeds are then

planted in individual pots. Three years later, two healthy seedlings are selected at

random from each cross and treatment and measured for height. The data (in

inches) are recorded below.

Control

F1 F2 F3 F4

M1 4.6, 4.9 5.1, 6.1 4.4, 4.8 5.2, 6.3

M2 8.6, 7.8 5.2, 5.4 3.4, 4.6 4.2, 3.8

M3 8.7, 8.5 6.6, 7.4 2.0, 2.8 3.7, 4.3

M4 7.6, 8.4 5.1, 5.4 5.3, 7.7 8.0, 7.5

Scarified

F1 F2 F3 F4

M1 5.3, 4.7 7.7, 8.5 5.3, 5.3 7.7, 6.5

M2 7.3, 8.5 5.8, 5.4 7.7, 6.9 4.4, 4.6
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Scarified

F1 F2 F3 F4

M3 6.6, 6.9 6.0, 7.0 8.0, 8.5 6.8, 7.2

M4 6.9, 7.1 8.8, 8.2 8.9, 9.1 6.7, 7.3

a. Which effects are fixed and which are random?

b. Compute a two-way ANOVA with the following sources of variation and degrees

of freedom:

Source df

Cross 15

Treatment 1

Cross � treatment 15

Error 32

c. From the Cross SS, break out the effects of Male Tree, Female Tree, and the

Male � Female interaction.

d. From the Cross � Treatment SS, break out the effects of the three interactions

Treatment � Male, Treatment � Female, and Treatment � Male � Female.

e. Give the expectations of mean squares for the three-factor ANOVA, and make all

valid F tests.

f. Estimate the percentage of total variability in height due to Male Tree, Female

Tree, and Male � Female.

g. What conclusions should be drawn from this study?

12.5.4. A common factorial experiment is the 2k factorial in which there are two different

levels of each of k different main effects. To demonstrate this design, suppose that an

orthopedic surgeon is uncertain about what, if any, rehabilitation therapy should

be used after a certain kind of orthoscopic knee surgery. She can prescribe a

rehabilitation regimen which includes (or does not include) walking on a treadmill,

lifting weights with the injured leg, and hydrotherapy with swirling water. Thus there

are 23 ¼ 8 different treatment combinations, with the control consisting of patients for

whom none of these is prescribed (they receive complete rest). Because the surgeon

believes none of these is harmful and the benefit to be derived is uncertain, she feels

that no patient will be deliberately disadvantaged by whatever rehabilitation regimen

is prescribed. The situation is discussed with the patients, and 40 give their consent to

participate in an experiment and are assigned at random and in equal numbers to the

treatment combinations. The measurement variable is the number of days until a

certain level of mobility is attained, and below is a portion of the SAS analysis.

Dependent Variable: DAYS
Source DF Sum of Squares Mean Square F Value Pr . F
Model 7 79.860000 11.408571 3.32 0.009
Error 32 109.940000 3.435625
Corrected Total 39 189.800000

386 OTHER ANALYSIS-OF-VARIANCE DESIGNS



R-Square Coeff Var Root MSE DAYS Mean
0.420759 12.1544 1.853544 15.250000

Source DF Anova SS F Value Pr . F
WALK 1 14.550000 4.23 0.0397
LIFT 1 16.400000 4.77 0.0290
HYDRO 1 8.250000 2.40 0.1213
WALK�LIFT 1 7.800000 2.27 0.1319
WALK�HYDRO 1 15.400000 4.48 0.0343
LIFT�HYDRO 1 14.750000 4.29 0.0383
WALK�LIFT�HYDRO 1 2.710000 0.79 0.3741

a. Why should ai, bj, and gk all be considered to be fixed?

b. With respect to the hypothesis about the effect of hydrotherapy, H0: g1 ¼ g2:

i. Show how the hypothesis is tested.

ii. Tell how one knows whether or not the null hypothesis should be rejected.

c. What is the numerical value of MSAB?

d. Compute the least significant difference which would be used to make

comparisons among the eight treatment means.

12.6. SPLIT-PLOT DESIGN

In this section we discuss a split-plot design that involves randomized complete blocks and

two fixed factors; this is probably the most commonly encountered split-plot design.

Another one is discussed in Section 12.7 where the experimental units are nested within

one fixed factor (as in a completely random design) but factorial to the second. Many other

variations of the split-plot design exist, and the reader should consult a reference such as

Steel and Torrie (1960) and Cochran and Cox (1957) if one of these other variations is

needed.

An example of a split-plot design that involves randomized complete blocks is a marketing

experiment in which the investigator wants to study the effectiveness of different incentives

used in buy-by-mail advertising for different types of products.

Four large cities are randomly selected for the experiment. From the city directories, 100

households are selected to receive mailings for each of 3 products (a total of 300 households in

each city). The 3 products are ladies’ hosiery, men’s underwear, and household linens. Half of

each group receives a mailing that offers an extra discount on an order placed within a short

time, and the other half is offered a free pen-and-pencil set with each order (Figure 12.11).

Total sales are recorded for each category.

This design differs from the a � b � c factorial design discussed in Section 12.5,

although the diagrams appear to be similar. Cities in this experiment are randomized

complete blocks rather than a factor. The investigator is not interested in cities as such but

is using them to control for extraneous variability caused by different locations. Within

cities, 3 samples of 100 are assigned at random to the products, which are the main-unit

treatment, or whole-unit treatment. Then, within these samples, half are assigned at
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random to each incentive group, the subunit treatment. The investigator’s first interest is

the incentive factor, but at the same time, he wishes to gather information about how the

incentives work with different products.

Other examples of this split-plot design:

1. A study of vitamin C content of oranges grown in 6 different orchards (blocks) using 4

trees from each orchard which are each treated with a different spray (main-unit

treatment) and 2 oranges picked from each tree and stored at different temperatures

(subunit treatment).

2. A study of yield of soybeans using different types of seed with different fertilizer

treatments. Farms are used for blocks, fertilizer is applied to large plots (whole units),

and the different types of seed are planted on sections within the fertilizer plots

(subunits).

3. A study of medications for reducing high blood pressure in males involving 4 different

drugs (main-unit treatment), each assigned at random to 3 males from each of several

ethnic groups (blocks), and within each medication group the drugs are administered

once a day but at 3 different times of day (subunit treatment).

4. A study of the retention of historical facts in which students are blocked by schools, two

techniques of teaching are used (main-unit treatment), and retention is measured on the

same student after several different time periods (subunit treatment).

Here is a summary of the blocks, main-unit factor, and subunit factor for each of the

examples above:

Example Blocks

Treatment on Whole

Units

Treatment on

Subunits

Buy-by-mail Cities Products Incentives

Vitamin C Orchards Sprays Storage temperatures

Yield Farms Fertilizers Seed types

Blood pressure Ethnic groups Drugs Times of day

Retention Schools Techniques Time periods

An example of the statistical analysis used for a split-plot design is helpful at this point.

FIGURE 12.11. A split-plot design.
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Example 12.7. Split-Plot Design

A food scientist wishes to study the effects of tenderizer and length of cooking time on

meat. Six beef carcasses are obtained at random from a meat packaging plant. The right

rib-eye muscle is excised from each carcass; from the midportion of each muscle, 3 rolled

roasts are prepared as nearly alike as possible. Each of the roasts is assigned at random to

a tenderizing treatment: control, vinegar marinade, or papain marinade. After treatment, a

coring device is used to make 4 cores of meat near the center of each roast. The cores,

however, are left in place, and the 3 roasts from the same carcass are placed together in

an oven preheated to 3008F and allowed to cook. After 30 minutes of roasting, 1 of the

cores is taken at random from each roast, another randomly drawn set of 3 cores is taken

after 36 minutes, a third set after 42 minutes, and the final set at 48 minutes. As each set

is taken, the cores are allowed to cool to serving temperature and are then measured for

tenderness using the Warner–Bratzler device, an instrument similar to a guillotine. The

measurement is a number on the Warner–Bratzler scale. A large number indicates a tough

piece of meat. The measurements from the 6 carcasses (blocks), 3 tenderizing treatments

(on whole units), and 4 lengths of roasting time (on subunits) are the variables of

analysis.

In this experiment, combinations of tenderizer and roasting time could not be assigned

at random to the cores of meat; the nature of the experiment does not allow for that kind

of assignment of treatment combinations. Instead, there were 3 distinct levels of

randomization. Six carcasses were taken at random from a very large number of available

carcasses. The right rib-eye muscle from each carcass (block) was divided into 3 roasts

(whole units), to which 3 tenderizer treatments were assigned at random. Finally, 4 cores of

FIGURE 12.12. The split-plot design for a tenderizer study.
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meat (subunits) were taken to measure the interior tenderness of each roast at a specified

time of cooking, but at the specified time a core was drawn randomly from each roast. The

experiment can be visualized as in Figure 12.12. The random variable is tenderness

(average of 4 determinations) of meat prepared with one of three tenderizers and roasted for

one of 4 lengths of time.

Roasting

Time

(Factor B) Carcass (Factor C)

I II III IV V VI

30 8.25 8.00 7.75 8.25 7.50 7.75

36 7.50 7.00 6.75 6.25 6.75 6.25

Control 42 4.25 3.25 3.75 4.00 3.25 3.00

48 3.50 3.75 3.75 3.25 3.00 3.25

23.50 22.00 22.00 21.75 20.50 20.25

30 7.25 7.00 6.75 6.75 6.50 6.25

Tenderizer

(Factor A)

36 6.25 6.00 6.00 5.50 5.25 5.00

Vinegar 42 3.50 3.50 4.00 3.50 3.25 3.25

48 3.50 3.25 3.25 3.50 3.50 3.00

20.50 19.75 20.00 19.25 18.50 17.50

30 6.50 6.00 6.25 5.75 5.25 5.25

36 4.50 4.75 5.00 4.50 4.50 4.25

Papain 42 3.50 4.00 3.50 3.50 3.25 3.25

48 2.50 2.50 2.75 2.25 2.00 3.00

17.00 17.25 17.50 16.00 15.00 15.75

Totals 61.00 59.00 59.50 57.00 54.00 53.50

Roasting Time

Tenderizer 30 36 42 48 Totals

Control 47.50 40.50 21.50 20.50 130.00

Vinegar 40.50 34.00 21.00 20.00 115.50

Papain 35.00 27.50 21.00 15.00 98.50

Totals 123.00 102.00 63.50 55.50
344.00

Uncorrected

Sum of

Squares Symbol

Number

of Squared

Values

Observations

per Squared

Value Calculations

Numerical

Value

Total T abc ¼ 72 1

(8.25)2 þ (7.50)2

þ . . . þ (3.00)2 1852.25

Whole unit

(roast) W ac ¼ 18 b ¼ 4

[(23.50)2 þ . . .

þ (15.75)2]/4 1668.72
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Uncorrected

Sum of

Squares Symbol

Number

of Squared

Values

Observations

per Squared

Value Calculations

Numerical

Value

Factor A

(tenderizer) A a ¼ 3 bc ¼ 24

[(13.0)2 þ (115.5)2

þ (98.5)2]/24 1664.27

Block

(carcass) C c ¼ 6 ab ¼ 12

[(61.0)2 þ . . . þ
(53.5)2]/12 1647.46

Factor B

(roasting

time) B b ¼ 4 ac ¼ 18

[(123.0)2 þ . . . þ
(55.5)2]/18 1813.64

A � B

(tenderizer

by time) AB ab ¼ 12 c ¼ 6

[(47.5)2 þ . . . þ
(15.0)2]/6 1843.92

Correction

factor CF 1 abc ¼ 72 (344)2/72 1643.56

The analysis can initially be approached as though the experiment involved nothing more than

18 roasts and four roasting times. One could then conduct a two-way ANOVA, which we call

the preliminary analysis.

Preliminary Analysis

Source df SS

Roast ac 2 1 ¼ 17 W 2 CF ¼ 25.16

Roasting time b 2 1 ¼ 3 B 2 CF ¼ 170.08

Residual (ac 2 1)(b 2 1) ¼ 51 T 2 W 2 B þ CF ¼ 13.45

But the roasts (whole units) are not independent; some are associated because they came from

the same carcass and others because they received the same tenderizing treatment.

Consequently, the variability due to these effects can be accounted for in the roast sum of

squares in the following manner:

Source df SS

Roast (whole unit) ac 2 1 ¼ 17 W 2 CF ¼ 25.16

Tenderizer a 2 1 ¼ 2 A 2 CF ¼ 20.71

Carcass c 2 1 ¼ 5 C 2 CF ¼ 3.90

Whole-unit remainder (a 2 1)(c 2 1) ¼ 10 W 2 A 2 C þ CF ¼ 0.55

Other variability in the preliminary analysis can be accounted for, and that is the variability

due to interaction between tenderizer and roasting time (A � B). This variability is, perforce,

part of the residual sum of squares, so it should be computed and removed, as shown below.
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Source df SS

Residual in

preliminary analysis (ac 2 1)(b 2 1) ¼ 51 T 2 W 2 B þ CF ¼ 13.45

A � B (a 2 1)(b 2 1) ¼ 6 AB 2 A 2 B þ CF ¼ 9.57

Subunit remainder a(b 2 1)(c 2 1) ¼ 45 T 2 W 2 AB þ A ¼ 3.88

The complete ANOVA for the split-plot design can be obtained by putting together the sums

of squares that have been broken out of the preliminary analysis. The final analysis is

Source df SS MS F

Whole units

Tenderizer a 2 1 ¼ 2 A 2 CF ¼ 20.71 10.36 207.20�†

Carcass c 2 1 ¼ 5 C 2 CF ¼ 3.90 0.78 15.60�

Whole-unit

remainder

(a 2 1)(c 2 1) ¼ 10 W 2 A 2 C þ CF ¼ 0.55 0.05

Subunits

Roasting

time

b 2 1 ¼ 3 B 2 CF ¼ 170.08 56.69 629.89

Time �
tenderizer

(a 2 1)(b 2 1) ¼ 6 AB 2 A 2 B þ CF ¼ 9.57 1.59 17.67�

Subunit

remainder

a(b 2 1)(c 2 1) ¼ 45 T 2 W 2 AB þ A ¼ 3.88 0.09

Not too surprisingly, the analysis results in claiming significance for all effects tested. This is

largely due to the nature of the experiment. It has probably been known from the time of the

cavemen that longer time of cooking can make meat more tender. Similarly, the benefits of

marinating were discovered without benefit of statistical analysis. However, it is not

uncommon in the split-plot design for the experimenter to know in advance of the experiment

that the whole-unit treatments (tenderizers) and even subunit treatments (roasting times) are

significant. The principal concern in the design is usually the interaction. Here, the food

scientist wants to know about the best combinations of tenderizer and roasting time. Because

the interaction term also proved to be significant, the food scientist will pay particular interest

to a mean separation technique that allows for further examination of the interaction. This can

be done with a two-way table of averages:

Factor B (Roasting time, min)

Factor A 30 36 42 48

Control 7.9167 6.7500 3.5833 3.4167

Vinegar 6.7500 5.6667 3.5000 3.3333

Papain 5.8333 4.5833 3.5000 2.5000

†An asterisk traditionally is used to indicate significance, in this case at a ¼ 0.05.
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TheWarner–Bratzler score employed here is a function of the force necessary to shear a piece

of meat of a given size. Consequently, the greater the average score, the less tender is the

meat. The interactions can be best understood by comparing average of roasting times for

the same tenderizer or, conversely, the average of tenderizers at the same roasting time.

Multiple comparisons within a split-plot design differ from those in other designs (see Steel

and Torrie, 1960).

To compare means for roasting times (B means) with the same tenderizer (same A level),

the least significant difference is

ta=2,a(b�1)(c�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSsubunit remainder

c

r
¼ 2:014

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(0:09)

6

r

¼ 0:3488 at a ¼ 0:05

To compare two tenderizer means (A means) at the same roasting time (same B level), an

approximate test must be used because the two A means contain both A effects and AB

interactions. The least significant difference is

ta=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½(b� 1)MSsubunit remainder þMSwhole unit remainder�

cb

r

in which

ta=2� ¼ (b� 1)MSsrta=2,a(b�1)(c�1) þMSwrta=2,(a�1)(c�1)

(b� 1)MSsr þMSwr

Thus

t0:025� ¼ 3(0:09)2:014þ (0:05)2:228

3(0:09)þ 0:05

¼ 2:047

and the least significant difference is

2:047
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½3(0:09)þ 0:05�=24

p
¼ 0:334

In interpreting the significant interaction in this experiment, we can conclude that no

matter what the precooking tenderizer treatment, the longer a roast is cooked, the more tender

it will be. However, the degree of tenderness for any cooking time will depend on the kind of

tenderizer used. This is an indication that the use of tenderizing marinade is especially

important for those who prefer roasts rare or medium rare, because the differences between all

tenderizer treatments are significant for roasts cooked 30 or 36 minutes. The reappearance of a

significant difference between the papain marinade and the other two whole-plot treatments at

48 minutes may be an anomaly (that is, a Type I error). However, it could also represent a

reproducible phenomenon which the food scientist might want to examine further. Even if it is

a real difference, the gain in tenderness may not merit the added roasting time if there is

offsetting loss in meat texture, juiciness, or other components of palatability.

In general, a split-plot design may be arranged similar to Figure 12.13, in which 3 blocks,

2 whole-unit treatments, and 4 subunit treatments are used.
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The model for this split-plot design, in which the whole-unit treatment is randomized

within complete blocks, is
>

yijk ¼ mþ ai þ bj þ abij þ gk þ dik þ 1ijk

i ¼ 1, . . . , a

j ¼ 1, . . . , b

k ¼ 1, . . . , c

The terms in this model have the following meanings:

m: The overall mean for all experiments of this type.

ai: The effect of the ith level of factor A, the whole unit treatment; a fixed effect,X
i

ai ¼ 0.

bj: The effect of the jth level of factor B, the subunit treatment; a fixed effect,X
j

bj ¼ 0.

abij: The interaction effect between the ith level of factor A and the jth level of factor B.

gk: The kth block effect; blocks are random.

dik: The whole-unit random component, dik IND(0, s
2
D).

1ijk: The subunit random component, 1ijk IND(0, s
2).

Uncorrected Sums of Squares

Sum of Squares Symbol Formula

Number of

Totals Observations/Total

Uncorrected total T
X
i

X
j

X
k

y2ijk abc 1

FIGURE 12.13. Notation for a split-plot design.
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Uncorrected whole unit W
X
i

X
k

T2
i:k=b ac b

Uncorrected A factor A
X
i

T2
i::=bc a bc

Uncorrected B factor B
X
j

T2
:j:=ac b ac

Uncorrected block C
X
k

T2
::k=ab c ab

Uncorrected A � B AB
X
i

X
j

T2
ij:=c ab c

Correction factor CF T2
:::=abc 1 abc

Procedure. Split-Plot ANOVA with Randomized Complete Block (Factors A and B

Fixed Effects)

Hypotheses:

H0: a1 ¼ . . . ¼ aa ¼ 0 (no difference among secondary treatments)

H0: b1 ¼ . . . ¼ bb ¼ 0 (no difference among main treatments)

H0: ab11 ¼ . . . ¼ abab ¼ 0 (no interactions)

H0: s
2
C ¼ 0 (no block effect)

Source df SS E(MS)

Whole units

Factor A a 2 1 A 2 CF s2 þ bs2
D þ cb

X
i

a2
i =(a� 1)

Block c 2 1 C 2 CF s2 þ bs2
D þ abs2

C

Whole-unit

remainder

(a 2 1)(c 2 1) W 2 A 2 C þ CF s2 þ bs2
D

Subunits

Factor B b 2 1 B 2 CF s2 þ ca
X
j

b2
j =(b� 1)

A � B (a 2 1)(b 2 1) AB 2 A 2 B þ CF s2 þ c
X
i

X
j

ab2
ij=(a� 1)(b� 1)

Subunit

remainder

a(c 2 1)(b 2 1) T 2 W 2 AB þ A s2

Mean squares are found by dividing the sums of squares by the corresponding degrees of

freedom. The appropriate F tests can be determined from the expected mean square. A split-

plot experiment is actually two experiments conducted at the same time. The whole-plot

experiment has an estimate of whole-plot experimental error based on the whole-plot

residuals MSwr. The subplot experiment has an estimate of subplot experimental error based

on the subplot residuals MSsr. Standard errors of estimates of whole-plot differences between

A means are calculated from MSwr, and standard errors of estimates of subplot differences

between B means are calculated from MSsr. Standard errors of estimates of differences

between A means at the same or different B levels are caluclated from a weighted average of
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MSwr and MSsr. The standard errors needed for estimates and for multiple comparison are

given in the following table:

Difference Between Standard Error df for t

Two overall A means

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSwr

bc

r
(a 2 1)(c 2 1)

Two overall B means

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSsr

ac

r
a(b 2 1)(c 2 1)

Two B means at the same A level

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSsr

c

r
a(b 2 1)(c 2 1)

Two A means at the same B level

or different B levels

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½(b� 1)MSsr þMSwr�

bc

r
Use t�a below

t�a ¼ (b� 1)MSsrta,a(b�1)(c�1) þMSwrta,(a�1)(c�1)

(b� 1)MSsr þMSwr

It is appropriate to use a split-plot design if:

1. One of the treatments requires large quantities of material (such as the fertilizer in the

yield example) and the whole units are used for this treatment.

2. An additional factor is to be incorporated into the experiment (such as the products in

the buy-by-mail example). The main factor (incentives) is applied to the subunits and

the additional factor to the whole units.

3. Larger differences are expected among the levels of one factor than among the levels of

the other factor (as in the blood pressure example). The factor with the larger

differences (drugs) is used for the whole units and the factor with small differences

(time of day) for the subunits.

4. Greater precision is desired for comparisons among the levels of one factor than the

other factor. The factor requiring the greater precision is used for the subunits.

Some split-plot designs could be laid out as an a � b � c factorial design. For example, the

achievements of foreign language classes taught by 4 different instructors using 2 different

methods and 3 different workbooks is a 4 � 2 � 3 factorial design if groups of students are

assigned at random to each combination of teacher, method, and workbook. However, this

could be planned as a split-plot design. If the students pick the teachers and each teacher is

offering two classes, the teachers are the blocks. The classes are the whole units, and they are

randomly assigned a method. Within classes, equal numbers of students (subunits) are

randomly assigned to the three different workbooks.

The overall precision of the two experiments is probably the same. However, the split-plot

design gives increased precision for subunit comparisons and a lower precision for whole-unit

comparisons. Thus, if the experimenter wants to be able to detect differences among the

workbooks, the split-plot design increases the probability of detecting these differences if they

exist.
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EXERCISES

12.6.1. Analyze the shrinkage data in Exercise 12.6.2 as if they arose from a split-plot design

in which brands are the blocks, wash temperatures are applied to groups of shirts

together (whole units), and the drying temperatures are randomly assigned within the

whole units. Let the random variable be the average centimeters of shrinkage in length

of the two shirts in each subgroup.

12.6.2. Crop rotation is recommended as a good farming practice, especially when a nitrogen-

fixing legume is used as an alternative crop. To demonstrate the validity of this

recommendation, an agricultural extension specialist set up an experiment in which

alfalfa, clover, and a nonlegume grass were planted in five blocks according to a

randomized complete block design. These plantings later served as the whole plots for

the second year when 4 varieties of grain were planted in random subplots on each

main plot. Thus each split plot can be identified by the crop which was planted on it in

the first year and that which was planted on it in the second year. The extension

specialist wants to be able to demonstrate whether the use of a piece of land during the

previous year will affect the yield of the following year’s crop. The yields of the

varieties of the grain crop are given below:

Blocks

First Crop

(Whole Plot)

Second Crop

(Split Plot) 1 2 3 4 5

A 21.7 20.8 18.2 25.2 17.8

Alfalfa B 18.8 14.5 14.2 17.9 14.5

C 25.0 18.1 18.7 20.9 15.9

D 24:3 22:0 20:3 23:0 18:6
89.8 75.4 71.4 87.0 66.8

A 26.3 23.1 20.0 20.3 17.3

Clover B 19.8 16.0 22.5 13.7 14.4

C 21.6 20.0 21.2 18.0 19.8

D 25:7 21:1 23:1 17:0 16:3
93.4 80.2 86.8 69.0 67.8

Grass

(Control)

A 17.5 18.5 21.2 18.6 13.0

B 15.2 14.6 17.7 13.5 10.0

C 15.5 17.2 19.9 15.5 15.0

D 15:6 17:2 19:9 15:5 16:3
63.8 67.5 78.7 63.1 54.3

Given that
XXX

y2ijk ¼ 21, 439:3:

a. Complete the ANOVA.

b. Compute the least significant difference for comparing:

i. Whole-plot means

ii. Split-plot means

12.6.3. At a university’s horticulture farm, an experimental orchard was originally

established according to a randomized complete block design consisting of a
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varieties of apple trees and c replicates. Because of this original layout, the orchard is

frequently used for experiments with a split-plot design in which the varieties are

whole plots. Given below is a portion of the SAS analysis of an environmental

experiment in which different levels of topically applied chemical pollutants are used

as split-plot treatments. The measurement variable is pounds of the pollutant per ton

of apples.

Dependent Variable: LBS

Source DF
Sum of
Squares

Mean
Square F Value Pr . F

Model 20 216.173800 10.808690 4.23 ,.0001
Error 84 214.284000 2.551000
Corrected Total 104 430.457800

R-Square Coeff Var Root MSE LBS Mean
0.502195 35.9969 1.597185 4.437000

Source DF Anova SS Mean Square F Value Pr . F
VAR 4 17.750000 4.437500 1.74 0.1468
REP 6 25.642400 4.273733 1.67 0.1384
VAR�REP 24 87.481200 3.645047 1.43 0.1185
LEVEL 2 20.356800 10.179000 3.99 0.0221
VAR�LEVEL 8 64.943400 8.117750 3.18 0.0036
Tests of Hypotheses Using the Anova MS for VAR�REP as an Error Term

Source DF Anova SS Mean Square F Value Pr . F
VAR 4 17.750000 4.437500 1.22 0.3285
REP 6 25.642400 4.273733 1.17 0.3547

Use the SAS output to answer the following questions:

a. Give the numerical values for:

i. The number of varieties of apples used in the experiment

ii. The number of levels of the chemical pollutant

b. On the average, how many pounds of chemical pollutant are found per ton of

apples taken from this orchard?

c. In the model for this experiment, which effects are most likely fixed? Tell why.

d. Why are there two F tests in which the VAR�REP MS is used as Error?

e. Which null hypotheses are rejected in this analysis?

12.7. SPLIT PLOT WITH REPEATED MEASURES

The split-plot design examined is Section 12.6 involved complete blocks that enable an

experimenter to compare all main effects in the same block or replicate. Such was the case in

Example 12.7; all 4 main effects (tenderizers) were used on the same carcass (block).

However, sometimes this is difficult or even impossible. Suppose that in the nested design
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diagrammed in Figure 12.1, the investigator had wanted the two determinations taken at

different times, one when the volunteers first began their diets and the second after they had

been on their diets for a month (Figure 12.14). This would show whether there was a change in

cholesterol level between times 1 and 2. This would add a second factor to an existing design,

but it would not be the usual split-plot design because there are no complete blocks. For a

volunteer to be a complete block, he would have to be on all 3 diets, and while he might have

the appetite to enjoy them all, it would be impossible to measure their independent effects on

his cholesterol level. There are simply some situations where a main effect can be replicated

but not in a complete block. Thus we need to examine the analysis of experimental data that

arise from such experiments.

It is convenient to think of a spit-plot design as the adding of a new factor, or split-plot

effect, to an already existing design. We have seen how the conventional split-plot design can

be obtained by adding a second factor, the split-plot effect, to a randomized block design. Such

designs involve two randomized complete block designs. The same idea holds for the type of

design now under discussion, except, as in the case of the cholesterol experiment, there it is a

nested design to which a second factor is added. The analysis is sometimes called repeated-

measures analysis because measures of cholesterol level are taken at two different times while

volunteers are on their diets. However, the design is a split plot, just different in that it involves

a nested design and a randomized complete block (RCB) design rather than two RCBs.

Other examples of this sort of split-plot design are as follows:

1. To see how effectively increased levels of corn in rations will fatten cattle, a feedlot

experiment involving 3 different rations (main-effect treatments) is conducted. Cattle

are a random effect nested within rations, and the split-plot effect will be the 4 times

cattle are weighed while being fattened.

2. Because they can become very dirty during a game, football jerseys must be washed

with detergents so strong that colors may fade. Thus a manufacturer of jerseys wants to

test the colorfastness of 3 different dyes (main effects). Each dye is used to color 10

different jerseys (random experimental units), and all jerseys are washed 6 times (split-

plot effect). Color fading is measured after each washing.

3. The effectiveness of hip replacement surgery is measured by how well over time bone

tissue adheres to the prosthesis (artificial replacement of the head of the original bone).

In such a study, 4 different prostheses (main-plot effects) are to be compared. Patients

selected at random from a data base of hundreds of hip replacement surgeries are

experimental units nested within main effects, and postoperation X-ray measurements

taken at 5, 10, and 15 years provide the levels of the split-plot effect.

FIGURE 12.14. A nested design with repeated measures.
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4. The angle of reentry into Earth’s atmosphere greatly affects the temperature of NASA

spacecrafts. Suppose there are appropriate data from previous flights of a certain kind of

craft to compare the amount of heat generated for 2 different angles of reentry (main-

plot effects). The experimental units are the 5 different flights nested in one or the other

of the reentry angles. Three important distances from Earth during reentry are the levels

of the split-plot effects. Measurements are the respective temperatures recorded for

each flight at each distance of reentry.

A summary of the main effects, experimental units, and split-plot effects for each of

the examples is

Example

Treatments on

Whole plots

Experimental Units

within Treatments

Measures on Each

Experimental Unit

Cattle rations Amount of Corn Cattle Length of time fed

Football jerseys Dye Jerseys Times washed

Hip surgery Prosthesis Surgery patients Years after surgery

Space flight Reentry angles Space craft flights Distance from earth

Example 12.8 demonstrates the statistical analysis of this second kind of split-plot design.

Example 12.8. Split Plot Involving Nested and Complete Block Designs

Certain strains of the bacterium Escherichia coli often found in undercooked foods become a

serious health risk if they enter the blood stream. The organism is covered with a chemical

compound called a lipopolysaccharide (LPS) that has a toxic effect on the hearts of infected

animals. When LPS enters the circulatory system, heart function is affected and heart rate

becomes highly elevated. A medical scientist wants to know if the residual effect on heart rate

is different for LPS than for other compounds also known to increase heart rate.

An experiment, simplified for this example, is designed to see how heart rate decreases

over time after it has been elevated either with LPS or another compound that will serve as a

control. LPS is used on 3 rats and the control compound on another 3. A monitor records

continuous measurements (one per second) of the rats’ heart rates, but the measures to be used

in the analysis are when each rat’s heart rate reaches a maximum and every 20 minutes

thereafter. The experimenter wants to compare the effect of the two compounds on heart rate

during the hour after it has reached the maximum number of beats per minute. The

2 � 3 � 4 ¼ 24 measures for this experiment are in the table below:

LPS Control

Time Rat 11 Rat 12 Rat 13 Rat 21 Rat 22 Rat 23 Total

0 416 455 422 465 439 443 2640

20 404 448 411 395 366 373 2397

40 361 396 368 339 320 328 2112

60 307 348 317 290 266 278 1806

Total 1488 1647 1518 1489 1391 1422 8955
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A tabulation of treatment sums at each time (factor C � factor A) is also needed:

Times

Treatment 0 min 20 min 40 min 60 min Total

LPS 1293 1263 1125 972 4653

Control 1347 1134 987 834 4302

Total 2640 2397 2112 1806 8955

Then with these values, the uncorrected sums of squares can be computed:

Uncorrected

Sum of

Squares Symbol

Number of

Squared

Values

Observations

Per Squared

Value Calculations

Numerical

Value

Total T abc ¼ 24 1 4162 þ 4042

þ . . . þ 2782
3,420,759.000

Factor A

(treatment)

A a ¼ 2 bc ¼ 12 [46532 þ 43022]/12 3,346,467.750

Experimental

unit B (rat)

B ab ¼ 6 c ¼ 4 [14882 þ 16472

þ . . . þ 14222]/4
3,351,290.750

Factor C

(time)

C c ¼ 4 ab ¼ 6 [26402 þ 23972

þ . . . þ 18062]/6
3,406,231.500

A � C

(treatment

by time)

AC ac ¼ 8 b ¼ 3 [12932 þ 13472

þ . . . þ 8342]/3
3,415,839.000

Correction

factor

CF 1 abc ¼ 24 89552/24 3,341,334.375

As was done with the previous split-plot design, the experimenter can perform the analysis in

two stages. The preliminary analysis is that for a nested design:

Source df SS

Treatment (whole unit) a 2 1 ¼ 1 A 2 CF ¼ 5,133.375

Among rats within units a(b 2 1) ¼ 4 B 2 A ¼ 4,823.000

Among measurements

within rats (residual)

ab(c 2 1) ¼ 18 T 2 B ¼ 69,468.250

The measurements within rats, however, are not independent because of the times at which

they are taken. There is an association among those taken at 0, 20, 40, and 60 min,

respectively. Furthermore, times are factorial to treatments rather than nested within them. So

the variability due to time and the treatment by time interaction needs to be removed from the

sums of squares for among measurements in the preliminary analysis:
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Source df SS

Among measurements

within rats

ab(c 2 1) ¼ 18 T 2 B ¼ 69,468.250

Time c 2 1 ¼ 3 C 2 CF ¼ 64,897.125

A � C (a 2 1)(c 2 1) ¼ 3 AC 2 A 2 C þ CF ¼ 4,474.125

Remainder a(b 2 1)(c 2 1) ¼ 12 T 2 B 2 AC þ A ¼ 97.000

Once again, the final ANOVA is obtained by replacing the residual sums of squares in the

preliminary analysis with those broken out in the analysis just shown. The complete analysis

then is

Source df SS MS F test

Whole units

Treatment a 2 1 ¼ 1 5133.375 5133.375 MSa/MSb ¼ 4.25

Rat within

treatment

a(b 2 1) ¼ 4 4823.000 1205.750 MSb/MSe ¼ 149.16�

Subunits

Times c 2 1 ¼ 3 64,897.125 21,632.375 MSc/MSe ¼ 2676.17�

Treatment �
time

(a 2 1)(c 2 1) ¼ 3 4,474.125 1,491.375 MSac/MSe ¼ 184.50�

Subunit

remainder

a(b 2 1)(c 2 1) ¼ 12 97.000 8.083

In the subunit analysis, both times and the interaction between treatments and times are

significant, with P , 0.0001 for each F test. So the medical scientist sees that, irrespective of

FIGURE 12.15. Rate of decrease in heart rates for LPS and control.
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treatment group, heart rate decreases significantly during the hour after maximum rate has

been reached. However, the significant interaction means that the rate of decrease is not the

same for the LPS group as for the control. When JMP is used to compute and plot treatment

averages at each time (Figure 12.15), the experimenter sees that the heart rate of LPS group

returns toward normal significantly more slowly than for the control group. The bacterial toxin

continues to elevate heart rate long after its initial effect on the heart, and this will need to be

kept in mind by physicians treating patients infected by E. coli or similar bacteria with the

LPS covering.

The model for the repeated-measures analysis is

yijk ¼ mþ ai þ bij þ gk þ agik þ 1ijk

i ¼ 1, . . . , a

j ¼ 1, . . . , b

k ¼ 1; . . . , c

where the symbols are defined as follows:

m: The overall mean for experiments of this type.

ai: The effect of the ith level of factor A, the whole unit treatment; a fixed effect,X
i

ai ¼ 0.

bij: A random effect due to the (ij)th experimental unit; bij is IND(0,s
2
B) for each i.

gk: The effect of the kth level of factor C, the subunit treatment; a fixed effect,X
k

gk ¼ 0.

agik: The interaction effect between ith level of factor A and the kth level of factor C.

1ijk: The subunit random component, 1ijk IND(0,s
2).

Uncorrected Sums of Squares

Sum of Squares Symbol Formula

Number of

Totals

Observations/
Total

Uncorrected

total

T
X
i

X
j

X
k

y2ijk abc 1

Uncorrected A

factor

A
X
i

T2
i::=bc a bc

Uncorrected

experimental

unit

B
X
i

X
j

(T2
ij=c) c

Uncorrected C

factor

C
X
k

T2
::k=ab c ab

Uncorrected

A � C

AC
X
i

X
k

T2
i;k=b ac b

Correction factor CF T2
:: =abc 1 abc
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Procedure. Split-Plot ANOVA with Repeated Measures

Hypotheses:

H0: a1 ¼ . . . ¼ aa ¼ 0 (no difference among main treatments)

H0: s
2
B ¼ 0 (no experimental unit effect)

H0: g1 ¼ . . . ¼ gc ¼ 0 (no difference among secondary treatments)

H0: ag11 ¼ . . . ¼ agac ¼ 0 for all i and k (no interactions)

Source df SS E(MS)

Whole units

Factor A

a 2 1 A 2 CF s2 þ bs2
B þ cb

X
i

a2
i =(a� 1)

Experimental

units Within

Factor A

a(b 2 1) B 2 A s2 þ bsB
2

Subunits Factor C c 2 1 C 2 CF s2 þ ab
X
k

g2k=(c� 1)

A � C (a 2 1)(c 2 1) AC 2 A 2 C þ CF s 2 þ b

X
i

X
k

ag 2
ik

(a� 1)(c� 1)

Subunit

remainder

a(c 2 1)(b 2 1) T 2 B 2 AC þ A s2

Mean squares are found by dividing the sums of squares by the corresponding degrees of freedom.

The appropriate F tests can be determined from the expected mean square. The standard errors

needed for estimates and for multiple comparison are given in the following table:

Difference Between Standard Error df for t

Two overall A means

ffiffiffiffiffiffiffiffiffiffiffiffi
2MSb

bc

r
a (b 2 1)

Two overall C means

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSsr

ab

r
a(b 2 1)(c 2 1)

Two C means at the

same A level

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSsr

b

r
a(b 2 1)(c 2 1)

This split-plot design is appropriate under the same circumstances as those discussed in

Section 12.6. The difference between the two designs lies in whether or not whole-plot effects

can be replicated in a single experimental unit or a complete block. Here experimental units

are nested within whole-plot effects rather than complete blocks that would be factorial to

whole-plot treatments.
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EXERCISES

12.7.1. When Francis Galton was determining how to measure boredom (as mentioned in

Exercise 4.3.5), he felt it would be rude to use a watch while counting number of signs

of boredom per minute. Instead, he trained himself to know, without a timepiece,

when 60 seconds had passed. Primarily out of curiosity, a number of scientists have

confirmed that people do have the ability to know when a constant period of time has

passed, although that period may not be exactly 60 seconds. Suppose a graduate

student decides to study whether the ability is affected by gender or periods of

time other than 60 seconds. She decides on a repeated-measures design and solicits 4

male and 4 female colleagues to participate. She asks them to try to train themselves

to know when 60, 120, and 180 seconds have passed, and after they feel they are

ready, she tests them independently at her computer, where they make a keystroke

when they feel that 1, 2, and 3 minutes have passed. The computer provides the exact

number of seconds that have passed at each keystroke and the results are

Males Females

Target

Time MI M2 M3 M4 F1 F2 F3 F4 Total

60 sec 52 66 57 55 62 58 62 54 466

120 sec 112 127 126 122 121 123 133 118 982

180 sec 178 173 189 183 177 179 177 176 1432

Total 342 366 372 360 360 360 372 348

a. Give the linear model and identify all of the symbols.

b. Given that
PPP

y2ijk ¼ 404,616:

i. Complete the ANOVA.

ii. Give the numerical values of Rsquare.

c. Are there significant gender differences in ability to tell when a certain period of

time has passed? Explain.

d. For the actual times when males and females made the keystroke thinking 180

seconds had passed:

i. Compute the average time when each gender thought 180 seconds had passed.

Are these average times significantly different? Explain.

ii. For males, how would you test H0: m ¼ 180. Hint: You will need the standard

error of the average of 4 values.

12.7.2. An endodontist is interested in assessing the effects of 2 medications to provide

pain relief for his patients following a root canal procedure. Two patients are

randomly assigned to each medication. The procedure is performed and the

patients given medication. The patients are asked to indicate their level of pain on

a scale from 1 to 10 twice, 4 hours after the procedure and 8 hours after the

procedure.
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Medication Patient Time Pain

1 1 4 0

8 3

2 4 6

8 5

2 3 4 3

8 8

4 4 9

8 10

a. Perform a repeated-measures ANOVA and interpret the results.

b. Critique the experiment in light of your analysis. Indicate two specific changes that

would improve the experiment

12.7.3. In the Great Plains, controlled spring burning of pastures is a common practice.

Burning destroys the weed seed, eliminates thatch, and may promote early emergence

of the grass. However, it reduces critical soil moisture, so an agronomist wants to

study the effect on deeper levels of soil moisture. He has three similar pastures and

randomly selects early spring burning for one and late spring burning for another and

leaves the other unburned (control). Then he drives a metal tube at 2 random locations

in each pasture to obtain a 4-foot-long core of the soil at each location. From each core

he takes the soil at 1-, 2-, and 3-feet depths below the surface and finds the moisture

content at each depth. Simplified for ease of computation, the data are provided

below. (Larger measures indicate greater moisture.)

Early Spring Late Spring Control

Depth (ft) Core 11 Core 12 Core 21 Core 22 Core 31 Core 32 Total

1 2.1 1.4 0.9 0.8 2 2.5 9.7

2 2.3 1.6 1.2 1.4 2.9 2 11.4

3 2.5 2.7 2.4 2.6 3.2 2.7 16.1

Total 6.9 5.7 4.5 4.8 8.1 7.2

a. Give the linear model for this experiment, identifying all symbols.

b. Give the null hypotheses that can be tested.

c. Perform the ANOVA and make all appropriate F tests.

d. The agronomist is especially interested in testing the average moisture for each

burning treatment with that of the control at 1-, 2-, and 3-feet depths.

i. Why would it be inappropriate for him to use Fisher’s least significant

difference?

ii. JMP allows him to use MSe to make the t tests of interest to him and provides

the following P values for two-sided tests:
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Comparison at Depth

1 ft 2 ft 3 ft

Control vs. early P ¼ 0.225 P ¼ 0.225 P ¼ 0.380

Control vs. late P ¼ 0.009 P ¼ 0.021 P ¼ 0.202

Use Bonferroni procedures to determine what conclusions he should draw about the effect of

burning on soil moisture at the depths he has chosen to compare

REVIEW EXERCISES

Decide whether each of the following is true or false. If a statement is false, explain why.

12.1. The Latin square design is appropriate for pilot experiments in new areas of research,

because it provides an economical design for measuring three different kinds of

variability.

12.2. The model yijk ¼ m þ ai þ bij þ 1ijk does not indicate whether the b is a block effect

or a nested effect.

12.3. If an interaction exists in experimental data and no provision is made for it in the

model and analysis, the interaction variability will be confounded with the estimate of

random variation.

12.4. The chief advantage of the Latin square design is that it permits the analysis of main

effects without any concern for interaction.

12.5. Because the residual mean squares from a blocked design will have fewer degrees of

freedom than the within mean square of a one-way analysis of the same data, one

could obtain a poorer F test of treatments in a blocked design if the block effects are

nonsignificant.

12.6. When performing a randomized complete block ANOVA, the experimenter is usually

as interested in finding differences among the blocks as among the treatments, so he

uses some sort of multiple comparison technique on both sets of means.

12.7. Whether an effect is nested or factorial has no bearing on whether it is random or fixed.

12.8. In ANOVA, it may be possible to estimate a particular variance component, but still

not be possible to have an exact test for significance.

12.9. In an experiment involving 3 effects in a factorial arrangement, if all 3 main effects are

fixed, the interaction term drops out of the expectations of all mean squares.

12.10. The nested classification is a continued one-way classification of subgroups within the

major groups.

12.11. Missing value techniques may be employed even when all observations in a row or

column are missing.

12.12. To use a missing value technique does not cause the loss of one degree of freedom; the

degree of freedom was lost when the observation was lost.

12.13. A repeated measures design consists for one randomized complete block design nested

within another randomized complete block.

12.14. A linear model may contain both factorial and nested effects.
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12.15. A linear model may contain both random and fixed effects.

12.16. In ANOVA, if the rowmean square is nonsignificant and the columnmean square is also

nonsignificant, it is unlikely that the row � column mean square will be significant.

12.17. Because the Latin square design does not permit a treatment to be found twice in the

same row or column, it is impossible to randomize treatments in that design.

12.18. There are four types of interactions in an a � b � c factorial design.

12.19. Data collected for an a � b � c factorial design may be analyzed as a split-plot design.

12.20. Approximate tests must be used for some follow-up procedures after a split-plot

analysis.
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13 Analysis of Covariance

The analysis of covariance is a combination of regression analysis with an ANOVA.

Covariance is used when the response variable y, in addition to being affected by the

treatments, is also linearly related to another variable x. In this chapter we discuss the analysis

of covariance in which simple linear regression is combined with a one-way ANOVA. More

complex designs exist but are beyond the scope of this book.

13.1. COMBINING REGRESSION WITH ANOVA

The analysis of covariance is useful in several types of research situations. For example, it can

be used to

1. increase precision in an experiment,

2. control for an extraneous variable in a survey, and

3. compare regressions within several groups.

Specific examples of these three types of applications follow.

Increasing precision in an experiment is illustrated by the use of covariance analysis in a

study of weight loss y under 3 different diets (the treatments). Ordinary ANOVA may fail to

detect a significant difference among the treatment effects because the within-treatment-group

variability is too large. Covariance sharpens the ANOVA on y by utilizing a related variable x,

called a covariate, or concomitant variable. Pounds lost, y, is linearly related to x, pounds

overweight at the beginning of the experiment. By combining the regression of y on x with the

ANOVA on y, the within-treatment variability is reduced, making it more likely that treatment

differences will be detected. Intuitively we can think of the analysis of covariance as removing

that portion of the within-treatment variability which is accounted for by the regression.

(Blocking by overweight classes could also be used to reduce within-group variability, but this

cannot always be done since it requires equal numbers of subjects in each overweight class.)

Controlling for an extraneous variable in a survey is illustrated by a study of teachers’

salaries y in 3 different school systems (treatment groups) in which the educational level in

years attained by the teachers is an extraneous variable x. If y is linearly related to x, then the

analysis of covariance can be used to adjust for differences in the educational attainment of the

teachers. In this application, we can think of the analysis of covariance as transforming each of

the data points (xij, yij) to (�xx::, y
0
ij), a point on the vertical line at the overall average x value, by

means of a translation parallel to the regression line (Figure 13.1).

Intuitively, this means that all the subjects are made average with respect to educational

attainment, and then the corresponding adjusted y values are analyzed for significant
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differences due to school systems. Group averages are also transformed in this process;

sometimes the adjusted averages ( �yy0i:) are further apart, sometimes they are closer together

than the original averages (Figure 13.2). Because the regression lines are estimated from the

data, the actual analysis is more complex than finding the lines, transforming all data points,

and performing the ANOVA on the transformed points. However, the adjusted group averages

can be found by this method.

In the third type of application of covariance, comparing regressions within several groups,

the classifications (treatments) are not of primary concern, but rather the relationship of y to x

within each classification is of main interest. In this case, the experimental hypothesis is that the

treatments affect slopes differently. For example, it is known that high blood pressure is more

common in some racial groups than in others. Data on the relationship of salt intake x and blood

pressure y may be classified by racial groups and covariance used to determine whether the

relationship between salt and blood pressure is the same for all the racial groups in the study.

FIGURE 13.1. Adjusting observations by covariance analysis.

FIGURE 13.2. Adjusting group averages.
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The additive model for the analysis of covariance is

yij ¼ mþ ai þ b(xij � �xx::)þ 1ij

i ¼ 1, . . . , a

j ¼ 1, . . . , ni

N ¼
X
i

ni

The terms in this model have the following meanings:

m: The true overall ymean for all studies of this type involving the specified treatments.

ai: The deviation due to the ith treatment after allowance for the relationship of y to x;X
i

ai ¼ 0. (Note: ai are the treatment effects and not the y intercepts.)

b: The true common slope of the a regression lines.

�xx::: The overall average of the covariate for the observations in the study.

1ij: A random effect for the jth element in the ith treatment group; 1ij IND(0, s
2).

The model assumes that all of the regression lines have the same slope, that the variances

about the regression lines are equal, and that the covariate xij is unaffected by the treatments,

and it makes the usual assumptions for the ANOVA. Figure 13.3 may be helpful in

understanding the terms in the model.

In the study of teachers’ salaries, m is the true mean salary for all teachers in the 3 school

systems. The fixed effect a2 is the true deviation from the mean salary in the second school

system after making allowance for the educational attainment of the teachers in that system.

The common slope b is the change in salary per additional year of teachers’ education. The

FIGURE 13.3. Terms in the covariance model.
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average educational attainment for the teachers in the three samples is �xx::. The random effect

132 is the deviation of the second teacher in the sample from the third school system from the

regression line for the third system.

In an analysis of covariance, we are usually interested in testing for differences in the

treatment effects:

H0: a1 ¼ a2 ¼ � � � ¼ aa ¼ 0 against Ha: At least one inequality

If the inequality of slopes is of primary interest, it can also be tested within the covariance

procedure. Since the equality of slopes is an assumption of the model, it is usually tested to

verify that the proper model is being used.

EXERCISES

13.1.1. Samples of 3 varieties of wheat, A, B, and C, result in the following (artificial) data for

yield y in bushels per acre and rainfall x in inches:

A B C

x y x y x y

1 2 2 3 3 2

2 6 3 7 4 6

4 10 5 11 6 10

5 10 6 11 7 10

a. Draw the scatter plot for each variety on a common graph, keeping the varieties

separate by using different colors or symbols.

b. Find the unadjusted group means (�xxi:, �yyi:) and add them to the graph.

c. Draw the vertical line at x ¼ �xx::.

d. Estimate the regression equation for each variety and add these lines to the graph.

(Note that the estimates of the slopes are the same.)

e. Compute �yy0i: for each variety from the regression equations. Locate the adjusted

means on the graph.

f. Will the analysis of covariance increase or decrease the differences among the

variety averages? Does it change the rank order of the group averages?

13.1.2. The diagrams in Figure 13.4 show the unadjusted treatment averages and the regression

lines for the treatment groups in experiments in which covariance is being considered

as a method of analysis. In which case or cases can covariance be justified?

13.1.3. Match the following statistical symbols with the indicated distances on the graph in

Figure 13.5:

(1) yij � m (5) yij � ŷyij
(2) yij (6) �yy0i:
(3) m (7) �yy0i: � m
(4) �yyi:
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13.2. ONE-WAY ANALYSIS OF COVARIANCE

Let the data for a one-way analysis of covariance with a ¼ 3 treatments and n1 ¼ n2 ¼ n3 ¼ 4

observations per treatment group be arranged as follows:

Treatment

I II III

x y x y x y

x11 y11 x21 y21 x31 y31
x12 y12 x22 y22 x32 y32
x13 y13 x23 y23 x33 y33
x14 y14 x24 y24 x34 y34

Totals

T1.(x) T1.(y) T2.(x) T2.(y) T3.(x) T3.( y) T..(x) T..( y)

FIGURE 13.4. Regression lines and unadjusted treatment averages.

FIGURE 13.5. Distances used in covariance analysis.
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Using a similar layout for a treatment groups and ni observations per group, the general

analysis-of-covariance procedure can be summarized as follows.

Procedure. Analysis of Covariance

Test of Hypothesis

H0: a1 ¼ a2 ¼ � � � ¼ aa against Ha: At least one inequality

Model: yij ¼ mþ ai þ b(xij � �xx::)þ 1ij

i ¼ 1, 2, . . . , a

j ¼ 1, 2, . . . , ni

N ¼
X
i

ni

Uncorrected Sums of Squares and Products

x xy y

T(x) ¼
X
i

X
j

x2ij T(xy) ¼
X
i

X
j

xijyij T(y) ¼
X
i

X
j

y2ij

A(x) ¼
X
i

T2
i:(x)=ni A(xy) ¼

X
i

Ti:(x)Ti:( y)=ni A( y) ¼
X
i

T2
i:( y)=ni

CF(x) ¼ T2
::(x)=N CF(xy) ¼ T:(x)T::( y)=N CF( y) ¼ T2

::( y)=N

Corrected Sums of Squares and Products

Source df SS(x) SP SS( y)

Treatment a 2 1 SSa(x) ¼ A(x) 2 CF(x) SPa ¼ A(xy) 2 CF(xy) SSa( y) ¼ A( y) 2 CF( y)

Error N 2 a SSe(x) ¼ T(x) 2 A(x) SPe ¼ T(xy) 2 A(xy) SSe( y) ¼ T( y) 2 A( y)

Total N 2 1 SSt(x) ¼ T(x) 2 CF(x) SPt ¼ T(xy) 2 CF(xy) SSt( y) ¼ T( y) 2 CF( y)

Adjusted Sums of Squares

Source df0 SS0( y) MS0( y)

Treatment a 2 1 SS0a( y) ¼ SS0t( y) � SS0e( y) MS0a( y) ¼ SS0a( y)=(a� 1)

Error N 2 a 2 1 SS0e( y) ¼ SSe( y) � SP2e=SSe(x) MS0e( y) ¼ SS0e( y)=(N � a� 1)

Total N 2 2 SS0t( y) ¼ SSt( y) � SP2t =SSt(x)

Reject H0 if F ¼ MS0a( y)=MS0e( y) . Fa,a�1,N�a�1 at the a level of significance.

The procedure is illustrated by the following example.

Example 13.1. One-Way Analysis of Covariance

An experiment was conducted involving 3 different advertising media, each used for 5 fast

food restaurants of a certain franchise. The 15 restaurants were located in different but
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comparable cities, and they were randomly assigned to the 3 advertising media: radio,

newspaper, television. All advertising took place during the same time period. Profits y in

thousands of dollars were recorded for the same time period. Although all restaurants were of

the same size, they employed different numbers of workers. Since additional employees may

affect profits, the number of employees was used as a concomitant variable x.

Medium

I II III

x y x y x y

10 30 21 24 34 17 a ¼ 3

14 18 26 20 39 11 n1 ¼ n2 ¼ n3 ¼ 5

19 13 31 7 43 3 N ¼ 15

25 6 36 4 47 26

27 3 41 25 52 210

Totals

Ti.(x) 95 155 215 T..(x) ¼ 465

Ti.( y) 70 50 15 T..( y) ¼ 135X
x2ij 2011 5055 9439 16,505X
xijyij 1030 1180 334 2,544X
y2ij 1438 1066 555 3,059

Uncorrected Sums of Squares and Products

x xy y

T 16,505 2544 3059

A (952 þ 1552 þ 2152)/5
¼ 15,855

[95(70) þ 155(50) þ 215(15)]/5
¼ 3525

(702 þ 502 þ 152)/5
¼ 1525

CF 4652/15 ¼ 14,415 465(135)/5 ¼ 4185 1352/15 ¼ 1215

Corrected Sums of Squares and Products

Source df SS(x) SP SS( y)

Treatment

3 2 1

¼ 2

15,855 2 14,415

¼ 1440

3525 2 4185

¼ 2660

1525 2 1215

¼ 310

Error 15 2 3

¼ 12

16,505 ¼ 15,885

¼ 650

2544 2 3525

¼ 2981

3059 2 1525

¼ 1534

Total 14 2090 21641 1844

The analysis of covariance uses both ANOVA and regression techniques. The corrected

sums of squares of the y variable are obtained in the usual manner for ANOVA; the corrected
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total sums of squares is computed as SSt( y) ¼ T( y) 2 CF( y) and the corrected among-treatment

sums of squares as SSa( y) ¼ A( y) 2 CF( y). Then the same mathematical procedure is

performed on the x variable and the xy cross-products because they are needed for the aspect

of the analysis of covariance that uses regression techniques.

Since SSt( y) ¼ SSa( y) þ SSe( y), the error sum of squares could be computed as

SSe( y) ¼ SSt( y) � SSa( y)

Note what is being done. We have the corrected total sums of squares for the experiment and

we subtract from that the sums of squares due to differences among groups. What is left can be

called the variability after accounting for groups, and this, of course, is the random variability

making up the error sums of squares. Recalling this may help in understanding the different

computations used for the adjusted sums of squares.

The adjusted sum of squares uses the corrected sums of squares and products that were

computed in the previous table. The “adjusting” is along the trend line, sliding each yij along

the parallel trend lines to �xx::, as shown in Figure 13.2. We do this mathematically with

regression techniques. First we compute the sum of squares due to regression, SS2xy=SSx, and
then we adjust the corrected sums of squares by subtracting the sums of squares due to

regression:

SS0( y) ¼ SS( y) � SS2(xy)=SS(x)

We perform this operation on the total sums of squares and the error sums of squares.

However, we do not adjust the among-treatment sums of squares in this manner. To attempt to

do so would result in trying to fit a straight line through the three points (�xxi, �yyi). Instead, we

compute the adjusted sum of squares among groups SS0a( y) in a different manner. Because the

total sum of squares is the sum of both the among-treatment sum of squares and the error sum

of squares, we obtain the adjusted-treatment sum of squares by subtraction

SS0a( y) ¼ SS0t( y) � SS0e( y)

which we can call the variability after accounting for regression. In SS0a( y) we have the

variability in profit among the three different kinds of media after accounting for different

numbers of employees per restaurant. The numerical operations can be seen in the table of

adjusted sums of squares.

