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Preface

This book has grown out of printed notes which accompanied lectures
given by ourselves and our colleagues over many years to undergraduate
mathematicians at Oxford. During those years the contents and the
arrangement of the lectures have changed substantially, and this book
has a wider scope than is currently taught. It contains mathematics
which, in an ideal world, would be part of the equipment of any well-
educated mathematician.

Numerical analysis is the branch of mathematics concerned with the
theoretical foundations of numerical algorithms for the solution of prob-
lems arising in scientific applications. The subject addresses a variety of
questions ranging from the approximation of functions and integrals to
the approximate solution of algebraic, transcendental, differential and
integral equations, with particular emphasis on the stability, accuracy,
efficiency and reliability of numerical algorithms. The purpose of this
book is to provide an elementary introduction into this active and ex-
citing field, and is aimed at students in the second year of a university
mathematics course.

The book addresses a wide range of numerical problems in algebra
and analysis. Chapter 2 deals with the solution of systems of linear
equations, a process which can be completed in a finite number of arith-
metical operations. In the rest of the book the solution of a problem
is sought as the limit of an infinite sequence; in that sense the output
of the numerical algorithm is an ‘approximate’ solution. This need not,
however, mean any relaxation of the usual standards of rigorous anal-
ysis. The idea of convergence of a sequence of real numbers () to a
real number is very familiar: given any positive value of there exists
a positive integer such that for all such that
In such a situation one can obtain as accurate an approximation to as

vii



viii Preface

required by calculating sufficiently many members of the sequence, or
just one member, sufficiently far along. A ‘pure mathematician’ would
prefer the exact answer, , but the sorts of guaranteed accurate approxi-
mations which will be discussed here are entirely satisfactory in real-life
applications.

Numerical analysis brings two new ideas to the usual discussion of
convergence of sequences. First, we need, not just the existence of
but a good estimate of how large it is; and it may be too large for
practical calculations. Second, rather than being asked for the limit of
a given sequence, we are usually given the existence of the limit (or
its approximate location on the real line) and then have to construct a
sequence which converges to it. If the rate of convergence is slow, so
that the value of is large, we must then try to construct a better
sequence, one that converges to more rapidly. These ideas have direct
applications in the solution of a single nonlinear equation in Chapter
1, the solution of systems of nonlinear equations in Chapter 4 and the
calculation of the eigenvalues and eigenvectors of a matrix in Chapter 5.

The next six chapters are concerned with polynomial approximation,
and show how, in various ways, we can construct a polynomial which
approximates, as accurately as required, a given continuous function.
These ideas have an obvious application in the evaluation of integrals,
where we calculate the integral of the approximating polynomial instead
of the integral of the given function.

Finally, Chapters 12 to 14 deal with the numerical solution of ordinary
differential equations, with Chapter 14 presenting the fundamentals of
the finite element method. The results of Chapter 14 can be readily
extended to linear second-order partial differential equations.

We have tried to make the coverage as complete as is consistent with
remaining quite elementary. The limitations of size are most obvious
in Chapter 12 on the solution of initial value problems for ordinary
differential equations. This is an area where a number of excellent books
are available, at least one of which is published in two weighty volumes.
Chapter 12 does not describe or analyse anything approaching all the
available methods, but we hope we have included some of those in most
common use.

There is a selection of Exercises at the end of each chapter. All these
exercises are theoretical; students are urged to apply all the methods
described to some simple examples to see what happens. A few of the
exercises will be found to require some heavy algebraic manipulation;
these have been included because we assume that readers will have ac-
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cess to some computer algebra system such as Maple or Mathematica,
which then make the algebraic work almost trivial. Those involved in
teaching courses based on this book may obtain copies of L'TEX files con-
taining solutions to these exercises by applying to the publisher by email
( ). Although the material presented in this
book does not presuppose the reader’s acquaintance with mathematical
software packages, the importance of these cannot be overemphasised.
In Appendix B, a brief set of pointers is provided to relevant software
repositories.

Our treatment is intended to maintain a reasonably high standard of
rigour, with many theorems and formal proofs. The main prerequisite
is therefore some familiarity with elementary real analysis. Appendix A
lists the standard theorems (labelled Theorem A 1 A 2 A7) which
are used in the book, together with proofs of one or two of them which
might be less familiar. Some knowledge of basic matrix algebra is as-
sumed. We have also used some elementary ideas from the theory of
normed linear spaces in a number of places; complete definitions and ex-
amples are given. Some prior knowledge of these areas would be helpful,
although not essential.

The chart below indicates how the chapters of the book are inter-
related. They show, in particular, how Chapters 1 to 5 form a largely
self-contained unit, as do Chapters 6 to 10.
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We have included some historical notes throughout the book. As well
as hoping to stimulate an interest in the development of the subject,
these notes show how wide a historical range even this elementary book
covers. Many of the methods were developed by the great mathemati-
cians of the seventeenth and eighteenth centuries, including Newton,
Euler and Gauss, but what is usually known as Gaussian elimination for
the solution of systems of linear equations was known to the Chinese two
thousand years ago. At the other end of the historical scale, the analy-
sis of the eigenvalue problem, and the numerical solution of differential
equations, are much more recent, and are due to mathematicians who
are still very much alive. Many of our historical notes are based on the
excellent biographical database at the history of mathematics website

We have tried to eradicate as many typographical errors from the text
as possible; however, we are mindful that some may have escaped our
attention. We plan to post any typos reported to us on

We wish to express our gratitude to Professor Bill Morton for setting
us off on this tour de force, to David Tranah at Cambridge University
Press for encouraging us to persist with the project, and to the staff
of the Press for not only improving the appearance of the book and
eliminating a number of typographical errors, but also for correcting
and improving some of our mathematics. We also wish to thank our
colleagues at the Oxford University Computing Laboratory, particularly
Nick Trefethen, Mike Giles and Andy Wathen, for keeping our spirits up,
and to Paul Houston at the Department of Mathematics and Computer
Science of the University of Leicester for his help with the final example
in the book.

Above all, we are grateful to our families for their patience, support
and understanding: this book is dedicated to them.

ES & DFM Ozford, September 2002.



1

Solution of equations by iteration

1.1 Introduction

Equations of various kinds arise in a range of physical applications and
a substantial body of mathematical research is devoted to their study.
Some equations are rather simple: in the early days of our mathematical
education we all encountered the single linear equation + = 0, where
and are real numbers and = 0, whose solution is given by the
formula = . Many equations, however, are nonlinear: a simple
example is + 4+ =0, involving a quadratic polynomial with real
coefficients , , ,and = 0. The two solutions to this equation, labelled
and , are found in terms of the coefficients of the polynomial from
the familiar formulae
+ 4 4
=— =— (1.1)

It is less likely that you have seen the more intricate formulae for the
solution of cubic and quartic polynomial equations due to the sixteenth
century Italian mathematicians Niccolo Fontana Tartaglia (1499-1557)
and Lodovico Ferrari (1522-1565), respectively, which were published
by Girolamo Cardano (1501-1576) in 1545 in his Artis magnae sive de
regulis algebraicis liber unus. In any case, if you have been led to believe
that similar expressions involving radicals (roots of sums of products of
coefficients) will supply the solution to any polynomial equation, then
you should brace yourself for a surprise: no such closed formula exists
for a general polynomial equation of degree  when 5. It transpires
that for each 5 there exists a polynomial equation of degree  with






1.2 Simple iteration 3

Theorem 1.1 Let be a real-valued function, defined and continuous

on a bounded closed interval [ | of the real line. Assume, further, that
() () O; then, there exists in|[ | such that ( )=0.
Proof f ( )=0or ()=0,then = or = |, respectively, and the

proof is complete. Now, suppose that ( ) ( )=0. Then, () () 0;
in other words, 0 belongs to the open interval whose endpoints are ( )
and (). By the Intermediate Value Theorem (Theorem A.1), there
exists in the open interval () such that () =0. O

To paraphrase Theorem 1.1, if a continuous function has opposite
signs at the endpoints of the interval [ |, then the equation ( ) =0
has a solution in ( ). The converse statement is, of course, false.
Consider, for example, a continuous function defined on [ ] which
changes sign in the open interval () an even number of times, with

() ()=0;then, () () 0 even though ( ) = 0 has solutions
inside [ ]. Of course, in the latter case, there exist an even number
of subintervals of () at the endpoints of each of which  does have
opposite signs. However, finding such subintervals may not always be
easy.

To illustrate this last point, consider the rather pathological function

1 1

2 1+ 105
depicted in Figure 1.1 for in the closed interval [0 8 18] and = 200.
The solutions =105 (1 )and =105+(1 ) to the equation

( ) =0 are only a distance 2 apart and, for large and positive
locating them computationally will be a challenging task.

(1.2)

Remark 1.1 If you have access to the mathematical software package
Maple, plot the function by typing

"# $ % %# $ ! &"

at the Maple command line, and then repeat this experiment by choosing

= 2000, 20000, 200000, 2000000, and 20000000 in place of the num-
ber 200. What do you observe? For the last two values of |, replot the
function  for in the subinterval [1 04999 1 05001]

An alternative sufficient condition for the existence of a solution to
the equation ( ) = 0 is arrived at by rewriting it in the equivalent
form () = 0 where is a certain real-valued function, defined
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~

1+200 105

Nl

and continuous on [  ]; the choice of and its relationship with  will

be clarified below through examples. Upon such a transformation the

problem of solving the equation ( ) = 0 is converted into one of finding
such that ()=0.

Theorem 1.2 (Brouwer’s Fixed Point Theorem) Suppose that
is a real-valued function, defined and continuous on a bounded closed
interval [ | of the real line, and let () [ ] for all [ ]
Then, there exists in [ | such that = (); the real number is
called a fixed point of the function

Proof Let ()= (). Then, ()= () Osince () [ ]
and ()= () Osince () [ ] Comsequently, () () 0,
with  defined and continuous on the closed interval [ ]. By Theorem
1.1 there exists [ Jsuchthat 0= ()= (). O

Figure 1.2 depicts the graph of a function (), defined and
continuous on a closed interval [ ] of the real line, such that ()
belongs to [ ]forall in[ ]. The function has three fixed points
in the interval [ ]: the -coordinates of the three points of intersection

of the graph of with the straight line =
Of course, any equation of the form ( ) = 0 can be rewritten in the
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Although the ability to verify the existence of a solution to the equa-
tion ( ) =0 is important, none of what has been said so far provides
a method for solving this equation. The following definition is a first
step in this direction: it will lead to the construction of an algorithm for
computing an approximation to the fixed point of the function , and
will thereby supply an approximate solution to the equivalent equation

()=o.

Definition 1.1 Suppose that is a real-valued function, defined and

continuous on a bounded closed interval [ | of the real line, and assume
that () [ ] forall [ ]. Given that [ ], the recursion
defined by

= () =012 (1.3)

is called a simple iteration; the numbers
iterates.

, 0, are referred to as

If the sequence () defined by (1.3) converges, the limit must be a
fixed point of the function , since is continuous on a closed interval.
Indeed, writing =lim _ o , we have that

= lim =lim ( )= lim = () (1.4)
where the second equality follows from (1.3) and the third equality is a
consequence of the continuity of
A sufficient condition for the convergence of the sequence () is pro-
vided by our next result which represents a refinement of Brouwer’s
Fixed Point Theorem, under the additional assumption that the map-
ping is a contraction.

Definition 1.2 (Contraction) Suppose that s a real-valued func-

tion, defined and continuous on a bounded closed interval [ | of the
real line. Then, is said to be a contraction on [ | if there exists a
constant  such that 0 1 and

() ) [ ] (1.5)

Remark 1.2 The terminology ‘contraction’ stems from the fact that
when (1.5) holds with 0 1, the distance () () between the
images of the points , s (atleast1  times) smaller than the distance



1.2 Simple iteration 7

between  and . More generally, when is any positive real
number, (1.5) is referred to as a Lipschitz condition.

Armed with Definition 1.2, we are now ready to state the main result
of this section.

Theorem 1.3 (Contraction Mapping Theorem) Let be a real-
valued function, defined and continuous on a bounded closed interval
[ ]| of the real line, and assume that () [ ] for all [ ]
Suppose, further, that is a contraction on [ |. Then, has a unique
fized point in the interval [ ]. Moreover, the sequence () defined
by (1.8) converges to  as for any starting value — in [ .

Proof The existence of a fixed point for is a consequence of Theorem
1.2. The uniqueness of this fixed point follows from (1.5) by contradic-

tion: for suppose that has a second fixed point, ,in [ |. Then,
= () 0)
ie., (1 ) 0. As 1 0, we deduce that =
Let be any element of [ | and consider the sequence () de-

fined by (1.3). We shall prove that () converges to the fixed point
According to (1.5) we have that

= () O - 1

from which we then deduce by induction that

1 (1.6)
As (0 1), it follows that lim _. = 0, and hence we conclude
that lim o =0. U

Let us illustrate the Contraction Mapping Theorem by an example.

Example 1.2 Consider the equation ( ) =0 on the interval [1 2] with

()=e 2 1, asin Ezample 1.1. Recall from Example 1.1 that this
equation has a solution, , in the interval [1 2], and s a fized point of
the function defined on [1 2] by ( )=1In(2 +1).

1 1H : ., +B# T 6#.* 1 B $
DC&H, #o * F 6D s
6 6 1 1, 9 6
1 6 J G 6 ,

6!
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Table 1.1. The sequence () defined by (1.8).

$%
% &
&  &&$
(%&
( &
% (%
("
(&
$ ("%
(& &
((

Now, the function is defined and continuous on the interval [1 2], and
is differentiable on (1 2). Thus, by the Mean Value Theorem (Theorem
A.3), for any , in [1 2] we have that

() O= 1T H)=1) (1.7)

for some that lies between and and is therefore in the interval
[12]. Further, ¥ ) =22 +1)and )= 4(2 +1). As
T ) oforall in[1 2], "is monotonic decreasing on [1 2]. Hence
¥1) ¥ %2),i.e., ¥ ) [2 5 2 3]. Thus we deduce from (1.7)
that

() ) [1 2]

with = 2 3. According to the Contraction Mapping Theorem, the
sequence () defined by the simple iteration

—In(2 +1) =012 (1.8)

converges to for any starting value  in [1 2]. Let us choose =1, for
example, and compute the next 11 iterates, say. The results are shown
in Table 1.1. Even though we have carried six decimal digits, after 11
iterations only the first two decimal digits of the iterates appear to
have settled; thus it seems likely that =126 to two decimal digits.

You may now wonder how many iterations we should perform in (1.8)
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to ensure that all six decimals have converged to their correct values. In
order to answer this question, we need to carry out some analysis.

Theorem 1.4 Consider the simple iteration (1.3) where the function
satisfies the hypotheses of the Contraction Mapping Theorem on the
bounded closed interval [ ]. Given [ ] and a certain tolerance
0, let () denote the smallest positive integer such that S no
more than  away from the (unknown) fized point , i.e.,

for all (). Then,

()

)

In In( (1 )
In(1 )

+1 (1.9)

where, for a real number , [ | signifies the largest integer less than or
equal to

Proof From (1.6) in the proof of Theorem 1.3 we know that

1
Using this result with = 1, we obtain
= +
Jr
+
Hence
1
1
By substituting this into (1.6) we get
P — 1.10
: (1.10)
Thus, in particular, provided that
1
1
On taking the (natural) logarithm of each side in the last inequality, we
find that for all such that
In In( (1 )
In(1 )

Therefore, the smallest integer () such that for all
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() cannot exceed the expression on the right-hand side of the
inequality (1.9). O

This result provides an upper bound on the maximum number of
iterations required to ensure that the error between the th iterate
and the (unknown) fixed point is below the prescribed tolerance
Note, in particular, from (1.9), that if is close to 1, then () may
be quite large for any fixed . We shall revisit this point later on in the
chapter.

Example 1.3 Now we can return to Example 1.2 to answer the ques-
tion posed there about the maximum number of iterations required, with
starting value =1, to ensure that the last iterate computed is correct
to six decimal digits.

Letting =05 10~ and recalling from Example 1.2 that =2 3, the
formula (1.9) yields () [32778918]+1, so we have that () 33.
In fact, 33 is a somewhat pessimistic overestimate of the number of
iterations required: computing the iterates successively shows that
already is correct to six decimal digits, giving =1 256431.

Condition (1.5) can be rewritten in the following equivalent form:

() O ]

with (0 1), which can, in turn, be rephrased by saying that the
absolute value of the slope of the function does not exceed (0 1).
Assuming that is a differentiable function on the open interval (),
the Mean Value Theorem (Theorem A.3) tells us that

O O_ g,

for some that lies between and and is therefore contained in the
interval ().

We shall therefore adopt the following assumption that is somewhat
stronger than (1.5) but is easier to verify in practice:

is differentiable on () and
(1.11)
(0 1) such that ) for all ().

Consequently, Theorem 1.3 still holds when (1.5) is replaced by (1.11).
We note that the requirement in (1.11) that  be differentiable is
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If the conditions of Theorem 1.5 are satisfied in the vicinity of a fixed
point , then the sequence ( ) defined by the iteration = ()
0, will converge to for any starting value that is sufficiently
close to . If, on the other hand, the conditions of Theorem 1.5 are
violated, there is no guarantee that any sequence () defined by the
iteration = (), 0, will converge to the fixed point for
any starting value  near . In order to distinguish between these two
cases, we introduce the following definition.

Definition 1.3 Suppose that is a real-valued function, defined and
continuous on the bounded closed interval [ |, such that () [ ]
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If (1.15) holds with = 0, then the sequence () is said to converge to
superlinearly.

If (1.15) holds with (01) and = , =012 | then
() is said to converge to linearly, and the number = log is
then called the asymptotic rate of convergence of the sequence. If
(1.15) holds with =1 and = , =012 | the rate of
convergence is slower than linear and we say that the sequence converges
to sublinearly.

The words ‘at least’ in this definition refer to the fact that we only
have inequality in , which may be all that can be ascertained
in practice. Thus, it is really the sequence of bounds  that converges
linearly.

For a linearly convergent sequence the asymptotic rate of convergence

measures the number of correct decimal digits gained in one iteration;
in particular, the number of iterations required in order to gain one more
correct decimal digit is at most [I |+ 1. Here [1 ] denotes the largest
integer that is less than or equal to 1

Under the hypotheses of Theorem 1.5, the equalities (1.14) will hold
with = Y) [0 1), and therefore the sequence ( ) generated
by the simple iteration will converge to the fixed point linearly or
superlinearly.

Example 1.4 Given that s a fized positive real number, consider the
function  defined on the interval [0 1] by

2 for 0 1
()= _
0 for =0
Aslim | () =0, the function is continuous on [0 1]. Moreover,
is strictly monotonic increasing on [0 1] and () [01 2] [0 1] for
all in [0 1]. We note that =0 is a fixed point of (cf. Figure 1.3).
Consider the sequence () defined by = (), 0, with
= 1. It is a simple matter to show by induction that =27
0. Thus we deduce that ( ) converges to =0 as . Since
1 for0 1
lim — = = - for =1
o 0 for
we conclude that for (0 1) the sequence () converges to = 0 sub-

linearly. For =1 it converges to = 0 linearly with asymptotic rate
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of the sequence ( )is = log ). Evidently, a small value of

% ) corresponds to a large positive value of and will result in more
rapid convergence, while if ) 1but Y ) isvery close to 1, will
be a small positive number and the sequence will converge very slowly.

Next, we discuss the behaviour of the iteration (1.3) in the vicinity of
an unstable fived point . If %) 1, then the sequence ( ) defined
by (1.3) does not converge to from any starting value ; the next
theorem gives a rigorous proof of this fact.

Theorem 1.6 Suppose that = (), where the function has a con-

tinuous derivative in some neighbourhood of , andlet Y ) 1. Then,

the sequence () defined by = (), 0, does not converge to
from any starting value , =

Proof Suppose that = . As in the proof of Theorem 1.5, we can see
that there is an interval = | + 1, 0,in which Y ) 1
for some constant . If  lies in this interval, then

= () ()= ) 1)

for some between and . If lies in  the same argument
shows that

and so on. Evidently, after a finite number of steps some member of

the sequence must be outside the interval , since
1. Hence there can be no value of = () such that
for all , and the sequence therefore does not converge to . |

Example 1.5 In this example we explore the simple iteration (1.3) for
defined by

where s a fixed constant.

The fixed points of the function are the solutions of the quadratic

equation 2 4+ =0, which are 1 (r ). If 1 there are no
solutions (in the set  of real numbers, that is!), if = 1 there is one
solution in , and if 1 there are two.
1 #, , 5 , # o1
5 VI E 6 , 1, 5%
1 6, 5 c 0 B 0 BDD

B B D D4
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Table 1.2. The sequences () and () in Example 1.6.

$$ $)
$ )

& 9$)$%
$% ($%

( $($$

% $

) $& %(
$)(

$  $&()
$'&

is still larger than 0.9. Although ( ) eventually converges faster than

, we find that = (099) becomes smaller than = ( + 1)~
when
10
—1 1
{099y 20 T

This first happens when = 9067, at which point and  are both
roughly 10~ . In this rather extreme example the concept of asymptotic
rate of convergence is not useful, since for any practical purposes ()
converges faster than ().

1.3 Iterative solution of equations

In this section we apply the idea of simple iteration to the solution
of equations. Given a real-valued continuous function , we wish to
construct a sequence (), using iteration, which converges to a solution
of () = 0. We begin with an example where it is easy to derive
various such sequences; in the next section we shall describe a more
general approach.

Example 1.7 Consider the problem of determining the solutions of the
equation () =0, where : e 2.

Since Y )=e 1 the function is monotonic increasing for positive
and monotonic decreasing for negative values of . Moreover,
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will converge to the positive solution, , provided that the starting value
is sufficiently close to it. As 0 ¥ ) 1 3, the asymptotic rate
of convergence of () to  is certainly greater than log 3.

On the other hand, ¥ ) 1 since 2 1, so the sequence
() defined by (1.17) cannot converge to the solution . It is not
difficult to prove that for the sequence () converges to  while
if the sequence will decrease monotonically until 2 for
some , and then the iteration breaks down as ( ) becomes undefined.

The equation ( ) = 0 may also be written in the foorm =-e 2,
suggesting the sequence () defined by the iteration

Inthiscase ( )=e 2and ¥ )=e .Hence ¥ ) 1, ¥ ) e,
showing that the sequence () may converge to , but cannot converge
to . It is quite straightforward to show that the sequence converges to
for any , but diverges to +  when
As a third alternative, consider rewriting the equation ( ) = 0 as
= () where the function is defined by () = (e ) 2; the

fixed points of the associated iteration = () are the solutions
and of ( )=0,and also the point 0. For this iteration neither of the
fixed points, or , is stable, and the sequence ( ) either converges

to 0 or diverges to
Evidently the given equation may be written in many different forms,
leading to iterations with different properties.

1.4 Relaxation and Newton’s method

In the previous section we saw how various ingenious devices lead to
iterations which may or may not converge to the desired solutions of a
given equation ( ) = 0. We would obviously benefit from a more gener-
ally applicable iterative method which would, except possibly in special
cases, produce a sequence () that always converges to a required so-
lution. One way of constructing such a sequence is by relaxation.
1)y1, 6 6 , = 6

, 5 « : 1 . G , B D E
6 B#4#&D , 5 11 6 5 5 o4
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Definition 1.5 Suppose that is a real-valued function, defined and
continuous in a neighbourhood of a real number . Relaxation uses the
sequence () defined by

= () =012 (1.18)

where
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corresponding to

- 4
T2 4
On defining ( ) = (), we then deduce that
1) 1 [ + ] (1.19)

Thus we can apply Theorem 1.5 to conclude that the sequence ()
defined by the relaxation iteration (1.18) converges to , provided that

is in the interval [ + ]. The asymptotic rate of convergence of
the relaxation iteration (1.18) to is at least log . O

We can now extend the idea of relaxation by allowing to be a contin-
uous function of in a neighbourhood of rather than just a constant.
This suggests an iteration

- () —012

corresponding to a simple iteration with ( ) = () (). If the
sequence () converges, the limit will be a solution of () = 0,
except possibly when () = 0. Moreover, as we have seen, the ultimate
rate of convergence is determined by Y ). Since () = 0, it follows
that ¥ )=1 () %), and (1.19) suggest using a function which
makes 1 () % ) small. The obvious choiceis ( ) =1 Y ), and
leads us to Newton’s method.

Definition 1.6 Newton’s method for the solution of ( ) =0 is defined

by
()
= — =012 (1.20)
)
with prescribed starting value . We implicitly assume in the defining
formula (1.20) that Y% ) =0 for all 0.
1y K 6 #? *
*# T, # & z 4 %,,
6 #?
# 7 ., # & F s #e> 4
5 6 5 6 6
L 1 1 6 6
: + - ,
1 &) #& > 6 1 , 1 6 $
6B , 5, 6 D
6 M % L E s
(¢} \ 1
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We note that unlike the definition of linear convergence where was
required to belong to the interval (0 1), all we demand here is that 0.
The reason is simple: when 1, (1.21) implies suitably rapid decay of
the sequence () irrespective of the size of

Example 1.8 Let 1 and 1. The sequence () defined by
=", =012 | converges to 0 with order

Theorem 1.8 (Convergence of Newton’s method) Suppose that
s a continuous real-valued function with continuous second derivative
T defined on the closed interval — = | + ], 0, such that
()=0and ™) =0. Suppose further that there ewists a positive
constant | such that

1)

I
1)
If , where is the smaller of and 1! | then the sequence
() defined by Newton’s method (1.20) converges quadratically to

Proof Suppose that =min 1! | so that . Then,
by Taylor’s Theorem (Theorem A.4), expanding about the point

)

0= ()= ()+( et ®y ax

for some  between and , and therefore in the interval . Recalling
(1.20), this shows that

( ) %)
5 ) (1.23)
Since —, we have - . As we are given that
it follows by induction that 2= for all 0;
hence () converges to as .
Now, lies between and , and therefore () also converges to
as . Since Yand ™are continuous on it follows from (1.23)
that

%)

lim_ = 37 (1.24)

which, according to Definition 1.7, implies quadratic convergence of the
sequence () to with = )2 ) o' 2. O
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1.5 The secant method

So far we have considered iterations which can be written in the form

= (), 0, so that the new value is expressed in terms of the
old one. It is also possible to define an iteration of the form =
( -), 1, where the new value is expressed in terms of two

previous values. In particular, we shall consider two applications of
this idea, leading to the secant method and the method of bisection,
respectively.

Remark 1.3 We note in passing that one can consider more general
iterative methods of the form

= ( - -) =% $+1

with $ 1 fized; here, we shall confine ourselves to the simplest case
when $=1 as this is already sufficiently illuminating.

Using Newton’s method to solve a nonlinear equation ( ) = 0 re-
quires explicit knowledge of the first derivative Hof the function

His not explicitly available

Unfortunately, in many practical situations
or it can only be obtained at high computational cost. In such cases,
the value Y ) in (1.20) can be approximated by a difference quotient;
that is,

7 ) () C-)

Replacing { ) in (1.20) by this difference quotient leads us to the
following definition.

Definition 1.8 The secant method is defined by

- () 74747:j3 =123 (1.25)

where and  are given starting values. It is implicitly assumed here
that () ( = )=0 forall 1.

The method is illustrated in Figure 1.6. The new iterate is
obtained from _ and by drawing the chord joining the points
% - ( - ))and&( (1)), and using as the point at which

this chord intersects the -axis. If _ and  are close together and
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Table 1.3. Comparison of the secant method and Newton’s method for

the solution of e 2=0.
1 /0
& %&$(&
&%%%( %'
& %" $ "% $&
' (& $$ "% $&
( '0'(
% "% $
"% $&
where  is between and , and ( lies between and _ . Hence,
if  — and , then also and ( . Therefore,
5 4
1 — =- 1.2
34 (1.29)
Thus, and the sequence () converges to at least linearly,
with rate at least log (3 2), provided that and . O

In fact, it can be shown that

lim —— = (1.30)
where is a positive constant and = -(1 4+ 5) 16, so that the

convergence of the sequence () to is faster than linear, but not as
fast as quadratic. (See Exercise 10.)
This is illustrated in Table 1.3, which compares two iterative methods

for the solution of ( ) =0 with : e 2; the first is the secant
method, starting from =1, = 3, while the second is Newton’s
method starting from = 1.

This experiment shows the faster convergence of Newton’s method,
but it must be remembered that each iteration of Newton’s method
requires the calculation of both () and Y ), while each iteration
of the secant method requires the calculation of () only (as ( — )
has already been computed). In our examples the computations are
quite trivial, but in a practical situation the calculation of each value of

( )and Y ) may demand a substantial amount of work, and then
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) 2 oo ! 0 o

( ) 2 . The bisection method is therefore very robust, though
Newton’s method will always win once the current iterate is sufficiently
close to

If the initial interval | | contains more than one solution, the limit
of the bisection method will depend on the positions of these solutions.
Figure 1.7 illustrates a possible situation, where [ ] contains three
solutions. Since ( ) has the same sign as () the second interval is
[ ], and the sequence () of midpoints defined by (1.31) converges
to the solution . If however the initial interval is | Bthe sequence
of midpoints converges to the solution

1.7 Global behaviour

We have already seen how an iteration will often converge to a limit
if the starting value is sufficiently close to that limit. The behaviour
of the iteration, when started from an arbitrary starting value, can be
very complicated. In this section we shall consider two examples. No
theorems will be stated: our aim is simply to illustrate various kinds of
behaviour.
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First consider the simple iteration defined by
= () =012 where ()= (1 ) (1.33)

which is often known as the logistic equation. We require the constant

to lie in the range 0 4, for then if the starting value  is in
the interval [0 1], then all members of the sequence () also lie in [0 1].
The function has two fixed points: =0and =1 1 . The fixed
point at 0 is stable if 0 1, and the fixed point at 1 1 is stable
if1 3. The behaviour of the iteration for these values of is what
might be expected from this information, but for larger values of the
parameter  the behaviour of the sequence () becomes increasingly
complicated.

For example, when = 34 there is no stable fixed point, and from
any starting point the sequence eventually oscillates between two values,
which are 0 45 and 0 84 to two decimal digits. These are the two stable
fixed points of the double iteration

=) )= (= @ it @ ) (134

When 3 1+ 6, the fixed points of “dre the two fixed points of
,thatisOand 1 1 , and also
1 1 1

3 1+- - 2 3 (1.35)

This behaviour is known as a stable two-cycle (see Exercise 12).

When 14+ 6 all the fixed points of “dre unstable. For example,
when = 35 all sequences () defined by (1.33) tend to a stable 4-cycle,
taking successive values 0 50, 0 87, 0 38 and 0 83.

For larger values of the parameter the sequences become chaotic.
For example, when = 3 99 there are no stable fixed points or limit-
cycles, and the members of any sequence appear random. In fact it can
be shown that for such values of the members of the sequence are
dense in a subinterval of [0 1]: there exist real numbers and), )
such that any subinterval of ( ) ), however small, contains an infinite
subsequence of (). For the value = 3 99 the maximal interval ( ) )
is (0 00995 099750) to five decimal digits. Starting from =075 we
find that the interval (0 70 0 71), for example, contains the subsequence

(1.36)

The sequence does not show any apparent regular behaviour. The cal-
culation is extremely sensitive: if we replace by + , and write
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that from any starting value Newton’s method eventually converges to a
solution, which might be . However, it is certainly not true that the
sequence converges to the solution closest to the starting point; indeed,
if this were true, no sequence could converge to . It is easy to see why
the behaviour is much more complicated than this.

The Newton iteration converges to the solution at 0 from any point in
the interval (0327 0 445). As we see from Figure 1.8, the iteration will
converge exactly to 0 in one iteration if we start from the -coordinate
of any of the points |, and ; at each of these three points the
tangent to the curve passes through the origin. Since is continuous,
this means that there is an open interval surrounding each of these points
from which the Newton iteration will converge to 0. The maximal such
intervals are (1555 1487), (1735 1817) and (3 514 3 529) to three
decimal digits. In the same way, there are several points at which the
tangent to the curve passes through the point (! 0), where ! is the

-coordinate of the point . Starting from one of these points, the
Newton iteration will evidently converge exactly to the solution at 0 in
two steps; surrounding each of these points there is an open interval
from which the iteration will converge to 0.
Now suppose we define the sets * |+ = 1013 , where

consists of those points from which the Newton iteration converges
to the zero at +. Then, an extension of the above argument shows
that each of the sets * is the union of an infinite number of disjoint
open intervals. The remarkable property of these sets is that, if is a
boundary point of one of the sets * | then it is also a boundary point of
all the other sets as well. This means that any neighbourhood of such a
point , however small, contains an infinite number of members of each
of the sets * . For example, we have seen that the iteration starting
from any point in the interval ( 0327 0 445) converges to 0. We find
that the end of this interval lies between 0 4457855 and 0 4457860; Table
1.4 shows the limits of various Newton iterations starting from points
near this boundary. Each of these points is, of course, itself surrounded
by an open interval which gives the same limit.

*

1.8 Notes

Theorem 1.2 is a special case of Brouwer’s Fixed Point Theorem. Luitzen
Egbertus Jan Brouwer (1881-1966) was professor of set theory, function
theory and axiomatics at the University of Amsterdam, and made major
contributions to topology. Brouwer was a mathematical genius with
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Table 1.4. Limit of Newton’s method near a boundary point.

0 3

strong mystical and philosophical leanings. For an historical overview of
Brouwer’s life and work we refer to the recent book of Dirk Van Dalen,
Mystic, Geometer, and Intuitionist. The Life of L.E.J. Brouwer: the
Dawning Revolution, Clarendon Press, Oxford, 1999.

The Contraction Mapping Theorem, as stated here, is a simplified ver-
sion of Banach’s fixed point theorem. Stefan Banach founded modern
functional analysis and made outstanding contributions to the theory
of topological vector spaces, measure theory, integration, the theory of
sets, and orthogonal series. For an inspiring account of Banach’s life
and times, see R. Kaluza, Through the Eyes of a Reporter: the Life of
Stefan Banach, Birkhauser, Boston, MA, 1996.

In our definitions of linear convergence and convergence with order
we followed Definitions 2.1 and 2.2 in Chapter 4 of

, Numerical Analysis: an Introduction, Birkhéuser,
Boston, MA, 1997.

Exciting surveys of the history of Newton’s method are available in T.
Ypma, Historical development of the Newton—Raphson method, SIAM
Rev. 37, 531-551, 1995, H. Goldstine, History of Numerical Analysis
from the Sixteenth through the Nineteenth Century, Springer, New York,
1977; and in Chapter 6 of Jean-Luc Chabert (Editor), A History of Algo-
rithms from the Pebble to the Microchip, Springer, New York, 1999. As

Tx = #Q - % Cco 6 B DC** % #o >
55 " B D4
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is noted in these sources, Newton’s De analysi per aequationes numero
terminorum infinitas, probably dating from mid-1669, is sometimes re-
garded as the historical source of the method, despite the fact that,
surprisingly, there is no trace in this tract of the familiar recurrence re-
lation = () ¥ ) bearing Newton’s name, nor is there
a mention of the idea of derivative. Instead, the paper contains an ex-
ample of a cubic polynomial whose roots are found by purely algebraic
and rather complicated substitutions. In 1690, Joseph Raphson (1648
1715) in the Preface to his Analysis aequationum universalis describes
his version of Newton’s method as ‘not only, I believe, not of the same
origin, but also, certainly, not with the same development’ as Newton’s
method. Further improvements to the method, and its form as we know
it today, were given by Thomas Simpson in his Essays in Mathematicks
(1740). Simpson presents it as ‘a new method for the solution of equa-
tions’ using the ‘method of fluxions’, i.e., derivatives. It is argued in
Ypma’s article that Simpson’s contributions to this subject have been
underestimated, and ‘it would seem that the Newton-Raphson—Simpson
method is a designation more nearly representing facts of history of this
method which lurks inside millions of modern computer programs and
is printed with Newton’s name attached in so many textbooks’.

The convergence analysis of Newton’s method was initiated in the
first half of the twentieth century by L.V. Kantorovich. More recently,
Smale, Dedieu and Shub, and others have provided significant insight
into the properties of Newton’s method. A full discussion of the global
behaviour of the logistic equation (1.33), and other examples, will be
found in P.G. Drazin, Nonlinear Systems, Cambridge University Press,
Cambridge, 1992, particularly Chapters 1 and 3.

The secant method is also due to Newton (cf. Section 3 of Ypma’s
paper cited above), and is found in a collection of unpublished notes
termed ‘Newton’s Waste Book’ written around 1665.

In this chapter, we have been concerned with the iterative solution of
equations for a real-valued function of a single real variable. In Chapter
4, we shall discuss the iterative solution of nonlinear systems of equations

1o 5, 9 , 6 , & >
C LOC#.> #0 .L 4 4 #> 0 1
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1.4

1.5

1.6

1 Solution of equations by iteration

Show that if the starting value is positive, the iteration converges
to the positive solution, and if the starting value is negative it
converges to the negative solution. Obtain approximate expres-
sions for  if (i) =100 and (ii) = 100, and describe the
subsequent behaviour of the iteration. About how many iter-
ations would be required to obtain the solution to six decimal
digits in these two cases?

Consider the iteration

_ ()] 1o

C +C)H )
for the solution of ( )= 0. Explain the connection with New-
ton’s method, and show that () converges quadratically if
is sufficiently close to the solution. Apply this method to the

same example as in Example 1.7, ( ) =e 2, and verify
quadratic convergence beginning from = 1. Experiment with
calculations beginning from = 10 and from = 10, and

account for their behaviour.

It is sometimes said that Newton’s method converges quadrati-
cally, and therefore in the successive approximations to the so-
lution the number of correct digits doubles each time. Explain
why this is not generally correct. Suppose that ™ ) is defined
and continuous in a neighbourhood of and that  agrees with
the solution to + decimal digits; give an estimate of the num-
ber of correct decimal digits in

Tllustrate your estimate by using Newton’s method to deter-
mine the positive zero of ( ) =e 1 000000005, which is
close to 0 0001; use = 0 0005.

Suppose that ( )= Y )=0,sothat hasa doubleroot at |,
and that "is defined and continuous in a neighbourhood of
If () is a sequence obtained by Newton’s method, show that

DI ID NP 1
T T)

where  and . both lie between and . Suppose, further,
that 0 + ) for all  in the interval | + ]
for some 0, where 2+ ; show that if lies in this

interval the iteration converges to , and that convergence is
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linear, with rate log 2. Verify this conclusion by finding the
solution of e =14 | beginning from = 1.

Extend the result of the previous exercise to a case where has
a triple root at ,sothat ()= )= H)=0

Suppose that the function has a continuous second derivative,
that () = 0, and that in the interval [" ], with " ,
%) o0and ™ ) 0. Show that the Newton iteration,
starting from any  in [* |, converges to
The secant method is used to determine solutions of the equation
1 = 0. Starting from =1+ | = 1+ , show that
=- + ( ),anddetermine , and , neglecting terms
oforder ( ). Explain why, at least for sufficiently small values
of , the sequence () converges to the solution 1.
Repeat the calculation with and  interchanged, so that
= 14+ and = 1+ , and show that the sequence now
converges to the solution 1.
Write the secant iteration in the form

(-) - )
C-) ()
Supposing that has a continuous second derivative in a neigh-

bourhood of the solution of ( )=0, and that 4 ) 0 and
T ) 0, define

(( -)=
( - )
where has been expressed in terms of and _— . Find
an expression for

[Co)=Tm(( )
and then determine lim  _ / ( — ). Deduce that

lim — (( -)=")2H)

—

=123

Now assume that

lim —— =

— 0O

Show that 1 1 =0, and hence that = -(1+ 5).
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Solution of systems of linear equations

2.1 Introduction

In Chapter 1 we considered the solution of a single equation of the form
( ) = 0 where is a real-valued function defined and continuous on

a closed interval of the real line. The simplest example of this kind is

the linear equation = where and are given real numbers, with
= 0, whose solution is

= - (2.1)
trivially. Of course, we could have expressed the solution as = as
in Chapter 1, but, as you will see in a moment, writing = ~ is much

more revealing in the present context. In this chapter we shall consider
a different generalisation of this elementary problem:
Let ! be an matrix with as its entry in row 2and column 3
and a given column vector of size with 3th entry ;
find a column vector of size such that! =
Denoting by  the Zh entry of the vector , we can also write! =
in the following expanded form:

+ + o+
+ + o+ (2.2)
+ + o+ =

Recall that in order to ensure that for real numbers and the single
linear equation = has a unique solution, we need to assume that
= 0. In the case of the simultaneous system (2.2) of linear equations
in unknowns we shall have to make an analogous assumption on the
matrix ! .
To do so, we introduce the following definition.

39
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Definition 2.1 The set of all + matrices with real entries is denoted
by > . A matriz of size will be called a square matrix of order

, or simply a matrix of order . The determinant of a square matriz
! > s the real number det(! ) defined as follows:

det(! ) = sign(4 4 4 )

The summation is over all ! permutations (4 4 4 ) of the integers
12 , andsign(4 4 4 )=+1or 1 depending on whether the

-tuple (4 4 4 ) is an even or odd permutation of (1 2 ),
respectively. An even (odd) permutation is obtained by an even (odd)
number of exchanges of two adjacent elements in the array (1 2 ).

x

A matriz ! is said to be nonsingular when its determinant

det(! ) is nonzero.

The inverse matrix ! = of a nonsingular matrix ! > is defined
as the element of > such that! = ! =1 = = | where is the
identity matrix

10 0
_ 01 0 (2.3)
0 0 1
In order to find an explicit expression for ! = in terms of the elements of
the matrix ! | we recall from linear algebra that, for each 2=1 2 ,
det(! ) if 2=
| | | =
I 0 o (2.4)
where ! = ( 1) Cof( ) and Cof( ), called the cofactor of
is the determinant of the (1) (1) matrix obtained by erasing
from ! > row 2and column 3. Then, it is a trivial matter to show
using (2.4) that ! = has the form
(. !
1 bl !
[ — 2.5
det(A) (25)
(. !
Having found an explicit formula for the matrix ! = | we now multiply

both sides of the equation ! = on the left by ! = to deduce that
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= (¢ )=1!7 , finally, since! = (! )=(""1) = = it
follows that
=" (2.6)

where the inverse ! — of the nonsingular matrix ! is given in terms of
the entries of ! by (2.5).

An alternative approach to the solution of the linear system ! = |,
called Cramer’s rule, proceeds by expressing the Zh entry of as

=55 2 =12

where5 = det(! ),and 5 isthe determinant obtained by replacing

the 2h column of 5 by the entries of . Evidently, we must require that
I is nonsingular, i.e., that 5 = det(! ) = 0. Thus, all we need to do

to solve I = is to evaluate the + 1 determinants 5 5 5,
each of them , and check that 5 = det(! ) is nonzero; the final
calculation of the elements 2=1 2 , is then trivial.

The purpose of our next example is to illustrate the application of
Cramer’s rule.

Example 2.1 Suppose that we wish to solve the system of linear equa-
tions

+ + =6
2 +4 +2 =16
+5 4 = 3

The solution of such a small system can easily be found in terms of
determinants, by Cramer’s rule. This gives

=55 =55 =55
1 6 6 s B 42D B 4D 6 , B 4D
1B 42D A #l
2 F B*# K 6# F 5 + C K 6 #8&> $
$ 0+ 9 ,D ) #o* =, B9 6 #720.
% 6 , C# K #&7? , D 1
, #e . 6 1 4)
E 5 N 1
* *6 4
5 1 6 1 % 8
P , 6 1 ., 5 NB#&> D 5 6
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where
11 1 6 1 1
5= 24 2 5 = 16 4 2
1 5 4 3 5 4

with similar expressions for 5 and 5 . To obtain the solution we
therefore need to evaluate four determinants.

Now you may think that since, for ! > nonsingular, we have
expressed the solution to! = in the ‘closed form’

and have even found a formula for ! = in terms of the coeflicients of ! |
or may simply compute the entries of  directly using Cramer’s rule, the
story about the simultaneous set of linear equations (2.2) has reached
its happy ending. We are sorry to disappoint you: a disturbing tale is
about to unfold.

Imagine the following example: let = 100, say, and suppose that you
have been given all 10000 entries of a 100 100 matrix ! , together with
the entries of a 100-component column vector . To avoid trivialities,
let us suppose that none of the entries of | or is equal to 0. Question:
Does the linear system ! = have a solution? If it does, how would
you find, say, the 53rd entry of the solution vector 7 Of course, you
could calculate the determinant of ! and check whether it is equal to
zero; if not, you could then calculate the determinant 5  obtained by
replacing the 53rd column of ! by the vector , and the required result,
by Cramer’s rule, is then the ratio of these two determinants. How much
time do you think you would need to accomplish this task? An hour?
A day? A month?

I imagine that you do not have a large enough sheet of paper in front
of you to write down this 100 100 matrix. Let us therefore start with
a somewhat simpler setting. Assume that is any integer, 2, and
denote by 6 the number of arithmetic operations that are required to
calculate det(! ) for ! > . For example, for a 2 2 matrix,

det(! ) = ;

this evaluation requires 3 arithmetic operations — 2 multiplications and
1 subtraction — giving 6 = 3. In general, we can calculate det(! ) by
expanding it in the elements of its first row. This requires multiplying
each of the elements in the first row of | by a subdeterminant of size
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that we cannot by this means reduce the total by more than a factor of
about , which hardly affects our conclusion.

Our other approach to solving! = | based on computing! =~ from
(2.5) and writing =1! T | is equally inefficient: in order to compute
the inverse of an matrix ! using determinants, one has to calculate

the determinant of ! aswellas  determinants of size 1 each of which
then has to be divided by det(! ), requiring a total of approximately

e 1+ e DI+ e +1)

arithmetic operations, just the same as before.
The aim of this chapter is to develop alternative methods for the solu-

tion of the system of linear equations ! = . We begin by considering
a classical technique, Gaussian elimination. We shall then explore its
relationship to the factorisation ! = 7 of the matrix ! where is

lower triangular and 7 is upper triangular. It will be seen that by using
the Gaussian elimination the number of arithmetic operations required
to solve the linear system ! = with an matrix ! is approx-
imately - - a dramatic reduction from the (e( 4+ 1)!) operation
count associated with matrix inversion using determinants.

We conclude the chapter with a discussion of another classical idea
attributed to Gauss: the least squares method for the solution of the

x

system of linear equations ! = where ! , is the column
vector of unknowns of size and a given column vector of size + .

2.2 Gaussian elimination

The technique for solving systems of linear algebraic equations that we
shall describe in this section was developed by Carl Friedrich Gauss and
was first published in his Theoria motus corporum coelestium in section-
ibus conicis solem ambientium (1809), a major two-volume treatise on
the motion of celestial bodies. Gauss was concerned with the study of
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the asteroid Pallas, and derived a set of six linear equations with six
unknowns, also giving a systematic method for its solution.

The method proceeds by successively eliminating the elements below
the diagonal of the matrix of the linear system until the matrix becomes
triangular, when the solution of the system is very easy. This technique
is now known under the name Gaussian elimination.

Before we embark on the general description of Gaussian elimination,
let us illustrate its basic steps through a simple example; this is the same
as Example 2.1 above, written out again for convenience.

Example 2.2 Consider the system of linear equations

+ + = 6
2 +4 42 = 16
+5 4 = 3
It is convenient to rewrite this in the form! = where ! > and
and are column vectors of size 3; thus,
1 1 1 6
2 4 2 = 16 (2.9)
1 5 4 3

We begin by adding the first row, multiplied by 2, to the second row,
and adding the first row to the third row, giving the new system

11 1 6
0 2 0 = 4 (2.10)
0 6 3 3

The newly created 0 entries in the first column have been typeset in
italics. Now adding the new second row, multiplied by 3, to the third
row, we find

1 1 1 6
0 2 0 = 4 (2.11)
0 0 3 9
1 1 , 6" $
6 4 - B 6 1
2 = H81 5 6
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which can easily be solved for the unknowns in the reverse order, begin-
ning with = 3.

Each of these successive row operations can be expressed as a multipli-
cation on the left of the matrix ! > 2 (in our example = 3),
of the system of linear equations by a transformation matrix. Writing
8 for the matrix whose only nonzero element is 9 = 1, we

see that the product
(+ 8 ) (2.12)

is the same as the original matrix ! | except that the elements of row :,
multiplied by a real number , have been added to the corresponding
elements of row ;. Here denotes the identity matrix defined by
(2.3). In the elimination process we always add a multiple of an earlier
row to a later row in the matrix, so that 1 : ; in (2.12); the
transformation matrix + 8 is therefore lower triangular in the
following sense.

Definition 2.2 Let be an integer, 2. The matriz > s said
to be lower triangular if < =0 for every 2and 3 with 1 2 3

The matriz >

s called unit lower triangular if it is lower
triangular, and also the diagonal elements are all equal to unity, that is

< =1for2=12

Thus the matrix + 8 > appearing in (2.12) is unit lower
triangular if 1 : , and the above elimination process can be
expressed by multiplying ! on the left successively by the unit lower
triangular matrices + 8 for; =:+1 and: =1 1,
with ; there are - (1) of these matrices, one for each element

of I below the diagonal (since there are elements on the diagonal and,
therefore, 1 +  + ( 1) =-( ) elements below the diagonal).
The next theorem lists the technical tools which are required for proving
that the resulting product is a lower triangular matrix.

Theorem 2.1 The following statements hold for any integer 2:

(i) the product of two lower triangular matrices of order  is lower
triangular of order ;
(ii) the product of two unit lower triangular matrices of order  is
unit lower triangular of order ;
(i) a lower triangular matriz is nonsingular if, and only if, all the
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diagonal elements are nonzero; in particular, a unit lower trian-
gular matriz is nonsingular;

(iv) the inverse of a nonsingular lower triangular matriz of order
1s lower triangular of order ;

(v) the inverse of a unit lower triangular matriz of order  is unit
lower triangular of order

Proof The proofs of parts (i), (ii), (iii) and (v) are very straightforward,
and are left as an exercise.

Part (iv) is proved by induction; it is easily verified for a nonsingular
lower triangular matrix of order 2, using (2.5). Let 2, suppose that
(iv) is true for all nonsingular lower triangular matrices of order , with
2 ,and let  be a nonsingular lower triangular matrix of order

4+ 1. Both and its inverse ~ can be partitioned by their last row
and column:

where is a nonsingular lower triangular matrix of order and "
* . and) are real numbers and , and are column vectors of
size . Since the product  ~ is the identity matrix of order + 1, we

have
"= =0 " —+ =0 =+ ) :1;

here  signifies the identity matrix of order . Thus " = ~ | which
is lower triangular of order by the inductive hypothesis, and = 0
given that is nonsingular; the remaining two equations determine

and ) on noting that = 0 (given that is nonsingular). This shows
that ~ is lower triangular of order + 1, and the inductive step is
complete; consequently, (iv) is true for any 2. 0

We shall also require the concept of upper triangular matrix.

Definition 2.3 Let  be an integer, 2. The matriz 7 > s said
to be upper triangular if =0 for every 2and 3with1 3 2

We note that results analogous to those in the preceding theorem
concerning lower triangular matrices are also valid for upper triangular
matrices (replacing the words ‘lower triangular’ by ‘upper triangular’
throughout).
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34 # 5 1

The elimination process for ! > may now be written as follows:
_ I =7 =- 1) (2.13)

where 7 > is an upper triangular matrix and each of the matrices

* 3=1 , is unit lower triangular of order and has
the foom + 8 with1 , where is the identity matrix
of order . That is,

= 4+ 8 = 4+ 8 = 4+ _ 8 -
It is easy to see that 8 8 = 8 , where

1 for; =:
0 for;

is known as the Kronecker delta. Thus, forl : ; , the inverse
of the matrix + 8 is the lower triangular matrix 8
which corresponds to the subtraction of row :, multiplied by , from
row ;. Hence

I = - - 7=7 (2.14)

where , as the product of a finite number of unit lower triangular
matrices of order , is itself unit lower triangular of order by Theorem
2.1(ii); see Figure 2.1.

2.3 LU factorisation

Having seen that the Gaussian elimination process gives rise to the fac-

torisation ! = 7 of the matrix ! > 2, where  is unit
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in the formula (2.18) is zero. To investigate this possibility we use the
properties of certain submatrices of ! .

