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Chapter One 

Introduction 

Scientific inquiry is an iterative learning process. Objectives pertaining to the explanation of a 

social or physical phenomenon must be specified and then tested by gathering and analyzing 

data. In turn, an analysis of the data gathered by experimentation or observation will usually 

suggest a modified explanation of the phenomenon. Thus, the complexities of the most 

phenomena require an investigator to collect observations on many different variables.  

It will become increasingly clear that many multivariate methods are based up on underlying 

probability model known as multivariate normal distribution. Other methods are ad hoc in nature 

and are justified by logical or common sense arguments.  

The objectives of scientific investigation to which multivariate methods most naturally lend 

themselves include the following: 

1. Data reduction or structural simplification: The phenomenon being studied is represented as 

simply as with out sacrificing valuable information. 

2. Sorting and grouping: Group of “similar” objects or variables are created, based up on 

measured characteristics. Alternatively, rules of classifying objects in to well defined groups 

may be required.  

3. Investigation of dependency among variables: The nature of the relationships among 

variables is of interest. Are all the variables mutually independent or are one or more 

variables dependent on the others? If so, how? 

4. Prediction: Relationship between variables must be determined for the purpose of predicting 

the values of one or more variables on the basis of observations of on the other variables.  

5. Hypothesis construction and testing: Specific statistical hypotheses formulated in terms of 

the parameters of multivariate populations, are tested. This may be done to validate 

assumptions or to reinforce prior convictions.              

The organization of data  

Arrays 

Multivariate data arise whenever an investigator, seeking a number p≥1 of variables or characters 

to record. The value of these variables are all recorded for each distinct item, individual or 

experimental unit.   
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Notations 

jkX --- The 
thk  variable that is observed on the thj item 

Or 

             
jkX ----- Measurement of the

thk  variable on the thj item  

Consequently, n measurements on p variables.   

 

We can display these data as rectangular array, called X, of n rows and p columns. 

X = 





























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










npnknn

jpjkjj
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pk
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XXXX
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.

.

............

.

.

.

...........

.............

21

21
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 Variable 

Items 

Variable-1 Variable-2 . . . Variable-k . . . Variable-p 

Item-1 
11X  

12X  . . . 
kX 1  . . . 

pX1  

Item-2 
21X  

22X  . . . 
kX 2  . . . 

pX 2  

. . . . . . .    . 

. . . . . . .    . 

. . . . . . .    . 

Item-j 
1jX  2jX  . . . 

jkX  . . . 
jpX  

. .          

. .          

. .          

Item-n 
1nX  2nX  . . . 

nkX  . . . 
npX  
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Example  ( data array) 

A selection of four receipts from a university bookstore was obtained in order to investigate the 

nature of book sales. Each receipt provided, among other things, the number of sold and the total 

amount of book sale. Let the first variable be the total dollar sales and the second variable be 

number of books sold. Then we can regard the corresponding numbers on the receipts as four 

measurements on two variables.          

 Variable-1 (Dollar sales):  42  52  48  58 

  Vraible-2 (No. Of books): 4    5      4    3 

Using the notations just introduced: 

X = 



















358

448

552

442

  

Descriptive statistics  

A large data is bulky, and its very mass passes a series of obstacles to any attempt to visually 

extract pertinent information. Much of the information contained in the data can be assessed by 

calculating certain summary numbers known as descriptive statistics. For example, the arithmetic 

average or sample mean is descriptive statistics that provides a measure of location that is a 

“central value” for a set of numbers. And average of the square of distances of all numbers from 

the mean provides a measure of spread, or variation in the numbers.  

We shall rely most heavily on descriptive statistics that measure location, spread and linear 

association.  

Let 11X , 21X , …., 1nX   be n- measurements on the first variable. Then the arithmetic average of 

these measurements is: 

  
n

x

x

n

j

j



1

1

1     ------ Sample mean for the first variable   

The sample mean can be computed from the n-measurements on each of the p-variables, so that, 

in general, there will be p-sample means. 
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1

1







n

x

x

n

j

jk

k ,   k= 1,2,….., p 

A measure of spread is provided by the sample variance, defined for n- measurements on the first 

variable as: 

2

1S  = 

 

1

1

2

11






n

xx
n

j

j

 

In general for p-variables,  

2

kS  = 

 

1

1

2






n

xx
n

j

kjk

,  k=1,2,…..,p 

In this situation it is convenient to use double subscripts on the variances in order to indicate 

their position in the array. Therefore, we introduce the notation iiS to denote the same variance 

computed from measurements on the variable. 

2

kS  = kkS  =

 

1

1

2






n

xx
n

j

kjk

,  k=1,2,…..,p 

Consider n-pairs of measurement on each of the variables 1& 2.  

 










12

11

X

X
 









22

21

X

X
 ………. 









2

1

n

n

X

X
 

That is, 1jX  and 2jX  are observed on the thj experimental item (j=1,2,….,n). A measure of 

linear association between the measurements of variables 1 & 2 is provided by  the sample 

covariance: 

 12S  =  

  

1

1

2211






n

xxxx
n

j

jj

   

ikS  = 

  

1

1






n

xxxx
n

j

kjkiji
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Or the average product of deviations from their respective means, we note that the covariance 

reduces to the sample variance when i=k. More over, ikS = kiS  for all i & k.  

Sample correlation coefficient: 

ikr  = 

kkii

ik

SS

S
= 

  

   











n

j

kjk

n

j

iji

n

j

kjkiji

xxxx

xxxx

1

2

1

2

1
 

For i=1,2,….,p 

 k=1,2,….p 

Note that,  ikr = kir  

The sample correlation coefficient is a standardized version of the sample covariance, where the 

product of the square roots of the sample variances provide the standardization.  

Arrays of basic descriptive statistics  

Sample means: 





























px

x

x

X

.

.

.

2

1

      

Sample variances & covariances: 

  

nS  = 





























pppp

p

p

SSS

SSS

SSS

.......

.

.

.

........

......

21

22221

11211

 

Sample correlation; 
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R = 



























1............

.

.

.

............1

...........1

21

221

112

pp

p

p

rr

rr

rr

 

Consider the previous example of sales and number of books 

X = 



















358

448

552

442

 

4

4

1

1

1





j

jx

x  = 
 

4

58485242 
= 

4

200
=50 

4

4

1

2

2





j

jx

x  =
 

4

3454 
= 

4

16
=4 

The sample variances and covriances: 

11S  = 

 

3

4

1

2

11



j

j xx

 

       =         2222
5058504850525042

3

1
   

             =25.33 

22S  = 

 

3

4

1

2

22



j

j xx

 

 =         2222
43444544

4

1
  

 = 
3

2
=0.667 

12S   =   



4

1

2211
3

1

j

jj xxxx  
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      =             435058445048455052445042
3

1
  

  = 
3

6
=-2 

12S   = 
21S  

nS  = 












667.02

233.25
 

Sample correlation: 

12r  = 

2211

12

SS

S
= 

667.033.25

2
 = -0.4865 

12r  = 
21r  

R = 












0.14865.0

4865.00.1
 

Exercise: calculate the descriptive statistics for the following data for a sample of observation: 

Variable-1: (X1):  5   4     6   2    2     8     3   

Vraible-2 (X2):     5   55   4   7    10   5    75 

Distances 

 

                                                                                                       P(x1,x2) 

  

 

D(O,P)= 2

2

2

1 xx   

If the point P has p-coordinates so that: 

 pxxxP ,....,, 21 , the straight line distance from P to the origin O= (0,0,….,0) is: 

 D(O,P)= 22

2

2

1 ... pxxx   

The straight line distance between two arbitrary points P & Q with coordinates: 

 pxxxP ,....,, 21  and  pyyyQ ,....,, 21  is : 

  QPd ,  =      
2

2

22

2

11 ..... pp yxyxyx   
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When the coordinates represent measurements that are subject to random fluctuations of 

differing magnitudes, it is often desirable to weight coordinates subject to a great deal of 

variability less heavily than those that are not highly variable. Our purpose is now to develop a 

“statistical” distance that account for differences in variation, and in due course, the presence of 

correlation. Because choice will depend up on the sample variances and covariances, at this point 

we use the term statistical distance to distinguish it from ordinary Euclidean distance. It is 

statistical distance that is fundamental to multivariate analysis.      

