

GENERAL PRINCIPLE OF RADIOGRAPHIC POSITIONING

Prepared by; SAMUEL.B(MRT, Assistant lecturer)

Objectives:-

2

At the end of this session you will able to:-

- Explain the importance of radiographic positioning course
- Define the anatomic position, the imaginary planes and body sections
- Describe standard positioning terms
- Distinguish between the radiographic projection and position
- List and identify the meaning of specific terms related to movement.

□ <u>General Terms</u>

- Introduction to radiographic examination
- General radiological Terminology:-
 - I. Anatomical terminology
 - II. Positioning terminology
 - III. Projection terminology

cont'd...

Imaging principles:-

Exposure factors

Radiographic image

✓ Image evaluation

□ Anatomical Land marks

- 5
- *Radiography:- is the process and procedures* of producing a radiograph.
- *Radiograph:-* is *an image of a patient's anatomic part(s)*, as produced by the action of x-rays on an image receptor.
- * *X-ray film:-* specifically refers to the physical piece of material on which a latent image is stored.

Cont'd...

- *Image receptor* (IR):- The device that captures the radiographic image that exits the patient.
- * Central ray (CR):- Refers to the center-most portion of the x-ray beam emitted from the x-ray tube.

- 7
- A radiographic examination involves five general functions:-
- 1. Positioning of the body part
- 2. Application of radiation protection measure
- 3. Selection of exposure factor
- 4. Instruction to the patient related to the respiration
- 5. Processing of the image receptor. Fig

General Radiological Terminology

- The human body is a complicated structure, and errors in radiographic positioning or diagnosis can easily occur; unless practitioners have a *common set of rules* that are *used to describe the body and its movement*.
- > Knowledge of specific terminology is required to understand instruction of patient positioning.

I. Anatomical Terminology

9

*Anatomical position:-

- is a standardized method of observing or imaging the body that allows precise and consistent anatomical references.
- Its an upright position with arms abducted slightly (down), palms forward, and head and feet directed straight ahead.

10

- Anterior(ventral) aspect: that seen when viewing the patient from the front.
- *Posterior (dorsal) aspect:* that seen when viewing the patient from the back.
- *Lateral aspect:* refers to any view of the patient from the side.
- *Medial aspect:* refers to the side of a body part closest to the midline,
 - E.g:- the inner side of a limb is the medial aspect of that limb.

Fig, Patient aspect

Anatomically related terms:

✓ *Caudal:-* parts away from the head.

✓ *Cephalic:-* parts toward the head.

12

Cont'd...

- Superior:- part nearer to the head.
- ✓ *Inferior:-* nearer to the feet.
- *Central:-* mid area.
- *Peripheral:-* at or near the surface, edge, or another body part.
- ✓ *Medial:-* toward the mid.
- ✓ *Lateral:-* away from the mid-line.

Cont'd...

- ✓ *Superficial:-* near the skin(surface).
- ✓ *Deep:-* far from the surface.
- *External*: outside the body.
- Internal: inside the body.
- *Parietal*: the wall or lining of a body cavity
- ✓ *Visceral*: the covering of an organ

Cont'd...

- 15
- Ipsilateral:- parts on the same side of the body
- *Contralateral:* Parts on the opposite side of the body
- ✓ *Palmar:-* palm of the hand
- ✓ *Plantar:-* sole of the foot
- *Dorsum:* Anterior or top of the foot or the back of the hand.

II. Positioning Terminology

- Positioning is the act of placing the patient in the desired position
- * Body Planes:-
 - Are *imaginary planes* that subdivide the body in reference to anatomic position
 - Four common planes are:
 - A. Sagittal,
 - B. Coronal,
 - C. Horizontal &
 - D. Oblique.

17

Fig, Body planes

N.B: the first three planes are mutually at rightangle to each other.

Cont'd...

A. Sagittal plane:- is any longitudinal plane that divides the body into right and left parts

Midsagittal (median) plane:- is specific
 sagittal plane that divides the body into equal
 right and left halves

Cont'd...

B. Coronal plane:- is any longitudinal plane that divides the body into anterior and posterior parts

Midcoronal plane:- is the specific plane that passes through midline and divides the body into equal anterior and posterior halves

Cont'd...

- *C. Horizontal(axial) plane:* is any transverse plane that passes through the body dividing the body into superior and inferior portions.
- D. Oblique plane:- is a longitudinal or transverse plane that is at an angle and is not parallel to the sagittal, coronal, or horizontal plane.

Body mov't terminology:

Abduction:-

refers to a movement away from the midline.

Adduction:-

refers to a movement towards the midline

Cont'd...

22

Extension:-

- Straightening of a joint
 When joint angle increase
- <u>Flexion</u>:-
 - > Bending of a joint
 > When joint angle decrease
- Hyperextension & hyperflexion.

