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                                          Chapter 1  

 

          1  Introduction to Statistical Quality Control  

 

1.1 Introduction   
 

Quality can be defined in many ways, ranging from “satisfying customers’ requirements” 

to “fitness for use” to “conformance to requirements.” It is obvious that any definition of 

quality should include customers, satisfying who must be the primary goal of any 

business. 

Statistical quality control abbreviated as “SQC” is one of the most important application 

of the statistical techniques in industry. These technique is based on the theory of 

probability and sampling and are being extensively used in all most all industries of our 

country as well as other world , such as air craft, armament, automobile, textiles , plastic, 

rubber, petroleum, electrical equipments, telephone, transportation, chemical and 

medicine and so on. In fact it is impossible to think any of industry field were statistical 

techniques are not used. 

 

The basic problems in any production process are not the quantum of the product but the 

quality of the product. The product is basically interested to see that the product is of 

acceptable quality. i.e. it conforms to certain prescribed standards or specification the 

quality of the manufactured product depends on the number of factors, starting with its 

design and specification the production process, the raw materials, machines and 

equipments, the expertise and skill of the person who handle them, and inspection of the 

final product. For successful marketing of the product, it is imperative that the end 

product must confirm to the standards or expectation lay down by the customers. 

Statistical quality control aims at achieving this target by keeping the various steps of the 

process (from arrival of the material) through each of their processing to the final 

delivery of goods with in control. The principle of quality control by statistical techniques 

covers almost all aspects of production, i.e. quality of materials, quality of man power, 

quality of machines and quality of management. 



                                  

 

The purpose of statistical quality control is to ensure, in a cost efficient manner, that the 

product shipped to customers meets their specifications. Inspecting every product is 

costly and inefficient, but the consequences of shipping non conforming product can be 

significant in terms of customer dissatisfaction. Statistical Quality Control is the process 

of inspecting enough product from given lots to probabilistically ensure a specified 

quality level. Statistical quality control provides the statistical techniques necessary to 

assure and improve the quality of products. 

 

                        1.2 Definition of Statistical Quality Control (SQC) 

 
Statistical quality control or SQC are also called statistical quality assurance (SQA) refers 

to the area of statistics concerned with applying statistical methods to improving the 

quality of products.  

Quality control emphasizes testing of products to uncover defects, and reporting to 

management who make the decision to allow or deny the release. Whereas quality 

assurance attempts to improve and stabilize production, and associated processes, to 

avoid, or at least minimize, issues that led to the defects in the first place.  

To prevent mistakes from arising, several QA methodologies are used. However, QA 

does not necessarily eliminate the need for QC: some product parameters are so critical 

that testing is still necessary. QC activities are treated as an integral part of the overall 

QA processes. 

Quality assurance, or QA for short, refers to a program for the systematic monitoring 

and evaluation of the various aspects of a project, service, or facility to ensure that 

standards of quality are being met. 

It is important to realize also that quality is determined by the program sponsor. QA 

cannot absolutely guarantee the production of quality products, unfortunately, but makes 

this more likely. 

http://en.wikipedia.org/wiki/Quality_control


                                  

Two key principles characterized QA: "fit for purpose" (the product should be suitable 

for the intended purpose) and "right first time" (mistakes should be eliminated). QA 

includes regulation of the quality of raw materials, assemblies, products and components; 

services related to production; and management, production and inspection processes. 

It is important to realize also that quality is determined by the intended users, clients or 

customers, not by society in general: it is not the same as 'expensive' or 'high quality'. 

Even goods with low prices can be considered quality items if they meet a market need. 

What meant by a quality of a product?  

Every article or product is required for specific purpose. If it is fully serves purpose, it is 

of good quality otherwise was not. It means that if an article or materials meets the 

specification required for its rightful use, it is good quality, and if not then the quality of 

article is considered to be poor. Statistical quality control plays a great role in 

maintaining the quality of product. There is hardly any control on the quality of products 

produced by the nature and hence the statistical quality control remained confined to 

articles produced by the industry. Variations in items of produced in any manner are 

inevitable. These variations occur due to two types of causes namely (i) chance factors 

and (ii) assignable cause.  

                    

Chance and Assignable cause of variation  

No production process is good enough to produce all items exactly alike in spite of 

sophisticated technology and precession of modern scientific equipments; no two articles 

produced by the same machine are perfectly identical in measurable characteristics. Some 

amount of variation, through of an infinitesimal nature, is inherit and inevitable in every 

repetitive process in industry. These variation are broadly termed as resulting from 

 Chance cause 

 Assignable cause  

Chance cause: - some stable patterns of variation or constant cause system are inherent 

in every scheme of production and inspection. The variation due to these chance causes 

can be regard as independent normal variation zero means and same error variance says 

 2
. 

http://en.wikipedia.org/wiki/Quality_(business)


                                  

These causes are natural to any production process and the variation due to them is 

known as natural variation or chance of variation. The natural variation is beyond the 

control of human hand and can not detected or prevented. Natural variation also some 

times known as allowable variation as it can not be eliminated and one has to allow such 

variation in process. Some deviation from the desired specification is bound to occur in 

the articles produced, howsoever efficient, the production process maybe. If the variation 

occur due to some inherit pattern of variation and no cause can be assign to it, it is called 

chance or random variation. Chance variation is tolerable and does not martially affect 

the quality of product. In such a situation, the process is said to be under statistical quality 

control. 

 

 Assignable cause: - an assignable cause system is one in which the cause of variation 

are not distributed normally but not sporadically. Assignable cause also known as non –

random cause and the variation due to these cause is termed as chaotic or erratic or 

preventive variation. Some of the important factors of assignable cause of variation are 

substandard or defective raw materials, new techniques or operations, negligence of 

operation, wrong or improper handling of the machines , faulty equipment, unskilled or in 

experienced technical staff, and so on. These cause can be identified and eliminated and 

have to be traced in any production process before the production becomes defective. If 

the article show marked deviation from the given specification of product, the utility of 

articles is jeopardy.  In that situation, one has to make a search for the cause of 

responsible for the large variation in the product. The cause due to faulty process and 

procedure are known as assignable causes. The variation due to assignable causes is of 

non-random nature. Hence, the role of statistical quality control is to collect and analyses 

relevant data for the purpose of detecting weather the process is under control on not. If 

not, what can possibly be the reason for faults? 

 

Example 1. A MOHA company produced bottles of various soft drinks.  Bottles of Pepsi 

are supposed to have 300ml of drink. Bottles are filled by a machine so some will have 

more than 300ml, some less if the machine is set incorrectly then the bottle will filled too 

much the company loose money or the bottle will filled too little customer complain. A 



                                  

company will take a sample of bottles. If the mean volume is significantly different from 

300ml it includes some thing wrong in the process.   

 

Example 2.  An electrical company makes light bulbs that are suppose to have an average 

life time of 1000 hours. A buyer intends to buy a batch of 10,000 bulbs. The buyer first 

test a sample of 100 light bulbs if they have a mean life time of ≥ 1000 hours he accepts 

the batch other wise the batch is rejected. 

 

Example 3. A company makes cups and plates. Some of cups might be chipped or 

cracked. A sample will be taken to cheek the proportion of cracked cups. If this is above 

a certain value the process must be adjusted. In all above three examples  

 There is a cost involving in sampling. 

 There is a decision to be made that can result an error. For these case wrongly 

rejects a good products it results supplier or producer risk as a result of good 

products are rejected. Where as wrongly accepted a bad products a consumers or 

buyers at risk at a result of bad or defective products are distributed to in a certain 

market. the main aims of statistical quality control (SQC) is that to develop and 

control statistical procedures that have  

 Low cost i.e. the ability to minimize cost. 