Distances of standard coordinates 

Suppose we have n- pairs of measurements on two variables say, 
1x  and 

2x : 

The standard coordinates are: 

*

1x  =

11

1

S

x
,   *

2x  = 

22

2

S

x
 

The quantities 
11

1

S
 and 

22

1

S
are weights. Note that if the sample variances are the same, 

11

1

S
 and 

11

1

S
 then 2

1x  and 2

2x  will receive the same weight.  In cases where the weights are the same, it is 

convenient to ignore the common divisor and use the usual Euclidean distance formula.  

The expression can be generalized to accommodate the calculation of statistical distance from an 

arbitray point, P=(x1, x2) to any fixed point Q= (y1,y2), 

 QPd , =
   2

22

22

11

2

11

S

yx

S

yx 



 

This can be extende to more than two dimensions. 

A statistical distance of the point P(x1, x2 , …..,xp) to point Q(y1,y2,……yp) can be computed 

from standardized coordinates is; 

 QPd ,  = 
     

pp

pp

S

yx

S

yx

S

yx
22

22

22

11

2

11 ......








 

 

          =
 




p

i ii

ii

S

yx

1

2

 

If 11S = 22S =….= ppS , Euclidean formula is appropriate. 
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    Chapter-two 

Matrix algebra and random vectors 

A rectangular array of numbers, for instance, n- rows and p-columns is called a matrix of 

dimension n x p. 

 

X = 









































npnknn

jpjkjj

pk

pk

XXXX

XXXX

XXXX

XXXX

...............

.

.

.

............

.

.

.

...........

.............

21

21

222121

111211

 

Vectors 

An array of X of n- real numbers nxxx ,......,, 21  is called a vector, and it is written as  

X = 



























nx

x

x

.

.

.

2

1

   Or   'X =   nxxx ,.....,, 21  

A vector can be expanded or contracted by multiplying it by a constant c. 

          cX= 



























ncx

cx

cx

.

.

.

2

1

   

A vector has both direction and magnitude. If n=2, then X= 








2

1

x

x
 



11 
 

The length of X is written as Lx and defined as: xL = 2

1

2

1 xx   

The length of a vector 'X =  nxxx ,.....,, 21 with n- components is: 

  xL = 
22

1

2

1 ..... nxxx   

Multiplication of a vector by a scalar c changes the length: 

cxL = 
222

1

2 .... nxcxc   

       = c 22

2

2

1 .... nxxx   

The fundamental scalar relationship about the existence of an inverse of a number is 
1a such 

that 
1a a =a

1a =1 if a ≠0 has the following matrix algebra extension. If there exists matrix B 

such that:  

     B*A(kxk) = A*B(kxk) = I(kxk)  

Then B is called the inverse of A and is denoted by 1A . The technical condition that an inverse 

exists is that the k-columns kaaa ,....,, 21  are linearly independent. That is, the existence of 1A  is 

equivalent to: 

kk acacac ....2211  =0 only if 0.....21  kccc  

Example        

A = 








14

23
 

Let us see the existence of inverse of the matrix A: 










4

3
1c  + 









1

2
2c = 









0

0
                   









1

1

4

3

c

c
 + 









2

22

c

c
 = 









0

0
              













21

21

4

23

cc

cc
= 









0

0
 

  21 23 cc   =0 Holds only if 021  cc  

   214 cc   =0 

This confirms the inverse of the matrix exists. The columns of A are linearly independent. 

1A  = 























5

3

5

4

5

2

5

1
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Let A be a kxk square symmetric matrix. Then A has k- pairs of eigen values and eigen vectors 

namely,   

(
1 , e1 ),  ( 2 , e2 ), …., ( k , ek ) 

The eigen values are chosen to satisfy: e1
’ e1 = e2

’ e2 =…..= ek
’ ek=1 and be mutually 

perpendicular. The eigen values are unique unless two or more eigen values are equal.  

A = 












15

51
 then, find the Eigen value and Eigen vector 

IA   = 0 























10

01

15

51
  =0 









15

51
 =0 

2422   =0 

1 =6,   
2 =-4 

A*X  =X 














15

51









2

1

x

x
= 6 









2

1

x

x
 

121 65 xxx   

221 65 xxx   

21 xx   

11 x ,   12 x  

X = 








2

1

x

x
= 









1

1
 

e1= 





















2

1

2

1

 

A*X = 2 X 
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












15

51









2

1

x

x
= -4 









2

1

x

x
 

 

121 45 xxx   

221 45 xxx   

 

12 55 xx      ⇨ 121  xx  

  
21 55 xx      

 X = 








1

1
 

 e2 = 
XX

X

'
 = 









1

1

2

1
 = 



















2

1

2

1

 

A spectral decomposition of a kxk symmetric matrix A is given by: 

A = ''

222

'

111 ..... kkk eeeeee    

Where k ,.....,, 21  are the eigen values of A and e1, e2,…., ek are the associated normalized 

eigen vectors. Thus, 
iiee ' =1 for all i=1,2,…,k and jiee '

=0 for all  i  ≠ j 

Example: The spectral decomposition of a matrix A: 

               A= 























1022

2134

2413

 

The characteristic equation of is : 

IA   = 0 























1022

2134

2413

 - 

















100

010

001

  =0                     













1022

2134

2413

 =0 
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  


















102

213
13 - (-4) 













102

24
 + 2 













22

134 
=0 

 

 18,9,9 321    

 A = '

333

'

222

'

111 eeeeee    
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Mean vector and covariance matrices 

 

Suppose X=  pXXX ,...., 21  is a px1 random vector. Then each element of X is a random 

variable with its own marginal probability distribution. The marginal means i and variances 2

i  

are defined as: 

 

                   .........)( iiii dxxfX




For continuous random variable Xi 

  i  =          
1

)(
i

iii xpX …….For discrete random variable Xi 

 

 

                 .........)(
2

iiiii dxxfX




  For continuous random variable Xi 
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  2

i  =          



1

2
)(

i

iiii xpX  …….For discrete random variable Xi 

2

i  = ii  (marginal variances) 

For random variables ki XX & , 

ik  =   kkii XXE    

 

       =           .....),( kikiikkkii ddxxxfXX








  For continuous random variable Xi 

       



1

),(
i

kiikkkii xxpXX  …….For discrete random variable Xi 

 

Where ki  &  are the marginal means for i,k=1,2,….,p. when i=k the covariance becomes the 

marginal variance. 
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
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

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=  

              

  COV (X) =   

Example: Compute the covariance matrix of the following table  

 X2 

X1 

0 1 P1(x1) 

-1 0.24 0.06 0.3 

0 0.16 0.14 0.3 

1 0.4 0.00 0.4 

P2(x2) 0.8 0.2 1.0 
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 =  = =0.69 

 =  =  

                                           =-0.08=   

 = =  = = 0.16 

 =  = =  

 

    

The correlation coefficient  is defined in terms of the covariance  and the variances  

and  as:  

 =  

The correlation coefficient measures the amount of linear association between the random 

variables  and . 

The correlation matrix be the pxp symmetric matrix: 

 =  =  



























1..........

.

.

.

..........1

........1

21

221

112

pp

p

p







 

 

The pxp standard deviation matrix is given by: 
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 =  

From this it follows that: 

  =  

Thus can be obtained from  and  where as  can be obtained from .  

Example: Computing correlation and standard deviation matrix from variance
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     =





























511

5

3
3

2

1

5

2

3

1
2

 =  

Partitioning of the covariance 

Often the characteristics measured on individual traits will fall naturally in to two or more groups. 