Adjusted Sums of Squares

Source df0 SS0( y) MS0( y) F

Treatment 2 555.54 2 53.44 ¼ 502.10 251.050 51.68

Error 11 1534 2 (2981)2/650 ¼ 53.44 4.858

Total 1844 2 (21641)2/2090 ¼ 555.54

Since F0.05,2,11 ¼ 3.982, the null hypothesis is rejected. There is a significant difference

among the media effects on average profits after adjusting for number of employees.
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The SAS output for this analysis would be

The GLM Procedure
Class Level Information

Class Levels Values
MEDIUM 3 I II III

Number of observations 15

Dependent Variable: PROFIT
Source DF Sum of Squares Mean Square F Value Pr . F

Model 3 1790.555385 596.851795 122.84 , .0001
Error 11 53.444615 4.858601
Corrected Total 14 1844.000000

R-Square Coeff Var Root MSE PROFIT Mean
0.971017 24.49137 2.204224 9.000000

Source DF Type I SS Mean Square F Value Pr . F
MEDIUM 2 310.000000 155.000000 31.90 , .0001
EMPLOY 1 1480.555385 1480.555385 304.73 , .0001
Source DF Type III SS Mean Square F Value Pr . F
MEDIUM 2 502.095576 251.047788 51.67 , .0001
EMPLOY 1 1480.555385 1480.555385 304.73 , .0001

Least Squares Means

MEDIUM
PROFIT
LSMEAN

LSMEAN
Number

I 24.1107692 1
II 10.0000000 2
III 21.1107692 3
Least Squares Means for effect MEDIUM
Pr . jtj for H0: LSMean(i) ¼ LSMean(j)

Dependent Variable: PROFIT
i/j 1 2 3

1 ,.0001 ,.0001
2 ,.0001 ,.0001
3 ,.0001 ,.0001

NOTE: To ensure overall protection level, only probabilities

associated with pre-planned comparisons should be used.

PROC GLM produces two different sets of sums of squares, Type I and Type III. For
the analysis of covariance the Type I sums of squares are the unadjusted SS( y) and the
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Type III sums of squares are the adjusted SS0( y). The F value for medium in the Type III
output is the value in the analysis of covariance. The other F values are not useful in this

analysis.

EXERCISES

13.2.1. A certain airplane part must withstand extremes of temperature. The part can be made

from a number of metal alloys; the one to be chosen must have the greatest strength

y for a given density x. An experiment is designed involving 5 alloys and

5 parts per alloy. In hopes of obtaining a lighter part, the density of each alloy

is deliberately varied within a safe range. The data are analyzed by covariance

procedures to yield the following information:

Source df SS(x) SP SS( y)

Alloys 4 200 300 2500

Error 20 300 1200 7500

a. What is the linear model?

b. What assumptions must be made in order to perform the analysis of covariance?

c. Complete the analysis of covariance.

13.2.2. Complete the analysis of covariance for the data given in Exercise 13.1.1.

13.3. TESTING THE ASSUMPTIONS FOR ANALYSIS OF COVARIANCE

For an analysis of covariance to be valid, we may need to verify that:

1. All the treatment groups have the same variance about their regression lines,

s2
1 ¼ � � � ¼ s2

a ¼ s2.

2. All the regression lines have the same slope, b1 ¼ b2 ¼ . . . ¼ ba ¼ b.

3. The common slope b is not equal to 0; that is, the regression lines are not horizontal.

In this section, we illustrate these tests using the advertising media study, Example 13.1.

We begin by estimating the individual regression lines for each treatment group:

Medium

I II III

x y x y x y

Sxx 206 250 194

Sxy 2300 2370 2311

Syy 458 566 510

�xxi: 19 31 43

�yyi: 14 10 3

bi 21.46 21.48 21.60

ai 41.74 55.88 71.80
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In this table, the sums of squares and cross-products are computed as for simple linear

regression. Thus, for medium I,

Sxx ¼
X
j

x21j � T2
1:(x)=n1 ¼ 2011� (95)2=5 ¼ 206

Sxy ¼
X
j

x1jy1j � T1:(x)T1:( y)=n1 ¼ 1030� (95)(70)=5 ¼ �300

Syy ¼
X
j

y21j � T2
1:( y)=n1 ¼ 1438� (70)2=5 ¼ 458

and so on.

The slope and y intercept are also computed as in simple linear regression. For example,

for medium I,

b1 ¼ Sxy(1)

Sxx(1)
¼ �300

206
¼ �1:46

and

a1 ¼ �yy1 � b1 �xx1 ¼ 14� (1:46)19 ¼ 41:74

To test for the equality of variances about the trend lines, we may use the Fmax test or

Bartlett’s test (see Section 11.2). The variability about each line is computed using

s2i ¼
X

j
(yij � ŷyij)

2

ni � 2
¼ Syy(i) � S2xy(i)=Sxx(i)

ni � 2

Using the sums of squares and cross-products above, we have

Medium df Syy(i) � S2xy(i)=Sxx(i) s2i

I n1 2 2 ¼ 3 21.11 7.04

II n2 2 2 ¼ 3 18.40 6.13

III n3 2 2 ¼ 3 11.44 3.81

50.95

Fmax ¼ largest s2i
smallest s2i

¼ 7:04

3:81
¼ 1:85

and Fmax a,a,n22 ¼ Fmax 0.05,3,3 ¼ 27.8 from Table A.16 in the Appendix with a ¼ 3 groups,

and ni 2 2 ¼ 3 degrees of freedom for each estimated variance. Since Fmax is not significant,

we conclude that the variances are the same, and we proceed to test the other assumptions

necessary for an analysis of covariance.

The equality of the slopes b1 ¼ b2 ¼ b3 is tested by comparing the sum of squared

deviations from the regression lines
XX

(yij � ŷyij)
2 when the lines are found two different

ways. First, using the individual estimates of the slopes

b1 ¼ �1:46 b2 ¼ �1:48 b3 ¼ �1:60
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and, second, using a pooled estimate of the slope

b ¼ SPe

SSe(x)
¼ �981

650
¼ �1:51

If the three separate estimates b1, b2, b3 are all estimates of the same parameter, the difference

between these two sums of squared deviations should not be significant.

The sum of squared deviations about the regression lines using b, the pooled estimate of

the slope, is

G ¼ SS0e( y) ¼ 53:44

and the sum of squared deviations using the individual estimates of the bi’s is

H ¼
X
i

Syy(i) �
S2xy(i)

Sxx(i)

" #

¼ 50:95

The test can be summarized in the following table:

H0: b1 ¼ b2 ¼ b3 against Ha: At least one inequality

Source df SS MS

About regression

lines using one b

N 2 a 2 1 ¼ 11 G ¼ SSe( y)
0 ¼ 53.44

About regression

lines using three bi

N 2 2a ¼ 9 H ¼ 50.95 5.661

Difference a 2 1 ¼ 2 G 2 H ¼ 2.49 1.245

F ¼ (G� H)=(a� 1)

H=(N � 2a)
¼ 1:245

5:661
¼ 0:220

Reject H0 if F . F0.05, 2, 9 ¼ 4.256, so there is no evidence of unequal slopes.

Sometimes an experimenter expects differences among regression lines, and his

experimental hypothesis may even be that the treatments will affect the slopes. An example of

this might be an experiment comparing aspirin substitutes for how quickly they reduce the

fever of babies. The temperature of the baby is the y variable, and the time at which

temperature is taken during fever is the x variable. Since aspirin is not recommended for

babies, the experimenter wants to compare safe substitutes on the basis of the slopes of their

lines for the regression of temperature on time. The more negative the slope, the quicker the

drug reduces fever.

When an ANOVA detects significant differences, to determine which averages are

significantly different from others, we use Fisher’s least significant difference or one of the

other mean separation techniques discussed in Chapter 10. Unfortunately, there are no similar

procedures that are generally accepted for finding significant differences among the bi. Rather

than rely only on the relative sizes of the numerical values of the bi, we could perform
a

2

� �
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F tests comparing all slopes two at a time. In the example of the regression of profit on number

of employees there are 3 media, I, II, and III, and we tested H0: bI ¼ bII ¼ bIII. However, by

leaving data from medium III out of the analysis, we could perform a test of H0: bI ¼ bII.

Then in a second analysis we could omit data for medium II and test H0: bI ¼ bIII and finally

ignore data for medium I in a third analysis to test H0: bII ¼ bIII. However, the experiment

involved an ¼ 15 observations and it seems intuitively unattractive to leave a third of them

out of each analysis. Furthermore, there is the problem of the global a when repeated tests of

hypotheses are performed, so if this is a concern, we can consider them simultaneous tests and

adjust the ai for each F test according to Bonferroni procedures. This suggestion is not

considered optimum but rather is based on the feeling that it is better to try to determine which

trend lines are different from others rather than to claim there are significant differences and

not identify them.

For the analysis of covariance to be a significant improvement over a simple one-way

ANOVA, the common slope b must not be zero:

H0: b ¼ 0 against Ha: b = 0

is tested by

F ¼ SP2e=SSe(x)
MS0e( y)

¼ (� 981)2=650

4:858
¼ 304:77

with 1 and N 2 a 2 1 degrees of freedom. Since F0.05, 1, 11 ¼ 4.844, we reject b ¼ 0, and it is

appropriate to use an analysis of covariance.

There are times when the hypothesis H0: b ¼ 0 is not rejected, but covariance still

provides a more powerful test of H0: a1 ¼ a2 ¼ � � � ¼ aa than would a comparable ANOVA

of the y variable. If the experimenter has reason to suspect that a sizable portion of the

variability in y is attributable to a covariate x, the experiment should be designed and data

collected with covariance analysis in mind. The worst that can happen is the loss of one degree

of freedom attributable to a nonsignificant b. But even with that loss, MS0e( y) may

still be sufficiently smaller than MSe( y) for covariance analysis to be more powerful than

ANOVA.

EXERCISES

13.3.1. In Exercise 13.2.1

a. What is the pooled estimate of the slope?

b. Test that the slope is not zero.

13.3.2. Given that n1 ¼ n2 ¼ n3 ¼ 10, y is the yield of a certain crop, x is the amount of

limestone added to the soil, and

Soil Type Sxx Sxy Syy

A 4500 4200 4300

B 5800 3600 2400

C 5100 5100 5300

EXERCISES 421



a. Estimate the individual slopes for each type of soil.

b. Estimate the variances about the trend lines.

c. Test for homogeneity of variances.

d. Estimate the common slope.

e. Test that the three slopes are equal.

13.3.3. See Exercise 13.2.2. Was the analysis of covariance on the data from Exercise 13.1.1

justified?

13.3.4. Darwin’s theory of evolution postulates that there is a struggle for existence and

only the fittest survive. Using these two principles, experimental geneticists can

quantify the relative fitness of different species by comparing their survival under

some stressful conditions. Suppose a researcher wishes to compare the relative

survival of 3 species of Drosophila under increasing levels of organic

phosphorous insecticide. Four batches of medium are prepared and all batches

are identical except for the level of insecticide they contain. One hundred eggs

from each species are deposited on each preparation. The variables recorded for

each container are level of insecticide x in parts per million (ppm) and number of

flies that survive to adulthood y. The researcher knows that the experiment may

show either of two results: The mean number of survivors is not the same from

species to species or the effect of increasing the level of insecticide is not the

same for all species.

13.3.5. a. Give the null and alternative hypotheses used to test each of these responses.

b. Give the null and alternative hypotheses used to test each of these responses.

c. Which null hypothesis should be tested first?

d. Given the following data:

Species

Level of

Insecticide

(ppm)

Drosophila

melanogaster

Drosophila

pseudoobscura

Drosophila

serrata

0.0 91 89 87

0.3 71 77 43

0.6 23 12 22

0.9 5 2 8

i. Test the hypothesis that all species show that same response to increasing

levels of insecticide in the medium.

ii. Should the researcher compute adjusted average survival for an average level

of insecticide? Why?

iii. Draw a graph to show how each species responds to increased levels of

insecticide.

iv. If the 3 species were competing for existence in an environment in which

insecticide is accumulating, which species seems to have the best advantage,

that is, the greatest relative fitness?
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13.4. MULTIPLE-COMPARISON PROCEDURES

If the analysis of covariance is justified and leads to a significant F test for differences among

the adjusted averages, then we will want to follow this procedure with a test that compares the

means, a multiple-comparison procedure.

The adjustments must be performed, of course, before we can test the adjusted averages.

(These are symbolized as �yy0i: earlier but as adj �yyi: here to identify them clearly as adjusted

rather than “raw” averages.) Intuitively, the original group averages (�xxi_,�yyi_) are transformed

along the regression lines to the vertical line x ¼ �xx:: (see Figure 13.6). Algebraically the

transformed y averages can be found by the formula

adj �yyi: ¼ �yyi: � b(�xxi: � �xx::)

Thus, in the advertising media experiment (Example 13.1),

adj �yy1: ¼ 14� (� 1:51)(19� 31) ¼ �4:1

adj �yy2: ¼ 10� (� 1:51)(31� 31) ¼ 10:0

adj �yy3: ¼ 3� (� 1:51)(43� 31) ¼ 21:1

If desired, confidence intervals can be found for the adjusted means:

CI1�a: adj �yyi: + ta=2,N�a�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MS0e( y)

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ni
þ (�xxi: � �xx::)

2

SSe(x)

s

FIGURE 13.6. Media study, Example 13.1.
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For example, for the adjusted mean of the third group, we have

CI0:95: 21:1+ t0:025,11
ffiffiffiffiffiffiffiffiffiffiffi
4:858

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5
þ (43� 31)2

650

s

21:1+ 3:15

If the treatment groups are the same size n, comparisons of two adjusted averages

adj �yyi: � adj �yyi0 can be made with the significant difference at the a level being given by

ta=2,N�a�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MS0e( y)

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n
þ (�xxi: � �xxi0 )

2

SSe(x)

s

In the advertising media example adj �yy2: � adj �yy1: ¼ 10:0� (� 4:1), and at the 0.05 level
of significance the critical difference is

2:201
ffiffiffiffiffiffiffiffiffiffiffi
4:858

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

5
þ (31� 19)2

650

s
¼ 3:82

Thus a1 = a2 after adjusting for the number of employees. Similarly, adj �yy3: � adj �yy2:
¼ 21:1� 10:0 ¼ 11:1, and the critical difference is

2:201
ffiffiffiffiffiffiffiffiffiffiffi
4:858

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

5
þ (43� 31)2

650

s
¼ 3:82

Thus a2 = a3 after adjusting for the number of employees. Finally, adj �yy3: � adj �yy1:
¼ 21:1� 4:1 ¼ 17:0, and the critical difference is

2:201
ffiffiffiffiffiffiffiffiffiffiffi
4:858

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

5
þ (43� 19)2

650

s
¼ 5:50

Thus a1 = a3 after adjusting for the covariate. The SAS printout for these comparisons

would be

Least Squares Means

MEDIUM
PROFIT
LSMEAN

LSMEAN
Number

I 24.1107692 1
II 10.0000000 2
III 21.1107692 3
Least Squares Means for effect MEDIUM
Pr . jtj for H0: LSMean(i) ¼ LSMean(j)
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Dependent Variable: PROFIT
i/j 1 2 3
1 ,.0001 ,.0001
2 ,.0001 ,.0001
3 ,.0001 ,.0001

Note: To ensure overall protection level,
only probabilities associated with pre-
planned comparisons should be used.

The adjusted means for the media are obtained by the LSMEAN statement. The name

LSMEAN stands for least-square mean, or the adjusted average in this case because SAS

output uses the term mean for both population and sample values.

The final conclusion of the media study is that each of the media used has a different effect

on profits, and medium III has the greatest positive effect. We would not have come to this

conclusion if we had not adjusted for the number of employees—before the adjustment,

medium III had the lowest of the group averages.

EXERCISES

13.4.1. Given the following information from a one-way analysis of covariance involving

3 groups and 8 observations per group:

Source SS(x) SP SS( y) Group �xxi: �yyi:

Group 144 120 208 1 27 20

Within 175 140 132 2 30 18

3 33 25

a. Graph the unadjusted group averages.

b. Find the estimate of the common slope, b.

c. Graph the trend lines using the common slope.

d. Find the adjusted y averages graphically.

e. Find the adjusted y averages algebraically.

f. Find the 95% confidence intervals on the adjusted means.

g. Test the adjusted group means for significant differences.

13.4.2. It is possible to isolate genetic material in one species and transfer it to another

species, and the genetic mechanism which permits North American fruit trees to resist

cold weather can be transferred to tropical fruit trees, which could then be grown in

more northern climes. Suppose that a horticulturist has had some limited, preliminary

success in attempting this genetic transfer technique with several varieties of mango

trees. The genetically altered trees are grown in an experimental orchard along the

Gulf Coast, and the first year in which fruit is produced, there are significant

differences in yield among the varieties, but the horticulturist wants to know whether

the difference in yield is due to different numbers of fruit per tree or due to different
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weights of fruit. Therefore it is decided that the yield data should be analyzed by

covariance. Suppose the data are as given below:

Variety

V1 V2 V3 V4

x y x y x y x y

5 17 7 24 5 20 10 30

7 21 7 26 4 13 9 28

5 18 8 23 3 14 8 22

4 11 6 23 7 22 7 20

3 6 5 18 6 23 11 31

6 23 9 30 5 16 9 25

Ti.(x) 30 42 30 54

Ti.( y) 96 144 108 156

a. Which is the x variable? Is it the number of mangos per tree or the weight of

mango fruit per tree?

b. Perform the analysis of covariance.

c. Compute the adjusted means and test to determine the significant differences

among varieties.

13.4.3. Babies who are “undersize” at birth have a reduced chance of survival, and those

who do survive tend to remain small for the rest of their lives. A Public Health

Service physician is making a study of adolescents who were undersize at birth.

Because such births are especially common among very young mothers, it is

desirable to study the effect of mother’s age. Thus two random samples are taken,

one from among those born to mothers under 15 years old (group A) and those born

to mothers who were older (group B). Data recorded for each group include birth

weights (x) and adolescent weights (y) of the children in the study in kilograms. The

results of the SAS analysis follow.

DATA BABIES;
INPUT GROUP $ BIRTHWT ADOLESWT @@;
CARDS;

B 1.1 29.4 A 1.7 66.1 B 1.9 61.1 A 2.1 56.3
B 2.2 58.6 A 0.7 36.7 B 1.2 59.0 A 1.9 57.2
B 1.5 25.8 A 1.5 60.2 B 2.3 55.9 A 2.1 59.4
B 2.4 61.8 A 1.6 33.8 B 2.2 76.9 A 0.7 29.2
B 1.9 47.9 A 1.2 29.9 B 2.4 73.0 A 1.1 28.2
B 1.1 31.8 A 1.7 56.6 B 2.4 55.3 A 1.5 64.0
B 1.4 34.7 A 1.7 54.0 B 1.3 37.3 A 1.7 35.3
B 1.1 35.3 A 1.3 47.7 B 1.3 38.5 A 2.0 42.5
B 1.3 31.4 A 1.8 56.1 B 1.7 60.9 A 1.5 54.4
B 1.8 52.1 A 0.8 28.9 B 1.6 47.4 A 0.9 28.7
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B 1.8 41.3 A 2.0 60.1 B 1.6 52.3 A 1.1 43.6
B 2.0 53.7 A 1.9 43.2 B 2.1 76.7 A 1.8 55.2
B 2.6 85.1 A 1.4 66.7

;

PROC GLM;
CLASS GROUP;
MODEL ADOLESWT ¼ GROUP BIRTHWT;
LSMEANS GROUP/PDIFF;

The SAS System

The GLM Procedure

Class Level Information

Class Levels Values
GROUP 2 A B

Number of observations 50

The GLM Procedure

Dependent Variable: ADOLESWT

Source DF
Sum of
Squares Mean Square F Value Pr . F

Model 2 5655.11343 2827.55671 26.85 ,.0001
Error 47 4950.44977 105.32872
Corrected Total 49 10605.56320

R-Square Coeff Var Root MSE ADOLESWT Mean
0.533221 20.71488 10.26298 49.54400

Source DF Type I SS Mean Square F Value Pr . F
GROUP 1 159.132800 159.132800 1.51 0.2251
BIRTHWT 1 5495.980626 5495.980626 52.18 ,.0001
Source DF Type III SS Mean Square F Value Pr . F
GROUP 1 76.915924 76.915924 0.73 0.3971
BIRTHWT 1 5495.980626 5495.980626 52.18 ,.0001

Least Squares Means

GROUP
ADOLESWT
LSMEAN

H0: LSMean1 ¼
LSMean2
Pr . jtj

A 50.8365889 0.3971
B 48.2514111

a. Using the output, what are the numerical values of SS0e( y), SS
0
a( y), F ¼

MS0a( y)=MS0e( y), adj �yyA, adj �yyB
b. What is the covariate in this study?
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c. Why is the analysis of covariance used in this study?

d. Is there any evidence that the mean weight of the adolescents who were born to

mothers under 15 years old is different from the mean weight of adolescents who

were born to older mothers? Why or why not?

e. Why is the P value for the test of H0: LSMean1 ¼ LSMean2 the same as the P

value for the TYPE III analysis of covariance test of the groups?

REVIEW EXERCISES

Decide whether each of the following statements is true or false. Correct each false statement.

13.1. The model yij ¼ m þ ai þ bj þ 1ij would apply to covariance analysis if �xx:: ¼ 0.

13.2. Covariance techniques require that unadjusted yij as well as adjusted yij have

homogeneous variance.

13.3. The analysis-of-covariance techniques in this chapter are appropriate whether the ai

are fixed or random.

13.4. Analysis-of-covariance techniques are appropriate whether the xij are fixed or random.

13.5. Analysis-of-covariance techniques are appropriate even though H0: b1 ¼ b2 ¼ b3 is

rejected.

13.6. Analysis-of-covariance techniques may be appropriate even though H0: b ¼ 0 is not

rejected.

13.7. Analysis-of-covariance techniques are appropriate even though
X

j
(yij � ŷyij)

2=
(ni � 2) is significantly different from group to group.

13.8. Analysis-of-covariance techniques are appropriate even though
X

j
(xij � �xxi:)

2 is

significantly different from group to group.

13.9. The model for a one-way analysis of covariance is yij ¼ mþ ai þ b(xij � �xx::)þ 1ij.

13.10. For a valid analysis of covariance, both the x variable and the y variable must be

normally distributed.

13.11. For a valid analysis of covariance, both the x variable and the y variable must be

random.

13.12. Accepting the hypothesis that the common slope b ¼ 0 means that there is no

relationship between x and y.

13.13. When the hypothesis of parallel regression lines is rejected, it becomes meaningless to

discuss differences among adjusted averages that have been based on a common slope.

13.14. Because
X

i

X
j
(yij � ŷyij)

2 �
X

i

X
j
(yij � �yyi:)

2, the adjusted within-group sum of

squares can never be greater than the unadjusted within-group sum of squares.

13.15. It is possible that an ANOVA on the unadjusted group averages can yield a significant

F test for treatments, but in a similar test after adjustment for the x variable by

covariance techniques, group differences may be nonsignificant.

13.16. Analysis of covariance may be used to increase the precision in an experiment even if

the regression lines are horizontal.

13.17. The adjusted group means all lie on a vertical line at the overall x average.

13.18. Analysis of covariance can only be applied to 3 treatment groups.

13.19. The pooled estimate of the slope is found by averaging the estimates of the individual

slopes.
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13.20. Analysis of covariance requires that two different variables which are linearly related

are measured on sampling units from 2 or more treatment groups.
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14 Multiple Regression and
Correlation

In Chapter 9 where we were interested in an independent variable x and a dependent variable y

we discussed simple linear regression and correlation. In this chapter we generalize the

discussion and speak of k independent variables x1, x2, . . . , xk and a dependent variable y. For

the sake of completeness, the computational procedures are demonstrated, but using a

computer is the only practical means of performing a multiple regression analysis on a data set

of even moderate size. Consequently, greatest stress is placed on interpretation of the

computer output for multiple regression analysis. Curvilinear regression is discussed as

generalizations of either simple regression or multiple regression.

14.1. MATRIX PROCEDURES

In simple linear regression, we assume that x and y are linearly related, and we use the model

y ¼ a þ bx þ 1 to express this relationship. The first step in regression analysis is to estimate

a and b in the model. Least-squares procedures are employed, and the least-squares estimates

a and b are found by solving two simultaneous equations. The solutions are

b ¼
X

(x� �xx)(y� �yy)X
(x� �xx)2

¼ Sxy

Sxx
and

a ¼ �yy� b�xx

In a similar way, multiple regression involves use of a model of the form

y ¼ aþ b1x1 þ b2x2 þ � � � þ bkxk þ 1

and the estimates a, b1, b2 , . . . , bk of the a and b’s are the least-squares solutions to several

simultaneous linear equations.

If there are only two independent variables x1 and x2, we can visualize the least-squares

procedure as fitting a plane to a set of n data points (x1, x2, y) in such a way that
X

(y� ŷy)2,

the sum of the squared deviations of the actual y’s from the predicted values, is minimized

(Figure 14.1). This is analogous to the fitting of the least-squares trend line in simple linear

regression. (If there are more than two independent variables, then the least-squares procedure

fits a hyperplane, the generalization of a plane in more than three dimensions, to the points.) It

is possible to use the equation of the plane for prediction if the plane is not parallel to the x1, x2
plane.

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X # 2004 John Wiley & Sons, Inc.
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In this section we develop a computational technique that aids in solving systems of linear

equations and also yields some additional information which is necessary for inference related

to multiple regression. The computation is straightforward but still tedious for large data sets

and for measurement variables containing a large number of digits. We illustrate it with a

small data set consisting of variables measured as small integer values. Such data would be

unrealistic for most studies involving multiple regression analysis, but they are suitable for

demonstrating the computational techniques which are employed. This will dispel some of the

mystery which many experience upon first examination of the computer output for multiple

regression analysis.

Suppose our data set consists of the age (x1) in years, weight (x2) in kilograms, and systolic

blood pressure (y) in millimeters of mercury for a random sample of n ¼ 7 West Indian

women:

Individual Age (x1) Weight (x2) Systolic Pressure (y)

A 34 45 108

B 43 44 129

C 49 56 126

D 58 57 149

E 64 65 168

F 73 63 161

G 78 55 174

We want to know whether we can detect a significant linear relationship between the age of a

woman and her systolic blood pressure and similarly to determine whether there is a linear

relationship between her weight and her pressure. However, we do not perform two simple

linear regression analyses, one of pressure on weight and a second of pressure on age, because

the results could be misleading if there is also a linear relationship between their ages and their

FIGURE 14.1. The least-squares plane y ¼ a þ b1x þ b2x.
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weights. Therefore, we solve a set of linear equations for a, b1, and b2 which will take into

account any possible linear relationship, termed collinearity, between the two independent

variables x1 and x2. This system of simultaneous linear equations arises from minimizingX
(y� ŷy)2 ¼

X
½y� (aþ b1x1 þ b2x2)�2. The three equations are

a ¼ �yy� b1 �xx1 � b2 �xx2

b1
X

(x1 � �xx1)
2 þ b2

X
(x1 � �xx1)(x2 � �xx2) ¼

X
(x1 � �xx1)(y� �yy)

b1
X

(x2 � �xx2)(x1 � �xx1)þ b2
X

(x2 � �xx2)
2 ¼

X
(x2 � �xx2)(y� �yy)

To set up the equations for solution, we must compute the sums of squares and the sums of

products as we have done before when dealing with analyses that involved more than one

continuous variable. We first compute

X
x1 ¼ 399

X
x2 ¼ 385

X
y ¼ 1,015

X
x1x2 ¼ 22,521X

x21 ¼ 24,279
X

x22 ¼ 21,565
X

y2 ¼ 150,803
X

x1y ¼ 60,112

�xx1 ¼ 57 �xx2 ¼ 55 �yy ¼ 145
X

x2y ¼ 56,718

and find

S11 ¼
X

(x1 � �xx1)
2 ¼

X
x21 �

P
x1

� �2
n

¼ 1536

S12 ¼ S21 ¼
X

(x1 � �xx1)(x2 � �xx2) ¼
X

x1x2 �
P

x1
P

x2

n
¼ 576

S22 ¼
X

(x2 � �xx2)
2 ¼

X
x22 �

P
x2

� �2
n

¼ 390

S1y ¼
X

(x1 � �xx1)(y� �yy) ¼
X

x1y�
P

x1
P

y

n
¼ 2257

S2y ¼
X

(x2 � �xx2)(y� �yy) ¼
X

x2y�
P

x2
P

y

n
¼ 893

This gives the three equations

a ¼ 145� 57b1 � 55b2

1536b1 þ 576b2 ¼ 2257

576b1 þ 390b2 ¼ 893

The last two equations can be easily solved using the matrix approach which is to be

demonstrated here, and then b1 and b2 can be used in the first equation to find a.

In algebra, we learn how to solve two simultaneous equations in two unknowns when such

solutions exist. Here, we have the equations

1536b1 þ 576b2 ¼ 2257

576b1 þ 390b2 ¼ 893
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To solve this system of equations, we may multiply or divide any equation by a nonzero

constant and we may add or subtract a multiple of one equation from another. We repeat these

operations until we obtain an equivalent system of equations of the form

1b1 þ 0b2 ¼ d1

0b1 þ 1b2 ¼ d2

from which we can read the solutions b1 ¼ d1 and b2 ¼ d2.

This sequence of operations can be carried out by using a simple matrix approach. A

matrix is a rectangular array of numbers. For example,

X ¼ S11 S12
S21 S22

� �
¼ 1536 576

576 390

� �

is the matrix of coefficients of the system of equations which we wish to solve, and

Y ¼ S1y
S2y

� �
¼ 2257

893

� �

is the matrix of the constants in the two equations. The solution is obtained by starting with

½X j Y� ¼ 1536 576

576 390

2257

893

����
� �

an augmented matrix made up of the matrix of coefficients on the left and the matrix of

constants on the right. The following steps are the algebraic operations necessary to solve the

set of equations:

STEP 1. For the appropriate operation to transform the first coefficient in row one to 1, divide

all elements in row one by S11 ¼ 1536:

1 0:375
576 390:000

���� 1:469401
893:000000

� �

STEP 2. To transform the first element in row two to 0, multiply the first row by S21 ¼ 576 and

subtract the product from the second row:

1 0:375
0 174:000

���� 1:469401
46:625024

� �

STEP 3. To obtain a 1 for the second number in row two, divide the second row by S22 2 S12
2 /

S11 ¼ 174:

1 0:375
0 1:000

���� 1:4694010:267960

� �
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STEP 4. To transform the second element in row one to 0, multiply the second row by

S12/S11 ¼ 0.375 and subtract the product from the first row:

1 0

0 1

���� 1:3689160:267960

� �

Remembering that the above values are the coefficients and constants for a pair of

simultaneous equations, we can see that we have obtained the solutions

1b1 þ 0b2 ¼ 1:368916

0b1 þ 1b2 ¼ 0:267960

To relate these numbers back to the problem concerning the relationships among age,

weight, and systolic blood pressure inWest Indian women, we have found that, after adjusting

for the collinearity between age and weight, on the average systolic pressure increases

1.368916 mm Hg with each increase of one year of age, and it increases 0.267960 mm Hg

with each increase of 1 kg in weight. Solutions to the simultaneous equations are given here to

six decimal places, even though such a level is far beyond the precision with which blood

pressure is usually measured. Instead, six decimal places were carried throughout the

computations in order to reduce possibly serious consequences of rounding error. For the

same reason, most computer analyses use double-precision arithmetic. This expression

originally meant that twice as many decimal places were used in computations than provided

in the printout; it now implies that the number of decimal digits used is the maximum

allowable in the program. In discussing the results, however, we would further round these

solutions to an even more sensible number of decimal places such as b1 ¼ 1.369 mm Hg/year
and b2 ¼ 0.268 mm Hg/kg.

The shorthand of matrix algebra is quite convenient and is appearing more frequently

in various areas of research literature. To promote familiarity with the notation, we will use

it to review what was done in the solution of the system of equations. The original matrix

form was

½X j Y� ¼ S11 S12
S21 S22

���� S1yS2y

� �

representing

S11b1 þ S12b2 ¼ S1y

S21b1 þ S22b2 ¼ S2y

and it was transformed into

½I j B� ¼ 1 0

0 1

���� b1b2
� �
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in which

I ¼ 1 0

0 1

� �

is known as the identity matrix and

B ¼ b1
b2

� �

is the matrix of solutions.

Although this matrix procedure gives the solutions desired, its usefulness in multiple

regression analysis can be improved. As will be seen in the discussion of statistical inference,

computation of the standard errors of b1 and b2 require elements of the inverse of the matrixX,

the sums of squares and products which are the coefficients b1 and b2 in the simultaneous

equations. The inverse can be thought of as the “memory” of the operations which were

performed in the solution of the equations, and it can be obtained in a straightforward manner

when we augment the beginning matrix with the identity matrix

I ¼ 1 0

0 1

� �

as follows:

½X j Y j I� ¼ S11 S12
S21 S22

S1y
S2y

����
���� 1 0

0 1

� �

If the same row operations are applied to this form, it is changed into

1 0

0 1

b1
b2

����
���� p11 p12
p21 p22

� �

in which

P ¼ p11 p12
p21 p22

� �
¼ X�1

is the inverse of the matrix of coefficients, that is,

PX ¼ X�1X ¼ p11 p12
p21 p22

� �
S11 S12
S21 S22

� �
¼ 1 0

0 1

� �
¼ I

To demonstrate how to obtain the inverse, we perform the same row operations on the

augmented matrix:
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½X j Y j I� ¼ 1536 576

576 390

2257

893

����
���� 1 0

0 1

� �

divide row one by 1536

1 0:375

576 390:000

1:469401

893:000000

����
���� 0:000651 0

0:000000 1

� �

subtract 576 times row one from row two

1 0:375

0 174:000

1:469401

46:625024

����
���� 0:000651 0

�0:375000 1

� �

divide row two by 174

1 0:375

0 1:000

1:469401

0:267960

����
���� 0:000651 0:000000

�0:002155 0:005747

� �

subtract 0:375 times row two from row one

1 0

0 1

1:368916

0:267960

����
���� 0:001459 � 0:002155

� 0:002155 0:005747

� �
¼ ½I j B j P�

The matrix on the right,

P ¼ X�1 ¼ 0:001459 �0:002155
�0:002155 0:005747

� �

is the inverse X21 of the sum of squares and products matrix

X ¼ 1536 576

576 390

� �

This can be verified by using the definition of matrix multiplication:

p11 p12
p21 p22

� �
S11 S12
S21 S22

� �
¼ p11S11 þ p12S21 p11S12 þ p12S22

p21S11 þ p22S21 p21S12 þ p22S22

� �

Thus

X�1X ¼ 0:001459 �0:002155

�0:002155 0:005747

� �
1536 576

576 390

� �

¼ (0:001459)1536þ (�0:002155)576 (0:001459)576þ (�0:002155)390

(�0:002155)1536þ (0:005747)576 (�0:002155)576þ (0:005747)390

� �

¼ 1:00 0:00

0:00 1:00

� �

Only two decimal places are reported here because that is the extent of the accuracy of the

computations despite the fact that six decimal places were carried while performing them. We

want to stress again the need for carrying a large number of decimal places in multiple

regression analysis and indeed, if at all possible, the need to use a reliable computer routine for

multiple regression.

��!
��!

��!
��!
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EXERCISES

14.1.1. Multiply the following matrices:

a.
2 5

5 4

� �
4 1

1 5

� �

b.
�2 4

7 3

� �
9 �3

�3 1

� �

c.
4 �2

�2 7

� �
10

12

� �

d.

6 7 �1

7 �2 5

�1 5 4

2
4

3
5 3

�2

5

2
4

3
5

14.1.2. a. Solve the following system of equations using row operations:

4b1 þ 3b2 ¼ 10

3b1 þ 5b2 ¼ 16

b. Find the inverse X21 of the matrix of coefficients

X ¼ 4 3

3 5

� �

c. Show that X21X ¼ I.

d. Show that X21X ¼ B where Y ¼ 10

16

� �
and B is the matrix of solutions.

14.1.3. Find the inverse of
1 2

2 5

� �
.

14.1.4. Simple linear regression can be approached using matrices. Using the example of

employee training in Section 9.1,

Hours of instruction, x: 1 2 3 4 5

Units per hour, y: 5 4 6 8 7

find the estimates of the y intercept and slope as solutions of the systems of normal

equations

naþ b
X

x ¼
X

y

a
X

xþ b
X

x2 ¼
X

xy

Compare your answers with the results in Chapter 9.
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14.2. ANOVA PROCEDURES FOR MULTIPLE REGRESSION

AND CORRELATION

Using the data set involving the age (x1), weight (x2), and systolic blood pressure (y) of n ¼ 7

women, we have already illustrated the least-squares procedure for obtaining b1 ¼ 1.368916

and b2 ¼ 0.267960. The intercept is estimated by

a ¼ �yy� b1 �xx1 � b2 �xx2 ¼ 145� 1:368916(57)� 0:267960(55) ¼ 52:233988

Thus the least-squares regression plane is

ŷy ¼ aþ b1x1 þ b2x2 ¼ 52:233988þ 1:368916x1 þ 0:267960x2

To determine whether the plane is parallel to the x1, x2 plane, we test H0: b1 ¼ b2 ¼ 0

(parallel) against Ha: b1 = 0 or b2 = 0 (not parallel). As in simple regression, this test

requires the variance of data points from the regression plane,

s2y:x ¼
X

(y� ŷy)2

n� k � 1

in which n is the number of data points and k is the number of independent variables. Owing to

space limitations, only three decimal places will be carried in the prediction equation of

ŷy ¼ 52:234þ 1:369x1 þ 0:268x2 used to show how to compute this directly:

x1 x2 y ŷy ¼ 52.234 þ 1.369x1 þ 0.268x2 y� ŷy (y� ŷy)2

34 45 108 52.234 þ 1.369(34) þ 0.268(45) ¼ 110.840 22.840 8.066

43 44 129 52.234 þ 1.369(43) þ 0.268(44) ¼ 122.893 6.107 37.295

49 56 126 52.234 þ 1.369(49) þ 0.268(56) ¼ 134.323 28.323 69.272

58 57 149 52.234 þ 1.369(58) þ 0.268(57) ¼ 146.912 2.088 4.360

64 65 168 52.234 þ 1.369(64) þ 0.268(65) ¼ 157.270 10.730 115.133

73 63 161 52.234 þ 1.369(73) þ 0.268(63) ¼ 169.055 28.055 64.883

78 55 174 52.234 þ 1.369(78) þ 0.268(55) ¼ 173.756 0.244 0.060

299.069

s2y:x ¼
X

(y� ŷy)2

n� k � 1
¼ 299:069

7� 2� 1
¼ 74:767

Or we can use a more convenient computational procedure,

X
(y� ŷy)2 ¼ Syy � b1S1y � b2S2y

in which

Syy ¼
X

(y� �yy)2 ¼
X

y2 �
X

y2

n
¼ 3628
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Thus

sy:x
2 ¼

X
(y� ŷy)2

n� k � 1
¼ 3628� 1:368916(2257)� 0:267960(893)

7� 2� 1

¼ 3628� 3328:932

7� 2� 1
¼ 299:068

4
¼ 74:767

The test of H0: b1 ¼ b2 ¼ 0 is an F test and can be set up in the form of an ANOVA table.

Source df SS MS F

Due to

regression

k ¼ 2 b1 S1y þ b2 S2y ¼ 3328.932 1664.466 22.262

Deviations n 2 k 2 1 ¼ 4 3628 2 3328.932 ¼ 299.068 74.767

Total n 2 1 ¼ 6 Syy ¼ 3628.000

Since F0.05,2,4 ¼ 6.944, the computed F is significant, and we can conclude that the regression

plane is not parallel to the x1, x2 plane but instead is significantly “tilted” because b1 = 0 or

b2 = 0. We conclude that there is a linear relationship between systolic pressure (y) and age

(x1) or systolic pressure and weight (x2) or possibly systolic pressure with both independent

variables.

Although the F test for H0: b1 ¼ b2 ¼ 0 provides a test of the significance of the

regression of the dependent variable on the independent variables, the reliability of the

regression equation is very commonly measured by the multiple correlation coefficient. The

multiple correlation coefficient Ryŷy or R can be thought of as the correlation between the

observed y’s and the ŷy’s predicted by the regression equation. It can be computed in much the

same way as the correlation coefficient was computed for bivariate data:

R ¼
X

(y� �yy)(ŷy� �yy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
(y� �yy)2(ŷy� �yy)2

q

Unlike the situation for simple correlation, however, 0 � R � 1, because it would be

impossible to have a negative correlation between the observed and the least-squares

predicted values.

The square of the multiple correlation coefficient R 2 can be interpreted as the proportion of

the variability that has been accounted for by the regression equation and R 2 is between 0 and

1. If the equation fits the data well, R 2 is close to 1; if the linear model is a poor fit, R 2 will be

close to 0.

The formula given above for R is usually cumbersome computationally; instead, R 2 can be

computed directly using the formula

R2 ¼
X

biSiy

Syy

Then R can be found by taking the positive square root of R 2.

As in the case of simple linear regression and correlation, different assumptions are used

when deriving multiple regression and multiple correlation procedures. Multiple regression

assumes that the x’s are fixed and predetermined by the investigator, the relationship is linear,
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and the 1’s are IND(0, s2). Multiple correlation assumes that the x’s are random and that y,

x1, . . . , xk have a multivariate normal distribution.

As a result of these assumptions, all the procedures we discuss in this chapter may be

applied to situations that fit the correlation model. If a research situation fits the regression

model and has fixed x’s, then correlation statistics such as R and R 2 may be calculated, but

inference should not be made from these statistics.

If the correlation model is being used, R 2 may be tested. To test the significance of the

multiple correlation coefficient, we use hypotheses

H0: P
2 ¼ 0 against Ha: P

2 . 0

in which P (the uppercase Greek letter rho) is the true population multiple correlation

coefficient. The test statistic is

F ¼ R2=k

(1� R2)=(n� k � 1)

with v1 ¼ k and v2 ¼ n 2 k 2 1 degrees of freedom.

For our data set

R2 ¼
X

biSiy

Syy
¼ 3328:932

3628:000
¼ 0:917567

and

F ¼ R2=k

(1� R2)=(n� k � 1)
¼ 0:917567=2

0:082433=4
¼ 22:262

Except for rounding error, this F test will give the same numerical results as the one used for

testing H0: b1 ¼ b2 ¼ 0.

To summarize the results of our use of multiple regression and correlation to examine the

linear relationships of systolic pressure with age and weight, we can conclude that there is a

significant relationship, and there is good agreement between the observed values and values

obtained from a linear prediction equation based on the two independent variables (age and

weight). However, in cases such as this where n 2 k 2 1 is small, it is possible for a large

value of R 2 to result from only moderate linear association between the dependent and

independent variables. Thus the physician would very likely want to use a larger sample to

confirm these results. Also, it would be helpful to learn whether both independent variables

are needed in the prediction equation or whether a simple linear equation, using only one of

the independent variables, would be almost as reliable as the one using both x1 and x2.

EXERCISES

14.2.1. Given the following sums of squares and cross-products for 27 data points (x1, x2, y)

S11 ¼ 10 S22 ¼ 41 Syy ¼ 50

S1y ¼ 4 S2y ¼ 2 S12 ¼ 20
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a. Complete the augmented matrix of sums of squares and cross-products and the

final matrix after row operations:

X X�1

--- ---

--- ---

���� ------
���� 1 0

0 1

� �
! --- ---

--- ---

���� ------
���� 4:1 �2:0

�2:0 1:0

� �

(It is not necessary to do the row operations.)

b. Complete the ANOVA table for multiple regression:

Source df SS MS F F0.05

Regression

Deviations

14.2.2. When the age y of a grazing animal is unknown, it can be estimated from the extent of

tooth wear x1 and the amount of gray hair x2 on the animal’s muzzle. In an effort to

evaluate and refine this procedure, a random sample of horses of known ages is

measured on indices developed to determine tooth wear and graying. The following

information is derived:

Augmented Sum of Squares

and Cross-Products Matrix

64:00 �39:20

�39:20 49:00

�20:00

19:39

����
���� 1 0

0 1

� �

! 1 0

0 1

�0:1375

0:2856

����
���� 0:0306 0:0245

0:0245 0:0400

� �

a. Complete the ANOVA table:

Source df SS MS

Regression — 8.29 4.145

Deviations — 16.71 1.671

b. What percentage of the variation in the horses’ ages can be explained on the basis

of tooth condition and graying?

c. If a multiple regression prediction equation is used, will it explain a significant

portion of the variability of age? Why or why not?

d. Do you think the prediction equation would be very useful in estimating the ages

of horses when their ages are not known? Why or why not?

14.2.3. In studies of the effect of acid rain on the biomass in freshwater lakes, biologists have

found that biomass decreases as acid concentration increases. If the lakes have

sources of phosphorous, however, biomass increases with an increase in the amount

of phosphorus available. In an effort to make a more thorough study, researchers take

water samples from 18 randomly selected lakes and measure the acidity x1, available
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phosphorus x2, and population density y of a certain species of algal plant. The

following statistics are computed:

�yy ¼ 1,400 Syy ¼ 14,400 S12 ¼ 900

�xx1 ¼ 2,100 S11 ¼ 1,600 S1y ¼ �3,000

�xx2 ¼ 760 S22 ¼ 3,600 S2y ¼ 2,100

p11 ¼ 0:000727 b1 ¼ �2:563

p12 ¼ �0:000182 b2 ¼ 1:224

p22 ¼ 0:000323 s2y:x ¼ 276

a. Compute R 2.

b. Test R 2 for significance.

c. Test b1 ¼ b2 ¼ 0.

d. What is the equation of the least-squares plane?

e. If acidity is increased one unit and phosphorus held fixed, what is the effect on

population density?

14.2.4. Francis Galton, who gave regression its name, thought everything could be measured,

even the power of prayer. Studies of anxiety among the terminally ill now give reason

for wanting to measure it. Believing anxiety is due to feeling a lack of control over

one’s condition, a hospice for the terminally ill conducts a study with the permission

of those residing there. For a week each self-administers his or her painkiller up to the

maximum prescribed. Since none uses the maximum, the exact amount in milliliters

taken is measured. Also daily, the chaplain asks each if he or she would like to pray

with him and he records the time in minutes. At the end of the week, residents are

given an anxiety scale consisting of a 20-cm. straight line on a piece of paper, and

each is asked to make a cross-mark on the line according to the amount of anxiety felt;

the farther to the right the mark, the greater the anxiety. The length to the mark is

measured with a ruler. Multiple regression is used to analyze the data with distance to

the mark (anxiety) the dependent variable and predictor variables are amount of

medicine taken and time in prayer. Use the following ANOVA printout to answer the

questions.

Rsquare 0.6487

Average 10.61

MS Error 9.329

N 18

ANOVA

Source df MS F-Test P-value

Groups 2 129.174 13.8472 0.0004

Error 15 9.329

a. How many residents were involved in the study?

b. From data in the ANOVA compute the numerical values of

i. b1S1y þ b2S2y

ii.
X

(y� ŷy)2
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c. Do prayer and/or self-administration of medication explain a significant portion of

the variability in the anxiety among residents? Explain.

d. The fact that none of the patients used maximum medication is thought also to be

an expression of control over one’s condition. How would you determine why they

didn’t use all their pain-killing medication? Hint: Good researchers use common

sense as well as statistics.

14.3. INFERENCE ABOUT EFFECTS OF INDEPENDENT VARIABLES

In an analysis of variance, if the F test is significant, the investigator will perform further tests

or compute confidence intervals to pinpoint the specific differences. Similarly, in multiple

regression, if H0: b1 ¼ b2 ¼ 0 is rejected, the investigator will want to know which of the x

variables contributes to this overall significance. Most commonly this is done by either

performing tests of hypotheses on the individual partial regression coefficients (bi) or placing

confidence intervals on them. To use either procedure, however, it is first necessary to

compute the standard error of each partial regression coefficient.

To explain the computation of the standard error of a partial regression coefficient, it may

be helpful to recall the case of simple regression, where the standard error of the regression

coefficient is

s.e:(b) ¼ sy:xffiffiffiffiffiffi
Sxx

p ¼
ffiffiffiffiffiffi
1

Sxx

r
s2y:x

We can show how this value would be obtained if we used matrix procedures with simple

linear regression. Although the original matrix contains only one row, we can use the same

form,

½X j Y j I� ¼ ½Sxx j Sxy j 1�

and we would invert this matrix by dividing all terms in it by Sxx to obtain the final form,

½I j B j X�1� ¼ 1 b ¼ Sxy

Sxy

����
���� p ¼ 1

Sxx

� �

Thus we can see that the standard error of the simple regression coefficient is the square

root of the product of two terms, the variance from the regression line (s2y:x ¼ MSe) and the

element of the inverse of the matrix of coefficients (1/Sxx). In a similar manner, the standard

error of any partial regression coefficient (bi) in multiple regression is the square root of the

product of two terms, the variance from the regression plane (s2y:x) and the appropriate element

( pii) from the inverse of the matrix of coefficients:

s.e.(bi) ¼
ffiffiffiffiffiffiffiffiffiffiffi
piis2y:x

q

Once the standard error of the partial regression coefficient is obtained, we use it in the same

fashion that has become familiar for performing a t test or for setting a confidence interval:
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Test of hypothesis H0: bi 5 0

t ¼ Estimate� Hypothesized value

Standard error of the estimator
¼ bi � 0ffiffiffiffiffiffiffiffiffiffiffi

piis2y:x

q

which is a t test with v ¼ n 2 k 2 1 degrees of freedom.

Setting a confidence interval for bi

CI1�a: Estimate+ ta=2,y (Standard error of estimator)

or

bi + ta=2,n�k�1

ffiffiffiffiffiffiffiffiffiffiffi
piis2y:x

q

Using the same data we used throughout our discussion of multiple regression, we

demonstrate these procedures in an example.

Example 14.1. Inference About Partial Regression Coefficients

Among people living in the United States, both age and weight are known to have positive

linear associations with systolic blood pressure. However, the numerical values of the partial

regression coefficients are not the same from region to region or from one ethnic group to

another. Most physicians are familiar with the situation in North America and anticipate

finding positive linear associations in another geographical region and culture such as the

West Indies but likely would be unable to predict whether the bi would be greater or lesser

than those found in the United States.

From the analyses already conducted on the data obtained from sevenWest Indian women,

the original augmented matrix of sums of squares and products is

½X j Y j I� ¼ S11 ¼ 1536 S12 ¼ 576

S21 ¼ 576 S22 ¼ 390

S1y ¼ 2257

S2y ¼ 893

����
���� 1 0

0 1

� �

along with its inverse

½I j B j X�1� ¼ 1 0

0 1

b1 ¼ 1:368916
b2 ¼ 0:267960

����
���� p11 ¼ 0:001459 p12 ¼ �0:002155
p21 ¼ �0:002155 p22 ¼ 0:005747

� �

and the ANOVA table used in testing H0: b1 ¼ b2 ¼ 0:

Source df SS MS F

Due to

regression

k ¼ 2 b1S1y þ b2S2y ¼ 3328.932 1664.466 22.262

Deviations n 2 k 2 1 ¼ 4 3628 2 3328.932 ¼ 299.068 MSe ¼ 74.767
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As already noted, F . F05;k,n2k 2 1; thus there is a significant linear regression of systolic

blood pressure (y) on age (x1) or on weight (x2) or on both age and weight. The physician

knows it is possible to construct a linear equation for predicting systolic blood pressure but

does not know whether the reliability of the equation depends on x1, x2, or both these

independent variables.

The estimated partial regression coefficients b1 and b2 can be interpreted as partial slopes.

The coefficient b1 ¼ 1.368916 indicates that when age (x1) increases by one year and weight

(x2) is held constant, on the average systolic pressure increases by 1.368916 mmHg. Similarly

for b2. However, one must be cautious about directly comparing b1 and b2; the first is

measured in millimeters per year and the second in millimeters per kilogram. Because of the

difference in units of measurement, the fact that b1 is more than four times greater than b2 does

not mean that x1 is more important in the prediction equation than is x2. Also, if x1 and x2 are

completely independent (unrelated to each other), the partial regression coefficients would be

the same as the simple regression coefficients, which would be computed if y were regressed

on x1 and x2 one at a time. However, age and weight are frequently interrelated, and in

multiple regression one can usually expect to find such collinearity among the independent

variables. While an x variable can be held fixed in the statistical sense, it may not be possible

to do so in the real world. Thus it may be impossible to set up a factorial experiment in which

there is every combination of the numerical values of x1 and x2, but by using multiple

regression analysis, one can still examine the linear effect on y of each xi independent of the

other x variables in the model.

The contribution of each x to the model is determined by testing the partial regression

coefficients separately. Because positive relations between y and both x variables have been

found in studies conducted in the United States, the physician chooses a one-sided alternative

hypothesis: H0: b1 ¼ 0 against Ha: b1 . 0 is tested with

t ¼ b1 � b10ffiffiffiffiffiffiffiffiffiffiffiffiffi
p11s2y:x

q ¼ 1:368916� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001459(74:767)

p ¼ 4:145

with v ¼ n 2 k 2 1 ¼ 4 degrees of freedom. In the above equation, b10
is the value of b1

specified in the null hypothesis; b10
could be some value other than zero, and in later studies,

the physician might want to compare the regression lines obtained from his sample of West

Indian women to the values which have been found for other populations. The value p11 is the

element in the first row and column of X21, the inverse of the matrix of sums of squares and

products found in the process of solving for b1 and b2.

Similarly, H0: b2 ¼ 0 against Ha: b2 . 0 is tested with

t ¼ b2 � b20ffiffiffiffiffiffiffiffiffiffiffiffiffi
p22s2y:x

q ¼ 0:267960� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:005747(74:767)

p ¼ 0:409

For either test, the null hypothesis is rejected if t � t0.05,4 ¼ 2.132. The physician rejects

b1 ¼ 0 but does not reject b2 ¼ 0. He concludes that among these women age (x1) is

significantly associated with systolic blood pressure, but perhaps because of an unrealistically

small sample, he is unable to detect any significant effect due to weight (x2). If the physician

wants a prediction equation, so that a woman’s actual blood pressure can be compared to that

expected for her age and weight, the statistical significance of b1 indicates that age should be
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in the prediction equation, but this analysis provides no statistical justification for including

weight in the equation.

There are equivalent F tests for testing H0: bi ¼ 0 against Ha: bi = 0, and some computer

programs may provide these F tests in their printout rather than the t tests just examined.

Because a t value with v degrees of freedom which is squared is equivalent to an Fwith 1 and v

degrees of freedom, that is, t2v ¼ F1,v, the F test is

F ¼ t2 ¼ b2i
piis2y:x

¼ b2i
piiMSe

A computer printout with F tests might appear as

Rsquare 0.9176

Average 145.00

MS Error 74.77

N 7

ANOVA

Source df MS F-Test P-value

Regression 2 1664.47 22.2620 0.0068

Error 4 74.77

Term Coefficient SS F-Test P-value

Age 1.3689 1284.1907 17.1759 0.0143

Weight 0.2680 12.4936 0.1671 0.7076

There is a significant linear relationship between age and systolic blood pressure, and

among these women, on the average, systolic blood pressure increases 1.369 mm Hg with

each year increase in age. However, because this is only an estimate based on data obtained

from just 7 women, the physician needs to set a confidence interval to determine for the entire

population how small or large may be the increase in systolic pressure per year of age. A

central confidence interval is obtained as follows:

CI1�a: bi + ta=2,n�k�1

ffiffiffiffiffiffiffiffiffiffiffi
piis2y:x

q

Thus the 95% confidence interval for b1 would be

CI0:95: b1 + t0:025,4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11MSe

p

and with the appropriate numerical values replacing their symbols

CI0:95: 1:369+ 2:776
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001459(74:767)

p
1:369+ 2:776(0:330)

1:369+ 0:917

This confidence interval is quite wide and very likely would be of limited direct use. However,

the expected linear relationship between age and systolic blood pressure has been confirmed
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in this population of West Indian women, and the physician can proceed with a study

involving more women, and he can anticipate obtaining a prediction equation which will be

useful in clinical practice.

Procedure. Inference about Individual Partial Regression Coefficients

In making statistical inference about an estimate, it is also necessary to compute the estimated

standard error of the estimate. In this case, the estimate is the partial regression coefficient and

its standard error is
ffiffiffiffiffiffiffiffiffiffiffi
piis2y:x

q
, which is the same as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piiMSe

p
. We use the estimate and its

standard error to perform a t test,

t ¼ Estimate� Hypothesized value

Standard error of the estimator

or set a confidence interval for a parameter,

Estimate+ ta=2,v (Standard error)

Test of Hypothesis for Partial Regression Coefficient bi

H0: bi ¼ bi0
against Ha: bi = bi0

is tested with

t ¼ bi � bi0ffiffiffiffiffiffiffiffiffiffiffi
piis2y:x

q

with v ¼ n 2 k 2 1 and in which pii is the ith diagonal element of X21, the inverse of the

matrix of sums of squares and products. The test of H0: bi = bi0
against Ha: bi = bi0

can

also be carried out using

F ¼ b2i
piis2y:x

with v1 ¼ 1 and v2 ¼ n 2 k 2 1; it is equivalent to the above t test.

Confidence Intervals for Partial Regression Coefficients

CI1�a: bi + ta=2,n�k�1

ffiffiffiffiffiffiffiffiffiffiffi
piis2y:x

q

Other Inference about Partial Regression Coefficients

In addition to tests of hypothesis and confidence intervals for individual bi , other types of

inference are possible within a multiple regression analysis. For example, if two or more of the

xi have the same units of measurement, there could be reason for comparing the average

increase y per unit increase in these xi by testing the equality of two partial regression

coefficients or by setting confidence intervals for the difference between bi 2 bj. In either

case, the estimated standard error for the difference between two regression coefficients will be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( pii þ pjj � 2pij)s2y:x

q
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so we can test H0: bi ¼ bj against Ha: bi = bj with

t ¼ bi � bjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(pii þ pjj � 2pij)s2x:y

q

or set a confidence interval for their difference with

CI1�a: (bi � bj)+ ta=2,n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( pii þ pjj � 2pij)s2y:x

q

The term22pij in the standard error is due to the possible linear relationship between xi and xj.