 Low producer risk. By taking remedial action and by controlling the production 

process, it reduces supplier or generally company risk. 

 Low buyers risk. This implies by checking and controlling the production process it 

minimize or reduces the consumer risk, by taking a carefully designed hypothesis 

testing. 

1.3 History of Statistical Quality Control 

                                  

Quality Control has been with us for a long time. How long? It is safe to say that when 

manufacturing began and competition accompanied manufacturing, consumers would 

compare and choose the most attractive product. If manufacturer A discovered that 

manufacturer B's profits soared, the former tried to improve his/her offerings, probably 

by improving the quality of the output, and/or lowering the price. Improvement of quality 



                                  

did not necessarily stop with the product - but also included the process used for making 

the product. 

The process was held in high esteem, as manifested by the medieval guilds of 

the Middle Ages. These guilds mandated long periods of training for 

apprentices, and those who were aiming to become master craftsmen had to 

demonstrate evidence of their ability. Such procedures were, in general, aimed at 

the maintenance and improvement of the quality of the process.  

In modern times we have professional societies, governmental regulatory bodies 

such as the Food and Drug Administration, factory inspection, etc., aimed at 

assuring the quality of products sold to consumers. Quality Control has thus had 

a long history. 

  Science of statistics in fairly recent   

On the other hand, statistical quality control is comparatively new. The science 

of statistics itself goes back only two to three centuries. And its greatest 

developments have taken place during the 20th century. The earlier applications 

were made in astronomy and physics and in the biological and social sciences. It 

was not until the 1920s that statistical theory began to be applied effectively to 

quality control as a result of the development of sampling theory 

The concept of quality control in manufacturing was first advanced by Walter 

Shewhart 

The first to apply the newly discovered statistical methods to the problem of 

quality control was Walter A. Shewhart of the Bell Telephone Laboratories. He 

issued a memorandum on May 16, 1924 that featured a sketch of a modern 

control chart.   

Shewhart kept improving and working on this scheme, and in 1931 he published 

a book on statistical quality control, "Economic Control of Quality of 



                                  

Manufactured Product", published by Van Nostrand in New York. This book set 

the tone for subsequent applications of statistical methods to process control.  

   Contributions of Dodge and Roming to sampling inspections   

Two other Bell Labs statisticians, H.F. Dodge and H.G. Romig spearheaded 

efforts in applying statistical theory to sampling inspection. The work of these 

three pioneers constitutes much of what nowadays comprises the theory of 

statistical quality and control. There is much more to say about the history of 

statistical quality control and the interested reader is invited to peruse one or 

more of the references.  

Classical techniques of hypothesis testing, or function of type I error and type II error etc. 

from the bases of acceptance sampling. This theory developed in the early 1900, by 

Neymon- Pearson, Fischer’s and others. In 1920s Shewhart introduces the control charts, 

this controls the quality of a product as it is being made rather than after it is made. This 

case is key components of statistical process control (SPC). The growth of statistical 

process control coincides with the growth of factors as away of manipulating goods. In 

1940s because of a war there were a lot of researchers and researches in to statistical 

process control would introduce sequential sampling. In non –sequential sampling we 

have a fixed sample size. Example we might decide to examine 100 items and rejected 

the batch if ≥ 10 items are bad this can be wistful. i.e. if we have sampled 20 items and 

found 8 are bad. It is clear that the batch is bad we still sample another 80 items. 

Similarly if we have examine 70 items all are bad includes it is clear that the batch is 

good. But we still need sample to another 70 items. This implies this process is 

inefficient. But sequential sampling is can be more efficient. In the 1950s, Japan’s 

industry has been destroyed by wars, they invited American statistician, “Deming” to 

introduce statistical methods to industry. Deming introduced “14 point” of good 

management and partiality. As a result Japan’s industry has grown. Now statistical 

quality control and Deming methods are used in many industries’s world wide.   

 



                                  

 Example for sequential sampling: - take a sample of 100 items if > 20 items are 

bad or defective we will reject the batch. This implies non–sequential sampling; in 

non–sequential sampling we need try to sample a fixed number of items. In 

sequential sampling after we have sampled the “i
th

” item there are three 

possibilities. 

 Accept the batch  

 Reject the batch  

 Sample another item.  

 

1.4 Uses of Statistical Quality Control  

 

Statistical quality control is a very important technique which is used to assess the cause 

of variations in the quality of manufactured product. It enables us to determine weather 

the quality standards are being met with out inspecting every unit produced in the 

process. It primary aims at the isolation of the chance and assignable cause of variation 

and consequently helps in the detection, identification and elimination of the assignable 

causes of erratic fluctuations when ever they are present. A production process is said to 

be in a state of statistical control if it is operating in the presence of chance causes only 

and is free from assignable cause of variation. 

The following are some of the principal uses when a manufacturing process is operating 

in state of statistical quality control. 

1. An obvious uses of statistical quality control is the control, maintenance, and 

improvement in the quality standard. 

2. The technique of brining a process in good statistical control involves the detection 

and removal of assignable cause of variation. This ultimately results in the diagnosis 

and elimination of many production troubles, and in the improvement quality.   

3. Before the development of statistical quality control techniques, the methods of 

controlling quality were confined only to finished products. But the statistical quality 

control techniques based on the probability and sampling techniques enable us to 

predict the quality of manufactured product. A process in good statistical control is 

predictable. It implies that there are no apparent chaotic or assignable causes and it is 

believe that it will remain in provided the conditions of manufacture remain same. 



                                  

Hence, if a process is working in a state of statistical control, we can more safely 

guarantee the product. This gives better quality assurance and hence more satisfaction 

to the customer. 

4.   Statistical quality control techniques enable us to decide when to take remedial 

action and when to leave the process alone. If the process is in statistical control, we 

know that it is going to do and hence we can safely dispense with frequent and 

unwarranted inspection of the manufactured units and adjustment in the machines. If 

the product is not standard quality, i.e. the product does not conform to specifications, 

in spite of the fact that the process is in statistical control, then some radical change in 

the production process, raw material, machines, equipment, etc... has to be done.  

The diagnosis of assignable causes of variation gives us an early and timely warning 

about the occurrence of defects. this is ultimately help in 

 Reduction in waste and scrap. 

 Reduction in cost per unit 

 Reduction in inspection 

All these factors result in less cost of production, enhanced productivity and more profits 

for the manufacturing concerns. 

5. The mere presence of a statistical quality control scheme in any manufacturing 

concern has a very healthy effect as it creates quality consciousness among their 

personnel. Such a scheme keeps the staff and the workers on their alert theory by 

increasing their efficiency. 

 

1.4 Quality Improvement in Modern Business Environment  

 Invariably, the Quality of output is directly dependent upon that of the participating 

constituents. Some of which are sustainable and effectively controlled while others are 

[not].. 

The major problem which leads to a decrease in sales was that the specifications did not 

include the most important factor, “What the specifications have to state in order to 

satisfy the customer requirements?” 

http://en.wikipedia.org/wiki/Sale
http://en.wikipedia.org/wiki/Specification


                                  

The major characteristics, ignored during the search to improve manufacture and overall 

business performance were: 

 Reliability  

 Maintainability  

 Safety  

 Strength. 

As the most important factor had been ignored, a few refinements had to be 

introduced: 

1. Marketing had to carry out their work properly and define the customer’s 

specifications.  

2. Specifications had to be defined to conform to these requirements.  

3. Conformance to specifications i.e. drawings, standards and other relevant 

documents, were introduced during manufacturing, planning and control.  