Definition 2.4 Suppose that ! > with 2, and let 1
The leading principal submatrix of order of ! is defined as the

x

matriz ! whose element in row 2 and column 3 is equal to the

element of the matriz! in row 2 and column 3 for1 2 3

Armed with this definition, we can now formulate the main result
of this section. It provides a sufficient condition for ensuring that the
algorithm (2.18), (2.19) for calculating the entries of the matrices and
7 in the LU factorisation! = 7 of a matrix ! ™ does not break
down due to division by zero in (2.18).

Theorem 2.2 Let 2, and suppose that ! > is such that
every leading principal submatriz ! * of ! of order , with
1 , is nonsingular. (Note that | itself is not required to be
nonsingular.) Then, | can be factorised in the form ! = 7 , where
is unit lower triangular and 7 > is upper triangular.

Proof The proof is by induction on the order . Let us begin by verifying
the statement of the theorem for = 2. We intend to show that any
2 2 matrix

6

with = 0, is equal to the product of a unit lower triangular matrix
of order 2 and an upper triangular matrix 7 of order 2; that is, we wish
to establish the existence of

1 0
= 7 =
+ 1 0
such that 7 ="', where +, , and are four real numbers, to be

determined. Equating the product 7 with! , we deduce that
= = + = + + =06

Since = 0 by hypothesis, the first of these equalities implies that =0
also; hence + = , = ,and =6+ . Thus we have shown the
existence of the required matrices and 7 in ™ and completed the
proof for = 2.
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Now, suppose that the statement of the theorem has already been ver-

ified for matrices of order , 2 ; suppose that ! >
and all leading principal submatrices of ! of order and less are non-
singular. We mimic the proof in the case of = 2 by partitioning ! into

blocks by the last row and column:

6
where ! ™ is a nonsingular matrix (all of whose leading princi-
pal submatrices are themselves nonsingular), , are column vectors of
size , and 6 is a real number. According to our inductive hypothesis,
there exist a unit lower triangular matrix of order and an upper
triangular matrix 7 of order  such that ! = 7 . Thus we

shall seek the desired unit lower triangular matrix  of order 4+ 1 and
the upper triangular matrix 7 of order + 1 in the form

0 7

™ 0
where  and are column vectors of size and is a real number, to
be determined from the requirement that the product 7 be equal to

the matrix ! . On equating 7 with ! | we obtain

The first of these four equalities provides no new information. However,
we can use the remaining three to determine the column vectors and

and the real number . Since is unit lower triangular, its de-
terminant is equal to 1; therefore is nonsingular. This means that
the second equation uniquely determines the unknown column vector
Further, since by hypothesis ! is nonsingular and ! = 7

we conclude that
det(! )=det( 7 )=det( )det(7 )=det(7 );

given that det(! ) = 0 by the inductive hypothesis, this implies that
det(7 ) = 0 also, and therefore the third equation uniquely determines

. Having found and , the fourth equation yields =6 .
Thus we have shown the existence of the desired matrices and 7 of
order + 1, and the inductive step is complete. 0
1) oo o ,
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2.4 Pivoting

The aim of this section is to show that even if the matrix ! does not
satisfy the conditions of Theorem 2.2, by permuting rows and columns
it can be transformed into a new matrix ! of the same size so that !~
admits an LU factorisation.

Example 2.3 Consider, for example, the system obtained from (2.9)
by replacing the coefficient of in the first equation by zero. Then,
the leading element in the matriz! s zero, the computation fails at the
first step, and the LU factorisation of ! does not exist. However if we
interchange the first two equations we obtain a new matrix I which is
the same as! but with the first two rows interchanged,

2 4 2
I = 01 1 (2.20)
1 5 4

Since the leading principal submatrices of order 1 and 2 of ! are non-
singular, by Theorem 2.2 the matriz! now has the required LU factori-
sation, which is easily computed.

A computation which fails when an element is exactly zero is also likely
to run into difficulties when that element is nonzero but of very small
absolute value; the problem stems from the presence of rounding errors.
The basic operation in the elimination process consists of multiplying
the elements of one row of the matrix by a scalar , and adding to
the elements of another row. The multiplication operation will always
introduce a rounding error, so the elements which are multiplied by
will already contain a rounding error from operations with earlier rows
of the matrix; these errors will therefore themselves be multiplied by
before adding to the new row. The errors will be magnified if 1,
and will be greatly magnified if 1.

The accumulation of rounding errors alluded to in the previous para-
graph can be alleviated by permuting the rows of the matrix. Thus,
at each stage of the elimination process we interchange two rows, if ne-
cessary, so that the largest element in the current column lies on the
diagonal. This process is known as pivoting. Clearly, when pivoting is
performed none of the multipliers have absolute value greater than
unity. The process is easily formalised by introducing permutation ma-
trices. This leads us to our next definition.
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Definition 2.5 Suppose that 2. A matriz % > in which
every element is either 0 or 1, and whose every row and every column
contain exactly one nonzero element, is called a permutation matrix.

Example 2.4 Here are three of the possible 3! permutation matrices in
x .

1 00 010 0 01
010 1 00 1 00
0 0 1 0 0 1 010

The proof of our next result is elementary and is left to the reader.

x

Lemma 2.1 Let 2 and suppose that %
matriz. Then, the following statements hold:

18 a permutation

(i) given that is the identity matriz of order , the matriz % can
be obtained from by permuting rows;

(i) o & > is another permutation matriz, then the products
% & and &% are also permutation matrices;
(i) let % > denote the interchange matrix, obtained from

the identity matriz ><

by interchanging rows ; and :;
any interchange matrix is a permutation matriz; moreover, any
permutation matriz of order  can be written as a product of
interchange matrices of order ;

(iv) the determinant of a permutation matriz % > s equal to 1
or 1, depending on whether % is obtained from the identity ma-
triz of order by an even or odd number of permutations of rows,

respectively; in particular, a permutation matrix is nonsingular.

Now we are ready to prove the next theorem.

Theorem 2.3 Let 2 and ! > . There exist a permutation
matriz %, a unit lower triangular matrix , and an upper triangular

matriz 7, all three in > , such that

%l =7 (2.21)

Proof The proof is by induction on the order . Let = 2 and consider
the matrix
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If =0, the proof follows from Theorem 2.2 with % taken as the 2 2
identity matrix. If =0 but =0, we take

0 1

% —
0 10

and write

%! = =

1 0 6
0 0 1 !

0
If =0and =0, the result trivially follows by writing

0 10 0 7
0 6 0 1 0 6
and taking % as the 2 2 identity matrix. That completes the proof for
=2.
Now, suppose that !
holds for every matrix of order with 2 . We begin by locating
the element in the first column of ! which has the largest absolute value,

x

and assume that the theorem

or any one of them if there is more than one such element, and inter-
change rows if required; if the largest element is in row ; we interchange
rows 1 and ;. We then partition the new matrix according to the first
row and column, writing

% | = = . (2.22)

where is the element of largest absolute value in the first column,
=> *,and , , and are column vectors of size , with
and > to be determined. Writing out the product we find that

= (2.23)
> = =
If =0, then the first column of ! consists entirely of zeros ( = 0); in
this case we can evidently choose @~ =0, = and > = =. Suppose
now that = 0; then = (1 ) , so that all the elements of

have absolute value less than or equal to unity, since is the largest in
absolute value element in the first column. By the inductive hypothesis
we can now write

%nS = FH (2.24)
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[ 2 =
7

where % , %™s a permutation matrix, s unit lower

triangular, and 7 s upper triangular. Hence, by (2.23),

1 0 1 0
% = 00 o O g 70 (2.25)

since %ML . Now, defining the permutation matrix % by

1 0
% = 06 % (2.26)
we obtain
1 0
%! = 06 O 0 70 (2.27)

which is the required factorisation of ! * . This completes

the inductive step. The theorem therefore holds for every matrix of
order 2. |

The proof of this theorem also contains an algorithm for constructing
the permutation matrix %, and the matrices and 7. The permu-
tation matrix is conveniently described by specifying the sequence of
interchanges: given the 1 integers ? ? ? _ , the matrix % is
the product of the permutation matrices which interchange rows 1 and
? ,2and ? , and so on.

2.5 Solution of systems of equations

x

Consider the linear system ! = where ! and  and

are column vectors of size . According to Theorem 2.3 there exist a

>, aunit lower triangular matrix =

permutation matrix %
and an upper triangular matrix 7 > such that %! = 7 . Having
obtained the LU factorisation of the matrix %!, the solution of the
system of linear equations ! = is straightforward: multiplying both

sides of I = on the left by the permutation matrix %, we obtain that
%! =% ; (2.28)

equivalently, 7 =% . On defining =7 we can rewrite (2.28) as
the following coupled set of linear equations:

=% 7 = (2.29)

Assuming that the matrix % and the LU factorisation of %! are already
known, there are three stages to the calculation of
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( First we apply the sequence of permutations to the vector |
to produce % ;

( » + We then solve the lower triangular
system = % , calculating the elements in the order ;
« ) + Finally the required solution is ob-
tained from the upper triangular system 7 = calculating the

elements of in the reverse order, _

( , will break down if any of the diagonal elements of 7 are zero,
but if this happens the matrix ! is singular.

The next section is devoted to assessing the amount of computational
work for this algorithm.

2.6 Computational work

In this section we shall show that the work involved in factorising an

matrix in the form ! = 7 is proportional to . An estimate of
the amount of computational work of this kind is important in deciding
in advance how long a calculation would take for a very large matrix, and
is also useful in comparing different methods for the solution of a given
problem. For example, in the next chapter we shall derive a method
for solving a system of equations with a symmetric positive definite
matrix; that method requires only half the amount of work involved
in the standard LU factorisation algorithm which takes no account of
symmetry.

Accurate estimates of the time taken by a computation are very com-
plicated and require some detailed knowledge of the computer being
used. The estimates which we shall give are simple but crude; they
are normally good enough for the types of comparisons we have just
mentioned.

We see from (2.18) that the calculation of < requires 3 1 multipli-
cations, 3 2 additions, 1 subtraction and 1 division, a total of 23 1
operations. In the same way, (2.19) shows that the calculation of
requires 22 2 operations. Recalling that, for any integer 2,

1+ + =- (41 and 1 + + =-( +D1(2 +1)
we then deduce that the total number of operations involved in the LU

1 , , 1P 4
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factorisation is

(23 1)+ 22 1=-( 1)@ +1)

It is enough to say that the number of multiplications required is about
- -, for moderately large values of

Having constructed the factorisation we can now count the number
of operations required to compute the vectors and in (2.29). Given
the vector % , the elements of are obtained from

= (%) = (%) < 2=23 (2.30)
which requires 22 2 operations. Summing over 2 this gives a total of

( 1). The calculation of the elements of is similar:

L 2=12 (2.31)

This requires 2( 2 + 1 operations, giving a total of
The total number of operations involved in the solution of the system

of equations is therefore approximately - - for the factorisation,
followed by ( 1)+ =2 for the solution of the two triangular
systems, that is, approximately - + - | ignoring terms of size ().

We often need to solve a number of systems of this kind, all with dif-
ferent right-hand sides, but with the same matrix. We then need only
factorise the matrix once, and the total number of multiplications re-
quired for right-hand sides becomes approximately - + 2 - .
When is fairly large it might appear that it would be more efficient to
form the inverse matrix ! = , and then multiply each right-hand side by
the inverse; but we shall show that it is not so.

To form the inverse matrix we first factorise the matrix ! , and then
solve systems, with the right-hand sides being the vectors which consti-
tute the columns of the identity matrix. Because these right-hand sides
have a special form, there is the possibility of saving some work; some
careful counting shows that the total can be reduced from - +2 =
- to an approximate total of 2  operations. It is easy to see that
the operation of multiplying a vector by the inverse matrix requires

(2 1) operations; hence the whole computation of first constructing
the inverse matrix, and then multiplying each right-hand side by the in-
verse, requires a total of 2 +2 multiplications (ignoring terms of size
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( ). This is always greater than the previous value - + 2 - |
whether is small or large. The most efficient way of solving this prob-
lem is to construct and save the and 7 factors of ! , rather than to
form the inverse of ! .

2.7 Norms and condition numbers

The analysis of the effects of rounding error on solutions of systems of
linear equations requires an appropriate measure. This is provided by
the concept of norm defined below. In order to motivate the axioms of
norm stated in Definition 2.6, we note that the set  of real numbers is
a linear space, and that the absolute value function

_ if 0,
N if 0
has the following properties:
0 for any ,and =0 if, and only if, =0;
= for all and all ;
+ 4+ forall and in

The absolute value  of a real number measures the distance between

and 0 (the zero element of the linear space ). Our next definition
aims to generalise this idea to an arbitrary linear space  over the field

of real numbers: even though the discussion in the present chapter
is confined to finite-dimensional linear spaces of vectors ( = ) and
square matrices ( = ), norms over other linear spaces, including
infinite-dimensional function spaces, will appear elsewhere in the text
(see Chapters 8, 9, 11 and 14).

Definition 2.6 Suppose that is a linear space over the field  of
real numbers. The nonnegative real-valued function is said to be a
norm on the space  provided that it satisfies the following azioms:

=0 if, and only if, =01in ;

= for all and all in ;
+ + forall and in  (the triangle inequality).
A linear space , equipped with a norm, is called a normed linear

space.

Remark 2.1 If s a linear space over the field  of complex numbers,
then  in the second axiom of Definition 2.6 should be replaced by
with signifying the modulus of
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Any norm on the linear space = will be called a vector norm.
Three vector norms are in common use in numerical linear algebra: the
1-norm , the 2-norm (or Euclidean norm) , and the -norm

o these are defined below.

Definition 2.7 The 1-norm of the vector = ( ) is
defined by

= (2.32)

Definition 2.8 The 2-norm of the vector = ( ) is

defined by = . In other words,

= (2.33)

Definition 2.9 The -norm of the vector = ( ) is
defined by

oo = INAX (2.34)

When =1, each of these norms collapses to the absolute value,

the simplest example of a norm on =

It is easy to show that and « Obey all axioms of a norm.
For the 2-norm the first two axioms are still trivial to verify; to show
that the triangle inequality is satisfied by the 2-norm requires use of the
Cauchy —Schwarz inequality.

Lemma 2.2 (Cauchy—Schwarz inequality)

(2.35)
1 o $: ,6B#% #8.0 9 ,C *~6#>% , 8
B D9 ,0D 56 E
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Theorem 2.4 (Young’s inequality) Let ? 1,(1?2)+(1 )=1.
Then, for any two nonnegative real numbers and

2
Proof 1If either = 0 or = 0 the inequality holds trivially. Let us
therefore suppose that 0 and 0. We recall that a function
() is said to be convex if

@+(1 @) @()+(1 @ ()

forall @ [0 1], and all and in ; ie., for any and in the
graph of the function between the points ( ( )) and (  ( )) lies
below the chord that connects these two points. Note that the function

e is convex. Therefore, with @=17 and1 @=1 , we get that

=e =e > e +—e =% + —
and the proof is complete. (When ? = = 2 the proof is trivial: as
( ) 0Oalso2 + , and hence the required result.) O

The next step is to establish Holder’s inequality; it is a generalisation
of the Cauchy—Schwarz inequality.

Theorem 2.5 (Ho6lder’s inequality) Let ? ,1?2)+@1 )=1.
Then, for any and , we have

Proof 1If either = 0 or = 0 the inequality holds trivially. Let us
therefore suppose that = 0and = 0, and consider the vectors ~ and
" in with components =~ = and ~ = , respectively,
2=12 . By Young’s inequality,

1
? - ==

Inserting the defining expressions for ~ and ~ into the left-most expres-

sion in this chain, the result follows. |

TH - ol B 7/, #.>0 F 6C @% #0*&
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64 0 # 2
* + " *’+ " * + n
the unit sphere in a normed linear space , with norm , is defined
as the set : =1 . It can be seen from Figure 2.2 that
1 : 1 : o 1

We leave it to the reader as an exercise to show that analogous inclusions
hold in for any 1. (See Exercise 8.)

The unit sphere in a normed linear space  with norm is the
boundary of the closed unit ball = (0) centred at O defined by

= (0) = : 1
Analogously, the open unit ball centred at 0 is defined by
= (0)= : 1
More generally, for 0 and ,
= ()=
is the closed ball of radius centred at ; analogously,
= ()=

is the open ball of radius centred at
Any norm on the linear space ™ of matrices with real entries
will be referred to as a matrix norm. In particular, we shall now



64 2 Solution of systems of linear equations

consider matrix norms which are induced by vector norms in a sense
that will be made precise in the next definition.

Definition 2.10 Given any norm on the space of -dimensional
vectors with real entries, the subordinate matrix norm on the space
=~ of matrices with real entries is defined by

(2.38)

I = max
1

In (2.38) we used o denote 0 , where, for sets ! and =,

| = = | - =

Remark 2.4 Let ™ denote the linear space of matrices with

complex entries over the field  of complex numbers. Given any morm
on the linear space  , the subordinate matrix norm on ™

is defined by

where 0.

It is easy to show that a subordinate matrix norm satisfies the ax-
ioms of norm listed in Definition 2.6; the details are left as an exercise.
Definition 2.10 implies that, for ! .

! ! for all

In a relation like this any vector norm may be used, but of course it is
necessary to use the same norm throughout. It follows from Definition

x

2.10 that, in any subordinate matrix norm on ,
=1

where is the identity matrix.

Given any vector in it is a trivial matter to evaluate each of the
three norms , , «; however, it is not yet obvious how one
can calculate the corresponding subordinate matrix norm of a given ma-
trix ! in > . Definition 2.10 is unhelpful in this respect: calculating

' wvia (2.38) would involve the unpleasant task of maximising the func-
tion ! over {or, equivalently, maximising !
over the unit sphere : =1 ). This difficulty is resolved by
the following three theorems.
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Theorem 2.7 The matriz norm subordinate to the vector norm oo
can be expressed, for an matriz! =( )<= = >, as
| o = max (2.39)

This result is often loosely expressed by saying that the  -norm of a
matriz is its largest row-sum.

Proof Given an arbitrary vector in [pwrite 1l = o, SO that
1 for3=12 . Then,

Now we define

> = max (2.40)
and note that
I o max (I ) max (I )
= = I > =
Hence, ! o~ >.
Next we show that ! o >. To do so, we take to be a vector in

—¢ach of whose entries is 1, with the choice of sign to be made clear
below. In the definition of >, equation (2.40), let + be the value of 2
for which the maximum is attained, or any one of the values if there is
more than one. Then, in the vector we give the element  the same
sign as that of ; if happens to be zero, the choice of the sign of

is irrelevant. With this definition of = we see at once that

! co = mMax = = =>

As o = 1, it follows that
! (%) > oo

which means that ! o >. Hence ! o =>, as required. ]
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Theorem 2.8 The matriz norm subordinate to the vector norm

can be expressed, for an matriz! =( )<= = >, as

! = max

This is often loosely expressed by saying that the 1-norm of a matrix is
its largest column-sum. The proof of this theorem is very similar to that
of the previous one, and is left as an exercise (see Exercise 7). Note that
Theorems 2.7 and 2.8 mean that the 1-norm of a matrix! =( ) < <
is the -norm of the transpose ! =( )< < of the matrix.

Before we state a characterisation of the subordinate matrix 2-norm,
we recall the following definition from linear algebra.

Definition 2.11 Suppose that ! * . A complex number , for
which the set of linear equations

has a nontrivial solution = 0 , is called an eigenvalue
of | ; the associated solution —is called an eigenvector of !
(corresponding to ).

Now we are ready to state our result.

Theorem 2.9 Let! > and denote the eigenvalues of the matriz
== 1% ,2=12 . Then,

! = max
Proof Note first that the matrix = is symmetric, i.e., = = = ; therefore

all of its eigenvalues are real and the associated eigenvectors belong to
 (You may wish to prove this: consult the proof of Theorem 3.1, part
(ii), for a hint.) Moreover, all eigenvalues of = are nonnegative, since if
s an eigenvector of = and is the associated eigenvalue , then

and therefore

Suppose that the vectors m2=12 , are eigenvectors of =
corresponding to the eigenvalues ,2=1 2 . Since = is symmetric
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we may assume that the vectors are orthogonal, i.e., = 0 for
2= 3, and we can normalise them so that =1for2=12

Now choose an arbitrary vector in —pnd express it as a linear com-
bination of the vectors ,2=1 2

= + +
Then,
= = +  +
We may assume, without loss of generality, that

0 )

Using the orthonormality of the vectors ,2=1 2 , we get that
! = = =
= + o+
C+ +)

= (2.41)
for any vector = Hence ! . To prove equality we simply
choose = in (2.41),sothat = = _ =0and =1. O
The square roots of the (nonnegative) eigenvalues of ! ! are referred

to as the singular values of ! . Thus we have shown that the 2-norm
of a matrix ! is equal to the largest singular value of ! .

If the matrix ! is symmetric, then = =! | =1 | and the eigenval-
ues of = are just the squares of the eigenvalues of | . In this special case
the 2-norm of ! is the largest of the absolute values of its eigenvalues.
Theorem 2.10 Given that 1s a subordinate matriz norm on <

1= | =

for any two matrices! and= in >

Proof From the definition of subordinate matrix norm,
I= = max

As
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while if 5 = [0 1], then Cond( ) = + . Indeed, in the latter case,
perturbing =0to = 0 1, leads to a perturbation of the
function value (0)=0to ( )= =- : amagnification by a factor

- 1 in comparison with the size of the perturbation in

When () () w v exhibits large variation as () ranges
through 5 5 it is more helpful to consider a finer, local measure of
conditioning, the absolute local condition number, at 5 ,
of the function , defined by

Cond ( )= sup (+ ) () w (2.43)
DAL 3 v
-
Example 2.6 Let us consider the function : 5 ~, defined
on the interval 5 = (0 ). The absolute local condition number of

at 5 4sCond ( )=1(2 ). Clearly, lim . Cond ( )=+ ,

Although the definitions (2.42) and (2.43) seem intuitive, they are not
always satisfactory from the practical point of view since they depend
on the magnitudes of ( ) and . A more convenient definition of con-
ditioning is arrived at by rescaling (2.43) by the norms of ( ) and
This leads us to the notion of relative local condition number

(+ ) Ow (Jw

cond ( )= sup

[AVAV N S \ \4
(-
where it is implicitly assumed that 0 and () 0.

The next example highlights the difference between the absolute local
condition number and the relative local condition number of

Example 2.7 Let us consider the function : 5 ~, defined
on the interval 5 = (0 ). Recall from the preceding example that the
absolute local condition number of at 5 approaches + as tends

to zero. In contrast with this, the relative local condition number of s
cond ( ) =1 2 for all 5.

You may also wish to ponder the following, seemingly paradoxical,
observation: lim _ cond (sin) =1 andlim _, cond — (sin) = | even
though sin0 = sin- = 0 and Cond (sin) = Cond (sin) = 1.

Since the present section is concerned with the solution of the linear
system ! = | where ! > is nonsingular and , let us






2.7 Norms and condition numbers 71

There is a condition number for each norm; for example, if we use the

2-norm, then A (! ) = ! I'= , and so on. Indeed, the size of the
condition number of a matrix ! > is strongly dependent on the
choice of the norm in . In order to illustrate the last point, let us
consider the unit lower triangular matrix ! > defined by
1 0 0 0 0
11 0 0 0
10 1 0 0
| =
! 1 0 0 1 0 (2.46)
10 0 0 1

and note that its inverse is

1 0 0 O 0
11 0 0 0
—_— 1 0 1 0 0
B 1 0 0 1 0
1 0 0 O 1
Since
' = and 1= =
it follows that A (! ) = . On the other hand,
I =2 and I'7 =2
so that A(! ) = 4 = A (! ) when 1. (A question for the

curious: how does the condition number A (! ) of the matrix ! in (2.46)
depend on the size of ! 7 See Exercise 11.)

It is left as an exercise to show that for a symmetric matrix ! (i.e.,
when! =1, the 2-norm condition number A (! ) is the ratio of the
largest of the absolute values of the eigenvalues of ! to the smallest of
the absolute values of the eigenvalues (see Exercise 9).

6 8 1

1 5 1 g T 7 4@4
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We can now assess the sensitivity of the solution of the system ! =

to changes in the right-hand side vector

Theorem 2.11 Suppose that ! > is a nonsingular matriz,
' = and!' ( + )= + ,with . Then, —pnd

- Al —

Proof Evidently,
=1 and == (+ ) ="

As =0 and ! is nonsingular, the first of these implies that = 0.
Further,

! and (.
The result follows immediately by multiplying these inequalities. O

Owing to the effect of rounding errors during the calculation, the

numerical solution of ! = will not be exact. The numerical solution
may be written 4+ , and we shall usually find that this vector satisfies
the equation! ( + )= + , where the elementsof are very small.

If the matrix ! has a large condition number, however, the elements of
may not be so small. An example of this will be presented in the
next section.

2.8 Hilbert matrix

We consider the Hilbert matrix B of order , whose elements are

1
= — 23=12
2+3 1
This matrix is symmetric and positive definite (i.e., B = B , and
B 0 for all h and therefore all of its eigenvalues are real

and positive (cf. Theorem 3.1, part (ii)). However, B becomes very
nearly singular as increases. Table 2.1 shows the largest and smallest
eigenvalues, and the 2-norm condition number A (B ) of B | for various

values of

175 0 B *K 6#.? | B DC
# 9 6 #0 * FI F 6D 1
Fl , 1 , 40 E, , 6
1 T, , 6 6, , 15

1, 6 G 1 1 , 4
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Table 2.1. Figenvalues and condition number of the Hilbert matriz B

max min 2* +
( % && 6 5
13 % 13
( & 21 % 20
$ 29 28
( ) $ 36 ( 36
'8 , 2* 4+ 9, ! #

Figure 2.4 depicts the logarithm of the condition number A (B ) in
the 2-norm of the Hilbert matrix B against its order, ; the straight line
in our semilogarithmic-scale plot indicates that A (B ), as a function of

, exhibits exponential growth. Indeed, it can be shown that

2+1
AB) ————— as
) -
We now define the vector ~with elements = (3(2+3 1)),
2=12 , chosen so that the solution of ! = | with! =B |
is the vector  with elements =22=12 . We obtain a

numerical solution of the system, using the method described in Section
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2.5 to give the calculated vector + , and then compute the residual

from! ( + )= 4 . The calculation uses arithmetic operations
correct to 15 decimal digits, which is roughly the accuracy used by many
computer systems. The results are listed in Table 2.2.

Table 2.2. Rounding errors in the solution of B = | where B is
the Hilbert matriz of order and = (1 2 )
2 2 2 2
15 11
( ) 15 (& 3
( 15 '
% & 15 )

The relative size of the residual is, in nearly every case, about the size
of the basic rounding error, 10~ . The resulting errors in  are smaller
than the bound given by Theorem 2.11, as might be expected, since
that bound corresponds to the worst possible case. In any case, for the
Hilbert matrix of order greater than 14 the error is larger than the calcu-
lated solution itself, which renders the calculated solution meaningless.
For matrices of this kind the condition number and the bound given
by Theorem 2.11 are so large that they have little practical relevance,
though they do indicate that, due to sensitivity to rounding errors, the
numerical calculations are of unreliable accuracy.

The Hilbert matrix is, of course, a rather extreme example of an ill-
conditioned matrix. However, we shall meet it in an important problem
in Section 9.3 concerning the least squares approximation of a function
by polynomials, where we shall see how a reformulation of the problem
using an orthonormal basis avoids the disastrous loss of accuracy that
would otherwise occur. In the next section, we introduce the idea of
least squares approximation in the context of linear algebra and consider
the solution of the resulting system of linear equations using the QR
algorithm; this, too, relies on the notion of (ortho)normalisation.

2.9 Least squares method

Up to now, we have been dealing with systems of linear equations of

x

the form! = where ! . However, it is frequently the case
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in practical problems (typically, in problems of data-fitting) that the
matrix ! is not square but rectangular, and we have to solve a linear
system of equations! = with! > , with + ; since
there are more equations than unknowns, in general such a system will
have no solution. Consider, for example, the linear system (with + = 3,

=2)

B~ =W

1
1 =
2

by adding the first two of the three equations and comparing the result
with the third, it is easily seen that there is no solution. If, on the
other hand, + , then the situation is reversed and there may be an
infinite number of solutions. Consider, for example, the linear system
(with+ =1, =2)

(31 =1;
any vector = ( 1 3 ) ,with , is a solution to this system.
Suppose that + ; we may then need to find a vector
which satisfies ! 0 in as nearly as possible in some sense.
This suggests that we define the residual vector =1 and require
to minimise a certain norm of in . From the practical point of
view, it is particularly convenient to minimise the residual vector in
the 2-norm on ; this leads to the least squares problem:
Minimise !

This is clearly equivalent to minimising the square of the norm; so, on
noting that

! = ) (! )
the problem may be restated as

Minimise (! ) (! )
Since
(1 ) (! )= 11 2 0y

the quantity to be minimised is a nonnegative quadratic function of the
components of the vector ; the minimum therefore exists, and may
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be found by equating to zero the partial derivatives with respect to the
components. This leads to the system of equations

= =1 where = =1 |
The matrix = is symmetric, and if | has full rank, , then = is non-
singular; it is called the normal matrix, and the system = = is

called the system of normal equations.

The normal equations have important theoretical properties, but do
not lead to a satisfactory numerical algorithm, except for fairly small
problems. The difficulty is that in a practical least squares problem the

matrix ! is likely to be quite ill-conditioned, and = =! ! will then be
extremely ill-conditioned. For example, if
L 0
01
where (0 1), then A (! )= = 1, while
AE)=AC 1)="="A() A()
when 0 1. If possible, one should avoid using a method which

leads to such a dramatic deterioration of the condition number.

There are various alternative techniques which avoid the direct con-
struction of the normal matrix ! ! , and so do not lead to this extreme
ill-conditioning. Here we shall describe just one algorithm, which begins
by factorising the matrix ! , but using an orthogonal matrix rather than
the lower triangular factor as in Section 2.3.

Theorem 2.12 Suppose that ! > where + . Then, ! can be
written in the form
=&
where ' is an upper triangular matriz, and & is an + matric
which satisfies
& & = (2.47)
where  is the identity matriz; see Figure 2.5. If rank(! ) = |

then ' is nonsingular.

Proof We use induction on , the number of columns in ! . The theorem
clearly holds when = 1so that! has only one column. Indeed, writing
for this column vector and assuming that = 0, the matrix & has just
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:T:# 1 =

one column, the vector , and " has a single element, . In

to have
the single element 0, and & to have a single column which can be an

the special case where is the zero vector we can choose

arbitrary vector in whose 2-norm is equal to 1.

Suppose that the theorem is true when = , where 1 +
Consider a matrix ! which has + rows and + 1 columns, partitioned
as

where is a column vector and ! has columns. To obtain the
desired factorisation &' of ! we seek & = (& ) and

such that

Multiplying this out and requiring that & & = , the identity matrix
of order + 1, we conclude that

Ro,

\
Ro,
+

R0
R0, Ro,
=]
~ o~ o~ —~
N
ot
(o=}
—_— =D D D
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These equations show that & ' is the factorisation of | , which exists
by the inductive hypothesis, and then lead to

= &
) && )

where = & & The number is the constant required to
ensure that the vector is normalised.

The construction fails when & & = 0, for then the vector
cannot be normalised. In this case we choose to be any normalised
vector in which is orthogonal in to all the columns of & , for
then & =0 as required. The condition at the beginning of the
proof, that + | is required by the fact that when =+ the matrix
& isa square orthogonal matrix, and there is no vector in 0
such that & =0 .

With these definitions of & and' we have constructed the
required factors of ! | showing that the theorem is true when = +1.
Since it holds when =1 the induction is complete.

Now, for the final part, suppose that rank(! ) = . If " were singular,
there would exist a nonzero vector such that '~ = 0; then,
I =& = 0, and hence rank(! ) , contradicting our hypothesis
that rank(! ) = . Therefore, if rank(! ) = , then *" is nonsingular.

0

The matrix factorisation whose existence is asserted in Theorem 2.12
is called the QR factorisation. Here, we shall present its use in the
solution of least squares problems. In Chapter 5 we shall revisit the idea
in a different context which concerns the numerical solution of eigenvalue

problems.

Theorem 2.13 Suppose that >, with + and rank(! ) =
and let . Then, there exists a unique least squares solution of
the system of equations! = : a vector in which minimises the
function ! over all in . The vector can be obtained
by finding the factors & and ' of ! defined in Theorem 2.12, and then
solving the nonsingular upper triangular system =&

Proof The matrix & has + rows and  columns, with + and it

satisfies

7

& & =
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We shall suppose that + , the case + =  being a trivial special
case with

and hence' =& , as required.
For + now, the vector can be written as the sum of two
vectors:

= +

where s in the linear space spanned by the columns of the matrix &,
and  is in the orthogonal complement of this space in . The vector

is a linear combination of the columns of &, and  is orthogonal to
every column of 82; i.e., there exists such that

- 4 =& & =0 (2.53)
Now, suppose that is the solution of =& , and that is any
vector in . Then,

Ro,

! =

>

Ro,

+ o+ + +
R0, Ro,
Q°> 2°>
R
+
R,
@)

\
Ro,

Ro,
Ro,
Ro,

Ro,

|
R,

(
(
(
(
(

~— ~— ~— ~— ~—

= &AI

where we have used (2.53) repeatedly; in particular, the last equality
follows by noting that & & = . Hence

! = ) & & ( )+ 2 )&

= 0 )+

since & = 0. Thus ! is smallest when 'A( ) = 0, which

implies that = | since the matrix ' is nonsingular. Hence , defined
as the solution of ' =& , is the required least squares solution. []

2.10 Notes

There are many good books on the subject of numerical linear algebra
which cover the topics discussed in this chapter in much greater detail,
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and address questions which we have not touched on here. Without any
attempt to be exhaustive, we single out four texts from the vast litera-
ture. The first two books on the list below are well-known monographs
on the subject, while the last two are excellent textbooks.

, Matriz Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996.
, Accuracy and Stability of Numerical Algorithms, STAM,
Philadelphia, 1996.
Y "## Numerical Linear Algebra, STAM,
Philadelphia, 1997.
$ , Introduction to Numerical Linear Algebra and Opti-
misation, Cambridge University Press, Cambridge, 1989.

As we have already noted in Section 2.2, the invention of the elimi-
nation technique is attributed to Gauss who published the method in
his Theoria motus (1809), although the idea was already known to the
Chinese two thousand years ago. Gauss himself was concerned with pos-
itive definite systems. The method was extended to linear systems with
general matrices by Jacobi. The interpretation of Gaussian elimination
as matrix factorisation is due to P.S. Dwyer: A matrix presentation of
least squares and correlation theory with matrix justification of improved
methods of solutions, Ann. Math. Stat. 15, 82-89, 1944.

The sensitivity of Gaussian elimination to rounding errors was studied
by Wilkinson in Error analysis of direct methods of matrix inversion, J.
Assoc. Comput. Math. 8, 281-330, 1961. The idea of pivoting was used
as early as 1947 by von Neumann and Goldstein. The concept of the
condition number of a matrix was introduced by Turing in Rounding-
off errors in matrix processes, Quart. J. Mech. Appl. Math. 1, 287—
308, 1948. Our treatment of condition numbers follows the textbook of
Trefethen and Bau, cited above.

1 F 5K, K, B# /, #. O 6 $
B F 60 C#.9 6 #.># F 6D
6 1 L1, J G 4 $
6 Ft ¢ 1K, NF , 5
1 )
2 K O 6 " B & #EH0 C>H,
#0.? - D4
3 K 5 B./, #o * % co 6B
o 6DC.9 6 #0>& V4 %D4
4 6 6F B* / , # * O C K 6 #0.0
= , %D4

59 - B*K  #@# : C&K  #@>
D4
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Normed linear spaces play a key role in functional analysis (see, for ex-
ample, K. Yosida, Functional Analysis, Third Edition, Springer, Berlin,
1971, page 30). Here, we have concentrated on finite-dimensional normed
linear spaces over the field of real numbers.

The relevance of norms in numerical linear algebra was highlighted by
Householder in his book The Theory of Matrices in Numerical Analysis,
Blaisdell, New York, 1964.

The idea of least squares fitting is due to Gauss, who invented the
method in the 1790s. However, it was the French mathematician Le-
gendre who first published the method in 1806 in a book on deter-
mining the orbits of comets. Legendre’s method involved a number of
observations taken at equal intervals and he assumed that the comet
followed a parabolic path, so he ended up with more equations than
there were unknowns. Legendre then applied his methods to the data
known for two comets. In an Appendix to the book Legendre described
the least squares method of fitting a curve to the data available. Gauss
published his version of the least squares method in 1809 and, although
acknowledging that it had already appeared in Legendre’s book, Gauss
nevertheless claimed priority for himself. This greatly hurt Legendre,
leading to one of the infamous priority disputes in the history of math-
ematics. A recent exhaustive monograph on numerical algorithms for
least squares problems is due to A. Bjork: Numerical Methods for Least
Squares Problems, STAM, Philadelphia, 1996.

The version of the QR factorisation considered here is the reduced
version, following the terminology in Chapter 7 of Trefethen and Bau.
In the full version of the QR factorisation for a matrix ! ) we
have! = &' , where & ! > (cf. Chapter 5).

In a footnote to Definition 2.12 we mentioned the Moore-Penrose
generalised inverse !  of a matrix ! * . 1 can be defined
through the singular value decomposition of ! (cf. L.N. Trefethen and D.
Bau, III: Numerical Linear Algebra, STAM, Philadelphia, 1997). Recall
that the singular values of ! are the square roots of the (nonnegative)
eigenvalues of the matrix ! ! .

1o , O B> 7 6 #0 S % C K 6 #00*
- 1 %D 1 1 , 4
o N 6 6F1 4 , T(C+ 5 1

29 §7 : B#. #e> 9 , C# K 6 #.%*
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Theorem 2.14 (Singular value decomposition) Let ! O

then, there exist 7 DY * and C > such that

I =7%C
where Y is a diagonal matriz whose diagonal entries, D ,2=1 2 ,
are the singular values of! , 7 7 = andC C = | with denoting
the identity matrix.

The Moore-Penrose generalised inverse of the diagonal matrix 3
> is defined as the diagonal matrix X > whose diagonal
entries are

D~ ifD =0
D =
0 ifD =0.
The generalised inverse ! > of a matrix ! > with singular

value decomposition ! =7 3C is defined by

I =CxX 7
In the special case when + = and ! > is nonsingular, the
singular values of ! are all nonzero and therefore ¥ = ¥~ . Hence,
also, ! =17 | which then justifies the use of the terminology ‘gener-
alised inverse’ for the matrix |  defined above.
Exercises
2.1 Let 2. Given the matrix! =( ) >, the permutation
matrix & > reverses the order of the rows of ! , so that
(&) = - . I ™ is a lower triangular matrix,

what is the structure of the matrix & & ?

Show how to factorise !
7 > is unit upper triangular and > is lower trian-
gular. What conditions on ! will ensure that the factorisation
exists? Give an example of a square matrix | which cannot be
factorised in this way.

x

in the form ! =7 | where

2.2 Let 2. Consider a matrix ! > whose every leading
principal submatrix of order less than is nonsingular. Show
that ! can be factored in the form ! = 57 ., where >
is unit lower triangular, 5 > is diagonal and 7 > s

unit upper triangular.
If the factorisation ! = 7 is known, where is unit lower
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24

2.5

2.6
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triangular and 7 is upper triangular, show how to find the fac-
tors of the transpose !
Let 2 and suppose that the matrix ! > isnonsingular.

Show by induction, as in Theorem 2.3, that there are a permuta-

x x

tion matrix % , a lower triangular matrix , and

a unit upper triangular matrix 7 > such that %! = 7
By finding a suitable 2 2 matrix ! , or otherwise, show that
this may not be true if ! is singular.

x

The lower triangular matrix , 2, is nonsingular,

and the vector is such that =0 2=1 2 , with
1 . The vector is the solution of = .
Show, by partitioning , that =0 3=12 . Hence

give an alternative proof of Theorem 2.1(iv), that the inverse of
a nonsingular lower triangular matrix is itself lower triangular.
> | define the matrix = * in

which the first columns are the columns of ! | and the last

Given a matrix !

columns are the columns of the identity matrix . Consider the
following computational scheme. Treat the rows of the matrix
= in order, so that 3 =1 2 . Multiply every element in
row 3 by the reciprocal of the diagonal element, 1 ; then,
replace every element which is not in row 3, so that 2= 3,
by .
Show that the result is equivalent to multiplying = on the
left by a sequence of matrices. Explain why, at the end of the
computation, the first columns of = are the columns of the
identity matrix , and the last columns are the columns of
the inverse matrix ! = . Give a condition on the matrix ! which
will ensure that the computation does not break down.

Show that the process as described requires approximately
2 multiplications, but that, if the multiplications in which one
of the factors is zero are not counted, the total is approximately

Use the method of Exercise 5 to find the inverse of the matrix

Il
W = N

4
0
1

N W N
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2.8

2.9

2.10

2 Solution of systems of linear equations

Suppose that for a matrix ! ol

> 3=12
Show that, for any vector ,
¢ ) >

Find a nonzero vector for which equality can be achieved, and
deduce that

! = max

(i) Show that, for any vector = ( ) )
. and oo

In each case give an example of a nonzero vector for which
equality is attained. Deduce that . . Show
also that e

(ii) Show that, for any matrix ! ,

' w ' and ! + ! &

In each case give an example of a matrix ! for which equality
is attained. (See the footnote following Definition 2.12 for the
meaning of ! | ! and ! o when! )

Prove that, for any nonsingular matrix ! >

All)= —

where  is the smallest and is the largest eigenvalue of the
matrix | .

Show that the condition number A (&) of an orthogonal ma-
trix & is equal to 1. Conversely, if A (! ) =1 for the matrix ! |

show that all the eigenvalues of ! | are equal; deduce that !

is a scalar multiple of an orthogonal matrix.

Let ! > . Show that if is an eigenvalue of ! ! | then
0 ! !

provided that the same subordinate matrix norm is used for
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2.14
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both ! and ! . Hence show that, for any nonsingular
matrix ! |

Al) Al)AS(M)

For the matrix defined by (2.46) write down the matrix ! ! .
Show that any vector = 0 is an eigenvector of | | with
eigenvalue = 1, provided that =0and + + =0.
Show also that there are two eigenvectors with = =
and find the corresponding eigenvalues. Deduce that

Al)y=-( +1) 1+ 1 ——

Let = > and denote by the identity matrix of order
Show that if the matrix = is singular, then there exists a
nonzero vector such that (=) = 0; deduce that
= 1, and hence that, if ! 1, then the matrix I is
nonsingular.
Now suppose that ! * with ! 1. Show that

( )™ = +1( )~
and hence that
( 1)~ 1+ ! ( 1)~

Deduce that

1
-
O
Let ! > be a nonsingular matrix and =1 Suppose
that! = and(! +! )( + )= ,andthat ! = | 1.

Use the result of Exercise 12 to show that

1 1= 1
Suppose that ! > is a nonsingular matrix, and =
Given that ! = and!( + )= 4 , Theorem 2.11
states that
— Al )—
By considering the eigenvectors of ! ! | show how to find vec-
tors and for which equality is attained, when using the

2-norm.
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2.15 Find the QR factorisation of the matrix

9 6
I = 12 8
0 20
and hence find the least squares solution of the system of linear
equations
9 6 = 300
128 = 600

20 = 900
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Special matrices

3.1 Introduction

In this chapter we show how one can modify the elimination method for
the solution of ! = when the matrix ! has certain special proper-
ties. In particular when ! > is symmetric and positive definite
the amount of computational work can be halved. For matrices with a
band structure, having nonzero elements only in positions close to the
diagonal, the efficiency can be improved even more dramatically.

3.2 Symmetric positive definite matrices

Definition 3.1 The matriz! =( ) ™ s said to be symmetric
if = for all 2 and 3 in the set 1 2 sie, if ! =1 . The
set of all symmetric matrices ! > will be denoted by < . A
matriz ! > s called positive definite if

! 0
for every vector = 0.
Example 3.1 Consider the matriz ! x

! =
6

and a vector = ( ) — 0.
Clearly, I = +( +) + 6 . The quadratic form on
the right-hand side is positive for all real numbers | such that

87
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=( ) =(00) =0if, and only if,
0 6 Oand ( + ) 46

We see that if ! > is positive definite, then the diagonal elements of
I are positive. Further, noting that the third inequality can be rewritten
as

( ) 4(6 ) =4 det(!)
we deduce that the determinant of a positive definite matrix ! is
positive. This, of course, is still true in the special case when ! -,
i.e., when =

The next theorem extends the observations of the last example to any

symmetric positive definite matrix ! x

Theorem 3.1 Suppose that 2and! =( ) > s positive
definite; then:
(i) all the diagonal elements of ! are positive, that is, 0, for
2=12 ;

(ii) all the eigenvalues of ! are real and positive, and the eigenvectors
of ! belong to

(iii) the determinant of ! is positive;

(iv) every submatriz = of ! obtained by deleting any set of rows and
the corresponding set of columns from ! is symmetric and pos-
itive definite; in particular, every leading principal submatriz is
positive definite;

(v) forall2and 3 in 1 2 such that 2= 3;

(vi) the element of ! with largest absolute value lies on the diagonal;

(vil) if s the largest of the diagonal elements of | , then

23 12
Proof (i) Consider the vector with only one nonzero element,
in position 2 1 2 . Since ! is positive definite and it
follows that = | 0, and therefore 0.
(ii) Suppose that is an eigenvalue of I and let 5 0

denote the associated eigenvector. Further, let =~ denote the vector in
—whose Zh element is the complex conjugate of the Zh element of
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,2=12 . As! = it followsthat ~ ! = (7 ), and
therefore, using the symmetry of ! |

b=t "=(C 1t ) =(C ) =067
Complex conjugation then yields ~ ! = (= ),andhence (= )=
(T ). As =0,it follows that = ;ie., isa real number.

The fact that the eigenvector associated with  has real elements
follows by noting that all elements of the singular matrix ! are
real numbers. Therefore, the column vectors of ! are linearly
dependent in . Hence there exist real numbers such that
(! ) =0, where =( ) .

Finally, as! = with and we have that | =

. Since = ! and ! is positive definite, is the ratio
of two positive real numbers and therefore also real and positive.

(iii) This follows from the fact that the determinant of ! is equal to
the product of its eigenvalues, and the previous result. Indeed, since !
is symmetric, there exist an orthogonal matrix " and a diagonal matrix
A, whose diagonal elements are the eigenvalues ,2=1 2 ,of 1)
such that I =" A" =" 7 A" . By the Binet—Cauchy Theorem (see
Chapter 2, end of Section 2.3),

det(! ) = det(" 7 ) det(A) det(" )
1 "
= Tt det(A) det(" )
= det(A) = 0

(iv) Consider the vector —with zeros in the positions corre-
sponding to the rows which have been deleted. Then,

where = is the submatrix of ! containing the rows and columns which
remain after deletion, and is the vector consisting of the elements of

which were not deleted. Since the expression on the left is positive,
the same is true of the expression on the right, for all vectors except
the zero vector. Therefore = is positive definite.

(v) By the previous result the 2 2 submatrix consisting of rows and
columns ; and : of ! is positive definite, and its determinant is therefore
positive.

(vi) This follows from the previous result, since it shows that
cannot exceed the greater of and

(vii) This follows at once from the previous result. O
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The converses of two of these results are also true:

(1) If all the eigenvalues of the symmetric matrix ! > are

positive, then ! is positive definite;
(i) If the determinant of each leading principal submatrix of a matrix
! > is positive, then ! is positive definite.

The proof of the second result is involved and will not be given here;
see, however, Example 3.1 for the case of = 2. The proof of the first
statement, on the other hand, is quite simple and proceeds as follows.

Since ! > is symmetric, it has a complete set of orthonor-

mal eigenvectors in pand the corresponding eigenvalues
are all real. Given any vector it can be expressed as
where ,2=12 , and —+ + = 0. Since
= ,2=12 , it follows that
! =
As =0 for 2= 3 and =1, we deduce that
I =
min 0

since min 0; therefore ! is positive definite.

For a symmetric positive definite matrix ! we can now obtain an LU
factorisation ! = 7 in which 7 =

Theorem 3.2 Suppose that 2 and ! > is a positive definite
matriz; then, there exists a lower triangular matriz > such that

This is known as the Cholesky factorisation of! .

19 %4 O 44K )
5 6 #00 & 44
2 pop  -§: "6 B#.&>C#@#.D 9 , 6 S, 55
6 56 %l o, 7 1 )% 0
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Proof Since! is symmetric and positive definite, all the leading principal
submatrices of ! are positive definite, and hence by Theorem 2.2 the
usual LU factorisation exists, with

= 7

> a unit lower triangular and 7 > an upper trian-

gular matrix. In this factorisation the product of the leading principal
submatrices of and 7  of order is the leading principal subma-
trix of I of order , 1 . Since the determinant of this submatrix
is positive and all the diagonal elements of are unity, it follows
that

0 =12
Thus all the diagonal elements of 7 are positive. If we now define 5

to be the diagonal matrix with elements 6 = ,2=12 , we
can write

= 7 =( 5)577 )=7

where now < = . The symmetry of the matrix ! shows that

so that

In this equality the left-hand side is upper triangular, and the right-
hand side is lower triangular, and hence both sides must be diagonal.
Therefore, 7 = 5™ | where 5 s a diagonal matrix; but 7 and
have the same diagonal elements, so 5 == and 7 =

The same argument shows that and are unique, except for the
arbitrary choice of the signs of the square roots in the definition of the
diagonal matrix 5 . If we make the natural choice, taking all the square
roots to be positive, then the diagonal elements of are positive, and
the factorisation is unique. |

23 3/ #C 5 ~ D 9 6#.’#@@ C
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In practice we construct the elements of  directly, rather than form-
ing and 7  first. This is done in a similar way to the LU factori-
sation. Suppose that 2 3; we then require that

- << 1 2 3 (3.1)

Note that we have used the fact that () =< ; the sum only extends
up to = 2since is lower triangular. The same equation will also hold
for 2 3, since ! is symmetric. For 2= 3, equation (3.1) gives

< = < = < 12 (3.2)
As ! is a positive definite matrix, 0 and therefore < is a positive
real number. Further, as we have seen in the proof of the preceding
theorem, < 0,2=2 3 . We find similarly that
) _
<= < < 1 2 3 (3.3)

These equations now enable us to calculate the elements of  in succes-
sion. Foreach 2 1 2 1, we first calculate < from (3.2), and
then calculate < < < from (3.3). Finally, we compute <
using (3.2).

As, by hypothesis, the matrix ! is positive definite, the re-
quired factorisation exists, so we can be sure that the divisor < in (3.3),
and the expression in the curly brackets in (3.2) whose square root is
taken, will be positive. Thus, (3.2) implies that

x

< = max < 2=23

The elements of the factor  cannot therefore grow very large, and no
pivoting is necessary.

The evaluation of < from (3.2) requires 2 1 multiplications, 2 1
subtractions and one square root operation, a total of 22 1 operations.
The calculation of each < from (3.3) also requires 22 1 operations.
The total number of operations required to construct is therefore

(22 )= (22 DA+ 2=-( +1)2 +1)
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For large  the number of operations required is approximately -
which, as might be expected, is half the number given in Section 2.6 for
the LU factorisation of a nonsymmetric matrix.

3.3 Tridiagonal and band matrices

As we shall see in the final chapters, in the numerical solution of bound-
ary value problems for second-order differential equations one encounters
a particular kind of matrix whose elements are mostly zeros, except for
those along its main diagonal and the two adjacent diagonals. Matri-
ces of this kind are referred to as tridiagonal. In order to motivate the
definition of tridiagonal matrix stated in Definition 3.2 below, we begin
with an example which is discussed in more detail in Chapter 13.

Example 3.2 Consider the two-point boundary value problem
d
-— +; = 01
i) () 01)
© =0 @@®)=0
where ; and  are continuous functions of  defined on the interval [0 1].

The numerical solution of the boundary value problem proceeds by se-

lecting an integer 4, choosing a step size =1 , and subdividing
the interval [0 1] by the points = |, =01 . The numerical
approximation to (), the value of the analytical solution at the
point = | is denoted by E . The values E are obtained by solving
the set of linear equations
E 2E +E -
+()E=0(0)
for =12 1, together with the boundary conditions
E=0 E =0
Equivalently,

E- + E+ E

|
I
—
bo
—

E =0 E =0
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where
- =1 =2 4i() 6= ()
for =12 1.
Clearly, for 1 1, the th equation in the linear system above
involves only three of the 1 unknowns: E — , E and E

The example motivates the following definition of a tridiagonal (or
triple diagonal) matrix.