As example, consider measurement of variables representing consumption and income or variables 

representing personality traits and physical characteristics. One approach to handle these situations is 

to let the characteristics. If the total collection is represented by a (px1) dimensional random vector 

X, the subsets can be regarded as components of X and can be sorted by partitioning of X. 

In general, we can partition the p-characteristics contained in (px1) random vector X in to, for 

instance, two groups of size q and (p-q), respectively.        

X=  =    ,  =  =  =  

 

    
''22 X  
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22

11

     ppqqqq XXX    .......2211  

 

        
        

        





















�

 

 

 
    

''22 X  

 

       =   =  

This gives all of the covariances.    

  

Between a component X(1) and X(2);  and note that the matrix is not necessarily symmetric 

or even square.  

In general, 
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               = 

                   
                  


















'2

 

   =   

Note that = . The covariance matrix of   is , and that of  is and 

that of elements from  and  is  or   

The mean vector and covariances for linear combination of random variables  

Recall that if single random variable, such as  is multiplied by a constant C, then  

    = C = C  

 = =  

If  is a second random variable and a and b are constants, then using additional properties of 

expectation,     

 =   =  

  = =  

Finally, for the linear combinations , 

 =  =  

 =  

                           =  22211  bbXaaXE   

                           =     22211   XbXaE  

                         =        2211

2

21

22

21

2   XXabXbXaE  

                        =       2211

2

22

22

11

2   XXabEXEbXEa  

                        = 1222

2

11

2  abba   
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Let 
'C =  ba, ,  can be written as: 

     ba,  








2

1

X

X
 =

'C X 

Z  = 

CX

 =  

The linear combinations: 

 = Have the following expectation and variance-covariance: 

 

  

Where,  and are the mean vector and variance –covariance matrix of X, respectively. 

Example: Let =  be a random vector with mean vector =  and variance 

covariance matrix: 

=  

Find the mean vector and variance matrix for the linear combinations: 

 

 

Or  =  

Z = xC  = 














 

2

1

11

11

















21

21




 

 Z = 
'CC X = 







 

11

11









2221

1211













 11

11
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                        = 






 

11

11













21222221

11121211




 

                       =
   














2221121122211211

2221121122211211




 

 = 












2221112211

2211221211

2

2




 

 

Note that if 
2211   , that is if 

21 XandX  have equal variances, the off diagonal terms in 

 Z  vanishes. This demonstrates the well-known result the sum and difference of two random 

variables with identical variances are uncorrelated. 

  

Partitioning the sample mean vector and covariance matrices  

Let  pXXXX ,......,, 21

'   be the vector of sample averages constructed from n- observations 

on p-variables pXXX ,....,, 21 and  

Let,       
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be the corresponding sample variance-covariance matrix. 
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The sample mean vector and covariance matrix can be partitioned in order to distinguish 

quantities corresponding to groups of variables. Thus,  




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 =   

Where,  are the sample mean vectors constructed from observations 

 respectively.  is the sample covariance matrix 

computed from observations ,   is the sample covariance matrix computed from  ; 

= 21S is the sample covariance matrix for elements of  and elements of . 
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Sample values of linear combinations of variables 

Consider the constant vector C and the random variable vector X.  





























pC

C

C

C

.

.

.

2

1

,     pXXXX ,......, 21

'   

=  

Whose observed value on the jth trial is given by: 

                   = ,    j= 1, 2… n 

The n-observations has sample mean: 

Sample mean =   

 = =  

Sample variance =  

                           =  

Sample variance of XC '
= SCC '

 

Suppose Xb '
= pp XbXbXb  ......2221 , whose observed value on the jth trial is: 

jXb '
= jppjj XbXbXb  ......2221 , j=1,2,…..,n 

Sample mean of Xb '
= Xb '

 

Sample variance of Xb '
= bSb '
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The sample covariance computed form pairs of observations on Xb '
 and XC '

is: 

 SCb '
=
     

n

XCXCXbXbXCXCXbXb nn

'''''

1

''

1

' ........ 
 

=  

Example: Means and covariance for linear combinations 

  =  

Consider the two linear combinations: 

Xb '
 =  =  

 = =  

  = 321 22 XXX   

 =2(1) +2(2) –5=1 

2

' Xb  = 321 22 XXX  = 2(4) + 2(1) –6=4 

3

' Xb  = 321 22 XXX   = 2(4) + 2(0) –4 =4 

   Sample mean = 
3

441 
=3 

Sample variance =
     

2
3

343431
222




  

In similar manner, n=3 observations  are: 

= =  

1

' XC  = 131211 XXX  =1 – 2 + 3(5)=14  

2

' XC  =1(4) –1 + 3(6)= 21 
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3

' XC  =1(4) –1(0) + 3(4)= 16 

Sample mean = 
3

162114 
=17 

Sample variance =
     

3

26

3

171617211714
222




 

More over the sample covariance computed from the pairs of observations  

 1

'

1

' , XCXb ,   and   

Sample covariance: 

=  

=    

Alternatively, we use sample mean vector  and sample covariance matrix S derived from the 

original data X to calculate the sample means, variances and covariances for the linear 

combinations. Thus, if only the descriptive statistics are of interest, we do not even need to 

calculate the observations   and .  

          

Sample mean of   = Xb '
 

=  122 
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Sample mean of  XC '
 = XC '

 

=  311 
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Sample variance of  Xb '
 = bSb '
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 =  122   
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 Sample variance of  XC '
 =  

                    =    =  

Sample covariance of Xb '
and  XC '

 is    

  = =   =  

 
 
Excercises 
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   Chapter-Three 

Multivariate normal distribution 

A generalization of familiar bell-shaped normal density to several dimensions; play a 

fundamental role in multivariate analysis. In fact, most of the techniques encountered in this 

subject are based on the assumption that the data were generated from a multivariate normal 

distribution. While real data were never exactly multivariate normal, the normal density is often 

a useful approximation to the "true" population distribution.      

The normal distributions are useful in practice for two reasons. First, the normal distribution 

serves as a bona fide population model in some instances. Second, the sampling distributions of 

many multivariate statistics are approximately normal, regardless of the form of parent 

distribution, because of a central-limit effect.      

The multivariate normal density is a generalization of the univariate normal density to P≥2 

dimensions. Recall that the univariate normal distribution with mean    and variance 2  has 

the probability density function: 

,    -∞ < X< ∞   

The notation: can be extended to multivariate case. A Px1 vector of X of observation on 

several variables can be written as: 

         

The P X 1 vector  represents the expected value of the random vector X and a P X P matrix 

is the variance –covariance matrix of X. A p-dimensional normal density for the random 

vector X =  has the form: 

 

Where, -∞ < Xi< ∞, i=1, 2... p  

X ~  
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Example: Bivariate normal density, P=2, 

This 2-dimensional normal density function is denoted by X ~  ),(2 N  

)( 11 XE ,     ,    ,   

 

 

 =    

 = =   

Therefore,   can be written as the following form: 

 =  

 

           =  

          =  

         We have,  =  

          Then we have: 

                 =  

Additional properties of multivariate normal distribution 

If a random vector X has a multivariate normal distribution then,  

1. Linear combinations of the components of X are normally distributed. 

2. All subsets of the components of X have a multivariate normal distribution. 

3. Zero covariance implies that the corresponding components are independently distributed.  

4. The conditional distributions of the components are also multivariate normal.    
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If a vector X is distributed as Np ~  , , then any linear combination of the variables: 

Xa '
 =  is distributed as . Also if Xa '

 is distributed as

 for every a, then X must be .    

 

Proof  

We have X~  

 =  

E ( Xa '
)  =  =  =  

=  =  

Consider the linear combination of  Xa '
of multivariate normal vector determined by choice: 

  = : 

 

Xa '
 =  =  

'a  =



























p





.

