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PREFACE TO THE THIRD EDITION

In preparation for the third edition, we sent an electronic mail questionnaire to every statistics
department in the United States with a graduate program. We wanted modal opinion on what
statistical procedures should be addressed in a statistical methods course in the twenty-first
century. Our findings can readily be summarized as a seeming contradiction. The course has
changed little since R. A. Fisher published the inaugural text in 1925, but it also has changed
greatly since then. The goals, procedures, and statistical inference needed for good research
remain unchanged, but the nearly universal availability of personal computers and statistical
computing application packages make it possible, almost daily, to do more than ever before.
The role of the computer in teaching statistical methods is a problem Fisher never had to face,
but today’s instructor must face it, fortunately without having to make an all-or-none choice.

We have always promised to avoid the black-box concept of computer analysis by
showing the actual arithmetic performed in each analysis, and we remain true to that promise.
However, except for some simple computations, with every example of a statistical procedure
in which we demonstrate the arithmetic, we also give the results of a computer analysis of the
same data. For easy comparison we often locate them near each other, but in some instances
we find it better to have a separate section for computer analysis. Because of greater
familiarity with them, we have chosen the SAS® and JMP®, computer applications developed
by the SAS Institute.” SAS was initially written for use on large main frame computers, but
has been adapted for personal computers. JMP was designed for personal computers, and we
find it more interactive than SAS. It is also more visually oriented, with graphics presented in
the output before any numerical values are given. But because SAS seems to remain the
computer application of choice, we present it more frequently than JMP.

Two additions to the text are due to responses to our survey. In the preface to the first
edition, we stated our preference for discussing probability only when it is needed to explain
some aspect of statistical analysis, but many respondents felt a course in statistical methods
needs a formal discussion of probability. We have attempted to “have it both ways” by
including a very short presentation of probability in the first chapter, but continuing to discuss
it as needed. Another frequent response was the idea that a statistical analysis course now
should include some minimal discussion of logistic regression. This caused us almost to
surrender to black-box instruction. It is fairly easy to understand the results of a computer
analysis of logistic regression, but many of our students have a mathematical background a bit
shy of that needed for performing logistic regression analysis. Thus we discuss it, with a
worked example, in the last section to make it available for those with the necessary

"SAS and JMP are registered trademarks of SAS Institute Inc., Cary, NC, USA.
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X PREFACE TO THE THIRD EDITION

mathematical background, but to avoid alarming other students who might see the
mathematics and feel they recognize themselves in Stevie Smith’s poem '

Nobody heard him, the dead man,

But still he lay moaning:

I was much further out than you thought
And not waving but drowning.

Consulting with research workers at West Virginia University has caused us to add some
topics not found in earlier editions. Many of our examples and exercises reflect actual research
problems for which we provided the statistical analysis. That has not changed, but the research
areas that seek our help have become more global. In earlier years we assisted agricultural,
biological, and behavioral scientists who can design prospective studies, and in our text we
tried to meet the needs of their students. After helping researchers in areas such as health
science who must depend on retrospective studies, we made additions for the benefit of their
students as well. We added examples to show how statistics is applied to health research and
now discuss risks, odds and their ratios, as well as repeated-measures analysis. While helping
researchers prepare manuscripts for publication, we learned that some journals prefer the
more conservative Bonferroni procedures, so we have added them to the discussion of mean
separation techniques in Chapter 10. We also have a discussion of ratio and difference
estimation. However, that inclusion may be self-serving to avoid yet another explanation of
“Why go to the all the trouble of least squares when it is so much easier to use a ratio?” Now
we can refer the questioner to the appropriate section in Chapter 9.

There are additions to the exercises as well as the body of the text. We believe our students
enjoy hearing about the research efforts of Sir Francis Galton, that delightfully eccentric but
remarkably ingenious gentleman scientist of Victorian England. To make them suitable
exercises, we have taken a few liberties with some of his research efforts, but only to
demonstrate the breadth of ideas of a pioneer who thought everything is measurable and hence
tractable to quantitative analysis. In respect for a man who—dare we say?—*thought outside
the black box,” many of the exercises that relate to Galton will require students to think on
their own as he did. We hope that, like Galton himself, those who attempt these exercises will
accept the challenge and not be too concerned when they do not succeed.

We are pleased that Daniel M. Chilko, a long-time colleague, has joined us in this
endeavor. His talents have made it easier to update sections on computer analysis, and he will
serve as webmaster for the web site that will now accompany the text.

We wish to acknowledge the help we received from many people in preparation of this
edition. Once again, we thank SAS Institute for permission to discuss their SAS and JMP
software.

We want to express our appreciation to the many readers who called to our attention a flaw
in the algorithm used to prepare the Poisson confidence intervals in Table A8. Because they
alerted us, we made corrections and verified all tables generated by us for this edition.

To all who responded to our survey, we are indeed indebted. We especially thank Dr.
Marta D. Remmenga, Professor at New Mexico State University. She provided us with a
detailed account of how she uses the text to teach statistics and gave us a number of helpful
suggestions for this edition. All responses were helpful, and we do appreciate the time taken
by so many to answer our questionnaire.

"Not Waving But Drowning, The Top 500 Poems, Columbia University Press, New York.



PREFACE TO THE THIRD EDITION xi

Even without this edition, we would be indebted to long-time colleagues in the Department
of Statistics at West Virginia University. Over the years, Erdogan Gunel, E. James Harner,
and Gerald R. Hobbs have provided the congenial atmosphere and enough help and counsel to
make our task easy and joyful.

Shirley M. Dowdy
Stanley Wearden
Daniel M. Chilko



PREFACE TO THE
SECOND EDITION

From its inception, the intent of this text has been to demystify statistical procedures for those
who employ them in their research. However, between the first and second editions, the use of
statistics in research has been radically affected by the increased availability of computers,
especially personal computers which can also serve as terminals for access to even more
powerful computers. Consequently, we now feel a new responsibility also to try to demystify
the computer output of statistical analyses.

Wherever appropriate, we have tried to include computer output for the statistical
procedures which have just been demonstrated. We have chosen the output of the SAS®
System* for this purpose. SAS was chosen not only for its relative ubiquity on campus and
research centers, but also because the SAS printout shares common features with many other
statistical analysis packages. Thus if one becomes familiar with the SAS output explained in
this text, it should not be too difficult to interpret that of almost any other analysis system. In
the main, we have attempted to make the computer output relatively unobtrusive. Where it
was reasonable to do so, we placed it toward the end of each chapter and provided output of
the computer analysis of the same data for which hand-calculations had already been
discussed. For those who have ready access to computers, we have also provided exercises
containing raw data to aid in learning how to do statistics on computers.

In order to meet the new objective of demystifying computer output, we have included the
programs necessary to obtain the appropriate output from the SAS System. However, the
reader should not be mislead in believing this text can serve as a substitute for the SAS
manuals. Before one can use the information provided here, it is necessary to know how to
access the particular computer system on which SAS is available, and that is likely to be
different from one research location to another. Also, to keep the discussion of computer
output from becoming too lengthy, we have not discussed a number of other topics such as
data editing, storage, and retrieval. We feel the reader who wants to begin using computer
analysis will be better served by learning how to do so with the equipment and software
available at his or her own research center.

At the request of many who used the first edition, we now include nonparametric statistics
in the text. However, once again with the intent of keeping these procedures from seeming to
be too arcane, we have approached each nonparametric test as an analog to a previously
discussed parametric test, the difference being in the fact that data were collected on the
nominal or ordinal scale of measurement, or else transformed to either of these scales of
measurement. The test statistics are presented in such a form that they will appear as similar as
possible to their parametric counterparts, and for that reason, we consider only large samples

*SAS is a registered trademark of SAS Institute Inc., Cary, NC, USA.
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xiv PREFACE TO THE SECOND EDITION

for which the central limit theorem will apply. As with the coverage of computer output, the
sections on nonparametric statistics are placed near the end of each chapter as material
supplementary to statistical procedures already demonstrated.

Finally, those who have reflected on human nature realize that when they are told “no one
does that any more,” it is really the speaker who doesn’t want to do it any more. It is in accord
with that interpretation that we say “no one does multiple regression by hand calculations any
more,” and correspondingly present considerable revision in Chapter 14. Consistent with our
intention of avoiding any appearance of mystery, we use a very small sample to present the
computations necessary for multiple regression analysis. However, more space is devoted to
examination and explanation of the computer analyses available for multiple regression
problems.

We are indebted to the SAS Institute for permission to discuss their software. Output from
SAS procedures is printed with the permission of SAS Institute Inc., Cary NC, USA,
Copyright © 1985.

We want to thank readers of the first edition who have so kindly written to us to advise us
of misprints and confusing statements and to make suggestions for improvement. We also
want to thank our colleagues in the department, especially Donald F. Butcher, Daniel M.
Chilko, E. James Harner, Gerald R. Hobbs, William V. Thayne and Edwin C. Townsend.
They have read what we have written, made useful suggestions, and have provided data sets
and problems. We feel fortunate to have the benefit of their assistance.

Shirley Dowdy
Stanley Wearden

Morgantown, West Virginia
November 1990



PREFACE TO THE FIRST EDITION

This textbook is designed for the population of students we have encountered while teaching a
two-semester introductory statistical methods course for graduate students. These students
come from a variety of research disciplines in the natural and social sciences. Most of the
students have no prior background in statistical methods but will need to use some, or all, of
the procedures discussed in this book before they complete their studies. Therefore, we
attempt to provide not only an understanding of the concepts of statistical inference but also
the methodology for the most commonly used analytical procedures.

Experience has taught us that students ought to receive their instruction in statistics early in
their graduate program, or perhaps, even in their senior year as undergraduates. This ensures
that they will be familiar with statistical terminology when they begin critical reading of
research papers in their respective disciplines and with statistical procedures before they begin
their research. We frequently find, however, that graduate students are poor with respect to
mathematical skills; it has been several years since they completed their undergraduate
mathematics and they have not used these skills in the subsequent years. Consequently, we
have found it helpful to give details of mathematical techniques as they are employed, and we
do so in this text.

We should like our students to be aware that statistical procedures are based on sound
mathematical theory. But we have learned from our students, and from those with whom we
consult, that research workers do not share the mathematically oriented scientists’ enthusiasm
for elegant proofs of theorems. So we deliberately avoid not only theoretical proofs but even
too much of a mathematical tone. When statistics was in its infancy, W. S. Gosset replied to an
explanation of the sampling distribution of the partial correlation coefficient by R. A. Fisher:"

...Ifear that I can’t conscientiously claim to understand it, but I take it for granted that you
know what you are talking about and thankfully use the results!

It’s not so much the mathematics, I can often say “Well, of course, that’s beyond me, but
we’ll take it as correct, but when I come to ‘Evidently’ I know that means two hours hard
work at least before I can see why.

Considering that the original “Student” of statistics was concerned about whether he could
understand the mathematical underpinnings of the discipline, it is reasonable that today’s
students have similar misgivings. Lest this concern keep our students from appreciating
the importance of statistics in research, we consciously avoid theoretical mathematical
discussions.

“From letter No. 6, May 5, 1922, in Letters From W. S. Gosset to R. A. Fisher 1915-1936, Arthur Guinness Sons and
Company, Ltd., Dublin. Issued for private circulation.
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Xvi PREFACE TO THE FIRST EDITION

We want to show the importance of statistics in research, and we have taken two specific
measures to accomplish this goal. First, to explain that statistics is an integral part of research,
we show from the very first chapter of the text how it is used. We have found that our students
are impatient with textbooks that require eight weeks of preparatory work before any actual
application of statistics to relevant problems. Thus, we have eschewed the traditional
introductory discussion of probability and descriptive statistics; these topics are covered only
as they are needed. Second, we try to present a practical example of each topic as soon as
possible, often with considerable detail about the research problem. This is particularly
helpful to those who enroll in the statistical methods course before the research methods
course in their particular discipline. Many of the examples and exercises are based on actual
research situations that we have encountered in consulting with research workers. We attempt
to provide data that are reasonable but that are simplified for each of computation. We realize
that in an actual research project a statistical package on a computer will probably be used for
the computations, and we considered including printouts of computer analyses. But the
multiplicity of the currently available packages, and the rapidity with which they are
improved and revised, makes this infeasible.

It is probable that every course has an optimum pace at which it should be taught; we are
convinced that such is the case with statistical methods. Because our students come to us
unfamiliar with inductive reasoning, we start slowly and try to explain inference in
considerable detail. The pace quickens, however, as soon as the students seem familiar with
the concepts. Then when new concepts, such as bivariate distributions, are introduced, it is
necessary to pause and reestablish the gradual acceleration. Testing helps to maintain the
pace, and we find that our students benefit from frequent testing. The exercises at the end of
each section are often taken directly from these tests.

A textbook can never replace a reference book. But, many people, because they are
familiar with the text they used when they studied statistical methods, often refer to that book
for information during later professional activities. We have kept this in mind while designing
the text and have included some features that should be helpful: Summaries of procedures are
clearly set off, references to articles and books that further develop the topics discussed are
given at the end of each chapter, and explanations on reading the statistical tables are given in
the table section.

We thank Professor Donald Butcher, Chairman of the Department of Statistics and
Computer Science at West Virginia University, for his encouragement of this project. We are
also grateful for the assistance of Professor George Trapp and computer science graduate
students Barry Miller and Benito Herrera in the production of the statistical methods with us
during the preliminary version of the text.

Shirley Dowdy
Stanley Wearden
Morgantown, West Virginia
December 1982



1 The Role of Statistics

In this chapter we informally discuss how statistics is used to attempt to answer questions
raised in research. Because probability is basic to statistical decision making, we will also
present a few probability rules to show how probabilities are computed. Since this is an
overview, we make no attempt to give precise definitions. The more formal development will
follow in later chapters.

1.1. THE BASIC STATISTICAL PROCEDURE

Scientists sometimes use statistics to describe the results of an experiment or an investigation.
This process is referred to as data analysis or descriptive statistics. Scientists also use
statistics another way; if the entire population of interest is not accessible to them for some
reason, they often observe only a portion of the population (a sample) and use statistics to
answer questions about the whole population. This process is called inferential statistics.
Statistical inference is the main focus of this book.

Inferential statistics can be defined as the science of using probability to make decisions.
Before explaining how this is done, a quick review of the “laws of chance” is in order. Only
four probability rules will be discussed here, those for (1) simple probability, (2) mutually
exclusive events, (3) independent events, and (4) conditional probability. For anyone wanting
more than covered here, Johnson and Kuby (2000) as well as Bennett, Briggs, and Triola
(2003) provide more detailed discussion.

Early study of probability was greatly influenced by games of chance. Wealthy games
players consulted mathematicians to learn if their losses during a night of gaming were due
to bad luck or because they did not know how to compute their chances of winning. (Of
course, there was always the possibility of chicanery, but that seemed a matter better
settled with dueling weapons than mathematical computations.) Stephen Stigler (1986)
states that formal study of probability began in 1654 with the exchange of letters between
two famous French mathematicians, Blaise Pascal and Pierre de Fermat, regarding a
question posed by a French nobleman about a dice game. The problem can be found in
Exercise 1.1.5.

In games of chance, as in experiments, we are interested in the outcomes of a random
phenomenon that cannot be predicted with certainty because usually there is more than one
outcome and each is subject to chance. The probability of an outcome is a measure of how
likely that outcome is to occur. The random outcomes associated with games of chance should
be equally likely to occur if the gambling device is fair, controlled by chance alone. Thus the
probability of getting a head on a single toss of a fair coin and the probability of getting an
even number when we roll a fair die are both 1/2.

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X  © 2004 John Wiley & Sons, Inc.



2 THE ROLE OF STATISTICS

Because of the early association between probability and games of chance, we label some
collection of equally likely outcomes as a success. A collection of outcomes is called an event.
If success is the event of an even number of pips on a fair die, then the event consists of
outcomes 2, 4, and 6. An event may consist of only one outcome, as the event head on a single
toss of a coin. The probability of a success is found by the following probability rule:

. number of successful outcomes
probability of success =

total number of outcomes

In SymbOlS
P(SuCCeSS) - P(S) - =
N

where ng is the number of outcomes in the event designated as success and N is the total
number of possible outcomes. Thus the simple probability rule for equally likely outcomes is
to count the number of ways a success can be obtained and divide it by the total number of
outcomes.

Example 1.1. Simple Probability Rule for Equally Likely Outcomes

There is a game, often played at charity events, that involves tossing a coin such as a 25-cent
piece. The quarter is tossed so that it bounces off a board and into a chute to land in one of nine
glass tumblers, only one of which is red. If the coin lands in the red tumbler, the player wins
$1; otherwise the coin is lost. In the language of probability, there are N =9 possible
outcomes for the toss and only one of these can lead to a success. Assuming skill is not a factor
in this game, all nine outcomes are equally likely and P(success) = 1/9.

In the game described above, P(win) = 1/9 and P(loss) = 8/9. We observe there is only
one way to win $1 and eight ways to lose 25¢. A related idea from the early history of
probability is the concept of odds. The odds for winning are P(win)/P(loss). Here we say,
“The odds for winning are one to eight” or, more pessimistically, “The odds against winning
are eight to one.” In general,

P(success)

odds for success = ————
1 — P(success)

We need to stress that the simple probability rule above applies only to an experiment with
a discrete number of equally likely outcomes. There is a similarity in computing probabilities
for continuous variables for which there is a distribution curve for measures of the variable. In
this case

area under the curve where the measure is called a success
P(success) =

total area under the curve

A simple example is provided by the “spinner” that comes with many board games. The
spinner is an arrow that spins freely around an axle attached to the center of a circle. Suppose
that the circle is divided into quadrants marked 1, 2, 3, and 4 and play on the board is
determined by the quadrant in which the spinner comes to rest. If no skill is involved in
spinning the arrow, the outcomes can be considered uniformly distributed over the 360° of the



1.1. THE BASIC STATISTICAL PROCEDURE 3

circle. If it is a success to land in the third quadrant of the circle, a spin is a success when the
arrow stops anywhere in the 90° of the third quadrant and

area in third quadrant 90 1

P(s ss) = _ 77 _
(success) total area 360 4

While only a little geometry is needed to calculate probabilities for a uniform distribution,
knowledge of calculus is required for more complex distributions. However, finding
probabilities for many continuous variables is possible by using simple tables. This will be
explained in later chapters.

The next rule involves events that are mutually exclusive, meaning one event excludes the
possibility of another. For instance, if two dice are rolled and the event is that the sum of spots
is y = 7, then y cannot possibly be another value as well. However, there are six ways that the
spots, or pips, on two dice can produce a sum of 7, and each of these is mutually exclusive of
the others. To see how this is so, imagine that the pair consists of one red die and one green;
then we can detail all the possible outcomes for the event y = 7:

Red die: 1 2 3 4 5 6
Green die: 6 5 4 3 2 1

Sum: 7 7 7 7 7 7

If a success depends only on a value of y = 7, then by the simple probability rule the number
of possible successes is ng = 6; the number of possible outcomes is N = 36 because each of
the six outcomes of the red die can be paired with each of the six outcomes of the green die and
the total number of outcomes is 6 x 6 =36. Thus P(success) = ng/N = 6/36 = 1/6.
However, we need a more general statement to cover mutually exclusive events, whether or
not they are equally likely, and that is the addition rule.

If a success is any of £ mutually exclusive events Ey, E», . .. , E;, then the addition rule for
mutually exclusive events is P(success) = P(E|) + P(E;) + - - - + P(Ey). This holds true with
the dice; if E; is the event that the red die shows 1 and the green die shows 6, then P(E;) =
1/36. Then, because each of the k = 6 events has the same probability,

P S () e () () e () (L) (L) =0t
sueeess) =136 36 36 36 36 36) 36 6

Here 1/36 is the common probability for all events, but the addition rule for mutually exclusive
events still holds true even when the probability values are not the same for all events.

Example 1.2. Addition Rule for Mutually Exclusive Events

To see how this rule applies to events that are not equally likely, suppose a coin-operated
gambling device is programmed to provide, on random plays, winnings with the following
probabilities:

Event P(Event)

Win 10 coins 0.001
Win 5 coins 0.010
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Event P(Event)
Win 3 coins 0.040
Win 1 coin 0.359
Lose 1 coin 0.590

Because most players consider it a success if any coins are won, P(success) =
0.0001 + 0.010 + 0.040 + 0.359 = 0.410, and the odds for winning are 0.41/0.59 =
0.695, while the odds against a win are 0.59/0.41 = 1.44.

We might ask why we bother to add 0.0001 + 0.010 + 0.040 + 0.359 to obtain
P(success) = 0.41 when we can obtain it just from knowledge of P(no success). On a play at
the coin machine, one either wins of loses, so there is the probability of a success,
P(S) = 0.41, and the probability of no success, P(no success) = 0.59. The opposite of a
success, is called its complement, and its probability is symbolized as P(S). In a play at the
machine there is no possibility of neither a win nor a loss, P(S) + P(S) = 1.0, so rather than
counting the four ways to win it is easier to find P(S) = 1.0 — P(S) = 1.0 — 0.59 = 0.41. Note
that in the computation of the odds for winning we used the ratio of the probability of a win to
its complement, P(S) /P(S').

At games of chance, people who have had a string of losses are encouraged to continue to
play with such remarks as “Your luck is sure to change” or “Odds favor your winning now,”
but is that so? Not if the plays, or events, are independent. A play in a game of chance has no
memory of what happened on previous plays. So using the results of Example 1.2, suppose we
try the machine three times. The probability of a win on the first play is P(S;) = 0.41, but the
second coin played has no memory of the fate of its predecessor, so P(S;) = 0.41, and
likewise P(S3) = 0.41. Thus we could insert 100 coins in the machine and lose on the first 99
plays, but the probability that our last coin will win remains P(S;o9) = 0.41. However, we
would have good reason to suspect the honesty of the machine rather than bad luck, for with
an honest machine for which the probability of a win is 0.41, we would expect about 41 wins
in 100 plays.

When dealing with independent events, we often need to find the joint probability that two
or more of them will all occur simultaneously. If the total number of possible outcomes (V) is
small, we can always compile tables, so with the N = 52 cards in a standard deck, we can
classify each card by color (red or black) and as to whether or not it is an honor card (ace, king,
queen, or jack). Then we can sort and count the cards in each of four groups to get the
following table:

Color
Honor Black Red Total
No 18 18 36
Yes 8 8 16
Total 26 26 52

If a card is dealt at random from such a deck, we can find the joint probability that it will be
red and an honor by noting that there are 8 such cards in the deck of 52; hence P(red and
honor) = P(RH) = 8/52 = 2/13. This is easy enough when the total number of outcomes is
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small or when they have already been tabulated, but in many cases there are too many or there
is a process such as the slot machine capable of producing an infinite number of outcomes.
Fortunately there is a probability rule for such situations.

The multiplication rule for finding the joint probability of k independent events Ej,
Ez, ey Ek is

P(E; and E; and ...E) = P(E;) x P(Ey) x -+ x P(Ey)

With the cards, k is 2, E; is a red card, and E, is an honor card, so P(E\E,) =
P(E)) x P(E;) = (26/52) x (16/52) = (1/2) x (4/13) =4/26 =2/13.

Example 1.3. The Multiplication Rule for Independent Events

Gender and handedness are independent, and if P(female) = 0.50 and P(left handed) = 0.15,
then the probability that the first child of a couple will be a left-handed girl is

P(female and left handed) = P(female) x P(left handed) = 0.50 x 0.15 = 0.075

If the probability values P(female) and P(left handed) are realistic, the computation is easier
than the alternative of trying to tabulate the outcomes of all first births. We know the
biological mechanism for determining gender but not handedness, so it was only estimated
here. However, the value we would obtain from a tabulation of a large number of births would
also be only an estimate. We will see in Chapter 3 how to make estimates and how to say
scientifically, “The probability that the first child will be a left-handed girl is likely
somewhere around 0.075.”

The multiplication rule is very convenient when events are independent, but frequently
we encounter events that are not independent but rather are at least partially related. Thus
we need to understand these and how to deal with them in probability. When told that a
person is from Sweden or some other Nordic country, we might immediately assume that
he or she has blue eyes, or conversely dark eyes if from a Mediterranean country. In our
encounters with people from these areas, we think we have found that the probability of
eye color P(blue) is not the same for both those geographic regions but rather depends, or
is conditioned, on the region from which a person comes. Conditional probability is
symbolized as P(E,|E;), and we say “The probability of event 2 given event 1.” In the case
of eye color, it would be the probability of blue eyes given that one is from a Nordic
country.

The conditional probability rule for finding the conditional probability of event 2 given
event 1 is

P(E\E)
P(E})

P(Es|E)) =

In the deck of cards, the probability a randomly dealt card will be red and an honor card is
P(red and honor) = 8/52, while the probability it is red is P(R) = 26/52, so the probability
that it will be an honor card, given that it is a red card is P(RH)/P(R) = 8/26 = 4/13, which
is the same as P(H) because the two are independent rather than related. Hence independent
events can be defined as satisfying P(E,|E,) = P(E>).
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Example 1.4. The Conditional Probability Rule

Suppose an oncologist is suspicious that cancer of the gum may be associated with use of
smokeless tobacco. It would be ideal if he also had data on the use of smokeless tobacco by
those free of cancer, but the only data immediately available are from 100 of his own cancer
patients, so he tabulates them to obtain the following:

Smokeless Tobacco

Cancer Site No Yes Total
Gum 5 20 25
Elsewhere 60 15 75
Total 65 35 100

There are 25 cases of gum cancer in his database and 20 of those patients had used smokeless
tobacco, so we see that his best estimate of the probability that a randomly drawn gum cancer
patient was a user of smokeless tobacco is 20/25 = 0.80. This probability could also be found
by the conditional probability rule. If P(gum) = P(G) and P(user) = P(U), then

P(GU) _ (20/100) _ 20 _
P(G) ~ (25/100) 25

PUIG) =

Are gum cancer and use of smokeless tobacco independent? They are if P(U|G) = P(U), and
from the data set, the best estimate of users among all cancer patients is P(U) = 35/
100 = 0.35. The discrepancy in estimates is 0.80 for gum cancer patients compared to 0.35 for
all patients. This leads us to believe that gum cancer and smokeless tobacco usage are related
rather than independent. In Chapter 5, we will see how to test to see whether or not two
variables are independent.

Odds obtained from medical data sets similar to but much larger than that in Example 1.4
are frequently cited in the news. Had the odds been the same in a data set of hundreds or
thousands of gum cancer patients, we would report that the odds were 0.80/0.20 = 4.0 for
smokeless tobacco, and 0.35/0.65 = 0.538 for smokeless tobacco among all cancer patients.
Then, for sake of comparison, we would report the odds ratio, which is the ratio of the two
odds, 4.0/0.538 = 7.435. This ratio gives the relative frequency of smokeless tobacco users
among gum cancer patients to smokeless tobacco users among all cancer patients, and the
medical implications are ominous. For comparison, it would be helpful to have data on the
usage of smokeless tobacco in a cancer-free population, but first information about an
association such as that in Example 1.4 usually comes from medical records for those with a
disease.

Caution is necessary when trying to interpret odds ratios, especially those based on very
low incidences of occurrence. To show a totally meaningless odds ratio, suppose we have two
data sets, one containing 20 million broccoli eaters and the other of 10 million who do not eat
the vegetable. Then, if we examine the health records of those in each group, we find there are
two in each group suffering from chronic bladder infections. The odds ratio is 2.0, but we
would garner strange looks rather than prestige if we attempted to claim that the odds for
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inference Y,

Population

FIGURE 1.1. Statistical inference.

chronic bladder infection is twice as great for broccoli eaters when compared to those who do
not eat the vegetable. To use statistics in research is happily more than just to compute and
report numbers.

The basic process in inferential statistics is to assign probabilities so that we can reach
conclusions. The inferences we make are either decisions or estimates about the population.
The tool for making inferences is probability (Figure 1.1).

We can illustrate this process by the following example.

Example 1.5. Using Probabilities to Make a Decision

A sociologist has two large sets of cards, set A and set B, containing data for her research. The
sets each consist of 10,000 cards. Set A concerns a group of people, half of whom are women.
In set B, 80% of the cards are for women. The two files look alike. Unfortunately, the
sociologist loses track of which is A and which is B. She does not want to sort and count the
cards, so she decides to use probability to identify the sets. The sociologist selects a set. She
draws a card at random from the selected set, notes whether or not it concerns a woman,
replaces the card, and repeats this procedure 10 times. She finds that all 10 cards contain data
about women. She must now decide between two possible conclusions:

1. This is set B.

2. This is set A, but an unlikely sample of cards has been chosen.

In order to decide in favor of one of these conclusions, she computes the probabilities of
obtaining 10 cards all for females:

P(10 females) = P(first is female)

x P(second is female) x - -- x P(tenth is female)

The multiplication rule is used because each choice is independent of the others. For the set A,
the probability of selecting 10 cards for females is (0.50)'° = 0.00098 (rounded to two
significant digits). For set B, the probability of 10 cards for females is (0.80)' = 0.11 (again
rounded to two significant digits). Since the probability of all 10 of the cards being for women
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if the set is B is about 100 times the probability if the set is A, she decides that the set is B, that
is, she decides in favor of the conclusion with the higher probability.

When we use a strategy based on probability, we are not guaranteed success every time.
However, if we repeat the strategy, we will be correct more often than mistaken. In the above
example, the sociologist could make the wrong decision because 10 cards chosen at random
from set A could all be cards for women. In fact, in repeated experiments using set A, 10 cards
for females will appear approximately 0.098% of the time, that is, almost once in every
thousand 10-card samples.

The example of the files is artificial and oversimplified. In real life, we use statistical
methods to reach conclusions about some significant aspect of research in the natural,
physical, or social sciences. Statistical procedures do not furnish us with proofs, as do many
mathematical techniques. Rather, statistical procedures establish probability bases on which
we can accept or reject certain hypotheses.

Example 1.6. Using Probability to Reach a Conclusion in Science

A real example of the use of statistics in science is the analysis of the effectiveness of Salk’s
polio vaccine.

A great deal of work had to be done prior to the actual experiment and the statistical
analysis. Dr. Jonas Salk first had to gather enough preliminary information and experience in
his field to know which of the three polio viruses to use. He had to solve the problem of how to
culture that virus. He also had to determine how long to treat the virus with formaldehyde so
that it would die but retain its protein shell in the same form as the live virus; the shell could
then act as an antigen to stimulate the human body to develop antibodies. At this point, Dr.
Salk could conjecture that the dead virus might be used as a vaccine to give patients immunity
to paralytic polio.

Finally, Dr. Salk had to decide on the type of experiment that would adequately test his
conjecture. He decided on a double-blind experiment in which neither patient nor doctor knew
whether the patient received the vaccine or a saline solution. The patients receiving the saline
solution would form the control group, the standard for comparison. Only after all these
preliminary steps could the experiment be carried out.

When Dr. Salk speculated that patients inoculated with the dead virus would be immune to
paralytic polio, he was formulating the experimental hypothesis: the expected outcome if the
experimenter’s speculation is true. Dr. Salk wanted to use statistics to make a decision about
this experimental hypothesis. The decision was to be made solely on the basis of probability.
He made the decision in an indirect way; instead of considering the experimental hypothesis
itself, he considered a statistical hypothesis called the null hypothesis—the expected outcome
if the vaccine is ineffective and only chance differences are observed between the two sample
groups, the inoculated group and the control group. The null hypothesis is often called the
hypothesis of no difference, and it is symbolized Hy. In Dr. Salk’s experiment, the null
hypothesis is that the incidence of paralytic polio in the general population will be the same
whether it receives the proposed vaccine or the saline solution. In symbols®

H()Z m = Tic

"The use of the symbol 7 has nothing to do with the geometry of circles or the irrational number 3.1416 . . ..



1.1. THE BASIC STATISTICAL PROCEDURE 9

in which 77y is the proportion of cases of paralytic polio in the general population if it were
inoculated with the vaccine and ¢ is the proportion of cases if it received the saline solution.
If the null hypothesis is true, then the two sample groups in the experiment should be alike
except for chance differences of exposure and contraction of the disease.

The experimental results were as follows:

Proportion with Number in

Paralytic Polio Study
Inoculated Group 0.0001603 200,745
Control Group 0.0005703 201,229

The incidence of paralytic polio in the control group was almost four times higher than in the
inoculated group, or in other words the odds ratio was 0.0005703,/0.0001603 = 3.56.

Dr. Salk then found the probability that these experimental results or more extreme ones
could have happened with a true null hypothesis. The probability that 71 = 7¢ and the
difference between the two experimental groups was caused by chance was less than 1 in
10,000,000, so Salk rejected the null hypothesis and decided that he had found an effective
vaccine for the general public.’

Usually when we experiment, the results are not as conclusive as the result obtained by Dr.
Salk. The probabilities will always fall between 0 and 1, and we have to establish a level
below which we reject the null hypothesis and above which we accept the null hypothesis. If
the probability associated with the null hypothesis is small, we reject the null hypothesis and
accept an alternative hypothesis (usually the experimental hypothesis). When the probability
associated with the null hypothesis is large, we accept the null hypothesis. This is one of the
basic procedures of statistical methods—to ask: What is the probability that we would get
these experimental results (or more extreme ones) with a true null hypothesis?

Since the experiment has already taken place, it may seem after the fact to ask for the
probability that only chance caused the difference between the observed results and the null
hypothesis. Actually, when we calculate the probability associated with the null hypothesis,
we are asking: If this experiment were performed over and over, what is the probability that
chance will produce experimental results as different as are these results from what is
expected on the basis of the null hypothesis?

We should also note that Salk was interested not only in the samples of 401,974 people
who took part in the study; he was also interested in all people, then and in the future, who
could receive the vaccine. He wanted to make an inference to the entire population from the
portion of the population that he was able to observe. This is called the target population, the
population about which the inference is intended.

Sometimes in science the inference we should like to make is not in the form of a decision
about a hypothesis; but rather it consists of an estimate. For example, perhaps we want to
estimate the proportion of adult Americans who approve of the way in which the president is
handling the economy, and we want to include some statement about the amount of error
possibly related to this estimate. Estimation of this type is another kind of inference, and
it also depends on probability. For simplicity, we focus on tests of hypotheses in this

"This probability is found using a chi-square test (see Section 5.3).
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introductory chapter. The first example of inference in the form of estimation is discussed in
Chapter 3.

EXERCISES

1.1.1.

1.1.2.

1.1.3.

1.14.

A trial mailing is made to advertise a new science dictionary. The trial mailing list is
made up of random samples of current mailing lists of several popular magazines. The
number of advertisements mailed and the number of people who ordered the dictionary
are as follows:

Magazine
A B C D E

Mailed: 900 810 1100 890 950
Ordered: 18 15 10 30 45

a. Estimate the probability and the odds that a subscriber to each of the magazines will
buy the dictionary.

b. Make a decision about the mailing list that will probably produce the highest
percentage of sales if the entire list is used.

In Examples 1.5 and 1.6, probability was used to make decisions and odds ratios could
have been used to further support the decisions. To do so:

a. For the data in Example 1.5, compute the odds ratio for the two sets of cards.

b. For the data in Example 1.6, compute the odds ratio of getting polio for those
vaccinated as opposed to those not vaccinated.

If 60% of the population of the United States need to have their vision corrected, we

say that the probability that an individual chosen at random from the population needs

vision correction is P(C) = 0.60.

a. Estimate the probability that an individual chosen at random does not need vision
correction. Hint: Use the complement of a probability.

b. If 3 people are chosen at random from the population, what is the probability that all
3 need correction, P(CCC)? Hint: Use the multiplication law of probability for
independent events.

c. If 3 people are chosen at random from the population, what is the probability that
the second person does not need correction but the first and the third do, P(CNC)?

d. If 3 people are chosen at random from the population, what is the probability that 1
out of the 3 needs correction, P(CNN or NCN or NNC)? Hint: Use the addition law
of probability for mutually exclusive events.

e. Assuming no association between vision and gender, what is the probability that a
randomly chosen female needs vision correction, P(C|F)?

On a single roll of 2 dice (think of one green and the other red to keep track of all
outcomes) in the game of craps, find the probabilities for:

a. A sum of 6, P(y = 6)
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b. A sum of 8, P(y = 8)

¢. A win on the first roll; that is, a sum of 7 or 11, P(y =7 or 11)

d. A loss on the first roll; that is, a sum of 2, 3, or 12, P(y = 2, 3, or 12)

The dice game about which Pascal and de Fermat were asked consisted in throwing a
pair of dice 24 times. The problem was to decide whether or not to bet even money on

the occurrence of at least one “double 6” during the 24 throws of a pair of dice. Because
it is easier to solve this problem by finding the complement, take the following steps:

a. What is the probability of not a double 6 on a roll, P(E) = P(y # 12)?
b. What is the probability that y = 12 on all 24 rolls, P(E\E, . .., E»4)?
c. What is the probability of at least one double 6?

d. What are the odds of a win in this game?

. Sir Francis Galton (1822—1911) was educated as a physician but had the time, money,

and inclination for research on whatever interested him, and almost everything did.
Though not the first to notice that he could find no two people with the same
fingerprints, he was the first to develop a system for categorizing fingerprints and to
persuade Scotland Yard to use fingerprints in criminal investigation. He supported his
argument with fingerprints of friends and volunteers solicited through the newspapers,
and for all comparisons P(fingerprints match) = 0. To compute the number of events
associated with Galton’s data:

a. Suppose fingerprints on only 10 individuals are involved.

i. How many comparisons between individuals can be made? Hint: Fingerprints
of the first individual can be compared to those of the other 9. However, for the
second individual there are only 8 additional comparisons because his
fingerprints have already been compared to the first.

ii. How many comparisons between fingers can be made? Assume these are
between corresponding fingers of both individuals in a comparison, right thumb
of one versus right thumb of the other, and so on.

b. Suppose fingerprints are available on 11 individuals rather than 10. Use the results
already obtained to simplify computations in finding the number of comparisons
among people and among fingers.

1.2. THE SCIENTIFIC METHOD

The natural, physical, and social scientists who use statistical methods to reach conclusions all
approach their problems by the same general procedure, the scientific method. The steps
involved in the scientific method are:

[T N VORI

. State the problem.
. Formulate the hypothesis.

. Design the experiment or survey.

Make observations.

. Interpret the data.
. Draw conclusions.
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We use statistics mainly in step 5, “interpret the data.” In an indirect way we also use
statistics in steps 2 and 3, since the formulation of the hypothesis and the design of the
experiment or survey must take into consideration the type of statistical procedure to be used
in analyzing the data.

The main purpose of this book is to examine step 5. We frequently discuss the other steps,
however, because an understanding of the total procedure is important. A statistical analysis
may be flawless, but it is not valid if data are gathered incorrectly. A statistical analysis may
not even be possible if a question is formulated in such a way that a statistical hypothesis
cannot be tested. Considering all of the steps also helps those who study statistical methods
before they have had much practical experience in using the scientific method. A full
discussion of the scientific method is outside the scope of this book, but in this section we
make some comments on the five steps.

STEP 1. STATE THE PROBLEM. Sometimes, when we read reports of research, we get the
impression that research is a very orderly analytic process. Nothing could be further from the
truth. A great deal of hidden work and also a tremendous amount of intuition are involved
before a solvable problem can even be stated. Technical information and experience are
indispensable before anyone can hope to formulate a reasonable problem, but they are not
sufficient. The mediocre scientist and the outstanding scientist may be equally familiar with
their field; the difference between them is the intuitive insight and skill that the outstanding
scientist has in identifying relevant problems that he or she can reasonably hope to solve.

One simple technique for getting a problem in focus is to formulate a clear and explicit
statement of the problem and put the statement in writing. This may seem like an unnecessary
instruction for a research scientist; however, it is frequently not followed. The consequence is
a vagueness and lack of focus that make it almost impossible to proceed. It leads to the
collection of unnecessary information or the failure to collect essential information.
Sometimes the original question is even lost as the researcher gets involved in the details of
the experiment.

STEP 2. FORMULATE THE HYPOTHESIS. The “hypothesis” in this step is the experimental
hypothesis, the expected outcome if the experimenter’s speculations are true. The
experimental hypothesis must be stated in a precise way so that an experiment can be
carried out that will lead to a decision about the hypothesis. A good experimental hypothesis is
comprehensive enough to explain a phenomenon and predict unknown facts and yet is stated
in a simple way. Classic examples of good experimental hypotheses are Mendel’s laws, which
can be used to explain hereditary characteristics (such as the color of flowers) and to predict
what form the characteristics will take in the future.

Although the null hypothesis is not used in a formal way until the data are being
interpreted, it is appropriate to formulate the null hypothesis at this time in order to verify that
the experimental hypothesis is stated in such a way that it can be tested by statistical
techniques.

Several experimental hypotheses may be connected with a single problem. Once these
hypotheses are formulated in a satisfactory way, the investigator should do a literature search
to see whether the problem has already been solved, whether or not there is hope of solving it,
and whether or not the answer will make a worthwhile contribution to the field.

STEP 3. DESIGN THE EXPERIMENT OR SURVEY. Included in this step are several
decisions. What treatments or conditions should be placed on the objects or subjects of the
investigation in order to test the hypothesis? What are the variables of interest, that is,
what variables should be measured? How will this be done? With how much precision?
Each of these decisions is complex and requires experience and insight into the particular
area of investigation.
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Another group of decisions involves the choice of the sample, that portion of the
population of interest that will be used in the study. The investigator usually tries to utilize
samples that are:

(a) Random
(b) Representative
(c) Sufficiently large

In order to make a decision based on probability, it is necessary that the sample be random.
Random samples make it possible to determine the probabilities associated with the study.
A sample is random if it is just as likely that it will be picked from the population of interest as
any other sample of that size. Strictly speaking, statistical inference is not possible unless
random samples are used. (Specific methods for achieving random samples are discussed in
Section 2.2.)

Random, however, does not mean haphazard. Haphazard processes often have hidden
factors that influence the outcome. For example, one scientist using guinea pigs thought that
time could be saved in choosing a treatment group and a control group by drawing the
treatment group of animals from a box without looking. The scientist drew out half of the
guinea pigs for testing and reserved the rest for the control group. It was noticed, however, that
most of the animals in the treatment group were larger than those in the control group. For
some reason, perhaps because they were larger, or slower, the heavier guinea pigs were drawn
first. Instead of this haphazard selection, the experimenter could have recorded the animals’
ear-tattoo numbers on plastic disks and drawn the disks at random from a box.

Unfortunately, in many fields of investigation random sampling is not possible, for
example, meteorology, some medical research, and certain areas of economics. Random
samples are the ideal, but sometimes only nonrandom data are available. In these cases the
investigator may decide to proceed with statistical inference, realizing, of course, that it is
somewhat risky. Any final report of such a study should include a statement of the author’s
awareness that the requirement of randomness for inference has not been met.

The second condition that an investigator often seeks in a sample is that it be
representative. Usually we do not know how to find truly representative samples. Even when
we think we can find them, we are often governed by a subconscious bias.

A classic example of a subconscious bias occurred at a Midwestern agricultural station in
the early days of statistics. Agronomists were trying to predict the yield of a certain crop in a
field. To make their prediction, they chose several 6-ft x 6-ft sections of the field which they
felt were representative of the crop. They harvested those sections, calculated the arithmetic
average of the yields, then multiplied this average by the number of 36-ft> sections in the field
to estimate the total yield. A statistician assigned to the station suggested that instead they
should have picked random sections. After harvesting several random sections, a second
average was calculated and used to predict the total yield. At harvest time, the actual yield of
the field was closer to the yield predicted by the statistician. The agronomists had predicted a
much larger yield, probably because they chose sections that looked like an ideal crop. An
entire field, of course, is not ideal. The unconscious bias of the agronomists prevented them
from picking a representative sample. Such unconscious bias cannot occur when experimental
units are chosen at random.

Although representativeness is an intuitively desirable property, in practice it is usually
an impossible one to meet. How can a sample of 30 possibly contain all the properties of a
population of 2000 individuals? The 2000 certainly have more characteristics than can
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possibly be proportionately reflected in 30 individuals. So although representativeness
seems necessary for proper reasoning from the sample to the population, statisticians
do not rely on representative samples—rather, they rely on random samples. (Large
random samples will very likely be representative). If we do manage to deliberately
construct a sample that is representative but is not random, we will be unable to compute
probabilities related to the sample and, strictly speaking, we will be unable to do statistical
inference.

It is also necessary that samples be sufficiently large. No one would question the necessity
of repetition in an experiment or survey. We all know the danger of generalizing from a single
observation. Sufficiently large, however, does not mean massive repetition. When we use
statistics, we are trying to get information from relatively small samples. Determining a
reasonable sample size for an investigation is often difficult. The size depends upon the
magnitude of the difference we are trying to detect, the variability of the variable of interest,
the type of statistical procedure we are using, the seriousness of the errors we might make, and
the cost involved in sampling. (We make further remarks on sample size as we discuss various
procedures throughout this text.)

STEP 4. MAKE OBSERVATIONS. Once the procedure for the investigation has been decided
upon, the researcher must see that it is carried out in a rigorous manner. The study should be
free from all errors except random measurement errors, that is, slight variations that are due to
the limitations of the measuring instrument.

Care should be taken to avoid bias. Bias is a tendency for a measurement on a variable to
be affected by an external factor. For example, bias could occur from an instrument out of
calibration, an interviewer who influences the answers of a respondent, or a judge who sees
the scores given by other judges. Equipment should not be changed in the middle of an
experiment, and judges should not be changed halfway through an evaluation.

The data should be examined for unusual values, outliers, which do not seem to be
consistent with the rest of the observations. Each outlier should be checked to see whether
or not it is due to a recording error. If it is an error, it should be corrected. If it cannot
be corrected, it should be discarded. If an outlier is not an error, it should be given
special attention when the data are analyzed. For further discussion, see Barnett and Lewis
(2002).

Finally, the investigator should keep a complete, legible record of the results of the
investigation. All original data should be kept until the analysis is completed and the final
report written. Summaries of the data are often not sufficient for a proper statistical analysis.

STEP 5. INTERPRET THE DATA. The general statistical procedure was illustrated in
Example 1.6, in which the Salk vaccine experiment was discussed. To interpret the data, we
set up the null hypothesis and then decide whether the experimental results are a rare outcome
if the null hypothesis is true. That is, we decide whether the difference between the
experimental outcome and the null hypothesis is due to more than chance; if so, this indicates
that the null hypothesis should be rejected.

If the results of the experiment are unlikely when the null hypothesis is true, we reject the
null hypothesis; if they are expected, we accept the null hypothesis. We must remember,
however, that statistics does not prove anything. Even Dr. Salk’s result, with a probability of
less than 1 in 10,000,000 that chance was causing the difference between the experimental
outcome and the null hypothesis, does not prove that the null hypothesis is false. An extremely
small probability, however, does make the scientist believe that the difference is not due to
chance alone and that some additional mechanism is operating.

Two slightly different approaches are used to evaluate the null hypothesis. In practice,
they are often intermingled. Some researchers compute the probability that the
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experimental results, or more extreme values, could occur if the null hypothesis is true;
then they use that probability to make a judgment about the null hypothesis. In research
articles this is often reported as the observed significance level, or the significance level, or
the P value. If the P value is large, they conclude that the data are consistent with the null
hypothesis. If the P value is small, then either the null hypothesis is false or the null
hypothesis is true and a rare event has occurred. (This was the approach used in the Salk
vaccine example.)

Other researchers prefer a second, more decisive approach. Before the experiment they
decide on a rejection level, the probability of an unlikely event (sometimes this is also called
the significance level). An experimental outcome, or a more extreme one, that has a
probability below this level is considered to be evidence that the null hypothesis is false. Some
research articles are written with this approach. It has the advantage that only a limited
number of probability tables are necessary. Without a computer, it is often difficult to
determine the exact P value needed for the first approach. For this reason the second approach
became popular in the early days of statistics. It is still frequently used.

The sequence in this second procedure is:

(a) Assume H is true and determine the probability P that the experimental outcome or a
more extreme one would occur.

(b) Compare the probability to a preset rejection level symbolized by « (the Greek letter
alpha).

(c) If P < a, reject Hy. If P > «, accept H,.

If P > a, we say, “Accept the null hypothesis.” Some statisticians prefer not to use that
expression, since in the absence of evidence to reject the null hypothesis, they choose simply
to withhold judgment about it. This group would say, “The null hypothesis may be true” or
“There is no evidence that the null hypothesis is false.”

If the probability associated with the null hypothesis is very close to «, more extensive
testing may be desired. Notice that this is a blend of the two approaches.

An example of the total procedure follows.

Example 1.7. Using a Statistical Procedure to Interpret Data

A manufacturer of baby food gives samples of two types of baby cereal, A and B, to a random
sample of four mothers. Type A is the manufacturer’s brand, type B a competitor’s. The
mothers are asked to report which type they prefer. The manufacturer wants to detect any
preference for their cereal if it exists.

The null hypothesis, or the hypothesis of no difference, is Hy: 7 = 1/2, in which 7 is the
proportion of mothers in the general population who prefer type A. The experimental
hypothesis, which often corresponds to a second statistical hypothesis called the alternative
hypothesis, is that there is a preference for cereal A, H,: m > 1/2.

Suppose that four mothers are asked to choose between the two cereals. If there is no
preference, the following 16 outcomes are possible with equal probability:

AAAA AAAB ABBA BBAB
BAAA BBAA ABAB BABB
ABAA BABA AABB ABBB
AABA BAAB BBBA BBBB
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The manufacturer feels that only 1 of these 16 cases, AAAA, is very different from what
would be expected to occur under random sampling, when the null hypothesis of no
preference is true. Since the unusual case would appear only 1 time out of 16 times when the
null hypothesis is true, a (the rejection level) is set equal to 1/16 = 0.0625.

If the outcome of the experiment is in fact four choices of type A, then P = P(AAAA) =
1/16, and the manufacturer can say that the results are in the region of rejection, or the results
are significant, and the null hypothesis is rejected. If the outcome is three choices of type
A, however, then P = P(3 or more A’s) = P(AAAB or AABA or ABAA or BAAA or
AAAA) =5/16 > 1/16, and he does not reject the null hypothesis. (Notice that P is the
probability of this type of outcome or a more extreme one in the direction of the alternative
hypothesis, so AAAA must be included.)

The way in which we set the rejection level o depends on the field of research, on the
seriousness of an error, on cost, and to a great degree on tradition. In the example above, the
sample size is 4, so an « smaller than 1/16 is impossible. Later (in Section 3.2), we discuss
using the seriousness of errors to determine a reasonable «. If the possible errors are not
serious and cost is not a consideration, traditional values are often used.

Experimental statistics began about 1920 and was not used much until 1940, but it is
already tradition bound. In the early part of the twentieth century Karl Pearson had his
students at University College, London, compute tables of probabilities for reasonably rare
events. Now computers are programmed to produce these tables, but the traditional levels
used by Pearson persist for the most part. Tables are usually calculated for « equal to 0.10,
0.05, and 0.01. Many times there is no justification for the use of one of these values except
tradition and the availability of tables. If an « close to but less than or equal to 0.05 were
desired in the example above, a sample size of at least 5 would be necessary, then a =
1/32 = 0.03125 if the only extreme case is AAAAA.

STEP 6. DRAW CONCLUSIONS. If the procedure just outlined is followed, then our
decisions will be based solely on probability and will be consistent with the data from the
experiment. If our experimental results are not unusual for the null hypothesis, P > «, then
the null hypothesis seems to be right and we should not reject it. If they are unusual,
P < a, then the null hypothesis seems to be wrong and we should reject it. We repeat
that our decision could be incorrect, since there is a small probability « that we will reject
a null hypothesis when in fact that null hypothesis is true; there is also a possibility
that a false null hypothesis will be accepted. (These possible errors are discussed in
Section 3.2.)

In some instances, the conclusion of the study and the statistical decision about the null
hypothesis are the same. The conclusion merely states the statistical decision in specific
terms. In many situations, the conclusion goes further than the statistical decision. For
example, suppose that an orthodontist makes a study of malocclusion due to crowding of
the adult lower front teeth. The orthodontist hypothesizes that the incidence is as common
in males as in females, Hy: my = mg. (Note that in this example the experimental
hypothesis coincides with the null hypothesis.) In the data gathered, however, there is a
preponderance of males and P < «. The statistical decision is to reject the null hypothesis,
but this is not the final statement. Having rejected the null hypothesis, the orthodontist
concludes the report by stating that this condition occurs more frequently in males than in
females and advises family dentists of the need to watch more closely for tendencies of
this condition in boys than in girls.
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EXERCISES

1.2.1.

1.2.2.

1.2.3.

1.24.

Put the example of the cereals in the framework of the scientific method, elaborating on
each of the six steps.

State a null and alternative hypotheses for the example of the file cards in Section 1.1,
Example 1.5.

In the Salk experiment described in Example 1.6 of Section 1.1:
a. Why should Salk not be content just to reject the null hypothesis?

b. What conclusion could be drawn from the experiment?

Two college roommates decide to perform an experiment in extrasensory perception
(ESP). Each produces a snapshot of his home-town girl friend, and one snapshot is
placed in each of two identical brown envelopes. One of the roommates leaves the
room and the other places the two envelopes side by side on the desk. The first
roommate returns to the room and tries to pick the envelope that contains his girl
friend’s picture. The experiment is repeated 10 times. If the one who places the
envelopes on the desk tosses a coin to decide which picture will go to the left and which
to the right, the probabilities for correct decisions are listed below.

Number of Number of

Correct Decisions Probability Correct Decisions Probability
0 1/1024 6 210/1024
1 10/1024 7 120/1024
2 45/1024 8 45/1024
3 120/1024 9 10/1024
4 210/1024 10 1/1024
5 252/1024

a. State the null hypothesis based on chance as the determining factor in a correct
decision. (Make the statement in words and symbols.)

b. State an alternative hypothesis based on the power of love.

c. If o is set as near 0.05 as possible, what is the region of rejection, that is, what
numbers of correct decisions would provide evidence for ESP?

d. What is the region of acceptance, that is, those numbers of correct decisions that
would not provide evidence of ESP?

e. Suppose the first roommate is able to pick the envelope containing his girl friend’s
picture 10 times out of 10; which of the following statements are true?

i. The null hypothesis should be rejected.

ii. He has demonstrated ESP.
iii. Chance is not likely to produce such a result.
iv. Love is more powerful than chance.

v. There is sufficient evidence to suspect that something other than chance was
guiding his selections.

vi. With his luck he should raise some money and go to Las Vegas.
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1.2.5.

1.2.6.

THE ROLE OF STATISTICS

The mortality rate of a certain disease is 50% during the first year after diagnosis. The
chance probabilities for the number of deaths within a year from a group of six persons
with the disease are:

Number of deaths: 0 1 2 3 4 5 6
Probability: 1/64 6/64 15/64  20/64 15/64  6/64 1/64

A new drug has been found that is helpful in cases of this disease, and it is hoped that it
will lower the death rate. The drug is given to 6 persons who have been diagnosed as
having the disease. After a year, a statistical test is performed on the outcome in order
to make a decision about the effectiveness of the drug.

a. What is the null hypothesis, in words and symbols?

b. What is the alternative hypothesis, based on the prior evidence that the drug is of
some help?

c. What is the region of rejection if « is set as close to 0.10 as possible?

d. What is the region of acceptance?

e. Suppose that 4 of the 6 persons die within one year. What decision should be made
about the drug?

A company produces a new kind of decaffeinated coffee which is thought to have a
taste superior to the three currently most popular brands. In a preliminary random
sample, 20 consumers are presented with all 4 kinds of coffee (in unmarked containers
and in random order), and they are asked to report which one tastes best. If all 4 taste
equally good, there is a 1-in-4 chance that a consumer will report that the new product
tastes best. If there is no difference, the probabilities for various numbers of consumers
indicating by chance that the new product is best are:

Number picking new product: 0 1 2 3 4
Probability: 0.003 0.021 0.067 0.134 0.190
Number picking new product: 5 6 7 8 9
Probability: 0.202 0.169 0.112 0.061 0.027
Number picking new product: 10 11 12 13-20
Probability: 0.010 0.003 0.001 <0.001

a. State the null and alternative hypotheses, in words and symbols.

b. If ais set as near 0.05 as possible, what is the region of rejection? What is the region
of acceptance?

¢. Suppose that 6 of the 20 consumers indicate that they prefer the new product. Which
of the following statements is correct?

i. The null hypothesis should be rejected.

ii. The new product has a superior taste.
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iii. The new product is probably inferior because fewer than half of the people
selected it.

iv. There is insufficient evidence to support the claim that the new product has a
superior taste.

1.3. EXPERIMENTAL DATA AND SURVEY DATA

An experiment involves the collection of measurements or observations about populations
that are treated or controlled by the experimenter. A survey, in contrast to an experiment, is an
examination of a system in operation in which the investigator does not have an opportunity to
assign different conditions to the objects of the study. Both of these methods of data collection
may be the subject of statistical analysis; however, in the case of surveys some cautions are in
order.

We might use a survey to compare two countries with different types of economic
systems. If there is a significant difference in some economic measure, such as per-capita
income, it does not mean that the economic system of one country is superior to the other.
The survey takes conditions as they are and cannot control other variables that may affect
the economic measure, such as comparative richness of natural resources, population
health, or level of literacy. All that can be concluded is that at this particular time a
significant difference exists in the economic measure. Unfortunately, surveys of this type
are frequently misinterpreted.

A similar mistake could have been made in a survey of the life expectancy of men and
women. The life expectancy was found to be 74.1 years for men and 79.5 years for women.
Without control for risk factors—smoking, drinking, physical inactivity, stressful occupation,
obesity, poor sleeping patterns, and poor life satisfaction—these results would be of little
value. Fortunately, the investigators gathered information on these factors and found that
women have more high-risk characteristics than men but still live longer. Because this was a
carefully planned survey, the investigators were able to conclude that women biologically
have greater longevity.

Surveys in general do not give answers that are as clear-cut as those of experiments. If an
experiment is possible, it is preferred. For example, in order to determine which of two
methods of teaching reading is more effective, we might conduct a survey of two schools that
are each using a different one of the methods. But the results would be more reliable if we
could conduct an experiment and set up two balanced groups within one school, teaching each
group by a different method.

From this brief discussion it should not be inferred that surveys are not trustworthy. Most
of the data presented as evidence for an association between heavy smoking and lung cancer
come from surveys. Surveys of voter preference cause certain people to seek the presidency
and others to decide not to enter the campaign. Quantitative research in many areas of social,
biological, and behavioral science would be impossible without surveys. However, in surveys
we must be alert to the possibility that our measurements may be affected by variables that are
not of primary concern. Since we do not have as much control over these variables as we have
in an experiment, we should record all concomitant information of pertinence for each
observation. We can then study the effects of these other variables on the variable of interest
and possibly adjust for their effects.
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EXERCISES

1.3.1. In each of the research situations described below, determine whether the researcher is
conducting an experiment or a survey.

1.3.2.

1.3.3.

a.

b.

Traps are set out in a grain field to determine whether rabbits or raccoons are the
more frequently found pests.

A graduate student in English literature uses random 500-word passages from the
writings of Shakespeare and Marlowe to determine which author uses the
conditional tense more frequently.

. A random sample of hens is divided into 2 groups at random. The first group is

given minute quantities of an insecticide containing an organic phosphorus
compound; the second group acts as a control group. The average difference in
eggshell thickness between the 2 groups is then determined.

. To determine whether honeybees have a color preference in flowers, an apiarist

mixes a sugar-and-water solution and puts equal amounts in 2 equal-sized sets of
vials of different colors. Bees are introduced into a cage containing the vials, and the
frequency with which bees visit vials of each color is recorded.

In each of the following surveys, what besides the mechanism under study could have
contributed to the result?

a.

An estimation of per-capita wealth for a city is made from a random sample of
people listed in the city’s telephone directory.

. Political preference is determined by an interviewer taking a random sample of

Monday morning bank customers.

. The average length of fish in a lake is estimated by:

i. The average length of fish caught, reported by anglers
ii. The average length of dead fish found floating in the water

. The average number of words in the working vocabulary of first-grade children in a

given county is estimated by a vocabulary test given to a random sample of first-
grade children in the largest school in the country.

. The proportion of people who can distinguish between two similar tones is

estimated on the basis of a test given to a random sample of university students in a
music appreciation class.

Time magazine once reported that El Paso’s water was heavily laced with lithium, a
tranquilizing chemical, whereas Dallas had a low lithium level. Time also reported that
FBI statistics showed that El Paso had 2889 known crimes per 100,000 population and
Dallas had 5970 known crimes per 100,000 population. The article reported that a
University of Texas biochemist felt that the reason for the lower crime rate in El Paso
lay in El Paso’s water. Comment on the biochemist’s conjecture.