4. Management had to confirm all operators are equal to the work imposed on 

them and holidays, celebrations and disputes did not affect any of the quality 

levels.  

5. Inspections and tests were carried out, and all components and materials, 

bought in or otherwise, conformed to the specifications, and the measuring 

equipment was accurate, this is the responsibility of the QA/QC department.  

6. Any complaints received from the customers were satisfactorily dealt with in a 

timely manner.  

7. Feedback from the user/customer is used to review designs.  

8. Consistent data recording and assessment and documentation integrity.  

9. Product and/or process change management and notification.  

If the specification does not reflect the true quality requirements, the product's quality 

cannot be guaranteed. For instance, the parameters for a pressure vessel should cover not 

only the material and dimensions but operating, environmental, safety, reliability and 

maintainability requirements. 

http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Drawing
http://en.wikipedia.org/wiki/Planning
http://en.wikipedia.org/wiki/Operator
http://en.wikipedia.org/w/index.php?title=Quality_control_testing&action=edit&redlink=1
http://en.wiktionary.org/wiki/component
http://en.wikipedia.org/wiki/Material
http://en.wikipedia.org/w/index.php?title=Measuring_equipment&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Measuring_equipment&action=edit&redlink=1
http://en.wikipedia.org/wiki/Accurate
http://en.wikipedia.org/wiki/Complaint
http://en.wikipedia.org/wiki/Dimension
http://en.wikipedia.org/wiki/Safety
http://en.wikipedia.org/wiki/Reliability_engineering
http://en.wikipedia.org/wiki/Maintainability


                                  

During the 1980s, the concept of “company quality” with the focus on management and 

people came to the fore. It was realized that, if all departments approached quality with 

an open mind, success was possible if the management led the quality improvement 

process. 

The company-wide quality approach places an emphasis on four aspects:- 

1. Elements such as controls, job management, adequate processes, performance and 

integrity criteria and identification of records  

2. Competence such as knowledge, skills, experience, qualifications  

3. Soft elements, such as personnel integrity, confidence, organizational culture, 

motivation, team spirit and quality relationships.  

4. Infrastructure (as it enhances or limits functionality)  

The quality of the outputs is at risk if any of these aspects is deficient in any way. 

The approach to quality management given here is therefore not limited to the 

manufacturing theatre only but can be applied to any business or non-business activity: 

 Design work  

 Administrative services  

 Consulting  

 Banking  

 Insurance  

 Computer software development  

 Retailing  

 Transportation  

 Education  

It comprises a quality improvement process, which is generic in the sense it can be 

applied to any of these activities and it establishes a behaviors pattern, which supports the 

achievement of quality. 

http://en.wikipedia.org/wiki/Management
http://en.wikipedia.org/wiki/People
http://en.wikipedia.org/wiki/Departmentalization
http://en.wikipedia.org/wiki/Improvement
http://en.wikipedia.org/wiki/Integrity
http://en.wikipedia.org/wiki/Confidence
http://en.wikipedia.org/wiki/Organizational_culture
http://en.wikipedia.org/wiki/Motivation
http://en.wikipedia.org/w/index.php?title=Team_spirit&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Behaviour_pattern&action=edit&redlink=1


                                  

This in turn is supported by quality management practices which can include a number of 

business systems and which are usually specific to the activities of the business unit 

concerned. 

It has become customary to use consultants and contractors when introducing new quality 

practices and methods, particularly where the relevant skills and expertise are not 

available within the organization. In addition, when new initiatives and improvements are 

required to boost the current quality system, or perhaps improve upon current 

manufacturing systems, the use of temporary consultants becomes a viable solution when 

allocating valuable resources. 

 There are various types of consultants and contractors available in the market; 

most will have the skills needed to facilitate improvement activities such as 

Quality Management Systems (QMS) auditing and procedural documentation 

writing. More experienced consultants are likely to have knowledge of specialized 

quality improvement activities such as Six Sigma, Measurement Systems 

Analysis (MSA), and Quality Function. 

Good manufacturing practice 

"Good manufacturing practice" or "GMP" refers to the quality control of 

manufacturing for foods, pharmaceutical products, and medical devices. GMPs are 

guidelines that outline the aspects of production that would affect the quality of a 

product. Many countries have legislated that pharmaceutical and medical device 

companies must follow GMP procedures, and have created their own GMP guidelines 

that correspond with their legislation. 

Other good practices 

Other good-practice systems, along the same lines as GMP, exist: 

 Good laboratory practice (GLP), for laboratories conducting non-clinical studies 

(toxicology and pharmacology studies in animals);  

http://en.wikipedia.org/wiki/Business_system
http://en.wikipedia.org/wiki/Business_unit
http://en.wikipedia.org/wiki/Consultant
http://en.wikipedia.org/wiki/Six_Sigma
http://en.wikipedia.org/wiki/Measurement_Systems_Analysis
http://en.wikipedia.org/wiki/Measurement_Systems_Analysis
http://en.wikipedia.org/wiki/Quality_control
http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Foods
http://en.wikipedia.org/wiki/Pharmaceutical
http://en.wikipedia.org/wiki/Medical_devices
http://en.wikipedia.org/wiki/Good_laboratory_practice
http://en.wikipedia.org/wiki/Clinical_trial
http://en.wikipedia.org/wiki/Toxicology
http://en.wikipedia.org/wiki/Pharmacology


                                  

 Good clinical practice (GCP), for hospitals and clinicians conducting clinical 

studies on new drugs in humans;  

 Good regulatory practice (GRP), for the management of regulatory commitments, 

procedures and documentation.  

Collectively, these and other good-practice requirements are referred to as "GxP" 

requirements, all of which follow similar philosophies.  

Quality Management 

The role of a quality manager is one that is constantly evolving.  With increased demands 

on manufacturing operations quality managers are finding themselves subject to stricter 

guidelines from both their customers and regulatory bodies.  Quality managers are now 

required to take proactive approaches to ensure they are meeting the variety of 

requirements that are imposed on them.  Historically individual programs were developed 

at the plant level to address quality needs; however, quality managers are now taking an 

approach that includes a complete enterprise wide view of the business. 

IQS (International Quality Standard) provides the following capabilities to quality 

managers: 

 Document operating procedures, policies, and work instructions  

 Manage nonconformance’s and corrective actions  

 Manage and investigate customer complaints  

 Manage supplier related issues including supplier performance  

 Implement closed-loop processes that support continuous improvement efforts .  

1.6   Modeling Process Quality  

 A process is a unique combination of tools, materials, methods, and people engaged in 

producing a measurable output; for example a manufacturing line for machine parts. All 

processes have inherent statistical variability which can be evaluated by statistical 

methods. 

http://en.wikipedia.org/wiki/Good_clinical_practice
http://en.wikipedia.org/wiki/Hospital
http://en.wikipedia.org/wiki/Clinician
http://en.wikipedia.org/w/index.php?title=Good_regulatory_practice&action=edit&redlink=1
http://en.wikipedia.org/wiki/GxP
http://en.wikipedia.org/wiki/Statistical_variability


                                  

The Process Capability is a measurable property of a process to the specification, 

expressed as a process capability index (e.g., Cpk or Cpm) or as a process performance 

index (e.g., Ppk or Ppm). The output of this measurement is usually illustrated by a 

histogram and calculations that predict how many parts will be produced out of 

specification. 

Process capability is also defined as the capability of a process to meet its purpose as 

managed by an organization's management and process definition structures. 

Two parts of process capability are: 1) Measure the variability of the output of a process, 

and 2) Compare that variability with a proposed specification or product tolerance. 