Definition 3.2 Suppose that 3. A matriz F = (G) > s said
to be tridiagonal if it has nonzero elements only on the main diagonal
and the two adjacent diagonals; i.e.,

G=0 i 2 3 1 23 12
Such matrices are also sometimes called triple diagonal.

It is easy to see that in the LU factorisation process of a tridiagonal

matrix F > | without row interchanges, the unit lower triangular
x x

matrix and the upper triangular matrix 7 each have

only two elements in each row. Writing F in the compact notation

the factorisation may be written F = 7 where

and
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with the convention that the missing elements in these matrices are all

equal to zero. It is often convenient to define = 0 and = 0.

Multiplying and 7 shows that = | and that the elements < and
can be calculated from

< = — = < — 3:2 3 (37)

starting from =
Let us suppose that our aim is to solve the system of linear equations
F = , where the matrix F > is tridiagonal and nonsingular, and
. Having calculated the elements of the matrices and 7 in the
LU factorisation F = 7 using (3.7), the forward and backsubstitution

are then also very simple. Letting =7 , the equation = gives
= (3.8)
= < _ 3=23 (3.9
and finally from 7 = we get
= (3.10)
( ) 3= 1 2 1 (3.11)

The LU factorisation of a tridiagonal matrix requires approximately
3 operations. The forward and backsubstitution together involve ap-
proximately 5 operations. Thus, the whole solution process requires
approximately 8 operations. The total amount of work is therefore
far less than for a full matrix, being of order  for large , compared
with -  for a full matrix. The method we have described is a minor
variation on what is often known as the Thomas algorithm.

So far we have assumed that pivoting was not necessary; clearly any
interchange of rows will destroy the tridiagonal structure of F. However,
it is easy to see that the only interchanges required will be between two
adjacent rows.

Theorem 3.3 Suppose that 3 andF > is a tridiagonal matriz;
then, there exists a permutation matriz % > such that

%! = 7 (3.12)

1o = 6 O! 6 , #0> $

5 6 y =N , - 6 O

6 " , , (61°] , 4

6P N, 1 /5 1! 4 S404

- ) # ./ C + , 4

T 5 6 Yt (D e
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by the condition of strict diagonal dominance (3.13), which then shows

that . holds. That completes the inductive step.

We have thus proved that forall 3=1 2 . In par-
ticular, we deduce that = 0 for all 3 12 ; hence the LU
factorisation F = 7 defined by (3.7) exists. Further,

det(F) =det( )det(7)=det(7) = =0
so F is nonsingular.

The formula (3.7) and the inequalities ,3=12 , NOW
imply that

+ < _
= + _ _
+ 3=12 (3.15)

so the elements  cannot grow large, and rounding errors are kept under
control without pivoting. O

It is easy to see that the same result holds under the weaker assump-
tion that the matrix is diagonally dominant, but not necessarily strictly
diagonally dominant, provided that we also require that all the elements

,3=12 1, are nonzero (see Exercise 5).

Note also that the matrix constructed in Example 3.2 satisfies this
condition, provided that the function ; is nonnegative; this often holds
in practical boundary value problems.

If the matrix F > is symmetric and positive definite, as well as
tridiagonal, it can be factorised in the form F = , where > s
lower triangular with nonzero elements only on and immediately below
the diagonal. If we use the notation 6 = <, 9 =< _ we easily find
from (3.2) and (3.3) that the elements can be calculated in succession
from the following formulae:

6 =
9 = _ 6_ 6 = 9 2=23

This calculation involves about 4 operations. Including also the work
required by the forward and backsubstitution stages, the complete so-
lution of F = will be found to involve about 10 operations. For
the tridiagonal matrix the Cholesky factorisation method thus requires
more work for the complete solution than the Thomas algorithm; in this
case there is no particular advantage in exploiting the symmetry of the
matrix in this way.
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& 5 > &%

More generally, a system of equations may often involve a matrix of
band type.

Definition 3.4 = ™ is a band matrix if there exist nonnegative
integers ? and such that =0forall23 12

such that ? 2 3 or 3 2 The band is of width ?+ + 1, with
? elements to the left of the diagonal and elements to the right of the
diagonal, in each row. Such a matriz is said to be Band(? ).

Thus, for example, a tridiagonal matrix is Band(1,1), and an
lower triangular matrix is Band(  1,0).

An example of a Band(1,2) matrix ! is shown in Figure 3.1,
where each nonzero element in the matrix is identified by an asterisk.

x

In addition to its main diagonal, the matrix has nonzero elements on its
lower subdiagonal and two of its superdiagonals.

It is easy to see that, provided that no interchanges are necessary,
such a band matrix can be written in the form = = 7 |, where is
Band(?,0) and 7 is Band(0, ) (see Exercise 7). It is also fairly simple to
count the operations required in this calculation; the result is approx-
imately proportional to ? (? + 2 ) when is moderately large. The
most common situation has = ?, and then the number of operations
is approximately proportional to ? . As in the tridiagonal case, this is

much smaller than ~ when ? and are fairly small compared with

3.4 Monotone matrices

If a positive real number is increased by 0 to + , then its
reciprocal ~ decreases to ( + )~ . It is not usually true, however,
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that if we increase some or all of the elements of a nonsingular matrix

> will decrease.

! >, then the elements of the inverse ! ~
This useful property holds for the class of monotone matrices defined
below.

The discussion in this section is not related to Gaussian elimination
and LU factorisation, but it is of relevance in the iterative solution of
systems of linear equations with monotone matrices which arise in the
course of numerical approximation of boundary value problems for cer-

tain ordinary and partial differential equations.

Definition 3.5 The nonsingular matriz ! > 4s said to be mono-
tone if all the elements of the inverse ! = are nonnegative.

Example 3.3 Suppose that and 6 are positive real numbers, and and
are nonnegative real numbers such that 6 . Then,

6

is a monotone matrixz. This is easily seen by considering the inverse of
the matriz ! |

- 1 6
' 6
and noting that all elements of ! ~— are nonnegative.

Next we introduce the concept of ordering in and >
Definition 3.6 For vectors and in we use the notation
to mean that

2=12

In the same way, for matrices! and = in = we write

| =

to mean that
23=12

The sign  is read ‘succeeds or is equal to’ or, simply, ‘is greater than
or equal to’.
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Note that, given two arbitrary matrices ! and = in ™ | in general
none of ! =, ! == and = ! will be true. Therefore the relation

is a partial, rather than a total, ordering on > ; the same is true
of the ordering on

Theorem 3.5 (i) Suppose that the nonsingular matriz ! s
monotone, , and the vectors and in are the solutions
of
o= I =

respectively. If , then

(ii) Suppose that! and = are nonsingular matrices in > and that
both are monotone. If ! =, then =" =
Proof (i) Since the elements of | = are nonnegative and

=17 )

the result follows from the fact that all elements of the vector ! = ( )

appearing on the right-hand side of this equality are nonnegative.
(i) Since ! = and all the elements of =~ are nonnegative, it
follows that

In the same way, since all the elements of ! = are nonnegative, it follows
that

=7 =="11 = | —
as required. O

The following theorem will be useful in Chapter 13.

Theorem 3.6 Suppose that 3 and F > is a tridiagonal
matrixz of the form (8.4) with the properties
0 2=23 0 2=12 1
and
+ + 0 2=12
where we have followed the convention that =0, = 0; then, the

matriz F is monotone.
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Proof Let 12 . Column of the inverse F~ is the solution
of the linear system F = , where is column  of the identity
matrix of size |, having a single nonzero element, 1, in row . By
applying the Thomas algorithm to this linear system, it is easy to deduce
by induction from (3.7) that < 0, 0 and 0 for all 3; the

argument is very similar to the proof of Theorem 3.4. It then follows
from (3.8) and (3.9) that, in the notation of the Thomas algorithm, the
vectors and  have nonnegative elements. Hence column  of the
inverse F~ has nonnegative elements. Since the same is true for each

12 , it follows that F is monotone. 0

3.5 Notes

Symmetric systems of linear algebraic equations arise in the numerical
solution of self-adjoint boundary value problems for differential equa-
tions with real-valued coefficients.

For further details on the Cholesky factorisation, the reader may con-
sult any of the books listed in the Notes at the end of Chapter 2, partic-
ularly Chapter 10 of N.J. Higham, Accuracy and Stability of Numerical
Algorithms, STAM, Philadelphia, 1996.

Classical iterative methods for the solution of systems of linear equa-
tions with monotone matrices are discussed, for example, in

% & , Matrix Iterative Analysis, Prentice—Hall, Engle-
wood Cliffs, NJ, 1962.

A more recent reference on iterative algorithms for linear systems is

“C D* " Iterative Solution Methods, Cambridge University
Press, Cambridge, 1996.

In particular, Chapter 6 of Axelson’s book considers the relevance of
monotone matrices in the context of iterative solution of systems of
linear equations.

Theorem 3.6 is a slight variation on the following general result.

Theorem 3.7 A sufficient condition for > to be a monotone
matriz is that ! is an , that is, (a) 0 for all 2 3
12 such that 2= 3, and (b) there exists a vector with

positive elements such that all elements of ! are positive.
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3.3

3.4

8 Special matrices

Exercises

Find the Cholesky factorisation of the matrix

4 6 2
'= 6 10 3
2 3 5
Use the method of Cholesky factorisation to solve the system of
equations
2 +2 = 4
2 +5 3 = 7
2 3 +6 = 10
Let 3. The tridiagonal matrix F has the diagonal
elements

F =2 2=12
and the off-diagonal elements
F =F = 1 2=12 1

In the factorisation F = 7 | where > is unit lower

> is upper triangular, show that

triangular and 7

and find expressions for the elements of 7. What is the deter-
minant of F?

Let 3 and 1 . Define the vector with
elements given by
1 +1 ) 2=1
(+1 2 2= +1
Evaluate , the inner product of the vector with column 3

of the matrix F defined in Exercise 3. (The inner product !
of two vectors  and in is defined as the real number
.) Hence give expressions for the elements of the inverse
matrix F~ | and verify that this inverse is symmetric. Find the
-norm of the inverse, F~ o, and show that the condition
number of F is
1

Aoo(F)zi( +1) odd

What is the condition number A (F) when is even?
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Given that 3, in the notation of Theorem 3.4 suppose that

+ 3=12
and
0 3=12 1
with the convention that = 0 and = 0. Show that the

factorisation F = 7 exists without pivoting, and can be con-
structed by the Thomas algorithm. Give an example of a matrix
F which satisfies these conditions, except that = 0 for some
12 1 and such that F is singular and cannot be
written in the form F = 7 without pivoting.
Let 3 and suppose that the matrix F > is tridiagonal.
Show that there exists a permutation matrix % >
that

such

%! = 7

x

where is unit lower triangular with at most two

nonzero elements in each row, and 7 > is upper trian-
gular with at most three nonzero elements in each row.

Suppose that the matrix = is Band(?, ), and that there exists

a factorisation = = 7 without row interchanges. Show that

is Band(?,0) and 7 is Band(0, ).

Suppose that 4, that the matrix ! ™ is Band(3,3),

and has the LU factorisation ! = 7 , so that > s

Band(3,0) and 7 * is Band(0,3). Suppose also that
=0, =0for2=12 2. By considering

and < , or otherwise, show that in general the elements
< and are not zero.
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Simultaneous nonlinear equations

4.1 Introduction

In Chapter 1 we discussed iterative methods for the solution of a single
nonlinear equation of the form ( ) = 0 where is a continuous real-
valued function of a single real variable. In Chapters 2 and 3, on the
other hand, we were concerned with direct (as opposed to iterative)
methods for systems of linear equations. The purpose of the present
chapter is to extend the techniques developed in Chapter 1 to systems of
simultaneous nonlinear equations for functions of several real variables.
We shall concentrate on two methods: the generalisation of simple itera-
tion, usually referred to as simultaneous iteration, and Newton’s method.

Given that = ( ) , as in Chapters 2 and 3 we denote
by « the -norm of defined by

co — 1Max

Throughout the chapter, will be thought of as a linear space equipped
with the -norm; with only minor alterations all of our results can be
restated in the ?-norm with ? [1I ) on replacing w by
throughout. We begin with some basic definitions which involve the
concept of open ball defined in Section 2.7.

Let ; the open ball in (with respect to the -norm) of
radius 0 and centre is defined as the set
0= e

A set 5 is said to be an open set in if for every 5 there

exists = () Osuchthat= () 5 (see Figure 4.1). For example,

any open ball in is an open set in . Given , any open set

104
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x

Example 4.2 Let us suppose that ! and . On letting
() = I we deduce that the problem of solving the system of
simultaneous linear equations considered in Chapters 2 and 8 can be

restated in the form: find such that ( )=0.

Let us assume that we have transformed the equation ( ) = 0 into an
equivalent form ( )= , where : is a continuous function,
defined on the closed subset 5 ,such that (5) 5. For example,
one can choose ( ) = (), with a suitable parameter.
By ‘equivalent’ we mean that 5 satisfies ( ) = 0 if, and only if,

()= . Any 5 such that ( )= is called a fixed point of the
function in 5. Thus the problem of finding a solution 5 to the
equation () = 0 has been converted into one of finding a fixed point
in 5 of the function . We embark on the latter task by considering the
natural extension to of the simple iteration discussed in Section 1.2
for the solution of the scalar nonlinear equation ( )=

Definition 4.1 Suppose that : is a function, defined and

continuous on a closed subset’5 of , such that (5) 5. Given that
5, the recursion defined by

= ( ) =012 (4.3)

is called a simultaneous iteration. For =1 the recursion (4.3) is

Just the simple iteration considered in (1.3).

Note that here we use the superscript as the sequence index; follow-
ing the convention adopted in Chapters 2 and 3, we reserve subscripts
for labelling the entries of vectors. Thus is entry 2 of the vector

, the th member of the sequence (). The motivation behind
the definition of the simultaneous iteration (4.3) is, of course, our hope
that, under suitable conditions on and 5, the sequence ( ) will
converge to a fixed point of

Two remarks are in order at this point. First, it is easy to show that if
a sequence of vectors ( ) converges in  to inthe norm o, then
it also converges to this same limit in the norm forany ? [1 ).
To see this, note that

oo oo (4.4)






110 4 Simultaneous nonlinear equations

Any function that satisfies a Lipschitz condition on a set 5 is con-
tinuous on 5. For let 5 and 0; then, on defining = , we
deduce from (4.5) that if oo for some 5, then

() () e oo

It follows from (4.4) that if satisfies a Lipschitz condition on 5 in
the -norm then it also does so in the ?-norm for any ? [1 ), and
vice versa. However, in general, the size of the constant may depend
on the choice of norm. Specifically, if is a contraction on a set 5 in the

-norm (i.e., (4.5) holds with 1), then need not be a contraction
in the ?-norm, unless ~ . (See Exercise 1.) Conversely, if is a
contraction on 5 in the ?-norm for some ? [1 ), it does not follow
that is a contraction on 5 in the -norm.

For example, suppose that : is the linear function defined
by ( )=! ,where! isthe2 2 matrix
, _ 34 13
' 0 34
This function satisfies a Lipschitz condition on in for any
? [1 ], and if is a Lipschitz constant for in the ?-norm, then
I, in the subordinate matrix norm. It is easy to see that ! =
! « = 13 12, and a small calculation gives ! = 0935 to three

decimal digits. Hence the function is a contraction in the 2-norm, but
not in the 1- or  -norm.

Our next result is a direct generalisation of Theorem 1.3 formulated
in Chapter 1.

Theorem 4.1 (Contraction Mapping Theorem) Suppose that 5
is a closed subset of , : is defined on'5, and (5) 5.
Suppose further that is a contraction on 5 in the -norm. Then,
has a unique fized point in'5 , and the sequence ( ) defined by (4.3)
converges to  for any starting value 5.

Proof Assuming that has a fixed point in 5, the uniqueness of the
fixed point is easy to show: for suppose that is also a fixed point of
in 5. Then, by (4.5),






112 4 Simultaneous nonlinear equations
for all 2. We then deduce by induction that
T - oo 1 (4.8)

Suppose that + and are positive integers and + + 1. Then, by
repeated application of the triangle inequality in the -norm and using
(4.8), we have that

w = T+ +( ) oo
T et oo
( 4+ + ) oo
= ( =7+ +1) oo
1 - (4.9)
1

where, in the transition to the last line, we made use of the fact that the
geometric series 1 + + 4+, with (0 1), sums to 1 (1 ).

Aslim _o =0, it follows from (4.9) that () is a Cauchy se-
quence in  ; that is, for each 0 there exists = () (defined by
(4.6) above) such that

oo + = () (4.10)

Any Cauchy sequence in is convergent in  ; consequently, there
exists such that = lim _ o . Further, since satisfies
a Lipschitz condition on 5, the discussion in the paragraph following
Definition 4.2 shows that is continuous on 5. Hence, by Lemma 4.2,

= lim =lim ( )= lim = ()
which proves that is a fixed point of
It remains to show that 5. This follows from Lemma 4.1 since
() 5, =lm e and 5 is closed. O

As a byproduct of the proof, we deduce from (4.7) that, given a posi-
tive tolerance , one can compute an approximation to the unknown
solution using (4.3) in no more than = () iterations so that the
approximation error , measured in the -norm, is less than ;
the integer () is defined by (4.6).

The next theorem relates the constant from the Lipschitz condition
(4.5) to the partial derivatives of |, giving a more practically useful
sufficient condition for convergence.
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for 2=1 . Now o forall3 1 , and so
(4.12) gives

() O . a0 )

o #( F(1 1)) e
for all 2=1 . Consequently, for any = (),
oo # (G 1 oo oo
() () max #(G+(1 Q)

-(141) - (4.13)

due to (4.11), given that G +(1 G = ( )forall G [0 1]. It follows
that satisfies a Lipschitz condition (4.5), in the -norm, on the closed
ball = ( ) with = -(1+1) 1. Furthermore, on selecting = in
(4.13) we get that

() o= () () oo

for all = (). Hence, (= (1)) = (). The convergence of the
iteration (4.3) to , for an arbitrary starting value = (), now
follows from Theorem 4.1. UJ

We close this section with an example which illustrates the application
of the method of simultaneous iteration to the solution of a system of
nonlinear equations.

Example 4.4 Let us consider, as in Example 4.1, the system of two

simultaneous nonlinear equations in the unknowns  and , defined by
+ 1 =0
5 +21 9 =0

Here =( ) and = ) with
()= + 1
( ) = 5 +21 9

Let us suppose that we need to find the solution of the system ( )=0
in the first quadrant of the ( )-coordinate system.

Of course, the example is a little artificial, since we already know from
Example 4.1 that = ( 3 21 2) is the required solution. In what
follows, however, we proceed as if we knew nothing about the location
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for all and in 5. Therefore, also,

() () e oo
with
= max #() o 1 (4.15)

With our choice of 5, (4.15) holds with =max 075 0565 =075 1.
Furthermore, it is easy to check that (5) 5. Thus we deduce from
Theorem 4.1 that has a unique fixed point in 5 — we call this fixed
point , for the sake of consistency with the notation in Example 4.1;
moreover, the sequence () defined by (4.14) converges to
After all these preparations you are now probably curious to see
what the successive iterates look like: Table 4.1 gives a flavour of the
behaviour of the sequence (), with the starting value chosen as
= (05 03) . You can see that after 15 iterations the first 5 decimal
digits have settled to their correct values.

4.3 Relaxation and Newton’s method

We now go on to apply the ideas developed in the previous section to
the construction of an iteration which converges to a solution of the
equation ( ) =0, where : . One way of constructing such
a sequence is by relaxation.

Definition 4.4 The recursion

= ( ) =012 (4.16)
where 18 gwen and where =0 s a constant, is called simul-
taneous relaxation.

Suppose that the sequence ( ) converges to a limit and is

continuous in a neighbourhood of ; then, on passing to the limit
in (4.16), we deduce that is a solution of the equation ( )=0.
Simultaneous relaxation is evidently a simultaneous iteration defined

by taking ( )= ().
1 6 , 1 G 2+

G 6B 4D 1 B 8 D 1 " 55
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Table 4.1. The first 15 iterates in the sequence =( )
defined by (4.14), with starting value (05 03) . The exact solution is
=( 3212 =(0866025403784439 0 500000000000000) to 15
decimal digits.

O &+

( &
SESES B)%%)S) % )'S $% B&S(%
B&( &%'S % && ($
N) 00 (O(&'$ (
$(ES 'S (G %
() % )$S%&( (%) &)$ '& &%%
% % ) %) '$&) $(%
%)) &'$%&% $( (% '%)$ (%
%( $) $%" (%(' '$$' ((%& &%'%
$  %%& $ (& '&)$&
%("$ % ( '$B)N((S()%
%% $% &% & ( $ (%)
%($) $ & '$$3) ( %(%
& %% & (W( ( %) %&
%%  $%8%'$ '‘$$$%5& ($) 1)
( %% $) %) ( (%&)%

Theorem 4.3 Suppose that () = 0, and that all the first partial
derivatives of = ( ) are defined and continuous in some

(open) neighbourhood of , and satisfy a condition of strict diagonal

dominance at ; i.e.,
H H
— — 2=12 4.1
() g () (4.17)

O

Then, there exist 0 and a positive constant  such that the relazation
iteration (4.16) converges to  for any in the closed ball = () of
radius , centre

Proof The elements of the Jacobian matrix # ( )= (I ) > of the
function ()= ()at = are

L O=1 () 1 ()= §-() 3=2 23 1
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the system of equations ( ) = 0. It is implicitly assumed that the
matriz # () exists and is nonsingular for each =01 2

The next theorem is concerned with the convergence of Newton’s
method. As in the scalar case, for a starting value that is suffi-
ciently close to the solution of ( )= 0, Newton’s method converges
quadratically. The precise definition of quadratic convergence is given
below: it resembles Definition 1.7 of Chapter 1.

Definition 4.6 Suppose that ( ) is a convergent sequence in and

= lim _ e . We say that () converges to  with at least

order 1, if there exist a sequence ( ) of positive real numbers
converging to 0, and 0, such that

o =012 and lim — =

(4.19)

If (4.19) holds with = w, =012 , then the sequence

( ) is said to converge to with order . In particular, if = 2,

then we say that the sequence ( ) converges to  quadratically.

Again, due to (4.4), if a sequence () converges quadratically in the
-norm, then it also does so in the ?-norm for any ? [l ), though
the constant may be different.

Theorem 4.4 Suppose that () = 0, that in some (open) neighbour-
hood () of , where is defined and continuous, all the second-order
partial derivatives of  are defined and continuous, and that the Jaco-
bian matriz# () of at the point s nonsingular. Then, the sequence
() defined by Newton’s method (4.18) converges to the solution  pro-
vided that is sufficiently close to ; the convergence of the sequence
() to s at least quadratic.

Proof Let us begin by writing Newton’s method as a simultaneous iter-
ation = ( ), =012 ,asin (4.3), with  given and

()= FOI (O)

The idea of the proof is to verify that the function satisfies all the
conditions of Theorem 4.2 in a certain closed ball centred at , the fixed
point of | and thus deduce that the sequence ( ) converges to

As the function det# ( )iscontinuousin ( )anddet# ()

=0,
there exists 0 such that det# ( ) = 0 for all = () ().
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Further, as the entries of [# ( )]” depend continuously on the entries
of # () and since the entries of # () are continuous functions of in

(), we deduce that [# ()]~ () is a continuous function on
= ( ); therefore,

()= #OI ()
is also a continuous function on = ( ). For later reference, we note that

# ()7
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and so
oo - I > oo
On writing = - ! > we then deduce by induction that
1
o @ — oo =012
Suppose that = () where ~min 11 . Then,
L =012
(o] 2 -
and hence
1 1
= 2

This implies that convergence is at least quadratic (on choosing =
~ 27 and =2 in Definition 4.6). O

Newton’s method is defined in (4.18) by using the inverse of the Jaco-
bian matrix. As we saw in Chapter 2 it is more efficient to avoid inverting
a matrix, if possible. In practice the method is therefore implemented
by writing (4.18) in the form

#0001 J= € ) (4.23)

Given the vector , we calculate () and the Jacobian matrix
#( ) >, and then solve the system of linear equations (4.23)
by Gaussian elimination; this gives the increment vector
which is added to to obtain the new iterate

3

Example 4.5 We close this section with an example which illustrates the
application of Newton’s method. Consider the simultaneous nonlinear
equations

C ) +  +, 1=0
() 2+ 4, =
C ) 3 4 +, =
Letting = ( ) and =( , ) , the aim of the exercise is to

determine the solution to the equation ( ) = 0 contained in the first
octant ( , ) : 0 0, 0 in
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% are, very roughly, 05and, 035, it is reasonable to choose as
starting value for the Newton iteration the point
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Chapter 1, and also an infinite number of complex solutions. It is easy
to see from the periodic character of e* that the equation has a solution
near 0 = (2+ +-)-, = 1, for integer values of +; a better
estimate is given in Exercise 9. It is a good deal more difficult to prove
that there are no other solutions.

The behaviour of Newton’s method for this problem may be illustrated
by showing a picture of the complex plane, with the sets * depicted in
different colours. In our example we cannot, of course, show more than
a small number of the solutions, and cannot use an infinite number of
colours. We have therefore coloured the sets with six colours cyclically,
so that, for example, the sets * * * have the same colour. The
background colour, white, represents the set * of points from which
the iteration converges to the real negative root. It includes most of
the negative half-plane. Successive pictures in the series from Figure 4.5
to Figure 4.9 show a magnified view of a small region of the previous
picture, the region being outlined in black. In Figure 4.4 the black
crosses mark the positions of solutions of (,) = 0. The pictures show
in a striking way the fractal behaviour of the boundary of a set. Figure
4.9 is very similar to Figure 4.5; the former is a magnified view of a
small part of Figure 4.5, with a magnification of about 50000 in each
direction. The same sort of behaviour is repeated when the picture is
magnified indefinitely.

4.5 Notes

For an introduction to the topology of | including the definitions of
open set, closed set, continuity, convergence and Cauchy sequence, the
reader is referred to any standard textbook on the subject; see, e.g.,

% , Principles of Mathematical Analysis, Third Edition, In-
ternational Series in Pure and Applied Mathematics, McGraw—Hill,
New York, Auckland, Diisseldorf, 1976,

&) , Introduction to Mathematical Analysis, Addison—
Wesley, Reading, MA, 1996.

Our first remark concerns the Contraction Mapping Theorem, Theo-
rem 4.1, which is a direct generalisation of Theorem 1.3 from Chapter
1. Comparing the proofs of Theorems 1.3 and 4.1, we see that the proof
of Theorem 1.3 is much simpler. This is not accidental: in the case of
a single equation = ( ), involving a real-valued function of a sin-
gle real variable , the existence of a fixed point follows directly from
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Theorem 1.2, Brouwer’s Fixed Point Theorem on a bounded closed in-
terval of the real line. On the other hand, for the simultaneous system
of equations = ( )in  considered in Theorem 4.1 we had to invoke
the completeness of (i.e., the property that every Cauchy sequence
in is a convergent sequence) to show the existence of a fixed point.
An alternative, shorter proof of Theorem 4.1 could have been devised
by applying Brouwer’s Fixed Point Theorem in

Theorem 4.5 (Brouwer’s Fixed Point Theorem) Let us assume

that 5 s a nonempty, closed, bounded and convex subset of . Suppose

further that : is a continuous function defined on'5 such that
(5) 5. Then, there exists 5 such that ()=

Asetb is said to be convex if, whenever and belong to 5,
also

@+(1 @ 5 @ [0 1]

For example, any nonempty interval of the real line = is a convex
set, as is a nonempty (open or closed) ball in 2. Unfortunately,
when 2 the proof of Theorem 4.5 is nontrivial and is well beyond

the scope of this book.

Benoit Mandelbrot (1924- ) has been largely responsible for the present
interest in fractal geometry and its connections with iterative methods.
Mandelbrot highlighted in his book

T+ , Fractals: Form, Chance, and Dimension, W.H.
Freeman, San Francisco, 1977,

and, more fully, in

I + " The Fractal Geometry of Nature, W.H. Freeman,
New York, 1983,

the omnipresence of fractals both in mathematics and elsewhere in na-
ture. In relation with the subject of this chapter, we note that the
Mandelbrot set is a connected set of points in the complex plane de-
fined as follows. Choose a point , in the complex plane, and consider
the iteration , =, +,, =012 . Ifthesequence, , ,
remains within a distance of 2 from the origin for ever, then the point ,
1o 11 > , , K

T ) # 5 + , :
- , #0084
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is said to be in the Mandelbrot set. If the sequence diverges from the
origin, then the point , is not in the set.

A standard reference for theoretical results concerning the convergence
of Newton’s method in complete normed linear spaces is

s $ )- " Functional Analysis, Second
edition, Pergamon Press, Oxford, New York, 1982.

A further significant book in the area of iterative solution of systems of
nonlinear equations is the text by

+ 7 % " Iterative Solution of Non-
linear Equations in Several Variables, Reprint of the 1970 original,
Classics in Applied Mathematics, 30, SIAM, Philadelphia, 2000.

It gives a comprehensive treatment of the numerical solution of non-
linear equations in unknowns, covering asymptotic convergence results
for a number of algorithms, including Newton’s method, as well as exis-
tence theorems for solutions of nonlinear equations based on the use of
topological degree theory and Brouwer’s Fixed Point Theorem.

Exercises

4.1 Suppose that the function is a contraction in the -norm, as
in (4.5). Use the fact that

() ) () ()

to show that is a contraction in the ?-norm if

4.2 Show that the simultaneous equations ( ) = 0, where
= ) , with
( )=+ 25 ( ) = 7 25
have two solutions, one of whichis =4, = 3, and find the

other. Show that the function does not satisfy the conditions
of Theorem 4.3 at either of these solutions, but that if the sign
of is changed the conditions are satisfied at one solution,
and that if is replaced by = ( ) , then the
conditions are satisfied at the other. In each case, give a value
of the relaxation parameter which will lead to convergence.
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The complex-valued function , (,) of the complex variable
, is holomorphic in a convex region {2 containing the point J, at
which (J) = J. By applying the Mean Value Theorem (The-
orem A.3) to the function ( of the real variable Gdefined by
((G= (1 G +G) show thatif and lie in Q, then there
is a complex number in ) such that

() O=C )

Hence show that if $J) 1, then the complex iteration de-
fined by , = (, ), =012 | converges to J provided
that , is sufficiently close to J.
Suppose that in Exercise 3 the real and imaginary parts of are
and ,sothat ( + )= ( )+ ( ), = 1. Show
that the iteration defined by =M ), =012 |
where ') = ( ( ) ( )) , generates the real and
imaginary parts of the sequence defined in Exercise 3. Compare
the condition for convergence given in that exercise with the
sufficient condition given by Theorem 4.2.
Verify that the iteration =( ), =012 where
= ) and and are functions of two variables defined
by

( ) =( +3) ( )=-2 +1

has the fixed point = (1 1) . Show that the function does
not satisfy the conditions of Theorem 4.3. By applying the
results of Exercises 3 and 4 to the complex function defined
by

(1 ) = 7(1 + 3 + ) ’ = 71

show that the iteration, nevertheless, converges.
Suppose that all the second-order partial derivatives of the func-

tion : are defined and continuous in a neighbourhood
of the point in , at which ( )= 0. Assume also that the
Jacobian matrix, # ( ), of is nonsingular at = , and de-

note its inverse by 1 () at all  for which it exists. Defining the
Newton iteration by = ), =012 , with
given, where ( )= 1() (), show that the (2 3-entry
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Suppose that the equation ¢ =, +2, , , has a solution
L= @0 ) H(r )]+
where + is a positive integer and = 1. Show that
=In[l (In(2+ +-)- + +2) (2+ + —-)]

and deduce that = (In++ ) for large + .
(Note that In(1+ G G for all G 0.)
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5

Eigenvalues and eigenvectors of a symmetric
matrix

5.1 Introduction

Eigenvalue problems for symmetric matrices arise in all areas of ap-
plied science. The terminology eigenvalue comes from the German word
Eigenwert which means proper or characteristic value. The concept of
eigenvalue first appeared in an article on systems of linear differential
equations by the French mathematician d’Alembert in the course of
studying the motion of a string with masses attached to it at various
points.

Let us recall from Chapter 2 the definition of eigenvalue and eigen-

vector.
Definition 5.1 Suppose that ! > . A complex number  for which
the set of linear equations
I = (5.1)
has a nontrivial solution = 0 s called an eigenvalue
of | ; the associated solution —is called an eigenvector of !
(corresponding to ).
1K \% B#& 5 H#EHE& 9 , C @H, #&.*
9 ,0D 6 , 1 s oo. 1
K 6 1 1 s 4
% , , E 9 ,6,
H#HESHCHEE L ,6, 6 K 7/ s
5 4 /% 1 E, s 6
1 6 6 , 6 , $ 6
6 15 4

133
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In order to motivate the discussion that will follow, we begin with two
familiar elementary examples.

In considering the rotation of a rigid body , the inertia matriz
is the 3 3 symmetric matrix

# =

whose diagonal elements are the moments of inertia about the axes,
I I I
= (4.)d0 = () e = (4 )dO

and whose off-diagonal elements are defined by the corresponding prod-

ucts of inertia |

Then, the eigenvectors of the inertia matrix are the directions of the
principal azes of inertia of the body, about which free steady rotation is
possible, and the eigenvalues are the principal moments of inertia about
these axes.

A second example, which involves matrices of any order, arises in the
solution of systems of linear ordinary differential equations of the form

d _ I

dG
where is a vector of elements, each of which is a function of the
independent variable G and ! is an matrix whose elements are
constants. If ! were a diagonal matrix, with diagonal elements = |
2=12 , the solution of this system would be straightforward, as

each of the equations could be solved separately, giving

G= Oexp( G 2=12

When! is not a diagonal matrix, suppose that we can find a nonsingular
matrix such that

“1 =5
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where 5 is a diagonal matrix. Then, on letting

we easily see that
d J—
oo
The solution of this system of differential equations is straightforward,
as we have just seen, and we then find that

- =5

=( )= (O)exp( G

where = 6 is one of the diagonal elements of 5. The numbers |
3=12 , are the eigenvalues of the matrix ! > and the
columns of are the eigenvectors of ! | so the solution of this system
of differential equations requires the calculation of the eigenvalues and
eigenvectors of the matrix ! .

In systems of differential equations of this kind the matrix ! is not
necessarily symmetric. In that case, the problem is more difficult; if
the eigenvalues of ! are not distinct there may not exist a complete set
of linearly independent eigenvectors, and then the matrix will not
exist.

In this chapter, we shall develop numerical algorithms for the solution
of the algebraic eigenvalue problem (5.1), assuming throughout that !

is a symmetric matrix. As has been noted above, the analogous
problem for a nonsymmetric matrix is more involved, and will not be
considered here.

Throughout this chapter, the set of all real-valued symmetric matrices
of order will be denoted by ™ ; thus, given a matrix ! =( ),

! * +H ! & = 23=12
We begin with a reminder of some fundamental properties.

1 1 8

8 5 1 , 6 1.A# 6 B 6

2 1 1 , 1 K404 " N
. $ H81 5 6

(L}
H
(S
=~
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5.2 The characteristic polynomial

Given that ! > and 4, it is quite easy to write down the
characteristic polynomial det(! ) by expanding the determinant, and
then find the roots of this polynomial of degree in order to determine
the eigenvalues of ! . If 4 there is no general closed formula for
the roots of a polynomial in terms of its coefficients, and therefore we
have to resort to a numerical technique. A further difficulty is that
the roots may be very sensitive to small changes in the coefficients of
the polynomial, and we find that the effect of rounding errors in the
construction of the characteristic polynomial is usually catastrophic.

Example 5.1 Consider, for example, the diagonal matriz of order 16
whose diagonal elements are 34+ -, 3=1 2 16; the eigenvalues are,
of course, just the diagonal elements. Constructing the characteristic
polynomial, working with 10 significant digits throughout, gives the result

141 3333333 + 9193 333333

Using a standard numerical algorithm (such as Newton’s method) for
computing the roots of the polynomial and working with 10 significant
digits gives the smallest root as 1 333333331, which is nearly correct to
10 significant digits. The three largest roots, however, are computed as,
approximately, 155 13 and 16 7, which are very different from their
true values 14 3, 15 3, 16 3, respectively, even though the matrix in this
example is of quite modest size, and the eigenvalues are well spaced.
Thus we conclude from this example that the numerical method which
constructs the characteristic polynomial and finds its roots is completely
unsatisfactory for general use, except for matrices of very small size.

The fact that in general the roots of the characteristic polynomial
cannot be given in closed form shows that any method must proceed
by successive approximation. Although one cannot expect to produce
the required eigenvalues exactly in a finite number of steps, we shall see
that there exist rapidly convergent iterative methods for computing the
eigenvalues and eigenvectors numerically.

5.3 Jacobi’s method

This method uses a succession of orthogonal transformations to produce
a sequence of matrices which approaches a diagonal matrix in the limit.
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Each step in the process involves a matrix representing a plane rotation.
We begin with a simple example.

Example 5.2 (The plane rotation matrix in ) Let us suppose
that ([ - -] and consider the matriz"' (() > defined by

cos ( sin (
sin ( cos (

(0=

For a vector , " (() s the plane rotation of  around the ori-
gin by an angle ( (in the clockwise direction when ( 0 and in the
anticlockwise direction when (- 0).

We note in passing that since cos( () =cos(,sin( ()= sin( and

cos ( +sin ( =1, we have that

(@) ="00 ad "((O)C0O=

Hence' (() is an orthogonal matriz; i.e.,

(OO =70 (O =
where is the 2 2 identity matrix.

The next definition extends the notion of plane rotation matrix to

Definition 5.2 (The plane rotation matrix in ) Suppose that

2,1 2 and ( [ --] We consider the matriz
' (() > whose elements are the same as those of the identity
matriz > | except for the four elements
where =cos ( . =sin (.

As in Example 5.2, it is a straightforward matter to show that

¢ =" (0 O 0=

and that, therefore,

O ) = @) O=

Hence ' (() > is an orthogonal matrix for any ? such that
1 2 ,and any ([ - - ].

The basic result underlying Jacobi’s method is encapsulated in the
next theorem.
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x

Theorem 5.2 Suppose that ! . For each pair of integers (? )
with 1 ? , there exists ([ - 4 - 4] such that the (? )
entry of the symmetric matriz"' o)y r (() is equal to 0.

Proof For the sake of notational simplicity, we shall write ' instead of
' (() throughout the proof, and abbreviate = cos ( and : = sin ( .
Consider the product ! "= 1" . Evidently the only difference be-
tween ! Jand ! is in columns ? and ; these columns of ! Hare linear
combinations of the same two columns of ! :
|

: 2=12 5.3
o o_ .y (5.3)
Multiplication of I Dby ' on the left gives a similar result, but affects
rows ? and , rather than columns ? and . Writing = ="' ! Ygives
O a.
’ 3=12 5.4
0., o (54)
Combining these equations shows that = =" ' | where
2 o+
= 42 o+ (5.5)
( o ()=
The remaining elements of = ="' " in columns ? and are given
by the expressions
2=12 2 =7
L+
The matrix = ="' ' is evidently symmetric, so the nondiagonal

elements of = in rows ? and are also given by the same expressions.

Finally, we note that all the elements of = which do not lie either
in row ? or or in column ? or are the same as the corresponding
elements of ! | that is,

= if2=? and3=7

We see from (5.5) that in order to ensure that | the (? )-entry of
the matrix = ="' ' | is equal to 0, it suffices to choose ( such that

tan2( = 27; (5.6)
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x

and= =" 1" where' is an orthogonal matriz, then

The quantity

> . The Frobenius norm of

is called the Frobenius norm of !
! > is the 2-norm of ! , with ! regarded as an element of a linear
space of dimension over the field of real numbers; however, it is not
a subordinate norm in the sense of Definition 2.10. In particular, the
Frobenius norm on > is not subordinate to the 2-norm on

Now, one can express (5.9) equivalently by saying that the Frobenius
norm of a symmetric matrix ! is invariant under an orthogonal trans-

formation: ' ' ¢ =1 g.

Proof of lemma The sum of squares of the elements of ! is the same

as the trace of | | for

Trace(! )= (I ) = = (5.10)
since | is symmetric. Analogously, as = ="' I' is symmetric, we
have that

Trace(= ) =

Thus, it remains to show that Trace(= ) = Trace(! ). Now,

= = e )= (5.11)

since ' is orthogonal. Hence = is an orthogonal transformation of !
which, by virtue of Theorem 5.1 (vi), means that = and ! have the
same eigenvalues, and therefore the same trace, since the trace is the

sum of the eigenvalues (see Theorem 5.1 (viii)). O
1o F 9 B?H, #. @ $
F 6C*% H#OH& F 6D , 6 1 §
6 ,1 , 6 1 J G 6
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Now we are ready to embark on the convergence analysis of the clas-
sical Jacobi method.

x

Theorem 5.3 Suppose that ! , 2. In the classical Jacobi
method the off-diagonal entries in the sequence of matrices (I ), gen-
erated from ! =1 according to Definition 5.3, converge to 0 in the
sense that

im [0 )] =0 (5.12)

- oo

Furthermore,

lim [ ) ] =Trace(! ) (5.13)

— oo

Proof Let be the off-diagonal element of ! with largest absolute
value, and let = = (' )y v ((), where ( is defined by (5.7).
Then, letting = cos ( and : = sin(, we have that

and Lemma 5.1 implies that
+2 4+ = +2 4+
Writing

*(1) = 5(1)= ()=

it follows that * (! ) =5 (! )+ (! ). Now * (=) =* (! ) by Lemma 5.1,
andso5(=)4+ (=)=5(" )+ (!). The diagonal entries of = are the
same as those of ! | except the ones in rows ? and , 1 ? .
Further, as =0, it follows that + = 4+ 42 . Therefore,

5(=)=5()+2

Consequently,
(=)= () 2
Now is the largest off-diagonal element of ! ; hence (! )
where = (1) isthe number of off-diagonal elements, and therefore

=) @ 2 )®) (5.14)
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On writing ! =11 = =, and generating subsequent members
of the sequence (! ) in a similar manner, as indicated in the algorithm
in Definition 5.3, we deduce from (5.14) that

0 ¢ )y @ 2 Hy (1) =123 (5.15)
where 2. Thus we conclude that lim _. (! )=0.

Now, (5.13) follows from (5.10) and (5.12) on noting that

Trace(! )=*()=*(" )=50 )+ (¢ ) 0
and passing to the limit : Trace(! )=1lim ,5( ). O

According to Theorem 5.1 (viii) the trace of ! is the sum of the eigen-
values of I | and the eigenvalues of |  are the squares of the eigenvalues
of I . Thus, we have shown that the sum of the squares of the diagonal
elements in the sequence of matrices (! ) generated by the classical
Jacobi method converges to the sum of the squares of the eigenvalues
of I . More work is required to show that for each 2= 1 2 the
sequence of diagonal elements () converges to an eigenvalue of ! as

. We shall further discuss this question in the final paragraphs
of Section 5.4. First, however, we describe another variant of Jacobi’s
method.

Definition 5.4 (The serial Jacobi method) This version of Jacobi’s
method proceeds in a systematic order, using transformations ' (()
to reduce to zero the elements (1 2), (1 3), ,(1 ),(23),(24), ,
2 ), ., 1 ) in this order. The complete step is then repeated
iteratively.

It is not difficult to prove that this method also converges. Both
these variants of the Jacobi method converge quite rapidly; the rate of
convergence is in practice much faster than is suggested by (5.15), and
in fact it can be shown that convergence is ultimately quadratic.

It is time for an example!

Example 5.3 Let us consider the 5 5 matrix

4 1 2 1 2
3.0 3 4

l= 2 01 2 2 (5.16)
1 3 2 4 1
2 4 2 11



144 5 Figenvalues and eigenvectors of a symmetric matriz

The values of 5 (! ) and (! ) after each iteration of the serial

Jacobi method, with ! =1 are shown in Table 5.1. The off-diagonal
elements of the third iterate, ! | are zero to 10 decimal digits. The
diagonal elements of !, which give the eigenvalues, are

8094 1690 0671 7170 3282

Note that the eigenvalues do not appear in any particular order.

Table 5.1. Convergence of the serial Jacobi iteration.

*()+ *()+

‘&

% &$ ' %$) (

& $ $ ((
& &

This concludes the discussion about the use of Jacobi’s method for
computing the eigenvalues of a symmetric matrix ! . ‘Fine,” you might
say, ‘but how do we determine the eigenvectors of | 7’

It turns out that by collecting the information accumulated in the
course of the Jacobi iteration, it is fairly easy to calculate the eigenvec-
tors of I . We begin by noting that if  is an orthogonal matrix such
that ! =5, where 5 is diagonal, then the diagonal elements of
5 are the eigenvalues of ! , and the columns of  are the corresponding
eigenvectors of ! .

In the course of the Jacobi iteration (be it classical or serial), we
have constructed the plane rotations ' (( ),3=12 . Thus,
an approximation to the orthogonal matrix can be obtained
by considering the product of these rotation matrices: initially, we put

= and then we apply the column transformation ' (( ) at
each step 3 =1 2 . This corresponds to multiplying - on
the right by ' (( )for3=12 , and leads to the orthogonal
matrix

=" ) - ()

which represents the required approximation to the orthogonal matrix
. The columns of will be the desired approximate eigenvectors
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of I corresponding to the approximate eigenvalues which appear along
the diagonal of !

The Jacobi method usually converges in a reasonable number of itera-
tions, and is a satisfactory method for small or moderate-sized matrices.
However, there are many problems, particularly in the area of numeri-
cal solution of partial differential equations, which give rise to very large
matrices that are sparse, with most of the elements being zero. A further
consideration is that in many practical situations one does not need to
compute all the eigenvalues. It is much more common to require a few of
the largest eigenvalues and corresponding eigenvectors, or perhaps a few
of the smallest. Jacobi’s method is not suitable for such problems, as
it always produces all the eigenvalues, and will not preserve the sparse
structure of a matrix during the course of the iteration. For example, it
is easy to see that if Jacobi’s method is applied to a symmetric tridiago-
nal matrix, then at the end of one sweep all (but two) of the elements of
the matrix will in general be nonzero and, although still symmetric, the
transformed matrix is no longer tridiagonal. Later on in this chapter we
shall consider numerical algorithms for computing selected eigenvalues
of a matrix. Thus, as an overture to what will follow, we now outline a
‘rough and ready’ technique for locating the eigenvalues.

5.4 The Gerschgorin theorems

Gerschgorin’s Theorem provides a very simple way of determining a
region that contains the eigenvalues of a matrix. It is very general, and
does not assume that the matrix is symmetric; in fact we shall allow
the elements of a square matrix of order to be complex and write
! > to express this fact.

Definition 5.5 Suppose that 2 and ! > . The Gerschgorin
discs 5 ,2=12 , of the matriz ! are defined as the closed
circular regions

5 =, o, ' (5.17)

in the complex plane, where

L= (5.18)

is the radius of 5 .

1 o1 % F o, L , 56 1 7917 K ,
9 , 1 % F o, B#@ #CHO**D <F 2 % %4 F
B#@ #CH#O**D- 2 ~~ 7 2 + 7 > 4 # #>CHO #00.4
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Theorem 5.4 (Gerschgorin’s Theorem) Let u2 and! .
All eigenvalues of the matriz! lie in the region 5 = 5 , where5 |
2=12 , are the Gerschgorin discs of | defined by (5.17), (5.18).

Proof Suppose that and 0 are an eigenvalue and the
corresponding eigenvector of | | so that

= 2=12 (5.19)
Suppose that , with 12 , 18 the component of  which
has largest modulus, or one of those components if more than one have
the same modulus. We note in passing that = 0, given that = 0;
also,
3=12 (5.20)
This means that
' (5.21)
which, on division by , shows that lies i%the Gerschgorin disc 5
of radius ' centred at . Hence, 5= 5. 0

Theorem 5.5 (Gerschgorin’s Second Theorem) Let 2. Sup-
pose that 1 ? 1 and that the Gerschgorin discs of the matriz
! > can be divided into two disjoint subsets 5 and 5, con-
taining ? and = ? discs respectively. Then, the union of the discs
mnb contains ? of the eigenvalues, and the union of the discs in 5
contains ? eigenvalues. In particular, if one disc is disjoint from
all the others, it contains exactly one eigenvalue, and if all the discs are
disjoint then each disc contains exactly one eigenvalue.

Proof We shall use a so-called homotopy (or continuation) argument.
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For 0 1, we consider the matrix =( ) =( ()) >, where
it2=3
()= it2=3 (5:22)
Then, =(1) = !, and =(0) is the diagonal matrix whose diagonal el-
ements coincide with those of ! . Each of the eigenvalues of =(0) is
therefore the centre of one of the Gerschgorin discs of ! ; thus exactly ?
of the eigenvalues of = (0) lie in the union of the discs in 5 . Now, the

eigenvalues of = () are the zeros of its characteristic polynomial, which
is a polynomial whose coefficients are continuous functions of ; hence
the zeros of this polynomial are also continuous functions of . Thus as

increases from 0 to 1 the eigenvalues of =( ) move along continuous
paths in the complex plane, and at the same time the radii of the Ger-
schgorin discs increase from 0 to the radii of the Gerschgorin discs of
I'. Since ? of the eigenvalues lie in the union of the discs in 5  when

= 0, and these discs are disjoint from all of the discs in 5 (), these ?
eigenvalues must still lie in the union of the discs in 5 when =1,
and the theorem is proved.

The same proof evidently still applies when the discs can be divided
into any number of disjoint subsets. U

Example 5.4 Consider the matrix

400 020 010 o010
020 100 010 005
I =
' 010 010 300 010 (5:23)

010 005 010 300

Figure 5.1 shows, as solid circles, the Gerschgorin discs for this matriz;
for instance, one of the discs has centre at 4 00 and radius 0 40. The
discs are clearly disjoint, so that each disc contains one eigenvalue of
the matrixz. The significance of the dotted circles will be explained in our
next example.

Example 5.5 Let us consider the matriz ! defined by (5.23), and then

x

transform it into = = 111 = | where 1 is the same as the

identity matriz except that =A 0.

This transformation has the effect of multiplying the elements in row 2
by A, and multiplying the elements in column 2 by 1 A; the diagonal
element thus remains unaltered. A small value of A then means that
the second disc of = is smaller than the second disc of ! , but the other
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discs grow larger. The dotted discs in Figure 5.1 are for the matrix =
with A= 1 23. For this value the other discs are still just disjoint from
the disc centred at 1 00; the disc with centre at 4.00 almost touches
the disc with centre at 1 00. The disc with centre 100 has radius
0.014, and is too small to be visible in the figure. The eigenvalue in this
discis 1009 to three decimal digits. The same procedure can be used
to reduce the size of each of the discs in turn.

This idea is formalised in the next theorem.

Theorem 5.6 Let 2, and suppose that in the matriz ! > all

the off-diagonal elements are smaller in absolute value than , so that

, for all 2 3 12 with 2= 3. Suppose also that for

a particular integer ; 12 the diagonal element is distant

from all the other diagonal elements, so that , for all 2
such that 2= ;. Then, provided that

G (5.24)



5.4 The Gerschgorin theorems 149

there is an eigenvalue  of ! such that

20 1) (5.25)

Proof We apply the similarity transformation

! *  1bH=111 - x
where 1 > is the same as the identity matrix, except that the
diagonal element in row ; is chosen to be = A 0. This has the
effect of multiplying the off-diagonal elements of row ; by A and the
element in column ; of row 2 where 2= ;, by 1 A. The Gerschgorin
disc from row ; then has centre and radius not exceeding A( 1) ,
and the disc corresponding to row 2= ; has centre and radius not

exceeding ( 2) + A.

We now want to reduce the size of disc ; by choosing a small value of
A while keeping it disjoint from the rest. This is easily done by choosing
A =2 . The radius of disc ; does not exceed 2( 1) , and the
radius of disc 2= ; does not exceed ( 2) + - . The sum of these
radii therefore satisfies

4 2( 1) +( 2) +-

(5.26)

where we have used the given condition (5.24) twice. As the centres
and of these discs are distant more than from each other, (5.26)
shows that the two discs are disjoint, and the required result is proved.