.

.

2

1

= 1  
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aa '  =  =  

Therefore, the distribution of  is . More generally, the marginal distribution of 

any component of  is . 

If X is distributed as , the q-linear combinations: 

  

 =   

are distributed as   ', AAANq   

Example:   

 X  = 

















3

2

1

X

X

X

,   A  = 












110

011
 

X~  ,3 N , find the distribution of AX : 

Solution 

 

A X = 












110

011

















3

2

1

X

X

X

= 












32

21

XX

XX
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  =  

  = ,      =  

  =   

 = ,     
2X  = 

















5

3

1

X

X

X

 

~  
1112 ,N  

It is clear that from this example that the normal distribution for any subset can be expressed by 

simply selecting the appropriate means and covariances from the original   and .  In 

general, all subsets of X are normally distributed. If we respectively partition X, its mean 

and covariance as:     

 = ,      =  

~  
111 ,qN ,   2X ~  

222 , qpN  

 =  
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  =  and  > 0. Then the conditional distribution of  given 
2X =x2  
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 22

1

221211  


 XX  when X2 has the particular value x2. Equivalently, given that 

2X =x2 , X1 is distributed as;   

   

Let X be distributed as  with >0, then  
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Let 
nXXX ,....,, 21

 be mutually independent with distributed as  . (Assume each 

 has the same covariance matrix ). Then, 

                   =   is distributed as: 

. Moreover,   and =  are jointly 

multivariate normal with covariance matrix. 

                    

Consequently,  and  are independent if =0 

Proof 

Consider the np component vector, 

 

=  ~1xnp is a multivariate normal. In particular, X is distributed as , where   

 and  =  

The choice of the matrix A will take the form: 

  , where I is pxp identity matrix given as: 

 = 



























n

j

jj

n

j

jj

Xb

XC

1

1
 = 









2

1

V

V
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 is normal   

The block diagonal terms have: 

 

=  

And  

=  

The off-diagonal term if of the form: 

  

= .... is the covariance matrix for  and . Consequently, when 

=0, so that = 0,  and are independent.  

Example 

Let  be independent and identically distributed 3x1 random vectors with: 

  =  and =  

We first consider a linear combination  of the three components of . This is a random 

variable with mean: 

  =  =  and variance, 

  =  321 aaa

















3

2

1

a

a

a
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=  321 aaa   4321 CCCC   

=  

=  

=  

 is a single random variable consisting of a sum of terms that are each a constant times a 

variable. This is different from linear combinations of random vectors, say; 

  ...., which is itself a random vector. 

Consider again two linear combinations of random vectors: 

 

 

Find the mean vector and covariance matrix for each linear combination of vectors and the 

covariance matrix between them. 

 

 = 2 = 



















2

2

6

 

2

1  4321 XXXX  , the covariance matrix is: 

 4
2

3
2

2
2

1
2 CCCC  = 1x =  

For second linear combinations: 

 34321  bbbb  

 4321 bbbb   = 0x = 

















0

0

0
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Covariance matrix: 

 4
2

3
2

2
2

1
2 bbbb  = 12x = 





















24012

01212

121236

 

Finally the covariance matrix for the two linear combinations of random vectors is: 

 44332211 bCbCbCbC  = = =0x =0 

Every component of the fist linear combination of random vectors have zero covariance with 

each component of the second combination of random vectors.  

 

Sampling from multivariate normal distribution 

The multivariate normal likelihood: 

Let us assume that the px1 vectors  represent a random from a multivariate 

normal population with mean vector  and covariance matrix . Since are 

independent and each has distribution , the joint density function of all the 

observations is the product of the marginal normal densities.  

 =  

                                     

When the numerical values of the observations become available, they may be substituted for the 

jX   . The resulting expression now considered as a function of   and  for the fixed set of 

observations  is called the likelihood function. 

Let  be random sample from a normal population with mean   and covariance

 . Then, 
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  and  = =  are maximum likelihood estimator of   

and  respectively. These observed values,   and  are called 

maximum likelihood estimate of   and . 

The maximum likelihood estimator of  = ,  

Where   = is the maximum likelihood estimator of .  

 =  

=  

 =  

 = constant  

The generalized variance determines the "peakedness" of the likelihood function and 

consequently is a natural measure of variability when the parent population is multivariate.  

The sampling distribution of  

The assumption that  constitutes a random sample from a normal population with 

mean vector  and covariance matrix completely determines the sampling distribution of

. 
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 = is distributed as  times a chi-square variable having (n-1) degrees of 

freedom. In turn, this chi-square is the distribution of a sum of squares of independent standard 

normal random variables.   is distributed as  

=  

The individual ~  

The sampling distribution for the sample covariance matrix is called Wishart distribution.   

= Wishart distribition with m-degrees of freedom 

                = distribution of   

Where 's are independently distributed as   ,0pN  

In summary: 

Let  be a random sample from p-variate normal distribution with mean  and 

covariance matrix .  Then 

1. X is distributed as 









n
N p

1
,  

2.  is distributed as a Wishart random matrix with (n-1) degrees of freedom 

3. X  and  
2S  are independent 

Let  be independent observations from a population with mean and finite (non-

singular) matrix . Then, 

 Xn  is approximately  ,0pN  and  

      XSXn 1'
 is approximately 

2

p  for (n-1) large. 
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Chapter Four 

Inference about mean vector 
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  2T  =    0

1
'

0

1
 












XS
n

X  

         =  

Where ,   

 =   

The statistics  
2T  is called Hotelling's   

2T  in hounor of Harold Hotelling, a pioneer in multivariate 

analysis. Here  is the estimated covariance matrix of  . 

If the observed statistical distance 
2T  is too large, that is   is "too far" from , the hypothesis  

 is rejected. 

2T ~ , where  is an F- distribution with p and (n-p) degrees of freedom.  

In general , let  be a random sample from  population. Then with  

 and  

 = 
 
  












  )(

1
,

2 pnpF
pn

pn
TP =      

  











 

 )(
1

,

1'
 pnpF

pn

pn
XSXnP  
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 is the upper (100 )
th

  percentile of the distribution. This leads to the hypothesis; 

 vs   . At  level of significance, we reject in favour of , if the 

observed  

    2T  = >  

Example: let the data matrix for a random sample of size n=3 from a bivariate normal population be given 

as follows: 

X=  
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 =  =  

2T  =  , =  - =  

2T = (3)  1,1  =(3)  1,1



















27

1

9

2

= (3) 









27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
 

Therefore, 











27

1

9

2
=

9

7
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  '
11

1
YYYY

n
S j

n

j

jy 


 


 = dC   

Therefore, 2T  computed with the y's and a hypothesized value dCy  00.   is: 

2T =    0,

1'

0, yyy ySyn   
 

     =  

    =  

   =   

   =  

  =  

The likelihood ratio tests  

The maximum of the multivariate normal likelihood as  and are varied over their possible values 

is given by: 

=  

 

Where, the estimate of =  are the MLE 's 

and =
n

X
n

j

j
1
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Recall that and the estimator of are those choices for and that best explain the observed 

values the random sample. Under the hypothesis , the normal likelihood specializes to: 

                  =    

Here  is fixed, but be varied to find the value that is "most likely" to the observed sample. The 

value is obtained by maximizing  with respect to . 

=  

With estimate of =   '
0

1

0

1
 



j

n

j

j XX
n

 

To determine whether  is a plausible value of  , the maximum of  is compared with the 

unrestricted maximum of   ,L . The resulting ratio is called the likelihood ratio statistic.  

Likelihood ratio=  =

 

 








,

0

,

,







LMax

LMax

 =

2

0

n


















 

The equivalent statistic n

2

 = 





0

 is called Wilk's Lamda . If the observed value of this likelihood 

ratio is too small, the hypothesis  is unlikely to be true and is therefore rejected.    