Measure the Process 

The input of a process usually has at least one or more measurable characteristics that are 

used to specify outputs. These can be analyzed statistically; where the output data shows 

a normal distribution the process can be described by the process mean (average) and the 

standard deviation. 

A process needs to be established with appropriate process controls in place. A control 

chart analysis is used to determine whether the process is "in statistical control". If the 

process is not in statistical control then capability has no meaning. Therefore the process 

capability involves only common cause variation and not special cause variation. 

A batch of data needs to be obtained from the measured output of the process. The more 

data that is included the more precise the result, however an estimate can be achieved 

with as few as 17 data points. This should include the normal variety of production 

conditions, materials, and people in the process. With a manufactured product, it is 

common to include at least three different production runs, including start-ups. 

The process mean (average) and standard deviation are calculated. With a normal 

distribution, the "tails" can extend well beyond plus and minus three standard deviations, 

but this interval should contain about 99.73% of production output. Therefore for a 

http://en.wikipedia.org/wiki/Process_capability_index
http://en.wikipedia.org/wiki/Process_performance_index
http://en.wikipedia.org/wiki/Process_performance_index
http://en.wikipedia.org/wiki/Histogram
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Process_control
http://en.wikipedia.org/wiki/Control_chart
http://en.wikipedia.org/wiki/Control_chart
http://en.wikipedia.org/wiki/Common_cause_variation
http://en.wikipedia.org/wiki/Special_cause_variation


                                  

normal distribution of data the process capability is often described as the relationship 

between six standard deviations and the required specification. 

Capability study 

The input of a process is expected to meet customer requirements, specifications, or 

product tolerances. Engineering can conduct a process capability study to determine the 

extent to which the process can meet these expectations. 

The ability of a process to meet specifications can be expressed as a single number using 

a process capability index or it can be assessed using control charts. Either case requires 

running the process to obtain enough measurable output so that engineering is confident 

that the process is stable and so that the process mean and variability can be reliably 

estimated. Statistical process control defines techniques to properly differentiate between 

stable processes, processes that are drifting (experiencing a long-term change in the mean 

of the output), and processes that are growing more variable. Process capability indices 

are only meaningful for processes that are stable (in a state of statistical control). 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Specification
http://en.wikipedia.org/wiki/Tolerance_(engineering)
http://en.wikipedia.org/wiki/Process_capability_index
http://en.wikipedia.org/wiki/Control_chart
http://en.wikipedia.org/wiki/Statistical_process_control
http://en.wikipedia.org/wiki/Process_capability_index
http://en.wikipedia.org/wiki/Statistical_control


                                  

                                   Chapter Two 

 

 2.Methods of Statistical Process Control and Capability Analysis  

  

                         2.1 Introduction  

Statistical process control (SPC) is an effective method of monitoring a process through 

the use of control charts. Control charts enable the use of objective criteria for 

distinguishing background variation from events of significance based on statistical 

techniques. Much of its power lies in the ability to monitor both process center and its 

variation about that center, by collecting data from samples at various points within the 

process. Variations in the process that may affect the quality of the end product or service 

can be detected and corrected, thus reducing waste as well as the likelihood that problems 

will be passed on to the customer. With its emphasis on early detection and prevention of 

problems, SPC has a distinct advantage over quality methods, such as inspection, that 

apply resources to detecting and correcting problems in the end product or service. 

The underlying concept of statistical process control is based on a comparison of what is 

happening today with what happened previously. We take a snapshot of how the process 

typically performs or build a model of how we think the process will perform and 

calculate control limits for the expected measurements of the output of the process. Then 

we collect data from the process and compare the data to the control limits. The majority 

of measurements should fall within the control limits. Measurements that fall outside the 

control limits are examined to see if they belong to the same population as our initial 

snapshot or model. Stated differently, we use historical data to compute the initial control 

limits. Then the data are compared against these initial limits. Points that fall outside of 

the limits are investigated and, perhaps, some will later be discarded. If so, the limits 

would be recomputed and the process repeated.  

In addition to reducing waste, SPC can lead to a reduction in the time required to produce 

the product or service from end to end. This is partially due to a diminished likelihood 

that the final product will have to be reworked, but it may also result from using SPC data 

http://en.wikipedia.org/wiki/Control_chart


                                  

to identify bottlenecks, wait times, and other sources of delays within the process. 

Process cycle time reductions coupled with improvements in yield have made SPC a 

valuable tool from both a cost reduction and a customer satisfaction standpoint. 

 

                      

2.2 History of Statistical Process Control  

Statistical process control was pioneered by Walter A. Shewhart in the early 1920s. W. 

Edwards Deming later applied SPC methods in the United States during World War II, 

thereby successfully improving quality in the manufacture of munitions and other 

strategically important products. Deming was also instrumental in introducing SPC 

methods to Japanese industry after the war had ended. Shewhart created the basis for the 

control chart and the concept of a state of statistical control by carefully designed 

experiments. While Dr. Shewhart drew from pure mathematical statistical theories, he 

understood that data from physical processes seldom produces a "normal distribution 

curve" (a Gaussian distribution, also commonly referred to as a "bell curve"). He 

discovered that observed variation in manufacturing data did not always behave the same 

way as data in nature (for example, Brownian motion of particles). Dr. Shewhart 

concluded that while every process displays variation, some processes display controlled 

variation that is natural to the process (common causes of variation), while others display 

uncontrolled variation that is not present in the process causal system at all times (special 

causes of variation). 

In 1989, the Software Engineering Institute introduced the notion that SPC can be 

usefully applied to non-manufacturing processes, such as software engineering processes, 

in the Capability Maturity Model (CMM). This notion that SPC is a useful tool when 

applied to non-repetitive, knowledge-intensive processes such as engineering processes 

has encountered much skepticism, and remains controversial today. 

 The following description relates to manufacturing rather than to the service industry, 

although the principles of SPC can be successfully applied to either. For a description and 

example of how SPC applies to a service environment, refer to Roberts (2005.SPC has 
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also been successfully applied to detecting changes in organizational behavior with 

Social Network Change Detection introduced by McCulloh (2007). Selden describes how 

to use SPC in the fields of sales, marketing, and customer service, using Deming's 

famous Red Bead Experiment as an easy to follow demonstration.  

In mass-manufacturing, the quality of the finished article was traditionally achieved 

through post-manufacturing inspection of the product; accepting or rejecting each article 

(or samples from a production lot) based on how well it met its design specifications. In 

contrast, Statistical Process Control uses statistical tools to observe the performance of 

the production process in order to predict significant deviations that may later result in 

rejected product. 

Two kinds of variation occur in all manufacturing processes: both these types of process 

variation cause subsequent variation in the final product. The first is known as natural or 

common cause variation and may be variation in temperature, properties of raw materials, 

strength of an electrical current etc. This variation is small, the observed values generally 

being quite close to the average value. The pattern of variation will be similar to those 

found in nature, and the distribution forms the bell-shaped normal distribution curve. The 

second kind of variation is known as special cause variation, and happens less frequently 

than the first. 

For example, a breakfast cereal packaging line may be designed to fill each cereal box 

with 500 grams of product, but some boxes will have slightly more than 500 grams, and 

some will have slightly less, in accordance with a distribution of net weights. If the 

production process, its inputs, or its environment changes (for example, the machines 

doing the manufacture begin to wear) this distribution can change. For example, as its 

cams and pulleys wear out, the cereal filling machine may start putting more cereal into 

each box than specified. If this change is allowed to continue unchecked, more and more 

product will be produced that fall outside the tolerances of the manufacturer or consumer, 

resulting in waste. While in this case, the waste is in the form of "free" product for the 

consumer, typically waste consists of rework or scrap. 
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By observing at the right time what happened in the process that led to a change, the 

quality engineer or any member of the team responsible for the production line can 

troubleshoot the root cause of the variation that has crept in to the process and correct the 

problem. 