Cont'd...

Evert/eversion:-

> Outward turning of the foot at the ankle

Invert/inversion:-

Inward turning of the foot at the ankle

Cont'd...

Is used to described as *stressed eversion* of ankle joint.

Varus(knock-kneed):-

Is used to describe stressed inversion of ankle joint.

Cont'd...

Pronation:-

> Rotation of forearm so that the palm is down

<u>Supination</u>:-

> Rotation of forearm so that the palm is up

Cont'd...

26

Rotation: - movement of the body part around its own axis.

Fig. (B)medial(internal) rotation towards the midline &, (C)lateral (external) rotation away from the midline.

Cont'd...

Circumduction:-

Circular movement of a limb

• <u>*Tilt*</u>:-

 Tipping or slanting a body part slightly

Cont'd...

Deviation:-

A turning away from the regular or standard

course

General body position:-

- *Erect:* an upright position, to **stand** or **sit**.
- *Recumbent:* lying down on any position,
 - ✓ Dorsal recumbent(supine):- lying on the back
 - Ventral recumbent(prone):- lying face down
 - *lateral recumbent:-* Lying on side (right or left lateral).

Cont'd...

✓ <u>Trendelenburg</u>:-

A supine position with the body tilted with the *head lower than the feet*.

Cont'd...

✓ *Fowler's position*:-

Supine with the *head elevated*

Cont'd...

✓ *Sims' (semi-prone) position:-*

 Recumbent with patient lying on left anterior side, with left leg extended and right knee and thigh partially flexed.

Cont'd...

Lithotomy position:-

- Supine position of the body;
 - ➢ with knees and hips flexed, &
 - >thighs abducted and rotated externally, supported by ankle supports

Specific body position:

Lateral position:-

- described by the *part closest to the IR* or the body part from which the CR exits.
- Right lateral & left lateral.
- > A true lateral position is always 90°, or perpendicular to a true AP or PA projection.

Fig. lateral position

Cont'd...

> <u>Oblique position:-</u>

- angled position in which *neither* the sagittal nor the coronal body plane is perpendicular to the IR.
- Named according to side and surface of body closer to table or IR.

RAO & LAO and RPO & LPO positions.

Cont'd...

1. <u>Left and right Posterior oblique (LPO &</u> RPO):-

- Specific oblique positions in which the left or right
 posterior aspect of the body is closest to the IR.
- Angle of rotation is specific for anatomy of interest.

Fig, *LPO*(*A*) & *RPO*(*B*).

Cont'd...

2. <u>Right and left anterior oblique</u> (RAO &

LAO):-

 Specific oblique positions in which the right or left anterior aspect of the body is closest to the IR.

Fig, Right and left anterior oblique

Decubitus Position:-

To lie on horizontal surface

42

- Described according to the surface on which the body is resting;-
 - *⊳Back(dorsal)*,
 - > Front(ventral) or
 - > Side(right/left lateral).
- □ Always performed with horizontal CR.

a) <u>Dorsal decubitus</u>:-

43

- The patient is lying on the *posterior* surface with the x-ray beam directed horizontally.
- > Supine recumbent position.

b) <u>Ventral decubitus</u>:-

- > The patient is lying on the *anterior surface*.
- Prone Recumbent position with a horizontal CR.

c) Lateral decubitus(Right/left):-

- 45
- The *patient lies on the side*, and the x-ray beam is directed *horizontally*.
- On **AP** or **PA projection**.

Lordotic position:- Upright position in which the patient is leaning backward.

III. Projection Terminology

Projection:-

- Is a term that describes the *direction or path of the CR of the x-ray beam* as it passes through the
 patient, projecting an image onto the IR.
- Which is *identified by the entrance and exit points* of the body.

Common projection terms:-

> <u>AP(Anteroposterior)</u>

projection:-

refers to a projection
 of CR from anterior
 to posterior.

Cont'd...

PA(posteroanterior)
projection:-

 refers to a projection of the CR from posterior to anterior.

Cont'd...

Lateral projection:-

- The *CR passes* from one side of the body to other side along a coronal and transverse plane.
- *i. Right lateral;* if the CR enters on the left side.
- *ii. Left lateral*; if the CR enters on the right side.

Oblique:-

51

The CR passes through the body along a transverse plane *at some angle* between the median sagittal and coronal planes.

Apply items and derived items © 2007, 2003, 1999 by M

□ Axial:-

Longitudinal angle of the CR of 10 degrees or more.

□ <u>Tangential:</u>-

CR directed along the outer margin of a curved body surface.

- Anatomic position:- is the reference position that defines specific surfaces and planes of the body.
- *Position* is a term that is used to indicate the patient's general physical position.
- *Projection* is a correct positioning term that describes the path of the central ray (CR).
- *View:-* describes the body part as seen by the IR or other recording medium, such as a fluoroscopic screen.