Let be a random sample from an  ,N  population. Then the test based on 
2T is 

equivalent to ratio test of versus  . 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
 

.
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n

2

  = 

1
2

1
1















n

T
 

Proof 

Let (p+1)x(p+1) matrix: 

  

A= 
    

  




















1
'

0

1

0

'





Xn

XnXXXX
n

j

jj

 = 








2221

1211

AA

AA
 

 

A  =  

      =  

=  

 

=  

We can write:  

=  

=  +   '00   XXn  



52 
 

    



n

j

jj XX
1

'

001   =  

 Or =  

Thus, n

2

  = 





0

=  

Here is rejected for small value of n

2

 or equivalently, for large values of 2T .   

Confidence regions 

The confidence region for the mean of a p-dimensional normal population is: 

=  

For a particular sample,  can be computed, and the inequality ≤ 

)(
1

, pnppF
pn

n













   

Where ,  

  

1

1

'










n

XXXX

S

n

j

jj

 

To determine whether any  falls with in the confidence region (is plausible value of ), we need to 

compute the generalized squared distance  and compare it with

)(
1

, pnppF
pn

n













. If the squared distance is larger than )(

1
, pnppF

pn

n













,   is not in the 

confidence region. 

Example: Consider the bivariate case, i.e., p=2 
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     n=42,  

    ,        

The 95 percent confidence ellipse for  consists of all values  satisfying: 

  ≤   )(
1

, pnppF
pn

n













 

=  

 

= ≤  

=2.05x3.23=6.6215 

42(203.018) +42(200.228) - 84(163.391)  ≤ 6.62 

To see whether = 
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Where 









2
1


nt  is the upper 100 percentile of a t-distribution with (n-1) degrees of freedom. 

If ,     ... is the usual confidence interval for the univariate random 

variable. 

 

 

Let be a random sample from an   population covariance matrix  

. Then, simultaneously for all "a" the interval is: 

  will contain  

with probability 1- . 

Proof 

2T = ≤ implies   ≤  for every a. 

≤   ≤  for every a. Choosing =  

gives the interval that will contain  � for all a, with probability 1-� EMBED Equation.3  �� 

=� EMBED Equation.3  ��. 

Successive choices of�, , and so on through � EMBED Equation.3  �

 for the  interval allows us  to conclude that:   

≤  ≤ � EMBED Equation.3  

 

 ≤  ≤  

. 

 
 

n

S
F

pn

np
X pnp

11
,1

1







jkX jkX  
 

n

S
F

pn

np
X pnp

22
,2

1






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 
 

n

S
F

pn

np
X pnp

22
,2

1





  ≤  ≤  

all holds simultaneously with confidence coefficient 1- .  

With out modifying the coefficient (1- ), we can make statements about the differences  

corresponding to:  

, where  

, then, 

≤  ≤

 is the 100(1- ) percent  confidence interval for the 

difference, .  
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Chapter Five 

Comparisons of Several Multivariate Means  

Paired comparison 

Suppose we have p-responses, two treatments and n-experimental units.  

11 jX  =variable -1 under treatment -1 

21 jX  = variable-2 under treatment-1 

. 

. 

. 

jpX1  = variable-p under treatment-1 

12 jX  =variable -1 under treatment -2 

22 jX  = variable-2 under treatment-2 

. 

. 

. 

jpX 2  = variable-p under treatment-2 

The p-paired difference random variables become, 

 

1jD = 11 jX - 12 jX  

2jD = 21 jX - 22 jX  

. 
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. 

. 

= 
jpX1

- 
jpX 2

 

Let  = , j=1,2,...,p 

 = = ,    =  

If, in addition,  are independent  random vectors, inferences about the 

vectors of mean differences can be used up on a 2T -statistic. 

2T = , where   and  

This 
2T -is distributed as . If n and n-p are both large, 

2T is approximately distributed as 

a random variable, regardless of the form of the underlying population of the differences. Given the 

observed differences: , j=1,2,.....,n corresponding to random variables, an  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level  -level 
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i :
 

 
n

S
F

pn

np
d di

pnpi

2

,

1





 , where the i is the i

th
 element of d and is the i

th
 diagonal 

element of .  

For (n-p) large ,   and normality need not be assumed.  

Comparison of mean vectors from two different populations    

Consider a random sample of size n1 from population -1 and a sample of size n2 from population-2. The 

observation on p-variables can be arranged as:  

Sample 

1. ,    ,    

2. ,  ,  

  

12

1

'

2222

2









n

XXXX

S

n

j

jj

 

Assumptions regarding the structure of the data: 

1. The sample is a random sample from a p-variate population with mean vector 1  and 

covariance matrix 1 . 

2. The sample 
222221 ,...., nXXX is a random sample from a p-variate population with mean vector 2  

and covariance matrix 2 . 

3. Also the two samples and 
222221 ,...., nXXX are independent of each other.  

For small 21 nandn , further assumptions are imposed.   

 Both populations are multivariate normal 

 Also  1 = 2  ( The same covariance matrix) 
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 =  

=  
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Example: Fifty bars of soap are manufactured in each of two ways. Two characteristics, 
1X   =lather and 

2X =mildness, are measured. The summary statistics for bars produced by method 1 and 2 are described 

below. 

1X  = 








1.4

3.8
,       

1S  = 








61

12
 

 = ,      =  

Test the hypothesis of the equality of two mean vectors of the population i.e.,  

 or  

 or  

=0.05 

 

1S  and are approximately equal, so it is reasonable to pool them. 

 = = 








61

12
 + 

98

49
 

= 



















3
2

1

2

1
1

 +  



















2
2

1

2

1
1

 

= 








51

12
 

1

pooledS  = 
2

1













21

15
 = 























9

2

9

1

9

1

9

5

 



62 
 

2T  =      2121

1

21

'

2121

11
 





















XXS
nn

XX pooled
 

       =    21

1

21

21'

21 XXS
nn

nn
XX pooled 













 

      
1X  -  = 









1.4

3.8
- = 













2.0

9.1
 

 
21

21

nn

nn


=  

5050

50*50


=  

100

2500
=25 

2T = 25 02.,9.1 























9

2

9

1

9

1

9

5














2.0

9.1
 

      = 25 02.,9.1   



















9

5.1

9

3.9

= 25
9

67.17
= 49.08 

2C =
 

1,

21

21

211

2





pnnpF

pnn

pnn
= 

97

98
*2  05.097,2F = 2.02*3.1=6.26 

Since 
2T calculated larger than the critical value for decision, we reject and conclude 

that the mean vectors are significantly distinct.   

Multivariate analysis of variance (MANOVA) 

MANOVA model for comparing g-population mean vectors is given ass:  

ljllj eX   ,  j=1,2,……, nl 

l=1,2, ……,g 
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Where   pplj Ntindependenaree ,0  variables. Here the parameter vector   is an over all mean 

(level) and l  represents the l
th

 treatment effect with 


g

l

lln
1

  

---response 

 ----Overall mean 

----treatment effect 

---random error 

A vector of observation may be decomposed as:   

 

 

       overall estimated     residual 

       mean    treatment effect 

Consider:   

=  

  =  

 Taking the sum over j , yields the cross product term vanish, because   

Hence,     
 


g

l

n

j

ljlj

l

XXXX
1 1

'
=   '

1

XXXXn l

g

l

ll 


 +    '
1 1

llj

g

l

n

j

llj XXXX
l


 

 

    

                        Total                            Between (treatment) residual (with in) 
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                     sum of sum of sum of squares 

                     sqaures                            squares  

The hypothesis to be tested is:  

    (no treatment effect) 

MANOVA table for comparing population mean vetcors 

Sourse of variation Sum of squares degrees of 

freedom 

 

Treatment 
B=   '

1

XXXXn l

g

l

ll 


 
g-1  

Residual (Error) 
W=   

 Residual (Error) 
W=   

 Residual (Error) 
W=   

 Residual (Error) 
W=   

 Residual (Error) 
W=   
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No of 

variables 

No. of 

groups 

sampling distribution for multivariate normal 

p=1 g≥2 

 

p=2 g≥2 

 

p≥1 g=2 

 

p≥1 g=3 

 

If   is large, 

  has 
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Chapter- Six 

Principal component and Factor analysis 

A principal component analysis is concerned with explaining the variance covariance structure of a set of 

variables through a few linear combinations of these variables. Its general objectives are: 

(1) Data reduction &  

(2) Interpretation 

Although p-components are required to reduce, the total system variability, often this much of the 

variability can be accounted for by a small number of k- principal components. If so, there is (almost) as 

much information in the k-components as there is in the original p-variables. The k-principal components 

can then replace the initial p-variables, and the original data set, consisting of n- measurements on p-

variables, is reduced to a data set consisting of n-measurements on k-principal components.          