0

Theorem 5.6 is sufficient to show that for a matrix satisfying its hy-
potheses we can find a Gerschgorin disc whose radius is of order
provided that is sufficiently small. It also indicates that the spacing
between the diagonal elements is important.

In particular, Theorem 5.6 applies to the matrix ! which results af-
ter iterations of the Jacobi method. If at that stage all the off-diagonal
elements have magnitude less than then there is one eigenvalue in each
of the intervals | (1 +( 1) ], provided that these inter-
vals are disjoint; this follows from Theorem 5.5. If is sufficiently small
compared with the distances between the diagonal elements of ! |
Theorem 5.6 may be used to give closer bounds on the eigenvalues.
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\

hyperplane $ consisting of all vectors  that are perpendicular to in
is invariant under the mapping B . Finally, for any ,

B =—

Hence, if the angle between and is denoted by (, then the angle
between and B isequal to- 4( . We conclude from these observations
that the vector B is the reflection of in the hyperplane $. For this
reason, the mapping B is frequently referred to as Householder
reflector, corresponding to the vector —{see Figure 5.2).

Lemma 5.2 FEvery Householder matriz is symmetric and orthogonal.

Proof As = ,( ) =( ) = , and is a (positive
real) number, the symmetry of B follows. The orthogonality of B is a
consequence of the identity

B B=BB =B = — +—FC ) )=

since( ) )= ( ) =( ) by the associativity of ma-
trix multiplication. ]
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Lemma 5.3 Let 1 and suppose that B is a Householder
matriz. Then, the matriz B > written in partitioned form as
- 0
B =
0 B
where — s the identity matriz of order and 0 is the ( )

zero matrix, is also a Householder matrix.

The proof of this lemma is straightforward and is left as an exercise.
(See Exercise 1.)

Lemma 5.4 Given any vector nthere exists a Householder matriz
B > such that all elements of the vector B are zero, except the
first; i.e., B is a nonzero multiple of e , the first column of the identity
matriz.

In geometrical terms this result can be rephrased by saying that for
any vector —there exists an ( 1)-dimensional hyperplane $
passing through the origin in such that the reflection B of in $is
equal to a nonzero multiple of e . To find $ it suffices to identify a vector

—jormal to $. Since $ is unaffected by rescaling (see Definition
5.6), the length of is immaterial. As noted in the discussion following

Definition 5.6, the vectors B, and are coplanar. Therefore, we
shall seek —s a suitable linear combination of and
Proof of lemma We seek B = 2 ) with = + e,
where is a nonzero real number to be determined. Hence,

= +)

= +2) +

where) = e  is the first entry of . A simple manipulation then shows
that
5 _ 2 _( ) 2( +))e
= J— ( ) =
+2) +

Thus, B will be a multiple of e provided that we choose so that

= . Also, to avoid division by 0, we need to ensure that +
2) + =0. To do so, note that ) ; therefore

+2) + O+ ) =0
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provided that ) + = 0, which can be ensured by selecting the appro-
priate sign for ., that is, by defining

_ (sign)) when ) =0
- when ) =0.
With this choice of , we have B = e , as required. O

We now show how Householder matrices can be used to reduce a given
matrix to tridiagonal form.

Theorem 5.7 Given that ! > and 3, there exists a matriz
& > a product of 2 Householder matrices B i
=2 1, given by
& =B _ B _ B

such that & '& = F s tridiagonal; the matriz & is orthogonal.

Proof The proof of the theorem will proceed by induction. Before em-
barking on this, we make some preparatory observations which highlight
the key ideas in the proof.

x

Consider the matrix ! , partitioned by its first row and column

in the form

>
where , ~ and > T * 7 and define
% = 0 =( 0 0) for some
If happens to belong to 5, then, by Lemma 5.4, there exists an
( 1) ( 1) Householder matrix B — such that each element of
B _ , except the first, is equal to 0. If, on the other hand, = 0, then
B _ =0, trivially. Either way, B _— % .

Let us extend the Householder matrix B — T 7, using
Lemma 5.3 with = 1, to a Householder matrix B _ x
by defining the (1 1)-entry of B _ as 1 and choosing the remaining
entries in the first row and first column of B — as 0. Then,

1 0 1 0
B B _ =
B 0 B _ > 0 B -
= (5.27)
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orthogonal, & > is itself orthogonal. Moreover, for any f %

we have & f % | since the (1 1)-entry of & is 1 and the remaining
entries in the first column of & are 0. This concludes the inductive
step, and completes the proof. O

The recursive transformation of a symmetric matrix to tridiagonal
form outlined in the proof of Theorem 5.7 is called Householder’s
method. In implementing this method in practice it is important to
carry out the transformations efficiently. Counting the arithmetic op-
erations involved is straightforward but tedious, and shows that the
complete reduction requires approximately -  multiplications, for a
moderately large value of

Example 5.6 In order to illustrate Householder’s method, we return
to the matriz ! defined in (5.16). The first stage uses the Householder
matriz defined by the vector

= (0000 4162 2000 1000 2 000) (5.28)

The result of the transformation is the matrix

4000 3162 0000 0000 0000
3162 5300 1232 0332 0284
0000 1232 1653 3312 0275
0000 0332 3312 5149 1123
0000 0284 0275 1123 3102

The leading element of the matrix is unchanged, and the first row and
column have tridiagonal structure.
The second stage uses the Householder matrix with the vector

= (0000 0000 2540 0332 0284) (5.29)
and gives the new matrix

4000 3162 0000 0000 0000
3162 5300 1308 0000 0000
0000 1308 0057 2166 0792
0000 0000 2166 6610 0420
0000 0000 0792 0420 2967

This time the leading 2 2 minor is unaltered, and the first two rows
and columns have tridiagonal structure.
The final stage uses the Householder matrix with vector

= (0000 0000 0000 4471 0792) (5.30)
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and gives the tridiagonal matrix

4000 3162 0000 0000 0000
3162 5300 1308 0000 0000
0000 1308 0057 2306 0000 (5.31)
0000 0000 2306 5208 3411
0000 0000 0000 3411 1565

The numerical values are quoted here to three decimal digits, for sim-
plicity.

Having shown how to transform a symmetric matrix into tridiagonal
form, we can now consider the problem of determining the eigenvalues
of a tridiagonal matrix.

5.6 Eigenvalues of a tridiagonal matrix

Before developing a numerical algorithm for calculating the eigenvalues
and the eigenvectors of a symmetric tridiagonal matrix, let us spend
some time exploring the location of the eigenvalues. The main result of
this section is the so-called Sturm sequence property, stated in Theorem
5.9, which enables us to specify the number of eigenvalues of a symmetric
tridiagonal matrix which exceed a given real number . The proof of
the Sturm sequence property is based on Cauchy’s Interlace Theorem
which is of independent interest, and proving the latter is our first task.

To simplify the notation we now write the symmetric tridiagonal ma-
trix in the form

F:
1k ,6 9 T B #.* F 5 05 B
+ DC#. / , #.>> 9 D4
N P> - - -G -G
>3 3 3 3 67 3
$ Q*C*#. #.*> |,
1 1 6 54) #.? E
1 5 6 1 "
/ L) #. 1
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The determinants of the successive principal minors of a matrix of this
form can easily be calculated by recurrence. Defining ? () to be the
determinant of the leading principal minor of order ; of F , We see
that

2() =
20) = ()

Expanding ? () in terms of the elements of the last row, and then in
terms of the last column, we obtain the relation

?()=( 2-(C)  ?2-() ;=23

with the convention that

In the rest of this section we shall assume that all the off-diagonal
elements  are nonzero. For suppose that = 0 for some in the
set 23 ; then, the eigenvalues of the matrix F comprise the
eigenvalues of the matrix consisting of the first 1 rows and columns,
together with the eigenvalues of the matrix consisting of the last +1
rows and columns. These two problems become separated and can be
treated independently; if several of the off-diagonal elements are zero,
the matrix can be partitioned into a number of smaller matrices which
can then be dealt with independently.

Theorem 5.8 (Cauchy’s Interlace Theorem) Let 3. The roots
of ? separate those of ? , for; =1 2 1; i.e., between two

consecutive roots of ? there is exactly one root of the polynomial ? |
;=12 1.

Proof The proof is by induction. It is trivial to show that the property
holds for ; = 1: the two roots

-+ ( ) +4
of ? are separated by , the only root of the linear polynomial ? .
Suppose that the statement is true when ; =2 1,2 2 1,

so that the roots of ? — separate those of ?. On denoting by and )
two consecutive roots of ? , the inductive hypothesis implies that ? —
has exactly one root between and ), which means that ? — ( ) and
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) of ? — . Then, there is exactly one root of ? between and); de-
note this root by (. As we saw in the proof of the previous theorem
? () is positive when is large and negative, and the sign of ? () is
determined by the number of roots of ? which are less than . Hence
if ( both? and ? — have the same number of roots less than
so that ? ( ) and ? — ( ) have the same sign, and: ( )=: - ( )+1.
Also if ? and ? — have the same number of roots less than , then
? must have one more root which is greater than ; this means that
()= —()+1 Hence: ( )= (). A similar argument shows
that : ()= () in the alternative situation where (. It is also
a simple matter to modify the argument slightly for the cases where
is less than the smallest root of ? — | or greater than the largest root of
? _ , and so the inductive step is complete. O

The theorem and proof do not allow for any of the members of the
sequence being zero, in which case the sign becomes undefined. A more
careful analysis is tedious but not difficult; it shows that the theorem
still holds if we adopt the convention that when ? ( ) is zero it is given
the same sign as ? — ( ). As we have already seen, two consecutive
members of the sequence cannot both be zero.

Our next example will illustrate the application of the Sturm sequence

property.

Example 5.7 Determine the second largest eigenvalue of the matrix

3 1 0 0
1 1 2 0
| frg
! 0 9 1 1 (5.32)
0 0 1 1
If the eigenvalues are , where , we wish to find

Now, it is easy to see from Theorem 5.5 that all the eigenvalues lie in
the interval [ 4 4]. We take the midpoint of this interval, and evaluate
the Sturm sequence with = 0, giving

?20)=1 ?20)=3 ?2(0)= 4 ?2(0)= 16 ?(0)= 12
In this sequence there are three agreements of sign:
(13 (4 16) and ( 16 12)

Hence : (0) = 3, and the matrix has three eigenvalues greater than
0; this means that must lie in the right-hand half of the interval
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[ 4 4], that is, in [0 4]. We construct the Sturm sequence for = 2,
the midpoint of the interval, giving

2(2)=1 22 =1 ?2((2)= 4 22 = 0 ?2(@2) =4

Notice that here ? (2) is zero, and is given the negative sign to agree
with ? (2). The number of agreements in sign here is two, so two of the
eigenvalues are greater than 2, and must lie in [2 4], the right-hand
half of the interval [0 4]. For = 3 we obtain the sequence

1 +0 1 2 3

with only one agreement of sign, so this time  must lie in the left-hand
half [2 3] of the interval [2 4], and we repeat the process, taking = -,
the midpoint of [2 3]. This time the sequence is
1 1 11 17 7

2 4 8 16
with one agreement in sign, showing that 25.

The process of bisection can be repeated as many times as required to
locate the eigenvalue to a given accuracy. After 13 stages we find that

= 2 450 correct to three decimal digits.

This method is very similar to the usual bisection process for finding
a solution of ( ) = 0, beginning with an interval [ ] such that ()
and () have opposite signs. A great advantage of the Sturm sequence
method is that it not only determines the eigenvalue, but also indicates
which eigenvalue it is. If we used the Jacobi method of Section 5.3 we
would have to determine all the eigenvalues, sort them into order, and
then choose the second largest eigenvalue as

The Sturm sequence method will also determine how many eigenvalues
of a matrix lie in a given interval ( ) ); all that we need is to construct

the Sturm sequences (? ( )) and (? ())) ; then, the re-
quired number of eigenvaluesis: ( ) : ()).

It is very important to calculate the sequence ? () directly from the
recurrence relation. For instance, in Example 5.7, with = 2445 we
obtain

1
= 3 2445=0555
(1 2445) 0555 1 1= 209120
= (1 2445) 29120 4 0555=109878
(1 2445) 19878 1 29120 = 00396
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The alternative, to construct explicit forms for the polynomials ? ( ),
3=01 , and then evaluate ? () by inserting the value of =
into each of the polynomials ? ( ), will lead to the construction of the
explicit form of the characteristic polynomial of the matrix, which is
? (), and we have already seen that this is affected disastrously by
rounding errors. The calculation by direct use of the recurrence relation
is perfectly satisfactory.

Example 5.8 As a second example, we return to the matriz! in (5.16),

which has been transformed to the tridiagonal form (5.31), to determine
the largest eigenvalue.

Table 5.2. Bisection process for the largest eigenvalue. In the table

denotes the iteration number, the th iterate approrimating the
unknown eigenvalue , and: () signifies the number of sign
agreements in the Sturm sequence ? () ? ().
#*" +
&
('%&
& ¢
% $
( )(
% ) (&
) .
$
$ %%
$
$&
& %
. %
( ¥

Table 5.2 shows the result of the bisection process, using the Sturm
sequence. The -norm of the tridiagonal matrix is 10.926, so the pro-
cess begins with the interval [ 10 926 10 926]. The largest eigenvalue
1 8 . 1 5 1

» 5, A A
L 1 6 8 6 5
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is 8094, to three decimal digits, agreeing with the result of Jacobi’s
method, in Section 5.3. This table also shows how some savings are
possible when all the eigenvalues are required. We see from the table
that use of = 7511 gives 1 agreement in sign, while = 6 829 gives 2
agreements in sign. The bisection process for the second largest eigen-
value can therefore begin with the interval [6 829 7 511].

The method of bisection may appear rather crude, but it has the great
advantage of guaranteed success, and is very little affected by rounding
errors. Moreover, the amount of work involved is not large. If we have
calculated the squares of the off-diagonal entries, , of the matrix F in
advance, each computation of all members of the sequence requires about
2 multiplications. If the bisection process is continued for 40 stages,
the eigenvalue will be determined to about nine significant digits, and
if we require to calculate + of the eigenvalues to this accuracy, we shall
need about 80+ multiplications. If + is a good deal smaller than |
the order of the matrix, this is likely to be a great deal smaller than the
work involved in the process of reduction to tridiagonal form, which, as
we have seen, is about -  multiplications. In most practical problems
it is the initial Householder reduction to tridiagonal form which accounts
for most of the computational work.

5.7 The QR algorithm

In this section we discuss briefly the QR algorithm, an alternative method
for determining the eigenvalues of a tridiagonal matrix. In principle it
could be applied to a full matrix, but it is more efficient to use the
Householder method to reduce the matrix to tridiagonal form first. The
basis of the method is the QR factorisation of the matrix which we
have already encountered in Chapter 2, in the solution of least squares
problems. In contrast with Section 2.9, however, where we were con-
cerned with the solution of least squares problems for rectangular ma-
> here the focus is on eigenvalue problems for symmetric
tridiagonal matrices ! > . we shall therefore revisit the derivation
of the QR factorisation by adopting a slightly different approach from
the one proposed in Section 2.9.

trices !

5.7.1 The QR factorisation revisited

Suppose that 3 and ! ™ is a symmetric tridiagonal matrix.

We first show how to construct an orthogonal matrix & > and
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which are already equal to zero, remain zero upon multiplication by the
next rotation matrix & in the sequence, we deduce that, after successive

multiplications of ! on the left by & , & & _ , the matrix

& _ & _ & 1 =" (5.35)
is upper triangular. In fact, since ! is tridiagonal, ' is tridiagonal
and upper triangular; consequently, ' is bidiagonal in the sense that
' =0if2=33 1.

As the matrices & =" ((),?=12 1, are orthog-
onal, and therefore & & = , on multiplying (5.35) on the left by
& & & _ , we find that

I =&'
where
& =& & & _

is an orthogonal matrix (as it is a product of orthogonal matrices). The
next subsection describes the QR algorithm, based on the QR factori-
sation, for the numerical solution of the eigenvalue problem (5.1) where
the matrix ! > is symmetric and tridiagonal.

5.7.2 The definition of the QR algorithm
Suppose that ! > is symmetric and tridiagonal. The QR algo-

rithm defines a sequence of symmetric tridiagonal matrices ! >
=012 ,starting with ! =1, as follows.
Suppose that 0. The th step of the QR algorithm takes the
symmetric tridiagonal matrix ! and chooses a shift (the

choice of  will be discussed below), then forming the QR factorisation

! =& '
We then multiply & and'’ in the reverse order, and construct the
new matrix ! defined by
! =" & +
Recalling that the matrix &  is orthogonal, it is a simple matter to see
that ! =& I & , so that! and ! have the same
eigenvalues. As ! =1 | all matrices in the sequence (! ) have the

same eigenvalues as ! itself. It is also easy to show that each of the
matrices ! is symmetric and tridiagonal. (See Exercise 7.)
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The choice of the shift parameter is very important; if correctly
chosen the sequence of matrices ! converges very rapidly to a matrix
in which one of the off-diagonal elements is zero. If this element is in the
first or last row, we have thereby identified one of the eigenvalues; if it is
one of the intermediate elements, we can split the matrix into two sep-
arate matrices of lower order. In either case we can repeat the iterative
process with smaller matrices, until all the eigenvalues are found.

The usual simple choice of the shift parameter in the th step is

the last diagonal element of the matrix ! . In general, after a few
steps of the iteration the element at position ( 1) will become
negligibly small. One of the eigenvalues of the resulting matrix is then
the last diagonal element, and we continue the process with the matrix
of order 1 obtained by removing the last row and column. There
are special circumstances where this choice of shift is unsatisfactory, and
other situations where another choice is more efficient, but we shall not
discuss the details any further. The proof of the convergence of this
method is long and technical; details will be found in the books cited in
the Notes at the end of the chapter.

The method does not determine the eigenvalues in any particular or-
der, so if we require only a small number of the largest eigenvalues, for
example, the Sturm sequence method is preferable. The usual recom-
mendation is that the QR algorithm should be used on a matrix of order

if more than about - of the eigenvalues are required.

Example 5.9 We apply the QR algorithm to the tridiagonal matriz

(5.31).
After one step of the iteration the matrix ! =" & + , with
= = , is
7034 2271 0 0 0
2271 2707 0744 0 0
! = 0 0744 5804 3202 0
0 0 3202 0464 1419
0 0 0 1419 2082
In successive iterations =1 2 3 4 5, the element has the values

1419, 1262, 0965, 0223, 0002, and after the next iteration
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vanishes to 10 decimal digits. The element is 3282, which is
therefore an eigenvalue.

We then remove the last row and column, and continue the process
on the resulting 4 4 matrix. After just one iteration the element at
position (4 3) vanishes to 7 decimal digits, giving the eigenvalue 0 671.
We remove the last row and column and continue with the resulting 3 3
matrix. After one iteration of the resulting 3 3 matrix the element
at position (3 2) is 00005, and another iteration gives the accurate
eigenvalue 1 690. We are now left with a 2 2 matrix, and the calculation
of the last two eigenvalues is trivial. The number of iterations required
to isolate each eigenvalue reduces as the algorithm reduces the size of
the matrix; this sort of behaviour is typical.

The numerical values agree with those obtained by Jacobi’s method,
and the bisection method.

5.8 Inverse iteration for the eigenvectors

We saw in Section 5.3 that Jacobi’s method can also, if required, produce
the eigenvectors of the matrix, but the use of Householder’s algorithm, in
conjunction with the Sturm sequence method or the QR algorithm, only
gives the eigenvalues. Suppose that ! ™ is a symmetric matrix,
and assume that we have a good approximation to the required
eigenvalue of I | and some approximation =1,
to the associated eigenvector = 1. It is implicitly assumed
that = and that is not an eigenvalue of ! , so that the matrix
! is nonsingular. The method of inverse iteration defines the
sequence of vectors , =01 |, as follows: given mfind
—snd then —from

¢ ) =

(5.36)

where =1 =1 . Hence, we conclude that
=1, =012

Theorem 5.10 Suppose that ! > . The sequence of vectors ()
in  —defined in the process of inverse iteration (5.36) converges to the
normalised eigenvector —corresponding to the eigenvalue

which is closest to , provided that is a simple eigenvalue and the
initial vector —s not orthogonal to the vector
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If the estimate is within rounding error of  and the eigenvalues
are well spaced, the convergence of the sequence ( ) will be extremely
rapid: usually a couple of iterations will be sufficient.

The proof of Theorem 5.10 breaks down if = 0, i.e., when the initial
vector is exactly orthogonal to the required eigenvector. However,
this does not mean that the iteration (5.36) will also break down; for
the effect of rounding error will almost always introduce a small multiple
of the vector into the expansion of in terms of the with
3=12 , and the required eigenvector will then be obtained in a
small number of iterations. This is a useful property of the method, since
in practice it is not possible to check whether or not is orthogonal
to , given that the eigenvector is unknown.

There will also be a problem if there is a multiple eigenvalue, or two
eigenvalues are very close together: in the first case =1
for some 3 = :, and the proof of Theorem 5.10 breaks down; in the
second case 1 for some 3 = :, leading to very slow
convergence.

The computation of from (5.36) requires the solution of a system
of linear equations whose matrix is ! . This matrix will usually
be nearly singular — in fact, our objective in choosing was to make
! exactly singular. In general the solution of such a system is
extremely dangerous, because of the effect of rounding errors; in this
case, however, the effect of rounding error will be to introduce a multiple
of the dominant eigenvector, and this is exactly what is required. An
analysis of the effect of rounding errors will confirm this fact, but would
take too long here.

There are two ways in which we can implement the inverse iteration
process. One obvious possibility would be to use the original matrix
! >, as implied in (5.36). An alternative is to replace ! in this
equation by the tridiagonal matrix F > supplied by Householder’s
method. The calculation is then very much quicker, but produces the
eigenvector of F; to obtain the corresponding eigenvector of ! we must
then apply to this vector the sequence of Householder transformations
which were used in the original reduction to tridiagonal form. It is easy
to show that this is the most efficient method.

191 1 A .
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Inverse iteration with the original matrix ! > requires the LU
decomposition of ! | followed by one or more forward and backsubsti-
tution operations. As we saw in Section 2.6, the LU decomposition
requires approximately —  multiplications. The same process with the
tridiagonal matrix F, using the Thomas algorithm, involves only a small
multiple of multiplications.

Having found an eigenvector of the tridiagonal matrix F
that

, SO

F pr—
we use the fact that & & = F to write
& =&

so that the vector & is an eigenvector of | . Using Theorem 5.7, this
means that the required eigenvector of ! is

B _ B

where the matrices B * 3=2 1, are Householder
matrices. To multiply a vector by a Householder matrix B = B ()
we write

B =( )= ()

Assuming that =2 ( ) is known, this requires the calculation of
the scalar product , and then subtracting a multiple of the vector
from the vector . This evidently involves 2 multiplications. Hence
the calculation of & requires only 2 ( 2) multiplications, and the
work involved in the whole process is proportional to , instead of
In fact the total is less than 2 ( 2), since a more careful count can
use the fact that many of the elements in the vector are known to be
Zero.

Example 5.10 Returning to the tridiagonal matriz (5.31), the QR al-
gorithm has given an accurate eigenvalue which is 8 094 to three decimal
digits. Beginning the inverse iteration (5.86) with a randomly chosen
vector qwe find that

=( 00249 00574 03164 04256 0 8455)

Successive iterations make no change in this vector, as might be expected,
since the eigenvalue used was accurate to within rounding error.
This is therefore the eigenvector of the tridiagonal matriz (5.31), to
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eigenvectors ,3=12 , as

= (5.41)

then

()= —— (5.42)

On noting that is equal to 1 when 2= 3 and to 0 otherwise,
(5.42) follows trivially by inserting (5.41) into (5.40).

Theorem 5.12 Let ! > . For any vector

() (5.43)
where and are respectively the least and greatest of
the eigenvalues of ! . These bounds are attained when  is the corre-

sponding eigenvector.

Proof The inequalities follow immediately from (5 42) by noting that

,3=12 . U

Theorem 5.13 Suppose that s & normalised vector, that is,

= 1. Assume, further, that s the th normalised eigen-
vector of | >, and that

for a small . Then,
)=+ ()
Proof 1t follows from (5.41) that =, and therefore,
= ( ) ( )
2 +
= 2(1 )
Hence, =1+ ( ). Further,
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= 4+
0
=1 ()4
0
Consequently, = () for all 3= . The result then follows from
(5.42) which (with = = 1) yields that
()= o+
0

0

This important result means that if we have a fairly close approxima-
tion  to an eigenvector of ! | then the Rayleigh quotient ' ( ) gives
very easily a much more accurate approximation to the corresponding
eigenvalue.

5.10 Perturbation analysis

It is often necessary to have an estimate of how much the eigenvalues
and eigenvectors of a matrix are affected by changes in the elements.
Such perturbations may arise, for example, when the matrix elements
are obtained by physical measurements which are inexact, or they might
result from finite difference approximations of a differential equation, as
will be seen in Chapter 13. The last two theorems in this chapter address
some of these questions. We begin with the following preliminary result.

Theorem 5.14 Let > with eigenvalues  and corresponding
orthonormal eigenvectors 2=1 2 , and suppose that =0 and
are vectors in and is a real number such that

( ) = (5.44)

Then, at least one eigenvalue of  satisfies

Proof If is equal to one of the eigenvalues the proof is trivial, so we
shall assume that = , =12 . We write the vectors and
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as linear combinations of the eigenvectors of | so that
= = )

Substituting in (5.44), we may equate coefficients of the linearly inde-
pendent vectors , =12 , to deduce that

() =) —12

Now suppose that  is the eigenvalue which is closest to ; this means
that

=12

Since the eigenvectors ,2=1 2 , are orthonormal in |, we have

= ) =
Hence

) =
( )
which gives
)
= ) ) =( )
( )

as required. O

We shall now use this result to show that in the case of a symmetric
matrix ! | small symmetric perturbations of ! lead to small changes in
the eigenvalues of ! .

Theorem 5.15 (Bauer—Fike Theorem (symmetric case)) Suppose

that! 8 * and= =1 8. Assume, further, that the eigenvalues
of I are denoted by 3=12 , and is an eigenvalue of =.
Then, at least one eigenvalue  of ! satisfies

8

Proof This is a straightforward consequence of the previous theorem.
Suppose that is the normalised eigenvector of = corresponding to the
eigenvalue , sothat = = . Then,

¢ ) =(=+8 ) =8
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It then follows from Theorem 5.14 that there is an eigenvalue  of !
such that

as required. O

Example 5.11 Consider the 3 3 Hilbert matrix
1 12 13

I'= 12 13 14

13 14 15
and its perturbation

10000 05000 03333
== 05000 03333 02500
03333 02500 02000

which results by rounding each entry of ! to four decimal digits.

In thiscase, 8 =! =and 8 =33 107 . Let be an eigenvalue
of =; then, according Theorem 5.15, at least one of the eigenvalues
of the matrix | satisfies the inequality

33 10~ (5.45)

)

Indeed, the true eigenvalues of | and = are, respectively,

= 0002687338072 = 01223270673 = 1408318925
and
= 0002664493933 = 01223414532 = 1408294053
Therefore,
=229 10 = 144 10~ =249 10

which is in agreement with (5.45).

5.11 Notes
Theorem 5.15 is a special case of the following general result, known as
the Bauer-Fike Theorem.

1 9424 449" 8, C > #*8C
## #@? 4
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Theorem 5.16 Assume that ! > s diagonalisable; i.e., there
exrists a nonsingular matriz " > such that " — 1" = A, where
A is a diagonal matriz whose diagonal entries , 3=1 , are the
eigenvalues of | . Suppose further that 8 *,==1 8,and 1is
an eigenvalue of =. Then, at least one eigenvalue  of | satisfies

A (ll ) 8
where A (" ) = " " is the condition number of the matriz "
in the matriz 2-norm on

In the special case when ! | 8 >

, the matrix " can be chosen
to be orthogonal; é.e.,"™ = =" . Therefore, " = "7 =1,and
hence A (" ) = 1, in accordance with the inequality stated in Theorem
5.15. Theorems 5.15 and 5.16 estimate how far the eigenvalues of ! are
perturbed by changes in the elements of | . The question as to how large
the changes in the eigenvectors may be is more difficult; it is discussed

in detail in
- , The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford University Press, New York, 1988.

Chapter 8 of Wilkinson’s book outlines the convergence proof of the QR
iteration, while the convergence of Jacobi’s method is covered in Chapter
5 of that book. For further details, see also Chapter 9 of

1 $ , The Symmetric Eigenvalue Problem, Prentice-Hall, En-
glewood Cliffs, NJ, 1980.

Exercises

5.1 Give a proof of Lemma 5.3.
5.2 Use Householder matrices to transform the matrix

2 1 2 2

1 7
2 6
2 )

(G20 e
= ot ot

to tridiagonal form.
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5.3

5.4

5.5

5.6
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Use Sturm sequences to show that no eigenvalue of the matrix

3 1 0 0
L1 2 2 0
' 0 2 4
0 0 1
lies in the interval (0 1) if 5 8, and that exactly one eigen-
value of ! lies in this interval if 5 8.
Given any two nonzero vectors and in , construct a
Householder matrix B such that B is a scalar multiple of ;
note that if B = , then = . Is the matrix
unique?
Suppose that the matrix 5 > is diagonal with distinct
diagonal elements 6 , |6 . Let! > with 1
forall23 12 , and assume that is so small that
can be neglected, and that the matrix 5 + ! has eigenvalue
+  and corresponding eigenvector e+ u. Show that =6
for some 3 12 and that = . Write down the

elements of e, and show that

= 2:
6 3

Explain why the requirement that eigenvectors should be nor-
malised implies that = 0.

With the same notation as in Exercise 5, suppose now that
6 =6 = =6 ,that6 6 6 are distinct,
and that can be neglected. Writing the matrices and the
eigenvector in partitioned form, so that

6 + ! ! e+ +
! 5 _ +! f+ +
e+ +
=(+ + 4
( ) f+ +
show that =6 , f = 0, and that 1is an eigenvalue of !
with corresponding eigenvector e. Show how is obtained from
the solution of (5 — ) = ! e, and that

(! ) =4de | v
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5.8

5.9

5.10

5.11
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Explain how the vector can be obtained in terms of the eigen-
vectors and eigenvalues of the matrix | | assuming that these
eigenvalues are distinct.

Suppose that ! > is tridiagonal, that ! =& and
= ='& 4+ , where , & > is a product of plane ro-

> is upper triangular and tridiagonal. Show

tations and '
that = can be written as an orthogonal transformation of ! | and
that = is symmetric. Show also that the only nonzero elements
in the matrix = which are below the diagonal lie immediately
below the diagonal; deduce that = is tridiagonal.

Perform one step of the QR algorithm, using the shift = ,

for the matrix

Show that the QR algorithm does not converge for this matrix.
(This is a special case in which a different shift must be used.)
Perform one step of the QR algorithm, using the shift = ,
for the matrix

Carry out two steps of inverse iteration for the matrix

202
25
using the eigenvalue estimate =5 and the initial vector
1
1

Verify that the elements of the vector agree with those of
the true eigenvector with an accuracy of about 5%. Evaluate
the Rayleigh quotient using the vector , and verify that the
result agrees with the true eigenvalue to about 1 in 3000.

An eigenvalue and eigenvector of the matrix ! may be evaluated
by solving the system of nonlinear equations

¢ ) =0

=1

for the unknowns and . Using Newton’s method, starting
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5.12

5.13
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from estimates and , show that the next iteration is
determined by

(! )
-( 1)

and = + = + . Comment on the differ-
ence between this method and the method of inverse iteration
in Section 5.8.

Suppose that ! and that Jacobi’s method has produced
an orthogonal matrix ' and a symmetric matrix = such that

<

= = I' . Suppose also that for all 2= 3. Show
that, for each 3 =1 2 , there is at least one eigenvalue
of I such that

Suppose that ! > and that the Householder reduction
and QR algorithm have produced an orthogonal matrix & and
a tridiagonal matrix F such that F = & !& . Suppose also that
G _ . Show that there is at least one eigenvalue of !
such that

G
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Polynomial interpolation

6.1 Introduction

It is time to take a break from solving equations. In this chapter we con-
sider the problem of polynomial interpolation; it involves finding a poly-
nomial that agrees exactly with some information that we have about a
real-valued function of a single real variable . This information may
be in the form of values ( ) () of the function at some finite
set of points on the real line, and the corresponding poly-
nomial is then called the Lagrange interpolation polynomial or,
provided that is differentiable, it may include values of the derivative
of at these points, in which case the associated polynomial is referred
to as a Hermite interpolation polynomial.

Why should we be interested in constructing Lagrange or Hermite
interpolation polynomials? If the function values ( ) are known for
all  in a closed interval of the real line, then the aim of polynomial
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interpolation is to approximate the function by a polynomial over this
interval. Given that any polynomial can be completely specified by its
(finitely many) coefficients, storing the interpolation polynomial for in
a computer will be, generally, more economical than storing itself.
Frequently, it is the case, though, that the function values ( ) are
only known at a finite set of points , perhaps as the results
of some measurements. The aim of polynomial interpolation is then to
attempt to reconstruct the unknown function by seeking a polynomial
? whose graph in the ( )-plane passes through the points with co-
ordinates ( ( ),2=0 . Of course, in general, the resulting
polynomial ? will differ from  (unless itself is a polynomial of the
same degree as ? ), so an error will be incurred. In this chapter we shall
also establish results which provide bounds on the size of this error.

6.2 Lagrange interpolation

Given that is a nonnegative integer, let & denote the set of all (real-
valued) polynomials of degree defined over the set  of real numbers.
The simplest interpolation problem can be stated as follows: given
and in , find a polynomial ? & such that ? ( ) = . The
solution to this is, trivially, ? () . The purpose of this section is
to explore the following more general problem.

Let 1, and suppose that 2=101 , are distinct real num-
bers (i.e., = for2=3)and 2=01 are real numbers;
we wish to find ? & suchthat? ( )= 2=01
To prove that this problem has a unique solution, we begin with a useful
lemma.
Lemma 6.1 Suppose that 1. There exist polynomials & ,
=01 such that
1 2=
= 6.1
()= o 5 (6.1)
forall2 =01 . Moreover,
? ()= () (6.2)
satisfies the above interpolation conditions; in other words, ? &

and? ()= 2=01
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Proof In view of Remark 6.1, for = 0 the proof is trivial. Let us
therefore suppose that 1. It follows immediately from Lemma 6.1
that the polynomial ? & defined by

? ()= ()
satisfies the conditions (6.5), thus showing the existence of the required

polynomial. It remains to show that ? is the unique polynomial in &
satisfying the interpolation property

2 ()= 2=01
Suppose, otherwise, that there exists & , different from ? , such
that ( ) = 2=01 . Then, ? & and ?
has + 1 distinct roots, 2=01 ; since a polynomial of degree

cannot have more than  distinct roots, unless it is identically 0, it
follows that

?2() () 0

which contradicts our assumption that ? and are distinct. Hence,

there exists only one polynomial ? & which satisfies (6.5). O
Definition 6.1 Suppose that 0. Let ,2=0 , be distinct real
numbers, and ,2=10 , real numbers. The polynomial ? defined
by

? ()= () (6.6)

with (), =01 , defined by (6.4) when L,and () 1
when = 0, is called the Lagrange interpolation polynomial of
degree  for the set of points ( ):2=0 . The numbers
2=0 , are called the interpolation points.

Frequently, the real numbers are given as the values of a real-
valued function , defined on a closed real interval [ ], at the (distinct)
interpolation points [ ],2=0

Definition 6.2 Let 0. Given the real-valued function , defined and
continuous on a closed real interval | ], and the (distinct) interpolation
points [ ],2=0 , the polynomial ? defined by
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? ()= () () (6.7)

is the Lagrange interpolation polynomial of degree (with in-
terpolation points ,2=0 ) for the function

Example 6.1 We shall construct the Lagrange interpolation polynomial
of degree 2 for the function : e on the interval [ 1 1], with
interpolation points = 1, =0, =1.

As =2, we have that

B (
e S TR
(

Similarly, ( )=1 and )=- ( +1). Therefore,

2()=-( e +(1 Je +- ( +1)e
Thus, after some simplification, ? ( ) =1+ sinhl1+ (coshl 1).

Although the values of the function and those of its Lagrange inter-
polation polynomial coincide at the interpolation points, ( ) may be
quite different from ? ( ) when is not an interpolation point. Thus, it
is natural to ask just how large the difference ( ) ? ( ) is when

= 2=0 . Assuming that the function is sufficiently
smooth, an estimate of the size of the interpolation error ( ) ? ()
is given in the next theorem.

Theorem 6.2 Suppose that 0, and that s a real-valued function,

defined and continuous on the closed real interval [ ], such that the
derivative of  of order + 1 exists and is continuous on [ ]. Then,
given that [ ], there exists = () in( ) such that

where

Moreover
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It is perhaps worth noting that since the location of in the interval
[ ] is unknown (to the extent that the exact dependence of on
is not revealed by the proof of Theorem 6.2), (6.8) is of little practical
value; on the other hand, given the function , an upper bound on the
maximum value of over [ ] is, at least in principle, possible to
obtain, and thereby we can provide an upper bound on the size of the
interpolation error by means of inequality (6.10).

6.3 Convergence

An important theoretical question is whether or not a sequence (? ) of
interpolation polynomials for a continuous function converges to as

. This question needs to be made more specific, as ? depends
on the distribution of the interpolation points ,3 =01 , not
just on the value of . Suppose, for example, that we agree to choose
equally spaced points, with

= +3 ) 3 =01 1

The question of convergence then clearly depends on the behaviour of
as increases. In particular, if

i gy e - () =0
then, by (6.10),

lim max ? =0 6.12
i max () ? () (6.12)
and we say that the sequence of interpolation polynomials (? ), with
equally spaced points on [ ], converges to  as , uniformly on
the interval [ ]

You may now think that if all derivatives of exist and are continuous

on [ ], then (6.12) will hold. Unfortunately, this is not so, since the
sequence

ey e U
may tend to , as , faster than the sequence (1 ( 4 1)!) tends
to 0.

In order to convince you of the existence of such ‘pathological’ func-
tions, we consider the sequence of Lagrange interpolation polynomials
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Table 6.1. Runge phenomenon:  denotes the degree of the
interpolation polynomial ? to , with equally spaced points on [ 5 5].

‘Max error’ signifies max () 2().
E F!
%(
% %
$
& %%
' ) (
% " (
)l
(s
' ()
?, =012 | with equally spaced interpolation points on the inter-
val [ 5 5], to
1

()=1 59
This example is due to Runge, and the characteristic behaviour ex-
hibited by the sequence of interpolation polynomials ? in Table 6.1 is
referred to as the Runge phenomenon: Table 6.1 shows the maxi-
mum difference between ( ) and ? ( ) for 5 5, for values of

from 2 up to 24. The numbers indicate clearly that the maximum
error increases exponentially as  increases. Figure 6.1 shows the inter-
polation polynomial ? | using the equally spaced interpolation points

= 543 3=01 10. The sizes of the local maxima near 5
grow exponentially as the degree increases.

Note that, in many ways, the function is well behaved; all its deriva-
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The construction is similar to that of the Lagrange interpolation poly-
nomial, but now requires two sets of polynomials B and 1 with
=0 ; these will be defined in the proof of the next theorem.

Theorem 6.3 (Hermite Interpolation Theorem) Let 0, and
suppose that , 2= 10 , are distinct real numbers. Then, given
two sets of real numbers ,2=10 ,and, 2=0 , there is a
unique polynomial ? mn & such that

2 ()= M ()=, 2

I
o

(6.13)

Proof Let us begin by supposing that 1. As in the case of Lagrange
interpolation, we start by constructing a set of auxiliary polynomials;
we consider the polynomials B and1 , =01 , defined by

B () =1 ()@ 25 X )

(6.14)
1) =1 Ol )
where
*
()= ——
0
Clearly B and1 , =01 , are polynomials of degree 2 + 1. It
iseasy toseethat B ( )=1 ( )=0,BY )=1Y ) =0 whenever
2 01 and 2= ; moreover, a straightforward calculation
verifies their values when 2= | showing that
1 2=
B() = 0 o BH )=0 2 =01
1 () =0 1%):12_ 2 =01
We deduce that
? ()= B() +1 ()]
satisfies the conditions (6.13), and ? is clearly an element of &

To show that this is the only polynomial in & satisfying these
conditions, we suppose otherwise; then, there exists a polynomial
in & , distinct from ? , such that

()= and ()=, 2=01
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Consequently, ? has + 1 distinct zeros; therefore, Rolle’s
Theorem implies that, in addition to the -+ 1 zeros 2=01 ,
2?0 O vanishes at another points which interlace the . Hence
- = & has2 +1 zeros, which means that 27 0 s
identically zero, so that ? is a constant function. However,
(? )( )=0for2=01 , and hence ? 0,
contradicting the hypothesis that ? and are distinct. Thus,
? is unique.

When =0, wedefineB () landl () , which corre-
spond to taking () 1in (6.15). Clearly, ? defined by

?()=B () +1 () = +( );
is the unique polynomial in & such that ? ( )= and ?H )=, .
O

Definition 6.3 Let 0, and suppose that ,2=10 , are distinct
real numbers and , 2=10 , are real numbers. The polynomial
? defined by

? ()= B() +1 ()] (6.15)

where B () and 1 () are defined by (6.15), is called the Hermite
interpolation polynomial of degree 2 + 1 for the set of values given
in ( , ):2=0
Example 6.2 We shall construct a cubic polynomial ? such that
20)=0 ?21M=1 ?20)=1 6 ? H1)=0
Here =1, and since ? (0) = ?H1) = 0 the polynomial simplifies to
?()=B()+1 ()
We easily find that, with =1, =0and =1,
()=1 ()=
and then,

B() =1 (@ 25 )X N= 6B 2)
1) =1 OIS )=@a )
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These yield the required Hermite interpolation polynomial,

2()=  + +

Definition 6.4 Suppose that is a real-valued function, defined on the

closed interval [ | of , and that is continuous and differentiable on
this interval. Suppose, further, that 0 and that 2=0 , are
distinct points in [ |. Then, the polynomial ? defined by

2 ()= B () )+1 ()T ) (6.16)

is the Hermite interpolation polynomial of degree 2 + 1 with
interpolation points 2=0 for . It satisfies the conditions

2 ()=() 27 ()=") 2=0

Pictorially, the graph of ? touches the graph of the function at
the points 2=0

To conclude this section we state a result, analogous to Theorem 6.2,
concerning the error in Hermite interpolation.

Theorem 6.4 Suppose that 0 and let  be a real-valued function,
defined, continuous and 2 + 2 times differentiable on the interval [ ],

such that is continuous on [ |. Further, let ? denote the
Hermite interpolation polynomial of  defined by (6.16). Then, for each
[ ] there exists = ( )in( ) such that
() 2 O=g b () (6.17)
2 +2)
where - is as defined in (6.9). Moreover,
? I
2 O gt ) (6.18)
where = max( J) .

Proof The inequality (6.18) is a straightforward consequence of (6.17).
In order to prove (6.17), we observe that it is trivially true if =
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2=01 , are distinct points in [ ], and that ? & s the
Lagrange interpolation polynomial for  defined by these points. Then,
there exist distinct points 2=1 ,in (), and corresponding
to each in [ | there exists a point = ( )in ( ), such that

) M= (6.20)

where
- =( ) )

Proof Since () ?( )=02=01 , there exists a point
in ( — ) at which ¥ ) 29 ) =0, for each 2= 1 . This
defines the points 2=1 . Now the proof closely follows that of
Theorem 6.2.

When = for some2 1 , both sides of (6 20) are zero.
Suppose then that is distinct from all the ,2=1 , and define

the function G . (G by
0
6=t 6 7 5

This function vanishes at every point 2=1 , and also at the
point G= . By successively applying Rolle’s Theorem we deduce that

vanishes at some point . The result then follows as in the proof of
Theorem 6.2. |

Corollary 6.1 Under the conditions of Theorem 6.5,
C )
Ty ) ——-) L
forall in| ], where =max — ().

In particular, we deduce that if and all its derivatives are defined

and continuous on the closed interval [ ], and
lim o ‘ =0

then lim _comax — ¥ ) 2?9 ) =0, showing the convergence of

the sequence of interpolation polynomials (?°) to 5 uniformly on [ .
The discussion in the last few paragraphs may give the impression that

numerical differentiation is a straightforward procedure. In practice,

however, things are much more complicated since the function values
( ),2=01 , will be polluted by rounding errors.
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and = , tends to 0; in the latter case, the degree of the polynomial
?5 tends to infinity and consequently the spacing between the increas-
ing number of consecutive interpolation points shrinks. Nevertheless,
Example 6.3 illustrates the issue that caution should be exercised in the
course of numerical differentiation when rounding errors are present.

6.6 Notes

The interpolation polynomial (6.6) was discovered by Edward Waring
(1736-1798) in 1776, rediscovered by Euler in 1783 and published by
Joseph-Louis Lagrange (1736-1813) in his Lecons élémentaires sur les
mathématiques, Paris, 1795.

Lagrange’s interpolation theorem is a purely algebraic result, and it
also holds in number fields different from the field of real numbers con-
sidered in this chapter. In particular, it holds if the numbers  and

,2=01 , are complex, and the polynomial ? has complex co-
efficients. Theorem 6.2 is due to Augustin-Louis Cauchy (1789-1857).
The interpolation polynomial (6.15) was discovered by Charles Hermite
(1822-1901).

Before modern computers came into general use about 1960, the evalu-
ation of a standard mathematical function for a given value of required
the use of published tables of the function, in book form. If was not
one of the tabulated values, the required result was obtained by inter-
polation, using tabulated values close to . The tabulated values were
given at equally spaced points, so that usually = 3, where is a
fixed increment. In this case the Lagrange formula can be simplified;
as this sort of interpolation had to be done frequently, various devices
were used to make the calculations easy and quick. Older books, such
as F.B. Hildebrand’s Introduction to Numerical Analysis, published in
1956, contain extensive discussions of such special methods of interpo-
lation, some of which date back to the time of Newton, but are now
mainly of historical interest. A notable early contribution to the devel-
opment of mathematical tables is the work of Henry Briggs (1560-1630),
Savilian Professor of Geometry and fellow of Merton College in Oxford,
entitled Arithmetica logarithmica, published in 1624. It contained ex-
tensive calculations of the logarithms of thirty thousand numbers to 14
decimal digits; these were the numbers from 1 to 20000 and from 90000
to 100000. It also contained tables of the sin function to 15 decimal
digits, and of the tan and sec functions to 10 decimal digits.
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Exercises
Construct the Lagrange interpolation polynomial ? of degree 1,
for a continuous function defined on the interval [ 1 1], using
the interpolation points = 1, = 1. Show further that
if the second derivative of exists and is continuous on [0 1],
then

() ?2() 7(1 )7 [ 11]

where  =max 5 T ). Give an example of a function
, and a point , for which equality is achieved.
(i) Write down the Lagrange interpolation polynomial of degree

1 for the function : , using the points =0, = .

Verify Theorem 6.2 by direct calculation, showing that in this

case is unique and has the value =-( + ).

(ii) Repeat the calculation for the function : (2 ) ;

show that in this case there are two possible values for , and

give their values.

Given the distinct points 2=01 + 1, and the points
2=01 + 1, let  be the Lagrange polynomial of

degree  for the set of points ( 22=01 and

let ; be the Lagrange polynomial of degree for the points

( ):2=12 + 1 . Define
oy RO )0

Show that ? is the Lagrange polynomial of degree + 1 for the

points  ( ):2=01 +1.
Let 1. The points  are equally spaced in [ 1 1], so that
23

With the usual notation

- ()=l ) )

show that

Using Stirling’s formula

! 2- e
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6.5

6.6

6.7

6 Polynomial interpolation

verify that

i 1 1) 2 e
for large values of
Let 1. Suppose that 2=01 , are distinct real
numbers, and 2=01 , are real numbers. Suppose,
further, that there exists ? & such that ? ()=
forall2=01 ,and 2 ()= [ 2=01

Attempt to prove that ? is the unique polynomial with these
properties, by adapting the uniqueness proofs in Sections 6.2
and 6.4, using Rolle’s Theorem; explain where the proof fails.
Show that there is no polynomial ? & such that ? ( 1) =1,
?20)=0,?21)=1,?2"% 1)=0,?"0) =0, ?1) = 0, but that
if the first condition is replaced by ? ( 1) = 1, then there is an
infinite number of such polynomials. Give an explicit expression
for the general form of these polynomials.

Suppose that 1. The function and its derivatives of
order up to and including 2 + 1 are continuous on [ |. The
points ,2=01 , are distinct and liein [ ]. Construct
polynomials <( ), (), ( ),2=1 , of degree 2 such

that the polynomial

satisfies the conditions
?2 ()= () 2=01

and

Show also that for each value of in [ | there is a number |
depending on , such that

+
(O 2=
(2 +1)!
Suppose that 2. The function and its derivatives of order
up to and including 2 are continuous on [ ]. The points

,2=01 , are distinct and lie in [ ]. Explain how to
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6.10

6.11

6.12

6 Polynomial interpolation

Find the limit of this expression as 0, and deduce that
? - - 0 as 0, where  _ is the Hermite inter-
polation polynomial for , using the points 2=0 1.
Construct the Hermite interpolation polynomial of degree 3 for
the function : , using the points = 0, =
and show that it has the form ? ( ) = 3 2 . Verify
Theorem 6.4 by direct calculation, showing that in this case
is unique and has the value =-( +2 ).

The complex function , (,) of the complex variable , is

holomorphic in the region 5 of the complex plane; the boundary
of 5 is the simple closed contour >. The interpolation points

3=01 , with 1, and the point all lie in 5.
Determine the residues of the function defined by

G

*

()=
at its poles in 5, and deduce that

() 2()=-1 U d

2- ) ’
where ? is the Lagrange interpolation polynomial for the func-
tion using the interpolation points 3=01
Now, suppose that the real number and the interpolation
points 3=01 , all lie in the real interval [ ], and
that 5 consists of all the points , such that , G 1 for all
G | |, where 1 is a constant with 1 . Show that
the length of the contour > is 2( )+ 2-1 , and that
(1)

() 20) _ -

where  is such that () on >. Deduce that the se-
quence (? ) converges to , uniformly on [ .

Show that these conditions are not satisfied by the function

1 (I1+ ) for in the interval [ 5 5]. For what values

of are the conditions satisfied by ~for in the interval | 1?7
With the same notation as in Example 6.3, let

a()= LU+ ) (()+ ) g

Suppose that ™ ) exists and is continuous at all [ ]
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By expanding ( )and ( ) into Taylor series about the point
0, show that there exists ( ) such that

Hence deduce that

where =max =+ I ) and = max( — ). Show
further that the right-hand side of the last inequality achieves
its minimum value when
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Numerical integration — I

7.1 Introduction

The problem of evaluating definite integrals arises both in mathematics
and beyond, in many areas of science and engineering. At some point in
our mathematical education we all learned to calculate simple integrals

such as | |

ed or cos d

using a table of integrals, so you will know that the values of these are
e 1 and 0 respectively; but how about the innocent-looking
! !

e d and cos( )d

or the more exotic
|

exp(sin(cos(sinh(cosh(tan™ (log( )))))))d ?

Please try to evaluate these using a table of integrals and see how far
you can get! It is not so simple, is it? Of course, you could argue that
the last example was completely artificial. Still, it illustrates the point
that it is relatively easy to think of a continuous real-valued function
defined on a closed interval [ ] of the real line such that the definite
integral

()d (7.1)

200
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is very hard to reduce to an entry in the table of integrals by means of
the usual tricks of variable substitution and integration by parts. If you
have access to the computer package Maple, you may try to type

at the Maple command line. In about the same time as it will take you
to correctly type the command at the keyboard, as if by magic, the result
1514 780678 will pop up on the screen. How was this number arrived
at?

The purpose of this chapter, and its continuation, Chapter 10, is to
answer this question. Specifically, we shall address the problem of eval-
uating (7.1) approximately, by applying the results of Chapter 6 on
polynomial interpolation to derive formulae for numerical integration
(also called numerical quadrature rules). We shall also explain how one
can estimate the associated approximation error. What does polynomial
interpolation have to do with evaluating definite integrals? The answer
will be revealed in the next section which is about a class of quadrature
formulae bearing the names of two English mathematicians: Newton
and Cotes.