It is also possible to make tests of hypotheses or find confidence intervals for the estimates

obtained using the fitted equation

ŷy ¼ aþ b1x1 þ � � � þ bkxk

Given the specific values x1 ¼ x1
�, x2 ¼ x2

�, . . . , xk ¼ xk
�, the standard error of the estimate is

s.e:( ŷy) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2y:x

1

n
þ
X
i

X
j

pij(x
�
i � �xxi)(x

�
j � �xxj)

" #vuut

For example, if we want a 95% confidence interval for the mean systolic blood pressure of all

West Indian women whose age is x1
� ¼ 45 years and whose weight is x2

� ¼ 50 kg, the

estimate is

ŷy ¼ 52:234þ 1:369(45)þ 0:268(50) ¼ 127:239

and the 95% confidence interval for the value which this estimates, E(yjx1 ¼ 45, x2 ¼ 50) is

CI0.95: ŷy+ t0:025,4(s.e.), where

s.e.(ŷy) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2y:x

1

n
þ p11(x

�
1 � �xx1)

2 þ 2p12(x
�
1 � �xx1)(x

�
2 � �xx2)þ p22(x

�
2 � �xx2)

2

� �s

So the confidence interval is

127:239+ 277½(s.e.ð ŷy)�

where

s.e:( ŷy) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74:767

1

7
þ0:001459(45�57)2þ3(� 0:002155)(45�57)(50�55)þ0:005747(50�55)2

� �s

or

127:239+ 11:711
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that is,

115:528 � E(y j x1 ¼ 45, x2 ¼ 50) � 138:950

If an individual y is predicted, the point estimate is ŷy and the prediction interval is

PI1�a: ŷy+ ta=2,n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2y�x 1þ 1

n
þ
X
i

X
j

pij(x
�
i � �xxi)(x

�
j � �xxj)

" #vuut

Because the complexity of these standard errors increases with additional independent

variables, we do not want to include in the model x variables that provide little or no additional

information about the y variable. In a later section, we show how to simplify the prediction

equation by eliminating those x variables that contribute little to the reliability of the

prediction.

EXERCISES

14.3.1. In Exercise 14.2.3 on lake biomass:

a. Place a 95% confidence interval on b1.

b. Place a 90% confidence interval on b2.

c. Test b1 ¼ 0 and b2 ¼ 0 separately and interpret the results.

d. Estimate the mean population density of the algae in a lake with an acidity

measurement of 2000 and a phosphorous measurement of 860. Place a 95%

confidence interval on this estimate.

e. Place a 95% prediction interval on the estimate in part d.

14.3.2. Using the example in Exercise 14.2.1, show that the F statistic to testH0: b1 ¼ b2 ¼ 0

can be computed from the multiple correlation coefficient

F ¼ R2=k

(1� R2)=(n� k � 1)

14.3.3. In Exercise 14.2.2 on grazing animals:

a. What are the estimates of b1 and b2?

b. Place a 95% confidence interval on each of the regression coefficients.

14.3.4. In his original study of regression, Francis Galton computed the simple regression of

adult sons’ heights (y) on their fathers’ heights (x1) and in another equation on their

mothers’ heights (x2). Suppose he had been able to use multiple regression and had

obtained the following (fictional) ANOVA printout. Use the printout data to answer

the questions.

Rsquare 0.3325

Average 70.25

MS Error 43.796

N 27
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ANOVA

Source df MS F-Test P-value

Regression 2 327.511 7.4781 0.0030

Error 24 43.796

Term Coefficient SS F-Test P-value

Mother 0.3896 339.8492 7.7598 0.0103

Father 0.3504 265.2569 6.0567 0.0214

a. What fraction of the variability among height of sons can be attributed to

inheritance or other familial factors?

b. Show how to compute the F used to test:

i. H0: bM ¼ bF ¼ 0 (the subscript M indicates mother and F father)

ii. H0: bF ¼ 0

c. What would be the predicted adult height of their newborn son if:

i. The mother is average height for women and the father is 6 inches taller than

the average height for men.

ii. The mother is 6 inches taller than the average height for women and the father

is the average height for men.

d. Assuming there is no change in average height between generations, if the mother

is the average height for women, why will the son’s height be predicted to be

nearer to average male height than is his father’s height? (Galton called this

“regression toward the mean.”)

14.4. COMPUTER USAGE

Multiple Regression

In the SAS System multiple regression is programmed similarly to simple linear regression, as

can be seen in the following example. World Health Organization physicians have noted

unusually large incidences of hypertension (high blood pressure) in certain communities in the

Antilles Islands. A physician at a clinic on one of these islands uses data from a random

sample of 30 of his women patients to examine some of the factors which may be related to

their blood pressure. Among other data available, he has the age in years, weight in kilograms,

and systolic blood pressure in millimeters of mercury for each woman in the sample.

A SAS data set is formed, all simple correlation coefficients are computed, and multiple

regression is performed using the following SAS program:

DATA PATIENTS;
INPUT AGE WT SYSTOLIC @@;
CARDS;

21 67 116 30 53 122 72 64 212 46 49 135
48 47 131 28 44 123 19 63 96 26 55 113
21 59 111 49 43 134 46 69 164 33 56 123
38 43 141 60 44 160 42 48 128 64 63 171
76 48 176 20 63 139 71 60 177 69 49 185
30 49 110 53 52 157 47 64 173 63 50 162
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26 48 108 22 58 122 59 49 154 48 50 139
27 60 132 21 68 128

;

PROC CORR;

PROC REG;

MODEL SYSTOLIC ¼ AGE WT;

The output from PROC CORR is as follows.

The SAS System
The CORR Procedure

3 Variables: AGE WT SYSTOLIC

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

AGE 30 42.50000 18.10839 1275 19.00000 76.00000
WT 30 54.50000 8.05049 1635 43.00000 69.00000
SYSTOLIC 30 141.40000 27.25309 4242 96.00000 212.00000

Pearson Correlation Coefficients, N ¼ 30

Prob . jrj under H0: Rho ¼ 0

AGE WT SYSTOLIC
AGE 1.00000 20.24304 0.87376

0.1956 ,.0001

WT 20.24304 1.00000 0.09351
0.1956 0.6231

SYSTOLIC 0.87376 0.09351 1.00000
,.0001 0.6231

In the output, descriptive statistics are given for each variable. This is followed by a

square array containing the sample correlation coefficient r for each pair of variables. The

probability that the sample correlation coefficient is greater than the absolute value of r if the

population correlation coefficient r is equal to zero is given under each r value. This probability

is the P value which can be used to test whether the population correlation coefficient is zero.

PROG REG is used for multiple regression. The model statement is of the form

y ¼ x1 x2, where y is the dependent variable and x1 and x2 are two independent variables.

In this example SYSTOLIC is the dependent variable and AGE and WT are the independent

variables. The output is as follows:

The SAS System

The REG Procedure
Model: MODEL1

Dependent Variable: SYSTOLIC

452 MULTIPLE REGRESSION AND CORRELATION



Analysis of Variance

Source DF
Sum of
Squares Mean Square F Value Pr . F

Model 2 18586 9292.89261 84.96 ,.0001
Error 27 2953.41479 109.38573
Corrected
Total 29 21539

Root MSE 10.45876 R-Square 0.8629
Dependent Mean 141.40000 Adj R-Sq 0.8527
Coeff Var 7.39658

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr . jtj

Intercept 1 20.48318 15.50504 1.32 0.1976
AGE 1 1.43391 0.11057 12.97 ,.0001
WT 1 1.10047 0.24870 4.42 0.0001

The significance of the multiple regression model is tested with the F Value and its

corresponding P value (Pr . F). In this case F ¼ 84.96 with P , 0.0001, so this model is a

good predictor of systolic blood pressure. The R� Square of 0.8629 indicates that 86.29%

of the variability in systolic blood pressure is explained by this model.

The Adj R-Sq, the adjusted R 2, is a version of R 2 that has been adjusted for degrees of

freedom, that is, for the number of independent variables in the model. The equation for

Adj R-Sq is

R2
adj ¼ 1� (1� R2)(n� 1)

n� k � 1

Since R 2 will always increase when additional independent or regressor variables are

added to the model, this statistic makes it possible to compare models which contain different

numbers of independent variables.

The estimate of the constant (Intercept) and the partial regression coefficients follow.

The standard error of each of the estimates is the same as that used in the denominator of the t

test discussed in the previous section. The output contains the computed t (t Value) and its

corresponding P value (Pr . jtj).
The SAS program can be modified to provide output which can be used to examine the

residuals as discussed in Section 9.2:

PROC REG DATA ¼ PATIENTS;
MODEL SYSTOLIC ¼ AGE WT/NOPRINT;
OUTPUT OUT ¼ GRAPHS P ¼ PRED_Y R ¼ RESID;

PROC PLOT DATA ¼ GRAPHS;
PLOT RESID�PRED_Y/VREF ¼ 0;
PLOT RESID�AGE/VREF ¼ 0;
PLOT RESID�WT/VREF ¼ 0;

In this program the regular output from PROG REG is suppressed by using the option

NOPRINT in the MODEL line. The OUTPUT line directs the output to a data file named
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GRAPHS (or any other file name we would designate) and in that file the predicted y values (P)
will be called PRED Y (or any other name we designate) while the residuals (R) will be called
RESID (or any other name we designate).

PROC PLOT is then applied to the data in GRAPHS and the following three graphs are printed.

TheoptionVREF ¼ 0 in thePLOT statementswill cause ahorizontal reference line tobeprintedon

the graphs at zero on the vertical scale:

If the multiple regression model is good for prediction, predicted values can be computed

for the independent values in the data set as well as for other values of the independent

variables. For example, if an estimate of systolic blood pressure is desired for a woman of age

31 and weight 55 kg, the following SAS program can be used:

DATA NEW;
INPUT AGE WT SYSTOLIC;
CARDS;

31 55.
;
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DATA BOTH;
SET PATIENTS NEW;

PROC REG DATA = BOTH;
MODEL SYSTOLIC = AGE WT/CLM CLI;

The output follows.

The SAS System

The REG Procedure
Model: MODEL1

Dependent Variable: SYSTOLIC
Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr . F

Model 2 18586 9292.89261 84.96 ,.0001
Error 27 2953.41479 109.38573
Corrected
Total 29 21539
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Root MSE 10.45876 R-Square 0.8629
Dependent Mean 141.40000 Adj R-Sq 0.8527
Coeff Var 7.39658

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr . jtj

Intercept 1 20.48318 15.50504 1.32 0.1976
AGE 1 1.43391 0.11057 12.97 ,.0001
WT 1 1.10047 0.24870 4.42 0.0001
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The REG Procedure
Model: MODEL1

Dependent Variable: SYSTOLIC

Output Statistics

Obs
Dep Var
SYSTOLIC

Predicted
Value

Std Error
Mean

Predict 95% CL Mean
1 116.0000 124.3269 3.9204 116.2829 132.3709
2 122.0000 121.8255 2.4385 116.8221 126.8288
3 212.0000 194.1547 4.8593 184.1842 204.1253
4 135.0000 140.3661 2.3259 135.5938 145.1384
5 131.0000 141.0329 2.6351 135.6261 146.4398
6 123.0000 109.0534 3.8821 101.0879 117.0188
7 96.0000 117.0572 3.4923 109.8916 124.2229
8 113.0000 118.2908 2.6229 112.9090 123.6725
9 111.0000 115.5231 3.0424 109.2806 121.7657
10 134.0000 138.0650 3.3680 131.1543 144.9756
11 164.0000 162.3755 4.1808 153.7973 170.9538
12 123.0000 129.4286 2.1675 124.9812 133.8760
13 141.0000 122.2920 3.5729 114.9610 129.6229
14 160.0000 154.9384 3.4283 147.9041 161.9727
15 128.0000 133.5300 2.5112 128.3775 138.6825
16 171.0000 181.5830 4.0260 173.3223 189.8437
17 176.0000 182.2828 4.1314 173.8059 190.7597
18 139.0000 118.4911 3.4275 111.4585 125.5237
19 177.0000 188.3189 4.1883 179.7252 196.9127
20 185.0000 173.3459 3.4863 166.1927 180.4991
21 110.0000 117.4236 2.8890 111.4958 123.3513
22 157.0000 153.7048 2.2427 149.1032 158.3065
23 173.0000 158.3071 3.1698 151.8033 164.8109
24 162.0000 165.8430 2.9670 159.7551 171.9308
25 108.0000 110.5875 3.3198 103.7757 117.3992
26 122.0000 115.8566 2.9296 109.8456 121.8675
27 154.0000 159.0069 2.7627 153.3383 164.6754
28 139.0000 144.3344 2.2221 139.7750 148.8937
29 132.0000 125.2270 2.7046 119.6777 130.7764
30 128.0000 125.4274 4.0854 117.0449 133.8099
31 . 125.4603 2.2807 120.7807 130.1399

The REG Procedure
Model: MODEL1

Dependent Variable: SYSTOLIC

Output Statistics

Obs 95% CL Predict Residual
1 101.4092 147.2446 28.3269
2 99.7903 143.8606 0.1745
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3 170.4920 217.8175 17.8453
4 118.3822 162.3499 25.3661
5 118.9027 163.1632 210.0329
6 86.1631 131.9436 13.9466
7 94.4329 139.6816 221.0572
8 96.1666 140.4149 25.2908
9 93.1740 137.8723 24.5231
10 115.5201 160.6098 24.0650
11 139.2649 185.4862 1.6245
12 107.5130 151.3442 26.4286
13 99.6147 144.9692 18.7080
14 132.3553 177.5215 5.0616
15 111.4605 155.5995 25.5300
16 158.5884 204.5777 210.5830
17 159.2096 205.3560 26.2828
18 95.9086 141.0737 20.5089
19 165.2026 211.4353 211.3189
20 150.7255 195.9663 11.6541
21 95.1603 139.6868 27.4236
22 131.7574 175.6523 3.2952
23 135.8835 180.7306 14.6929
24 143.5365 188.1494 23.8430
25 88.0727 133.1022 22.5875
26 93.5710 138.1421 6.1434
27 136.8112 181.2025 25.0069
28 122.3957 166.2730 25.3344
29 103.0615 147.3926 6.7730
30 102.3887 148.4661 2.5726
31 103.4964 147.4242

The REG Procedure
Model: MODEL1

Dependent Variable: SYSTOLIC

Sum of Residuals 0
Sum of Squared Residuals 2953.41479
Predicted Residual SS (PRESS) 3844.53556

14.5. MODEL FITTING

The object of model fitting is to obtain the simplest model that will adequately fit the data for

prediction purposes. There may be many independent or regressor variables (xi) which could

logically be included in the model. However, some may be difficult or expensive to obtain,

and certainly, as we noted in the previous section, they will increase the complexity of the

standard errors of the estimates when they are included in the model. Thus, to be included in

the model, a regressor variable should contribute significantly to the accuracy of estimation.

This section will examine the process of choosing among many possible independent

variables, a suitable set to be retained in the model.
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We have already discussed procedures for testing the significance of each bi in the model, but

it is possible for an independent variable to have a significant linear relationship with the y

variable and still not be especially useful for prediction purposes, so criteria other than statistical

significance are needed in the model-fitting process. Briefly stated, for an xi to be included in the

model, it must simultaneously increase the sum of squares due to regression (SSR ¼
X

biSiy)

and reduce the mean-square error (MSe) for the model which is chosen. As a consequence of the

use of least-squares procedures, except when bi ¼ 0, both SSR ¼
X

biSiy and R 2 ¼ SSR/Syy
will increasewith the addition of another xi to the prediction equation (see Figure 14.2). However,

the behavior ofMSe is more complex. The mean-square error for any givenmodel is computed as

MSe ¼ Syy � SSR

n� k � 1

Thus, when an additional regressor variable is included in themodel, it increases SSR tomake the

numerator smaller, but at the same time, it increases the numerical value of k by one unit, causing

the denominator also to be smaller. Hence, if the new variable does not explain very much of the

variability in y, the decrease in the numerical value of the numerator of the above equation

(Syy 2 SSR) may be proportionally less than the decrease in the numerical value of

the denominator (n 2 k 2 1). Then, as a consequence, the error mean square (MSe) for the

model will be greater with the additional regressor variable than it would have been without it

(see Figure 14.3).

In model fitting, as a new regressor is added to or deleted from the model, the experimenter

must monitor the relative changes in R 2 and MSe. Referring again to Figures 14.2 and 14.3,

the ideal model is the one with the set of k predictor variables which occurs at the “knee” of

the R 2 curve, the point at which a new predictor variable will not appreciably increase the

numerical value of R 2. Similarly, it is that set which produces the minimum MSe in Figure

14.3. However, there is no guarantee that the same set of independent variables will provide

the optimum value on each of the respective curves. In an attempt to manage this problem, in

the output of SAS model-fitting programs, there is a statistic that takes into account the

relative changes in k, SSR, and MSe. It is Mallow’s Cp statistic, which will appear in SAS

FIGURE 14.2. R 2 as a function of the number of independent variables.
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output as C(p) and is obtained from the equation

Cp ¼ Syy � SSR

Full model MSe
� nþ 2p

where p is the number of estimates of parameters in the prediction equation, including the

estimate of the intercept a. The equation indicates that as p increases Cp will also increase

unless there is an offsetting increase in SSR. If there is an x variable in the model which does

not contribute much to prediction, it will increase the value of p but not greatly affect the

numerical value of SSR and consequently will cause a larger value of Cp. Thus, when

comparing different prediction equations, or models, we choose that which has the smallest

numerical value of Cp. In some computer programs, the adjusted coefficient of determination

(R2
adj) is used in similar fashion to gauge whether the increase in SSR warrants the expense of

increasing k. However, to keep the discussion from becoming too protracted, only the Cp

statistic will be demonstrated here.

There are many computer programs for model fitting, but most tend to follow one of two

approaches. Some begin with the full model, an equation containing all the regressor variables

involved in the study, and then delete those which contribute little to prediction. Another

approach is to begin with a prediction equation containing only one independent variable and

then to continue to add other x variables so long as they improve the predictive ability of the

equation. Both approaches require considerable computation and properly should be thought

of as computer routines. To remove any mystery about what is being done by the computer,

we will use both procedures on the small data set concerning systolic blood pressure of West

Indian women.

First we will examine backward elimination, a step-down procedure in which the

investigator begins with a full model containing all possible regressor variables, and the xi are

eliminated one by one as it is determined that they contribute little to the model. When we first

performed the multiple regression analysis, we found that systolic blood pressure has a

significant linear relationship with age (x1) but not with weight (x2). That in itself provides

FIGURE 14.3. Mean-square error as a function of the number of independent variables.
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evidence that, at least for this limited data set, weight does not contribute to the prediction of

systolic pressure and should be eliminated from the model. However, let us also examine the

information provided by R 2, MSe, and Cp:

Full Model (x1 and x2) Model with x1 Alone

R2 ¼ SSR

Syy

3328:93

3628:00
¼ 0:918

3316:44

3628:00
¼ 0:914

MSe ¼ Syy � SSR

n� k � 1

3628� 3328:93

7� 2� 1
¼ 74:767

3628� 3316:44

7� 1� 1
¼ 62:312

Cp ¼ Syy � SSR

Full Model MSe
� nþ 2p

299:068

74:767
� 7þ 2(3) ¼ 3:00

311:562

74:767
� 7þ 2(2) ¼ 1:17

We note that R 2 is larger for the full model than it is for the model containing x1 alone, but

the increase is only 0.004. When we recall that 100(R 2) ¼ percentage of Syy explained by the

model, we can see that the full model explains only 0.4% more of the variability in y than does

a model containing x1 alone. Thus in this situation there is no advantage in using the model

with age and weight as regressor variables when such a model is so little better than that

containing only age as a regressor. This conclusion is further substantiated by examination of

the numerical values of MSe. When k is the number of regressors in the model, MSe ¼ SSe/
(n 2 k 2 1) may be smaller for a model containing only a few xi than it is for the full model,

and that is indeed the case for this data set; for the full model MSe ¼ 74.767, but it is only

62.312 for the model containing just x1. For prediction purposes, we generally choose the

model with the smallest MSe, hence that containing x1 alone.

Mallow’s Cp statistic will be discussed only briefly, but recall that it takes into account the

number of regressor variables in the model under consideration. When we examine the

equation for this statistic, we can see that for the full model Cp will always be equal to

p ¼ k þ 1, but in situations such as ours, where SSR is so nearly the same for a model in

which k ¼ 1 as it is in the full model with k ¼ 2, Cp will be smaller for the model containing

only age as a regressor. In general, we want to choose a model for which Cp , p. Once again,

this would lead us to choose the model containing x1 alone.

There is a cautionary note to be made with respect to the use of the Cp statistic. Remember in

Section 14.1 there was discussion of the linear model and the assumption that the 1’s are IND(0,

s2).When theCp statistic is computed, the variance of the 1’s is assumed to be well estimated by

the fullmodelMSe; symbolicallywe express this asE(Full modelMSe) ¼ s2. However, we have

already noted that full modelMSe can be too large if there aremany useless predictor variables in

the model, and in such a situation the full model MSe is a biased overestimate of s2. If the

denominator in the equation for computing Cp is a seriously inflated overestimate of s2, then the

relative sizes of the Cp values of two different models may not adequately reflect the real

magnitude of the difference in their respective usefulness in prediction.

Example 14.2. Model Building by Backward Elimination

The phantom midge, genus Chaoborus, resembles the mosquito in appearance but not in

bloodsucking behavior. Swarms of adult chaoborids are a familiar sight along the shoreline of

lakes and other bodies of fresh water, but a great portion of the life cycle is spent in the water

in the larval stage. The larva burrows into the sediment at the bottom of a lake or pond and
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remains there during the daylight hours. At night it migrates vertically toward the surface to

feed on the fauna in the plankton layer. The larva is itself prey for larger animals and

consequently has an important role in the food chain of freshwater fish.

Man-made lakes and other water impoundments seem to create good habitats for

chaoborids, so much so that they can become a nuisance. They seem to be little affected by the

brackish nature of such water; the reduced oxygen content may even be favorable for an

increase in population density. The steep banks and greater depths of man-made

impoundments also seem to favor the genus.

To learn more about the contribution of various environmental factors to the habitat of

Chaoborus larvae, a team of biologists make a study of a recreational lake that was created by

damming a small stream. The lake has a surface area of approximately 20 hectares, and to

obtain random samples from it, a grid was superimposed on a map of the lake and 30 random

sampling points are taken on the grid. Bymeans of surveying equipment, these sampling points

are located on the lake. The following variables are measured at each sampling point:

x1: The depth of the lake at the sampling point, measured to the nearest decimeter

(recorded in meters).

x2: The brackishness (conductivity) of the water, measured from a sample taken at the

bottom (recorded in mhos per decimeter).

x3: The dissolved oxygen (milligrams per liter) in the water sampled from the lake

bottom.

y: The number of Chaoborus larvae collected in a grab sample of the sediment at the

sampling point. The sampling device collected sediment from an area of

approximately 225 cm2 of lake bottom.

A SAS data set is created as follows:

DATA LARVAE;

INPUT MIDGES DEPTH BRACK OXY;

CARDS;

35 8.4 8.0 1.0
10 2.0 6.5 8.5
9 3.5 6.2 6.5
30 10.4 5.0 1.5
20 6.5 6.5 7.5
23 6.2 7.3 4.5
28 12.4 6.4 4.0
8 7.0 6.0 10.0
29 5.8 6.1 3.0
4 3.0 5.4 11.0
18 6.0 7.3 4.5
14 5.5 6.6 5.5
32 9.0 6.5 2.5
6 1.1 5.8 7.0
25 4.3 7.8 3.3
19 9.7 6.7 9.1
39 11.6 4.9 1.2
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2 2.6 6.6 13.1
22 2.9 7.4 1.3
26 3.4 6.6 3.0
6 5.8 7.7 10.3
27 3.6 6.2 1.3
12 6.0 5.1 6.8
23 8.0 5.1 5.3
19 4.4 7.1 3.2
29 8.7 6.5 4.4
20 3.0 5.3 6.2
36 12.1 6.8 2.2
24 9.3 7.6 5.2
26 11.0 5.6 2.2
;

In the SAS System backward elimination is performed by the following program:

PROC REG DATA ¼ LARVAE;

MODEL MIDGES ¼ DEPTH BRACK OXY/METHOD ¼ BACKWARD;

The output is

The SAS System

The REG Procedure
Model: MODEL1

Dependent Variable: MIDGES

Backward Elimination: Step 0

All Variables Entered: R-Square ¼ 0.8747 and C(p) ¼ 4.0000
Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr . F

Model 3 2557.76659 852.58886 60.48 ,.0001
Error 26 366.53341 14.09744
Corrected
Total 29 2924.30000

Variable
Parameter
Estimate

Standard
Error Type II SS F Value Pr . F

Intercept 22.10575 5.98047 192.61068 13.66 0.0010
DEPTH 1.20575 0.23583 368.50263 26.14 ,.0001
BRACK 0.33781 0.80394 2.48916 0.18 0.6778
OXY 22.19334 0.23340 1244.93069 88.31 ,.0001

(continued )
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Variable
Parameter
Estimate

Standard
Error Type II SS F Value Pr . F

Intercept 22.10575 5.98047 192.61068 13.66 0.0010
DEPTH 1.20575 0.23583 368.50263 26.14 ,.0001
BRACK 0.33781 0.80394 2.48916 0.18 0.6778
OXY 22.19334 0.23340 1244.93069 88.31 ,.0001

Bounds on condition number: 1.1983, 10.236

Backward Elimination: Step 1

Variable BRACK Removed: R-Square ¼ 0.8738 and C(p) ¼ 2.1766

Analysis of Variance

Source DF
Sum of
Squares Mean Square F Value Pr . F

Model 2 2555.27743 1277.63872 93.48 ,.0001
Error 27 369.02257 13.66750
Corrected
Total 29 2924.30000

Variable
Parameter
Estimate

Standard
Error Type II SS F Value Pr . F

Intercept 24.41452 2.32524 1506.77478 110.25 ,.0001
DEPTH 1.19268 0.23018 366.94032 26.85 ,.0001
OXY 22.20414 0.22842 1272.64766 93.11 ,.0001

Bounds on condition number: 1.1775, 4.7098

All variables left in the model are significant at the 0.1000 level.

Summary of Backward Elimination

Step

Variable

Removed

Number

Vars In

Partial

R-Square

Model

R-Square C(p) F Value Pr . F

1 BRACK 2 0.0009 0.8738 2.1766 0.18 0.6778

When the SAS printout is examined, it is seen that there is a Step 0 and a Step 1.

Step 0: the analysis of the full model

This is identified as Step 0 because no regressors have been eliminated, in other words, the full

model. There is a test of H0: b1 ¼ b2 ¼ b3 ¼ 0, the hypothesis that the regression hyperplane

is nonsignficant. The test of this hypothesis is given in the F test for Model, where the

computed value F ¼ 60.48 has a P , 0.0001. For any conventional a level, the null

hypothesis is rejected, so it is obvious that if the prediction equation is based on all three

regressor variables, it is significant. For the full model, R 2 ¼ 0.8747; hence depth (x1),

conductivity (x2), and oxygen (x3) together can account for 87.47% of the variability in midge
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larval density (y). However, this F test does not indicate whether all of the regressor variables

are needed for a prediction equation. Instead, it is necessary to examine the tests of

significance for the individual partial regression coefficients in order to determine their

relative importance in explaining Chaoborus larval density.

Hypothesis Coefficient (bi) Standard Error (s.ei.) F ¼ (bi/s.ei.)
2 P value

b1 ¼ 0 b1 ¼ 1.2058 s.e1. ¼ 0.2358 26.14 ,0.0001

b2 ¼ 0 b2 ¼ 0.3378 s.e2. ¼ 0.8039 0.18 0.6778

b3 ¼ 0 b3 ¼ 22.1933 s.e3. ¼ 0.2334 88.31 ,0.0001

From these tests, it is seen that x2 (conductivity or brackishness) adds no significant

predictive ability to a multiple regression equation which already contains x1 (depth) and x3
(oxygen). Thus it can be dropped from the equation. However, when this is done in Step 1,

new values will be computed for b1 and b3. These coefficients will be different because, once

x2 has been excluded, none of the least-squares computations will take into account the

covariability between x1 and x2 or that between x3 and x2.

The Type II sums of squares given in this analysis are sometimes called partial sums of

squares, meaning the added variability explained by adding a regressor to a model which

already contains the other k 2 1 regressors. Thus the Type II SS for conductivity (BRACK)
is the additional variability explained by adding x2 to a model which already contains x1 and

x3. Similarly, the Type II SS for oxygen (OXY) provides the additional variability explained
by adding x3 to a model which already contains x1 and x2. These sums of squares confirm that

very little additional variability in larval density is explained by adding BRACK to a model

already containing DEPTH and OXY.

Step 1: the analysis of the model with one regressor eliminated

The first information provided in this step is identification of the variable which has been

removed, and the rest of the printout consists of a multiple regression analysis on those

variables which are retained. Without x2 (brackishness), the regression plane is still

significant; in fact the computed value of F is even larger than it was for the full model. The

larger value of F can be explained by the fact that, when compared to the full model, the

reduced model shows a numerical value of SSR which is almost the same as it was for the full

model, along with a smaller k and a smaller MSe:

Full Model (x1, x2, and x3) Reduced Model (x1 and x3)

Regression SS (SSR) 2557.7666 2555.2774

Mean-square error (MSe) 14.0974 13.6675

Number of regressors (k) 3 2

F ¼ SSR=k

MSe
60.48 93.48

There are other comparisons that can be made between the two models. When the values of

Cp are computed, for the full model it is the anticipated value of k þ 1 ¼ 4.00, but for the

reduced model, it decreases to 2.18. Furthermore, for the reduced model, R 2 ¼ 0.8738 is just

slightly smaller than it was for the full model; the difference occurs only in the third decimal

place. The last information given in the printout (Summary) is the difference in the two
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numerical values of R 2 along with a test to see whether there is a significant reduction in R 2 as

a consequence of reducing the model:

F ¼ (R2
f � R2

r )=(kf � kr)

(1� R2
f )=(n� kf � 1)

¼ 0:8747� 0:8738

(1� 0:8747)=26
¼ 0:18

where the subscripts f and r represent the full and reduced model, respectively.

Based on the information provided in Step 1, all indicators provide evidence that the

reduced model is superior to the full model. The numerical values of MSe and Cp are smaller

for the reduced model than for the full one; SSR and R 2 are little changed from their

corresponding values in Step 0, and there is a test of significance showing that when x2 is

eliminated from the model, the decrease in R 2 is not significant. Hence the biologists learn

they can explain larval density quite effectively without having to use measurements on water

conductivity, or brackishness.

The next question to be addressed is whether other regressors can also be eliminated from

the model, and the answer is provided in the tests of hypotheses for the partial regression

coefficients which are provided in Step 1. The F tests for b1 (the regression of midge density

on depth) and b3 (the regression of density on oxygen) are both significant at the 0.0001 level.

Because the two x variables remaining in the model are significant, neither can be eliminated.

Hence the computer routine automatically stops at this point. If a second variable could have

been eliminated, there would have been a Step 2 in the printout, and the process would

continue to Step 3 and so on until all remaining regressor variables are significant. In the end,

the model to be chosen for explaining larval density is that which uses the coefficients given in

the last step of the routine. In this example those would be the intercept of 24.41452 and the

partial regression coefficients of 1.19268 and 22.20414 for depth and oxygen, respectively.

Because the variable which was originally designated as x2 is no longer in the model, after

rounding to fewer decimal places, the prediction equation can be reported as

y ¼ 24:415þ 1:193x1 � 2:204x2

where x1 represents depth and x2 now represents oxygen.

The signs of the partial regression coefficients are important. The positive relationship

between x1 and y indicates that larval population density increases with depth of the lake when

oxygen content is held constant, whereas there is a negative association between larval count

and oxygen content of the water when depth is held constant. Prediction equations based on

depth and oxygen content would be valid, but only for the one lake studied. The important

ecological information obtained from the study on this lake is the knowledge that oxygen and

depth explain a great deal of the variability in Chaoborus population density. These are

variables that should be included in any future studies involving other lakes. Also, if the

biologists decide to conduct experiments to regulate chaoborid larval population density, they

have already identified oxygen and depth as two variables which can be used as treatment

effects in a factorial experiment.

The second computer routine is that of stepwise regression, a process of addition in which

the model is built by adding one regressor variable at a time and measuring its contribution to

the model. To demonstrate this process on the small, n ¼ 7, data set involving blood pressure
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(y), age (x1), and weight (x1) in Section 14.1, we would first compute the simple correlation

coefficients between y and the regressor variables:

ry1 ¼ S1yffiffiffiffiffiffiffiffiffiffiffiffiffi
S11Syy

p ¼ 2257ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1536(3628)

p ¼ 0:956 and

ry2 ¼ S2yffiffiffiffiffiffiffiffiffiffiffiffiffi
S22Syy

p ¼ 893ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
390(3628)

p ¼ 0:751

Then, because ry1 is the larger of the correlation coefficients, x1 would be the first regressor

variable to enter the model. We would test its significance using simple regression techniques,

and after finding it to be significant, we would then move on to the next variable to try in the

model. Because there are only two independent variables in this data set, the next to enter has

to be x2, but if there were other xi, we would have to compute the partial correlation

coefficient between y and each xi, independent of x1,

ryi:1 ¼ ryi � ry1r1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� r2yi)(1� r21i)

q

and choose as the second regressor variable that xi which yields the largest partial correlation

coefficient.

After the second regressor variable (x2) is chosen, a multiple regression analysis is

performed and the significance of each of the partial regression coefficients is tested. We have

already done this and noted the significant regression on age but not on weight. Thus, based on

the results of this multiple regression analysis, x1 is to be retained in the model but not x2.

When there are many independent variables to be evaluated in model fitting, the stepwise

procedure will continue at each stage to add an x variable to the model and then test it for

significance along with all of the others which were kept in the model at earlier stages. If they

are significant, they remain in the model; otherwise they are removed. Thus it is possible that a

specific x variable will enter the model at one stage of the process only to be removed at a later

stage. This can be explained by an example in which there are three possible regressor

variables, x1, x2, and x3, but because of collinearity among them, x1 is little more than a linear

function of x2 and x3. It is quite possible that x1 would be the first to enter the model because it

indirectly contains information about x2 and x3. However, at later stages, when x2 and x3 enter

the model, x1 no longer makes any additional contribution to the prediction of the y variable,

so it can then be removed from the model. To summarize the consequences of such

collinearity, we can say that when x2 and x3 are not known, y can be predicted on the basis of

x1 because it is closely related to x2 and x3, but if x2 and x3 are known, they are more useful in

prediction than x1.

As with the case of the backward procedure, an x variable may have a significant linear

relationship with y yet still be of little use in a prediction equation. Thus statistics such as MSe,

R 2, R2
adj, and Cp may be used in addition to the tests of significance in the ultimate choice of a

model. The only difference is the order in which they are computed. Thus, if we review all

these statistics under the stepwise procedure, we note once again that, on all accounts, for the

small data set the model containing age alone is superior to the one containing both age and

weight. When there are only a few independent variables in a data set, it is not uncommon to

arrive at the same model irrespective of whether the backward or stepwise procedure is used.
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However, this will not necessarily be the case when there are many potential regressor

variables from which to choose.

Let us note once again that both the backward and the stepwise procedures should be

thought of as computer routines. Although the computations were demonstrated on a small

data set, we did so only for the purpose of showing the computations on which the procedures

are based. Computer routines which perform these procedures are readily available, so it is

more important to interpret the results than it is to know how to do the arithmetic. So we will

now use the foregoing discussion along with the analyzed data from the study of midge larval

population density to explain how to read the computer printout for the stepwise procedure

and use it for the purpose of model building.

Example 14.3. Stepwise Method for Model Building

The research problem is the same as we discussed in Example 14.2: Biologists want to know if

measurements on water depth (x1), conductivity (x2), and oxygen content (x3) at a site in a lake

can be used to predict the number of Chaoborus larval midges to be found in the sediment at

the bottom of the lake at the same site.

In the SAS System the stepwise method is performed by the following program:

PROC REG DATA ¼ LARVAE;
MODEL MIDGES ¼ DEPTH BRACK OXY/METHOD ¼ STEPWISE;

The output is

The SAS System

The REG Procedure
Model: MODEL1

Dependent Variable: MIDGES

Stepwise Selection: Step 1

Variable OXY Entered: R-Square ¼ 0.7483 and C(p) ¼ 26.2054

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr . F

Model 1 2188.33712 2188.33712 83.26 ,.0001
Error 28 735.96288 26.28439
Corrected Total 29 2924.30000

Variable
Parameter
Estimate

Standard
Error

Type II
SS F Value Pr . F

Intercept 34.47083 1.77592 9902.74206 376.75 ,.0001
OXY 22.66360 0.29192 2188.33712 83.26 ,.0001

Bounds on condition number: 1, 1
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Stepwise Selection: Step 2

Variable DEPTH Entered: R-Square ¼ 0.8738 and C(p) ¼ 2.1766

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr . F

Model 2 2555.27743 1277.63872 93.48 ,.0001
Error 27 369.02257 13.66750
Corrected Total 29 2924.30000

Variable
Parameter
Estimate

Standard
Error Type II SS F Value Pr . F

Intercept 24.41452 2.32524 1506.77478 110.25 ,.0001
DEPTH 1.19268 0.23018 366.94032 26.85 ,.0001
OXY 22.20414 0.22842 1272.64766 93.11 ,.0001

Bounds on condition number: 1.1775, 4.7098

All variables left in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Selection

Step

Variable

Entered

Variable

Removed

Number

Vars In

Partial

R-Square

Model

R-Square C(p)

F

Value Pr . F

1 OXY 1 0.7483 0.7483 26.2054 83.26 ,.0001

2 DEPTH 2 0.1255 0.8738 2.1766 26.85 ,.0001

As was the case with the output for the backward elimination procedure, the computer

output is divided into steps, with each step identified by the number of regressor variables

added (or deleted in the case of backward elimination). Thus Step 1 begins with simple linear

regression analysis using the independent variable with the strongest correlation with the

dependent variable; Step 2 is a multiple regression analysis with two x variables, and so on as

new variables are introduced into the model.

Step 1: a prediction equation containing only one regressor

The single best independent variable to be used to predict larval count is the one which is

entered into the model first, and that is oxygen. Of the three independent variables, this is the

one with the greatest simple correlation coefficient with midge larval density (y). While the

simple correlation coefficient is not given, its square is identified in R 2 ¼ 0.7483, meaning

that 74.83% of the variability of larval density from site to site can be attributed to differences

in oxygen content of the water. Because only one regressor variable is under consideration in

Step 1, the test of the significance of the simple linear regression of larval count on oxygen is

given both in the F test for Model and for the variable OXY; hence the numerical value for

both F tests is 83.26, which is highly significant (P , 0.0001). Thus it is obvious that the

14.5. MODEL FITTING 469



oxygen content of the water has a very important effect on the number of larvae at a site.

However, the computed value of Mallow’s statistic is Cp ¼ 26.2054, which is very much

larger than p ¼ k þ 1, thereby indicating that the model can be improved by the addition of

other regressors. This is done in Step 2.

Step 2: a prediction equation containing two regressors

The printout for this step indicates that, in a model already containing oxygen, the second

most useful regressor variable is depth. This was determined by holding oxygen level constant

and finding the partial correlation coefficient between y (larval count) and the other x variables

(depth and brackishness, respectively). Although the partial correlation coefficients are not

part of the printout, that involving depth was the larger; hence that variable was selected to

come into the model at Step 2.

The improvement in the model which is due to the addition of depth as a regressor can be

seen by comparing the analyses for Steps 1 and 2. The numerical value of Cp drops

dramatically from 26.21 in Step 1 to 2.18 in the second analysis, and one of the gauges of a

useful model is for it to have a Cp value less than k þ 1. Furthermore, the addition of depth to

the control causes MSe to decrease from 26.28 in Step 1 to 13.67. This also indicates that the

model in Step 2 is superior to that containing only oxygen as a regressor. As a final measure of

the improvement in the model, it is seen that the coefficient of determination for Step 2

(R2
II ¼ 0:8738) is greater than that for Step 1 (R2

I ¼ 0:7483). The additional variability

accounted for by depth is 0.8738 2 0.7483 ¼ 12.55%. As evidenced in the summary of the

stepwise procedure, this difference in two R 2 values is significant. Thus, with respect to the

percentage of variability explained, the two-variable model is significantly better than that

containing only oxygen as a regressor.

The final action in each analysis of the stepwise procedure is to make a test of the

individual H0: bi ¼ 0. This is to determine whether variables added in prior steps are still

useful for prediction purposes after the addition of the new variable. The F values for oxygen

and depth are 93.11 and 26.85, respectively, and both have P values of less than 0.0001. Hence

both are significant and should be kept in the model.

After Step 2 is completed, a new partial correlation coefficient is computed, that between

larval density and conductivity, with both oxygen and depth held constant. If this partial

correlation was significant, there would be a Step 3 in which the third regressor would be

introduced. However, because it is not significant, the computer routine automatically stops

after Step 2.

The model chosen by stepwise regression is that which uses oxygen and depth as

regressors, the same two variables which were chosen by backward elimination. Furthermore,

the numerical values of a and the b coefficients are the same for the two procedures. However,

the bi are reversed in order because the stepwise procedure brought oxygen into the model

first. This indicates that, if the prediction of larval density should be based on only one

regressor, that variable should be oxygen, since it explains the most variability in larval

density (R2
I ¼ 0:7483). If a two-variable model is to be used, it should contain both oxygen

and depth, for these two together can explain significantly more variability ðR2
II ¼ 0:8738Þ

than does oxygen alone. However, if all three predictor variables are used, the R 2 for the full

model may be greater, but it will not be significantly greater.

In deciding which of the two procedures to use, the choice is arbitrary and largely a matter

of personal preference. Some researchers use backward elimination because they want to see

how much variability is explained by all the independent variables they included in their
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study, that is, the full model. They are less satisfied with the stepwise procedure because it

provides information only about those regressors which are significant when added to the

model. An opposite opinion is held by those who prefer the stepwise procedure because they

want to know how much variability is explained by the single best predictor variable, and

they find the backward procedure limiting because it stops the elimination process with the

first significant x variable. However, when one is using computer routines, once the data have

been entered, it is quite easy to perform more than one analysis. By using several different

options in multiple regression analysis, one can usually obtain all the information desired.

EXERCISES

14.5.1. Using the data and analyses for the Chaoborus larvae study in this section:

a. Compute the respective numerical values of R2
adj for:

i. The model containing oxygen and depth as regressors

ii. The full model containing all the independent variable

b. If R2
adj is used as the criterion for selecting the prediction equation in this study,

which model will be chosen? Explain your answer.

14.5.2. In a study of factors which contribute to successful farming, a random sample was

taken of farms of similar size and farming operations. Then for each farm and farmer

records were obtained on the following variables:

Education: the number of years of formal education of the farmer

Experience: the number of years of farming experience

Age: the age, in years, of the farmer

Profit: the profit, in dollars, of the previous 12 months of operation

The data were analyzed by stepwise regression and the following results obtained:

The SAS System

The REG Procedure

Model: MODEL1

Dependent Variable: PROFIT

Stepwise Selection: Step 1

Variable AGE Entered: R-Square ¼ 0.9865 and C(p) ¼ 114.80

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr . F

Model 1 2843978654.7533 2843978654.7533 4130.88 ,.0001

Error 44 30292610.5728 688468.4221

Corrected

Total 45 2874271265.3261

Variable

Parameter

Estimate

Standard

Error Type II SS F Value Pr . F

Intercept 2309.1045

AGE 592.2699 9.2151 2843978654.7533 4130.88 ,.0001
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Stepwise Selection: Step 2

Variable EXP Entered: R-Square ¼ 0.9918 and C(p) ¼ 82.78

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr . F

Model 2 2850550540.5368 1425275270.2684 2583.68 ,.0001

Error 43 23720724.7893 551644.7625

Corrected

Total 45 2874271265.3261

Variable
Parameter
Estimate

Standard
Error

Type II
SS F Value Pr . F

Intercept 5275.8158

EXP 197.1492 57.1189 6571885.7835 11.91 0.0013
AGE 358.2077 68.3133 15167663.2354 27.50 0.0001

Stepwise Selection: Step 3

Variable ED Entered: R-Square ¼ 0.9972 and C(p) ¼ 4.0000

Analysis of Variance

Source DF

Sum of

Squares Mean Square F Value Pr . F

Model 3 2866157182.1712 955385727.3904 4945.25 ,.0001

Error 43 8114083.1549 193192.4561
Corrected

Total 45 2874271265.3261

Variable
Parameter
Estimate

Standard
Error Type II SS F Value Pr . F

Intercept 4880.0870
ED 632.9172 70.4186 15606641.6344 80.78 , .0001

EXP 649.9674 60.6696 22173310.6004 114.77 ,.0001
AGE 251.0535 60.8911 135810.5613 0.70 0.4065

Stepwise Selection: Step 4

Variable AGE Removed: R-Square ¼ 0.9971 and C(p) ¼ 2.7000

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr . F

Model 2 2866021371.6098 1433010685.8049 7469.12 ,.0001

Error 43 8249893.7163 191857.9934

Corrected

Total 45 2874271265.3261

Variable
Parameter
Estimate

Standard
Error Type II SS F Value Pr . F

Intercept 4362.9729

ED 588.7656 46.5906 30638494.3084 159.69 ,.0001
EXP 599.7007 9.2677 803342471.0076 4187.17 ,.0001
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All variables left in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the
model.

Summary of Stepwise Selection

Step

Variable

Entered

Variable

Removed

Number

Vars In

Partial

R-Square

Model

R-Square C(p) F Value Pr . F

1 AGE 1 0.9859 0.9859 114.80 4130.88 ,.0001

2 EXP 2 0.0023 0.9917 82.78 11.91 0.0013

3 ED 3 0.0054 0.9972 4.00 80.78 ,.0001

4 AGE 2 0.0000 0.9971 2.70 0.70 0.4065

a. How would the Cp value for Step 3 be known in advance?

b. If only one regressor variable is to be used to predict farm profit, which variable

would you choose? Explain the reason for your choice.

c. If the prediction of farm profit is to be based on two regressor variables, which

variables would you choose? Explain the reason for your choice.

d. In comparing different prediction equations, what fraction of Syy is explained by:

i. Adding experience to an equation which already contains age?

ii. Adding age to an equation which already contains experience and education?

iii. Adding education to an equation which already contains experience and age?

e. Compute the numerical value of R2
adj for Step 4.

f. Based on the results of this analysis:

i. Tell which prediction equation should be used to predict farm profit.

ii. Use that equation to predict the profit for a farm operated by a 35-year-old

farmer who has a 12th-grade education and 16 years experience in farming.

14.5.3. Prairie chickens, a species of grouse that was once abundant throughout the Great

Plains, are now found primarily in a few counties in Kansas and Nebraska. To learn

more about their habitat, a random sample is taken of pastures in areas in which these

birds live. Data are recorded on each pasture, and then bird dogs are used to flush the

prairie chickens so that the number in the pasture can be recorded. Thus the following

data are recorded for each pasture in the sample:

Acres: the size of the pasture recorded in acres.

Field: the type of pasture, whether original prairie grass or improved. Note that this is

recorded on the nominal scale, but for analytical purposes, a dummy variable can

be created by giving a code of x2j ¼ 0 to pasture containing original grass and

x2j ¼ 1 for improved pastures. (If there are more than two classification variables,

the coding becomes more complicated.)

Distance: the distance, in yards, from the field to nearest occupied house.

Birds: the number of prairie chickens flushed from the pasture.

The SAS System

The REG Procedure

Model: MODEL1

Dependent Variable: BIRDS

Backward Elimination: Step 0

All Variables Entered: R-Square ¼ 0.8810 and C(p) ¼ 4.0000
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Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr . F

Model 3 346.65356 115.55119 44.44 ,.0001

Error 18 46.80099 2.60005

Corrected

Total 21 393.45454

Variable

Parameter

Estimate

Standard

Error Type II SS F Value Pr . F

Intercept 23.74744 1.70233 12.59983 4.85 0.0410

ACRES 0.02059 0.00180 339.45813 130.56 ,.0001

FIELD 0.85594 0.81630 2.85868 1.10 0.3083

DISTANCE 0.00182 0.00131 5.02160 1.93 0.1816

Bounds on condition number: 1.3979, 11.3875

Backward Elimination: Step 1

Variable FIELD Removed: R-Square ¼ 0.8738 and C(p) ¼ 3.0995

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr . F

Model 2 343.79488 171.89744 65.77 ,.0001

Error 19 49.65967 2.61367

Corrected Total 21 393.45454

Variable

Parameter

Estimate

Standard

Error Type II SS F Value Pr . F

Intercept 22.64358 1.34128 10.15309 3.88 0.0635

ACRES 0.02066 0.00180 342.57002 131.07 ,.0001

DISTANCE 0.00109 0.00111 2.50978 0.96 0.3394

Bounds on condition number: 1.0007, 4.0027

Backward Elimination: Step 2

Variable DISTANCE Removed: R-Square ¼ 0.8674 and C(p) ¼ 2.0647

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr . F

Model 1 341.28509 341.28509 130.84 ,.0001

Error 20 52.16945 2.60847

Corrected Total 21 393.45454

Variable

Parameter

Estimate

Standard

Error Type II SS F Value Pr . F

Intercept 21.52314 0.70050 12.33257 4.73 0.0419

ACRES 0.02062 0.00180 341.28509 130.84 ,.0001

Bounds on condition number: 1.0007, 1.0000
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All variables left in the model are significant at the 0.1000 level.

Summary of Backward Elimination

Step

Variable

Removed

Number

Vars In

Partial

R-Squar

Model

R-Squar C(p) F Value Pr . F

1 FIELD 2 0.0073 0.8738 3.0995 1.10 0.3083

2 DISTANCE 1 0.0064 0.8674 2.0647 0.96 0.3394

a. For Step 0, analysis of the full model, show how to compute R 2 and R2
adj.

b. In building a prediction model, what fraction of Syy is explained by adding:

i. The distance to the nearest house (x3) to a model already containing the acreage of

the field (x1)?

ii. The distance to the nearest house (x3) to a model already containing the acreage

(x1) and type (x2) of the field?

c. Show how to compute the Cp value for a model which contains acreage (x1) as the only

regressor.

d. Based on the results of this analysis:

i. Tell which prediction equation should be used to predict the number of prairie

chickens in a pasture.

ii. Make a test of significance to determine whether this model has an R 2 which is

significantly smaller than that for the full model.

14.6. LOGARITHMIC TRANSFORMATIONS

There is a tendency among those who use linear regression techniques to drop the term

“linear” when they speak and write about the relationship between variables x and y. Also,

most researchers wisely seek the simplest solution first and test for a linear association before

looking for a more complex relationship between the variables. Thus there is the danger of

implying that all relationships are linear or that least-squares techniques are not appropriate

for nonlinear relationships.

The problem in testing for more complex relationships is knowing what sort of relationship

we should test. If the relationship is not linear, there are an infinite number of other possible

relationships in which y is a function of x. In this section and the next one, we examine some

functions of x that are curves rather than straight lines. We assume as before that there will be

deviations from the trend line, that these deviations are normally distributed, and that the

deviations have the same variance for all x values.

We look at two techniques for nonlinear functions: logarithmic transformations and

polynomial regression. Log transformations are discussed in this section and polynomial

regression in Section 14.7.

If there is a log-linearizable relationship between x and y, then we can obtain a straight line

by transforming x to logs, y to logs, or both x and y to logs. Each of these procedures rectifies

(straightens out) a different sort of relationship. The three types of relationships are shown in

Figure 14.4 along with the logarithmic transformations to be used.

The type of logarithmic transformation to use may be determined in several ways. The

nature of the two variables may indicate it, such as the exponential growth rate of single-cell

organisms or investment strategy when earnings are reinvested. Sometimes there may be an
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absolute upper or lower bound to the y variable, and this asymptotic value is approached

experimentally. Frequently, the research literature in the area reveals that earlier experimenters

have successfully used a logarithmic transformation, and one can anticipate that such a

procedure will serve again. Finally, the experimenter may choose to plot the data points on

semilog graph paper or on log-log graph paper to see whether a certain transformation appears

to work. It is worth remembering, however, that the experimental a level is affected when

one uses a “try it and see how it works” approach to data analysis. If one has a truly

independent set of x and y variables, it may still be possible to find a seemingly significant

relationship if enough different transformations are tried and the best fit is chosen for statistical

analysis.

Example 14.4. Log Transformation of the Independent Variable

Research workers in nuclear medicine have been interested in establishing cytogenetic dose–

response relationships for various levels of radioactivity. Early work depended on evaluating

cytogenetic lesions in tissue cultures of lymphocytes from individuals accidentally exposed to

nuclear radiation and from those undergoing radiation therapy. Now, procedures are available

that make it possible to establish dose–response curves for human lymphocytes that are

exposed in vitro (outside the body). Blood can be drawn from healthy individuals and the

white cells collected, exposed to the appropriate dose, and placed in tissue-culture solution.

Cell division is arrested at a stage when the chromosomes are clearly distinguishable and can

be examined for radiation damage.

In the biological sciences associated with medicine, the logarithmic transformation of

dosage is so common that consulting statisticians almost anticipate using it. Thus, when

data are obtained, the statistician has it plotted on graph paper that has vertical rulings on

FIGURE 14.4. Log-linearizable function (a .0, x . 0).
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an arithmetic scale (to plot the y variable) and horizontal ruling on a logarithmic scale

(for the x variable) or a computer package can be used to plot y against log x. If his

suspicions about log dose–response are confirmed, he will proceed with the sort of

analysis demonstrated below. (Specific activity, dosage, is measured in nanocuries per

milliliter, nCi/mL.)

Specific

Activity Log of Activity x

Dicentric

Chromosomes y

40 1.6021 2

40 1.6021 4

40 1.6021 5

80 1.9031 9

80 1.9031 6

80 1.9031 16

160 2.2041 14

160 2.2041 19

160 2.2041 23

320 2.5051 35

320 2.5051 32

320 2.5051 26

Total 24.6432 191

X
xy ¼ 433:0231

X
y2 ¼ 4429:00

X
x
X

y

n
¼ 392:2376

X
y

� 	2
n

¼ 3040:08

Sxy ¼ 40:7855 Syy ¼ 1388:92

X
x2 ¼ 51:9663 b ¼ 40:7855

1:3590
¼ 30:011

X
x

� 	2
n

¼ 50:6073

Sxx ¼ 1:3590

The variance from the trend line is obtained in the same manner as it was for simple

regression:

s2y:x ¼
X

(y� ŷy)2

n� 2
¼ Syy � S2xy=Sxx

n� 2

¼ 1388:92� (40:7855)2=1:3590

10

¼ 16:49

14.6. LOGARITHMIC TRANSFORMATIONS 477



and the test significance for H0: b ¼ 0 against Ha: b . 0 is

t ¼ b� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2y:x=Sxx

q ¼ 30:011ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:49=1:359

p

¼ 30:011

3:483

¼ 8:616

When compared with t0.05, 10 ¼ 1.812, the trend is found to be significant. The coefficient of

determination is

r2 ¼ S2xy=Sxx

Syy
¼ 1224:03

1388:92
¼ 0:881

which is a relatively large value, indicating a reasonably good fit that could be useful in

predicting the chromosomal transmutations that result from specific levels of radioactivity.

Additional studies would be necessary to determine the association between in vivo (within-

the-body) chromosomal changes and those obtained by this procedure. However, the

experimenter should feel encouraged by this experiment, for it indicates a useful technique in

the study of genetic damage caused by exposure to radioactive substances.

In the SAS System the analysis is carried out by the following program:

DATA DOSE;

INPUT ACT CHROMO;

L_ACT ¼ LOG10 (ACT);

CARDS;

40 2
40 4
40 5
80 9
80 6
80 16

160 14
160 19
160 23
320 35
320 32
320 26

;

PROC PLOT;

PLOT CHROMO � L_ACT;

PROC REG;

MODEL CHROMO ¼ L_ACT;
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The output follows.

The SAS System

The REG Procedure
Model: MODEL1

Dependent Variable: CHROMO

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr . F

Model 1 1224.01667 1224.01667 74.23 ,.0001
Error 10 164.90000 16.49000
Corrected
Total 11 1388.91667

Root MSE 4.06079 R-Square 0.8813
Dependent Mean 15.91667 Adj R-Sq 0.8694
Coeff Var 25.51280

Parameter Estimates

Variable DF

Parameter

Estimate

Standard

Error t Value Pr . jtj

Intercept 1 245.70808 7.24815 26.31 ,.0001

L_ACT 1 30.00808 3.48301 8.62 ,.0001

Similar techniques can be used for exponential relationships. An example follows in which

the independent variable y is the transformation of a measurement variable.
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Example 14.5. Log Transformation of the Dependent Variable

The use of insecticides is a benefit but also a source of concern to the fruit industry.

Insecticides protect the fruit from insect damage, but they are also toxic compounds that can

be ingested by human beings. There are federally set tolerances on the amount of insecticides

that fresh fruit and fruit pulp can contain, and fruit is carefully washed to meet those

tolerances. Consequently, fruit processors are eager to gain as much information as they can

about the deposition of insecticides and how they can be removed.