SPC indicates when an action should be taken in a process, but it also indicates when NO 

action should be taken. An example is a person who would like to maintain a constant 

body weight and takes weight measurements weekly. A person who does not understand 

SPC concepts might start dieting every time his or her weight increased, or eat more 

every time his or her weight decreased. This type of action could be harmful and possibly 

generate even more variation in body weight. SPC would account for normal weight 

variation and better indicate when the person is in fact gaining or losing weight. 

              War time production 

Around the time of World War I, manufacturing processes typically became more 

complex with larger numbers of workers being supervised. This period saw the 

widespread introduction of mass production and piecework, which created problems as 

workmen could now earn more money by the production of extra products, which in turn 

led to bad workmanship being passed on to the assembly lines. 

To counter bad workmanship, full time inspectors were introduced into the factory to 

identify quarantine and ideally correct product quality failures. Quality control by 

inspection in the 1920s and 1930s led to the growth of quality inspection functions, 

separately organized from production and big enough to be headed by superintendents. 

The systematic approach to quality started in industrial manufacture during the 1930s, 

mostly in the USA, when some attention was given to the cost of scrap and rework. With 

the impact of mass production, which was required during the Second World War, it 

became necessary to introduce a more appropriate form of quality control which can be 

identified as Statistical Quality Control, or SQC. Some of the initial work for SQC is 

credited to Walter A. Shewhart of Bell Labs, starting with his famous one-page 

memorandum of 1924. 

.
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SQC came about with the realization that quality cannot be fully inspected into an 

important batch of items. By extending the inspection phase and making inspection 

organizations more efficient, it provides inspectors with control tools such as sampling 

and control charts, even where 100 per cent inspection is not practicable. Standard 

statistical techniques allow the producer to sample and test a certain proportion of the 

products for quality to achieve the desired level of confidence in the quality of the entire 

batch or production run. 

                   Postwar 

In the period following World War II, many countries' manufacturing capabilities that 

had been destroyed during the war were rebuilt. The U.S. sent General Douglas 

MacArthur to oversee the re-building of Japan. During this time, General MacArthur 

involved two key individuals in the development of modern quality concepts: W. 

Edwards Deming and Joseph Juran. Both individuals promoted the collaborative concepts 

of quality to Japanese business and technical groups, and these groups utilized these 

concepts in the redevelopment of the Japanese economy. 

Although there were many individuals trying to lead United States industries towards a 

more comprehensive approach to quality, the U.S. continued to apply the QC concepts of 

inspection and sampling to remove defective product from production lines, essentially 

ignoring advances in QA for decades.           

     2.3 Definitions of Statistical Process Control  

 

Statistical Process Control (SPC) is an effective method of monitoring a process through 

the use of control charts. Much of its power lies in the ability to monitor both process 

center and its variation about that center. By collecting data from samples at various 

points within the process, variations in the process that may affect the quality of the end 

product or service can be detected and corrected, thus reducing waste as well as the 

likelihood that problems will be passed on to the customer. It has an emphasis on early 

detection and prevention of problems. 

.
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As already stated the main objective in any production process is to control and maintain 

a satisfactory quality level for its product. In other words, it should be insured that the 

product conformed to specified quality standards, i.e. it should not contain a large number 

of defective items. This is termed as “process control” and is achieved through the 

technique of control charts invented by W.A.Shewhart in 1924.on other hand, by product 

control we mean controlling the quality of the product by critical examination at strategic 

points  and this archived through ‘sampling inspection plans’ invented by Dodge and 

Roming. Product control limits aims at guarantying a certain quality level is being 

maintained by the producer. In other words, it attempts to ensure that the product 

marketed for sale does not contain a large number of defective items.  

 Examples 

A thermostat is a simple example for a closed control loop: It constantly measures the 

current temperature and controls the heater's valve setting to increase or decrease the 

room temperature according to the user-defined setting. A simple method switches the 

heater either completely on, or completely off, and an overshoot and undershoot of the 

controlled temperature must be expected. A more expensive method varies the amount of 

heat provided by the heater depending on the difference between the required temperature 

(the "set point") and the actual temperature. This minimizes over/undershoots. 

Many 
 
organizations use statistical process control to bring the organization to Six Sigma 

levels of quality, in other words, so that the likelihood of an unexpected failure is 

confined to six standard deviations on the normal distribution. This probability is less 

than four one-millionths. Items controlled often include clerical tasks such as order-entry 

as well as conventional manufacturing tasks. Traditional statistical process controls in 

manufacturing operations usually proceed by randomly sampling and testing a fraction of 

the output. Variances in critical tolerances are continuously tracked and where necessary 

corrected before bad parts are produced. 

 

.

http://en.wikipedia.org/wiki/Thermostat
http://en.wikipedia.org/wiki/Statistical_process_control
http://en.wikipedia.org/wiki/Organization
http://en.wikipedia.org/wiki/Six_Sigma
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/1_E-6
http://en.wikipedia.org/wiki/Clerical_task


                                  

                                      2.3.   Control Charts 

One of the most important tools of production management and control of quality in the 

manufactured product is the ‘control charts’ technique. The discovery and development 

of control charts were made by a young physicist Walter A. Shewhart of bell telephone 

laboratories in 1924 and the following years and is regards as a land mark in the history 

of industrial quality control. Based on the theory of probability and sampling, it enables 

us to detect the presence of assignable causes of erratic variation in the process. These 

causes are then identified and eliminated and the process is established and controlled at 

desired performances. In other words, control chart is in an indispensable tool for 

bringing a process under statistical control. As already pointed out, a process in statistical 

control implies that there are no apparent chaotic and assignable causes of variation and it 

will remain in control provided the conditions of manufacture the same. Such the process 

does not call for any corrective actions on the part of management because the entire 

variation in the product is due to chance causes which are beyond the control of human 

hand. The Shewhart’s control charts provide us a very simple but powerful graphic 

method of finding if a process is in statistical control or not. Its construction is based 

plotting 3-  
limits and sequence of suitable sample statistic example, mean, range, 

standard deviation, fraction defective etc…computed from independent sample drawn at 

random from the product of the process. These sample points depict the frequency extent 

of variations from specified standards. Any sample point is going out side 3- control 

limits is an indication of the lack of statistical control. i.e. presence of some assignable 

cause of variation, which must be traced, identified and eliminated. A typical control 

charts consists of the following three horizontal lines. 

 Upper control limit (UCL) 

 Lower control limit (LCL) 

 Central line (CL) 

  Control charts in this section are classified and described according to three general 

types: variables, attributes and multivariate.  

 



                                  

Comparison of univariate and multivariate control data 

Control charts are used to routinely monitor quality. Depending on the number of process 

characteristics to be monitored, there are two basic types of control charts. The first, 

referred to as a univariate control chart, is a graphical display (chart) of one quality 

characteristic. The second, referred to as a multivariate control chart, is a graphical 

display of a statistic that summarizes or represents more than one quality characteristic.  

Characteristics of control charts 

If a single quality characteristic has been measured or computed from a sample, the 

control chart shows the value of the quality characteristic versus the sample number or 

versus time. In general, the chart contains a center line that represents the mean value for 

the in-control process. Two other horizontal lines, called the upper control limit (UCL) 

and the lower control limit (LCL) are also shown on the chart. These control limits are 

chosen so that almost all of the data points will fall within these limits as long as the 

process remains in-control. The figure below illustrates this. 