7.2 Newton—Cotes formulae

Let  be a real-valued function, defined and continuous on the closed
real interval [ ], and suppose that we have to evaluate the integral
!

()d

Since polynomials are easy to integrate, the idea, roughly speaking, is
to approximate the function by its Lagrange interpolation polynomial

? of degree , and integrate ? instead. Thus,
! !

()d ? ()d (7.2)
For a positive integer |, let 2=01 , denote the interpolation
1 B# K 6#7. :, C>K  #e#? $
D 1 1 6 4
% 1 ? , E 1 1% 6 8%
6 5 6 1
P: N , 6 1 $
s , 6 ) . )
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points; for the sake of simplicity, we shall assume that these are equally
spaced, that is,

where

The Lagrange interpolation polynomial of degree for the function

9

with these interpolation points, is of the form

2()= () () whee ()= ——
O

Inserting the expression for ? into the right-hand side of (7.2) yields

()d o () (7.3)

where |

0 = ()d =01 (7.4)
The values 0 =01 , are referred to as the quadrature
weights, while the interpolation points =01 are called

the quadrature points. The numerical quadrature rule (7.3), with
quadrature weights (7.4) and equally spaced quadrature points, is called

the Newton—Cotes formula of order . In order to illustrate the
general idea, we consider two simple examples.
Trapezium rule. In this case we take =1,sothat = , = ;

the Lagrange interpolation polynomial of degree 1 for the function is
simply

() = ()O+ () 0)

Integrating ? ( ) from to yields
!

This numerical integration formula is called the trapezium rule. The
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terminology stems from the fact that the expression on the right is the
area of the trapezium with vertices ( 0), ( 0), ( (), ( ().
Simpson’s rule. A slightly more sophisticated quadrature rule is
obtained by taking = 2. In this case = =( + ) 2and
= , and the function is approximated by a quadratic Lagrange
interpolation polynomial.

The quadrature weights are calculated from

0 ()d
I
- )( )
= d
SO0 )
- GG 1)
= dG
_ 2 2
6
where it is convenient to make the change of variable
+
= G+ —
Similarly, 0 = —( ), and it is easy to see that 0 =0 by symmetry.

This gives
I

()d
a numerical integration formula known as Simpson’s rule.

It is very important to notice that the weights O defined in (7.4)
depend only on and , not on the function . Their values can therefore

1 B % #H# T T, c
# T 6#H?H T " D, D 5 6
, : ,Jd 8 40 $5 " $
D O % #e&> 1
" 5 6
5 6 1) #8@?1 , o)
5 1 , 1 2, = 1
/ + $ + + *
+
$ o+ / 4tH 17,12
C + 8 BC
B#?#>DD K B#>&HCH?* D 8 5
1 6 $ , 1 , 1 6 55 $
8 49 , 1 5 1 5
5 6 1 5
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be calculated in advance, as in the trapezium rule and Simpson’s rule.
The evaluation of the approximation to the integral (7.1) is then a trivial
matter; it is only necessary to compute () at each of the quadrature
points , =01 , multiply by the known weights 0 for =
01 , and form the sum on the right-hand side of (7.3).

7.3 Error estimates

Our next task is to estimate the size of the error in the numerical in-
tegration formula (7.3), that is, the error that has been committed by
integrating the interpolating Lagrange polynomial of instead of it-
self. The error in (7.3) is defined by

I

8 ()= ()d 0 ()

The next theorem provides a useful bound on 8 ( ) under the additional
hypothesis that the function is sufficiently smooth.

Theorem 7.1 Let 1. Suppose that is a real-valued function,
defined and continuous on the interval [ ], and let be defined
and continuous on [ ]|. Then,
!
8 - d 7.5
O 0) (75
where = max( () and- () =( ) ).

Proof Recalling the definition of the weights 0 from (7.4), we can write
8 () as follows:

8 () = ()d () () d

Thus,

The desired error estimate (7.5) follows by inserting (6.8) into the right-
hand side of this inequality. |
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Let us use this theorem to estimate the size of the error which arises
from applying the trapezium rule to the integral = ( )d . In this case,
with =1land- ()= )( ), the bound (7.5) reduces to

8 ()

_ )
- (7.6)

An analogous but slightly more tedious calculation shows that, for
Simpson’s rule,

T 196 (77)

Unfortunately, (7.7) gives a considerable overestimate of the error in
Simpson’s rule; in particular it does not bring out the fact that8 ( ) =0
whenever is a polynomial of degree 3. The next theorem will allow us
to give a sharper bound on the error in Simpson’s rule which illustrates
this fact. More generally, it is quite easy to prove that when is odd
the Newton—Cotes formula (7.3) (with O defined by (7.4)) is exact for
all polynomials of degree , while when is even it is also exact for all
polynomials of degree + 1 (see Exercise 2 at the end of the chapter).

Theorem 7.2 Suppose that is a real-valued function, defined and

continuous on the interval [ ], and that = , the fourth derivate
of , is continuous on [ ]. Then,
!
(4 —(O+a((+) 29+ ()= L ()

6 2880
(7.8)

for some in ().

Proof Making the change of variable

+
=—+—5G G[1]]
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and defining the function G K(G by K(G = ( ), we see that
!

()d

g LO+4(C+)2)+ ()

- KM %[K( 1) +4K(0)+K(1)]  (7.9)

We now introduce the function G M(GQ by
[

M(Q:._ K (L) dL gG[K( G1L4K(0)+K(@G G [ 11];

the right-hand side of (7.9) is then simply —( IM(1).

The remainder of the proof is devoted to showing that —( IM(1)
is, in turn, equal to the right-hand side of (7.8) for some in (). To
do so, we define

B(G=MG GM1) G [ 11]

and apply Rolle’s Theorem repeatedly to the function B . Noting that
B (0) = B(1) = 0, we deduce that there exists J (0 1) such that
BYJ) = 0. But it is easy to show that B¥0) = 0, so there exists
J  (0J) such that B™J ) = 0. Again we see that B ™0) = 0, so
there exists J (0 J ) such that B ™J ) = 0. Now,

MG = Sk K™ g
and therefore
B )= %[KWEJ) KM J)] 603 M(1)

Applying the Mean Value Theorem to the function K™ this shows that
there exists J  ( J J ) such that

J

B™MJ) = §[QJ K ()] 603 M(1)
= %[K (J) +90M(1)]

Since B™J ) =0 and J = 0, this means that

Mo = 2k @)= L ()

and the required result follows. |
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Table 7.1. is the result of the Newton—Cotes formula of degree  for
the approximation of the integral (7.12)

$ &$ %

7.4 The Runge phenomenon revisited

By looking at the right-hand side of the error bound (7.5) we may be led
to believe that by increasing , that is by approximating the integrand by
Lagrange interpolation polynomials of increasing degree and integrating
these exactly, we shall reduce the size of the quadrature error 8 ( ).
However, this is not always the case, even for very smooth functions

. An example of this behaviour uses the same function as in Section
6.3; Table 7.1 gives the results of applying Newton—Cotes formulae of

increasing degree to the evaluation of the integral
I
' 1

- 1+

d (7.12)

These results do not evidently converge as increases, and in fact they
eventually increase without bound. This behaviour is related to the fact
that the weights O in the Newton—Cotes formula are not all positive
when 8. We shall return to this point in Theorem 10.2.

A Dbetter approach to improving accuracy is to divide the interval
[ ] into an increasing number of subintervals of decreasing size, and
then to use a numerical integration formula of fixed order on each
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of the subintervals. Quadrature rules based on this approach are called
composite formulae; in the next section we shall describe two examples.

7.5 Composite formulae

We shall consider only some very simple composite quadrature rules:

the composite trapezium rule and the composite Simpson rule.
Suppose that is a function, defined and continuous on a nonempty

closed interval [ | of the real line. In order to construct an approxi-

mation to |

()d

we now select an integer + 2 and divide the interval [ ] into + equal
subintervals, each of width = ( )+ , so that
! !
()d = ()d (7.13)
where
2

= 42 = ++—( ) 2=01 +

Each of the integrals is then evaluated by the trapezium rule,
!

(d 21—+ () (7.14)

summing these over 2=1 2 + leads to the following definition.

Definition 7.1 (Composite trapezium rule)

1
()d s ()+ )+ +( -)+5 () (715
1 1 | 6 1o
1 N
1 5 1 $ 7
6 5 6 1%, 16 B .&
6 B ) 60C # 6 B ) 604 % s
1,
U TR BN 1 %
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The error in the composite trapezium rule can be estimated by using
the error bound (7.6) for the trapezium rule on each individual subin-
terval [ —  ],2=1 2 + . For this purpose, let us define

() = ()d -()+ )+ + 0 =)+-0 )

Applying (7.6) to each of the terms under the summation sign we obtain

1
y
b () 15 ( max EI]EJ)

() (7.16)

12+
where =max — {J).
For Simpson’s rule, let us suppose that the interval [ ] has been
divided into 2+ intervals by the points = +2 2=01 2+ |

with + 2 and

2+
and let us apply Simpson’s rule on each of the intervals [ — 1,

2=12 + , giving
! !

()d = ()d

This leads to the following definition.

Definition 7.2 (Composite Simpson rule)

()d [C)+4()+2( )+4 ( )+

+2( —)+4( )+ ( )] (117

3

A schematic view of the pattern in which the coefficients 1, 4 and 2
appear in the composite Simpson rule is shown in Figure 7.1.
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B % & %# * +
G 5 > #%

In order to estimate the error in the composite Simpson rule, we pro-
ceed in the same way as for the composite trapezium rule. Let us define
!
W) = ()d sLC —)+4 )+ ()]
ol

= (Jd [0 -)+4 0 )+ ()]

Applying (7.10) to each individual term in the sum and recalling that
=2+ we obtain the following error bound:

C )

v 2880+

where = max( J).

The composite rules (7.15) and (7.17) provide greater accuracy than
the basic formulae considered in Section 7.2; this is clearly seen by com-
paring the error bounds (7.16) and (7.18) for the two composite rules
with (7.6) and (7.8), the error estimates for the basic trapezium rule
and Simpson rule respectively. The inequalities (7.16) and (7.18) indi-
cate that, as long as the function is sufficiently smooth, the errors in
the composite rules can be made arbitrarily small by choosing a suffi-
ciently large number of subintervals.

(7.18)

7.6 The Euler—-Maclaurin expansion

We have seen in (7.16) that the error in the composite trapezium rule is
bounded by a term involving 1+ | where + is the number of subdivi-
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sions of the interval [ |; the Euler -Maclaurin expansion expresses
this error as a series in powers of 1 + | and makes it possible to improve
accuracy by extrapolation methods.

We first define a sequence of polynomials.

Definition 7.3 Consider the sequence of polynomials ,; =12
defined by their properties, as follows:

(i) is a polynomial of degree ; ;

(ii) for each positive integer;, Y = ;
(iii) is an odd function if ; is odd, and an even function if ; is
even;

(iv) if; 1 4s odd, then ( 1)=0and (1)=0;

(v) (6= G

Using these conditions it is easy to construct the polynomials  in
succession. From (v) and (ii) we get

(G= -G+! (G= -G+! Gt!
where | and ! are constants. From (iii) we see that | = 0; then,
from (iv) it follows that ! = -. Hence,
G= -G+- (G= -G+-G
We can then go on to construct and , and so on.
1: B> %  #& & + C#. #&.* $
D E, , 1
1 , 6 , 1 s 6
1 1 14 1 #* 2
, 5 , 5 6
, 6 1 4
. 15 J 6 6 J G
f , , 6 6 $ 6 , 6
, , 5 6 1 6 , ,4)
z 9 H#H&?> 1 1 6 ,
, , 4 +\ J . N
1R 8 , 6 4 . 1
1, 1 1, 1 J G L
1 1 1 BD1
1, 1 1 1 G 1 o# u u?
1 E , E J , 4
2 o, B9 6 #70. % 6 , C# K #& ?
, D, 5 6 IF
1 ## , L#4) ##@ 1 #
, 9 1 6 , &0 7 "o1&?* 5

0O % E 6 , 8 1 N
" 8
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where G=G )= 14 =( — ) for [ - |.2=1 +, and
= ()2 for;=1

Proof We express the integral as a sum over the + subintervals|[ — |,
2=1 + ,asin (7.13). Intheinterval [ — ] we change the variable
by writing = _ + (G+1) 2, so that

! !

() =5 (GG

where ()= (G. According to Theorem 7.3, then,
!

I
\
)
o
®
=
_|_
=

(G (GdG

On noting that (@ = ( 2) (),%$=12 2 ,dG=(2 )d,
summation over all the subintervals [ — ], for2=1 + , gives the
required result. The important point is the symmetry of the polynomials
, which ensures that (1) = (1), so that all the derivatives of
at the internal points  cancel in the course of summation, leaving only
the derivatives at and . O

Remark 7.1 By successively computing the polynomials (G, we can
determine the values of = (1) 2 ,; =123 . For ezample,

It can be shown that = —— forall; =123 , where= are

the Bernoulli numbers with even index, which can be determined from

1k, B&/ , #2> + C#? %
#8 > + D 1 E

LI | '+ L.
4 , 6 1 E 1
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the Taylor series expansion

—-coth - =

(2;)!

Easier still, typing ! at the Maple command
line gives =——; can be found in the same way.

An interesting consequence of Theorem 7.4 concerns the numerical
integration of smooth periodic functions. Suppose that is a continuous

function defined on ( ) such that all derivatives of , up to and
including order 2 , are defined and continuous on ( ), and s
periodic on ( ) with period pde, (4 ) ()=0
for all . Hence, by successive differentiation of this equality and
taking = we deduce that, in particular,

- () ~()=0 for; =12

Therefore, according to (7.20), we have that

F(+)= ()
The fact that for 1 this integration error is much smaller than the
() error that will be observed in the case of a nonperiodic function
indicates that the composite trapezium rule is particularly well suited
for the numerical integration of smooth periodic functions.
A second application of the Euler-Maclaurin expansion concerns ex-
trapolation methods. This subject will be discussed in the next section.

7.7 Extrapolation methods

In general the calculation of the higher derivatives involved in the Euler—
Maclaurin expansion (7.20) is not possible. However, the existence of the
expansion allows us to eliminate successive terms by repeated calculation
of the trapezium rule approximation.

For example, the case = 2 of (7.20) may be written in the form
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We can eliminate the term in  from these two equalities, giving

! 4F(2+) F(+)

(== ()

The same elimination process could be used for any two values of + ,
from the calculation of F(+ ) and F(+ ); the advantage of using + and
2+ is that in the computation of F (2+ ) half the required values of ( )
are already known from F(+ ), and we do not have to calculate them
again. This process of eliminating the term in from the expansion
of the error is known as Richardson extrapolation or extrap-
olation. It is easy to extend the process to higher-order terms. For
example,

15
where

c (+):4F(2+ )3 F(+)
Therefore,

F ey [FCH) F()

15

approximates the integral =~ ( )d to accuracy ( ). Adopting the
notational convention

F(+) =F(+)
and proceeding recursively,
1: 96 , B## H, #..# , 6
c* H#O>* % 6 , D $
6 s 6 6 + 6 /7 1
G 6 N 40
6 6 = HS E
6 1E J ,
8 C B#@ D
9 G 6 55 1
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Table 7.2. Romberg table.

& * + &1* + &2* + &3* + &4* +

&*'+ &1 *'+ &*'+ &s*'+ &4*'+
&* + & * + &* + &s* +

% &*%+ &* %+ &* %+

&  &*&+ &*&+

%' &*%'+

AF_(2¢+) F_(+
F(+)= (2+) *+) =123 (7.21)
4 1
will approximate =~ ( )d to accuracy ( ), provided of course
that exists and is continuous on the closed interval [ ]. This

extrapolation process is known as the Romberg integration method.

The intermediate results in Romberg’s method are often arranged in
the form of a table, known as the Romberg table. For example, if we
start with + = 4 subdivisions of the closed interval [ |, each of length

= ( ) 4, and proceed by doubling the number of subdivisions in
each step (and thereby halving the spacing between the quadrature
points from the previous step), then the associated Romberg table is
as shown in Table 7.2, where we took, successively, + =4 8 16 32 64

subdivisions of the interval [ ] of length = ( )+ each. Af-
ter F (4) = F(4) F (64) = F(64) have been computed, we cal-
culate F (4) F (32) using (7.21) with = 1, then we compute

F (4) F (16) using (7.21) with =2, then F (4) F (8) using (7.21)
with = 3, and finally F (4) using (7.21) with = 4. Provided that
the integrand is sufficiently smooth, the numbers in the F(+ ) column
approximate the integral to within an error ( ); the numbers in the
F (+) column to within (), those in the F (+) column to ( ),
those in the F (+) column to (), and those in the F (+) column to
within ().

1 1 ) 1% -

« 1, ) F (¢ 5
0 s * Cx7 >4
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An example is shown in Table 7.3. This gives the results of calculating

the integral |

e
d
144

by Romberg’s method; first the trapezium rule is used successively with
+ =4 8 16 32 and 64 equal subdivisions of the interval [0 1] of length

=( ) + each. There are then four stages of extrapolation: Stage 1
involves computing F (+ ) for + =4 8 16 32; Stage 2 computes F (+)
for + = 4 8 16; Stage 3 calculates F (+) for + = 4 8; and Stage 4
then computes F (+ ) for + = 4. Not only does the extrapolation give
an accurate result, but the consistency of the numerical values in the
last two columns gives a good deal of confidence in quoting the result
0.220458 correct to six decimal digits. Note that none of the individual
composite trapezium rule calculations in the F(+ ) column gives a result
correct to more than three decimal digits — not even F(64) which uses
64 equal subdivisions of [0 1].

Table 7.3. Romberg table for the calculation of = (e~ (144 ))d .

& * + &1* + &2* + 8@* + &4* +

' & )
S (G R

% &) % (
& $' (
%' 0%

The success of Romberg integration is only justified if the integrand
satisfies the hypotheses of the Euler—-Maclaurin Theorem. As an illus-
tration of this, Table 7.4 shows the result of the same calculation, but

for the integral |

d

The function is not differentiable at = 0, so the required
conditions are not satisfied for any extrapolation. The numerical results
bear this out; they are quite close to the correct value, 3 4, but the be-
haviour of the extrapolation does not give any confidence in the accuracy
of the result. In fact the extrapolation has not given much improvement
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on F(64). The calculation of integrals involving this sort of singularity
requires special methods which we shall not discuss here.

We have reached the end of this chapter, but do not despair: the story
about numerical integration rules will continue. In Chapter 10 we shall
discuss a class of quadrature formulae, generally referred to as Gaussian
quadrature rules, which are distinct from the Newton—Cotes formulae
considered here. Before doing so, however, in Chapters 8 and 9 we make
a brief excursion into the realm of approximation theory.

Table 7.4. Romberg table for the calculation of d .

& * + &* + &* + &* + &* +

) (C )yt %S ) 8 )s(E&
&&  )%% %  ))$  )$(&

% y&& Y& )%

& N )Ew(

% )$&

7.8 Notes

The material presented in this chapter is classical. For further details on
the theory and practice of numerical integration, we refer to the following
texts:

$ $ % ( ." Methods of Numerical
Integration, Second Edition, Computer Science and Applied Mathe-
matics, Academic Press, Orlando, FL, 1984;

# » " Approzimate Calculation of Inte-
grals, translated from Russian by Arthur H. Stroud, ACM Monograph
Series, Macmillan, New York, 1962;

/ " Numerical Quadrature and Cubature, Computa-
tional Mathematics and Applications, Academic Press, London, 1980.

The first of these is a standard text and contains a huge bibliography
of more than 1500 entries. Concerning the implementation of numerical
integration rules into mathematical software, the reader is referred to

D % , (0] " Compu-
tational Integration, STAM, Philadelphia, 1998.
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It includes a comprehensive overview of computational integration tech-
niques based on both numerical and symbolical methods, and an exposi-
tion of some more recent number-theoretical, pseudorandom and lattice
algorithms; these topics are beyond the scope of the present text.

Exercises

7.1 With the usual notation for the Newton—Cotes quadrature for-
mula and using the equally spaced quadrature points = +
forr =01 and 1, show that 0 = 0 _ for

=01

7.2 By considering the polynomial [ ( + ) 2] 1, and the
result of Exercise 1, or otherwise, show that the Newton—Cotes
formula using + 1 points =01 is exact for all
polynomials of degree + 1 whenever is even.

7.3 A quadrature formula on the interval [ 1 1] uses the quadrature
points = and = | where 0 1:

I

() 0 ( )+0 ()

The formula is required to be exact whenever is a polynomial
of degree 1. Show that 0 =0 =1, independent of the value
of . Show also that there is one particular value of for which
the formula is exact also for all polynomials of degree 2. Find
this , and show that, for this value, the formula is also exact
for all polynomials of degree 3.

7.4 The Newton—Cotes formula with = 3 on the interval [ 1 1] is

I

()d 0O (( H+0 (13)+0 (13)+0 (1)
Using the fact that this formula is to be exact for all polynomials
of degree 3, or otherwise, show that

20 +20 = 2
20 +-0 = -

and hence find the values of the weights 0 ,0 ,0 and O .
7.5 For each of the functions 1 , find the difference be-
tween _ ( )d and (i) Simpson’s rule, (ii) the formula derived
in Exercise 4.
Deduce that for every polynomial of degree 5 formula (ii) is
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7.7

7.8

7.9
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more accurate than formula (i). Find a polynomial of degree 6
for which formula (i) is more accurate than formula (ii).
Write down the errors in the approximation of

! !

d and d

by the trapezium rule and Simpson’s rule. Hence find the value
of the constant > for which the trapezium rule gives the correct

result for the calculation of
!

(> )d

and show that the trapezium rule gives a more accurate result
than Simpson’s rule when — > —.

Determine the valuesof 3= 1 0 1 2, such that the quadra-
ture rule

&()=- (H+ O+ @O+ (2

gives the correct value for the integral
!

()d

when is any polynomial of degree 3. Show that, with these
values of the weights , and under appropriate conditions on
the function |

!

(H)d &) —

Give suitable conditions for the validity of this bound, and a
definition of the quantity

Writing F (+ ) for the composite trapezium rule defined in (7.15)
and * (2+ ) for the composite Simpson’s rule defined in (7.17),
show that

*(2+)=-F(2+) -F(+)

Suppose that the function  has a continuous fourth deriva-

tive on the interval [ ], and that F(+ ) denotes the composite
trapezium rule approximation to = ( )d , using + subinter-
vals. Show that
F(+) F(2+
() Fey)

F(2+) F(@4+)
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7.10

7.11

7.12

7.13
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Using the information in Table 7.3 evaluate this expression for
+ =4 8 16.
With the same notation as in Exercise 9, suppose that the fourth
derivative of  is not continuous on [ ], but that

I

()d  F(+)=t+ *+8(+)

where 0 and ! are constants and lim _ e+ 8 (+) = 0.
Determine

L F() )
oo F(2+) F(4+)
Suggest a value of  which is consistent with the values of F(+)
given in Table 7.4.
The function has a continuous fourth derivative on the in-
terval [ 1 1]. Construct the Hermite interpolation polynomial
of degree 3 for using the interpolation points = 1 and

= 1. Deduce that
I

() [(H+ W=-[T1 H+s8

8 — max ()
Construct the polynomials and  given by Definition
7.3. Hence show that, in the notation of Theorem 7.4,
= 112 =1 720 = 1 30240

Using the relations

2sin - sin3 = cos-  cos(+ + -)

2sin - cos3 = sin(+ +-) sin-

where + is a positive integer, show that the composite trapez-
ium rule (7.15) with + subintervals will give the exact result for
each of the integrals

! !

cos; d sin; d
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for any integer value of ; which is not a multiple of + .
What values are given by the composite trapezium rule for
these integrals when ; =+ and is a positive integer?
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Polynomial approximation in the -norm

8.1 Introduction

In Chapter 6 we considered the problem of interpolating a function by
polynomials of a certain degree. Here we shall discuss other types of
approximation by polynomials, the overall objective being to find the
polynomial of given degree  which provides the ‘best approximation’
from & to a given function in a sense that will be made precise below.

8.2 Normed linear spaces

In order to be able to talk about ‘best approximation’ in a rigorous
manner we need to recall from Chapter 2 the concept of norm; this will
allow us to compare various approximations quantitatively and select the
one which has the smallest approximation error. The definition given in
Section 2.7 applies to a linear space consisting of functions in the same
way as to the finite-dimensional linear spaces considered in Chapter 2.

Definition 8.1 Suppose that  is a linear space over the field  of

real numbers. A nonnegative function defined on  whose value at
is denoted by 1s called a norm on  if it satisfies the following
azrioms:

=0 if, and only if, =01in ;

= for all ,and all in
+ + forall and in  (the triangle inequality).
A linear space , equipped with a norm, is called a normed linear

space.

224






226 8 Polynomial approximation in the -norm

Lemma 8.1 (i) Suppose that the real-valued weight function O is de-
fined, continuous, positive and integrable on the interval (). Then,
for any function cl ],
.
N o  whereN = 0( )d

(i1) Given any two positive numbers — (however small) and  (how-

ever large), there exists a function C[ ] such that
Proof The proof is left as an exercise (see Exercise 1). O

The definitions (2.33) and (2.34) of the vector norms oo and
on imply that

- oo oo (8.3)

which means that, to all intents and purposes, these two norms are in-
terchangeable. Lemma 8.1 indicates that a similar chain of inequalities
cannot possibly hold for the norms (8.1) and (8.2) on C[ |, and the
choice between them may therefore significantly influence the outcome
of the analysis.

Stimulated by the first axiom of norm, we shall think of C[ ]as
being well approximated by a polynomial ? on [ ] if ? is small,
where is either oo Or defined, respectively, by (8.1) or
(8.2). In the light of Lemma 8.1, it should come as no surprise that
the mathematical tools for the analysis of smallness of ? w are
quite different from those that ensure smallness of ? . We have
therefore chosen to discuss these two matters separately: the present
chapter focuses on the -norm (8.1), while Chapter 9 explores the use
of the 2-norm (8.2).

Despite the fundamental differences between the norms (8.1) and (8.2)
which we have alluded to above, there is a common underlying feature
which is independent of the choice of norm: if no limitation is imposed

1 s 1 G B.4*D 1, 1 s 1 1
1 1 4 E $
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on the degree of the approzimating polynomial ?, then the approximation
error ? can be made arbitrarily smallin both norms. This is a central
result in the theory of polynomial approximation and is formulated in
the next theorem.

Theorem 8.1 (Weierstrass Approximation Theorem ) Suppose
that  is a real-valued function, defined and continuous on a bounded
closed interval [ ] of the real line; then, given any 0, there exists
a polynomial ? such that

?

[}

Further, if O is a real-valued function, defined, continuous, positive and
integrable on (), then an analogous result holds in the 2-norm over
the interval [ ] with weight function O .

This is an important theorem in classical analysis, and several proofs
are known. It is evidently sufficient to consider only the interval [0 1];
a simple change of variable will then extend the proof to any bounded
closed interval [ ]. For a real-valued function , defined and continuous
on the interval [0 1], Bernstein’s proof uses the polynomial

?2()= 2 ()C ) [0 1]

where the Bernstein polynomials ? ( ) are defined by

? ()= )~ [0 1]
It can then be shown that, for any 0, there exists = () such that
? . The second part of the theorem is a direct consequence

of this result, using part (i) of Lemma 8.1.

The details of the proof are given in Exercise 12. For an alternative
proof, the reader is referred to Theorem 6.3 in M.J.D. Powell, Approzxi-
mation Theory and Methods, Cambridge University Press, 1996.

1 B*# H, #tt> H 1 5 F $
6C#H 9 6 #.0& F 60 1 G 6 1 13
1 , 6 40O 1 ,
6 1 1, 1 5 , 1, , 5 E$
, . 15 6 1 G ,
1 4 N , 9 F ol
0 + E 5 5"6 > -
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8.3 Best approximation in the -norm

According to the Weierstrass Approximation Theorem any function in
C[ ] can be approximated arbitrarily well from the set of all polynomi-
als. Clearly, if instead of the set of all polynomials we restrict ourselves
to the set of polynomials & of degree or less, with  fized, then it
is no longer true that, for any C[ ] and any 0, there exists
? & such that

?
Consider, for example, the function sin  defined on the interval
[0 -] and fix = 0; then oo 1 2 for any & , and therefore
there is no in & such that o 1 2. A similar situation will

arise if & is replaced by & , with the polynomial degree fixed.

It is therefore relevant to enquire just how well a given function in
C[ ] may be approximated by polynomials of a fixed degree 0.
This question leads us to the following approximation problem.

(A) Given that C[ ]and 0, fixed, find ? & such that
? o = inf oo ;
Pl

such a polynomial ? is called a polynomial of best approximation
of degree to the function in the -norm.

The next theorem establishes the existence of a polynomial of best
approximation, showing, in particular, that the infimum of o
over & is attained. We shall consider the question of uniqueness of
the polynomial of best approximation later on, in Theorem 8.5.

Theorem 8.2 Given that C[ ], there exists a polynomial ? &
such that ? o = min py co-
Proof Let us define the function ( ) 8 ( ) of
+ 1 real variables by
8 ( )= o where ()= + 4+
1 1, 1 6 E8 . 1« 4
1 8 .
1
H 6 1 6
< 2 6, 1, , 1 1 6
, 5 G , 1 6 B1 , D <
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We shall first show that 8 is continuous; this will imply that 8 attains

its bounds on any bounded closed set in . We shall then construct
a nonempty bounded closed set ” such that the lower bound of
8 on 7 is the same as its lower bound over the whole of
To show that 8 is continuous at each point ( ) , con-
sider any ( ) and define the polynomial & Dby
()= + + . We see from the triangle inequality that
8( + + ) = ( + )
[ee] + [ee]
Now, for any given positive number , choose = (1+ +1 ),
where 1 = max . Consider any ( ) such that
for all 2=10 . Then,
8( + + ) 8¢ ) oo
max ( + +  + )
—
1+ +1 )
= (8.4)
Similarly,
8( ) = oo = ( + )+ -
( + ) et o
8( + + )+

and therefore

8 ( ) 8( + + ) (8.5)
From (8.4) and (8.5) we deduce that
8( + + ) 8 )
for all ( ) such that ,2=10 , where now
= (1+4 +1 )and1l =max . Hence 8 is continuous at
( ) . Since ( ) is an arbitrary point in , it
follows that 8 is continuous on the whole of
Let us denote by ” the set of all points ( ) in such that
8 ( ) o + 1. The set ” is evidently bounded and closed
in ; further, ” is nonempty since 8 (0 0) = oo oo + 1,

so that (0 0) ”. Hence the continuous function 8 attains its
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0 1
F o ! $o o B
The polynomial ? will be of the form ? ( ) , and we need to
determine so that

? o = max
is minimal. Since is monotonic increasing, ( ) attains its mini-
mum at = 0 and its maximum at = 1; therefore ( ) reaches
its maximum value at one of the endpoints of [0 1], i.e.,

8( )= max () =max  (0) (1)

Clearly,

W () (1)
8( )= © i -(O+ 1)

Drawing the graph of the function 8( ) shows that
the minimum is attained when = -( (0) 4+ (1)). Consequently, the
desired minimax polynomial of degree 0 for the function is

2() O+ 1) [0 1]

The function and its minimax approximation ? & are depicted in
Figure 8.1.
More generally, if C[ ] (not necessarily monotonic), and and
denote two points in [ ] where attains its minimum and maximum
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values, respectively, then the minimax polynomial of degree 0 to on

[ ]is

This example shows that the minimax polynomial ? of degree zero

for C[ ] has the property that the approximation error ?
attains its extrema at two points, = and = , with the error
o 1 1
() 20)=500) (ON+500) ()
being negative at one point, = , and positive at the other, =

We shall prove that a property of this kind holds in general; the precise
formulation of the general result is given in Theorem 8.4 which is, due
to the oscillating nature of the approximation error, usually referred to
as the Oscillation Theorem: it gives a complete characterisation of the
minimax polynomial and provides a method for its construction. We
begin with a preliminary result due to de la Vallée Poussin.

Theorem 8.3 (De la Vallée Poussin’s Theorem) Let C[ ]

and ; & . Suppose that there exist + 2 points m
the interval | ], such that ( ) ;( ) and ( ) ) have
opposite signs, for 2= 10 . Then,

min oo min () () (8.6)

Proof The condition on the signsof ( ) ;( ) isusually expressed by
saying that ; has alternating signs at the points 2=01 +1.
Let us denote the right-hand side of (8.6) by . Clearly, 0; when

= 0 the statement of the theorem is trivially true, so we shall assume
that 0. Suppose that (8.6) is false; then, for a minimax polynomial
approximation ? & to the function we have

? o = min oo
(=2l
1 K F 5 C - B# % #.72 = %
5 c - #? : 5 D
8 6 6 5 #.0 1
6 6 4
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Therefore,

() () ) () 2=01 +1

Now,

) 2C)=6C) () PC) () 2=01 +1

Since the first term on the right always exceeds the second term in
absolute value, it follows that ;( ) ? ( )and;( ) ( ) have the

same sign for 2=0 1 + 1. Hence ; ? , which is a polynomial of
degree , changes sign 4+ 1 times. Thus, the assumption that (8.6) is
false has led to a contradiction, and the proof is complete. O

Theorem 8.3 gives a clue to formulating a constructive characterisation
of the minimaz polynomial: indeed, we shall show that if the quantities
()(),2=01 +1, in Theorem 8.3 are all equal to } cos
then; & is, in fact, a minimax polynomial of degree for the function
on the interval [ ].

Theorem 8.4 (The Oscillation Theorem) Suppose that cl ]

A polynomial ; & is a minimaz polynomial for on [ | if, and only
if, there exists a sequence of + 2 points ,2=01 + 1, such
that s

() ()= i e 2=01 +1
and

() sCH)=1C ) C I 2=0

The statement of the theorem is often expressed by saying that ;
attains its maximum absolute value with alternating signs at the points

. The points 2=01 + 1, in the Oscillation Theorem are
referred to as critical points.

Proof of theorem If & , then the result is trivially true, with ; =
and any sequence of 42 distinct points ,2=0 1 +1, contained
in [ ]. Thus, we shall suppose throughout the proof that & ,i.e.,
is such that there is no polynomial ? & whose restriction to [ ]
is identically equal to
The sufficiency of the condition stated in the theorem is easily shown.
Suppose that the sequence of points 2=01 + 1 exists with
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the given properties. Define

= U oo and 8 ()= min o
(=2
From De la Vallée Poussin’s Theorem, Theorem 8.3, it follows that
8 () . By the definition of 8 ( ) we also see that 8 ( )
i .o = . Hence 8 () = , and the given polynomial ; is a

minimax polynomial.

For the necessity of the condition, suppose that the given polynomial
; & is aminimax polynomial for on|[ |]. As () () isa
continuous function on the bounded closed interval [ ], there exists a
point in [ ] at which () ;( ) attains its maximum value, 0;
let

—min [} () ()=

Now, = wouldimplythat () ;( ) = forall [ ] As is
continuous on [ |, it would then follow that either ( )=;( )+ for
all [ Jor ()=:;() forall [ ]; either way, we would find
that & , which is assumed not to be the case. Therefore, [ )
we may assume without loss of generality that () ;( )= 0.
Now, we shall prove the existence of the next critical point, (]
such that () ;( )= . Suppose otherwise, for contradiction;
then, () ;0) for all in [ ]. Thus, by the continuity
of , there exists (0 ) such that + () () for all
[ ] Let us define ; ' & by

where 0 min = . Then, for all [ ],
and

() =) ()

which means that

. _
Hence, ; ™ & is a better approximation to on [ ]than; & is.

This, however, contradicts our hypothesis that ; is a polynomial of best
approximation to on [ | from & , and implies the existence of

=imf (] () ()=
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on each of the intervals | l,2=01 + (whose union is [ ]).
We shall prove that, for 0 sufficiently small,

() Hh = ;oo

for all in [ ]and all2=10 1 + ;e e | ooy
contradicting the fact that ; & is a minimax polynomial for on
[ ], and refuting the hypothesis that 1 +

Take, for example, the interval | ]. For each in | ) we have

() 0and therefore, by the definition of ; "' ) and property (a) above,

() ) () )

Further, as () =0, it follows from (d) that

() %)= () ()

Therefore, () ;') for each in [ ]. For a lower bound
on () ;H'), note that by (a) and (¢), () ;() for all
in [ ]. As ; is a continuous function on | ], there exists
(0 )suchthat () () + forall in | ]. Thus,
for 0 min , where
C max ()

we have that

() ) + () [ )
Further, by (d) above,
() )= 0) )

Hence, () ;&) for all [ ], for 0 min .
Combining the upper and lower boundson () ;% ), we deduce that

() %) = [ ]

Arguing in the same manner on each of the other intervals | 1,

2=1 + , with 0 min ,2=1 + , and
and defined analogously to and  above, we conclude that
() = D e [ ] 2=01 +
and hence, for 0 min ,
. O
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of replacing ; by ; 5') =; () (), with 0, is indicated by the
arrows. Since (L i+ () and is negative for ( )
and positive outside ( ), : Mwill be smaller than ;o at
each of the points %, 2= 0 1 2. There are two other local extrema
for the error function ;1 a minimum at & and a maximum at ' .
Since both these points are to the right of |, where ( ) 0, we shall
have : ; at both of & and ' , and : coat .
The magnitude of the extra term () must therefore be limited by the
need to avoid the new difference ; Bhecoming too large at ' . We can
achieve this by selecting 0 sufficiently small. In this illustration the
polynomial ; & is not a minimax approximation to on the given
interval, since we can construct a better approximation ; “Which is also
in& .

We can now apply the Oscillation Theorem to prove that the minimax
polynomial is unique.

Theorem 8.5 (Uniqueness Theorem) Suppose that [ ] is a bounded
closed interval of the real line. Each C[ ] has a unique minimazx
polynomial ? & on| .

Proof Suppose that & is also a minimax polynomial for , and
that ? and  are distinct. Then,
e =8 ()
where, as in the proof of the Oscillation Theorem, we have used the
notation
8 = mi oo
()= min

This implies, by the triangle inequality, that

P+ ) = - 7))+ )

= 8 ()

Therefore -(? + ) & is also a minimax polynomial approximation
to on [ ]. By the Oscillation Theorem there exists a sequence of
+ 2 critical points ,2=0 1 + 1, at which

() -C)+ () =8() 2=01 +1
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A

()

(6)
()
6
& 8 ' B
equations
() ¢ + )=
6 ( 6+ )= ! (8.7)
(O +)=!
where either | = or! = , with - =max () ?2().

Along with the condition
H6) = (8.8)
this gives four equations to determine the unknowns 6, , and! .
Subtracting the first equation in (8.7) from the third equation, we get
() ()= ( )owhereby =( () () ( ) Now, by
the Mean Value Theorem, Theorem A.3, with this choice of  equation
(8.8) has at least one solution, 6, in the open interval in ( ). In fact,
the value of 6 is uniquely determined by (8.8), as U
strictly monotonic increasing. Next, can be determined by adding
the second equation in (8.7) to the first. Having calculated both  and
we insert them into the first equation in (8.7) to obtain ! ; finally
= 1

is continuous and

The construction of the minimax polynomial ? is illustrated in Figure
8.3; ' is the point at which the tangent to the curve = ( ) is parallel
to the chord % & the graph of ? () is parallel to these two lines, and
lies half-way between them.
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they are all real and distinct, and lie in (1 1);

(v) F () 1 forall [ 11] and all 0;

(vi) for 1, F () = 1, alternately at the + 1 points =
cos(- ), =01

We can now apply the Oscillation Theorem to construct the minimax
polynomial of degree for on the interval [ 1 1].

Theorem 8.6 Suppose that 0. The polynomial ? & defined by
?()= 27F () [ 11]

is the minimazx approximation of degree  to the function on
the interval [ 1 1].

Proof By part (ii) of Lemma 8.2, 7 & . Since

?()=2"F ()
by parts (v) and (vi) of Lemma 8.2, the difference ? () does not
exceed 27 in the interval [ 1 1], and attains this value with alternat-
ing signs at the + 2 points =cos(- ( +1)), =01 + 1
Therefore, by the Oscillation Theorem, ? is the (unique) minimax poly-

nomial approximation from & to the function over [ 1 1].

O

A polynomial of degree  whose leading coefficient, the coefficient
of , is equal to 1, is called a monic polynomial of degree . For
example, the polynomial ; & defined by ; () = () with

& , is a monic polynomial of degree + 1.

Corollary 8.1 Suppose that 0. Among all monic polynomials of
degree  + 1 the polynomials 2~ F and 27 F have the smallest
-norm on the interval [ 1 1].

Proof Let & denote the set of all monic polynomials of degree +1.
Any ; & can be regarded as the difference between the function

and a polynomial of lower degree, i.e., ;( ) = ()
with & . Hence, by Theorem 8.6,

min , o = 1min oo
=1 (=2}
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Proof LetL =cos (3+-)- ( +1),3=01 , denote the zeros
of the polynomial F (G (in the interval ( 1 1)). Hence,

*

G L)=2"F (G G [ 11]

Let us define the points ,3 =01 , as in the statement of the
theorem. Clearly ( )istheimageof L  ( 1 1) under the linear
transformation G = —( )G+ -( + ); we note in passing that
the inverse of this mapping is G )=(2 ) ( ); thus,

* *

( )= &5 @) L= —— 2F @)

The required bound now follows from (8.9), since F (G )) 1 for
all [ ], and therefore - () ( ) 20 T O

The De la Vallée Poussin Theorem, Theorem 8.3, suggests the no-
tion of a near-minimax polynomial, which is a polynomial ? &
such that the difference () ? () changes sign at + 1 points

,3=01 , with ; for the difference

() ? () then attains a local maximum or minimum with alternat-
ing signs in each of the intervals [ ) ( ) (] The posi-
tions of these alternating local maxima and minima are then the points

2=01 + 1, required by Theorem 8.3, and we therefore know
that the -norm of the error of the minimax polynomial lies between
the least and greatest of the absolute values of these local maxima and
minima. In particular, we should expect that if the sizes of these local
maxima and minima are not greatly different, then the error of the near-
minimax approximation should not be very much larger than the error
of the minimax approximation.

Given any set of points ,2=0 1 , with ,
the polynomial - () = ( )| ) changes sign at the +1
points ,3=01 . Let us assume that cl o, exists
and is continuous on [ |, and has the same sign on the whole
of (). It then follows that the product ( )- () has exactly

+ 1 sign-changes in the open interval () for any (). Thus,
according to (8.9), the Lagrange interpolation polynomial ? of degree

for the function , with interpolation points ,3=0 1 , contained
in the open interval (), is a near-minimax polynomial from & for
on|[ ]

We have therefore just shown that if exists and is continuous

on the closed interval [ ], and has the same sign on the open interval
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so we obtain a polynomial approximation ? ( ) by taking the terms of
this series up to the one involving . Then, clearly,

oo

e 2()= -
Over the interval [0 1], for example, this difference is nonnegative and
monotonic increasing; it does not change sign at all. Hence the polyno-
mial ? & thus constructed is quite certainly not a near-minimax ap-
proximation for e on [0 1]. Nevertheless, max — e ?2()

can be made arbitrarily small by choosing sufficiently large.

8.6 Notes

For further details on the topics presented in this chapter, we refer to

+ $ C " Approzimation Theory and Methods, Cambridge
University Press, Cambridge, 1996.

The Weierstrass Theorem is discussed in Chapter 6 of that book, and
is stated in its Theorem 6.3. Although the proof presented by Powell
uses the Bernstein polynomials, it is different from the more elementary
but slightly lengthier argument proposed in Exercise 12 here: it relies
on a proof of Bohman and Korovkin based on properties of monotone
operators; see, also, p. 66 in Chapter 3 of

/ " Introduction to Approzimation Theory, McGraw—Hill,
New York, 1966.

The notes contained on pp. 224-233 of Cheney’s book are particularly
illuminating.

The proof of the Weierstrass Theorem as proposed in Exercise 12,
including the definition of what we today call Bernstein polynomials,
stem from a paper of Sergei Natanovich Bernstein (1880-1968), entitled
‘Démonstration du théoreme de Weierstrass fondée sur le calcul des prob-
abilités’, Comm. Soc. Math. Kharkow 13, 1-2, 1912/13.

Weierstrass’ main contributions to approximation theory, as well
as those of other mathematicians (including Picard, Volterra, Runge,
Lebesgue, Mittag-Lefler, Fejér, Landau, de la Vallée Poussin, Bern-
stein), are reviewed in the extensive historical survey by Allan Pinkus,
Weierstrass and approximation theory, J. Approx. Theory 107, 1-66,
2000. Further details about the history of the subject can be found at
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the history of approximation theory website maintained by Allan Pinkus
and Carl de Boor: - 0

The second part of Theorem 8.1 concerning the approximability of
a continuous function by polynomials in the 2-norm is not usually pre-
sented as part of the classical Weierstrass Theorem which is posed in the

-norm. Here, we have chosen to state these results together in order
to highlight the analogy, as well as to motivate the use of the 2-norm in
polynomial approximation in the next chapter, Chapter 9.

In both Cheney’s and Powell’s books minimax approximation is treated
in the more general framework of Haar systems. An ( + 1)-dimensional

linear subspace  of C[ ] is said to satisfy the Haar condition if, for
every nonzero ? in (, the number of roots of the equation ?( ) = 0
in the interval [ ] is less than + 1. The concept of Haar system is

due to Alfred Haar (1885-1933), Die Minkowskische Geometrie und die
Annéherung an stetige Funktionen, Math. Ann. 78, 294-311, 1918; this
paper contains Haar’s Theorem which characterises finite-dimensional
Haar systems in spaces of continuous functions. The Characterisation
Theorem, formulated as Theorem 7.2 in Powell’s book, shows that the
Oscillation Theorem, Theorem 8.4 of the present chapter, remains valid
in a more general setting when the set of polynomials 1 is
replaced by an (4 1)-dimensional Haar system of functions contained
inC[ ]

Exercises

8.1 Give a proof of Lemma 8.1.

8.2 Suppose that the real-valued function is continuous and even
on the interval | ], thatis, ( )= ( ) forall [ ]
By using the Uniqueness Theorem, or otherwise, show that the
minimax polynomial approximation of degree is an even func-
tion. Deduce that the minimax polynomial approximation of
degree 2 is also the minimax polynomial approximation of de-
gree 2 +1. What does this imply about the sequence of critical
points for the minimax polynomial ? 7

8.3 State and prove similar results to those in Exercise 2, for the
case where is an odd function, that is, ( )= () for all

.G
8.4 (i) Construct the minimax polynomial ? & on the interval

[ 1 1] for the function defined by ( ) =sin



8.5

8.6

8.7

8.8
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(ii) Construct the minimax polynomial ? & on the interval
[ 1 1] for the function defined by ( )= cos

(Use the results of Exercises 2 and 3.)

The function B is defined by B( ) =1 if 0,B()= 1
if 0, and B (0) = 0. Show that for any 0 and any
? &, B ? o 1 on the interval [ 1 1]. Construct
the polynomial, of degree 0, of best approximation to B on the
interval [ 1 1], and show that it is unique. (Note that since B
is discontinuous most of the theorems in this chapter are not
applicable.)

Show that the polynomial of best approximation, of degree

1,to B on [ 1 1] is not unique, and give an expression for its
most general form.
Suppose that G G G are distinct points in the
interval [ |; for any function defined on | ], write O ( )=
max (). Explain why O () is not a norm on the space of
functions which are continuous on [ ]; show that it is a norm
on the space of polynomials of degree , provided that

In the case =3, withG =0 G = - G = 1, where we
wish to approximate the function : e on the interval
[0 1], explain graphically, or otherwise, why the polynomial ?
of degree 1 which minimises O (  ? ) satisfies the conditions

0 ?2©O=[0() ?2])= 0O 20

Hence construct this polynomial ? . Now suppose that = 4,
withG =0 G =- G =- G = -; use a similar method to
construct the polynomial of degree 1 which minimises O ( ? ).
Among all polynomials ? & of the form

where ! is a fixed nonzero real number, find the polynomial
of best approximation for the function ( ) 0 on the closed
interval [ 1 1].

Find the minimax polynomial ? & on the interval [ 1 1]
for the function defined by

()=
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8.9

8.10
8.11

8.12
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where =0.

Construct the minimax polynomial ? & on the interval
[ 1 2] for the function defined by ()=

Give a proof of Lemma 8.2.

Give an example of a continuous real-valued function defined
on the closed interval [ ] such that the set of critical points for
the minimax approximation of by polynomials from & does
not contain either of the points and .

For each nonnegative integer , and [0 1], define the Bern-
stein polynomials ? & by
! _
? ()= TSI * ) =0
Show that
1 +6) = 2 ()6

by differentiating this relation successively with respect to Gand
putting G= 1, show that, for any [0 1],

2 () = 1

and deduce that
( )? ()=—" [0 1]

Define  to be the upper bound of () on [0 1]. Given

0, we can choose 0 such that () () 2 for

any and in [0 1] such that . Now define the
polynomial ? & by
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and choose a fixed value of in [0 1]; show that

() ?20) () )72 0)

Using the notation

= +
where denotes the sum over those values of  for which
, and denotes the sum over those values of
for which , show that

Show also that

() )20 2 ) ( )? ()

Now, choose =~ = (), and show that
() 20) [0 1]
if . Deduce that
? if

where oo denotes the -norm on the interval [0 1].
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Approximation in the 2-norm

9.1 Introduction

In Chapter 8 we discussed the idea of best approximation of a continuous
real-valued function by polynomials of some fixed degree in the -norm.
Here we consider the analogous problem of best approximation in the
2-norm. Why, you might ask, is it necessary to consider best approxima-
tion in the 2-norm when we have already developed a perfectly adequate
theory of best approximation in the -norm? As our first example in
Section 9.3 will demonstrate, the choice of norm can significantly influ-
ence the outcome of the problem of best approximation: the polynomial
of best approximation of a certain fixed degree to a given continuous
function in one norm need not bear any resemblance to the polynomial
of best approximation of the same degree in another norm. Ultimately,
in a practical situation, the choice of norm will be governed by the sense
in which the given continuous function has to be well approximated.

As will become apparent, best approximation in the 2-norm is closely
related to the notion of orthogonality and this in turn relies on the
concept of inner product. Thus, we begin the chapter by recalling from
linear algebra the definition of inner product space.

Throughout the chapter [ | will denote a nonempty, bounded, closed
interval of the real line, and () will signify a nonempty bounded open
interval of the real line.

252
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Now,
! —
(cos cos) +sin sin))
cos( 1))
= cos( )
where « = ) is the angle between the vectors and . The vector
is orthogonal to  if, and only if, ~« is - 2 or 3- 2; either way,

cos( » ) =0, and hence I = 0. We note in passing that if =
then +« =0 and therefore

This last observation motivates our next definition.

Definition 9.3 Suppose that is an inner product space over the field
of real numbers, with inner product 1. For in , we define the

= (9.1)

Although our terminology and our notation appear to imply that (9.1)

defines a norm on , this is by no means obvious. In order to show that

I isindeed a norm, we begin with the following result which

is a direct generalisation of the Cauchy—Schwarz inequality (2.35) from
Chapter 2.

Lemma 9.1 (Cauchy—Schwarz inequality)
! (9.2)
Proof The proof is analogous to that of (2.35). Recalling the definition

of from (9.1) and noting the first three axioms of inner product, we
find that, for

)

0 + = +2 0 14 (9.3)
Denoting, for fixed, the quadratic polynomial in  on the right-
hand side by ! ( ), the condition for ! ( ) to be nonnegative for all in

is that [2 1 4 0; this gives the inequality (9.2). O

Now, putting =1 in (9.3) and using (9.2) on the right yields

+ + :
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Consequently, obeys the triangle inequality, the third axiom of
norm. The first two axioms of norm, namely that
0 for all , and =0if, and only if, =0in , and
= for all and all ,

follow directly form (9.1) and from the last three axioms of inner product
stated in Definition 9.1.
We have thus shown the following result.

Theorem 9.1 An inner product space  over the field  of real numbers,
equipped with the induced norm , is a normed linear space over

We conclude this section with a relevant example of an inner product
space, whose induced norm is the 2-norm considered at the beginning of
Chapter 8.

Example 9.3 The set C[ ] of continuous real-valued functions defined
on the closed interval [ ] is an inner product space with
!