 Analysis of principal components are more of a means to an end rather than an end in them selves, 

because they frequently serve as intermediate steps in much larger investigation.    

Principal components depend solely on the covariance matrix (Or the correlation matrix ) of  

pXXX ,.....,, 21  . Let the random vector  pXXXX ,....,, 21

'   have the covariance matrix with 

eigen values 0.....21  p . Consider the linear combinations: 

XaY '

11   = pp XaXaXa 1212111 .....  

 XaY '

22   = pp XaXaXa 2222121 .....   

  . 

 . 

 . 

XaY pp

'  = ppppp XaXaXa  .....2211  

In general it can be written as: 
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XaY ii

' ,    i=1,2,....,p 

)( iYVar  = 
ii aXVara )('  

,      i,k=1,2,....,p 

The principal components are those uncorrelated linear combinations whose variances are 

as large as possible. The first principal component is the linear combination is with maximum variance. 

That is, it maximizes, 

 = .   = , can be increased by multiplying any by some constant. 

To eliminate this indeterminacy, it is convenient to restrict attention to coefficient vectors of unit length.   

First principal component = linear combination  that maximizes subject to  

                                               

Second principal component = linear combination  that maximizes subject to  

                                               and =0 

. 

. 

. 

At i
th

 step, i
th

  principal component= linear combination  that maximizes subject to  

                                               and =0 for i<k. 

Let be the covariance matrix associated with the random vector  pXXXX ,....,, 21

'  . Let 

have the eigen value-eigen vector pairs  where 0.....21  p . 

Then the i
th

 principal component is given by: 

 = , i=1,2,....,p with the choices : 
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  )( iYVar  = = , i=1,2,....,p 

,   for  

If some 's are equal, the choices of coefficient vectors,   and are not unique. Let 

 pXXXX ,....,, 21

'   have matrix , with eigen values –eigen vectors 

 where 0.....21  p . 

Let    , ,......,  be the principal component. Then, 

= = =  

Proof 

=  

=  

We can write = , where is the diagonal matrix of eigen values and   so 

that  = = I 

= = =  tr =  

Thus = = 


p

i

iYVar
1

)(  




p

i

iYVar
1

)( = 


p

i

i XeVar
1

' )( =   


p

i

ii ee
1

'
= 



p

i

iii ee
1

' = 


p

i

i  
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Total population variance: =  

The proportion of total variance due to (explained by) the k
th

 principal component is:   

The proportion of total variance due to  

 the k
th

 principal component =                 

Total population variance: =  

The proportion of total variance due to (explained by) the k
th

 principal component is:   

The proportion of total variance due to  

 the k
th

 principal component =                 

Total population variance: =  

The proportion of total variance due to (explained by) the k
th

 principal component is:   

The proportion of total variance due to  

 the k
th

 principal component =                 

Total population variance: =  

The proportion of total variance due to (explained by) the k
th

 principal component is:   

The proportion of total variance due to  

 the k
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 =  0,924.0,383.0 

















3

2

1

X

X

X

 

= 
21 924.0383.0 XX   

=   1,0,0

















3

2

1

X

X

X

= 3X  

XeY '

33   =  0,383.0,924.0

















3

2

1

X

X

X

=
21 383.0924.0 XX   

The variable 3X  is one of the principal components, because it uncorrelated with the other two 

variables.  

)( 1YVar = Var (
21 924.0383.0 XX  ) 

=             212

2

1

2
,924.0383.02924.0var383.0 XXCovXVarX   

 = 0.147 (1) + 0.854 (5) -0.708(-2)= 5.83=
1  

)( 2YVar  = )( 3XVar = 2= 2  

 21,YYCov  =  321 ,924.0383.0 XXXCov   

                   =    3221 ,924.0,383.0 XXCovXXCov    

                   = 0.383 (0)-0.924(0) =0   

Total population variance: = 1+5+2=8 

 321 .....   = 5.83+2.00+0.17=8 

The proportion of total variance accounted for by the first principal component is: 
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321

1






 = 

8

83.5
=0.73 

   Further, the first two account for a proportion of    =0.98 of the population variance. In this 

case, the components Y1 and Y2 could replace the original three variables with little loss of information.   

=  = = 0.925 

 =  =  = -0.998 

Notice that the variable X2 with coefficient -0.924, receives the greatest weight in the component Y1.  It 

also has the largest correlation (in absolute term) with Y1. 

The correlation between  and Y1 is 0.925, as large as that for X2 , indicating that the variables are 

about equally important to the first principal component. The relative sizes of the coefficients of   and 

 suggest however, that  contribute more to the determination of Y1 than does . Since, in this 

case, both coefficients are reasonably large and they have opposite sign. Both variables help in the 

interpretation of Y1.  

= = 0,   = = =1 

The remaining correlation can be neglected, since the third component is unimportant.  

Principal variables obtained from standard variables 

Principal components may be obtained for the standard variables: 

 =  

 =  
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. 

pZ  = 
 

pp

ppX




 

In matrix notation: 

 = ,  where   is the diagonal standard deviation matrix 

=  

The principal component of Z may be obtained from the eigen vectors of the correlation matrix of X. 

The i
th

 principal component of the standaridized variables: 

  With Cov (Z) =  is given by: 

, i=1,2,.....,p 

Moreover,  = =p 

In this case,  are the eigen value –eigen vector pairs for , with

0.....21  p .  

The proportion of (standardized) population variance  == , k=1,2,....,p 

 due to k
th 

principal component  

Note that principal components obtained from covariance & correlation matrix are different. 

Example:  
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= 








1004

41
  

The desired correlation matrix is : 

 = 








14.0

4.01
 

Let work how the correlation matrix is obtained: 











1000

01
V ,      

=  

 =  

      = 








1004

41
= =  

Determining eigen value –eigen vectors from are: 

 1 = 100.16,   
'

1e  =  

           2 = 0.84,    
'

2e  =  

Eigen value –eigen vectors from  are: 

 1 = 1+ =1.4,   
'

1e  =  707.0,707.0  

 2  = 1- 21  = 0.6,  
'

2e  =  707.0,707.0   

The respective principal components become: 
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:   = = 0.040X1+0.999X2 

= = 0.999X1 - 0.040X2 

 :     =  = 0.707Z1+0.707Z2 

                                                           =  +  

                                                           =   

                 =  707.0,707.0  = 0.707Z1 - 0.707Z2  

 = -  

                                                               =  

Because of its large variance, X2 completely determines the first principal component deterimned from

. Moreover, this first principal component explains a proportion: 

      =  =0.992 of the total population variance. 

When the X1 and X2 are standardized, however the resulting variables contribute equally to the principal 

components determined from . 

11,ZY = 111 e  = 0.707 4.1 = 0.837 

21,ZY = 112 e
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In this case, the first principal component explains a proportion: 

 =  =0.7 of the total (standardized population varince). 