Chart 

demonstrating 

basis of 

control chart  

 

 Why control charts "work" 

 

.



                                  

The control limits as pictured in the graph might be .001 probability limits. If so, and if 

chance causes alone were present, the probability of a point falling above the upper limit 

would be one out of a thousand, and similarly, a point falling below the lower limit would 

be one out of a thousand. We would be searching for an assignable cause if a point would 

fall outside these limits. Where we put these limits will determine the risk of undertaking 

such a search when in reality there is no assignable cause for variation.  

Since two out of a thousand is a very small risk, the 0.001 limits may be said to give 

practical assurances that, if a point falls outside these limits, the variation was caused be 

an assignable cause. It must be noted that two out of one thousand is a purely arbitrary 

number. There is no reason why it could not have been set to one out a hundred or even 

larger. The decision would depend on the amount of risk the management of the quality 

control program is willing to take. In general (in the world of quality control) it is 

customary to use limits that approximate the 0.002 standard.  

Letting X denote the value of a process characteristic, if the system of chance causes 

generates a variation in X that follows the normal distribution, the 0.001 probability limits 

will be very close to the 3  limits. From normal tables we glean that the 3  in one 

direction is 0.00135, or in both directions 0.0027. For normal distributions, therefore, the 

3  limits are the practical equivalent of 0.001 probability limits.  

                            Plus or minus "3 sigma" limits are typical 

In the U.S., whether X is normally distributed or not, it is an acceptable practice to base 

the control limits upon a multiple of the standard deviation. Usually this multiple is 3 and 

thus the limits are called 3-sigma limits. This term is used whether the standard deviation 

is the universe or population parameter, or some estimate thereof, or simply a "standard 

value" for control chart purposes. It should be inferred from the context what standard 

deviation is involved. (Note that in the U.K., statisticians generally prefer to adhere to 

probability limits.)  

If the underlying distribution is skewed, say in the positive direction, the 3-sigma limit 

will fall short of the upper 0.001 limit, while the lower 3-sigma limit will fall below the 

.



                                  

0.001 limit. This situation means that the risk of looking for assignable causes of positive 

variation when none exists will be greater than one out of a thousand. But the risk of 

searching for an assignable cause of negative variation, when none exists, will be 

reduced. The net result, however, will be an increase in the risk of a chance variation 

beyond the control limits. How much this risk will be increased will depend on the degree 

of skew ness.  

If variation in quality follows a Poisson distribution, for example, for which np = .8, the 

risk of exceeding the upper limit by chance would be raised by the use of 3-sigma limits 

from 0.001 to 0.009 and the lower limit reduces from 0.001 to 0. For a Poisson 

distribution the mean and variance both equal np. Hence the upper 3-sigma limit is 0.8 + 

3 sqrt(.8) = 3.48 and the lower limit = 0 (here sqrt denotes "square root"). For np = .8 the 

probability of getting more than 3 successes = 0.009.  

                    Strategies for dealing with out-of-control findings 

If a data point falls outside the control limits, we assume that the process is probably out 

of control and that an investigation is warranted to find and eliminate the cause or causes.  

Does this mean that when all points fall within the limits, the process is in control? Not 

necessarily. If the plot looks non-random, that is, if the points exhibit some form of 

systematic behavior, there is still something wrong. For example, if the first 25 of 30 

points fall above the center line and the last 5 fall below the center line, we would wish to 

know why this is so. Statistical methods to detect sequences or nonrandom patterns can 

be applied to the interpretation of control charts. To be sure, "in control" implies that all 

points are between the controls limits and they form a random pattern.            

 

 

            



                                  

                          2.3.1  Tools for Statistical Quality Control 

During the 1920's, Dr. Walter A. Shewhart proposed a general model for control charts as 

follows: 

Shewhart Control Charts for variables 

Let w be a sample statistic that measures some continuously varying quality characteristic 

of interest (e.g., thickness), and suppose that the mean of w is w, with a standard 

deviation of w. Then the center line, the UCL and the LCL are  

UCL = w   + k w  

Center Line = w  

LCL = w   - k w  

Where k is the distance of the control limits from the center line, expressed in terms of 

standard deviation units. When k is set to 3, we speak of 3-sigma control charts.  

Historically, k = 3 has become an accepted standard in industry.  

The centerline is the process mean, which in general is unknown. We replace it with a 

target or the average of all the data. The quantity that we plot is the sample average, . 

The chart is called the chart.  

We also have to deal with the fact that is, in general, unknown. Here we replace w with 

a given standard value, or we estimate it by a function of the average standard deviation. 

This is obtained by averaging the individual standard deviations that we calculated from 

each of m preliminary (or present) samples, each of size n. This function will be 

discussed shortly.  

It is equally important to examine the standard deviations in ascertaining whether the 

process is in control. There is, unfortunately, a slight problem involved when we work 

with the usual estimator of . The following discussion will illustrate this.  

Sample 

Variance  

If 
2
 is the unknown variance of a probability distribution, then an 

unbiased estimator of 
2
 is the sample variance  



                                  

 

However, s, the sample standard deviation is not an unbiased estimator 

of . If the underlying distribution is normal, then s actually estimates 

c4 , where c4 is a constant that depends on the sample size n. This 

constant is tabulated in most text books on statistical quality control and 

may be calculated using  

C4 factor  

 

To compute this we need a non-integer factorial, which is defined for 

n/2 as follows:  

Fractional 

Factorials  

 

With this definition the reader should have no problem verifying that 

the c4 factor for n = 10 is .9727.  

Mean and 

standard 

deviation of 

the estimators  

So the mean or expected value of the sample standard deviation is c4 .  

The standard deviation of the sample standard deviation is  

 



                                  

 What are the differences between control limits and specification 

limits?  

Control limits 

vs. 

specifications  

Control Limits are used to determine if the process is in a state of 

statistical control (i.e., is producing consistent output).  

Specification Limits are used to determine if the product will function 

in the intended fashion.  

  

How many data points are needed to set up a control chart?  

 How many samples are needed? 

 Shewhart gave the following rule of thumb:  

"It has also been observed that a person would seldom if ever be 

justified in concluding that a state of statistical control of a given 

repetitive operation or production process has been reached until he 

had obtained, under presumably the same essential conditions, a 

sequence of not less than twenty five samples of size four that are in 

control."  

It is important to note that control chart properties, such as false alarm 

probabilities, are generally given under the assumption that the 

parameters, such as and , are known. When the control limits are not 

computed from a large amount of data, the actual properties might be 

quite different from what is assumed.  
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When do we recalculate control limits?  

When do we 

recalculate 

control limits?  

Since a control chart "compares" the current performance of the process 

characteristic to the past performance of this characteristic, changing 

the control limits frequently would negate any usefulness.  

So, only change your control limits if you have a valid, compelling 

reason for doing so. Some examples of reasons:  

 When you have at least 30 more data points to add to the chart 

and there have been no known changes to the process - you get 

a better estimate of the variability  

 If a major process change occurs and affects the way your 

process runs.  

 If a known, preventable act changes the way the tool or process 

would behave (power goes out, consumable is corrupted or bad 

quality, etc.)  

 

  

 

 

 

 

 

 

 

 

.