1= 0() () (N (9.4)

where 0 is a weight function, defined, positive, continuous and inte-
grable on the open interval ().  The norm , induced by this
inner product and given by

= 0() () d (9.5)

is referred to as the 2-norm on C[ | (see Example 8.2). For the sake
of simplicity, we have chosen not to distinguish in terms of our notation
between the 2-norm on C[ | defined above and the 2-norm for vectors
introduced in Chapter 2; it will always be clear from the context which
of the two is intended.

Clearly, it is not necessary to demand the continuity of the function

on the closed interval [ ] to ensure that is finite. For example,
: sgn -+ ), [ ], has finite 2-norm, despite the fact
that it has a jump discontinuity at = -( + ).

Motivated by this observation, and the desire to develop a theory
of approximation in the 2-norm whose range of applicability extends
beyond the linear space of continuous functions on a bounded closed
interval, we denote by L () the set of all real-valued functions
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defined on () such that O( ) ( ) is integrable on ( ); the set
L ()isequipped with the inner product (9.4) and the induced 2-norm
(9.5). Obviously, C[ ] is a proper subset of L ().

In this broader context, is frequently referred to as the L -
norm; for the sake of simplicity we shall continue to call it the 2-norm.
As before, 0 is assumed to be a real-valued function, defined, positive,
continuous and integrable on the open interval (). When 0( ) 1
on (), weshall write L () instead of L. ().

We are now ready to consider best approximation in the 2-norm.

9.3 Best approximation in the 2-norm

The problem of best approximation in the 2-norm can be formulated as
follows:

(B) Given that L ( ),find? & such that
? = inf ;
el

such ? is called a polynomial of best approximation of degree
to the function in the 2-norm on ( ).

The existence and uniqueness of ? will be shown in Theorem 9.2.
However, we shall first consider some simple examples.

Example 9.4 Suppose that Oandlet ()=1 e with
in [0 1]. For = 10" , the function is depicted in Figure 9.1. We
shall construct the polynomial of best approximation of degree 0 in the
2-norm, with weight function 0( ) 1, for on (0 1), and compare it
with the minimax polynomial of degree 0 for on [0 1].

The best approximation to by a polynomial of degree 0 in the 2-norm
on the interval (0 1), with weight function 0( ) 1, is determined by
minimising over all ; equivalently, we need to minimise
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which tends to as 0+. These examples indicate that the
polynomial of best approximation from &
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where

+3+1
= () d

Equivalently, recalling that the inner product associated with the 2-norm
(in the case of O( ) 1) is defined by
!

I= () ()d
and can be written as
= I = ! (9.7

By solving the system of linear equations (9.6) for , we obtain
the coefficients of the polynomial of best approximation of degree to
the function in the 2-norm on the interval (0 1). We can proceed in
the same manner on any interval () with any positive, continuous
and integrable weight function O defined on ( ).

This approach is straightforward for small values of , but soon be-
comes impractical as  increases. The source of the computational dif-
ficulties is the fact that the matrix is the Hilbert matrix, discussed
in Section 2.8. The Hilbert matrix is well known to be ill-conditioned
for large , so any solution to (9.6), computed with a fixed number of
decimal digits, loses all accuracy due to accumulation of rounding errors.
Fortunately, an alternative method is available, and is discussed in the
next section.

9.4 Orthogonal polynomials

In the previous section we described a method for constructing the poly-
nomial of best approximation ? & to a function in the 2-norm;
it was based on seeking ? as a linear combination of the polynomi-
als ,3=0 , which form a basis for the linear space & . The
approach was not entirely satisfactory because it gave rise to a system
of linear equations with a full matrix that was difficult to invert. The
central idea of the alternative approach that will be described in this
section is to expand ? in terms of a different basis, chosen so that the
resulting system of linear equations has a diagonal matrix; solving this
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linear system is then a trivial exercise. Of course, the nontrivial ingredi-
ent of this alternative approach is to find a suitable basis for & which
achieves the objective that the matrix of the linear system is diagonal.
The expression for in (9.7) gives us a clue how to proceed.

Suppose that ( , 3=0 , form a basis for & , 0; let us seek
the polynomial of best approximation as

?O)=1CO)+ +1C0)

where | | are real numbers to be determined. By the same process
as in the previous section, we arrive at a system of linear equations of
the form (9.6):

where now
=( (! and ) = (!

with the inner product I defined by
!

= 0() () ()d

and the weight function 0 assumed to be positive, continuous and inte-
grable on the interval ().

Thus, = ( ) will be a diagonal matrix provided that the basis
functions ( , 3 =10 , for the linear space & are chosen so that
( ( '=0,for 3= ;in other words, ( is required to be orthogonal
to( for 3= ,in the sense of Definition 9.2. This observation motivates

the following definition.

Definition 9.4 Given a weight function O, defined, positive, continuous
and integrable on the interval (), we say that the sequence of polyno-
mials ( , 3=01 , is a system of orthogonal polynomials on
the interval () with respect to O, if each ( is of exact degree 3, and
if

! =0 forall =3,

00) () (), et =S

Next, we show that a system of orthogonal polynomials exists on any
interval () and for any weight function 0 which satisfies the conditions
in Definition 9.4. We proceed inductively.



9.4 Orthogonal polynomials 261

Let ( () 1, and suppose that ( has already been constructed for
3=0 , with 0. Then,

where

0()IC () d

= 0 for0 3 ,
where we have used the orthogonality of the sequence ( , 3=10
Thus, with this choice of the numbers we have ensured that is
orthogonal to all the previous members of the sequence, and ( can

now be defined as any nonzero-constant multiple of . This procedure
for constructing a system of orthogonal polynomials is usually referred
to as Gram—Schmidt orthogonalisation.

Example 9.5 We shall construct a system of orthogonal polynomials
¢ <« on the interval (0 1) with respect to the weight function
o() 1.

Weput ( () 1, and we seek ( in the form
( ()= ¢ ()
such that ( ( !=0; that is,
(v (=0
1 KX F B &K #.> / "C @% #g#? $

/7 DL , B#* K 6#.8? /
DC?/ , #0>0 F 6D4
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Hence,

and therefore,

By construction, ( ( '= ( ( !'=0.
We now seek ( in the form

( ()= ®C()+6( ()
such that ( ( '=0and ( ( !=0. Thus,

(v e (Y 6 (Y =

(e (r 6 (! =
As ( ( '=0and ( ( !=0, we have that

6 = -~ =1

and therefore
( ()= + - (9-8)

Clearly, ( ( '=0for3= ,3 012 ,and ( isof exact degree
3,3=0 1 2. Thus we have found the required system ( ( ( of
orthogonal polynomials on the interval (0 1) with respect to the given
weight function O.

By continuing this procedure, we can construct a system of orthog-
onal polynomials ( ( (, with respect to the weight function
0( ) 1 ontheinterval (0 1), for any 1. For example, when = 3,
weshall find ( ( ( ( ,with( ,( ,( ,asabove, and

()= - +- =

Having generated a system of orthogonal polynomials on the interval
(0 1) with respect to the weight function 0( ) 1, by performing the
linear mapping ( ) + we may obtain a system of orthogo-
nal polynomials on any open interval () with respect to the weight
function 0( ) 1. For example, when ( ) = ( 1 1), the mapping

2 1 leads to the system of Legendre polynomials on ( 1 1).
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Example 9.6 (Legendre polynomials) We wish to construct a sys-
tem of orthogonal polynomials on () = ( 1 1) with respect to the
weight function 0( ) 1.

On replacing by

—=-( +D) (=1

in( (), C (), (), ( ()from Example 9.5, we obtain, on normal-
ising each of these polynomials so that its value at =1 is equal to 1,
the polynomials (  ( ( ( , defined by

() = 1

~ A~~~
~— — ~— ~—

(
(
( =
These are the first four elements of the system of Legendre polynomials,
orthogonal on the interval ( 1 1) with respect to the weight function
0( ) 1. They are depicted in Figure 9.2. An alternative normalisation

would have been to divide each ( by ( so as to ensure that the
2-norm of the resulting scaled polynomial is equal to 1.

Example 9.7 The Chebyshev polynomials F : cos( cos” ),

=01 | introduced in Section 8.4, form an orthogonal system on
the interval (1 1) with respect to the positive, continuous and integrable
weight function 0 ( ) = (1 )~
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Such a system of polynomials is said to be orthonormal. The polyno-
mials/ ,3=0 , are linearly independent and form a basis for the
linear space & ; therefore, each element & can be expressed as a
suitable linear combination,

(=) O+ )71 ()

We wish to choose ) ,3=0 , so as to ensure that the correspond-
ing polynomial minimises over all & . Let us, therefore,
consider the function 8: () ) ) 8() ) ) defined
by 8() ) )= swhere () =)/ ()+ +) /1 ()
Then,
8() ) ) = !
= 12 !+ !
= 2 ) I '+ )) [ 1]

= D I+ /!
The function () ) ) 8() ) ) achieves its minimum value
at )= ) 5! where
yEE 1 3=0

Hence ? & defined by
O)=)FP O+ H)T ()

is the unique polynomial of best approximation of degree to the func-

tion L () in the 2-norm on the interval ( ). O
Remark 9.1 4s8() & ) H'= ? 0, it follows from the proof
of Theorem 9.2 that if L( ) and | [/ is an orthonormal

system of polynomials in L (), then

/!
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$& 7 B B $ ) # )
! $ B , !
32% o+ " $ 3 2x 4
5 :
* B 3 2 ++ B
B: * +
for each 0. This result is known as Bessel’s inequality.

The next theorem, in conjunction with the use of orthogonal poly-
nomials, will be our key tool for constructing the polynomial of best
approximation in the 2-norm.

Theorem 9.3 A polynomial ? & is the polynomial of best approxi-

mation of degree  to a function L () in the 2-norm if, and only
if, the difference ? is orthogonal to every element of & , i.e.,
? 1=0 & (9.9)

A geometrical illustration of the property (9.9) is given in Figure 9.3.

Proof of theorem Suppose that (9.9) holds. Then,

? 7 1=0 &
given that ? & for each in & . Therefore,
? = ? ? 1
? I+ ? ? 1
= 2 1 &
1o B K 6#&. ~ O 6



9.4 Orthogonal polynomials 267
Hence, by the Cauchy—Schwarz inequality (9.2),
? ? &

This implies that

? &
On choosing = ? on the right-hand side, equality will hold and there-
fore
? = min
[§=3]

Conversely, suppose that ? is the polynomial of best approximation
to L (). We have seen in the proof of Theorem 9.2 that ? can
be written in terms of the orthonormal polynomials / =0 , as

?O)=)FP O+ )T ()
where
Y= =0 (9.10)

On recalling that / [/ 1 = , 3 0 , where is the
Kronecker delta, we deduce from (9.10) that

2 /1 — ] Y5 1
= /1 )y e
= /1 )yt 3=0 (9.11)
Since & = span / I, it follows from (9.11) that ? 1=0
for all & , as required. |

An equivalent, but slightly more explicit, form of writing (9.9) is

o) () ?()()d =0 &

Theorem 9.2 provides a simple method for determining the polynomial

of best approximation ? & to a function L () in the 2-norm.
First, proceeding as described in the discussion following Definition 9.4,
we construct the system of orthogonal polynomials ( , 3=10 , on

the interval () with respect to the weight function 0, if this system
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is not already known. We normalise the polynomials ( , 3 =10
by setting

R G S
(
to obtain the system of orthonormal polynomials / , 3 =0 , on
(). We then evaluate the coefficients ) ==/ 1,3 =10 , and

form? ()=)" ()+ +)F ().
We may avoid the necessity of determining the normalised polynomials
| by writing
() = )P0+ ST
) O+ T )
= 1)+ +1(C(C) (9.12)

where

| = : 3=0 (9.13)

Thus, as indicated at the beginning of the section, with this approach
to the construction of the polynomial of best approximation in the 2-
norm, we obtain the coefficients | explicitly and there is no need to
solve a system of linear equations with a full matrix.

Example 9.8 We shall construct the polynomial of best approximation
of degree 2 in the 2-norm to the function : e over (0 1) with
weight function 0( ) 1.

We already know a system of orthogonal polynomials ( , ( , ( on this
interval from Example 9.5; thus, we seek ? & in the form

2O)=1CO)+1 )+ () (9.14)

where, according to (9.13),

o COd s
S ()
Recalling from Example 9.5 that
)y 1 )= - ()= +-

we then have that
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I =¢l=c 1
1 =22 218 e (9.15)
I = % =210e 570
Substituting the values of | ;1 and | into (9.14), we conclude that the
polynomial of best approximation of degree 2 for the function : e

in the 2-norm is
? ()=1(210e 570) + (588 216e) + (39e¢ 105)
The approximation error is
?  =0005431
to six decimal digits.

We conclude this section by giving a property of orthogonal polyno-
mials that will be required in the next chapter.

Theorem 9.4 Suppose that ( ,3=01 , 18 a system of orthogonal
polynomials on the interval () with respect to the positive, continuous
and integrable weight function 0 on (). It is understood that ( is a
polynomial of exact degree 3. Then, for3 1, the zeros of the polynomial
( are real and distinct, and lie in the interval ().

Proof Suppose that ,2=1 , are the points in the open interval
() at which ( ( ) changes sign. Let us note that 1, because for
3 1, by orthogonality of ( ( )to( () 1, we have that

|

0()C ()d =0

Thus, the integrand, being a continuous function that is not identically
zeroon (), must change sign on ( ); however, O is positiveon (),
so ( must change sign at least once on (). Therefore 1.

Let us define

- () ) ) (9.16)

(
Now the function ( ( )- ( ) does not change sign in the interval (),
since at each point where ( ( ) changes sign - ( ) changes sign also.

Hence, |

0()( ()- ()d =0
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However, ( is orthogonal to every polynomial of lower degree with
respect to the weight function O, so the degree of the polynomial -

must be at least 3; thus, 3. On the other hand, cannot be greater
than 3, since a polynomial of exact degree 3 cannot change sign more
than 3 times. Therefore = 3; i.e., the points ( ),2=1 3,
are the zeros (and all the zeros) of ( (). O

9.5 Comparisons

We can show that the polynomial of best approximation in the 2-norm

for a function C[ ] is also a near-best approximation in the -
norm for on [ ] in the sense defined in Section 8.5.

Theorem 9.5 Let 0 and assume that s defined and continuous
on the interval [ ], and & . Let ? be the polynomial of best
approximation of degree  to in the 2-norm on | |, where the weight
function O is positive, continuous and integrable on (). Then, the
difference ? changes sign at no less than + 1 distinct points in

the interval ().

Proof The proof is very similar to that of Theorem 9.4; we shall give an
outline and leave the details as an exercise.
As ? 11=0, e,

and 0( ) 0 for all (), it follows that ? changes sign in
(). Let 3=1 , denote distinct points in () where ?
changes sign. We shall prove that + 1.

Define the polynomial - ( ) asin (9.16); then,O( )[ ( ) ? ()]- ()
does not change sign in (), and so its integral over ( ) is not zero.

Therefore, ? - 1=0. On the other hand, according to Theorem
9.3, ? is orthogonal to every polynomial of degree or less. Hence
the degree of - ( ) must be greater than , and so + 1 O

We return to the example illustrated by Figure 8.5, and consider the
difference ? for the function : e on the interval (0 1). Fig-
ure 9.4 shows this difference for two polynomial approximations of degree
4: the minimax approximation of Section 8.5 and the best approxima-
tion in the 2-norm with weight function O ( ) 1. It is clear that the
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which gives greater weight near the ends of the interval, it seems likely
that the extrema of the error might be more nearly equal. This can be
achieved by using the weight function 0 ( )= (1 )]~ , so that the
orthogonal polynomials are the Chebyshev polynomials adapted to the
interval (0 1). Figure 9.5 shows the corresponding difference ? ,and
we now see that the two best approximations, in the -norm and the
weighted 2-norm, are very close.

Polynomials of best approximation in the 2-norm have a special prop-
erty which is often useful. Suppose that we have constructed the best
polynomial approximation, ? , of degree , in the 2-norm, but that ?
does not achieve the required accuracy. To construct the best poly-
nomial approximation of degree + 1 all we need is to calculate |
from

and thenlet? ()=?( )+ ( ( ). By noting that
? (!'=0 3=01 +1

it follows that ? is best least squares approximation to from &

If we are constructing the minimax approximation of degree + 1, or
using Lagrange interpolation with equally spaced points, the work in-
volved in constructing ? 1is lost, and the construction of ? must
begin completely afresh.

9.6 Notes

We give some pointers to the vast literature on orthogonal polynomials.
The following are classical sources on the subject.

1. " Orthogonal Polynomials, Pergamon Press, Oxford,
New York, 1971.
$ 1 " Orthogonal Polynomials, Memoirs of the American
Mathematical Society, no. 213, American Mathematical Society, Prov-
idence, RI, 1979.

1 &. 2" Orthogonal Polynomials, Colloquium publications
(American Mathematical Society), 23, American Mathematical So-
ciety, Providence, RI, 1959.

Tables of orthogonal polynomials are found in
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+ ) C . #t) & (Editors), ‘Orthogonal polyno-
mials’, Ch. 22 in Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, ninth printing, Dover, New York,
pp. 771-802, 1972.

Computational aspects of the theory of orthogonal polynomials are dis-
cussed in the edited volume

" " > (Editors), Applica-
tions and Computation of Orthogonal Polynomials, Conference at the
Mathematical Research Institute, Oberwolfach, Germany, March 22—
28, 1998, Birkhauser, Basel, 1999.

A recent survey of the theory and application of orthogonal polynomials
in numerical computations is contained in

" Orthogonal polynomials: applications and computa-
tion, Acta Numerica 5 (A. Iserles, ed.), Cambridge University Press,
Cambridge, pp. 45-119, 1996.

Finally, we refer to the books of Powell and Cheney, cited in the
Notes at the end of the previous chapter, concerning the application of
orthogonal polynomials in the field of best least squares approximation.

Exercises

9.1 Construct orthogonal polynomials of degrees 0, 1 and 2 on the
interval (0 1) with the weight function 0( )= In .

9.2 Let the polynomials ( , 3 =01 form an orthogonal sys-
tem on the interval (1 1) with respect to the weight function
0( ) 1. Show that the polynomials ( ((2 ) ( ),
3=01 , represent an orthogonal system for the interval
() and the same weight function. Hence obtain the polyno-
mials in Example 9.5 from the Legendre polynomials in Example
9.6.

9.3 Suppose that the polynomials ( ,3=0 1 form an orthog-
onal system on the interval (0 1) with respect to the weight
function 0( ) = %, 0. Find, in terms of ( , a system
of orthogonal polynomials for the interval (0 ) and the same
weight function.
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9.4

9.5

9.6
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Show, by induction or otherwise, that, for 0 ,

S a9y =a )70

where is a polynomial of degree . Deduce that all the deriva-
tives of the function (1 ) of order less than  vanish at
= 1.
Define ( ( )=(d d ) (1 ) , and show by repeated inte-
gration by parts that
!

( ()C()d =0 o 3

Hence verify the expressions in Example 9.6 for the Legendre
polynomials of degrees 0, 1, 2 and 3.
Show, by induction or otherwise, that, for 0 3
d _ _ _
T e” = (e
where () is a polynomial of degree
The function ( is defined for 3 0 by

(()=e o o)

Show that, for each 3 0, ( is a polynomial of degree 3,
and that these polynomials form an orthogonal system on the
interval (0 ) with respect to the weight function 0 ( ) =e™ .
Write down the polynomials with 3=0 1 2 and 3.

Suppose that ( ,3=0 1 , form a system of orthogonal poly-
nomials with weight function O ( ) on the interval (). Show
that, for some value of the constant > , ( () > ( ( )is
a polynomial of degree 3, and hence that

( () >00)= ¢ ()

Use the orthogonality properties to show that = 0 for
3 1, and deduce that the polynomials satisfy a recurrence
relation of the form

( () & +5)()+8(-()=0 3 1
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In the notation of Exercise 6 suppose that the normalisation of
the polynomials is so chosen that for each 3 the coefficient of
in ( () is positive. Show that > 0 for all 3. By considering

o) O ) >= (€ -()d

show that

and deduce that 8 0 for all 3. Hence show that for all

positive values of 3 the zeros of ( and ( — interlace. (See the

proof of Theorem 5.8.)

Using the weight function O on the interval () apply a similar

argument to that for Theorem 8.6 to find the best polynomial

approximation ? of degree in the 2-norm to the function
. Show that

where is the coefficient of in( ().

Write down the best polynomial approximation of degree 2

to the function  in the 2-norm with O( ) 1 on the interval
(1 1), and evaluate the 2-norm of the error.
Suppose that the weight 0 is an even function on the interval
( ), and that a system of orthogonal polynomials ( , 3 =
0 , on the interval ( ) is constructed by the Gram-—
Schmidt process. Show that, if 3 is even, then ( is an even
function, and that, if 3 is odd, then ( is an odd function.

Now suppose that the best polynomial approximation of de-
gree in the 2-norm to the function on the interval ( ) is
expressed in the form

?O)=1CO)+ +1 ()

Show that if is an even function, then all the odd coefficients
I _ are zero, and that if is an odd function, then all the

even coefficients |  are zero.
The function B ( ) is defined by B( ) = 1 if 0, and
B( )= B( ). Construct the best polynomial approxima-

tions of degrees 0, 1 and 2 in the 2-norm to this function over
the interval (1 1) with weight function 0( ) 1. (It may not
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appear very useful to consider a polynomial approximation to
a discontinuous function, but representations of such functions
by Fourier series will be familiar to most readers. Note that the
function B belongs to L. ( 1 1).)
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Numerical integration — I1

10.1 Introduction

In Section 7.2 we described the Newton—Cotes family of formulae for nu-
merical integration. These were constructed by replacing the integrand
by its Lagrange interpolation polynomial with equally spaced interpo-
lation points and integrating this exactly. Here, we consider another
family of numerical integration rules, called Gauss quadrature formulae,
which are based on replacing the integrand by its Hermite interpo-
lation polynomial and choosing the interpolation points in such a
way that, after integrating the Hermite polynomial, the derivative val-
ues { ) do not enter the quadrature formula. It turns out that this
can be achieved by requiring that the  are roots of a polynomial of a
certain degree from a system of orthogonal polynomials.

10.2 Construction of Gauss quadrature rules

Suppose that the function is defined on the closed interval [ ] and
that it is continuous and differentiable on this interval. Suppose, further,
that O is a weight function, defined, positive, continuous and integrable
on (). We wish to construct quadrature formulae for the approximate
evaluation of the integral

1

0() ()d

For a nonnegative integer ,let ,2=10 , be 4+ 1 points in
the interval [ |; the precise location of these points will be determined
later on. The Hermite interpolation polynomial of degree 2 + 1 for the

277
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function is given by the expression (see Section 6.4)

? ()= B()()H+ 1)) (10.1)

where
B() = [ Ol 2900 »
1() =1 OI( )
Further, for 1, & is defined by
(= ——  —o1
0

if =0,welet () 1andtherebyB () landl ()=
for this value of . Thus, we deduce from (10.1) that

where

There is an obvious advantage in choosing the points in such a way
that all the coefficients C are zero, for then the derivative values 1 )
are not required. Recalling the form of the polynomial 1 and inserting
it into the defining expression for C , we have

c = o) (ON(
= > 0() () () (10.4)

where - () =( ) ( ) and
+
- O ( )_ if ’
1 if =0
Since - is of degree + 1 while () is of degree for each
0 , each C will be zero if the polynomial - is orthogonal

to every polynomial of lower degree with respect to the weight function
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0. We can therefore construct the required quadrature formula (10.3)
withC =0, =0 , by choosing the points , =20 , to
be the zeros of the polynomial of degree + 1 in a system of orthogonal
polynomials over the interval () with respect to the weight function
0; we know from Theorem 9.4 that these zeros are real and distinct, and
all lie in the open interval ( ).

Having chosen the location of the points |, we now consider N

N = 0()B ()d
- o) (@ 2T ) )
- o) ()d 29 ) (10.5)

Since C = 0, the second term in the last line vanishes and thus we
obtain the following numerical integration formula, known as the Gauss
quadrature rule:

o) () >()= N () (10.6)

N = 0() ()d (10.7)

and the quadrature points , =0 , are chosen as the zeros of
the polynomial of degree + 1 from a system of orthogonal polynomials
over the interval () with respect to the weight function 0. Since
this quadrature rule was obtained by exact integration of the Hermite
interpolation polynomial of degree 2 + 1 for , it gives the exact result
whenever is a polynomial of degree 2 + 1 or less.

Example 10.1 Consider the case = 1, with the weight function
0( ) 1 over the interval (0 1).

The quadrature points are then the zeros of the polynomial (
constructed in Example 9.5 and given by (9.8),

( ()= + - (10.8)
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and therefore
= - — = — + —_
Clearly, and belong to the open interval (0 1), in accordance with

Theorem 9.4. The weights are obtained from (10.7):

N = — 4

=3+ )

= - (10.9)

and N = - in the same way. We thus have the Gauss quadrature rule
!

() -G —)+- 0+ —) (10.10)

which is exact whenever is a polynomial of degree 2 1+ 1 = 3 or
less.

10.3 Direct construction

The calculation of the weights and the quadrature points in a Gauss
quadrature rule requires little work when the system of orthogonal poly-
nomials is already known. If this is not known, at the very least it is
necessary to construct the polynomial from the system whose roots are
the quadrature points; in that case a straightforward approach, which
avoids this construction, may be easier.

Suppose, for example, that we wish to find the values of ! |1 |

and  such that the quadrature rule
I

()d L)+t () (10.11)
is exact for all & .
We have to determine four unknowns, ! | ! | and , so we need
four equations; thus we take, in turn, () 1, ()= , ()=
and () =  and demand that the quadrature rule (10.11) is exact

(that is, the integral of is equal to the corresponding approximation
obtained by inserting into the right-hand side of (10.11)). Hence,

1 = 1 +1 (10.12)
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- =1 +1 (10.13)
- =1 +1 (10.14)
- o= 1 +1 (10.15)

It remains to solve this system. To do so, we consider the quadratic
polynomial - defined by

- ()=( ) )

whose roots are the unknown quadrature points and . In expanded
form, - () can be written as
-()= +? +

First we shall determine ? and ; then we shall find the roots  and

of - . We shall then insert the values of and  into (10.13) and
solve the linear system (10.12), (10.13) for ! and !

To find ? and , we multiply (10.12) by , (10.13) by ? and (10.14) by
1, and we add up the resulting equations to deduce that

-+-?24+ =1 ( +?2 4+ )+ ( +? +)
= -(C)+!-(C)=! 04! 0=0
Therefore,
-+-?24+ =0 (10.16)

Similarly, we multiply (10.13) by , (10.14) by ? and (10.15) by 1, and
we add up the resulting equations to obtain

-+-?+- =1 ( +? + )+ ( +? +)
= ! - ( )+t -(C)=!' 0+! 0=0
Thus,
~+-?2+- =0 (10.17)

From (10.16) and (10.17) we immediately find that ? = 1 and = -.
Having determined ? and , we see that
S()= -

in agreement with (10.8). We then find the roots of this quadratic poly-
nomial to give  and as before. With these values of and  we
deduce from (10.12) and (10.13) that
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and therefore ! =1 = -. Thus, we conclude that the required
quadrature rule is (10.10), as before.

Tt is easy to see that equations (10.16) and (10.17) express the condi-
tion that the polynomial +? + is orthogonal to the polynomials
1 and respectively. This alternative approach has simply constructed
a quadratic polynomial from a system of orthogonal polynomials by re-
quiring that it is orthogonal to every polynomial of lower degree, instead
of building up the whole system of orthogonal polynomials.

A straightforward calculation shows that, in general, the quadrature
rule (10.10) is not exact for polynomials of degree higher than 3 (take

()=, for example, to verify this).

Example 10.2 We shall apply the quadrature rule (10.10) to compute
an approzimation to the integral = e d .

Using (10.10) with ( ) =exp( ) =e yields

-exp - — +-exp -+ — = ecosh —

On rounding to six decimal digits, 1 717896. The exact value of the
integral is =-e 1 =1 718282, rounding to six decimal digits.

10.4 Error estimation for Gauss quadrature

The next theorem provides a bound on the error that has been commit-
ted by approximating the integral on the left-hand side of (10.6) by the
quadrature rule on the right.

Theorem 10.1 Suppose that O is a weight function, defined, integrable,
continuous and positive on (), and that s defined and continuous

on [ |; suppose further that  has a continuous derivative of order
2 +2o0n[ |, 0. Then, there exists a number in () such that
!

0() ()d N ()=1 () (10.18)

and
1 !
1 =— 0 - d
sz Ok ()

Consequently, the integration formula (10.6), (10.7) will give the exact
result for every polynomial of degree 2 + 1.
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Proof Recalling the definition of the Hermite interpolation polynomial

? for the function and using Theorem 6.4, we have
! !

0() ()d N ()= 00)(C) 7?2 ()d

= o) (g4
@ +2) (10.19)

However, by the Integral Mean Value Theorem, Theorem A.6, the last

term is equal to |

()
2 +2)!
for some (), and hence the desired error bound. O

Note that, by virtue of Theorem 10.1, the Gauss quadrature rule gives
the exact value of the integral when is a polynomial of degree 2 +1
or less, which is the highest possible degree that one can hope for with
the 2+ 2 free parameters consisting of the quadrature weights N |

=0 , and the quadrature points , =0

A different approach leads to a proof of convergence of the Gauss
formulae ) ( ), defined in (10.6), (10.7), as

Theorem 10.2 Suppose that the weight function O is defined, positive,
continuous and integrable on the open interval (). Suppose also that

the function is continuous on the closed interval [ ]. Then,
!

lm) ()= 0() ()

Proof If we choose any positive real number  then, since is continuous

on [ |, the Weierstrass Theorem (Theorem 8.1) shows that there is a
polynomial ? such that
() 20) for all [ ] (10.20)

Let  be the degree of this polynomial, and write ? as ? .
ThlIlS we deduce that
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Consider the first term on the right of this equality; it follows from
(10.20) that

where

- N (10.22)

where we have used the fact that all the quadrature weights N are pos-
itive (see (10.7)), and that a Gauss quadrature rule integrates a constant
function exactly. Now for the middle term in (10.21), if we define

to be the integer part of - | we see that when the quadrature
formula is exact for all polynomials of degree 2 41 or less, and hence
for the polynomial ? (given that 2 +1 2 +41). Therefore,

!
0()2 () ) (2)=0 i

Putting these three terms together, we see that

o() ()d >() N +0+ N if

Finally, given any positive number , we define = (2N ) and find
the corresponding value of = () to deduce that

oC) ()d > () if

which is what we were required to prove. O
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The interest of this theorem is mainly theoretical, as it gives no in-
dication of how rapidly the error tends to zero. However, it does show
the importance of the fact that the weights N are positive. Much of
the above proof would apply with little change to the Newton—Cotes
formulae of Section 7.2. We saw there that for the formulae of order 1
and 2, the trapezium rule and Simpson’s rule, the weights are positive.

However, when 8 some of the weights in the Newton—Cotes formula
of order become negative. In this case we have N =( ),
but we find that N as , S0 the proof breaks down.

Stronger conditions must be imposed on the function to ensure that
the Newton—Cotes formula converges to the required integral. (See the
example in Section 7.4.)

10.5 Composite Gauss formulae

It is often useful to define composite Gauss formulae, just as we did for
the trapezium rule and Simpson’s rule in Section 7.5. Let us suppose,
for the sake of simplicity, that 0( ) 1. We divide the range [ ]

into + subintervals [ — ,3=12 +, + 2, each of width
=( )+ , and write
! !
()d = ()d
where
We then map each of the subintervals [ — ], 3=12 + , onto

the reference interval [ 1 1] by the change of variable
=-( -+ )+-G G [ 11]
giving

(4 ==  (Gde=-

where

G= -( -+ )+-G and = (GdG

The composite Gauss quadrature rule is then obtained by applying
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the same Gauss formula to each of the integrals . This gives
!

(10.23)

where  are the quadrature pointsin ( 1 1) and N are the associated
weights for =10 with 0.

An expression for the error of this composite formula is obtained, as
in Section 7.5, by adding the expressions (10.18) for the errors in the
integrals . The result is

% oo=> () (10.24)

where () and

Definition 10.1 The composite midpoint rule is the composite Gauss

formula withO( ) 1 and =0 defined by
!

()d ( +(3 -)) (10.25)
This follows from the fact that when = 0 there is one quadrature
point = 0in ( 1 1), which is at the midpoint of the interval, and

the corresponding quadrature weight N is equal to the length of the
interval ( 1 1), i.e., N = 2. It follows from (10.24) with =0 and
!

> = GdG= -

that the error in the composite midpoint rule is
C )
U/ =
' 24+ ma )

where (), provided that the function has a continuous second
derivative on [ ].
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10.6 Radau and Lobatto quadrature

We have now discussed two types of quadrature formulae, which have the
same form, N (). In the Newton—Cotes formulae the (equally
spaced) quadrature points are given, and we were able to find the
weights N so that the result was exact for polynomials of degree
By allowing the quadrature points as well as the weights to be freely
chosen, we constructed Gauss quadrature formulae which were exact for
polynomials of degree 2 + 1. There are also many possible formulae
of mixed type, where some, but not all, of the quadrature points are
given, and the rest can be freely chosen. We might expect that each
quadrature point which is fixed will reduce the degree of polynomial for
which such a formula is exact by 1, from the maximum degree of 2 +1.
It is often useful to be able to fix one of the endpoints of the interval
as one of the quadrature points. As an example, suppose we prescribe

that = . Let? be an arbitrary polynomial of degree 2 , and write
2 ()= ) -()+;
where the quotient — is a polynomial of degree 2 1 and the re-

mainder ; is a constant. The integral of 07 is then
0()2 ()d = ( )o() —()d +; 0()d

We can now construct the usual Gauss quadrature formula for the in-
terval [ | with the modified weight function ( )O( ), giving
quadrature points and weights =N = =1
will be exact for all polynomials of degree 2 1. Provided that the
weight function O satisfies the standard conditions on (), the modi-
fied weight function does also; in particular it is clearly positive on ().
This gives
I I

0()? () = N‘:'_(%r;. 0( )d

. This formula

+; 0( )d = (10.26)
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The fact that ; =? () then leads us to consider the quadrature rule
oC) ()d N ()+ N () (10.27)

where

N = NS =) =1
(10.28)

N:.O()d N

By construction, this formula is exact for all polynomials of degree 2 .
It is obvious that N 0for =1 . We leave it as an exercise to
show that N 0 also (see Exercise 5).

With only trivial changes it is easy to see how to construct a similar
formula where instead of fixing = wefix = . These are known as
Radau quadrature formulae. We leave it as an exercise to construct
the formula corresponding to fixing both = and = , which is
known as a Lobatto quadrature formula; as might be expected, this
is exact for all polynomials of degree 2 1 (see Exercise 7).

The formal process could evidently be generalised to allow for fixing
one of the quadrature points at an internal point , where
However, this leads to the difficulty that the modified weight functlon

o )o()

is not positive over the whole interval ( ); hence we can no longer be
sure that it is possible to construct a system of orthogonal polynomials,
or, even if we can, that these polynomials will have all their zeros real
and distinct and lying in [ ]. In general, therefore, such quadrature
formulae may not exist.

10.7 Note

For a detailed guide to the literature on Gauss quadrature rules and
its connection to the theory of orthogonal polynomials, we refer to the
books cited in the Notes at the end of Chapter 7.

Exercises

10.1 Determine the quadrature points and weights for the weight
function 0: In on the interval (0 1), for = 0 and
=1.
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10.3

10.4

10.5
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The weights in the Gauss quadrature formula are given by (10.7),
which is

Show that N can also be calculated from

(This is a simpler way of calculating N  than (10.7); the impor-
tance of (10.7) is that it shows that the weights are all positive.)
Suppose that  has a continuous second derivative on [0 1].
Show that there is a point in (0 1) such that

I

(4 =- ()+— %)

Let 0. Write down the quadrature points 3=0 ,
for the weight function O: (1 )~ on the interval
(11).

By induction, or otherwise, show that for positive integer val-
ues of
sin(2 4+ 2)

cos(23+1) = 5ot

unless is a multiple of - . What is the value of the sum when
is a multiple of - 7
Deduce that

where F is the Chebyshev polynomial of degree
Deduce that the weights of the quadrature formula with weight
function O: (1 )~  on the interval ( 1 1) are

- -0
+1
In the notation for the construction of the Radau quadrature

formula in Section 10.6, show that N 0.
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The Laguerre polynomials ,3=012 are the or-
thogonal polynomials associated with the weight function O :

e~ on the semi-infinite interval (0 ), with  of exact degree
3. (See Exercise 5.9.) Show that

when ? is any polynomial of degree less than 3.
In the Radau formula

where one of the quadrature points is fixed at = 0, show that
the other quadrature points , =1 , are the zeros of
the polynomial 5 Deduce that

' o

e” 2 ()d =-2(0)+-? (2

Let 2. Show that a polynomial ? _ of degree 2 1 can
be written

?-0)=C ) ) -0O)+0C )+ )

where  _ is a polynomial of degree 2 3, and ; and : are
constants. Hence construct the Lobatto quadrature formula
!

o() () N ()+ N ()+N ()

which is exact when is any polynomial of degree 2 1. Show
that all the weights N =01 , are positive.
Construct the Lobatto quadrature formula

!

() v+t )+ M

for the interval (1 1) with weight function O ( ) 1, and with
= 2; write down and solve four equations to determine ,! |
I and!

s B@ % #.* $8/ ,9 , C#H % #..? $
9 ,



FExercises 291

10.9  Write F  for the composite trapezium rule (7.15), *  for the

composite Simpson rule (7.17) and for the composite mid-
point rule (10.25), each with + subintervals. Show that
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Piecewise polynomial approximation

11.1 Introduction

Up to now, the focus of our discussion has been the question of approxi-
mation of a given function , defined on an interval [ ], by a polynomial
on that interval either through Lagrange interpolation or Hermite inter-
polation, or by seeking the polynomial of best approximation (in the

-norm or 2-norm). Each of these constructions was global in nature,
in the sense that the approximation was defined by the same analytical
expression on the whole interval [ |. An alternative and more flexible
way of approximating a function is to divide the interval [ | into
a number of subintervals and to look for a piecewise approximation by
polynomials of low degree. Such piecewise-polynomial approximations
are called splines, and the endpoints of the subintervals are known as
the knots.

More specifically, a spline of degree 1, is a function which is a
polynomial of degree or less in each subinterval and has a prescribed
degree of smoothness. We shall expect the spline to be at least continu-
ous, and usually also to have continuous derivatives of order up to for
some , 0 . Clearly, if we require the derivative of order to
be continuous everywhere the spline is just a single polynomial, since if
two polynomials have the same value and the same derivatives of every
order up to  at a knot, then they must be the same polynomial. An
important class of splines have degree , with continuous derivatives of
order up to and including 1, but as we shall see later, lower degrees
of smoothness are sometimes considered.

To give a flavour of the theory of splines, we concentrate here on two
simple cases: linear splines and cubic splines.

292
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11.2 Linear interpolating splines

Definition 11.1 Suppose that is a real-valued function, defined and

continuous on the closed interval [ ]. Further, let 1 =
be a subset of [ ], with = = ,+ 2. The
linear spline : 4, interpolating at the points | is defined by

w()=—— (- )+ — ()

[ - ] 2=12 + (11.1)

The points ,2=01 + , are the knots of the spline, and 1 1is
referred to as the set of knots.

As the function :y interpolates the function  at the knots, i.e.,
w( )= ( ),2=01 +, and over each interval [ — ], for
2=01 + , the function :4 is a linear polynomial (and therefore
continuous), we conclude that :# is a continuous piecewise linear func-
tion on the interval [ .

Given a set of knots 1 = , we shall use the notation
= — ,and let = max . Also, for a positive integer
we denote by C [ | the set of all real-valued functions, defined and
continuous on the closed interval [ ], such that all derivatives, up to

and including order , are defined and continuous on [ |
In order to highlight the accuracy of interpolation by linear splines we
state the following error bound in the -norm over the interval [ |.

Theorem 11.1 Suppose that C [ ] andlet:y be the linear spline
that interpolates  at the knots = = ; then, the
following error bound holds:

# ! w
(e o] 8 oo
where = max = max ( — ), and o denotes the — -norm
over | |, defined in (8.1).
Proof Consider a subinterval [ — ],1 2 +. According to Theo-

rem 6.2, applied on the interval [ — ],

() wO=5 T ) -]
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where = () ( — ). Thus,

1

O w0 g xR
Hence,
1
() %) § e

for each [ - Jandeach2=1 2 + . This gives the required
error bound. O

Figure 11.1 shows a typical example: a linear spline approximation

to the function e~ over the interval [0 1], using two internal
knots, = -, = -, together with the endpoints of the interval,
=0and =1
1 2
3 3
5 3 x + K
2
* +5 > iz

We conclude this section with a result that provides a characterisation
of linear splines from the viewpoint of the calculus of variations.

A subset ! of the real line is said to have measure zero if it can
be contained in a countable union of open intervals of arbitrarily small

total length; in other words, for every 0 there exists a sequence of
open intervals ( ),2=123 | such that
00 oo

! ( ) and ( )
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In particular, any finite or countable set ! has measure zero. For
example, the set of all rational numbers is countable, and therefore it
has measure zero. Trivially, the empty set has measure zero.

Suppose that = is a subset of . We shall say that a certain property

= () holds for almost every in =, if there exists a set ! = of
measure zero such that () holds for all = 1.

A real-valued function defined on the interval [ ] is said to be
absolutely continuous on [ | if it has finite derivative Y ) at almost

every point in [ ], Uis (Lebesgue-) integrable on [ ], and
!

= () ()

Example 11.1 Any C [ ] is absolutely continuous on the interval
[ | The function -( 4+ ) is absolutely continuous on| |,
but it does not belong to C [ ] as it is not differentiable at = -( + ).

Let us denote by H () the set of all absolutely continuous functions
defined on [ ]suchthat Y L (), ie.,

C=

We observe in passing that any function H () is uniformly
continuous on the closed interval [ ]. This follows by noting that, for
any pair of points [ ]

In the transition from the first line to the second we used the Cauchy—
Schwarz inequality.

If 1, we shall denote by H () the set of all H () such
that is absolutely continuous on [ ] and L ( ). Theset
H () is called a Sobolev space of index . We observe that

¢l 1 H( )

for any 1, with strict inclusion. For example, any linear spline on
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[ ]belongstoH (), but not to C [ ] unless it is a linear function
over the whole of the interval [ .

Example 11.2 Let 1 2; the function % then belongs to
H (0 1), although it only belongs to C [0 1] if 1.
As a second example, consider the function In  which belongs

to H (0 1), but not to C [0 1].

The variational characterisation of linear splines stated in the next
theorem expresses the fact that, among all functions H () which
interpolate a given continuous function at a fixed set of knots in [ |,
the linear spline : 4 that interpolates at these knots is the ‘flattest’, in

the sense that its ‘average slope’ @5 is smallest.

Theorem 11.2 Suppose that : 4 is the linear spline that interpolates
C[ ] at the knots = = . Then, for any
function in H () that also interpolates  at these knots,

Proof Let us observe that

+2 () F0))E(0)d (11.2)

We shall now use integration by parts to show that the last integral is
equal to 0; the desired inequality will then follow by noting that the first
term on the right-hand side is nonnegative and it is equal to 0 if, and
only if, =:4. Clearly,

() ()it )d | (11.3)

Now () ()= () ( )=0for2=01 + and, since
:# is a linear polynomial over each of the open intervals ( — ), =
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(
1
1 +1
5 , * + +
12 + , it follows that :Eﬂis identically 0 on each of these intervals.
Thus, the expression in the square bracket in (11.3) is equal to 0 for each
=12 + . |

Sobolev spaces play an important role in approximation theory. We
shall encounter them again in Chapter 14 which is devoted to the ap-
proximation of solutions to differential equations by piecewise polyno-
mial functions.

11.3 Basis functions for the linear spline

Suppose that :  is a linear spline with knots ,2=0 1 + , interpo-
lating the function C[ ]. Instead of specifying the value of : 4 on
each subinterval [ —  ],2=1 2 + , we can express @4 as a linear

combination of suitable ‘basis functions’ (  as follows:

Here, we require that each ( is itself a linear spline which vanishes at
every knot except , and ( ()= 1. The function ( is often known
as the linear basis spline or hat function, and is depicted in Figure
11.2.
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The formal definition of ( is as follows:

0 if —
IR i
0 i ,
for =1 + 1 and with
Col ) . (11.4)
S0 if
and
0 if —
11.4 Cubic splines
Suppose that Cl] Jandlet1l = be a set of + + 1
knots in the interval [ ], = = . Consider the
set 7 of all functions: C [ ] such that
()= ()2=01 +,
. is a cubic polynomialon [ - ], 2=1 2 + .

Any element of ” is referred to as an interpolating cubic spline.
We note that, unlike linear splines which are uniquely determined by
the interpolating conditions, there is more than one interpolating cubic
spline: C [ ] that satisfies the two conditions stated above; indeed,
there are 4+ coefficients of cubic polynomials (four on each subinterval
[ - ],2=12 + ), and only + + 1 interpolating conditions and
3(+ 1) continuity conditions; since : belongs to C [ ], this means
that :, :Yand : are continuous at the internal knots _ .
Hence, we have a total of 4+ 2 conditions for the 4+ unknown coeffi-
cients. Depending on the choice of the remaining two conditions we can
construct various interpolating cubic splines.

An important class of cubic splines is singled out by the following
definition.

Definition 11.2 The natural cubic spline, denoted by : , is the ele-
ment of the set ” satisfying the end conditions

)= )=
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Theorem 11.3 Let : be the natural cubic spline that interpolates a
function C[ ] at the knots = = . Then, for
any function in H () that also interpolates  at the knots,

.0 mm

The proof is analogous to that of Theorem 11.2 and is left as an
exercise.

The smoothest interpolation property expressed by Theorem 11.3 is
the source of the name spline. A spline is a flexible thin curve-drawing
aid, made of wood, metal or acrylic. Assuming that its shape is given by
the equation = (), [ ], and is constrained by requiring that it
passes through a finite set of prescribed points in the plane, will take
on a shape which minimises the strain energy

1
E()= id
1+ "))
over all functions  which are constrained in the same way. If the
function is slowly varying, i.e., max — ¥ ) 1, this energy-
minimisation property is very similar to the result in Theorem 11.3.

11.5 Hermite cubic splines

In the previous section we took C[ ] and demanded that : be-
longed to C [ |; here we shall strengthen our requirements on the
smoothness of the function that we wish to interpolate and assume that
C [ ]; simultaneously, we shall relax the smoothness requirements
on the associated spline approximation : by demanding that: C [ ]
only.
Let 1 = be a set of knots in the interval [ ] with
= = and+ 2. We define the Hermite cubic
spline as a function :  C [ ] such that
()= ( ) )= % Yfor2=01 +
. is a cubic polynomial on [ — ] for2=1 2 + .
Writing the spline : on the interval [ — ] as
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we find that = ( - ), = ¥ _) and
L) (=) To+21 )

D+t L0 (Y

Note that the Hermite cubic spline only has a continuous first derivative
at the knots, and therefore it is not an interpolating cubic spline in the
sense of Section 11.4.

Unlike natural cubic splines, the coefficients of a Hermite cubic spline
on each subinterval can be written down explicitly without the need to
solve a tridiagonal system.

Concerning the size of the interpolation error, we have the following
result.

Theorem 11.4 Let C [ ], andlet: be the Hermite cubic spline
that interpolates  at the knots = = ; then, the
following error bound holds:
1 /
384
where | = is the fourth derivative of  with respect to its argument,
, =max = max ( — ), and oo denotes the  -norm on

the interval [ ].

The proof is analogous to that of Theorem 11.1, except that Theorem
6.4 is used instead of Theorem 6.2.

Both the linear spline and the Hermite cubic spline are local approxi-
mations; the value of the spline at a point between two knots _— and

depends only on the values of the function and its derivative at these
two knots. On the other hand, the natural cubic interpolating spline is a
global approximation and, in this respect, it is more typical of a generic
spline: a change in just one of the values at a knot, ( ), will alter the
right-hand side of the system of equations (11.7), so the values of all the
quantities D will change. Thus, the spline will change throughout the
whole interval | ]. We conclude this section with an example.

Example 11.3 Figure 11.3 shows the Hermite cubic spline approxima-
tion to the function : 1 (14 ), using four equally spaced knots
in the interval [0 5].
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from the standard properties of binomial coefficients. Hence & is a
polynomial in  of degree ; 1, and the result follows by induction.
Finally, this shows that & is a polynomial of degree 0, and is there-
fore constant on . Thus, by the same argument, & is identically
Oon . |

Theorem 11.5 For each 1, the function * defined by

+1
()= (1 ( )
is a spline of degree — with equally spaced knots , =01 + 1.
It has a continuous derivative of order 1 and s identically 0 outside

the interval (0 ( +1) ).

Proof The function * is clearly a spline as stated, and * () is

identically 0 for 0. When ( +1) the arguments ,
=01 + 1, of the positive parts are all nonnegative, so that
+1

()= (1 ( )

and this is identically zero by Lemma 11.1. |
Taking =1 we find that
()= 2 ) +(C 2)

After normalisation by 1  so as to have a maximum value of 1, and

shifting =0to = _ , this yields a representation of the linear hat
function ( from (11.4) in the form
1
( ()==" ( -)
which, for 1 , s nonzero over two consecutive intervals: (  — ]
and | ).

In the same way we obtain a basis function for the cubic spline by
taking = 3:

()= 4 ) +6C 2) 4 3) +( 4)
Normalising so as to have a maximum value of 1 and shifting =0 to
= _ ,weget
1

FO= (0 -)
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proximation in Theorem 11.4, but not for the natural cubic spline. The
analysis of the error in the natural cubic spline approximation is quite
complicated; Powell gives full details in his book.

The following are classical texts on the theory of splines.

D 4 " , The Theory of
Splines and Their Applications, Mathematics in Science and Engi-
neering, 38, Academic Press, New York, 1967.

Ll , A Practical Guide to Splines, Revised Edition, Springer
Applied Mathematical Sciences, 27, Springer, New York, 2001.
& -, Spline Functions: Basic Theory, John Wiley

& Sons, New York, 1981.

The variational characterisations of splines stated in Sections 11.1 and
11.3 stem from the work of J.C. Holladay, Smoothest curve approxima-
tion, Math. Comput. 11, 233-243, 1957.

Our definition of the Sobolev space H () in Section 11.1, based on
the concept of absolute continuity, is specific to functions of a single vari-
able. More generally, for functions of several real variables one needs to
invoke the theory of weak differentiability or the theory of distributions
to give a rigorous definition of the Sobolev space B () with Q ;
alternatively, one can define B () by completion of the set of smooth
functions in a suitable norm. For the sake of simplicity of exposition we
have chosen to avoid such general approaches.

Exercises
11.1 An interpolating spline of degree is required to have con-
tinuous derivatives of order up to and including 1 at the

knots. How many additional conditions are required to specify
the spline uniquely?

11.2 (i) Suppose that is a polynomial of degree 1. Show that the
linear spline :# which interpolates  at the knots for 2 =
01 + is identical to , so that : 4
(ii) Suppose that is a polynomial of degree 3. Show that the
Hermite cubic spline :¢ which interpolates at the knots |
2=01 + , is identical to , so that :g
(iii) Suppose that is a polynomial of degree 3. Show that
the natural cubic spline : which interpolates at the knots
2=01 + , is not in general identical to
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11.3

11.4

11.5

11 Piecewise polynomial approximation

Suppose that the natural cubic spline : interpolates the func-
tion : on the interval [0 1], the knots being equally
spaced, so that =2 2=01 + ,with =1+, + 2
Write down the equations which determine the quantities D . If
the two additional conditions are D = D = 0, show that these
equations are not satisfied by D = o ) 2=1 + 1,
so that : and are not identical. If, however, these two addi-
tional conditions are replaced by D = ™0) D = ™1), show
that D= ™ ) 2=01 + , and deduce that : and are
identical.