1.4. COMPUTER USAGE

The practice of statistics has been radically changed now that computers and high-quality
statistical software are readily available and relatively inexpensive. It is no longer necessary to
spend large amounts of time doing the numerous calculations that are part of a statistical
analysis. We need only enter the data correctly, choose the appropriate procedure, and then
have the computer take care of the computational details.
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Because the computer can do so much for us, it might seem that it is now unnecessary to
study statistics. Nothing could be further from the truth. Now more than ever the researcher
needs a solid understanding of statistical analysis. The computer does not choose the
statistical procedure or make the final interpretation of the results; these steps are still in the
hands of the investigator.

Statistical software can quickly produce a large variety of analyses on data regardless of
whether these analyses correspond to the way in which the data were collected. An
inappropriate analysis yields results that are meaningless. Therefore, the researcher must learn
the conditions under which it is valid to use the various analyses so that the selection can be
made correctly.

The computer program will produce a numerical output. It will not indicate what the
numbers mean. The researcher must draw the statistical conclusion and then translate it into
the concrete terms of the investigation. Statistical analysis can best be described as a search
for evidence. What the evidence means and how much weight to give to it must be decided by
the researcher.

In this text we have included some computer output to illustrate how the output could be
used to perform some of the analyses that are discussed. Several exercises have computer
output to assist the user with analyzing the data. Additional output illustrating nearly all the
procedures discussed is available on an Internet website.

Many different comprehensive statistical software packages are available and the outputs
are very similar. A researcher familiar with the output of one package will probably find it
easy to understand the output of a different package. We have used two particular packages,
the SAS system and JMP, for the illustrations in the text. The SAS system was designed
originally for batch use on the large mainframe computers of the 1970’s. JMP was originally
designed for interactive use on the personal computers of the 1980’s. SAS made it possible to
analyze very large sets of data simply and efficiently. JMP made it easy to visualize smaller
sets of data. Because the distinction between large and small is frequently unclear, it is useful
to know about both programs.

The computer could be used to do many of the exercises in the text; however, some
calculations by the reader are still necessary in order to keep the computer from becoming a
magic box. It is easier for the investigator to select the right procedure and to make a proper
interpretation if the method of computation is understood.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain
why.

1.1. To say that the null hypothesis is rejected does not necessarily mean it is false.

1.2. Ina practical situation, the null hypothesis, alternative hypothesis, and level of rejection
should be specified before the experimentation.

1.3. The probability of choosing a random sample of 3 persons in which the first 2 say “yes”
and the last person says “no” from a population in which P(yes) = 0.7 is (0.7)(0.7)(0.3).

1.4. If the experimental hypothesis is true, chance does not enter into the outcome of the
experiment.

1.5. The alternative hypothesis is often the experimental hypothesis.
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1.6. A decision made on the basis of a statistical procedure will always be correct.

1.7. The probability of choosing a random sample of 3 persons in which exactly 2 say “yes”
from a population with P(yes) = 0.6 is (0.6)(0.6)(0.4).

1.8. In the total process of investigating a question, the very first thing a scientist does is
state the problem.

1.9. A scientist completes an experiment and then forms a hypothesis on the basis of the
results of the experiment.

1.10. In an experiment, the scientist should always collect as large an amount of data as is
humanly possible.

1.11. Even a specialist in a field may not be capable of picking a sample that is truly
representative, so it is better to choose a random sample.

1.12. If in an experiment P(success) = 1/3, then the odds against success are 3 to 1.

1.13. One of the main reasons for using random sampling is to find the probability that an
experiment could yield a particular outcome by chance if the null hypothesis is true.

1.14. The « level in a statistical procedure depends on the field of investigation, the cost, and
the seriousness of error; however, traditional levels are often used.

1.15. A conclusion reached on the basis of a correctly applied statistical procedure is based
solely on probability.

1.16. The null hypothesis may be the same as the experimental hypothesis.

1.17. The “a level” and the “region of rejection” are two expressions for the same thing.
1.18. If a correct statistical procedure is used, it is possible to reject a true null hypothesis.
1.19. The probability of rolling two 6’s on two dice is 1/6 + 1/6 = 1/3.

1.20. A weakness of many surveys is that there is little control of secondary variables.
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2 Populations, Samples, and
Probability Distributions

In Chapter 1 we showed that statistics often plays a role in the scientific method; it is used to
make inference about some characteristic of a population that is of interest. In this chapter we
define some terms that are needed to explain more formally how inference is carried out in
various situations.

2.1. POPULATIONS AND SAMPLES

We use the term population rather broadly in research. A population is commonly understood
to be a natural, geographical, or political collection of people, animals, plants, or objects.
Some statisticians use the word in the more restricted sense of the set of measurements of
some attribute of such a collection; thus they might speak of “the population of heights of
male college students.” Or they might use the word to designate a set of categories of some
attribute of a collection, for example, “the population of religious affiliations of U.S.
government employees.”

In statistical discussions, we often refer to the physical collection of interest as well as to
the collection of measurements or categories derived from the physical collection. In order to
clarify which type of collection is being discussed, in this book we use the term population as
it is used by the research scientist: The population is the physical collection. The derived set of
measurements or categories is called the set of values of the variable of interest. Thus, in the
first example above, we speak of “the set of all values of the variable height for the population
of male college students.”

This distinction may seem overly precise, but it is important because in a given research
situation more than one variable may be of interest in relation to the population under
consideration. For example, an economist might wish to learn about the economic condition
of Appalachian farmers. He first defines the population. Involved in this is specifying the
geographical area “Appalachia” and deciding whether a “farmer” is the person who owns land
suitable for farming, the person who works on it, or the person who makes managerial
decisions about how the land is to be used. The economist’s decision depends on the group in
which he is interested. After he has specified the population, he must decide on the variable or
variables, that characteristic or set of characteristics of these people, that will give him
information about their economic condition. These characteristics might be money in savings
accounts, indebtedness in mortgages or farm loans, income derived from the sale of livestock,
or any of a number of other economic variables. The choice of variables will depend on the
objectives of his study, the specific questions he is trying to answer. The problem of choosing
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characteristics that pertain to an issue is not trivial and requires a great deal of insight and
experience in the relevant field.

Once the population and the related variable or variables are specified, we must be careful
to restrict our conclusions to this population and these variables. For example, if the above
study reveals that Appalachian farm managers are heavily in debt, it cannot be inferred that
owners of Kansas wheat farms are carrying heavy mortgages. Nor if Appalachian farm
workers are underpaid can it be inferred that they are suffering from malnutrition, poor health,
or any other condition that was not directly measured in the study.

After we have defined the population and the appropriate variable, we usually find it
impractical, if not impossible, to observe all the values of the variable. For example, all the values
of the variable miles per gallon in city driving for this year’s model of a certain type of car could
not be obtained since some of the cars probably are yet to be produced. Even if they did exist, the
task of obtaining a measurement from each car is not feasible. In another example, the values of the
variable condition of all packaged bandages (sterile or contaminated) produced on a particular
day by a certain firm could be obtained, but this is not desirable since the bandages would be made
useless in the process of testing. Instead, we consider a sample (a portion of the population), obtain
measurements or observations from this sample (the sample data), and then use statistics to make
an inference about the entire set of values. To carry out this inference, the sample must be random.
We discussed the need for randomness in Chapter 1; in the next section we outline the mechanics.

EXERCISES

2.1.1. In each of the following examples identify the population, the sample, and the research
variable.

a. To determine the total amount of error in all students’ bills, a large university
selects 150 accounts for a special check of accuracy.

b. A wildlife biologist collects information on the sex of the 28 surviving California
condors.

¢. An organic chemist repeats the synthesis of a certain compound 5 times using the
same procedure and each time determines the percentage of yield.

d. The Census Bureau distributes a special questionnaire to 1 out of every 20
households in the census and among other questions inquires about the number of
rooms in the dwelling.

e. A manufacturer examines the records of each of its employees to determine how
long each one has worked for the company.
2.1.2. Identify 3 different research variables that might be investigated for each of the
following populations.
a. All adults living in Colorado
b. All patients of a certain opthalmologist
c. All farms in Oklahoma
d. All veterans’ hospitals
2.1.3. For two years Francis Galton explored unmapped areas of South Africa. Thereafter, he
tried to explore unmapped areas of science. In both Africa and science, however, he

made some wrong turns. One of them was in the sampling procedure he used in his
study of the inheritance of genius. To simplify his study, he evaluated the number and
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quality of academic, artistic, musical, and other worthy “abilities” a notable person
displayed in his life, and the variable of interest was the man’s score on the scale
Galton used (see Exercise 2.3.5). He would then examine the life of that man’s father
and score his abilities in the same fashion. After gathering data on a number of son-
and-father pairs, he wanted to see if sons with high scores had fathers with high scores.

a. To obtain data, Galton used information from obituaries.

i. What is the target population, the population about which Galton wanted to
make inference?

ii. Tell why his data selection process meets the definition of a sample. Since it is a
sample, why is it of questionable use for making reliable inference?

iii. Give some ways in which his process could lead to biased results.

b. How would you have sampled the target population and what variable of interest
would you have used?

2.2. RANDOM SAMPLING

Most statistics departments have entire courses in which different sampling techniques and
their efficiencies are studied; only a brief description of sampling can be given here. If we
have a population of N items from which a sample of n is to be drawn and we choose the
n items in such a way that every combination of n items has an equally likely chance of being
chosen, then this is called a simple random sample.

In an attempt to ensure that all combinations are equally likely, we often use a lottery or other
gambling technique in drawing a sample. Thus, if we have 5 pairs of human twins in whom we wish
to compare 2 methods of teaching speed reading, we may toss a coin to decide which twin is assigned
to a particular method. Or a physiologist may have 35 frogs and want a sample of 10 for use in testing
an antispasmodic drug. In one technique, he paints with vegetable dye the numerals 1 through 35 on
the backs of the frogs and numbers 35 index cards with the same numerals. He then shuffles the cards
and draws 10 cards. The 10 numbers determine which frogs will be in the treatment group.

Such methods are only as reliable as the gambling or lottery device used. A notably poor method
was used in the 1970 military draft, when young men were being called to fight in the Vietnam War.
Each date of the year was placed in a capsule, but the capsules were separated by month to ensure
that every day of every month was included. The first month’s capsules were checked and placed
in a container. The second month’s capsules were checked and added to the container, and both
groups were mixed together. Then the third month was checked, added, and mixed. This process was
repeated for each of the succeeding months. Thus January was mixed 11 times, February 10 times,
March 9 times, and so on. Finally, the capsules were poured into a different container and the lottery
began. Young men of draft age were to be called into service in the order in which their birth dates
were drawn. However, later analysis of the order indicated that those born in certain months were
much more likely to be drafted than those born in other months. The Selective Service System was
criticized and was unable to defend the randomness of its procedure. In 1971 the procedure was
modified; it made use of two containers, one holding a capsule for every date of the year and the other
the numbers from 1 to 365. Two capsules were picked at each draw, one from each container, and the
number drawn indicated the order of call-up for the date drawn. This order was acceptably random.

Instead of a gambling device, the use of random numbers is usually advisable. If we have
access to a computer, it probably has a random-number generator. From this, we can obtain a
random listing of n of the available N numbered items. Some hand-held calculators produce
random numbers. If a computer or a random-number generator is not available, many tables of
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random numbers are in existence. Table A.1 in the Appendix of Useful Tables at the back of
this book is an example of a small table of random numbers. There are various ways to use a
table of random numbers; the example that follows illustrates one method.

Example 2.1. Using a Table of Random Numbers to Choose a Simple Random Sample

The physiologist who wants a random sample of 10 of his 35 frogs might use Table A.1 in the
following fashion:

1. He begins anywhere in the table, for example, at row 39 and column 14 (columns are
composed of single digits, the 5-digit groups are to aid in reading the table). He can read
the table in any direction, and he chooses to read it horizontally.

2. He reads the table as pairs of digits because the largest number for a frog (35) requires a
2-digit number. To save time, he may want to use not only 01 through 35 but also 36
through 70. To use this latter group, he subtracts 35 from each of its members, and the
difference indicates the number of the frog to be included in the sample. He does not
use values between 71 and 00 (100) because this group does not have 35 members. If he
used them similarly to 36 through 70, there would then be three ways in which frogs
1 through 30 could be in the sample but only two ways that frogs 31 through 35 could be
included, and the probability of selecting 1 through 30 would be higher than the
probability of selecting 31 through 35.

3. The pairs of digits as he finds them in Table A.1 are as follows, with parentheses around
the pairs that cannot be used:

04, (85), 50, 62, 67, (62), 24, (84), 14, (72), 26, 34, (74), 69, 03, 02
The frogs to be included in the sample are

04,50 —35=15,62 —-35=27,67—-35=32,24
14, 26, 34, (69 — 35 = 34), 03, 02

If only one random sample is going to be used in a study, the investigator can begin reading
the random-number table at any place. However, if several random samples are to be used in
the same study, it is important that different parts of the table are used so that the same set of
random numbers is not used more than once. One way to accomplish this is to mark the table
at the end of the first random sample, then begin at that point when the second sample is
selected, and so on, for all the necessary samples.

Table A.1 in the Appendix is suitable for most small or moderate-sized samples. Should a
very large sample be required, however, one would need a list of random digits generated by a
computer program or would need to refer to a published listing such as A Million Random
Digits with 100,000 Normal Deviates by the Rand Corporation.

Sometimes it is not possible to sample from the entire population of interest because part of
the population is not available for sampling. A geologist may be interested in the heavy minerals
in a certain layer of sandstone in a sequence of shale but the layer of sandstone is only available at
a few exposed ledges. The rest is buried and hidden from view. Similarly, a sociologist may be
interested in a characteristic of all of the families in a certain city but the only feasible list of
families for sampling purposes is a current commercially published city directory. Some families
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have moved into the city since the directory was compiled, and some have left. Using the
directory makes it impossible to include any of the new families in the sampling process. In
situations such as these, the researcher often modifies the description of the population so that it
coincides with the population available for sampling. Statistical inference from the sample is
made only to the available population, then a judgment is made from within the specialized area
whether or not the conclusion can be applied to the entire population of interest.

There are other methods of sampling besides simple random sampling. One is stratified
random sampling. This consists in dividing the population into groups, or strata, and then taking
a simple random sample from each stratum. This is done to improve the accuracy of estimates,
to reduce cost, or to make it possible to compare strata. The sampling is often proportional so
that the sizes of the samples from the strata are proportional to the sizes of the strata.

In this book, unless specified otherwise, all random samples are simple random samples. If a
sampling design other than simple random sampling is employed, then adjustments of the
techniques we describe are usually necessary. For more information about such adjustments, one
should consult a text on sampling such as those listed in Selected Readings at the end of this chapter.

EXERCISES

2.2.1. Use Table A.1 to find the following.

a. Select 3 of 8 items if the starting point is row 35 and column 20 and you read
vertically.

b. Give the first 2 random digits if the starting point is row 38 and column 30 and you
read vertically.

c. Five of 45 items are to be selected at random. What are they if the starting point is
row 13, column 42, and you read vertically?

d. Select 4 of 25 items when the starting point is row 2, column 15, and you read
horizontally.
2.2.2. Use Table A.1 to pick a random sample of 15 people out of a group of 100 beginning at
row 41, column 31, and reading horizontally.

2.2.3. Use Table A.1 to pick a random sample of 5 mice out of a collection of 25 mice
beginning at row 1, column 1, and reading vertically.

2.2.4. Heights (in Inches) of 50 Male Students

(Units)

Student Number

(Tens) 00 01 02 03 04 05 06 07 08 09
00 64 65 65 66 66 67 67 67 68
10 68 68 69 69 69 69 69 69 69 69
20 70 70 70 70 70 70 70 70 70 70
30 71 71 71 71 71 71 71 72 72 72
40 72 72 72 72 73 73 73 74 74 74

50 75

a. The accompanying table represents the values of the variable height for a
population of 50 male students. Use the table of random digits to draw a random
sample of 10 men from this population and record the corresponding sample data.
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b. Compute the arithmetic average of your sample data and compare it to 70, which is
the mean of the variable height for the entire population.

Body mass index (BMI) takes into account both the height and weight of individuals,
so large numbers represent those who are heavy for their height. It is a useful measure
for orthopedists when treating patients with pain in a weight-bearing joint such as the
knee. Suppose an orthopedist has been treating 40 patients with such severe knee pain
that all have agreed to submit to a form of experimental surgery, but prudence dictates
that the surgery be performed only on n = 10, and in case of duplicates a computer-
generated random sample of 15 numbers between 1 and 40 is obtained. The random
digits are

83916 11 373922222 333 21353 39

The number of the 40 patients, their genders, and BMI values in a comma-delimited
format are

1,F,46 2,M,18 3,F22 4,M,28 5,M,39
6,M,41 7,F,25 8,F,29 9,F43 10,F,18
11,F,29 12,M,48 13,F,23 14,F,14 15,F,25
16,F,19 17,M,18 18,M,20 19,F,28 20,F,46

21,M,33 22,F,38 23,F,29 24.M,32 25.M,12
26,F,26 27,.M,34 28,M,18 29,F,19 30,F,31
31,F42 32,M.,40 33,F,40 34,F,27 35,F,45

36,M,49 37,F,19 38,F,26 39.M,10 40,F,20

a. Use the computer-generated set of random digits to select the numbers of the 10
patients to receive the experimental surgery.

b. To evaluate the representativeness of the sample:
i. Compute the percentage of females and compare that to fact that 25 of the
original 40 are females.
ii. Compute the sample BMI average and compare it to the mean of 28.875 for all
40 patients.

c. Tell why you think the 10 chosen for surgery are (or are not) representative of the
original 40?

2.3. LEVELS OF MEASUREMENT

When we make observations about a sample from some population of interest, we are
collecting the sample data. These data may consist of lists of measurements, tallies of
particular categories, answers to questions, and so on. The attribute we are observing will take
on different values, or will vary, from observation to observation, so we have been calling
these attributes variables. Thus, collecting sample data consists in recording the various
values the variables assume for each member of the sample. We call this process
measurement.
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We often have a choice of levels when we are measuring. For example, a proctologist
collecting data on cancer of the colon could record information about polyps in patients using
different levels of measurement. She might simply record that polyps are present or not
present in the colon of a patient—a rough categorization involving a low level of
measurement. She might choose a higher level of measurement and rank her patients from the
one with the most polyps to the patient with the fewest. Another approach would be to record
the actual number of polyps, a higher level of measurement than ranks. There is an even
higher level of measurement; she could determine the percentage of the area of the colon
which is affected by polyps; this would locate the degree of invasion on a continuous scale.
A different level of measurement is used in each of these cases. These levels are called the
nominal scale, the ordinal scale, the discrete numerical scale, and the continuous numerical
scale, respectively.

Levels of Measurement Example

Numerical scales

Continuous Percentage of invasion

Discrete Number of polyps
Ordinal scale Rank among patients
Nominal scale Present/not present

We are using the nominal scale when we put observations into categories that have no
natural numerical relationship to each other. Examples are sex, occupation, color of eyes, and
state of residence. When choosing categories for a nominal scale, it is necessary that there be a
class for each observation and that no observation belong to more than one class.

The ordinal scale is a higher level of measurement than the nominal scale. We are using
the ordinal scale if we rank the observations. For example, we could rank the pelts of 10 foxes
from the lightest color to the darkest. When the ordinal scale is used, the ranks give some
numerical information about the categories, but the underlying classification need not be
numerical, as in this case of the color of the pelts. If the underlying categories are numerical,
the difference between any two consecutive ranks need not be constant. For example, if we
rank the weights of 5 research animals, the difference between the first and second weight
might be 3 ounces, while the difference between the second and third weight might be only
1 ounce. In this example there is more precise underlying information, but we choose not to
record it. If the only information available is on the ordinal scale, then it is not possible to
specify the underlying difference between any two ranks.

We are using the discrete numerical scale when the observations are naturally numerical,
the scale is uniform, and there is a built-in limit to how precisely the measurements can be
taken. If data are on a discrete numerical scale, there are only a finite number of values
possible, or possibly a countable infinity—as many as the counting numbers.” Examples are
the number of offspring in a litter, the number of rooms in a house, the number of quarts of
milk ordered by a supermarket (the count here could be in 1/4 quarts, but no more precise
measurement is usually possible), the values of various coins, shoe sizes (for a fixed width),
and the number of wells drilled until oil is found.

The continuous numerical scale is the highest level of measurement. A variable is
continuous when its values are “measurements” in the common meaning of that term; that is,

"The nominal and ordinal scales are also discrete.
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the scale is uniform and observations are as precise as we choose. Continuous variables
theoretically can assume as many values as there are real numbers. In practice, we measure in
whole numbers or to a few decimal places so the data are collected on the discrete numerical
scale, but theoretically there is a more precise underlying scale of measurement. Examples are
weight, blood pressure, age, length, and temperature.

If we have collected data using either numerical scale, it is possible to decrease the level of
measurement to the ordinal scale. For example, if the measurements are the heights in inches
of 5 men, these measurements can be reduced to ranks. The scale could even be reduced to a
nominal scale by classifying the men as tall or short.

Although we can reduce the scale from a higher to a lower level of measurement, it is
impossible for us to move the other way. If it is known that a certain number of men are tall
and another number short, there is no way of determining how many men are 69 in. tall. It is
important to be aware of this during the planning of an experiment. We must be sure to make
our observations at a level high enough to give us pertinent information. If data are collected
at too low a level of measurement, it is impossible to recover more precise information. On the
other hand, no one should go to extreme efforts to obtain a very fine measurement if this
information is not necessary or if it is distracting. For example, it is sufficient to know that an
insecticide kills termites within a 24-hour period. There is no advantage to knowing whether it
attains 100% mortality in 17 hours, 13 minutes, 49 seconds compared with another insecticide
that attains 100% mortality in 18 hours, 31 minutes, 11 seconds.

Knowledge of the different levels of measurement not only enables us to make decisions
about the desired level of precision but also helps us to choose the statistical procedures
appropriate for analyzing the data. One set of procedures applies only to the nominal scale,
another set to the ordinal scale, and still others are applicable to the discrete or continuous
numerical scale. Unless we can recognize the level of measurement being used, we will be
unable to choose an appropriate analysis. Chapters 3 through 5 deal mainly with procedures
for data collected on the nominal scale or reduced to the nominal scale after collection. The
remaining chapters deal with numerical data; however, at various points where appropriate,
procedures are also provided for data which were collected on the ordinal scale or reduced to
it. These alternative procedures will be identified as nonparametric statistics, with the term
defined in Section 3.4. For more extensive coverage of such procedures, the reader is referred
to one of the texts on nonparametric statistics in the Selected Readings, namely Conover
(1998), Daniel (1990), or Hollander and Wolfe (1999).

EXERCISES

2.3.1. Which is the highest level of measurement possible for each of the following variables?
a
b
[
d
e

Daily high temperature for a given year in Chicago

Marital status of the applicants for a particular job

Class standings at a university (freshman, sophomore, etc.)

Colors of roses

Weights of all American-made cars

f. Number in attendance per day at a particular high school

g. Birthdays of people in a certain group

2.3.2. Which of the following sets of categories are suitable for a nominal scale when

classifying persons? (There must be a unique category for each observation.)
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. Female, only child, under 66 in. tall

. Only child, has only brothers, has only sisters, has both brothers and sisters
. Less than three children in a family, more than three children in a family

. Left handed, right handed

. Blue eyed, female, blond

e & 0 T o

Correct each of the unsuitable sets in Exercise 2.3.2.

In Exercise 2.2.4:

a. The level of measurement used to record height for this population is the numerical
scale. Is it discrete or continuous?

b. Could a higher level of measurement have been employed to record the data?

¢. Could height have been measured more accurately?

Sir Francis Galton believed that manual skills are among the many abilities that are
inherited. Hence, even the young children of skilled laborers should show greater
manual dexterity than those of unskilled laborers. For evidence, suppose he watched 20
children of the age of 3 at play with toys requiring some manual ability. Ten of the
children are children of skilled laborers and the other 10 of unskilled laborers, but at the
time of measurement, he would not know to which group a child belongs. When
making subjective measures, Galton used the scale

xgfedcbaABCDEFGX

in which a lower-case x is the lowest possible measurement and an upper-case X the
highest. Assume this is used to measure the abilities of the 20 children and the
following data were obtained:

Father Children’s Scores
Skilled e b a B C D F G G X
Unskilled X g f d d c A B E F

a. What is the scale of measurement? Explain.
b. Galton would see evidence that the children of skilled laborers have greater
dexterity. Explain why.

¢. How would you summarize the data, graphically or numerically, to support the idea
of greater ability for the group with skilled-laborer fathers?

2.4. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

In Example 1.7, a test of hypothesis is carried out to determine if there is a preference for type
A baby cereal over type B. The sample is a randomly chosen group of 4 mothers and the
variable is recorded on the nominal scale (A or B). The test of hypothesis amounts to
comparing the empirical results of sampling and recording outcomes in the real world with a
theoretical model of what happens if the null hypothesis is true. The theoretical model is called
a probability distribution. In this section we discuss the nature of probability distributions and
how they act as models for studies that involve random sampling.
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To develop the theoretical model for the test in Example 1.7 the possible outcomes of the
study are associated with numbers, the number of mothers out of the 4 in the sample who
prefer cereal A. The outcomes of this study are associated with 0, 1, 2, 3, or 4 (Figure 2.1).
Numbers of this type, that is, those that are associated with the possible outcomes of an
experiment or survey, are called the values of the random variable y. The random variable is
the process of association. The random variable in this example is a discrete random variable
because it has a countable number of values: 0, 1, 2, 3, 4.

To build the model, we assume that the null hypothesis is true and we determine the
probability of each of the values of the random variable. Since the null hypothesis in this
example is that the mothers have no preference between A and B (i.e., a randomly chosen
mother will prefer A with probability 1/2 and B with probability 1/2), the 16 outcomes in
Figure 2.1 are equally likely. The value of the random variable is 0 if no mothers prefer A; thus
the probability of 0 is 1/16 since there is only 1 outcome of this type (BBBB) among the 16
equally likely outcomes. We write p(0) = 1/16 to indicate that the probability that the value
of the random variable will be 0 is 1/16.

To find P(y = 1) = p(1), we note that there are four cases in which exactly 1 mother out of
4 prefers A; thus p(1) = 4/16. As we saw in Chapter 1, the general rule for calculating the
probability of an event when all outcomes are equally likely is

. number of successful outcomes
probability of success =

total number of outcomes

Qutcomes Values of the Random Variable
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FIGURE 2.1. Associating numbers with nominal data.
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In more general terms we can say:

. number of outcomes giving the event
probability of an event = gIving

total number of outcomes

All of the probabilities are summarized in the table of Figure 2.2a and in the graph of
Figure 2.2b.

The values of a discrete random variable y together with their associated probabilities are
called a probability distribution, and p(y) is called the probability function. In order for p(y) to
be a probability function, two conditions are necessary:

1. 0 < p(y) <1 for all values of y.
2. Z p(y) = 1, that is, the sum of p(y) over all values of y is 1.
3

Note that in the baby cereal example these two conditions are satisfied.

There are many functions that satisfy these two conditions. In Table 2.1, examples A
through D represent discrete probability distributions. In example D the random variable has a
countable infinity of values, and p(y) can be given by the formula p(y) = (1/2)*. In many
cases it is possible to represent the probability function by a formula.

It is not difficult to find functions with the two properties required for a probability
function. However, a probability distribution will only be of value statistically if it
represents—models—a real-life situation. Some examples of probability distributions used as
models occur in Exercises 1.2.4 through 1.2.6. The method for determining the probabilities in
these examples is explained in Chapter 3. An example of a test of hypothesis that uses a
different type of discrete probability distribution follows.

Example 2.2. Testing a Hypothesis Using a Discrete Probability Distribution

A new salesperson for a company is told that the probability of making a sale on a single call is
1/4. The salesperson calls on 7 people and makes no sales. Finally, on the eighth attempt, a

ply)
6/16 }—
y  p(y)
0 pO) = 1/16 e
1 p(l) = 4/16
2 pQ2) = 616 2ne
3 p3) = 416 |
4 p@) =1/16 0 1 2 3 4 y
(a) (b)

FIGURE 2.2. A discrete probability distribution. (a) Tabular form. (b) Graph.
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TABLE 2.1. Four Discrete Probability Distributions

A B C D
y P y 2] y rQ) y 26
0 1/4 5 1/5 0.5 0.125 1 1/2
1 1/2 6 1/5 1.0 0.125 2 1/4
2 1/4 7 1/5 15 0.125 3 1/8
8 1/5 2.0 0.625 4 1/16
9 1/5 5 1/32
N 1/2Y

sale is completed. The salesperson wonders if there is any evidence (at the 0.05 level of
significance) that the probability of 1/4 for a sale is too high.

The null hypothesis is Hy: 6 = 1/4; that is, the probability of a sale is 1/4 on a single
attempt.” The alternative is H,: < 1 /4 because the salesperson is looking for evidence that
the figure is too high.

If the probability of a sale is 1/4, then the probability of no sale on a single trial is 3/4.
Using these values, the probability model can be found. The probability of a sale on the first
call is

1
P =7

and the probability that the first sale occurs on the second call is

-())-3

since there is no sale on the first call and there is a sale on the second call. The probabilities
are multiplied because the calls are assumed to be independent of each other; that is, we
assume the customers are randomly chosen and do not influence each other and the
salesperson behaves the same way on each call.

Similarly,
3\ /3\/1 9
o=()E)6) =a
3\l /1
p(y) = (Z) <Z>

is the general formula for the probability that the first sale occurs on the yth call. This
probability distribution is known as a geometric distribution.

and

"The Greek letter 6 is read “theta”.
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The beginning of the geometric distribution that is the model of this study can be
summarized as follows:

y p(y)

1 1/4 =0.2500

2 3/16 =0.1875

3 9/65 =0.1406

4 27/256 =0.1055 0.8665
5 81/1,024 =0.0791

6 243 /4,096 =0.0593

7 729/16,384 = 0.0445

8

2,187/65,536 =0.0334

If 6 < 1/4, a larger number of calls will be necessary before the first sale than if 6 = 1/4.
Thus the P value associated with this study is

P = P(8 or more calls needed for the first sale)
=1 — P(1 through 7 calls needed for the first sale)
=1-0.8665
=0.1335

Since P = 0.1335 > o = 0.05, the null hypothesis is accepted. There is no statistically
significant evidence that the figure given to the salesperson is too high.

If the data are recorded on a continuous scale, the variable of interest corresponds to a
continuous random variable. In this type of model it is not possible to represent the related
probabilities by a table or a line graph; instead, a smooth curve is used to indicate the
continuous probability distribution that is the model for the study.

Example 2.3. A Continuous Probability Distribution

One of the major problems in coal mining is roof collapse. Any procedure which will increase
the probability of a roof collapse must be used with great caution. A mining engineer questions
whether the drilling of air shafts affects the stability of the roof. In one area of the mine, two air
shafts are located 360 ft apart along a straight tunnel (Figure 2.3). The engineer reasons that if
the roof’s stability is unaffected by the air shafts, then the amount of debris from the roof that
falls to the floor will be uniformly distributed between the shafts. If, however, the air shafts are
causing instability, larger amounts of roof debris will appear close to the air shafts.

A uniform distribution of debris can be modeled by the graph in Figure 2.4. The random
variable y is the location along the floor between the shafts, a number on a continuous scale
between 0 and 360. The curve is a horizontal line which indicates that the debris is uniformly
deposited on the floor. This line, f(y) = 1/360, is called the probability density function of the
random variable y. The curve (the horizontal line) is placed at 1/360 on the vertical axis so that
the area of the rectangle under the line and between 0 and 360 is equal to 1. The proportion of
debris between location 90 and 180 is represented by the area between 90 and 180 and under the
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FIGURE 2.3. Cross section of mine tunnel.

curve; the proportion, or probability, is 1/4. The probability of debris between 0 and 95 is given
by the area under the curve and to the left of 95. The probability is 95/360 = 19/72 (Figure 2.5).

i

1/360 !
[}
% | H

0 90 180 270 360 y

FIGURE 2.4. Continuous uniform probability distribution.

Notice that the density function, unlike a probability function for a discrete random
variable, does not indicate a probability directly; rather the density function is used to find an
area that corresponds to the probability. Because areas correspond to probabilities, the
probability of debris at a particular point, say y = 95, is 0. This becomes clear by noticing that,
rather than a region, there is only a vertical line segment at 95 and that a line segment has no
area. It follows that P(y < 95) = P(y < 95) in a continuous probability distribution, but this
is not true in a discrete distribution.

In many models for continuous random variables, the continuous probability distribution
is given by a curve that is neither a straight line nor a figure formed from straight lines. In these
cases, areas are difficult to determine and calculus must be used. Fortunately, tables
are available for most of the commonly encountered distributions, and thus even those who
are not familiar with calculus are able to use continuous probability distributions that are
represented by curves. The first distribution of this type is discussed in Chapter 5.

EXERCISES

24.1.
y: 2 4 6 8 10

po): 1/6 0 2/6 1/6  — 1/6
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{52

1/360

0 95 360 y

FIGURE 2.5. Shaded area indicates P(0 <y < 95).

a. If the table above represents a probability distribution, what is the value of p(8)?
b. Graph the probability distribution.
¢. Find P(y < 6), P(y < 6), p(y = 6), and p(y = 6).

242. Ifp(y)=1/5fory=1,2,3,4,5:
a. Show that this is a probability distribution.
b. Draw the graph.
c. Find P(y > 3), P(y = 3), P(y < 3), and P(y < 3).

2.4.3. Given the continuous probability distribution in Figure 2.6, imagine that the
distribution represents the probability that a certain expert dart thrower will hit a 1-ft
target within a certain distance y from the center 0.

a. What is the total area within the triangle?
b. What is the area of the shaded portion of the distribution?

c. What is the probability that the dart will hit at a point that is from 6 in. to 1 ft from
the center of the target?

d. What is the area of the unshaded portion of the distribution?

e. What is the probability that the dart will hit at a point that is less than 6 in. from the
center of the target?

2.4.4. An oil company believes that the probability of striking oil on a single random drilling
in a certain field is 1/3. They drill and hit oil on the sixth attempt. Is there any evidence
that the probability of a strike is less than 1/3?

2.5. EXPECTED VALUE AND VARIANCE OF A PROBABILITY
DISTRIBUTION

Since probability distributions are the key to statistical inference, it is helpful to study some of
their characteristics. Two useful characteristics of a probability distribution are its expected
value and its variance. Expected value is a measure of the location of the distribution, while
variance is a measure of its spread.

To introduce the idea of expected value, let us consider a certain electronic game that involves
hitting a random target. To make the game sufficiently challenging to hand-eye coordination, it
has been programmed so that the position of the target, the moment that the target appears, and the
number of targets that appear during the period of play all vary. The number of targets to appear
can be 11, 12, 13, 14, 15, or 16. They occur randomly and with equal frequency over a large
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S

0 172 1 y

FIGURE 2.6. Continuous triangular probability distribution.

number of periods of play. A player of the game is unable to predict the number of targets that will
appear during any one playing period, but the player can determine the expected number of
targets, that is, the average number per playing session if the game is played many times.

The number of targets can be modeled by a discrete uniform probability distribution in
which the values of the random variable y are 11, 12, 13, 14, 15, and 16 and the probability
function p(y) is 1/6 for each of the values because they occur with equal frequency.

y p(y)
11 1/6
12 1/6
13 1/6
14 1/6
15 1/6
16 1/6

The expected number of targets, E(y), per playing period is

11+124+13+144+15+16 81
E(y) = ‘ =g =135
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that is, the arithmetic average of the 6 equally frequent numbers. If many games are played, on

the average 13.5 targets will appear per session. Note that the expected value need not be one

of the possible values of the random variable; 13.5 targets never appear in a playing session.
Another way to compute the expected value is to use the formula

EG =)

that is, the expected value of y is the sum of the products of the values of y times their
corresponding probabilities. The following table illustrates how this formula is used:

y p(y) yr(y)
11 1/6 11/6
12 1/6 12/6
13 1/6 13/6
14 1/6 14/6
15 1/6 15/6
16 1/6 16/6

E(y) = yp(y)=81/6 =135

A third column is computed from the probability distribution. This third column is obtained by
finding the product of the corresponding elements in the first two columns. The expected value
of y is the sum of the products in the third column. The advantage of this second approach is
that it can be used to find an expected value even if the probabilities are not all the same. The
following example illustrates this general type of problem.

Example 2.4. The Expected Value of a Discrete Probability Distribution

A teacher gives frequent short quizzes that consist of 2 multiple-choice questions. Each question
is followed by 4 answers, and only 1 is correct. Because these quizzes are so short, the teacher
wonders if they are useful for determining which students have learned the material. The teacher
decides to find out how many questions a student can be expected to answer correctly if the
student has no knowledge of the material and is choosing answers in a random fashion.

On a single question, the probability of a correct guess is 1/4 because each answer is
equally likely to be chosen and only 1 answer is correct. For 2 questions, the number of correct
responses y can be 0, 1, or 2, and the probability distribution, which is a model of the number
of correct responses under guessing, is

y p(y)
0 9/16
1 6/16
2 1/16

The probabilities in this distribution are obtained by computing p(0) = P(two
incorrect) = (3/4)(3/4) = 9/16 and p(2) = P(two correct) = (1/4)(1/4) = 1/16; then p(1)
must equal 6/16 so that the sum of the probabilities is equal to 1.
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If a large number of quizzes of this type are given, then the expected number of correct
answers per quiz is

EQ) =) ()

In tabular form:

y p(y) yr(y)
0 9/16 0

1 6/16 6/16
2 1/16 2/16

EG) = Yyp(y) =8/16 =0.5

On the average, the student will guess correctly only 0.5 of an answer per quiz. Although it is
impossible to get 0.5 of an answer correct on a single quiz, the expected value is meaningful
for a large number of quizzes.

The teacher decides that the quizzes are useful for distinguishing those who are guessing
from those who have knowledge of the material. For example, if 40 such 2-question quizzes
are given, then the student who is guessing is expected to answer correctly about 20 out of the
80 questions asked. A student who answers many more correctly, for example, 60 out of the
80 questions, demonstrates some knowledge of the material.

The expected value can be thought of as the location, or center, of the probability
distribution. This seems reasonable if we visualize a uniform calibrated bar on which we place
weights (all of equal heaviness): nine at 0, six at 1, and one at 2 (Figure 2.7). The bar will
balance at 0.5, the expected value.

Another useful characteristic of a probability distribution is its variance. Variance is a
measure of the spread of a distribution relative to its expected value. In the electronic game
example, the random variable y had values 11, 12, 13, 14, 15, and 16 with equal frequency.
The deviations of these values from the expected value of 13.5 are

y y — E(y)

11 11 —13.5=-25
12 12—-135=-15
13 13 —13.5=-0.5
14 14 —135=05
15 15-135=15
16 16 — 13.5=25

The deviations are shown graphically in Figure 2.8.

We might expect to measure spread by averaging these deviations. However, since the sum
of the deviations from the expected value is always 0, this is not a useful measure. To obtain a
meaningful average, we use the squares of the deviations. The variance of a probability
distribution is the average squared deviation from its expected value. Using the probabilities,
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FIGURE 2.7. Expected value as the balancing point.

the formula for the variance of y is

V(y) =Y [y = EQFp(y)

In tabular form (using fractions to avoid rounding error), the computations are

y Py y — E() [y —EWP® [y —EWP p(y)
11 1/6 —25=-5/2 25/4 25/24
12 1/6 —15=-3/2 9/4 9/24
13 1/6 —05=-1/2 1/4 1/24
14 1/6 05=1/2 1/4 1/24
15 1/6 1.5=3/2 9/4 9/24
16 1/6 25=5/2 25/4 25,24
W(y) =70/24

This formula is used even if the probabilities are not all equal.

-2.5 25
-15 1.5
-05] 05
1 12 13 14 15 16 y
E(y) =135 —

FIGURE 2.8. Deviations from the expected value.
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Variance measures the spread of a distribution. The larger the variance, the larger the
spread. If we take the positive square root of the variance, we obtain the standard deviation of
the random variable, sd(y). In this example

sd(y) = V() = /70/24 = 1.71

If we are told only the expected value and standard deviation of a probability distribution, we
know a surprising amount about the nature of the distribution. Values of the random variables
that are more than two or three standard deviations from the mean have very low probabilities
associated with them. For example, in the case of the electronic game

E(y) = 13.50
sd(y) = 1.71

and
2[sd(y)] = 3.42
Two standard deviations below the expected value is
E(y) —2[sd(y)] = 13.50 — 3.42 = 10.08

and the probability of 10 or fewer targets in a single playing period is very low; in fact, it is
0. Two standard deviations above the expected value is

E(y) + 2[sd(y)] = 13.50 + 3.42 = 16.92

and the probability of 17 or more targets is 0.
In practice, the computation of the variance from the formula

V() =) [y — EGFpy)

is sometimes tedious because of the subtractions and squaring. A mathematically equivalent
formula may be used:

V(y) =Y yp(y) — [EGT

We illustrate this formula for the probability distribution of the 2-question multiple-choice
quizzes.

Example 2.5. The Variance of a Probability Distribution

For the short quizzes, a fourth column y p(y) is computed and summed after the computation
of the expected value. The fourth column is obtained by multiplying the elements in the first
column by the corresponding elements in the third column:

y j26)) yp(y) y°p(y)

0 9/16 0 0

1 6/16 6/16 6/16
2 1/16 2/16 4/16

>y? p(y) =10/16
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Then
Vo) =)y — [EG)F
10 /1)
-1 ()

_6
16

Note that in this example

E(y)=0.5
sd(y) = v/6/16 = 0.61

and 2 standard deviations below and above the expected value are

E(y) — 2[sd(y)] = 0.5 — 2(0.61) = —0.72
E(y) +2[sd(y)] = 0.5 +2(0.61) = 1.72

There is O probability that the value of the random variable is below —0.72 and 1/16
probability that the random variable will have a value above 1.72. Using only these facts, if
a student frequently answered both questions correctly, the teacher decides that the model
based on guessing does not fit this student and the student probably has knowledge of the
material.

The main use of the variance (or standard deviation) is for purposes of inference. This
application is developed more fully in later chapters. The discussion in this section is
restricted to discrete random variables. It is also possible to consider the expected value and
variance of a continuous random variable; in such cases, calculus is usually needed to find
the values.

Procedure. Expected Value and Variance of a Probability Distribution
Expected value: E(y)=Y_yp(y)

Variance: V(y) =Y [y — EQFp(y)
Standard deviation: sd(y) = /V(y)

EXERCISES

2.5.1. Find the mean and the variance of the probability distributions A to C in Table 2.1.

2.5.2. In Mendel’s experiments on pea plants, he found that the trait of being tall is dominant
over being short. His theory indicates that if pure-line tall and pure-line short plants are
cross-pollinated and then the hybrids in the next generation are cross-pollinated, in the
resulting population approximately 3/4 of the plants will appear tall and 1/4 will
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appear short. If 4 plants are chosen at random from such a population, the best model
for the number of tall plants in 4 is

y: 0 1 2 3 4

p(y):  1/256  12/256  54/256  108/256  81/256

. Find the expected value of this probability distribution.
. Find the variance of the probability distribution.

. What is the probability that the value of the random variable will be more than 2

standard deviations below the expected value?

. What is the probability that the value of the random variable will be more than 2

standard deviations above the expected value?

2.5.3. A gambling game is played in which there is a group of 100 cards with one $25 winning
card, two $10 winning cards, and three $5 winning cards. After paying a certain fee, a
player selects one card at random. If it is one of the winning cards, the player receives
the designated amount. If it is one of the other cards, the player wins nothing. The card
is returned to the deck, the cards shuffled, and they are ready for the next play.

2.54.

2.5.5.

a. Find the probability distribution for y, the number of dollars won (use the rule for

b.

equally likely events).

If a large number of plays are purchased, what are the expected winnings per play,
or in statistical terms, what is the expected value of y?

. Would it be reasonable to pay $1 to play this game?
. Find the variance of this probability distribution.
. What proportion of the time will the winnings be within two standard deviations of

the expected value?

y: 1 2 3 4 5
p(y): 1/5 1/5 1/5 1/5 1/5

. Find the expected value of y.
. Find V(y).

¢. Compare your answers with those found in Exercise 2.5.1 for Table 2.1, distribution

a.

B. Explain why there is a difference in the expected values but the variances are the same.

v 1 2 3 4
p(y): 1/4 1/4 1/4 1/4

Find E(y).

b. Compare this result with that of Exercise 2.5.4; find a simple general formula for the

expected value of a discrete uniform distribution of successive integers from a to b.
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REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false,
explain why.

2.1.

2.2.
2.3.
24.

2.5.

2.6.

2.7.
2.8.

2.9.

2.10.
2.11.
2.12.

2.13.

2.14.

2.15.
2.16.
2.17.

2.18.

2.19.

2.20.

The objective of statistics is to make inference about a population based on information
contained in a sample from that population.

A single population may have several variables of interest to the investigator.
A lottery device may be an acceptable way to obtain a completely random sample.

When using a random-number table to select a sample, always begin at the beginning of
the table.

The choice of sampling design has no effect on the choice of the procedure used for
statistical analysis.

When choosing categories for the nominal scale, the only condition is that there is a
category for each piece of data.

Data on the numerical scale can be easily changed to the nominal scale.

The ordinal scale is sometimes used even though more precise numerical information is
available.

Data on an ordinal scale can be easily changed to the numerical scale.
Barometric pressure is usually recorded on the ordinal scale.
Yearly wages to the nearest dollar are recorded on the discrete numerical scale.

In a continuous probability distribution, the total area between the curve representing
the distribution and the horizontal axis is 1.

In a continuous probability distribution, the probability of any particular value is the
vertical distance at the value between the horizontal axis and the curve representing the
distribution.

In a discrete probability distribution, the length of a vertical line at a certain value can
be interpreted as the probability that such a value will result from random sampling.

If a population is infinite in size, the variable of interest is continuous.
Random variables always have numerical values.

The expected value of a probability distribution can be thought of as the center of
balance.

The variance of a probability distribution is a measure of location, and the expected
value indicates the spread.

If 2 probability distributions have equal variances, then their expected values are equal
also.

The variance of a probability distribution can be defined symbolically as E[y — E( y)]2.
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3 Binomial Distributions

In many experiments and surveys in which the variable of interest is being recorded at the
nominal level, there are only 2 possible values or outcomes for the variable. For example, a
salesman either makes a sale or does not make a sale, a newborn child is either a girl or a boy,
and an insecticide may kill an insect or fail to kill it. Under certain conditions, samples
involving dichotomous variables of this type can be represented by a theoretical probability
distribution called a binomial distribution, binomial because of the two possible outcomes. In
this chapter we look at the statistical interpretation of experimental results that can be
modeled by binomial distributions.

3.1. THE NATURE OF BINOMIAL DISTRIBUTIONS

The population of human beings can be classified as “having type O blood” or “not having
type O blood.” There is no way that we can get exact information about the entire population,
since this group is so large. It has been estimated that the proportion of people with type O
blood is 0.40. Assume that the estimate is correct. If we observe a single person selected at
random, the probability that the person will have type O blood is 0.40 and the probability that
the person will not have type O blood is 0.60.

Now let us imagine that a large metropolitan hospital has a list of several thousand people
willing to donate blood. If 4 people are chosen at random from the list, how likely is it that
none have type O blood? One has type O? Two? Three? Four?

We first list the different possible outcomes for a sample of 4 people. Let O mean that a
person has type O blood, and let N mean that the person does not have type O blood. The
sequence of symbols indicates the results in the order in which they occur in the experiment,
so NNON is a different outcome from ONNN.

Number with

Type O Blood Possible Outcomes
0 NNNN
1 ONNN NONN NNON NNNO
2 OONN ONON ONNO NOON NONO NNOO
3 NOOO ONOO OONO OOON
4 0000

When we ask a question like “How likely is it that 2 persons out of 4 have type O blood?”
we have shifted our focus from the underlying variable of blood type (O or not-O) on the

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X  © 2004 John Wiley & Sons, Inc.
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nominal scale to a count that is on the discrete numerical scale. Since it is numerical, the count
can be thought of as a random variable, and we are looking for the probability distribution of
this discrete random variable. We have already seen an example like this in the baby cereal
preference study (Example 1.7 and Section 2.4), except in that case the probabilities were all
equal.

Since not all of the 16 outcomes in this example are equally likely, to find the probabilities
associated with 0, 1, 2, 3, and 4, we must use binomial probability rules based on the
probability rules discussed in Chapter 1.

Binomial Probability Rules

1. If p is a probability, 0 < p < 1.

2. If A and A are two mutually exclusive events that together include all possible
outcomes, then P(A) + P(A) = 1. [Two events A and B are mutually exclusive if they
are nonoverlapping, that is, if P(AB) = 0.]

3. Addition Rule. The probability of a specified outcome is the sum of the probabilities of
the mutually exclusive events making up that outcome.

4. Multiplication Rule. The probability of an event that is the simultaneous occurrence of
two or more independent events is the product of the probabilities of the events. [Two
events A and B are independent if the occurrence or nonoccurrence of A has no effect on
the probability of B and vice versa.]

We already used the second rule when we stated that P(N) = 0.60. We reasoned that
P(N)=1— P(O)=1 — 040 = 0.60. Now we find that the probability of zero out of four
having type O blood is

p(0) = P(NNNN) = [P(N)]* = (0.60)* = 0.1296
and the probability that 1 out of 4 will have type O blood is

p(1) = P(ONNN or NONN or NNON or NNNO)
= P(ONNN) + P(NONN) + P(NNON) + P(NNNO)

= (0.40)(0.60)> + (0.60)(0.40)(0.60)> 4 (0.60)>(0.40)(0.60) + (0.60)*(0.40)

= 4(0.40)(0.60)* = 0.3456
In a similar way, we find that

P(2) = 6(0.40)%(0.60)> = 0.3456
p(3) = 4(0.40)*(0.60) = 0.1536

p(4) = (0.40)* = 0.0256

In summary, for this example the probability distribution is as appears in Figure 3.1. The
discrete random variable with values 0, 1, 2, 3, 4 represents the number of people with type O
blood in a random sample of 4 people, and p(y) is the probability function of y. This
probability distribution is called a binomial probability distribution. Note that a binomial
probability distribution is a model of an experiment with only 2 possible outcomes. We
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0 0.1296
1 0.3456 01l
2 0.3456
3 0.1536 0.0 \
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FIGURE 3.1. The binomial distribution with n = 4, 7= 0.40.

concentrate on one of the outcomes, type O blood, and count the number of occurrences
(successes) in the sample. The probability of type O blood does not change from observation
to observation,” and the observations are independent of each other. We call such a survey or
experiment a binomial experiment.

A binomial experiment is an experiment in which

1. there are only 2 possible outcomes, success S or failure F, with P(S) = 7 and
P(F)=1—;

. the experiment is repeated n times, that is, there are n trials;

. P(S) = 7 is constant from trial to trial;

. the trials are independent of each other; and

Wn A~ W N

. we are interested in y, the number of successes, with y =10, 1, 2,...,n.

The probability of success 7 is called the binomial parameter. A parameter is a numerical
characteristic of a population and the distribution which is used to model random sampling
from the population. In the blood-type example, 7 = 0.40 is the proportion of the population
with type O blood. The parameter 7 also specifies the theoretical model for the experiment,
the binomial distribution with n = 4 trials and P(S) = 7 = 0.40.

In the seventeenth century, members of the Bernoulli family found a formula to calculate
the binomial distribution for any number of trials and any probability of success. Before
examining their formula, it may be best to explain the notation that occurs in it.

The symbol 7 means (7)(7) - - - (1), that is, the product when 7 is used as a factor y times.

0RO -

"Each time we remove a person from the population the probability of type O blood does in fact change slightly.
However, since we are selecting only 4 people from several thousand, the changes are negligible.
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Similarly,

1-m"=0-m1-m---(1—m

n—y times

(- =00+

The symbol <n> is read “the number of combinations of n things taken y at a time.” For

so that

example, if there are 4 slips of paper marked A, B, C, and D in a box and 2 slips are drawn at
random, the possible combinations are

AB,AC,AD, BC, BD, CD

In this case ;1 = 6. We are not interested in which letter is drawn first, so AB and BA are
the same combination.

The symbol <n> can also be applied to the blood-type example. Here (;) means the
number of different places that two O’s can appear in a sequence of 4 symbols, that is, we are
picking 2 positions out of the 4 possible positions. If first, second, third, and fourth are the
positions, O can occur

Ist and 2nd Ist and 3rd 1st and 4th
2nd and 3rd 2nd and 4th 3rd and 4th

or

OONN ONON ONNO
NOON NONO NNOO

<n> _ n!
y) Y-y

where n! =n(n — 1)(n — 2)---(2)(1), and n! is read “n factorial.”” Some examples are

AN_ 4 4321
(2)‘2!(4—2)!_(2.1)(2.1)_

a\__ 4 4321
0/ 0@4—-0" 14-3-2-1)
because 0! = 1 by definition.

Table A.2 in the Appendix of Useful Tables is a table for n!, and Table A.3 is a table for
(g) the binomial coefficients. It should be noted that (’;) - (n " y) since this will often

In general,

and

shorten calculations.
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The Bernoulli formula for calculating binomial probabilities will now be understandable.
To find b(y; n, ), the probability in the binomial distribution of y successes when the number
of trials is n and the probability of success on a single trial is 7, we use the following formula:

b(y: n, m) = (Z)wy(l —

Thus the mathematical model in the blood-type example is the random variable y having
values 0, 1, 2, 3, 4 and probability function b(y; 4, 0.40). The probabilities are computed in
Table 3.1. This is the same result we previously computed by listing all possible experimental
outcomes.

Since the Bernoulli formula can be used for any sample size and any probability of
success, there is no need to go back to the list of all possible outcomes. If the number of trials
is 20 and 7 = 0.30, then the probability of 7 successes out of 20 trials is

20
b(7; 20, 0.30) = ( ; )(0.30)7(1 —0.30)%7

= 77,520(0.30)7(0.70)"
=0.16

Most of the time it is not necessary to use this formula since tables are available for many
sample sizes and probabilities. Computers can easily be programmed to produce other tables
of binomial distributions. The website for this text presents an example of this. It is useful,
however, to know the formula so that the tables are meaningful.

Table 3.2 is an example of a table for 4 binomial distributions. The value of b(7; 20, 0.30),
which was calculated earlier in this section, can be found in the eighth row of the second
column.

Note that there are entries of 0.000 in some positions, for example, b(1; 20, 0.50). This
does not mean that there is zero probability of getting 1 successful outcome in a sample of
20 when 7 = 0.50; rather it means that the probability of 1 successful outcome is smaller than
1/1000.

TABLE 3.1. Computing Binomial Probabilities
y b(y; 4, 0.4)

0 (0.4)°(1 — 0.4)*7° = (1)(0.4)°(0.6)* = 0.1296

4
0
( T)(o HY(1 - 0.4)* ! = (4)(0.4)'(0.6)° = 0.3456
2 (;‘)(04) (1 — 0.4)* 72 = (6)(0.4)%(0.6)> = 0.3456
4
3
4
4

0.4°0 - 3 = (4)(0.4)%0.6)! = 0.1536

0.49*1 — 0.4)** = (1)(0.4)*0.6)° = 0.0256
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The most likely outcome(s) for each value of 7 can be read from this table. If 7= 0.30, the
most likely outcome is 6 because it has the greatest probability. Similarly, for 7 = 0.50, the
most likely outcome is 10; for == 0.70 it is 14; and for == 0.75 it is 15.

Since a binomial distribution is a probability distribution, we can find its expected value,
E(y), and variance, V(y), by using the formulas introduced in Section 2.5. However, because
of the special nature of the binomial distribution, shorter formulas exist. For a binomial
distribution

E(y) =nm
V(y) =nm(l — m)

Thus, for b(y; 20, 0.50)

E(y) = 20(0.5) = 10
V(y) = 20(0.5)(0.5) = 5

sd(y) = /5 =2.24

If we consider an interval from two standard deviations below the expected value to 2 standard
deviations above the expected value, that is,

10 + 2(2.24)
TABLE 3.2. Four Binomial Distributions
y b(y; 20, 0.30) b(y; 20, 0.50) b(y; 20, 0.70) b(y; 20, 0.75) y
0 0.001 0.000 0.000 0.000 0
1 0.007 0.000 0.000 0.000 1
2 0.028 0.000 0.000 0.000 2
3 0.072 0.001 0.000 0.000 3
4 0.130 0.005 0.000 0.000 4
5 0.179 0.015 0.000 0.000 5
6 0.192 0.037 0.000 0.000 6
7 0.164 0.074 0.001 0.000 7
8 0.114 0.120 0.004 0.001 8
9 0.065 0.160 0.012 0.003 9
10 0.031 0.176 0.031 0.010 10
11 0.012 0.160 0.065 0.027 11
12 0.004 0.120 0.114 0.061 12
13 0.001 0.074 0.164 0.112 13
14 0.000 0.037 0.192 0.169 14
15 0.000 0.015 0.179 0.202 15
16 0.000 0.005 0.130 0.190 16
17 0.000 0.001 0.072 0.134 17
18 0.000 0.000 0.028 0.067 18
19 0.000 0.000 0.007 0.021 19
20 0.000 0.000 0.001 0.003 20
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or

5.52 to 14.48

we find a probability of 0.958 that a value of the random variable will be within this interval
and only a 0.042 probability that the value will be outside this interval.

In the next two sections we see how binomial distributions can help interpret the results of
experiments.

EXERCISES

3.1.1. Inacertain large college course, past records show that grades of A, B, C, D, and F are
equally likely. If 1 student is chosen at random, find the following probabilities:

. P(C)

. P(A or B)

. P(a grade higher than D)
P(A,B,C,D,or F)

. P(B and D)

P(E)

. P(not-A)

. P(not-A and not-F)

=2 CHE = S I~ I C I ~

3.1.2.

—
=

2 people who do not study together take the course described in Exercise 3.1.1, find:
P2 A’s)

. P(same grade)

. P(different grades)

. P(both higher than D)

. P(both fail)

. P(one passes and one fails)

o &0 T

-

3.1.3. In a certain city, a fourth of the families take their children to the doctor for regular
checkups. Five families are chosen at random.
a. What is the probability that exactly 3 families out of the 5 take their children to the
doctor for regular checkups?

b. What is the probability that at most 2 families out of the 5 take their children for
regular checkups?

c. What is the probability that more than 1 family out of the 5 take their children?

3.1.4. Assume a standard deck of 52 cards is used in the following problems.
a. Find the probability of drawing a heart or a picture card when selecting 1 card at
random. Explain why P(heart or picture card) # P(heart) + P(picture card).
b. Find the probability of drawing 2 cards of the same color if the first card is
randomly selected and kept out of the deck and the second card is then selected at
random. Explain why P(2 red cards) # (1/2)(1/2).
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3.1.5. In the game of Yahtzee, 5 ordinary dice are tossed.
a. How likely is it that a player will get exactly four 2’s on a random roll of the dice?

b. In this game, 50 points are awarded if all 5 dice show the same number. How
likely is this to happen on a random toss?

3.1.6. Find:
a. 4!
b. 0!
c. 5!
d. 113!
e. 21(6 — 2)!
f. (10 — 2)!
3.1.7. Compute:

. (“)

b.

=7
/—\/—\A/—\A
WA = L WU O W

3.1.8. Use Ex

(]

rcise 3.1.7 to find the following without doing any further computations:

5
15
3
(1)
5
“\2
5
e (3)
4
&\
4
t (5)
3.1.9. Compute:
a. (;)(0.20)3(0.80)4
b. (ig))(o.m)o(o.m)8
c. ('0>(0.10)8(0.90)2
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3.1.11.

3.1.12.

3.1.13.

3.1.14.

3.1.15.

3.1.16.

3.1.17.
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Compute the following binomial probabilities:

a. b(y;3,025)fory=0,1,2,3

b. b(y; 4,0.30)fory=0,1,2,3,4

c. b(y;5,0.10)fory=0,1,2,3,4,5

d. Use part b to find the binomial distribution b(y; 4, 0.70) without doing any further
computations.

Find the expected value and variance for the blood-type example.

a. Using the formulas given in Section 2.4

b. Using the special formulas for the expected value and variance of a binomial
distribution that are given in this section

An experimental psychologist has 20 volunteers for a sensory perception experiment
and wishes to draw a random sample of 10 of these volunteers. Suppose that he
decides to write all combinations of 10 names on index cards and then draw 1 of the
cards at random. How many combinations will there be?

A geneticist studying dairy cattle has 4 bulls and 8 cows that can be used in an
experiment. How many different matings are possible?

There are 6 teams in a baseball conference.

a. How many games are necessary before each team plays every other team once?

b. If there are no ties in standings, how many ways can the teams be ranked on the
basis of number of games won?

Twelve school photographs (all the same size) are placed in random order face down
on a table. Two of them are of identical twin boys. One of the twins is brought into the
room and asked to select a photograph.

a. What is the probability that he will select his own by chance?
b. What is the probability that he will select his own or his brother’s?

c. If he is asked to select 2 photographs, what is the probability that he will select his
own and his brother’s?