Principal components for covariance matrices with special structurtes  

There are certain patterned covariance and correlation matrices whose components can be expressed in 

simple forms. Suppose is a diagonal matrix: 

=    

Setting  =  
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Also standardization has nothing to do with this special structure. Another patterned covariance matrix, 

which often describes the correspondence among certain biological variables such as the size of living 

things, has the general form: 

 =   

The resulting correlation matrix is: 

 =  

From the  matrix we observe that the variables  are equally correlated. When  is 

positive, the largest eigen value is:   

= 1+  with associated eigen vector:  

 =  

The remaining (p-1) eigen values are: 

 = 1  and the choice for eigen vector is: 

'

2e  = 







0,.....0,

21

1
.,

21

1

xx
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 =  

 

. 

 =  

. 

. 

. 

 =  

The first principal component is:  

 is the proportion of the original variables. It might be regarded as an index with 

equal weights. This principal component explains a proportion: 

p

1   = 
 

p

p 11 
 = 

p







1
 of the total population variation. We see that 

p

1   for  close to 1 

or p large. For example, if =0.8 and p=5, thefirst component explains 84% of the total variance. When 

 is near 1, the last (p-1) components collectively contribute very little to the total variance can often be 

neglected.  

Summaarizing sample variation by principal components  

Suppose the data nXXX ,....,, 21  represent n- independent drawings from some p-dimensional 

population with mean vector  and covariance matrix . These data yield the sample mean vector X , 

the sample covarioance matrix S and the sample correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi correlation matrix R.  Our efi 
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the sample. The uncorrelated combinations with the largest variances will be called the sample principal 



79 
 

 

An elbow occurs at about i=3, eigen values after 
2̂  are           relatively small 

and are about the same size. 

 

  

 A scree plot of i̂  

In this case, it appears with out any other evidence, that two (or perhaps three) sample principal 

components effectively summarize the total sample variance.  

Standardizing the sample principal components  

A scree plot

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8

i

h Series2

I 

 

 

1 3 

2 1 

3 0.5 

4 0.25 

5 0.125 

6 0.0675 

i̂
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In general, the sample principal components are invariant with respect to changes in scale.  

 

jZ  =  XXD j 



2

1

 =  











































pp

pjp

j

j

S

XX

S

XX

S

XX

.

.

.

22

22

11

11

j=1,2,…,n 

The nxp data matrix of standardized observations: 





























'

'

2

'

1

.

.

.

nZ

Z

Z

Z =  



























npnn

p

p

ZZZ

ZZZ

ZZZ

......

.

.

.

....

.....

21

22221

11211

 

= 











































nn

nnp

nn

nn

nn

nn

p

p

S

XX

S

XX

S

XX

S

XX

S

XX

S

XX

S

XX

S

XX

S

XX

..........

.

.

.

..........

.............

21

22

22

22

222

22

221

11

11

11

112

11

111

 

Yields the sample mean vector: 
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Z  =  ''1
1

Z
n

 =  =  == 0 

The sample covariance matrix: 

=  =  

=  

 R= 



























1.....

.

.

.

......1

.......1

21

221

112

pp

p

p

rr

rr

rr
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If 
nZZZ ,...., 21

 are standardized observations with covariance matrix R, the i
th

 principal component is 

given as: 

 = 
pipii ZeZeZe ˆ.....ˆˆ

2211  ,  i=1,2,….,p 

Where  are the eigen value –eigen vector pairs with . 

Sample variance: = k̂ , k=1,2,….,p 

Sample covariance,   ki yyCov ˆ,ˆ =0, for  i k 

Total (standardized) sample variance =tr®= p= p ˆ.....ˆˆ
21   

ki xyr ,ˆ = iike ˆ ,  i,k=1,2,…,p 

Total sample variance explained by principal component is: 















componentprincipalitodue

iancesampleofoportion

th

varPr
 = 

p

i̂ , i=1,2,…,p 

A rule of thumb suggests retaining only those components whose variances i̂ are greater than unity, or 

equivalently, only those components which individually explain at least a proportion 
p

1
 of the totla 

variance. This rule does not have a great deal of theoretical support, however, and it should not be applied 

blindly. A scree plot is also useful for selecting the appropriate number of components.   

Factor analysis 

The essential purpose of factor analysis is to describe, if possible, the covariance relationship among 

many variables in terms of a few underlying, but unobservable, random quantities called factors.    

Factor analysis can be considered an extension of principal component analysis. Both can be viewed as 

attepts to approximate the covariance matrix. However, the approximation based on the factor model is 

more elaborate.     
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The orthogonal factor model 

The observable random vector X with p- components has mean   and covariance matrix .  The 

factor model postulates that X is linearly dependent upon a few observable random variables 

mFFF ,....,, 21  , called common factors, and  p-additional sources of variation  
p ,.....,, 21

, called 

errors or some times called specific factors. 

11 X  = 11212111 ...  mm FlFlFl  

22 X  = 22222121 ...  mm FlFlFl  

. 

. 

. 

ppX   = pmpmpp FlFlFl  ...2211  

Or in matrix notation: 

 (mx1) 

 

X  = LF                   (Orthogonal factor model) 

   

(px1)           (pxm)  (px1) 

The coefficient ijl  is called the loading of the i
th

 variable on the j
th

 factor, so the matrix L is the matrix of 

factor loadings. Note that the i
th

 specific factor  i  is associated only with the i
th

  response Xi.     

Assumptions 

1. E[F]=0 

2.   IFFEFCov  ')(  
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3.  E  =0,  'Cov  = 
pxp diagonal matrix 

4. F and are independent  

5.  

The model X  = LF  with the above assumptions constitute the orthogonal factor model.   

The covariance structure for the orthogonal factor model: 

1.  or   

=  

2.  or   

The model X  = LF  is linear in common factors. The proportion of variance of the i
th

 

variable contributed by the m-common factor is called the i
th

 communality. The portion of variance of 

Var(Xi)=  due to the specific factor is often called the uniqueness or the specific variance, the i
th

 

communality is denoted by  .  

 

= iimii lll  22

2

2

1 ...  

= 
22

2

2

1 ... imii lll   

The i
th

 communality is the sum of squares of the loadings of the i
th  

variable on the m-common factors.  

Example :  

= 



















68472312

473852

2355730

1223019
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 =  +  

 =   

m=2,  

 =   ,       =   =  

The communality of X1 is:   

=  = 4
2
 + 1

2
 = 17 and the variance of X1 can be decomposed as: 

 =   = 17 + 2= 19 

 =  = 7
2
 + 2

2
 + 4 =57 

A similar break down occurs for the other variables. The factor model assumes that the  

variances and covariances for X reproduced from the p.m factor loadings lij and p- specific variances . 

When m=p, any covariance can be reproduced exactly as , so  

 

variances and covariances for X reproduced from the p.m factor loadings lij and p- specific variances . 

When m=p, any covariance can be reproduced exactly as , so  

 

variances and covariances for X reproduced from the p.m factor loadings lij and p- specific variances . 

When m=p, any covariance can be reproduced exactly as , so  

 

variances and covariances for X reproduced from the p.m factor loadings lij and p- specific variances . 

When m=p, any covariance can be reproduced exactly as , so  

 

variances and covariances for X reproduced from the p.m factor loadings lij and p- specific variances . 

When m=p, any covariance can be reproduced exactly as , so  

 

variances and covariances for X reproduced from the p.m factor loadings lij and p- specific variances . 

When m=p, any covariance can be reproduced exactly as , so  

 

variances and covariances for X reproduced from the p.m factor loadings lij and p- specific variances . 