A linear spline on the interval [0 1] is expressed in terms of the
basis functions as

Instead of being required to interpolate the function at the
knots, the spline : is required to minimise : . Show that
the coefficients satisfy the system of equations

where the elements of the matrix ! are
!

o= (O)()d

and the elements of are
[

= () ()d

Now suppose that the knots are equally spaced, so that =

, =01 +, where =1+ + 2. Show that the
matrix ! is tridiagonal, with! = - for2=1 + 1, and
determine the other nonzero elements of ! . Show also that !

has the properties required for the use of the Thomas algorithm

described in Section 3.3.

In the notation of Exercise 4, suppose that ( ) = . Verify

that the system of equations is satisfied by =, so that
Now suppose that ( ) = . Verify that the equations are

satisfied by =( ) +> , where > is a constant to be

determined. Deduce that : ( )= ( )+>
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In the notation of Theorem 11.5, the spline basis function *
of degree is defined by

Explain why, for any value of

C )y H)=C )

Show that

< O+ +2 0 )= ()
Hence show by induction that * () 0 for all
Use the result of Exercise 6 to show by induction that each basis
function *  is symmetric; that is,

e+ )=" 2 )
for all , where ?2=-( +1) .
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Initial value problems for ODEs

12.1 Introduction

Ordinary differential equations frequently occur in mathematical models
that arise in many branches of science, engineering and economics. Un-
fortunately it is seldom that these equations have solutions which can be
expressed in closed form, so it is common to seek approximate solutions
by means of numerical methods. Nowadays this can usually be achieved
very inexpensively to high accuracy and with a reliable bound on the er-
ror between the analytical solution and its numerical approximation. In
this section we shall be concerned with the construction and the analysis
of numerical methods for first-order differential equations of the form

- () (12.1)

for the real-valued function of the real variable , where © -

and is a given real-valued function of two real variables. In order to
select a particular integral from the infinite family of solution curves
that constitute the general solution to (12.1), the differential equation
will be considered in tandem with an initial condition: given two real
numbers  and , we seek a solution to (12.1) for such that

()= (12.2)

The differential equation (12.1) together with the initial condition (12.2)
is called an initial value problem.

If you believe that any initial value problem of the form (12.1), (12.2)
possesses a unique solution, take a look at the following example.

310
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Proof We define a sequence of functions () by
0) !
() = + ¢ - () =12 (12.4)

Since is continuous on 5 | it is clear that each function  is continuous
o |. Further, since

on [

it follows by subtraction that
!

() O)= [ ) ¢ -)d (12.5)
We now proceed by induction, and assume that, for some positive
value of |
O -0 Lk "o (126)
and that
0) 1 [ . )]

"o =1 (12.7)

Trivially, the hypotheses of the theorem and (12.4) imply that (12.6)
and (12.7) hold for =1.
Now, (12.7) and (12.3) yield that

() 1— el 2~ 1 >
"y 1
Therefore ( - () 5 and ( () 5 forall [ "ol
Hence, using (12.5), the Lipschitz conldition and (12.6),
O T R
N B G (12.8)
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for all [ " o] Moreover, using (12.8) and (12.7),

() () O+ O

( +1)! T 3l
1 [ )]
= = A 12.
31 1) (12.9)
for all [ " o] Thus, (12.6) and (12.7) hold with  replaced by

+ 1, and hence, by induction, they hold for all positive integers

Since the infinite series  * ( 3!) converges (to e* 1) for any value
of ,and for = ("o ) in particular, it follows from (12.6)
that the infinite series

L) =C)

converges absolutely and uniformly for [ "o ]. However,
+ [0 -0Ol= ()

showing that the sequence of continuous functions () converges to a
limit, uniformly on [ " ¢ |, and hence that the limit itself is a contin-
uous function. Calling this limit , we see from (12.4) that

() = lm ()

I
Jr
3F
=

-+ e (12.10)

where we used the uniform convergence of the sequence of functions ()
in the transition from line two to line three to interchange the order of
the limit process and integration, and the continuity of the function

in the transition from line three to line four. As : G () isa

continuous function of : on the interval | o ], its integral over the

interval | ] is a continuously differentiable function of . Hence, by
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As a very simple example, consider the linear equation

oo 4 (12.12)
where ? and are constants. Then, = ?, independently of >, and
1 = ? + . Hence, for any interval [ " ¢ |, the conditions are

satisfied by choosing > sufficiently large; therefore, the initial value
problem has a unique continuously differentiable solution, defined for
all [ ).

Now, consider another example

o= (0)=1

Here for any interval [0 " ¢ | we have 1 = 1. Choosing any positive
value of > we find that

= 4+
where = 2(1 + >). We therefore now require the condition

1
- ) 2 1
20+>) °©

This is satisfied if
1

" K (>

o K& gy
where In means log . A sketch of the graph of the function K against >
shows that K takes its maximum value near > = 1 714, and this gives

the condition " ¢ 043 (see Figure 12.1).
Thus, we are unable to prove the existence of the solution over the

In(1+2> +2> )

infinite interval [0 ). This is correct, of course, as the unique solution
of the initial value problem is

1
=— 0 1
()=+
and this is not continuous, let alone continuously differentiable, on any
interval [0 " ¢ ] with " ¢ 1. The conditions of Picard’s Theorem,

which are sufficient but not necessary for the existence and the unique-
ness of the solution, have given a rather more restrictive bound on the
size of the interval over which the solution exists.

The method of proof of Picard’s Theorem also suggests a possible
technique for constructing approximations to the solution, by determin-
ing the functions  from (12.4). In practice it may be impossible, or
very difficult, to evaluate the necessary integrals in closed form. We
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leave it as an exercise (see Exercise 3) to show that for the simple linear
equation (12.12), with initial condition (0) = 1, the function  is the
same as the approximation obtained from the exact solution by expand-
ing the exponential function as a power series and retaining the terms
up to the one involving

In the rest of this chapter we shall consider step-by-step numerical
methods for the approximate solution of the initial value problem (12.1),
(12.2). We shall suppose throughout that the function satisfies the
conditions of Picard’s Theorem. Suppose that the initial value problem

(12.1), (12.2) is to be solved on the interval [ " o ]. We divide this
interval by the mesh points = + , =01 , wWhere
=("o ) and s a positive integer. The positive real number

is called the step size or mesh size. For each we seek a numerical
approximation  to (), the value of the analytical solution at the
mesh point ; these values are calculated in succession, for =
12
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12.2 One-step methods

A one-step method expresses in terms of the previous value
later on we shall consider -step methods, where is expressed in
terms of the previous values _— , where 2. The simplest

example of a one-step method for the numerical solution of the initial
value problem (12.1), (12.2) is Euler’s method.

Euler’s method. Given that ( )= | let ussuppose that we have
already calculated , up to some , 0 1, 1; we define
-+ ()
Thus, taking in succession =01 1, one step at a time, the
approximate values at the mesh points can be easily obtained.

This numerical method is known as Euler’s method.

In order to motivate the definition of Euler’s method, let us observe
that on expanding ( )= ( 4+ ) into a Taylor series about |,
retaining only the first two terms, and writing ¥ )= ( (), we
have that

( +)=0)+ C N+ ()

After replacing ( )and ( + ) by their numerical approximations,
denoted by  and , respectively, and discarding the () term,
we arrive at Euler’s method.

More generally, a one-step method may be written in the form

= e i) =01 Lo()=
(12.13)

where ®( ;) is a continuous function of its variables. For example,

in the case of Euler’s method, ®( ;)= ( ). More intricate

examples of one-step methods will be discussed below.
In order to assess the accuracy of the numerical method (12.13), we
define the global error, 9 , by

9 =1()
We also need the concept of truncation error, F | defined by
P ) 0D g () (12.14)

The next theorem provides a bound on the magnitude of the global
error in terms of the truncation error.
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Assuming that Cl] "ol de,that isa twice continuously dif-
ferentiable function of on | " o ], and expanding ( ) about the
point  into a Taylor series with remainder (see Theorem A.4), we have
that

()= ()+ T+ %)

Substituting this expansion into (12.18) gives
1

F =3 1)
Let = max(— 2 ™J) . Then, F F, =01 1,
where F = - . Inserting this into (12.16) and noting that for Euler’s
method &( i) ( ) and therefore o =  where is the
Lipschitz constant for , we have that
1 -
9 % e 1 =01 (12.19)

Let us highlight the practical relevance of our error analysis by focus-
ing on a particular example.

Example 12.2 Let us consider the initial value problem Y= tan™

(0) = , where is a given real number. In order to find an upper
bound on the global error9 = () , where s the Euler approz-
imation to (), we need to determine the constants  and in the
inequality (12.19).

Here ( )=tan™ ;so, by the Mean Value Theorem (Theorem A.3),

C) =g )=g0)

where lies between and . In our case

H
— = (1 - 1
() =+ )
and therefore = 1. To find we need to obtain a bound on ™ (with-

out actually solving the initial value problem!). This is easily achieved
by differentiating both sides of the differential equation with respect to
the variable

m

d, _ _ S
= S(tan” ) =(1+ )T =0+ )7 tan

Q“Q-
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Therefore T ) = —-. Inserting the values of and into
(12.19) and noting that = 0, we have
9 -- (e 1) =01

Thus, given a tolerance 012, specified beforehand, we can ensure that
the error between the (unknown) analytical solution and its numerical
approximation does not exceed this tolerance by choosing a positive step

size  such that
4

- (ez 1)

For such  we shall have () =9 012, for =01 ,

as required. Thus, at least in principle, we can calculate the numerical

solution to arbitrarily high accuracy by choosing a sufficiently small step
size

A numerical experiment shows that this error estimate is rather pes-

012

simistic. Taking, for example, = 1and" ¢ = 1, our bound implies
that the tolerance 012 = 0 01 will be achieved with 0 0074; hence,
it would appear that we need 135. In fact, using = 27 gives

a result from Euler’s method which is just within this tolerance, so the
error estimate has predicted the use of a step size which is five times
smaller than is actually required.

Example 12.3 As a more typical practical example, consider the prob-
lem

o 4 () (0)=2 (12.20)
where

(j=_ 6 +12 1 +9
- 1+ )
is so chosen that the solution is known, and is
Goe )
1+
The results of some numerical calculations on the interval [0 16]are
shown in Figure 12.2. They use step sizes 0.2, 0.1 and 0.05, and show

how halving the step size gives a reduction of the error also by a factor
of roughly 2, in agreement with the error bound (12.19).
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that the one-step method (12.13) is consistent if, and only if,
o ;0 () (12.21)

This condition is sometimes taken as the definition of consistency. We
shall henceforth always assume that (12.21) holds.

Now, we are ready to state a convergence theorem for the general
one-step method (12.13).

Theorem 12.3 Suppose that the initial value problem (12.1), (12.2) sat-
isfies the conditions of Picard’s Theorem, and also that its approzimation

generated from (12.13) when lies in the region 5 . Assume fur-
ther that the function ®( ;) is continuous on'5 [0 ], and satisfies
the consistency condition (12.21) and the Lipschitz condition

o ;) @ ;) w on5 [0 ]. (12.22)
Then, if successive approxzimation sequences (), generated by using the
mesh points = 4+ , =12 , are obtained from (12.13)
with successively smaller values of , each  less than , we have con-

vergence of the numerical solution to the solution of the initial value
problem in the sense that

lim = () as [

— 0O

o | when 0 and

Proof Suppose that = (" ¢ ), where isa positive integer. We

shall assume that  is sufficiently large so that . Since ( )=
and therefore 9 = 0, Theorem 12.2 implies that
1 2 - 1
() S max F =12
% = = —
(12.23)

From the consistency condition (12.21) we have

G O R

)
+(@C ()0 e ( ))) (12.24)

According to the Mean Value Theorem, Theorem A.3, the expression

in the first bracket is equal to 1 ) ¥ ), where [ ].
O

By Picard’s Theorem, “is continuous on the closed interval [

o)
therefore, it is uniformly continuous on this interval. Hence, for each

0 there exists () such that

) ) - for (), =01 1.
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for any pair of points ( (), ( ( )) on the solution curve.

12.4 An implicit one-step method

A one-step method with second-order accuracy is the trapezium rule
method

= +-[( )+ )] (12.26)

This method is easily motivated by writing
!

() ()= {)d

and approximating the integral by the trapezium rule. Since the right-
hand side involves the integral of the function Y)Yy= ( ()
we see at once from (7.6) that the truncation error

S D R G0 e O R

of the trapezium rule method satisfies the bound
F — where =max 2 ) (12.27)

The important difference between this method and Euler’s method
is that the value appears on both sides of (12.26). To calculate
from the known  therefore requires the solution of an equation,
which will usually be nonlinear. This additional complication means an
increase in the amount of computation required, but not usually a very
large increase. The equation (12.26) is easily solved for by Newton’s
method, assuming that the derivative H H can be calculated quickly;
as a starting point for the Newton iteration the obvious estimate

+ )

will usually be close, and a couple of iterations will then suffice.
Methods of this type, which require the solution of an equation to
determine the new value , are known as implicit methods.
Writing the trapezium rule method in the standard form (12.13) we
see that

P ) o= 1A )+ ( )]

Hence, the function @ is also defined in an implicit form.
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In order to employ Theorem 12.2 to estimate the error in the trapez-
ium rule method we need a value for the Lipschitz constant o. From
(12.28) we find that

o ) e s)=-C )  + + 2 ;)

and, therefore,

% T provided that - 1
Consequently, (12.16) and (12.27) imply that the global error in the
trapezium rule method is (), as  tends to 0.

Figure 12.3 depicts the results of some numerical calculations on the
interval [0 16] for the same problem as in Figure 12.2. The step
sizes are 0.4 and 0.2, larger than for Euler’s method; nevertheless we see
a much reduced error in comparison with Euler’s method, and also how
the reduction in the step size by a factor of 2 gives a reduction in the
error by a factor of about 4, as predicted by our error analysis.

12.5 Runge—Kutta methods

Euler’s method is only first-order accurate; nevertheless, it is simple and
cheap to implement because, to obtain from , we only require a
single evaluation of the function , at ( ). Runge-Kutta methods
aim to achieve higher accuracy by sacrificing the efficiency of Euler’s
method through re-evaluating ( ) at points intermediate between
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)= 4+ = 4
)=+ +C + )+ (+ )

and so on; in these expressions the subscripts and denote partial
derivatives, and all functions appearing on the right-hand sides are to
be evaluated at ( (). We also need to expand ®( (); )in
powers of , giving (with the same notational conventions as before)

o ( )x) = + + +) +-( )
+) +-0) + ()

Thus, we obtain the truncation error in the form

Fo= L0 ()

= -+ )
+ [ +2 + + ( + )
L HE G
+) +-0) I+ ()

As1 =0, the term (1 ) is equal to 0. The coefficient of
the term in s

-+ ) )
which vanishes for all functions provided that

=) =-
The method is therefore second-order accurate if
) = =1 5 == =0

showing that there is a one-parameter family of second-order methods of
this form, parametrised by = 0. The truncation error of the method
then becomes

Fo= 5 + )+ %
+ - + ) + () (12.32)

Evidently there is no choice of the free parameter  which will make

this method third-order accurate for all functions ; this can be seen,
for example, by considering the initial value problem "= | (0) = 1,

and noting that in this case (12.32), with ( )= , yields
F=e ()+ ()=- e + ()
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B 5 S B AT
! 0 #  * %+

To illustrate the behaviour of the one-step methods which we have dis-
cussed, Figure 12.4 shows the errors in the calculation of (1 6), where
() is the solution to the problem (12.20) on the interval [0 1 6]. The

horizontal axis indicates , the number of equally spaced mesh points
used in the interval (0 1 6], on a logarithmic scale, and the vertical axis
showsIn 9 =1In (16) . The three methods employed are Eu-

ler’s method, the trapezium rule method, and the classical Runge-Kutta
method (12.33). The three lines show clearly the improved accuracy of
the higher-order methods, and the rate at which the accuracy improves
as  increases.

12.6 Linear multistep methods

While Runge-Kutta methods give an improvement over Euler’s method
in terms of accuracy, this is achieved by investing additional computa-
tional effort; in fact, Runge—Kutta methods require more evaluations
of ( ) than would seem necessary. For example, the fourth-order
method involves four function evaluations per step. For comparison,
by considering three consecutive points _ | = _ 4+ , =

— 42 , integrating the differential equation between _ and ,



330 12 Initial value problems for ODEs

yields

and applying Simpson’s rule to approximate the integral on the right-
hand side then leads to the method

R T C G P G P )

3
(12.34)
requiring only three function evaluations per step. In contrast with the
one-step methods considered in the previous section where only a single
value  was required to compute the next approximation , here we
need two preceding values, and _ , to be able to calculate
and therefore (12.34) is not a one-step method.
In this section we consider a class of methods of the type (12.34) for
the numerical solution of the initial value problem (12.1), (12.2), called
linear multistep methods.

)

Given a sequence of equally spaced mesh points () with step size |,
we consider the general linear -step method

= ) ( ) (12.35)
where the coefficients and ) ) are real constants. In
order to avoid degenerate cases, we shall assume that = 0 and that

and ) are not both equal to 0. If ) = 0, then is obtained
explicitly from previous values of and ( ), and the -step method

is then said to be explicit. On the other hand, if ) = 0, then
appears not only on the left-hand side but also on the right, within

( ); due to this implicit dependence on the method is
then called implicit. The method (12.35) is called linear because it
involves only linear combinations of the and the ( ),
3=01 ; for the sake of notational simplicity, henceforth we shall
often write  instead of ( ).

Example 12.4 We have already seen an example of a linear two-step
method in (12.84); here we present further examples of linear multistep
methods.

(a) Euler’s method is a trivial case: it is an explicit linear one-step
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method. The implicit Euler method

= + ) (12.36)
is an implicit linear one-step method. Another trivial example is the
trapezium rule method, given by

=+%( + )

it, too, is an implicit linear one-step method.
(b) The Adams —Bashforth method

1
= — (55 59 37 9
+ 54 ( + )

is an example of an explicit linear four-step method, while the Adams—
Moulton method

= +1 9 +19 5 9 )
o 24

is an implicit linear three-step method.

There are systematic ways of generating linear multistep methods,
but these constructions will not be discussed here. Instead, we turn our
attention to the analysis of linear multistep methods and introduce the
concepts of (zero-) stability, consistency and convergence. The signifi-
cance of these properties cannot be overemphasised: the failure of any
of the three will render the linear multistep method practically useless.

12.7 Zero-stability

As is clear from (12.35) we need starting values, — , before
we can apply a linear -step method to the initial value problem (12.1),
(12.2): of these, is given by the initial condition (12.2), but the others,

1K , % B>K  #.#0 : C #K 6#.0
D K N $
1) #. # 6 $
1 1 , 5
1 5 419 6 5 1
1 B D 1
H 5 6% 5 , 6
2 94 12
- 0 D 0 8 %
= , 8 2
0 > § - 5 6 #o.%
39447 1+ 7 % 5 61
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Before stating the main theorem of this section, we recall a classical
result from the theory of th-order linear recurrence relations.

Lemma 12.1 Consider the th-order homogeneous linear recurrence
relation

+ + + =0 =012 (12.38)
with =0, =0, ,3=01 , and the corresponding
characteristic polynomial

G)=  + + ,+

Let, ,1 ; $9% , be the distinct roots of the polynomial , and
let + 1 denote the multiplicity of , , with+ + ++ = . Ifa
sequence () of complex numbers satisfies (12.38), then

=  ?2() for all 0 (12.39)
where ? () is a polynomial in  of degree + 1, 1 ; $ In
particular, if all roots are simple, that is + =1,1 ; , then the
?,;,=1 , are constants.

L

Proof We give a sketch of the proof. Let us first consider the case when
all of the (distinct) roots , , are simple. As, by assumption,

= 0, none of the roots is equal to 0. It is then easy to verify by direct
substitution that, since (, )=0,; =1 2 , each of the sequences
()=( ),; =12 , satisfies (12.38).

In order to prove that any solution ( ) of (12.38) can be expressed
as a linear combination of the sequences (, ) (, ) (, ), it suffices
to show that these sequences are linearly independent. To do so, let
us suppose that

> +>

, + +>, =0 forall =012

Then, in particular,

> +> + 4> =
>, 4>, 4+ 4>, =
>, T 4>, T 4+ 4>, =0

19 1 8 b#cH# 140, ) 5 -
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The matrix of this system of simultaneous linear equations for the

unknowns > > > has the determinant
1 1 1
P — 1 L 1
. + .
known as the Vandermonde determinant, and * = 4 (s , ). Since
the roots are distinct, * = 0, so the matrix of the system is nonsingular.
Therefore > => = = > = ( is the unique solution, which then
means that the sequences (, ) (, ) (, ) are linearly independent.
Now, suppose that ( ) is any solution of (12.38); as * = 0, there
exists a unique set of constants, > > > | such that

==, +>, + +>, + =01 1 (12.40)

Substituting these equalities into (12.38) for = 0, we conclude that
0 = + -G, + +>, )+
+ G, + +>,)
= +>(06) )+ +>(06) )
= ( G+ +>,)
As =0, it follows that
=>, + 4>,

which, together with (12.40), proves (12.39) for 0 in the case of
simple roots. Next, we select =1 in (12.38) and proceed in the same
manner as in the case of = 0 discussed above to show that (12.39)
holds for 0 + 1. Continuing in the same way, we deduce by
induction that (12.39) holds for all 0.

In the case when (,) has repeated roots, the proof is similar, except
that instead of (, ),; =1 2 , the following sequences are used:

(12.41)

(¢ 1 ( + +2,) ;=12 8

These can be shown to satisfy (12.38) by direct substitution on noting
that (, )= Y, )= = ~ (, ) =0, given that , is a root of
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(,) of multiplicity + ,; =1 2 $. The linear in_gependence of the
sequences (12.41) follows as before, except instead of 5 (, , ), the
value of the corresponding determinant is now

* *
=3 =
where Ol =1, +!l =+1(+ 1)1 1lfor+ =12 . As the roots
. , are distinct, we have that * = 0, and therefore the se-

quences (12.41) are linearly independent. The rest of the argument is
identical as in the case of simple roots. |

Now, we are ready to state the main result of this section.

Theorem 12.4 (Root Condition) A linear multistep method is zero-
stable for any initial value problem of the form (12.1), (12.2), where
satisfies the hypotheses of Picard’s Theorem, if, and only if, all roots
of the first characteristic polynomial of the method are inside the closed
unit disc in the complex plane, with any which lie on the unit circle being
simple.

The algebraic stability condition contained in this theorem, namely
that the roots of the first characteristic polynomial lie in the closed unit
disc and those on the unit circle are simple, is often called the Root
Condition.

Proof of theorem Consider the method (12.35), applied to
F=0:

+ o+ + =0 (12.42)

According to Lemma 12.1, every solution of this th-order linear recur-
rence relation has the form

= ?2 () (12.43)
where , is a root, of multiplicity + 1, of the first characteristic
polynomial of the method, and the polynomial ? has degree + 1,
1 ; $3 . Clearly, if , 1 for some ;, then there are starting
values _ for which the corresponding solution grows like
! , . 8 U

B D > * #1 B D 2 1
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., ,and if , =1 and the multiplicity is + 1, then there is a
solution growing like ~ . In either case there are solutions that grow
unboundedly as , i.e., as 0 with fixed. Considering
starting values — which give rise to such an unbounded
solution ( ), and starting values , =, = =, _ = 0 for which
the corresponding solution of (12.42) is (, ) with , =0 for all , we

see that (12.37) cannot hold. To summarise, if the Root Condition is
violated, then the method is not zero-stable.

The proof that the Root Condition is sufficient for zero-
stability is long and technical, and will be omitted here. For details, the
interested reader is referred to Theorem 3.1 on page 353 of W. Gautschi,
Numerical Analysis: an Introduction, Birkhduser, Boston, MA, 1997.

O

Example 12.5 We shall explore the zero-stability of the methods from
FEzample 12.4 using the Root Condition.

(a) The Euler method and the implicit Euler method have first charac-
teristic polynomial (,) =, 1 with simple root, = 1, so both methods
are zero-stable. The same is true of the trapezium rule method.

(b) The Adams-Bashforth and Adams—Moulton methods considered
in Example 12.4 have first characteristic polynomials, respectively, (,) =
, b 1and (,) =, (, 1). These have multiple root , = 0 and
simple root , = 1, and therefore both methods are zero-stable.

(c) The three-step method

11 + 27 27 11
=3 ( +9 +9 + ) (12.44)
is not zero-stable. Indeed, the corresponding first characteristic polyno-
mial (,) = 11, + 27, 27, 11 has roots at , =1, , 0 32,
, = 314,50 , 1.
(d) The first characteristic polynomial of the three-step method

+ =2 ( + )

is ()=, +, , 1=( + 1) 1), which has roots, = 1,
, = 1. The first of these is a double root lying on the unit circle;
therefore, the method is not zero-stable.
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12.8 Consistency

In this section we consider the accuracy of the linear -step method
(12.35). For this purpose, as in the case of one-step methods, we intro-
duce the notion of truncation error. Thus, suppose that is a solution to
the ordinary differential equation (12.1). The truncation error of (12.35)
is then defined as follows:

R I R G ) .

Of course, the definition requires implicitly that D(1) = ) =0.
Again, as in the case of one-step methods, the truncation error can be
thought of as the residual that is obtained by inserting the solution of the
differential equation into the formula (12.35) and scaling this residual
appropriately (in this case dividing through by ) ), so that F
resembles = ( ().

Definition 12.4 The numerical method (12.35) is said to be consistent
with the differential equation (12.1) if the truncation error defined by
(12.45) is such that for any 0 there exists an () for which

F for 0 ()
and any + 1 points ( () ( ( )) on any solution
curve in 5 of the initial value problem (12.1), (12.2).

Now, let us suppose that the solution to the differential equation
is sufficiently smooth, and let us expand the expressions ( ) and

( ( N= Y ) into Taylor series about the point . On
substituting these expansions into the numerator in (12.45) we obtain

Feom > (4> T )+> @ )y (12.46)

(12.47)
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For consistency we need that, as 0 and with
[ " o], the truncation error F tends to 0. This requires that > =0
and > = 0in (12.46). In terms of the characteristic polynomials this
consistency requirement can be restated in compact form as

(1)=0 and Y1) =D(1) (= 0)

Let us observe that, according to this condition, if a linear multistep
method is consistent, then it has a simple root on the unit circle at
, = 1; thus, the Root Condition is not violated by this root.

Definition 12.5 The numerical method (12.35) is said to have order
of accuracy ?, if ? is the largest positive integer such that, for any suf-
ficiently smooth solution curve in'5 of the initial value problem (12.1),
(12.2), there exist constants 1 and  such that

F 1 for 0

for any + 1 points ( () ( ( )) on the solution
curve.

Thus, we deduce from (12.46) that the method is of order of accuracy
? if, and only if,

> => = => =0 and > =0
In this case,
F >
The number > D (1) is called the error constant of the method.

Example 12.6 Let us determine all values of the real parameter
=0, for which the linear multistep method

+(2 3 ) =+ )

is zero-stable. We shall show that there exists a value of  for which the
order of the method is 4, and that if the method is zero-stable for some
value of , then its order cannot exceed 2.
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According to the Root Condition, this linear multistep method is zero-
stable if, and only if, all roots of its first characteristic polynomial

()=, +2 3 ) 1

belong to the closed unit disc, and those on the unit circle are simple.
Clearly, (1) =0; upon dividing (,) by, 1 we see that (,) can be
written in the following factorised form:

()= 1) () where ()=, 2(1 ), +1

Thus, the method is zero-stable if, and only if, all roots of the polynomial

(,) belong to the closed unit disc, and those on the unit circle are
simple and differ from 1. Suppose that the method is zero-stable. It
then follows that = 0 and = 2, since these values of correspond to
double roots of  (,) on the unit circle, respectively,, =1 and , = 1.
Further, since the product of the two roots of () is equal to 1, both
have modulus less than or equal to 1, and neither of them is equal
to 1, it follows that they must both be strictly complex; hence the
discriminant of the quadratic polynomial  (, ) must be negative. That
is,41 ) 4 0 In other words, (0 2).

Conversely, suppose that (0 2). The/n7 the roots of (,) are

Since , =1, , =1land, =, , all roots of (,) lie on the
unit circle and they are simple. Hence the method is zero-stable. To
summarise, the method is zero-stable if, and only if, (0 2).

In order to analyse the order of accuracy of the method, we note that,
upon Taylor series expansion, its truncation error can be written in the
form

1 1
F = — 1 = —(6
s g e ) ()
1
—(1
+120(50 23 ) )+ ()

where D(1) =2 =0. If =6,then F = ( ) and so the method is of
order 4. As = 6 does not belong to the interval (0 2), we deduce that
the method is not zero-stable for = 6.

Since zero-stability requires (0 2), in which case 1 - =0, it

follows that if the method is zero-stable, then F = ().
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12.9 Dahlquist’s theorems

An important result connecting the concepts of zero-stability, consis-
tency and convergence of a linear multistep method was proved by the
Swedish mathematician Germund Dahlquist.

Theorem 12.5 (Dahlquist’s Equivalence Theorem) For a linear
-step method that is consistent with the ordinary differential equation
(12.1) where  is assumed to satisfy a Lipschitz condition, and with
consistent starting values, zero-stability is necessary and sufficient for
convergence. Moreover if the solution  has continuous derivative of
order ? + 1 and truncation error (), then the global error of the
method, 9 = () ,is also ().

The proof of this result is long and technical; for details of the argu-
ment, see Theorem 6.3.4 on page 357 of W. Gautschi, Numerical Anal-
ysis: an Introduction, Birkhéuser, Boston, MA, 1997, or Theorem 5.10
on page 244 of P. Henrici, Discrete Variable Methods in Ordinary Dif-
ferential Equations, Wiley, New York, 1962.

By virtue of Dahlquist’s theorem, if a linear multistep method is not
zero-stable its global error cannot be made arbitrarily small by taking
the mesh size sufficiently small for any sufficiently accurate initial data.
In fact, if the Root Condition is violated, then there exists a solution
to the linear multistep method which will grow by an arbitrarily large
factor in a fixed interval of |, however accurate the starting conditions
are. This result highlights the importance of the concept of zero-stability
and indicates its relevance in practical computations.

A second theorem by Dahlquist imposes a restriction on the order of
accuracy of a zero-stable linear multistep method.

Theorem 12.6 (Dahlquist’s Barrier Theorem) The order of accu-
racy of a zero-stable -step method cannot exceed + 1 if s odd, or
+ 2 if is even.

A proof of this result will be found in Section 4.2 of Gautschi’s book
or in Section 5.2-8 of Henrici’s book, cited above.

Theorem 12.6 makes it very difficult to choose a ‘best’ multistep
method of a given order. Suppose, for example, that we consider five-
step methods. The general five-step method involves 12 parameters, of

1 5 " A#  #BI UA & # , , 5
8, 5 " $ 4
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which 11 are independent: the method is obviously unaffected by mul-
tiplying all the parameters by a nonzero constant. Now it would be
possible to construct a five-step method of order 10, by solving the 11
equations of the form > =0 =01 10, where > is given in
(12.47). But the Barrier Theorem states that this method would not be
zero-stable, and the order of a zero-stable five-step method cannot ex-
ceed 6. There is a family of stable five-step methods of order 6, involving
4 free parameters, and there is no obvious way of deciding whether any
one of these methods is better than the others.

Example 12.7 (i) The Barrier Theorem says that when =1 the order
of accuracy of a zero-stable method cannot exceed 2. The trapezium rule
method has order 2, and is zero-stable.

(ii) The two-step method

= (- + - +- )

is zero-stable, as the roots of the first characteristic polynomial, (,) =
, 1, are 1 and 1. A simple calculation shows that its order of
accuracy is 4; by the Barrier Theorem, this is the highest order which
could be achieved by a two-step method.

(iii) The three-step method

11 + 27 27 11
=3 ( +9 +9 + )
has order 6. The Barrier Theorem therefore implies that this method is

not zero-stable. We have already shown this in Example 12.5(c) using
the Root Condition.

It is found that all the zero-stable -step methods of highest possible
order are implicit, with ) nonzero.

12.10 Systems of equations

In this section we discuss the application of numerical methods to si-
multaneous systems of differential equations, which we shall write in the
form
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Here isan + -component vector function of , and isan + -component
vector function of the independent variable and the vector variable
In component form the system becomes

d
1= ( ) 3=12 +

The system comprises + simultaneous differential equations. To single
out a unique solution we need + side conditions, and we shall suppose
that all these conditions are given at the same value of , and have the
form

or, in component form,
()= 3=12 +

where the values of are given. This is called an initial value problem
for a system of ordinary differential equations; we may also require a
solution of the system on an interval [ ], with ; conditions given at
one end of the interval and + ;. conditions at the other end. This
constitutes a boundary value problem, and requires different numerical
methods which are considered in the next chapter.

All the numerical methods which we have discussed apply without
change to systems of differential equations; it is only necessary to realise
that we are dealing with vectors. For example, the first stage of the
classical Runge-Kutta method (12.33) becomes

= );

we must evaluate all the elements of the vector before proceeding to
the next stage to calculate , and so on.

The most important difference which arises in dealing with a sys-
tem of differential equations is in the practical use of an implicit multi-
step method. As we have seen, this almost always requires an iterative
method for the solution of an equation to determine . Applying
such a method to a system of differential equations now involves the
solution of a system of equations, which will usually be nonlinear, to de-
termine the elements of the vector . In real-life problems it is quite
common to deal with systems of several hundred differential equations,
and it then becomes very important to be sure that the improved effi-
ciency of the implicit method justifies the very considerable extra work
in each step of the process.

We shall not discuss the extension of our earlier analysis to deal with
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systems of differential equations; in almost all cases we simply need to
introduce vector notation, and replace the absolute value of a number
by the norm of a vector. For example, in the proof of Theorem 12.2,
(12.17) becomes

+ % + T =01 1

where is any norm on , with obvious definitions of the global
error and the truncation error T . Similarly, Picard’s Theorem and
its proof, discussed at the beginning of the chapter in the case of a
single ordinary differential equation, can be easily extended to an + -
component system of differential equations by replacing the absolute
value sign with a vector norm on throughout.

12.11 Stiff systems

The phenomenon of stiffness usually appears only in a system of differ-
ential equations, but we begin by discussing an almost trivial example
of a single equation,

= (0) =

where is a constant. The solution of this equation is evidently ( )=

exp( ). When 0 the absolute value of the solution is exponen-
tially decreasing, so it is sensible to require that the absolute value of our
numerical solution also decreases. It is very easy to give expressions for
the result of a numerical solution using Euler’s method and the implicit
Euler method (12.36). They are, respectively,

=01+ ) =0 )7
When 0 and 0, we have (1 ) 1; therefore, the sequence
(") decreases monotonically with increasing . On the other hand,

for 0 and 0,

1+ 1 if, and only if, 0 2
This gives the restriction 2 on the size of for which the sequence
(%) decreases monotonically; if exceeds2 , the numerical solution

obtained by Euler’s method will oscillate with increasing magnitude with
increasing and fixed 0, instead of converging to zero as

We now consider the same two methods applied to the initial value
problem for a system of differential equations of the form

o 0) =
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We consider the system where ! is the 2 2 matrix

_ 8003 1999
N 23988 6004
and the initial condition is
1
The eigenvalues of | are = T7and = 14000; the solution of the
problem is
o=
()= 4de™

Clearly, im . o () =0.

The numerical solution uses 12 steps of size = 0 004; the results
are shown in Table 12.1. The second column gives the first component
of the solution, ( ) = e~ , the third column shows the result from
the implicit Euler method, and the last gives the result of the standard
Euler method. The last column is a dramatic example of what happens
when the step size is too large; in this case = 56. The numerical
values given by the implicit Euler method have an error of a few units in
the third decimal digit; to get the same accuracy from the Euler method
would require a step size about 30 times smaller, and about 30 times as
much work.

It is clear that the difficulty in the numerical example is caused by the
size of the eigenvalue 14000, but what is important is its size relative
to the other eigenvalue. The special constant-coefficient system =1
is said to be stiff if all the eigenvalues of ! have negative real parts, and
if the ratio of the largest of the real parts to the smallest of the real parts
is large. Most practical problems are nonlinear, and for such problems it
is quite difficult to define precisely what is meant by stiffness. To begin
with we may replace the system by a linearised approximation, the first
terms of an expansion

)= 1 )+|:T( It )+#(C () N+

1) 5 15 $, S, 6 1 J G §
J E 5 B G5 D 61l1 , 1
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Table 12.1. The use of Fuler’s method and the implicit Euler method
to solve a stiff system.

i+ 7 - -
) $)& %)
$% $% $(
$$ $ $
% 9 $( $&
%$ ) %
( ) '8
& )% )$
&% ) ) $
)% )($ ‘&
)&( )& (()%S
) ( ) M% &()

where # is the Jacobian matrix of the function , whose (2 3-entry is

#C ) =g ()

We can then think of the system as being stiff if the eigenvalues of the
matrix #( ) have negative real parts and if the ratio of the largest of the
real parts to the smallest is large. Although this gives some indication
of the sort of problems which may cause difficulty, the behaviour of
nonlinear systems is much more complicated than this. It is not difficult
to construct examples in which all the eigenvalues of the Jacobian matrix
have negative real parts, yet the norm of the solution of the differential
equation is exponentially increasing as +

Even though any classification of nonlinear systems of differential
equations into stiff and nonstiff, based only on monitoring the eigen-
values of #( ), is somewhat simplistic, it does highlight some of the
key difficulties. Stiff systems of differential equations arise in many ap-
plication areas, a typical one being chemical engineering. For example,
in parts of an oil refinery there may be a large number of substances un-
dergoing chemical reactions with widely different reaction rates. These
reaction rates correspond to the eigenvalues of the Jacobian matrix, and
it is not unusual to find the ratio of the largest of the real parts to the
smallest to be in excess of 10 . For such problems it is essential to
find a numerical method which imposes no restriction on the step size;
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Euler’s method, which might require the restriction 10 2, would
evidently be quite useless.
Application of the linear multistep method

to the equation ™=  leads to the th-order linear recurrence relation

( ) ) =0 (12.48)

The characteristic polynomial of the linear recurrence relation (12.48) is

-G )=« ) )

Alternatively, we can write this in terms of the first and second charac-
teristic polynomials of the linear multistep method as

-G; )=() D)

In the present context, the polynomial - ( ; ) is usually referred to as
the stability polynomial of the linear multistep method. According
to Lemma 12.1, the general solution of the recurrence relation (12.48)

can be expressed in terms of the distinct roots , , 1 ; $ 9 , of
-( ; ). Letting + denote the multiplicity of the root , , 1 ; &
+ 4+ ++ = |, we have that
= ? (), (12.49)

where the polynomial ? () has degree + 1,1 ; &

Clearly, the roots , are functions of . For , with Re( ) 0,
the solution of the model problem

- 0) =

converges in  to 0 as . Thus, we would like to ensure that, when

a linear multistep method is applied to this problem, the step size can
be chosen so that the resulting sequence of numerical approximations
() exhibits an analogous behaviour as ,thatis, lim o =0.
By virtue of (12.49), this can be guaranteed by demanding that each root
, =, () has modulus less then 1.
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Definition 12.6 A linear multistep method is said to be absolutely
stable for a given value of  if each root, =, () of the associated
stability polynomial - ( ;) satisfies , () 1.

Our aim is, therefore, to single out those values of for which the
linear multistep method is absolutely stable.

Definition 12.7 The region of absolute stability of a linear multi-
step method is the set of all points in the complex plane for which
the method is absolutely stable.

Ideally, the region of absolute stability of the method should admit all
values of , Re( ) 0, so as to ensure that there is no limitation on the
size of , however large may be. This leads us to the next definition.

Definition 12.8 A linear multistep method is said to be A-stable if
its region of absolute stability contains the negative (left) complex half-
plane.

Unfortunately, the condition of A-stability is extremely demanding.
Dahlquist has shown the following results which are collectively known
as his Second Barrier Theorem:

(i) No explicit linear multistep method is A-stable;
(ii) No A-stable linear multistep method can have order greater than
2.
(iii) The second-order A-stable linear multistep method with the small-
est error constant is the trapezium rule method.

The trapezium rule method is a one-step method, so the associated
stability polynomial has only one root, given by

14 -
=

Evidently , 1ifRe( )= Re( ) 0, so the trapezium rule method
is indeed A-stable.

To construct useful methods of higher order we need to relax the
condition of A-stability by requiring that the region of absolute stability
should include a large part of the negative half-plane, and certainly that
it contains the whole of the negative real axis.

1r/7 G % s 6 1
&C * #@?7*4
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The most efficient methods of this kind in current use are the Back-
ward Differentiation Formulae, or BDF methods. These are the
linear multistep methods (12.35) in which ) =0,0 3 1, 1,
and ) = 0. Thus,

o+ =)

The coefficients are obtained by requiring that the order of accuracy of
the method is as high as possible, i.e., by making the coefficients > zero
in (12.47) for 3=101 . For =1 this yields the implicit Euler
method (BDF1), whose order of accuracy is, of course, 1; the method is
A-stable. The choice of = 6 results in the sixth-order, six-step BDF
method (BDF6):

147 360 + 450 400 + 225 72 +10
=60 (12.50)
Although the method (12.50) is not A-stable, its region of absolute sta-
bility includes the whole of the negative real axis (see Figure 12.5). For

the intermediate values, = 2 3 4 5, we have the following th-order,
-step BDF methods, respectively:

3 4 + =2
11 18 +9 2 =6
25 48 + 36 16 +3 =12
137 300 -+ 300 200 + 75 12 =60

referred to as BDF2, BDF3, BDF4 and BDF5. Their regions of absolute
stability are also shown in Figure 12.5. In each case the region of absolute
stability includes the negative real axis. Higher-order methods of this
type cannot be used, as all BDF methods, with 6, are zero-unstable.

12.12 Implicit Runge—Kutta methods

For Runge—Kutta methods absolute stability is defined in much the same
way as for linear multistep methods; i.e., by applying the method in
question to the model problem "= | (0) = | ,Re( ) 0,and
demanding that the resulting sequence () converges to 0 as ,
with held fixed. The set of all values of  in the complex plane for
which the method is absolutely stable is called the region of absolute
stability of the Runge—Kutta method.

Classical Runge-Kutta methods are explicit, and are unsuitable for
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where

= ( + + ) 1 2 (12.51)

It is convenient to display the coefficients in a Butcher tableau

The method is then defined by the matrix ! =( ) > of order :,
and the two vectors = ( ) and = ( ) .
For example, the classical four-stage Runge—-Kutta method is defined by
the tableau

o O

The 4 4 array representing the matrix ! for this method, displayed
in the upper right quadrant of the tableau, follows the usual notational
convention that zero elements after the last nonzero element in each row
of the matrix | are omitted.

This is an explicit method, shown by the fact that the matrix ! is
strictly lower triangular, with = 0 when 1 2 3 4. Each
value  can therefore be calculated in sequence, all the quantities on
the right-hand side of (12.51) being known.

It is not difficult to construct :-stage implicit methods which are A-
stable. For example, this can be done by choosing the coefficients and

to be the quadrature points and weights respectively in the Gauss
quadrature formula for the evaluation of

I

()d ()

The numbers can then be chosen so that the method has order 2:,
and is A-stable.
For example, the array
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-3 3 - —(3 2 3)

-3+ 3) || —(3+2 3) -

defines a 2-stage A-stable method of order 4.

However, there is a heavy price to pay for using implicit methods of
this kind, as we now have to calculate all the numbers ,2=1 2 .
simultaneously, not in succession. For a system of + differential equa-
tions an implicit linear multistep method requires the solution of +
simultaneous equations at each step; an :-stage implicit Runge-Kutta
method requires the solution of :+ simultaneous equations. This is
a considerable increase in cost, and the general implicit Runge-Kutta
methods cannot compete in efficiency with the Backward Differentiation
Formulae such as (12.50); their use is almost exclusively limited to stiff
systems of ODEs.

The overall computational effort can be somewhat reduced by using
diagonally implicit Runge-Kutta (or DIRK) methods, in which the
matrix ! is lower triangular, so that =0if 3 2. A further im-
provement in efficiency is possible by requiring in addition that all the
diagonal elements are the same; unfortunately it has proved difficult
to construct such methods with order greater than 4.

12.13 Notes

In this chapter we have only been able to introduce some of the basic
ideas in what has become a vast area of numerical analysis. In particular
we have not discussed the practical implementation of the various meth-
ods. The questions of how to choose the step size to obtain efficiently
a prescribed accuracy, and when and how to adjust during the course
of the calculation, are dealt with in the following books.

/ "&$ 3 " , Solving Ordinary
Differential Equations I: Nonstiff Problems, Second Edition, Springer
Series in Computational Mathematics, 8, Springer, Berlin, 1993.
) # , A First Course in the Numerical Analysis of Differential
Equations, Cambridge University Press, Cambridge, 1996.

, Numerical Methods for Ordinary Differential Sys-
tems, John Wiley & Sons, Chichester, 1991.
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For a study of dynamical systems and their numerical analysis, with
focus on long-time behaviour, we refer to

)+ & D% , Dynamical Systems and Nu-
merical Analysis, Cambridge University Press, Cambridge, 1999.

The numerical solution of stiff initial value problems for systems of or-
dinary differential equations is discussed in

/ , Solving Ordinary Differential Equa-
tions II: Stiff and Differential-Algebraic Problems, Springer Series in
Computational Mathematics, 14, Springer, Berlin, 1991.

An extensive survey of the theory of Runge-Kutta and linear multistep
methods is found in

L , The Numerical Analysis of Ordinary Differential
Equations. Runge—Kutta and General Linear Methods, Wiley-Inter-
science, John Wiley & Sons, Chichester, 1987.

Satisfactory theoretical treatment of nonlinear systems of differential
equations from the point of view of stiffness requires the development of a
genuinely nonlinear stability theory which does not involve the rather du-
bious idea of defining stiffness through linearisation based on the ‘frozen
Jacobian matrix’. We close by mentioning just one concept in this di-
rection — that of algebraic stability. Given a Runge-Kutta method with

Butcher tableau
ey

we define the matrices
= = diag( ) and ==l 41 =

The method is said to be algebraically stable if the matrices = and

are both positive semidefinite, i.e., = 0 and 0 for all

. Algebraic stability can be seen to ensure that approximations to

solutions of nonlinear systems of differential equations exhibit acceptable

numerical behaviour. For example, the Gauss—Runge-Kutta methods

discussed in the last section are algebraically stable. For further details,
see, for example,

- , Stability of Runge—Kutta Methods for
Stzﬁ Nonlinear Differential Equations, North-Holland, Amsterdam,
1984.
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Exercises

Verify that the following functions satisfy a Lipschitz condition
on the respective intervals and find the associated Lipschitz con-
stants:

(@ ( )=2 7 )

(b) ( )=e ftan” )

(© ( )=20+ )" Q+elh ( )
Suppose that + is a fixed positive integer. Show that the initial
value problem

O 0)=0

has infinitely many continuously differentiable solutions. Why
does this not contradict Picard’s Theorem?
Write down the solution of the initial value problem

P=2 + (0)=1

where ? and are constants. Suppose that the method in the
proof of Picard’s Theorem is used to generate the sequence of
approximations ( ), =012 ;showthat ( )isapoly-
nomial of degree , and consists of the first + 1 terms in the
series expansion of ( ) in powers of
Show that Euler’s method fails to approximate the solution
()= (4 5) of the initial value problem "= (0) =
0. Justify your answer.

Consider approximating the same problem with the implicit
Euler method. Show that there is a solution of the form =
=) , 0, with > =0and > =1 and > 1 for all

2.
Write down Euler’s method for the solution of the problem

_— 5 (0)=0
on the interval [0 1] with step size =1 . Denoting by
the resulting approximation to (1), show that (1) as
Consider the initial value problem

“=lnln(4+ ) [0 1] 0)=1
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and the sequence ( ) 1, generated by the Euler
method
= + Inln(4+ ) =01 1 =1

using the mesh points = , =01 , with spacing

=1

(i) Let F denote the truncation error of Euler’s method for
this initial value problem at the point = . Show that
F 4.

(ii) Verify that

C ) 1+ ) () + F

for =01 1, where =1 (2In4).

(iii) Find a positive integer  , as small as possible, such that

max () 10~

whenever

Define the truncation error F of the trapezium rule method

= 5 ()

for the numerical solution of Y= () with (0)= given,
where = ( )and =
By integrating by parts the integral
!

( )( ) ™ )d

or otherwise, show that

1
FZE )

for some  in the interval ( ), where is the solution of
the initial value problem.
Suppose that satisfies the Lipschitz condition

C ) )

for all real , , |, where is a positive constant independent
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of , and that ™ ) for some positive constant in-
dependent of . Show that the global error 9 = ( )
satisfies the inequality
1 1
9 9 = 9 9 —
+ 2 ( + )+ 12
For a constant step size 0 satisfying 2, deduce that,
if = ( ), then
1 —
9 + 1
12 1 -

Show that the one-step method defined by

where
= ) =+ o+ )
is consistent and has truncation error
F=- () - +2 + )+ ()

When the classical fourth-order Runge-Kutta method is applied
to the differential equation M= |, where is a constant, show

that
=1+ +- + - +— )

Compare this with the Taylor series expansion of ( ) =
(4 ) about the point =
Consider the one-step method

= + )+)  ( +lI 1 )

where ,) and | are real parameters and 0. Show that the
method is consistent if, and only if, +) = 1. Show also that
the order of the method cannot exceed 2.
Suppose that a second-order method of the above form is
applied to the initial value problem = , (0) =1, where
is a positive real number. Show that the sequence () = is
bounded if, and only if, g- Show further that, for such

() 0

| =
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Find the values of and ) so that the three-step method

+ ) =) + )

has order of accuracy 4, and show that the resulting method is
not zero-stable.
Consider approximating the initial value problem "= (),

(0) = by the linear multistep method
oo o= ()
on the regular mesh = where and are constants.

(i) For a certain (unique) choice of and , this method is
consistent. Find these values of and and verify that the order
of accuracy is 1.

(ii) Although the method is consistent for the choice of and

from part (i), the numerical solution it generates will not, in
general, converge to the solution of the initial value problem
as 0, because the method is not zero-stable. Show that
the method is not zero-stable for these and , and describe
quantitatively what the unstable solutions will look like for
small
Given that is a positive real number, consider the linear two-
step method

=35l )+4 ( )+ ( )]

on the mesh : = + =12 of spacing

, 0. Determine the set of all  such that the method is
zero-stable. Find such that the order of accuracy is as high
as possible; is the method convergent for this value of 7
Which of the following linear multistep methods for the solution
of the initial value problem Y= (), (0) given, are zero-
stable?

(a) =

(b) + 2 -=( + + -)

(C) - = ( +4 + - )a

(d) =- - )

(e) =— (5 +38 — ).
For the methods under (a) and (c) explore absolute stability
when applied to the differential equation "= with 0.
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-3 3) - —(3 2 3)
“B3+ 3) | —3+2 3 -
deduce that ='( ) ,where
()=

By writing " (, ) in the factorised form (, +?)(, + ) (,
deduce that this Runge-Kutta method is A-stable.
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Boundary value problems for ODEs

13.1 Introduction

In the previous chapter we discussed numerical methods for initial value
problems in which all the associated side conditions for a system of
differential equations are prescribed at the same point. Now we go on to
consider problems where these conditions specify values at more than one
point. Typically we require the solution on an interval [ ], and some
conditions are given at , and the rest at , although more complicated
situations are possible, involving three or more points.

We shall begin with the simplest case, of a second-order equation
with one condition given at and one at . This problem is sufficient
to introduce the basic ideas, and is of a type which arises quite often in
practice.

We then go on to discuss the shooting method for the solution of more
general problems.

13.2 A model problem

The simplest two-point boundary problem involves the second-order dif-
ferential equation

TH) = () (13.1)
with the boundary conditions
()=' (== (132)

where ! and = are given real numbers. We shall assume that ; and
are given real-valued functions, defined and continuous on the bounded
closed interval [ | of the real line, and that

() 0

361
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The reason for this condition will appear later, in Theorem 13.4.
We shall construct a numerical approximation to the solution on a
uniform mesh of points

= +3 3=01 = ) 2
so that =, = . The second derivative is approximated using

the second central difference defined below.