There is evidence that among lower forms of animal life behavioral charac-
teristics can be transferred from one individual to another along with the transfer
of the chemical substance known as RNA. In an experimental study of this
transfer behavior, 8 salamanders are divided at random into 2 equal-sized groups
of 4. One group will be the experimental group and the other the control group.
a. Show that there are 70 different ways the 2 groups can be formed.

b. What is the probability that the 4 fastest swimmers are all in the same group?

c. What is the probability that 3 of the 4 fastest swimmers are in the same group?
d

. All of the salamanders in one group (called the experimental group) received RNA
from a salamander that has been trained to swim fast. The other group (called the
control group) receives RNA from an untrained salamander. Before one could
believe that behavior is transferred with RNA, what should the number of fastest
swimmers in the experimental group be? Explain.

Many candy manufacturers who use artificial chocolate claim that their customers
cannot tell it from real chocolate. Suppose 5 customers are selected at random and
each is allowed to taste a candy bar made with real chocolate and the same kind of bar
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3.1.20.
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made with artificial chocolate. They are not told which contains real chocolate, and

they are asked which one it is.

a. If the manufacturer is correct about their inability to tell real from artificial chocolate,
find the probability that a taster will correctly choose the one that is the real chocolate.

b. What is the probability that all 5 tasters will choose correctly?

A certain basketball player has a success record of 1 in 3 for making attempted field

goals. Suppose she attempts 7 field goals in a game.

a. What conditions must be true in order to use the binomial distribution to produce
reliable probability statements?

b. Assuming the necessary conditions are met, compute the probability that the
player will make exactly 4 field goals.

¢. What is the expected number of field goals she will make?

A night watchman must check in at 9 stations in a warehouse during each round of
inspection. He decides to try all possible sequences of the 9 stations and use the
shortest of these as his routine round of inspection. There are 9! possible different
sequences of the stations.

a. Why are there 9! different sequences?
b. How many sequences must he try?

c¢. If he walks 4 rounds of inspection each night, how many nights will he require to
try all possible sequences?

A sociologist examines 6 northern cities that have the same percentage of racial

minorities. He is able to rank the cities according to employment opportunities for

high-school graduates from the minority groups. He then orders the cities on the basis

of truancy among minority high-school students.

a. How many ways is it possible to order 6 cities on the basis of truancy among
minority students?

b. If ordering by truancy and by job opportunities are unrelated, how likely is it that
truancy will have a perfect reverse ordering to job opportunities?

c¢. If the truancy ordering is the exact reverse ordering of that for job opportunities,
should the sociologist decide that this happened by chance and that there is no
relationship between the two?

A person claims the extrasensory ability of looking at a photograph and telling
whether the subject of the photograph is still living or has died. In an experiment to
test her claimed ability, she is shown 10 photographs of people unknown to her. (To
improve the experiment, the subjects should be of the same age and the photographs
taken at the same time; a high-school yearbook would meet both conditions.) She is
asked to point out the 5 subjects who are now dead.

a. How many ways can she select 5 of the 10 photographs?

b. How many ways can she select the photographs of the 5 dead subjects?

¢. What is the probability of selecting the correct 5 photographs by guessing rather
than by extrasensory ability?

d. Why should this be a double-blind experiment?

The grading of laboratory reports is tedious, so a laboratory instructor decides that he
will grade only a randomly chosen 2 of the 5 reports that each student has submitted.
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If both are acceptable, the student will be given an A as his laboratory grade; if 1 is

acceptable, he will receive a B; a C will be given if neither is acceptable.

a. How likely is a student to receive an A when he has submitted 5 acceptable
reports? 4? 37 2?7 1?7 0?

b. How likely is a student to receive a C when he has submitted 5 acceptable reports?
4737221707

3.1.23. In Exercise 1.1.6 the number of ways that all pairwise comparisons could be made
among 10 people was determined by counting all of the events, and the answer was
94+84+74+6+54+44+34+24+1=45.

a. Use combinations to verify that answer.

b. Why do both procedures produce the same answer? Hint: Add the integers from
the ends toward the middle, (9 + 1)+ (8 +2) + ---.

3.2. TESTING HYPOTHESES

We return to the basic statistical problem of using probability to make decisions about
populations that are not totally accessible. The following example shows how the probabilities
in a theoretical binomial distribution can help to interpret the results of an experiment.
(We have already seen an example in the baby cereal preference study, Example 1.7 and
Section 2.4.)

Example 3.1. Using a Binomial Distribution to Test a Hypothesis

Because dairy farmers need more cows than bulls, it would be advantageous for them if a
method could be found to change the approximately 1-to-1 sex ratio found in nature. Many
biological experiments have been performed in an attempt to alter sex ratio, either by trying to
separate the sperm cells which produce male offspring or by finding some way to inactivate
them so that they cannot fertilize an egg cell.

A reproductive physiologist believes that by treating the semen of the bull with a mild
acid and using artificial insemination he can change the sex ratio of calves. (This is the
scientific hypothesis.) He decides to perform an experiment and observe 20 calves that
have been produced by this method. He is going to use statistics in order to generalize the
result from these 20 calves to the entire population of calves that could be produced by
this method. Thus, the statistical procedure begins at this point, prior to the actual
experiment.

The steps in the statistical procedure are:

. State the null hypothesis.

. State the alternative hypothesis.

. Establish «, the level of rejection, and the region of rejection.
. Perform the experiment and observe the outcome.

N AW -

. Draw conclusions.

Step 1. State the Null Hypothesis. In this experiment, Hy: 7 = 0.5, that is, under chance
alone, the probability of a newborn calf being female is 0.5. In other words, the treatment has
no effect on the sex ratio. The theoretical probability distribution if the null hypothesis is true
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is b(y; 20,0.50). This experiment can be done in such a way that it satisfies the 5 conditions of
a binomial experiment: There are only 2 possible outcomes, a male calf or a female calf. There
will be a repeated number of trials, 20. If the null hypothesis is true, P(female calf) = 0.5 for
each trial. The 20 cows can be selected at random, and the semen can also be selected at
random from different bulls, ensuring independence from trial to trial. The physiologist is
interested in the statistic y, in this experiment the number of female calves born.

Step 2. State the Alternative Hypothesis. In this experiment, the alternative hypothesis is
H,: m # 0.5. Since the physiologist does not know ahead of time what effect the mild acid
will have on the sex of newborn calves, this is a two-sided test, or a two-tailed test. He will
reject the null hypothesis if the outcome is an extreme case in either tail of the binomial
distribution.

Step 3. Establish o, the Level of Rejection, and the Region of Rejection. Looking
at the binomial distribution b(y; 20, 0.50), he wants to set a rejection level as close to 0.05 as
possible (because this is a traditional level used). Since this is a two-tailed test, he wants to
reject the null hypothesis if he obtains an outcome with a probability of less than 0.025 at
either side of the distribution. He notes from Table 3.2 that

P(Oor1or2or3or4orb)
= P(0) + P(1) + P(2) + P(3) + P(4) + P(5)
=0.000 + 0.000 + 0.000 + 0.001 + 0.005 + 0.015
=0.021

and that

P(15 or 16 or 17 or 18 or 19 or 20)
= P(15) + P(16) + P(17) + P(18) + P(19) + P(20)
= 0.015 + 0.005 4 0.001 + 0.000 + 0.000 + 0.000
=0.021

so the actual ais 0.042. The region of rejection is all y such that 0 <y < 5or 15 <y < 20, and
y is called the test statistic. Including any more values in the region of rejection would have
made « further from 0.05. The symbol y here stands for the number of female calves born
(alternatively, y could stand for the number of male calves born).

Step 4. Perform the Experiment and Observe the Outcome. The experiment is now
performed, and suppose 6 males and 14 females are born. If the null hypothesis is true, the
expected number of female calves would be E(y) = nm = 20 x 0.5 = 10. Since the number
of female calves observed in the experiment is y = 14, the physiologist cannot be especially
encouraged by a deviation of only 4 from the number expected by chance alone. However, in
the statistical procedure, decisions are based on probability, and the probability of a deviation
of this magnitude (or greater) when the treatment is ineffective is needed.

Step 5. Draw Conclusions. The a level and the region of rejection merely specify, prior to
the experiment, those outcomes that can be considered plausible and those that would be
unusual when the null hypothesis is true. In this experiment, outcomes of less than 6 or more
than 14 occur only 0.042 of the time if the null hypothesis is true. Since y = 14 is not in the
region of rejection, the physiologist does not reject the null hypothesis.



3.2. TESTING HYPOTHESES 61

The outcome of 14 deviates by 4 from the expected value of 10 under the null hypothesis
[n7 = 20(0.5) = 10]. The probability of a chance deviation this great or greater is

P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 0.058
plus
P(14) 4+ P(15) + P(16) + P(17) + P(18) + P(19) + P(20) = 0.058

So the P value is

P =0.058+0.058 =0.116
Thus the probability of obtaining a chance deviation of this magnitude (or greater) from the
expected 1-to-1 sex ratio is 0.116. This probability is greater than the & = 0.05 chosen by the

physiologist, hence too large to claim that the experimental sex ratio of 14 to 6 is a significant
altering of the proportion of females from 7= 0.5.

Once again, let us remember that it is not known for sure whether or not the addition of a
mild acid to bull semen will alter the sex ratio of calves. An experiment based on more than 20
births might verify the change observed in the experiment. However, for this experiment, the
physiologist must decide that the experimental outcome is not improbable (P > «) under the
null hypothesis and chance alone.

This process of setting up the null hypothesis may still seem rather round-about since the null
hypothesis is usually the opposite of the decision the scientist is hoping to make. However, since
there is no information about the probability associated with the experimental hypothesis, the
null hypothesis must be set up so that known probabilities can be used.

Not all tests of hypotheses are two tailed. Sometimes the experimenter is looking for
evidence in a particular direction. The following example will illustrate a one-tailed test of
hypothesis.

Example 3.2. Testing a Hypothesis Using a Binomial Distribution

The staft of a reading clinic is interested in determining the sex ratio of children who have a
certain reading problem. The children reverse the letter sequences in words; for example, they
read “saw” for “was.” Someone has claimed that more than 70% of the children with this
disorder are boys. The staff decides to look at a random sample of 20 children who have this
reading problem. The null hypothesis is Hy: 7= 0.7 and H,: 7> 0.7 because they are
looking for evidence to substantiate the claim. Assuming the null hypothesis is true, they use
the binomial distribution b(y; 20, 0.70) as the theoretical model. The number of boys in the
random sample of children with this disorder is represented by y.

The level of rejection in this survey is chosen to be as close to 0.05 as possible. Looking
at Table 3.2 in Section 3.1, the actual « is seen to be 0.036 and the region of rejection is 18, 19, 20.

Assume the survey reveals that 18 out of the 20 afflicted children are boys. Whether one
uses the fact that the test statistic, y = 18, is in the region of rejection or that the P value of
0.036 is less than «, the null hypothesis is rejected and it is concluded that there is evidence
that more than 70% of the children with this disorder are boys.
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We have noted that with this type of test there is no way to be certain whether the null
hypothesis is true or false. Although the null hypothesis was rejected in the example above, it
is of course possible that it is actually true and a very unlikely outcome just happened to occur.
To reject a true null hypothesis is called a Type I error. The probability of committing a Type I
error in the survey above is 0.036 because o = 0.036, that is, there is a 3.6% chance that the
null hypothesis is true and sample results lead to rejection of it. The probability of a Type I
error is always «, the level of rejection, and is chosen by the experimenter.

If the results had been different, the null hypothesis might not have been rejected. For
example, the survey might have shown that 15 out of 20 children displaying reading reversals
were boys. Since 15 is not in the region of rejection (and P = 0.417), the null hypothesis
would not have been rejected, and it could be concluded that among the children with reading
reversals 70% or fewer may be boys. In this case, it is possible that the null hypothesis is false,
but it has not been rejected. To fail to reject a null hypothesis when it is false is called a Type 11
error.

It is more difficult to determine the probability of a Type II error than of a Type I error. The
probability of a Type I error, rejecting a true null hypothesis, is . The probability of a Type 11
error is, in this case, the probability that y is not in the region of rejection of the null hypothesis
if 77 is not 0.70. This cannot be determined in this form because there is no specific value for
, 7 # 0.70 is an infinity of values.

To determine the probability of a Type II error:

1. Choose a reasonable specific alternative value of the parameter, 7 = m,, that is of
clinical importance.

2. Find B, the cumulative frequency in b(y; n, 7,) for y in the acceptance region of Hy; that
is, B = P(y is in the region of acceptance of Hy if m = m,).

The probability S is the probability of failing to reject the null hypothesis when it is false by a
specific amount. In more positive terms, the power of the experiment or survey, that is, the
probability of detecting the specific alternative hypothesis, is 1 — . Thus power is related to
B, and depending on which is easier to compute, we find one from the other by

Power =1 — B or B =1— Power

In the example above, in which 15 out of 20 children with reading reversals were boys, the
null hypothesis was not rejected. What is the probability that a false null hypothesis may have
been accepted? From knowledge of reading problems, the staff might agree that a reasonable
alternative value is 7, = 0.75. Power depends on the “degree of falseness” of the null
hypothesis, so they specify the smallest degree of falseness of practical interest. This means
that if in fact 75% of the cases of reading reversals occur in boys the clinic would examine
boys very carefully for this problem, but if fewer than 75% were boys they would not examine
boys more closely than girls. Referring to the table in the previous section under b(y; 20,
0.75), we find that the probability that 0 <y < 17 is 8= 0.909. This means that there is a
90.9% chance of failing to reject the null hypothesis if in fact 75% of the children with reading
reversals are boys! The chance of detecting the difference is only 1 — 0.909 = 0.091; the
power of this survey is very low.

A powerful experiment generally means a power of 0.70 or greater, so the survey above is
very poor. This illustrates the need to design an experiment in such a way that there is a
reasonable chance of detecting a clinically important difference if it exists. To increase the
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power in this survey, a much larger sample size is necessary. Another way to increase the
power (decrease f3) is to increase a.

In practice, many times we do not have enough information to choose a reasonable specific
alternative, and thus we are not able to compute . Fortunately, the power of an experiment
usually increases with the size of the sample, so we work with samples that seem large enough
to make the experiment powerful. If we can specify the alternative value of the parameter, it is
possible to use a repetitive process (likely with the aid of a computer) to determine how large
the sample size must be in order to have a specified power. In the reading-reversal example, it
is necessary to use a sample size of n = 501 to achieve a power of 0.80 in detecting 7, = 0.75
when the null hypothesis is Hy: 7= 0.70 and o = 0.05 (Buckalew, 1974, p. 61). This large
size is required because a relatively small difference is specified.

We usually try to achieve a balance between the « level and the power. We want a
moderately low a level (as 0.05) and try to get the power as high as possible, usually by taking
relatively large samples.

Which type of error is worse depends on the situation. For example, imagine that a medical
microbiologist is testing a new antibiotic for effectiveness against a particular bacterium.
Currently used antibiotics are known to have a cure rate of 7 = 0.75. The two types of error
could occur under the following circumstances:

Type I. The microbiologist is testing Hy: 7= 0.75 against H,: 7> 0.75. The new
antibiotic actually has a cure rate of 0.75, but the results of the experiment lead her to conclude
that it is better than the antibiotics currently used. If the new one is equal to the others in all
other respects, such as price and side effects, then this Type I error is not serious. If, however,
the price is higher or the side effects are more severe, then the Type I error is serious.

Type 1I. The microbiologist is again testing Hy: 7= 0.75 against H,: > 0.75. Now,
however, let us assume that the new antibiotic is actually better but she fails to detect this from
the results of the experiment. The Type II error here means that a more effective medication
will not be used. The seriousness of the error depends on the seriousness of the illness and how
much better the new medicine would be. If 7 is actually 0.78, this would not be much of an
improvement so the error is not as serious as if 7 were 0.98 and a very effective medication
were not being used.

The diagram in Figure 3.2 summarizes the various possibilities that occur when testing
hypotheses. The specific probabilities listed refer to the reading-reversal study (Example 3.2)
used in this section.

Note that the probabilities in the columns of this diagram sum to 1. Also, once the decision
is made, only one type of error is possible. If the null hypothesis is rejected, there is then no
possibility of a Type II error. Similarly, if we fail to reject the null hypothesis, we no longer
need to worry about a Type I error.

Hy is really
TRUE FALSE
Decision No error: Type Il error:
About H, P (Type ll error) = B
Based ACCEPT | 4 _ & = 0.964 8 =809
on Test of - i
Significance Type | error: No error:
REJECT P (Type |l error) = « Power = 1 — g8 = 0.091
a = 0.036

FIGURE 3.2. Type I and Type II errors.
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In the discussion of hypothesis testing and errors in this section, we have used only
examples that fit the small table of binomial distributions given in Section 3.1. Two similar
but larger tables are found in Table A.4a for samples of size n = 20 and Table A.4b for
samples of size n = 25. These tables are used in the same manner as the smaller table in
Section 3.1.

If o = 0.10 and the test is two tailed, the horizontal lines indicate the regions of rejection
and acceptance. If a = 0.05 and the test is one tailed, the line in the appropriate tail may be
used to indicate the region of rejection. Other « levels can be used, but then the regions must
be determined by the user of the table. The probability of a Type II error can also be found
from these larger tables; the method is the one just described in this section.

Many other tables are readily available in statistics books and in reference books. If the
particular table needed is not available, it can be computed using the Bernoulli formula
possibly with the assistance of a computer (see the computer usage sections on the text’s
Internet site). Approximation methods are also possible; these are discussed in Chapter 7.

A brief summary of this section follows.

Procedure. Test of Hypotheses for a Binomial Parameter

Region of Rejection Method

H()I T = T

H,: 7 # mor w> my or m<< 1

Significance level: «

Test statistic: y, the number of successes out of n trials

Using a table for the binomial distribution with probability function b(y; n, ), determine the
region of rejection.

For H,: 7 # 9, the region of rejection is 0 <y < ¢; and ¢y <y < n such that

CL n
> b(ysn, m) and ) by n, m)
0 Cy

are each as close as possible to a/2.
For H,: m > 1, the region of rejection is ¢y <y < n such that

i b(y; n, m)
Cy

is as close as possible to a.
For H,: 7 < mr, the region of rejection is 0 <y < ¢; such that

CL
> b(y; n, m)
0

is as close as possible to «.
Reject Hy if y is in the region of rejection.
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P-Value Method

For H,: m # 1y, compute P = P(]y — ng| > |test statistic — nm|).
For H,: 7> 1y, compute P = P(y > test statistic).

For H,: m < 7y, compute P = P(y < test statistic).

Reject Hy if P < a.

Error
P(Type I error) = o
P(Type I error if 7= m,) = P(y is in the region of acceptance of H, if 7= m,)

EXERCISES

3.2.1. Use Tables A.4a and A.4b in the Appendix to find the following:
a. P4 <y<8) whenn=20, 7=0.8
b. P(y <2) when n =25, w= 0.6
c. P(y>4)whenn=25 7 =0.25
d. P(y > 15) when n =20, w= 0.70
e. P(y <19) when n =20, w=0.55
f. P(6 <y <9)whenn=25 w=0.35
3.2.2. A teacher gives a student a make-up test consisting of 20 true-false questions. The
intent of the test is to determine whether the student answers the questions correctly
through knowledge of the material or merely by making lucky guesses. Assume the

correct answers are a random sequence of “true” and “false” and that the student’s
guesses are also random.

a. State a null hypothesis based on the probability of guessing the correct answer to a
question.

b. State a one-tailed alternative hypothesis based on the probability of arriving at the
correct answer through knowledge.

c. Find the region of rejection when « is set as close to 0.05 as possible. (Remember
that the null hypothesis will be rejected only if an extreme value occurs on one
side of the distribution.)

d. If the student correctly answers 16 of the 20 questions:
i. What is the P value?
ii. What should the teacher conclude?
3.2.3. A carnival operator wants a game that can be won about 30% of the time. If the game
is won more frequently, it will not be economical for the operator; if winning is less

frequent, potential players will be reluctant to risk their money. He devises a dart-
tossing game that he thinks will suit his criterion and tests it on 20 random players.

a. State a null hypothesis based on his criterion.

b. State a two-tailed alternative hypothesis.

c. If the region of rejectionis setat 0 <y <2 and 11 <y < 20, what is the a level?
d.

What conclusion should the operator draw about the game if there are 9 winners
among the first 20 players? What must be assumed about the players in order to
accept this conclusion?
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A campus parking lot contains 20 spaces, all reserved for faculty members. The
administration decides that students may park their cars in the lot after 4:00 pMm if
faculty usage then drops to less than 70%. A random weekday afternoon is chosen to
sample the faculty usage after 4:00 pMm.

a. State the null hypothesis.
b. State a one-tailed alternative hypothesis that would lead to student usage of the lot.
c¢. Find the region of rejection for « as close to 0.05 as possible.
d. If there are 18 faculty cars in the lot at the time of the survey:
i. What is the P value?

ii. What decision should be made about student parking?
e. Do you see any difficulties in the design of this survey? Suggest a better design.

In the experiment concerning the altering of the sex ratio in newborn calves
(Example 3.1), the null hypothesis is Hy: = 0.5 and H,,: 7 # 0.5. There are 20 trials
and the region of rejection is 0 <y <5 and 15 <y < 20.

a. The physiologist would consider the experiment a success if the proportion of
female calves is 0.70. How likely is it that a change of this magnitude will be
detected by the statistical procedure described?

b. What would you suggest to the physiologist if he does not think that this
experimental design is powerful enough to detect this useful change?

In an effort to control mosquitoes without having to use dangerous insecticides,
entomologists have taken advantage of two factors in the biological nature of
mosquitoes: Male mosquitoes are not bloodsuckers and nearly all female mosquitoes
mate but once. Thus the entomologists release massive numbers of sterilized male
mosquitoes to reduce the probability of a female mating with a fertile male and
consequently producing more mosquitoes. After such a release, the entomologists
hypothesize that the probability of a female mating with a fertile male is Hy:
= 0.30. If 20 females are captured and examined for fertile eggs:

a. Find the region of rejection if the alternative hypothesis is H,: 7 > 0.30.

b. What is the power of the experiment if 7, = 0.50?

¢. What is the power if 7, = 0.70?

A large corporation is going to purchase 150 company cars for its salesmen and
executives. The corporation has already eliminated many makes and models and now
must choose between two specific types of cars, A and B, which are comparable in
size, purchase price, and maintenance cost. The corporation will base its final decision
on the gasoline mileage of these two types. It is known that 70% of the cars of type A
average more than 20 miles per gallon, and it is strongly believed that car B has a
better record. If B is proved, better they will buy B; otherwise they will buy A.

a. State the two outcomes that should be considered for a random sample of cars of
type B.

b. State the null hypothesis in terms of cars of type B.

c. State the one-tailed alternative hypothesis for car B.

d. Which type of error should be kept to a minimum in this experiment? How can this
be accomplished?

A behavioral scientist feels that right-handed people have a tendency to make right-
hand turns when they have no other basis for choosing the direction in which they
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should turn. To conduct a statistical test, she draws a random sample of 20 right-

handed individuals from a large group of volunteers. To keep the subjects unaware of

the nature of the experiment, she pretends to be conducting a survey of family dietary

habits. She has the subjects brought into her office one at a time, questions them about

the eating habits of their families, and then directs them out by a different way from

the one by which they entered. They are told to go down a hall and out either door at

the end. The experimenter watches each subject leave and records whether the subject

chooses the door to the right or left as he or she exits.

a. State a null hypothesis which specifies that only chance leads to the choice of the
door to the right.

b. For a two-tailed alternative hypothesis, the region of rejection couldbe 0 <y <5
and 15 <y < 20. What is the « level?

c. For a one-tailed alternative hypothesis, the region of rejection could be
14 <y < 20. What is the « level?

d. For the specific alternative , = (.70, which is more powerful, the one-tailed or
the two-tailed test?

e. Comment on the deception involved in this experiment.

For a binomial experiment in which n = 20 and Hy: 7= 0.30:

a. Find the region of rejection with an « as near 0.05 as possible when H,:
7 # 0.30.

b. Find the region of rejection with an « as near 0.05 as possible when H,:
> 0.30.

c. For the specific alternative 7, = 0.50, how much more powerful is the one-tailed
test than the two-tailed test?

d. Which of the following statements is true?
i. The one-tailed test is more powerful because it has a greater « level.
ii. The one-tailed test is more powerful because it has a greater S.

iii. The one-tailed test is more powerful because there are more possible y values
in its region of rejection.

iv. The one-tailed test is more powerful because the sum of the probabilities
associated with the region of rejection is greater for the specified alternative
b(y; 20, 0.50).

After a flood or storm, insurance companies buy damaged goods from stores that carry
their policies. To recover some of the loss, they sell the damaged goods to salvage
companies. Suppose 30,000 flood-damaged highway safety flares are offered for
sale by an insurance company with the claim that 25% of them are too damaged to
ignite.

a. State a null hypothesis that would test the insurance company’s claim.

b. State the alternative hypothesis of greatest concern to the insurance company.

c. State the alternative hypothesis of greatest concern to a salvage company.
d

. Suppose the insurance company’s statement about the 30,000 flares is correct.
Determine how likely it is that a random sample of 20 flares will have:

i. Exactly 10 flares that fail to ignite
ii. At least 10 (that is, 10 <y < 20) that fail to ignite
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e. Suppose the insurance company’s statement is incorrect and actually 40% are too
damaged to ignite.

i. What is the probability that exactly 10 will fail to ignite?
ii. What is the probability that at least 10 will fail to ignite?

f. Suppose Hy: 7 = 0.25 is being tested, what is the power of the test when « is as
near as 0.05 as possible and 7 is really 0.40?

Describe how a Type I or Type II error could occur in the following situations and
give some of the factors that would determine the seriousness of the errors.

a. A bookstore is trying to determine what proportion of the students buying a certain
textbook will also buy an optional student guide. In the past, 40% of the students
buying the text have also bought the guide. The bookstore wants to test Hy:
7 = 0.40 against H,: 7 > 0.40.

b. A seed company wants to claim on a certain seed package that at least 90% of the
seeds will germinate. The company decides to check this before the packages are
printed and test Hy: = 0.90 against H,: 7 < 0.90.

¢. Arecreation specialist is planning campsite facilities for a state forest and wants to
include several rustic tent-only campsites that will be inaccessible to campers on
wheels. He thinks that only 20% of the people camping in the area would desire
such facilities. He tests Hy: 7 = 0.20 against H,: 7 # 0.20.

Archaeologists use pelvic bones to determine whether a skeleton is that of a man or
woman. Primitive cultures often buried their outstanding members (rulers, warriors,
athletes, and so on) with greater ceremony than ordinary members. Using this fact,
much can be learned about the status of women in an early culture by observing the
frequency of skeletons of females in ceremonial graves. Suppose that an archaeologist
discovers 20 graves that can be assumed to be a random sample of the ceremonial
graves of a Stone Age culture in Wiltshire, England.

a. What is the most logical statistical hypothesis to be tested?

b. Suppose the region of rejection is: The number of skeletons of females is less than
8. What is the value of a?

¢. Suppose 7, = 0.30; what is the numerical value of 3?
d. What assumption is necessary to use this test procedure?

A certain dental condition which can be corrected if detected early enough occurs in
the population with a frequency of 7= 0.20. An orthodontist believes that this
condition occurs more frequently in children who were born with cleft palates and that
parents of such children should be warned to watch for early evidence of the dental
condition. To test his hypothesis, she follows the dental development of a random
sample of 25 children born with cleft palates.

a. What is the most logical null hypothesis for the orthodontist to check? What

alternative hypothesis should she use?

b. Suppose she wants « to be as close to 0.05 as possible; what region of rejection
should she set for y, the number of children in the sample who develop this dental
condition?

¢. Suppose 8 of the children in her sample develop the condition. What is the P
value? Should she reject the null hypothesis? Why, or why not? What conclusion
should she draw?
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Sickle-cell disease is a potentially lethal genetic disease in the Black race. It is
estimated that 30% of African-Americans in a certain Gulf Coast region have the
disease or carry the trait for it. This figure seems too large to a physician in the region,
so he takes a random sample of 25 of his African-American patients and examines
blood smears.

a. State the physician’s most logical null and alternative hypotheses.

b. What region of rejection would you suggest he use? What is the « level for this
region?

c. If the percentage in question is really 15%, what is the power of his test?

d. Which type of error is more serious in his study, Type I or Type 1I? Why?

e. Suppose 12 patients of his sample have the condition or seem to be genetic
carriers. Should he reject his null hypothesis or not? Why? What is the P value?

What conclusion should he draw about the proportion of sickle-cell disease in the
Black population?

Cryobiologists have been experimenting for many years with methods of freezing
human corneas so that, when thawed, the membranes can be safely used in “eye
transplants.” If corneas are suspended in ethylene glycol, 70% of membranes
survive freezing and thawing. Unfortunately the chemical compound is toxic,
and therefore a cornea soaked in it is unsafe for transplant. Suppose a cryobiologist
finds a nontoxic chemical that has similar protective properties. He wants
to compare its effectiveness with ethylene glycol in the freezing-thawing
process.

a. State the null and alternative hypotheses.

b. If 20 corneas are to be used in his experiment, give the region of rejection for
a=0.10.

c. Suppose y = 10 is the number that survive; should the experimenter feel
encouraged or discouraged by the results? Give a reason for your answer.

Vegetable farmers try to avoid the use of insecticides because of expense and health

hazards. However, if crops become too heavily infested, it becomes necessary to

spray them. Suppose a farmer decides that she will spray her cabbages if their

infestation with moth larvae is significantly greater than 20%.

a. If the farmer samples the crop to determine the percentage of infested cabbages,
what is the null hypothesis?

b. What is the most logical choice for the alternative hypothesis? Why?

c¢. Forn =20 and «a as close to 0.05 as possible, choose the region of rejection that is
consistent with the alternative hypothesis.

In times of stress, some people hyperventilate to the point of dizziness and fainting.

To determine whether this behavior is equally likely in men and women, a researcher

takes a random sample of 25 cases from a hospital emergency room’s file on those

treated for hyperventilation.

a. What hypothesis should be tested about the percentage of males among those
treated?

b. What should the region of rejection be if « is to be as near 0.01 as possible?

c. If 16 of the 25 persons in the sample are men, should the researcher conclude
that men are more likely to hyperventilate than women? Why or why not?
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3.3. ESTIMATION

So far, our discussion of statistical methods has dealt with only one of the general problems of
statistics, decisions about hypotheses. Tests of hypotheses are possible only when we have
quite a bit of information about the experimental situations. For example, to analyze the
results of the experiment on the sex ratio of calves, the experimenter had to know the sex ratio
of newborn calves in an untreated population. In the early stages of experimentation, when
less information is available, the scientist often uses estimation (Figure 3.3).

Estimation will answer questions like “What proportion of ex-prisoners who have gone
through a certain group therapy program will be arrested again within the first two years after
release?” If we consider the entire population of prisoners who have gone through or will go
through the program during their incarceration and we use as the variable of interest whether
or not they are arrested again within two years after release, what is the appropriate value of 7,
the proportion arrested again?

Since we cannot observe the entire population, we will instead examine a random sample
from it and count the number of subsequent arrests in the sample. Recall that this count, based
on the results of sampling, is called a statistic. Then, using the binomial distribution as a
model for this study, we will use the statistic to make a statement about the unknown
parameter 7, the true proportion of ex-prisoners who will be arrested again (Figure 3.4).

In trying to estimate the unknown parameter, two types of estimates are possible.

1. A point estimate—a statistic based on a sample.

2. An interval estimate—an inference based on a statistic.

The natural point estimator of a proportion 7 is

LY
=2
n
in which y is the number of successes in a sample size of n. The estimator 7 is read “7rhat.” In
general, placing a caret, or “hat,” on a Greek letter indicates an estimator of the parameter.
The estimator 4 is not only the natural point estimator but also the best estimator because
it has three desirable properties of an estimator:

1. 4 is a maximum-likelihood estimator. That is, the estimate of 7 that we get using this
estimator makes the outcome that we obtained the one most likely to occur. We can see
this by using Table 3.2, where the value of y with the greatest probability, gives the best
estimate 7 = y/n of the binomial parameter 7. In the distribution with probability
function b(y; 20, 0.30), y = 6 is the most probable outcome and 6/20 = 0.30; in b(y;
20, 0.50), y = 10 is the most probable outcome and 10/20 = 0.50; in b(y; 20, 0.70),
y = 14, is the most probable outcome and 14/20 = 0.70 (see Figure 3.5).

Estimation: Possible in the

early stages of experimentation
Inference

Tests of Hypotheses: Require

some previous experimental information

FIGURE 3.3. Types of inference.
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Population Random selection =————={ Sample

Observation,

Characterization computation

\

Parameter |e¢—————— I nference ———— Statistic

FIGURE 3.4. The inferential process.

7 is unbiased. That is, if we were to repeat the estimation process, the average of all
possible estimates would be the true parameter .

7 has a minimum variance. That is, the possible estimates are clustered closer to 7 than for
any other unbiased estimator.
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0.12
0.08
0.04

| ,
0 123 456 7 8 91011121314151617 181920 ¥

bly; 20, 0.30)
y=10
0.20 A Most probable
0.16
0.12
0.08
0.04
| [ .
0 12 3 456 78 91011121314151617181320 ¥
b(y: 20, 0.50)
— y=14
0.20 — 4~ Most probable
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FIGURE 3.5. The most probable outcome in three binomial distributions.
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Thus, if we observe a random sample of 20 prisoners who had gone through the therapy
program and we find that 6 of them have been arrested again, then the best point estimate of
the proportion of subsequent arrests is
6
=—=030
20
Because of the properties of this estimator, we can be confident that this is likely to be close to
the true value. Unfortunately, it will usually not be exactly the true value. A repetition of the
survey might yield
8
T =—=040
20
Although we know that both of these estimates are close, we also know that probably neither
of them is exactly correct.

One way to avoid this difficulty is to use an interval estimate, an inference that the
parameter is between certain bounds. The confidence interval is obtained by asking “For
which values of 7 is 7 a common or frequent estimate?”

We use the following steps to find an interval estimate.

Procedure. Central Confidence Intervals for

. Specify an «a level.
. Take a sample of size n.

. Find y, the number of successes.

B W N =

. Give the interval of all values of 7 for which y would fall in the region of acceptance for
a two-sided a-level test.”

For example, if & = 0.10, n = 20, and y = 8, we use Table A.4a in the Appendix; 8 is in
the region of acceptance for 7 between 0.25 and 0.55. Thus 7 = 8/20 = 0.40 is among the
90% most common estimates of all 7 values between 0.25 and 0.55. Since a = 0.10, when we
use this procedure about 90% of the intervals obtained, will include the actual parameter being
estimated. The interval is written

Clpg0: 0.25 < < 0.55
and is called the 90% confidence interval for . This method yields a central confidence

interval since two-sided regions of acceptance are employed. Note that the best point estimate,
7r = 8/20 = 0.40, is within this interval.

For any given sample size, the method we just outlined gives the narrowest CI,_,. The
confidence interval in this example is quite wide; this is because the sample size n = 20 is small. If
a larger sample is used (and « remains constant), the same statistic 7w = y/n will yield a smaller
confidence interval. To see this, Tables A.5a through A.5e in the Appendix can be used. These
tables list the confidence intervals for various sample sizes and various « levels. (Instructions for
reading these tables precede the group.) To see the effect of increased sample size, let a« = 0.10,
n =100, y = 40; then 7 = 40/100 = 0.40 (as in the previous example), and from Table A.5¢c

Cloo0: 0.318 < 77 < 0.487

which is a smaller interval than the one found for n = 20.

"The authors are indebted to H. C. Fryer for the graphic determination of confidence intervals in this section and in
Tables A.4a and A.4b.
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FIGURE 3.6. Linear interpolation yields conservative confidence intervals.

Tables A.5a and A.4b give slightly different 90% confidence intervals for sample size
n = 25. This difference occurs because Tables A.5a through A.5e were calculated by a
different procedure than Tables A.4a and A.4b. The method for finding confidence intervals
used in Tables A.4a and A.4b is very instructive but lengthy to compute. The alternative
shorter method used for Tables A.5a through A.Se will not be explained here; it is an
approximate method and is known to produce reliable confidence intervals.

We can find one-sided confidence intervals as well as central confidence intervals. The
method is the same except that the region of acceptance for a one-sided a-level test is used in
step 4 of the Procedure given above. If Tables A.5a through A.5e were used, we refer to the «
column that is twice as large as the desired « level and use only one of the values L or U that
are given. (Example 3.3 demonstrates a one-sided procedure.)

Linear interpolation can be used to obtain confidence intervals for sample sizes between
those listed in the tables or it can be used for statistics that fall between values listed in the
tables. This method of interpolation of confidence intervals is a conservative estimate because
the confidence intervals actually decrease along curves within the straight lines along which
interpolation occurs. Since the interpolated values are outside the actual curves, they more
than preserve the « level of the tables (Figure 3.6).

As mentioned before, by using an interval estimate, we avoid the almost certain error of a
point estimate. If an interval estimate includes the true proportion, then it is correct. It is
possible for two different interval estimates to be correct. For example, two polls on the
proportion of the American population that approves of the president’s economic policy could
yield point estimates 7, and 7, and interval estimates as in Figure 3.7. If 7 is the true
proportion, both point estimates are wrong. However, both interval estimates are correct. In
this particular case, neither interval contains both point estimates but both intervals are still
correct.

The question of Type I or Type II errors does not apply to the inference of confidence
intervals since no decisions concerning hypotheses are being made. However, the reliability of
the estimate made by the confidence interval is expressed in the percentage of confidence. A
level of confidence of 95% means that 95% of the intervals that could be determined by this
method contain the true population parameter.

— o o
L, y 4
® ° °
0 1
———o—o
A
L, T v,

FIGURE 3.7. Confidence intervals for the same parameter obtained from different samples.
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Although Tables A.5a through A.5e list confidence intervals, they may also be used to test
hypotheses. This is demonstrated in the following example.

Example 3.3. Using Confidence Intervals to Test Hypotheses

It is generally felt that those opposed to the issuance of a new school bond are more likely to
go to the polls to vote than those who favor the bond. Thus a local school board feels that a
bond issue must be favored by more than 70% of the registered voters to have a chance of
being approved in the bond election.

Since the school board is concerned about detecting whether enough people are in favor of
the bond issue, it wants to determine a one-sided confidence interval on 7r that makes a
statement about the smallest possible value that 77 might be.

Suppose a random sample of n = 250 registered voters is surveyed by the school board
and y = 190 favor the bond issue while n —y = 60 oppose it. Using Table A.5d and
y/n=190/250 = 0.76, the table is entered at 1 — 0.76 = 0.24 and the lower bound is
1 —0.289 = 0.711. The 95% confidence interval that puts a lower bound on 7 is

one-sided Clyos5: 0.711 < 77 < 1.00

(The 0.10 column is used because only the lower bound is needed.) This interval shows that
the school board can schedule an election and feel confident that the bond issue will pass.

If the board preferred to phrase its investigation in terms of a test of hypothesis, it would test

Hy: w=0.70 (bond issue may not pass)
against
H,: m> 0.70 (bond issue will pass)
The board would find the one-sided confidence interval for the lowest value of 7 and

conclude that the null hypothesis should be rejected at the 5% significance level because
7r = 0.70 is not in the interval.

Similar approaches can be used for two-sided alternatives and one-sided less-than
alternatives. The correspondence between confidence intervals and tests of hypotheses is
summarized in the following procedure.

Procedure. Testing Hypotheses Using Confidence Intervals

Confidence Interval Test
Central Hy: ™= m
Cli_y.L<smwm=<U H, 7 # m

« level of rejection
Reject Hy if g is not in the confidence interval, that is,

my < Lormy>U
Upper bound Hy: m= m
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Confidence Interval Test

One-sided CI,_: 0 <7< U H,: w<m
a level of rejection
Reject Hy if 7 is not in the confidence interval, that is,

m > U
Lower bound Hy: m=m
One-sided CI,_: L<7<1.00 H, 7> m
a level of rejection
Reject Hy if m is not in the confidence interval, that is,

’7T0<L

EXERCISES

3.3.1. In each case below, the sample size n, the statistic y, the level of confidence 1 — «, the
lower confidence limit L, or the upper confidence limit U are given. Use tables for placing
a confidence interval on the binomial parameter 7 to fill in the missing values in each

case.

Case n y l -« L U
1 50 20 0.99 — —
2 — — 0.95 0.300 0.423
3 250 80 0.95 — —
4 500 430 0.99 — —
5 50 16 0.99 — —
6 — — 0.95 0.102 0.258
7 500 31 0.90 — —
8 100 — — 0.216 0.374
9 — 30 — 0.036 0.093

10 20 — 0.90 0.250 —

3.3.2. In a random sample of 250 inmates of federal prisons, 175 are found to have

committed nonviolent crimes.

a. What is the best estimate of the proportion of such federal offenders?

b. Place a 95% confidence interval on the proportion of all federal prisoners
convicted of nonviolent crimes.

c. Can you deduce from this that the majority of inmates of all federal prisons have
been convicted of nonviolent crimes?

3.3.3. A random sample of 25 precocious readers is drawn and their family backgrounds
carefully studied. In 40% of the cases, the child’s father is at least 15 years older than
the mother. Place a 90% confidence interval on the proportion of such age disparities
between the parents of precocious readers.

a. Using Table A.4b
b. Using Table A.5a
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A random sample of 100 persons suffering from mental depression reveals that 75 of
them cannot properly evaluate their job skills.

a. Give the maximum-likelihood estimate of the binomial parameter.

b. Set up a 95% confidence interval for this parameter.

In a random sample of 50 kindergarten children, there are 7 who hold crayons in their

left hands while coloring a picture.

a. Give the best point estimate of the proportion of left-handed kindergarten
children.

b. Explain what “best” means in this exercise.

Selected at random, 125 schoolchildren are given their choice of candy made with
either light or dark chocolate, but otherwise the candy is the same. Only 30% of them
choose the dark chocolate. If a candymaker wants no more than a 1 in 100 chance of
being misled by sampling variability, what is the estimate of the proportion of
children who prefer dark chocolate?

Selected at random, 250 married couples are given sample ballots containing the
names of all candidates for contested offices in the coming election. Husband and wife
mark their ballots independently, and their ballots are compared; 130 couples are in
perfect agreement in their voting.

a. What is the estimated numerical value of the binomial parameter for the

distribution that models this situation?

b. Set up a 95% confidence interval for the binomial parameter.

In a random sample of 200 apples from an orchard that had not been sprayed with
insecticide, 162 apples bear evidence of insect damage.

a. What is the best estimate of the proportion of damaged fruit in the orchard?

b. In what range would you say the “true” proportion lies if you want to have only a
1-in-100 chance of being wrong?

In a random sample of 500 voters from a northern county in West Virginia,

265 of the voters indicate that they will vote for the Democratic candidate for

governor.

a. Set a 99% confidence interval for the proportion of voters in the county who will
vote for the Democratic candidate.

b. The Republican candidate claims that he will win the county by 1% of the votes.
i. State a null hypothesis for his claim.

ii. Does the confidence interval in part a lead to acceptance or rejection of this
null hypothesis? Why?

iii. With what « level was the hypothesis tested?

Francis Galton thought everything could be measured and tried to measure
everything. He was interested in hot-air ballooning and routinely measured
barometric pressure along with the direction and velocity of the wind. As a result,
his first major scientific contribution was in meteorology. In his measurements, he
noted that the flow of air around a high-pressure area was not counterclockwise
as it is around one of low pressure. Because he found it always to be
clockwise instead, Galton called the phenomenon an “anticyclone,” the term still in
use. His conclusion was based on the fact that the number of times there was
counterclockwise flow around the n high pressure areas measured by him
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was y=0. Had confidence intervals been available when he drew his
conclusion:

a. Why should he use a two-side interval when all recorded flows were clockwise?

b. Give the Cl o5 if his number of observations had been n = 20, 25, 50, 100 and 7ris
the proportion of counterclockwise flows in high pressure areas.

c. Instead of using a confidence interval, why is it not possible to test either of the
following hypotheses?

i. Hy: m= 0 with H,: w > 0?
ii. Hy: m> 0 with H,: m=0?

3.4. NONPARAMETRIC STATISTICS: MEDIAN TEST

By changing the scale of measurement, we can also use the binomial distribution to analyze
data originally recorded on the numerical scale. This is known as a nonparametric statistical
procedure because inference is made, not about the parameter (or parameters) of the original
data, but about the parameter for the new scale of measurement. Disadvantages can result
from reducing the scale of measurement, but nonparametric tests are often quick, convenient,
and useful statistical tools which need to be examined.

The one-sample median test is a nonparametric test in which numerical data are reduced to the
nominal scale and analyzed by means of the binomial distribution. The median (M) of a distribution
is the value which will divide the distribution into halves. Thus the probability is 1/2 that the
median will be exceeded by a random variable u from the distribution, that is, P(u > M) = 1/2.

If a random sample of n observations is drawn from a numerical distribution with a known
median and we record only y equal to the number of values in the sample which exceed the
median, y is a binomial random variable with a b(y;n,1/2) distribution. If the median is not
known, we can state a hypothesized value and then use the binomial distribution to test
whether approximately half the sample values are greater than the hypothesized median. The
procedure will be demonstrated in the following example.

Example 3.4. The One-Sample Median Test

An oncologist has been studying cervical cancer and has learned that this disease is diagnosed
at a median age of 49.5 years (M = 49.5). He begins a new study of uterine cancer and soon
speculates that this is a disease of older women. To test this belief, he hypothesizes that the
median age for victims of uterine cancer is the same as that for those with cervical cancer, and
the alternative hypothesis is that uterine cancer victims are older:

Ho: P(u> 49.5) = 7= 0.50
H,: 7> 0.50

He then obtains a random sample of 20 women with uterine cancer and finds that y = 17 were
older than 49.5 years when their condition was diagnosed. This is in the region of rejection for
a test with the conventional a = 0.05, so he rejects the null hypothesis and concludes that the
median age at diagnosis for victims of uterine cancer is greater than it is for those with cervical
cancer. In other words, the kind of cancer a woman may have will depend, in part, on her age.
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34.2.

34.3.

In a certain large suburban housing development, all the houses were built at
approximately the same time, with the same size and initial cost of construction. The
median resale price of houses in the development has been established, but a real-estate
agent wants to determine if multiple ownership affects the resale price of a house. From
records at the county courthouse, she obtains a sample of the resale prices of 25 houses
which have had more than one owner. In the sample, 15 were sold below the median
price for houses in the area and 10 were sold above the median price.

a. Give the null and alternative hypotheses.

b. What is the value of P?

¢. What conclusion should the agent make about the effect of multiple ownership on
the resale value of a house in the area?

d. What factors could affect the validity of the conclusion?

The National Center for Health Statistics has recently reported that the median life
expectancy of U.S. white males is 74 years (rounded to an integer value). A physician
in the U.S. protectorate of Guam want to see if the same life expectancy holds true for
U.S. white males on that island. He obtains a random sample of 20 recent death
certificates of U.S. white males, and the ages u of the deceased were

18 59 42 61 38 41 71 40 14 47

73 93 55 51 74 88 60 71 89 63

a. What hypothesis does the physician want to test?
b. Why might he want to use a two-sided alternative?

c. If the null hypothesis is true, what is the expected number of ages greater than
M = 74?7 What is the observed number of ages greater than 74?

d. Compute the P value and compare it to an « of 0.05.

An airline is experiencing a median delay in arrival of 27 minutes and introduces new
measures in an effort to make improvements. After the measures have been in effect for
a month, a random sample will be taken of arrival times and the median test used to
evaluate the effectiveness of the changes.

a. Give the null and alternative hypotheses which will be used.

b. For an « as near 0.05 as possible, what will be the region of rejection if the number
of flights in the random sample is n = 25? n = 50? n = 100?

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If the statement is false,
explain why.

3.1.
3.2,
3.3.

In a binomial experiment, the outcomes fall into two mutually exclusive classes.
In a binomial experiment with » trials, y can take on any of n values.

Binomial distributions are not symmetrical, except when m=1 — .
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3.5.

3.6.
3.7.

3.8.
3.9.

3.10.

3.11.

3.12.

3.13.
3.14.
3.15.
3.16.
3.17.
3.18.

3.19.

3.20.

3.21.
3.22.

3.23.

3.24.

3.25.
3.26.

3.27.

3.28.

3.29.

3.30.
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Because the binomial is a discrete distribution, the expected value will be an integer
value.

If the binomial parameter 7 is 0.60, the probability of exactly 60 successes out of 120
trials is greater than the probability of 72 successes out of 120 trials.

If A and B are mutually exclusive events, then P(A or B) = P(A) x P(B).

The variance for discrete distributions can be computed by using the formula
V(y)=nm (1 — m).

The addition rule of probability applies only to mutually exclusive events.

The binomial distribution is an example of a continuous probability distribution.

To calculate the probabilities in a binomial distribution, the number of trials n and the
binomial parameter 7 must be known.

The null hypothesis may be Hy: 7 = 0.05 and y/n = 0.05, but the null hypothesis may
still be false.

A Type I error is defined as “the probability of rejecting the null hypothesis when it is
true.”

When the null hypothesis is true, the probability of making a Type I error is equal to c.
It is impossible to make a Type I error when the null hypothesis is false.

The symbol S represents the probability of rejecting Hy when Hj, is false.

The power of a test of hypothesis is 1 — a.

It is impossible to make a Type II error when the null hypothesis is rejected.

If large sample sizes are used, there is less likelihood of a Type I error and a Type 11
error.

If an experiment is well designed and both o and 8 are small, it should be a good
experiment.

Even when a correct statistical procedure is used, it is possible to accept the null
hypothesis when it is false.

The greater the region of rejection, the more powerful the experiment.

The probability P(y is in region of rejection) = « whether the null hypothesis is true or
false.

The best point estimate 7 = y/n of the parameter 7 will lie exactly in the middle of the
95% confidence interval for .

If the degree of certainty is increased from 0.95 to 0.99, the confidence interval becomes
narrower.

Two methods of estimation are confidence intervals and tests of hypotheses.
Confidence intervals that are based on large samples are more likely to include the
population parameter than those based on smaller samples.

Other things remaining the same, the larger the value of 7, the wider the confidence
interval.

Other things being equal, the greater the level of confidence desired, the wider will be
the confidence interval.

Repeated samples of the same size from the same population will always produce 99%
confidence intervals of the same width on the binomial parameter 7.

If the confidence interval does not contain some hypothesized value 7r of the binomial
parameter, the hypothesis can be rejected.
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4 Poisson Distributions

In this chapter we look at a second family of probability distributions, Poisson distributions.
Poisson distributions are the appropriate probability model for certain types of experiments.
There is an interesting relationship between binomial distributions and Poisson distributions,
and this relationship provides a way to approximate some binomial probabilities that are very
difficult to compute directly.

4.1. THE NATURE OF POISSON DISTRIBUTIONS

Many scientific experiments involve the random sampling of one or more fixed time intervals,
lengths, areas, volumes, or other sampling units, and then observing the number of discrete
events per sampling unit. For example, a forester might count the number of white-oak trees
damaged by deer within sampling quadrants (square areas); an epidemiologist might count the
number of new cases of hepatitis in a certain county in one month; a quality control manager
might count the number of defects in 25-ft lengths of wire; an ecologist might count the
number of parasites per host. In each case the event of interest (damaged white oak, incidence
of disease, defect, parasite) is counted for a certain sampling unit (a quadrant, a month, 25 ft,
per host).

The outcomes in experiments of this type often have the characteristics of a Poisson
process. This process is named after Siméon-Denis Poisson (1781 to 1840), a French
mathematician who first studied variables of this type in 1837.

A Poisson process consists of discrete events that occur per unit (such as time, length, area,
volume, or on an object) and for which:

1. The probability of a single occurrence of the event is directly proportional to the size of
the interval, or sampling unit.

2. If the sampling unit is sufficiently small, the probability of two or more occurrences of
the event is negligible.

3. The occurrences of the event in nonoverlapping intervals or units are independent, that
is, what happens in one sampling unit has no effect on what happens in another
nonoverlapping unit.

If an experiment generates a Poisson process and the units are randomly and independently
obtained, then the appropriate probability model for the number of occurrences of the event in
the specified sampling unit is a Poisson distribution. The Poisson distribution is a discrete

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X  © 2004 John Wiley & Sons, Inc.
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probability distribution with probability function

e MY
py; ) =——
y!
fory =20, 1, .... In this probability function y is the value of the random variable, y! has the

usual meaning of y factorial, e is the constant which is the base of the natural logarithms'
(equal to 2.7183 if rounded to four decimal places), and A (the Greek letter “lambda”) is the
expected number of occurrences in the specified interval. Table A.6 in the Appendix of Useful
Tables gives values of e ~* for selected values of A.

To draw statistical inference from data modeled by a Poisson process, the appropriate
Poisson probability distribution is needed. As with binomial data, we will rely primarily on
the Poisson probability distributions given in the tables in this text. However, it is important to
see how these tables can be constructed through the application of mathematical procedures to
the probability distribution function.

Note that this probability distribution is completely determined by the parameter A. If we
know A, we can compute the distribution, as in the following example.

Example 4.1. A Poisson Probability Distribution

Suppose a certain city has a variable number of suicides per month but the mean is 3 suicides
per month. A mental health scientist wants to study this phenomenon and decides to use a
Poisson distribution to model the distribution of suicide data. The sampling unit is one month;
y is the number of suicides in that month, and E(y) = A = 3.0. Then, to compute the
probabilities of different numbers of suicides in any specific month, the mental health scientist
will use the formula

6_3 3 Y
p(y;3) = (, )
!
fory=20,1,2,....
For example, the probability that there will be O suicides in a randomly chosen month is
673(3)0
P(y=0)=p(0:;3) =—4

Since both (3)0 and 0! are each equal to 1, p(0; 3) = e~3, which can be found in Table A.6 as
0.0498. Similarly, the probability of exactly one suicide in a randomly chosen month is

—331
Poy=1=p1: 3= =)

Further computations for the distribution are simplified if it is noted that p(1; 3) =
p(0; 3)(3/1), p(2; 3) = p(1; 3)(3/2), and in general the probability of any value y can be
computed easily from the previous value, y — 1,

A
p(y; ) =p(y—1; A)(;)

"The irrational number e can also be defined as the limit of the series (1 + 1/n)", that is, (1 4+ 1/1)! = 2.0000,
(14 1/2)> =2.5000, (1 +1/3)* =2.3704, ....



EXERCISES 83

The following table is computed in this manner:

y p(y:3)
0 e 33%0! =e = 0.0498
1 e 331 = p(0)(3/1) =0.1494
2 e 33721 = p(1)(3/2) =0.2240
3 e 33%/3) =p(2)(3/3) =0.2240
4 e 33Y4 = p(3)(3/4) =0.1680
5 e 33751 = p4)(3/5) =0.1008
6 e 3% = p(5)(3/6) = 0.0504
7 e 37 = p(6)(3/7) =0.0216
8 e 33%/8 = p(7)(3/8) =0.0081
9 e 33%09! = p(8)(3/9) = 0.0027
10 e 310! = p(9)(3/10) = 0.0008
1 e 23" = p(10)(3/11) = 0.0002
12 e *3'%/12! = p(11)(3/12) = 0.0001
13 e 23131 = p(12)(3/13) = 0.0000

and p(y) = 0.0000 (rounded to four decimal places) for y > 13.

Poisson probability distributions have some interesting properties. The expected value of y
is equal to A and the variance of y is also A, that is, E(y) = V(y) = A. Also, the sum of two
Poisson random variables is a Poisson random variable; thus, if y; and y, are Poisson random
variables with parameters A; and A,, respectively, then y; + y, is a Poisson random variable
with expected value A; 4+ A,. Thus, if we make the sampling unit larger than one month and if
we can assume that the number of suicides in one month will be independent from those in
another, we can find the expected number of suicides in 2 months as E(y;) + E(y») =
3 4 3 = 6, and the expected number during the 3-month summer period (again making the
assumption of independence) will be 3(3) = 9. Similarly, if the sampling unit is made smaller,
reducing it by half, for example, we can say that the expected number of suicides in the first
half of the month will be E(y/2) = E(y)/2 = 3/2 = 1.5. These relationships are important
because we usually have a sample of more than just one Poisson random variable.

EXERCISES

4.1.1. The expected number of water mites found on a host, the chironomid fly, is 2.5 and this
is a Poisson process.

a. Are the sampling units water mites, or chironomid flies? Explain.
b. What is the probability that exactly 1 mite will be found on a fly?
4.1.2. If the accident rate at a certain factory is 7.0 per year and this is a Poisson process:
a. Find the probability that fewer than 3 accidents will occur in a year.
b. Find the probability that 3 or more accidents will occur in a year.
4.1.3. The expected number of flaws in 20-ft intervals of wire is 5.0.

a. What is the number of discrete events, feet or flaws?



84

4.14.

4.1.5.

4.1.6.

4.1.7.

4.1.8.

4.1.9.

POISSON DISTRIBUTIONS

b. What is the expected number in a random 10-ft interval?
¢. What is the probability that there will be 4 flaws in a random 10-ft interval?

In Example 4.1 in this section, involving the number of suicides per month:

a. What is the probability that no suicides will occur in a month?

b. What is the probability that more than 6 suicides will occur?

¢. What percentage of months will have at least 1 suicide but not more than 6 suicides?
Additives such as trace minerals, antibiotics, vermifuges, and insecticides are
incorporated into animal feeds in parts per million (ppm). For effective mixing, the
additives may be compressed into pellets the size of the ground grain in the feed and
then colored with vegetable dye for easy identification. Quality control for
thoroughness of mixing can be maintained by scooping out a known volume of the
mixed feed and counting the number of colored pellets of additives. If properly mixed
feed yields a Poisson process with A = 2.5 per scoop, find:

a. The probability that a scoop will contain no pellets of additive

b. The probability that a scoop will contain exactly 1 such pellet

c. The probability that a scoop will contain at least 1 pellet

d. The outcomes that are most likely to occur approximately 80% of the time

In the feed-mixing problem described in Exercise 4.1.5, suppose customary quality

control procedures require 10 independently drawn scoops from each batch of mixture.
In 10 scoops of properly mixed feed, find:

a. The expected total number of colored pellets

b. The probability that there will be no such pellets

a. Compute the Poisson distribution for each of the following values of A: 0.25, 0.50,
1.00, and 10.00. Round the probabilities to four decimal places.

b. Graph the Poisson distributions of part a.

¢. Describe the behavior of the graphs of part b.

a. Use the probabilities in Exercise 4.1.7a for A = 0.25 to find the expected value of
that Poisson distribution. Why is this value slightly different from E(y) = A
=0.25?

b. Use the probabilities computed in Exercise 4.1.7a and E(y) = 0.25 to find V(y) for

that Poisson distribution. Why is this value slightly different from V(y) = A
=0.25?

If y; and y, are independent Poisson random variables with A = 0.25, then y; + y, is
a Poisson random variable with A = 0.50. Use Exercise 4.1.7 to show that this is true
for y; + y» = 3. [Hint: Remember that y; + y, = 3 when y; and y, are respectively
0&3),3&0),1 &2),0r(2&1).]

4.2. TESTING HYPOTHESES

Using Table A.7 in the Appendix, which contains the Poisson distributions for selected values
of A, we can test hypotheses with a procedure similar to the one we used for the binomial
distribution.
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Example 4.2. Test of Hypothesis for a Poisson Parameter

A biologist studying yeast cells believes that after a certain treatment the cells will be present
at a rate of 0.55 per square of a hemacytometer (a microscopic plate usually used to count
blood cells). He finds 13 yeast cells in 20 squares and wonders if 13/20 = 0.65 indicates that a
rate of 0.55 is incorrect. To determine whether 13 cells in the 20 squares are likely to occur if
his conjectured rate is correct, he uses the Poisson distribution.

The null and alternative hypotheses are

Hy: A =0.55
H,: A # 055

Since the sum of two Poisson random variables is also a Poisson random variable, if
A =0.55 for one square, then A = 20(0.55) = 11 for 20 squares. Using Table A.7, the
biologist finds that for « as close to 0.10 as possible the region of rejection is

y=0,1,2,3,4,5,17,18,19,...

if the test statistic is the number of yeast cells per 20 squares. The actual « level is 0.0933. The
count is 13 yeast cells in 20 squares after this treatment, and since 13 does not lie in the region
of rejection, the biologist concludes that after the treatment the mean number of yeast cells per
square may be 0.55.

Statistical computer programs more often provide a P value rather than a region of
rejection, so it may be useful to see again how this probability is obtained and how it is
used to make a decision about the null hypothesis. In Example 4.2, E(y) = 20(0.55) = 11
yeast cells in 20 squares, and the observed value was y = 13, which is 2 yeast cells different
from the number expected under the null hypothesis. Because the alternative hypothesis is
two sided, the P value measures the probability of a difference from E(y) of 2 or more in
either direction, so

P=P(y<9)+P(y >13) =0.3405+0.3113 = 0.6518

A P value of 0.6518 is very large; hence a difference of this magnitude or even greater
could occur easily by chance when the null hypothesis is true. The P value would have to
be equal to or less than @ = 0.10 before we would decide the null hypothesis is false.