Insecticides are applied topically by spraying the fruit trees, so if the skin of the fruit has not

been broken, all of the insecticide lies on the surface. Consequently, the larger the fruit, the more

insecticide is deposited on it. To study the relationship between the size of peaches and the

amount of insecticide retained on them, a horticulturist sprays an orchard according to USDA

recommendations and, after the fruit is harvested, takes a random sample of 10 peaches and

measures their diameter x. She then washes each peach with a constant volume of detergent

solution and makes a chemical determination of the amount of insecticide u in the solution after

cleaning. Because she expects the amount of insecticide u to be an exponential function of

diameter, u ¼ a10bx, she transforms the measurements on the u variable to common logarithms:

Peach Diameter (cm) x Insecticide (ppm) u log u ¼ y

1 6.0 0.5 20.3010y

2 7.0 6.4 0.8062

3 6.6 1.0 0.0000

4 5.8 0.2 20.6990

5 6.8 5.5 0.7404

6 7.4 14.2 1.1523

7 7.2 8.2 0.9138

8 5.4 0.1 21.0000

9 5.6 0.3 20.5229

10 6.2 0.6 20.2218

Total 64.0 0.8680

The log transformation of the independent variable occurs prior to any analytical

computations. After the independent variable has been adjusted to the logarithmic scale, the

arithmetic is the same as for any other simple regression analysis and consequently need not

be demonstrated here. However, it will be useful to examine the computer analysis for log y

regression, meaning regression with the y variable on the log scale.

The program in the SAS System is as follows:

DATA FRUIT;

INPUT X U;

Y ¼ LOG10 (U);

CARDS;

6.0 0.5
7.0 6.4
6.6 1.0

†log(0.5) ¼ log(5) 2 log(10).
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5.8 0.2
6.8 5.5
7.4 14.2
7.2 8.2
5.4 0.1
5.6 0.3
6.2 0.6
;

PROC PLOT;

PLOT Y � X;

PROC REG;

MODEL Y ¼ X;

and the output is

The SAS System

The SAS System

The REG Procedure
Model: MODEL1

Dependent Variable: Y

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr . F

Model 1 4.94736 4.94736 164.91 ,.0001
Error 8 0.24000 0.03000
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Corrected Total 9 5.18736

Root MSE 0.17320 R-Square 0.9537

Dependent Mean 0.08679 Adj R-Sq 0.9480

Coeff Var 199.56326

Parameter Estimates

Variable DF

Parameter

Estimate

Standard

Error t Value Pr . jtj
Intercept 1 26.69962 0.53129 212.61 ,.0001

X 1 1.06038 0.08257 12.84 ,.0001

As can be seen from the computer printout, the test of significance for the relationship H0:

b ¼ 0 against Ha: b . 0 produces the test statistic t ¼ 12.84 with a P , 0.0001, and the

coefficient of determination for this data set is found to be r 2 ¼ 0.9537. Thus, if a logarithmic

relationship is used, the diameter of a peach in this orchard can be used as a very reliable

indicator of the amount of insecticide that has been deposited on its surface. This information

may have some bearing on the thoroughness with which different-sized peaches should be

washed prior to marketing.

A similar technique can be used for exponential functions of the form y ¼ ae bx. In this

case, loge y is used for the transformation. If desired, common logarithms base 10 may be used

and then converted to natural logarithms by the relationship

loge y ¼ 2:303 log y

If the function is of the form y ¼ ax b, then it can be linearized by transforming the

variables to log y and log x.

Consulting statisticians are frequently asked by economists to assist in the analysis of data

that involve the regression of log y on log x. The economists refer to the equations that are

obtained as Cobb–Douglas functions. In other fields of research, there are also associations of

the form

y ¼ axb

but in economics they have been used with sufficient frequency to have gained a special

designation. An example of their use would be a situation in which y is a measure of

production in a certain industry and x is a measure of labor. Thus an economist could take a

random sample of, say, bottling plants, gain access to their records, and find the regression of

log(cases of soda) on log(man-hours). With this procedure, it is not uncommon to see multiple

regression techniques employed as well. Thus the function becomes

y ¼ axb11 xb22

Such a studymight involve log(production) as a function of log(labor) and log(capital invested).

Having already demonstrated log x regression and log y regression, it seems unnecessary to

give a numerical example of this procedure as well. However, it might be worthwhile to

review the assumptions that are made in regression analysis. Irrespective of the units on the x

and y axes, for the diagram, it is assumed that

1. the relationship is linear for the units of x and y used,
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2. y has a normal distribution, and

3. y has the same variance throughout the range of x in the study.

Thus, if y is measured on the log scale, it implies that the log of the original units of

measurement—log(cases of soda) in the Cobb–Douglas example—has a normal distribution

with the same variance from the trend line irrespective of the number ofworkers involved. If the

researcher is uncertainwhether these assumptions should bemade, then preliminary data should

be obtained and used to investigate their distribution under the transformation. The arithmetic

can be performed and numerical values obtained whether or not the assumptions hold true, but

probability statements and inference are meaningless if the assumptions are not valid.

EXERCISES

14.6.1. Dicentric chromosomes result from the fusion of parts of two shattered chromosomes

to form a single large chromosome. When dicentric chromosomes are formed, there

are other chromosome fragments which are not reassembled and are eventually lost

from the karyotype (chromosome composition). In the example demonstrating

curvilinear regression rectified by log x, the dicentric chromosomes are used as the y

variable; suppose that in a similar experiment chromosome fragments are also

counted and the following results obtained:

Specific activity x: 40 80 160 320

Fragments y: 10, 12 14, 20 22, 34 42, 70

a. Complete the regression of y on log x and test it for significance.

b. In studies of this sort, the variances sometimes increase proportionally. Is there cause for

concern about that possibility in these data?Whatmight the experimenters do to determine

whether or not variances are homogeneous irrespective of dosage?

c. Compute r and r 2.

d. Compute the expected number of chromosome fragments for 100 nCi/mL specific

activity. Place a 95% CI on the estimate.

In the log y transformation example in this section concerning insecticide residue, estimate a

in the function u ¼ a10bx.

To study the efficiency of microwave cooking in sterilizing meat, a food scientist takes a random

sample of nine sausage links, and by means of a hypodermic needle she inoculates each with the

same volume of a nutrient broth containing a heavy suspension of salmonella. She then cooks each

link for a different length of time in a microwave oven set for a constant temperature. The contents

of the sausages are then mixed with an agar solution and poured into petri dishes. The dishes are

placed in an incubator.After 18 hours of incubation, the number of salmonella colonies per dish are

counted. The results are

Time cooked in

microwave (min) x: 0 2 4 6 8 10 12 14 16

Number of

salmonella colonies

y: 740 410 210 100 45 25 10 6 4
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a. Graph the data. What type of function seems to model the relationship of y to x?

b. Make a loge transformation on the y variable, graph the transformed data, and compute:

i. The regression coefficient

ii. The correlation coefficient

iii. The coefficient of determination

c. In testing a hypothesis about the slope of the regression line:

i. Why would the food scientist use a one-sided alternative?

ii. Why would she reject the null hypothesis for a ¼ 0.05?

d. Based on the results of this study:

i. What is the expected number of colonies to develop in sausage cooked 15

minutes?

ii. Place a 95% CI for the value estimated above.

iii. How long should sausage be cooked in the microwave oven in order to produce an

expected salmonella survival of zero?

A learning model used in experimental psychology is Ti ¼ ab i, in which Ti is the time it takes

to perform a task on the ith occasion. Since log Ti ¼ log a þ i log b, this relationship is log

linearizable. An experiment is performed which is believed to follow this model:

i: 1 2 3 4 5 6 7

Ti (min): 27 17 11 7 5 3 2

Compute a and b.

14.7. POLYNOMIAL REGRESSION

Multiple regression procedures can be used to analyze for polynomial regression. A number of

geometrical curves involve selected powers of x. For example, the quadratic curve (parabola)

can be written

y ¼ aþ b1xþ b2x
2

and the cubic curve can be written

y ¼ aþ b1xþ b2x
2 þ b3x

3

In general, there are as many maximum points (extrema) on the curve as 1 less than the highest

power of x in the model (Figure 14.5). It is possible to discuss quartic, quintic, and even more

complex curves, but most experimenters find it difficult to explain curves with more than two

maximum or minimum points. Thus we discuss only the quadratic and cubic curves.

A quadratic curve is utilized by agronomists when they study the effect of fertilizer.

Agronomists know that there is a diminishing return from the use of more than a certain

amount of fertilizer. In soil that is deficient in nitrogen, yield of crop increases with additional

applications of nitrogen fertilizer, but it is possible to apply more nitrogen than the crop can

use. In fact, too much fertilizer can damage and even kill the crop. Thus it is important to
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identify the range of safe application and to exclude applications beyond the maximum, the

point of diminishing return.

To find the maximum point, agronomists set up experimental plots and use fertilizers in a

series of applications. This series should extend through the supposed safe range and even into

the range that is thought to be dangerous. The data can then be analyzed for a quadratic trend.

A specific example follows.

Example 14.6. Quadratic Regression

The Jerusalem artichoke, Helianthus tuberosus, resembles the sunflower, but as its scientific

name implies, it produces tubers. The polysaccharide stored in the Helianthus tubers is inulin,

which cannot be converted into sugars as can the starch stored in many tubers and roots. But it

can be fermented to produce alcohol. The plant has the added advantage of being able to grow on

relatively poor soil; consequently, it does not compete for the farmland used to grow beets, cane,

corn, sorghum, and other sources of sugar and carbohydrates. Thus the Jerusalem artichoke has

potential as a source of the polysaccharides needed to produce alcohol for use in industry,

transportation, and beverages. However, the plant has been grownmainly as a flower, a curiosity,

or a cover plant, and little is known about its culture as a cash crop. To gain information about the

response to fertilizer for this species, an agronomist plants Jerusalem artichoke on 12 hillside

plots and randomly assigns three hillsides to each of four fertilizer regimens (0, 4, 8, and 12

hundredweight per acre). Yield, measured in hundredweight inulin per acre, is given below

Fertilizer

x

Yield

y Necessary Computations

0 35.0 Sx ¼ 72 Sy ¼ 468.0

0 38.7 Sx 2 ¼ 672 Sxy ¼ 2839.2

0 33.1 Sx 3 ¼ 6912 Sx 2 y ¼ 26,169.6

4 42.6 Sx 4 ¼ 75,264 Sx 3 y ¼ 267,072.0

4 40.5 Sx 5 ¼ 847,872 Sy 2 ¼ 18,373.38

4 43.8 Sx 6 ¼ 9,756,672 n ¼ 12

FIGURE 14.5. Polynomial functions of x.
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Fertilizer

x

Yield

y Necessary Computations

8 41.0

8 42.1 S11 ¼ Sx 2 2 S(x)2/n
8 36.9 S12 ¼ Sxx 2 2 (Sx)(Sx 2)/n ¼ Sx 3 2 (Sx)(Sx 2)/n
12 36.1 S13 ¼ Sxx 3 2 (Sx)(Sx 3)/n ¼ Sx 4 2 (Sx)(Sx 3)/n
12 40.8 S22 ¼ Sx 2 x 2 2 (Sx 2)(Sx 2)/n ¼ Sx 4 2 (Sx 2)2/n
12 37.4 S23 ¼ Sx 2x 3 2 (Sx 2)(Sx 3)/n ¼ Sx 5 2 (Sx 2)(Sx 3)/n

S33 ¼ Sx 3 x 3 2 (Sx 3)(Sx 3)/n ¼ Sx 6 2 (Sx 3)2/n
S1y ¼ Sxy 2 (Sx)(Sy)/n
S2y ¼ Sx 2 y 2 (Sx 2)(Sy)/n
S3y ¼ Sx 3 y 2 (Sx 3)(Sy)/n
Syy ¼ Sy 2 2 (Sy)2/n

Given are the sums of the x variable raised to different powers, along with the summations

of their cross-products with the y variable. Also given are the computational equations

for the corrected sums of squares and cross-products (Sij) which are needed for the

simultaneous equations which must be solved. However, these are intended only as

evidence of the size of the numerical values which must be dealt with and the amount of

computation involved. Except for quite small samples and relatively small numerical values

of x, using a computer routine is the most sensible method of performing polynomial

regression analysis.

The computational procedures are the same as for other multiple regression analyses; the

only difference is that the xi are not different measurement variables, but instead they are

different powers of the same measurement variable. It is common to perform polynomial

regression analysis in a stepwise fashion, starting with simple linear regression as the first

model for fitting the data,

Linear model: ŷy ¼ aþ bx

and then advancing to the next level of complexity, the second-degree polynomial, by adding

x 2 to the model,

Quadraticmodel: ŷy ¼ aþ b1xþ b2x
2

and, if desired, one can continue to increase the complexity of the model simply by including

in it the next power of the x variable. In our case a third-degree polynomial is obtained with

Cubic model: ŷy ¼ aþ b1xþ b2x
2 þ b3x

3

It is frequently advised that one include one more level of complexity than that expected

for the actual curvilinear relationship between the dependent and independent variables.

When this is done, it provides a measure of the “lack of fit” of the model to the data. Thus, if

the agronomist is expecting a quadratic response, he designs the experiment with four levels

of fertilizer so that there will be enough points on the x axis to fit a cubic curve. If there were

only three different values of x, a quadratic would be forced through the three means, and there

would be no opportunity to examine the extent to which the curve of interest fails to fit

the data.
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In the SAS System the program and output are as follows:

DATA TUBERS;

INPUT X Y;

CARDS;

0 35.0
0 38.7
0 33.1
4 42.6
4 40.5
4 43.5
8 41.0
8 42.1
8 36.9
12 36.1
12 40.8
12 37.4

PROC GLM;

MODEL Y ¼ X/SS1;

PROC GLM;

MODEL Y ¼ X X�X/SS1;
PROC GLM;

MODEL Y ¼ X X�X�X�X/SS1;

The SAS System

The GLM Procedure

Number of observations 12

Dependent Variable: Y

Source DF Sum of Squares Mean Square F Value Pr . F

Model 1 4.0560000 4.0560000 0.35 0.5696
Error 10 117.3240000 11.7324000
Corrected
Total 11 121.3800000

R-Square Coeff Var Root MSE Y Mean

0.033416 8.782716 3.425259 39.00000

Source DF Type I SS
Mean

Square F Value Pr . F

X 1 4.05600000 4.05600000 0.35 0.5696

Parameter Estimate
Standard
Error t Value Pr . jtj

Intercept 38.22000000 1.65455734 23.10 ,.0001
X 0.13000000 0.22109953 0.59 0.5696
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The GLM Procedure

Number of observations 12

Dependent Variable: Y

Source DF
Sum of
Squares

Mean
Square F Value Pr . F

Model 2 59.5260000 29.7630000 4.33 0.0481
Error 9 61.8540000 6.8726667
Corrected Total 11 121.3800000

R-Square Coeff Var Root MSE Y Mean

0.490410 6.721993 2.621577 39.00000

Source DF Type I SS Mean Square F Value Pr . F

X 1 4.05600000 4.05600000 0.59 0.4620
X�X 1 55.47000000 55.47000000 8.07 0.0194

Parameter Estimate
Standard
Error t Value Pr . jtj

Intercept 36.07000000 1.47524386 24.45 ,.0001
X 1.74250000 0.59227727 2.94 0.0164
X�X 20.13437500 0.04729901 22.84 0.0194

The GLM Procedure

Number of observations 12

Dependent Variable: Y

Source DF
Sum of
Squares

Mean
Square F Value Pr . F

Model 3 72.7800000 24.2600000 3.99 0.0521
Error 8 48.6000000 6.0750000
Corrected Total 11 121.3800000

R-Square Coeff Var Root MSE Y Mean

0.599605 6.319876 2.464752 39.00000

Source DF Type I SS Mean Square F Value Pr . F

X 1 4.05600000 4.05600000 0.67 0.4375
X�X 1 55.47000000 55.47000000 9.13 0.0165
X�X�X 1 13.25400000 13.25400000 2.18 0.1779

Parameter Estimate Standard Error t Value Pr . jtj
Intercept 35.60000000 1.42302495 25.02 ,.0001
X 3.58333333 1.36502060 2.63 0.0304
X�X 20.57500000 0.30160702 21.91 0.0930
X�X�X 0.02447917 0.01657282 1.48 0.1779
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From the results of the computer analyses the following information about how well the data

are fit by each type of curve can be extracted:

Curve Model

F Test

for Model R 2 MSe

Linear 38.22 þ 0.13x 0.35 0.0334 11.7324

Quadratic 36.07 þ 1.74x 2 0.13x 2 4.33 0.4904 6.8727

Cubic 35.60 þ 3.58x 2 0.58x 2 þ 0.02x 3 3.99 0.5996 6.0750

It can readily be seen that the linear model is ineffective in explaining the response to the

different levels of fertilizer. The F test for this model is nonsignificant; R 2 is very small, and the

MSe is the largest for the three models. When the quadratic curve is fit to the data, the F test is

significant;R 2 increases greatly, and theMSe for thismodel is almost half the value of that for the

linear model. Thus the criteria which are used here for comparison all indicate that the quadratic

response curve is a superior fit to that for the linear. However, the decision is not so clear for the

cubic response curve where R 2 increases, but MSe is changed little from that for the quadratic,

and the numerical value of the F test actually decreases. To understand what is happening, the

agronomist remembers that when x 3 is added to the model, the degrees of freedom associated

with the model increase to k ¼ 3, and those associated with the MSe decrease to n 2 k 2 1 ¼ 8.

Thus the increase in R 2 for the cubic curve does not justify the additional degree of freedom

associated with it. For example, from previous sections the F test for a model is

F ¼ SSR=k

MSe
¼ R2Syy=k

MSe

In this study, Syy ¼ 121.38, so this value along with knowledge of the values of R 2 and MSe
for the quadratic and cubic models, respectively, can be used to obtain F tests for each model as

well as for the improvement in fit provided by the cubic as compared to that for the quadratic.

Quadratic model:

F ¼ R2
QSyy=kQ

Quad:MSe
¼ 0:4904(121:38)=2

6:8727
¼ 4:33

Cubic model:

F ¼ R2
CSyy=kC

Cubic MSe
¼ 0:5996(121:38)=3

6:0750
¼ 3:99

Improvement of cubic vs þquadratic:

F ¼ (R2
C � R2

Q)Syy=(kC � kQ)

Cubic MSe
¼ 0:1092(121:38)=1

6:0750
¼ 2:18

The third F test can be thought of as a test of “lack of fit,” or the extent to which the

quadratic curve fails to fit the �yyi found at the four different points on the x axis. This test is not
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significant, meaning the cubic curve does not fit the data significantly better than does the

quadratic curve. Hence the agronomist has even further evidence that the response of

Jerusalem artichoke yield to fertilizer can best be described by a quadratic curve.

With many of the available computer routines, it is not necessary to perform the hand

computations shown for the third F value above. To obtain a test for the improvement of one

polynomial model over another, each successive power of x is brought into the model, one at a

time, and then the improvement in the model is tested in much the same fashion as was done

above. The instruction for this process in the SAS System is found in the model

statement. When instructions were given for the analysis of the cubic model, the model

statement was

MODELY ¼ X X � X X � X � X=SS1;

The above statement gave instructions to bring x into the model and test the variability

explained by it alone, then to bring x 2 into the equation and test the improvement in the

equation due to this second term, and finally to bring x 3 into the equation and test the

improvement due to the third term. The printout for the third analysis gives the following

information:

SOURCE DF Type I SS F Value

X (Linear trend alone) 1 R2
LSyy ¼ 4:056 0.67

X�X (Quadratic after linear) 1 (R2
Q � R2

L)Syy ¼ 55:470 9.13

X�X�X (Cubic after quadratic) 1 (R2
C � R2

Q)Syy ¼ 13:254 2.18

Among the F tests in this analysis, the only one which is significant (P ¼ 0.0165) is that for

the improvement of a quadratic model as compared to a linear model. Once again, the

quadratic model is the one which should be chosen for describing the response of yield to

increased levels of fertilizer.

The plant scientist had intended to apply fertilizer rates beyond the point of diminishing

return, and it has been confirmed that the response curve can be better described by a parabola

than by a straight line or a cubic curve with its two extrema. The quadratic curve selected to

model the response in yield to different levels of fertilizer is found to be

ŷy ¼ 36:0700þ 1:7425x� 0:1344x2

The maximum, or point of diminishing return, can be found by setting the first derivative of y

with respect to x equal to zero. Thus the maximum y is at

xm ¼ �b1

2b2
¼ �1:7425

2(� 0:1344)
¼ 6:48

as illustrated in Figure 14.6. The implication from this experiment is that when fertilizer

is applied to Jerusalem artichokes at a rate greater than 6.48 hundredweight per acre, there

is not likely to be any further increase in yield. In fact, the results of this experiment

indicate that yield would begin to decrease with the application of a greater amount of

fertilizer.
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We have seen how polynomial regression can be used to fit a linear, quadratic, or cubic

response. A third extremum in the regression line can be obtained by using x, x 2, x 3, and x 4

and fitting a quartic curve with k ¼ 4 degrees of freedom. Polynomial regression is an

extremely useful technique, but as with the other statistical techniques we have discussed,

there are also limitations, cautions, and assumptions to be considered before drawing

inference from these procedures. Here are some of the things the research worker should

consider before using polynomial regression:

1. Not all curves with a single extremum are parabolas, and similarly polynomial curves

may not provide the best fit for more complex curves. The polynomial curves have

symmetrical features which make them unsuitable for fitting data that follow a

nonsymmetrical trend. It is always useful to gather preliminary data, plot it, and then

discuss with a statistician or mathematician what function may provide the best fit of y.

2. The number of different values of x is more important than the number of data points in

polynomial regression. In the example where inulin yield was fitted to fertilizer

applications, there were 12 data points but only a ¼ 4 different values of x. The best

possible fit (the maximum R 2) is obtained when k ¼ a 2 1, so it is a waste of time and

effort to try to fit a very complex polynomial curve to data for which there are only a

few different x values.

3. In polynomial regression, xk ¼ x k, or as we saw in the Jerusalem artichoke example,

x2 ¼ x 2. Because of this, if the x’s are greater than 1, S22 will be larger than S11, and if

we use x3 ¼ x 3 and x4 ¼ x 4, then S33 and S44 will be still larger. A great disparity in the

size of the Sii makes it difficult to invert the sum of squares and cross-products matrix

accurately.

4. As always, it is necessary to make the assumption that the deviations from the trend line

are normally distributed with the same variance all along the segment of the line for

which inference will be made.

FIGURE 14.6. The maximum of the model in Example 14.6.
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A technique called orthogonal polynomials further addresses some of the concerns given

here and shows how good experimental design can permit easy tests of significance for higher

order polynomial regression. We conclude this chapter with a discussion of orthogonal

polynomials.

It might first be useful to review Section 10.4 on orthogonal contrasts, since very

similar techniques are demonstrated here. If the x’s are equally spaced and there are a

constant number of observations n at each x, then one can use tabulated orthogonal

polynomials to determine which kind of polynomial curve best fits the data. This is usually

done in conjunction with an ANOVA in which each value of x is considered an

experimental group.

The procedure can be demonstrated with the data obtained from the Jerusalem artichoke

experiment, for the x’s are equally spaced, that is, there is a 4-hundredweight interval between

adjacent levels of fertilizer, and there are n ¼ 3 yields obtained for each level of fertilizer. The

data can be grouped for an ANOVA as follows:

0 cwt 4 cwt 8 cwt 12 cwt

35.0 42.6 41.0 36.1

38.7 40.5 42.1 40.8

33.1 43.8 36.9 37.4

P
yi ¼ Ti 106.8 126.9 120.0 114.3

T ¼ 18,373.38 (uncorrected total sum of squares)

A ¼ 18,324.78 (uncorrected group sum of squares)

CF ¼ 18,252.000

Source df SS MS F F0.05;3,8

Levels 3 72.78 24.26 4.00 4.066

Error 8 48.60 6.07

Total 121.38

The coefficients to be used for computing the contributions of x, x 2, and x 3 to the model can

be obtained from Table A.19 (see Appendix) for a ¼ 4 levels. These are used to compute the

three sums of squares which partition the sum of squares for levels as follows:

Level: 0 4 8 12

Degree

Polynomial Ti: 106.8 126.9 120.0 114.3
P

a iTi
P

a2i

P
aiTi

� �2
=

n
P

a2i

Linear aLi: 23 21 þ1 þ3 15.6 20 4.056

Quadratic aQi: þ1 21 21 þ1 225.8 4 55.470

Cubic aCi: 21 þ3 23 þ1 28.2 20 13.254

72.780
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The ANOVA table can be expanded to take into account these three orthogonal sums of

squares, each with 1 degree of freedom.

Source df SS MS F F0.05;1,8

Levels 3 72.78

Linear 1 4.056 4.056 0.668 5.318

Quadratic 1 55.470 55.470 9.138 5.318

Cubic 1 13.254 13.254 2.183 5.318

Error 8 48.60 6.07

When we compare the three sums of squares computed here with the results of the third

SAS analysis of the Jerusalem artichoke yields, we can see how the resulting sums of squares

correspond identically:

Orthogonal

Coefficients

Polynomial

Regression SS

Linear R2
LSyy 4.056

Quadratic (R2
Q � R2

L) Syy 55.470

Cubic (R2
C � R2

Q) Syy 13.254

Thus we can evaluate the nature of the response in y to increasing levels of x, either by using

polynomial regression or by using ANOVA techniques which are then followed by use of

orthogonal polynomials to obtain a sums of squares each with 1 degree of freedom. When the

levels of x are equally spaced and the number of observations (n) at each level is the same,

there may be some convenience in using the ANOVA and orthogonal polynomials, but under

other circumstances, it is usually found to be easier to use polynomial regression.

The orthogonal polynomial coefficients are given in Table A.19 in the Appendix for

various levels of a, and they can be used as shown here provided, as has been pointed out, the

a 2 1 levels are equally spaced and n is the same at all levels. The coefficients can be obtained

in a fashion similar to that used in covariance to obtain one variable adjusted to another. Thus,

to obtain the coefficients for the quadratic polynomial, the variable x2 ¼ x 2 must be adjusted

for x and the resulting values coded so that they will sum to zero. Fortunately, the advent of

good computer programs such as SAS has made these simple but tedious arithmetic

procedures unnecessary.

EXERCISES

14.7.1. An experiment similar to that studying the yield of inulin in Jerusalem artichoke is

performed with sugar beets. The yield is measured in cwt of sugar:

x: 0 4 8 12

y: 34.5, 37.9, 31.4 39.2, 39.8, 43.4 45.1, 40.3, 43.0 43.2, 38.8, 43.4

a. Find the numerical values of b1 and b2 and test them for significance.
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b. Does a quadratic curve fit the data significantly (a ¼ 0.05) better than a straight line?

On what computations do you base your answers?

c. Find the maximum response of yield as a function of fertilizer.

d. The x values are deliberately kept the same in this problem as they were in the

numerical example. This is to provide a computational guide for those who chose

to invert the sum of squares and cross-products matrix. How can one use the results

of the numerical example to perform the analysis without having to invert the

matrix?

Biologists are studying the effect of temperature on the germination of seed from cold-

resistant trees. Seeds of Korean ash (Fraxinus chinensis) are collected and kept in dry storage

for eight months, when 14 groups of 100 seeds each are established through random sampling.

For seven groups, the pericarp (a plant ovary part which serves as a seed covering) is picked

away from the seeds; for the other seven groups, it is left intact. Each group of seeds is placed

in a separate flat containing vermiculite, and two flats, one of each kind of seed treatment, are

assigned at random to each of seven temperature chambers. The numbers of seed germinating

for each temperature and seed treatment are given below.

Temperature (8C)

Seed Treatment 5 10 15 20 25 30 35

With pericarp 4 5 9 31 58 75 77

Without pericarp 3 4 9 18 36 65 96

Computational hint for hand calculation: Because the settings of the temperature

chambers are in multiples of 5, these observations can be easily coded by dividing

by 5. This simplifies the arithmetic when powers of x are employed.

a. Test for curvilinear regression by using x, x 2, and x 3 in multiple regression:

i. For germination of seed with pericarp

ii. For germination of seed with the pericarp removed

b. The simple linear trend of germination on temperature (uncoded data) is 2.914 seeds/
degree. The regression coefficient for the coded data is b1 ¼ 14.571. What is the effect

on the simple linear regression coefficient of dividing the x values by 5? What is the

effect on the other coefficients if multiple regression is performed?

c. To determine how complex the model must be to explain Korean ash germination

under different conditions, give the percentage of variability explained by each model

below:

i. Germination y as a simple linear function of temperature x for (1) seed with

pericarp and (2) seed without pericarp

ii. Germination as a quadratic function of temperature for (1) seed with pericarp and

(2) seed without

iii. Germination as a cubic function of temperature for (1) seed with pericarp and (2)

seed without
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d. Is there evidence that the relationship to temperature is significantly different for the

two seed treatments?

e. Using the information gained here, could the biologists properly use the techniques

covered in the section on covariance to adjust similar data for different temperatures in

order to compare the two seed treatments at a common temperature?

The yield of sugar from beets has been studied, and there is interest in determining the

response of yield to the amounts of fertilizer applied.

The data are

Fertilizer (cwt)

0 4 8 12

34.5 39.2 45.1 43.2

37.9 39.8 40.3 38.8

31.4 43.4 43.0 43.4

Total 103.8 122.4 128.4 125.4

a. Perform the ANOVA and test for differences among levels of fertilizer.

b. Test for linear, quadratic, and cubic trends.

c. Is there evidence that the range of applications of fertilizer encompasses the point of

diminishing return?

d. These data were analyzed in the sugar beet experiment of Exercise 14.7.1 using x and

x 2 as independent variables in multiple regression. Compare results from the two

techniques.

14.8. LOGISTIC REGRESSION

One or more independent variables can also be used to predict a dependent variable that is

nominal rather than numerical. The procedure is called logistic regression. Although more than

one regressor variable can be used, wewill demonstrate it for data recorded for x, y pairs, and even

then calculations are extensive. To perform the calculations one must only know how to find first

and second derivatives and know the matrix procedures of Section 14.1. However, many

iterations are often needed to obtain estimates of the parameters, and the repetitiveness is tedious.

We demonstrate the calculations only to dispel mathematical mystery, but logistic regression

should be thought of as a procedure always performed by a statistical computer package.

Logistic regression is used when there is a continuous variable such as hours of study on the

night prior to an exam, and we want to see if it has a predictable effect on the discrete exam grade.

If the grade was numerical we would use regression techniques, but if it is nominal, such as fail or

pass, least squares techniques are not appropriate. Even if we make y ¼ 0 for a failure and y ¼ 1

for success, the assumptions of linear regression are still notmet because the y variable is binomial,

hence there will not be a common variance. To solve the experimental problem we base it on how

hours of study improves the probability of a pass, or how hours of study change the odds of a

passing grade. Then we use logistic regression with x ¼ hours of study and y ¼ loge (odds).

It is usually helpful to demonstrate a new procedure on a small sample, but to do so with

logistic regression would increase the number of iterations. Logistic regression requires a
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computer program, but it also requires large data sets. So we will begin the discussion with a

large data set in which x ¼ diameter of a thoracic aortic aneurysm and y ¼ odds it will rupture

within 5 years.

An aortic aneurysm is a marked dilation of a particular portion of the aorta in either the

thoracic or abdominal portion. Such aneurysms have a 5-year mortality which is nearly 75%.

One-third to one-half of these deaths result from rupture of the aneurysm. Surgical repair

constitutes the only effective treatment, but treatment decisions need to balance the

complications of the dilated aneurysm with the complications resulting from the surgery itself.

A group of physicians has collected information from new patients for several years. One

item is the initial aneurysm size determined by radiology. Another item is whether the

aneurysm ruptured. A summary of this information is given in the following table:

Initial Aneurysm

Size

Number of

Ruptures

Number of

Patients

Proportion of

Ruptures

3.5–3.9 cm 0 33 0.0000

4.0–4.9 cm 3 133 0.0226

5.0–5.9 cm 4 78 0.0513

6.0 cm or more 6 60 0.1000

These investigators want to predict the rupture outcome. The outcome is a dichotomous

variable, essentially a yes or a no. They want an equation that will predict the proportion of

yes outcomes or, equivalently, estimate the probability that a patient’s aneurysm ruptures.

They cannot use an ordinary linear regression equation because it might predict proportions

less than zero or greater than 1, which would be meaningless. Also, it is reasonable to

conjecture that the probability of rupture is virtually zero until some threshold aneurysm size

is reached. The probability of rupture increases as the aneurysm size increases until some size

is reached beyond which the probability of rupture is virtually 1. It is reasonable to relate the

probability of rupture to aneurysm size by an S-shaped function.

Instead of using the proportion, they use the log of the odds of the proportion as the

dependent variable. This is called the logit of the proportion:

logit(p) ¼ loge
p

1� p

� 	

If the proportion p is zero, the logit is minus infinity. If the proportion p is 1, the logit is plus

infinity. For yes or no dichotomous variables, the logit is

loge½P(yes)� � loge½P(no)�

This implies that if we change the focus from the occurrence of an event to the nonoccurrence

of that event, the magnitude remains the same but the sign changes.

Model

If the investigators assume the relationship between aneurysm size and the logit is linear, they

might use the predictive model

loge
p

1� p

� 	
¼ aþ bx
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where x is the predictor variable, a and b are unknown parameters, and p is the proportion.

The procedure that relates a quantitative independent variable to the probability of the

outcome of a dichotomous dependent variable is called logistic regression.

There is no error term in the logistic regression model because the predicted value is not a

yes or no. It is the probability distribution of a yes (or no). For example, if the equation

predicts a 90% chance of rupture, we wouldn’t say it erred if the outcome was no. Instead, as a

way of evaluating the utility of the prediction equation, we might sum the negative logarithms

of the predicted probabilities of the events that actually occurred. So, if p̂p is the predicted

probability of rupture, we would “score” the predictions by assigning � loge (p̂p) if the

patient’s aneurysm ruptures and � loge (1� p̂p) if the patient’s aneurysm doesn’t rupture. A

perfect prediction would come up with a p̂p of 1 when the patient’s aneurysm ruptures and a p̂p
of 0 when the patient’s aneurysm doesn’t rupture. In either case the score is zero. A predicted

probability of 0 for an event that occurs means the score is plus infinity. The smaller the sum

of the scores, the better the prediction. The sum of the scores is

Xn
i

½�yi loge (p̂p)� (1� yi) loge (1� p̂p)�

if we code rupture as yi ¼ 1 and no rupture as yi ¼ 0.

Maximum-likelihood estimation

The inverse logit of the model expresses the probability for each outcome. Solving for p in the

logit model produces

p(x) ¼ 1

1þ e�(aþbx)

The estimates of a and b are found so as to maximize the likelihood. In Section 3.3 we

observed that the sample proportion is the maximum-likelihood estimator of the binomial

parameter p. Such estimators find values of parameters that make the outcome observed more

likely than it would be with any other value. Likelihood means the probability has been

evaluated as a function of the parameters with the data fixed. The calculation of the likelihood

estimators is simplified by two shortcuts:

a. The joint probability of all the observations is the product of the probability function for

each observation.

b. Maximizing the log of the likelihood produces the same result as maximizing the

likelihood. The log likelihood is the sum of the logarithms of the probabilities. Finding

the maximum-likelihood estimators is the same as minimizing the negative sum of logs

of the probabilities attributed to the response levels that actually occurred for each

observation.

The estimates a and b in the case of simple linear regression are, in fact, maximum-

likelihood estimators of a and b because minimizing the negative sum of the logs of the

probabilities produces the same function as the least-squares method.
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Log-likelihood equations

If we code each response yi as 0 or 1 and let xi represent the corresponding aneurysm size, the

contribution to an observation to the likelihood is

p(xi)
yi (1� p(xi))

1�yi

Since the observations are independent, the likelihood of all the observations is the product of

each contribution

l(a, b) ¼ P
n

i¼1
p(xi)

yi ½1� p(xi)�1�yi

and the log likelihood is

L(a, b) ¼
Xn
i

f yi loge½p(xi)� þ (1� yi) loge½1� p(xi)�g

To find the values of a and b that maximize L(a, b), we differentiate L(a, b) with respect
to a and b and set the resulting equations to zero. These likelihood equations are

X
½yi � p(xi)� ¼ 0

and

X
xi½yi � p(xi)� ¼ 0

In linear regression the derivatives of the sum of squared deviations with respect to a and b
produce equations that are linear with respect to a and b and are easy to solve. For logistic

regression L(a, b) is nonlinear in a and b and the solutions of the likelihood equations need

special methods. One such method is the iterative Newton–Raphson procedure. This

procedure requires the second derivatives of the log likelihood with respect to a and b. The
second derivative with respect to a is

d2L(a, b)

da2
¼ �

X
p(xi)½1� p(xi)�

The derivative with respect to a and b is

d2L(a, b)

dadb
¼ �

X
xip(xi)½1� p(xi)�

The second derivative with respect to b is

d2L(a, b)

db2
¼ �

X
x2i p(xi)½1� p(xi)�

The procedure starts with initial values for a and b. It calculates the log likelihood and

evaluates the likelihood equations and the second derivatives. It uses the results of the product
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of the inverse of the second derivative matrix and the likelihood functions to calculate

adjustments for a and b. Using matrix notation, the adjustment is

âa
b̂b

� �new
¼ âa

b̂b

� �old
þ

� d2L(a, b)

da2
� d2L(a, b)

dadb

� d2L(a, b)

dadb
� d2L(a, b)

db2

2
6664

3
7775

�1 X
½yi � p(xi)� ¼ 0X
xi½yi � p(xi)� ¼ 0

2
4

3
5

The procedure repeats the calculations until the changes in the likelihood are small.

Test of hypothesis

Of primary interest in logistic regression is to learn if there is a log-linear increase in the odds

ratio as the x variable (size of aneurysm) increases. The null and alternative hypotheses can be

stated in symbols as:

H0: b ¼ 0 and Ha: b = 0

And in words as:

H0: Odds of rupture do not change with aneurysm size

and

Ha: Odds of rupture change with aneurysm size

Likelihood also can be used to perform tests of the hypothesis in the following way:

a. Find the likelihood with no constraints on the parameters.

b. Find the likelihood with the parameters constrained by the null hypothesis.

Two times the difference between the log likelihoods,

2½log likelihood(unconstrained)� log likelihood(constrained)�

has an approximate chi-square distribution. These tests are called likelihood ratio chi squares.

In the iterative procedure described above we will start the procedure by constraining the

estimate of b to be zero. We use the overall proportion of ruptures to obtain a starting value for

the estimate of a. We calculate the log likelihood and use the likelihood equations to calculate

adjustments to the estimates of a and b. We remove the constraint on the estimate of b and

recalculate until the changes in the log likelihood fall below some criterion. Two times the

difference between the last log likelihood and the initial log likelihood is a chi-square statistic

with 1 degree of freedom. We can use it to test the hypothesis that b is equal to zero.

In simple linear regression, the test that b is equal to 0 requires the assumption that the

errors are normally distributed. With that assumption the test statistic has a t distribution

regardless of the sample size. In logistic regression the test statistic has an approximate chi-

square distribution. The approximation improves with larger sample sizes.

A statistically equivalent test is the Wald test, which may provide a different P value than

the likelihood chi-square, but will almost always lead to the same decision about the null

hypothesis. This test is performed by dividing the maximum likelihood estimate of the

parameter by its standard error. Under the null hypothesis that the parameter is 0, this ratio has

a standard normal distribution.
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Confidence intervals for the parameters

The basis for constructing confidence intervals for the parameters is the Wald test. For

example, confidence intervals for the slope and intercept are based on the respective Wald

tests. The 100(1 2 a)% confidence interval for b is

b̂b + z1�a=2s:e:(b̂b )

and for a is

âa + z1�a=2s:e:(âa)

The standard errors of the estimates are obtained from the square root of the diagonal elements

of the inverse of the matrix of second derivatives.

Calculations

To perform a logistic regression of the aneurysm-rupture information presented above, we

choose to use the midpoint of size intervals as the value for the independent variable and code

the rupture information into 0’s and 1’s and construct two columns of counts, y1 the number of

ruptures and y0 the number that did not rupture.

x y1 y0

3.75 0 33
4.5 3 130
5.5 4 74
6.25 6 54

Total 13 291

Step 1 (Null model, b ¼ 0) p̂p ¼ 13/(13 þ 291) ¼ 13/304 ¼ 0.04276 âa ¼ loge(13/291)
¼ 23.1084 b̂b ¼ 0

x y1 y0 p̂pðxÞ 22 loge L

3.75 0 33 0.0428 2.8845
4.5 3 130 0.0428 30.2756
5.5 4 74 0.0428 31.6849
6.25 6 54 0.0428 42.5450

Total 13 291 107.39

2 2 loge L ¼ 22y1 loge½p̂p(x)� � 2y0 loge½1� p̂p(x)�
Parameter estimates adjustment:

âa
b̂b

� �new
¼ �3:1084

0

� �old
þ 12:441 62:4762

62:4762 321:768

� ��1
0

7:7327

� �

âa
b̂b

� �new
¼ �3:1084

0

� �old
þ 3:1913 �0:6196

�0:6196 0:1234

� �
0

7:7327

� �

�7:8999
0:9544

� �new
¼ �3:1084

0

� �old
þ �4:7915

0:9544

� �
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Step 2 âa ¼ 27.8999 b̂b ¼ 0.9554

x y1 y0 p̂p(x) 22 loge L

3.75 0 33 0.013 0.8712

4.5 3 130 0.0265 28.7651

5.5 4 74 0.0659 31.8478

6.25 6 54 0.1262 39.4082

Total 13 291 100.8922

Parameter estimates adjustment:

âa

b̂b

" #new

¼
�7:8999

0:9544

" #old

þ
15:2739 84:7948

84:7948 479:1635

" #�1 �3:6674

�20:0726

" #

âa

b̂b

" #new

¼
�7:8999

0:9544

" #old

þ
3:7279 �0:6597

�0:6597 0:1188

" # �3:6674

�20:0726

" #

�8:3296

0:9885

" #new

¼
�7:8999

0:9544

" #old

þ
�0:4296

0:0341

" #

Step 3 âa ¼ �8:3296 b̂b ¼ 0:9885

x y1 y0 p̂p(x) 22 logeL

3.75 0 33 0.0097 0.6454

4.50 3 130 0.0202 28.7179

5.50 4 74 0.0525 31.5570

6.25 6 54 0.1042 39.0215

Total 13 291 99.9418

Parameter estimates adjustment

âa

b̂b

� �new
¼ �8:3296

0:9885

� �old
þ 12:4338 69:3968

69:3968 393:9999

� ��1 �0:3580

�1:9087

� �

âa

b̂b

� �new
¼ �8:3296

0:9885

� �old
þ 4:7466 �0:8360

�0:8360 0:1498

� � �0:3580

�1:9087

� �

�8:4331

1:0019

� �new
¼ �8:3296

0:9885

� �old
þ �0:1035

0:0134

� �
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Step 4 âa ¼ �8:4331 b̂b ¼ 1:0019

x y1 y0 p̂p(x) 22 logeL

3.75 0 33 0.0092 0.6121

4.50 3 130 0.0194 28.7498

5.50 4 74 0.0510 31.5547

6.25 6 54 0.1024 39.0137

Total 13 291 99.9302

Parameter estimates adjustment

âa

b̂b

� �new
¼ �8:4331

1:0091

� �old
þ 12:1204 67:7427

67:7427 385:0812

� ��1 �0:0052

�0:0260

� �

âa

b̂b

� �new
¼ �8:4331

1:0019

� �old
þ 4:9215 �0:8658

�0:8658 0:1549

� � �0:0052

�0:0260

� �

�8:4360

1:0024

� �new
¼ �8:4331

1:0019

� �old
þ �0:0029

0:0005

� �

Step 5 âa ¼ �8:4360 b̂b ¼ 1:0024

x y1 y0 p̂p(x) 22 logeL

3.75 0 33 0.0092 0.6113

4.5 3 130 0.0194 28.7506

5.5 4 74 0.0510 31.5547

6.25 6 54 0.1024 39.0136

Total 13 291 99.9302

Parameter estimates adjustment:

âa

b̂b

� �new
¼ �8:4360

1:0024

� �old
þ 12:1156 67:7190

67:7190 384:9607

� ��1 �0:0000

�0:0000

� �

âa

b̂b

� �new
¼ �8:4360

1:0024

� �old
þ 4:9251 �0:8664

�0:8664 0:1550

� � �0:0000

�0:0000

� �

�8:4360

1:0024

� �new
¼ �8:4360

1:0024

� �old
þ �0:0000

0:0000

� �

At the end of this step the changes in the chi-square [22(log likelihood)] value is 0 to four

decimal places. The adjustments to the parameter estimates are also 0 to four decimal places.

The procedure has converged to a solution.
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We wish to test the logistic regression equation for significance. To do this we use 2(initial

log-likelihood – final log-likelihood) ¼ 2(107.3900299.9302) ¼ 7.4549. If the null hy-

pothesis is true, this statistic has a chi-square distribution with 1 degree of freedom. For the

0.05 level of significance, the critical value is 3.8416, hence the model is significant and it is

confirmed that an increase in size of an aneurysm significantly increases the odds it will

rupture.

The estimate of a is âa ¼ �8:3460 and the estimate of b is b̂b ¼ 1:0024. The estimated

standard error of âa is 2.219. The estimated standard error of b̂b is 0.3937.

A 95% confidence interval for b is

1:0024+ 1:96(0:3937)

1:0024+ 0:7716

0:2308� 1:774

Odds Ratio

Because the logistic regression equation predicts the log odds, the coefficient b represents the

difference between two logs which is the same as a log of an odds ratio. The inverse of the

coefficient, the odds ratio, is the factor by which the odds will be multiplied for a unit increase

in x. Therefore a 1-cm increase in the aneurysm is a e 1.0024 ¼ 2.72-fold increase in the odds

for rupture.

Computer Usage

Most statistical software will perform the computations necessary for logistic regression. The

following SAS program can be used to create a SAS data set and perform a logistic regression

for the aneurysm ruptures:

Data;
input size rupture count;
cards;
3.75 1 0
3.75 0 33
4.5 1 3
4.5 0 130
5.5 1 4
5.5 0 74
6.25 1 6
6.25 0 54
proc logistic;
freq count;
model rupture(event ¼ ‘1’) ¼ size;

The output follows.

The SAS System

The LOGISTIC Procedure
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Model Information

Data Set WORK.DATA1
Response Variable rupture
Number of Response Levels 2
Number of Observations 7
Frequency Variable count
Sum of Frequencies 304
Model binary logit
Optimization Technique Fisher’s scoring

Response Profile

Ordered
Value rupture

Total
Frequency

1 0 291
2 1 13

Probability modeled is rupture ¼ 1.

NOTE: 1 observation having zero frequency or weight was excluded
since it does not contribute to the analysis.

Model Convergence Status

Convergence criterion (GCONV ¼ 1E-8) satisfied.

Model Fit Statistics

Criterion Intercept Only
Intercept and
Covariates

AIC 109.390 103.930
SC 113.107 111.364
22 Log L 107.390 99.930

Testing Global Null Hypothesis: BETA ¼ 0

Test Chi-Square DF Pr . ChiSq

Likelihood
Ratio 7.4598 1 0.0063
Score 7.3800 1 0.0066
Wald 6.4821 1 0.0109

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard
Error

Wald
Chi-Square Pr . ChiSq

Intercept 1 28.4360 2.2192 14.4500 0.0001
size 1 1.0024 0.3937 6.4821 0.0109
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Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

size 2.725 1.260 5.894

The 22 loge L is 107.390 for the intercept-only model and 99.930 for the intercept-and-

covariates model. The likelihood ratio chi-square is 7.4598. Observe that the estimates are

28.4360 and 1.0024. In addition, the odds ratio estimate is 2.725.

EXERCISES

14.8.1. A serum thought to be effective in preventing colds is given to 300 persons. Their

records for one year are compared with those of 200 untreated persons with the

following results:

Group No Colds Colds

Treated 145 155

Untreated 80 120

a. What is the estimate of the odds ratio?

b. Find a 95% confidence interval for the odds ratio.

c. Is 1 in the confidence interval? Interpret.

d. Compare these results with the results of Exercise 7.5.8.

Hint: The odds ratio can be computed by the SAS logistic procedure by coding the data. Colds

and Untreated are coded 1. No Colds and Treated are coded 0. (SAS gives two-sided

confidence intervals for odds ratios, but experimenters usually know the direction of the trend

if it exists and use one-sided confidence intervals.) For dichotomous variables the relationship

between the regression coefficient b and the odds ratio f is

f ¼ eb

Confidence intervals for f can be obtained from the Wald confidence intervals of b by

transforming the endpoints.

Some of the SAS output follows:

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr . ChiSq

Intercept 1 20.4055 0.1443 7.8913 0.0050
Group 1 0.3388 0.1849 3.3576 0.0669
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Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

Group 1.403 0.977 2.016

14.8.2. One of the strategies employed in American football is to “control the ball,” to

maintain possession of the ball for long periods of time hoping to score points or at

least denying the opponents opportunities to score. Suppose there are data for a team

on length of time it held the ball in games with no tied scores or overtime play, and the

results are

Median Time Ball

Controlled Games Won Games Lost

20 10 15

30 25 20

40 45 5

Some logistic regression computer output follows:

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard
Error

Wald
Chi-Square Pr . ChiSq

Intercept 1 23.2884 0.9196 12.7877 0.0003
time_
controlled 1 0.1283 0.0296 18.7530 ,.0001

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

time_controlled 1.137 1.073 1.205

a. Is there evidence that the idea of ball control is a valid strategy? That is, are the odds of

winning related to the length of time the team “controlled the ball”? Explain.

b. What would be the odds of a win for a team that controls the ball for 40 minutes?

14.8.3. To determine why his tea was sometimes bitter, Francis Galton designed a teapot with

a thermometer so he could maintain the heat between 1808 and 1908F. Using a

balance to weight the tea, he was able to use the same amount of tea for each brewing.

Then, while holding temperature and amount of tea constant, he was able to examine

the effect of time the tea was allowed to remain in the hot water. After each brewing

he recorded whether or not the tea was bitter. He repeated the experiment for

“numerous days,” varying only the time the tea remained in the hot water. Suppose his

results were
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Time Tea Remained

in Hot Water (min)

Number of Pots of

Tea Made

Number of Pots

of Bitter Tea

8 40 5

9 40 25

10 40 35

The SAS System

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard
Error

Wald
Chi-Square Pr . ChiSq

Intercept 1 215.7142 3.0974 25.7391 ,.0001
time 1 1.7849 0.3450 26.7634 ,.0001

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

time 5.959 3.030 11.718

a. What are the hypotheses that would be of interest to Galton? Test these

hypotheses.

b. What is the increase in the odds of bitter tea as the time of brewing increases by

1 minute? Is that increase in odds significant? Explain.

c. Galton reported that it is critical that tea not be brewed for more than 8 minutes. Is

there statistically significant evidence to support this claim?

REVIEW EXERCISES

Decide whether each of the following is true or false. If a statement is false, explain why.

14.1. Multiple regression techniques require that all x variables have the same variance.

14.2. If surface area of an animal seems to be a function of its weight raised to a power, a

logarithmic transformation on the area is indicated before a regression analysis.

14.3. All F tests of coefficients in a multiple regression analysis have one and n 2 k degrees

of freedom associated with them.

14.4. The experimenter may be as interested in determining which variables are

nonsignificant as in determining those which are related to the dependent variable.

14.5. The test of significance of the multiple regression coefficient R is against a one-sided

alternative.

14.6. When comparing different multiple regression models, the one with the largest Cp

statistic is the best fit.

14.7. In a regression of y on x1 and x2, it is possible to use the least-squares plane for

prediction if it is perpendicular to the y axis.
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14.8. The total variability in y can be split into two nonoverlapping parts: the portion

explained by regression and the unexplained portion.

14.9. The multiple correlation coefficient R is never negative.

14.10. Multiple regression and multiple correlation analysis require the same assumptions.

14.11. It is possible for R 2 to equal 0.90 and the regression equation may be the wrong model

for the data.

14.12. The partial regression coefficients are unit free.

14.13. The partial regression coefficients are always in the same units.

14.14. Standardized partial regression coefficients are unit free.

14.15. Partial correlation coefficients can never be negative.

14.16. Backward elimination and stepwise regression always lead to the same model.

14.17. The log transformations are used to simplify the computations involved in regression.

14.18. Polynomial regression is multiple regression with xi ¼ x i.

14.19. The model ŷy ¼ aþ b1xþ b2x
2 will always fit a data set better than ŷy ¼ aþ b1x

because it contains a term with a higher power of x.

14.20. In logistic regression, the independent variable is measured on the categorical

(nominal) scale and the dependent variable on the measurement scale.
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TABLE A.1. 2500 RANDOM DIGITS

These computer produced pseudorandom digits may be read in any direction: vertical, up or

down; horizontal, left-to-right or right-to-left; or along any diagonal, up or down. Single digits

or groups of any size may be read; the five-digit groupings are only for ease of reading and

should be ignored when reading the table. Care should be taken not to use the same portion of

the table repeatedly, especially for the same experiment. This can be accomplished by using a

random start (see Section 2.2) or by starting at one corner of the table and striking out the

digits as they are used so that each portion of the table is used only once.

1–5 6–10 11–15 16–20 21–25 26–30 31–35 36–40 41–45 46–50

1 38742 24201 25580 18631 30563 11548 08022 62261 74563 54597

2 01448 28091 45285 81470 09829 49377 88809 59780 46891 29447

3 34768 23715 37836 17206 26527 21554 62118 78918 30845 78748

4 89533 67552 74970 68065 50599 85529 20588 59726 84051 44388

5 74163 13487 64602 07271 03530 88954 66174 68319 25323 05476

6 92837 06594 01664 43011 27981 81256 75467 28245 29149 70357

7 69008 55983 22496 55337 74159 11283 13316 27479 63079 34060

8 92404 00156 38141 06269 51599 11371 24120 88150 99649 54740

9 45369 68854 67952 06245 32056 67900 84670 50098 29179 47904

10 16929 17418 70611 53752 39997 53621 67393 24891 53738 77251

11 95400 57951 64492 52389 86037 52586 42206 74681 82599 24606

12 36981 75140 26771 67681 54042 26121 70479 50295 43593 08220

13 37705 05124 60924 24374 99850 12414 13982 83219 26396 93876

14 67830 54660 89150 92919 90913 49560 49845 98239 78807 87479

15 32789 25115 44030 86301 61900 17173 34870 37043 40625 17954

16 60127 17491 59011 37625 03435 77178 08520 49910 34898 34345

17 17115 42174 81592 04300 68875 30353 48630 86132 55173 05788

18 27760 36661 85617 06242 09725 10642 44142 29625 49415 98360

19 04494 95805 16053 37126 54750 12617 09310 94021 38471 57427

20 34753 89545 33847 78318 41551 18705 64107 18200 56834 74584

21 63319 12471 56242 06344 94606 89207 26550 93261 17931 79259

22 98802 54600 92170 51425 74130 10301 08763 56046 00093 03793

23 82661 67501 01368 91079 54810 68160 11860 84288 27053 00917

24 99251 10088 48345 72786 81066 54353 17546 31595 77246 40514

25 72756 52088 29291 46169 14636 26380 35201 07490 28845 02341

26 96723 05193 38941 33288 13923 46860 12385 94973 43259 85010

27 96169 16158 24345 78561 46611 66869 17678 38209 24023 56259

28 96678 41518 88402 17882 79991 00083 29337 39994 06328 06476

29 97329 58496 55229 90839 93840 67032 77411 57137 06172 11036

30 38143 94319 58015 71878 42332 28120 80481 41745 68085 88776

31 83510 94405 93811 02145 74541 29582 24535 21485 54519 93320

(Table continued)
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TABLE A.1. Continued

1–5 6–10 11–15 16–20 21–25 26–30 31–35 36–40 41–45 46–50

32 98898 39140 50371 20646 07782 63276 66375 88305 77405 74749

33 04406 76609 46544 55985 72507 98678 48840 16601 44598 50487

34 55997 34203 29784 12914 37942 86041 48431 11784 28492 28049

35 95911 19810 65733 05412 18498 79393 37322 75911 92047 61599

36 67151 13303 12466 08918 27140 22886 61210 67131 52278 95829

37 59368 23548 60681 09171 18170 62627 48209 62135 44727 12937

38 75670 78997 76059 83474 15744 71892 52740 22930 92624 93036

39 94444 45866 42304 85506 26762 24841 47226 34746 90302 70785

40 73516 82157 24805 75928 02150 84557 12930 63123 11922 76960

41 89059 45446 56541 62549 21737 78963 30917 37046 81184 83397

42 94958 71785 47469 29362 91492 80902 80586 66162 74551 87221

43 21739 80710 61346 04257 09821 17188 80855 76589 36971 41982

44 93859 78783 46343 03715 12473 48553 02762 45114 75502 42382

45 14263 52552 17964 20078 82454 35167 35631 81815 18879 93676

46 22894 01894 47934 54594 43739 51301 22511 39456 51031 58121

47 29316 85620 09294 67074 77403 82789 22212 52358 69310 57604

48 31889 40095 98007 15605 93206 86857 29784 63937 83545 50407

49 60096 11744 74086 65948 37934 35941 25731 30787 68848 14320

50 42450 70020 43245 05233 21149 85898 73527 55648 65388 55211

513



TABLE A.2. FACTORIALS

n! n

1 1

2 2

6 3

24 4

120 5

720 6

5,040 7

40,320 8

362,880 9

3,628,800 10

39,916,800 11

479,001,600 12

6,227,020,800 13

87,178,291,200 14

1,307,674,368,000 15

20,922,789,888,000 16

355,687,428,096,000 17

6,402,373,705,728,000 18

121,645,100,408,832,000 19

2,432,902,008,176,640,000 20

51,090,942,171,709,440,000 21

1,124,000,727,777,607,680,000 22

25,852,016,738,884,976,640,000 23

620,448,401,733,239,439,360,000 24

15,511,210,043,330,985,984,000,000 25

n! ¼ 1.2.3.. . ..n 0! ¼ 1 by definition.
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TABLE A.5a THROUGH A.5e CONFIDENCE INTERVALS ON THE

BINOMIAL PARAMETER p

Each of the following tables gives central confidence intervals at the a ¼ 0.10, a ¼ 0.05, and

a ¼ 0.01 levels. (L ¼ lower confidence limit; U ¼ upper confidence limit.) For sample sizes

n ¼ 25 and n ¼ 50 (Tables A.5a and A.5b), if y cases of the outcome of interest occur in the

sample, CI12a: L � p � U is found by referring to row y and reading L and U under the

appropriate a level.