Definition 13.1 The central difference  of s defined by
()=0+-)  -)
Higher-order differences are defined recursively by
(=101 )= +-) C -
In particular, the second central difference may be written
()= +-)  -)
( +) 20 )+ ( )

Theorem 13.1 (i) Suppose that C + |, i.e., that has
continuous fourth derivative on the interval | + ]. Then, there
exists a number in ( + ) such that
)
om0 ()
(ii) Suppose that C + |; then, there exists a number
in ( + ) such that

—U gy e— () (133)

Proof (i) Taylor’s Theorem shows that there exist numbers and in
the intervals ( Jand (4 ), respectively, such that

C )= 0 H+- %) - "H+— ()

(+) = O+ H)+- "Hr+- ™H)+— ()
(13.4)

Since  is continuous on | + ], there is a number in ( ),
and thus also in ( + ), such that
(

-C )+ = ()
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The required result is now obtained by adding the two equations (13.4)
and dividing by

(ii) The proof is completely analogous, and is left to the reader as an
exercise. (See Exercise 1.) a

We can now use the central difference approximation to construct
the numerical solution. Writing E for the numerical approximation to
(), we approximate the differential equation by

E

—+; E = 3=12 1 (13.5)
where we have used the notation ; =;( ), = ( ). Now, (13.5)
is a system of 1 linear algebraic equations for the 1 unknowns
E 3=12 1, with the boundary conditions specifying the

values of E and E |,
E =! E == (13.6)

The system may be written in matrix form as

Y =
where Y ~ and, for 4, the matrix - T s
tridiagonal. Here Y = (E E — ) , the nonzero elements of  are

and the elements of the column vector on the right-hand side are
= 4+ _ = _ 4= = 3=23 2

Note how the known boundary values E and E have been transferred to
the right-hand side, and appear in the first and last elements of . The
solution of this system is very easy, using the algorithm for tridiagonal
matrices described in Section 3.3. Using the fact that ;( ) 0, we see
that the off-diagonal elements of  are negative, the diagonal elements
are positive, and in each row the diagonal element is at least as large
as the sum of absolute values of the off-diagonal elements. Theorem 3.4
implies that no row interchanges are needed in the calculation, and that
the matrix  is nonsingular. The calculation is therefore very straight-
forward and efficient, and requires very little computational time, even
for a mesh which may contain several hundred points.
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Now, ( ) and E satisfy
(( ) = +F 3-12 1
(E) = 3=12 1
from the definition of truncation error and (13.5); hence, by subtraction,
(9)=F 3=12 1

with the boundary conditions 9 =9 = 0. We must now use the bound
on F to derive a bound on the error 9 . This will be achieved by means
of the following theorem.

Theorem 13.3 (Maximum Principle) Let ,3=01 ,
be positive real numbers such that + , and suppose that
3=01 , are real numbers such that
— + 0 3=12 1
Then, 13=01 , where 1 = max 0.
Proof Let = max ; then if ; =0, ; = | or 0
the result is trivial. Suppose then that 1 ; 1, and that 0.
Since  is the maximum of the |, we know that
Hence
-+
+
since 0. This means that equality holds throughout, so that _ =
= . We can then apply the same argument to both _ and
, continuing until we find that either = or = . Thus, in
this case = = max , as required. O

Theorem 13.4 Suppose that the solution  of the boundary value prob-

lem (15.1), (13.2) has a continuous fourth derivative on [ |, and that
E,3=01 , 18 the solution of the central difference approzimation
(13.5), (13.6). Then,

max ( ) E — ) (13.10)

==
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Proof Let 9 = () E. We have already seen that (9) = F ,
3=12 1. Defining

1 2
( =>"(23 ) 3=01 (13.11)
where > is a constant, we see that
1 2
() = > (23 2 ) 223 ) +(28+2 ) +; (
= 8 +; ( 3=12 1
Hence
9 +()=F 8 +;( 3=12 1
If we choose > = F 8 with F = — , we see that (9 +( ) O,
since F F,; 0 and ( 0, and satisfies the conditions of the

Maximum Principle. Now,
9+( =9 +( =0

so that, according to Theorem 13.3, 9 + ( 0for3=01
However, > ( 0, so we have the result

9 > = —( YF=— ( ) 3-01
By applying the same argument to ( 9 + ( ) we find that
9 — ) 3=01

Combining these upper bounds for 9 and 9 gives the required result.
OJ

The function ( defined by (13.11) is called a comparison function.
An alternative proof of Theorem 13.4, based on the properties of mono-
tone matrices, can be given by using the result in Exercise 2. Notice
that the condition ; ( ) 0 is used in the application of the Maximum
Principle in the above proof.

This theorem shows that, provided the solution has a continuous
fourth derivative, the numerical method is convergent, that is

max () E 0 as
(or, equivalently, as = ( ) 0). This means that we can obtain
any required accuracy by choosing sufficiently large.
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Note that the approximation to ¥ )at =  may be written

L C+-)+ C -

For 3=12 1, we define the truncation error F as in Def-
inition 13.2. In addition, since we shall now also incur an error in the
approximation of the boundary condition at = , we define

- w20 A

The aim of our next result is to quantify the size of the truncation error
in terms of the mesh size

Theorem 13.6 Suppose that the solution to the boundary value prob-
lem (13.1), (13.2) has a continuous fourth derivative on the closed in-
terval | |. Then, the truncation error of the central difference
approzimation to (13.1) with boundary conditions (13.12) may be writ-
ten

F = — () 3=12 1
Fo= o~ () - ™)
for some value of  in the interval ( — ), 1 3 1, and
some value . in the interval ( — ) where — =
Proof For3=1 2 1, this is the same result as in Theorem 13.2.
When 3 = 0, we find that
2(1 + 2 2
F = W+ ) )-H 0 — () + !

= — () = ")
where we have used Theorem 13.5. a
Theorem 13.7 Suppose that the solution  of (13.1) with the boundary

conditions (13.12) has a continuous fourth derivative on the interval
[ |; then, the numerical solution obtained from the central difference
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In particular,

9 +( max 9 +( 0 (13.15)

However, Y9 +( ) 0; thus, by the definition of 9 +( ),
2

9 + 9 +
(@0
On writing =2 (2(14+ )+ ; ) and noting that, since 0 and
; 0, we have 0 1, it follows that
9 +( 9 +() (13.16)

Inserting this inequality into the left-hand side of (13.15), we find that
9 +( max (9 +( )0

If9 +( were positive, this inequality and the fact that 0 1 would
imply 9 + ( 0, leading to a contradiction. Therefore, 9 + ( 0.
Returning with this information to (13.14), we conclude that 9 +( 0
for3=01 , and the rest of the proof then follows as in the proof
of Theorem 13.1. |

13.5 The general self-adjoint problem

The general self-adjoint boundary value problem is

d d

R : = 13.17

= 205 0 = 0) (13.17)
where ; and are real-valued functions, defined and continuouson [ |,
? is a real-valued continuously differentiable functionon [ |,;( ) 0
and ?( ) 0. We shall consider only the case where the boundary

conditions prescribe the values of at each end,

()=! ()== (13.18)

The central difference approximation to the equation (13.17) may be
written
(? E)
—+4+; E = 3=12 1
or, in detail,

2 (E E) ?2_ (E E_)

+ E = (13.19)
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for3=12 , and is supplemented by the boundary conditions
E =! E == (13.20)

It is easy to see that this represents a system of linear equations for
the unknowns E E E _ , and that the matrix of the system is
tridiagonal and diagonally dominant, just as it was in the special case
(13.1), which corresponds to ?( ) 1. The solution of the system is
therefore a very simple matter.

Next, we consider the error analysis of the difference scheme (13.19),
(13.20). We begin by quantifying the size of the truncation error

2
F = 7( ())+; () 3=12 1
in terms of the mesh size

Lemma 13.1 Suppose that ? C [ ] and C [ ]. The truncation
error F of the central difference approzimation (13.19) then satisfies

1 2
F F=— max (9™ ) + 27 ) +22 ()

for3=12 1.

Proof By expanding in Taylor series as we have done before, we find
that

where ( ) and (= ). Thefirst term in the difference
of these expressions gives, in the same way,

? i ) 2 - =1 )+— 5% )

where ( - ). For the other term we can write

? oy 2 T
-— 2- ) y4e [T ) Ty

' 2
— 29 )™ ) + 2 ()

since 2 . Here, ( - ) and  lies between
and . The required bound follows immediately. O
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that E,3=01 , is the solution of the central difference approxi-
mation (13.19), (13.20). Then, with F as in Lemma 13.1,

max () E —F (13.21)

+

Proof The proof of this theorem follows that of Theorem 13.4, using the
bound from Lemma 13.1 on the truncation error and the comparison
function ( from Lemma 13.2. The details are left as an exercise. |

13.6 The Sturm—Liouville eigenvalue problem

Suppose that ; is a real-valued function, defined and continuous on the
closed interval [ ], ?is a real-valued function, defined and continuously
differentiableon [ J,and;( ) 0,?( ) 0 for all [ ] The
differential equation

d d
T 20 i) = (13.22)
with homogeneous boundary conditions ( ) = () = 0, has only the
trivial solution 0, except for an infinite sequence of positive eigenval-
ues = ,+ =12 . We shall now consider a numerical method for
finding these eigenvalues and the corresponding eigenfunctions, (),
+ =12
In the simple case where ?( ) 1 and ;( ) 0 the solution to
this problem is, of course, = [+ )], () =" sin+G,
+ =12 | where! isa nonzero constant and G= ( ) ( ).
Using the same finite difference approximation as in the previous sec-
tion, we obtain the equations

2 (E E) 2_ (E E_)

+: E =AE
3=12 1
Together with the boundary conditions E = E = 0, this shows that A

is an eigenvalue of a symmetric tridiagonal matrix =~ whose entries are
? +7?_
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and the approximate function values E are the elements of the corre-
sponding eigenvector. This algebraic eigenvalue problem is easily solved
by the method described in Chapter 5.

The boundary value problems which we have discussed so far have all
had a unique solution. The eigenvalue problem (13.22) has an infinite
number of solutions, and the mesh used in the numerical computation
has to be chosen to adequately represent the eigenfunctions required —
the computation can obviously only find a finite number of them. The
matrix has 1 eigenvalues and eigenvectors and, as we shall see,
it will normally give a good approximation to the first few eigenvalues,

, and a much less accurate approximation to  _ .

To analyse the error in the eigenvalue we proceed as before, by defining

the truncation error

A S G N S GRS O

where = (). These equations can now be written
( A)Y =0
( ) =

where
Y = (E E )
= )
T = (F F_)

Theorem 5.15 of Chapter 5 applies to this problem, and shows that one
of the eigenvalues, A , of the matrix satisfies

A T (13.23)
In the simpler case where ?( ) land;( ) 0 the truncation error is

F= — () (- )

so the numerical method has evaluated the eigenvalue with error less
than
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Since the + th eigenfunction is given by

()= ()=sin+- () ( ) )

we see that

()= () )

This shows that, for example, the error in the tenth eigenvalue, corre-
sponding to + = 10, is likely to be about 10 times larger than the error
in the first eigenvalue; more generally, to evaluate higher eigenvalues of

the equation will require the use of a smaller interval

13.7 The shooting method

The methods we have described for the linear boundary value problem
may be extended to nonlinear differential equations. We shall not discuss
how this is done; instead, we shall describe an alternative approach,
called the shooting method. We shall consider the nonlinear model
problem

T= () ()=" ()==

where we assume that the function ( ) is continuous and differen-
tiable, and that

The central idea of the method is to replace the boundary value prob-
lem under consideration by an initial value problem of the form

() (=t %)=o

where Gis to be chosen in such a way that ( ) = =. This can be thought
of as a problem of trying to determine the angle of inclination tan™ G
of a loaded gun, so that, when shot from height ! at the point = |
the bullet hits the target placed at height = at the point = . Hence
the name, shooting method.

Once the boundary value problem has been transformed into such an
‘equivalent’ initial value problem, any of the methods for the numerical
solution of initial value problems discussed in Chapter 12 can be applied
to find a numerical solution. Thus, in particular, the costly exercise of
solving a large system of nonlinear equations, arising from a direct finite
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difference approximation of the nonlinear boundary value problem, can
be completely avoided.
If we write

()=0G

a numerical solution of the differential equation with the initial condi-

tions () =! Y ) = Gcan be obtained by any of the methods of
Chapter 12. This solution will depend on G and we may write it as
( ;G. In particular the value at = will be a function of G

(;:6=/(G (13.24)

The solution of the nonlinear boundary value problem therefore reduces
to the determination of the value of Gfor which the boundary condition
at = is also satisfied, i.e.,

/G ==0

There are a number of well-known methods for the solution of equations
of this form; Newton’s method is an obvious example. Generally, we
shall not, of course, have a closed form expression for the function / (G,
in general, but this is not necessary; all that is needed is a numerical
algorithm to calculate the value of / (G for a given value of G and this we
have. To use Newton’s method we shall also need to be able to calculate
the value of / {G, and this is easily done.

The function ( ;G is defined, for all G as the solution of the initial
value problem

t:6=( (:9 (;G= 1:6=G6  (13.25)

where Yand indicate differentiation with respect to the variable
We can differentiate these throughout with respect to G giving

H H H H HE
ﬁGmE;GZW( (5G)Wé§9 Wé;GZO ?G(;Qzl

Writing
H
0( G) = 56

and interchanging the order of differentiation, we find that 0 ( ;G may
be obtained as the solution of the initial value problem

0m3;6=0(;9:*( (:0) 0(;6=0 0%¢;G=1
(13.26)
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Proof Suppose that the solution of the system of differential equations
withG=G is ( ;G ),2=1 2 3 4, and the corresponding numerical

solutionis (G ),2=1234,3=12 ; then
(56 ) G ) >G)
Moreover (G ) = , so that
(:6) = (;G) G)+ (G) =
>G ) + (13.28)

G= () ( ;G; by subtraction we see that

g = %) ™:g
(
(;

Let us write (

() (o)
H
G( (50)

where ( ;G lies between ( ;G and ().

Suppose that Y ;G  0; since ( ;G = 0, there is some interval to
the right of in which ( ;G 0. Then, either ( ;G 0 for the whole
of (], or there is a value such that and (;G=0. In
the latter case, { ;G must vanish at some point = 6 between and

. However, in the interval [ 6], ( ;G Oand H H 0, so that
™ ;G 0. Consequently, in the interval [ 6], ¥ ;G ¥:G o,
and we have a contradiction. Thus, ( ;G 0 for all . It then
follows that ™ ; G, and hence also Y ;G are positive on the whole
interval [ ], which means that ( ;G is monotonic increasing
on [ ]. If we had begun with the assumption that Y ;G 0 an
analogous argument shows that ( ;G would have been monotonic
decreasing on [ ]. It is left to the reader to discuss the trivial case
when Y G)=0.

In any case,

(;G (;G

and therefore, since ( ) == and recalling (13.28),
() (;G) = (;6) >(G ) +
Thus, finally,
() (G ) () (:6)+ (:6) (G )
>G ) + +>(G) 3=12

and hence the desired bound. O
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& 5 , B , & $+

13.8 Notes

The following books are standard texts on the subject of numerical ap-
proximation of boundary value problems:

r ., , Numerical Methods for Two-Point Boundary Value
Problems, Reprint of the 1968 original published by Blaisdell, Dover,
New York, 1992.

r ., , Numerical Solution of Two-Point Boundary Value

Problems, STAM, Philadelphia, fourth printing, 1990.
A more recent survey of the subject is found in

o+ ) "%+ + + 4 % % " Numeri-
cal Solution of Boundary Value Problems for Ordinary Differential

Equations, Corrected reprint of the 1988 original, Classics in Applied
Mathematics, 13, STAM, Philadelphia, 1995.

In practical implementations of the shooting method into mathematical
software (see, for example, Appendix A in the Ascher et al. book), the
interval [ ] is subdivided into smaller intervals on each of which the
shooting method is applied with appropriately chosen initial values. The
‘initial’ conditions on the subintervals are then simultaneously adjusted
in order to satisfy the boundary conditions and appropriate continuity
conditions at the points of the subdivision. From the practical viewpoint,
this extension of the basic shooting method considered in this chapter
is extremely important: the various difficulties which may arise in the
implementation of the basic method (such as, for example, growth of the
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solution to the initial value problem over the interval [ ], leading to
loss of accuracy in the solution of the equation / (G = =) are discussed,
for example, in Section 2.4 of the 1992 book by Keller.

Sturm—Liouville problems originated in a paper of Jacques Charles
Francois Sturm: Sur les équations différentielles linéaires du second
ordre, J. Math. Pures Appl. 1, 106-186, 1836, in Joseph Liouville’s
newly founded journal. Sturm’s paper was followed by a series of articles
by Sturm and Liouville in subsequent volumes of the journal. They ex-
amined general linear second-order differential equations, the properties
of their eigenvalues, the behaviour of the eigenfunctions and the series
expansion of arbitrary functions in terms of these eigenfunctions. An ex-
tensive survey of the theory and numerical analysis of Sturm—Liouville
problems can be found in

$ " Numerical Solution for Sturm—Liouville Problems,
Oxford University Press Monographs in Numerical Analysis, Claren-
don Press, Oxford, 1993.

See also Section 11.3, page 478, of the Ascher et al. book cited above.

Exercises
13.1 Suppose that C | + ]; show that there exists a real
number in ( + ) such that

—Domyo Or— O

13.2  Use Theorem 3.6 to show that the matrix  in (13.7) is mono-
tone. Use the result of Exercise 4 to show that S
13.3  On the interval [ ] the differential equation

() = ()

is approximated by

—f)- -+ +) =)- - +) +)

where) — ) and) are constants. Assuming that the solution

has the appropriate number of continuous derivatives, show
that the truncation error of this approximation may be written
as follows:
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(i) if )= +) +) =1, then
F=0-+) +)) % )+0
where O O- +) ) 5

(i) if) - +4) +) =1land)—- =) ,then
F=0 )-) ™M )+o0

where O 0= +) )+—=]
(iii) if )= +) +) =1,) =)—- and) = —, then
F=0 —) ()+0
where O —) +—]
(iv) if) - =) =—and) = -, then
F=— ( )+0O
where O —
134 The approximation of Exercise 3 is used, with the values ) =
)— =112,) =15 6. Use Taylor’'s Theorem with integral re-

mainder (Appendix, Theorem A.5) to show that the truncation
error of this approximation may be written

F= M:) ( +:)d
where
M:)=( =) 8 — ( ) 3 0
with a similar expression for : 0. Show that M(:)
0 for all : | ], and hence use the Integral Mean Value

Theorem to show that the truncation error can be expressed as

F=g5 ()

for some value of in ( + ).
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Suppose that the solution of (13.1), (13.2) has a continuous sixth

derivative on [ ], and that E is the solution of the approxi-
mation used in Exercise 4. Show that
() B — () 3=0

provided that
() 12 3=1 1

Complete the proof of Theorem 13.7.
Show that the solution of the boundary value problem

=0 (1=1 1) =1

is
cosh

()=

cosh
Use the identity

cosh( + )+ cosh( ) = 2cosh cosh

to verify that the solution of the difference approximation (13.5)
to this problem is
_ cosh
cosh
where
=(1 )cosh™ (1+- )
By expanding in Taylor series, show that
E=()+— (cosh  sinh sinh  cosh ) (cosh )
+ ()

Verify that this result is consistent with Theorem 13.4 when
is small.

Carry out a similar analysis as in Exercise 7 for the boundary
value problem

'E =0 =0 (=1

and explain why in this case Theorem 13.4 cannot be used.
What restriction is required on the value of 7
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13.9 The eigenvalue problem

is approximated by

E22+E- ¢ 1 3 1 E-E

=0

Show that the differential equation has solution = sin+- |

=+ - for any positive integer + . Show also that the differ-

ence approximation has solution E = sin +- 3=01
and give an expression for the corresponding value of
the fact that

1 cos =- — 1

)

. Use

to show that + - 12, and compare with the bound

given by (13.23).
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The finite element method

14.1 Introduction: the model problem

In Chapter 13 we explored finite difference methods for the numerical
solution of two-point boundary value problems. The present chapter is
devoted to the foundations of the theory of finite element methods. For
the sake of simplicity the exposition will be, at least initially, confined
to the second-order ordinary differential equation

d d

i : = 14.1

O +:0) () (14.1)
where? C [ ],; C[ |, L( )and?() 0,;() 0
for all [ ], subject to the boundary conditions

()=t ()== (142)

Later on in the chapter, in Section 14.5, we shall also consider the ordi-
nary differential equation

L0 + OF+0) =0 (14.3)

subject to the boundary conditions (14.2). Indeed, much of the mat-
erial discussed here can be extended to partial differential equations; for
pointers to the relevant literature we refer to the Notes at the end of the
chapter.

385



386 14 The finite element method

The finite element method was proposed in a paper by Richard Courant
in the early 1940s, although the historical roots of the method can be
traced back to earlier work by Galerkin in 1915; unfortunately, the rel-
evance of Courant’s article was not recognised at the time and the idea
was forgotten. In the early 1950s the method was rediscovered by en-
gineers, but its systematic mathematical analysis began only a decade
later. Since then, the finite element method has been developed into one
of the most general and powerful techniques for the numerical solution
of differential equations which is widely used in engineering design and
analysis.

Unlike finite difference schemes which seek to approximate the un-
known analytical solution to a differential equation at a finite number
of selected points, the grid points or mesh points in the computational
domain, the finite element method supplies an approximation to the
analytical solution in the form of a piecewise polynomial function, de-
fined over the entire computational domain. For example, in the case of
the boundary value problem (14.1), (14.2), the simplest finite element
method uses a linear spline, defined over the interval [ |, to approxi-
mate the analytical solution

We shall consider two techniques for the construction of finite ele-
ment approximations: the Rayleigh—Ritz principle and the Galerkin
principle. In the case of the boundary value problem (14.1), (14.2) the
approximations which stem from these two principles will be seen to co-
incide. We note, however, that since the Rayleigh—Ritz principle relies
on the fact that the boundary value problem under consideration can
be restated as a variational problem involving the minimisation of a cer-
tain quadratic functional over a function space, its use is restricted to
symmetric boundary value problems, such as (14.1), (14.2) where (14.1)
does not contain a first-derivative term; for example, the Rayleigh-Ritz
principle is not applicable to (14.3), (14.2) unless ( ) 0. The precise
sense in which the word symmetric is to be interpreted here will be clar-

1y C 1 1 G
5 = #C* #O AL, B. K 6
# : + F 6B : , DC &K 6 #0&
, LI VK] v 1 5 1 ,
/75 O "1 , 2 <
T #0724
2 F 5, F " B 7 , #.&# B DC#
K #0 > = D $
, , ) L/ 16 5
40 8 11
1 G #o>t 9 #O F -
1 ) 17, , 1 5 %, 6 1, , ¢
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14.2 Rayleigh—Ritz and Galerkin principles

The Rayleigh—Ritz principle relies on converting the boundary value
problem (14.1), (14.2) into a variational problem involving the minimi-
sation of a certain quadratic functional over a function space.
Let us define the quadratic functional +: Hg () by
I I

+(0)=- [2)0F +;()0 Jd ()0()d
where 0  Hg( ), and consider the following variational problem:
(RR) find Hg( ) such that +( ) = min g +(0)

which we shall henceforth refer to as the Rayleigh—Ritz principle.

For the sake of notational simplicity we define
!

0 )= [2()0") C)+:()0() ()
and recall from Chapter 9 the definition of inner product on L ( ):
!

0t = 0()()

Using these, we can rewrite + (0) as follows:

+0)=-(00) 0! 0 Hg( ) (14.4)
The mapping GCH () H( ) is a bilinear functional in
the following sense:
« o+ 0 )= O )+ O )
for all and all0 O H( )
o + )= ««0 )+ (0o )
for all and all 0 H( ).
We note, in addition, that the bilinear functional ( ) is symmetric,
in that
0 )=q(0) o H( ) (14.5)

Our next result provides an equivalent characterisation of the Rayleigh—
Ritz principle; it relies on the fact that the bilinear functional (( )
is symmetric in the sense of (14.5).
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Theorem 14.1 A function inHg( ) minimises+( ) over Hg( )
if, and only if,

(G) « )= ! H( ) (14.6)
This identity will be referred to as the Galerkin principle.

Proof of theorem Suppose that Hg( ) minimises +( ) over
He( ); thatis, +( ) +(0)forall0 Hg( ). Noting that 0 =

+  Dbelongs to Hg () for all and all H (), we deduce
that

w() o+ )=+ )+
= +O+ ) UEe )

for all H( )andal . Here, in the transition from the first
line to the second we made use of the fact that (( )= (( ) for all
in H (), which follows from (14.5). Now, (14.7) implies that

-« ) ) J
for all H ( ) and all . Let us suppose that 0, divide
both sides of the last inequality by and pass to the limit 0 to
deduce that
o« ) H( ) (14.8)
On replacing by in (14.8), we have that also
o« ) H( ) (14.9)
We conclude from (14.8) and (14.9) that
« )= H( ) (14.10)
as required.
Conversely, if He( ) is such that (( ) = ! for all in
H ( ), then
+(+ )=+()+ [ ) N+- ) +()
for all H( )andal ; therefore, minimises +( ) over
He( ) O
Thus we have shown that, as long as (( ) is a symmetric bilinear

functional, Hg () satisfies the Rayleigh—Ritz principle if, and only
if, it satisfies the Galerkin principle. Our next task is to explain the

1) 1 . 15 BFD C: G
1 B D4
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relationship between (RR) and (G) on the one-hand and (14.1), (14.2) on
the other. Since in the case of a symmetric bilinear functional (( )
the principles (RR) and (G) are equivalent, it is sufficient to clarify the
connection between (G), for example, and the boundary value problem
(14.1), (14.2).

We begin with the following definition.

Definition 14.3 If a function Hy () satisfies the Galerkin prin-
ciple (14.6), it is called a weak solution to the boundary value problem
(14.1), (14.2), and the Galerkin principle is referred to as the weak
formulation of the boundary value problem (14.1), (14.2).

Let us justify this terminology. Suppose that H( )"Hg( )
is a solution to the boundary value problem (14.1), (14.2). Then,

d d
— ?()— ; = 14.11
L a0F =0 = O) (14.11)
for almost every () (see the discussion prior to Example 11.1 for
a definition of almost every). Multiplying this equality by an arbitrary
function H ( ), and integrating over ( ), we conclude that
| ! !
by d ! !
— ?2()— d ; d = d
Lo a0 () ()

On integration by parts in the first term on the left-hand side,
I I

d d il ' d d

— ? — = ? — 2 -
Since, by hypothesis, ( ) =0and () =0, it follows that

I I I

! 4 d ! !

?2()——d ; d = d
OFFd+ 10 () ()

for all H (). Thus, we have shown the following result.

Theorem 14.2 If H( )"Hg( ) isa solution to the boundary
value problem (14.1), (14.2), then is a weak solution to this problem;
that 1is,

« )= 1! H( ) (14.12)

The converse implication, namely that any weak solution He( )
of (14.1), (14.2) belongs to H () " Hg( ) and solves (14.1), (14.2)
in the usual (pointwise) sense, is not true in general, unless the weak
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the problem by minimising + () over a finite-dimensional subset * ¢ of
Hg( ), instead.

A simple way of constructing * ¢ is to choose any function/  Hg( ),
for example,

()= —( )+! (14.13)

and a finite set of linearly independent functions ( , 3=1 1, in
H( )for 2, and then define

where ( =) -
We consider the following approximation of problem (RR):
(RR)" find * *g such that +( ") =min 4 +(0")

Our next result is a finite-dimensional analogue of Theorem 14.1.

Theorem 14.4 A function *  *g minimises +( ) over * ¢ if, and
only if,
« H= ook (14.14)

Here,

where ( -) B

The problem (G)* can be thought of as an approximation to the
Galerkin principle (G), and is therefore referred to as the Galerkin
method. For a similar reason, (RR)* is called the Rayleigh—Ritz method,
or just Ritz method. Thus, in complete analogy with the equivalence
of (RR) and (G) formulated in Theorem 14.1, Theorem 14.4 now ex-
presses the equivalence of (RR)™ and (G)", the approximations to (RR)
and (G), respectively. Of course, as in the case of (RR) and (G), the
equivalence of (RR)" and (G)" relies on the assumption that the bilin-
ear functional (( ) is symmetric. The proof is identical to that of
Theorem 14.1, and is left as an exercise.

Theorem 14.4 provides no information about the existence and unique-
ness of  that minimises + () over * ¢ (or, equivalently, of the existence
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and uniqueness of ~ that satisfies (14.14)). This question is settled by
our next result.

Theorem 14.5 There erxists a unique function = * g that minimises
+( ) over*g; this " is called the Ritz approximation to . Equiva-
lently, there exists a unique function = * g that satisfies (14.14); this

" is called the Galerkin approximation to . The Ritz and Galerkin
approrimations to  coincide.

Proof We shall prove the second of these two equivalent statements:
we shall show that there exists a unique ~  *g that satisfies (14.14).
The proof of uniqueness of *; is analogous to the proof of Theo-
rem 14.3, with , 7, Hg( ) and H (), replaced by *, ~", *¢ and
* ¥ *

, respectively. Since ; is finite-dimensional, the uniqueness of

satisfying (14.14) implies its existence. O

Having shown the existence and uniqueness of * minimising + ()
over *¢ (or, equivalently, satisfying (14.14)), we adopt the following
definition.

Definition 14.4 The functions ( ,2=1 2 1, appearing in the
definitions of*; and ** are called the Galerkin basis functions.

Since any function “  *” can be represented as a linear combination
of the Galerkin basis functions ( , 1 2 1, it is clear that (14.14)

is equivalent to
" ()= (' 1 2 1 (14.15)

As " belongs to * ¢, it can be expressed in terms of / and the Galerkin
basis functions as

where ,3=1 1, are to be determined. On substituting
this expansion of " into (14.15), we arrive at the following system of
simultaneous linear equations:

= 1 2 1 (14.16)
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(2

2-1 2 2+1

For the finite element method the important property of the basis
functions ( , 1 2 1, is that they have local support, being
nonzero only in one pair of adjacent intervals, ( — ] and | ).
This means that, in the matrix

=0 if2 3 1

The matrix is, therefore, symmetric, positive definite and tridiago-
nal, and the associated system of linear equations can be solved very
efficiently by the methods of Section 3.3, the most efficient algorithm
being LU decomposition, without any use of symmetry. The fact that

is positive definite means that no interchanges are necessary.

The function / in (14.13), which is included in the definition of * ; to
ensure that * satisfies the boundary conditions at = and = ,is
then given by

Fe)=10 )+=C ()

which is also piecewise linear; clearly, / ( ) =! and/ ( ) ==. Here, (
and ( are defined by setting, respectively, 2= 0 and 2= in (14.19)
and restricting the resulting functions to the interval [ | = | ].
In (14.17) we see that the term (/ () is nonzero only for 2= 1 and
2= 1.

Before attempting to solve the system of linear equations we must, of
course, first compute the elements of the matrix | and the quantities
on the right-hand side, ,2=1 1; see (14.16) and (14.17). The
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matrix elements are obtained from
I 1

= ()= 20)())d + () () ()

with 1 23 1. We have written this as the sum of two terms,
as the matrix  is often written in this way as the sum of two matrices
which, for historical reasons, are often known as the stiffness matrix
and the mass matrix, respectively. The terms are very simple; in
fact in the first integral the derivatives ( “and ( Mare piecewise constant
functions over [ ].

It may be possible to compute these integrals analytically, but more
generally some form of numerical quadrature will be necessary. It is
then easy to show that if we use certain types of quadrature formulae
we shall be led to the same system of equations as in the finite difference
method of Section 13.5. Consider the particularly simple case where the
mesh points are equally spaced, so that = 4+3,3=01 ,

= ( ) . If we then approximate the integrals involved in the

stiffness matrix by the midpoint rule (see Chapter 10), we obtain
! !

AN () = @ ) ?()d

where? _  =7( 2), and similarly for the other integrals involved.
For the integrals in the mass matrix we use the trapezium rule, and then

!
O)C=-0)C()d 0

since ( iszeroat _ and ( — iszeroat . In the same way
I

O ) d -5

where ; =;( ), since ( is zero at one end of the interval and unity at
the other. The other part of the integral is, similarly,
!

COIC ) d =5 (14.20)

Assuming that C[ ], approximating the integral on the right-hand
side by the trapezium rule in the same way, and putting all the parts
together, equation (14.14) now takes the approximate form

?_ 7 +? ?
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for 2=1 2 1, with the notational convention that =1 and

==,and = ( ); clearly, this is the same as the finite difference
equation (13.19). Of course, had we used a different set of basis func-
tions ( ,1 2 1, or different numerical quadrature rules, the finite

element and finite difference methods would have no longer been identi-
cal. Indeed, this example is just an illustration of the relation between
the two methods; we should normally expect to compute the entries of
the matrix by using some more accurate quadrature method, such as
a two-point Gauss formula.

In the next two sections we shall assess the accuracy of the finite
element method. Our goal is to quantify the amount of reduction in the
error " as the mesh spacing is reduced.

14.4 Error analysis of the finite element method

We begin with a fundamental result that underlies the error analysis of
finite element methods.

Theorem 14.6 (Céa’s Lemma) Suppose that is the function that
minimises + () over Hg () (or, equivalently, that satisfies (14.6)),
and that * is its Galerkin approzimation obtained by minimising + ()
over * ¢ (or, equivalently, that ~ satisfies (14.14)). Then,

*

« 7 )=o "o (14.21)

*

and

C ") = min (( ’ ) (14.22)
51

The identity (14.21) is referred to as Galerkin orthogonality. The
terminology stems from the fact that, since the bilinear functional ( )
is symmetric and (( ) 0 for all H( ) 0o, ) is an
inner product in the linear space H (). Therefore, by virtue of Def-
inition 9.2, (14.21) means that * is orthogonal to ** in H ().
A geometrical illustration of Galerkin orthogonality is given in Figure
14.2. Given that / is a fixed element of Hg (), the mapping
/[ H( ) /[ *

* * *

which assigns a "~ * to Hg( ) (where and * are as in
Theorem 14.6) is called the Ritz projector.
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Motivated by the minimisation property (14.22), we define the energy

norm aonH () via
A=[CC )] (14.23)
Under our hypotheses on ? and |, it is easy to see that A satisfies

all axioms of norm (see Chapter 2). The result we have just proved
shows that " is the best approzimation from * ; to the true solution

Hg () of our problem, when we measure the error of the approximation
in the energy norm:

* *

A = Hl|:15ré| A (1424)

A particularly relevant question is how the error " depends on
the spacing of the subdivision of the computational domain [ |. We
can obtain a bound on the error ", measured in the energy norm,
by choosing a particular function * *¢ in (14.24) whose closeness to

is easy to assess. For this purpose, we introduce the finite element
interpolant ,” * g of He( ) by

Clearly,

which justifies our use of the word interpolant.
We then deduce from (14.24) that

* *

A s Aj (14.25)
hence, in order to quantify " A, we only need to estimate the size
of ,"  a. This leads us to the next theorem.

Theorem 14.7 Suppose that H( )"Hg( )andlet,” be the
finite element interpolant of  from * g defined above; then, the following
error bounds hold:

for2=12 , where = -
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Now, substituting the bounds from Theorem 14.7 into the definition
of the norm , A, we arrive at the following estimate of the
interpolation error in the energy norm.

Corollary 14.1 Suppose that H( )"Hg( ). Then,
’ ’ A % + - ' m
where % = max — ?( ) and' =max — ().

Proof Let us observe that
A = )

3 4
% D# L .
On letting = .. and applying the preceding theorem on the right-
hand side of the last inequality, with Hand replaced by Y (," )P
and .., respectively, the result follows. O

Inserting this estimate into (14.25) leads to the desired bound on the
error between the analytical solution and its finite element approxi-
mation * in the energy norm.

Corollary 14.2 Suppose that H( )"™Hg( ). Then,

: A _7 % + _i ' D:D#
where % = max — ?( ) and' =max — ; (). Further,
S e w, (14.26)

where %=max — ?( ),' =max — ;( ), and =max <<
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We see from Figure 14.3 that, as the spacing of the subdivision
is reduced, the finite element solution * approximates the analytical
solution ( ) = sin(- ) with increasing accuracy. Indeed, the results
corresponding to = 2 and = 4 in Figure 14.3 indicate that as the
number of intervals in the subdivision is doubled (i.e., is halved), the
maximum error between ( )and () isreduced by a factor of about 4.
This reduction in the error cannot be explained by Corollary 14.2 Wthh
merely implies that halving should lead to a reduction in A
by a factor no less than 2. If you would like to learn more about the
source of the observed enhancement of accuracy, consult Exercise 5 at
the end of the chapter.

14.5 error analysis by duality

The bound on the error between the analytical solution and its finite
element approximation * formulated in Corollary 14.2 shows that, in
the limit of 0, the error " A will tend to zero as ().
This is a useful result from the theoretical point of view: it reassures us
that the unknown analytical solution may be approximated arbitrarily
well by making  sufficiently small. On the other hand, asymptotic
error bounds of this kind are not particularly helpful for the purpose of
precisely quantifying the size of the error between and " for a given,
fized, mesh size 0: as is unknown, it is difficult to tell just how
large the right-hand side of (14.26) really is.

The aim of the present section is, therefore, to derive a computable
bound on the error, and to demonstrate how such a bound may be
implemented into an adaptive mesh-refinement algorithm, capable of

reducing the error " below a certain prescribed tolerance in an
automated manner, without human intervention. The approach is based
on seeking a bound on " in terms of the computed solution

rather than in terms of norms of the unknown analytical solution . A
bound on the error in terms of  is referred to as an
error bound, due to the fact that it becomes computable only after the
numerical solution * has been obtained.

In order to illuminate the key ideas while avoiding technical difficul-
ties, we shall consider the two-point boundary value problem

) I O) P = () (14.28)
() =1 ()== (14.29)
where ? Cl[ ],; C[ ]and L (). We shall assume, as
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consider the auxiliary boundary value problem

)97 (O™ = ) (14.33)
() = 0,()=0 (14.34)
called the dual problem (or adjoint problem).

We begin our error analysis by noting that the definition of the dual
problem and straightforward integration by parts yield (recalling that

(. HO)=0( H)=0

C _ . *!
=R ()%

=« )
On the other hand, (14.31) and (14.32) imply the Galerkin orthogonality
property

(( * ’ * ) _ 0 , * * *
In particular, by choosing
* — * * *
the continuous piecewise linear interpolant of the function, H ( ),
associated with the subdivision = - = ,we
have that
« T.)=0
Thus,
# = Coe )

= A, ) (143y)

*

where the last transition follows from (14.31) with =, ,7,.
We observe that the right-hand side no longer involves the unknown
analytical solution . Furthermore,
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Integrating by parts in each of the integrals in the first sum on the
right-hand side, noting that (, ,",)( ) =0,2=0 , we deduce
that

e = CHO)G LT)0)d (14.36)

where, for 1 2 | and ( - ),
()= () O)CHTH O 0) 7

The function ' ( ") is called the finite element residual; it measures
the extent to which * fails to satisfy the differential equation

0) 9 () PHi() = ()

on the union of the intervals ( — ), 2=1 . Now, applying the
Cauchy—Schwarz inequality on the right-hand side of (14.36) yields

*

# () v e

Recalling from Theorem 14.7 that

we deduce that

\ 1 o
# ()# !DII#

and consequently, using the Cauchy—Schwarz inequality for finite sums,
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Integrating by parts, again, in the second term on the right gives

97 ()% T 5 L)

Hence, from (14.39),
|

S+ 50 3T LOd .

and thereby, noting (14.30) and using the Cauchy—Schwarz inequality
on the right-hand side,

min 1‘:'# + ' B : !!
- - (14.40)
Therefore, also
min '8 T u '8
which means that
l D# + y # = r $
1 *
14.41
min # ( )
Now we substitute (14.41) into (14.38) to deduce that
P 1 - (14.42)
where
1 1
1 == 1+— ™ o+ P
min
O

It is important to observe here that 1 involves only known quantities:
the coefficients in the differential equation under consideration. There-
fore 1 can be computed, or at least bounded above, without difficulties.
On inserting (14.42) into (14.37), we arrive at our final result, the com-
putable a posteriori error bound,

Ty 1 () (14.43)






410 14 The finite element method

( 4 If not, then halve those elements [ _ ]in - , with 2
in theset 1 2 , for which
L, 1 012
(") — T (4
denote by - the resulting subdivision of [ ] with
elements [ _ | of respective lengths
and consider the associated finite element space *; of
dimension 1;
(! Compute the finite element approximation *e ,

increase + by 1 and return to (

The inequality (14.47) is called the stopping criterion for the mesh
adaptation algorithm, and (14.48) is referred to as the refinement cri-
terion. According to the a posteriori error bound (14.43), when the
adaptive algorithm terminates, the error Yy is guaranteed
not to exceed the prescribed tolerance 012.

We conclude the body of this chapter with a numerical experiment
which illustrates the performance of the adaptive algorithm.

Example 14.1 Let us consider the second-order ordinary differential
equation

20) 9% () %) = () (01)  (14.49)
subject to the boundary conditions
(0)=0 (1)=0 (14.50)
Suppose, for example, that
?20) 1 () 20 () 10 and () 1
In this case, the analytical solution, , can be expressed in closed form:

1
& &
=> e > e —_—
) + + 10
where and are the two roots of the characteristic polynomial of

the differential equation, +20 4+10=0, i.e.,
=10+ 110 =10 110
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. —
N\ _ =
\
\;; | i
o
Number of mesh points
% 8 Loy~ +
, B * +
#o&4 4
/ - " 7/ "$ " , Introduction

to adaptive methods for differential equations, in Acta Numerica 4
(A. TIserles, ed.), Cambridge University Press, Cambridge, 105-158,
1995.

% I - % % , An optimal control approach to
a-posteriori error estimation in finite element methods, in Acta Nu-
merica 10 (A. Iserles, ed.), Cambridge University Press, Cambridge,
1-102, 2001.

+ 1 / &5 | Adjoint methods for PDEs: superconver-
gence and adaptivity by duality, in Acta Numerica 11 (A. Iserles, ed.),
Cambridge University Press, Cambridge, 145-236, 2002.

A detailed and general survey of the subject of a posteriori error esti-
mation can be found in

+ ) ( z , A posteriori Error Estimation in
Finite Element Analysis, John Wiley & Sons, New York, 2000.
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In this chapter we were concerned with the a priori error analysis of
the piecewise linear finite element method in the energy norm, and its a
posteriori error analysis in the L norm. Using similar techniques, one
can establish an a priori error bound in the L norm and an a posteriori
error bound in the energy norm. For extensions of the theory considered
here to higher-order piecewise polynomial finite element approximations
and generalisations to partial differential equations, the reader is referred
to the books listed above.

Exercises

14.1  Given that () is an open interval of the real line, let

He ()= H(C ) ()=0

(i) By writing

for Hy () and [ ], show the following (Poincaré—
Friedrichs) inequality:
1
el )% He ()

(ii) By writing
! !

(Ol = L(ra=2 ()%

for He () and [ ], show the following (Agmon’s)
inequality:
max () 2 By He ()

142 Given that L (0 1), state the weak formulation of each of
the following boundary value problems on the interval (0 1):

& ™ = () (0)=0, (1)=0;
(b) T+ = (), (0)=0, {1)=1;
© ™ = () O=0 )+ H1)=2.
In each case, show that there exists at most one weak solution.
14.3 Give a proof of Theorem 14.4.
14.4 Prove Corollary 14.2.
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14.7

Ezercises 415
Consider the boundary value problem
? % = () =0 (1)=0

on the interval [0 1], where ? and ; are positive constants and
C [0 1]. Using equally spaced points

=2 2=01 with =1 |, 2
and the standard piecewise linear finite element basis functions
(hat functions) ( ,2=1 2 1, show that the finite ele-
ment equations for = "( ) become
1
?2( - 2 4+ ) +;( - +4 + ) 6=— (!
for 2=1 2 1, with =0 and = 0. By expanding

in Taylor series, show that
1
= (= ()+= "o+ ()
Interpreting this set of difference equations as a finite difference
approximation to the boundary value problem, as in Chapter
13, show that the corresponding truncation error F satisfies

F=— i T+ () 2=1 1
and use the method of Exercise 13.2 to show that
max () ()

where is a positive constant.

In the notation of Exercise 5 suppose that all the integrals in-
volved in the calculation are approximated by the trapezium
rule. Show that the system of equations becomes identical
to that obtained from the central difference approximation in
Chapter 13, and deduce that

max ()

where is a positive constant.
Consider the differential equation

O
) F+:0) = ()
with ?, ; and as at the beginning of the chapter, subject to
the boundary conditions

200+ O=! 20 T)+) ()==
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where and ) are positive real numbers, and ! and = are
real numbers. Show that the weak formulation of the boundary
value problem is

find H ( )suchthat (( )=% ) forall H( ),

where

+ OO0+ OO0

and
$)= 1+ ()+= ()

Construct a finite element approximation of the boundary value
problem based on this weak formulation using piecewise linear
finite element basis functions on the subdivision

of the interval [ ]. Show that the finite element method gives
rise to a set of 4 1 simultaneous linear equations with + 1
unknowns = “( ),2=01 . Show that this linear

system has a unique solution.

Comment on the structure of the matrix .
of the linear system: (a) Is  symmetric? (b) Is  positive
definite? (c) Is  tridiagonal?
Given that is a nonnegative real number, consider the differ-
ential equation

T = () for  (01)
subject to the boundary conditions
(0)=0 L+ K1) =0

State the weak formulation of the problem. Using continu-
ous piecewise linear basis functions on a uniform subdivision of
[0 1] into elements of size =1 | 2, write down the fi-
nite element approximation to this problem and show that this
has a unique solution “. Expand " in terms of the standard
piecewise linear finite element basis functions (hat functions) (
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FExercises 417

2=12 , by writing
()= 700)

to obtain a system of linear equations for the vector of unknowns
(7 7).

Suppose that =0, () land =1 3. Solve the result-
ing system of linear equations and compare the corresponding
numerical solution *( ) with the exact solution ( ) of the
boundary value problem.

Consider the differential equation

() G7H:0) = () (0 1)
subject to the boundary conditions (0) =0, (1) = 0, where
?0) 0,;( ) Oforall intheclosedinterval [0 1], with
? CJ01],; C[01]and L (0 1). Given that " denotes
the continuous piecewise linear finite element approximation to
on a uniform subdivision of [0 1] into elements of size =1

2, show that

* > m

$ #

where > is a positive constant that you should specify. Show
further that there exists a positive constant > such that

*

$ > #

Calculate the right-hand sides in these inequalities in the case
when

) 1 ()0 () 1

for [0 1], and =107 .
Consider the two-point boundary value problem

T = () 01) =0 (1)=0

with C [0 1]. State the piecewise linear finite element ap-
proximation to this problem on a nonuniform subdivision

with = — , assuming that, for a continuous piecewise
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linear function *,
() ()

has been approximated by applying the trapezium rule on each
element [ — .

Verify that the following a posteriori bound holds for the error
between and its finite element approximation

T a 1 () s
+1 max (1ax My +4 tax %)

where" ()= () ((D)H)+ "()for (- ),
2=1 ,and 1 ;1 are constants which you should specify.
How would you use this bound to compute to within a

specified tolerance 0127



Appendix A

An overview of results from real analysis

In this Appendix we gather a number of results from real analysis which
are assumed at various places in the text. Some of these will be familiar
from any course on the subject, and no proofs are given; a small number
may be less familiar, and we give proofs of these for completeness.

Theorem A.1 (The Intermediate Value Theorem) Suppose that
is a real-valued function, defined and continuous on the closed interval

[ ]of . Then, isa bounded function on the interval [ | and, if
is any number such that

inf

inf () Sup ()
then there is a number [ ] such that ()= . In particular, the

nfimum and the supremum of  are achieved, and can be replaced by
min — and max — , respectively.

The next result, known as Rolle’s Theorem, was published in an ob-
scure book in 1691 by the French mathematician Michel Rolle (1652
1719) who invented the notation  for the th root of

Theorem A.2 (Rolle’s Theorem) Suppose that s a real-valued
function, defined and continuous on the closed interval [ ] of , dif-
ferentiable in the open interval (), and such that ( )= (). Then,
there exists a number () such that % )=0.

It is often important in our applications that the point (), ie,
. For instance it may happen that ¥ )= Y ) =0, as well as
( )= (); Theorem A.2 then states that, in addition to the endpoints

419
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of the interval [ ], there is also an interior point () at which
the derivative vanishes.

Theorem A.3 (The Mean Value Theorem) Suppose that s a
real-valued function, defined and continuous on the closed interval [ ]
of , and is differentiable in the open interval (). Then, there exists
a number () such that

O O="C )

Theorem A.4 (Taylor’s Theorem) Suppose that is a nonnegative
integer, and is a real-valued function, defined and continuous on the

closed interval [ | of , such that the derivatives of  of order up to
and including  are defined and continuous on the closed interval [ ].
Suppose further that is differentiable on the open interval ().
Then, for each value of in[ |, there exists a number = ( ) in the

open interval () such that

RSN

Theorem A.5 (Taylor’s Theorem with integral remainder) Let
be a nonnegative integer and suppose that s a real-valued function,

defined and continuous on the closed interval [ ] of , such that the
derivatives of  of order up to and including are defined and continuous
on| ], is differentiable on the open interval (), and is

integrable on (). Then, for each [ 1
() = O+C )OO+ +—— ()

+ > (9dG

Proof As this version of the theorem may be rather less familiar we
include a proof.

The theorem is trivially true for = 0. Suppose that the theorem is
true for some nonnegative integer, say = . Then, provided that
is differentiable on () and is integrable on ( ), integration



Appendiz A 421

by parts shows that

!
L8 ee= L ()

( +1)! O+
L9 (odq
use of the theorem when = now shows that it is also true for = +1.
The proof by induction is then complete. O

Theorem A.6 (The Integral Mean Value Theorem) Suppose that

s a real-valued function, defined and continuous on a closed interval
[ ]of ,andlet be a function, defined, nonnegative and integrable
on (). Then, there exists a number () such that

(y()d = () ()d

Proof Since is continuous on [ ], it is bounded on [ ], say

+ () [ ]
Then, as ( ) 0 for all (), we have that

+ () () 0) () )

Integrating these inequalities gives
! ! !

+ ()d () ()d ()d

I’ ( )d =0, then the result trivially follows. If, on the other hand,
" ()d 0, then

() ()d

+ 1
()d
The existence of the required value of () now follows from the
Intermediate Value Theorem. O

Theorem A.6 obviously also holds provided that () Oon ( );
it is only important that has constant sign on (). Note also that
we do not require that is continuous, only that it is integrable. For

example, Theorem A.6 will hold if is a continuous function defined on
01 and ()= — (0 1).
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Theorem A.7 (Taylor’s Theorem for several variables) Suppose

that is a real-valued function of real variables, 1, such that and
all of its partial derivatives up to and including order + 1 are defined,
continuous and bounded in a neighbourhood of the point in . Let

I denote an upper bound on the absolute values of all the derivatives of
order + 1 in this neighbourhood. Then

where

and

Proof The proof involves the application of Theorem A.4, Taylor’s The-
orem, to the function of one variable

(6= ( +6)

to give a series expansion for ( (1). Then, the expressions for the deriva-
tives of ( in terms of the partial derivatives of , wia the chain rule,
yield the required result; is the number of partial derivatives of
order + 1 for a function of wvariables. O



Appendix B

WWW-resources

The book would not be complete without some mention of numerical
analysis software and software repositories on the World Wide Web.

An excellent source of mathematical software is the Netlib Repository
on the website

A detailed classified list of the available mathematical software libraries
can be viewed by clicking on the - button on this webpage. It is
also possible to search the repository for a specific piece of software.

Another useful resource is the website of the ACM Transactions on
Mathematical Software (TOMS) at

5

The site maintains a well-organised repository, including a range of freely
available packages for both numerical and symbolical computations, as
well as a number of helpful links to various software vendors. The latter
include the developers of Maple (a software for symbolical and numerical
computations, scientific visualisation and programming), the makers of
Mathematica (a software system for symbolical, numerical and graphical
computations), the Numerical Algorithms Group (NAG), MathWorks,
Inc., the developers of Matlab (a technical computing environment for
high-performance numerical computation and visualisation), and many
others. Most of the numerical experiments included in the book were
performed by using either Matlab or Maple.

Concerning the history of mathematics, we refer to the Mac Tutor
history of mathematics website at St Andrews University in Scotland:

A more recent site, dedicated specifically to the history of approximation
theory, resides on

- /0
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