For small values of A the Poisson distributions have relatively large probabilities in the
lower tail, so it may be impossible to designate a small « level for a two-tailed alternative or
for a one-tailed less-than alternative hypothesis. The technique of using several units—such as
the 20 squares in the above example—helps overcome this difficulty.

Table A.7 lists a limited number of values of A, and the necessary one may not be there. If
A is not too large, the necessary probability distribution can be calculated. For large A’s
approximation methods are available; these are discussed in Chapter 7.

Procedure. Test of Hypotheses for a Poisson Parameter

Region of Rejection Method
Hy: A = Ay (A = expected number of occurrences in a specified interval)
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Ha:/\ # )\0,)\<)\0,0r/\>)t0
Significance level: a

Test statistic: y, the number of occurrences of the phenomenon of concern in a multiple of &
specified sampling units.

Using a table for the Poisson distribution with probability function p(y; A¢k), determine the
region of rejection.

For H,: A # Ag, the region of rejectionis 0 <y < ¢y and ¢y <y < oo such that ZSL p(y; Aok)
and Z: p(y; Aok) are each as close as possible to a/2.

For H,: A < Ao, the region of rejection is 0 <y < ¢, such that Y o’ p(y; Aok) is as close as
possible to a.

For H,: A > A, the region of rejection is ¢y <y < oo such that Zf‘; p(y; Aok) is as close as
possible to a.

P-Value Method

For H,: A # Ao, compute P = P(|y — Agk| > | test statistic — Agk|).
For H,: A > Ay, compute P = P(y > test statistic).

For H,: A < Ay, compute P = P(y < test statistic).

Reject Hy if P < a.

EXERCISES

4.2.1. A physicist wants to verify whether a radioactive substance has a level of radioactivity
equal to 4 radioactive particles emitted per millisecond. He measures the radioactivity
with a Geiger counter, and it records 18 particles in 3 msec.

a. What is the expected number of radioactive particles per 3 msec?

b. Compute the P value for an observed value this far or even farther from the number
expected in 3 msec.

c. Using an « of 0.05, make a test of hypothesis to determine if the radioactivity level
is significantly greater than expected.

4.2.2. A certain area of the United States has a rate of 4.5 tornadoes per year. A local religious
cult claims that its rituals can reduce this rate. The cult members conduct their rituals
and that year 2 tornadoes hit. Use a test of hypothesis with « as close to 0.10 as possible
to determine if the rate is significantly less than 4.5 per year. What assumptions are you
making as you perform this test?

4.2.3. A hospital emergency center handled victims of automobile accidents at the rate of 10
per week when the local highway had a speed limit of 70 miles per hour. After the
speed limit was reduced to 55 miles per hour, 4 highway accident victims were
admitted in a randomly selected week. Does this indicate a reduction in emergency
admissions for automobile accidents? Could you conclude that lowering the speed limit
has reduced highway accidents? Why or why not?

4.2.4. Grain sorghum is a naturally tall-growing plant, but dwarf varieties have been
developed so that the crop can be harvested with conventional farm equipment.
However, back mutation occurs frequently and tall offspring reappear in a field with an
expected value of 1.5 tall plants per 200 ft>. With each development of a new grain
sorghum hybrid, plant breeders must satisfy the farmer that the amount of back
mutation has not increased. A hybrid seed company has many experimental hybrids
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under consideration at a time, and it decides to allot only three 200-ft* plots per hybrid.
Set up a test of hypothesis for the amount of back mutation.

a.

b
c.
d

Give the null hypothesis for 3 plots.

. Give the alternative hypothesis.

Give the region of rejection for « as close to 0.05 as possible.

. Suppose that for a particular hybrid the back mutation doubles to A, = 3.0 per

200 ft?; what is the power of the test for 3 plots?

. What is the power for A, = 3.0 if only 1 plot is used? Is it advisable to use more than

1 plot?

4.2.5. The rarest white blood cell is the basophil, which constitutes only 1% of the total white
blood cells. Students who are learning to perform white blood cell counts are inclined to
mistake other cells for basophils until they have seen them often enough to recognize
them. Thus a student’s proficiency in performing differential white blood cell counts can
be tested by checking whether too many cells have been recorded as basophils. This can be
thought of as a Poisson process in which the interval is a count of 100 white blood cells.

a.

b.

State a null hypothesis indicating that the student can accurately identify the
different kinds of white blood cells.

State an alternative hypothesis indicating that the student mistakes other cells for
basophils.

. The instructor decides that any student who records 4 or more basophils per 100

cells counted cannot yet distinguish these cells properly. How likely is it that a
student will record cells correctly but have an unusual random sample of cells?

. The frequency of basophils increases after surgery. Suppose the student is counting

white blood cells from a blood smear taken under such conditions and A = 2.4 per
100 cells. How likely is it that fewer than 4 basophils are among the 100 cells
counted? Should the instructor take precautions that the students are not using blood
smears from postoperative patients?

4.2.6. A new synthetic surface has been placed on a university football field, and the team’s
physician wants to decide whether it has had any effect on the number of knee injuries
suffered in a game. Since he has been with the team, it has experienced a mean of
A = 0.7 knee injuries per game.

a.

b.
c.

If the new surface has no effect, what is the expected number of knee injuries in the
first 5 games on the new surface?

State a null and alternative hypothesis.

Suppose that there are a total of y = 7 knee injuries in the first 5 games, how likely
is a deviation from expected of this magnitude or greater to occur by chance?

. If the team’s physician sets o = 0.10, what should he conclude about the effect of

the new surface on knee injuries?

. What caveats about the design should be taken into account when the conclusion is

being drawn?

4.3. ESTIMATION

The best point estimate of the Poisson parameter A is y, the number of occurrences of the event
of interest in a randomly selected sampling unit. If several units are sampled, the total number
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of occurrences is the best estimate for the combined units. Central and one-sided confidence
intervals can be found in a manner similar to finding confidence intervals for the binomial
parameter 7. Table A.7 in the Appendix is used to find the confidence intervals for the Poisson
parameter. Because of the relatively large probabilities for low values of y, the horizontal lines
in Table A.7 are drawn so that « is as close to 0.20 as possible; thus these lines correspond to
approximate 80% central confidence intervals.

Example 4.3. A Central Confidence Interval for a Poisson Parameter

Foresters are concerned about the number of young trees destroyed by deer. Suppose a
forester chooses 4 quarter-acre quadrants at random and finds that in the four plots 8 young
trees have been destroyed by deer. She wants to estimate the damage rate per acre by an
approximate 80% confidence interval.

Using Table A.7, she finds that 8 is in the region of acceptance for A = 5.0 to A = 12.0, so
the confidence interval is

Clpgo: 5.0=<A<120

in which A is the damage rate per acre.

The upper and lower bounds on the confidence interval are limited to column entries in Table
A.7 so, as was done with the binomial distribution, another table, Table A.8, is given for
obtaining more precise upper and lower limits for the confidence interval. Using the same data
above, the forester would enter Table A.8 with row entry y = 8 and column entry 1 — a = 0.80;
she would find L = 4.6561 and U = 12.9947, and she obtains the confidence interval

Clpgo: 4.7 <A<13.0
This confidence interval expresses the expected number of damaged trees on a per-acre basis;
if she wishes to return it to a per- (quarter-acre) quadrant basis, she divides the upper and lower

limits by £ = 4 and obtains

CI()'g()Z 12<A<32

The greatest row entry for Table A.8 is y = 20, and this may not be sufficiently large for
some estimates of A. However, this problem will be addressed in Chapter 7, where it will be
seen that when A is large another distribution can be used to approximate the Poisson
distribution.

One-sided confidence intervals can also be determined.

Example 4.4. A One-Sided Confidence Interval for a Poisson Parameter

The architect for a new hospital in a small city needs to know the maximum number of
emergency cases that can be expected in a half-hour period in order to plan adequate facilities.
He examines the records at the existing city hospital, which is being replaced; a random
selection of 10 half-hour periods gives a total of 6 emergency cases. He can use Table A.7 to
find an approximate 90% one-sided confidence interval:

One-sided Clpgp: A <9.0
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if A is for a 5-hour period because 9.0 is the largest value of A for which 6 would be in the
region of acceptance. Or he could write

One-sided Clpgp: A < 0.90

if A is for a half-hour period.

The one-sided confidence interval indicates that the largest expected value of the Poisson
distribution that is likely is 0.90; that is, the largest mean number of cases in a 30-minute
period is 0.90. Since 0.90 is the mean, some of the 30-minute periods will have more cases and
others less. Since the number of cases in a 30-minute period will usually be within two
standard deviations of the expected value A and in a Poisson distribution A = V(y), the
architect can prepare for the worst situation,

X = V(y)=0.90

sd(y) = +v/A =095
and the largest number of cases is not likely to be more than
A+ 2sd(y) = 0.90 4+ 2(0.95) = 2.80

To be safe, he plans to be able to accommodate 3 cases each half hour.

Procedure. Confidence Intervals for A

Central

1. Specify a.

2. Take a sample of k sampling units.

3. Observe y, the number of occurrences of the phenomenon of interest in the k units.

4. Give the interval of all values of A for which y would fall in the region of acceptance
for a two-sided a-level test from Table A.7 (or use Table A.8 to get the interval
directly).

5. Divide the confidence limits by k to determine the central confidence interval for the
rate A for intervals of the specified unit.

One-Sided, Upper Confidence Limit

Proceed as for a central confidence interval, but in step 4 use the region of acceptance for a
one-tailed less-than test of hypothesis in Table A.7 (or double « and use only the upper limit in
Table A.8).

One-Sided, Lower Confidence Limit

Proceed as for a central confidence interval, but in step 4 use the region of acceptance for a
one-tailed greater-than test of hypothesis in Table A.7 (or double « and use only the lower
limit in Table A.8).




90

POISSON DISTRIBUTIONS

EXERCISES

4.3.1.

4.3.2.

4.3.3.

4.34.

4.3.5.

4.3.6.

If 3 noxious weeds are found in a 0.25-0z random sample of grass seed, use the Poisson
probability distribution to find an 80% confidence interval for the expected number of
weeds per 0.25 oz of seed. (Note that using the Poisson model here avoids the necessity
of counting all the seeds, a tedious task.) Compare the intervals obtained from
Tables A.7 and A.8.

If 8 defects are found in a production process during a random 5-minute interval,
find with 90% of confidence the largest mean number of defects that could be
expected to occur in a 5-minute period. Compare the intervals obtained from Table
A.7 and A.8.
It is found that there are 6 fatal accidents in an underground coal mine for a sample of
20,000,000 employee hours of exposure. Place an approximate 80% confidence
interval on the Poisson parameter if the interval is 100,000 employee hours.
In the quality control process described in Exercise 4.1.5, place an approximate 90%
confidence interval on the smallest mean number of pellets expected in 1 scoop if 7
pellets are found in 4 random scoops.
Sir Francis Galton (1822 to 1911), one of the early developers of experimental
statistics, believed everything could be measured, even boredom. His measure of
boredom was a Poisson statistic, the number of signs of unrest that an individual
would show per minute. Suppose a student wants to measure how boring a classmate
finds the statistics class, so he counts the number of times she yawns, fidgets, looks
at her watch, and so on, during 16 half-minute intervals of observation, and the total
is 10.
a. With regard to this survey:
i. Why must the friend be unaware that her behavior is being observed?

ii. Why can the time of observation not be for 8§ consecutive minutes?

iii. Is it valid to assume that E(A) remains constant throughout the class period?
b. Place an 80% confidence interval on the number of signs of boredom she shows per

minute.
¢. Do you think a survey of this nature is valid? Ethical?
Suppose the data on trees destroyed by deer in Example 4.3 had been obtained by
sampling a 100-acre forest.
a. What is the estimated number of young trees destroyed by deer in the entire forest?

b. Set an upper 90% confidence limit for this estimate to get an upper bound for the
total number of trees destroyed in the entire forest.

4.4. POISSON DISTRIBUTIONS AND BINOMIAL DISTRIBUTIONS

Besides being useful in its own right, the Poisson distribution is often used as an
approximation of the binomial distribution if the number of trials 7 is large and the probability
of success on a single trial 7 is small. The approximation is possible because it can be shown
mathematically that, if 77 becomes very small while n becomes very large and the product nr
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remains constant, then the binomial distribution will be approximately a Poisson distribution
with A = nr and the Poisson sampling unit the set of n trials.

Example 4.5. Using a Poisson Distribution to Approximate a Binomial Distribution

A geneticist believes that in a certain experiment the mutation rate is 4 in 1,000,000. She
would like to find the probability that in a random sample of 25,000 she will observe no more
than one mutation. This experimental situation is appropriately modeled by the binomial
distribution b(y; 25,000, 0.000004) and she wants to compute

P(y < 1) = b(0; 25,000, 0.000004) + b(1; 25,000, 0.000004)

25,000
B ( 0 )(0'000004)0(0.999996)25,000

25,000
+( ] )(0-000004)1(0.999996)24999

This computation is not feasible directly, and logarithms or a calculator with a y* function
would have to be used to compute an approximate answer.

Instead, the geneticist could approximate this probability by using a Poisson distribution.
The Poisson parameter would be A = nz = 25,000(0.000004) = 0.100000; that is, the
expected number of mutations per 25,000 trials is 0.1. For the Poisson distribution

P(y <1)=p(0; 0.1) + p(1; 0.1)

e 10.1)° e 010.1)!
_ e O1)7 0D

0! 1!
= 0.904837 + 0.904837(0.1)
=0.995321

Using this very simple computation, the geneticist can be relatively certain that in a random
sample of size 25,000 she will observe no more than one mutation.

This approximation of the binomial distribution by the Poisson distribution is good only
for small 7r and large n. Some statisticians suggest as a rule of thumb that A = n7r should be
less than 7.

Procedure. Poisson Approximation of a Binomial Distribution

For n < 7, a binomial distribution may be approximated by a Poisson distribution: b(y; n, m)
is approximated by p(y; n).

It is important that we recognize the difference between a Poisson distribution and a
binomial distribution so that we use the proper one to model an experiment and so that we
know when it is appropriate to approximate a binomial by a Poisson. The following summary
may be helpful:
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Binomial

Poisson

. Random variable:
y = number of successes in n trials

. Number of trials:
n, a finite number

. Two parameters:
71 = probability of success for a single

trial
n = number of trials
. E(y)=nm

. Random variable:

y = number of successes in a specified
sampling unit

. Number of trials:

infinite, since we count discrete events
(successes) in a unit

. One parameter:

A = mean number of successes per
sampling unit

CE(y) =V =24

V(y)=nm (1 — m)

EXERCISES

44.1.

4.4.2.

44.3.

4.4.4.

44.5.

If it is known that the probability of having a bad reaction to a certain injection is 0.001,
what is the probability that more than 1 person in 100 will have a bad reaction?

If the rate of accidental drownings per year is 0.000003 (i.e., 3 per 1,000,000
population), what is the probability that there will be more than 2 drownings in a city
with a population of 400,000?7

A manufacturer of TV sets initiates an inspection system to reduce the number of defective
sets leaving the plant. Prior to this system the proportion of defective sets was 1 in 80. After
the new system is in effect, in a random sample of 320 sets there are 2 defective sets. Use a
test of hypothesis to decide if the proportion of defects has been reduced.

Suppose routine blood typing for 400 army recruits reveals that 6 of them have AB-
negative blood.

a. What assumptions would you have to make for this to be considered a random
sample of army personnel? Of the entire country?

b. Place an approximate 80% confidence interval on the proportion with AB-negative
blood among army recruits.

c. Assuming it can be justified, place an approximate 80% confidence interval on the
proportion of those with AB-negative blood in the entire country.

Fish and game commissions measure the hunting pressure on large game in their states
by taking random samples of hunters and recording their successes during the hunting
season. The following data record the number of white-tailed deer taken by a random
sample of 50 Texas deer hunters:

Number of

Deer Killed Hunters
0 45
1 4

2 1
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Because the fish and game commission wishes to protect against overhunting, place an
approximate 90% of confidence interval on the largest mean number of deer taken per 50
hunters in the state.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If the statement is false,
explain why.

4.1.
4.2.
4.3.

4.4.

4.5.

4.6.
4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.
4.16.

4.17.
4.18.
4.19.

4.20.

In a Poisson distribution, E(y) = n and V(y) = nw (1 — ).
Poisson data consist of discrete, countable observations.

Because E(y) is usually small for a Poisson distribution, a relatively large number of
sampling units is needed to estimate A effectively.

A unique characteristic of Poisson distributions is that for any specified distribution the
expected value will be numerically greater than the variance.

The Poisson distribution is sometimes called the “distribution of rare events” and hence
is seldom encountered in experimentation.

The shape of a Poisson frequency distribution is symmetrical around its expected value.

In testing a hypothesis about the Poisson parameter, the alternative hypothesis may be
one tailed or two tailed.

Confidence intervals for a Poisson parameter are symmetrical around the point
estimate y.

There is a separate Poisson distribution for every value of A and n.

The Poisson distribution can always be used to approximate the probabilities of a
binomial distribution.

Because A is usually small, small values of y are much more probable than large values
when sampling from a Poisson distribution.

The power of a test of hypothesis for the Poisson parameter is increased as the number
of units sampled is increased.

Because the random variable y can be an integer value between O and infinity, the
Poisson distribution is a continuous probability distribution.

A characteristic of the Poisson distribution is the relationship p(y; A) = p(y — 1; A)
(A/).

The mean and standard deviation of the Poisson distribution are both A.

If certain conditions are met, arithmetic can be simplified by using the binomial
distribution to approximate the Poisson.

If there is only one sample unit, y is the best point estimate of the Poisson parameter.
The Poisson parameter must be a positive value.

One may have a countable number of discrete events which occur in a specified
sampling unit but still not have a Poisson process.

pO:A) =e .
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5 Chi-Square Distributions

In this chapter we study some uses of a continuous probability distribution called the chi-square
distribution. Although this theoretical probability distribution is usually not a direct model of a
population distribution, it has many uses when we are trying to answer questions about
populations. For example, the chi-square distribution can be used to decide whether or not a set
of data fits a specified theoretical probability model—a “goodness-of-fit” test. It can also be
used to decide whether or not several samples came from the same population even when the
model of the population is unspecified—a chi-square test of homogeneity. It is possible to
make these and other decisions about populations because the chi-square distribution is often
a model for the distribution of some statistic obtained by sampling from the population.

5.1. THE NATURE OF CHI-SQUARE DISTRIBUTIONS

In 1876, Frederick R. Helmert did some of the early work on the theoretical chi-square
distributions. We can get some feeling for the nature of these distributions from the graphs of
their probability density functions (Figure 5.1). The symbol usually used for the chi-square
random variable is the compound symbol x* (the exponent should not be confused with the
squaring operation).

If ¥ is a random variable with a chi-square distribution:

1. ¥ is a positive real number.

2. The density function f(x?) for x* depends on only one parameter, v (pronounced “nu’),
called the degrees of freedom.

. The expected value of )* is equal to the degrees of freedom, that is, E(x?) = v.

. The variance of )? is two times the degrees of freedom, that is, V) = 2v.

. The maximum value of f(x*) is at y* =v — 2 if v > 2.

. The graph of f(}*) is not symmetrical but approaches symmetry as the degrees of
freedom increase.

AN N B W

Table A.9 in the Appendix of Useful Tables gives selected critical values for some of the
chi-square distributions. The degrees of freedom are listed at the left; thus each row is from a
different chi-square distribution. The headings at the top of the columns give «, the area to the
right of the chi-square values listed in the tables. For example, if x* has a chi-square
distribution with 4 degrees of freedom, then a vertical line at y* = 0.484 divides the chi-
square distribution so that & = 0.975 of the area under the curve is to the right of 0.484 and
1 — a = 0.025 of the area is to the left (see Figure 5.2). We write X(z)‘975,4 = (0.484. Critical

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X  © 2004 John Wiley & Sons, Inc.
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%)

2
X

FIGURE 5.1. Chi-square distributions with v degrees of freedom. (Adapted from P. G. Hoel, Elementary
Statistics, 4th ed., Wiley, New York, 1979, p. 249.)

values are used to determine regions of rejection because for continuous random variables
areas correspond to probabilities. The probability that a chi-square random variable with 4
degrees of freedom has a value greater than 0.484 is equal to 0.975.

Another example is given in Figure 5.3. If x* is a chi-square random variable with 15
degrees of freedom, then 5% of the area is to the right of a vertical line at }* = 24.996 and

Fx®

X ?).975.4 =0.484

FIGURE 5.2. Meaning of values in the chi-square table.
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Ax?)
v=15

5%

N N S S IS Y N S B
0 2 4 6 B 10 12 14 16 18 20 22 24 \26 X2

24,996

FIGURE 5.3. A chi-square distribution.

95% of the area is to the left of this line, or x§ s ;5 = 24.996. This distribution has a mean of
15, a variance of 30, and the graph has a maximum at 13.

Helmert studied these theoretical distributions with apparently no idea that they could be
used for a test of significance. In 1900 Karl Pearson was able to use Helmert’s chi-square
distributions to test hypotheses about multinomial experiments. A multinomial experiment is
a generalization of a binomial experiment.

A multinomial experiment is an experiment in which:

1. There are k possible outcomes and the probability of the ith outcome is 7; with

Zf;l m = 1.

. The experiment is repeated n times, that is, there are n trials.
. The 7r;’s are constant from trial to trial.
. The trials are independent.

whn A~ W N

. We are interested in o;, the number of times the ith outcome occurs; E kL oi=n.

Note that a binomial experiment is a multinomial experiment with 7 = 7, m =1 — 7 in
which 7 is the probability of success on a single trial, and 0, =y, 0, = n — y in which y is the
number of successes in n trials. Like the binomial distribution, the expected number of
occurrences of the ith outcome is nr;.

Example 5.1. A Multinomial Experiment

If palomino horses are bred to other palominos, they produce progeny in the ratio of 1 dark-
colored colt to 2 palominos to 1 light-colored colt. An experiment involving a random sample
of 96 colts of palominos would be a multinomial experiment.

1. There are k = 3 outcomes: dark, palomino, light.

P(dark) = 1/4 = ar(; P(palomino) = 1/2 = m,; P(light) = 1/4 = m3;
1/4+1/24+1/4=1.

n=96.

. The 7;’s are constant from trial to trial.

. Since this is a random sample, the trials are independent.

woAWN

. We are interested in the number of colts of each color type.
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If a geneticist questioned whether the ratios specified above were correct, he could use
Pearson’s approach to resolve the question. Pearson was looking for a simple statistic, a value
that could be easily computed and that would indicate whether the results of an experiment
deviated from expected results. He proposed the following statistic:

W Z(Oi ;ei)z

i=1

in which e; = n1r;, the expected value of 0,. A small value of w would indicate close agreement
of the experimental results with the theory and a large value would indicate disagreement with

the theory.
Pearson’s statistic is a discrete random variable since it is composed of arithmetic
operations on the discrete random variables 04, 0,, . .. , 0;. The probability distribution of w

can be shown to be approximately Helmert’s chi-square distribution with k — 1 degrees of
freedom. Since the probabilities have been tabulated for the theoretical chi-square
distribution, it is possible to use Pearson’s statistic in a more precise way than just as a
descriptive statistic; we can do a statistical test of hypothesis. Since Pearson’s statistic is
approximately a chi-square random variable, many people write

¥ = Z(Oi —e)?

y e;

i=1

We also write X2 instead of w. It should be remembered, however, that the theoretical chi-
square distribution studied by Helmert is a continuous probability distribution, whereas
Pearson’s statistic, which arises from multinomial experiments, is a discrete random variable.
A test of hypothesis to check that specified probabilities in a multinomial experiment are
correct is called the multinomial chi-square test.

Example 5.2. A Multinomial Chi-Square Test

The geneticist mentioned above found that in the random sample of 96 colts of palominos
there are 21 dark-colored colts, 52 palomino colts, and 23 light-colored colts. He wants to
check whether 7 = 1/4, m = 1/2, and 73 = 1/4 are correct parameters for a probability
model. Thus he decides to test

against
H,: #* ! or #* ! or #* !
ar M 2 m 5 3 2

that is, at least one inequality. He will reject the null hypothesis if the experimental results are
unusual when the null hypothesis is true, that is, if they occur by chance alone less than
a = (.05 of the time.
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The expected number in each category is

1
e =nm = 96<Z> =24

1
€) =NnNm = 96<§>

1
e3 =nm = 96<Z> =24

48

He then uses the following table to organize his computations.

Observed Expected
Category o; e; 0; — ¢ (0; =€)’ (0; = e)’/e;
Dark 21 24 -3 9 0.375
Palomino 52 48 4 16 0.333
Light 23 24 -1 1 0.042

x> = 0.750

Since there are k = 3 categories, this statistic is distributed approximately as the chi-square
random variable with v = 3 — 1 = 2 degrees of freedom. Referring to Table A.9 and recalling
that large deviations from the expected values will give a large chi-square statistic, the
geneticist finds that for v = 2 the theoretical chi-square value of 5.991 divides the lower 95%
of the distribution from the upper 5%. He will reject the null hypothesis if the chi-square
statistic is greater than or equal to 5.991. Since this is not the case, he concludes that there is no
evidence that the theory is incorrect and that the specified ratios may be correct.

If the geneticist in this example wanted to find the P value associated with this test, P
would equal P(x* > 0.750). It is not possible to find the specific value of this probability from
Table A.9. Using the second row, for v = 2, the most that can be said is that P > 0.05.

Since binomial experiments are a special case of multinomial experiments, the
multinomial chi-square test can be used to test the correctness of a binomial parameter. There
will be two categories, success and failure, and thus one degree of freedom. This procedure
has an advantage over the test given in Chapter 3; it is independent of sample size and the
specified binomial parameter, so a multitude of binomial tables is unnecessary—Table A.9 is
sufficient. If the experimenter had to rely on available binomial tables, he might be tempted to
tailor the experiment to fit the table. He might pick a sample size that appears in the table even
if it is not the best sample size; or he might discard data if he cannot control the sample size (as
in many genetics experiments) so that it fits the tables. Needless to say, these are not ideal
scientific procedures. The multinomial chi-square test helps to avoid these pitfalls.

There are two disadvantages, however, to using a multinomial chi-square test when testing
a binomial parameter. First, because of the nature of the chi-square statistic, one-tailed
alternatives are more involved than we will discuss here. Thus, if a one-tailed alternative is
desired, the exact binomial distribution should be used (in the case of large sample sizes, the
approximation procedure that will be explained in Chapter 7 may be used). The second
disadvantage is that the approximation of the discrete sampling chi-square distribution by the
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continuous theoretical chi-square distribution is not very good for 1 degree of freedom with
small sample sizes. For n < 25, a continuity correction should be made in the chi-square
statistic:

k ol 2
corrected y* — ZM

i=1 éi

For degrees of freedom other than 1, there is no appropriate continuity correction.
However, except for very small samples, the approximation of the discrete chi-square
distribution by the continuous one is good. Some statisticians recommend that all expected
values should be at least 5 in order to have an acceptable approximation. Others feel this is too
conservative and indicate that no expected value should be less than 1, and not more than 20%
of the expected values should be less than 5. We suggest these latter guidelines. If these
conditions are not met, it is sometimes possible to combine categories to raise the expected
value. Care should be taken, however, that the experimental question can still be answered
when the categories are combined.

Besides being convenient, the chi-square test has another property to recommend it. In
many situations the chi-square test is the most powerful one available—that is, it is the test
that is most likely to detect a deviation from the null hypothesis if one exists.

Procedure. Multinomial Chi-Square Test

Hy: m = my,, M = My, ..., T = T,

H,: At least one inequality

Significance level: o

Test statistic:

k
P = Z (0; — €)’

i—1 éi
o; = observed number of outcomes inith category

k
e; = nm;, wWith n = E 0;

i=1

Region of rejection: x* > x2,_,

EXERCISES

5.1.1. Use Table A.9 in the Appendix of Useful Tables to find the following:

a. X20.01,7
b. X(2).995,|o
C. X20.025,70
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5.1.6.
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d. P(y* > 31.410) if ¥* is a chi-square random variable with 20 degrees of freedom

e. P()* < 27.488) if y* is a chi-square random variable with 15 degrees of freedom

f. b if P(Y* > b) = 0.05 and y* is a chi-square random variable with 10 degrees of
freedom

g. bif P(* < b) = 0.995 and y* is a chi-square random variable with 22 degrees of
freedom

h. the degrees of freedom if P(y* < 0.831) = 0.025 and x* is a chi-square random
variable

Computer programs for producing tables of random digits are often called pseudo-
random-number generators because there is no way to prove that the digits are in
random order. However, some properties of randomness can be tested. As an exercise,
suppose that the 50 digits in row 1 of Table A.1 in the Appendix are a random sample.

a. State a null hypothesis about the proportion of even digits if the table is random.
b. State an alternative hypothesis that would indicate a lack of randomness.

c¢. Use a multinomial chi-square test with a = 0.05 to test the above null hypothesis.

Assume the first three rows of Table A.1 are a random sample of size 150 and test that
each of the digits 0, 1, ..., 9 is equally frequent in the whole table by means of a
multinomial chi-square test (o = 0.05). What is the P value associated with this test?
Within some populations the proportion of those who are carriers of the sickle-cell
trait is estimated to be 30%. A public health officer on a Caribbean island wonders
whether this estimate is correct for the citizens of that island. Assuming that it will be
a random sample, he requests that the next 150 blood tests performed in a certain
clinic also include a microscopic examination for the sickling phenomenon. Given that
there are 57 cases of sickling in the sample, perform a multinomial chi-square test to
determine whether this proportion is correct. Use a = 0.05. State the final conclusion.
When a certain red-flowering plant is self-fertilized, genetic theory indicates that the
plants developed from the resulting seed should be in the ratio of 3 red-flowering
plants to 1 white-flowering plant. If a random sample of 100 such seeds is collected
and 68 produce red-flowering plants, 29 produce white-flowering plants, and 3 do not
germinate, do these results agree with the theory? Use a multinomial chi-square test
with @ = 0.01. What assumption must be made about the nongerminating seeds for
this to be a valid test?

Analyze the data in part d of Exercise 3.2.3 by means of a multinomial chi-square test
at a = 0.05. Since the sample size is below 25 and there is only 1 degree of freedom,
use the continuity correction. Does your conclusion agree with the conclusion you
reached in Exercise 3.2.3?

A congressional representative circulates a questionnaire to all constituents to
determine which national issue should be given the highest priority. A random sample
of 500 gives the following:

Number Who Felt This Issue

Issue Deserves Highest Priority
Pollution 40
Economy 97

Energy 31
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Number Who Felt This Issue

Issue Deserves Highest Priority
Medical care 85
Foreign policy 53
Defense 71
Questionnaire not returned 123

The representative wants to know if there is a preference for one of the issues. Test the
hypothesis that all of the issues are equally preferred against the hypothesis that some
preference exists. What is the P value? What conclusion should the representative
draw from this study? What assumption must be made about those who did not return
the questionnaire in order for this analysis to be valid?

On the basis of size, blue crabs are categorized by marine biologists as young,
juvenile, mature. In a healthy crab population that is being acceptably harvested by
commercial fishermen, the percentage of each type is

50% young 30% juvenile 20% mature

Deviations from these percentages usually indicate an unhealthy or overfished
population. Fish and game biologists can dredge the bottom of a bay or estuary with
nets to obtain a sample of crabs in an area close to commercial crabbing to determine
if there is an unacceptable distribution of ages. Suppose that a small bay is dredged
and the following categories of crab are netted:

58 young 33 juvenile 39 mature

. Give the most logical null and alternative hypotheses for this study.
. For this study, which is more serious, a Type I or Type II error? Why?
. Perform a test of significance at o = 0.05.

. What is the experimental conclusion?

e & 60 T oo

. Suppose itis known that fishermen keep all mature and some juvenile crabs they net;
all others are released unharmed. It is also known that young crabs are most
susceptible to pollution, with juveniles the second most susceptible. Based on this
information and the test of significance, which of the following is the appropriate
action?

i. Allow continued harvesting of crabs in the bay.

ii. Close the bay to commercial crabbing because of overfishing.
iii. Close the bay due to possible pollution.
iv. Close the bay because of both overfishing and possible pollution.

In studying the genetic association between hair and eye color in human beings, a
geneticist might hypothesize that the genes for hair color and eye color are located on
the same chromosome. If a large group of dark-haired and brown-eyed people were to
intermarry with another large group of light-haired and blue-eyed people, Mendel’s
law could be used to predict the characteristics of the second generation if the genes
for hair color and eye color were on different chromosomes. The ratio of dark-haired
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and brown-eyed people to dark-haired and blue-eyed people to light-haired and

brown-eyed people to light-haired and blue-eyed people would be 9:3:3:1. If the

genes are on the same chromosome, this ratio does not appear.

a. What are the null and alternative hypotheses that should be used for this
experiment?

b. Assume 1317 offspring of this type are located and classified with the following
results:

Dark hair, brown eyes 782

Dark hair, blue eyes 234
Light hair, brown eyes 241
Light hair, blue eyes 60

What should the geneticist conclude?

5.1.10. In a certain state the distribution of the population by age is as follows:

Age Population
(years) (thousands)
Under 15 475
15-24 304
25-34 182
35-44 190
45-54 208
55-64 170
65-74 111
Over 74 72

a. Find the proportion of the population in each age group.

b. A certain planned city in this state claims that its inhabitants have the same
proportion of people in each age group as the state as a whole. What null and
alternative hypotheses should be used to test its claim?

c. If the city has a population of 12,500, compute the expected values for each age
category if the null hypothesis is true.

d. If the city has the following distribution of ages, complete the test at the 5%
significance level and state the conclusion.

Age Population
(years) (thousands)
Under 15 3016
15-24 2438
25-34 2037
35-44 2031
45-54 1253
55-64 977
65-74 585

Over 74 163
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5.2. GOODNESS-OF-FIT TESTS

The multinomial chi-square test discussed in Section 5.1 is one type of goodness-of-fit test. It
can be used to determine if the outcomes from a multinomial experiment fit a distribution with
specified proportions of responses in certain categories.

A similar procedure can be used to determine whether a response variable for some
population can be modeled by some other probability distribution. For the case in which the
parameters of the probability distribution are known, the test is very similar to the multinomial
chi-square test. If the parameters are unknown and must be estimated, an adjustment in the
degrees of freedom is necessary.

Example 5.3. Goodness-of-Fit Test with a Specified Parameter

Each day a salesperson calls on 5 prospective customers and she records whether or not the
visit results in a sale. For a period of 100 days her record is as follows:

Number of sales: 0 1 2 3 4 5

Frequency: 15 21 40 14 6 4

A marketing researcher feels that a call results in a sale about 35% of the time, so he wants to
see if this sampling of the salesperson’s efforts fits a theoretical binomial distribution for
5 trials with 0.35 probability of success, b(y; 5, 0.35). This binomial distribution has the
following probabilities and leads to the following expected values for 100 days of records:

y p(y) e = 100p(y)
0 0.1160 11.60
1 0.3124 31.24
2 0.3364 33.64
3 0.1812 18.12
4 0.0487 4.87
5 0.0053 0.53

Since the last category has an expected value of less than 1, he combines the last two
categories to perform the goodness-of-fit test.

Observed Expected
Category Frequency Frequency
A; 0; P(A) € 0; — ¢€; (0; = ei)2 (0; = ei)z/ei
0 15 0.1160 11.60 3.40 11.5600 0.9966
1 21 0.3124 31.24 —10.24 104.8576 3.3565
2 40 0.3364 33.64 6.36 40.4496 1.2024
3 14 0.1812 18.12 —4.12 16.9744 0.9368
4or5 10 0.0540 5.40 4.60 21.1600 3.9185

x> = 104108
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In this goodness-of-fit test the hypotheses are:

Hy: This sample is from b(y; 5, 0.35)
H,: This sample is not from b(y; 5, 0.35)

The degrees of freedomare v =k — 1 =5 — 1 = 4. The critical value is xJ os 4 = 9.488. The
null hypothesis is rejected if this value is exceeded. Thus the marketing researcher rejects the
null hypothesis. The sales do not follow the pattern of this binomial distribution.

If the salesperson has no idea of the proportion of the times she is successful, she could
estimate 7 by dividing the total number of sales by the total number of visits, 187/500
= 0.374. She could then test to see if her sales fit b(y; 5, 0.374). The procedure is similar to the
above, except now the degrees of freedom are k — 2 =5 — 2 = 3. One additional degree of
freedom is lost because of the estimated parameter. In general, v =k — 1 — r, where r is the
number of parameters that are estimated.

A goodness-of-fit test for a Poisson distribution can be done in a similar manner.

Example 5.4. Goodness-of-Fit Test with an Unspecified Parameter

If the same typesetter sets all the copy for a book, the error rate should be approximately the
same throughout the book. With this assumption, the number of misprints per page may be a
Poisson random variable. To check whether the Poisson model is correct, an efficiency expert
collects the following data from a random sample of 100 pages:

Number of mistakes per page: 0 1 2 3 4 5 6

Observed frequency o;: 13 24 31 18 11 2 1

He wants to test
Hy: This sample is from a Poisson distribution
against
H,: This sample is not from a Poisson distribution

To estimate A, the average number of errors per page, he computes the total number of errors
and divides by the number of pages, 200/100 = 2.00. Thus 2.00 is an estimate of A in the
Poisson distribution. Looking at the Poisson distribution with A = 2.00, he finds

Y Probability
0 0.1353
1 0.2707
2 0.2707
3 0.1804
4 0.0902
5 0.0361
6 0.0120
Over 6 0.0045
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If these 8 categories are used for a goodness-of-fit test, the expected values for the last
3 categories will all be less than 5. Since 3/8 = 0.375, too many expected values are under
5. To take care of this, he can combine the last three categories and compute the chi-square
statistic as follows:

Category A; Observed o; P(A) Expected e;

0 13 0.1353 13.53

1 24 0.2707 27.07

2 31 0.2707 27.07

3 18 0.1804 18.04

4 11 0.0902 9.02

Over 4 3 0.0526 5.26
100

and

.2
=l s

i1 €

The null hypothesis will be rejected if this computed chi-square value is greater than or equal
to )(605’4 = 9.488. There are 4 degrees of freedom because v=k — 1 —1=6 — 2 =4, the
additional degree of freedom is lost because of the estimation of A. The efficiency expert does
not reject the null hypothesis in this study, and he concludes that the errors per page may be
modeled by a Poisson distribution.

Both of the examples used in this section concern discrete probability distributions. It is
also possible to do a chi-square goodness-of-fit test for continuous probability distributions.
An example is given in Exercise 7.1.7.

Procedure. Chi-Square Goodness-of-Fit Test

Hy: This sample is from distribution A

H,: This sample is not from distribution A

Significance level: a

Test statistic:

k 2
X2 _ Z (0i — &)
P
0; = observed number of outcomes in category A;

k
e; =nPA;) n= Zoi
i=1
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Region of rejection:

X = Xew

v=k—1-r

r = number of parameters in distribution A estimated from the sample

EXERCISES

5.2.1.

5.2.2.

5.2.3.

5.24.

5.2.5.

Sixty sample groups of 4 persons in each group contain the following distribution for
the number of persons with type O blood:

Number with type O: 0 1 2 3 4

Frequency: 8 18 21 8 5

Are these sample groups of four from the binomial distribution b(y; 4, 0.40)? What is
the P values?

Assume the number of defects in a hundred 20-ft sections of wire are

Number of defects: 0 1 2 3 4

Frequency: 88 10 1 0 1

Does this fit a Poisson distribution with A = 0.10?

A campground has 5 rustic campsites not accessible to campers on wheels. Some
nights, some of these campsites are unoccupied because of the small number of
campers with equipment for such campsites. The ranger keeps track of the number of
unoccupied sites for 50 nights.

Number unoccupied: 0 1 2 3 4 5

Frequency: 22 20 7 1 0 0

Do these data fit a binomial distribution?
If the number of parasites found on 80 hosts are

Number of parasites: 0 1 2 3 4 5

Number of hosts: 20 28 19 9 3 1

does this fit a Poisson distribution?

It seems that the history of the Supreme Court with respect to the occurrence of
appointments within a year might be an example of a Poisson distribution (Kinney,
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1973; Wallis, 1936). Test the following data for Poissonness using a chi-square
goodness-of-fit test at the 0.05 significance level:

Number of Number of Years
Appointments per Year (1790-1972)

0 108

1 55

2 19

3 1

4 or more 0

5.3. CONTINGENCY TABLE ANALYSIS

With goodness-of-fit tests, we can determine whether a single sample comes from a
population that has a certain probability model. Sometimes we want to know whether or not
several samples all come from the same population and perhaps we do not even know the
appropriate model for the population. A chi-square test of homogeneity can often be used in
this case.

For example, a speech pathologist might want to know whether the proportion of males
among stammerers and the proportion of males among lispers are the same. Her null and
alternative hypotheses are

H()Z s = T,

H,: 7s #

in which g is the proportion of stammerers who are male and 7 is the proportion of lispers
who are male. Note that the values of 7rg and 7, are not specified in the null hypothesis. (The
proportions for females could also be included in the null hypothesis, but this is unnecessary
since there are only two classes, male and female, and the proportions must sum to 1.)

The speech pathologist collects information from two random samples, one of stammerers
and the other of lispers (that is, a stratified random sample), and arranges the data in the form
of a two-way table called a contingency table. (The following data are simplified in order to
keep the arithmetic simple in this first example.)

SAMPLES
Stammer Lisp
Male 32 28
Female 18 22
Total 50 50

The proportion of males in the sample of stammerers is 32/50 and the proportion of males
in the sample of lispers is 28/50. Are these sample proportions so different that they indicate
that the population proportions are not equal, g # 7?7 To answer this, the speech
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pathologist computes the total number of males and females in the samples and uses these
totals to find the expected value for each of the cells in the two-way layout if the null
hypothesis is true.

OBSERVED EXPECTED
Stammer  Lisp Total Stammer  Lisp Total
Male 32 28 60 Male 30 30 60
Female 18 22 40 Female 20 20 40
Total 50 50 100 Total 50 50 100

The expected number of male stammerers is 30 because if the two populations are the
same, 60/100 = 0.60 of the people with speech problems are males and 0.60(50) = 30, that
is, there are 50 stammerers and 30 of them on the average should be males. There are two
ways that the rest of the cells can be filled with expected values. Each expected value can be
computed similarly to the one for the male stammerers; however, since the totals are known,
the remaining cells can be filled by subtraction. For example, the expected number of male
lispers is 60 — 30 = 30.

To find the expected value for a cell directly from the totals, we divide the product of the
two corresponding marginal totals by the grand total. For the male stammerers this is
(50)(60)/100 = 30. We can summarize this procedure by using the following symbols in
which 7 identifies the row and j the column.

OBSERVED Total EXPECTED
o1 012 o1. eq1 e
021 022 02, €1 €22
Total 0, 05 o..
(0:.)(0,)
e,-j =
0.

Once we have found the expected value, the y” statistic is computed in the usual way.

Class o e;  op—ey  (oy—ep)’ (05— ep)’/ey
Male, stammer 32 30 +2 4 0.133
Female, stammer 18 20 -2 4 0.200
Male, lisp 28 30 -2 4 0.133
Female, lisp 22 20 +2 4 0.200
X° = 0.666

In a chi-square test of homogeneity, the degrees of freedom are v= (r — 1)(c — 1) in
which r is the number of rows and c is the number of columns. In this illustration v = 1. This
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corresponds to the fact that once we have computed one expected value from the totals in the
two-by-two layout, all of the other values are determined.

The critical chi-square value for 1 degree of freedom is X(2).05,1 = 3.841, and the null
hypothesis is rejected if the chi-square statistic is greater than or equal to this value. The
speech pathologist notes that the computed chi-square value is less than the critical value, and
she decides that the proportion of males among stammerers may be the same as the proportion
of males among lispers. She concludes that when males are tested for speech problems they
should not be tested for a specific problem such as stammering but should be given a general
test that would identify both stammerers and lispers.

A chi-square test of homogeneity is used to determine whether two or more samples are
from the same multinomial population. In the example just completed, the decision concerned
two samples from binomial populations. In the next example three multinomial samples will
be examined.

Example 5.5. Chi-Square Test of Homogeneity

A political scientist is interested in determining how important the promise of no tax increase
is for voters of different political affiliations. Using voter registration lists, she chooses
random samples of 100 from each of the groups, Democrats, Republicans, and Independents,
and she asks the subjects to rate the importance of no tax increase on a scale from 1 to 4. The
results are as follows:

Very Not
Important Important
1 2 3 4 Total
Democrats 42 26 19 13 100
Republicans 55 21 14 10 100
Independents 38 30 22 10 100
Total 135 77 55 33 300

In words, the hypotheses are

Hy: Members of the three parties agree on the importance of no tax increase
(homogeneity)
H,: Members of the three parties do not agree on the importance of no tax increase

(lack of homogeneity)

Note that in this example the three samples are in the rows, whereas in the previous example
about speech defects, the samples were in the columns.
Using the totals and the formula

_ 00y

ejj
/ 0.

the expected values are
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1 2 3 4 Total
Democrats 45.0 25.7 18.3 11.0 100 = o,
Republicans 45.0 25.7 18.3 11.0 100 = o,
Independents 45.0 25.7 18.3 11.0 100 = o,
Total 135 =0, 77 =0, 55=o0; 33=04 300 = o..

The )* statistic is computed.

Class 0;j €j (05 — )’ /e
Democrats
1 42 45.0 0.200
2 26 25.7 0.004
3 19 18.3 0.027
4 13 11.0 0.364
Republicans
1 55 45.0 2222
2 21 25.7 0.860
3 14 18.3 1.010
4 10 11.0 0.091
Independents
1 38 45.0 1.089
2 30 25.7 0.719
3 22 18.3 0.748
4 10 11.0 0.091
X =7425

Since there are 3 rows and 4 columns in the contingency table,
v=r—-Dc-1H)=C3-1DH4d-1)=6

At the 0.05 level of rejection, the null hypothesis is rejected if the computed chi-square value
is greater than or equal to

Xoos.e = 12.592

Since this is not the case in this study, the null hypothesis is accepted and the political scientist
concludes that there is no evidence to indicate that the three samples are different with respect
to their opinions on the importance of no tax increase.

The chi-square test of homogeneity is applied to two or more samples when the samples
have been classified by one characteristic. There is a similar chi-square test that can be used to
analyze data from a single sample when the data have been classified by two characteristics.
For example, in a state in which party affiliation is not declared at voter registration, a single
sample of 300 registered voters could be selected at random and asked for their opinion on the
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importance of no tax increase and also for their party preference. The contingency table would
look similar to the table in Example 5.5 except that it is not likely that there would be exactly
100 from each party. The political scientist would be trying to determine whether party
affiliation is related to opinion about taxes, and the test procedure is called a chi-square test of
independence.

Hy: Party reference is independent of opinion about the importance
of no tax increase
H,: Party reference is related to opinion about the importance of

no tax increase

The test statistic and region of rejection are determined as in a test for homogeneity; the
difference is in how the sample was chosen. The test of homogeneity involves a stratified
sample. The test of independence involves a simple random sample.

A worked-out example follows.

Example 5.6. A Chi-Square Test of Independence

Football coaches feel that a football team has an advantage when it is playing a home game in
its own stadium. The enthusiasm of the crowd, familiarity with the field, and the lack of
fatigue from travel all seem to contribute to this assumed advantage. A coach wants to test this
theory at his school. If the theory is wrong, whether a game is won or lost is independent of
whether the game is played at home or away. The hypotheses are

Hy: Winning is independent of where the game is played
H,: Winning depends on where the game is played

The coach examines the records at his school over the past 31 years, a single sample. He
classifies the results as follows (ties and bowl games are omitted):

OBSERVED
Home Away Total
Won 97 69 166
Lost 42 83 125
Total 139 152 291

Intuitively the data seem to confirm the coach’s theory. Using the marginal totals, he
computes the following expected values:

EXPECTED
Home Away
Won 79.3 86.7

Lost 59.7 65.3
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He then computes the chi-square statistic:

Class 0jj €jj 0jj — ¢€jj (Oij - e,fj)z (Oij - e,fj)z/e,-j
Won/home 97 79.3 17.7 316.3 3.99
Lost/home 42 59.7 -17.7 316.3 5.30
Won/away 69 86.7 —17.7 3163 3.65
Lost/away 83 65.3 17.7 316.3 _4.84
X =1778

Since X(2).05,1 = 3.841, the null hypothesis is rejected and the coach concludes that if these
31 years are a random sample of this school’s games, there is evidence that the probability of
winning depends on where the game is played.

To interpret the dependence, he would note that the predictor classification is the location
of the game (the column categories) and the predicted classification is the outcome of the
game (the row categories). He would then examine the proportions in the columns, the
predictor classifications. He finds that 97/139 = 0.697 of the games at home are won while
only 42/139 = 0.302 of the home games are lost. Also, only 69/152 = 0.454 of the away
games are won, while 83/152 = 0.546 of the away games are lost. From this he would
conclude that playing at home increases the probability of winning. There is evidence of a
home team advantage. Odds can also be used to summarize the data (see Section 5.4).

Since 2 x 2 contingency tables have 1 degree of freedom, the continuity correction should
be used to improve the approximation of the discrete sampling distribution by the continuous
theoretical chi-square distribution if n < 25.

As in goodness-of-fit tests, contingency table tests do not work well for small expected
values (below 5). In the 2 x 2 case, another test can be used when the expected values are
small, Fisher’s exact test. References to this test are given at the end of this chapter (Finney,
1948; Fisher, 1973; Latscha, 1955).

Procedure. Contingency Table Analysis

Chi-Square Test of Homogeneity

Hy: The populations sampled are the same with respect to the categorization

H,: The populations sampled are different with respect to the categorization

Chi-Square Test of Independence

Hy: The row categories are independent of the column categories

H,: The row categories and the column categories are dependent

Significance level: «
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Test statistic:

=y y st
i Cij
o0;; = number of occurrences in the ijth cell

__(0i)0))
e,‘j = 07

0;, = E Ojj

Region of rejection:

X=X v=>0—Dc—1)

r = number of rows

¢ = number of columns

EXERCISES

5.3.1. A serum thought to be effective in preventing colds is given to 300 persons. Their
records for one year are compared with those of 200 untreated persons with the
following results:

More Than

No Colds One Cold One Cold
Treated 145 80 75
Untreated 80 70 50

Use a chi-square test of homogeneity to analyze these data.

5.3.2. A social scientist wants to determine if the feelings that parents have toward young
people “living together” are affected by the age of their youngest child.

Parents’ Feelings

Age of Youngest Child Approve Disapprove

Over 26 50 10
18-26 10 40
Under 18 60 30
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. State the null hypothesis verbally in terms of independence.
. Perform a chi-square test of independence at the 0.05 level of significance.
. Which classification is the predictor? Which is the predicted?

. Use the proportions of the predictor classifications to state a specific conclusion
about the dependency.

e e T o

5.3.3. It is reported that offspring of users of a certain recreational drug may have a higher
incidence of birth defects than the general population. To obtain information about a
possible relationship between this drug and birth defects, 100 offspring of female rats
fed the drug and 100 offspring from untreated female rats are examined. The results are
given below:

Progeny
Females Birth Defects Normal
Treated 30 70
Untreated 20 80

Analyze these data. What do you conclude from the study? Is this a test of homogeneity
or independence?

5.3.4. A consumer’s union would like to compare three brands of flashlight batteries. Its
testers randomly select 100 batteries of each brand and classify them into 3 groups
depending on lifetimes:

5to Over 10
Brand Less than 5 Hours 10 Hours Hours Total
X 30 60 10 100
Y 15 60 25 100
Z 30 30 40 100

a. State the null and alternative hypotheses to be tested.
b. Compute the chi-square statistic.
c. What are the statistical decision and the experimental conclusion?

5.3.5. An entomologist is interested in determining whether certain insecticides have a
differential effect on black flies. The results of his experiment are

Insecticide Dead Alive
A 165 35
B 172 28
C 173 27

a. What null hypothesis can be tested with these data?

b. If the entomologist sets the rejection level at 1%, how large must the chi-square
statistic be in order for him to reject the null hypothesis?

c. Compute the statistic.



116

5.3.6.

5.3.7.

CHI-SQUARE DISTRIBUTIONS

d. How likely is it that a sample as unusual as this will be obtained when the null
hypothesis is true?

e. What decision should the entomologist make about the null hypothesis? What
conclusion should be drawn?

A study is conducted on adult male cancer patients to determine whether there is any
association between the kinds of work they perform and the kinds of cancer they have.
The data are classified by the two categories as below:

Site of Malignancy

Occupation Skin Stomach Prostate
Professional 25 58 37
Managerial 34 90 36
Laborer 41 52 27

. State the null hypothesis verbally.
. Give the critical value of the test statistic for a = 0.05.

. Compute the expected value for the category laborer and stomach.

e o T oW

. The computed value of y* is 10.49. Which of the following statements are
appropriate to this survey?

i. The type of work one does causes certain kinds of cancer.
ii. The location of a cancer is independent of occupation.
iii. There is a significant association between occupation and kind of cancer.

e. Specity the predictor and predicted classification.

f. What specific conclusion can be drawn about the kind of cancer associated with
each of the occupations in the study?

Feminine beauty was another variable Francis Galton measured. He even tried to draw
a “beauty map” of Britain patterned after the weather maps he had already created.
Being a proper Victorian English gentleman, however, he wanted to observe and
record without being observed observing and recording. So he would tear a piece of
paper in the shape of a cross and put it in his jacket pocket along with a tailor’s straight
pin. Then upon seeing a woman in an area he had not yet mapped, he would use the pin
to put a hole in the top of the cross if she was attractive, in the arms of the cross if she
was of medium attractiveness, and in the bottom of the cross if she was unattractive.
Later, he would record the number of pin holes and their locations. He reported that he
found women in London more attractive than those in Aberdeen. Suppose that
conclusion was based on the following data:

City Attractive Medium Unattractive Total
Aberdeen 55 100 45 200
London 75 100 25 200
Total 130 200 70 400

a. Give the null and alternative hypotheses.

b. Perform the test of significance and draw conclusions.
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c. What are the odds Galton would encounter an attractive woman in London?

d. How could you compare the odds of encountering an attractive woman in each of
the two cities?

5.4. RELATIVE RISKS AND ODDS RATIOS

The contingency table analysis for 2 x 2 tables described in Section 5.3 tests the hypothesis
that 7 — m, is equal to zero. There are situations where the difference between the two
proportions might not be the best way to interpret the data. If 7, is the probability of an
unfavorable outcome for a treatment group and 7, is the probability of an unfavorable
outcome for a placebo group, then a difference of 0.1 when 7y = 0.1 and 7, = 0.2 might be
more important than a difference of 0.1 when 7y = 0.4 and 7, = 0.5.

Consider the following two examples.

1. The risk for heart attacks is relatively low for adults whose cholesterol is less than that
200 mg/dL. However the American Heart Association estimates that about 50% of
adult Americans have cholesterol greater than 200 mg/dL. Suppose a study shows that
a program of modest physical activity without any other lifestyle changes can reduce
the percentage of adults with high cholesterol to 40%.

2. The National Center for Chronic Disease Prevention and Health Promotion estimates
that 20% of American children and adolescents are overweight. Again suppose a study
shows that a program of modest physical activity can reduce the percentage of
overweight children and adolescents to 10%.

While the improvement is 10% for both populations, the 10% change for the overweight
children represents an improvement for 1 out of every 2 while the 10% change for the adults
with high cholesterol represents an improvement for only 1 out of every 5.

Many of the above situations also can be generalized as follows. There are two categorical
variables. One variable can be designated as the explanatory variable and the other as the
response variable. The explanatory variable has two categories and the response has two
categories. The numbers of individuals with each combination of the two categories are
counted. The counts are displayed in the 4 cells of a2 x 2 table. By convention, the rows (the
side of the table) are assigned to the explanatory variable and the columns (the top of the table)
are assigned to the response.

The response variable is sometimes called the outcome variable. One category of the
outcome variable is called the primary outcome. For example, in a study of the effects of
smoking, the category lung cancer might be the primary outcome. No lung cancer would be
the other category. One of the categories of the explanatory variable is called a risk factor.
Smoker could be that category. Non-smoker could be the other category.

Many medical studies focus on the effectiveness of intervention procedures. For example,
a study might focus on the use of aspirin for preventing coronary heart disease. In such studies
one of the categories of the explanatory variable is the use of some drug or procedure as
prevention or treatment and the other category is a placebo. The risk factor is the placebo. The
primary outcome is a disease such as coronary heart disease.

The goal of these studies is to determine if the risk factor is related to the primary outcome.
The studies can be broadly classified as experimental or observational. In experiments,
explanatory factors are assigned to samples of subjects. In observational studies (surveys),
subjects from a target population are selected and the explanatory factors that are present are



118 CHI-SQUARE DISTRIBUTIONS

simply observed in each subject. The presence of one or the other of the outcomes is
determined for each subject.

There are two types of observational studies, prospective and retrospective. In each, two
random samples are selected for comparison. The primary difference has to do with whether
the samples were selected on the basis of the explanatory variable or on the basis of the
response variable.

In prospective studies, one of the random samples consists of subjects who have the risk
factor and the other random sample consists of subjects who do not. After a period of time the
subjects in both samples are examined to determine which have the primary outcome.

In retrospective studies, one of the random samples consists of subjects who have shown
the primary outcome (often called the cases) and the other random sample consists of the
subjects who have not shown the primary outcome (called the controls). The subjects are
examined to determine how many in each sample have the risk factor. The degree of
usefulness of retrospective studies is related to the selection of the random sample of subjects
not exhibiting the primary outcome. An attempt should be made to match the controls to the
cases as much as possible. If there is a difference in the proportion of subjects with the primary
outcome, there should be no uncertainty that the difference can be attributed to the risk factor.

Both prospective and retrospective studies have important roles in research. A prospective
study that follows random samples of smokers and nonsmokers might be useful, but it could
take a long time to complete because it could not be accomplished without following the
subjects through their entire lives. Prospective studies can be very expensive because very
large samples are required to get enough positive primary outcomes to allow for statistical
inference. With the current proactive attitude toward smoking cessation, such an experiment
could be viewed as unethical.

Example 5.7. A Retrospective Study on Relative Risk and Odds Ratio

A physician at a clinic in southern Appalachia is concerned about the number of underweight
newborns he sees in his practice. He gives health surveys to the mothers and observes that
many of the mothers with serious gum disease have underweight babies. He summarizes the
data in the following table:

Underweight Baby
Gum Disease Yes No Total
Yes 17 83 100
No 117 783 900
Total 134 866 1000

Are there more underweight babies born to mothers with gum disease? Unless there are an
equal number of babies born to mothers with gum disease and without gum disease, it is
difficult to make useful comparisons directly from the table. The question of interest is
whether the proportion of underweight babies is the same for each group of mothers. He can
calculate conditional proportions of underweight babies for each group. For the mothers with
gum disease, the proportion of underweight babies is 17/100 = 0.17. For the mothers without
gum disease, the proportion of underweight babies is 117/900 = 0.13. If the proportions are
multiplied by 100%, they are percentages. The number 0.17 might also be viewed as the
probability that a randomly selected mother with gum disease has an underweight baby.
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Because underweight babies are susceptible to more disease and developmental problems, the
proportions also are referred to as the risks of an underweight baby.

The relative risk of an outcome for two categories of an explanatory variable is the ratio of
the risk for each category. For the table above, the explanatory variable is gum disease or no
gum disease and the relative risk is 0.17/0.13 = 1.31. It is usually expressed as a multiple. A
relative risk of 1.31 means the risk of an underweight baby for a mother with gum disease is
1.31 times the risk of an underweight baby for a mother without gum disease. A relative risk of
1 means the risk is the same for both categories.

Sometimes the increase in risk is presented as a percentage instead of a multiple:

change in risk

% increased risk = x 100%

original risk
or

% increased risk = (relative risk — 1) x 100%
=(1.31-1) x 100% = 31%

Mothers with gum disease have a 31% increased risk for underweight babies compared to
mothers without gum disease.

Odds are an alternative way to express that a randomly selected individual will fall into a
particular group for a categorical variable. The odds of an underweight baby is the number of
babies who are underweight divided by the number of babies who are not underweight. Again,
we can calculate the odds for each group of mothers. The odds for an underweight baby for
mothers with gum disease is 17/83 = 0.205. The odds for an underweight baby for mothers
without gum disease is 117/783 = 0.149. The odds ratio for an outcome for two categories of
an explanatory variable is the ratio of the odds for each category. For the table above, the odds
ratio is 0.205/0.149 = 1.38.

Notice that risks and odds are two ways of looking at the same problem. If we know that
the risk of an underweight child for a mother with gum disease is 17/100, then the odds are
17/(100 — 17) = 17/83. Likewise, if we know that the odds are 17/83, then the risk is 17/
(17 + 83) = 17/100. In addition, the relative risk and the odds ratio are about the same if the
risks are small for both groups. Note that in the example the relative risk is 1.31 and the odds
ratio is 1.38.