Example: If a ¼ 0.10, n ¼ 50, and y ¼ 31,

CI0:90: � 0:494 � p � 0:735

For n ¼ 100, the procedure is the same except that if y . 50, row 100 2 ymust be used to

find the confidence interval and L ¼ 1 2 U (of row 100 2 y) and U ¼ 1 2 L (of row

100 2 y).

Example: If a ¼ 0.01, y ¼ 75, and n ¼ 100, then 100 2 y ¼ 25 and

CI0:90: 1� 0:377 � p � 1� 0:148

and

CI0:99: 0:623 � p � 0:852

For n ¼ 250 and n ¼ 500 (Tables A.5d and A.5e), the confidence interval is found

using y/n.
Example: If a ¼ 0.05, y ¼ 100, and n ¼ 250, then y/n ¼ 100/250 ¼ 0.40 and

CI:95: 0:339 � p � 0:464

If y/n . 0.50, L is 1 2 U (of row 1 2 y/n) and U ¼ 1 2 L (of row 1 2 y/n).
Linear interpolation can be used with these tables for sample sizes intermediate to the ones

given in the tables. Linear interpolation can also be used if y/n is intermediate to those values

listed in Tables A.5d and A.5e.

The confidence intervals in these tables were derived with the use of the formulas given on

page 960 of the Handbook of Mathematical Functions With Formulas, Graphs, and

Mathematical Tables, edited by M. Abramowitz and I. A. Stegun, U.S. Department of

Commercse, National Bureau of Standards, Applied Mathematics Series 55, 1964.
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TABLE A.5a. CONFIDENCE INTERVALS ON THE BINOMIAL PARAMETER p

sample size n ¼ 25

a ¼ 0.10 a ¼ 0.05 a ¼ 0.01

y L U L U L U

0 0.000 0.113 0.000 0.137 0.000 0.191

1 0.002 0.176 0.001 0.204 0.000 0.261

2 0.014 0.231 0.010 0.260 0.004 0.321

3 0.034 0.282 0.025 0.312 0.014 0.374

4 0.057 0.330 0.045 0.361 0.028 0.424

5 0.082 0.375 0.068 0.407 0.046 0.470

6 0.110 0.420 0.094 0.451 0.066 0.514

7 0.139 0.462 0.121 0.494 0.089 0.556

8 0.170 0.504 0.150 0.535 0.113 0.596

9 0.202 0.544 0.180 0.575 0.140 0.633

10 0.236 0.583 0.211 0.613 0.167 0.670

11 0.270 0.621 0.244 0.651 0.198 0.705

12 0.305 0.659 0.278 0.687 0.228 0.740

13 0.341 0.695 0.313 0.722 0.260 0.772

14 0.379 0.730 0.349 0.756 0.295 0.802

15 0.417 0.764 0.387 0.789 0.330 0.833

16 0.456 0.798 0.425 0.820 0.367 0.860

17 0.496 0.830 0.465 0.850 0.404 0.887

18 0.538 0.861 0.506 0.879 0.444 0.911

19 0.580 0.890 0.549 0.906 0.486 0.934

20 0.625 0.918 0.593 0.932 0.530 0.954

21 0.670 0.943 0.639 0.955 0.576 0.972

22 0.718 0.966 0.688 0.975 0.626 0.986

23 0.769 0.986 0.740 0.990 0.679 0.996

24 0.824 0.998 0.796 0.999 0.739 1.000

25 0.887 1.000 0.863 1.000 0.809 1.000
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TABLE A.5b. CONFIDENCE INTERVALS ON THE BINOMIAL PARAMETER p

sample size n ¼ 50

a ¼ 0.10 a ¼ 0.05 a ¼ 0.01

y L U L U L U

0 0.000 0.058 0.000 0.071 0.000 0.101

1 0.001 0.091 0.001 0.107 0.000 0.140

2 0.007 0.121 0.005 0.137 0.002 0.172

3 0.017 0.148 0.013 0.165 0.007 0.203

4 0.028 0.174 0.022 0.192 0.014 0.231

5 0.040 0.199 0.033 0.218 0.022 0.258

6 0.054 0.223 0.045 0.243 0.032 0.284

7 0.068 0.247 0.058 0.267 0.043 0.309

8 0.082 0.270 0.072 0.291 0.054 0.333

9 0.097 0.293 0.086 0.314 0.066 0.358

10 0.113 0.316 0.100 0.337 0.078 0.380

11 0.129 0.338 0.115 0.360 0.092 0.403

12 0.145 0.360 0.131 0.382 0.106 0.426

13 0.161 0.381 0.146 0.403 0.120 0.447

14 0.178 0.403 0.162 0.425 0.134 0.469

15 0.195 0.424 0.179 0.446 0.149 0.490

16 0.212 0.445 0.195 0.467 0.164 0.511

17 0.230 0.465 0.212 0.488 0.180 0.531

18 0.247 0.486 0.229 0.508 0.196 0.552

19 0.265 0.506 0.246 0.528 0.212 0.571

20 0.283 0.526 0.264 0.548 0.229 0.591

21 0.301 0.546 0.282 0.568 0.246 0.610

22 0.320 0.566 0.300 0.587 0.262 0.629

23 0.339 0.585 0.318 0.607 0.280 0.648

24 0.357 0.605 0.337 0.626 0.298 0.666

25 0.376 0.624 0.355 0.645 0.315 0.685

26 0.395 0.643 0.374 0.663 0.334 0.702

27 0.415 0.661 0.393 0.682 0.352 0.720

28 0.434 0.680 0.413 0.700 0.371 0.738

29 0.454 0.699 0.432 0.718 0.390 0.754

30 0.474 0.717 0.452 0.736 0.409 0.771

31 0.494 0.735 0.472 0.754 0.429 0.788

32 0.514 0.753 0.492 0.771 0.448 0.804

33 0.535 0.770 0.512 0.788 0.469 0.820

34 0.555 0.788 0.533 0.805 0.489 0.836

35 0.576 0.805 0.554 0.821 0.510 0.851

36 0.597 0.822 0.575 0.838 0.531 0.866

(Table continued)
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TABLE A.5b. Continued

sample size n ¼ 50

a ¼ 0.10 a ¼ 0.05 a ¼ 0.01

y L U L U L U

37 0.619 0.839 0.597 0.854 0.553 0.880

38 0.640 0.855 0.618 0.869 0.574 0.894

39 0.662 0.871 0.640 0.885 0.597 0.908

40 0.684 0.887 0.663 0.900 0.620 0.922

41 0.707 0.903 0.686 0.914 0.642 0.934

42 0.730 0.918 0.709 0.928 0.667 0.946

43 0.753 0.932 0.733 0.942 0.691 0.957

44 0.777 0.946 0.757 0.955 0.716 0.968

45 0.801 0.960 0.782 0.967 0.742 0.978

46 0.826 0.972 0.808 0.978 0.769 0.986

47 0.852 0.983 0.835 0.987 0.797 0.993

48 0.879 0.993 0.863 0.995 0.828 0.998

49 0.909 0.999 0.893 0.999 0.860 1.000

50 0.942 1.000 0.929 1.000 0.899 1.000

TABLE A.5c. CONFIDENCE INTERVALS ON THE BINOMIAL PARAMETER p

sample size n ¼ 100

a ¼ 0.10 a ¼ 0.05 a ¼ 0.01

y L U L U L U

0 0.000 0.029 0.000 0.036 0.000 0.052

1 0.001 0.047 0.000 0.054 0.000 0.072

2 0.004 0.062 0.002 0.070 0.001 0.089

3 0.008 0.076 0.006 0.085 0.003 0.106

4 0.014 0.089 0.011 0.099 0.007 0.121

5 0.020 0.102 0.016 0.113 0.011 0.135

6 0.026 0.115 0.022 0.126 0.016 0.149

7 0.033 0.127 0.029 0.139 0.021 0.163

8 0.040 0.140 0.035 0.152 0.026 0.176

9 0.048 0.152 0.042 0.164 0.032 0.189

10 0.055 0.164 0.049 0.176 0.038 0.202

11 0.063 0.175 0.056 0.188 0.044 0.215

12 0.071 0.187 0.064 0.200 0.051 0.227

(Table continued)
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TABLE A.5c. Continued

sample size n ¼ 100

a ¼ 0.10 a ¼ 0.05 a ¼ 0.01

y L U L U L U

13 0.079 0.199 0.071 0.212 0.058 0.239

14 0.087 0.210 0.079 0.224 0.064 0.251

15 0.095 0.222 0.086 0.235 0.072 0.263

16 0.103 0.233 0.094 0.247 0.079 0.275

17 0.111 0.244 0.102 0.258 0.086 0.287

18 0.120 0.255 0.110 0.269 0.093 0.298

19 0.128 0.266 0.118 0.281 0.101 0.310

20 0.137 0.277 0.127 0.292 0.108 0.321

21 0.145 0.288 0.135 0.303 0.116 0.332

22 0.154 0.299 0.143 0.314 0.124 0.344

23 0.163 0.310 0.152 0.325 0.132 0.355

24 0.171 0.321 0.160 0.336 0.140 0.366

25 0.180 0.331 0.169 0.347 0.148 0.377

26 0.189 0.342 0.177 0.357 0.156 0.388

27 0.198 0.353 0.186 0.368 0.164 0.398

28 0.207 0.363 0.195 0.379 0.172 0.409

29 0.216 0.374 0.204 0.389 0.181 0.420

30 0.225 0.384 0.212 0.400 0.189 0.431

31 0.234 0.395 0.221 0.410 0.198 0.441

32 0.243 0.405 0.230 0.421 0.206 0.452

33 0.252 0.415 0.239 0.431 0.215 0.462

34 0.261 0.426 0.248 0.442 0.223 0.473

35 0.271 0.436 0.257 0.452 0.232 0.483

36 0.280 0.446 0.266 0.462 0.240 0.493

37 0.289 0.457 0.276 0.472 0.250 0.503

38 0.299 0.467 0.285 0.483 0.259 0.514

39 0.308 0.477 0.294 0.493 0.267 0.523

40 0.318 0.487 0.303 0.503 0.276 0.533

41 0.327 0.497 0.313 0.513 0.286 0.544

42 0.336 0.507 0.322 0.523 0.294 0.554

43 0.346 0.517 0.331 0.533 0.303 0.563

44 0.356 0.527 0.341 0.543 0.313 0.573

45 0.365 0.537 0.350 0.553 0.322 0.583

46 0.375 0.547 0.360 0.563 0.331 0.593

47 0.384 0.557 0.369 0.572 0.341 0.603

48 0.394 0.567 0.379 0.582 0.350 0.612

49 0.404 0.577 0.389 0.592 0.359 0.622

50 0.414 0.586 0.398 0.602 0.369 0.631
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TABLE A.5d. CONFIDENCE INTERVALS ON THE BINOMIAL PARAMETER p

sample size n ¼ 250

a ¼ 0.10 a ¼ 0.05 a ¼ 0.01

y/n L U L U L U

0.00 0.000 0.012 0.000 0.015 0.000 0.021

0.02 0.008 0.042 0.007 0.046 0.004 0.056

0.04 0.022 0.067 0.019 0.072 0.015 0.084

0.06 0.037 0.091 0.034 0.097 0.028 0.110

0.08 0.054 0.114 0.050 0.121 0.042 0.134

0.10 0.070 0.137 0.066 0.144 0.057 0.159

0.12 0.088 0.159 0.082 0.167 0.073 0.182

0.14 0.105 0.181 0.099 0.189 0.089 0.205

0.16 0.123 0.203 0.117 0.211 0.105 0.228

0.18 0.141 0.225 0.134 0.233 0.122 0.250

0.20 0.159 0.246 0.152 0.255 0.139 0.273

0.22 0.178 0.267 0.170 0.277 0.156 0.295

0.24 0.196 0.289 0.188 0.298 0.174 0.316

0.26 0.215 0.310 0.207 0.319 0.192 0.338

0.28 0.233 0.331 0.225 0.340 0.210 0.359

0.30 0.252 0.351 0.244 0.361 0.228 0.380

0.32 0.271 0.372 0.263 0.382 0.246 0.401

0.34 0.290 0.393 0.281 0.402 0.264 0.422

0.36 0.310 0.413 0.300 0.423 0.283 0.442

0.38 0.329 0.433 0.320 0.443 0.302 0.463

0.40 0.348 0.454 0.339 0.464 0.321 0.483

0.42 0.368 0.474 0.358 0.484 0.340 0.503

0.44 0.387 0.494 0.377 0.504 0.359 0.523

0.46 0.407 0.514 0.397 0.524 0.378 0.543

0.48 0.426 0.534 0.417 0.544 0.398 0.563

0.50 0.446 0.554 0.436 0.564 0.417 0.583
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TABLE A.5e. CONFIDENCE INTERVALS ON THE BINOMIAL PARAMETER p

sample size n ¼ 500

a ¼ 0.10 a ¼ 0.05 a ¼ 0.01

y/n L U L U L U

0.00 0.000 0.006 0.000 0.007 0.000 0.011

0.01 0.004 0.021 0.003 0.023 0.002 0.028

0.02 0.011 0.034 0.010 0.036 0.007 0.042

0.03 0.019 0.046 0.017 0.049 0.014 0.056

0.04 0.027 0.058 0.025 0.061 0.021 0.068

0.05 0.035 0.069 0.033 0.073 0.028 0.081

0.06 0.044 0.081 0.041 0.085 0.036 0.093

0.07 0.052 0.092 0.049 0.096 0.044 0.105

0.08 0.061 0.103 0.058 0.107 0.052 0.116

0.09 0.070 0.114 0.066 0.119 0.060 0.128

0.10 0.079 0.125 0.075 0.130 0.068 0.139

0.11 0.088 0.136 0.084 0.141 0.077 0.151

0.12 0.097 0.147 0.093 0.152 0.085 0.162

0.13 0.106 0.157 0.102 0.163 0.094 0.173

0.14 0.115 0.168 0.111 0.174 0.103 0.184

0.15 0.124 0.179 0.120 0.184 0.111 0.196

0.16 0.134 0.189 0.129 0.195 0.120 0.207

0.17 0.143 0.200 0.138 0.206 0.129 0.217

0.18 0.152 0.211 0.147 0.217 0.138 0.228

0.19 0.162 0.221 0.157 0.227 0.147 0.239

0.20 0.171 0.232 0.166 0.238 0.156 0.250

0.21 0.180 0.242 0.175 0.248 0.165 0.261

0.22 0.190 0.253 0.184 0.259 0.174 0.271

0.23 0.199 0.263 0.194 0.269 0.183 0.282

0.24 0.209 0.274 0.203 0.280 0.192 0.292

0.25 0.218 0.284 0.213 0.290 0.202 0.303

0.26 0.228 0.294 0.222 0.301 0.211 0.314

0.27 0.237 0.305 0.232 0.311 0.220 0.324

0.28 0.247 0.315 0.241 0.322 0.230 0.335

0.29 0.257 0.325 0.251 0.332 0.239 0.345

0.30 0.266 0.336 0.260 0.342 0.248 0.356

0.31 0.276 0.346 0.270 0.353 0.258 0.366

0.32 0.286 0.356 0.279 0.363 0.267 0.376

0.33 0.295 0.366 0.289 0.373 0.277 0.387

0.34 0.305 0.376 0.299 0.383 0.286 0.397

0.35 0.315 0.387 0.308 0.394 0.296 0.407

(Table continued)
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TABLE A.5e. Continued

sample size n ¼ 500

a ¼ 0.10 a ¼ 0.05 a ¼ 0.01

y/n L U L U L U

0.36 0.324 0.397 0.318 0.404 0.305 0.417

0.37 0.334 0.407 0.328 0.414 0.315 0.428

0.38 0.344 0.417 0.337 0.424 0.325 0.438

0.39 0.354 0.427 0.347 0.434 0.334 0.448

0.40 0.363 0.437 0.357 0.444 0.344 0.458

0.41 0.373 0.448 0.367 0.455 0.353 0.468

0.42 0.383 0.458 0.376 0.465 0.363 0.478

0.43 0.393 0.468 0.386 0.475 0.373 0.489

0.44 0.403 0.478 0.396 0.485 0.383 0.498

0.45 0.413 0.488 0.406 0.495 0.392 0.509

0.46 0.423 0.498 0.416 0.505 0.402 0.519

0.47 0.432 0.508 0.426 0.515 0.412 0.529

0.48 0.442 0.518 0.435 0.525 0.422 0.539

0.49 0.452 0.528 0.445 0.535 0.432 0.548

0.50 0.462 0.538 0.455 0.545 0.442 0.558
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TABLE A.7. POISSON DISTRIBUTIONS

y l 0.05 0.10 0.20 0.30 0.40 0.50 0.60

0 .9512 .9048 .8187 .7408 .6703 .6065 .5488

1 .0476 .0905 .1637 .2222 .2681 .3033 .3293

2 .0012 .0045 .0164 .0333 .0536 .0758 .0988

3 .0000 .0002 .0011 .0033 .0072 .0126 .0198

4 .0000 .0000 .0001 .0003 .0007 .0016 .0030

5 .0000 .0000 .0000 .0000 .0001 .0002 .0004

6 .0000 .0000 .0000 .0000 .0000 .0000 .0000

y l 0.70 0.80 0.90 1.00 1.20 1.40 1.60

0 .4966 .4493 .4066 .3679 .3012 .2466 .2019

1 .3476 .3595 .3659 .3679 .3614 .3452 .3230

2 .1217 .1438 .1647 .1839 .2169 .2417 .2584

3 .0284 .0383 .0494 .0613 .0867 .1128 .1378

4 .0050 .0077 .0111 .0153 .0260 .0395 .0551

5 .0007 .0012 .0020 .0031 .0062 .0111 .0176

6 .0001 .0002 .0003 .0005 .0012 .0026 .0047

7 .0000 .0000 .0000 .0001 .0002 .0005 .0011

8 .0000 .0000 .0000 .0000 .0000 .0001 .0002

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000

y l 1.80 2.00 2.20 2.40 2.60 2.80 3.00

0 .1.1653 .1.1353 .1.1108 .1.0907 .1.0743 .1.0608 .1.0498

1 .2975 .2707 .2438 .2177 .1931 .1703 .1.1494

2 .2678 .2707 .2681 .2613 .2510 .2384 .2240

3 .1607 .1804 .1966 .2090 .2176 .2225 .2240

4 .0723 .0902 .1082 .1254 .1414 .1557 .1680

5 .0260 .0361 .0476 .0602 .0735 .0872 .1008

6 .0078 .0120 .0174 .0241 .0319 .0407 .0504

7 .0020 .0034 .0055 .0083 .0118 .0163 .0216

8 .0005 .0009 .0015 .0025 .0038 .0057 .0081

9 .0001 .0002 .0004 .0007 .0011 .0018 .0027

10 .0000 .0000 .0001 .0002 .0003 .0005 .0008

11 .0000 .0000 .0000 .0000 .0001 .0001 .0002

12 .0000 .0000 .0000 .0000 .0000 .0000 .0001

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000

y l 3.50 4.00 4.50 5.00 5.50 6.00 6.50

0 .0302 .0183 .0111 .0067 .0041 .0025 .0015

1 .1057 .0733 .0500 .0337 .0225 .0149 .0098

(Table continued)
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TABLE A.7. Continued

y l 3.50 4.00 4.50 5.00 5.50 6.00 6.50

2 .1850 .1465 .1125 .0842 .0618 .0446 .0318

3 .2158 .1954 .1687 .1404 .1133 .0892 .0688

4 .1888 .1954 .1898 .1755 .1558 .1339 .1118

5 .1322 .1563 .1708 .1755 .1714 .1606 .1454

6 .0771 .1042 .1281 .1462 .1571 .1606 .1575

7 .0385 .0595 .0824 .1044 .1234 .1377 .1462

8 .0169 .0298 .0463 .0653 .0849 .1033 .1188

9 .0066 .0132 .0232 .0363 .0519 .0688 .0858

10 .0023 .0053 .0104 .0181 .0285 .0413 .0558

11 .0007 .0019 .0043 .0082 .0143 .0225 .0330

12 .0002 .0006 .0016 .0034 .0065 .0113 .0179

13 .0001 .0002 .0006 .0013 .0028 .0052 .0089

14 .0000 .0001 .0002 .0005 .0011 .0022 .0041

15 .0000 .0000 .0001 .0002 .0004 .0009 .0018

16 .0000 .0000 .0000 .0000 .0001 .0003 .0007

17 .0000 .0000 .0000 .0000 .0000 .0001 .0003

18 .0000 .0000 .0000 .0000 .0000 .0000 .0001

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000

y l 7.00 8.00 9.00 10.00 11.00 12.00 13.00

0 .0009 .0003 .0001 .0000 .0000 .0000 .0000

1 .0064 .0027 .0011 .0005 .0002 .0001 .0000

2 .0223 .0107 .0050 .0023 .0010 .0004 .0002

3 .0521 .0286 .0150 .0076 .0037 .0018 .0008

4 .0912 .0573 .0337 .0189 .0102 .0053 .0027

5 .1277 .0916 .0607 .0378 .0224 .0127 .0070

6 .1490 .1221 .0911 .0631 .0411 .0255 .0152

7 .1490 .1396 .1171 .0901 .0646 .0437 .0281

8 .1304 .1396 .1318 .1126 .0888 .0655 .0457

9 .1014 .1241 .1318 .1251 .1085 .0874 .0661

10 .0710 .0993 .1186 .1251 .1194 .1048 .0859

11 .0452 .0722 .0970 .1137 .1194 .1144 .1015

12 .0263 .0481 .0728 .0948 .1094 .1144 .1099

13 .0142 .0296 .0504 .0729 .0926 .1056 .1099

14 .0071 .0169 .0324 .0521 .0728 .0905 .1021

15 .0033 .0090 .0194 .0347 .0534 .0724 .0885

16 .0014 .0045 .0109 .0217 .0367 .0543 .0719

17 .0006 .0021 .0058 .0128 .0237 .0383 .0550

18 .0002 .0009 .0029 .0071 .0145 .0255 .0397

19 .0001 .0004 .0014 .0037 .0084 .0161 .0272

20 .0000 .0002 .0006 .0019 .0046 .0097 .0177

(Table continued )
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TABLE A.7. Continued

y l 7.00 8.00 9.00 10.00 11.00 12.00 13.00

21 .0000 .0001 .0003 .0009 .0024 .0055 .0109

22 .0000 .0000 .0001 .0004 .0012 .0030 .0065

23 .0000 .0000 .0000 .0002 .0006 .0016 .0037

24 .0000 .0000 .0000 .0001 .0003 .0008 .0020

25 .0000 .0000 .0000 .0000 .0001 .0004 .0010

26 .0000 .0000 .0000 .0000 .0000 .0002 .0005

27 .0000 .0000 .0000 .0000 .0000 .0001 .0002

28 .0000 .0000 .0000 .0000 .0000 .0000 .0001

29 .0000 .0000 .0000 .0000 .0000 .0000 .0001

30 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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TABLE A.8. CENTRAL POISSON CONFIDENCE INTERVALS

1 2 a ¼ 0.80 1 2 a ¼ 0.90 1 2 a ¼ 0.95

y L U L U L U

0 0.0000 2.3026 0.0000 2.9957 0.0000 3.6889

1 0.1054 3.8897 0.0513 4.7439 0.0253 5.5716

2 0.5318 5.3223 0.3554 6.2958 0.2422 7.2247

3 1.1021 6.6808 0.8177 7.7537 0.6187 8.7673

4 1.7448 7.9936 1.3663 9.1535 1.0899 10.2416

5 2.4326 9.2747 1.9701 10.5130 1.6235 11.6683

6 3.1519 10.5321 2.6130 11.8424 2.2019 13.0595

7 3.8948 11.7709 3.2853 13.1481 2.8144 14.4227

8 4.6561 12.9947 3.9808 14.4346 3.4538 15.7632

9 5.4325 14.2060 4.6952 15.7052 4.1154 17.0848

10 6.2213 15.4066 5.4254 16.9622 4.7954 18.3904

11 7.0207 16.5981 6.1690 18.2075 5.4912 19.6820

12 7.8293 17.7816 6.9242 19.4426 6.2006 20.9616

13 8.6459 18.9580 7.6896 20.6686 6.9220 22.2304

14 9.4696 20.1280 8.4639 21.8865 7.6539 23.4896

15 10.2996 21.2924 9.2463 23.0971 8.3954 24.7402

16 11.1353 22.4516 10.0360 24.3012 9.1454 25.9830

17 11.9761 23.6061 10.8321 25.4992 9.9031 27.2186

18 12.8216 24.7563 11.6343 26.6918 10.6679 28.4478

19 13.6715 25.9025 12.4420 27.8792 11.4392 29.6709

20 14.5253 27.0451 13.2547 29.0620 12.2165 30.8884
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TABLE A.9. CRITICAL CHI-SQUARE VALUES

P(x2 . x2a,v) ¼ P(x2 . tabular value) ¼ a

Examples:

1. P(x2 . x20:025,5) ¼ P(x2 . 12:833) ¼ 0:025

2. P(x2 . x20:995,10) ¼ P(x2 . 2:156) ¼ 0:995

TABLE A.9. CRITICAL CHI-SQUARE VALUES

n
a

0.995 0.990 0.975 0.950 0.050 0.025 0.010 0.005

1 0.000 0.000 0.001 0.004 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278

8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997

(Table continued)
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TABLE A.9. Continued

n
a

0.995 0.990 0.975 0.950 0.050 0.025 0.010 0.005

21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 40.113 43.195 46.963 49.645

28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993

29 13.121 14.256 16.047 17.708 42.557 45.722 49.588 52.336

30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672

32 15.134 16.362 18.291 20.072 46.194 49.480 53.486 56.328

34 16.501 17.789 19.806 21.664 48.602 51.966 56.061 58.964

36 17.887 19.233 21.336 23.269 50.998 54.437 58.619 61.581

38 19.289 20.691 22.878 24.884 53.384 56.896 61.162 64.181

40 20.707 22.164 24.433 26.509 55.758 59.342 63.691 66.766

42 22.138 23.650 25.999 28.144 58.124 61.777 66.206 69.336

44 23.584 25.148 27.575 29.787 60.481 64.201 68.710 71.893

46 25.041 26.657 29.160 31.439 62.830 66.617 71.201 74.437

48 26.511 28.177 30.755 33.098 65.171 69.023 73.683 76.969

50 27.991 29.707 32.357 34.764 67.505 71.420 76.154 79.490

60 35.534 37.485 40.482 43.188 79.082 83.298 88.379 91.952

70 43.275 45.442 48.758 51.739 90.531 95.023 100.425 104.215

80 51.172 53.540 57.153 60.391 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 124.342 129.561 135.807 140.169
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TABLE A.10. THE STANDARD NORMAL DISTRIBUTION

Values a in the body of the table are the probability that z is greater than the positive value

za given in the margins.

Example:

P(z . 1:54) ¼ 0:062

or

z0:062 ¼ 1:54

For negative z values, the probability of a greater value can be found using the symmetry of

the distribution.

P(z . za) ¼ 1� a ¼ P(z . z1�a)

Example:

P(x . �1:54) ¼ 1� 0:062 ¼ 0:938

or

z0:938 ¼ �1:54
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TABLE A.10. THE STANDARD NORMAL DISTRIBUTION

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.00 .500 .496 .492 .488 .484 .480 .476 .472 .468 .464

0.10 .460 .456 .452 .448 .444 .440 .436 .433 .429 .425

0.20 .421 .417 .413 .409 .405 .401 .397 .394 .390 .386

0.30 .382 .378 .374 .371 .367 .363 .359 .356 .352 .348

0.40 .345 .341 .337 .334 .330 .326 .323 .319 .316 .312

0.50 .309 .305 .302 .298 .295 .291 .288 .284 .281 .278

0.60 .274 .271 .268 .264 .261 .258 .255 .251 .248 .245

0.70 .242 .239 .236 .233 .230 .227 .224 .221 .218 .215

0.80 .212 .209 .206 .203 .200 .198 .195 .192 .189 .187

0.90 .184 .181 .179 .176 .174 .171 .169 .166 .164 .161

1.00 .159 .156 .154 .152 .149 .147 .145 .142 .140 .138

1.10 .136 .133 .131 .129 .127 .125 .123 .121 .119 .117

1.20 .115 .113 .111 .109 .107 .106 .104 .102 .100 .099

1.30 .097 .095 .093 .092 .090 .089 .087 .085 .084 .082

1.40 .081 .079 .078 .076 .075 .074 .072 .071 .069 .068

1.50 .067 .066 .064 .063 .062 .061 .059 .058 .057 .056

1.60 .055 .054 .053 .052 .051 .049 .048 .047 .046 .046

1.70 .045 .044 .043 .042 .041 .040 .039 .038 .038 .037

1.80 .036 .035 .034 .034 .033 .032 .031 .031 .030 .029

1.90 .029 .028 .027 .027 .026 .026 .025 .024 .024 .023

2.00 .023 .022 .022 .021 .021 .020 .020 .019 .019 .018

2.10 .018 .017 .017 .017 .016 .016 .015 .015 .015 .014

2.20 .014 .014 .013 .013 .013 .012 .012 .012 .011 .011

2.30 .011 .010 .010 .010 .010 .009 .009 .009 .009 .008

2.40 .008 .008 .008 .008 .007 .007 .007 .007 .007 .006

2.50 .006 .006 .006 .006 .006 .005 .005 .005 .005 .005

2.60 .005 .005 .004 .004 .004 .004 .004 .004 .004 .004

2.70 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003

2.80 .003 .002 .002 .002 .002 .002 .002 .002 .002 .002

2.90 .002 .002 .002 .002 .002 .002 .002 .001 .001 .001

3.00 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001

535



TABLE A.11. CRITICAL t VALUES

P(t . ta,v) ¼ P(t . tabular value) ¼ a

Example:

P(t . t0:05,10) ¼ P(t . 1:812) ¼ 0:05

Symmetry is used to find negative t values.

Example:

t0:95,10 ¼ �t0:05,10 ¼ �1:812

The last row of the t table gives critical z values, that is,

ta,1 ¼ za

TABLE A.11. CRITICAL t VALUES

n
a

0.100 0.050 0.025 0.010 0.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

(Table continued)
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TABLE A.11. Continued

n
a

0.100 0.050 0.025 0.010 0.005

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

INF 1.282 1.645 1.960 2.326 2.576
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TABLE A12a THROUGH A12x. CRITICAL F VALUES

P(F . Fa,v1,v2 ) ¼ a

Example:

F0:025,2,4 ¼ 10:649

For lower critical F values, use the relationship

F1�a,v1,v2 ¼
1

Fa,v2,v1

Example:

F0:995,10,8 ¼ 1

F0:005,8,10
¼ 1

6:116
¼ 0:1635

Table for a Given Pair of Degrees of Freedom

Numerator Degrees of Freedom

1–5 6–10 11–15 16–20 21–25 26–30

Denominator

Degrees of

Freedom

1–10 A.12a A.12b A.12c A.12d A.12e A.12f

11–20 A.12g A.12h A.12i A.12j A.12k A.12l

21–30 A.12m A.12n A.12o A.12p A.12q A.12r

40–200 A.12s A.12t A.12u A.12v A.12w A.12x
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TABLE A.12a. CRITICAL F VALUES

Denominator

Numerator n

n a 1 2 3 4 5

1 0.050 161.448 199.500 215.707 224.583 230.162

0.025 647.790 799.500 864.163 899.583 921.848

0.010 4052.194 4999.506 5403.355 5624.584 5763.660

0.005 16210.873 19999.499 21614.726 22499.596 23055.762

0.001 405293.184 499996.121 540378.670 562498.442 576406.763

2 0.050 18.513 19.000 19.164 19.247 19.296

0.025 38.506 39.000 39.165 39.248 39.298

0.010 98.503 99.000 99.166 99.249 99.299

0.005 198.501 199.000 199.166 199.250 199.300

0.001 998.505 998.991 999.168 999.257 999.302

3 0.050 10.128 9.552 9.277 9.117 9.013

0.025 17.443 16.044 15.439 15.101 14.885

0.010 34.116 30.817 29.457 28.710 28.237

0.005 55.552 49.799 47.467 46.195 45.392

0.001 167.030 148.501 141.109 137.099 134.581

4 0.050 7.709 6.944 6.591 6.388 6.256

0.025 12.218 10.649 9.979 9.605 9.364

0.010 21.198 18.000 16.694 15.977 15.522

0.005 31.333 26.284 24.259 23.155 22.456

0.001 74.137 61.245 56.177 53.436 51.711

5 0.050 6.608 5.786 5.409 5.192 5.050

0.025 10.007 8.434 7.764 7.388 7.146

0.010 16.258 13.274 12.060 11.392 10.967

0.005 22.785 18.314 16.530 15.556 14.940

0.001 47.181 37.122 33.203 31.085 29.753

6 0.050 5.987 5.143 4.757 4.534 4.387

0.025 8.813 7.260 6.599 6.227 5.988

0.010 13.745 10.925 9.780 9.148 8.746

0.005 18.635 14.544 12.917 12.028 11.464

0.001 35.508 27.000 23.703 21.924 20.803

7 0.050 5.591 4.737 4.347 4.120 3.972

0.025 8.073 6.542 5.890 5.523 5.285

0.010 12.246 9.547 8.451 7.847 7.460

0.005 16.236 12.404 10.882 10.050 9.522

0.001 29.245 21.689 18.772 17.198 16.206

8 0.050 5.318 4.459 4.066 3.838 3.687

0.025 7.571 6.059 5.416 5.053 4.817

0.010 11.259 8.649 7.591 7.006 6.632

0.005 14.688 11.042 9.596 8.805 8.302

0.001 25.415 18.494 15.829 14.392 13.485

(Table continued)
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TABLE A.12a. Continued

Denominator

Numerator n

n a 1 2 3 4 5

9 0.050 5.117 4.256 3.863 3.633 3.482

0.025 7.209 5.715 5.078 4.718 4.484

0.010 10.561 8.022 6.992 6.422 6.057

0.005 13.614 10.107 8.717 7.956 7.471

0.001 22.857 16.387 13.902 12.560 11.714

10 0.050 4.965 4.103 3.708 3.478 3.326

0.025 6.937 5.456 4.826 4.468 4.236

0.010 10.044 7.559 6.552 5.994 5.636

0.005 12.826 9.427 8.081 7.343 6.872

0.001 21.040 14.905 12.553 11.283 10.481

TABLE A.12b. CRITICAL F VALUES

Denominator

Numerator n

n a 6 7 8 9 10

1 0.050 233.986 236.768 238.883 240.543 241.882

0.025 937.110 948.218 956.656 963.285 968.627

0.010 5858.981 5928.349 5981.073 6022.471 6055.850

0.005 23437.141 23714.565 23925.451 24091.033 24224.533

0.001 585927.903 592864.102 598136.821 602279.789 605630.027

2 0.050 19.330 19.353 19.371 19.385 19.396

0.025 39.331 39.355 39.373 39.387 39.398

0.010 99.333 99.356 99.374 99.388 99.399

0.005 199.333 199.357 199.375 199.388 199.399

0.001 999.329 999.360 999.376 999.387 999.409

3 0.050 8.941 8.887 8.845 8.812 8.786

0.025 14.735 14.624 14.540 14.473 14.419

0.010 27.911 27.672 27.489 27.345 27.229

0.005 44.838 44.434 44.126 43.882 43.686

0.001 132.848 131.584 130.619 129.860 129.247

4 0.050 6.163 6.094 6.041 5.999 5.964

0.025 9.197 9.074 8.980 8.905 8.844

0.010 15.207 14.976 14.799 14.659 14.546

0.005 21.975 21.622 21.352 21.139 20.967

0.001 50.525 49.658 48.996 48.474 48.053

5 0.050 4.950 4.876 4.818 4.772 4.735

0.025 6.978 6.853 6.757 6.681 6.619

0.010 10.672 10.456 10.289 10.158 10.051

0.005 14.513 14.200 13.961 13.772 13.618

(Table continued)
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TABLE A.12b. Continued

Denominator

Numerator n

n a 6 7 8 9 10

0.001 28.834 28.163 27.649 27.245 26.916

6 0.050 4.284 4.207 4.147 4.099 4.060

0.025 5.820 5.695 5.600 5.523 5.461

0.010 8.466 8.260 8.102 7.976 7.874

0.005 11.073 10.786 10.566 10.391 10.250

0.001 20.030 19.463 19.030 18.688 18.411

7 0.050 3.866 3.787 3.726 3.677 3.637

0.025 5.119 4.995 4.899 4.823 4.761

0.010 7.191 6.993 6.840 6.719 6.620

0.005 9.155 8.885 8.678 8.514 8.380

0.001 15.521 15.019 14.634 14.330 14.083

8 0.050 3.581 3.500 3.438 3.388 3.347

0.025 4.652 4.529 4.433 4.357 4.295

0.010 6.371 6.178 6.029 5.911 5.814

0.005 7.952 7.694 7.496 7.339 7.211

0.001 12.858 12.398 12.046 11.767 11.540

9 0.050 3.374 3.293 3.230 3.179 3.137

0.025 4.320 4.197 4.102 4.026 3.964

0.010 5.802 5.613 5.467 5.351 5.257

0.005 7.134 6.885 6.693 6.541 6.417

0.001 11.128 10.698 10.368 10.107 9.894

10 0.050 3.217 3.135 3.072 3.020 2.978

0.025 4.072 3.950 3.855 3.779 3.717

0.010 5.386 5.200 5.057 4.942 4.849

0.005 6.545 6.302 6.116 5.968 5.847

0.001 9.926 9.517 9.204 8.956 8.754

TABLE A.12c. CRITICAL F VALUES

Denominator

Numerator n

n a 11 12 13 14 15

1 0.050 242.984 243.906 244.690 245.364 245.950

0.025 973.025 976.709 979.837 982.527 984.866

0.010 6083.321 6106.329 6125.853 6142.674 6157.294

0.005 24334.361 24426.333 24504.525 24571.721 24630.203

0.001 608357.024 610674.243 612614.192 614311.903 615752.317

2 0.050 19.405 19.413 19.419 19.424 19.429

0.025 39.407 39.415 39.421 39.426 39.431

(Table continued)
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TABLE A.12c. Continued

Denominator

Numerator n

n a 11 12 13 14 15

0.010 99.408 99.416 99.422 99.428 99.432

0.005 199.408 199.416 199.423 199.428 199.433

0.001 999.412 999.421 999.422 999.437 999.426

3 0.050 8.763 8.745 8.729 8.715 8.703

0.025 14.374 14.337 14.304 14.277 14.253

0.010 27.133 27.052 26.983 26.924 26.872

0.005 43.524 43.387 43.272 43.172 43.085

0.001 128.742 128.317 127.957 127.645 127.376

4 0.050 5.936 5.912 5.891 5.873 5.858

0.025 8.794 8.751 8.715 8.684 8.657

0.010 14.452 14.374 14.307 14.249 14.198

0.005 20.824 20.705 20.603 20.515 20.438

0.001 47.704 47.412 47.163 46.948 46.761

5 0.050 4.704 4.678 4.655 4.636 4.619

0.025 6.568 6.525 6.488 6.456 6.428

0.010 9.963 9.888 9.825 9.770 9.722

0.005 13.491 13.384 13.293 13.215 13.146

0.001 26.646 26.418 26.224 26.057 25.911

6 0.050 4.027 4.000 3.976 3.956 3.938

0.025 5.410 5.366 5.329 5.297 5.269

0.010 7.790 7.718 7.657 7.605 7.559

0.005 10.133 10.034 9.950 9.877 9.814

0.001 18.182 17.989 17.824 17.682 17.559

7 0.050 3.603 3.575 3.550 3.529 3.511

0.025 4.709 4.666 4.628 4.596 4.568

0.010 6.538 6.469 6.410 6.359 6.314

0.005 8.270 8.176 8.097 8.028 7.968

0.001 13.879 13.707 13.561 13.434 13.324

8 0.050 3.313 3.284 3.259 3.237 3.218

0.025 4.243 4.200 4.162 4.130 4.101

0.010 5.734 5.667 5.609 5.559 5.515

0.005 7.104 7.015 6.938 6.872 6.814

0.001 11.352 11.194 11.060 10.943 10.841

9 0.050 3.102 3.073 3.048 3.025 3.006

0.025 3.912 3.868 3.831 3.798 3.769

0.010 5.178 5.111 5.055 5.005 4.962

0.005 6.314 6.227 6.153 6.089 6.032

0.001 9.718 9.570 9.443 9.334 9.238

10 0.050 2.943 2.913 2.887 2.865 2.845

0.025 3.665 3.621 3.583 3.550 3.522

0.010 4.772 4.706 4.650 4.601 4.558

0.005 5.746 5.661 5.589 5.526 5.471

0.001 8.586 8.445 8.324 8.220 8.129
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TABLE A.12d. CRITICAL F VALUES

Denominator

Numerator n

n a 16 17 18 19 20

1 0.050 246.464 246.918 247.323 247.686 248.013

0.025 986.919 988.733 990.350 991.797 993.102

0.010 6170.090 6181.436 6191.527 6200.577 6208.737

0.005 24681.450 24726.829 24767.214 24803.335 24835.957

0.001 617053.889 618188.763 619195.633 620086.602 620918.989

2 0.050 19.433 19.437 19.440 19.443 19.446

0.025 39.435 39.439 39.442 39.445 39.448

0.010 99.437 99.440 99.444 99.447 99.449

0.005 199.437 199.441 199.444 199.447 199.449

0.001 999.428 999.436 999.440 999.441 999.443

3 0.050 8.692 8.683 8.675 8.667 8.660

0.025 14.232 14.213 14.196 14.181 14.167

0.010 26.827 26.787 26.751 26.719 26.690

0.005 43.008 42.941 42.880 42.826 42.778

0.001 127.136 126.927 126.738 126.572 126.418

4 0.050 5.844 5.832 5.821 5.811 5.803

0.025 8.633 8.611 8.592 8.575 8.560

0.010 14.154 14.115 14.080 14.048 14.020

0.005 20.371 20.311 20.258 20.210 20.167

0.001 46.597 46.451 46.322 46.205 46.100

5 0.050 4.604 4.590 4.579 4.568 4.558

0.025 6.403 6.381 6.362 6.344 6.329

0.010 9.680 9.643 9.610 9.580 9.553

0.005 13.086 13.033 12.985 12.942 12.903

0.001 25.783 25.669 25.568 25.477 25.395

6 0.050 3.922 3.908 3.896 3.884 3.874

0.025 5.244 5.222 5.202 5.184 5.168

0.010 7.519 7.483 7.451 7.422 7.396

0.005 9.758 9.709 9.664 9.625 9.589

0.001 17.450 17.353 17.267 17.190 17.120

7 0.050 3.494 3.480 3.467 3.455 3.445

0.025 4.543 4.521 4.501 4.483 4.467

0.010 6.275 6.240 6.209 6.181 6.155

0.005 7.915 7.868 7.826 7.788 7.754

0.001 13.227 13.140 13.063 12.994 12.932

8 0.050 3.202 3.187 3.173 3.161 3.150

0.025 4.076 4.054 4.034 4.016 3.999

0.010 5.477 5.442 5.412 5.384 5.359

0.005 6.763 6.718 6.678 6.641 6.608

0.001 10.752 10.672 10.601 10.537 10.480

9 0.050 2.989 2.974 2.960 2.948 2.936

0.025 3.744 3.722 3.701 3.683 3.667

0.010 4.924 4.890 4.860 4.833 4.808

(Table continued )
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TABLE A.12d. Continued

Denominator

Numerator n

n a 16 17 18 19 20

0.005 5.983 5.939 5.899 5.864 5.832

0.001 9.154 9.079 9.012 8.952 8.898

10 0.050 2.828 2.812 2.798 2.785 2.774

0.025 3.496 3.474 3.453 3.435 3.419

0.010 4.520 4.487 4.457 4.430 4.405

0.005 5.422 5.379 5.340 5.305 5.274

0.001 8.048 7.977 7.913 7.856 7.804

TABLE A.12e. CRITICAL F VALUES

Denominator

Numerator n

n a 21 22 23 24 25

1 0.050 248.309 248.579 248.826 249.052 249.260

0.025 994.286 995.363 996.346 997.249 998.081

0.010 6216.126 6222.855 6228.993 6234.629 6239.826

0.005 24865.611 24892.464 24916.926 24939.664 24960.416

0.001 621653.353 622320.075 622924.674 623495.668 624013.102

2 0.050 19.448 19.450 19.452 19.454 19.456

0.025 39.450 39.452 39.454 39.456 39.458

0.010 99.452 99.454 99.456 99.457 99.459

0.005 199.452 199.454 199.456 199.458 199.460

0.001 999.452 999.452 999.456 999.456 999.460

3 0.050 8.654 8.648 8.643 8.639 8.634

0.025 14.155 14.144 14.134 14.124 14.115

0.010 26.664 26.640 26.618 26.598 26.579

0.005 42.733 42.693 42.656 42.622 42.591

0.001 126.281 126.155 126.041 125.935 125.840

4 0.050 5.795 5.787 5.781 5.774 5.769

0.025 8.546 8.533 8.522 8.511 8.501

0.010 13.994 13.970 13.949 13.929 13.911

0.005 20.128 20.093 20.060 20.030 20.002

0.001 46.005 45.918 45.839 45.766 45.699

5 0.050 4.549 4.541 4.534 4.527 4.521

0.025 6.314 6.301 6.289 6.278 6.268

0.010 9.528 9.506 9.485 9.466 9.449

0.005 12.868 12.836 12.807 12.780 12.755

0.001 25.320 25.252 25.190 25.133 25.080

6 0.050 3.865 3.856 3.849 3.841 3.835

0.025 5.154 5.141 5.128 5.117 5.107

(Table continued)
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TABLE A.12e. Continued

Denominator

Numerator n

n a 21 22 23 24 25

0.010 7.372 7.351 7.331 7.313 7.296

0.005 9.556 9.526 9.499 9.474 9.451

0.001 17.057 16.999 16.946 16.897 16.853

7 0.050 3.435 3.426 3.418 3.410 3.404

0.025 4.452 4.439 4.426 4.415 4.405

0.010 6.132 6.111 6.092 6.074 6.058

0.005 7.723 7.695 7.669 7.645 7.623

0.001 12.875 12.823 12.776 12.732 12.692

8 0.050 3.140 3.131 3.123 3.115 3.108

0.025 3.985 3.971 3.959 3.947 3.937

0.010 5.336 5.316 5.297 5.279 5.263

0.005 6.578 6.551 6.526 6.503 6.482

0.001 10.427 10.379 10.336 10.295 10.258

9 0.050 2.926 2.917 2.908 2.900 2.893

0.025 3.652 3.638 3.626 3.614 3.604

0.010 4.786 4.765 4.746 4.729 4.713

0.005 5.803 5.776 5.752 5.729 5.708

0.001 8.848 8.803 8.762 8.724 8.689

10 0.050 2.764 2.754 2.745 2.737 2.730

0.025 3.403 3.390 3.377 3.365 3.355

0.010 4.383 4.363 4.344 4.327 4.311

0.005 5.245 5.219 5.195 5.173 5.153

0.001 7.757 7.713 7.674 7.638 7.604

TABLE A.12f. CRITICAL F VALUES

Denominator

Numerator n

n a 26 27 28 29 30

1 0.050 249.453 249.631 249.797 249.951 250.095

0.025 998.849 999.561 1000.222 1000.839 1001.414

0.010 6244.624 6249.061 6253.195 6257.053 6260.644

0.005 24979.489 24997.314 25013.859 25029.224 25043.644

0.001 624504.229 624947.959 625346.713 625750.603 626089.462

2 0.050 19.457 19.459 19.460 19.461 19.462

0.025 39.459 39.461 39.462 39.463 39.465

0.010 99.461 99.462 99.464 99.465 99.466

0.005 199.461 199.462 199.464 199.465 199.466

0.001 999.456 999.462 999.464 999.466 999.474

(Table continued)
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TABLE A.12f. Continued

Denominator

Numerator n

n a 26 27 28 29 30

3 0.050 8.630 8.626 8.623 8.620 8.617

0.025 14.107 14.100 14.093 14.087 14.081

0.010 26.562 26.546 26.531 26.517 26.505

0.005 42.562 42.536 42.511 42.487 42.466

0.001 125.749 125.666 125.587 125.517 125.448

4 0.050 5.763 5.759 5.754 5.750 5.746

0.025 8.492 8.483 8.475 8.468 8.461

0.010 13.894 13.878 13.864 13.850 13.838

0.005 19.977 19.953 19.931 19.911 19.891

0.001 45.637 45.579 45.525 45.475 45.428

5 0.050 4.515 4.510 4.505 4.500 4.496

0.025 6.258 6.250 6.242 6.234 6.227

0.010 9.433 9.418 9.404 9.391 9.379

0.005 12.732 12.711 12.691 12.673 12.656

0.001 25.032 24.987 24.944 24.906 24.869

6 0.050 3.829 3.823 3.818 3.813 3.808

0.025 5.097 5.088 5.080 5.072 5.065

0.010 7.280 7.266 7.253 7.240 7.229

0.005 9.430 9.410 9.392 9.374 9.358

0.001 16.811 16.773 16.737 16.703 16.672

7 0.050 3.397 3.391 3.386 3.381 3.376

0.025 4.395 4.386 4.378 4.370 4.362

0.010 6.043 6.029 6.016 6.003 5.992

0.005 7.603 7.584 7.566 7.550 7.534

0.001 12.655 12.620 12.588 12.558 12.530

8 0.050 3.102 3.095 3.090 3.084 3.079

0.025 3.927 3.918 3.909 3.901 3.894

0.010 5.248 5.234 5.221 5.209 5.198

0.005 6.462 6.444 6.427 6.411 6.396

0.001 10.224 10.192 10.162 10.135 10.109

9 0.050 2.886 2.880 2.874 2.869 2.864

0.025 3.594 3.584 3.576 3.568 3.560

0.010 4.698 4.685 4.672 4.660 4.649

0.005 5.689 5.671 5.655 5.639 5.625

0.001 8.656 8.626 8.598 8.572 8.548

10 0.050 2.723 2.716 2.710 2.705 2.700

0.025 3.345 3.335 3.327 3.319 3.311

0.010 4.296 4.283 4.270 4.258 4.247

0.005 5.134 5.116 5.100 5.085 5.071

0.001 7.573 7.544 7.517 7.492 7.469
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TABLE A.12g. CRITICAL F VALUES

Denominator

Numerator n

n a 1 2 3 4 5

11 0.050 4.844 3.982 3.587 3.357 3.204

0.025 6.724 5.256 4.630 4.275 4.044

0.010 9.646 7.206 6.217 5.668 5.316

0.005 12.226 8.912 7.600 6.881 6.422

0.001 19.687 13.812 11.561 10.346 9.578

12 0.050 4.747 3.885 3.490 3.259 3.106

0.025 6.554 5.096 4.474 4.121 3.891

0.010 9.330 6.927 5.953 5.412 5.064

0.005 11.754 8.510 7.226 6.521 6.071

0.001 18.643 12.974 10.804 9.633 8.892

13 0.050 4.667 3.806 3.411 3.179 3.025

0.025 6.414 4.965 4.347 3.996 3.767

0.010 9.074 6.701 5.739 5.205 4.862

0.005 11.374 8.186 6.926 6.233 5.791

0.001 17.815 12.313 10.209 9.073 8.354

14 0.050 4.600 3.739 3.344 3.112 2.958

0.025 6.298 4.857 4.242 3.892 3.663

0.010 8.862 6.515 5.564 5.035 4.695

0.005 11.060 7.922 6.680 5.998 5.562

0.001 17.143 11.779 9.729 8.622 7.922

15 0.050 4.543 3.682 3.287 3.056 2.901

0.025 6.200 4.765 4.153 3.804 3.576

0.010 8.683 6.359 5.417 4.893 4.556

0.005 10.798 7.701 6.476 5.803 5.372

0.001 16.587 11.339 9.335 8.253 7.567

16 0.050 4.494 3.634 3.239 3.007 2.852

0.025 6.115 4.687 4.077 3.729 3.502

0.010 8.531 6.226 5.292 4.773 4.437

0.005 10.575 7.514 6.303 5.638 5.212

0.001 16.120 10.971 9.006 7.944 7.272

17 0.050 4.451 3.592 3.197 2.965 2.810

0.025 6.042 4.619 4.011 3.665 3.438

0.010 8.400 6.112 5.185 4.669 4.336

0.005 10.384 7.354 6.156 5.497 5.075

0.001 15.722 10.658 8.727 7.683 7.022

18 0.050 4.414 3.555 3.160 2.928 2.773

0.025 5.978 4.560 3.954 3.608 3.382

0.010 8.285 6.013 5.092 4.579 4.248

0.005 10.218 7.215 6.028 5.375 4.956

0.001 15.379 10.390 8.487 7.459 6.808

(Table continued)
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TABLE A.12g. Continued

Denominator

Numerator n

n a 1 2 3 4 5

19 0.050 4.381 3.522 3.127 2.895 2.740

0.025 5.922 4.508 3.903 3.559 3.333

0.010 8.185 5.926 5.010 4.500 4.171

0.005 10.073 7.093 5.916 5.268 4.853

0.001 15.081 10.157 8.280 7.265 6.622

20 0.050 4.351 3.493 3.098 2.866 2.711

0.025 5.871 4.461 3.859 3.515 3.289

0.010 8.096 5.849 4.938 4.431 4.103

0.005 9.944 6.986 5.818 5.174 4.762

0.001 14.819 9.953 8.098 7.096 6.461

TABLE A.12h. CRITICAL F VALUES

Denominator

Numerator n

n a 6 7 8 9 10

11 0.050 3.095 3.012 2.948 2.896 2.854

0.025 3.881 3.759 3.664 3.588 3.526

0.010 5.069 4.886 4.744 4.632 4.539

0.005 6.102 5.865 5.682 5.537 5.418

0.001 9.047 8.655 8.355 8.116 7.922

12 0.050 2.996 2.913 2.849 2.796 2.753

0.025 3.728 3.607 3.512 3.436 3.374

0.010 4.821 4.640 4.499 4.388 4.296

0.005 5.757 5.525 5.345 5.202 5.085

0.001 8.379 8.001 7.710 7.480 7.292

13 0.050 2.915 2.832 2.767 2.714 2.671

0.025 3.604 3.483 3.388 3.312 3.250

0.010 4.620 4.441 4.302 4.191 4.100

0.005 5.482 5.253 5.076 4.935 4.820

0.001 7.856 7.489 7.206 6.982 6.799

14 0.050 2.848 2.764 2.699 2.646 2.602

0.025 3.501 3.380 3.285 3.209 3.147

0.010 4.456 4.278 4.140 4.030 3.939

0.005 5.257 5.031 4.857 4.717 4.603

0.001 7.436 7.077 6.802 6.583 6.404

15 0.050 2.790 2.707 2.641 2.588 2.544

0.025 3.415 3.293 3.199 3.123 3.060

0.010 4.318 4.142 4.004 3.895 3.805

(Table continued)
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TABLE A.12h. Continued

Denominator

Numerator n

n a 6 7 8 9 10

0.005 5.071 4.847 4.674 4.536 4.424

0.001 7.092 6.741 6.471 6.256 6.081

16 0.050 2.741 2.657 2.591 2.538 2.494

0.025 3.341 3.219 3.125 3.049 2.986

0.010 4.202 4.026 3.890 3.780 3.691

0.005 4.913 4.692 4.521 4.384 4.272

0.001 6.805 6.460 6.195 5.984 5.812

17 0.050 2.699 2.614 2.548 2.494 2.450

0.025 3.277 3.156 3.061 2.985 2.922

0.010 4.102 3.927 3.791 3.682 3.593

0.005 4.779 4.559 4.389 4.254 4.142

0.001 6.562 6.223 5.962 5.754 5.584

18 0.050 2.661 2.577 2.510 2.456 2.412

0.025 3.221 3.100 3.005 2.929 2.866

0.010 4.015 3.841 3.705 3.597 3.508

0.005 4.663 4.445 4.276 4.141 4.030

0.001 6.355 6.021 5.763 5.558 5.390

19 0.050 2.628 2.544 2.477 2.423 2.378

0.025 3.172 3.051 2.956 2.880 2.817

0.010 3.939 3.765 3.631 3.523 3.434

0.005 4.561 4.345 4.177 4.043 3.933

0.001 6.175 5.845 5.590 5.388 5.222

20 0.050 2.599 2.514 2.447 2.393 2.348

0.025 3.128 3.007 2.913 2.837 2.774

0.010 3.871 3.699 3.564 3.457 3.368

0.005 4.472 4.257 4.090 3.956 3.847

0.001 6.019 5.692 5.440 5.239 5.075

TABLE A.12i. CRITICAL F VALUES

Denominator

Numerator n

n a 11 12 13 14 15

11 0.050 2.818 2.788 2.761 2.739 2.719

0.025 3.474 3.430 3.392 3.359 3.330

0.010 4.462 4.397 4.342 4.293 4.251

0.005 5.320 5.236 5.165 5.103 5.049

0.001 7.761 7.626 7.509 7.409 7.321

12 0.050 2.717 2.687 2.660 2.637 2.617

0.025 3.321 3.277 3.239 3.206 3.177

(Table continued )
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TABLE A.12i. Continued