Imaging principles

- There are two methods of acquiring and storing x-ray images;
 - A. Conventional film-screen(Analog) technology:-
 - involves chemical processing and film libraries
 - **B.** Digital technology:-
 - > uses computers and x-ray receptors to acquire and process images.

A. Technical exposure Factors

- 56
- For each radiographic image obtained, we must select exposure factors on the control panel of the imaging equipment.
- Exposure factors required for each examination are determined by;
 - density/atomic number
 - thickness of the anatomic part,
 - ✓ any pathology present, and
 - image acquisition technology

Cont'd...

Exposure factors to be selected are:-

- ✓ Kilovoltage (*KVp*),
- ✓ Milliamperage(*mA*), &
- ✓ Time (*ms*),
- ✓ Focus to film distance (*FFD*).

1. Kilovoltage peak (KVp):-

58

- Controls the energy(penetrating power) of the xray beam.
 - > Typical diagnostic range is 50 & 120 Kvp.
- > *KVp* affects both the beam *quantity & quality*.
- * KVp is also a chief controlling factor of contrast

KV $\uparrow \implies Energy \uparrow \implies penetration \uparrow \implies Density \uparrow$

Fig, KVp directly affect x-ray beam quality

Fig, Effect of KV with the same mAs

2. Milliamperage (mA) & time:-

■ *mA* indicates the intensity or amount of radiation produced by x-ray tube.

 $\square mA \times Time = mAs;$

61

- ✓ which controls the *quantity or number* of x-rays produced and duration of exposure.
- As a rule, the mA should be as high as possible with short time, to reduce the risk of movement unsharpness.

Fig, Changing mAs with the same KVp

3. FFD:-

- 63
- **FFD** is the distance from x-ray tube to the receptor
 - > Affect the relative intensity of x-ray beam reaching the receptor.
 - > For a given *KVp & mAs*, the *greater FFD the lower intensity of radiation* reaching the film.
- □ *Typically;* 100cm, 180cm & 120cm

FFD cont'd...

- When choosing the FFD, the following are taken in to consideration:-
 - The x-ray tube must not be too close to the skin of the pateint;-
 - Short FFD could give unacceptable *geometric* unsharpeness.
 - > The *FFD* must not be excessive:-
 - ✓ because you need to increase the mAs, which can cause high tube loading.

Table; Variables and their effect on the photographic property of x-ray image

<u>Variables</u>	<u>Density</u>	<u>Contrast</u>
Increase mAs	Increase	No change
Decrease mAs	Decrease	No change
Increase Kvp	Increase	Decrease
Decrease Kvp	Decrease	Increase
Increase SID	Decrease	No change
Decrease SID	Increase	No change
Increase OID	Decrease	Increase

B. Radiographic Image

- □ *X-rays* were discovered in 1895.
- X-ray beam energy is produced using high-voltage electricity;
 - They are produced from small area in the x-ray tube
 - They diverge outward, traveling in a straight lines.
- X-rays pass through matter and strike an image receptor.
- Image receptor converts the energy of x-rays into an image

66

Image formation:-

- □ Image is formed based on *differential absorption*.
- As the x-rays pass through our body, same will be *absorbed* and others will *penetrate(pass)* to the IR.
 - > and they encounters various structures in our body with *different density*.
- The primary x-ray beam loses some of its energy as it interact with anatomical tissue.

SAMUEL.B 4/29/2020

Image quality factors

Radiographic images are evaluated on the basis

of four primary image quality factors:-

I. Density,

69

II. Contrast,

III.Spatial resolution, &

IV.Distortion

Density is degree of blackening in the image.

- **physical density:-** refers to the *high mass per unit volume*, which depend on type of tissue; > Bone has high density because it has relatively *high mass per unit volume*, and
 - > The lung contains air , which have relatively a **low density**, therefore more x-rays pass through the lung. 4/29/2020 Samuel.B

70

Fig, Bone has high density consequently they absorbs more x-rays than fat and air

SAMUEL.B 4/29/2020

Cont'd...

- 72
- Radiographic image density:- defined as the amount of "blackness" on the processed radiograph.
 - The greater the amount radiation that incident on the image receptor the greater will be the density within the image.
 - The area under the bone will appear *lighter*, since fewer x-rays will come into contact with the film. This area therefore has a *lower image density*.
- **N.B:** film density is primarily controlled by **mAs**.
Fig, Radiographic film density

II. <u>Contrast</u>

- *Contrast* is difference in density between adjacent
 - areas of a radiographic image.
 - > When the density difference is large, the contrast is high, &
 - > When the density difference is small, the contrast is low.
- Contrast allows the anatomic detail on a radiographic image to be visualized.