While the relative risk might be easier to understand, the odds ratio gives researchers a
wider range of statistical methods for binary data. The odds ratio is the only parameter that
describes the binary outcomes for the explanatory categories that can be estimated from
retrospective studies. Notice that the proportion of underweight babies in mothers with serious
gum disease provides no information about the proportion of mothers with gum disease
among mothers of underweight babies. Similarly, a retrospective study of smoking and lung
cancer cannot be used to estimate the individual proportions of smokers and nonsmokers or
their difference among those who get lung cancer.

The odds ratio is the same regardless of which variable is considered to be the response.
Consider the underweight baby example above. The odds ratio is the same regardless of which
variable, underweight baby or mother with gum disease, is considered as the response. The
odds of underweight babies among women with gum disease is 1.38 times the odds of
underweight babies among women without gum disease. The odds of gum disease among
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mothers of underweight babies is 1.38 time the odds of no gum disease among mothers of
underweight babies.

Procedure. Relative Risk and Odds Ratio

For 2 x 2 contingency tables of the form

Response Variable
Explanatory Variable Yes No
Yes 011 012
No 021 022

oi/(on +o12)  011(021 + 012)
021/(021 +212)  021(011 + 012)

(011)/(012) _ (011)(022)
(021)/(022)  (021)(012)

Relative risk =

Odds ratio =

EXERCISES

54.1.

54.2.

A serum thought to be effective in preventing colds is given to 300 persons. Their
records for one year are compared with those of 200 untreated persons with the
following results (see Exercise 5.3.1):

No Colds Colds

Treated 145 155
Untreated 80 120

a. Is this a prospective or a retrospective study?

b. What is the relative risk for cold for the untreated?

c. What is the odds ratio?

It is reported that offspring produced by users of a certain drug may have a higher
incidence of birth defects than the general population. To obtain information about a
possible relationship between this drug and birth defects, 100 offspring of female rats
fed the drug and 100 offspring from untreated female rats are examined. The results are
given below (see Exercise 5.3.3):

Progeny

Females Birth Defects Normal

Treated 30 70
Untreated 20 80
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a. Is this an experimental or an observational study?
b. What is the relative risk of birth defects for treated rats?
¢. What is the odds ratio of birth defects for treated rats?

5.4.3. An aortic aneurysm is a marked dilation of the aorta either in its thoracic or abdominal
portion. A group of physicians has collected information from new patients for several
years. One item is the initial aneurysm size determined by radiology. Another item is
whether it ruptured. Their data can be summarized in the following table:

Rupture
Aneurysm Size Yes No
>5cm 10 128
<S5cm 3 163

a. Is this an experimental or an observational study?
b. What is the relative risk of ruptures for the larger aneurysms?
¢. What is the odds ratio for ruptures for the larger aneurysms?

5.4.4. For a one-year period the magistrate court in a certain city randomly assigned some of
the drivers found guilty of vehicular injury to a 4-week defensive driving course in
addition to the usual penalties. Drivers who appeared in court were identified as repeat
offenders and as participants of the course. A summary of this study is given in the

following table.

Second

Accident
Defensive Driving Course Yes No
Yes 18 30
No 22 30

a. Is this an experimental or an observational study?

b. What is the relative risk of a second accident for the non-participants of the
defensive driving course?

¢. What is the odds ratio of a second accident for the non-participants of the defensive
driving course?

d. Comment on the utility of the defensive driving course.

5.5. NONPARAMETRIC STATISTICS: MEDIAN TEST FOR SEVERAL SAMPLES

Contingency chi-square procedures can also be used for a nonparametric test that several
populations all have the same median. Numerical data from several samples are reduced to the
nominal scale by recording only whether or not each value is greater than the median. Then,
the contingency chi-square procedure is used to determine whether there are any significant
differences, from sample to sample, in the proportions above and below the median.
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Example 5.8. Two-Sample Median Test

A cancer research team has two random samples, each of 20 women with cervical cancer. The
difference between the two groups is the kind of cancer cells involved, LCNK or SM. It is of
interest to know if there are differences between the two groups—to know whether younger
women tend to have one type of cancer cell and older women have the other.

The median age for the 40 women was found to be M = 48 years. Among the 20 women
with LCNK cancer cells, there were 10 who were older than 48, 9 who were younger, and 1
who was 48. Among those with SM cells, there were 9 older than 48, 10 younger, and 1 who
was 48. Because the data are to be reduced to the nominal scale of “above” or “below” median
age, it is customary to discard any values which fall on the median. When this is done, the
following table is obtained:

Cell Type
LCNK SM Total
Above median 10 9 19
Below median 9 10 19
Total 19 19 38

The hypothesis is that the probability that a cancer victim will be above median age,
P(u> M) = m, will be the same irrespective of which group she is in. The alternative
hypothesis is that there is an association between cell type and the probability she will be
above median age:

H()I m = T = 0.50
H,: m # m

The usual contingency chi-square analysis yields x> = 0.1053 with one degree of freedom,
which is clearly nonsignificant at any conventional « level. Thus there is no evidence of an
association between age and type of cancer cell.

Example 5.8 involved only two groups; hence it would be called a two-sample median test.
For any number of samples, the analysis is called a k-sample median test, but the procedure
remains essentially the same.

Procedure. Median Test

1. The median, or middle value, is found for all the observations irrespective of group.

2. Each numerical observation, u, is compared to the median and recorded on the nominal
scale as being “above” or “below” the median. All u = M are discarded.

3. The data which have been transformed to the nominal scale are then summarized in a
2 x k table.

4. A contingency chi-square analysis is conducted.
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EXERCISES

1. A Peace Corps volunteer wants to see which of four species of fast-growing tropical
trees will do best in a reforestation program in Haiti. She plants enough trees to obtain
2-year growth data from a random sample of 30 trees of each species. Lacking
computing equipment for an analysis of data at the numerical scale of measurement, she
decides to perform a median test on the following transformed data:

Species
Growth A B cC D
Above median 16 |10 |11 |23
Below median 14 120 |19 7

a. What null hypothesis can be tested with these data?
b. Give the alternative hypothesis.

c. What is the critical value of the test statistic for a« = 0.05?
d. Perform the test of significance and draw a conclusion.

2. The president of a nationwide accounting firm asks the personnel office to examine the
firm’s records to see whether inadvertent sexual discrimination has taken place with
regard to promotion. Among other data which are gathered, there are random samples
of 25 men and women respectively who were originally employed eight years earlier
and who still work for the firm. There is a record of the number of months each
employee worked for the firm before promotion to senior level. The data are given
below, ordered within sex for convenience:

Women Men

21 25 26 26 31 8 8 16 20 23
31 37 40 43 43 25 26 27 28 28
51 54 56 61 62 29 30 31 36 37
62 66 68 71 71 38 38 41 44 47
72 76 80 84 85 48 50 53 70 82

a. The median for an even number of observations is usually given as the value half-
way between the two middle observations, or in this example the value half-way
between the ordered 25th and 26th observations. Show how that value is found to be
40.5 months.

b. What percentage of the women in the sample were promoted to senior level within
their first 40.5 months of employment? What percentage of men? Are the two
percentages significantly different at the 0.05 level?

3. Although lacking any satisfactory numerical scale of measurement, behavioral
biologists can rank the members of a group according to behavioral attributes such as
aggressiveness and greediness. Wanting to determine whether there is any association
between these two attributes, a biologist is able to observe the behavior of a tribe of 64
adult tamarins (small South American primates) living under nearly natural conditions
at a modern zoo. She learns to identify each of the animals at sight and is able to give
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each a rank according to aggressiveness and a second rank according to greediness. She
wants to see whether those above median rank with respect to aggressiveness are also
above median rank with respect to greediness. The results are given below:

Aggressiveness
Greediness Below Median Above Median
Above median 12 20
Below median 20 12

a. State the null hypothesis in terms of independence.
b. Why is the expected value equal to (1/4)n for all cells?

c. Perform the test of significance and then draw conclusions about the relationship
between these two behavioral characteristics.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false,
explain why.

5.1.
5.2.

5.3.

54.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

There is only one chi-square distribution.

The chi-square statistic does not have a continuous distribution, but the continuous
distribution attributed to Helmert provides reliable probability statements.

If the computed value of x* is greater than the critical value, the null hypothesis is false.
Hy: m= 0.7 with H,: 7 # 0.7 can be tested with either the binomial distribution or the
chi-square distribution; if the sample size is large, the conclusion should be the same for
the two tests.

If women are twice as likely as men to suffer spousal abuse, then the odds ratio is 2.0.
To say that a computed chi-square value is “significant” indicates that it is numerically
smaller than the critical value against which it is compared.

In a multinomial experiment to test Hy: m; = 0.25, 7, = 0.50, 73 = 0.25, 3 degrees of
freedom should be used.

If the sample size is less than 25, a correction for continuity should be made when
testing a 1:2:1 ratio.

As the degrees of freedom for the chi-square distribution increase, the probability of
rejecting a true null hypothesis decreases.

With random sampling, a computed chi-square value greater than the critical value can
be obtained, even when the null hypothesis is true.

If there is close agreement between the observed and expected frequencies, the chi-
square statistic should be relatively large.

The critical value at « = 0.05 for a multinomial chi-square test about a 27:9:9:9:3:3:3:1
genetic ratio is 14.067.

To test whether a set of samples can be modeled by a Poisson distribution, the
experimenter must specify the Poisson parameter before sampling.
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5.14. If the null hypothesis for a goodness-of-fit test is not rejected, it can be concluded that

the data are from a population with the specified probability distribution.

5.15. A chi-square contingency table analysis is not appropriate if it is suspected that the row
and column categories are not independent.

5.16. To reject the null hypothesis in a chi-square test of independence is to decide that the
categories in the rows are independent of those in the columns.

5.17. The chi-square test of homogeneity can be used if hypothetical ratios are unknown but
may be equal for all populations sampled.

5.18. A chi-square test of independence for a k x 2 table has k — 1 degrees of freedom
associated with it.

5.19. A chi-square test of homogeneity can be used to test the equality of the parameters in
two binomial distributions.

5.20. The expected value and the variance of a given chi-square distribution are equal.
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6 Sampling Distribution of
Averages

In Chapters 3 through 5 we discussed techniques for analyzing certain types of data that are
collected on the nominal scale or were reduced to that scale. All of the procedures in those
chapters dealt with data that are in the form of counts. This chapter is a transition to data that
are collected on a numerical scale. The remainder of this book will deal mainly with data that
arise from measurements rather than frequency counts.

6.1. POPULATION MEAN AND SAMPLE AVERAGE

As in the case of count data, researchers use statistical analysis of measurement data to make
statements about populations that are not totally accessible from information obtained from
properly chosen samples.

One of the parameters of a population that is often of interest is the population mean,
because it is one way to describe the population’s center or location. If the population were
totally accessible, its mean would be computed by the formula

DM
m=

in which u (the lower-case Greek letter mu) is the symbol for the population mean, Z yis the
sum of all of the values of the variable of interest for the whole population, and N is the
number of elements in the population. We rarely have an opportunity to use this formula since
most of the populations we study are not totally accessible; they either are too large, perhaps
even infinite, or would be destroyed in the process of measurement.

Example 6.1. Computing a Population Mean

Historians often use the frequency of certain grammatical constructions to help identify the
writings of a historical person. For example, a historian might determine the number of
occurrences of a parallel series of adjectives such as “the worker was tired and weary” in
3000-word sections of a person’s known writings. Imagine that the population of all of the
known writings of the person can be arranged into 10 sections of 3000 words each, and the
number of occurrences are

19 21 18 24 19 21 22 19 22 22

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
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To find the population mean, the historian finds the sum of these data and divides by the
number of observations:

D
=N

19421 +184244+19421+224+19+22+22
B 10

=20.7

That is, the mean number of parallel adjectives per 3000 words used by this author is 20.7.

If the population data are arranged in the form of a frequency distribution in which y is the
value of the variable of interest and fis the number of occurrences, then the population mean
can be computed by the formula

>of

N

in which the summation is over the different values of y. To use this formula, a third column is
added to the frequency table and the sum is found:

y f W
18 1 18
19 3 57
21 2 42
22 3 66
24 124
N=10 207=) yf

and then

207
T 10

=207

If relative frequencies are given in the population table where
relative frequency =f =f/N

then the computation of the population mean is simplified to

pw=>y yf
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Thus
y f by
18 0.1 1.8
19 0.3 5.7
21 0.2 4.2
22 0.3 6.6
24 0.1 2.4

M:ny:ﬁ

We could represent the population by a graph (Fig. 6.1), and then the mean w can be
interpreted as the balancing point of the distribution (Fig. 6.2).

Since it is often impossible to obtain the population mean, statistical inference is used to
estimate w or to test a hypothesis concerning . The basic tool for these inferences (as in the
case of count data) is a probability distribution that is a model of the population. We are
already familiar with the concept of the expected value E(y) of a probability distribution (see
Section 2.5). If a certain probability distribution is the appropriate model for a population,
then E(y) will coincide with the population mean w. Because of this, the expected value of a
probability distribution is often called its mean, and we write u = E(y). We should recall at
this point that the expected value of a discrete probability distribution can be computed by the
formula

E(y) =Y _yp()

This is analogous to the formula for a population mean if the values are arranged in a
relative frequency distribution:

p=> ¥

Statistical inference about a population mean requires, in addition to a probability

ol

18 19 20 21 22 23 24 y

FIGURE 6.1. A population distribution.
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Fx®

FI URkae population mean as the balancing point.

distribution to model the population, some information obtained from a sample of the
population. A reasonable statistic to use is the sample average. The sample average is

analogous to a population mean. If y is used as the symbol for a sample average,’ then

in which y is the value of the variable of interest for each of the members in the sample, the
sum is over those values, and » is the number of observations in the sample. (The symbol y is
read “y bar.”) As in the case of population means, this formula can be modified for data
arranged in a frequency table; then

y:ny
n

If the data are in a relative frequency table, then

y=)

Example 6.2. Computing a Sample Average

A random sample of 100 high-school students is taken prior to their senior year and the
number of books they read that summer is recorded:

f

<

0.15
0.20
0.30
0.15
0.10
0.05
0.02
0.02
0.00
0.00
0.01

OO XN AW~ O

—_

"To avoid confusion, the expression “average” will be used for a sample and “mean” for a population.
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The sample average is computed by adding a third column to the relative frequency table and
summing:

y f ¥t
0 0.15 0.00
1 0.20 0.20
2 0.30 0.60
3 0.15 0.45
4 0.10 0.40
5 0.05 0.25
6 0.02 0.12
7 0.02 0.14
8 0.00 0.00
9 0.00 0.00

10 0.01 0.10

y =) yf =2.26books

A sample average y is used as an estimator of the population mean . We write y = 1 (which
is read “mu hat”) when we want to indicate that the sample average is an estimator of the
population mean. The sample average is usually a maximum-likelihood estimator. It is usually
also unbiased and has a minimum variance among unbiased estimators (see Section 3.3).

Procedure. Measures of Location

Ungrouped Data Grouped Data
Frequency Relative Frequency
Distribution Distribution

2. 2.
e = = f
p== p== p=Yyy
N = population size N = population size f = relative frequency
f = frequency

Population Mean

Sample Average y= & y= & y= Z hu
n n
n = sample size f = relative frequency
f= frequency
Expected Value of a E(y) = Z yp(y)

Discrete Probability
Distribution
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EXERCISES

6.1.1. Find the population mean for the heights of the 50 male students given in Exercise 2.2.4.
6.1.2. Use the data in Exercise 2.2.4 for the following:

a. Arrange the heights into a population frequency distribution.

b. Compute the population mean from the population frequency distribution.

c¢. Find the population relative frequency distribution.

d. Compute the population mean from the relative frequency distribution.

6.1.3. The following data from a random sample of 5-year-old children in the United States
represent the number of cavities in their teeth:

40103 2104323 422321172

. Find the sample average from this ungrouped data.
. Arrange the data into a frequency table.

. Find the sample average from the frequency table.

e e T

. Estimate the mean number of cavities for the population of all 5-year-old children
in the United States.

6.1.4. At a certain university a total census is made of all graduating seniors to determine how
many courses they have failed during their undergraduate education. The population is
as follows:

y: 0 1 2 3 4 5
f: 0870 00701 0031 0012 001l  0.005

Find the population mean.

6.2. POPULATION VARIANCE AND SAMPLE VARIANCE

A second population parameter that is often of interest is o°, the population variance.
Variance is a measure of the spread of the population. Suppose we want to choose between
two investment plans and are told that both have mean earnings of 10% per annum; we might
conclude that they were equally good. However, suppose we learn that plan A has a variance
twice as large as plan B. This gives us additional information on which to base a choice. If we
want to be relatively certain that our earnings are close to 10%, we would select plan B. If we
are willing to gamble that our earnings might be considerably in excess of 10% (or possibly
considerably below 10%), we would choose plan A.

A population variance can be computed from ungrouped data or from data that are grouped
into a frequency or relative frequency distribution if the population is of the accessible variety.

For ungrouped data, a population variance is defined to be

2 D -
N N
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in which ¢” is read “sigma squared” and represents the population variance. In practice, it is
more convenient to use an equivalent computational form of this formula, especially when
using a hand-held calculator or electronic spreadsheet—hence called the “machine equation”:

LT (D)

N

Example 6.3. Computing a Population Variance from Ungrouped Data

Consider again the small population of sections of all known writings of a historical person.
The number of usages of parallel adjectives per 3000-word sections are

19 21 18 24 19 21 22 19 22 22

and the mean usage is w = 20.7. The population variance is the average squared deviation
from the mean. In tabular form, the computations are as follows:

y y—p (y—w?

19 19-207=-17 2.89
21 21-207=03 0.09
18 18 —20.7=—27 7.29
24 24-207=33 10.89
19 19-207=-17 2.89
21 21 -207=03 0.09
2 22-207=13 1.69
19 19-207=-17 2.89
2 22-207=13 1.69
2 22-207=13 1.69

Z(y —w?=32.10

and
-w? 321
aﬁzz(y w3210 5500
N 10

This process can be shortened by using the machine equation, the equivalent
computational formula that is more adaptable to a calculating device:

L TP (S)y

N
> y=207 > ¥ =4317 N=10

SO

4317 — (207)%/10

=3.210
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Sometimes population data are grouped into frequency or relative frequency tables. In
these cases the formulas can be adapted. For a frequency table,

s

Yo - (Tw)

N

and for relative frequency tables,
2
P =Y (- wih=Y v ()

This last formula is analogous to the computation of the variance of a discrete probability
distribution:

V) =) Iy — EOFp(y)

=Y () - [Zyp(y)]2

If a probability distribution is used to represent a population and a certain probability
distribution is an appropriate model, then ¢”, the variance of the population, will be the same
as V(y), the variance of the probability distribution. Because of this, ¢° is often used when
speaking of the variance of a probability distribution.

Usually we will be estimating the population variance by using a statistic from a random
sample of the population. The statistic that is an estimator of the population variance is the
sample variance, or s*:

DN D D ()

n—1 n—1

Note that the denominator of s > is n — 1, an unusual way to “average” the squared deviations
from the sample average. This modification is necessary so that the sample variance will be an
unbiased estimator of the population variance. We write

st = o7

to indicate that the sample variance is an estimator of the population variance.
The formula for sample variance can be modified for data that are grouped into a frequency
table:

S YO 2 (o) Jr

n—1 n—1
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Example 6.4. Computing a Sample Variance from Grouped Data

In the high-school reading study (Example 6.2) of Section 6.1, the frequency table can be
expanded to find 3" yf in the third column and 3" y*f in the fourth column:

y f ¥ yf

0 15 0 0
1 20 20 20
2 30 60 120
3 15 45 135
4 10 40 160
5 5 25 125
6 2 12 72
7 2 14 08
8 0 0 0
9 0 0 0
10 1 10 100

n=100 Y yf=226 Y =830

Thus

L2 (X o)/

n—1
830 — (226)*/100
- 99

=322

A summary of the computational procedures for variances follows.

Procedure. Measures of Spread

Grouped Data

Relative Frequency
Ungrouped Data Frequency Distribution Distribution

Population Variance

oo 2O DD Chlis) 7= (v
__Z;igg&gzy :Esz—(ijwny =§:yf—<§:ﬁ>

N=>"f

N = population size f = frequency f = relative frequency
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Grouped Data

Relative Frequency
Ungrouped Data Frequency Distribution Distribution

Sample Variance

E Z()’ - w’ E Z()’ - wf Convert relative
T on—1 o n—1 frequencies to frequencies
) 2 ) 2 and method to the left user
Y- () X (S
o n—1 o n—1
n= Z f
n = sample size f= frequency

Variance of a Discrete Probability Distribution

V() =) v —EGIFp(y)

=E(y") — [E)])

=> " ¥p(y) — [Zyp(y)]2

We might wonder at this point about the meaning of the numerical value of population and
sample variances. Larger variances indicate a larger spread for the distribution, but can more
than this be said? One approach is to use the result worked out by the Russian mathematician
P. L. Chebyshev (1821 to 1894).

Chebyshev used the standard deviation, a measure related to the variance. A population
standard deviation is the positive square root of the population variance:

o=+
And a sample standard deviation is the positive square root of the sample variance:
s =/s?

The standard deviation has the advantage of being in the same units of measurement as the
data, whereas the variance is in squared units that often have no intuitive meaning (as
“squared books” in Example 6.4).

Chebyshev proved that in any collection of data at least three-fourths of the values lie
within two standard deviations of the mean (or average) and at least eight-ninths of the values
lie within three standard deviations of the mean (or average). In general, the theorem states
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TABLE 6.1. Chebyshev’s Theorem for Some Values of k > 1

At least this Lies within this interval:
proportion of the

data: Population Sample
1—1/22=3/4 w20 y + 2s
1-1/3?=8/9 u+ 30 y + 3s
1—1/4=15/16 u+ 4o y + 4s
1—1/k? w+ ko $ + ks

TABLE 6.2. The Empirical Rule

Lies within this interval:

Approximately this

proportion of the data: Population Large Sample
0.682 nt lo y+tl1s
0.954 nt 20 y +2s
0.997 =+ 30 y+3s
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that for real numbers k, k > 1, atleast 1 — 1 / k2 of the values lie within k standard deviations
of the mean (or average). Table 6.1 summarizes this result.

Note that the theorem is true for any population or sample. Although this theory gives only
a lower bound for the proportion of the data within certain intervals, it is applicable to all data
sets regardless of the shape of their distribution and regardless of their size.

If a population or a large sample is symmetrical and mound shaped, an estimate is possible
for the proportion of the data within certain intervals. The estimates in Table 6.2 are often
called the empirical rule. (These proportions are determined from the standard normal
distribution; see Section 7.1.)

EXERCISES

6.2.1. Find the population variance for the heights of the 50 males given in Exercise 2.2.5.
6.2.2. Use the height data and the tables found in Exercise 6.1.2 for the following:

a. Compute the population variance from the population frequency distribution.

b. Compute the population variance from the relative frequency distribution.

6.2.3. Use the sample data from Exercise 6.1.3 for the following:

a. Find the sample variance from the ungrouped data.

b. Find the sample variance from the frequency table.
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6.2.4. Use the data from the population in Exercise 6.1.4 and find the population variance.
6.2.5. Consider the following three samples:

I 1 2 2 3 3 3 4 4
II 7 8 8 9 9 9 10 10 11
1 1 1 1 2 2 3 4 4 5 5 5

. Graph the frequency distribution for each of the three samples.
. Compute the average of each sample.
. Compute the variance of each sample.

e e T

. Compare the average of samples I and II. What characteristic of the two data sets
explains the difference in the averages?

e. Notice that the variances of sets I and II are equal. What geometric property of these
two distributions accounts for this equality?

f. Note that sets I and III have the same average. Why is this possible for two data sets
that seem so different?

g. Compare the shape of distributions I and III. Why would you expect the variance of

I to be smaller than the variance of II1?

6.2.6. Each mating season, birds of a certain species usually lay a clutch of 6 eggs in their
nests. A biologist notices, however, that clutch number deviates from the usual when
the birds feed on a certain kind of berry containing a narcotic alkaloid. He examines the
nests of 7 such birds and finds the following numbers of eggs:

8 2 57 4 10 6

a. Is there evidence that the alkaloid causes the birds to lay fewer eggs than usual?
b. Compute the variance of the sample.

6.2.7. Show that Chebyshev’s theorem is true for the population in Exercise 6.1.4 for k = 2
and k = 3.

6.3. THE MEAN AND VARIANCE OF THE SAMPLING DISTRIBUTION OF
AVERAGES

When dealing with binominal data, the useful statistic for inference is the number of
occurrences in a certain category. This count summarizes the entire sample. Similarly, when
dealing with numerical data, there is a useful statistic which summarizes all of the
measurements from the sample; this statistic is y, the sample average. In many types of
inference, we use the summary statistic y rather than the actual values obtained from the
individuals in the sample. Since we use the sample average, it is necessary to further develop
the properties of this statistic.

The first thing we should note is that y is a random variable; that is, it has a numerical value
that is associated with the outcome of an experiment or survey. The sample average y depends



6.3. THE MEAN AND VARIANCE OF THE SAMPLING DISTRIBUTION OF AVERAGES 139

upon the particular random sample chosen and varies for different samples, even those from
the same distribution.

Because y is a random variable, it has a probability distribution. The probability
distribution associated with y is called the sampling distribution of sample averages. This
sampling distribution consists of all possible values of y for a fixed sample size and the
probabilities associated with these values of the random variable.

If the random variable is discrete and has a finite number of values, we can actually display
the sampling distribution of averages. For example, if the population consists of the numbers
1, 2, 3, 4 and all of these values are equally likely, then the population can be represented by
the following probability distribution:

y 1 2 3 4
p(y):  1/4  1/4 1/4  1/4

This probability distribution could be the model for several different experiments. For
example, imagine a lottery device that contains 4 lightweight balls numbered 1, 2, 3, and 4. Air
randomly forces one of the balls to be displayed. This probability distribution would be a
model of the infinite population of possible outcomes when the variable is the number of the
ball displayed. Another experiment modeled by this distribution consists in selecting a card at
random with replacement from a deck containing 10 cards of each of 1, 2, 3, and 4 and
observing the number on the card. Sampling with replacement means that after the card is
selected and the number is observed the card is returned to the deck before the next card
is selected. Sampling with replacement effectively creates an infinite population from a
finite one.

If samples of size 2 are selected at random from an infinite population represented by this
probability distribution (or from a finite population with replacement), then the averages of all
possible samples of size 2 are given in the body of the following table:

Observation 2
1 2 3 4

1 32 2 52
32 2 572 3

2 52 3 12
52 3 12 4

Observation 1

B W=

If the random variable is continuous or has an infinite number of values, we cannot
enumerate all of the averages but we can still think about them. To illustrate the properties of
sampling distributions of averages, we will use the above small discrete example; however,
the same properties are true for all sampling distributions of averages.

Since the sampling distribution of averages of all samples of a fixed size is a probability
distribution, it has an expected value (mean) and a variance, and these parameters are related
to the mean and variance of the underlying population.
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In the discrete example concerning equally likely numbers, the mean of the population is

my = E() =Y yp(y)

“avzesia(l)

3
2

and the variance of the population is

5 2
o =V(y = Z(y —5> p(y)

5
4

To find the mean and the variance of the sampling distribution of averages of all samples of
size n = 2, we first give the probability distribution in tabular form:

¥: 1 3/2 2 5/2 3 7/2 4
p3):  1/16  2/16  3/16  4/16  3/16  2/16  1/16

The graph of the sampling distribution of averages appears in Figure 6.3. The mean is
s =EG) =Y ()

~(i0) G ) ()

>
2

Ax?)

5%

N S N NS IS Y N S I S
0 2 4 6 B 10 12 14 16 18 20 22 24 \26 X2

24,996

FIGURE 6.3. A sampling distribution of averages.
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and the variance is

3 5\
2 =VE) = Z(y - 5) p&)

3
8

We should note the following about this example of a sampling distribution of averages:

1. The sampling distribution of averages has the same mean as the underlying population.

2. The sampling distribution of averages has a smaller variance than the underlying
population.

3. The sampling distribution of averages is symmetric and unimodal.

One particular illustration, of course, does not prove that these properties always hold.
However, it can be proved mathematically that for all sampling distributions of averages:

L py = .

2. o% = 0'3 /n.

3. If the sample size n is sufficiently large, then the distribution of y is symmetric and
unimodal or approximately so.

Another property of sampling distributions of averages is taken up in Chapter 7 after the
discussion of normal distributions. In Chapters 7 and 8, the sampling distribution of averages
is used for making an inference about the population mean.

In this section, as well as in the rest of this book, unless specified otherwise, we assume that
sampling is from an infinite population or from a finite population and the sampling is with
replacement. If the sampling is without replacement and from a finite population, we assume
that the sample size is 5% or less of the population size. Many of the properties discussed in
this text do not hold if sampling is without replacement from a finite population and the
sample size is more than 5% of the population size.

EXERCISES

6.3.1. Let y be a discrete random variable with the following distribution:

1
p(y):g fory=15,7,10

p(y) =0 elsewhere

a. Draw the graph of this probability distribution.

b. Find E(y) and V(y).

c. Find the sampling distribution of averages of all samples of size n =2 from a
population that is modeled by this distribution. Graph the sampling distribution of
averages.
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6.3.2.

6.3.3.

6.3.4.

6.3.5.

SAMPLING DISTRIBUTION OF AVERAGES

d. Compute E(y) to show that it is equal to E(y).

e. Compute V(y) to show that it is equal to V(y)/n.

Let x and y be two independent random variables each with the distribution described
in Exercise 6.3.1. Show that:

a. E(x +y) = E(x) + E(y)

- E(x — y) = E(x) — E(y)

- E(3y) = 3E(y)

Vi +y) = V) + V(y)

- Ve —y) = V) + V(y)

- V(3y) =9W(y)

The properties of expected value and variance illustrated in Exercise 6.3.2 are true in
general:

-0 & 6o =

E(x+y) = E(x) + E(y)

E(x —y) = E(x) — E(y)

E(ay) = aE(y), for a constant a

V(x+y) = V(x) + V(y), if xand y are independent
V(x —y) = V(x) + V(y), if x and y are independent

V(ay) = a*V(y), for a constant a

Use these properties to show that in general, if y = Z y/n in which the y’s are
independent, then:

a. E(y) = E(y)

b. V@ =V©H)/n

For the population of heights given in Exercise 2.2.4:

a. What is E(y) for all random samples of size 10? (See Exercise 6.1.1).

b. What is V(y) for all random samples of size 10? (See Exercise 6.2.1).

Six female college students have heights (in inches) as follows: 62, 64, 65, 66, 65, 68. If

these 6 students are considered to be a population from which sampling is done with
replacement:

a. Draw the frequency distribution of the population.

b. Find the sampling distribution of averages for all samples of size 2 (with
replacement) taken from this population. Draw its graph.

c¢. Find the population mean.

d. Find the mean of the sampling distribution of averages and confirm that it is the
same as the population mean.

e. Find the variance of the population.

f. Find the variance of the sampling distribution of averages for samples of size n = 2
from the population variance.
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6.4. SAMPLING WITHOUT REPLACEMENT

The previous section provided a discussion of sampling distributions for infinite populations
or for finite populations when the sampling is with replacement. In sampling with
replacement, p(y) for a particular value of y remains constant even though that value may
already have been selected. There is another situation called sampling without replacement
which is frequently encountered in the social sciences.

Consider again a variable y with values 1, 2, 3, 4 in equal frequency. We saw that, when
selection is with replacement and the sample is of size n =2, E(y) =5/2 and V() = 5/8.
This time, however, consider these 4 integers as a finite population, so that once any one of
them has been selected for the first member of a sample of size n = 2, it is no longer available
to be the second number in that sample. We could think of a set of 4 cards each containing one
of the numbers 1, 2, 3, or 4. Two cards are to be selected at random, and after the first one is
chosen, it is not returned to the set. Hence we call this sampling without replacement. The
possible sample means are then

Observation 2

5 1 2 3 4
1 32 2 52

Observation 1 2 3/2 5/2 3
3 2 52 7/2
4 52 3 )2

We can readily verify that

=EG) =Y @)

()( o) 2(a)

()

I\)\Ul

and the variance is

3 2
a§:V@=Z(y—E) PG) =1,

We notice that E(y) remains the same whether or not we sample with replacement, but V()
is smaller when we sample from a finite population without replacement. There is a constant
relationship between the variances for the two types of sampling; if the variance among
sample averages is of for sampling with replacement, then the variance for sampling without
replacement is

(N —n)
N-1)7
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where N is the size of the population and 7 is the size of the sample. We can verify the
relationship for our demonstration population and compute the variance of the sample means
for sampling without replacement as

12

N-n) , (@4-=2)(5\ 5
(N—l)aé_(4—l)<_>

The multiplier (N — n)/(N — 1) is called the finite population correction factor and is
often written as (1 — n/N) because when N is large N — 1 is almost equal to N. Notice that
this correction factor is close to 1 if n is small relative to N. If n/N is less than 1/20, then the
correction faction is greater than 0.95, that is, it is almost 1; effectively this means that the
finite population correction factor can be dropped from the formula if n/N is less than 1/20.

EXERCISES

6.4.1. A finite population is of size N = 8, with u = 8 and ¢* = 5.25.
a. What is V(y) if sampling is with replacement and n = 1, 3, 5, 8, respectively?
b. Use the formula with the finite population correction faction to find V(y) if sampling
is without replacement and n = 1, 3, 5, 8.

6.4.2. Chimpanzees have no known numbering system, but they may have a sense of
quantity. To test this, a behavioral biologist presents a hungry chimp with 7 bunches of
bananas containing, respectively, y =1, 2, 3, 4, 5, 6, 7 bananas. The chimp has been
trained to understand that it may choose any 2 bunches of bananas.

a. How many combinations of 2 bunches are there?

b. Would this situation constitute sampling with or without replacement?

c. If it chooses at random, that is, it has no sense of quantity, what is the expected
average number of bananas per bunch for the chimp’s choice of two bunches? What
is V(y)? What outcomes lie within two standard deviations of E(y)?

d. Suppose the chimp chooses the bunches with six and seven bananas. How many
ways can this particular choice be made? What is the probability that this is just a
random choice, meaning the chimp has no sense of quantity? Is there evidence that
the animal has a sense of quantity?

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false,
explain why.

6.1. It is appropriate to compute the average of a set of data collected on a nominal scale.
6.2. The sample average is always one of the values in the sample.
6.3. For any sample, Z (y—y)=0.

6.4. If yis measured in inches, the unit of measurement for the standard deviation is squared
inches.

6.5. If for each value y in a sample x = y 4 10, then x + 10 = y.



6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

6.18.
6.19.

6.20.
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If for each value y in a sample x = y + 10, then the variance of y is equal to the variance
of x.

If for each value y in a sample x = ay, then ¥ = aj and the variance of x is a > times the
variance of y.

If y, and y, are random variables with the same probability distribution, then
E(y; — y2) = 0and V(y; — y2) = 0.

If two populations have the same mean, then they also have the same variance.

For many random samples the sample average y is not equal to the mean w of the
population from which the sample was chosen.

Because y is an unbiased estimator of wu, y = u.
A sample average is computed in the same manner as a population mean.
A sample variance is computed in the same manner as a population variance.

If a population has a mean of 10 and a standard deviation of 2, then the sampling
distribution of averages of samples of size n =2 has a mean of 10 and a standard
deviation of 1.

The variance of a sampling distribution of averages is larger than the variance of the
underlying population because y has more distinct values than y.

Chebyshev’s theorem shows that in all samples most of the data lie within three
standard deviations of the average.

One of the advantages of using a sample average instead of a single observation to
estimate the population mean is that the sample average is more likely to be close to the
population mean.

The empirical rule cannot be applied to skewed distributions.

If the sampling is with replacement, the expected value of the sampling distribution of
averages is different from the expected value when the sampling is without
replacement.

A public opinion poll in which no person can be interviewed more than once is an
example of sampling without replacement.
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In Chapters 3 and 4 we discussed two types of discrete distributions, binomial and Poisson, that
may be appropriate models for some discrete variables encountered in research. In Chapter 5
we discussed a continuous probability distribution, the chi-square distribution, which is not
usually a direct model for a population but which can be used in an indirect way to answer
questions about populations. In this chapter we discuss a second type of continuous probability
distribution, the family of normal distributions. A normal distribution is sometimes the
appropriate model for a population with a variable of interest that is continuous.

7.1. THE STANDARD NORMAL DISTRIBUTION

Some continuous variables can be modeled by a bell-shaped theoretical probability
distribution called a normal distribution, also called a Gaussian distribution after Carl
Friedrich Gauss (1777 to 1855), who investigated its mathematical properties.

For example, the sample of heights of 100 women measured to the nearest inch, as given in
Table 7.1, can be grouped into a relative frequency distribution:

y f y f

60 0.01 67 0.14
61 0.04 68 0.08
62 0.03 69 0.01
63 0.07 70 0.01
64 0.26 71 0.01
65 0.19 72 0.01
66 0.14

We should like to find a continuous probability distribution that can be used to model the
population from which this sample was taken. Looking at the graph of the sample (Figure 7.1),
we see that it is not perfectly bell shaped, but the departures are not extreme. A sample of size
100 will resemble the population from which it was taken, but it will not be exactly like the
population. It seems possible that the population of heights could be modeled by a theoretical
normal distribution (Figure 7.2), with the following density function:

1 2 2
g — —(y—w?=/20°
=———c¢
Sy Ao
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TABLE 7.1. Heights in a Sample of 100 Women

66 65 68 67 68 67 67 64 64 68
65 60 64 64 64 64 63 67 64 65
70 64 64 68 65 64 65 62 65 66
64 65 66 72 66 66 67 64 65 67
65 66 67 66 71 67 67 64 63 65
66 62 68 61 69 63 66 61 65 64
64 65 67 65 64 68 67 64 66 67
68 63 63 67 68 65 64 65 66 62
65 65 63 64 66 61 64 67 64 64
63 66 61 64 65 66 64 64 64 65

The density function f{y) gives the height of the curve above the y axis. In this density
function, y is the random variable; y has all real numbers for its values. There are three
constants in the density function: 2, 77, and e. The constant 7 is the irrational number equal to
approximately 3.14 (this use of 7 is not related to the binomial parameter), and the irrational e,
approximately equal to 2.72, is the base of natural logarithms. There are two independent
parameters in the density, u and o”; w can be any real number and ¢” can be any nonnegative
real number. In any particular normal density function, u and o” are fixed; thus there is a
different normal distribution for each pair u, o>

The normal density function describes a curve that is

. unimodal,

. symmetrical,

. asymptotic to the y axis, and
. bell shaped.

N O R S

The normal distribution has

E(y) = m,

V(y) = o,

. inflection points at w — o and u + o,

. total area between the curve and the y axis equal to 1, and

. more than 99% of the area between u — 30 and u + 30.

0.24
0.20
0.16
0.12

I

I

0.08 -
0.04
l

0.00 1 l 1 1 1 i
60 61 62 63 64 65 66 67 68 69 70 71 72 y

FIGURE 7.1. Heights in a sample of 100 women.
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fiy)

pu—-30 pu—20 p—o0 u u+o p+20 u+30 y

FIGURE 7.2. The normal distribution N(u, ).

In the sample of women’s heights given above, the sample average y is 65.2 and the sample
variance s 2 is 4.392. Thus, this sample might be from a population that can be modeled by a
normal distribution with E(y) = u = 65.2 and V(y) = o” = 4.392. We write N(65.2, 4.392)
to represent this theoretical distribution. (In Exercise 7.1.7 a goodness-of-fit test is described
which can be used to check whether or not this is a good model; it is.)

Probabilities related to continuous random variables are represented by areas. Calculus (in
particular, numerical integration) is necessary to find the areas of various sections under the
normal curve. Tables, however, have been derived for the normal distribution N(0, 1), called
the standard normal distribution. These tables can also be used to find the areas of sections
under any normal curve by means of a standardization process.

The standard normal random variable is usually represented by z to distinguish it from
other random variables. Table A.10 in the Appendix of Useful Tables gives the probabilities
that the random variable z is greater than a designated value between 0 and 3.09. For example,
if P(z > 1.36) is desired, the table is entered at row 1.30 and column 0.06, and the entry in the
body of the table indicates that 0.087 of the area under the curve is to the right of z = 1.36
(Figure 7.3). To make this more practical, imagine that we have a freezer with temperatures
that follow a standard normal distribution when measured on the Fahrenheit scale (the mean
temperature is 0°F and the standard deviation is 1°F); then 8.7% of the time the temperature is
above 1.36°F. Or we could say that the probability is 0.087 that the temperature is above
1.36°F. Areas relative to negative z values can be found by using the symmetry of the normal
distribution. For example, P(z < —1.36) = P(z > 1.36) = 0.087.

If y is normally distributed with a mean of w and variance o”, then y can be standardized by
the formula

0.087
1 4

0 1.36 z

FIGURE 7.3. P(z > 1.36) = 0.087.
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0.286

Standardization
—_—

-4 -2 0 2 46 8 y

FIGURE 7.4. Standardization preserves area.

Since z is the number of standard deviations y is from u, z is sometimes called the standard
normal deviate. If we want to find the probability that y is between 3 and 6 in N(2, 4), we compute

3-2 6—2
z:T:O.S and Z:TZZ

Then

PB3=<y=<6)=P05=<z<2)
=0.309 — 0.023
= 0.286 (Figure 7.4)

Another example follows.

Example 7.1. Using the Standard Normal Distribution to Find Probabilities

Assume that an ecologist is studying the lungs of wild rabbits for possible contamination from
a local power station. He has to build a trap to catch the rabbits, and he wants to make the door
wide enough to catch a good percentage of them. Assume he knows that the mean width of
rabbits’ shoulders is w = 3.80 in. with a variance of ¢® = 0.36 in.? If he makes the door 5 in.
wide, what percentage of rabbits will be able to go through the door? That is, what is P(y < 5)?
He finds that the standard normal deviate is
y—un 50-38

So the door is 2.00 standard deviations wider than the mean width of rabbits’ shoulders. Using
Table A.10, he finds that P(z < 2.00) =1 — 0.023 = 0.977. This means that the area under
the standard normal curve to the left of 2.00 is 0.977. It also means that, in the normal
distribution N(3.80, 0.36), 0.977 of the area under the curve is to the left of 5; s0 97.7% of the
wild rabbits will fit through the door.

EXERCISES

7.1.1. Use Table A.10 to find:
a. P(—1<z<2)
b. P(—3.02<z<0)



7.1.2.

7.1.3.

7.1.5.
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. P(—0.5<z<0.5)

. P(z>2.34)

P(z>0)

. P(z > —1.58)

. P(0.56 < z<0.98)

. P(—244 <7< —0.12)

i. P(|2) > 1)
j.
k.

P(lz] > 2)
P(lz] > 3)

Use Table A.10 to find:

a
b
c
d

. P(y < 4)ify is distributed as N(5, 0.64)

. P(10 <y < 13) if y is distributed as N(12, 4)
. P(y > 13) if y is distributed as N(15, 9)

. P(y <0ory>3)if yis distributed as N(1, 9)

In N(100, 400), find:

a
b
c
d

. The proportion of the values greater than 70

. The values of y within the central 90% of the distribution

. The smallest value of y that exceeds 85% of the distribution
. The largest value of y that is below 60% of the distribution

. Assume that Graduate Record Examination (GRE) scores follow a normal distribution

with a mean of 1000 and a standard deviation of 200.

a.

b.

[=P e}

What percentage of graduates who take this exam have GRE scores greater than

750?

What GRE score separates the upper 30% of graduates from the other 70%?

. Between what values are the scores of the central 90% of the graduates?

. How likely is it that a randomly selected graduate will be one who has a GRE score
greater than 10007

. How likely is it that a random sample of 10 graduates will contain more than 7 who

have GRE scores greater than 1000?

f. Suppose that a group of 10 graduates contains 8§ who have GRE scores greater than

1000.

i. Does this appear to be a random sample?
ii. Why?

The greater the sulfur content of coal, the less desirable it is as a heating fuel. Given
that the variability among assays for sulfur in coal from a certain mine is o = 6 Ib/ton
and that they follow a normal distribution, answer the following:

a.

Mines that assay 80 Ib of sulfur per ton are considered worthless for heating fuel.
How likely is it that a mine with mean sulfur content of w = 62 1b/ton will be
placed in the worthless category on the basis of one random 1-ton sample?

b. Some cities will not permit the sale of coal within the city limits if its assay for

sulfur is as great as 34 Ib/ton. How likely is it that coal with u = 40 1b/ton will be
allowed to be sold within the city limits on the basis of one random 1-ton sample?
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7.1.6.

7.1.7.

7.1.8.

NORMAL DISTRIBUTIONS

A researcher in industrial relations notices that many men who receive high salaries are
tall of stature. She decides to investigate the question whether height is related to
salary. She wants to classify a man as tall if he is in the upper 10% of the heights of
adult males. If adult male heights are normally distributed with a mean of 68 in. and a
variance of 1.44 in.?, what is the shortest height (to the nearest inch) that this researcher
will classify as tall?

In the sample of women’s heights given in this section, the sample average is y =
65.2in. and the sample variance is s > = 4.392, or s = 2.1 in. Use these sample values
as estimates of w and ¢” in the normal distribution and perform a chi-square goodness-
of-fit test. Since two parameters are estimated, the degrees of freedom will be
k — 1 — 2. Use the categories 59.5 to 60.5, 60.5 to 61.5, and so on. Expected values
can be computed by finding the probability that a height is in such a section and
multiplying by the sample size. If necessary, combine categories to prevent the
expected values from becoming too small.

In Francis Galton’s time some political candidates included in their campaign material
the “total marks” (score) they had received in a grueling (44 hours over 8 days) but
prestigious mathematics examination. Galton felt many politicians claimed higher
scores than they received. He obtained marks actually given on two successive
examinations and found them to compare favorably to a N(u, o°) distribution. His data
consisted of the scores received by 800 men, and only 6.7% of them were greater than
1500 marks, which was minimally sufficient to be awarded the title of “wrangler of
mathematics.”

a. If the data are from a normal distribution with u = 900, show how to find
o = 1600.

b. The one of the approximately 400 students who receives the greatest number of
marks is called “senior wrangler.” If scores are normally distributed, what score is
likely to qualify for that distinction. Hint: What z value will have 1/400 of the area
under the standard normal curve to the right of it?

c. To address the concern Galton was investigating, suppose 140 candidates have
reported scores they claim they received on the examination.
i. What assumptions must be made in order to use the normal distribution for
inference?
ii. If the assumptions can be made, what is the expected number with scores
greater than 1500 marks
iii. Suppose 24 of the 140 claim they received scores greater than 1500 marks, what
would you conclude about the truthfulness of the scores claimed?

7.2. INFERENCE FROM A SINGLE OBSERVATION

Whenever possible, we use samples consisting of several observations in order to make
inference about a population. However, there are times when it is necessary to make a
judgment about an unknown parameter from a single observation.

One example in which multiple observations are not feasible is a test of a certain type of
concrete slab to determine its load-carrying capacity. Since it is expensive and time
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consuming to construct the slab and since it will be destroyed by the test, it is desirable to draw
whatever inferences are possible from a single trial.

Imagine that a civil engineer measured the number of pounds per square inch (psi) required
to crack a certain type of slab and found it to be 2500 psi. Is it possible that these slabs crack at
values that are from a normal distribution with u = 2300 and ¢ = 6400? To answer this
question, he could standardize 2500 as discussed in Section 7.1. Then

_y—pm_ 2500 —2300
T 80 -

z 2.5

The standardized value could then be compared with the 95% most common z values which
would occur if the distribution is N(2300, 6400). In the standard normal distribution 95% of
the area is between —1.96 and 1.96. We write 7 g5 = 1.96 to indicate that 2.5% of the area is
to the right of 1.96. Thus —1.96 = z4.975 = —2z0.025 (Figure 7.5).

The value of 2500 corresponds to a z value of 2.5; that is, it is 2.5 standard deviations above
the mean. Since this is to the right of 1.96, it would be a very unusual result from a distribution
which is N(2300, 6400) and the engineer would conclude that the mean is not 2300 psi. It
appears that this concrete slab has a higher load-carrying capacity.

If the population mean is unknown, it is possible to carry out a test of hypothesis from a
single observation (we stress, however, that, whenever possible, a larger number of
observations should be used).

Example 7.2. Testing a Hypothesis about a Mean with a Sample of One Observation

Suppose a person showed many of the symptoms of hypothyroidism (an underactive thyroid
gland). At one time her physician would have sent her to the hospital for a basal metabolism
test. The test was fairly involved and somewhat lengthy and required that the patient be in a
fasting condition. Thus the decision whether or not to administer thyroid extract depended on
a single observation of the patient’s basal metabolism rate.

The mean basal metabolism rate for people with properly functioning glands is 40 calories
per square meter per hour; a person suffering from hypothyroidism will have a reduced basal
metabolism rate. Thus the null and alternative hypotheses are

Hy:p=40 and H,:u <40

The variability in basal metabolism rate among people with properly functioning thyroids
is also known, and for this example it is assumed that the population of such rates is
distributed as N(40, 16). If the physician did not want more than 0.05 probability of a

/
95%
% //
29975 = —1.96 0 1.96 = 24 405

FIGURE 7.5. The standard normal distribution.
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misdiagnosis of a person with a properly functioning thyroid (o = 0.05), he would compute
the test statistic

in which ug is the value of u in the null hypothesis and o is the known standard deviation.
Evidence that the null hypothesis is false would be a large negative value of z since low
basal metabolism rates are transformed to the left tail of the standard normal distribution
(Figure 7.6). This z statistic is compared with the critical value of zgg9s = —1.64; if
7z < — 1.64, H, is rejected.

If the physician did not understand how to carry out this test of hypothesis, he might ask a
biostatistician to find the basal metabolism rate y that divides the area under the N(40, 16)
curve into the lower 5% of the area and the upper 95% of the area. This is done by placing the
critical value of z in the equation and solving for y. Thus

y—40

—1.64 =
y =40 — 1.64(4) = 33.44

The physician would then make y = 33.44 his decision point. If the patient’s basal
metabolism rate was less than or equal to 33.44 calories, the diagnosis would be
hypothyroidism and thyroid extract would be prescribed. In statistical terms, the null
hypothesis of normal thyroid function would be rejected. If the patient’s basal metabolism rate
was greater than this value, the hypothesis would not be rejected, and the physician would
investigate something other than the thyroid as the cause of the symptoms.

Procedure. Inference About a Single Observation from a Normal Distribution

Test of Hypothesis

Ho: = po

Hyp # o or > poor w < po
Significance level: «

Test statistic:

0.05 0.05

33.44 40 y Znar = —1.84 0 z

FIGURE 7.6. Low values in N(40, 16) which occur only 5% of the time.
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EXERCISES

7.2.1.

7.2.2.

7.2.3.

7.2.4.

Use Table A.10 in the Appendix to find:
a. 20.05
- 20.95
- 20.01
- 20.99

- 20.005

-0 & 6 T

« 20.995

Assume that the temperatures of healthy infants follow an N(99, 1) distribution when
measured on a Fahrenheit scale.

a. If a particular infant has a temperature of 100.5°F, should his temperature be
considered “normal”? That is, test the hypothesis Hy: u = 99 against H,: u # 99 at
a = 0.05.

b. Give the P value.

Legend has it that Archimedes made his discovery concerning specific gravity
(Archimedes’ principle) while trying to determine whether the king’s crown was made
of pure gold or an alloy. Working with metal samples which he knew to be pure gold or
alloys, he found that his device for measuring specific gravity produced a mean
determination of u = 19.3 for pure gold, whereas all alloys tested yielded lower mean
specific gravities. For the sake of this problem, suppose Archimedes’ measuring device
followed an N(u, 0.09) distribution.

a. What would be a suitable null hypothesis for such an experiment?

b. What would be the most logical alternative hypothesis?

c. If a = 0.05, what should be the region of rejection for this experiment?

d

. How likely is it that a random sample of an alloy with a specific gravity
determination of 18.7 would be mistakenly called pure gold in this experiment?

A dairy farmer buys a heifer (female calf) from a Holstein-Friesian herd that is thought

to be genetically superior to others in the region. The quantity of milk production

among mature cows in the herd is normally distributed with = 18,000 1b/year and

o= 2500 Ib/year. Assuming the new owner can provide feed, shelter, and other

environmental factors equivalent to those for the herd from which the calf was bought:

a. Give the numerical value of E(y), the expected milk production of the calf when it
reaches maturity.

b. What is the probability that the calf will produce at a greater rate than the mean of
the herd from which it was bought?

c. What is the probability that it will produce at a rate greater than the breed mean of
n = 14,000?

7.3. THE CENTRAL LIMIT THEOREM

Although normal distributions occur frequently in experiments, many random variables are
not normally distributed, and it would be inappropriate to use a normal distribution as the
model. In spite of this, if the samples are large enough, a normal distribution can often still be
used to find certain probabilities associated with the experiment because of some results that



156 NORMAL DISTRIBUTIONS

are known from the mathematical theory of statistics. The theory relevant to this use concerns
the properties of the sampling distribution of averages.
In Section 6.3 we noted that the sampling distribution of averages has the following properties:

l. pg = p,; that is, the mean of the sampling distribution of averages is the same as the
mean of the underlying population.

2. oﬁ = af /n; that is, the variance of the sampling distribution of averages is equal to the
variance of the underlying population divided by the sample size.

3. If n is sufficiently large, then the sampling distribution of averages is symmetrical and
unimodal or approximately so.

The third property can now be made more explicit. If a population is normal, the sampling
distribution of averages is normal. If a population is not normal, the sampling distribution of
averages is approximately normal for large n.

This last property is known as the central limit theorem. It is because of this property that
normal distributions come into play in many statistical analyses. With very few exceptions,’
no matter what form the underlying population distribution takes, as n increases, the sampling
distribution of averages approaches a normal distribution; thus the normal distribution can be
used to approximate probabilities in cases of reasonably large samples (n > 30) from
nonnormal distributions.

Usually in statistics we observe a sample and use the data collected to make decisions
about the population. If we compute the sample average, we have one value from the sampling
distribution of averages. Using the three properties just discussed, we can answer probability
questions about sample averages. If the underlying population is normally distributed, the
sampling distribution of averages is also normally distributed and has the same expected value
as the population distribution and a variance that is 1/n of the population variance. If the
underlying distribution is not normal, the sampling distribution of averages for large n is
approximately normal and has the same expected value as the population distribution and a
variance of 1/n times the population variance.

Example 7.3. Probabilities Associated with a Sample Average

An educational psychologist is working with a random sample of 5 adults. They are going to
take a standardized intelligence (IQ) test with scores that are normally distributed with a mean
of 105 and a standard deviation of 15. The psychologist wants to know how likely it is that the
average score of the 5 subjects will be greater than 108, that is, P(y > 108).

Since she is working with a sample average, she has a single value from the sampling
distribution of averages that is normally distributed with a mean of 105 and a variance of
o% = of/n = 15?/5 = 45. Thus

P(y > 108) = P(z > 0.45) = 0.326

because

y—wMy y—my, 108—105
P YN RN
The psychologist concludes that the probability is 0.326 that the average scores of her 5
subjects will be above 108.

z= =045

"It is sufficient that the distribution have a finite variance.
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EXERCISES

7.3.1. If the basal metabolism rate for people with properly functioning thyroid glands can be
modeled by a normal distribution with mean 40 calories per square meter per hour and
a standard deviation of 4, find:
a. The probability that a healthy person chosen at random will have a rate less than 35

b. The probability that 5 healthy persons chosen at random will all have a rate less than
35

c. The probability that the average rate of 5 healthy persons chosen at random is less
than 35

7.3.2. A certain aptitude test for job trainees follows a normal distribution with a mean of 80
and a standard deviation of 16.
a. What is the probability that a random sample of 4 trainees will all have scores above
88?7
b. What is the probability that the average score for a random sample of 4 trainees will
be above 88?

7.4. INFERENCES ABOUT A POPULATION MEAN AND VARIANCE

Although it is sometimes necessary to make decisions on the basis of a single observation (as
in Section 7.2), in general this is not the preferred procedure. Larger samples yield more
information on which to base decisions. If we are interested in making a decision about wu or
an estimate of w, then using y with n > 1 instead of a single observation has the advantage that
y is less variable than y. A smaller variance increases the probability of obtaining a sample
value close to the true population mean. Another advantage of using averages of samples is
that, even if the original population does not have a normal distribution, the sampling
distribution of averages for large n is approximately normal (central limit theorem).

Tests of hypotheses based on averages are analogous to the procedure for an individual
observation. For a single observation, the standardization procedure is

_y—p
P s
g

For averages of samples of size n, the standardization procedure is

Yy p

o/yn

because the mean of the sampling distribution of averages is the same as the original mean and
the standard deviation of the sampling distribution is o/+/n. (This denominator is sometimes
called the standard error. “Error” in this context implies, not a mistake, but variability due to
sampling.)

Z

Example 7.4. Using the Standard Normal Distribution to Test a Hypothesis about u

An aneurysm is a weakness in an artery that causes it to balloon and possibly burst. If it is in
the blood vessel receiving blood as it is pumped out of the heart (called a TAA for thoracic
aortic aneurysm), it is almost always life threatening. Corrective surgery is possible, but it too
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is risky, so rather than chance an unneeded operation, surgeons prefer to wait until there is
evidence that the aorta is in danger of bursting. Fortunately the size of the aneurysm provides a
good indication of its danger of bursting. So, to gain useful information, thoracic surgeons at a
medical center conduct a study on the sizes of aneurysms at first diagnosis. Suppose they
obtain the following TAA information on 30 patients randomly sampled from a nationwide
database:

cm mm
7 025
6 2568
5 14555689
4 012356789
3 06689
2 9

The aneurysm sizes are presented in a stem-and-leaf plot, a useful graphic summary
of the measures which retains all values as well as shows something about how they are
distributed. The first column shows the first digit of a measurement and the second
column gives the rest of the measurement. So the first row of data represents three
patients with aneurysms 7 cm or greater in diameter. The values of these measures are
7.0, 7.2, and 7.5 cm, respectively. The usual terminology for a stem-and-leaf plot is to
call the entry in the first column the stem, or node, and those in the second column the
leaves.

The plot shows that the distribution of measures is unimodal, with more data located on the
4.0- and 5.0-cm stems than on any others. It is also somewhat symmetric, but it’s best to say
only that it resembles a normal distribution. Still, by taking advantage of the central limit
theorem, the standard normal distribution can be used to make statistical inference about the
mean size of TAA at first diagnosis.

Suppose the standard text on thoracic surgery reports median TAA as 4.7 cm and the
surgeons want to test whether that is the mean value of the population from which their sample
is drawn. So they would like to test Hy: u = 4.7 against the alternative H,: u # 4.7. They will
compute a z value as their test statistic, and for a test at the 5% level of significance, they will
reject Hy if |z| > zo.025 = 1.96. But before they can compute z they must obtain the sample
average

and because the population variance is unknown, it is estimated (67) by the sample variance,

> 2~ (Zy)z/” _ 825.78 — (153.0)%/30

n—1 29

=5 =1.568
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Once they have these two sample statistics, they can make the test of hypothesis:

w5147
S a/n 125//30

Z

Since 1.12 < 1.96, the sample average does not deviate significantly from the hypothesized
mean. The surgeons do not reject the null hypothesis and conclude that the mean TAA at first
diagnosis could indeed be 4.7 cm.

Confidence intervals on u can also be determined from samples with n > 1.

Example 7.5. Using the Standard Normal Distribution to Find a Confidence
Interval on u

Assume that a researcher at an agricultural experiment station knows that the variance in
butterfat production for Holstein-Friesian dairy cattle is @ = 6400 (lb/year)z. He treats a
group of dairy cattle by adding inorganic nitrate to their diet because he knows the bacteria in
cows’ rumens can metabolize inorganic nitrogen and thereby possibly reduce the cost of
having to feed cattle more expensive sources of nitrogen. However, not knowing what effect it
may have on production, he wants to know the mean butterfat production for this treatment
group, that is, the value of w. He would perform a test of hypothesis to get some information
about u, the mean for the treatment group. If the null and alternative hypotheses are

Ho: o= py
Ha:M # Mo

and o = 0.05, he would use the formula

He would not reject the null hypothesis if

Y= i
—1.96 <——=<1.96
T oo/n T

or, the equivalent, if

(o

)_’_1-96\/};5:“40

Thus the 95% confidence interval on u is

CIQ_95I)_7 i 1.96

(o
n

Jn

"Strictly speaking, we do not reject the null hypothesis if —1.96 < z < 1.96. Since this is a continuous distribution,
however, P(z = 1.96) = 0 and the two types of inequalities are equivalent.
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and if y = 465 and n = 25, then

Clos: 465 — 1.96(85—0> < u <465+ 1.96(85—0)

433.64 < n <496.36

for the treatment group.