                                  

As already pointed out the control of quality in manufactured product can be broadly in 

to two heads; 

 1. Control charts for variable (mean, range standard deviation charts) 

2. Control chats for attributes (p, np and c chats) 

                     2.3.2 Variable Control Charts  

As pointed out above, ‘control charts’ is the technique of process control. A number of 

control charts have been developed depending on the ways of assessing the quality of 

manufactured product. Control charts for variables are designed to achieved and maintain 

a satisfactory quality level for a process whose product is amenable to quantitative 

measurements like the thickness, length or diameter of screw or nut, weight of the bolts, 

tensile strength of yarn or steel pipes, resistance of a wire, etc. the observation on such 

units can be expressed in specific unit of measurements.  In such cases the quality control 

involves the control of variation both in measures of   central tendency and depression of 

the characteristics. Variable control charts are used when quality is measured as variables 

(length, weight, tensile strength, etc.). The main purpose of the variable control charts is 

to monitor the process mean and the standard deviation.The variables under consideration 

are of continuous character and are assumed to be distributed normally. Control charts for 

variables are: 

1. Control chart for mean 

2. Control charts for range(R) 

3. Control charts for standard deviation(S) 

 2.3.2.1 Shewhart X  and R and S Control Charts 
 

 

                            and S Shewhart Control Charts  

 

We begin with and S charts. We should use the s chart first to determine if the 

distribution for the process characteristic is stable.  

.



                                  

Let us consider the case where we have to estimate by analyzing past data. Suppose we 

have m preliminary samples at our disposition, each of size n, and let si be the standard 

deviation of the ith sample. Then the average of the m standard deviations is  

                                      

Control 

Limits for 

and S 

Control 

Charts  

We make use of the factor c4 described on the previous page.  

The statistic is an unbiased estimator of . Therefore, the parameters 

of the S chart would be  

 

 

 

Similarly, the parameters of the chart would be  

 

 

 

, the "grand" mean is the average of all the observations.  

It is often convenient to plot the and s charts on one page.  

                

                           Control Limits for and R Control Charts 

 

and R control charts  

If the sample size is relatively small (say equal to or less than 10), we can use the range 

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc32.htm#C4


                                  

instead of the standard deviation of a sample to construct control charts on and the 

range, R. The range of a sample is simply the difference between the largest and 

smallest observation.  

There is a statistical relationship between the mean range for data from a normal 

distribution and , the standard deviation of that distribution. This relationship depends 

only on the sample size, n. The mean of R is d2 , where the value of d2 is also a 

function of n. An estimator of is therefore R /d2.  

Armed with this background we can now develop the and R control chart.  

Let R1, R2... Rk, be the range of k samples. The average range is  

 

Then an estimate of can be computed as  

 

This chart controls the process variability since the sample range is related to the 

process standard deviation. The center line of the R chart is the average range.  

To compute the control limits we need an estimate of the true, but unknown standard 

deviation W = R/ . This can be found from the distribution of W = R/ (assuming that 

the items that we measure follow a normal distribution). The standard deviation of W is 

d3, and is a known function of the sample size, n. It is tabulated in many textbooks on 

statistical quality control.  

Therefore since R = W , the standard deviation of R is R = d3 . But since the true is 

unknown, we may estimate R by  

 



                                  

As a result, the parameters of the R chart with the customary 3-sigma control limits are  

 

 

 

As was the case with the control chart parameters for the subgroup averages, defining 

another set of factors will ease the computations, namely:  

D3 = 1 - 3 d3 / d2 and D4 = 1 + 3 d3 / d2. These yield  

 

 

 

The factors D3 and D4 depend only on n, and are tabled below. 

      

Factors for Calculating Limits for and R Charts  

n A2 D3 D4 

2 1.880 0 3.267 

3 1.023 0 2.575 

4 0.729 0 2.282 

5 0.577 0 2.115 

6 0.483 0 2.004 

7 0.419 0.076 1.924 

8 0.373 0.136 1.864 

9 0.337 0.184 1.816 

10 0.308 0.223 1.777 

In general, the range approach is quite satisfactory for sample sizes up to around 10. 

.



                                  

For larger sample sizes, using subgroup standard deviations is preferable. For small 

sample sizes, the relative efficiency of using the range approach as opposed to using 

standard deviations is shown in the following table.  

Efficiency of Yon S versus R 

n  Relative 

Efficiency  

 

2  1.000  

3  0.992  

4  0.975  

5  0.955  

6  0.930  

10  0.850  
 



                                  

A typical sample size is 4 or 5, so not much is lost by using the range for such sample 

sizes.  

Generally the construction of  and R chart 

1. for construction of x bar charts: - the control charts for means is drawn on the 

graph paper by taking the sample number along the horizontal scale, (x-axis) and 

the statistics  along the vertical scale (y-axis). Sample points (sample means 1, 

2…. k) are then plotted as plotted as points (dots) against the corresponding 

sample number. These points may or may not be joined. The central line is drawn 

as a bold (dark) horizontal line at    (if µ is known) or at  (if µ is not 

known). The UCL  and LCL are plotted as dotted horizontal lines at the 

computed values given. 

2. Construction of R charts: - as incase of -charts, the samples or subgroups of 

numbers is taken along horizontal scale and the statistics (Range) is taken along 

vertical scale. The sample points R1, R2, R3…Rk are then plotted as points (dots) 

against the corresponding sample numbers. The central line is taken as the hold 

horizontal lines at R-bar and UCLR and LCLR are plotted as dotted horizontal 

lines at the computed values given. 

Interpretations of  and R Charts: 

1. The process is termed to be in statistical control if both the  and R charts exhibit 

control. i.e. all the sample points fall with in the control limits in both charts. Such 

situation implies that the process is operating under the influence of chance causes 

of variations in the product is natural variation. A process in control implies that 

there is no reason for worry as there are no apparent assignable or erratic causes of 

variation. If the process exhibits statistical control for quite some time and for 

sizable volume of out put then we believe that it will remain in control if the 

conditions of manufacture remain the same. It should be clearly understood that a 

process in control does not imply that its product is satisfactory. Product control is 



                                  

achieved through sampling Inspection plan discussed later. 

2. If one or more of the points in any or both the charts go out of the control limits we 

say that the process is out of control, i.e. it is not in state of statistical control. Such 

a situation indicates the presence of some assignable causes of erratic fluctuations 

which must be traced, identified and eliminated, so that the process may return to 

operation under stable statistical conditions. Some of the causes of assignable of 

variations are: defective or substandard raw materials, substandard or faulty tools or 

equipment. Inefficient or unskilled operators, negligence of the operator, break 

down of lubrication system, improper setting or wrong handling of the machines, 

change of working conditions, viz. , new materials or machines…etc. 

3. -charts reveals undesirable variations between samples as far as their averages are 

concerned while, R-charts reveals any un-desirable variation with in the samples. 

The -charts primarily allow detection of shift in the process averages and assume 

that process variation remains essentially constant. It is quite possible that the same 

value for the mean of sample could conceal a shift in the variability of the process. 

it is because of this reason that both and R charts should be studied together to 

arrive at a decision if the process is in control or not . The choice between and R 

charts is a managerial problem. From practical point of view it is better to construct 

R chart first. If R charts indicates lack of control, i.e. the variability (dispersion) of 

the quality by the process is out of control, generally it is better not to construct -

charts unless the quality dispersion is brought under control.    

Example 1 :  A machine is set to deliver packets of a given weight. 10 sample of size 5 

each were recoded. Below a given relevant data: 

Sample Number  1 2 3 4 5 6 7 8 9 10 

Mean ( ) 15 17 15 18 17 14 18 15 17 16 

Range (R) 7 7 4 9 8 7 12 4 11 5 

Calculate the central line and the control limit for mean chart and the range chart also 



                                  

draw the charts and then comment the state of control. 

Solution: from the above table the conversion factor for n=5 are A2=0.5, 

D3=0,D4=2.115. 

From the above sample data we get: 

= 


10

110

1

i

iX =162\10= 16.2  

R (grand) = 


10

110

1

i

iR =74\10=7.4 

As given above for n=5 we have: 

A2=0.5, D3=0 and D4=2.115. 