Denominator

Numerator n

n a 11 12 13 14 15

0.010 4.220 4.155 4.100 4.052 4.010

0.005 4.988 4.906 4.836 4.775 4.721

0.001 7.136 7.005 6.892 6.794 6.709

13 0.050 2.635 2.604 2.577 2.554 2.533

0.025 3.197 3.153 3.115 3.082 3.053

0.010 4.025 3.960 3.905 3.857 3.815

0.005 4.724 4.643 4.573 4.513 4.460

0.001 6.647 6.519 6.409 6.314 6.231

14 0.050 2.565 2.534 2.507 2.484 2.463

0.025 3.095 3.050 3.012 2.979 2.949

0.010 3.864 3.800 3.745 3.698 3.656

0.005 4.508 4.428 4.359 4.299 4.247

0.001 6.256 6.130 6.023 5.930 5.848

15 0.050 2.507 2.475 2.448 2.424 2.403

0.025 3.008 2.963 2.925 2.891 2.862

0.010 3.730 3.666 3.612 3.564 3.522

0.005 4.329 4.250 4.181 4.122 4.070

0.001 5.935 5.812 5.707 5.615 5.535

16 0.050 2.456 2.425 2.397 2.373 2.352

0.025 2.934 2.889 2.851 2.817 2.788

0.010 3.616 3.553 3.498 3.451 3.409

0.005 4.179 4.099 4.031 3.972 3.920

0.001 5.668 5.547 5.443 5.353 5.274

17 0.050 2.413 2.381 2.353 2.329 2.308

0.025 2.870 2.825 2.786 2.753 2.723

0.010 3.519 3.455 3.401 3.353 3.312

0.005 4.050 3.971 3.903 3.844 3.793

0.001 5.443 5.324 5.221 5.132 5.054

18 0.050 2.374 2.342 2.314 2.290 2.269

0.025 2.814 2.769 2.730 2.696 2.667

0.010 3.434 3.371 3.316 3.269 3.227

0.005 3.938 3.860 3.793 3.734 3.683

0.001 5.250 5.132 5.031 4.943 4.866

19 0.050 2.340 2.308 2.280 2.256 2.234

0.025 2.765 2.720 2.681 2.647 2.617

0.010 3.360 3.297 3.242 3.195 3.153

0.005 3.841 3.763 3.696 3.638 3.587

0.001 5.084 4.967 4.867 4.780 4.704

20 0.050 2.310 2.278 2.250 2.225 2.203

0.025 2.721 2.676 2.637 2.603 2.573

0.010 3.294 3.231 3.177 3.130 3.088

0.005 3.756 3.678 3.611 3.553 3.502

0.001 4.939 4.823 4.724 4.637 4.562
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TABLE A.12j. CRITICAL F VALUES

Denominator

Numerator n

n a 16 17 18 19 20

11 0.050 2.701 2.685 2.671 2.658 2.646

0.025 3.304 3.282 3.261 3.243 3.226

0.010 4.213 4.180 4.150 4.123 4.099

0.005 5.001 4.959 4.921 4.886 4.855

0.001 7.244 7.175 7.113 7.058 7.008

12 0.050 2.599 2.583 2.568 2.555 2.544

0.025 3.152 3.129 3.108 3.090 3.073

0.010 3.972 3.939 3.909 3.883 3.858

0.005 4.674 4.632 4.595 4.561 4.530

0.001 6.634 6.567 6.507 6.454 6.405

13 0.050 2.515 2.499 2.484 2.471 2.459

0.025 3.027 3.004 2.983 2.965 2.948

0.010 3.778 3.745 3.716 3.689 3.665

0.005 4.413 4.372 4.334 4.301 4.270

0.001 6.158 6.093 6.034 5.982 5.934

14 0.050 2.445 2.428 2.413 2.400 2.388

0.025 2.923 2.900 2.879 2.861 2.844

0.010 3.619 3.586 3.556 3.529 3.505

0.005 4.200 4.159 4.122 4.089 4.059

0.001 5.776 5.712 5.655 5.604 5.557

15 0.050 2.385 2.368 2.353 2.340 2.328

0.025 2.836 2.813 2.792 2.773 2.756

0.010 3.485 3.452 3.423 3.396 3.372

0.005 4.024 3.983 3.946 3.913 3.883

0.001 5.464 5.402 5.345 5.294 5.248

16 0.050 2.333 2.317 2.302 2.288 2.276

0.025 2.761 2.738 2.717 2.698 2.681

0.010 3.372 3.339 3.310 3.283 3.259

0.005 3.875 3.834 3.797 3.764 3.734

0.001 5.205 5.143 5.087 5.037 4.992

17 0.050 2.289 2.272 2.257 2.243 2.230

0.025 2.697 2.673 2.652 2.633 2.616

0.010 3.275 3.242 3.212 3.186 3.162

0.005 3.747 3.707 3.670 3.637 3.607

0.001 4.986 4.924 4.869 4.820 4.775

18 0.050 2.250 2.233 2.217 2.203 2.191

0.025 2.640 2.617 2.596 2.576 2.559

0.010 3.190 3.158 3.128 3.101 3.077

0.005 3.637 3.597 3.560 3.527 3.498

0.001 4.798 4.738 4.683 4.634 4.590

(Table continued)
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TABLE A.12j. Continued

Denominator

Numerator n

n a 16 17 18 19 20

19 0.050 2.215 2.198 2.182 2.168 2.155

0.025 2.591 2.567 2.546 2.526 2.509

0.010 3.116 3.084 3.054 3.027 3.003

0.005 3.541 3.501 3.465 3.432 3.402

0.001 4.636 4.576 4.522 4.474 4.430

20 0.050 2.184 2.167 2.151 2.137 2.124

0.025 2.547 2.523 2.501 2.482 2.464

0.010 3.051 3.018 2.989 2.962 2.938

0.005 3.457 3.416 3.380 3.347 3.318

0.001 4.495 4.435 4.382 4.334 4.290

TABLE A.12k. CRITICAL F VALUES

Denominator

Numerator n

n a 21 22 23 24 25

11 0.050 2.636 2.626 2.617 2.609 2.601

0.025 3.211 3.197 3.184 3.173 3.162

0.010 4.077 4.057 4.038 4.021 4.005

0.005 4.827 4.801 4.778 4.756 4.736

0.001 6.962 6.920 6.882 6.847 6.815

12 0.050 2.533 2.523 2.514 2.505 2.498

0.025 3.057 3.043 3.031 3.019 3.008

0.010 3.836 3.816 3.798 3.780 3.765

0.005 4.502 4.476 4.453 4.431 4.412

0.001 6.361 6.320 6.283 6.249 6.217

13 0.050 2.448 2.438 2.429 2.420 2.412

0.025 2.932 2.918 2.905 2.893 2.882

0.010 3.643 3.622 3.604 3.587 3.571

0.005 4.243 4.217 4.194 4.173 4.153

0.001 5.891 5.851 5.815 5.781 5.751

14 0.050 2.377 2.367 2.357 2.349 2.341

0.025 2.828 2.814 2.801 2.789 2.778

0.010 3.483 3.463 3.444 3.427 3.412

0.005 4.031 4.006 3.983 3.961 3.942

0.001 5.514 5.475 5.440 5.407 5.377

15 0.050 2.316 2.306 2.297 2.288 2.280

0.025 2.740 2.726 2.713 2.701 2.689

0.010 3.350 3.330 3.311 3.294 3.278

(Table continued)
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TABLE A.12k. Continued

Denominator

Numerator n

n a 21 22 23 24 25

0.005 3.855 3.830 3.807 3.786 3.766

0.001 5.207 5.168 5.133 5.101 5.071

16 0.050 2.264 2.254 2.244 2.235 2.227

0.025 2.665 2.651 2.637 2.625 2.614

0.010 3.237 3.216 3.198 3.181 3.165

0.005 3.707 3.682 3.659 3.638 3.618

0.001 4.951 4.913 4.878 4.846 4.817

17 0.050 2.219 2.208 2.199 2.190 2.181

0.025 2.600 2.585 2.572 2.560 2.548

0.010 3.139 3.119 3.101 3.084 3.068

0.005 3.580 3.555 3.532 3.511 3.492

0.001 4.734 4.697 4.663 4.631 4.602

18 0.050 2.179 2.168 2.159 2.150 2.141

0.025 2.543 2.529 2.515 2.503 2.491

0.010 3.055 3.035 3.016 2.999 2.983

0.005 3.471 3.446 3.423 3.402 3.382

0.001 4.549 4.512 4.478 4.447 4.418

19 0.050 2.144 2.133 2.123 2.114 2.106

0.025 2.493 2.478 2.465 2.452 2.441

0.010 2.981 2.961 2.942 2.925 2.909

0.005 3.375 3.350 3.327 3.306 3.287

0.001 4.390 4.353 4.319 4.288 4.259

20 0.050 2.112 2.102 2.092 2.082 2.074

0.025 2.448 2.434 2.420 2.408 2.396

0.010 2.916 2.895 2.877 2.859 2.843

0.005 3.291 3.266 3.243 3.222 3.203

0.001 4.250 4.214 4.180 4.149 4.121

TABLE A.12l. CRITICAL F VALUES

Denominator

Numerator n

n a 26 27 28 29 30

11 0.050 2.594 2.588 2.582 2.576 2.570

0.025 3.152 3.142 3.133 3.125 3.118

0.010 3.990 3.977 3.964 3.952 3.941

0.005 4.717 4.700 4.684 4.668 4.654

0.001 6.785 6.757 6.731 6.707 6.684

12 0.050 2.491 2.484 2.478 2.472 2.466

0.025 2.998 2.988 2.979 2.971 2.963

(Table continued )
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TABLE A.12l. Continued

Denominator

Numerator n

n a 26 27 28 29 30

0.010 3.750 3.736 3.724 3.712 3.701

0.005 4.393 4.376 4.360 4.345 4.331

0.001 6.188 6.161 6.136 6.112 6.090

13 0.050 2.405 2.398 2.392 2.386 2.380

0.025 2.872 2.862 2.853 2.845 2.837

0.010 3.556 3.543 3.530 3.518 3.507

0.005 4.134 4.117 4.101 4.087 4.073

0.001 5.722 5.695 5.671 5.647 5.626

14 0.050 2.333 2.326 2.320 2.314 2.308

0.025 2.767 2.758 2.749 2.740 2.732

0.010 3.397 3.383 3.371 3.359 3.348

0.005 3.923 3.906 3.891 3.876 3.862

0.001 5.349 5.323 5.298 5.275 5.254

15 0.050 2.272 2.265 2.259 2.253 2.247

0.025 2.679 2.669 2.660 2.652 2.644

0.010 3.264 3.250 3.237 3.225 3.214

0.005 3.748 3.731 3.715 3.701 3.687

0.001 5.043 5.018 4.994 4.971 4.950

16 0.050 2.220 2.212 2.206 2.200 2.194

0.025 2.603 2.594 2.584 2.576 2.568

0.010 3.150 3.137 3.124 3.112 3.101

0.005 3.600 3.583 3.567 3.553 3.539

0.001 4.789 4.764 4.740 4.718 4.697

17 0.050 2.174 2.167 2.160 2.154 2.148

0.025 2.538 2.528 2.519 2.510 2.502

0.010 3.053 3.039 3.026 3.014 3.003

0.005 3.473 3.457 3.441 3.426 3.412

0.001 4.575 4.550 4.526 4.504 4.484

18 0.050 2.134 2.126 2.119 2.113 2.107

0.025 2.481 2.471 2.461 2.453 2.445

0.010 2.968 2.955 2.942 2.930 2.919

0.005 3.364 3.347 3.332 3.317 3.303

0.001 4.391 4.366 4.343 4.321 4.301

19 0.050 2.098 2.090 2.084 2.077 2.071

0.025 2.430 2.420 2.411 2.402 2.394

0.010 2.894 2.880 2.868 2.855 2.844

0.005 3.269 3.252 3.236 3.221 3.208

0.001 4.233 4.208 4.185 4.163 4.143

20 0.050 2.066 2.059 2.052 2.045 2.039

0.025 2.385 2.375 2.366 2.357 2.349

0.010 2.829 2.815 2.802 2.790 2.778

0.005 3.184 3.168 3.152 3.137 3.123

0.001 4.094 4.070 4.047 4.025 4.005
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TABLE A.12m. CRITICAL F VALUES

Denominator

Numerator n

n a 1 2 3 4 5

21 0.050 4.325 3.467 3.072 2.840 2.685

0.025 5.827 4.420 3.819 3.475 3.250

0.010 8.017 5.780 4.874 4.369 4.042

0.005 9.830 6.891 5.730 5.091 4.681

0.001 14.587 9.772 7.938 6.947 6.318

22 0.050 4.301 3.443 3.049 2.817 2.661

0.025 5.786 4.383 3.783 3.440 3.215

0.010 7.945 5.719 4.817 4.313 3.988

0.005 9.727 6.806 5.652 5.017 4.609

0.001 14.380 9.612 7.796 6.814 6.191

23 0.050 4.279 3.422 3.028 2.796 2.640

0.025 5.750 4.349 3.750 3.408 3.183

0.010 7.881 5.664 4.765 4.264 3.939

0.005 9.635 6.730 5.582 4.950 4.544

0.001 14.195 9.469 7.669 6.696 6.078

24 0.050 4.260 3.403 3.009 2.776 2.621

0.025 5.717 4.319 3.721 3.379 3.155

0.010 7.823 5.614 4.718 4.218 3.895

0.005 9.551 6.661 5.519 4.890 4.486

0.001 14.028 9.339 7.554 6.589 5.977

25 0.050 4.242 3.385 2.991 2.759 2.603

0.025 5.686 4.291 3.694 3.353 3.129

0.010 7.770 5.568 4.675 4.177 3.855

0.005 9.475 6.598 5.462 4.835 4.433

0.001 13.877 9.223 7.451 6.493 5.885

26 0.050 4.225 3.369 2.975 2.743 2.587

0.025 5.659 4.265 3.670 3.329 3.105

0.010 7.721 5.526 4.637 4.140 3.818

0.005 9.406 6.541 5.409 4.785 4.384

0.001 13.739 9.116 7.357 6.406 5.802

27 0.050 4.210 3.354 2.960 2.728 2.572

0.025 5.633 4.242 3.647 3.307 3.083

0.010 7.677 5.488 4.601 4.106 3.785

0.005 9.342 6.489 5.361 4.740 4.340

0.001 13.613 9.019 7.272 6.326 5.726

28 0.050 4.196 3.340 2.947 2.714 2.558

0.025 5.610 4.221 3.626 3.286 3.063

0.010 7.636 5.453 4.568 4.074 3.754

0.005 9.284 6.440 5.317 4.698 4.300

0.001 13.498 8.931 7.193 6.253 5.656

29 0.050 4.183 3.328 2.934 2.701 2.545

0.025 5.588 4.201 3.607 3.267 3.044

(Table continued )
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TABLE A.12m. Continued

Denominator

Numerator n

n a 1 2 3 4 5

0.010 7.598 5.420 4.538 4.045 3.725

0.005 9.230 6.396 5.276 4.659 4.262

0.001 13.391 8.849 7.121 6.186 5.593

30 0.050 4.171 3.316 2.922 2.690 2.534

0.025 5.568 4.182 3.589 3.250 3.026

0.010 7.562 5.390 4.510 4.018 3.699

0.005 9.180 6.355 5.239 4.623 4.228

0.001 13.293 8.773 7.054 6.125 5.534

TABLE A.12n. CRITICAL F VALUES

Denominator

Numerator n

n a 6 7 8 9 10

21 0.050 2.573 2.488 2.420 2.366 2.321

0.025 3.090 2.969 2.874 2.798 2.735

0.010 3.812 3.640 3.506 3.398 3.310

0.005 4.393 4.179 4.013 3.880 3.771

0.001 5.881 5.557 5.308 5.109 4.946

22 0.050 2.549 2.464 2.397 2.342 2.297

0.025 3.055 2.934 2.839 2.763 2.700

0.010 3.758 3.587 3.453 3.346 3.258

0.005 4.322 4.109 3.944 3.812 3.703

0.001 5.758 5.438 5.190 4.993 4.832

23 0.050 2.528 2.442 2.375 2.320 2.275

0.025 3.023 2.902 2.808 2.731 2.668

0.010 3.710 3.539 3.406 3.299 3.211

0.005 4.259 4.047 3.882 3.750 3.642

0.001 5.649 5.331 5.085 4.890 4.730

24 0.050 2.508 2.423 2.355 2.300 2.255

0.025 2.995 2.874 2.779 2.703 2.640

0.010 3.667 3.496 3.363 3.256 3.168

0.005 4.202 3.991 3.826 3.695 3.587

0.001 5.550 5.235 4.991 4.797 4.638

25 0.050 2.490 2.405 2.337 2.282 2.236

0.025 2.969 2.848 2.753 2.677 2.613

0.010 3.627 3.457 3.324 3.217 3.129

0.005 4.150 3.939 3.776 3.645 3.537

0.001 5.462 5.148 4.906 4.713 4.555

(Table continued)
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TABLE A.12n. Continued

Denominator

Numerator n

n a 6 7 8 9 10

26 0.050 2.474 2.388 2.321 2.265 2.220

0.025 2.945 2.824 2.729 2.653 2.590

0.010 3.591 3.421 3.288 3.182 3.094

0.005 4.103 3.893 3.730 3.599 3.492

0.001 5.381 5.070 4.829 4.637 4.480

27 0.050 2.459 2.373 2.305 2.250 2.204

0.025 2.923 2.802 2.707 2.631 2.568

0.010 3.558 3.388 3.256 3.149 3.062

0.005 4.059 3.850 3.687 3.557 3.450

0.001 5.308 4.998 4.759 4.568 4.412

28 0.050 2.445 2.359 2.291 2.236 2.190

0.025 2.903 2.782 2.687 2.611 2.547

0.010 3.528 3.358 3.226 3.120 3.032

0.005 4.020 3.811 3.649 3.519 3.412

0.001 5.241 4.933 4.695 4.505 4.349

29 0.050 2.432 2.346 2.278 2.223 2.177

0.025 2.884 2.763 2.669 2.592 2.529

0.010 3.499 3.330 3.198 3.092 3.005

0.005 3.983 3.775 3.613 3.483 3.377

0.001 5.179 4.873 4.636 4.447 4.292

30 0.050 2.421 2.334 2.266 2.211 2.165

0.025 2.867 2.746 2.651 2.575 2.511

0.010 3.473 3.304 3.173 3.067 2.979

0.005 3.949 3.742 3.580 3.450 3.344

0.001 5.122 4.817 4.581 4.393 4.239

TABLE A.12o. CRITICAL F VALUES

Denominator

Numerator n

n a 11 12 13 14 15

21 0.050 2.283 2.250 2.222 2.197 2.176

0.025 2.682 2.637 2.598 2.564 2.534

0.010 3.236 3.173 3.119 3.072 3.030

0.005 3.680 3.602 3.536 3.478 3.427

0.001 4.811 4.696 4.597 4.512 4.437

22 0.050 2.259 2.226 2.198 2.173 2.151

0.025 2.647 2.602 2.563 2.528 2.498

0.010 3.184 3.121 3.067 3.019 2.978

(Table continued )
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TABLE A.12o. Continued

Denominator

Numerator n

n a 11 12 13 14 15

0.005 3.612 3.535 3.469 3.411 3.360

0.001 4.697 4.583 4.486 4.401 4.326

23 0.050 2.236 2.204 2.175 2.150 2.128

0.025 2.615 2.570 2.531 2.497 2.466

0.010 3.137 3.074 3.020 2.973 2.931

0.005 3.551 3.475 3.408 3.351 3.300

0.001 4.596 4.483 4.386 4.301 4.227

24 0.050 2.216 2.183 2.155 2.130 2.108

0.025 2.586 2.541 2.502 2.468 2.437

0.010 3.094 3.032 2.977 2.930 2.889

0.005 3.497 3.420 3.354 3.296 3.246

0.001 4.505 4.393 4.296 4.212 4.139

25 0.050 2.198 2.165 2.136 2.111 2.089

0.025 2.560 2.515 2.476 2.441 2.411

0.010 3.056 2.993 2.939 2.892 2.850

0.005 3.447 3.370 3.304 3.247 3.196

0.001 4.423 4.312 4.216 4.132 4.059

26 0.050 2.181 2.148 2.119 2.094 2.072

0.025 2.536 2.491 2.451 2.417 2.387

0.010 3.021 2.958 2.904 2.857 2.815

0.005 3.402 3.325 3.259 3.202 3.151

0.001 4.349 4.238 4.142 4.059 3.986

27 0.050 2.166 2.132 2.103 2.078 2.056

0.025 2.514 2.469 2.429 2.395 2.364

0.010 2.988 2.926 2.871 2.824 2.783

0.005 3.360 3.284 3.218 3.161 3.110

0.001 4.281 4.171 4.075 3.993 3.920

28 0.050 2.151 2.118 2.089 2.064 2.041

0.025 2.494 2.448 2.409 2.374 2.344

0.010 2.959 2.896 2.842 2.795 2.753

0.005 3.322 3.246 3.180 3.123 3.073

0.001 4.219 4.109 4.014 3.932 3.859

29 0.050 2.138 2.104 2.075 2.050 2.027

0.025 2.475 2.430 2.390 2.355 2.325

0.010 2.931 2.868 2.814 2.767 2.726

0.005 3.287 3.211 3.145 3.088 3.038

0.001 4.162 4.053 3.958 3.876 3.804

30 0.050 2.126 2.092 2.063 2.037 2.015

0.025 2.458 2.412 2.372 2.338 2.307

0.010 2.906 2.843 2.789 2.742 2.700

0.005 3.255 3.179 3.113 3.056 3.006

0.001 4.110 4.001 3.907 3.825 3.753
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TABLE A.12p. CRITICAL F VALUES

Denominator

Numerator n

n a 16 17 18 19 20

21 0.050 2.156 2.139 2.123 2.109 2.096

0.025 2.507 2.483 2.462 2.442 2.425

0.010 2.993 2.960 2.931 2.904 2.880

0.005 3.382 3.342 3.305 3.273 3.243

0.001 4.371 4.311 4.258 4.210 4.167

22 0.050 2.131 2.114 2.098 2.084 2.071

0.025 2.472 2.448 2.426 2.407 2.389

0.010 2.941 2.908 2.879 2.852 2.827

0.005 3.315 3.275 3.239 3.206 3.176

0.001 4.260 4.201 4.149 4.101 4.058

23 0.050 2.109 2.091 2.075 2.061 2.048

0.025 2.440 2.416 2.394 2.374 2.357

0.010 2.894 2.861 2.832 2.805 2.781

0.005 3.255 3.215 3.179 3.146 3.116

0.001 4.162 4.103 4.051 4.004 3.961

24 0.050 2.088 2.070 2.054 2.040 2.027

0.025 2.411 2.386 2.365 2.345 2.327

0.010 2.852 2.819 2.789 2.762 2.738

0.005 3.201 3.161 3.125 3.092 3.062

0.001 4.074 4.015 3.963 3.916 3.873

25 0.050 2.069 2.051 2.035 2.021 2.007

0.025 2.384 2.360 2.338 2.318 2.300

0.010 2.813 2.780 2.751 2.724 2.699

0.005 3.151 3.111 3.075 3.043 3.013

0.001 3.994 3.936 3.884 3.837 3.794

26 0.050 2.052 2.034 2.018 2.003 1.990

0.025 2.360 2.335 2.314 2.294 2.276

0.010 2.778 2.745 2.715 2.688 2.664

0.005 3.107 3.067 3.031 2.998 2.968

0.001 3.921 3.864 3.812 3.765 3.723

27 0.050 2.036 2.018 2.002 1.987 1.974

0.025 2.337 2.313 2.291 2.271 2.253

0.010 2.746 2.713 2.683 2.656 2.632

0.005 3.066 3.026 2.990 2.957 2.928

0.001 3.856 3.798 3.747 3.700 3.658

28 0.050 2.021 2.003 1.987 1.972 1.959

0.025 2.317 2.292 2.270 2.251 2.232

0.010 2.716 2.683 2.653 2.626 2.602

0.005 3.028 2.988 2.952 2.919 2.890

0.001 3.795 3.738 3.687 3.640 3.598

(Table continued )
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TABLE A.12p. Continued

Denominator

Numerator n

n a 16 17 18 19 20

29 0.050 2.007 1.989 1.973 1.958 1.945

0.025 2.298 2.273 2.251 2.231 2.213

0.010 2.689 2.656 2.626 2.599 2.574

0.005 2.993 2.953 2.917 2.885 2.855

0.001 3.740 3.683 3.632 3.585 3.543

30 0.050 1.995 1.976 1.960 1.945 1.932

0.025 2.280 2.255 2.233 2.213 2.195

0.010 2.663 2.630 2.600 2.573 2.549

0.005 2.961 2.921 2.885 2.853 2.823

0.001 3.689 3.632 3.581 3.535 3.493

TABLE A.12q. CRITICAL F VALUES

Denominator

Numerator n

n a 21 22 23 24 25

21 0.050 2.084 2.073 2.063 2.054 2.045

0.025 2.409 2.394 2.380 2.368 2.356

0.010 2.857 2.837 2.818 2.801 2.785

0.005 3.216 3.191 3.168 3.147 3.128

0.001 4.127 4.091 4.058 4.027 3.999

22 0.050 2.059 2.048 2.038 2.028 2.020

0.025 2.373 2.358 2.344 2.331 2.320

0.010 2.805 2.785 2.766 2.749 2.733

0.005 3.149 3.125 3.102 3.081 3.061

0.001 4.019 3.983 3.949 3.919 3.891

23 0.050 2.036 2.025 2.014 2.005 1.996

0.025 2.340 2.325 2.312 2.299 2.287

0.010 2.758 2.738 2.719 2.702 2.686

0.005 3.089 3.065 3.042 3.021 3.001

0.001 3.921 3.886 3.853 3.822 3.794

24 0.050 2.015 2.003 1.993 1.984 1.975

0.025 2.311 2.296 2.282 2.269 2.257

0.010 2.716 2.695 2.676 2.659 2.643

0.005 3.035 3.011 2.988 2.967 2.947

0.001 3.834 3.799 3.766 3.735 3.707

25 0.050 1.995 1.984 1.974 1.964 1.955

0.025 2.284 2.269 2.255 2.242 2.230

0.010 2.677 2.657 2.638 2.620 2.604

(Table continued)
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TABLE A.12p. Continued

Denominator

Numerator n

n a 21 22 23 24 25

0.005 2.986 2.961 2.939 2.918 2.898

0.001 3.756 3.720 3.687 3.657 3.629

26 0.050 1.978 1.966 1.956 1.946 1.938

0.025 2.259 2.244 2.230 2.217 2.205

0.010 2.642 2.621 2.602 2.585 2.569

0.005 2.941 2.917 2.894 2.873 2.853

0.001 3.684 3.649 3.616 3.586 3.558

27 0.050 1.961 1.950 1.940 1.930 1.921

0.025 2.237 2.222 2.208 2.195 2.183

0.010 2.609 2.589 2.570 2.552 2.536

0.005 2.900 2.876 2.853 2.832 2.812

0.001 3.619 3.584 3.551 3.521 3.493

28 0.050 1.946 1.935 1.924 1.915 1.906

0.025 2.216 2.201 2.187 2.174 2.161

0.010 2.579 2.559 2.540 2.522 2.506

0.005 2.863 2.838 2.815 2.794 2.775

0.001 3.560 3.524 3.492 3.462 3.434

29 0.050 1.932 1.921 1.910 1.901 1.891

0.025 2.196 2.181 2.167 2.154 2.142

0.010 2.552 2.531 2.512 2.495 2.478

0.005 2.828 2.803 2.780 2.759 2.740

0.001 3.505 3.470 3.437 3.407 3.380

30 0.050 1.919 1.908 1.897 1.887 1.878

0.025 2.178 2.163 2.149 2.136 2.124

0.010 2.526 2.506 2.487 2.469 2.453

0.005 2.796 2.771 2.748 2.727 2.708

0.001 3.454 3.419 3.387 3.357 3.330

TABLE A.12r. CRITICAL F VALUES

Denominator

Numerator n

n a 26 27 28 29 30

21 0.050 2.037 2.030 2.023 2.016 2.010

0.025 2.345 2.335 2.325 2.317 2.308

0.010 2.770 2.756 2.743 2.731 2.720

0.005 3.110 3.093 3.077 3.063 3.049

0.001 3.972 3.948 3.925 3.904 3.884

22 0.050 2.012 2.004 1.997 1.990 1.984

0.025 2.309 2.299 2.289 2.280 2.272

0.010 2.718 2.704 2.691 2.679 2.667

(Table continued )
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TABLE A.12r. Continued

Denominator

Numerator n

n a 26 27 28 29 30

0.005 3.043 3.026 3.011 2.996 2.982

0.001 3.864 3.840 3.817 3.796 3.776

23 0.050 1.988 1.981 1.973 1.967 1.961

0.025 2.276 2.266 2.256 2.247 2.239

0.010 2.671 2.657 2.644 2.632 2.620

0.005 2.983 2.966 2.951 2.936 2.922

0.001 3.768 3.744 3.721 3.700 3.680

24 0.050 1.967 1.959 1.952 1.945 1.939

0.025 2.246 2.236 2.226 2.217 2.209

0.010 2.628 2.614 2.601 2.589 2.577

0.005 2.929 2.912 2.897 2.882 2.868

0.001 3.681 3.657 3.634 3.613 3.593

25 0.050 1.947 1.939 1.932 1.926 1.919

0.025 2.219 2.209 2.199 2.190 2.182

0.010 2.589 2.575 2.562 2.550 2.538

0.005 2.880 2.863 2.847 2.833 2.819

0.001 3.603 3.579 3.556 3.535 3.515

26 0.050 1.929 1.921 1.914 1.907 1.901

0.025 2.194 2.184 2.174 2.165 2.157

0.010 2.554 2.540 2.526 2.514 2.503

0.005 2.835 2.818 2.802 2.788 2.774

0.001 3.532 3.508 3.486 3.464 3.445

27 0.050 1.913 1.905 1.898 1.891 1.884

0.025 2.171 2.161 2.151 2.142 2.133

0.010 2.521 2.507 2.494 2.481 2.470

0.005 2.794 2.777 2.761 2.747 2.733

0.001 3.467 3.443 3.421 3.400 3.380

28 0.050 1.897 1.889 1.882 1.875 1.869

0.025 2.150 2.140 2.130 2.121 2.112

0.010 2.491 2.477 2.464 2.451 2.440

0.005 2.756 2.739 2.724 2.709 2.695

0.001 3.408 3.384 3.362 3.341 3.321

29 0.050 1.883 1.875 1.868 1.861 1.854

0.025 2.131 2.120 2.110 2.101 2.092

0.010 2.463 2.449 2.436 2.423 2.412

0.005 2.722 2.705 2.689 2.674 2.660

0.001 3.354 3.330 3.308 3.287 3.267

30 0.050 1.870 1.862 1.854 1.847 1.841

0.025 2.112 2.102 2.092 2.083 2.074

0.010 2.437 2.423 2.410 2.398 2.386

0.005 2.689 2.672 2.657 2.642 2.628

0.001 3.304 3.280 3.258 3.237 3.217

562



TABLE A.12s. CRITICAL F VALUES

Denominator

Numerator n

n a 1 2 3 4 5

40 0.050 4.085 3.232 2.839 2.606 2.449

0.025 5.424 4.051 3.463 3.126 2.904

0.010 7.314 5.179 4.313 3.828 3.514

0.005 8.828 6.066 4.976 4.374 3.986

0.001 12.609 8.251 6.595 5.698 5.128

45 0.050 4.057 3.204 2.812 2.579 2.422

0.025 5.377 4.009 3.422 3.086 2.864

0.010 7.234 5.110 4.249 3.767 3.454

0.005 8.715 5.974 4.892 4.294 3.909

0.001 12.392 8.086 6.450 5.564 5.001

50 0.050 4.034 3.183 2.790 2.557 2.400

0.025 5.340 3.975 3.390 3.054 2.833

0.010 7.171 5.057 4.199 3.720 3.408

0.005 8.626 5.902 4.826 4.232 3.849

0.001 12.222 7.956 6.336 5.459 4.901

60 0.050 4.001 3.150 2.758 2.525 2.368

0.025 5.286 3.925 3.343 3.008 2.786

0.010 7.077 4.977 4.126 3.649 3.339

0.005 8.495 5.795 4.729 4.140 3.760

0.001 11.973 7.768 6.171 5.307 4.757

70 0.050 3.978 3.128 2.736 2.503 2.346

0.025 5.247 3.890 3.309 2.975 2.754

0.010 7.011 4.922 4.074 3.600 3.291

0.005 8.403 5.720 4.661 4.076 3.698

0.001 11.799 7.637 6.057 5.201 4.656

80 0.050 3.960 3.111 2.719 2.486 2.329

0.025 5.218 3.864 3.284 2.950 2.730

0.010 6.963 4.881 4.036 3.563 3.255

0.005 8.335 5.665 4.611 4.029 3.652

0.001 11.671 7.540 5.972 5.123 4.582

90 0.050 3.947 3.098 2.706 2.473 2.316

0.025 5.196 3.844 3.265 2.932 2.711

0.010 6.925 4.849 4.007 3.535 3.228

0.005 8.282 5.623 4.573 3.992 3.617

0.001 11.573 7.466 5.908 5.064 4.526

100 0.050 3.936 3.087 2.696 2.463 2.305

0.025 5.179 3.828 3.250 2.917 2.696

0.010 6.895 4.824 3.984 3.513 3.206

(Table continued)
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TABLE A.12s. Continued

Denominator

Numerator n

n a 1 2 3 4 5

0.005 8.241 5.589 4.542 3.963 3.589

0.001 11.495 7.408 5.857 5.017 4.482

150 0.050 3.904 3.056 2.665 2.432 2.274

0.025 5.126 3.781 3.204 2.872 2.652

0.010 6.807 4.749 3.915 3.447 3.142

0.005 8.118 5.490 4.453 3.878 3.508

0.001 11.267 7.236 5.707 4.879 4.351

200 0.050 3.888 3.041 2.650 2.417 2.259

0.025 5.100 3.758 3.182 2.850 2.630

0.010 6.763 4.713 3.881 3.414 3.110

0.005 8.0507 5.441 4.408 3.837 3.467

0.001 11.155 7.152 5.634 4.812 4.287

TABLE A.12t. CRITICAL F VALUES

Denominator

Numerator n

n a 6 7 8 9 10

40 0.050 2.336 2.249 2.180 2.124 2.077

0.025 2.744 2.624 2.529 2.452 2.388

0.010 3.291 3.124 2.993 2.888 2.801

0.005 3.713 3.509 3.350 3.222 3.117

0.001 4.731 4.436 4.207 4.024 3.874

45 0.050 2.308 2.221 2.152 2.096 2.049

0.025 2.705 2.584 2.489 2.412 2.348

0.010 3.232 3.066 2.935 2.830 2.743

0.005 3.638 3.435 3.276 3.149 3.044

0.001 4.608 4.316 4.090 3.909 3.760

50 0.050 2.286 2.199 2.130 2.073 2.026

0.025 2.674 2.553 2.458 2.381 2.317

0.010 3.186 3.020 2.890 2.785 2.698

0.005 3.579 3.376 3.219 3.092 2.988

0.001 4.512 4.222 3.998 3.818 3.671

60 0.050 2.254 2.167 2.097 2.040 1.993

0.025 2.627 2.507 2.412 2.334 2.270

(Table continued)
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TABLE A.12t. Continued

Denominator

Numerator n

n a 6 7 8 9 10

0.010 3.119 2.953 2.823 2.718 2.632

0.005 3.492 3.291 3.134 3.008 2.904

0.001 4.372 4.086 3.865 3.687 3.541

70 0.050 2.231 2.143 2.074 2.017 1.969

0.025 2.595 2.474 2.379 2.302 2.237

0.010 3.071 2.906 2.777 2.672 2.585

0.005 3.431 3.232 3.075 2.950 2.846

0.001 4.275 3.992 3.773 3.596 3.452

80 0.050 2.214 2.126 2.056 1.999 1.951

0.025 2.571 2.450 2.355 2.277 2.213

0.010 3.036 2.871 2.742 2.637 2.551

0.005 3.387 3.188 3.032 2.907 2.803

0.001 4.204 3.923 3.705 3.530 3.386

90 0.050 2.201 2.113 2.043 1.986 1.938

0.025 2.552 2.432 2.336 2.259 2.194

0.010 3.009 2.845 2.715 2.611 2.524

0.005 3.352 3.154 2.999 2.873 2.770

0.001 4.150 3.870 3.653 3.479 3.336

100 0.050 2.191 2.103 2.032 1.975 1.927

0.025 2.537 2.417 2.321 2.244 2.179

0.010 2.988 2.823 2.694 2.590 2.503

0.005 3.325 3.127 2.972 2.847 2.744

0.001 4.107 3.829 3.612 3.439 3.296

150 0.050 2.160 2.071 2.001 1.943 1.894

0.025 2.494 2.373 2.278 2.200 2.135

0.010 2.924 2.761 2.632 2.528 2.441

0.005 3.245 3.048 2.894 2.770 2.667

0.001 3.981 3.706 3.493 3.321 3.179

200 0.050 2.144 2.056 1.985 1.927 1.878

0.025 2.472 2.351 2.256 2.178 2.113

0.010 2.893 2.730 2.601 2.497 2.411

0.005 3.206 3.010 2.856 2.732 2.629

0.001 3.920 3.647 3.434 3.264 3.123
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TABLE A.12u. CRITICAL F VALUES

Denominator

Numerator n

n a 11 12 13 14 15

40 0.050 2.038 2.003 1.974 1.948 1.924

0.025 2.334 2.288 2.248 2.213 2.182

0.010 2.727 2.665 2.611 2.563 2.522

0.005 3.028 2.953 2.888 2.831 2.781

0.001 3.749 3.642 3.551 3.471 3.400

45 0.050 2.009 1.974 1.945 1.918 1.895

0.025 2.294 2.248 2.208 2.172 2.141

0.010 2.670 2.608 2.553 2.506 2.464

0.005 2.956 2.881 2.816 2.759 2.709

0.001 3.636 3.530 3.439 3.360 3.290

50 0.050 1.986 1.952 1.921 1.895 1.871

0.025 2.263 2.216 2.176 2.140 2.109

0.010 2.625 2.562 2.508 2.461 2.419

0.005 2.900 2.825 2.760 2.703 2.653

0.001 3.548 3.443 3.352 3.273 3.204

60 0.050 1.952 1.917 1.887 1.860 1.836

0.025 2.216 2.169 2.129 2.093 2.061

0.010 2.559 2.496 2.442 2.394 2.352

0.005 2.817 2.742 2.677 2.620 2.570

0.001 3.419 3.315 3.226 3.147 3.078

70 0.050 1.928 1.893 1.863 1.836 1.812

0.025 2.183 2.136 2.095 2.059 2.028

0.010 2.512 2.450 2.395 2.348 2.306

0.005 2.759 2.684 2.619 2.563 2.513

0.001 3.330 3.227 3.138 3.060 2.991

80 0.050 1.910 1.875 1.845 1.817 1.793

0.025 2.158 2.111 2.071 2.035 2.003

0.010 2.478 2.415 2.361 2.313 2.271

0.005 2.716 2.641 2.577 2.520 2.470

0.001 3.265 3.162 3.074 2.996 2.927

90 0.050 1.897 1.861 1.830 1.803 1.779

0.025 2.140 2.092 2.051 2.015 1.983

0.010 2.451 2.389 2.334 2.286 2.244

0.005 2.683 2.608 2.544 2.487 2.437

0.001 3.215 3.113 3.024 2.947 2.879

100 0.050 1.886 1.850 1.819 1.792 1.768

0.025 2.124 2.077 2.036 2.000 1.968

0.010 2.430 2.368 2.313 2.265 2.223

(Table continued)
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TABLE A.12u. Continued

Denominator

Numerator n

n a 11 12 13 14 15

0.005 2.657 2.583 2.518 2.461 2.411

0.001 3.176 3.074 2.986 2.908 2.840

150 0.050 1.853 1.817 1.786 1.758 1.734

0.025 2.080 2.032 1.991 1.955 1.922

0.010 2.368 2.305 2.251 2.203 2.160

0.005 2.580 2.506 2.441 2.385 2.335

0.001 3.061 2.959 2.872 2.795 2.727

200 0.050 1.837 1.801 1.769 1.742 1.717

0.025 2.058 2.010 1.969 1.932 1.900

0.010 2.338 2.275 2.220 2.172 2.129

0.005 2.543 2.468 2.404 2.347 2.297

0.001 3.005 2.904 2.816 2.740 2.672

TABLE A.12v. CRITICAL F VALUES

Denominator

Numerator n

n a 16 17 18 19 20

40 0.050 1.904 1.885 1.868 1.853 1.839

0.025 2.154 2.129 2.107 2.086 2.068

0.010 2.484 2.451 2.421 2.394 2.369

0.005 2.737 2.697 2.661 2.628 2.598

0.001 3.338 3.282 3.232 3.186 3.145

45 0.050 1.874 1.855 1.838 1.823 1.808

0.025 2.113 2.088 2.066 2.045 2.026

0.010 2.427 2.393 2.363 2.336 2.311

0.005 2.665 2.625 2.589 2.556 2.527

0.001 3.228 3.172 3.122 3.077 3.036

50 0.050 1.850 1.831 1.814 1.798 1.784

0.025 2.081 2.056 2.033 2.012 1.993

0.010 2.382 2.348 2.318 2.290 2.265

0.005 2.609 2.569 2.533 2.500 2.470

0.001 3.142 3.086 3.037 2.992 2.951

60 0.050 1.815 1.796 1.778 1.763 1.748

0.025 2.033 2.008 1.985 1.964 1.944

0.010 2.315 2.281 2.251 2.223 2.198

(Table continued )
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TABLE A.12v. Continued

Denominator

Numerator n

n a 16 17 18 19 20

0.005 2.526 2.486 2.450 2.417 2.387

0.001 3.017 2.962 2.912 2.867 2.827

70 0.050 1.790 1.771 1.753 1.737 1.722

0.025 1.999 1.974 1.950 1.929 1.910

0.010 2.268 2.234 2.204 2.176 2.150

0.005 2.468 2.428 2.392 2.359 2.329

0.001 2.930 2.875 2.826 2.781 2.741

80 0.050 1.772 1.752 1.734 1.718 1.703

0.025 1.974 1.948 1.925 1.904 1.884

0.010 2.233 2.199 2.169 2.141 2.115

0.005 2.425 2.385 2.349 2.316 2.286

0.001 2.867 2.812 2.763 2.718 2.677

90 0.050 1.757 1.737 1.720 1.703 1.688

0.025 1.955 1.929 1.905 1.884 1.864

0.010 2.206 2.172 2.142 2.114 2.088

0.005 2.393 2.353 2.316 2.283 2.253

0.001 2.818 2.763 2.714 2.670 2.629

100 0.050 1.746 1.726 1.708 1.691 1.676

0.025 1.939 1.913 1.890 1.868 1.849

0.010 2.185 2.151 2.120 2.092 2.067

0.005 2.367 2.326 2.290 2.257 2.227

0.001 2.780 2.725 2.676 2.632 2.591

150 0.050 1.711 1.691 1.673 1.656 1.641

0.025 1.893 1.867 1.843 1.821 1.801

0.010 2.122 2.088 2.057 2.029 2.003

0.005 2.290 2.250 2.213 2.180 2.150

0.001 2.667 2.613 2.564 2.519 2.479

200 0.050 1.694 1.674 1.656 1.639 1.623

0.025 1.870 1.844 1.820 1.798 1.778

0.010 2.091 2.057 2.026 1.997 1.971

0.005 2.252 2.212 2.175 2.142 2.112

0.001 2.612 2.558 2.509 2.465 2.424
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TABLE A.12w. CRITICAL F VALUES

Denominator

Numerator n

n a 21 22 23 24 25

40 0.050 1.826 1.814 1.803 1.793 1.783

0.025 2.051 2.035 2.020 2.007 1.994

0.010 2.346 2.325 2.306 2.288 2.271

0.005 2.571 2.546 2.523 2.502 2.482

0.001 3.107 3.073 3.041 3.011 2.984

45 0.050 1.795 1.783 1.772 1.762 1.752

0.025 2.009 1.993 1.978 1.965 1.952

0.010 2.288 2.267 2.248 2.230 2.213

0.005 2.499 2.474 2.451 2.430 2.410

0.001 2.998 2.964 2.932 2.902 2.875

50 0.050 1.771 1.759 1.748 1.737 1.727

0.025 1.976 1.960 1.945 1.931 1.919

0.010 2.242 2.221 2.202 2.183 2.167

0.005 2.443 2.418 2.395 2.373 2.353

0.001 2.913 2.879 2.847 2.817 2.790

60 0.050 1.735 1.722 1.711 1.700 1.690

0.025 1.927 1.911 1.896 1.882 1.869

0.010 2.175 2.153 2.134 2.115 2.098

0.005 2.360 2.335 2.311 2.290 2.270

0.001 2.789 2.755 2.723 2.694 2.667

70 0.050 1.709 1.696 1.685 1.674 1.664

0.025 1.892 1.876 1.861 1.847 1.833

0.010 2.127 2.106 2.086 2.067 2.050

0.005 2.302 2.276 2.253 2.231 2.211

0.001 2.703 2.669 2.637 2.608 2.581

80 0.050 1.689 1.677 1.665 1.654 1.644

0.025 1.866 1.850 1.835 1.820 1.807

0.010 2.092 2.070 2.050 2.032 2.015

0.005 2.259 2.233 2.210 2.188 2.168

0.001 2.640 2.606 2.574 2.545 2.518

90 0.050 1.675 1.662 1.650 1.639 1.629

0.025 1.846 1.830 1.814 1.800 1.787

0.010 2.065 2.043 2.023 2.004 1.987

0.005 2.226 2.200 2.177 2.155 2.134

0.001 2.592 2.558 2.526 2.497 2.469

100 0.050 1.663 1.650 1.638 1.627 1.616

0.025 1.830 1.814 1.798 1.784 1.770

0.010 2.043 2.021 2.001 1.983 1.965

(Table continued )
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TABLE A.12w. Continued

Denominator

Numerator n

n a 21 22 23 24 25

0.005 2.199 2.174 2.150 2.128 2.108

0.001 2.554 2.519 2.488 2.458 2.431

150 0.050 1.627 1.614 1.602 1.590 1.580

0.025 1.783 1.766 1.750 1.736 1.722

0.010 1.979 1.957 1.937 1.918 1.900

0.005 2.122 2.096 2.072 2.050 2.030

0.001 2.442 2.407 2.376 2.346 2.319

200 0.050 1.609 1.596 1.583 1.572 1.561

0.025 1.759 1.742 1.726 1.712 1.698

0.010 1.947 1.925 1.905 1.886 1.868

0.005 2.084 2.058 2.034 2.012 1.991

0.001 2.387 2.353 2.321 2.292 2.264

TABLE A.12x. CRITICAL F VALUES

Denominator

Numerator n

n a 26 27 28 29 30

40 0.050 1.775 1.766 1.759 1.751 1.744

0.025 1.983 1.972 1.962 1.952 1.943

0.010 2.256 2.241 2.228 2.215 2.203

0.005 2.464 2.447 2.431 2.416 2.401

0.001 2.958 2.935 2.912 2.892 2.872

45 0.050 1.743 1.735 1.727 1.720 1.713

0.025 1.940 1.929 1.919 1.909 1.900

0.010 2.197 2.183 2.169 2.156 2.144

0.005 2.392 2.374 2.358 2.343 2.329

0.001 2.850 2.826 2.804 2.783 2.763

50 0.050 1.718 1.710 1.702 1.694 1.687

0.025 1.907 1.895 1.885 1.875 1.866

0.010 2.151 2.136 2.123 2.110 2.098

0.005 2.335 2.317 2.301 2.286 2.272

0.001 2.765 2.741 2.719 2.698 2.679

60 0.050 1.681 1.672 1.664 1.656 1.649

0.025 1.857 1.845 1.835 1.825 1.815

0.010 2.083 2.068 2.054 2.041 2.028

(Table continued)
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TABLE A.12x. Continued

Denominator

Numerator n

n a 26 27 28 29 30

0.005 2.251 2.234 2.217 2.202 2.187

0.001 2.641 2.617 2.595 2.574 2.555

70 0.050 1.654 1.646 1.637 1.629 1.622

0.025 1.821 1.810 1.799 1.789 1.779

0.010 2.034 2.019 2.005 1.992 1.980

0.005 2.192 2.175 2.158 2.143 2.128

0.001 2.555 2.532 2.509 2.489 2.469

80 0.050 1.634 1.626 1.617 1.609 1.602

0.025 1.795 1.783 1.772 1.762 1.752

0.010 1.999 1.983 1.969 1.956 1.944

0.005 2.149 2.131 2.115 2.099 2.084

0.001 2.492 2.468 2.446 2.425 2.406

90 0.050 1.619 1.610 1.601 1.593 1.586

0.025 1.774 1.763 1.752 1.741 1.731

0.010 1.971 1.956 1.942 1.928 1.916

0.005 2.115 2.098 2.081 2.065 2.051

0.001 2.444 2.420 2.398 2.377 2.357

100 0.050 1.607 1.598 1.589 1.581 1.573

0.025 1.758 1.746 1.735 1.725 1.715

0.010 1.949 1.934 1.919 1.906 1.893

0.005 2.089 2.071 2.054 2.039 2.024

0.001 2.406 2.382 2.360 2.339 2.319

150 0.050 1.570 1.560 1.552 1.543 1.535

0.025 1.709 1.697 1.686 1.675 1.665

0.010 1.884 1.868 1.854 1.840 1.827

0.005 2.010 1.992 1.975 1.959 1.944

0.001 2.293 2.270 2.247 2.226 2.206

200 0.050 1.551 1.542 1.533 1.524 1.516

0.025 1.685 1.673 1.661 1.650 1.640

0.010 1.851 1.836 1.821 1.807 1.794

0.005 1.972 1.953 1.936 1.920 1.905

0.001 2.239 2.215 2.192 2.171 2.151
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TABLE A.13a. FISHER’S z TRANSFORMATION

r 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090

0.1 0.100 0.110 0.121 0.131 0.141 0.151 0.161 0.172 0.182 0.192

0.2 0.203 0.213 0.224 0.234 0.245 0.255 0.266 0.277 0.288 0.299

0.3 0.310 0.321 0.332 0.343 0.354 0.365 0.377 0.388 0.400 0.412

0.4 0.424 0.436 0.448 0.460 0.472 0.485 0.497 0.510 0.523 0.536

0.5 0.549 0.563 0.576 0.590 0.604 0.618 0.633 0.648 0.662 0.678

0.6 0.693 0.709 0.725 0.741 0.758 0.775 0.793 0.811 0.829 0.848

0.7 0.867 0.887 0.908 0.929 0.950 0.973 0.996 1.020 1.045 1.071

0.8 1.099 1.127 1.157 1.188 1.221 1.256 1.293 1.333 1.376 1.422

r 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.90 1.472 1.478 1.483 1.488 1.494 1.499 1.505 1.510 1.516 1.522

0.91 1.528 1.533 1.539 1.545 1.551 1.557 1.564 1.570 1.576 1.583

0.92 1.589 1.596 1.602 1.609 1.616 1.623 1.630 1.637 1.644 1.651

0.93 1.658 1.666 1.673 1.681 1.689 1.697 1.705 1.713 1.721 1.730

0.94 1.738 1.747 1.756 1.764 1.774 1.783 1.792 1.802 1.812 1.822

0.95 1.832 1.842 1.853 1.863 1.874 1.886 1.897 1.909 1.921 1.933

0.96 1.946 1.959 1.972 1.986 2.000 2.014 2.029 2.044 2.060 2.076

0.97 2.092 2.109 2.127 2.146 2.165 2.185 2.205 2.227 2.249 2.273

0.98 2.298 2.323 2.351 2.380 2.410 2.443 2.477 2.515 2.555 2.599

0.99 2.647 2.700 2.759 2.826 2.903 2.994 3.106 3.250 3.453 3.800

Tabular value is zr ¼ loge
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ r)=(1� r)

p
. For example, z0:35 ¼ loge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ 0:35)=(1� 0:35)

p ¼ 0:365.