If the population variance o” is unknown (as is commonly the case), it can be estimated by

the sample variance
2
o Yoy X))

n—1 n—1

If the sample size is large (n > 30), s > can be used in place of ¢ in inferences concerning u.

Procedure. Inferences about a Population Mean

Assumptions: 1. n < 30, population normal, and o known, or
2.n>30

Confidence Intervals

- g = a
Cli_aty _Za/27;l =u= y+Za/27,—l

if o is known. If o is unknown and n > 30, estimate o by s.

Test of Hypothesis
Ho: p= po
Hg:p # poor u> uoor pu< o
Significance level: «
Test statistic:
)

‘T o/yn

if o is known. If ¢ is unknown and n > 30, estimate o by s.
Region of rejection: |z] > z4/2 OF 2 > z4 0T 2 < — Zq, respectively.

Sometimes the parameter of interest is not the population mean, but rather the population
variance. Several examples follow. A teacher is interested in the variability of the grades for a
class; a large variance may indicate that although the class as a whole is performing well some
individuals may not be performing at an acceptable level. During the manufacturing of drugs,
the variance of the potency is of concern and also the variance of the purity level. During the
machine filling of boxes or bottles with a product, the variance of the quantity put into the
container is of concern. Variability of sentence length has been used to establish authorship.
These are only some of the areas in which the investigator needs information about the
variance.
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It is possible to test hypotheses and determine confidence intervals for a population
variance if the population is normal. These procedures make use of the fact that

D=3 -1
o? -

o2

is distributed as a chi-square distribution with n — 1 degrees of freedom if y is normally
distributed.

Example 7.6. Inference about the Variance of a Normal Population

In a certain city, the mean electric consumption for residence is 7.2 thousand kWh with a
variance of 2.25 thousand kWh?. Differences in home consumption are due to the energy
efficiency of the house and the life-style of the occupants.

In a sample of 101 homes from an area in which all of the residences are of equal size and
equal energy efficiency, the sample variance is 1.21 thousand kWh?. Does this indicate that
uniform energy-efficient homes significantly lower the variance of electric consumption?

The null and alternative hypotheses are

Hy:0? =225 Hg:o? <225
The test statistic is

_(n—l)s2
XZ_TO

with n — 1 = 100 degrees of freedom. At a = 0.05 the region of rejection is

= X20.95,100 =77.929
The value of the test statistic is

100(1.21)
2.25

XY = = 53.778
Thus the null hypothesis is rejected and there is evidence that uniform housing significantly
reduces the variability of electric consumption. This result suggests that a program to
encourage persons to make their homes more energy efficient might be worthwhile.

If desired, a central confidence interval can be determined for o” for the population of

uniform residences of the type sampled:

2 2
Closs: (n—1)s << (n—1)s
Xg.OZS,n—l X(2)4975,n—1
100(1.21) -2 100(1.21)
129.561 — = 74222

0.93 < ¢ < 1.63

The inferences relative to the variance of a normal population can be summarized as
follows.
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Procedure. Inferences about a Population Variance

Assumption: Normality

Confidence Intervals

_ 2 _ 2
ol s o (=5
X?x/Z,nfl 1—a/2,n—1
Test of Hypothesis
H()I 0'2 = (T%
H,:0? # 03, or 0@ > a3 or o° < 02
Significance level: «
Test statistic:
(n — 1)s?

A

Region of rejection: x> < X o0, 1 OF X = Xajzn10 O X = Xan1> OF X < Xi_an 1>
respectively.

EXERCISES

74.1.

7.4.2.

7.4.3.

On an IQ test which is distributed as N(100, 225), the average 1Q score for a certain
second grade in a private school in Victoria, Texas, is y = 106. If a = 0.05, how often
might a deviation this large or larger occur by chance in a random sample of 25?

A certain intelligence test has an N(100, 100) distribution. To see whether intelligence
is inherited, tests are given to the eldest child of each of a random sample of 16
acclaimed scholars. The average score of the children is 105.

a. Give the null hypothesis to be tested.

b. Give the alternative hypothesis.

c. Perform the test.
d.

How likely is it that data like these represent a sample from a population in which
the null hypothesis is true?

A synthetic female hormone (DES) has been used to fatten livestock. If this substance
appears in the meat, it affects the sexual maturity of young animals eating the meat.
Biological assays can be used to test for the presence of DES in meat. Young female
rats are fed the suspected meat, and if they mature earlier than expected, it is probably
because of DES in the meat. Suppose for a given strain of rat that time until sexual
maturity in the females follows an essentially normal distribution with a mean of 90
days and a variance of 144.

a. What is the probability that a randomly selected female rat will reach sexual

maturity before 90 days? Before 86 days?

b. What is the probability that the average time until sexual maturity of nine female
rats will be less than 90 days? Less than 86 days?

c. A random sample of nine female rats is fed a diet including meat suspected of
containing DES.

i. What are the most logical null and alternative hypotheses?
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ii. If & = 0.05, which values of the sample average will lead to the rejection of the
null hypothesis?

iii. Suppose for female rats on a diet containing DES sexual maturity follows an
N(86, 144) distribution; what is the probability of making a Type II error?

A coal research scientist has discovered that West Virginia coal contains an ore rich
in aluminum. Although it is present in coal only as a trace mineral, it may be
economically practical to recover the ore from the ash left when coal is burned in
large boilers of power plants. To estimate the quantity of the ore in coal, the
scientist takes a random sample consisting of 100 observations and computes the
following:

Z y = 8400 ppm
(Z y)2 — 70,560,000 ppm?

>y =1715,500 ppm”

a. What is the best estimate of the mean content of aluminum ore in West Virginia coal?
b. Show that the sample standard deviation is 10 ppm.
¢. A coal economist calculates that the recovery of the ore will be profitable if it is

present to an extent greater than 82.3 ppm in the coal burned in the boilers. On the
basis of these data, would you recommend attempting to recover the ore?

The following stem-and-leaf plot gives the weight in kilograms of 30 stalks of an
experimental variety of plantain fruit that has been genetically altered to contain a
greater level of protein:

kg kg/10
8

246
3578
01378
1234788
12467
01357

WA ||| I] 0| \©O

a. Compute s °.

b. Find a 95% confidence interval for o”.

c. Perform a test of hypothesis at the 5% level of significance to determine whether or
not this sample came from a population that has a variance of 3.0.

d. Find a 95% confidence interval for w using s> to approximate o”.

Many organic phosphorous compounds are effective insecticides, but they are also
chemically stable and likely to get into the human food chain. They have even been
detected in the digestive tracts of recently born infants, but it is not known to what
extent this is via mother’s milk and to what extent these compounds pass through the
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placental membrane prior to birth. To get answers to these questions, a medical
research team draws samples of amniotic fluid from the wombs of 64 pregnant women
and performs chemical analyses for a certain organic phosphorous insecticide. The
following data are obtained:

Zy = 320.00 ppm

Zyz = 1761.28 ppm?

. Estimate the mean ppm of the compound found in amniotic fluid.

a

b. Show that the sample variance is 2.56 ppm>.
c. Place a 95% confidence interval on the mean.
d

. Place a 95% confidence interval on the variance.
7.4.7. Ttcan be illustrated that s> = Z (y — )*/(n — 1) is an unbiased estimator of o” by the
following special case. Let the population be an equally likely distribution of 1, 2, 3,
4. This population was discussed in Section 6.3.
a. List all possible samples (with replacement) of size 2.
b. Compute the sample variance of each sample.
c. Find the relative frequency of each different sample variance found in part b.
d. Find E(s %) and show that E(s ) = 0.

7.5. USING A NORMAL DISTRIBUTION TO APPROXIMATE OTHER
DISTRIBUTIONS

A normal distribution can sometimes be used to approximate the probabilities associated with
response variables that follow a binomial or a Poisson distribution.

In the case of a binomial distribution, the central limit theorem implies that if 7 is fairly
large (n > 25) and 7 is fairly close to 0.5 (0.2 < 7 < 0.8), then the binomial random variable
y can be transformed into a random variable that is distributed approximately as the standard
normal random variable

y—nm

Jnm(l — )

=]

Note that nm = w is the mean of the binomial distribution and +/n7(1 — ) is the standard
deviation.

Example 7.7. Using a Normal Distribution to Approximate Probabilities for a
Binomial Random Variable

A sociologist studying families headed by a single parent would like to know the probability
of finding 40 or more such families in a random sample of 100 families if 30% of families are
of this type.
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Since E(y) = nm = 100(0.30) = 30 and V(y) = nm(1 — ) = 100(0.30)(0.70) = 21, then

40 —
P(yZ40)’£P(ZZ 0 30)

V21
= P(z > 2.18)
=0.015

Thus, if the sociologist needs at least 40 cases for a study, a sample of 100 families will
probably not be sufficient.

Since the binomial distribution is discrete and the normal distribution is continuous, the
approximation will be poor in the case of small sample sizes. To compensate for this, a
continuity correction of 0.5 is often made. If we represent the binomial probabilities by bars of
unit width so that the area of the bar centered over y is the probability of y and we represent the
normal distribution by a smooth curve, we can see (Figure 7.7) that using 40 as the cutoff point
in the above example does not take into consideration half of the bar below 40. Thus, instead
of finding P(y > 40), we should find P(y > 39.5). The sociologist above would then find

39.5 - 30
P(y>395)=pPlz>"2"——
(y ) ( ﬁ’)

= P(z > 2.07)
=0.019

The additional accuracy may be important in some experiments.

A test of hypothesis can also be done about the binomial parameter, making use of the fact
that (y — nr)/+/nm(1 — ) is approximately standard normal. This procedure is especially
helpful for large sample sizes since exact binomial tables may not be available.

Example 7.8. Using a Normal Distribution to Test a Hypothesis About 7=

Most people have a dominant eye which looks directly ahead while the other eye adjusts to it
in order to bring a viewed object into focus. A reading specialist wants to determine whether
there is any tendency for one eye to be dominant in children with a certain reading problem.
She takes a random sample of 225 children with the reading problem and determines the
dominant eye for each of them. Suppose she finds that for 144 of the children the right eye is

This half of
the bar is
missing

FIGURE 7.7. Approximating a binomial distribution by a normal distribution.
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dominant. The null and alternative hypotheses are
Hy:7=05 and H, 7 # 0.5

The test statistic is

Yy —nm
144 — 225(0.5)
= /225(05)(0.5)

=42

=

At a = 0.05, she will reject the null hypothesis if |z] > 1.96. Since |4.2| > 1.96, she rejects
the null hypothesis and concludes that more than half the children with this reading problem
have a dominant right eye.

If the specialist in the above example would like to find a confidence interval for , she
could make use of the fact that

y—nm y/n—

N /ﬂﬂ —m
n

Il

Z

and that y/n is the best point estimate of 7. Analogous to confidence intervals on u, the
confidence interval on 7 would be

/ 1—
Cllfa:y/n i Za/Z y

However, since 7 is unknown, it must be estimated in the standard error by y/n, giving

1=
Cli_a:y/n £ zaop2 M

In the sample, since y = 144, she would find

144 (144/225)(1 — 144/225)
Clps: 25 + 1.96 225

0.640 + 1.96(0.0320)
0.640 + 0.0627
0.577 < < 0.703
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If desired, the statistic

y/n—m

[mo(1 — o)
n

can be used for tests of hypothesis. This is equivalent to the method illustrated in the example.

=]

Procedure. Normal Approximation of a Binomial Distribution

Assumptions: n > 25 and 0.2 < 7 < 0.8

Confidence Intervals

a2 PO /(y/n)(ln —3/m

Tests of Hypotheses

H()Z o = T

H, m # mgor m> myor m< 1
Significance level: «

Test statistic:

y—nm ___ y/n—m
Jnm(l —m)  /mo(l — m)/n

=]

Region of rejection: |z| > zq/2 OF 2 > 24 OT 7 < — Zq, respectively.

The normal distribution can also be used to approximate probabilities related to variables
that follow a Poisson distribution. This approximation arises from the central limit theorem. If
yis a Poisson random variable and A is large, y can be transformed into a random variable that
is distributed approximately as the standard normal random variable

y—A
VA

Note that A is the mean and «/X the standard deviation of the Poisson distribution.

=

Example 7.9. Using a Normal Distribution to Approximate Probabilities for a Poisson
Random Variable

A traffic control specialist wants to know the probability that more than 30 vehicles will pass a
given intersection in a 3-minute period at 3:00 pM if the expected number of vehicles to pass
that intersection in 3 minutes at that time is 25:

30.5 — 25
P(y > 30)gP<z>—)

V25
=Piz>1.1)
=0.136
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This computation is much simpler than working with the exact Poisson distribution. Note that
a continuity correction is used because the discrete Poisson distribution is being approximated
by the continuous normal distribution.

Tests of hypotheses about A can also be done with a z statistic using the fact that
(y — A)/+/A is approximately standard normal for large A.

Procedure. Normal Approximation of a Poisson Distribution

Test of Hypothesis

H(): A= )\0

Hi: A # Adgor A > Agor A < Ay
Significance level: «

Test statistic:

y—2Xo
Ao

Region of rejection: |z] > z4/2 OF 2 > 74 0T 2 < — Zq, Tespectively.

When two populations have proportions 7r; and 7, with corresponding odds w; and w», a
useful alternative to comparing the difference in proportions (7, — r;) is the odds ratio ¢:

b= m/(l — m)

w m/(1—m)
We can estimate the odds from randomly sampled data summarized in a 2 x 2 contingency
tables of the form

Response variable
Explanatory variable Yes No Sample sizes
Yes 011 012 n
No 021 022 n

The estimated odds ratio is

b= @ m/(1—m) on/on _ (011)(02)
Sy m/(L—)  on/on  (021)(012)

The estimated odds ratio is not normally distributed; however, the sampling distribution of the
natural log of the estimated odds ratio is approximately normally distributed if the sample
sizes n; and n, are large. The mean and variance of the natural log" of the estimated odds ratio

“The natural log (log,) has e as its base rather than the more common log (log;o) which has 10 as its base. The
relationship is log.(y) = 2.3026 log;o(y). Table A.17 provides values of log;o(y).
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are

E(log, $) = log, ¢

1 1

V(log, ¢) = mm(l —m) nom(l —m)

The variance of the distribution of the log odds ratio depends on 7r; and 7, which are
unknown. For confidence intervals, the proportions 7, and m, will be replaced by their
individual sample estimates, and the standard error of estimate is

1 1
1 (L =) nadn(l — i)

s.e.(log, (?)) = \/n

For testing hypothesis about the equality of the odds in two populations, each proportion will
be replaced by the estimate of the common proportion

~ 011t 02
ny +ny

and the standard error of estimate is

1 1
I%c'(l - %L) nZ%c(l - 'ﬁ'¢)

s.e.(log, (}5) = \/n

We will perform statistical inference for the log odds ratio by using a normal approximation
and then restate the results for the odds ratio.

Example 7.10. Using the Normal Distribution for Inference about an Odds Ratio

The results of Dr. Jonas Salk’s experiment of his polio vaccine were as follows:

Proportion with
Paralytic Polio =~ Number in Study

Inoculated group 0.00016 200,745
Control group 0.00057 201,229

To test the hypothesis that the odds ratio for Dr. Salk’s vaccine is greater than 1:

Hp:log, =0 ie,¢p=1
Hg;:log, >0 ie.,¢p>1

The test statistic is

] 127
og ¢ = =774

T Um0 — )+ (Unaim(l — ) 0.164
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where

b /(1 — 4,)  0.00057/(1 — 0.00057)
T /(1 =) 0.00016/(1 — 0.00016)

=3.56

log, ¢ = log, 3.56 = 2.3026 log,, (3.56) = 2.3026(0.5514) = 1.27

~ 011+012 32+115
e =+ 200,745 + 201,229

. i
el = ——+-——=0.164
se(log ¢) \/ Ll —m)+nm(1 ) \/744+742

1
“T0164

= 0.00037

With a = 0.05, we will reject the null hypothesis if z > 1.645. Since z > 1.645, we reject the
null hypothesis and conclude that the odds of paralytic polio is greater for the control group
than for the inoculated group. .

In Dr. Salk’s experiment the odds for members of the unvaccinated group was ¢ = 3.56
times greater than those for those receiving the vaccine. However, this is a point estimate, and
for inference an interval estimate is preferred. The formula for a confidence interval for the log
odds ratio is

N 1 1
Cli_q: 1 +
1-a: log, ¢ & Za/z\/nﬂATl(l —m)  mn(l — )

and the formula for a confidence interval for the odds ratio is

Nz L+ —
Cli_ya: ¢ +e a2\ mym (1 —m) (1 — )

For Dr. Salk’s data the 95% confidence interval is
1 1
3.56 + ¢ VRT T TG _ 356 4 1.48
2.08 < ¢ <5.04

With 95% confidence it could be concluded that people who have not been vaccinated are 2.08
to 5.04 times more likely to contract paralytic polio than are those who received the vaccine.

Procedure. Normal Approximation for the Log Odds Ratio

Confidence Intervals:

1 1
Cly_u: &S + eza/z\/ﬂl‘ffl(l—‘ﬁ'l) + nyay(1—1r
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Test of Hypotheses
H()Z (l’) =1
H;:¢p>1
Significance level: «
Test statistic:

where

A~

= log, ¢
\/ 1 N 1
nl'ﬁ'c(l - 7ATL) n27ATc(1 - 7ATL)
A /(1 — 1) . o011 +on2
=" and W =——=
¢ /(1 — rp) T om+m

Region of rejection: z > z,,

EXERCISES

7.5.1.

7.5.2.

7.5.3.

A physical education professor claims that 35% of third-grade children can do a

handstand. If this claim is true:

a. Find the probability that 10 or more third-grade children out of a random sample
of 25 can do a handstand.

i. Use the exact binomial distribution.
ii. Use the normal distribution without a continuity correction.

iii. Use the normal distribution with a continuity correction.

b. Find the probability that 40 or more third-grade children out of a random sample
of 100 can do a handstand.

i. Use the normal distribution without a continuity correction.
ii. Use the normal distribution with a continuity correction.

c. Based on the results of parts a and b, is the correction for continuity more
important in large or in small samples?

A customer relations bureau located in a large eastern city claimed that 80% of the
complaints registered with it were settled to the satisfaction of the customers. The
local newspaper, doubting whether the percentage was really that large, takes a
random sample of 40 complainants and asks them whether they had received
satisfaction. Only 12 indicate that they had. Use the normal approximation to make a
test of significance at a = 0.01.
In a certain Midwestern community, 25% of the population consists of third-
generation descendants of one Finnish immigrant family. Within the community there
is a remittent nervous disorder that may be transmitted genetically. There are 75 cases
of the disorder on which to base studies.
a. If the disorder is not genetic or in any way associated with ethnic origin, what
percentage of those with the disorder are likely to be third-generation descendants
of that family?
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7.54.

7.5.5.

7.5.6.

7.5.7.

7.5.8.

7.5.9.

NORMAL DISTRIBUTIONS

b. What are the most logical null and alternative hypotheses to test whether the
disorder is genetically controlled?

c. If 28 of the 75 cases are third-generation descendants of the Finnish family, carry
out the test at the 0.05 level of significance.

A random sample of 100 high-school dropouts in Pittsburgh aged 17 to 19 revealed

that 20% of them were unemployed.

a. Place a 95% confidence interval on the percentage of all similar people in that area
who are unemployed.

b. The average unemployment rate for the entire work force in Pittsburgh is 7.0%. Is
the unemployment rate among high-school dropouts significantly higher than for
the entire work force? Justify your answer.

Many people claim they can distinguish the difference in taste between fish that has

been frozen and fish that is prepared fresh. In an experiment, a random sample of 100

consumers is presented with two portions of cooked fish, one of each kind. Of these

consumers, 64 can correctly distinguish between the fresh and the frozen fish.

a. Use a point estimate to estimate the proportion of people in the population who
can make this distinction.

b. The answer to part a is an estimate and thus subject to variability. What is the
estimated variance of this estimate?

c. Use the normal approximation to the binomial distribution in order to place a 95%
confidence interval on the proportion.

d. Is there statistically significant evidence that some people can distinguish fresh
fish and are not just guessing? Explain.

The theory of radioactive decay predicts that a certain material is expected to emit 40
radioactive particles in 10 msec.

a. What is the probability that at least 35 particles will be emitted in 10 msec?

b. What is the probability that between 30 and 35 particles (inclusive) will be
emitted?

A nuclear physicist suspects that a counter is missing some radioactive particles
because it has a certain “dead” period as it counts; that is, if two particles are emitted
very close together, the counter misses the second one. Assume that the theory
correctly states that the expected number of radioactive particles emitted in 10 msec
from a certain material is 40. If a counter counts 26 particles in 10 msec, does the
physicist have evidence that the counter is giving undercounts?

A serum thought to be effective in preventing colds is given to 300 persons. Their
records for one year are compared with those of 200 untreated persons with the
following results:

No Colds  Colds

Treated 145 155
Untreated 80 120

Construct a 95% confidence interval for the odds ratio for colds in the untreated group
compared to the treated group.

It is reported that offspring of users of a certain recreational drug may have a higher
incidence of birth defects than the general population. To obtain information about a
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possible relationship between this drug and birth defects, 100 offspring of female rats
fed the drug and 100 offspring from untreated female rats are examined. The results
are given below:

Progeny

Females Birth Defects Normal

Treated 30 70
Untreated 20 80

Using a 0.05 level of significance, is there statistical evidence to support the
experimental hypothesis that the odds ratio for birth defects in the treated group
compared to the untreated group is greater than 1?

7.5.10. In Exercise 7.1.8, the proportion of scores on a mathematics examination that are high
enough to achieve prestigious recognition is 7= 0.067, but 24 of 140 politicians
claim they received such scores. What is the probability of so many of them in a
random sample of 140 people?

7.6. NONPARAMETRIC STATISTICS: A TEST BASED ON RANKS

There are situations in which data are not normally distributed but the mean and variance of
the distribution are known. An especially useful distribution of this sort is the distribution of
the N consecutive ranks from 1 to N. This is a discrete uniform distribution with u = (N + 1)/
2and? =(N?— 1) /12. (The denominator 12 is a constant which arises in the computation
of @ and is not related to the number of ranks involved.)

If we are concerned about the average rank 7 in a random sample without replacement of n
of the N consecutive ranks, the expected value and variance of the average rank in the sample
will be

N+1

EF) =p=">

and

o (N—nWN+1

With this knowledge and a sample sufficiently large for the central limit theorem, we can
compute the probability of obtaining a given average rank in a random sample from N
consecutive ranks with

L F—WN+D2
TN —wINT D/

Example 7.11. Applying the Central Limit Theorem to Rank Data

There is strong consumer preference for clear fruit juices, so food chemists often evaluate
different methods of clarifying the juices and nectars of fruits. Suppose a chemist is



174 NORMAL DISTRIBUTIONS

comparing the effectiveness of filtration with and without prior enzyme treatment. He takes a
large volume of apple juice as it comes through the company’s presses, divides it into
subsamples, and applies the methods of clarification using 20 vials of juice per method.

When he attempts to obtain quantitative measures of the optical density (or clarity), he
discovers that his optical density reader is producing faulty results and requires repair. The
experiment will need to be repeated, but to salvage whatever results possible, he holds each
vial of juice to the light and discovers that he can satisfactorily rank the 40 vials from clearest
to cloudiest. Ranks 1 through 40 are assigned to the vials according to their clarity and the data
below are obtained:

Treatment Rank Average

Enzyme 1 3 5 6 7 8 9 10 13 14
15 16 19 21 22 28 29 31 32 36 16.25

Control 2 4 11 12 17 18 20 23 24 25
26 27 30 33 34 35 37 38 39 40 2475

It appears that the vials containing juice without enzyme treatment have greater ranks (greater
cloudiness) than the other, but a statistical test is still desired for the probability statement it
provides.

Under the null hypothesis, the vials of juice treated with enzyme are simply a random
sample of 20 of the ranks from 1 through 40, and hence the expected average rank is

and it can be shown that the variance is

o (N-mN+1)
ViD= 121

20040+ 1)
T 12(20)

=342
If the conditions for the central limit theorem hold, the hypothesis
Hy: E(r) =20.5
versus

H,: E(7) # 20.5
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can be tested using the normal variate z as the test statistic,

_F—E(F _ 1625205

Z

V) V342
_ 425
-85
=230

The P value = P(|z| > 2.30) = 2(0.011) = 0.022 is less than the conventional « = 0.05;
hence the null hypothesis can be rejected, and it can be concluded that apple juice which is not
treated with the enzyme prior to filtration has a significantly greater rank for cloudiness than
does that which receives the enzyme treatment.

The example above is a variation of the Mann—Whitney—Wilcoxon test, and the procedure
is the basis of the group of nonparametric procedures known as rank tests. Even when data are
recorded on the continuous numerical scale, they can be transformed by replacing them with
their ranks and a hypothesis tested about average rank. It is generally advised that at least one
of the samples be 20 or larger before the central limit theorem applies. For both samples less
than 20, it has been suggested that the continuity correction be used,

F—1/2—E(
IRYALG)

Also, there are tables for the exact distribution of a related statistic when both samples are
less than 20 [see Conover (1998) or Daniel (1990)].

Procedure. Rank Test for Sample of n of Integers 1 to N

Hy: E(r) = (N + 1)/2 (This is a random sample of n of the integers 1 to N.)

H,: E(r) # (N 4+ 1)/2 (The ranks in the sample tend to be lower or higher than a random
sample.)

Significance level: o

Test statistic:

PN +D2
TN —wINT D/

Region of rejection: |z] > z4/2 OF 2 > 74 0r 2 < — Z4, respectively.

EXERCISES

7.6.1. The consecutive ranks from 1 to N = 50 are randomly sampled.
a. What is the numerical value of E(r) when n = 10, 20, 30, 40, respectively?
b. What is the numerical value of V(r) when n = 10, 20, 30, 40, respectively?
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7.6.2.

7.6.3.
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Odor is used in the identification of certain organic chemical compounds, and because
women are thought to have a keener sense of smell than men, they may have a natural
advantage in being able to identify these chemicals. To test this, all of the organic
chemistry graduate students in a large department are given the same dilution of an
aromatic organic compound to smell. They are asked to tell their professor the name of
the compound as soon as they think they have identified the odor. The order in which
female (F) and male (M) students correctly identified the compound is given below,
from first to last:

(Fisty F F M F F M F M M
M M M M M M F F F F
M M M M M M M M M M (Las

a. What is the highest scale of measurement available here: nominal, ordinal, or
numerical?

b. If there is no difference between men and women with respect to keenness of smell,
what is the expected average rank of the 10 women in the study?

¢. What is the variance of a random sample of 10 of the consecutive integers from 1
through 30?

d. What null and alternative hypotheses would be appropriate?

e. Using oo = 0.05, make the test of significance and draw conclusions.

Given below are particulate data from samples of the flumes of two coal-burning
generators. The two are adjacent, using coal from the same mine, and otherwise
identical, except that a scrubber has been installed on one in an effort to reduce
particulate emission.

With Scrubber Without Scrubber
0.40 050 0.65 1.41 1.87 210 3.55 357 382 394
232 245 246 273 427 432 453 465 470 4.73
3.19 320 475 477 5.06 633 6.51 7.09 7.57 9.63

Rank the data and make a 0.05 test of the effectiveness of the scrubber in reducing
particulate level.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain

why.

7.1.
7.2.
7.3.

74.

Neither of the parameters of a normal distribution can be negative.
All bell-shaped distributions are normal distributions.

In a normal distribution, if w has a large numerical value, then ¢ will also tend to be
large.
In a normal distribution, about 95% of the values lie within —2 to +2.
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7.5. If the variance of a population that follows a normal distribution is known, then, if
necessary, a test of hypothesis concerning the mean can be performed from a sample of
size n = 1.

7.6. If possible, samples of size larger than 1 should be used for purposes of inference.

7.7. According to the central limit theorem, if n is large, the sampling distribution of
averages is closely approximated by a normal distribution.

7.8. The central limit theorem can only be applied to symmetrical distributions.

7.9. A test of hypothesis involving the z statistic is frequently used because most
experimental populations follow normal distributions with known variances.

7.10. If a population has variance o> = 12, then the variance among the averages of all
samples of size 3 drawn at random with replacement from the population will be of =4.

7.11. For a test of hypothesis using a z statistic, the region of rejection is uniquely determined

by the alternative hypothesis and the sample size.

7.12. The danger in misusing a one-tailed test when a two-tailed test should be used is that it
makes « larger than for the proper test.

7.13. The danger in misusing a two-tailed test when a one-tailed test should be used is that it
makes 3 larger than for the proper test.

7.14. Other things being equal, in a test of hypothesis, the larger the sample size, the smaller
the « level.

7.15. Other things being equal, in a confidence interval, the larger the sample size, the
narrower the interval.

7.16. If a population distributed as N(u, 0”) is randomly sampled and (5 — w)/(s/+/n) is used
to compute a z statistic, the probabilities will be reliable only if n is large.

7.17. If the 1 — « central confidence interval on u does not contain the value of w in the null
hypothesis, then a two-tailed test would lead to rejection of the null hypothesis at the «
level of significance.

7.18. If the variance of a normal distribution is unknown and is estimated by s 2, then two
separate random samples of the same size could produce two confidence intervals of
different widths.

7.19. Hypotheses about the binomial parameter 7 tested by the exact binomial distribution
and by the normal approximation give exactly the same probabilities.

7.20. When n is large and 7 is near 0.5, the binomial distribution is approximately a normal
distribution.
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8 Student’s ¢ Distribution

In most experimental situations, the population variance is unknown. In Chapter 7 we noted
that if a population variance is unknown and the sample size is 30 or more, the population
variance can be estimated by the sample variance and then the standard normal distribution
can be used for inference. If the sample size is below 30, this procedure will not give reliable
probabilities. We discuss the appropriate procedure for such situations in this chapter.

8.1. THE NATURE OF ¢ DISTRIBUTIONS

At the beginning of the twentieth century, William Sealy Gosset (1896 to 1937) was an
employee of the Guinness brewery in Dublin, where he interpreted data and planned barley
experiments. In 1906 and 1907 he was sent to University College, London, to study statistics
with Karl Pearson. In 1908 he published a paper in which he noted that if random samples of
size less than 30 are taken from a normal distribution and the samples used to estimate the
variance, then the statistic

y—nm
s/a/n
is not normally distributed. The probabilities in the tails of this distribution are greater than for

the standard normal distribution (Figure 8.1).
This is reasonable since

Z:i—u
a/Jn

contains only one random variable y, while

y—m
s/\/n
contains two random variables y and s. Gosset also noticed that as n increases this new
distribution approaches the standard normal distribution.
Gosset published his findings under the pseudonym “Student” because of the Guinness
company’s restrictive policy on publication by its employees. The sampling distributions he
studied are called Student’s t distributions, and we write

tz&—n
s//n

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X  © 2004 John Wiley & Sons, Inc.

179



180 STUDENT’S ¢ DISTRIBUTION

Normal distribution
~

Gosset's distribution

FIGURE 8.1. Comparison of the standard normal distribution and a ¢ distribution.

The density functions for Student’s ¢ distributions are known, and a description of the
curve may be helpful (see Figure 8.2).
Student’s ¢ distributions are

. unimodal;

. asymptotic to the horizontal axis;

. symmetrical about zero, E(t);

. dependent on v, the degrees of freedom (for the statistic under discussion, v =n — 1);
. more variable than the standard normal distribution, V() = v/(v — 2) for n > 2;

[ N O S

. approximately standard normal if v is large.

Table A.11 in the Appendix of Useful Tables gives many of the critical values of the ¢
distributions needed for inference. The ¢ distributions are listed by degrees of freedom. In the
table, a corresponds to the probability that 7 exceeds the tabular value; thus P(z > 1.721 if
v =21)=0.05. We write #p0s »; = 1.721.

Since the ¢ distribution is symmetrical, critical values for the lower tail can be obtained
from the upper tail, tj_o, = —ta,

Standard normal
_/ v=12

FIGURE 8.2. Student’s ¢ distributions.
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Thus

10.95,16 = —10.05,16 = —1.746

It should be emphasized that the ¢ statistic arises only when we are sampling from a
population with a normal distribution and when ¢” is estimated by s 2. Whether the sample
size is large or small,

y—um

s//n

has a ¢ distribution. However, since the ¢ distribution is quite close to the standard normal for
n > 30, it is common to approximate the probabilities in the ¢ distribution by the standard
normal for large sample sizes. If more accuracy is desired and the appropriate table or
computer program is available, the ¢ distribution can be used.

It is permissible to use the 7 distribution to estimate probabilities when we are sampling
from a distribution that is not normal if the distribution is at least symmetrical, unimodal, and
with a variance that is not inordinately large. In this case, the ¢ distribution is a good estimate
of the actual sampling distribution.

EXERCISES

8.1.1. Use Table A.11 to find:

a. foo1, 10
. 10.99, 10
. 10.025, 7
. 10,975, 7

- 10.005, 23

-0 2 6 T

. 10.995, 23
8.1.2. Use Table A.11 to find:
a. P(r>2.145if v = 14)
. P(t <2518 ifv=21)
. Pt < —1.782if v =12)
. P(t>—1363ifv=11)
. P(—2.120 <t < 2.120 if v = 16)
f. P(Jt| = 2.831 if v=21)

o & 0 T

8.1.3. A random sample is taken of 16 women who are the sole support of their families, and
information is obtained about their annual income (in dollars):

>y =128,000

>y = 1,177,600,000

Assume that the distribution of incomes is normal.
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a. Find the best point estimate of the mean income of all women who are the sole
support of their families.

b. Estimate the population variance.

c. If p is actually $6400, compute

y— M

SN

d. How likely is it that a 7 statistic of this magnitude or larger will arise when choosing
random samples of size 16 from this population?

8.2. INFERENCE ABOUT A SINGLE MEAN
Under the following conditions, ¢ distributions may be used for inference about u:

1. The population distribution is normal (or at least symmetrical and unimodal).
2. The population variance is unknown and estimated by the sample variance.
3. The sample is random.

Tests of hypothesis about a population mean w and confidence intervals for w using
t distributions are analogous to using the standard normal distribution.

Example 8.1. Using a ¢ Distribution to Find a Confidence Interval for p

After running about 17 miles, marathon runners encounter a form of physiological stress
which they call “hitting the wall.” To better pinpoint where in a race to expect this pheno-
menon, a sports physiologist has 12 male marathon runners race until each feels this
stress. The variable of interest is the number of miles run until the stress occurs.
These are

158 165 153 162 17.1 164
175 173 169 166 17.0 17.7

The physiologist would like to use a ¢ distribution to find a 95% confidence interval
on the mean distance a marathon runner covers before “hitting the wall.” He finds that
Z y = 200.4 miles and Z y? =3,352.08. He computes a point estimate for the mean,

200.4
=——=16.70
12

<1

and the sample variance is

a2 (X0) _ 335208 — (200.4/12

n—1 11

= 0.4909
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The sample standard deviation is s = 0.70 and the standard error of the mean is
s/4/n=0.70/+/12 = 0.20. Since there are 12 subjects, the degrees of freedom are
n—1=12—1=11. Thus

- S
Cloos: y £ t0.025,11 7

16.70 + 2.201(0.20)
16.70 + 0.4
1626 < p < 17.14

For this to be valid, the physiologist must be able to assume that the variable of interest is
normally distributed, or at least approximately so. Perhaps he might be able to base the
assumption on some theoretical knowledge of the physiological changes that occur during
running, but more likely he will need empirical evidence. If he has been observing this
phenomenon for some time in the course of his other investigations of marathon runners, he
may have accumulated enough rough measurements to draw a graph and check on the
symmetry and unimodality. Two graphical representations of data are often included in
statistical packages to provide some visual evidence about the assumption. For the 12
observations in the sample, these are shown in Figure 8.3, where the experimenter would find
the familiar histogram along with another graphic.

The histogram would show him that there is only one mode, but it might cause him to be
concerned about symmetry, and the second schematic is provided for visual examination of
the validity of that assumption. Above the histogram is a box-and-whisker plot, often simply
called a box plot. Using the same horizontal scale as the histogram, the vertical line in the
middle of the rectangle gives the location of the median, and the edges of the rectangle locate

Quantiles |
—EE_ 100.0% maximum 17.700

99.5% 17.700
97.5% 17.700
90.0% 17.640

75.0% quartile 17.250
50.0% median 16.750

25.0% quartle 16.250
10.0% 15.450
2.5% 15.300
05% 15.300
15.0 155 16.0 16,5 17.0 17.5 18.0 0.0% minimum 15.300

FIGURE 8.3. Graphics used for examining distribution of data.
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the upper and lower quartiles. Thus the n observations in the sample are divided, as nearly as
possible, into 1/4 equal portions so that approximately half of the sample data lie within the
range of the box, one-fourth lie to the left of the rectangle, and the remaining one-fourth to the
right. The lines extending from the right and left of the box are called whiskers, and they
extend, respectively, to the largest and smallest numerical values in the sample. Consequently,
if the data were perfectly symmetrical, the physiologist would see a “mirror-image” diagram
centered at the median. Although there is some evidence of lack of symmetry, the visual
evidence from the two graphics should lead him to feel his sample satisfies the assumption. If
he is unable to justify the assumption, he will have to be cautious about how much faith he has
in the accuracy of the interval.

Another condition for the validity of this confidence interval (as well as for other
inferences) is that the subjects are a random sample from the population of interest. To obtain
a completely random sample of 12 runners from the population of all male marathon runners
in this country is not feasible. Often the investigator must rely on local volunteers. It would be
better if he could find a list or runners from across the country and try to obtain a sample of
distance runners from this group. If only local runners are feasible, the generalization to all
runners is not as credible. There could be some local condition that affects the variable of
interest, for example, altitude.

At a later state in the experimentation, the physiologist may want to test a hypothesis about
the distance until stress occurs. For example, he might decide to extend his investigation to
female runners. An immediate question would be whether the distance until stress for women
is also 17 miles.

Example 8.2. Using a ¢ Distribution to Test a Hypothesis about p

The sports physiologist would like to test Hy: u = 17 against H,: u # 17 for female marathon
runners. In a random sample of 8 female runners, he finds

y=182 and s°>=0.65

Since n = 8, the degrees of freedom are v =7, and at a = 0.05 the null hypothesis will be
rejected if [¢| > 190257 = 2.365. The test statistic is

Y- 18217

"= Joess -

Thus he rejects the null hypothesis and concludes that for women the distance until stress is
more than 17 miles.

A two-tailed test was used in the above example. If the physiologist had some previous
information that stress occurs later, if at all, for women, then a one-tailed test in the upper tail
would have been appropriate. Using H,: pu > 17, at @ = 0.05 the region of rejection is
t> f()'()s’ 7= 1.895.

It is possible to make inference about another type of mean, the mean of the difference
between two matched groups. For example, the mean difference between pretest scores and

"Both graphics are needed because data can be symmetric but not unimodal.
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post-test scores for a certain course or the mean difference in reaction time when the same
subjects have received a certain drug or have not received the drug might be desired. In such
situations, the experimenter will have two sets of sample data (in the examples just given,
pretest/post-test or received/did not receive); however, both sets are obtained from the same
subjects. Sometimes the matching is done in other ways, but the object is always to remove
extraneous variability from the experiment. For example, identical twins might be used to
control for genetically caused variability or two types of seeds are planted in identical plots of
soil under identical conditions to control for the effect of environment on plant growth.

If the experimenter is dealing with two matched groups, the two sets of sample data
contain corresponding members—thus he has, essentially, one set consisting of pairs of data.
Inference about the mean difference between these two dependent groups can be made by
working with the differences within the pairs and using a ¢ distribution with n — 1 degrees of
freedom in which n is the number of pairs.

Example 8.3. Matched-Pair ¢ Test

Two types of calculators are compared to determine if there is a difference in the time required
to perform a certain common statistical calculation. Twelve students chosen at random are
given drills with both calculators so that they are familiar with the operation of each type.
Then the time they take to complete the calculation on each device is measured in seconds
(which calculator they are to use first is determined by some random procedure to control for
any additional learning during the first calculation). The data are as follows:

Calculator Calculator Difference (Difference)?
Student A B Va ¥
1 23 19 4 16
2 18 18 0 0
3 29 24 5 25
4 22 23 -1 1
5 33 31 2 4
6 20 22 -2 4
7 17 16 1 1
8 25 23 2 4
9 27 24 3 9
10 30 26 4 16
11 25 24 1 1
12 27 28 -1 1

Y va=18 Y =8

The null hypothesis is Hyp: wy; = 0 and H,: p, # 0 in which w, is the population mean for
the difference in time on the two devices. Thus

v 18
5, = - 215
Y= T

ZY3 - (Zyd)z/" _ 82— (18)%/12 _

n—1 11

5

2 _
RS
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The test statistic is

Ya— Mg, 1.5—

sq/ 5712

Using ¢« =0.05 and v=12 — 1 =11, 025,11 = 2.201, and since ¢t > 2.201, the test is
significant and the two calculators differ in the time necessary to perform the calculation.
Looking at the data, since y, is positive, the experimenter concludes that the calculation is
faster on machine B.

(=]

t= =2.325

In the above example, the experimenter was interested in whether there is a difference in
time required on the two calculators; thus u, = 0 was tested. The population mean specified
in the null hypothesis need not be zero; it could be some other specified amount. For example,
in an experiment about the reaction time the experimenter might hypothesize that after taking
a certain drug reaction times are slower by 2 seconds; then Hy: uy; = 2 would be tested, with
Ya = Yafter — Ybefore- Lhe alternative hypothesis may be one-tailed or two-tailed, as appropriate
for the experimental question.

Using a matched-pair design is a way to control extraneous variability. If the study of the two
calculators involved a random sample of 12 students who used calculator A and another random
sample of 12 students who used calculator B, additional variability would be introduced because
the two groups are made up of different people. Even if they were to use the same calculator, the
means of the two groups would probably be different. If the differences among people are large,
they interfere with our ability to detect any difference due to the calculators. If possible, a design
involving two dependent samples that can be analyzed by a matched-pair ¢ test is preferable to two
independent samples. The analysis proper for two independent samples is discussed in Section 8.3.

If confidence intervals are desired for the mean of the difference between two dependent
samples, they can also be computed:

— Sd
CII*(X: Ya i tot/2,nfl ﬁ

Procedure. Inference About a Mean Using a ¢ Distribution

Assumptions: normality, or at least symmetry and unimodality; unknown population variance
Confidence Intervals

Cli_o: Yy — tajan-1 \/Lh' S =Y+ tapa-i \/Lﬁ
Test of Hypothesis
Ho: = po
Hy: o # po or uw > o or o < g
Significance level: «
Test statistic:

t:)_’—ﬁ‘«o
s/a/n

Region of rejection: |¢| > 42,1 OT t >t 4—1 OT t < — 1o 51, TESPECtively.
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EXERCISES

8.2.1.

8.2.2.

8.2.3.

8.2.4.

From a random sample of 16 applicants for certain graduate fellowships, the
following statistics are obtained about their GRE scores:

>y =16,000

(Z y)2 — 256,000,000
Z ¥ = 18,400,000

a. Give the best point estimate of the population mean.
b. Estimate the standard error of this estimate.
c. Place a 95% confidence interval on this population mean.

The mean pulse rate for active males of college age is 72 beats per minute, but it is
thought to be greater for less active men of the same age. A physician at a student
health center questions her male patients on whether they participate in leisure-time
sports and measures the pulse rates of a random sample of 12 who do not. The
following pulse rates, in stem-and-leaf format, are obtained:

Tens Units
9 1

8 136

7 245568
6 67

a. Criticize the sample on the basis of the population it may represent.
b. Assuming some valid inference can be made, prepare for a test of hypothesis by
giving:
i. The most logical null and alternative hypotheses

ii. The critical region of the test statistic for & = 0.05

c. Conduct the test of significance by computing:
i. The sample average and variance
ii. The value of the test statistic

d. Assume the inference is valid; what would you conclude from this study?

Distance runners are known to have lower pulse rates than their contemporaries.

Suppose pulse rates are measured on a random sample of 25 runners 5 minutes after

they have completed a 10-kilometer run. The data yield y = 58.2 beats per minute and

s%=72.25.

a. Compute the standard error of the average.

b. Use the standard error to set a 95% confidence interval for the mean pulse rate of
distance runners.

Fruit flies (Drosophila melanogaster) are attracted to light. This phenomenon is called
positive phototaxis, and it may be an inherited behavior. Suppose a geneticist
measures the phototactic response of all flies for one generation and finds a mean
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response time of 80 seconds. He then mates the male and female that showed the
fastest response times. The following data are obtained on the phototactic response
times of their offspring:

n =730
Zy = 2136 seconds

>y =1552252

a. If phototactic behavior is inherited, should the offspring of the male and female
that showed the most rapid response have an average response time greater or less
than that of the previous generation?

b. Use the answer to part a to set up the most logical null and alternative hypotheses.

c. Perform the test of significance and state the conclusion.

Organic phosphorous insecticides are very stable chemically and are known to collect

in the soil and water and eventually to enter the food chain of human beings. In a study

made in an agricultural region in the Orient, the milk of 40 nursing mothers was
examined and found to have an average of 4.2 ppm of organic phosphorous
insecticides. The sample standard deviation was 1.2 ppm.

a. Place a two-sided 99% confidence interval on the mean level of these compounds
in mothers’ milk in the region.

b. Place a one-sided 99% confidence limit on the worst the mean contamination
might be.

The mean score on the Graduate Record Exam is 1000 for all students who take the

exam. No extensive study has been made to determine whether higher or lower mean

scores are attained by students 30 years of age or older. A pilot study is done, and the
following data are obtained:

n=18

> y=18972

Z (y — )% = 435,200

a. Prepare for a test of significance by giving:
i. The most logical null and alternative hypotheses
ii. The critical value for the test statistic for & = 0.05

b. Compute the average and variance.
¢. Conduct the test of significance and state the conclusion.

At a certain university, an English proficiency test must be passed before under-
graduates can receive their degrees. Some students have been known to take the test
twice before passing it. A random sample of 25 such students was taken, and the
number of “comma errors” was counted on the first and second tests. The average
difference on the two tests was a decrease of 2.4 errors. The standard deviation was
6.0.
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a. If a college administrator wants to test to show that there was no improvement,
what are the null and alternative hypotheses?

b. Perform the test.

One side of the brain is dominant over the other. A psychologist wishes to determine
whether the reaction time for voluntary movement is more rapid for the hand
controlled by the dominant side of the brain. Fifteen random subjects are given five
instructions for each hand in random order and the difference in total reaction time for
each hand is recorded for each subject.

a. Give the most logical null and alternative hypotheses.

b. What is the test statistic?

c. Give the degrees of freedom and the critical value at o = 0.05.

Agronomists have identified 7 different geographical areas with respect to raising
corn in West Virginia and have managed to obtain an experimental farm in each area.
To see if a single variety of corn can be recommended for the entire state, the two

leading varieties are compared for yield at all 7 localities. The following yields in
bushels per acre are obtained:

Geographical Area

Variety 1 2 3 4 5 6 7
A 45 41 58 60 42 32 57
B 47 44 62 63 46 35 59
(B—A) 2 3 4 3 4 3 2

(B — A)? 4 9 16 9 16 9 4

. Why is it a good design to compare the two varieties at each location?
. What is the average difference in the yields?
. Show that the estimated standard error of this difference is 0.309.

e e T o

. The seed company that sells variety B claims it will exceed variety A in yield by
more than 2 bushels per acre. Test this claim at & = 0.05.

e. What is your conclusion about the seed company’s claim?

f. Find a 95% central confidence interval on the mean difference in yield of the two
types of seed. How is this confidence interval related to the test in part d?

An industrial psychologist devises a 50-point questionnaire to measure a worker’s
attitude toward his job; the higher the score, the more favorably the worker views
it. The industrial psychologist is concerned that attitude may be affected by the
relationship of the day questioned to payday, with a worker responding
more favorably if he has been recently paid. To evaluate the effect of payday,
she draws a random sample of 16 workers and gives them all the same
questionnaire the day before (with score y;) and the day after (with score y;) they
are paid. The difference in each worker’s two scores (y; =y —Yy2) is the
variable analyzed.

a. Give the most logical null and alternative hypotheses.
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b. Use the sample data

and o = 0.05 to give the critical value of the test statistic. Make the test of significance.

c. Is there a payday effect?

8.2.11. Listed below are the gains in pounds of a random sample of pairs of twin lambs in
which one member of each pair is treated with an antibiotic and the other remains
untreated (control).

> oy =512
D v =608

Y (va =)’ = 1500

Pair: 1 2 3 4 5 6 7
Treated: 33.5 29.0 29.0 20.0 30.0 33.0 15.0
Control: 30.0 34.0 18.0 16.5 25.0 19.5 15.0
Va: 3.5 -5.0 11.0 3.5 5.0 13.5 0.0
Pair: 8 9 10 11 12 13 14
Treated: 15.0 21.0 31.0 20.5 22.0 22.0 29.0
Control: 18.0 23.0 24.0 28.0 18.0 26.0 20.0
Va: -3.0 -2.0 7.0 -7.5 4.0 —4.0 9.0
Pair: 15 16 17 18 Total

Treated: 26.0 22.0 38.0 25.0 461.0

Control: 18.0 32.0 32.0 16.0 413.0

Ya: 8.0 —10.0 6.0 9.0 48.0

a. If ) " y7 = 890.0, compute s3.

b. If you had no knowledge before this experiment of the effect of antibiotics on

weight gain, give the most logical null and alternative hypotheses.

c. Conduct the test at & = 0.05, stating your decision about the null hypothesis and

your experimental conclusion.

d. Place a 95% confidence interval on the mean difference in weight gain and explain
how this confidence interval could be used to test the null hypothesis.

8.3. INFERENCE ABOUT TWO MEANS

At the end of Section 8.2 we discussed a matched-pair ¢ procedure for two dependent samples.
In this section we discuss the appropriate procedure for two independent random samples that
meet the following conditions:

1. The experimenter is interested in the difference of two population means, ©; — ;.

2. The two samples, one from each population, are independent.
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3. Both populations are normal, or at least approximately so.

4. The population variances are unknown but are the same for both populations,

P ==

Example 8.4. Group Comparison ¢ Test

Chemical compounds that are carcinogenic to mammals also commonly cause genetic mutations
in lower organisms. Thus preliminary screening of possible cancer-producing compounds can be
performed by testing whether these compounds increase the mutation rate of microorganisms.

Suppose an experimenter uses this procedure as the first safety screening of an aromatic
hydrocarbon that could be used as an industrial solvent. He adds the compound to a medium of
an Ascomycetes fungus in several petri dishes and compares the mutation rate of this group
(the treatment group) with the control group (untreated group).

The variable measured is the number of mutant colonies per petri dish. The experimenter realizes
that this discrete random variable probably is not normally distributed but rather has a Poisson
distribution. Since he would like to use a # test to make the comparison, he first transforms his counts,
x, by letting y = logjo x. [If there are any zero counts, he will use y = log;o (x + 1).] Experience
has shown him that in this situation his transformation will yield distributions that, although discrete,
are approximately normal. After the transformation, his data are summarized as follows:

Control Group Treatment Group
Sample Data 2.13 1.59 1.14 1.77 1.42 1.73 1.57 1.49
1.36 1.46 1.19 2.52 1.83 1.35 1.53

From his previous work he believes that the variances of the two populations, although
unknown, are in fact equal. The closeness of the sample variances seems to confirm this. (If he
were in doubt, he could apply the test to be described in Section 8.4 to the sample variances in
order to test the hypothesis o7 = 03.) Since he believes the two variances are equal, the best
point estimate of this common variance will be an average of the two sample variances
weighted by the degrees of freedom. This weighted average is called the pooled sample
variance and is computed as follows:

E Z(yl -5’ +Z()’2 -5
P (m =D+ m—1)

(= Ds? + (n — 1)s3
- ny+ny — 2

In this experiment,

, 6(0.12) +7(0.14)

- —0.131
S 7+8—2

He would like to test

Ho: puy — wy =0 against Hg: py —uy, <0
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In other words,
Ho: wy =, against Hg: oy < u,

The test statistic has v=n; +n, — 2 =13 degrees of freedom, corresponding to the
denominator of the pooled sample variance, and

01 =y2) = (g — oo _ (1.52 —1.68) — 0

t= =-0.85
2 52 0.131+0.131
PP — T
ny + ny 7 8
The critical value at o = 0.05 is 595,13 = — 1.771. Thus the null hypothesis is not rejected,

and the experimenter concludes that there is no evidence that this aromatic hydrocarbon
increases the mutation rate of the fungus.

Note that the t statistic, although different from the statistic used for one-sample or
matched-pair tests, is still of the same form:

P (Estimate of the parameter) — (Hypothesized value of the parameter)
- (Estimated standard error of the estimator)

The estimator of w; — m, iS y; —y,. Since the variances of the two groups are equal
(021 = 0'% = ¢°) and the samples are independent,

VO =) =V + V()

P o
= — 4 —
np ny

This is estimated by

np np

and the standard error of the estimator is estimated by

2 2
S %
np np

A caution about this procedure: The test is not reliable if the variances of the two groups
are unequal. If there is doubt, this should be checked by the method to be described in the next
section. If the variances prove to be unequal and the sample sizes are small (n; < 30 or
n, < 30), then there is no exact test available and an approximation procedure such as the one
in the next section should be used.

The test in this section is the appropriate one for two independent samples. Two
independent samples should not be analyzed by means of a matched-pair procedure, for the
degrees of freedom will be lower, increasing the magnitude of the critical value and reducing
the power of the test.

If the combined sample size is large (n; + n, > 30), the critical value may be estimated by
a z value for convenience. If both samples are large (n; > 30 and n, > 30), the test statistic
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may be replaced by

_ G —¥2) = (g — oo

2 2
S S

1 2
a2
ni ns

eliminating the need to pool the sample variances. Whether or not the population variances are
equal, this z statistic is valid for two large samples. If the actual population variances are
known, then
_ 01 = ¥2) = (1 — 2o
@
Tt

n. nm

is the appropriate statistic for all sample sizes.

Confidence intervals for u; — u, may also be computed. For n; < 30 or n, < 30 with
021 = 0'% and 0'%, o% unknown, use

sz 52

R P, °p
CIlfa- Yi—n"m i tu(/Z,nH»nsz —+ =
np  np

For n; > 30 and n, > 30 with 02, % unknown, use

2
kY
2
_'_7
ny n

.- 53
Cli_a: ¥ — Yy & Zap2y)—

If 02 and 03 are known, use
- 2 o2
Cli_a: ¥ — V5 & Zapay| —~+—2
ng. m

Procedure. Inference About Two Independent Samples

regardless of sample size.

Assumptions: normality or at least symmetry and unimodality

o*'f, o% unknown, of = oﬁ, and n; or np < 30
Confidence Interval on p; — p,

sz 52

- = P, °p
CIlfa- Yi—»m i tu(/Z,nH»nsz —+ =
np  np

with

o (m— st 4 (np — 1)s3
4 ny+ny —2
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Test of Hypothesis

Ho: iy — g = (1 — pa)o
Hy: g — pp # () — Mo)o OF py — o > () — 2o
or pwy — My < (g — pa)o

Significance level: «
Test statistic:

Y1 =¥ — (U — Mo

t= with slz) as above

2 s
= +_
ng m

Region of rejection: |¢| > ta/2n,4n,—2 OF t > top 4n—2 OF t < —lqn, 4n,—2, TESPECtively.

Assumptions: n; and np > 30

Confidence Interval on p; — p,

. o} o
CIl—a: Yi—»"n i Za/z 1 + 2
ni ny

Use s and 3 to estimate o5 and o3 if the population values are unknown.

Test of Hypothesis

Ho: py — po = (g — Moo
Hy: gy — g # (g — Moo OF iy — Mo = (Hy — fo)o
or wy — py < (py — Moo

Significance level: «
Test statistic:
_ V=¥ — (p — oo
Ry
1,72

ny ny

Use s7 and 53 to estimate o7 and o3 if the population values are unknown.
Region of rejection: |z] > z4/2 Or 2 > z4 Or 7 < — Zzq, respectively.

EXERCISES

8.3.1. After an extended dry period, measurements are taken on atmospheric pollution in
urban and rural locations. The data are summarized as follows:

Urban Rural

7 5
26.0 ppm 12.2 ppm
291 126

v <l I
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a. Compute the pooled variance.

b. What are the null and alternative hypotheses if the experimenter is looking for
evidence of higher pollution in the urban locations?

c. Perform the test of significance at & = 0.05 assuming that the variables meet the
assumptions for a group comparison ¢ test.

d. Place a 95% confidence interval on the maximum difference between the two means.

. A study is done on insecticide residues on fruit. Normal spraying practices are followed in

an apple orchard. After the fruit is picked, a random sample of 16 apples is washed
individually by hand. A second sample of 16 is washed mechanically. The experimenter is
unsure which method would be more effective in removing insecticide residues. The level
of insecticide present on each fruit is determined chemically, yielding the following data:

By Hand By Machine
y =3.5ppm Zy:48ppm

Yy =2005 > (y-yF=51

Test for a significant difference of insecticide residue at the 0.01 level of significance.

. A certain industrial solvent absorbs atmospheric moisture very rapidly. The absorbed

moisture dilutes the solvent and lessens its usefulness. Two types of containers are used
in an effort to find a method of storage that will retard moisture absorption. After two
months of storage, 10 containers are chosen at random from each kind and are
examined for moisture content:

Container A Container B
>y 100 120
>oy? 1012 1450.5

Place a 99% central confidence interval on the difference in the moisture content of the
two types of containers.

. In a study of the effect of protein quality in the diet, two groups of juvenile female rats

are fed diets of the same caloric content, but they differ in the quality of the protein.
The experimenter believes that by the end of the experiment the rats on a high-quality
protein diet will gain on the average more than 5 grams more than those on a low-
quality diet. The experiment begins with equal numbers of rats on each diet, but some
are mistakenly assigned to another experiment and have to be eliminated from the
protein experiment. Data on the weight gain (in grams) of the remaining rats are
collected and summarized:

High Quality Low Quality

Sample size 12 7
Sample average 119.7 101.2
Sample standard 21.4 20.6

deviation
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a. Give the most appropriate null and alternative hypotheses for this experiment.

b. What assumptions are necessary in order to apply a ¢ test for two independent
groups?

c. Assuming the two populations have the same variance, test the null hypothesis.

d. What do you conclude about the diets?

At a certain university, Graduate Record Exam scores are compared for doctoral

students who completed their PhD work within 7 years of their bachelor’s degree and

those who did not complete their work within that time. Random sampling provides the

following results:

Did Not
Completed Work Complete Work
Sample size 25 25
Average score 1056 912
Standard deviation 295 270

Is there any evidence that those who finish their PhD work within 7 years score higher
on the GRE than those who do not finish within that time? Do you believe that lower
GRE scores can be used to predict those who will have difficulty completing their
doctoral work on time? Why or why not?

An environmental chemist is performing a study of iron in atmospheric particulate
measured downwind from a steel mill. She is concerned that wind velocity at the time
of measurement may affect the readings, so she decides to obtain observations on 30
randomly chosen days during the period of peak operation of the mill and compare
measurements taken on days when the wind is calm (velocity <5 knots) with
measurements taken on windy days (velocity >5 knots). The data and some summary
information are presented below:

Calm Days Windy Days
0.68 0.74  0.88 0.25 029 030 043 045 0.50 0.60
y 0.890.97 1.00 0.65 0.69 0.74 0.80 0.87 0.87 0.89
117125 127 091 0.92 093 095 1.01 1.03 1.16
Dy 8.85 15.24
> - 0.3592 14347

a. What hypothesis can be tested about the effect of wind velocity on the measurement
of iron in atmospheric particulate?

b. What assumptions must be made in order to perform a ¢ test on these data?
c¢. Find the pooled sample variance.
d. Perform the ¢ test and draw a conclusion.

Two experimental methods of controlling acid drainage from coal mines are compared. The
data are as follows, with greater numerical values indicating the more effective method:
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Method A Method B

Average 5.60 6.70
Variance 0.98 0.85
Sample size 6 9

a. Place a 95% confidence interval on the difference between the means for the two
methods.

b. Using the confidence interval, what decision would you make about the equality of
the means for the two methods?

8.3.8. An educator thinks that engineers, although known to be equal to physical scientists in
quantitative skills, have less verbal ability. To test this, GRE verbal scores are compared for
large random samples of engineering and physical-science seniors.

Engineering Physical Science
Average 414 422
Standard deviation 30 40
Sample size 100 100

a. State the most logical null and alternative hypotheses.
b. Take advantage of the large sample sizes and perform the appropriate z test.
¢. What conclusion should be drawn from this study?

8.4. INFERENCE ABOUT TWO VARIANCES

In Section 8.3 we described procedures for analyzing data from two populations having equal
variances. There are situations, of course, in which the variances of the two populations under
consideration are different. The variability in the weights of elephants is certainly different
from the variability in the weights of mice, and in many experiments, even though we do not
have these extremes, the treatments may affect the variances as well as the means.