When m=p, any co
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=  

1=  

0.9=  

0.7=  

1=  

0.4=  

1=  

The pairs of equations: 

   0.7=  

    0.4=      

0.9=  0.9= = = 1.255 

Since the var(F1)= 1( by assumption) and var(X1)=1 

= Cov(X1,F1)=Corr(X1,F1). Now a correlation coefficient can not be graeter than unity(in absolute 

value), so from this point of view = 1.25 is too large. Also the equation,  

1=  or  which is un satisfactory, since it gives a negative 

value for   1Var = 1 . Thus for this example with m=1, it is possible to get a unique numerical 

solutuion to the equation = 'LL  . However, the solution is not consistent, with 

the statistical interpretation of the coefficients, so it is not proper solution.   
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When m>1, there is always some inherent amguity associated with the factor model. To see this, let T be 

any mxm orthogonal matrix, so that  , then  

X  = LF =  =  

Where  and  

 =0 

 

It is impossible, on the basis of observations on X, to distinguish the loading L from the loadings . That 

the factors F and FTF '*   have the same statistical properties, eventhough the loadings  are in 

general, different from the loadings L, they both generate the same covariance matrix . That is, 

= 'LL    =    
'**' LLLLTT  

This ambiguity provides the rationale for "factor rotation", since orthogonal matrices correspond to 

rotations (and reflections) of the coordinate system for X. 

Methods of estimation 

The sample covariance matrix S is an estimator of the unknown population covariance matrix . If the 

off-diagonal elements of S are small or those of the sample correlation matrix R is essentially zero, the 

variables are not related and a factor rdinate system for X.

 

Methods of estimation 

The sample covariance matrix S is an estimator of the unknown population covariance matrix . If the 

off-diagonal elements of S are small or those of the sample correlation matrix R is essentially zero, the 

variables are not related and a factor rdinate system for X.

 

Methods of estimation 

The sample covariance matrix S is an estimator of the unknown population covariance matrix . If the 

off-diagonal elements of S are small or those of the sample correlation matrix R is essentially zero, the 

variables are not related and a factor rdinate system for X.

 

Methods of estimation 

The sample covariance matrix S is an estimator of the unknown population covariance matrix . If the 

off-diagonal elements of S are small or those of the 
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Let have eigen value –eigen vector pairs   with . Then  

=  

          =   

This fits 
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=

'LL  (mxp) 

 (pxm) 

 

This representation assumes the specific factor,  's are of minor importance and can also be neglected in 

factoring of . If specific factors are included in the model, their variance may be taken to be the 

diagonal elements.  

 

= 'LL  =  mm eee  .......2211  



























mm e

e

e







.

.

.

22

11

 +  



























p





0......00

.

.

.

0......00

0.......0

2

1

 

Where 



m

j

ijiii l
1

2 , i=1,2,….,p 

To applyb this approach to a data set nXXX ,...., 21 , it is customary first to center the observations by 

subtracting the sample mean X  . The centered observations are: 

   





























jp

j

j

j

X

X

X

XX

.

.

.

2

1

 - 



























pX

X

X

.

.

.

2

1

=

































pjp

j

j

XX

XX

XX

.

.

.

22

11

   j=1,2,…..,n 
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Have the same sample covariance as the original observations. In case where the units of variables are not 

commensurate, it is usually desirable to work with standardized variables.  

jZ = 











































pp

pjp

j

j

S

XX

S

XX

S

XX

.

.

.

22

22

11

11

   j= 1,2,….,n 

Whose sample covariance matrix is the sample correlation matrix R of the observations nXXX ,...., 21 . 

Standardization avoids the problem of having one variable with large variance unduly influencing the 

determination factor loadings. The application of the above method to the sample covariance matrix or 

correlation matrix is known as p[rincipal component solution. 

The principal componet factor analysis of the sample covariance matrix S is specified interms of its eigen 

value -eigen vector pairs      pp eee ˆ,ˆ,......,ˆ,ˆ,ˆ,ˆ
2211   , where .  

Let m < p be the number of common factors, then the matrix of estimated factor loadings  ijl
~

  is given 

by: 

   mmeeeL ˆˆ......,,ˆˆ,ˆˆ~
2211   

The estimated specific variances are provided by the diagonal elements of the matrix S-LL', so: 
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~  = 



























p





~0......00

.

.

.

0......0~0

0.......0~

2

1

  with  



m

j

ijiii lS
1

2~  

Communalities are estimated as: 

 

2~
ih  =  

The principal component factor analysis of the sample correlation matrix is obtained by starting with R in 

place of S. The residual matrix: 

       resulting from the approximation of S by the principal component solution. The 

diagonal elements are zero, and if the other elements are also small we may subjectively take the m-factor 

model be appropriate. Analyticallty, 

sum of  squares of  entries   . 

Consequently, a small value for the sum of squares of the neglected eigen values implies a small value for 

the sum of squared errors of approximation.    

Ideally, the contributions of the first few factors to the sample variances of the variables should be large. 

The contribution to sample variance Sii afrom the first common factor is  . 

The contribution to the total sample variance, 

, from the first commen factor is then,     

 = =  

Since the eigen vector  has a unit length, 
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















factorjdue

iancesampletotal

ofoportion

th

var

Pr

 = 
ppSSS  ....

ˆ

2211

1  , for factor analysis of S 

 
p

1̂ , for factor ananlysis of R 

This criterion is frequently used as a heuristic device for determing the appropriate number of common 

factor. The number of common factors retained in the model is increased until a "suitable proportion" of 

the total sample variance has been explained. Another convention, frequently encountered in package of 

computer program is to test m equal to the number of eigen values of R graeter than one if the sample 

correlation matrix is factored, or equal to the number of positive eigen values of S if the sample 

correlation covariance matrix is factored. 

  

Example: In a consumer preference study, a random sample of customers were asked to rate several 

attributes of new product. The responses on a 7-point symantic differential scale, were tabulated and the 

attributes correlation matrix is presented as follows.    

 

          

Variable(attribute 1 2 3 4 5 

Taste 1 1 0.02 0.96 0.42 0.01 

Good buy for 

money 

2 0.02 1 0.13 0.71 0.85 

Flavour 3 0.96 0.13 1 0.50 0.11 

Suitable for 

snack 

4 0.42 0.71 0.50 1 0.79 

Provide lots 

of energy 

5 0.01 0.85 0.11 0.79 1 
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The first two eigen values,  = 2.85, =1.81 of R are the only eigen values greater than unity. More 

over, m=2 common factors will account for a cumulative proportion. 

 

 = = 0.93 of the total (standardized) sample variance.  

The estimated factor loadings, communalities and specific variances are: 

 

  =    +   

         = 























00.181.011.091.000.0

81.000.153.079.044.0

11.053.000.111.097.0

91.079.011.000.11.0

00.044.097.01.000.1

 

This nearly reproduces the correlation matrix R. 

 

 

Variable Estimated factor 

loadings 

Communalities Specific variance 
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Good buy for money 0.78 -0.53 0.88 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
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maximizes the likelihood function subject to  being diagonal. The maximum likelihood estimates 

of the communalities are: 

, for i=1,2,….,p 

 =  

Proof 

By the invariant property of maximum likelihood estimators, the functions are estimated by the 

same functions of . In particular, the communalities  have maximum 

likelihood estimates
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= …….we evaluate the importance of the 

factors on the basis of this. 

Large sample test the number of common factors  

The assumption of a normal population leads directly to test the adequacy of the model. Suppose the m-

common factor model holds. In this case, = 'LL  , and testing the adequacy of the m-common 

factor is equivalent to testing: 

 

 Versus   

When does not have any special form, the maximum of the likelihood function, 

=  is proportional to , under : the maximum likelihood function with 

 and = , where  are the maximum likelihood estimates of  

respectively, is proportional to: 

  

                          = 
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=   pStrn
S

n

n

n



















 



1
2ˆ

ln2  with degrees of freedom:  

     







  

            =  

Since  is the maximum likelihood estimate of , thus we have: 

   , consequently,  

=  

Bartlet has shown that the chi-square approximation to the sampling distribution of can be 

improved by replacing n- with the multiplicative factor , using Bartlet's 

correction, we reject  at the  level of significance if: 

 >
 

  2

2

2











  mpmp
  provided that n and n-p are large. 

Exaple –p539 