TABLE A.13b. INVERSE OF FISHER’S z TRANSFORMATION

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .000 .010 .020 .030 .040 .050 .060 .070 .080 .090

0.1 .100 .110 .119 .129 .139 .149 .159 .168 .178 .188

0.2 .197 .207 .217 .226 .235 .245 .254 .264 .273 .282

0.3 .291 .300 .310 .319 .327 .336 .345 .354 .363 .371

0.4 .380 .388 .397 .405 .414 .422 .430 .438 .446 .454

0.5 .462 .470 .478 .485 .493 .501 .508 .515 .523 .530

0.6 .537 .544 .551 .558 .565 .572 .578 .585 .592 .598

0.7 .604 .611 .617 .623 .629 .635 .641 .647 .653 .658

(Table continued)
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TABLE A.13b. Continued

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.8 .664 .670 .675 .680 .686 .691 .696 .701 .706 .711

0.9 .716 .721 .726 .731 .735 .740 .744 .749 .753 .757

1.0 .762 .766 .770 .774 .778 .782 .786 .789 .793 .797

1.1 .800 .804 .808 .811 .814 .818 .821 .824 .827 .831

1.2 .834 .837 .840 .843 .845 .848 .851 .854 .856 .859

1.3 .862 .864 .867 .869 .872 .874 .876 .879 .881 .883

1.4 .885 .887 .890 .892 .894 .896 .898 .900 .901 .903

1.5 .905 .907 .909 .910 .912 .914 .915 .917 .919 .920

1.6 .922 .923 .925 .926 .927 .929 .930 .932 .933 .934

1.7 .935 .937 .938 .939 .940 .941 .943 .944 .945 .946

1.8 .947 .948 .949 .950 .951 .952 .953 .954 .954 .955

1.9 .956 .957 .958 .959 .960 .960 .961 .962 .963 .963

2.0 .964 .965 .965 .966 .967 .967 .968 .969 .969 .970

2.1 .970 .971 .972 .972 .973 .973 .974 .974 .975 .975

2.2 .976 .976 .977 .977 .978 .978 .978 .979 .979 .980

2.3 .980 .980 .981 .981 .982 .982 .982 .983 .983 .983

2.4 .984 .984 .984 .985 .985 .985 .986 .986 .986 .986

2.5 .987 .987 .987 .987 .988 .988 .988 .988 .989 .989

2.6 .989 .989 .989 .990 .990 .990 .990 .990 .991 .991

2.7 .991 .991 .991 .992 .992 .992 .992 .992 .992 .992

2.8 .993 .993 .993 .993 .993 .993 .993 .994 .994 .994

2.9 .994 .994 .994 .994 .994 .995 .995 .995 .995 .995

Tabular value is r. For example, if z r ¼ 1.72, then r ¼ 0.938.
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TABLE A.14a. CRITICAL VALUES FOR DUNCAN’S NEW MULTIPLE RANGE

TEST a 5 0.05

n
r

2 3 4 5 6 7 8 9 10

1 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97

2 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085

3 4.501 4.516 4.516 4.516 4.516 4.516 4.516 4.516 4.516

4 3.927 4.013 4.033 4.033 4.033 4.033 4.033 4.033 4.033

5 3.635 3.749 3.797 3.814 3.814 3.814 3.814 3.814 3.814

6 3.461 3.587 3.649 3.680 3.694 3.697 3.697 3.697 3.697

7 3.344 3.477 3.548 3.588 3.611 3.622 3.626 3.626 3.626

8 3.261 3.399 3.475 3.521 3.549 3.566 3.575 3.579 3.579

9 3.199 3.339 3.420 3.470 3.502 3.523 3.536 3.544 3.547

10 3.151 3.293 3.376 3.430 3.465 3.489 3.505 3.516 3.522

11 3.113 3.256 3.342 3.397 3.435 3.462 3.480 3.493 3.501

12 3.082 3.225 3.313 3.370 3.410 3.439 3.459 3.474 3.484

13 3.055 3.200 3.289 3.348 3.389 3.419 3.442 3.458 3.470

14 3.033 3.178 3.268 3.329 3.372 3.403 3.426 3.444 3.457

15 3.014 3.160 3.250 3.312 3.356 3.389 3.413 3.432 3.446

16 2.998 3.144 3.235 3.298 3.343 3.376 3.402 3.422 3.437

17 2.984 3.130 3.222 3.285 3.331 3.366 3.392 3.412 3.429

18 2.971 3.118 3.210 3.274 3.321 3.356 3.383 3.405 3.421

19 2.960 3.107 3.199 3.264 3.311 3.347 3.375 3.397 3.415

20 2.950 3.097 3.190 3.255 3.303 3.339 3.368 3.391 3.409

24 2.919 3.066 3.160 3.226 3.276 3.315 3.345 3.370 3.390

30 2.888 3.035 3.131 3.199 3.250 3.290 3.322 3.349 3.371

40 2.858 3.006 3.102 3.171 3.224 3.266 3.300 3.328 3.352

60 2.829 2.976 3.073 3.143 3.198 3.241 3.277 3.307 3.333

120 2.800 2.947 3.045 3.116 3.172 3.217 3.254 3.287 3.314

INF 2.772 2.918 3.017 3.089 3.146 3.193 3.232 3.265 3.294

n
r

11 12 13 14 15 16 17 18 19

1 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97

2 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085

3 4.516 4.516 4.516 4.516 4.516 4.516 4.516 4.516 4.516

4 4.033 4.033 4.033 4.033 4.033 4.033 4.033 4.033 4.033

5 3.814 3.814 3.814 3.814 3.814 3.814 3.814 3.814 3.814

6 3.697 3.697 3.697 3.697 3.697 3.697 3.697 3.697 3.697

7 3.626 3.626 3.626 3.626 3.626 3.626 3.626 3.626 3.626

8 3.579 3.579 3.579 3.579 3.579 3.579 3.579 3.579 3.579

9 3.547 3.547 3.547 3.547 3.547 3.547 3.547 3.547 3.547

10 3.525 3.526 3.526 3.526 3.526 3.526 3.526 3.526 3.526

(Table continued)
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TABLE A.14a. Continued

n
r

11 12 13 14 15 16 17 18 19

11 3.506 3.509 3.510 3.510 3.510 3.510 3.510 3.510 3.510

12 3.491 3.496 3.498 3.499 3.499 3.499 3.499 3.499 3.499

13 3.478 3.484 3.488 3.490 3.490 3.490 3.490 3.490 3.490

14 3.467 3.474 3.479 3.482 3.484 3.484 3.485 3.485 3.485

15 3.457 3.465 3.471 3.476 3.478 3.480 3.481 3.481 3.481

16 3.449 3.458 3.465 3.470 3.473 3.477 3.478 3.478 3.478

17 3.441 3.451 3.459 3.465 3.469 3.473 3.475 3.476 3.476

18 3.435 3.445 3.454 3.460 3.465 3.470 3.472 3.474 3.474

19 3.429 3.440 3.449 3.456 3.462 3.467 3.470 3.472 3.473

20 3.424 3.436 3.445 3.453 3.459 3.464 3.467 3.470 3.472

24 3.406 3.420 3.432 3.441 3.449 3.456 3.461 3.465 3.469

30 3.389 3.405 3.418 3.430 3.439 3.447 3.454 3.460 3.466

40 3.373 3.390 3.405 3.418 3.429 3.439 3.448 3.456 3.463

60 3.355 3.374 3.391 3.406 3.419 3.431 3.442 3.451 3.460

120 3.337 3.359 3.377 3.394 3.409 3.423 3.435 3.446 3.457

INF 3.320 3.343 3.363 3.382 3.399 3.414 3.428 3.442 3.454

n
r 20 22 24 26 28 30 32 34 36

1 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97

2 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085

3 4.516 4.516 4.516 4.516 4.516 4.516 4.516 4.516 4.516

4 4.033 4.033 4.033 4.033 4.033 4.033 4.033 4.033 4.033

5 3.814 3.814 3.814 3.814 3.814 3.814 3.814 3.814 3.814

6 3.697 3.697 3.697 3.697 3.697 3.697 3.697 3.697 3.697

7 3.626 3.626 3.626 3.626 3.626 3.626 3.626 3.626 3.626

8 3.579 3.579 3.579 3.579 3.579 3.579 3.579 3.579 3.579

9 3.547 3.547 3.547 3.547 3.547 3.547 3.547 3.547 3.547

10 3.526 3.526 3.526 3.526 3.526 3.526 3.526 3.526 3.526

11 3.510 3.510 3.510 3.510 3.510 3.510 3.510 3.510 3.510

12 3.499 3.499 3.499 3.499 3.499 3.499 3.499 3.499 3.499

13 3.490 3.490 3.490 3.490 3.490 3.490 3.490 3.490 3.490

14 3.485 3.485 3.485 3.485 3.485 3.485 3.485 3.485 3.485

15 3.481 3.481 3.481 3.481 3.481 3.481 3.481 3.481 3.481

16 3.478 3.478 3.478 3.478 3.478 3.478 3.478 3.478 3.478

17 3.476 3.476 3.476 3.476 3.476 3.476 3.476 3.476 3.476

18 3.474 3.474 3.474 3.474 3.474 3.474 3.474 3.474 3.474

19 3.474 3.474 3.474 3.474 3.474 3.474 3.474 3.474 3.474

20 3.473 3.474 3.474 3.474 3.474 3.474 3.474 3.474 3.474

24 3.471 3.475 3.477 3.477 3.477 3.477 3.477 3.477 3.477

30 3.470 3.477 3.481 3.484 3.486 3.486 3.486 3.486 3.486

40 3.469 3.479 3.486 3.492 3.497 3.500 3.503 3.504 3.504

60 3.467 3.481 3.492 3.501 3.509 3.515 3.521 3.525 3.529

120 3.466 3.483 3.498 3.511 3.522 3.532 3.541 3.548 3.555

(Table continued )
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INF 3.466 3.486 3.505 3.522 3.536 3.550 3.562 3.574 3.584

TABLE A.14a. Continued

n
r 38 40 50 60 70 80 90 100

1 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97

2 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085

3 4.516 4.516 4.516 4.516 4.516 4.516 4.516 4.516

4 4.033 4.033 4.033 4.033 4.033 4.033 4.033 4.033

5 3.814 3.814 3.814 3.814 3.814 3.814 3.814 3.814

6 3.697 3.697 3.697 3.697 3.697 3.697 3.697 3.697

7 3.626 3.626 3.626 3.626 3.626 3.626 3.626 3.626

8 3.579 3.579 3.579 3.579 3.579 3.579 3.579 3.579

9 3.547 3.547 3.547 3.547 3.547 3.547 3.547 3.547

10 3.526 3.526 3.526 3.526 3.526 3.526 3.526 3.526

11 3.510 3.510 3.510 3.510 3.510 3.510 3.510 3.510

12 3.499 3.499 3.499 3.499 3.499 3.499 3.499 3.499

13 3.490 3.490 3.490 3.490 3.490 3.490 3.490 3.490

14 3.485 3.485 3.485 3.485 3.485 3.485 3.485 3.485

15 3.481 3.481 3.481 3.481 3.481 3.481 3.481 3.481

16 3.478 3.478 3.478 3.478 3.478 3.478 3.478 3.478

17 3.476 3.476 3.476 3.476 3.476 3.476 3.476 3.476

18 3.474 3.474 3.474 3.474 3.474 3.474 3.474 3.474

19 3.474 3.474 3.474 3.474 3.474 3.474 3.474 3.474

20 3.474 3.474 3.474 3.474 3.474 3.474 3.474 3.474

24 3.477 3.477 3.477 3.477 3.477 3.477 3.477 3.477

30 3.486 3.486 3.486 3.486 3.486 3.486 3.486 3.486

40 3.504 3.504 3.504 3.504 3.504 3.504 3.504 3.504

60 3.531 3.534 3.537 3.537 3.537 3.537 3.537 3.537

120 3.561 3.566 3.585 3.596 3.600 3.601 3.601 3.601

INF 3.594 3.603 3.640 3.668 3.690 3.708 3.722 3.735
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TABLE A.14b. CRITICAL VALUES FOR DUNCAN’S NEW MULTIPLE RANGE

TEST a 5 0.01

n
r

2 3 4 5 6 7 8 9 10

1 90.03 90.03 90.03 90.03 90.03 90.03 90.03 90.03 90.03

2 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04

3 8.261 8.321 8.321 8.321 8.321 8.321 8.321 8.321 8.321

4 6.512 6.677 6.740 6.756 6.756 6.756 6.756 6.756 6.756

5 5.702 5.893 5.989 6.040 6.065 6.074 6.074 6.074 6.074

6 5.243 5.439 5.549 5.614 5.655 5.680 5.694 5.701 5.703

7 4.949 5.145 5.260 5.334 5.383 5.416 5.439 5.454 5.464

8 4.746 4.939 5.057 5.135 5.189 5.227 5.256 5.276 5.291

9 4.596 4.787 4.906 4.986 5.043 5.086 5.118 5.142 5.160

10 4.482 4.671 4.790 4.871 4.931 4.975 5.010 5.037 5.058

11 4.392 4.579 4.697 4.780 4.841 4.887 4.924 4.952 4.975

12 4.320 4.504 4.622 4.706 4.767 4.815 4.852 4.883 4.907

13 4.260 4.442 4.560 4.644 4.706 4.755 4.793 4.824 4.850

14 4.210 4.391 4.508 4.591 4.654 4.704 4.743 4.775 4.802

15 4.168 4.347 4.463 4.547 4.610 4.660 4.700 4.733 4.760

16 4.131 4.309 4.425 4.509 4.572 4.622 4.663 4.696 4.724

17 4.099 4.275 4.391 4.475 4.539 4.589 4.630 4.664 4.693

18 4.071 4.246 4.362 4.445 4.509 4.560 4.601 4.635 4.664

19 4.046 4.220 4.335 4.419 4.483 4.534 4.575 4.610 4.639

20 4.024 4.197 4.312 4.395 4.459 4.510 4.552 4.587 4.617

24 3.956 4.126 4.239 4.322 4.386 4.437 4.480 4.516 4.546

30 3.889 4.056 4.168 4.250 4.314 4.366 4.409 4.445 4.477

40 3.825 3.988 4.098 4.180 4.244 4.296 4.339 4.376 4.408

60 3.762 3.922 4.031 4.111 4.174 4.226 4.270 4.307 4.340

120 3.702 3.858 3.965 4.044 4.107 4.158 4.202 4.239 4.272

INF 3.643 3.796 3.900 3.978 4.040 4.091 4.135 4.172 4.205

n
r

11 12 13 14 15 16 17 18 19

1 90.03 90.03 90.03 90.03 90.03 90.03 90.03 90.03 90.03

2 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04

3 8.321 8.321 8.321 8.321 8.321 8.321 8.321 8.321 8.321

4 6.756 6.756 6.756 6.756 6.756 6.756 6.756 6.756 6.756

5 6.074 6.074 6.074 6.074 6.074 6.074 6.074 6.074 6.074

6 5.703 5.703 5.703 5.703 5.703 5.703 5.703 5.703 5.703

7 5.470 5.472 5.472 5.472 5.472 5.472 5.472 5.472 5.472

8 5.302 5.309 5.314 5.316 5.317 5.317 5.317 5.317 5.317

9 5.174 5.185 5.193 5.199 5.203 5.205 5.206 5.206 5.206

10 5.074 5.088 5.098 5.106 5.112 5.117 5.120 5.122 5.124

11 4.994 5.009 5.021 5.031 5.039 5.045 5.050 5.054 5.057

12 4.927 4.944 4.958 4.969 4.978 4.986 4.993 4.998 5.002

(Table continued )
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TABLE A.14b. Continued

n
r

11 12 13 14 15 16 17 18 19

13 4.872 4.889 4.904 4.917 4.928 4.937 4.944 4.950 4.956

14 4.824 4.843 4.859 4.872 4.884 4.894 4.902 4.910 4.916

15 4.783 4.803 4.820 4.834 4.846 4.857 4.866 4.874 4.881

16 4.748 4.768 4.786 4.800 4.813 4.825 4.835 4.844 4.851

17 4.717 4.738 4.756 4.771 4.785 4.797 4.807 4.816 4.824

18 4.689 4.711 4.729 4.745 4.759 4.772 4.783 4.792 4.801

19 4.665 4.686 4.705 4.722 4.736 4.749 4.761 4.771 4.780

20 4.642 4.664 4.684 4.701 4.716 4.729 4.741 4.751 4.761

24 4.573 4.596 4.616 4.634 4.651 4.665 4.678 4.690 4.700

30 4.504 4.528 4.550 4.569 4.586 4.601 4.615 4.628 4.640

40 4.436 4.461 4.483 4.503 4.521 4.537 4.553 4.566 4.579

60 4.368 4.394 4.417 4.438 4.456 4.474 4.490 4.504 4.518

120 4.301 4.327 4.351 4.372 4.392 4.410 4.426 4.442 4.456

INF 4.235 4.261 4.285 4.307 4.327 4.345 4.363 4.379 4.394

n
r 20 22 24 26 28 30 32 34 36

1 90.03 90.03 90.03 90.03 90.03 90.03 90.03 90.03 90.03

2 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04

3 8.321 8.321 8.321 8.321 8.321 8.321 8.321 8.321 8.321

4 6.756 6.756 6.756 6.756 6.756 6.756 6.756 6.756 6.756

5 6.074 6.074 6.074 6.074 6.074 6.074 6.074 6.074 6.074

6 5.703 5.703 5.703 5.703 5.703 5.703 5.703 5.703 5.703

7 5.472 5.472 5.472 5.472 5.472 5.472 5.472 5.472 5.472

8 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317

9 5.206 5.206 5.206 5.206 5.206 5.206 5.206 5.206 5.206

10 5.124 5.124 5.124 5.124 5.124 5.124 5.124 5.124 5.124

11 5.059 5.061 5.061 5.061 5.061 5.061 5.061 5.061 5.061

12 5.006 5.010 5.011 5.011 5.011 5.011 5.011 5.011 5.011

13 4.960 4.966 4.970 4.972 4.972 4.972 4.972 4.972 4.972

14 4.921 4.929 4.935 4.938 4.940 4.940 4.940 4.940 4.940

15 4.887 4.897 4.904 4.909 4.912 4.914 4.914 4.914 4.914

16 4.858 4.869 4.877 4.883 4.887 4.890 4.892 4.892 4.892

17 4.832 4.844 4.853 4.860 4.865 4.869 4.872 4.873 4.874

18 4.808 4.821 4.832 4.839 4.846 4.850 4.854 4.856 4.857

19 4.788 4.802 4.812 4.821 4.828 4.833 4.838 4.841 4.843

20 4.769 4.784 4.795 4.805 4.813 4.818 4.823 4.827 4.830

24 4.710 4.727 4.741 4.752 4.762 4.770 4.777 4.783 4.788

30 4.650 4.669 4.685 4.699 4.711 4.721 4.730 4.738 4.744

40 4.591 4.611 4.630 4.645 4.659 4.671 4.682 4.692 4.700

60 4.530 4.553 4.573 4.591 4.607 4.620 4.633 4.645 4.655

120 4.469 4.494 4.516 4.535 4.552 4.568 4.583 4.596 4.609

INF 4.408 4.434 4.457 4.478 4.497 4.514 4.530 4.545 4.559

(Table continued)
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TABLE A.14b. Continued

n
r 38 40 50 60 70 80 90 100

1 90.03 90.03 90.03 90.03 90.03 90.03 90.03 90.03

2 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04

3 8.321 8.321 8.321 8.321 8.321 8.321 8.321 8.321

4 6.756 6.756 6.756 6.756 6.756 6.756 6.756 6.756

5 6.074 6.074 6.074 6.074 6.074 6.074 6.074 6.074

6 5.703 5.703 5.703 5.703 5.703 5.703 5.703 5.703

7 5.472 5.472 5.472 5.472 5.472 5.472 5.472 5.472

8 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317

9 5.206 5.206 5.206 5.206 5.206 5.206 5.206 5.206

10 5.124 5.124 5.124 5.124 5.124 5.124 5.124 5.124

11 5.061 5.061 5.061 5.061 5.061 5.061 5.061 5.061

12 5.011 5.011 5.011 5.011 5.011 5.011 5.011 5.011

13 4.972 4.972 4.972 4.972 4.972 4.972 4.972 4.972

14 4.940 4.940 4.940 4.940 4.940 4.940 4.940 4.940

15 4.914 4.914 4.914 4.914 4.914 4.914 4.914 4.914

16 4.892 4.892 4.892 4.892 4.892 4.892 4.892 4.892

17 4.874 4.874 4.874 4.874 4.874 4.874 4.874 4.874

18 4.858 4.858 4.858 4.858 4.858 4.858 4.858 4.858

19 4.844 4.845 4.845 4.845 4.845 4.845 4.845 4.845

20 4.832 4.833 4.833 4.833 4.833 4.833 4.833 4.833

24 4.791 4.794 4.802 4.802 4.802 4.802 4.802 4.802

30 4.750 4.755 4.772 4.777 4.777 4.777 4.777 4.777

40 4.708 4.715 4.740 4.754 4.761 4.764 4.764 4.764

60 4.665 4.673 4.707 4.730 4.745 4.755 4.761 4.765

120 4.619 4.630 4.673 4.703 4.727 4.745 4.759 4.770

INF 4.572 4.584 4.635 4.675 4.707 4.734 4.756 4.776
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TABLE A.15a. CRITICAL VALUES FOR THE STUDENTIZED RANGE a 5 0.05

n
r

2 3 4 5 6 7 8 9 10

1 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07

2 6.085 8.331 9.798 10.88 11.74 12.44 13.03 13.54 13.99

3 4.501 5.910 6.825 7.502 8.037 8.478 8.853 9.177 9.462

4 3.927 5.040 5.757 6.287 6.707 7.053 7.347 7.602 7.826

5 3.635 4.602 5.218 5.673 6.033 6.330 6.582 6.802 6.995

6 3.461 4.339 4.896 5.305 5.628 5.895 6.122 6.319 6.493

7 3.344 4.165 4.681 5.060 5.359 5.606 5.815 5.998 6.158

8 3.261 4.041 4.529 4.886 5.167 5.399 5.597 5.767 5.918

9 3.199 3.949 4.415 4.756 5.024 5.244 5.432 5.595 5.739

10 3.151 3.877 4.327 4.654 4.912 5.124 5.305 5.461 5.599

11 3.113 3.820 4.256 4.574 4.823 5.028 5.202 5.353 5.487

12 3.082 3.773 4.199 4.508 4.751 4.950 5.119 5.265 5.395

13 3.055 3.735 4.151 4.453 4.690 4.885 5.049 5.192 5.318

14 3.033 3.702 4.111 4.407 4.639 4.829 4.990 5.131 5.254

15 3.014 3.674 4.076 4.367 4.595 4.782 4.940 5.077 5.198

16 2.998 3.649 4.046 4.333 4.557 4.741 4.897 5.031 5.150

17 2.984 3.628 4.020 4.303 4.524 4.705 4.858 4.991 5.108

18 2.971 3.609 3.997 4.277 4.495 4.673 4.824 4.956 5.071

19 2.960 3.593 3.977 4.253 4.469 4.645 4.794 4.924 5.038

20 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.896 5.008

24 2.919 3.532 3.901 4.166 4.373 4.541 4.684 4.807 4.915

30 2.888 3.486 3.845 4.102 4.302 4.464 4.602 4.720 4.824

40 2.858 3.442 3.791 4.039 4.232 4.389 4.521 4.635 4.735

60 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646

120 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560

INF 2.772 3.314 3.633 3.858 4.030 4.170 4.286 4.387 4.474

n
r 11 12 13 14 15 16 17 18 19

1 50.59 51.96 53.20 54.33 55.36 56.32 57.22 58.04 58.83

2 4.39 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57

3 9.717 9.946 10.15 10.35 10.53 10.69 10.84 10.98 11.11

4 8.027 8.208 8.373 8.525 8.664 8.794 8.914 9.028 9.134

5 7.168 7.324 7.466 7.596 7.717 7.828 7.932 8.030 8.122

6 6.649 6.789 6.917 7.034 7.143 7.244 7.338 7.426 7.508

7 6.302 6.431 6.550 6.658 6.759 6.852 6.939 7.020 7.097

8 6.054 6.175 6.287 6.389 6.483 6.571 6.653 6.729 6.802

9 5.867 5.983 6.089 6.186 6.276 6.359 6.437 6.510 6.579

10 5.722 5.833 5.935 6.028 6.114 6.194 6.269 6.339 6.405

(Table continued)
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TABLE A.15a. Continued

n
r

11 12 13 14 15 16 17 18 19

11 5.605 5.713 5.811 5.901 5.984 6.062 6.134 6.202 6.265

12 5.511 5.615 5.710 5.798 5.878 5.953 6.023 6.089 6.151

13 5.431 5.533 5.625 5.711 5.789 5.862 5.931 5.995 6.055

14 5.364 5.463 5.554 5.637 5.714 5.786 5.852 5.915 5.974

15 5.306 5.404 5.493 5.574 5.649 5.720 5.785 5.846 5.904

16 5.256 5.352 5.439 5.520 5.593 5.662 5.727 5.786 5.843

17 5.212 5.307 5.392 5.471 5.544 5.612 5.675 5.734 5.790

18 5.174 5.267 5.352 5.429 5.501 5.568 5.630 5.688 5.743

19 5.140 5.231 5.315 5.391 5.462 5.528 5.589 5.647 5.701

20 5.108 5.199 5.282 5.357 5.427 5.493 5.553 5.610 5.663

24 5.012 5.099 5.179 5.251 5.319 5.381 5.439 5.494 5.545

30 4.917 5.001 5.077 5.147 5.211 5.271 5.327 5.379 5.429

40 4.824 4.904 4.977 5.044 5.106 5.163 5.216 5.266 5.313

60 4.732 4.808 4.878 4.942 5.001 5.056 5.107 5.154 5.199

120 4.641 4.714 4.781 4.842 4.898 4.950 4.998 5.044 5.086

INF 4.552 4.622 4.685 4.743 4.796 4.845 4.891 4.934 4.974

n
r 20 22 24 26 28 30 32 34 36

1 59.56 60.91 62.12 63.22 64.23 65.15 66.01 66.81 67.56

2 16.77 17.13 17.45 17.75 18.02 18.27 18.50 18.72 18.92

3 11.24 11.47 11.68 11.87 12.05 12.21 12.36 12.50 12.63

4 9.233 9.418 9.584 9.736 9.875 10.00 10.12 10.23 10.34

5 8.208 8.368 8.512 8.643 8.764 8.875 8.979 9.075 9.165

6 7.587 7.730 7.861 7.979 8.088 8.189 8.283 8.370 8.452

7 7.170 7.303 7.423 7.533 7.634 7.728 7.814 7.895 7.972

8 6.870 6.995 7.109 7.212 7.307 7.395 7.477 7.554 7.625

9 6.644 6.763 6.871 6.970 7.061 7.145 7.222 7.295 7.363

10 6.467 6.582 6.686 6.781 6.868 6.948 7.023 7.093 7.159

11 6.326 6.436 6.536 6.628 6.712 6.790 6.863 6.930 6.994

12 6.209 6.317 6.414 6.503 6.585 6.660 6.731 6.796 6.858

13 6.112 6.217 6.312 6.398 6.478 6.551 6.620 6.684 6.744

14 6.029 6.132 6.224 6.309 6.387 6.459 6.526 6.588 6.647

15 5.958 6.059 6.149 6.233 6.309 6.379 6.445 6.506 6.564

16 5.897 5.995 6.084 6.166 6.241 6.310 6.374 6.434 6.491

17 5.842 5.940 6.027 6.107 6.181 6.249 6.313 6.372 6.427

18 5.794 5.890 5.977 6.055 6.128 6.195 6.258 6.316 6.371

19 5.752 5.846 5.932 6.009 6.081 6.147 6.209 6.267 6.321

20 5.714 5.807 5.891 5.968 6.039 6.104 6.165 6.222 6.275

24 5.594 5.683 5.764 5.838 5.906 5.968 6.027 6.081 6.132

30 5.475 5.561 5.638 5.709 5.774 5.833 5.889 5.941 5.990

40 5.358 5.439 5.513 5.581 5.642 5.700 5.753 5.803 5.849

60 5.241 5.319 5.389 5.453 5.512 5.566 5.617 5.664 5.708

120 5.126 5.200 5.266 5.327 5.382 5.434 5.481 5.526 5.568

INF 5.012 5.081 5.144 5.201 5.253 5.301 5.346 5.388 5.427

(Table continued )
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TABLE A.15a. Continued

n
r 38 40 50 60 70 80 90 100

1 68.26 68.92 71.73 73.97 75.82 77.40 78.77 79.98

2 19.11 19.28 20.05 20.66 21.16 21.59 21.96 22.29

3 12.75 12.87 13.36 13.76 14.08 14.36 14.61 14.82

4 10.44 10.53 10.93 11.24 11.51 11.73 11.92 12.09

5 9.250 9.330 9.674 9.949 10.18 10.38 10.54 10.69

6 8.529 8.601 8.913 9.163 9.370 9.548 9.702 9.839

7 8.043 8.110 8.400 8.632 8.824 8.989 9.133 9.261

8 7.693 7.756 8.029 8.248 8.430 8.586 8.722 8.843

9 7.428 7.488 7.749 7.958 8.132 8.281 8.410 8.526

10 7.220 7.279 7.529 7.730 7.897 8.041 8.166 8.276

11 7.053 7.110 7.352 7.546 7.708 7.847 7.968 8.075

12 6.916 6.970 7.205 7.394 7.552 7.687 7.804 7.909

13 6.800 7.854 7.083 7.267 7.421 7.552 7.667 7.769

14 6.702 6.754 6.979 7.159 7.309 7.438 7.550 7.650

15 6.618 6.669 6.888 7.065 7.212 7.339 7.449 7.546

16 6.544 6.594 6.810 6.984 7.128 7.252 7.360 7.457

17 6.479 6.529 6.741 6.912 7.054 7.176 7.283 7.377

18 6.422 6.471 6.680 6.848 6.989 7.109 7.213 7.307

19 6.371 6.419 6.626 6.792 6.930 7.048 7.152 7.244

20 6.325 6.373 6.576 6.740 6.877 6.994 7.097 7.187

24 6.181 6.226 6.421 6.579 6.710 6.822 6.920 7.008

30 6.037 6.080 6.267 6.417 6.543 6.650 6.744 6.827

40 5.893 5.934 6.112 6.255 6.375 6.477 6.566 6.645

60 5.750 5.789 5.958 6.093 6.206 6.303 6.387 6.462

120 5.607 5.644 5.802 5.929 6.035 6.126 6.205 6.275

INF 5.463 5.498 5.646 5.764 5.863 5.947 6.020 6.085

NOTE: Tables A.15a and A.15b are reproduced, with the author’s permission, from H. Leon Harter’s Order Statistics

and Their Use in Testing and Estimation, Vol. 1, U.S. Government Printing Office, Washington, D.C., 1970.
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TABLE A.15b. CRITICAL VALUES FOR THE STUDENTIZED RANGE a 5 0.01

n
r

2 3 4 5 6 7 8 9 10

1 90.03 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6

2 14.04 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69

3 8.261 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69

4 6.512 8.120 9.173 9.958 10.58 11.10 11.55 11.93 12.27

5 5.702 6.976 7.804 8.421 8.913 9.321 9.669 9.972 10.24

6 5.243 6.331 7.033 7.556 7.973 8.318 8.613 8.869 9.097

7 4.949 5.919 6.543 7.005 7.373 7.679 7.939 8.166 8.368

8 4.746 5.635 6.204 6.625 6.960 7.237 7.474 7.681 7.863

9 4.596 5.428 5.957 6.348 6.658 6.915 7.134 7.325 7.495

10 4.482 5.270 5.769 6.136 6.428 6.669 6.875 7.055 7.213

11 4.392 5.146 5.621 5.970 6.247 6.476 6.672 6.842 6.992

12 4.320 5.046 5.502 5.836 6.101 6.321 6.507 6.670 6.814

13 4.260 4.964 5.404 5.727 5.981 6.192 6.372 6.528 6.667

14 4.210 4.895 5.322 5.634 5.881 6.085 6.258 6.409 6.543

15 4.168 4.836 5.252 5.556 5.796 5.994 6.162 6.309 6.439

16 4.131 4.786 5.192 5.489 5.722 5.915 6.079 6.222 6.349

17 4.099 4.742 5.140 5.430 5.659 5.847 6.007 6.147 6.270

18 4.071 4.703 5.094 5.379 5.603 5.788 5.944 6.081 6.201

19 4.046 4.670 5.054 5.334 5.554 5.735 5.889 6.022 6.141

20 4.024 4.639 5.018 5.294 5.510 5.688 5.839 5.970 6.087

24 3.956 4.546 4.907 5.168 5.374 5.542 5.685 5.809 5.919

30 3.889 4.455 4.799 5.048 5.242 5.401 5.536 5.653 5.756

40 3.825 4.367 4.696 4.931 5.114 5.265 5.392 5.502 5.599

60 3.762 4.282 4.595 4.818 4.991 5.133 5.253 5.356 5.447

120 3.702 4.200 4.497 4.709 4.872 5.005 5.118 5.214 5.299

INF 3.643 4.120 4.403 4.603 4.757 4.882 4.987 5.078 5.157

n
r 11 12 13 14 15 16 17 18 19

1 253.2 260.0 266.2 271.8 277.0 281.8 286.3 290.4 294.3

2 32.59 33.40 34.13 34.81 35.43 36.00 36.53 37.03 37.50

3 17.13 17.53 17.89 18.22 18.52 18.81 19.07 19.32 19.55

4 12.57 12.84 13.09 13.32 13.53 13.73 13.91 14.08 14.24

5 10.48 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81

6 9.301 9.485 9.653 9.808 9.951 10.08 10.21 10.32 10.43

7 8.548 8.711 8.860 8.997 9.124 9.242 9.353 9.456 9.554

8 8.027 8.176 8.312 8.436 8.552 8.659 8.760 8.854 8.943

9 7.647 7.784 7.910 8.025 8.132 8.232 8.325 8.412 8.495

10 7.356 7.485 7.603 7.712 7.812 7.906 7.993 8.076 8.153

11 7.128 7.250 7.362 7.465 7.560 7.649 7.732 7.809 7.883

12 6.943 7.060 7.167 7.265 7.356 7.441 7.520 7.594 7.665

13 6.791 6.903 7.006 7.101 7.188 7.269 7.345 7.417 7.485

(Table continued )
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TABLE A.15b. Continued

n
r

11 12 13 14 15 16 17 18 19

14 6.664 6.772 6.871 6.962 7.047 7.126 7.199 7.268 7.333

15 6.555 6.660 6.757 6.845 6.927 7.003 7.074 7.142 7.204

16 6.462 6.564 6.658 6.744 6.823 6.898 6.967 7.032 7.093

17 6.381 6.480 6.572 6.656 6.734 6.806 6.873 6.937 6.997

18 6.310 6.407 6.497 6.579 6.655 6.725 6.792 6.854 6.912

19 6.247 6.342 6.430 6.510 6.585 6.654 6.719 6.780 6.837

20 6.191 6.285 6.371 6.450 6.523 6.591 6.654 6.714 6.771

24 6.017 6.106 6.186 6.261 6.330 6.394 6.453 6.510 6.563

30 5.849 5.932 6.008 6.078 6.143 6.203 6.259 6.311 6.361

40 5.686 5.764 5.835 5.900 5.961 6.017 6.069 6.119 6.165

60 5.528 5.601 5.667 5.728 5.785 5.837 5.886 5.931 5.974

120 5.375 5.443 5.505 5.562 5.614 5.662 5.708 5.750 5.790

INF 5.227 5.290 5.348 5.400 5.448 5.493 5.535 5.574 5.611

n
r 20 22 24 26 28 30 32 34 36

1 298.0 304.7 310.8 316.3 321.3 326.0 330.3 334.3 338.0

2 37.95 38.76 39.49 40.15 40.76 41.32 41.84 42.33 42.78

3 19.77 20.17 20.53 20.86 21.16 21.44 21.70 21.95 22.17

4 14.40 14.68 14.93 15.16 15.37 15.57 15.75 15.92 16.08

5 11.93 12.16 12.36 12.54 12.71 12.87 13.02 13.15 13.28

6 10.54 10.73 10.91 11.06 11.21 11.34 11.47 11.58 11.69

7 9.646 9.815 9.970 10.11 10.24 10.36 10.47 10.58 10.67

8 9.027 9.182 9.322 9.450 9.569 9.678 9.779 9.874 9.964

9 8.573 8.717 8.847 8.966 9.075 9.177 9.271 9.360 9.443

10 8.226 8.361 8.483 8.595 8.698 8.794 8.883 8.966 9.044

11 7.952 8.080 8.196 8.303 8.400 8.491 8.575 8.654 8.728

12 7.731 7.853 7.964 8.066 8.159 8.246 8.327 8.402 8.473

13 7.548 7.665 7.772 7.870 7.960 8.043 8.121 8.193 8.262

14 7.395 7.508 7.611 7.705 7.792 7.873 7.948 8.018 8.084

15 7.264 7.374 7.474 7.566 7.650 7.728 7.800 7.869 7.932

16 7.152 7.258 7.356 7.445 7.527 7.602 7.673 7.739 7.802

17 7.053 7.158 7.253 7.340 7.420 7.493 7.563 7.627 7.687

18 6.968 7.070 7.163 7.247 7.325 7.398 7.465 7.528 7.587

19 6.891 6.992 7.082 7.166 7.242 7.313 7.379 7.440 7.498

20 6.823 6.922 7.011 7.092 7.168 7.237 7.302 7.362 7.419

24 6.612 6.705 6.789 6.865 6.936 7.001 7.062 7.119 7.173

30 6.407 6.494 6.572 6.644 6.710 6.772 6.828 6.881 6.932

40 6.209 6.289 6.362 6.429 6.490 6.547 6.600 6.650 6.697

60 6.015 6.090 6.158 6.220 6.277 6.330 6.378 6.424 6.467

120 5.827 5.897 5.959 6.016 6.069 6.117 6.162 6.204 6.244

INF 5.645 5.709 5.766 5.818 5.866 5.911 5.952 5.990 6.026

(Table continued)
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TABLE A.15b. Continued

n
r 38 40 50 60 70 80 90 100

1 341.5 344.8 358.9 370.1 379.4 387.3 394.1 400.1

2 43.21 43.61 45.33 46.70 47.83 48.80 49.64 50.38

3 22.39 22.59 23.45 24.13 24.71 25.19 25.62 25.99

4 16.23 16.37 16.98 17.46 17.86 18.20 18.50 18.77

5 13.40 13.52 14.00 14.39 14.72 14.99 15.23 15.45

6 11.80 11.90 12.31 12.65 12.92 13.16 13.37 13.55

7 10.77 10.85 11.23 11.52 11.77 11.99 12.17 12.34

8 10.05 10.13 10.47 10.75 10.97 11.17 11.34 11.49

9 9.521 9.594 9.912 10.17 10.38 10.57 10.73 10.87

10 9.117 9.187 9.486 9.726 9.927 10.10 10.25 10.39

11 8.798 8.864 9.148 9.377 9.568 9.732 9.875 10.00

12 8.539 8.603 8.875 9.094 9.277 9.434 9.571 9.693

13 8.326 8.387 8.648 8.859 9.035 9.187 9.318 9.436

14 8.146 8.204 8.457 8.661 8.832 8.978 9.106 9.219

15 7.992 8.049 8.295 8.492 8.658 8.800 8.924 9.035

16 7.860 7.916 8.154 8.347 8.507 8.646 8.767 8.874

17 7.745 7.799 8.031 8.219 8.377 8.511 8.630 8.735

18 7.643 7.696 7.924 8.107 8.261 8.393 8.508 8.611

19 7.553 7.605 7.828 8.008 8.159 8.288 8.401 8.502

20 7.473 7.523 7.742 7.919 8.067 8.194 8.305 8.404

24 7.223 7.270 7.476 7.642 7.780 7.900 8.004 8.097

30 6.978 7.023 7.215 7.370 7.500 7.611 7.709 7.796

40 6.740 6.782 6.960 7.104 7.225 7.328 7.419 7.500

60 6.507 6.546 6.710 6.843 6.954 7.050 7.133 7.207

120 6.281 6.316 6.467 6.588 6.689 6.776 6.852 6.919

INF 6.060 6.092 6.228 6.338 6.429 6.507 6.575 6.636
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TABLE A.16. CRITICAL VALUES OF THE RATIO Fmax

n
a

2 3 4 5 6 7 8 9 10 11 12

a ¼ 0.05

2 39.0 87.5 142 202 266 333 403 475 550 626 704

3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124

4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4

5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9

6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7

7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8

8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7

9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34

12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48

15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93

20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59

30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39

60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36

INF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a ¼ 0.01

2 199 448 729 1036 1362 1705 2063 2432 2813 3204 3605

3 47.5 85 120 151 184 21(6) 24(9) 28(1) 31(0) 33(7) 36(1)

4 23.2 37 49 59 69 79 89 97 106 113 120

5 14.9 22 28 33 38 42 46 50 54 57 60

6 11.1 15.5 19.1 22 25 27 30 32 34 36 37

7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27

8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21

9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9

12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6

15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0

20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9

30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2

60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7

INF 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Reproduced with permission of the Biometrika Trust, from Biometrika Tables for Statisticians, Vol. 1, 3rd edition, 1966,

edited by E.S. Pearson and H.O. Hartley.
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TABLE A.17. LOGS BASE TEN

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.0 .0000 .0043 .0086 .0128 .0170 .0212 .0253 .0294 .0334 .0374

1.1 .0414 .0453 .0492 .0531 .0569 .0607 .0645 .0682 .0719 .0755

1.2 .0792 .0828 .0864 .0899 .0934 .0969 .1004 .1038 .1072 .1106

1.3 .1139 .1173 .1206 .1239 .1271 .1303 .1335 .1367 .1399 .1430

1.4 .1461 .1492 .1523 .1553 .1584 .1614 .1644 .1673 .1703 .1732

1.5 .1761 .1790 .1818 .1847 .1875 .1903 .1931 .1959 .1987 .2014

1.6 .2041 .2068 .2095 .2122 .2148 .2175 .2201 .2227 .2253 .2279

1.7 .2304 .2330 .2355 .2380 .2405 .2430 .2455 .2480 .2504 .2529

1.8 .2553 .2577 .2601 .2625 .2648 .2672 .2695 .2718 .2742 .2765

1.9 .2788 .2810 .2833 .2856 .2878 .2900 .2923 .2945 .2967 .2989

2.0 .3010 .3032 .3054 .3075 .3096 .3118 .3139 .3160 .3181 .3201

2.1 .3222 .3243 .3263 .3284 .3304 .3324 .3345 .3365 .3385 .3404

2.2 .3424 .3444 .3464 .3483 .3502 .3522 .3541 .3560 .3579 .3598

2.3 .3617 .3636 .3655 .3674 .3692 .3711 .3729 .3747 .3766 .3784

2.4 .3802 .3820 .3838 .3856 .3874 .3892 .3909 .3927 .3945 .3962

2.5 .3979 .3997 .4014 .4031 .4048 .4065 .4082 .4099 .4116 .4133

2.6 .4150 .4166 .4183 .4200 .4216 .4232 .4249 .4265 .4281 .4298

2.7 .4314 .4330 .4346 .4362 .4378 .4393 .4409 .4425 .4440 .4456

2.8 .4472 .4487 .4502 .4518 .4533 .4548 .4564 .4579 .4594 .4609

2.9 .4624 .4639 .4654 .4669 .4683 .4698 .4713 .4728 .4742 .4757

3.0 .4771 .4786 .4800 .4814 .4829 .4843 .4857 .4871 .4886 .4900

3.1 .4914 .4928 .4942 .4955 .4969 .4983 .4997 .5011 .5024 .5038

3.2 .5051 .5065 .5079 .5092 .5105 .5119 .5132 .5145 .5159 .5172

3.3 .5185 .5198 .5211 .5224 .5237 .5250 .5263 .5276 .5289 .5302

3.4 .5315 .5328 .5340 .5353 .5366 .5378 .5391 .5403 .5416 .5428

3.5 .5441 .5453 .5465 .5478 .5490 .5502 .5514 .5527 .5539 .5551

3.6 .5563 .5575 .5587 .5599 .5611 .5623 .5635 .5647 .5658 .5670

3.7 .5682 .5694 .5705 .5717 .5729 .5740 .5752 .5763 .5775 .5786

3.8 .5798 .5809 .5821 .5832 .5843 .5855 .5866 .5877 .5888 .5899

3.9 .5911 .5922 .5933 .5944 .5955 .5966 .5977 .5988 .5999 .6010

4.0 .6021 .6031 .6042 .6053 .6064 .6075 .6085 .6096 .6107 .6117

4.1 .6128 .6138 .6149 .6159 .6170 .6180 .6191 .6201 .6212 .6222

4.2 .6232 .6243 .6253 .6263 .6274 .6284 .6294 .6304 .6314 .6325

4.3 .6335 .6345 .6355 .6365 .6375 .6385 .6395 .6405 .6415 .6425

4.4 .6435 .6444 .6454 .6464 .6474 .6484 .6493 .6503 .6513 .6522

4.5 .6532 .6542 .6551 .6561 .6571 .6580 .6590 .6599 .6609 .6618

(Table continued)
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TABLE A.17. Continued

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

4.6 .6628 .6637 .6646 .6656 .6665 .6675 .6684 .6693 .6702 .6712

4.7 .6721 .6730 .6739 .6749 .6758 .6767 .6776 .6785 .6794 .6803

4.8 .6812 .6821 .6830 .6839 .6848 .6857 .6866 .6875 .6884 .6893

4.9 .6902 .6911 .6920 .6928 .6937 .6946 .6955 .6964 .6972 .6981

5.0 .6990 .6998 .7007 .7016 .7024 .7033 .7042 .7050 .7059 .7067

5.1 .7076 .7084 .7093 .7101 .7110 .7118 .7126 .7135 .7143 .7152

5.2 .7160 .7168 .7177 .7185 .7193 .7202 .7210 .7218 .7226 .7235

5.3 .7243 .7251 .7259 .7267 .7275 .7284 .7292 .7300 .7308 .7316

5.4 .7324 .7332 .7340 .7348 .7356 .7364 .7372 .7380 .7388 .7396

5.5 .7404 .7412 .7419 .7427 .7435 .7443 .7451 .7459 .7466 .7474

5.6 .7482 .7490 .7497 .7505 .7513 .7520 .7528 .7536 .7543 .7551

5.7 .7559 .7566 .7574 .7582 .7589 .7597 .7604 .7612 .7619 .7627

5.8 .7634 .7642 .7649 .7657 .7664 .7672 .7679 .7686 .7694 .7701

5.9 .7709 .7716 .7723 .7731 .7738 .7745 .7752 .7760 .7767 .7774

6.0 .7782 .7789 .7796 .7803 .7810 .7818 .7825 .7832 .7839 .7846

6.1 .7853 .7860 .7868 .7875 .7882 .7889 .7896 .7903 .7910 .7917

6.2 .7924 .7931 .7938 .7945 .7952 .7959 .7966 .7973 .7980 .7987

6.3 .7993 .8000 .8007 .8014 .8021 .8028 .8035 .8041 .8048 .8055

6.4 .8062 .8069 .8075 .8082 .8089 .8096 .8102 .8109 .8116 .8122

6.5 .8129 .8136 .8142 .8149 .8156 .8162 .8169 .8176 .8182 .8189

6.6 .8195 .8202 .8209 .8215 .8222 .8228 .8235 .8241 .8248 .8254

6.7 .8261 .8267 .8274 .8280 .8287 .8293 .8299 .8306 .8312 .8319

6.8 .8325 .8331 .8338 .8344 .8351 .8357 .8363 .8370 .8376 .8382

6.9 .8388 .8395 .8401 .8407 .8414 .8420 .8426 .8432 .8439 .8445

7.0 .8451 .8457 .8463 .8470 .8476 .8482 .8488 .8494 .8500 .8506

7.1 .8513 .8519 .8525 .8531 .8537 .8543 .8549 .8555 .8561 .8567

7.2 .8573 .8579 .8585 .8591 .8597 .8603 .8609 .8615 .8621 .8627

7.3 .8633 .8639 .8645 .8651 .8657 .8663 .8669 .8675 .8681 .8686

7.4 .8692 .8698 .8704 .8710 .8716 .8722 .8727 .8733 .8739 .8745

7.5 .8751 .8756 .8762 .8768 .8774 .8779 .8785 .8791 .8797 .8802

7.6 .8808 .8814 .8820 .8825 .8831 .8837 .8842 .8848 .8854 .8859

7.7 .8865 .8871 .8876 .8882 .8887 .8893 .8899 .8904 .8910 .8915

7.8 .8921 .8927 .8932 .8938 .8943 .8949 .8954 .8960 .8965 .8971

7.9 .8976 .8982 .8987 .8993 .8998 .9004 .9009 .9015 .9020 .9025

8.0 .9031 .9036 .9042 .9047 .9053 .9058 .9063 .9069 .9074 .9079

8.1 .9085 .9090 .9096 .9101 .9106 .9112 .9117 .9122 .9128 .9133

8.2 .9138 .9143 .9149 .9154 .9159 .9165 .9170 .9175 .9180 .9186

8.3 .9191 .9196 .9201 .9206 .9212 .9217 .9222 .9227 .9232 .9238

8.4 .9243 .9248 .9253 .9258 .9263 .9269 .9274 .9279 .9284 .9289

(Table continued)
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TABLE A.17. Continued

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

8.5 .9294 .9299 .9304 .9309 .9315 .9320 .9325 .9330 .9335 .9340

8.6 .9345 .9350 .9355 .9360 .9365 .9370 .9375 .9380 .9385 .9390

8.7 .9395 .9400 .9405 .9410 .9415 .9420 .9425 .9430 .9435 .9440

8.8 .9445 .9450 .9455 .9460 .9465 .9469 .9474 .9479 .9484 .9489

8.9 .9494 .9499 .9504 .9509 .9513 .9518 .9523 .9528 .9533 .9538

9.0 .9542 .9547 .9552 .9557 .9562 .9566 .9571 .9576 .9581 .9586

9.1 .9590 .9595 .9600 .9605 .9609 .9614 .9619 .9624 .9628 .9633

9.2 .9638 .9643 .9647 .9652 .9657 .9661 .9666 .9671 .9675 .9680

9.3 .9685 .9689 .9694 .9699 .9703 .9708 .9713 .9717 .9722 .9727

9.4 .9731 .9736 .9741 .9745 .9750 .9754 .9759 .9763 .9768 .9773

9.5 .9777 .9782 .9786 .9791 .9795 .9800 .9805 .9809 .9814 .9818

9.6 .9823 .9827 .9832 .9836 .9841 .9845 .9850 .9854 .9859 .9863

9.7 .9868 .9872 .9877 .9881 .9886 .9890 .9894 .9899 .9903 .9908

9.8 .9912 .9917 .9921 .9926 .9930 .9934 .9939 .9943 .9948 .9952

9.9 .9956 .9961 .9965 .9969 .9974 .9978 .9983 .9987 .9991 .9996
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TABLE A.18. ANGULAR TRANSFORMATION ARC SIN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%� 0:01

p

% .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0 0.00 1.81 2.56 3.14 3.63 4.05 4.44 4.80 5.13 5.44

1 5.74 6.02 6.29 6.55 6.80 7.03 7.27 7.49 7.71 7.92

2 8.13 8.33 8.53 8.72 8.91 9.10 9.28 9.46 9.63 9.80

3 9.97 10.14 10.30 10.47 10.63 10.78 10.94 11.09 11.24 11.39

4 11.54 11.68 11.83 11.97 12.11 12.25 12.38 12.52 12.66 12.79

5 12.92 13.05 13.18 13.31 13.44 13.56 13.69 13.81 13.94 14.06

6 14.18 14.30 14.42 14.54 14.65 14.77 14.89 15.00 15.12 15.23

7 15.34 15.45 15.56 15.68 15.79 15.89 16.00 16.11 16.22 16.32

8 16.43 16.54 16.64 16.74 16.85 16.95 17.05 17.15 17.26 17.36

9 17.46 17.56 17.66 17.76 17.85 17.95 18.05 18.15 18.24 18.34

10 18.43 18.53 18.63 18.72 18.81 18.91 19.00 19.09 19.19 19.28

11 19.37 19.46 19.55 19.64 19.73 19.82 19.91 20.00 20.09 20.18

12 20.27 20.36 20.44 20.53 20.62 20.70 20.79 20.88 20.96 21.05

13 21.13 21.22 21.30 21.39 21.47 21.56 21.64 21.72 21.81 21.89

14 21.97 22.06 22.14 22.22 22.30 22.38 22.46 22.54 22.63 22.71

15 22.79 22.87 22.95 23.03 23.11 23.18 23.26 23.34 23.42 23.50

16 23.58 23.66 23.73 23.81 23.89 23.97 24.04 24.12 24.20 24.27

17 24.35 24.43 24.50 24.58 24.65 24.73 24.80 24.88 24.95 25.03

18 25.10 25.18 25.25 25.33 25.40 25.47 25.55 25.62 25.70 25.77

19 25.84 25.91 25.99 26.06 26.13 26.21 26.28 26.35 26.42 26.49

20 26.57 26.64 26.71 26.78 26.85 26.92 26.99 27.06 27.13 27.20

21 27.27 27.34 27.42 27.49 27.56 27.62 27.69 27.76 27.83 27.90

22 27.97 28.04 28.11 28.18 28.25 28.32 28.39 28.45 28.52 28.59

23 28.66 28.73 28.79 28.86 28.93 29.00 29.06 29.13 29.20 29.27

24 29.33 29.40 29.47 29.53 29.60 29.67 29.73 29.80 29.87 29.93

25 30.00 30.07 30.13 30.20 30.26 30.33 30.40 30.46 30.53 30.59

26 30.66 30.72 30.79 30.85 30.92 30.98 31.05 31.11 31.18 31.24

27 31.31 31.37 31.44 31.50 31.56 31.63 31.69 31.76 31.82 31.88

28 31.95 32.01 32.08 32.14 32.20 32.27 32.33 32.39 32.46 32.52

29 32.58 32.65 32.71 32.77 32.83 32.90 32.96 33.02 33.09 33.15

30 33.21 33.27 33.34 33.40 33.46 33.52 33.58 33.65 33.71 33.77

31 33.83 33.90 33.96 34.02 34.08 34.14 34.20 34.27 34.33 34.39

32 34.45 34.51 34.57 34.63 34.70 34.76 34.82 34.88 34.94 35.00

33 35.06 35.12 35.18 35.24 35.30 35.37 35.43 35.49 35.55 35.61

34 35.67 35.73 35.79 35.85 35.91 35.97 36.03 36.09 36.15 36.21

(Table continued)
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TABLE A.18. Continued

% .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

35 36.27 36.33 36.39 36.45 36.51 36.57 36.63 36.69 36.75 36.81

36 36.87 36.93 36.99 37.05 37.11 37.17 37.23 37.29 37.35 37.41

37 37.46 37.52 37.58 37.64 37.70 37.76 37.82 37.88 37.94 38.00

38 38.06 38.12 38.17 38.23 38.29 38.35 38.41 38.47 38.53 38.59

39 38.65 38.70 38.76 38.82 38.88 38.94 39.00 39.06 39.11 39.17

40 39.23 39.29 39.35 39.41 39.47 39.52 39.58 39.64 39.70 39.76

41 39.82 39.87 39.93 39.99 40.05 40.11 40.16 40.22 40.28 40.34

42 40.40 40.45 40.51 40.57 40.63 40.69 40.74 40.80 40.86 40.92

43 40.98 41.03 41.09 41.15 41.21 41.27 41.32 41.38 41.44 41.50

44 41.55 41.61 41.67 41.73 41.78 41.84 41.90 41.96 42.02 42.07

45 42.13 42.19 42.25 42.30 42.36 42.42 42.48 42.53 42.59 42.65

46 42.71 42.76 42.82 42.88 42.94 42.99 43.05 43.11 43.17 43.22

47 43.28 43.34 43.39 43.45 43.51 43.57 43.62 43.68 43.74 43.80

48 43.85 43.91 43.97 44.03 44.08 44.14 44.20 44.26 44.31 44.37

49 44.43 44.48 44.54 44.60 44.66 44.71 44.77 44.83 44.89 44.94

50 45.00 45.06 45.11 45.17 45.23 45.29 45.34 45.40 45.46 45.52

51 45.57 45.63 45.69 45.74 45.80 45.86 45.92 45.97 46.03 46.09

52 46.15 46.20 46.26 46.32 46.38 46.43 46.49 46.55 46.61 46.66

53 46.72 46.78 46.83 46.89 46.95 47.01 47.06 47.12 47.18 47.24

54 47.29 47.35 47.41 47.47 47.52 47.58 47.64 47.70 47.75 47.81

55 47.87 47.93 47.98 48.04 48.10 48.16 48.22 48.27 48.33 48.39

56 48.45 48.50 48.56 48.62 48.68 48.73 48.79 48.85 48.91 48.97

57 49.02 49.08 49.14 49.20 49.26 49.31 49.37 49.43 49.49 49.55

58 49.60 49.66 49.72 49.78 49.84 49.89 49.95 50.01 50.07 50.13

59 50.18 50.24 50.30 50.36 50.42 50.48 50.53 50.59 50.65 50.71

60 50.77 50.83 50.89 50.94 51.00 51.06 51.12 51.18 51.24 51.30

61 51.35 51.41 51.47 51.53 51.59 51.65 51.71 51.77 51.83 51.88

62 51.94 52.00 52.06 52.12 52.18 52.24 52.30 52.36 52.42 52.48

63 52.54 52.59 52.65 52.71 52.77 52.83 52.89 52.95 53.01 53.07

64 53.13 53.19 53.25 53.31 53.37 53.43 53.49 53.55 53.61 53.67

65 53.73 53.79 53.85 53.91 53.97 54.03 54.09 54.15 54.21 54.27

66 54.33 54.39 54.45 54.51 54.57 54.63 54.70 54.76 54.82 54.88

67 54.94 55.00 55.06 55.12 55.18 55.24 55.30 55.37 55.43 55.49

68 55.55 55.61 55.67 55.73 55.80 55.86 55.92 55.98 56.04 56.10

69 56.17 56.23 56.29 56.35 56.42 56.48 56.54 56.60 56.66 56.73

70 56.79 56.85 56.91 56.98 57.04 57.10 57.17 57.23 57.29 57.35

71 57.42 57.48 57.54 57.61 57.67 57.73 57.80 57.86 57.92 57.99

72 58.05 58.12 58.18 58.24 58.31 58.37 58.44 58.50 58.56 58.63

73 58.69 58.76 58.82 58.89 58.95 59.02 59.08 59.15 59.21 59.28

74 59.34 59.41 59.47 59.54 59.60 59.67 59.74 59.80 59.87 59.93

(Table continued)
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TABLE A.18. Continued

% .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

75 60.00 60.07 60.13 60.20 60.27 60.33 60.40 60.47 60.53 60.60

76 60.67 60.73 60.80 60.87 60.94 61.00 61.07 61.14 61.21 61.27

77 61.34 61.41 61.48 61.55 61.61 61.68 61.75 61.82 61.89 61.96

78 62.03 62.10 62.17 62.24 62.31 62.38 62.44 62.51 62.58 62.65

79 62.73 62.80 62.87 62.94 63.01 63.08 63.15 63.22 63.29 63.36

80 63.43 63.51 63.58 63.65 63.72 63.79 63.87 63.94 64.01 64.09

81 64.16 64.23 64.30 64.38 64.45 64.52 64.60 64.67 64.75 64.82

82 64.90 64.97 65.05 65.12 65.20 65.27 65.35 65.42 65.50 65.57

83 65.65 65.73 65.80 65.88 65.96 66.03 66.11 66.19 66.27 66.34

84 66.42 66.50 66.58 66.66 66.74 66.82 66.89 66.97 67.05 67.13

85 67.21 67.29 67.37 67.46 67.54 67.62 67.70 67.78 67.86 67.94

86 68.03 68.11 68.19 68.28 68.36 68.44 68.53 68.61 68.70 68.78

87 68.87 68.95 69.04 69.12 69.21 69.30 69.38 69.47 69.56 69.64

88 69.73 69.82 69.91 70.00 70.09 70.18 70.27 70.36 70.45 70.54

89 70.63 70.72 70.81 70.91 71.00 71.09 71.19 71.28 71.37 71.47

90 71.57 71.66 71.76 71.85 71.95 72.05 72.15 72.24 72.34 72.44

91 72.54 72.64 72.74 72.84 72.95 73.05 73.15 73.26 73.36 73.46

92 73.57 73.68 73.78 73.89 74.00 74.11 74.21 74.32 74.44 74.55

93 74.66 74.77 74.88 75.00 75.11 75.23 75.35 75.46 75.58 75.70

94 75.82 75.94 76.06 76.19 76.31 76.44 76.56 76.69 76.82 76.95

95 77.08 77.21 77.34 77.48 77.62 77.75 77.89 78.03 78.17 78.32

96 78.46 78.61 78.76 78.91 79.06 79.22 79.37 79.53 79.70 79.86

97 80.03 80.20 80.37 80.54 80.72 80.90 81.09 81.28 81.47 81.67

98 81.87 82.08 82.29 82.51 82.73 82.97 83.20 83.45 83.71 83.98

99 84.26 84.56 84.87 85.20 85.56 85.95 86.37 86.86 87.44 88.19
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TABLE A.19. ORTHOGONAL POLYNOMIALS

a ¼ 3 a ¼ 8

21 þ1 þ1 25 23 þ9 þ15

0 22 þ3 23 27 23 þ17

þ1 þ1 þ5 þ1 25 213 223

þ7 þ7 þ7 þ7 þ7

2 6 168 168 264 616 2184

a ¼ 4 a ¼ 9

23 þ1 21 0 220 0 þ18 0

21 21 þ3 þ1 217 29 þ9 þ9

þ1 21 23 þ2 28 213 211 þ4

þ3 þ1 þ1 þ3 þ7 27 221 211

þ4 þ28 þ14 þ14 þ4

20 4 20 60 2772 990 2002 468

a ¼ 5 a ¼ 10

22 þ2 21 þ1 þ1 24 212 þ18 þ6

21 21 þ2 24 þ3 23 231 þ3 þ11

0 22 0 þ6 þ5 21 235 217 þ1

þ1 21 22 24 þ7 þ2 214 222 214

þ2 þ2 þ1 þ1 þ9 þ6 þ42 þ18 þ6

10 14 10 70 330 132 8580 2860 780

a ¼ 6 a ¼ 11

25 þ5 25 þ1 21 0 210 0 þ6 0

23 21 þ7 23 þ5 þ1 29 214 þ4 þ4

21 24 þ4 þ2 210 þ2 26 223 21 þ4

þ1 24 24 þ2 þ10 þ3 21 222 26 21

þ3 21 27 23 25 þ4 þ6 26 26 26

þ5 þ5 þ5 þ1 þ1 þ5 þ15 þ30 þ6 þ3

70 84 180 28 252 110 858 4290 286 156

a ¼ 7 a ¼ 12

0 24 0 þ6 0 þ1 235 27 þ28 þ20

þ1 23 21 þ1 þ5 þ3 229 219 þ12 þ44

þ2 0 21 27 24 þ5 217 225 213 þ29

þ3 þ5 þ1 þ3 þ1 þ7 þ1 221 233 221

þ9 þ25 23 227 257

þ11 þ55 þ33 þ33 þ33

28 84 6 154 84 572 12012 5148 8008 15912

Reprinted by permission from Statistical Methods, 6th edition, by George W. Snedecor and William G. Cochran,

# 1967 by The Iowa State University Press, Ames, Iowa 50010.
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Answers to Most Odd-Numbered
Exercises and All Review Exercises

CHAPTER 1

Exercises

1.1.1. 0.020, 0.019, 0.009, 0.034, 0.047, E.