The null hypothesis Hy:0? = 3 is tested by using a statistic that is in the form of a ratio
rather than a difference; the statistic is s% /s%. Intuitively, if the variances are equal, this ratio
should be approximately equal to 1, so values that differ greatly from 1 indicate inequality.

It has been found that the statistic s3/s3 from two normal populations with equal variances
follows a theoretical distribution known as an F distribution. The density functions for F' distributions
are known, and we can get some understanding of their nature by listing some of their properties. Let
us call a random variable that follows an F distribution F; then the following properties exist:

1. F>0.
2. The density function of F' is not symmetrical.

3. F depends on an ordered pair of degrees of freedom v, and v,; that is, there is a different
F distribution for each ordered pair vy, v,. (v; corresponds to the degrees of freedom of
the numerator of s2/s3 and v, corresponds to the denominator.)
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4. If « is the area under the density curve to the right of the value F,,, ,,, then

FO(,Vl,Vz = I/Flfa,vz,v]

5. The F distribution is related to the ¢ distribution:
_ 2
Fa,],vz - (ta/Z,vz)

Table A.12 in the Appendix gives upper critical values for F if a = 0.050, 0.025, 0.010,
0.005, 0.001. Lower-tail values can be found using property 4 above.

Example 8.5. Testing for the Equality of Two Variances

Both rats and mice carry ectoparasites that can transmit disease organisms to humans. To
determine which of the two rodents presents the greater health hazard in a certain area, a
public health officer traps (presumably at random) both and counts the number of ecto-
parasites each carries. The data are presented first in side-by-side stem-and-leaf plots and then
as side-by-side box-and-whisker plots:

Mice Rats
Tens Units Tens Units
3 3 04
2 2 0001233
1 012268 1 3355555566677788
0 789 0 367888
n s? y

Rats 31 43.4 16.3
Mice 9 13.0 11.4

He wants to test for the equality of means with a group comparison ¢ test. He assumes that these
discrete counts are approximately normally distributed, but because he is studying animals of
different species, sizes, and body surface areas, he has some doubts about the equality of the variances
in the two populations, and the box plots seem to support that concern. Thus he first must test

Hy: (T% = o% against H,: o% #* o%

with the test statistic F = s?/s3 = 43.4/13.0 = 3.34. Since n, = 31 and n, = 9, the degrees of
freedom for the numerator are vi = n; — 1 = 30 and for the denominator v, = n, — 1 = 8.In Table
A.12 he finds

F()'()5’3073 =3.079 and F0_0573,3() = 2.266
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35

307 .

257

20

15 v

Parasites

Mouse Rat

Host

([Means and Std Deviations ]

Level Number Mean Std Dev  Std Err Mean
Mouse 9 11.4444  3.60940 1.2031
\Rat 31 16.2581 6.58770 1.1832

thus the region of rejection (Figure 8.4) at « = 0.10 is

1 1

F = F0405,30,8 =3.079 and F < F0.95,30,8 = FO'OS’SYSO = m

= 0.441

Since the computed F equals 3.34, the null hypothesis is rejected, and the public health officer
concludes that the variances are unequal. Since one of the sample sizes is small, he may not perform
the usual ¢ test for two independent samples.

One-tailed tests of hypotheses involving the F distribution can also be performed, if
desired, by putting the entire probability of a Type I error in the appropriate tail.
Central confidence intervals on 0'% / o% are found as follows:

o
1 1
< 1l<dFp
= = S5 la/2vm
O'% S2

2
s 1

CII_ . =
“ S% Foz/2,vl,vg

Although the public health officer cannot perform the usual ¢ test for two independent
samples because of the unequal variances and the small sample size, there are approximation
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0.90
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0 0441 3.079 F

FIGURE 8.4. Regions of rejection in an F distribution.

methods available. One such test is called the Behrens-Fisher, or the ¢’ test for two
independent samples and using adjusted degrees of freedom.

Example 8.6. Testing p, — p, if 03 # 03
To test Hy: uy = o against H,: u; # uo at o = 0.05, the health officer uses the test statistic

p 0= = —y)o (163114 -0

= =2.90
ﬁ ﬁ 43.4 n 13.0
o 31 9
with adjusted degrees of freedom
22\ 434 13.0\°
m 30T
v L2 =24.93

2

()G () ()
n + ny 31 + 98

n1—1 nz—l 30

With v = 25 H, will be rejected if [t'] > 7902525 = 2.306. Since |¢'| = 2.90 > 2.060, the null
hypothesis is rejected, and the public health officer concludes that on the average there are
more ectoparasites on rats than on mice.

If not an integer value, as in the example, the adjusted degrees of freedom may be rounded
to the closest integer or interpolation may be used in the # table for a more accurate critical
value. Since this ¢ test is only an approximate procedure and is usually very conservative
(rejection is difficult), it should be avoided if possible. Instead, larger sample sizes should be
obtained when feasible.

Survey sampling texts, for instance (Lohr and Schaeffer er al., listed in the Selected
Readings of Chapter 2) deal with optimum allocation of sample size when variances are
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unequal. When population sizes are very large compared to sample sizes and costs per
observation are about the same for each group, sampling theory advises that larger samples are
needed from more variable populations. This is also intuitive, for we seem to know that if
a population is not too variable, the average of even a small sample will be quite reliable. For
example, we need count the number of intact ears of only a few maras (large South American
rodents) to know that, along with other mammals, y = 2 is a reliable estimate of the mean
number of ears for the species. Similarly, we know that when the variable of interest has a
large variance we must have a large sample in order to obtain a satisfactory estimate of p.
Thus, if we wish to estimate the mean weight of Equus caballas, the horse species, we must
plan for a very large sample that will measure weights from those of dog-sized ponies to huge
dray horses.

When the assumption of equal variances can be made, a t-test with n; = n, will have the
smallest standard error. However, when variances are unequal, the smallest standard error is
obtained when the sample size for each group is proportional to its variance,

nj

|
Sl S

n

Experience and simulation studies have also shown that the #-test is reasonably robust when
this condition is met. A statistically robust #-test is one that gives fairly reliable P values even
when certain of the assumptions of the test are not met. Because the #'-test is so very
conservative, when sample sizes are proportional to variances, a better test might be the #-test
with s replaced with si and 3, respectively. However, when variances are unequal, it is
always best to have large samples from each group as well as being proportional to group
variances.

A summary of several test statistics in the form of a flowchart for making a decision
about the appropriate procedure is given in Figure 8.5. Degrees of freedom involved in the ¢,
F, and x* procedures are indicated by subscripts; for example, f,_, means that the test has
n — 1 degrees of freedom. Since a matched-pair ¢ test is essentially a one-sample pro-
cedure (the set of differences is a single sample), this test does not appear explicitly in
the flowchart.

EXERCISES

8.4.1. Use Table A.12 to find:

a. Foor,117
b. Foo1, 7,11
¢. Foos, 20, 15
d. Foos,15, 20
e. Fooo g 3
8.4.2. The writings of different authors can be partially characterized by the variability in the
lengths of their sentences. Two manuscripts, A and B, are found by a historian and she
wants to know whether they have the same author. Several sentences from each are

chosen at random, and word counts are taken; the variable of interest y is the number of
words per sentence.
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FIGURE 8.5. Flowchart of test statistics.
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Manuscript A Manuscript B

n 15 15
>y 141 210
>oy? 1327 2942

Is there evidence of different authorship at the 0.02 level of significance?

8.4.3. A highway engineer wishes to compare the resin content of asphalt from a Caribbean
source with those from a North American source. The following statistics are obtained:

Sample Value

Average Variance Size
Caribbean 214 0.44 10
North American 22.0 0.11 8

Given only this information, perform the appropriate test of hypothesis to determine if there
is a difference in the mean resin content from the two sources (use a = 0.10).

8.4.4. A nutritionist wishes to study vitamin B production by bacteria in the caecum (a portion
of the digestive tract) and wishes to use either mice or meadow voles, whichever have the
larger mean caecum volume. The sample data on which he must make his decision are:

Mice Voles
Number of observations 16 11
Average caecum volume 6.5 8.9
Variance 4.6 13.1

a. Should he use a 7 test or a ¢’ test? (Use a = 0.10.)
b. Test to see if there is a significant difference in the average caecum volumes. (Use
a=0.10.)
c. What would you suggest to the nutritionist?
8.4.5. The following values were computed from the length of life of two brands of light
bulbs (in hours):

Brand A Brand B

n 9 16
5 1560 1573
> y—y? 440 1860

a. Is there a difference in the variability of lifetimes for the two brands of bulbs? (Use
a=0.02.)
b. Find a 98% confidence interval on the ratio of the two variabilities.
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8.5. NONPARAMETRIC STATISTICS: MATCHED-PAIR AND TWO-SAMPLE
RANK TESTS

Two of the most commonly used rank tests are the nonparametric counterparts of the
matched-pair and two-sample 7 tests. As we have seen before, data may be recorded on the
ordinal scale of measurement or data on the numerical scale may be reduced to the ordinal
scale by replacing observations with their ranks. Whether the ranks are obtained as the
original scale of measurement or as transformations from the numerical scale, statistical
inference is based on whether or not the ranks seem to be randomly distributed among the
experimental groups. This is the null hypothesis for rank tests; the alternative hypothesis is
that observations in one group tend to rank higher than those in another.

There are many conveniences to rank tests. The computations are relatively simple and
straightforward, especially when sample sizes are not too large and there are few observations
that tie for the same rank. The mean and variance of the original data need not be known. With
the transformation to the ranks from 1 to N, the value of E(r) and V(r) under the null
hypothesis are known rather than estimated. The original data need not have a normal
distribution. The rank tests are almost as powerful as the corresponding z or ¢ test when the
original data are normally distributed, and they have been shown to be even more powerful for
certain non-normal data. Consequently, rank tests are useful analytical tools for research
workers.

The Wilcoxon signed-rank test is the counterpart in rank statistics to the matched-pair
procedure covered earlier in this chapter. It tests the hypothesis that plus and minus signs
are randomly assigned to the integers 1 through N. When the null hypothesis is true, the
difference between the members of pairs are just random and the difference y, = B — A will
be positive or negative by chance alone. It would be as though we recorded the absolute
difference between the members of all pairs and then tossed a coin and assigned a plus sign in
front of the difference if the coin showed a head or a minus sign if the coin showed a tail.
Under these conditions, E(y,) = 0. In the Wilcoxon test we simply replace the |y,| with their
ranks, reattach the observed plus or minus signs, and then test to determine whether the
average rank is significantly different from zero.

Using this technique, when the null hypothesis is true,

Er)y=pn=0
and it has been shown that
V(r)=WUOV+1)2N + 1)/6N

Consequently, when the sample size is large enough to meet the conditions of the central limit
theorem, we can use the normal distribution to test the null hypothesis

H()Z o= 0
against either a one- or two-sided alternative. The test statistic will be

i F—py r—0
VVE N+ 12N +1)/6N
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Example 8.7. Wilcoxon Signed-Rank Test

Suppose that a college dean is interested in whether there is any predictable change in the
academic performance of international students from the first to the second semester of their
first year at a U.S. university. She selects a random sample of 20 such students and obtains
their first- and second-semester grade point averages, GPAs.

al = IF — S| = Signed

Student First Second Sign |Difference| Rank Rank
A 1.53 3.67 - 2.14 19 -19
B 2.00 2.74 - 0.74 11 —11
C 1.93 3.50 - 1.57 17 —17
D 3.90 3.27 + 0.63 8 +38
E 2.14 1.97 + 0.17 3 +3
F 1.52 1.54 - 0.02 1 -1
G 0.91 342 - 2.51 20 -20
H 1.95 1.04 + 0.91 13 +13
I 3.00 2.45 + 0.55 6 +6
J 1.67 2.09 - 0.42 5 -5
K 2.78 2.00 + 0.78 12 +12
L 1.21 3.00 - 1.79 18 —18
M 1.66 1.78 - 0.12 2 -2
N 1.75 2.31 - 0.56 7 -7
o 2.96 2.25 + 0.71 10 +10
P 1.50 2.20 - 0.70 9 -9
(0] 2.25 0.91 + 1.34 16 +16
R 2.66 1.52 + 1.14 15 +15
S 1.87 1.61 + 0.26 4 +4
T 3.50 2.56 + 0.94 14 +14
Sum -8

Average —0.40

The signed-rank value for student A is obtained by first finding the difference between the GPA
for the first semester and that for the second semester, y;, = F — S = 1.53 — 3.67 = —2.14.
The negative sign is recorded in the column for signs and the absolute difference of 2.14 is
recorded in the next column. After all the absolute values are entered, they are ranked
and student A has the 19th greatest difference. In the last column the negative sign
is reattached, giving — 19 as the signed rank for student A. The same procedure is followed
for each student.

The null hypothesis that there is no difference between the first- and second-semester GPA is

HQIMZO

and because there is no prior information about whether the second-semester GPA should be
greater or smaller than that for the first semester, the alternative hypothesis is

Hy:p#0
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The test statistic is computed as

i —0.40 — 0 _ 040 040 _ .
V0 +1)(@40 +1)/6(20) ~/7.175  2.679 '

The P value for a two-sided alternative hypothesis is P(|z| > 0.15) = 2(0.440) = 0.880,
indicating that results such as these could easily be attributed to chance. Hence there is no
statistical basis for rejecting the null hypothesis, and the dean concludes that there is no
difference between the first- and second-semester GPA of international students during their first
year of study in the United States.

In all the rank tests which are examined, we use data which are recorded on the ordinal
scale or which have been transformed from the numerical scale to rank data. Under these
circumstances, we are dealing with the integers 1 to N, and the expected value and variance
are mathematically known for a statistic, such as r, which is derived from a random grouping
of these consecutive integers. If the null hypothesis is true, the grouping of ranks with plus or
minus signs is truly random, so we commonly use the expression “under the null hypothesis”
when we talk about the values of w and o which are used in the z test.

To use the normal distribution in a rank test, N must be large enough for the central limit
theorem to hold true. For Wilcoxon’s signed-rank test, it is generally recommended that N be
at least 20; however, it is suggested that fairly reliable P values can be obtained when N is
smaller if the continuity correction is used:

P 12—py F—1/2-0
VV@) VN + DN + 1)/6N

Also, for small values of N, tables are available for the exact distribution of a small sample test
statistic.

When data are measured on the continuous numerical scale, strictly speaking, there will be
no ties, but the same recorded value does occur in experimental data because these are
rounded values. Thus it is important to know how to handle tied observations in rank tests. In
the Wilcoxon test, there are two types of ties to consider:

1. Both members of a pair are the same.
2. There are tied differences between pairs.

When both members of a pair are the same, the difference y, = 0, and since zero is neither
positive nor negative, it has no sign. Therefore differences of zero must be discarded and the
value of N reduced accordingly.

When differences are tied, they should received the same ranks, and it is customary to give
them the average of the ranks they occupy as a group. In the example above, students O and P
have very nearly the same absolute difference between the first- and second-semester GPA.
Had the absolute differences been exactly the same, say |y,| = 0.70 for both students, then
they would be tied for ranks 9 and 10, and the average rank of 9.5 would be entered for each
student in the column of ranks.

Ties of this nature cause the variance to become smaller. The reduction in the size of the
variance depends on the number of ties and the number of members in a tie. The computation
of the variance can be found in textbooks on nonparametric statistics [see Conover (1998) or
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Daniel (1990)]. However, the presence of tied observations usually causes little change in the
computed value of z, and in practice the reduction in the size of the variance due to ties is
unimportant unless there are a great number of ties or unless z is very near the critical value
before the reduction is applied.

Procedure. Rank Test for Matched Pairs

To obtain the average signed-rank of the difference between pairs:

1. Find the difference between pairs.

2. Record the sign of the difference in one column and the absolute value of the difference
in another.

3. Rank the absolute differences from smallest to largest.

4. Reattach signs of differences to their respective ranks to obtain signed ranks, which are
then averaged to obtain 7.

Test of Hypothesis

Hy:E(r)=pn=0
Hyp#0oru>0o0ru<O0

Significance level: a
Test statistic:

CFepy F—0
o= JV@EH  JINFDEN+ 1)/6N
for N > 20 or
P12y F—1/2-0
WV JIN+ DRN + /6N
for N < 20.

Region of rejection: |z| > z4/5 O 7/2, OF 2 < —z,, respectively.

The rank test counterpart for testing the difference between means of two groups has
already been discussed in Section 7.6. However, even though there are two groups, we need to
compute 7 for only one group and test whether it is significantly different from E(r). This is
because the transformed data consist of the ranks 1 through N, and if 7 is known for one of the
groups, then we could always find the corresponding average for the other group.

More precisely, if the two groups have sample sizes 7, and n, and their averages are r; and
72, respectively, then

NWN +1)
2

where n; + ny = N, because N(N + 1)/2 is the sum of the consecutive integers from 1 to N.
So generally we compute whichever average seems easier and then perform the z test,

r—WN+1)/2
Z =
VN = n)(N + 1)/12n,

n1;'1 —|—n2?2 =
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rn—WNN+1)/2
Z =
VN = n)(N +1)/12n,

as is appropriate.

EXERCISES

8.5.1.

8.5.2.
8.5.3.
8.5.4.

One of the side effects of cancer chemotherapy is that the treatment may interfere
with nerve action. An oncologist is evaluating the effect of a heavy metal compound
as a treatment for cervical cancer, and on each patient a measurement is taken
on ulnar sensory nerve amplitude (in microamperes) before treatment begins and
after the patient has been on treatment for 6 months. A significant decrease in
nerve amplitude would indicate that the treatment has a potentially harmful side
effect.

Patient: 1 2 3 4 5 6 7 8 9
Before: 6.7 7.0 7.1 9.0 9.8 10.0 10.1 109 110
After: 7.6 33 9.1 93 10.7 72 12.3 6.7 9.5
Va: -0.9 37 =20 -03 -09 28 =22 4.2 1.5
Patient: 10 11 12 13 14 15 16 17 18
Before: 11.3 115 11.7 119 124 125 126 128 140
After: 79 113 142 110 5.0 10.3 9.4 8.8 14.0
Va: 34 02 =25 0.9 7.4 2.2 3.2 4.0 0.0
Patient: 19 20 21 22 23 24 25 26

Before: 142 146 148 150 150 156 16.6 18.1

After: 85 125 11.7 16.0 126 144 15.8 144

Va: 5.7 2.1 31 —1.0 2.4 1.2 0.8 3.7

a. Why would the Wilcoxon signed-rank test be appropriate for analyzing these
data?

b. What would be the most appropriate null and alternative hypotheses?

c. Show that r = 8.48.

d. Perform the test of significance and draw conclusions about whether or not the
treatment has a harmful side effect on nerve activity.

Use a nonparametric test to analyze the data in Exercise 8.2.11.

Use a nonparametric test to analyze the data in Exercise 8.3.6.

In Exercise 2.3.5 the following fictitious data were presented as supporting Galton’s
idea that skills are inherited and hence young children of skilled laborers should show
greater manual dexterity than those of unskilled laborers:
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Frequencies of Dexterity Skill Scores

Father: | x | g | f|e|d|c|b|la|A|B|C|D|E|F|G|X
Skilled: O |O|O |1 |O|O(1|1L|O|L|1|1|O[1]2]1
Not: rj1f1yo0fj2jrjojof1f1rjojojrjriofo

On this scale lowercase x is the lowest possible measurement and an uppercase X the

highest.

a. Why can rank order statistics be used for a nonparametric test to compare the skills
of the two groups of children?

b. What assumptions of that test should be of concern for a statistical analysis of these
data?

c. Give the null hypothesis for the nonparametric test and the alternative that agrees
with Galton’s experimental hypothesis

d. Test the null hypothesis and draw conclusions about the skills of the two groups of
children.

REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain

why.

8.1.

8.2.
8.3.
8.4.

8.5.

8.6.
8.7.

8.8.

8.9.
8.10.

8.11.
8.12.

8.13.

The ¢ distribution is appropriate for small sample sizes irrespective of whether or not the
variance is known.

For each positive-integer degree of freedom, there is a different ¢ distribution.
Gosset discovered that when 7 is small s> tends to overestimate o°.

For a one-sample ¢ test, the region of rejection is uniquely determined by the alternative
hypothesis and sample size.

For a fixed « level, as the degrees of freedom increase in a 7 test, the absolute value of
the critical value increases.

Clpos:y + to.0255/+/n contains 95% of all population means.

y+ ta/z,vs/\/ﬁ is narrower than the corresponding interval based on the standard
normal distribution y + za/25/+/1.

If two samples consist of pairs of data, the experimenter may choose between the
matched-pair ¢ test or the 7 test for two independent samples.

In the matched-pair # test, the parameter in the null hypothesis must equal zero.

In a paired comparison ¢ test involving 20 pairs of twins, there are 38 degrees of
freedom.

A paired comparison f test should always be used when o3 = o3.

If a t test determines that the difference between two sample averages is significant, then
the experimenter should conclude that two different populations were sampled.

If in a two-sample ¢ test ; = o, then the computed value of 7 will be exactly zero.
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8.14. If for two populations 02 = 03 the best estimate of the common variance is (s7 + s3)/2
irrespective of other considerations.

8.15. If Hy: .y = o is true, then for the group comparison ¢ test the ¢ statistic should be close
to 0.

8.16. If 02 = a3 is true, then the F statistic should be close to 0.

8.17. When o2 and o are unequal and unknown and the samples are small, there is no exact
test for a hypothesis of equality of means from the two populations.

8.18. There are many F distributions, one for each ordered pair of degrees of freedom.

8.19. In a box-and-whisker plot, the “box” is constructed so that 50% of the observations lie
within it.
8.20. 1/Fo.00s.68 = F0.9958.6-
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9 Distributions of Two Variables

Thus far our discussion of inference has focused on the values of a single variable of
interest obtained from a random sample. We saw in Chapter 2, however, that it is possible
to consider more than one variable associated with a given population. For example, fwo
variables from the same population that might be considered are age and blood pressure.
Other examples are height and weight, caloric intake and weight loss, and hours of study
and grade on an exam. In this chapter we consider pairs of variables and possible
relationships between these variables. In all of the sections except 9.5 both variables are
numerical. In Section 9.5 the variables are nominal. It is also possible to study the
relationship among several variables; for example, blood pressure is related to age, weight,
and exercise. Relationships among more than two variables are discussed in Chapter 14.
Relationships between two variables, one of which is nominal and the other numerical, are
also discussed in Chapter 14.

9.1. SIMPLE LINEAR REGRESSION

A question often asked about a pair of variables x and y is, “How do changes in x affect the
value of y?”” For example, as a man ages five years, how will this affect his blood pressure? Or
we might ask a related question, “What is the expected value of y for a certain value of x?” For
example, if a man is 30 years old, what is his expected blood pressure?

The x variable age is called the independent variable or the predictor variable, and the
y variable blood pressure is called the dependent variable or the response variable. If x
and y have a relationship with each other, to predict y from x, we have to be able to find a
model for the relationship. The simplest model of a relationship is a straight line. If a
straight-line model is appropriate, the line is called the regression line and we say that we
are regressing y on x. This type of regression is called simple linear regression; “simple”
indicates that there is only one independent variable and “linear” indicates that the model
is a straight line.

When dealing with pairs of variables, we have the same difficulty as with a single variable,
namely, we usually are unable to measure all possible members of the population. In the
single-variable case, we solved this difficulty by using a random sample to make inference
about the population. We do the same for pairs of variables. For example, if we are interested
in studying a possible linear relationship between age and blood pressure in adult males, we
use a random sample of men, obtain sample data about age and blood pressure, and then see if
a straight line fits the data.

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
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211



212 DISTRIBUTIONS OF TWO VARIABLES

Say a random sample of 10 adult males yields the following data:

Age x: 28 23 52 42 27 29 43 34 40 28

Systolic blood 70 68 90 75 68 80 78 70 80 72
pressure (mm Hg) y:

We begin our analysis by plotting the pairs x, y as points (Figure 9.1). This graph is called a
scatter plot. The points certainly do not fall exactly on a straight line, but there does appear to
be a general linear upward trend such that higher ages are associated with higher systolic
blood pressure. Regression is used to fit a straight line to such data in a unique way so that the
line can be used to predict systolic blood pressure from age.

It is possible, of course, that two variables are related in some other manner than by a
straight-line relationship, or perhaps they are not related to each other at all. Thus our
discussion of simple linear regression must include a method for determining whether or not a
straight line is the appropriate model for a given set of data (Section 9.2).

Since the simplest possible relationship between two variables is a straight line, it is natural
to try to use this model before considering more complex models. Sometimes, even if the true
relationship is something other than a straight line (as in Figure 9.2), a straight line may be
close enough to the true relationship for a preliminary analysis. A straight line is convenient to
use because the mathematics involved is relatively simple.

Sometimes the true relationship is definitely not linear and a straight line is a very poor
model of the relationship. One example is the relationship between the amount of nitrogen
fertilizer used on a field and the yield of the crop. The true relationship is quadratic and would
be represented by a parabola. In this example, however, economy limits the amount of
fertilizer that the farmer would consider using, and in the economical range the relationship
might be approximated by a straight line (Figure 9.3). Unfortunately, not every curvilinear
relationship will have such a subset of x values that are the main interest of the investigator.
Curvilinear relationships are discussed in Sections 14.6 and 14.7.

To understand how a straight line is fitted to a set of data that consists of pairs of values
obtained for two variables, we consider an overly simplified example. Imagine that an efficiency
expert is investigating a possible linear relationship between the number of hours of instruction
employees receive about a certain assembly procedure in a factory and the number of units they
are able to produce per hour. The following data are collected from five employees:
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FIGURE 9.1. A scatter plot of age and systolic blood pressure.
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True relationship

FIGURE 9.2. A relationship that is approximated by a straight line.

Hours of Instruction x Units per Hour y

R O R
N 0 O\ &

In a real study the investigator would take a random sample of several employees from the
groups of employees with the different levels of instruction. However, to keep this illustration
simple, we imagine a random sample of just one employee at each level. The approach is the
same for several employees at each level.

The first thing the investigator does is graph the scatter diagram (Figure 9.4). If there are
enough points in the scatter diagram, it may indicate the general shape of the curve or line that
can possibly be used as a model for the variables. A generalized random scatter may indicate
that there is no relationship between the variables.

Economical
range
y
Yield True retationship
Amount of fertilizer x

FIGURE 9.3. A relationship that is approximated by a straight line in a certain region of the independent
variable.
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FIGURE 9.4. Scatter diagram for the production study.

Even if the relationship is linear, not all of the points will lie exactly on the line. The model
(Figure 9.5) is of the form

y=a+Bx+e

The regression line is given by the function

f0) = a+ Bx

flx) = o+ fx

FIGURE 9.5. A regression line.
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y=a+bx

FIGURE 9.6. A vertical deviation from a least-squares line.

in which « is the y intercept and B is the slope (the change in y per unit increase in x). The
term ¢ indicates the vertical deviation of a particular point from the line, that is, the line
represents the mean y response at a given x value, but individuals will deviate from the mean
response due to random variability.

Returning now to the factory example, if the investigator thinks the relationship is linear,
the problem is to specify the line that characterizes the relationship by finding the equation of
the line. Since only a sample is available, the parameters « and 8 must be approximated. One
approach is simply to draw a line that seems to fit the data; however, this would not be a
unique solution. Another approach is to draw a line that has an equal number of points above
and below; this is not unique either. Or the line might be drawn such that the vertical
deviations would sum to zero; but again, this is not unique.

The problem of approximating the true regression line is solved by using the least-squares
trend line, also called the sample regression line. The least-squares trend line is that unique
line for which the sum of the squares of the vertical distances of the sample points from the
line is as small as possible (Figure 9.6). Assume that the least-squares line is of the form

y=a+bx
in which a is the y intercept and b is the slope. We minimize the function
fla,by=> "(y—37?

in which y is an observed value and y is the value predicted by the line for the corresponding x.
That is, we find a and b such that this sum is as small as possible. This is done using calculus
and leads to two simultaneous equations called the normal equations:

an+by x=y
bR =Y
Solving these two equations simultaneously, the slope is
, 2= (2)(X)/n
Y= () /n

"Note that this use of a and 3 is entirely different from the use of these symbols in connection with Type I and Type II
error.
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and

a=y—bx

The denominator of the slope should be familiar; it is similar to the computational form for
the sum of squared deviations that appears in a sample variance,

Xz(x—)_c)2 = sz — (Zx)z/n

The numerator of the slope can be shown to be a sum of products:

Se-no-n=Yw- (35 (Xy)/n

Because expressions of this type are used so frequently in regression, it is convenient to use
some brief symbols to represent them. We use

S = 2:()6—)_6)2 = sz — (Zx)z/n

and

So=Y a=D-5 = - (D x)(Xy)/n

for the sum of the squared x deviations and for the sum of the products of deviations. Then the
estimated slope is

The least-squares line has the property of containing the point (x, y), in which Xx is the
sample average of the x values and y is the sample average of the y values. This point may or
may not be one of the sample points; in this example it happens to be a data point (Figure 9.7).
Since one of the points on the line is known, (x, y), the line can be determined once we know
its slope. The slope is given by the formula

Sy _ 2~ () (Xy)/n
Sxx sz B <Zx)2/n

so it can be computed as follows:

b=

2

X y X Xy
1 5 1 5
2 4 4 8
3 6 9 18
4 8 16 32

51 2535

15 30 55 98

_9%8-0560/5_8 _ o
5515725 0 100
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FIGURE 9.7. The least-squares trend line.

The slope indicates that as x increases one unit y increases 0.8 units. An additional hour of
instruction increases mean productivity by 0.8 units per hour. Using the slope and starting at
(x,¥) = (3, 6), we move one unit to the right and 0.8 unit up to locate a second point on the
line (if the slope had been negative, we would move down). Since two points determine a
unique straight line, the least-squares trend line can now be drawn.

The y intercept can be found from the formula

a=y—bx
=6—-0.83)
=3.6
Thus the equation of the line is
y=23.6+0.8x

This is the sample regression line, and assuming that it is the proper model for the
investigation, it is used to predict y for a given x; that is, it can predict the number of units per
hour that would be produced if an employee had a certain number of hours training. Only
values between 1 and 5 may be specified for the independent variable x, since data were
collected only for that range. Extrapolation outside the range of the x variable is not reliable
since the relationship may not be linear in other regions.

Remember that a sample regression line may be used for prediction only if the model is
appropriate. It is always possible to compute the least-squares line; its usefulness for
prediction is a different question, which will be dealt with in the next section.

The slope of the least-squares line gives us some information about the nature of the
relationship. If b is close to zero, it may be approximating a true slope of 8 = 0. A slope of
B = 0 indicates that there is no relationship between x and y, or that the y means have a
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constant value, or it could indicate a nonlinear relationship (however, not all nonlinear
relationships have B =0). If x and y are linearly related and increase together, then b

approximates 3 > 0. If y decreases as x increases, then b approximates 8 < 0 (Figure 9.8).

Note that the slope of the least-squares line is not a pure number, but it is expressed in
certain units of measurement. For example, if the variables are x, height in inches, and y,

weight in pounds, then b is expressed in

(inches)(pounds)  pounds

(inches)? inch
* 1
. °
y ® y
Py ) [ 2 J
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FIGURE 9.8. Various types of scatter diagrams with population regression lines.
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that is, in pounds per inch. If the same subjects were measured in centimeters and kilograms, b
would have a different value because it would be in different units of measurement. Because
of this, the magnitude of the slope cannot be used as a measure of the strength of the linear
relationship. A measurement used to express the degree of association between x and y is the
correlation coefficient. This is discussed in Section 9.4.

Further, we should note that the equation

y=a+bx

is the sample regression line for the regression of y on x. The regression of x on y is usually a
different line. Thus, if x is hours of sleep per night and y is pounds overweight, we might
regress pounds overweight on hours of sleep; that is, we would want to predict pounds
overweight from hours of sleep (if in fact there was a linear relationship). On the other hand,
we might be interested in the regression of hours of sleep on pounds overweight; that is, we
would want to predict hours of sleep from pounds overweight. In most studies, the two lines
would be different.

Procedure. The Least-Squares Trend Line

Given n pairs of observations x, y, the least-squares trend line or sample regression line for the
regression of y on x is

y=a+bx

To find this line, compute

Zx, sz, Zy, and ny

and then compute

The slope is

and the y intercept is
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EXERCISES

9.1.1. Which of the following completes the statement correctly? In the equation
Yy = a + bx, the value of a:

o

. Can never be negative

-3

. Determines the slope of the trend line

o

. Determines the point at which the trend line intersects the y axis

[=7

. Determines the point at which the trend line intersects the x axis

9.1.2. Draw a scatter diagram and find the least-squares trend line for the following sample
data.

Number of hours of study x: 4 5 6 7 8 9 10 11 12
Grade on exam y: 55 60 50 70 70 70 80 90 85

9.13. If x is measured in pounds and y is measured in days, what are the units of
measurement for the slope of the least-squares trend line?

9.1.4. In each case below, use the information given to obtain the numerical value of the
slope of the least-squares trend line.

a. y=>5ifx =10, and y = 10 if x = 20.
b. Y (x—X(y-»=30, Y (y—3>=10,and Y (x—¥%’=5.
c. y=-3+15x
d. y=10,x=13,and y =15 if x = 15.
9.1.5. A botanist studying Arabadopsis thaliana notes a relationship between the number of

branches on the plant and the number of seed pods it produces. A preliminary analysis
yields the following data:

Branches x: 14 15 16 17 18
Seed pods y: 50 60 70 100 120

a. Find Z x =By —).
b. Compute the slope of the trend line.
c. Give the equation of the trend line.
d. What is the predicted number of seed pods on a plant with 16 branches?
9.1.6. Obesity in mice is inherited. For every gram above mean mature weight that a female

mouse is in her generation, the mean of her daughters’ mature weights is 2/5 g above

the mean weight in their generation.

a. What is the slope of the regression line?

b. Predict the mature weight of a daughter if her mother’s weight is 28 g, the mean
for the mother’s generation is 23 g, and the mean for the daughter’s generation is
20 g.

c¢. Predict the mature weight of a daughter if her mother’s weight is 23 g, the mean
for the mother’s generation is 20 g, and the mean for the daughter’s generation is
22 g.
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9.1.7. A study of nursing activities is conducted in a 100-bed hospital in Kansas. The
nursing staff remains constant through the study, but the patient load varies, so it is
possible to observe how nurses allocate their duty time with different patient loads.
One of the nursing activities observed and measured is patient care and another is the
time spent on records and reports. A separate study is made for each hospital ward,
and the data below represent the minutes per staff duty hour spent on these activities
by the nurses in the surgery ward under varying patient loads:

Patient load: 2 3 4 6 7 8
Patient care: 44.7 53.0 71.7 111.3 129.4 159.9
Records and reports: 15.8 16.0 13.3 10.4 7.2 9.3

a. Examine the relationship between patient load and time spent in patient care.
i. What sort of linear relationship seems logical, positive or negative?
ii. Do the data tend to support the experimental hypothesis?

iii. Compute the slope of the least-squares trend line that shows how an increase in
patient load affects staff time allocated to patient care.

iv. What are the units of measurement for the slope of the trend line?

v. Find the equation that would allow surgery-ward nurses to predict the amount

of time they have to allocate per staff duty hour for a given number of patients
in their ward.

vi. Use the equation to estimate the amount of time required for patient care if
there were only one patient in the ward. (Since one patient is outside the range
of the data collected, this may be a poor estimate.) Use it to estimate the time
required for 5 patients.

b. Examine the relationship between patient load and time spent on records and
reports.

i. Does the linear relationship appear to be positive or negative?

ii. Does such a relationship seem intuitively logical prior to the survey or is the
relationship one that can be rationalized after the data are collected?

iii. Compute the least-squares trend line that shows how an increase in patient
load affects the staff time allocated to records and reports.

iv. Suppose that a minimum of 5 minutes per staff duty-hour is required for
necessary records and reports. Assume that the trend can be extrapolated and
estimate the point at which patient load becomes so heavy that the surgical
nursing staff no longer has adequate time for record keeping.

9.1.8.  When a straight line is fitted to data that follow a binomial distribution, a special
procedure known as probit analysis is employed. This procedure takes into account
such conditions as the relationship between the mean and the variance of the binomial
distribution and the fact that the trend is rarely linear over the full range of .
However, the first step in probit analysis is to fit a “provisional” line to the data, and
this can be done by employing the least-squares procedure developed in this section.
Suppose an advertising firm wants to determine the relationship between the number
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of times a commercial is shown on national television and the percentage of viewers
who have seen the commercial.

Number of times commercial shown x: 10 15 20 25 30

Percentage of viewers y: 13 32 35 53 67

a. Use least-squares procedures to find the slope of the trend line.
b. Give the equation of the “provisional” line.

c. Use the equation to estimate how many times a television commercial must be
shown before 50% of the viewers have seen it. (This is called the 50% effective
dose, or EDs, in probit analysis.)

Francis Galton extended least-squares techniques by employing them in a study of the
relationship between mature heights of fathers and their sons. He collected hundreds
of observations, plotted them on graph paper, and noted a straight-line relationship
among average heights. Some of his data in inches might be as follows:

Fathers’ height: 65 66 67 68 69 70 71

Average height of sons: 66.9 67.8 68.0 67.9 69.6 69.2 70.1

9.1.10.

9.1.11.

a. What is the average height of the fathers’ generation?

b. What is the average height of the sons’ generation?

c¢. If a group of fathers are each 1 in. above average height for their generation, what
is the expected average deviation of their sons from the average height of their
respective generation?

A study is made to determine the rate of disappearance from the environment of
radioactive chemicals after a nuclear accident. Strontium 85 is released in an alfalfa
field in a simulated accident. Twenty goats are allowed to graze the field, and at 30-
day intervals the level of strontium 85 is measured in dried samples of alfalfa as well
as in the goats’ milk. The alfalfa data are given below:

Days after release x: 30 60 90 120 150

Strontium level in dried 1.85 1.43 1.21 1.19 1.37
alfalfa y, ppm:

a. Compute the least-squares trend line.
b. What are the units of measure for the slope? For the y intercept?

¢. The measured level of strontium 85 in alfalfa on day 150 seems somewhat
contrary to the trend shown in the other data. Compute the predicted level for
x = 150. Compute the deviation of the observed value from this point on the trend
line.

Fit a straight line to the age and blood pressure data given in this section.
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9.2. MODEL TESTING

The least-squares line can always be computed for any set of two or more points with different
x values. It may not be appropriate, however, to predict from this line. For prediction, two
conditions are necessary:

1. The straight-line model fits the data.

2. The straight line being estimated is not horizontal (8 # 0); that is, the regression line is
a better predictor of y than y.

In this section we discuss each of these conditions in turn.

First we need to be more precise as we speak of a regression line being a model for a
certain research situation. Two variables x, y (Figure 9.9) meet the conditions for the
regression of y on x if:

1. The x values are fixed by the experimenter and are measured with negligible error. "

2. For each x value there is a normal distribution of y values. (This assumption is
necessary for inference.)

A fly given x}

Y
<

VARN

N Ely if x = x*)

y=a+fx

FIGURE 9.9. The regression model.

"Regression analysis is also possible in cases where x is a random variable (see Section 9.4).
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3. The distribution of y for each x has the same variance, symbolized as o> and read as
the “variance of y independent of x” to indicate that the variance around the trend line is
the same irrespective of the value of x.

4. The expected values of y for each x lie on a straight line.

Another way to express these conditions is to say that the variables satisfy the model
y=a+Bx+e

in which the s are normally distributed with a mean of zero and a variance of oix and the &’s
are independent of the x’s and independent of each other.

One way to test for violations of these assumptions is by an examination of the residuals
y — ¥ = e that result from fitting the least-squares line to the sample data. In the small example
about employee training used for illustration purposes in Section 9.1, the residuals could be
computed as follows:

x oy ¥ y—y=e
1 5 36+081)=44 0.6
2 4 364082 =52 -12
3 6  36+083)=6.0 0.0
4 8 36+084)=68 1.2
5 7 364+085=76 —0.6

Since the e’s estimate the €’s in the model, to check for normality, an overall plot of the
residuals can be drawn as a dot diagram (Figure 9.10). In this unrealistically small example it
is difficult to check for departures from normality because of the small number of points.
Some patterns that appear with larger samples are illustrated in Figure 9.11.

Linearity can be checked by plotting the residuals e against the predicted values y (Figure
9.12). A linear relationship is reflected in a random scatter about a horizontal line at e = 0. If
the relationship is nonlinear, it usually results in a systematic plot that has some pattern. A
systematic pattern could also indicate that another independent variable is affecting y.

Equality of variances can be checked by plotting the residuals e against the predicted
values y or the independent variable x (Figure 9.13). Equal variances result in a horizontal
band of points, whereas variances that depend on the magnitude of x will result in a fan-shaped
distribution. In situations where the variance of y is proportional to the magnitude of x and the
trend line passes through the origin, the trend line is usually estimated by the ratio of the two
means, y/x (see Section 9.7).

The regression model assumes independence of the ¢’s. This means that the random error
in one observation does not affect the random error in another observation. This assumption is
sometimes violated. If the observations have a natural sequence in time or space, the lack of
independence is called autocorrelation.

FIGURE 9.10. An overall plot of residuals.
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FIGURE 9.11. Checking overall plots of residuals for violations of normality.

Autocorrelation may occur for several reasons: The dependent variable may follow
economic trends; an instrument may be drifting out of calibration; batch processes in a reactor
system may leave some of the product to be carried over to the next batch; observations may
be from adjacent experimental plots that have similar conditions. These are only some
examples. Diagnosis is difficult, but this type of dependence can sometimes be detected
by plotting the residuals against the time order or the spatial order of the observations
(Figure 9.14).

The visual inspection of the original scatter diagram of the data and the various types
of residual plots is an important first step in any regression analysis and should not be
omitted. Statistical programs on computers make it possible to inspect these diagrams
with little labor. If the diagrams reveal any departures from the assumptions required
for regression, a different model may be necessary, or perhaps a transformation can be
used on the data before the regression analysis (Sections 14.6 and 14.7). If the visual
inspection does not turn up any departures from assumptions, we have not proved that
the model is correct, but at least there is no overwhelming evidence that it is wrong.

Besides these visual checks of the assumptions, there is a statistical test that can be
performed to see if there is a significant lack of fit with a straight line. Repeated observations
are necessary at each x value to carry out such a test (see Draper and Smith 1998). This test for
lack of fit is found in some statistical computer packages such as SAS and JMP.

If we decide that a straight line seems to be a reasonable model, then we need to determine
that the line is not horizontal. A horizontal line indicates that x does not make a significant



226 DISTRIBUTIONS OF TWO VARIABLES

A
e
° )
Y [ ]
[ ] b e © @
0 b e — e e i — — — ———
o * L hd
L4 )
y
A linear model is appropriate
4
e
o0
° °
® ®
o o °
OpF———¢————"——— (2
° °

y

A nonlinear relationship (or a second
independent variable) is involved

FIGURE 9.12. Residuals plotted against predicted values to check for a linear relationship.

contribution to the prediction of y; that is, there is no linear relationship. To test whether the
line is horizontal, we test

H()ZBZO

in which 3 is the slope of the population regression line. Rejection of this hypothesis is
evidence that the line explains a significant portion of the variability in y. Acceptance of this
hypothesis means that there is no advantage to considering the values of x as we attempt to
predict y. We could do just as well by using the model y = .

The test statistic is a 7 statistic in which b is the estimator of the parameter 3. To estimate
the standard error of the estimator b for the denominator of the ¢ test, we first must consider
the variance of the y values about the sample regression line. We use the residuals and
compute the sum of the squared residuals, and then we divide this sum by the degrees
of freedom that are n — 2 for simple linear regression (thus a minimum of 3 points is required
for this test).
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FIGURE 9.13. Residuals plotted against the independent variable to check for equality of variances.

It may be helpful to explain why the degrees of freedom in the denominator for the variance
around the sample trend line are n — 2 rather than the n — 1 we use when computing the variance
around the sample mean. The explanation begins by remembering that the sample trend line is

y=a-+bx

so the sum of squared deviations around the trend line is

D= =) (y—a—bx’

Since a and b, respectively, are estimates of « and 3, the two parameters of the straight line, we
simply continue the practice we first began in Section 5.2 of subtracting a degree of freedom for
each parameter we estimate.
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FIGURE 9.14. Residuals plotted against the order in which they were observed.

For example, in the employee training example, the variance of the observations about the
least-squares line is computed as follows:

y=y (=3

0.6 0.36
~12 1.44
0.0 0.00
12 1.44
~0.6 036
3.60

and

, D2 =9 360
2, = = =12
> n—2 5-2

in which # is the number of pairs of data. Variance about the trend line is the variance in y
when we have removed the effect of the x variable. In the employee training example, before
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we have removed the effect of the x variable, the variance in y is

PR DC LV (N
T oan—-1 T4 7

This represents the variance of the data points about y. In contrast, S%,x is the variance about
the trend line and is the variance in y independent of x. Note that 2.5 is reduced to 1.2 when the
effect of x is removed (Figure 9.15).

In practice, it is usually easier to use the short computational formula

Y- =Y o=y - [L v -]/ e

s2
=8y — =
: S.’CX

=S8y, — bSyy

in which
2
$0= Y05 = X0 - (L) /n
Using s%.x, the standard error of b can be shown to be
Sy.x
SX)C

®|

|
<

)
.,
2
!
)

x

FIGURE 9.15. Deviation of an observed y value from the average y value and from a predicted y value.
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and the ¢ statistic for a test of Hy: 8 =0 is

o b=F
Syx/~/Sxx

with n — 2 degrees of freedom.

In the training example, to test Hy: 8 = 0 against H,: 8 > 0 at a = 0.05, we would reject
the null hypothesis if > #5053 = 2.353. A one-tailed test is used because additional training
is expected to increase productivity if it is of any effect at all. Then

= 2820y
S JV12/100 T

and the null hypothesis is not rejected. Thus the line seems to be horizontal and the equation of
the trend line should not be used for prediction. Note that the ¢ statistic of 2.31 is very close to
the critical value, so it is possible that a larger sample size might provide evidence that the line
does contribute significant information about y. We repeat again that the small sample size
here is unrealistic and is used only to keep the computations to a minimum.

If it is possible to reject B = 0, then prediction from the least-squares line is appropriate.
Prediction may be done only for values of x within the range of the collected data.
Extrapolation outside of that range is not reliable.

Values other than zero may be used in the null hypothesis when testing the slope parameter
if this is reasonable for the experiment. The test procedure is analogous.

Procedure. Testing the Slope Parameter

Assumption: y = « + Bx + & with the &’s independently normally distributed with a mean of
0 and a variance o%x

Test of Hypothesis
Hy: B = Po
Hy: B # Boor B> Poor B<Po

Significance level: «
Test statistic:

f= =B
Sy-x/\/sxx
with
Xy 'v_b xy
b:S_> and Y2 :u
S e n—2

Region of rejection: |f| > tgﬁ,z, or t > tgp—p Or t < —t,,_7, respectively.
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EXERCISES

9.2.1.

For the data in Exercise 9.1.2:

a. Carry out a residual analysis.

b. Show that s, = 33.57.

c. To test the éigniﬁcance of the least-squares line:
i. Give the most logical null and alternative hypotheses.
ii. Give the critical value.

iii. Compute the test statistic and state the conclusion.

9.2.2. Explain the difference between y and y.

9.2.3.

If y is the number of fish caught in x hours of fishing, give the units of measurement for:
a. The slope of the trend line
b. A predicted y value

c. The point in which the trend line meets the y axis

9.2.4. Some species of tropical fish bear their young alive rather than lay eggs. An aquarium

9.2.5.

keeper wants to determine whether the number of young increases with each parity
(time when young are produced). The following data are available for study:

Order of parity: 1 2 3 4 5

Number of young: 7 11 9 13 15

a. Find the slope of the sample regression line.
b. Compute the sample variance about the trend line.

c. What are the most logical null and alternative hypotheses about the slope of the
regression line?

d. Why is a two-sided alternative inappropriate?
e. To perform the test:

i. What assumptions must be made about the distributions of x and y?

ii. If the assumptions are valid, what conclusion should be drawn?
Review Exercise 9.1.7 of this chapter, in which there is a discussion of the effect of
patient load on nursing activities in a hospital.

a. Conduct a test of hypothesis to see if patient load can be used to predict the time
spent on patient care.

i. Give the null hypothesis in symbols and in a complete sentence.
ii. Why should the alternative hypothesis be one-sided?
iii. Give the critical value of the test statistic for a = 0.05.
iv. Perform the test of significance.
b. Conduct a test of hypothesis about patient load as a predictor of the time available
for records and reports.
i. Give the null hypothesis.
ii. Why should the alternative hypothesis be two-sided?

iii. Perform the test of significance at a = 0.01.
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9.2.6. When experimentation with lysergic acid diethylamide (LSD) first began, the

9.2.7.

9.2.8.

hallucinogenic effect was noted as so similar to the symptoms of schizophrenia that
medical scientists thought they had discovered a chemical cause of the mental disorder.
Because an increase in the level of copper in the blood is frequently (but not always)
associated with schizophrenia, a study was made to see whether the level of blood
copper increased with the administration of increasing dosages of LSD.

a. What null hypothesis would be used in an analysis of this experiment?
b. What would be the alternative hypothesis?

c. Dosages were calibrated according to the percentage of those receiving the dosage
who hallucinate. The level of blood copper was measured at each dosage. The data
obtained were as follows:

Effective dosage (%): 0 25 50 75 100
Level of blood copper 0.87 0.98 0.70 0.90 1.05
(mg/liter):

i. Compute the slope of the least-squares trend line.
ii. Test the =0 at « =0.5.

iii. Draw conclusions, answering the following questions: Do increasing dosages of
LSD cause significant increases in blood copper level? Because increased blood
copper is a common condition in schizophrenia, is there significant evidence
that LSD may be a chemical cause of schizophrenia?

Review Exercise 9.1.10 in which a nuclear accident is simulated by releasing strontium
85 in an alfalfa field.
a. Compute Z (y — $)* by using the short computational formula.
b. Compute Z (y — )* by finding the expected value on the trend line for each value
of x and subtracting it from the observed value.
c¢. In performing a test of significance of the least-squares trend line:
i. What is the null hypothesis?
ii. Why is the alternative H,: B < 0?
ili. What is the critical value of the test statistic for « = 0.05?
iv. What is the decision about the null hypothesis? What should be concluded?

In Exercise 9.1.9 involving the relationship between fathers’ and sons’ heights:

a. Compute the expected height of sons y of fathers of each height x given in the
experiment.

b. Compare observed height y with expected height y and compute:
i. The sum of the deviations from the trend line, Z (y—19)
ii. The sum of the squared deviations from the trend line, Z (y -7
¢. Compare observed height y and expected height y in terms of how they deviate from
the average; compute:
i. The sums of the deviations from the average, Z (y—7y) and Z )]

ii. The sums of the squared deviations from the average, Z( y—77? and

>.6-y’
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d. Use the above computations to empirically verify the following mathematical
identities:

i. The sum of squares from the average equals the sum of squares due to the linear
trend plus the sum of squares from the trend line:

D= =) 0-+) (y-9’
ii. The sum of squares due to the linear trend is

2
—P)x — % 2
ZG’ -y’ = [Z(y e X)] = Sﬁ = bS,y

Z (x—Xx)? S

iii. The sum of squares from the trend line is

2
(y =y —X
D=»T=) (- - [ZZ(x—x)z ] =S,y — bSyy

9.3. INFERENCES RELATED TO REGRESSION

The term “regression” originated with the work of Francis Galton. The studies of inheritance
inspired by Darwin’s work led Galton to believe that everything could be studied
quantitatively. One of his studies involved the linear trend between the heights of fathers and
their sons. The slope of the trend line in this particular study was positive but less than 1, so
Galton called the relationship a “regression toward the mean.” The term “regression” was then
applied to any linear trend. It was an unfortunate term, however, because the slope of a least-
squares trend line need not be less than 1.

TABLE 9.1. Inferences Related to Regression

Test Statistic 1 — «a Central Confidence
Parameter v=n-—2 Interval
/ a— ny 1 n i
o = a T laan-28yxy| - T 5
Sy 1/n + 3 /Sw n o Sk
b-py Ta/2n—28y.x
B t=——— b + =LY
Sy-x/ VSxx V/Sxx

v — (u* 1 * _ 1)2
W= Eifr=r) =D N [ O
’ Sy-x 1/" + & — 7_5)2 /Sxx ) n Sxe
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Several types of inference are possible in relation to the regression line. Confidence
intervals and tests of hypotheses are possible for parameters o and B and for
my = E(y if x =x"), the expected value of y for a specific value x* of x. These procedures
are summarized in Table 9.1.

The following example will illustrate the use of some of these procedures.

Example 9.1. Inferences Related to Regression

If the efficiency expert in Section 9.1 had obtained the following data instead of that
previously given,

he could organize the regression analysis as follows:

n=9 dox=36 Y X =184

doxy=248 D y=54 ) y' =376
X=) x/n=36/9=40
=) _y/n=54/9=6.0

Su=) (=X’ =) ¥ - <Zx)2/n = 184 — (36)2/9 = 40
Sw=) (y=9=) ¥y - (Zy)z/n =376 — (54)2/9 = 52
So=Y =D=9 =3 w— (3 x)(Xr)/n=248 - Go)54H/9 =32

The estimated slope is

Z(x—x)(y Y _Se _32_ e

Z (= x) Sy 40
The y intercept is
a=y—bx=6-0.84.00=2.8
The least-squares trend line is
y=2.84+0.8x

Assuming that a residual analysis uncovers no deviations from the assumptions, it is valid to
predict from this line because, testing

Hy: B=0 against H,: >0
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at @ = 0.05, we find

o 2= Sy —Sh/Su
-

X 2 n—2
52 — (32)
_32-0G27/40 _ 4 e
7
Syx =+~3.78 =1.95
and
b—0 0.8
t = = = 2.595
Syx//See 1.95/4/40
with

10.05,7 = 1.895

The 95% central confidence interval on 3 is

Cloos: b % 10.02578y.x/ v/ Sxx

0.8 4+ 2.365(1.95)/4/40
0.8 +0.73

If the researcher wants to find the average productivity with 3.5 hours of instruction, he
finds

y=28+08x=28+0.8(3.5) =56

This is the estimate of the average productivity for 3.5 hours of instruction, E(y if x = 3.5).
The 95% central confidence interval on this parameter is

R 1 X —%)?
Clogs: ¥ £ 10.02578yxy/ p + (57)
5.6 + 2.365(1.95) l+M
cE o 40

5.6 +1.58

If an experimenter is interested in predicting the next y observation at a given level x* of x,
the point estimate is the same as for the expected y value at that level:

y=a+ bx*



236 DISTRIBUTIONS OF TWO VARIABLES

Cl for E{y atx = x*)

y=a+bx

Pi for
yat x = x*

&l
®

FIGURE 9.16. Prediction intervals and confidence intervals.

However, the formula for the prediction interval on the next observation is slightly different
than the formula for the confidence interval on the expected value:

. 1 (x*—%)?
PIl—a: y T la/2,n—25y<x I+—+——
n S

These prediction intervals are wider than the corresponding confidence intervals, and this
seems logical because we are trying to predict a single value rather than the population mean
for all values of y with a common x*. Both types of intervals are narrowest at x* =Xx
(Figure 9.16).

EXERCISES

9.3.1. The linear relationship between weight y (in grams) and age x (in days) has been
studied in a strain of inbred guinea pigs. The following values have been computed.
The guinea pigs ranged from 8 to 14 days of age.

n=16, b=50, x=11, y=287
D =B(y—y) =200, Y (y—3’=1126

a. Find ) (x — %,
b. Compute the variance about the least-squares trend line.

c. Place a 95% confidence interval on the mean weight of 8-day-old guinea pigs.
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A random sample of 27 college men yields the following data in a study of the
relationship between arm length x (in inches) and leg length y (in inches):

Y x=615 Y y=810 b=12

dx—x7=25 Y (y-y’ =136

. Compute the variance around the sample regression line.
. Make a test of significance of this line against the most logical alternative.

a

b

c¢. Find a 95% confidence interval for 3.

d. Predict the leg length of a man with arms 25 in. long.
e

. Find the 95% prediction interval for this length.

. In an effort to find a method of predicting the dental work required by army recruits, an

army dentist studies the dental records of a random sample of 10 recruits completing

their service. She computes the relationship between the number of cavities filled in the

first two years of service y with the number of cavities filled in the two years before

service x.

a. State the null hypothesis that should be used to test for the usefulness of the
regression line.

b. Give the alternative hypothesis you would suggest to the dentist and the reason for
that alternative.

c. Give the critical value.

. Suppose the following statistics are computed for the dental study in Exercise 9.3.3:

D> x=50, > y=52 > xy=32l

Z(x—)_c)z = 68, Z(y—y)2 =75.6

a. Find the estimate of the slope of the trend line.
b. Find the standard error of the estimate of the slope.
c. Find 95% central confidence intervals for:
i. The slope of the trend line.
ii. The average number of cavities an enlistee will have filled during his first two

years of service.

d. Find the 95% prediction interval for the number of cavities to be filled in the teeth of
a new enlistee who in the previous two years had 3 new fillings.

. In an experiment involving 12 female mice and their first litters, a study is made of the

relationship between the rate of weight gain (gain divided by original weight) of the
female during pregnancy x and the birth weight y of her litter. The following statistics
are computed:

=010, y=2000, » xy=2448

Y (x=x7=0.16, Y (y—3’=1584
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. Find b.
. Find the sample variance about the trend line.
. Test the significance of the trend line against the most logical one-sided alternative

hypothesis.

. Estimate the average birth weight of a litter for a mouse that gained 0.12 during

pregnancy.

. Place a 95% confidence interval on this estimate.

. Find the intersection of the trend line with the y axis.
. Place a 90% confidence interval on «.

. Comment on the validity of parts d through g.

Refer again to Exercise 9.1.7, which discusses the effect of patient load on nursing
activities.

a.

b.

Place a one-sided 95% confidence interval on the lowest value of the slope of the
trend line that relates time spent on patient care with patient load.

Place a two-sided 95% confidence interval on the slope of the trend line relating
time spent on records and reports with patient load.

For Exercise 9.2.6, which examines the relationship between LSD dosage and blood
copper level:

a.
b.
c.

€.

Compute a 90% two-sided confidence interval on the slope.
Compute a 90% central confidence interval on the y intercept.

Compute a 90% confidence interval for the lowest mean copper level of those
receiving a 50% dosage.

. Find the 90% prediction interval for the lowest copper level of an individual who

would receive a 70% dosage.

Is it valid to use these intervals?

For Exercise 9.1.10, which involves a simulated nuclear accident:

a.

Place a 95% central confidence interval on the mean ppm of all alfalfa samples that
could be taken on the 150th day.

. Place a 95% central prediction interval on the ppm of a single sample that could be

taken that day.

. How does the observed sample correspond to these intervals?
. The data do not record the amount of strontium 85 released and immediately

available to the alfalfa at the start of the experiment.
i. Estimate this from the data available.
ii. Place a 99% confidence interval on this estimate.

iii. Would you have any hesitation about using these estimates?

9.4. CORRELATION

The main use of regression is prediction. Suppose our example involving the efficiency expert
reflected a practical situation. We would want first to test to determine whether there is a
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significant linear relationship between the hours of instruction an employee receives and the
number of units per hour that employee can produce. Once armed with a significant linear
trend, we would then want to choose a sensible number of hours of instruction, x* (which does
not extrapolate beyond the data used in the analysis), and predict the resulting mean hourly
production, u;. However, there are situations in which the x variable is not “fixed” or readily
chosen by the experimenter but instead is a random covariate to the y variable; that is, x and y
vary together. In such situations, we may be more interested in determining the strength of the
linear relationship than in prediction, and the sample correlation coefficient r is the statistic
employed for this purpose.

In Example 8.3 in the previous chapter, we used the matched-pair ¢ test because we
anticipated a strong linear association between the length of time required by a student to
perform a calculation using calculator A and the length of time required by the same student to
perform a similar calculation using calculator B. In mathematical terminology, length of time
for calculation on A (the x variable) and length of time for calculation on B (the y variable) are
covariates and are said to have a linear bivariate distribution, simply meaning that we can use
a straight line to model the manner in which they vary together. Furthermore, the variance of
difference in time, d = x — y, is found to be

Vd) = V(x—y) = 0, + 0, —2p0or0,

in which 02 is the variance of x, 0-2 is the variance of y, and p is the correlation coefficient.
This equation, containing the correlatlon coefficient p as a parameter of the linear bivariate
distribution of x and y, shows why the variance of the differences will be small when p is large.

In correlation studies, we are interested in the strength of the linear relationship between
two variables, so we estimate the correlation coefficient, make statistical inference about it,
and see how the variability in the experiment is affected by association between the two
variables.