Fig, The range of brightness levels is a result of tissues differential absorption of x-ray photons

An image having sufficient brightness but no differences

An image with varying <u>level of brightness</u>

Fig, subject contrast

£

Lower contrast

SAMUEL.B 4/29/2020

III. Spatial resolution

- Spatial resolution is defined as the recorded sharpness
 /clarity of structures on the image.
- Resolution is also known as *detail, recorded detail, image sharpness, or definition.*
- > The optimal radiograph displays a sharp image.
 - And is measured and expressed as *line pairs per millimeter (lp/mm)*.

Image unsharpness(blur):-

- Is lack of visible sharpness or resolution
- All radiographic image have some degree of unsharpness
- ✓ Its important when looking subtle fractures.
- ✓ There are unsharpness due to:
 - a. Geometry,
 - b. Movement,
 - c. Inherent factors(Absorbtion), &
 - d. Acquisition/photographic factors.

78

Samuel.B 4/29/2020

a. Geometric Unsharpness(Ug):-

- is unsharpness resulting from geometric factors of the *radiographic equipment and setup*.
- which can be originated from:-

- ✓ Size of x-ray source (focal spot size),
- ✓ Distance between the subject and the film(*SFD*), &
- \checkmark Distance between the source and subject(*SSD*).

a. Geometric cont'd...

b. Movement Unsharpness:-

□ is due to *patient*, *equipment or film movement*

during exposure.

- Patient movement can be:
 - *voluntarily:-* can be controlled by immobilizing the patient, and
 - 2. *Involuntarily:-*which can not be avoided, but we can reduce this by using small exposure time.

Fig, Movement Unsharpness

Samuel.B 4/29/2020

c. Absorption unsharpness:-

- Is due to the *inherent shape of the structure in the body*.
- *Considering a spherical object* of uniform density,
 then absorption will be greatest at the centre and least
 at the periphery due to the difference in thickness.
- This gradual fall-off in absorption towards the edges leads to the image having an *ill-defined boundary*.

Can be lessened by optimum use of focal spot size, OID & SID

Samuel.B 4/29/2020

d. Photographic unsharpness:-

□ is due to the *recording system*;

- > Intensifying screen (crystal size & screen speed),
 - with larger crystals or fast screen, the spread of light will be greater .
 - this spread of light between crystal and the emulsion is called *Photographic unsharpness*.
- *film material used* (film/screen contact).
 - with poor film screen contact, the unsharpness will be greater.

Fig, Film/screen contact

- Distortion is defined as the misrepresentation of object size or shape.
 - Two types of distortion have been identified:
 - 1. size distortion (magnification) and
 - 2. shape distortion.
- It always exists as a result of OID and divergence of the x-ray.

Fig, Distortion

□ Magnification:-

- is determined by:-
 - ✓ the distance separating structure being examined from the x-ray source(*SSD*), and
 - ✓ the distance between the x-ray source and the film (*SID*).

> magnification =
$$\frac{Image \ size}{Object \ size} = \frac{FFD(SID)}{FOD(SSD)}$$

- The technologist should review and compare the radiographic images *to ensure that they fit for purpose*.
- A systematic method of learning how to critique radiographs is to break the evaluation down into these *four* parts.

D Evaluation criteria:-

- 1. Anatomy demonstrated:- Describes precisely what anatomic parts and structures should be clearly visualized on that image(radiograph).
- 2. *Position:-* Generally evaluates placement of body part that are important for the projection, correct centering of anatomy, and collimation.
- *3. Exposure:-* Describes how exposure technique can be evaluated for optimum exposure for that body part.
- 4. *Image markers:-* Anatomic side markers, "Right" or "Left," patient position, or time markers.

Anatomical land marks

- Areas of the body easily palpable or seen so that one could be able to identify area of interest.
- a. <u>Cervical area</u>:-
 - mastoid process ------ C1(atlas)
 angle of mandible(gonion) -----C3
 hyoid bone -----C3, C4
 - ✓ thyroid cartilage -----C5
 - ✓ Vertebral prominence ------ C7, T1

Cont'd...

b. <u>Thoracic area</u>:-

> Sternal angle ----- T4, T5

>Inferior angle of scapula ----- T7

> Xiphisternal joint ----- T9

Cont'd...

c. <u>lumbar area</u>:-

Inferior costal margin -----L2, L3
Iliac crest -----L4

d. <u>Pelvic area</u>:-

>ASIS -----sacroiliac joint

Symphysis pubis -----coccyx

External auditory meatus(EAM) ---TMG joint

Samuel.B 4/29/2020

Fig, external land marks

Fig, Typical manual processing unit

BACK

99

Fig, Cassette, which is a small flat box used for transporting a film