1.1.3. a. 0.4.

b. 0.216.

c. 0.144.

d. 0.288.

e. 0.6.

1.1.5. a. 35/36.

b. (1/36)24.

c. 1 2 (35/36)24.

d. 0.5086/(1 2 0.5086) ¼ 1.035.

1.2.3. a. Theoretical results are insufficient; he wants to prevent cases of paralytic polio.

b. The vaccine should be used.

1.2.5. a. H0: p ¼ 0.5.

b. Ha: p , 0.5.

c. 0, 1 with a ¼ 0.109.

d. 2, 3, 4, 5, or 6 deaths.

e. Do not reject H0.

1.3.1. a. Survey.

b. Survey.

c. Experiment.

d. Experiment.

1.3.3. His conjecture was based on a survey with no control of other variables.

Review Exercises

False: 1.4

1.6 1.12

1.7 1.17

1.8 1.19

1.9

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X # 2004 John Wiley & Sons, Inc.

595



CHAPTER 2

Exercises

2.1.3. i. The English people

ii. It is a subset of the population but it is not random

iii. Obituaries of notable people are likely to be more detailed.

2.2.1. a. 2, 8, 1.

a. 2, 1.

b. 18, 43, 6, 3, 39.

d. 8, 14, 20, 9.

2.2.5. a. The numbers of the 10 for the sample are 8, 39, 16, 11, 37, 22, 2, 3, 33 and 21

b. i. Sample proportion is 7/10 ¼ 0.70

ii. Sample average is 28.4

2.3.1. a. Continuous numerical.

b. Nominal.

c. Nominal.

d. Nominal.

e. Continuous numerical.

f. Discrete numerical.

g. Nominal.

2.3.3. a. Female, male.

b. Less than 3, 3, more than 3.

c. Blue-eyed, not blue-eyed.

2.3.5. a. Ordinal scale because the symbols he used are ordered

a. If scores are classified as lower case or upper case letters, the odds of an upper case

score are 3.5 times as large for the child of a skilled father.

b. One way is with a two by two table with Skilled or Unskilled as rows and low score

(lower case letter) or high score (upper case) as columns.

2.4.1. a. 1/6.

c. 4/6, 3/6, 1/6, 3/6.

2.4.3. a. 1.

b. 1/4.

c. 1/4.

d. 3/4.

e. 3/4.

2.5.1. a: 1, 1/2.

b: 7, 2.

c: 1.6250, 0.2969.

2.5.3. a. p(0) ¼ 0.94, p(5) ¼ 0.03, p(10) ¼ 0.02, p(25) ¼ 0.01.

b. 0.60.

c. No.

d. 8.64.

e. 0.97.
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2.5.5. a. 2.5.

b. (a þ b)/2.

Review Exercises

False: 2.4 2.13

2.5 2.15

2.6 2.18

2.9 2.19

2.10

CHAPTER 3

Exercises

3.1.1. a. 1/5.

b. 2/5.

c. 3/5.

d. 1.

e. 0.

f. 0.

g. 4/5.

h. 3/5.

3.1.3. a. 90/1024.

b. 918/1024.

c. 376/1024.

3.1.5. a. 25/7776.

b. 1/1296.

3.1.7. a. 1.

b. 3.

c. 1.

d. 10.

e. 5.

f. 4.

3.1.9. a. 0.11.

b. 6.6 � 1025.

c. 3.6 � 1027.

3.1.11. a. 1.6, 0.96.

b. 1.6, 0.96.

3.1.13. 32.

3.1.15. a. 1/12.

b. 1/6.

c. 1/144.

3.1.17. a. 1/2.

b. 1/32.
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3.1.19. a. There are nine choices for the first station, eight for the second, and so on, and the

total number of possibilities is the product.

b. 362,880.

c. 90,720.

3.1.21. a. 252.

b. 1.

c. 1/252.

d. The examiner might inadvertently indicate the pictures of the dead subjects.

3.1.23. a. 10!/(2!)(8!) ¼ (10)(9)/2 ¼ 45

(9 þ 1) þ (8 þ 2) þ (7 þ 3) þ (6 þ 4) þ 5 ¼ (10)(9/2) ¼ 45

3.2.1. a. 0.000.

b. 0.000.

c. 0.904.

d. 0.238.

e. 1.000.

f. 0.548.

3.2.3. a. H0: p ¼ 0.30.

b. Ha: p = 0.30.

c. 0.053.

d. AcceptH0; the game may be operating as desired. He must assume the players are

random.

3.2.5. a. 0.417.

b. Increase the sample size.

3.2.7. a. Twenty or fewer miles per gallon, more than 20 miles per gallon.

b. H0: p ¼ 0.70. (p is the proportion of Type B cars that average more than 20 miles

per gallon.)

c. Ha: p . 0.70.

d. Type II. Use a large sample size.

3.2.9. a. 0, 1, 2, 11, 12; . . . ; 20.

b. 10, 11; . . . ; 20.

c. 0.176.

d. iv.

3.2.13. a. H0: p ¼ 0.20, Ha: p . 0.20.

b. 9, 10; . . . ; 25.

c. No, P ¼ 0.108 . a.

3.2.15. a. H0: p ¼ 0.70, Ha: p = 0.70.

b. 0, 1; . . . ; 10 or 18, 19, 20.

c. Discouraged because H0 is rejected with the evidence in the direction of less than

70%.

3.2.17. a. H0: pM ¼ 0.50, Ha: pM = 0.50.

b. 0, 1; . . . ; 6 or 19; . . . ; 25.

e. No, 16 is not in the region of rejection.
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3.3.1. (1) 0.229, 0.591.

(2) 250, 90.

(3) 0.263, 0.382.

(4) 0.816, 0.897.

(5) 0.164, 0.511.

(6) 100, 17.

(7) 0.046, 0.083.

(8) 29, 0.90.

(9) 500, 0.99.

(10) 8, 0.25, 0.55.

3.3.3. a. 0.25 � p � 0.55.

b. 0.236 � p � 0.583.

3.3.5. a. 0.14.

3.3.7. a. 0.52.

b. 0.456 � p � 0.583.

3.3.9. a. 0.471 � p � 0.588.

b. i. H0: p ¼ 0.495.

ii. Acceptance.

iii. 0.01.

3.4.1. a. H0: p ¼ 0.50, Ha: p = 0.50.

b. 0.422.

c. Do not reject H0.

d. Independence.

3.4.3. a. H0: p ¼ 0.50, Ha: p , 0.50.

b. For n ¼ 25, if y � 8; for n ¼ 50 or 100, if 0.50 is not in the one-sided CI0.95 for

the upper bound found in A.5b and A.5c, respectively.

Review Exercises

False: 3.2 3.15 3.25

3.4 3.16 3.26

3.5 3.18 3.27

3.6 3.21 3.29

3.7 3.22

3.9 3.23

3.12 3.24

CHAPTER 4

Exercises

4.1.1. a. Chironomid flies.

b. 0.21.
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4.1.3. a. Flaws.

b. 2.5.

c. 0.1336.

4.1.5. a. 0.082.

b. 0.205.

c. 0.918.

d. 1, 2, 3, 4.

4.1.7. a. For l ¼ 0.25, p(0) ¼ 0.7788, p(1) ¼ 0.1947, p(2) ¼ 0.0243, p(3) ¼ 0.0020,

p(4) ¼ 0.0001, p(5) ¼ 0.0000; . . . : For l ¼ 0.50, 1.00, and 10.00 use Table A.7.

4.2.1. a. 12.

b. 0.0513.

c. H0: l ¼ 12 per 3 milliseconds, Ha: l . 12 per 3 milliseconds. Reject H0 if P � a.
Accept H0. There is no evidence that the level is higher than 4 per millisecond.

4.2.3. H0: l ¼ 10, Ha: l , 10; reject H0. There is evidence of a reduction.

4.2.5. a. H0: l ¼ 1 per 100 cells.

b. Ha: l . 1 per 100 cells.

c. 0.0190.

d. 0.7787. It seems necessary because the probability of four or more basophils is

0.2213.

4.3.1. 1.4 � l � 6.0, 1.1 � l � 6.7.

4.3.3. 0.0158 � l � 0.0527.

4.3.5. a. i. Knowing she was watched could affect her behavior

ii. They would likely not be independent

iii. The probability of boredom could increase with length of time.

b. For 16 half-minute units, CI 0.80: 6.2213 � l � 15.4066. To obtain the interval of

the estimate on a per minute basis divide L and U by 8.

c. If the parameter to be estimated is the friend’s boredom during that specific lecture,

it is valid but not ethical for no one wants to be watched without permission.

4.4.1. 0.0047.

4.4.3. H0: l ¼ 4, Ha: l , 4; reject H0 if y ¼ 0 or 1. H0 is accepted. No evidence of a

reduction in the proportion of defective sets.

4.4.5. l � 9.0.

Review Exercises

False: 4.1 4.6 4.13

4.3 4.8 4.15

4.4 4.9 4.16

4.5 4.10
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CHAPTER 5

Exercises

5.1.1. a. 18.475.

b. 2.156.

c. 95.023.

d. 0.05.

e. 0.975.

f. 18.307.

g. 42.796.

h. 5.

5.1.3. x2 ¼ 9.336, no evidence that the table is not random.

5.1.5. x2 ¼ 1.240, 75% of the plants may be red-flowering. We assume the nongerminating

seeds would have produced the same proportion of plants with red flowers.

5.1.7. x2 ¼ 53.427, P , 0.005, there is evidence of a preference. The counts indicate a

preference for the economy issue. This assumes that those who did not respond have

similar views to those who did respond.

5.1.9. a. H0: p1 ¼ 9/16; p2 ¼ 3/16; p3 ¼ 3/16; p4 ¼ 1/16.
Ha: At least one inequality.

b. x2 ¼ 9.418, the genes are probably not on different chromosomes.

5.2.1. x2 ¼ 8.342, b(y; 4, 0.40) may be the correct distribution.

5.2.3. x2 ¼ 0.0222, this may be from a binomial distribution.

5.2.5. l̂l ¼ 0:5246, x2 ¼ 2.52, this seems to be from a Poisson distribution.

5.3.1. H0: Both groups have the same pattern of colds.

Ha: The groups differ with respect to colds.

x2 ¼ 4.63, the serum does not appear to be effective in preventing colds.

5.3.3. x2 ¼ 2.67, no evidence that the drug is related to a higher incidence of birth defects;

homogeneity.

5.3.5. a. H0: pA ¼ pB ¼ pC. (pi is the proportion of dead black files for each insecticide.)

b. 9.210.

c. x2 ¼ 1.49.

d. Greater than 0.05.

d. Do not reject H0; the insecticides are equally effective.

5.3.7. a. H0: The attractiveness of women is independent of city where seen.

Ha: The attractiveness of women depends on city where seen.

b. Chi-square ¼ 8.791 (P-value ¼ 0.0123).

c. 55 of 200 were attractive, so odds ¼ 55/(200 2 55) ¼ 0.379.

5.4.1. a. prospective.

b. relative risk ¼ (120/200)/(155/300) ¼ 0.6/0.5166 ¼ 1.16.

c. odds ratio ¼ (120/80)/(155/145) ¼ 1.5/1.07 ¼ 1.403.

5.4.3. a. observational.

b. relative risk ¼ (10/138)/(3/168) ¼ 4.058.
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c. odds ratio ¼ (10/128)/(3/163) ¼ 4.245.

5.5.1. a. H0: p1 ¼ p2 ¼ p3 ¼ p4 ¼ 0.50.

b. Ha: at least one pi = 0.50.

c. x20:05;3 ¼ 7:815.

d. x2 ¼ 14.133, the growth is different for different species, D grows fastest.

5.5.3. a. H0: Aggressiveness rank is independent of greediness rank.

b. The categories for both rows and columns are “above the median” and “below the

median.”

c. x2 ¼ 4.000; there is evidence of an association between aggressiveness and

greediness.

Review Exercises

False: 5.1 5.9

5.3 5.11

5.5 5.13

5.6 5.15

5.7 5.16

5.8 5.20

CHAPTER 6

Exercises

6.1.1. 70.

6.1.3. a. 2.0.

c. 2.0.

d. m̂m ¼ �yy ¼ 2:0.

6.2.1. a. 6.

6.2.3. a. 1.68.

b. 1.68.

6.2.5. b. 3, 9, 3.

c. 1.5, 1.5, 2.8.

6.2.7. m ¼ 0.238, s ¼ 0.740; m + 2s is 21.242 to 1.718, which contains 0.941 of the data;

m + 3s is 21.982 to 2.458, which contains 0.972 of the data.

6.3.1. b. 22/3, 38/9.

6.3.5. c. 65.

d. 65.

e. 3.33.

f. 1.67.

6.4.1. a. 5.25, 1.75, 1.05, 0.66.

b. 5.25, 1.25, 0.45, 0.
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Review Exercises

False: 6.1 6.11

6.2 6.13

6.4 6.14

6.5 6.15

6.8 6.19

6.9

CHAPTER 7

Exercises

7.1.1. a. 0.818.

b. 0.499.

c. 0.382.

d. 0.010.

e. 0.500.

f. 0.943.

g. 0.124.

h. 0.445.

i. 0.318.

j. 0.046.

k. 0.002.

7.1.3. a. 0.933.

b. 67.2 to 132.8.

c. 120.8.

d. 95.0.

7.1.5. a. 0.001.

b. 0.159.

7.1.7. x2 ¼ 10.789, critical value 12.592, the sample seems to come from a normal

distribution.

7.2.1. a. 1.64.

b. 21.64.

c. 2.33.

d. 22.33.

e. 2.58.

f. 22.58.

7.2.3. a. H0: m ¼ 19.3.

b. Ha: m , 19.3.

c. z � 2 1.64 or y � 18.808.

d. 0.359.
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7.3.1. a. 0.106.

b. (0.106)5.

c. 0.003.

7.4.1. 0.023.

7.4.3. a. 0.50, 0.371.

b. 0.50, 0.159.

c. i. H0: m ¼ 90, Ha: m , 90.

ii. �yy � 83:44.

iii. 0.739.

7.4.5. a. 3.24.

b. 2.06 to 10.55.

c. x2 ¼ 31.32; do not reject H0. The variance may be 3.0.

d. 5.16 to 6.44.

7.5.1. a. i. 0.369.

ii. 0.302.

iii. 0.378.

b. i. 0.147.

ii. 0.174.

c. The continuity correction is more important for small samples.

7.5.3. a. 25%.

b. H0: ¼ 0.25, Ha: p = 0.25.

c. z ¼ 2.47; reject H0. The disorder appears to be genetic.

7.5.5. a. 0.64.

b. 0.0023.

c. 0.55 to 0.73.

d. There is evidence that people can distinguish because p ¼ 0.50 is below the

confidence interval.

7.5.7. z ¼ 22.21; there is evidence of undercounts.

7.5.9. a. H0: f ¼ 1, Ha:: f . 1.

z ¼ 0.539/0.236 ¼ 1.65; reject H0.

7.6.1. a. 25.5, 25.5, 25.5, 25.5.

b. 20.825, 10.412, 6.942, 5.206.

7.6.3. z ¼ 22.60, the scrubbers reduce particulate emissions.

Review Exercises

False: 7.1 7.9

7.2 7.11

7.3 7.12

7.4 7.14

7.8 7.19
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CHAPTER 8

Exercises

8.1.1. a. 2.764.

b. 22.764.

c. 2.365.

d. 22.365.

e. 2.807.

f. 22.807.

8.1.3. a. $8000.

b. 10,240,000.

c. 2.00.

d. Between 0.025 and 0.05.

8.2.1. a. 1000.

b. 100.

c. 786.9 to 1213.1.

8.2.3. a. 1.7.

b. 54.7 to 61.7.

8.2.5. a. 3.7 to 4.7.

b. m � 4.7.

8.2.7. a. H0: md ¼ 0, Ha: md . 0.

b. t ¼ 2.00; H0 is rejected. There is evidence of improvement on the second test.

8.2.9. a. The design removes extraneous variability introduced by soil conditions, climate,

and farming methods.

b. 3.0.

d. t ¼ 3.236, reject H0.

e. There is evidence that the seed company’s claim is correct.

f. 2.24 to 3.76. H0 is rejected because 2.0 is not in this interval.

8.2.11. a. 44.8.

b. H0: md ¼ 0, Ha: md = 0.

c. t ¼ 1.7; do not reject H0. There is no evidence of a difference in weight gain.

d. 21.0 to 6.3. Since this interval contains 0 the null hypothesis is accepted.

8.3.1. a. 105.

b. H0: mU ¼ mR, Ha: mU . mR.

c. t ¼ 2.30; reject H0. Urban pollution is higher.

d. mU 2 mR � 24.7.

8.3.3. 23.439 to 20.561.

8.3.5. t ¼ 1.80; reject H0. There is evidence that those who finish on time score higher.

However, since this was obtained from a survey without control for other factors, it

should be applied cautiously.

8.3.7. a. 22.18 to 20.02.

CHAPTER 8 605



b. Since the interval does not contain zero, there is evidence of inequality. However,

the evidence is weak because 0 is close to the upper limit 20.02.

8.4.1. a. 6.538.

b. 4.886.

c. 2.328.

d. 0.430.

e. 0.132.

8.4.3. F ¼ 4.00; reject the hypothesis of equal variances. Use the t0 test for means,

t0 ¼ 22.50 with n ¼ 14; reject H0. There is evidence of a difference in the mean resin

content.

8.4.5. a. F ¼ 0.444; do not reject H0. There is no evidence of different variances.

b. 0.111 to 2.449.

8.5.1. a. The differences may not be normal.

b. H0: m ¼ 0, Ha: m . 0.

c. z ¼ 2.85; reject H0. There is evidence of a harmful effect.

8.5.3. z ¼ 2.19; reject H0.

Review Exercises

False: 8.1 8.9

8.3 8.10

8.4 8.11

8.5 8.13

8.6 8.14

8.7 8.16

8.8

CHAPTER 9

Exercises

9.1.1. c.

9.1.3. Days per pound.

9.1.5. a. 180.

b. 18.

c. ŷy ¼ �208þ 18x.

d. 80.

9.1.7. a. i. Positive

ii. Yes.

iii. 19.2.

iv. Minutes per staff hour, per patient.

v. ŷy ¼ �1þ 19:2x.

vi. 18.2, 95.0.
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b. i. Negative

ii. Not intuitive prior to the survey.

iii. ŷy ¼ 19:15� 1:43x.

iv. x ¼ 10.

9.1.9. a. 68.

b. 68.5.

c. 0.50.

9.1.11. ŷy ¼ 53:69þ 0:6187x.

9.2.1. c. i. H0: b ¼ 0, Ha: b . 0.

ii. 1.895.

iii. t ¼ 6.0; reject H0. There is evidence that increase in study is linearly related to

higher grades.

9.2.3. a. Fish per hour.

b. Fish.

c. Fish.

9.2.5. a. i. H0: b ¼ 0. There is no linear relationship between time spent on patient care and

patient load.

ii. Time would seem to increase as number of patients increases.

iii. 2.132.

iv. t ¼ 16.0; reject H0. There is a linear relationship between time spent on patient

care and patient load.

b. i. H0: b ¼ 0.

ii. It is not clear prior to the survey whether the relationship is positive or negative.

iii. t ¼ 25.39; rejectH0. There is a linear relationship; time for reports decreases as

patient load increases.

9.2.7. a. 0.14.

b. 0.14.

c. i. H0: b ¼ 0.

ii. Radioactivity disappears over time.

iii. 2 2.353.

iv. t ¼ 21.750; do not reject H0. There is no evidence of a linear relationship.

9.3.1. a. 40.

b. 9.

c. 72 + 3.5.

9.3.3. a. H0: b ¼ 0.

b. Ha: b = 0, since it is not obvious whether a larger number of fillings in the previous

two years indicates that there will be little left to do or a very fast decay rate.

c. +2.306.

9.3.5. a. 3.0.

b. 1.44.

c. H0: b ¼ 0, Ha: b . 0, t ¼ 1.00; do not reject H0. There is no evidence of a linear

relationship.
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d. 20.06.

e. 20.06 + 0.78.

f. 19.7.

g. 19.7 + 0.83.

h. Parts d through g are invalid because there is no linear relationship.

9.3.7. a. 0.00112 + 0.00428.

b. 0.844 + 0.262.

c. 0.79 , E(yjx ¼ 50).

d. 0.657 , y.

e. No, there is no evidence of a linear trend.

9.4.1. a. 21, þ1.

b. 10, 1.

c. 20.9, þ0.4.

d. Significant; nonsignficant.

9.4.3. t ¼ 4.0; reject H0. Length explains a significant portion of the variability in weight.

9.4.5. a. 2.

b. 1.

c. 2.

d. 1.

9.4.7. 20.990 to 20.651.

9.5.1. a. rs ¼ 0.98.

b. i. H0: E(rs) ¼ 0, Ha: E(rs) . 0.

ii. 1.645.

c. z ¼ 2.94, reject H0; there is a positive association.

9.5.3. a. rs ¼ 0.58, r ¼ 0.54.

b. z ¼ 1.924 for Spearman’s test; accept H0. The tests agree.

9.6.1. Sbrxi ¼ brSxi ¼ (Syi/Sxi)Sxi ¼ Syi

9.6.3. a.

Estimates Intercept Slope

Least Squares 20.656 0.889

Difference 26 1

Ratio 0 0.875

Review Exercises

False: 9.2 9.12

9.5 9.14

9.6 9.15

9.7 9.17

9.8 9.20

9.11
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CHAPTER 10

Exercises

10.1.1. 72/5 ¼ 42/5 þ 30/5.

10.1.3. a. F ¼ 11.65; reject H0. There is a difference in the mean heights of the two groups.

b. t ¼ 23.41; reject H0.

c. (t0.025,6)
2 ¼ F0.05,1,6.

10.2.1. F ¼ 1.55, H0 is not rejected. There is no significant difference among the diets.

10.2.3. H0: mA ¼ mB ¼ mC, F ¼ 5.14; reject H0. There is at least one difference among the

mean lifetimes.

10.2.5. H0:mA ¼ mB ¼ mC; this does not appear to be true from the graph. 3.885. F ¼ 216.7;

reject H0. The mean amount of vitamin C differs for at least two of the methods.

10.2.7. F ¼ 23.56; reject H0. There is evidence of different mean weights at different

locations.

10.2.9. a. a ¼ 7, n ¼ 5, total degrees of freedom ¼ 7(5) 2 1 ¼ 34.

b. Trial.

c. Normality, independence, equal variances.

df SS MS

6 330

28 644 23

e. H0: m1 ¼ m2 ¼ . . . ¼ m7, Ha: At least one inequality.

f. F0.05,6,28 ¼ 2.445. F ¼ 2.39; do not reject H0. There is no significant difference

among the insecticides.

10.2.11. a. dh, jhi.

b. Sh dh ¼ 0, jhi is IND(0, s
2).

c. h ¼ 1, 2, 3 ¼ a. i ¼ 1, 2; . . . ; 5 ¼ n.

d. F ¼ 4.00; reject H0. There is a significant difference among the mean weight-

bearing capacities.

10.3.1. a.

df SS MS

4 2392

180

c. Yes, F is significant.

d. �yyC �yyA �yyD �yyB �yyE:

10.3.3. a. F ¼ 2.88; accept H0.

b. No, F is not significant.

c. No significant differences.

d.
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10.3.5. a.

�yyI �yyII �yyIII

b. 3.682. F ¼ 6.25, which exceeds the critical value.

c. H0: m3 ¼ (m1 þ m2)/2, Ha: m3 = (m1 þ m2)/2.
Critical value 10.4, �yy3 � ð �yy1 þ �yy2Þ=2 ¼ 15, so the yield with III is significantly

different from the average of I and II.

10.4.1. There is a significant difference between the home type and the industrial type,

F ¼ 9.68.

10.4.3. a. H0: m1 ¼ m2 ¼ . . . ¼ m6, Ha: At least one inequality.

b. F ¼ 7.12; reject H0.

c. The placebo is significantly different from the analgesics.

e. 14%.

f. Pain relief is obtained more quickly with aspirin in any form than with the

placebo.

10.5.1. a. 6.48 to 10.82.

b. 27.40 to 4.60.

c. 217.65 to 26.35.

d. 3.65 to 13.35.

10.5.3. a. F ¼ 4.0; reject H0.

b. 4.97 to 19.03.

c. 37.66 to 42.34.

d. 210.06 to 21.94.1x(^numListCount)

e. 4.60 to 15.40.

10.6.1. 3.0045(6.36) ¼ 19.109. The value for Tukey’s procedure is 18.2; since a larger

difference is required for the Bonferroni procedure, it is statistically more

conservative.

10.7.1. a. H0: Eð�rriÞ ¼ 13=2 for i ¼ 1, 2, 3;

Ha: Eð�rriÞ = 13=2 for some i ¼ 1, 2, 3.

b. 5.991.

c. H ¼ 7.269; reject H0.

d. There is a significant difference between alloys A and C; C lasts longer than A.

10.6.3. H ¼ 6.269; there is evidence of a difference.

a. A nonparametric procedure is preferred when the data are not normal but the

other conditions for ANOVA are satisfied.

b. a1 ¼ 1, a2 ¼ 22, a3 ¼ 1, H ¼ 5.65. Reject H0; B is significantly different from

the average of A and C; B lasts longer.

Review Exercises

False: 10.2 10.10 10.16

10.5 10.11 10.17

10.7.3
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10.6 10.13 10.19

10.8 10.14 10.20

10.9

CHAPTER 11

Exercises

11.1.1. a. Fixed.

b. Random.

c. Random.

d. Fixed.

e. Fixed.

11.1.3. a. F ¼ 3.09; reject H0: s
2
A ¼ 0. There is evidence of significant variability among

families.

b. rI ¼ 0.41.

c. Families with three brothers.

d. Obesity is a characteristic of some families.

11.1.5. a. REM.

b. H0: s
2
A ¼ 0.

c. F ¼ 19; reject H0.

d. 0.90.

e. Ten percent of the variability is due to the lab technique, and this may not be

reliable enough for medical decisions.

11.2.1. a. F/max ¼ 19.75; reject H0. There is at least one inequality among the variances.

b.

s2
NY s2

SK s2
LN s2

CD s2
DA s2

RN

11.2.3. Fmax ¼ 7.4; do not reject H0.

11.3.1. b. 43.65 versus 1.58.

11.3.3. a. Square root.

b. Points seem random.

11.3.5. b. F is significant; LSD indicates all transformed means are significantly

different.

Review Exercises

False: 11.2 11.9 11.15

11.4 11.12 11.17

11.6 11.14 11.18
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CHAPTER 12

Exercises

12.1.1. a. i. The cock effect. Random.

ii. The hen effect. Random.

b. F ¼ 0.05; do not reject H0. There is no evidence of significant variability due to

males.

12.1.3.

C A E B D

B or D should be purchased.

12.1.5. a. 6, 7, 5.

b. R-SQUARE ¼ 0.504467 or 50.4%.

c. MSa/MSb ¼ (32.333/5)/(75.413/36) ¼ 3.087.

d. 105.840.

12.2.1. b. Among hybrids F ¼ 38.98; reject H0.

Among locations F ¼ 5.82; reject H0.

c. Yes.

d. Yes.

e. RC-3 DBC FR-11 BCM

Any hybrid except RC-3 should be used.

12.2.3. b. Fixed.

c. Random.

d. H0: a1 ¼ a2 ¼ a3 ¼ a4 ¼ a5.

e. Among models F ¼ 3.59; reject H0.

Among cities F ¼ 2.59; do not reject H0.

f. Yes.

g. Since Type I error is not serious, use Fisher’s least significant difference.

h.

D B C A E

C, A, and E get the best mileage.

i. No.

j. 17%.

12.2.5. a. 4, 5.

b. 1.2.
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c.

�yy1 �yy2 �yy3 �yy4

12.3.1. b. For covers F ¼ 0.94; do not reject H0.

For newsstands F ¼ 2.92; do not reject H0.

For weeks F ¼ 1.29; do not reject H0.

c. The mean sales among covers do not differ.

d. Without this design, 125 repetitions of the experiment would be necessary.

12.3.3. c. For weeks F ¼ 0.22; do not reject H0.

For days F ¼ 0.32; do not reject H0.

For operations F ¼ 0.35; do not reject H0.

e. Weeks are random, days are fixed, and operations are fixed.

f. None of the effects analyzed contribute significantly to differences in the number

of unsafe incidents.

12.3.5. SSe would have zero degrees of freedom, so MSe does not exist.

12.4.1. a. Fixed.

b. Fixed.

c. For diets F ¼ 12.6, for jogging F ¼ 69.1, for interaction F ¼ 1.6.

e. Yes.

f. Yes.

g. No.

h. Use Fisher’s least significant difference to locate the best diet and the best amount

of jogging. Either a high protein or a high carbohydrate diet should be combined

with two miles of jogging.

12.4.3. a.

Source df E(MS) F

Plant species s2 þ 5s2
AB þ 25s2

A 5.125

Hillside 4 s2 þ 5s2
AB þ 30s2

B 5.200

P � H s2 þ 5s2
AB 6.667

Error 120 s2

b. 6.667 . F0.05,20,120 ¼ 1.662 so there is a significant interaction.

c. ŝs2
A ¼ 13:2; ŝs2

B ¼ 11:2, so species contributes more to the total variability.

12.5.1. b. All effects fixed.

c. F ¼ 11.49; reject H0.

d.

SSa ¼ 1,302.2 SSb ¼ 351,939.7 SSc ¼ 112,266.8

SSab ¼ 2,572.8 SSac ¼ 2,002.5 SSbc ¼ 15,366.5

SSabc ¼ 7,927.5 SSe ¼ 44,800.0
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e. EðMSaÞ ¼ s2 þ bcnSa2
i =ða� 1Þ

EðMSbÞ ¼ s2 þ acnSb2
j =ðb� 1Þ

EðMScÞ ¼ s2 þ abnSg2k=ðc� 1Þ
EðMSabÞ ¼ s2 þ ncSSab2

ij=ða� 1Þðb� 1Þ
EðMSacÞ ¼ s2 þ nbSSag2ik=ða� 1Þðc� 1Þ
EðMSbcÞ ¼ s2 þ naSSbg2jk=ðb� 1Þðc� 1Þ
EðMSabcÞ ¼ s2 þ nSSSabg2ijk=ða� 1Þðb� 1Þðc� 1Þ
EðMSeÞ ¼ s2

f. Only the nitrogen levels and phorphorus levels are related to significant

differences. There are no interactions.

12.5.3. a. Seed treatment (A), fixed.

Male (B), random.

Female (C), random.

b. F for Treatments 5.48; reject H0.

F for Crosses 17.75; reject H0.

F for T � C 13.00; reject H0.

c. SSm ¼ 26.09, SSf ¼ 13.93, SSmf ¼ 45.11.

d. SStm ¼ 1.14, SStf ¼ 29.34, SStmf ¼ 31.93.

e.

Source df F

Treatment (A) 1 no exact test

Male (B) 3 MSb/MSbc ¼ 1.74

Female (C) 3 MSc/MSbc ¼ 0.93

A � B 9 MSab/MSabc ¼ 0.11

A � C 3 MSac/MSabc ¼ 2.76

B � C 3 MSbc/MSe ¼ 15.66�

A � B � C 9 MSabc/MSe ¼ 11.09�

Error 32

f. 31%.

g. Because of the significant interactions which reverse the effects of scarification,

the treatment has different effects on different crosses; scarification cannot be

recommended in general.

12.6.1.

Source df F

Whole Units

Wash temperature 1 80.34�

Brands 3 31.14�

Whole unit remainder 3

Subunits

Dry temperature 2 117.22�

Wash temp. � Dry temp. 2 17.51�

Subunit remainder 12
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12.7.1. a. yijk ¼ mþ ai þ bij þ gk þ agik þ 1ijk

m: the overall mean

aI : fixed effect of ith level of Gender

bij: random effect of ijth experimental Unit

gk: fixed effect of the kth level of Target

agik: The interaction effect between ith level of factor Gender and the kth level of

factor Target.

b.

Source df SS

Whole Units

Gender 1 0

Units 6 264

Subunits

Target 2 58,413

Gender � Target 2 37

Subunit remainder 12 302

ii. Rsquare ¼ 0.995

c. Because the SS for Gender are zero, F ¼ 0 and the P-value ¼ 1.

d. i. Average time of males ¼ 180.75 average time for females ¼ 177.25

t ¼ 180:75� 177:25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

4

302

12

� �s ¼ 0:987

ii. t ¼ 180:75� 180ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

302

12

� �s ¼ 0:299

12.7.3. a. yijk ¼ mþ ai þ bij þ gk þ agik þ 1ijk

m: the overall mean

aI : fixed effect of ith level of time of buring

bij: random effect of ijth core

gk: fixed effect of the kth level of Depth

agik: The interaction effect between ith level of factor Burning and the kth level

of factor Depth.

c.

Source df SS

Whole Units

Burning 2 3.010

Cores 3 0.390

i.
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Source df SS

Subunits

Depth 2 3.6633

Burning � Depth 4 0.5567

Subunit remainder 6 0.8200

Review Exercises

False: 12.2 12.11

12.4 12.13

12.6 12.16

12.9 12.17

CHAPTER 13

Exercises

13.1.1. b. (3, 7), (4, 8), (5, 7).

c. �xx: ¼ 4.

d. ŷ1j ¼ 1 þ 2x1j, ŷ2j ¼ 2x2j, ŷ3j ¼ 23 þ 2x3j.

e. (4, 9), (4, 8), (4, 5).

f. Increase. Order is changed.

13.1.3. (1) e

(2) g

(3) h

(4) not indicated

(5) c

(6) f

(7) d

13.2.1. c. F ¼ 4.93; reject H0. The adjusted alloy averages are significantly different.

13.3.1. a. 4.

b. F ¼ 33.78; reject H0. The slope is not zero.

13.3.3. Yes.

13.4.1. b. 0.80.

e. adj �yy1: ¼ 22:4, adj �yy2: ¼ 18:0, adj �yy3: ¼ 22:6.

f. 21.52 � m1 � 23.28, 17.26 � m2 � 18.74, 21.72 � m3 � 23.48.

g. 18.0 22.4 22.6

13.4.3. a. 4950.45, 76.92, 0.73, 50.84, 48.25.

b. Birthweight.
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c. To reduce the variability in the experimental groups.

d. No; P value equals 0.3971.

e. There are only two groups.

Review Exercises

False: 13.1 13.7 13.11

13.2 13.10 13.12

13.3 13.18

13.5 13.19

CHAPTER 14

Exercises

14.1.1. a.
13 27

24 25

� �

b.
�30 10

54 �18
�

�

c.
16

64

� �

d.

�1

50

7

2
4

3
5

14.1.3.
5 �2

�2 1

� �

14.2.1. a.
10 20 j4j 1 0

20 40 j2j 0 1

� �
! 1 0 j12:4j 4:1 �2:0

0 1 j � 6:0j �2:0 1:0

� �

b. F ¼ 36.15; reject H0.

14.2.3. a. 0.7124.

b. F ¼ 18.59; R 2 is significant.

c. Reject.

d. ŷy ¼ 5852:06� 2:563x1 þ 1:224x2.

e. Decreased by 22.563.

14.3.1. a. 23.518 � b1 � 21.608.

b. 0.588 � b2 � 1.860.

c. t ¼ 25.722; reject H0: b1 ¼ 0.

t ¼ 4.099; reject H0: b2 ¼ 0.

d. 1685.60 � E(y j x1 ¼ 2000, x2 ¼ 860) � 1871.80.

e. 1679.10 � y � 1878.30.

14.3.3. a. 2 0.1375, 0.2856.
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b. 2 0.6413 � b1 � 0.3663.

2 0.2904 � b2 � 0.8616.

14.5.1. a. i. 0.8645.

ii. 0.8602.

b. The model containing Oxygen and Depth is the better model.

14.5.3. a. SSR/Syy ¼ 0.8811, 0.8613.

b. i. 0.64%.

ii. 1.28%.

c. 2.0644.

d. i. The model containing only acres is best.

ii. F ¼ 1.0897, F0.05,2,19 ¼ 3.522; the reduction is not significant.

14.6.1. a. ŷy ¼ �71:6þ 48:5 log x. H0: b ¼ 0 is rejected with t ¼ 4.155. There is a linear

relationship.

14.6.3. b. i. 20.342.

ii. 20.998.

iii. 20.996.

c. i. She expects increased cooking time to reduce the number of salmonella

colonies.

ii. t ¼ 215.42; reject H0.

d. i. 4.500.

ii. 2.852 to 7.099.

iii. Since ae bx ¼ 0 is impossible, solve ae bx ¼ 1. More than 19.4 minutes are

required for an expected survival of zero.

14.7.1. a. 1.9401, 20.1125; both terms contribute significantly.

b. Yes, F ¼ 6.2.

c. 43.02.

14.7.3. a. F ¼ 5.78; reject H0. There is a significant difference among fertilizers.

b. The linear and quadratic trends are significant.

c. From the group totals it seems to be included.

d. R 2 ¼ 0.683 for the quadratic model.

R 2 ¼ 0.684 for the cubic model.

14.8.1. a. f̂f ¼ 1:403:

b. CI:95: 0:977 , f � 2:106:

e. 1 is in the confidence interval.

This supports the hypothesis that f is equal to 1.

f. The alternative hypothesis of interest in Exercise 7.5.8 is f . 1.

14.8.3. a. Galton’s null hypothesis is that b is equal to 0, i.e. brewing time is unrelated to the

probability of bitter tea.

b. e21.7849 ¼ 5.959. This is the multiplicative increase in the odds for bitter tea

given a 1 minute more of brewing time. Increase is significant; P-value , 0.0001.

c. The predicted probability of bitter tea when the brewing time is 8 minutes is .19.

The predicted probability of bitter tea when the brewing time is 9 minutes is .586.

Don’t brew the tea longer than 8 minutes.
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Review Exercises

False: 14.1 14.10 14.16

14.2 14.11 14.17

14.3 14.12 14.19

14.6 14.15 14.20

14.7

CHAPTER 14 619



Index

Analysis of covariance, 409–425
assumptions, 411, 418–421
model, 411
multiple comparison procedure, 423–425
procedure, 413–416

Analysis of variance, 265–407
Latin square design, 360–365
nested design, 341–348
one-way completely randomized design,

265–237
randomized complete block design,

350–357, 398
split-plot design, 387–396
split-plot with repeated measures,

398–404
three-way factorial design, 376–383, 396
two-way factorial design, 368–374

Autocorrelation, 225
Average, sample, 130–131

Backward elimination, 460–466
Bartlett’s test of variance, 327, 419
Behrens–Fisher test, 200, 202
Bernoulli, 51
Bernoulli formula, 53
Bias, 13
Binomial coefficients, 52
table, 515

Binomial distribution, 49–77, 164–167
characteristics of, 50, 90–92
expected value of, 54
tables, 54, 516, 517
variance of, 54

Binomial experiment, 51, 97
Binomial parameter, 51, 92
Bivariate normal distribution, 242–244
Blocks, 350–357, 387–396
Bonferroni, 303
simultaneous t-tests, 303–306
simultaneous confidence intervals,

306–308
Box-and-whisker plot, 183, 199, 330

Causation, 242
Central limit theorem, 155, 156, 164, 173
Chebyshev, P. L., 136–138
Chi-square distribution, 95–117
characteristics of, 95, 96
expected value of, 95
maximum value of, 95
table, 532, 533
variance of, 95

Chi-square tests, 98–117, 121–124, 202
ANOVA for ranks, 309–312
contingency table analysis, 108–114
degrees of freedom, 201
goodness-of-fit, 104–107
of homogeneity, 108–111
of independence, 111–114
median test, 121, 124
multinomial, 98–100
of variance, 161, 162, 202

Cochran, 327
Cochran’s test of variances, 327
Coefficient of determination, 240, 241, 245,

274, 319
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Collinearity, 433
Combinations, 52
Comparisons, one-degree of freedom,

294–298
Conclusion, statistical, 16, 60
Concomitant variable, see Covariate
Confidence intervals:
on adjusted means in covariance analysis,

423, 424
on binomial parameter, 72–75,

166–167
tables, 518–525

on correlation coefficient, 245–246
on differences of two means, 208, 209
on expected value of y, 233, 235, 236, 449,

450
on mean, 159, 160, 182, 183
on mean difference, 186
on log odds ratio, 170, 171
on logistic regression parameters, 500,

503
multiple-t, 302
one-sided, 74, 75, 88, 89
on parameters in one-way ANOVA,

300–302
on partial regression coefficients, 444,

447, 448
on Poisson parameter, 87–89
table 531

on ratio of two variances, 199
on slope parameter, 233, 235
on variance, 161, 162
on y intercept, 233
simultaneous Bonferroni intervals,

306–308
Continuity correction, 100, 165
Contrast, 283, 294
Control group, 8, 118
Correlation:
intraclass (ICC), 320–322, 335–357
multiple, 440, 441
rank, 248, 250–252
simple linear, 238–248, 452

Correlation coefficient:
multiple, 440, 441
partial, 466
simple, 219, 239, 240–248, 452

Covariate, 239, 409, 411, 433

Darwin, 233
Data, 1, 11, 14, 15, 19, 25
Decision, statistical, 16

Degrees of freedom:
in ANOVA, 268, 270, 343, 345, 352, 354,

363, 371, 379, 383, 391, 395, 401,
404

in analysis of covariance, 414–415
in chi-square distribution, 95, 98, 105,

108, 109, 114
in F distribution, 197, 200, 202
in simple linear regression, 227, 242
in t distribution, 180, 183, 184, 192, 200,

202
in t0 test, 200, 202

Density function, 37, 38, 95, 147, 148, 180
Dependent variable, 211
Descriptive statistics, 1
Design:

in ANOVA, 341–404
of case-control studies, 118
of observational studies, 117
of experiments, 12, 13, 117
of surveys, 12, 13, 19

Difference estimation
confidence interval for the intercept, 261
model, 260
procedure, 260, 261
variance estimate, 261

Double blind experiment, 8
Duncan’s new multiple range test, 283,

285–287
tables, 574–579

Dunn, 304

Empirical rule, 137
Error:

type I, 62–64, 74, 266, 283, 285, 290, 304
type II, 62–64, 74, 290

Estimation, 9, 70–75, 87–89, 285, 300–302.
See also Confidence intervals

Estimator, 70, 71, 131, 226, 300
maximum likelihood, 72
unbiased, 70

Expected value, 39–42, 95, 129, 131, 234,
449

properties of, 142
Experiment, 11, 12–14, 19, 117, 118

powerful, 62
Extrapolation, 230, 239

Factorial design:
three-way, 376–383, 396
assumptions, 378
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Factorial design (Continued )
expected mean squares, 380, 381
model, 378
procedure, 379–381

two-way, 368–373
assumptions, 370
expected mean squares, 372
model, 370
procedure, 370, 371

Factorials, 52, 82
table, 514

Factors, 265, 341, 368, 387
F distribution, 197–199
relation to t distribution, 197
table, 538–571

Fermat, 1
Finite population correction factor, 144
Fisher, R. A., 245
Fisher’s exact test, 113
Fisher’s least significant difference,

283–285, 287, 291
Fisher’s z transformation, 245–248
table, 572
inverse, 572, 573

Fixed effects, 317, 318, 324, 342, 351, 353,
355, 362, 370, 378, 380

F-max test, 325–327, 419
table, 586–587

Frequency, 128, 131, 134–136
cumulative, 128
relative, 129–131, 134–136, 147

Galton, Francis, 133
Gauss, Carl Friedrich, 147
Geometric distribution, 26, 37
Global level of significance, 304–306, 421
Goodness of fit, 149
Gosset, William Sealy, 179

Hartley, 325, 326
Hierarchal design, see Nested design
Homoscedasticity, 325
Hypothesis:
alternative, 15, 35, 60, 74, 75
one-tailed, 74, 75, 99
two-tailed, 60, 74, 75

experimental, 8, 12
null, 8, 12, 14, 15, 35, 59
testing, 14–16, 36. See also Test of

hypothesis

Independence, 4, 7, 50, 51, 242, 244
chi-square test of, 112, 113
of errors, 223, 224, 227, 268, 318, 324,

327, 342, 351, 361, 370, 378, 394,
403, 411

Independent variable, 211, 213, 242, 431
Inference, 1, 7, 9, 14, 22, 70, 71, 152, 161,

182, 190, 197
Inferential statistics, 1
Interaction, 355, 360, 362, 369–374, 378,

383, 392, 394
Intercept, y, 215–217, 219, 419
Interval estimate, 70, 72, 73. See also

Confidence intervals

JMP
correlation, 256
regression, 253–255
scatter plot, 255, 256

Kruskal, W. H., 309
Kruskal–Wallis test, 309–312

Latin square design, 360–365
assumptions, 362
expected mean square, 364
model, 362
procedure, 362–364

Least-squares:
trend line, 215–219, 223–230
plane, 432, 439

Levels of factors, 368, 369, 376, 493
Linear combination of parameters, 295, 298,

300
Linearity, 223–225
Location, measure of, 127, 131

Mallow’s Cp statistic, 459–461, 466, 467,
470

Main unit treatment, 387, 396
Mann–Whitney–Wilcoxon test, 204–208,

202
Margin of sampling error, 259
Matched pairs, 185, 186, 239, 240
Matrix, 431–437
of coefficients, 434, 436, 499
identity, 436
inverse, 436, 437, 500
multiplication, 437
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row operations, 434–437
Maximum, 485, 491
Maximum likelihood estimator, 70, 497, 498
Mean:
of population, 127–131
of sample, see Average, sample
of sampling distribution of averages,

138–140
Measurement, 30
levels of, 30–32

Median, 77, 122, 183
Median test:
one sample, 77
two samples, 121, 122

Missing value, 357
Mixed model, 372, 376, 381
Model, 33, 34, 37, 38, 104
ANOVA, 268, 318, 341, 342, 351, 362,

370, 378, 394, 403
correlation, 242, 245, 440, 441
regression, 242, 245, 440, 441

Model fitting in multiple regression,
458–471

Model testing:
goodness-of-fit, 104–106
in simple linear regression, 223–230

Multinomial experiment, 97, 98
Multiple comparison procedures, 283–291,

310, 311
in analysis of covariance, 423, 424
Duncan’s new multiple range test, 283

285–287, 290, 291
Fisher’s least significant difference,

283–285, 290, 291
in nested design, 345
power, 290
in randomized complete block design, 355
Sheffé’s method, 283, 289–291, 295
simultaneous Bonferroni intervals,

305–306
in split-plot design, 393, 396
Student–Newman–Keuls procedure, 283,

287, 288, 291
Tukey’s honestly significant difference,

283, 288, 291
type I error rate, 283, 285, 287, 290

Nested design, 341–348
assumptions, 342
expected mean squares, 345
model, 342
procedure, 342–246

Nominal scale, 31, 32, 49, 50, 332
Nonparametric statistics, 32, 77, 121, 122,

173–175, 204–207, 250–252,
309–312

Normal distribution, 147–175
approximation of binomial, 164–167
approximation of Poisson, 167–168
density function, 147, 148
expected value, 148
inflection points, 148
standard, 149, 153, 179, 180, 181
table, 534, 535

variance, 148, 160–162
Normal equations, 215
Normality, 149, 150, 160, 162, 182, 186,

191, 193, 197, 223–225, 242, 268, 318,
324, 325, 342, 351, 362, 370, 378, 394,
403, 411, 500

Numerical scale, 31–32
continuous, 31
discrete, 31

Odds
odds for an event, 2, 119
odds against an event, 2

Odds ratio, 6, 119, 503
confidence interval, 170
distribution of the log of the estimated

odds ratio, 168, 169
esimate of the odds ratio, 168
test of hypothesis, 170, 171

One-way completely randomized design,
265–333, 341, 384, 492, 493

assumptions, 268, 318, 324–328
contrasts, 294–298
estimation of parameters, 300–302
expected mean squares, 318, 321
model, 268, 318, 324
multiple comparisons, 283–291
procedure, 272–278
with unequal sized groups, 276–278

Ordinal scale, 31, 32, 250, 252, 332
Orthogonal contrasts, 295–298, 311, 492,

493
Orthogonal polynomials, 492, 493

table, 593
Outliers, 14

Parameter, 51, 64, 71, 87–89, 104, 105, 152,
160, 192

Pascal, 1
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Pearson, Karl, 16, 97, 179, 248
Point estimate, 70, 87, 192, 300
Poisson, Siméon-Denis, 81
Poisson distribution, 81–92, 164
approximated by normal, 167
approximation of binomial, 90–92
characteristics of, 81, 82, 92
tables, 83, 528–530

Poisson parameter, 82, 87, 92
confidence interval for, 87–89

Poisson process, 81, 82
Population, 1, 7, 9, 25–27, 49, 70, 71
available, 28
finite, 141
infinite, 141
mean, 127–131, 182–184, 190–194
standard deviation, 136
variance, 132–135, 160, 182

Power, 62, 63, 100, 290, 354
Precision, 396, 409, 421
Prediction from regression line, 211, 217,

226, 229, 230
Prediction interval, 235, 236, 449
Predictor variable, 211
Probability, 1–10
of an event, 2, 34
of conditional events, 5
of independent events, 5
function, 35, 38
of joint events, 4
laws of, 3, 5, 50
of mutally exclusive events, 3
of type I error, 62, 63, 65, 283, 285, 290
of type II error, 62–65, 290

Probability distribution, 33–38
continuous, 37, 38, 147–149
discrete, 34, 35, 131, 136
expected value, 39–45, 131
variance, 39, 42–45, 136

Probability function, 35–37
binomial, 51, 53
discrete uniform, 40
geometric, 35–37
Poisson, 81, 82

Problem, statement of, 11, 12
Product moment correlation, see Correlation,

simple linear
P value, 15, 16, 37, 61, 85, 86, 305, 306

Quadratic curve, 212, 484
Quartiles, 184

Random effects, 317–322, 324, 342, 351,
355, 362, 370, 378, 380, 381, 383

Randomized complete block design,
350–357

assumptions, 351
expected mean squares, 353
intraclass correlation, 355–357
missing values, 357
model, 351
multiple comparisons, 355
procedure, 352–354

Random numbers:
generator, 27, 28
table, 512
use of, 27–28

Random variable, 33–38
continuous, 37, 147–149, 332
discrete, 33, 50, 81, 332
values of, 33, 37, 42

Range, 332
Rank correlation, 248, 250–252
Ranks, 31, 250, 309, 332
Rank test, 173–175
Ratio estimation, 257, 258
confidence interval for the slope, 259
model, 256
procedure, 257, 258
variance estimate, 259, 261

Regression(s):
comparing, 409–411, 420
cubic, 486–490
curvilinear, 431
logistic regression, 495–505

confidence intervals for parameters,
500, 503

likelihood ration chi-square, 499
logit, 496
log-likelihood equations, 498, 595
maximum likelihood estimation, 497
model, 496
Newton–Raphson solution to likelihood

equations, 498, 499
odds ratio, 503
parameter estimates, 497, 499, 505
test of hypothesis for parameters, 499,

503
Wald test, 499, 500

multiple, 431–471
assumptions, 440, 441
inference, 444–450
mean square error, 459–461
model, 431, 441
procedure, 439–441
R 2, 440, 459–461, 466, 467, 469, 470
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Regression(s) (Continued )
polynomial, 431, 475, 484, 493
quadratic, 484–493
simple linear, 211–236, 242, 253–256,

409, 431
assumptions, 223, 482, 483
model, 214, 223–230, 431
procedure, 219

Regression coefficients:
partial, 444–448

Regression line, 221–219, 409, 418–421
Regression of y on x, 211–219
Rejection:
level, 15, 60
region of, 60, 64, 85, 86, 107, 154, 160,

162, 167, 168, 171, 175, 186, 194,
199, 200, 207, 230, 247, 248, 252

Research studies:
case control, 118
experimental 117
observational, 117
prospective, 118
retrospective, 119

Residuals, 224–228, 454
Residual sum of squares, 352, 355, 363
Response variable, 211
Risk:
increased risk, 119
related to odds, 119
relative risk, 119, 120
risk, 118
risk factor, 117

Rsquare, 274, 320

Sample(s), 1, 7, 13, 25, 70, 71
average, 130–131
dependent, see Matched pairs
independent, 190–194
random, 13, 27–29
representative, 13
simple random, 27–29
stratified random, 29
sufficiently large, 14

Sampling:
without replacement, 141, 143, 144
with replacement, 139–141

Sampling distribution:
of averages, 138–141, 156
mean, 141, 143, 155
variance, 141, 143, 155

of sample correlation coefficient, 244, 245
Sampling error, 275

SAS System, the, 18, 21
analysis of covariance, 417–418
factorial ANOVA, 373, 374
multiple regression, 451–458
nested ANOVA, 347–348
scatter plot, 254

Scatter plot, 212, 214, 254
Scheffé’s procedure, 283, 289, 290
Scientific method, 4–16
Significance level, see Rejection, level
Slope, 215–219, 226–230, 411, 412,

415–421, 497
confidence interval, 233, 235
partial, see Regression coefficients, partial
test of, 233–236, 421, 421

Spearman, C. E., 250
Split-plot design, 387–396

assumptions, 394, 395
expected mean squares, 395
model, 394–395
multiple comparisons, 393, 396
procedure, 394, 396

Split-plot with repeated measures, 398–404
assumptions, 398–400
expected mean squares, 404
model, 403, 404
multiple comparisons, 404
procedure, 404

Spread, measure of, see Variance(s)
Standard deviation:

of population, 136
of probability distribution, 42–45
of sample, 146

Standard error, 157, 183, 192, 229, 300, 396,
444

Standardization, 149, 150
Standard normal deviate150
Statistic, 70
Stem-and-leaf plot, 158, 198
Stepwise regression, 467–471
Strata, 29
Student, see Gosset, William Sealy
Studentized range, table, 580–585
Student–Newman–Keuls’ procedure, 283,

287, 288, 290
Student’s t distribution, see t distribution
Subunit treatment, 283
Survey, 19

t distribution, 179202, 179, 180
characteristics, 179, 180
expected value, 180
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relation to F distribution, 198
table, 536–537
variance, 180

Test of hypothesis:
for binomial parameter, 59–64, 74, 75,

165–166, 202
for correlation coefficient, 241, 242, 244,

246, 247
for difference of two means, 190–194,

202, 266
for equality of two correlation coefficients,

246–248
goodness-of-fit, 104–107
for homogeneity, 109–114, 202
for homogeneity of variances, 325–327
for independence, 111–114
for logistic regression parameters, 499,

503
for mean, 153, 154, 157–160, 202
for mean difference, 185, 186, 202, 239,

240
for multinomial parameters, 98–100, 202
for odds ratio, 170, 171
for partial regression coefficients,

445–449
for Poisson parameter, 85, 86, 167, 168
for ranks, 173–175, 204–208
for several means, see Analysis of

variance
for slope, 226–230
for two variances, 197202
using confidence intervals, 74, 75
for variance, 160–162, 202

Test statistics, 60, 202
Transformations, 175, 191, 328–333
arc sin, 332
table, 590–592
of correlation coefficient, 245–248

exponential, 476, 482
log, 190, 329–331, 475–483
table, 587–589

power, 476, 482
of ranks, 250, 251, 332
square root, 332

Treatment effect, 267, 300–302

Treatment mean, 300–302
Treatments, 12
t0 test, 200, 202,
Tukey’s honestly significant difference, 283,

288, 290, 291

Uniform distribution, 37–38, 40
Units of measurement, 218, 239, 446

Variable(s), 12, 30. See also Random
variable

explanetory variamble, 111
response variable, 117
outcome variable, 117
values of, 25, 26, 31

Variability:
explained, 240
extraneous, 17, 185, 341, 351, 409
unexplained, 240

Variance(s):
among groups, 268–271
of discrete probability distribution, 42–45
equality of, 191, 197–199, 224, 236, 242,

325–327, 411, 418, 419
minimum, 71
pooled sample, 191–194, 269–270
of population, 132–136, 160–162, 190
of probability distribution, 42–45
properties of, 142
sample, 134–136
of sampling distribution of averages, 141,

155
within groups, 268–270

Wallis, W. A., 309
Whole unit treatment, see Main unit

treatment
Wilcoxon signed-rank test, 204–208

y intercept, 215–217, 219, 419
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