To demonstrate how the sample correlation is computed, we will turn again to the data in
Example 8.3 giving the times for each student when similar calculations are performed on
different calculators:

Student number: 1 2 3 4 5 6 7 8 9 10 11 12

Calculator A, x: 23 18 29 22 33 20 17 25 27 30 25 27
Calculator B, y: 19 18 24 23 31 22 16 23 24 26 24 28

The same sample statistics are computed as in regression analysis, namely
S =262.67 S, =199.67 and S, =191.67

and with these, we can compute the sample correlation coefficient

L Se 199.67 089
/5.8, J@6267(191.67)

Unlike the regression coefficient b, the correlation coefficient has no units of measurement
associated with it. Thus, from the magnitude of the absolute value of r, we can get a feeling of
the strength of the linear association. In all cases —1 < r < 4 1.If r = —1, there is a perfect
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negative relationship and all the data points are on a sample regression line with negative
slope. If » =41, the relationship is a perfect positive one with all sample points on a
regression line with positive slope. As r gets closer to zero, there is less association between
the variables. Thus the direction and, to some degree, the strength of association can be judged
simply by looking at the sign and magnitude of r. With a sample correlation coefficient
r = 0.89, we can see that there is a positive and relatively strong linear association between
the students’ respective computing times using each calculator. Because of this strong
correlation, the variance of differences will be small, and hence the matched-pair 7 test is a
very efficient method of analysis.

In the matched-pair ¢ test, we deal with x — y, which is a linear combination of the two
covariates, and V(x — y) is estimated as the random variation in the experiment. In regression,
for the estimate of random variability, we estimate the variance of a different linear
combination of x and y, namely V(y — a — bx). In these two situations, and in others to follow
in later chapters, we anticipate that there is a linear association between x and y, and if there is,
the experimental variance will be smaller after we have explained the variability due to the
correlation between x and y.

When we discuss the variability in y which is explained by the linear association between x
and y, we frequently use another statistic which is related to the sample correlation coefficient.
This is the sample coefficient of determination r>. The coefficient of determination has the
following interpretation:

The proportion of variability Z (y— 5
in y unexplained by the ==
linear relationship Z (y=5)

Yo [Ye-n0-9] / Ve
- Y (-3

and so

r?> = 1 — the proportion of unexplained variability in the population

= the proportion of variability in y which is explained by the linear relationship

Thus r? indicates the proportion of the variability in y explained by the linear bivariate
association with x. If 2 is large (close to 1), most of the variability is explained by the
relationship, and knowledge of the numerical value of the x variable is almost as efficient as
knowledge of y. If r2is close to zero, then there is little linear association between the two
variables, and information about the size of the x variable provides very little information
about the size of the y variable. There are studies in which 2 is the most meaningful statistic
to be computed, and even in regression analysis it is frequently the first statistic which is
computed in order for the experimenter to determine whether a regression equation will be
useful for predicting y.

In the data from Example 8.3, we found that » = 0.89, and hence r 2 =(.79. Thus 79% of
the variability among the students’ computing times with calculator B can be explained on the
basis of the linear relationship between their respective computing times on the other
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calculator. While we cannot predict perfectly how long it will take a student to perform a
calculation on B, there is evidence that anyone who is fast when using calculator A will also be
fast when using calculator B, and vice versa.

We have seen that in a regression or correlation analysis, we apportion the sum of squares
for experimental variability into two parts:

2
i DB CE))
Z(y—y)2=Z(y—y)2+[ YCEES ]

where

[Ce-no-9]
Y =z

= sum of squares due to the trend line

and
Z (y —$)* = sum of squares around the trend line.

When there is no correlation between the variables x and y, these two sums of squares can
be divided by their degrees of freedom and provide two independent estimates of o% the
variance of y. We have seen that there are n — 2 degrees of freedom associated with
Z (y — )»?. We have also seen that bS,, is an alternative method of computing the sum of
squares due to regression; hence there is one parameter estimated and consequently 1 degree
of freedom associated with that sum of squares. Thus we can use an F test to determine
whether these two terms are simply independent estimates of the same variance or whether the
linear association explains significant variability in the y variable. The F test is

B (82,/8:)/1 B 2
TSy = S2/S)/(n—2) (1 —r)/(n—2)

if both numerator and denominator are divided by S,,. This F test is a routine part of most
regression analyses performed on a computer. It will be examined in further detail in Section
9.6 on JMP analysis, and it is an integral part of multiple regression analysis, which is covered
in Chapter 14.

Notice that

_ ($5,/8u)/1 _ Sy /800)? S
(Syy — 82,/8u)/(n —2) 53,

2
Syx/\/ Sxx

that is, the F test for the significance of the correlation coefficient is equivalent to the # test for
a zero slope.

Care should be taken in the interpretation of regression and correlation. If there is a
significant linear relationship, this in itself does not indicate that changes in the x variable
cause changes in the y variable. In the efficiency example, it is possible that increased
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instruction causes increased productivity; however, the significance of the regression line
alone does not prove this. Causality must be demonstrated by an argument outside the
statistical analysis. In many cases there may be no causality involved. If there is a strong linear
association between length of upper arm and that of lower arm, it would be difficult to claim
that a long upper arm is the cause of a long lower arm. Instead, both variables reflect the
growth pattern of the individual. Furthermore, in Example 8.3, there is probably no causality,
but instead the calculating times on each calculator are just two different measures of a
student’s manual dexterity.

The foregoing discussion of correlation and regression indicates that they are different but
not mutually exclusive techniques. Roughly, regression is used for prediction, whereas
correlation is used to determine the degree of association.

Besides the different functions served by regression and correlation, different assumptions
are used to develop the theory behind these procedures (see Table 9.2 and Figure 9.17). As a
result of these models, the following guidelines should be used. All regression procedures
(Sections 9.1 to 9.3) may be applied to both models.

Also, the computation of the sample correlation coefficient and the coefficient of
determination may be applied to both models. However, inference about the population
correlation coefficient should only be made if the experimenter believes the variables are
bivariate normal (fit the correlation model); for example, the statistic r may be used as an
estimate of the population correlation coefficient p. If p=0 for a bivariate normal
distribution, then there is no useful linear relationship and we can also conclude that x and y
are independent in the statistical sense. (Recall that in regression analysis, if 8 = 0, it is still
possible that x and y are related by some type of relationship other than a linear one.)

The hypothesis Hy: p = 0 is tested with a ¢ statistic having n — 2 degrees of freedom:

’
1—r2%
n—2

TABLE 9.2. Difference between Regression and Correlation

Regression Model Correlation Model
1. x is fixed at levels chosen by the 1. Subjects are sampled at random and the x, y
experimenter. (Scientists call this an measurements are recorded.

independent variable.) At each fixed x level,
subjects are chosen at random and y is
measured. (Scientists call y the dependent
variable.)
2. xis measured without error; that is, there is no 2. Both x and y contain sampling variability.
sampling variability in x. Only y contains
sampling variability.

3. For each value of x there is a normal 3. For each value of x there is a normal
distribution of y. distribution of y, and for each value of y there
is a normal distribution of x.
4. Each distribution of y has the same variance. 4. The x distributions have the same variance.
The y distributions have the same variance.
5. The expected value of the normal y 5. The joint distribution of x and y is the

distributions lie on a straight line. bivariate normal distribution.
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FIGURE 9.17. The different assumptions for regression and correlation.

Example 9.2. Inference from the Sample Correlation

Some people have life-threatening reactions to vaccines, so an immunologist is looking for a
measurement which can be made on a patient before vaccination and which will be highly
correlated with the patient’s reaction to the vaccine. Suppose that the following (fictional) data
are obtained when a small amount of a hepatitis vaccine is used in a skin test on a random
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sample of patients and then their skin test results are compared to their reactions when the
vaccine is administered subcutaneously:

Patient: A B C D E F G H

Skin test, x: 10 19 17 9 5 4 8 16
Reaction, y: 22 26 22 18 20 17 15 30

The following sample statistics are computed:
Sy =224 S, =148 and S,, =170

and these are then used to compute the sample correlation coefficient

Sy 148

s, a0

r =

Because a positive association would be anticipated, the hypotheses would be Hy: p =0
and H,: p> 0. The critical value for an a = 0.05 test is fy 05,6 = 1.946 and the test of
significance is

t_0'767_0_ 2864

[1—(0.76)
8§—-2
As may have been anticipated from the sizes of r and r2, there is a significant linear
association between skin test and vaccine reaction, and the relatively large value of
r? = 0.5776 indicates that a fairly useful prediction of vaccine reaction can be made if based
on the least squares equation in which the x variable is the result of the skin test.

Frequently in research papers we find that the correlation coefficient or the coefficient of
determination will be computed and tested for significance even in situations where the x and
y variables do not have a bivariate normal distribution. The ¢ test, or its F test counterpart, will
be valid with the usual assumptions (independent random sampling, normality, and equal
variances) only for the y variable at each level of x in the experiment. The interpretation is
different than for a bivariate normal population. If there is a bivariate normal population and
an investigator wants to learn more about the relationship between the two variables (perhaps
height and weight) in that population, he draws a random sample of members of the
population and computes r as an estimate of p. In contrast to this, an agronomist may select 6
increasing levels of fertilizer x and then compute the correlation with yield of corn y. He is
using the correlation coefficient as the square root of the coefficient of determination, or as an
index of how well a linear relationship fits the experimental data. He can use the ¢ test to
determine whether the levels of fertilizer explain a significant portion of the variability in corn
yield, but the value of r is not an estimate of correlation between yield and levels of fertilizer.

The experimenter who wishes to use correlation procedures needs to be aware of an
unusual feature about p. This 7 test is valid only to decide whether x and y are independent or
whether there is a useful linear relationship between x and y, that is, the specific null
hypothesis p = 0. It cannot be used to test a hypothesis such as p = 0.5. Furthermore, the
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analogy between the ¢ test and confidence interval, which we have observed in other
situations, does not hold true with regard to the correlation coefficient.

This situation arises because the correlation coefficient is bounded between —1 and +1,
and therefore the distribution of the sample estimates, the r’s, is symmetrical only when
p = 0. If the value of p is very close to 41, then the range of overestimates is small but the
range of underestimates is relatively large. The opposite is true if p is closer to — 1. Thus,
when p is not zero, the sampling distribution will be skewed to the right or left depending upon
whether p is negative or positive, respectively. Furthermore, the sample correlation coefficient
ris a biased estimate of the parameter p when the latter is nonzero. Thus it is obvious that the
sampling distribution of r is not a normal distribution when p # 0, and therefore a t test
cannot be used because, as we have seen, such a test requires that the sampling distribution be
normal.

A solution to the difficulty was first presented by R. A. Fisher (1890 to 1962), whose early
theoretical research in statistics involved the sampling distribution of the correlation
coefficient. Three of Fisher’s findings are of particular use to us:

1. Although we assume a bivariate normal distribution of the x, y data points when we
estimate the population correlation parameter p, when this parameter has a value of 0,

the distribution of r does not depend on the distribution of x but only on that of y. This is
important here because it means that, since y has a normal distribution, the two tests for

a useful linear relationship are equivalent:
r b
= 72 = 72
1—r szJ\
Vn—2 S

Thus we may use whichever is more convenient when testing p = 0.

and ¢

2. No matter what the value of p, there is a transformation
z, =log, /(1 +1r)/(1—7)

that provides a near-normal sampling distribution and permits the use of procedures
involving the normal distribution.

3. The variance of the transformed value 7 is practically independent of p and r and can
be considered a known parameter =1 /(n — 3). Because the variance is known, we
use the normal distribution rather than the ¢ distribution when dealing with the z,
transformation.

As a consequence of points 2 and 3, we can make the following kinds of statistical
inference about the correlation coefficient.

Example 9.3. Confidence Interval for p

In a study of obesity, the sample correlation coefficient for weights of 28 mature obese
brother—sister pairs is computed to be r = 0.64. A nutritionist wishes to place a 95%
confidence interval on the population correlation coefficient p.

"We use the symbol z, to avoid confusion with the standard normal deviate.
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A confidence interval is first found on the transformed parameter z, using z,, and then the
confidence limits are transformed back to r values:

CIl—oz: z — Za/Z(l/ vn — 3) =< zp <z + Za/z(l/ vin — 3)

Since r = 0.64 is transformed to z, = log, /(1 +0.64)/(I — 0.64) = 0.758 (see Table A.13a
in the Appendix),

Clgos: 0.758 — 1.96(1/5) < z, < 0.758 + 1.96(1/5)
0.366 < z, < 1.150

Using Table A.13b, the corresponding r values are

z, = 0.366 — r = 0.350
z, = 1.150 - r =0.818

Thus

Clpos: 0.350 < p < 0.818

A similar approach is used to test whether the population correlation coefficient is some
nonzero value.

Example 9.4. Test of Hy: p = p, with p, # 0
The nutritionist in the previous example wants to test Hy: p = 0.5 against H,: p # 0.5 because
of some prior theory or available evidence. The test is a z test with statistic

Zr — Zp,

1/v/n—3

=

Since r = 0.64, it follows that z. = 0.758, and py = 0.5 is transformed to z,, = 0.549 (Table
A.13a). Thus

0.758 — 0.549
1=

= 1.04
75 048

The null hypothesis is rejected at o = 0.05 if |z| > 1.96, so the nutritionist concludes that p
may be 0.5.

Fisher’s transformation can also be used to compare two correlation coefficients.

Example 9.5. Testing p, = p,

Suppose that the nutritionist has data on 23 brother—sister pairs of conventional mature
weight in addition to the data above for obese pairs where r; = 0.64. For the conventional
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sample, r, = 0.38. To test whether the correlation is the same for both populations at
a = 0.05, the following test is used:

Hy: p, = p, against H,: p; # p,

is tested with

= Zy, —Z,
N 1 N 1
m-—3 n-—3
Thus
0.758 — 0.400
25720

Since z,/> = 1.96, there is no significant difference between the two correlation coefficients.
The correlation between weights of brother—sister pairs may be the same for obese siblings as
for those of conventional weight.

The various types of inference about correlation coefficients are summarized below.

Procedure. Inferences about Correlation Coefficients

Assumption: bivariate normal distribution
Tests of Hypotheses
Significance level: «

1. H():p:()
Hi:p#0orp>0o0rp<0
Test statistic:
’
1—r2
n—2

=

Reject Hy if [t] > o242 0Tt > 14,2 OF t < — 14,2, Tespectively.

2. Hy: p= po with py # 0
Hy:p # poorp>poorp<po
Test statistic:

Zr — Zp, .
z=——+—-using Table A.13a for z, and z
1/v/n=73 g P
Reject Hy if |z] > zq/2 OF 2> 24 OF 2 < — Z4, TESPECtivVEly.

3. Hy: p1=p2
H,: py # prorpy > pyorp <ps
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Test statistic:

n1—3+n2—3

Reject Hy if |z] > zoy2 O 2> 24 OF 2 < — Zq, TESpECtively.

Confidence Interval on p

Compute CIj_q: z, + za/2(1/+/n — 3), then use Table A.13b to transform the lower and upper
limits back to r values.

There are many other statistical tests of association or “correlation.” Some of them employ
data on the ordinal scale of perception, and to distinguish them from the method studied here,
they are sometimes called rank correlation procedures (see Section 9.5). Conversely, the
procedure to be used for bivariate normal data is sometimes called the Pearson product
moment correlation, in recognition of Karl Pearson’s original contributions. By convention,
however, when the unmodified term “correlation” is seen, it is assumed that Pearson’s
procedure is the one under discussion.

EXERCISES

9.4.1. Given the scatter diagrams for x, y pairs in Figure 9.18, select the best answer for each

diagram.
Statistic Diagram 1 Diagram 2
a. Slope of trend line -2,—1,0,+1, +2 -2,—1,0, +1, +2
b. Intercept of y axis 0,2,4,8,10 0,1,2,3,4
c. Correlation coefficient -0.9, —04,0, =09, —04,0,
+0.4, +0.9 +0.4, +0.9
d. ttest for p=0 Significant, Significant,
nonsignificant nonsignificant
y y
10—
5 o ® d
g o e o
. 4= o % o
- ®
6 o o . 3 o o o ¢ @
41+ ® . 21— e d
e @
21 11—
0 | N N S OV | N I N
1 2 3 4 5 1 2 3 4 5
Diagram 1 Diagram 2

FIGURE 9.18. Scatter diagrams for Exercise 9.4.1.
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9.4.2. Test Hy concerning the population correlation coefficient:
a. Hy: p=0,H,; p # 0,n=20, r=0.550, = 0.01
Would the H, be accepted or rejected? What does this mean?
b. Hy: p=0,H,;: p>0,n=18, r=043, a = 0.05
Would the H, be accepted or rejected? What does this mean?
c. H:p=04,H,;:p # 04, n=28,r=0.62, «a =0.05
Would the H, be accepted or rejected? What does this mean?

9.4.3. Twenty-six newborn baby boys are weighed and measured for length. The standard
deviation of weight is 2 1b, but usual linear regression techniques reveal that 40% of the
variability in weight can be explained by the relationship between weight and length.
Make a test to determine whether the relationship explains a significant (o = 0.05)
portion of the variability in weight.

9.4.4. In a study involving 25 dairy cattle, the correlation between milk yield from first and
second lactations was found to be 0.42.

a. Test the significance of the relationship (o = 0.05).
b. How useful do you think the relationship would be in predicting milk yield for
second lactation?

9.4.5. Given the scatter diagrams in Figure 9.19:

Diagram 1 Diagram 2

FIGURE 9.19. Scatter diagrams for Exercise 9.4.5.

a. Which diagram has the greater b value?

b. Which diagram has the greater r value?

c. For diagram 1, does y =1, 2, 3, or 4?

d. For diagram 2, does y = 1, 2, 3, or 4?
An oncologist wants to evaluate the usefulness of the CAT scan for uterine tumor diagnosis.
For 12 women with fibroid tumors, certain measurements are taken by CAT scan techniques
prior to surgery and then compared with other measurements taken on the tumors in the

pathology laboratory after they had been surgically removed. Suppose the paired
measurements on tumor mass are
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Patient A B C D E F G H 1 J K L

CAT scan,x 18 17 28 20 11 24 16 15 19 24 23 13
Pathology, y 20 4 25 16 19 21 22 10 23 27 18 11

and the statistics computed are
D —x =278 D (y—5)’ =498
—O(v—7% —X(y—y :
Ye-ny-p o [Ye-90 -]

D = > =37

= 108.58

a. Find the sample correlation coefficient.

b. State the most logical hypotheses about the correlation between the CAT scan
measurement of tumor mass and that obtained at pathology.

c. Give the critical value for an a = 0.05 test of your null hypothesis.
d. Perform the test of significance.

e. Do you think the relationship would be useful in being able to use the CAT scan
information to predict fibroid tumor mass prior to surgery?

Using the data in Exercise 9.1.7, place a 90% confidence interval on the correlation coefficient
for the relationship between x = patient load and y = time available for records and reports.

9.5. NONPARAMETRIC STATISTICS: RANK CORRELATION

When we record data at the ordinal scale of measurement or reduce numerical data to the
ordinal scale by transforming them to ranks, we can perform the computational procedures of
correlation on the ranks. The resulting coefficient, which is given the symbol r; and called
Spearman’s rank correlation in recognition of the psychologist C. E. Spearman, who
popularized the procedure, has much the same meaning as the correlation coefficient we have
already studied. It provides a measure of linear association between the ranks of the x variable
and those of the y variable. The bounds on the coefficient are the same: —1.0 < r, < + 1.0.If
ry is fairly large and positive, then there is close positive agreement between the ranks of the
two variables. If r, is close to — 1.0, then, when one variable has a high rank, its companion
tends to have a low rank, and vice versa. Also, when r; is near zero, the ranks of the x and y
variables are nearly independent.

To demonstrate the computational procedures, we will designate r, as the rank of an x
variable and r, as the rank of its companion y variable; then

D =R =)

RN SISy

However, with respect to both r, and r,, we are dealing with the ranks from 1 to N, so

N(N? —1)

Fe=Ry=(N+1/2 and ) (=7 =) 0y =R =
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Therefore we can employ some moderately mundane mathematical manipulation and arrive at
the following equation which simplifies the computations:

6Zd2

TNN? - 1)

rs =

s

where d = r, — r, is the difference in ranks assigned to an x, y pair.
Under the null hypothesis that r, and r, are independent,

1
E(r)=0 and V()= ﬁ

and it is generally agreed that if there are 10 or more x, y pairs the distribution of r; can be well
approximated by a normal distribution. Therefore, we can test the null hypothesis Hy:
E(ry) = 0 with a z test:

ry—0

For samples smaller than 10, tables for the exact distribution of r, or Z d* can be found in
most textbooks on nonparametric statistics.

Example 9.6. Spearman’s Correlation

Color indicators are frequently used to detect the level of certain chemical compounds in
water or other liquids, and then further action is based on how dark the color becomes when
the indicator is added to a sample of the liquid. Suppose that there are two chemists who
regularly make decisions about the treatment of a city’s water and they want to be sure that
they are in close agreement about their evaluations of the darkness of a color indicator, which,
depending on the level of the impurity in the water, will range from a light pink to a cherry red.
So the two chemists prepare 10 bottles of water each containing different quantities of the
impurity. Then they have a third person randomly assign identifying letters to the bottles so
that they can independently sample the bottles, apply the color indicator, and rank their
samples from lightest to darkest:

Bottle of water: A B C D E F G H 1 J
Rank by chemist 1, x: 5 2 1 7 3 6 9 8 10 4
Rank by chemist 2, y: 4 8 1 10 6 9 5
d=r— 1y 1 — — -1 2 — -1 2 B
d*: 1 1 4 1 4 1
1 6 Z < 1 616) 1 % 0.903
re=1-— =1- =] —-———=0.
’ N(N?2 —-1) 10(100 — 1) 990

and they can test the null hypothesis Hy: E(ry) = 0, choosing H,: E(r,) > 0 as the alternative
because they expect there to be agreement between the rankings of the two chemists. The test is

rs_o

= =r,W/N — 1 =0.903(3) = 2.709

N —

—_
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If the null hypothesis were true, the probability of a value of z as large or larger than 2.709
would be P = 0.003. Because the P value is much smaller than the conventional « = 0.05,
they would reject the null hypothesis and claim that there is a positive association between the
ranks which they give to the water samples. They seem to agree quite well on the lightness or
darkness of the color indicator in a water sample.

When data are on the ordinal scale, as in the previous example, we expect no ties to occur.
However, when we use the rank transformation on numerical data and find that certain
recorded numerical values are identical, we follow a procedure similar to that which we used
before for ties. We need to remember that we are concerned only about ties which occur
among the numerical values of the x variable and among those of the y variable. Thus, if two
numerical values of the x variable are tied for the second and third rank, we use the average of
the ranks to be assigned to the ties, and r, = (2 + 3)/2 = 2.5 is assigned to each of the
members of the tie. We also follow the same procedure in obtaining r, when there are ties
among the numerical values of the y variable.

For reasons other than just its computational simplicity, Spearman’s rank correlation is a
very useful nonparametric procedure. Even if paired x, y data have a bivariate normal
distribution, and thus are suitable for conventional correlation procedures, r, and r will be
similar in numerical value, and the test of hypothesis for r, will be almost as powerful as that
for r. When data do not have a bivariate normal distribution, 7, is frequently superior to » in
detecting association between the x and y variables.

Procedure. Spearman’s Rank Correlation

Hy: E(rs) = 0 (The ranking of the x variable is independent of that of the y variable.)
H,. E(ry) # 0or E(ry) > 0or E(ry) <0
Significance level: «

Computation of the rank correlation coefficient:
The measurements on the x variable are ranked from 1 to N and designated as r,.
The measurements on the y variable are ranked from 1 to N and designated as r,.

6y &

TNWN2 - 1)

ry =

with d = r, — r,, the difference in ranks which are assigned to an x, y pair.
Test statistic:

. —0
=2 — =N =1

N-1

Region of rejection: |z] > z4/5 Or 2 > z, Or 7 < —2z,, respectively.

EXERCISES

9.5.1. An anthropologist has a choice of two different methods of determining the age of
pottery fragments of ancient civilizations, and she wants to know if both procedures
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will yield the same results. Using each method, she determines the age (recorded in
thousands of years) for 10 pottery fragments of different ages and then compares the
results:

Fragment: A B C D E F G H 1 J

Method x: 105 153 124 129 144 11.6 129 13.6 10.8 14.6
Method y:  10.7 156 122 127 145 113 13.0 140 106 145

a. Compute Spearman’s rank correlation.

b. If Spearman’s rank correlation is to be tested for significance:
i. What are the most logical null and alternative hypotheses?
ii. What is the critical value for a = 0.05?

¢. Make the test of significance and draw inference.

d. Compute Pearson’s correlation and compare its value to r,.

A physician examines the blood constituents of 12 patients who have become sick from a
toxic amount of heavy metal in their drinking water. Among several variables of interest are
the following measurements of albumen and magnesium in their blood:

Patient: A B C D E F G H 1 J K L
Albumen: 45 50 52 48 49 46 49 35 51 37 47 43
Magnesium: 1.7 12 13 15 16 08 10 16 12 14 1.1 19

a. Show that ) _d* = 405.

b. What null and alternative hypotheses would you suggest for this study? Why?

c. Compute the rank correlation coefficient and perform the test of significance at
a=0.05.

Use the data in Exercise 9.4.6 to perform Spearman’s rank correlation.

a. How does the rank correlation coefficient compare to that obtained using conventional
procedures?

b. Using a = 0.05, is the decision about the respective null hypothesis the same for both
test procedures?

9.6. COMPUTER USAGE

Scatter Plots

In Example 9.1 an efficient expert is investigating a possible linear relationship between the
number of hours of instruction employees receive and the number of units they produce per
hour. He enters the data into a JMP data table and names it “training’:
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206 training

[=[training ~_ =] Hours | Units

ey

[=IColumna (2/0)
& Houra
& Units

[=] Rows
All Rotts
Selected
Excluded
Hidden

Linbe! led

L= T A TS N

E-IT- - EUE. ST I P
OO | | e ||| ==

[=K-X-X-%"]

To produce a scatter diagram the investigator uses the “Fit Y by X” item in the Analyze
menu. He selects Units as the Y, Response variable and Hours as the X, Factor in the dialog
box.

Fit Y by X - Contextual
Distribution of ¥ for each X. Modeling types debermine analyais.

Salect Columns: ] ~Laat Selected Columms into Roles 1 hction
& Houra F; s
= Units II { ¥, Response ) "V

| Bivariate | Oneway

1 E

| Logistie |Contingency

9l 9

If there are enough points in the scatter diagram, they may indicate the general shape of the
curve or line that can possibly be used as a model for the variables. A generalized random
scatter may indicate that there is no relationship between the variables. Here the scatter plot
indicates a linear relationship.

Regression

To find the regression line, test the slope, and produce a graph that contains the regression line,
he uses the “Fit Line” item in a pop-up menu labeled “Bivariate Fit of Units by Hours.” The
output window is shown on the next page.

The values of interest are the F Ratio, Prob > F, and RSquare. The F Ratio is the
statistic described in Section 9.5 and is used to test whether there is a significant linear
relationship between hours and units. The Prob > F is the P value of the F statistic. In this
case there is a significant linear relationship at the 0.05 level of significance because Prob >
F is 0.0352. Rsquare is the coefficient of determination, that is, the square of the correlation
coefficient.
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0606 training: Fit Y by X
¥ =] Bivariate Fit of Units By Hours

[ 12
10— .
B_ -
®
=
=
6 - .
4_/
2 T T T
] 2 4 & g8
Hours
[*l—Linear Fit

¥ Linear Fit
Units = 2.8 + 0.8 Hours
¥ Summary of Fit

R3quare 0.492308
RSquare Adj 0.41978
Root Mean Square Error 1.942017
Mean of Response 6
Observations Cor Sum Wots) 9

> Lack Of Fit
¥ Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Mode| 1 25.600000 25.6000 6.7879
Error 7 26.400000 37714 Prob>F
C. Total & 52.000000 0.0352
¥ Parameter Estimates

Term Estimate Std Error t Ratio Prob:|t|
Intercept 2.8 1.388387 202 0.0835
Hours 0.8 0.30706 2.61 0.0352

The estimates of the regression coefficients are found in the table of
Parameter Estimates. The parameter estimate listed for Intercept is a, the estimate of the
intercept, and the parameter estimate listed for Hours is b, the estimate of the slope. The
t Ratio column gives the value of the test statistics for the ¢ tests for « = 0 and 8 = 0. Notice
the 7 value of 2.61 is the square root of the F ratio in the Analysis of Variance table.
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Correlation

A correlation analysis is done by choosing the “Density Ellipse” option in the “Bivariate Fit”
pop-up menu. The output contains a graph and a correlation report.

eee training: Fit ¥ by X
¥ |-/ Bivariate Fit of Units By Hours
f— ,
104 -
-~
//
2 8 & '
E
&=
P4
4 -
. -
-~
z T T T
a 2 4 [} 8
Hours
[*]——Bivariate Mormal Ellipse P=0,950
¥ Correlation
Yariable Hean 5td Dev Correlation Signif. Preb Mumber
Hours 4 2236068 0.701646 0.0352 9
Units 6 254951

The bivariate density ellipse plot views the relationship between hours and units as a
bivariate normal probability distribution. The plot is an ellipse that encloses 0.95 of the
probability. The Correlation text report gives the estimates of the five parameters of the
bivariate normal distribution. The sample correlation coefficient is 0.701646 and the P value
for the test of whether p = 0is 0.0352. Notice that this number is also the P value for the F and
¢ statistics.

9.7. ESTIMATING ONLY ONE LINEAR TREND PARAMETER

When we try to fit a trend line to data, especially for estimation, we generally use least-squares
regression to obtain an estimate of b the slope and of a the intercept of the line. Then with
these two estimates, we can predict the value of y for a specified value of x with the prediction
equation

y=a+bx

However, there are times when we can assume that either the intercept or the slope is known,
and need not be estimated. For each of these situations, there are special statistical procedures
that are used instead of the least-squares methods examined in earlier sections of this chapter.

The first of the special methods is familiar and commonly used even by those unfamiliar
with least-squares estimation. It is ratio estimation and simply assumes that y increases
proportionally with x. Suppose a recipe for a fruit punch calls for 2 quarts of fruit juice to
prepare enough punch for 10 people, but 20 are expected to be at the picnic. Then we estimate
that it will require 4 quarts of juice to have enough punch for 20 people. That is all there is to
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predicting y (quarts of juice) for a specified x (number of people). The slope of the line is the
only parameter estimated when ratio procedures are used, for a ratio carries the automatic
assumption that the intercept is zero. To say that the intercept is zero is to say that when x = 0,
y = 0, and this seems reasonable in the case of quarts per person, for if no people attend the
picnic no juice is needed.

The second procedure, called difference estimation, is also familiar and in common use. It
is used when y is predicted simply by adding a constant to x. Everyone who watches television
news has had to suffer through one or another commercial for a diet medication that promises,
“You will lose seven pounds the first week!” According to that prediction, one’s weight next
week (y) will be this week’s weight (x) less 7 Ib. To test the advertiser’s claim, only the
intercept of the line has to be estimated, for difference estimation assumes that the slope of the
linear relationship is equal to 1.0.

There are special advantages to ratio estimation and difference estimation besides their
familiarity and ease of use. In practice, one of the most difficult conditions data must meet for
the legitimate use of least-squares procedures is the assumption that the variance of y is the
same no matter what x it is associated with. It was noted in the discussion of least squares in
Section 9.2, that it is necessary to assume that variability of y from the trend line is the same
for all values of x. However, in many areas of study, y is often more variable for large values
of x than it is for smaller values. For example, the variability in weight (y) among people
whose height is x <5 ft will usually be less than that among those for x > 6 ft, and the
variability in length of forearm will be greater for tall people than for short ones. This
assumption is not required for statistical inference in ratio estimation, and in difference
estimation it is part of the basic assumption about a common difference between x and y.
However, all conditions except the third stated in Section 9.2 for least-squares line analyses
(the equal-variance condition) must be met for inference based on either ratio estimation or
difference estimation. For inference based on either ratio estimation or difference estimation,
the fourth condition of linearity must be specified as a positive linear relationship.

For all methods of trend analysis, the variance of interest is that of the deviations of y
values from the trend line, that is the variance of the e, where ¢ = y — 3. The sample variance
among these deviations is computed as

E :Z(y—W

¢ n—1

The degrees of freedom are n — 1 rather than the n — 2 used for the sample variance in least-
squares procedures. This is because only one parameter, either the slope or the intercept, of the
trend line is being estimated, whereas both parameters are estimated for a least-squares trend
line. To avoid confusion over the nature of the line or the degrees of freedom, we use different
subscripts to designate the variance from the trend line when only one parameter is estimated.

As with least-squares methods, inference requires computation not only of the variance but
also of the standard error of the estimates involved. Computational procedures will be shown
in the examples explaining the use of each of these estimation procedures.

Example 9.7. Ratio Estimation

The threat of attacks by terrorists using anthrax spores is a concern to U.S. health officials.
Because there are also health risks associated with the use of protective vaccines, health
officials want to avoid mass vaccination of all citizens unless necessary. Instead, they keep the
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anthrax vaccine available at well-located health care facilities around the country, ready for
use if needed.

At each facility, an inventory is kept on the number of vials of vaccine in storage.
However, some are used for people who may have been exposed to naturally occurring
anthrax, other vials are accidentally broken, and others are discarded when the vaccine in the
vial becomes cloudy or otherwise appears to have spoiled. In all such cases the inventory
should be changed to reflect the loss, but this can be forgotten when the demands of health
care are more important than record keeping. So a public health worker conducts a study to
learn how to use the number of vials shown in the inventory to estimate the actual number of
vials available at a health care facility.

She takes a random sample of 20 facilities where anthrax vaccine is being kept. Then she
visits each facility in the sample in order to record how many vials of vaccine are shown on the
inventory (x) and to count the number of vials actually available (y) in the storage refrigerator.
Her data and partial work are as follows:

Facility Inventory (x) In Storage (y) y=0+4 0.875x e=y—y

a 36 33 31.500 1.500
b 78 67 68.250 ~1.250
c 101 91 88.375 2.625
d 65 57 56.875 0.125
e 21 17 18.375 ~1375
f 84 73 73.500 -0.500
g 10 7 8.750 ~1.750
h 13 9 11.375 ~2375
i 31 29 27.125 1.875
i 26 23 22.750 0.250
k 25 21 21.875 ~0.875
1 11 11 9.625 1.375
m 82 72 71.750 0.250
n 22 22 19.250 2750
0 96 84 84.000 0.000
p 88 78 77.000 1.000
q 52 45 45.500 -0.500
r 75 66 65.625 0.375
s 8 5 7.000 ~2.000
t 36 30 31.500 ~1.500
Sum 960 840 840.000 0.000

So that it will not be mistaken as the least-squares slope, the public health worker may
choose to symbolize the estimated slope for ratio estimation by b,, and compute it as

4
b, = Zy—80=o.875

U
N
[e <2l )

=— =0.875, or equivalently b, =

_Zx_%o

b, = Y"y/3_x, hence Y (b,x) will always equal Y y; this provides a check of arithmetic.
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She sees that, on the average, 0.875 is the proportion of vials shown in inventory that are
actually in storage, and she can estimate the number of vials in storage at any facility by using
the equation for a straight line,

y=a+bx
=0+ 0.875x

To compute the variance from the ratio trend line, she first subtracts the expected number
of vials () at each facility from the observed number (y) to obtain the deviations (e) given in
the last column of her work sheet. The desired variance is that among the 20 deviations,

, Dy =ba)’ 43.0625

= = 2.2664
¢ n—1 20—-1 06

)

This method of computing is fairly easy here because there are only three decimal places
associated with b, and only 20 pairs of values, but instead she could have used algebra to
obtain an equation some find more useful for calculators,

2 Z(y — byx)* _ Zyz + b? sz - Zb,ny

n—1 n—1
50902 + (0.875)%65812 — 2(0.875)(57855)
a 20—1

43.0625
= = 2.2664
19 66

Once sg is obtained, for statistical inference, she still must compute the standard error of
the ratio, and this requires the equation

2 2.2664
s.eb) =/—% = 66 = 0.007
nx 20(48)

A confidence interval is the statistical inference the public health worker likely wants to make,
so she uses the estimate b, and its standard error to compute a Cl o5 in the usual fashion:

CI]*H: br i [u(/Z,nfl sie
nx’
0.875 + 2.093(0.007)

0.875 + 0.015

To express proportions as percentages, she would multiply values in the Clj o5 by 100. Then
based on her random sample, she can conclude that only 87.5% of the mean number of vials of
anthrax vaccine shown on health center inventories are actually in storage. To include the
width of the confidence band, she would give the margin of sampling error as +1.5%.

If she wanted to predict the number of vials available at a particular facility where the
number on inventory is x*, remembering the intercept is assumed to be zero, she would make
the prediction

y=bx
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To compute a prediction interval for a single facility, she would use

Pli_o: ¥ £ tajon—15e

The mathematical procedure for difference estimation has already been studied in
Example 8.3, where the matched-pair 7-test was discussed. So we need only to look at how the
same procedures can be used in linear estimation. The example pertained to a random sample
of 12 students who each used two different types of calculators, and the study was to
determine if the mean difference in speed of calculation on the two machines was significantly
different from zero.

To reexamine that study as one in linear estimation, we remember that the equation for
using a straight line for estimation is

y=a+bx

Then, because in difference estimation we assume that the slope of the linear relationship is
B = 1.0, only the intercept a needs to be estimated. The computation of a is the same as y, in
Example 8.3, and the sample variance around the trend line is the same as s§ in that example.
The same data are used again in Example 9.8 to demonstrate the difference estimation
procedure.

Example 9.8. Difference Estimation

We want to see if we can use a student’s speed of calculation on Calculator A (x) to predict his
speed using Calculator B (y). The data are

Student Machine A (x) Machine B (y) d=( —x' d>=(y — x)*

1 23 19 —4 16
2 18 18 0 0
3 29 24 =5 25
4 22 23 1 1
5 33 31 -2 4
6 20 22 2 4
7 17 16 -1 1
8 25 23 -2 4
9 27 24 -3 9
10 30 26 —4 16
11 25 24 —1 1
12 27 28 1 1

Zd:—18 Zcﬂ:sz

"The signs of the differences are reversed from Example 8.3 because the subtraction here is B — A.
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If we wish to use a different symbol for the intercept to distinguish it from the least-squares
intercept, we can give the equation to compute it as

ad:Z(y—x):Zdi:—_IS: s
n n

12

The variance from the trend is computed as before in the matched-pair ¢ test

&= (Zd>2/” _ 82— (—187/12 _

n—1 11

2 _
sy = 5

and the standard error of the estimate of the intercept is
Sd 5
—=,/—==0.645
Jn 12

As we have seen before, once we have an estimate of a parameter and the standard error of
the estimate, we have the two numerical values necessary for statistical inference, a test of
hypothesis, confidence interval, or prediction interval.

Procedure. Linear Trend Estimation

Assumption: y = a + Bx + £ with the £’s independently distributed as N(0, 02)

Estimation: A value of y can be estimated for a specific x* with the linear equation
y=a+ bx*

For each method of trend fitting, the intercept and slope must be estimated or assumed to be a
specified value.
The variance of the &’s is estimated by 6% = 3(y — $)*/v, where v is the degrees of freedom

Method Intercept Slope Estimated Variance

Least squares a=y— bx b=S8y/Su sﬁ,x =(S,y — bS,y)/(n — 2)
Ratio a=0 b= y/>x si=Y (y=bxy/(n—1)
- (X d)z /n

Difference ag= Z()’z - X) b=1 52 = —
Standard errors of the estimates are as follows:
Method Standard Error for Intercept Standard Error for Slope
1 ¥ .
Least squares Sy | =+ x Syx
M VO /A Y o

Ratio No estimate involved

3

Difference sa//n No estimate involved
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EXERCISES

9.6.1. Use algebra to verify that when b, = Z v/ Z x, for any set of bivariate data, Z b, x
will be equal to Z y.

9.6.2. Using the same data set as in Examples 8.3 and 9.8:
a. Compute the least-squares trend line and ratio trend line.
b. Compare the values of Z (y — $)? for each trend line; why should it be smallest for
the least-squares trend line?

Using the data in Example 9.7:

a. Compute the least squares trend line and difference trend line.
b. Compare the numerical values of intercepts and slopes for each method.
¢. Which method would you use to estimate the number of vials of vaccine? Explain why.

U.S. attack helicopters are difficult to maintain in good flying condition in arid, sandy terrain.
When based in such areas, there will usually be some that are not ready to fly until repaired. A
general in command of 15 squadrons of helicopters at various bases in an arid, sandy region
knows that on most days each squadron will have a few craft that are being repaired and not
ready to fly. He wants to estimate the mean number per squadron that will not be flight-ready.
On a randomly chosen day, the following data were obtained from these squadrons:

Squadron 1 2 3 4 5 6 7 8

Copters 20 26 24 22 28 27 25 25
Ready 13 21 18 15 21 25 25 24

Squadron 9 10 11 12 13 14 15 Sum

Copters 17 18 29 25 30 18 29 363
Ready 11 17 27 18 30 11 24 300

a. What must be assumed about the data in order to make valid statistical inference about
the mean number of helicopters that will not be flight-ready on a given day?

b. Difference estimation is attractive because it is easy to use for estimating the mean
number of unready helicopters per squadron. Estimate the mean number of helicopters
that will not be ready to fly. Then estimate those that will be ready.

c. Set a confidence interval for the mean number not ready to fly.

d. The general feels that to wage a successful campaign at least 276 of the 363 helicopters
under his command must be ready to fly on the day they are needed. At the 0.05 level, is
there statistically significant evidence that he will have that minimum number ready to
fly? Hint: What is the average number of flight-ready craft per squadron necessary for a

total of 276?
REVIEW EXERCISES

Decide whether each of the following statements is true or false. If a statement is false, explain
why.
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9.1. The sample regression line is called the least-squares trend line because for it
Z (y — ) is smaller than for any other straight line fitted to the sample points.

9.2. The trend line always passes through the origin (0,0).

9.3. If the slope of the regression line relating cake volume to amount of baking powder is
322 cm3/ g, this means that for each additional gram of baking powder the mean
increase in the volume of the cake will be a 3.22 cm®.

9.4. Itis possible to fit a line other than the least-squares trend line so that Z (y=y) =0.

9.5. The experimenter would test Hy: 8 > 0 if he thought that the slope of the trend line was
positive.

9.6. Since Y (y—$)* < Y (y—y), it follows that s < s2.

9.7. The better the line fits the sample points, the smaller Z (x — %)* will be.

9.8.  Units of measurement can affect both the magnitude of the slope and the significance of
the slope of the least-squares trend line.

9.9. There can be a strong dependent relationship between y and x that will not be detected
by linear regression analysis.

9.10. si_x/ Z(x —x)?istobas sz/n is to x.

9.11. The phrase “regression of y on x” indicates a negative relationship between the y and x
variables.

9.12. The confidence interval for E(y if x = x*) will be greater at x* = x than for any x* # Xx.

9.13. Confidence intervals can be set for the true slope of the regression line, the true intercept
on the y axis, and the true mean of y for any given value of x.

9.14. When computing a correlation coefficient, the experimenter assumes that there is a
cause-and-effect relationship between x and y.

9.15. If Z (y — 9)* is large relative to Z (y — ), this indicates that a large portion of the
variability in y is attributed to the linear relationship between y and x.

9.16. The greater the magnitude of r, the stronger the relationship between x and y.

9.17. One of the assumptions made in regression analysis is that the dependent variable
follows a normal distribution.

9.18. In testing b for significance, it is assumed that y has the same variance for each fixed
value of x.

9.19. For the same data set, because it has n — 1 degrees of freedom, the variance around the
ratio trend line can be smaller than that around the least-squares trend line.

9.20. As the strength of the relationship between two variables increases, the regression line
becomes a better fit for the points.
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10 Techniques for One-Way
Analysis of Variance

In Chapter 8 we discussed a group comparison test for rwo independent samples that came
from normal populations with possibly different means but with the same variance. The
hypothesis Hy: n; = u, was tested. In this chapter we test similar hypotheses for three, four,
or more independent samples taken from normal populations with possibly different means
but a common variance.

10.1. THE ADDITIVE MODEL

A psychologist studying factors that influence the amount of time mice require to solve a new
maze might be observing 4 groups of 3 mice each. Each group has had a different amount of
previous experience at maze solving, and the psychologist is looking for evidence of learning.
The mice in the first group have had 1 previous experience in maze solving; those in the
second group have solved 2 mazes; the third group has solved 3; and the fourth group has
solved 4. Each mouse is now placed in a new maze, and the amount of time (in minutes)
required to solve the maze is recorded.
The data (simplified for this example) might be as follows:

Group
1 2 3 4
11 7 6 5
9 9 5 3
10 8 7 4

Before a formal analysis of these data, we plot the values as in Figure 10.1 and add the sample
averages (., ¥, Y3, ¥4) to the graph.

Learning would be indicated by a decrease in the time required to solve the maze. The graph
does seem to indicate a decrease in time for increased experience. However, the apparent
differences in the graph could be due to sampling variability rather than learning. We need a
method for deciding whether the differences in the sample averages are significant. If there is no
learning, the four populations from which the samples were taken will all have the same means,
M1 = Mp = u3 = py. The analysis of variance is a formal method for testing this hypothesis.

To be able to speak more precisely about these data, in this text the symbol y;; is used for
the jth observation from the ith group. The first subscript i is reserved for the treatment group

Statistics for Research, Third Edition, Edited by Shirley Dowdy, Stanley Weardon, and Daniel Chilko.
ISBN 0-471-26735-X  © 2004 John Wiley & Sons, Inc.
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FIGURE 10.1. Data on time required to solve the maze.

number irrespective of whether groups are displayed in columns or in rows. Experimenters
differ in how they display and label their data, so four groups of three observations each may
be displayed as in Table 10.1 or as in Table 10.2. When reading books and articles, be careful
to check how the subscripts are being used since the notation is not consistent.

In the example under consideration, the number of groups is @ =4 and the number of
observations within each group is n = 3. We assume in all of the examples (until stated
otherwise) that each group contains the same number of observations, n observations.

The psychologist in the present example wants to know if the amount of previous
experience changes the time required to solve a maze. He wants to test Hy:
m1 = Mo = u3 = uy (that is, each of the samples comes from a population with the same
mean) against H,: At least one inequality (that is, p; # up Or p; # M3 OF Wy # Mg OF
My 7 M3 OF p 7# Mg OF U3 # Mg). He is assuming that the four populations have a common
variance 0.

It would be possible to test the equality of each pair of means by a ¢ test; however, (g) =6
separate ¢ tests would be required for the null hypothesis under consideration. Besides being
tedious, 6 separate ¢ tests on the same data would have an « level much higher than the « used
in each 7 test. A possible alternative procedure involves comparing the sample variance among

TABLE 10.1. Treatment Groups Displayed in Columns

Group
Yij Yoj V3j Yaj
yn=11 ya= 17 ys1= 6 Yar= 5
Y= 9 yn=9 Y= 5 Y= 3
y13=m }’23:_8 )’33:_7 Y43:_4
Total: 30 24 18 12

i

DD v =84
J
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TABLE 10.2. Treatment Groups Displayed in Rows

Group Total

Yij yn=11 Yi2=9 yiz=10 30

Y2; ya= 17 y2=9 y= 8 24

Y3j yai= 6 Y3 =35 yiz= 17 18

Yaj yar= 5 Y2 =3 Y3 = 4 12
22 v =84
i

groups with the sample variance within groups. This test is possible because if the null
hypothesis is true, both of these statistics are estimates of o”.

To understand why the test is based on variance, it will be helpful if we consider the
different types of averages associated with these data.

The grand average: y= Z Zy,;,-/an =84/12=17
i

The group averages: y = Zylj/n =30/3=10
J
Yo=) yy/n=24/3=38
J
Jy=) yy/n=18/3=6
J

Vo= yyln=12/3=4
J

The average of the group averages = The grand average =y =7

If we consider the population parameters related to these sample averages, each
observation can be thought of in terms of an additive model consisting of three terms,
Yij = K+ ai + g

in which u (estimated by y) is the mean time for all mice, «; (estimated by y; — y) is the mean
treatment effect, or adjustment, for all mice in the ith group, and g;; is a random effect due to
the individual mouse. The data could then be written as

Group 1 Group 2
11=74+000—-7)+1 T=7+@ -7+ (1
9=7+10—-T7)+(—1) 9=7+@-7+1
10=7+10-7)4+0 8§=7+08-7+0

Group 3 Group 4
6=74+06G-7+0 5=74+@-7+1
5=7+06G-7+ (1 =7+@-7+(1

T=T+06-7+1 4=7+@l-7+0
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In terms of the additive model, the null hypothesis can be written in a different manner
now:

H()Z Al = Q) = Q3 = Qg = 0, or H()Z o :OfOV all i

with

H,: At least one inequalty, or H,: «; # 0 for some i

The development of the F test that follows, comparing the variance among groups with the
variance within groups to test the above hypothesis, assumes this additive model. It also
assumes that all treatments of interest to the experimenter are being used, that each treatment
group is normally distributed, that all groups have the same variance, and that the
experimental units are randomly assigned to the treatment group. For example, in this
experiment the 12 mice should be chosen at random from those available and randomly
assigned to groups 1, 2, 3, and 4. This type of analysis of variance is called a one-way
completely randomized ANOVA (analysis of variance). In symbols, the assumptions are
written

Yij =R+ o+ g

with

Za,—:O
i

and

£;IND(0, %)

that is, the g; are independently normally distributed with a mean of zero and a common
variance of o”.

Returning now to the three types of sample averages, there are three types of sample
variances that can be obtained by considering deviations from these sample averages.
A sample variance is an average squared deviation from a sample average in which the
averaging is achieved by dividing by the corresponding degrees of freedom. Thus the three
types of sample variances are as given in Table 10.3.

The within-group variance is a pooled variance as in Chapter 8. The multiplication by n in
the among-group variance is necessary if this variance is to be compared with the within-
group variance. The among-group variance estimates the dispersion in the sampling
distribution of averages of all samples of size n (that is, o” /n), so the among-group variance
must be multiplied by n to estimate the dispersion of the original distribution.

The three types of deviations considered above are illustrated in Figure 10.2. The straight
lines at right angles indicate the deviations of the observations from the grand average; these
will be used for the total variance. The braces indicate the deviations of the observations from
their respective group average; these will be used for the within-group variance. The dashed
lines indicate the deviations of the group averages from the grand average, and these will be
used for the among-group variance. If the null hypothesis is true, y,, y,, y3, and y, are not
significantly different from y, and the within-group variance will be approximately the same
as the among-group variance. However, if the null hypothesis is false, then the among-group
variance will be larger because of the significant deviations of the group averages from the
grand average.
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Type of Variance Formula Meaning
. 22, =9 -
Total variance 171 The average squared deviation of the
Z me ; 57 observations from the grand average
2 i\Yi T

Within-group variance ’71 The average squared deviation of the
an—1 observations from their respective
Z_ (5 — 7 group average (the pooled variance)
Among-group variance n ’71 The average squared deviation of the
4= group averages from the grand

average multiplied by the number
of observations in each group

In the maze example, the sum of squares (SS) or numerator of the variance in each case is

as follows:

Total SS ZZ(y,-j—y)z:42_|_22+32+...+(_4)2+(_3)2
[

=68

Within SS >3 " (yy =57 =[12 + (= 1> + 07 4+ [17 + (= 1> + 07]

i J =8
Among SS ny G =3 =33+ 1P+ (— D+ (-3
i = 60
M"Mpp—e
10+ }'
Y1
9 I_.} |
g

8+ ! ¥
% 7 i |—.‘J : & v
> ¥ '} : T Y
8 6F |" «Vz“J L :
> 3 i
7] 5 |
2 .
O 4} y4-.]
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otk
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N

FIGURE 10.2. Three types of deviations.
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This example illustrates that the total sum of squares can be partitioned into two parts, the
among-group sum of squares and the within-group sum of squares.

Total SS = Among SS + Within SS

68 = 60 + 8

This relationship among the total, among-group, and within-group sum of squares leads to
a shorter computational method, to be developed later. For now, the computation of the sum of
squares just given will be used for the test. To change the sums of squares into variances
(mean squares, or MS), they must be divided by their degrees of freedom.

The degrees of freedom are also partitioned as the sums of squares:

Total df = Amongdf 4 Within df
na — 1 = a—1 + an—1)
11 = 3 + 8

A conventional form used is a work table, as follows:

Source df SS MS
Among groups a—1=3 60 60/3 =20
Within groups an—1)=38 8 8/8=1
Total an — 1 =11 68

If the null hypothesis Hy: tt; = p, = w3 = uy is true, the among MS and the within MS are
both estimates of ¢”. This is because we are sampling from the same population (Figure 10.3).
The variance among the averages estimates o° /n so n times the variance among the averages,
or the among-group variance, estimates o”.

r~——9
Sampling ¥ bz |
| ! - .
] / i | Within-group variance,
Population _ 1 5 Il—> or pooled variance,
—_—_ ;
M0 Y2 : sz estimates g2
1
V3 : 5% :
| |
_ : ) I Variance among
Ya | Sa : averages, estimates
L__ _,' o2/n

t

FIGURE 10.3. Within-group and among-group variances.
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The test of hypothesis about the equality of means is therefore an F test for the equality of
two variances:

_among MS 20 _ 20
~ withinMS 1

is computed. This F statistic is compared with the critical value F o5 3 s and leads to rejection
if F > 4.066. This is a one-sided F test since if the null hypothesis is false, the among MS is
greater than the within MS. In this example, F' > 4.066, so the null hypothesis is rejected and
it is concluded that the sample came from 4 populations among which there is at least one
inequality; that is, prior experience does affect the time required for the mice to solve a new
maze.

EXERCISES

10.1.1. Compute the total sum of squares, among sum of squares, and within sum of squares
for the following data:

Group

SO O = =
— O = =N \S]
—_— L NN W w

Show that the total SS = among SS + within SS.

10.1.2. Four groups, each comprising 4 randomly selected persons, are asked to perform a
simple mechanical task. Prior to the task, group A is given a strong depressant, group
B a mild depressant, group C a mild stimulant, and group D a strong stimulant. The
times (in seconds) required to complete the task are as follows:

Group
A 4 2 3 2
B 2 3 3 2
C 2 2 3 1
D 1 2 1 1

a. Graph these data and add the group averages to the graph.
b. Do the drugs seem to affect the time required to complete the task?

c. Test the hypothesis Hy: us = up = pic = up using an F test.
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10.1.3. Four pea plants of a certain variety are grown without fertilizer, and 4 plants of the
same variety are grown with fertilizer. The mature heights (in feet) are recorded
below:

Without: 0.9 1.0 0.8 1.2

With: 1.5 1.2 1.6 1.3

a. Test Hy: u; = u, by the ANOVA technique described in this section.
b. Test Hy: n; = u, by a two-sample 7 test.
¢. What is the relationship between the F statistic and the ¢ statistic?

10.1.4. In the maze example developed in this section, show that the average of the group
averages is equal to the grand average. Why is this always true?

10.2. ONE-WAY ANALYSIS-OF-VARIANCE PROCEDURE
The procedure explained in Section 10.1 is a one-way ANOVA. In this section, we develop a

shorter computational method for this procedure.
This short method depends on the fact already noted:

Total SS = Within SS + Among SS

This fact is used with an approach similar to the computational formula for the sample
variance (Section 6.2):

()

n—1

N

In the computational formula, the sum of squares (the numerator) is found by considering the
sum of tzhe squared deviations from the origin, Z y 2, and subtracting the correction factor,
(Z y) /n, to get the sum of the squared deviations from the sample average. This method is
used because it is simpler to compute with the deviations from the origin (the actual values)
than with deviations from the average.

In ANOVA, a similar computational approach is used. We illustrate this using the mouse
study of Section 10.1:

Yij Y2j Y3 Yaj
11

10

Totals 30 24 18 12 Grand total 84



10.2. ONE-WAY ANALYSIS-OF-VARIANCE PROCEDURE 273

When analyzing these data, we can consider three types of totals:

i

1 total of 12 observations Z Z yi: 84
J

4 totals of 3 observations Zy,-j: 30, 24, 18, 12
J

12 totals of 1 observation y;:11,9,...,3,4

For the short computational method, these totals will be squared, divided by the number of
observations per total, and summed. Table 10.4 summarizes this procedure.
The ANOVA can then be computed from these uncorrected sums of squares as follows:

Source df SS MS
Among groups a—1=3 SS.=A — CF =60 60/3 =20
Within groups an—1)=28 SS,=T—A=8 8/8 =1
Total an — 1 =11 SS, =T — CF =68

To aid memory, it should be noted that the degrees of freedom and the number of squared
values (totals) can be used to determine the sum of squares in the ANOVA table. For example,
the among SS has a — 1 degrees of freedom, and among SS = A — CF, in which A contains a
squared values and CF contains 1 squared value. The within SS has a(n — 1) =an — a
degrees of freedom, and within SS =T — A, with T containing an squared values and A
containing a squared values. Similarly for the total SS.

In articles in professional journals, the sums of squares column is not usually given, nor is
the row for the total. However, the sums of squares are often used to compute a statistic that
gives information similar to that of coefficient of determination discussed in Section 9.4. If it
is useful for the experimenter to know how much of the variability among the maze-solving
times of the 12 mice can be attributed to being grouped by experience it can be expressed as

unexplained variability S, 60 0.882
total variability ~ ~ S5, 68

TABLE 10.4. Uncorrected Sums of Squares for Equal-Sized Groups

Number  Observations/ Numerical
Name Symbol  of Totals Total Formula Value
Uncorrected T an=12 1 > Zylz] 112497+ ...
total SS P + 4% =656

2
Uncorrected A a=4 n=3 Z(Z y,-j> /n 30%/3 +24%/3 +
group SS t\J 18%/3 4+ 12%/3 = 648

2
Correction CF 1 an =12 (Z Zy,;;) /an 847/12 = 588
i

factor
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Because this statistic serves a purpose similar to the coefficient of determination, it is
identified as Rsquare.
Another, more realistic, example of a one-way ANOVA follows.

Example 10.1. One-Way Completely Randomized ANOVA with Equal
Sample Sizes

In a study of the physiological stress resulting from operating hand-held chain saws,
experimenters measured the kickback that occurs when a saw is used to cut a 3-in.-thick
synthetic fiber board. The variable of interest was the angle (in degrees) to which the saw is
deflected when it begins to cut the board. Below are the angles of deflection recorded for 5
random saws from each of 4 different manufacturers’ models. A graph of the data and group
averages appears in Figure 10.4.

Chain Saw Model

A B C D Totals
42 28 57 29
17 50 45 40
24 44 48 22
39 32 41 34
A3 _61 4 30
> i 165 215 245 155 780
J
2 5,999 9,965 12,175 4,981 33,120
J
2
(Z y,,-) 27,225 46,225 60,025 24,025 157,500
J
60 |- s
®
55 - ®
50 b ° -
45 ‘ Y [ ]
L [ ]
% 40 ° °
< 35— — °
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FIGURE 10.4. Angles of deflection for four types of chain saws.

A B C D Model
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The hypothesis to be tested is

H()Z(XAZOIB:OZC:(ID

against
H,: At least one inequality
T =33.120
A 157,500 — 31,500
7807
CF = ——=130,420
20
Source df SS MS
Among groups a—1=3 SS,=A — CF=1080 MS,=SS,/(a — 1)
=360
Within groups (error) an —1)=16 SS.=T—A=1620 MS,=SS,/a(n — 1)
=101.25

The test statistic is F = 360/101.25 = 3.56 and Fys53.16 = 3.239. The null hypothesis is
rejected. There is a significant difference among the average kickbacks of the four types of
saws. The proportion of variability in kickback that can be attributed to the different models of
saws is

SS. ., 1620
SS, 1620 + 1080

Rsquare =1 — =0.60

A significant portion of the variability among the data has been explained by the differences
among the group means.

To determine which of the models are different with respect to kickback, a follow-up
procedure will be needed. This procedure is developed in the next section.

We can summarize the one-way ANOVA procedure for equal group sizes as follows. The
symbol SS, is used for the within-group sum of squares because this quantity represents the
variability due to random sampling, that is, the sampling error.

Procedure. One-Way Completely Randomized ANOVA with Equal Sample Sizes

Hyaj=a,= - =a,=0,0r Hy: a; =0 forall i
H,: At least one inequality, or H,: o; # 0 for some i
y;; = jth observation in the ith treatment group
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i=1,...,a j=1,...,n
Compute:
r=2.207
i
2
A= Z(Zy,/> /n
i J
2
CF = (ZZy,,) /an
i
Source df SS MS F
Among groups a—1 SS,=A—CF MS,=SS,/(a—1) MS,/MS,
Within groups an — 1) SS,.=T—A MS, = SS./a(n — 1)
(error)
Total an — 1 SS,=T—- CF

Reject Hy if F > Fou—1,an — 1

Many times the experi