Mean chart. 3- .control limits for -charts are :   

UCL = +A2*R(Grand) 

           = 16.2+ 0.53*7.4 = 20.492 

LCL = -A2*R(Grand) 

          = 16.2-0.53*7.4 =11.908 

CL = =16.2 

 

.
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                          Figure 3: shows and R For above sample data.  

Conclusion: Based on the above sample data of weights of a certain packets of products 

since all the sample points (means) fall with in the control limits. This chart shows that 

the process is in state of statistical process control.   

Example 2: you are given the values of sample means ( ) and the range( R) ten samples 

of five size of each. Draw the mean ( ) and range(R) charts and comments on the state 

of control of the process. 

Sample Number  1 2 3 4 5 6 7 8 9 10 

 43 49 37 44 45 37 51 46 43 47 

R 5 6 5 7 7 4 8 6 4 6 

   

(You may use the following control chart constants from the above table) 

For n=5 are A2=0.5, D3=0 and D4=2.115. 

Solution: for mean chart  

= 


10

110

1

i

iX = 442\10 =44.2 

R(Grand) = 


10

110

1

i

iR  = 58\10 =5.8 



                                  

As given above for n=5 we have: 

A2=0.5, D3=0 and D4=2.115. 

 3- .control limits for -charts are:   

UCL = +A2*R (Grand) 

            = 44.2+ 0.58*5.8 =47.562 

LCL = -A2*R (Grand) 

          = 44.2-0.58*5.8 =40.836 

CL = =44.2 

The control charts for mean is given below. 
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From the chart we can conclude that, we see that the sample points (sample 

mean) corresponding to the second, the third, the fourth and the seventh 

samples are lies out side the control limits. Hence the process is out of control. 

This implies that some assignable causes of variation are operating which 

should be detected and corrected. 

 



                                  

Rage chart (R chart): 

3- .control limits for R-charts are 

UCLR= D4*R (Grand) 

            = 2.115*5.8 =12.267 

LCLR= D3*R= 0*5.8 = 0 

CLR= R (Grand) = 5.8 

Like wise since the entire sample points (sample range) fall with in the control 

limits, R charts shows that the process is in statistical control. Although R-

charts depict control, the process can not re-grade to be in statistical control 

since -charts shows lack of control.  

Generally for the construction of S (standard deviation chart): 

Since standard deviation is an ideal measure of dispersion, a combinations of 

control chart for mean ( ) and standard deviation ( .) known as  and 

.charts theoretically more appropriate than the combination of  and R charts 

for controlling the process average and process variability. 

 

Where c4 is a constant that depends on the sample size n. This constant is 

tabulated in most text books on statistical quality control and may be 

calculated using the above formula. 

We make use of the factor c4 described on the previous page.  

The statistic is an unbiased estimator of . Therefore, the parameters of the S chart 

would be  

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc32.htm#C4


                                  

 

 

 

Similarly, the parameters of the chart would be  

 

 

 

, the "grand" mean is the average of all the observations.  

It is often convenient to plot the and S charts on one page (graph).  

We can also the 3- . Control limits for control charts for standard deviation is given by: 

          UCLs = B2 . 

LCLs = B1 . Where  is the process standard deviation. If  is not known then its 

estimate is based on the average sample of standard deviation used. In this case (  is 

unknown). 

UCLs = B4(S(grand)) 

LCLs =B3(S(grand)) 

Where S (grand) = sum of sample standard deviation \number of samples. 

The values of the constant B1, B2, B3, and B4 for different sample size are given in table 

‘X’ in appendix. 

The other steps in the construction of s-chart are same as the case of R-chart. The sample 

number is taken along horizontal scale and the statistic standard deviation is taken along 

the vertical scale. The sample standard deviation s1, s2, s3….sk are plotted as points 



                                  

against the corresponding sample numbers. The central line is drawn at s(grand) and 

UCLs and LCLs are plotted as dotted line at the computed values given.  

S-charts are interpreted the same as R-charts. 

Remark: s-charts vs. R-charts: theoretically s-chart appears to be more appropriate than 

R-charts for controlling dispersion of the process. But the difficulty of computation 

makes the use of s-chart almost impractical in most industry work. In practice, R-chart is 

preferred to s-chart because of its computational case. Fortunately, for small samples 

(which is generally the case in control chat) the range, as a measure of dispersion is 

sufficiently stable to be useful, because for small samples the range R and the standard 

deviation s are likely to fluctuate together, i.e. is s is small( large) , R is also likely to be 

small( large). 

 Moreover, in most of the situations is quite in expensive to take samples from the 

process. Hence a reasonable amount of accuracy can be achieved by taking more samples 

rather than spending the valuable time in computing the sample the sample standard 

deviation. However, if sampling cost per unit is quite high then we can not afford to take 

more samples because of the cost of the time spent in computing the sample standard 

deviations will be relatively much less than the cost of talking samples. In such a 

situation the desired accuracy can be achieved more economically through the use of 

and s charts.  

Exercise: The following data gives reading 10 samples of size 6 in the production of a 

certain component.  

Sample 

Number  
1 2 3 4 5 6 7 8 9 10 

Mean 

( ) 
383  508 505 532 557 337 514 614 707 753 

S.D(s) 
30.5 41.6 39.5 25.4 24.2 48.7 89 13.1 33.9 32.2 

Range 

(R) 
95 128 100 91 68 65 148 28 37 80 



                                  

Draw the control charts for , R and . Comments the state of control in both three charts 

is there the same answer?   

Time To Detection or Average Run Length (ARL)  

Two important questions when dealing with control charts are:  

1. How often will there be false alarms where we look for an assignable cause but 

nothing has changed?  

2. How quickly will we detect certain kinds of systematic changes, such as mean 

shifts?  

The ARL tells us, for a given situation, how long on the average we will plot successive 

control charts points before we detect a point beyond the control limits.  

For an chart, with no change in the process, we wait on the average 1/p points before 

a false alarm takes place, with p denoting the probability of an observation plotting 

outside the control limits. For a normal distribution, p = .0027 and the ARL is 

approximately 371.  

A table comparing Shewhart chart ARL's to Cumulative Sum (CUSUM) ARL's for 

various mean shifts is given later in this section.  

               2.4 Control Charts for Attributes  
 

The Shewhart control chart plots quality characteristics that can be measured and 

expressed numerically. We measure weight, height, position, thickness, etc. If we 

cannot represent a particular quality characteristic numerically, or if it is impractical to 

do so, we then often resort to using a quality characteristic to sort or classify an item 

that is inspected into one of two "buckets". In cases where quality is measured as 

attributes (number of defects in a component or a product or a batch of components or 

products, number or proportion of defectives in a batch, etc.), attribute control charts 

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3231.htm


                                  

are used. 

 

An example of a common quality characteristic classification would be designating 

units as "conforming units" or "nonconforming units". Another quality characteristic 

criteria would be sorting units into "non defective" and "defective" categories. Quality 

characteristics of that type are called attributes.  

Note that there is a difference between "nonconforming to an engineering specification" 

and "defective" - a nonconforming unit may function just fine and be, in fact, not 

defective at all, while a part can be "in spec" and not function as desired (i.e., be 

defective).  

Examples of quality characteristics that are attributes are the number of failures in a 

production run, the proportion of malfunctioning wafers in a lot, the number of people 

eating in the cafeteria on a given day, etc.  

In spite of wide application of shewart’s control charts for variables, viz.  and R charts 

or   and s charts are very powerful tools for detections of assignable causes of erratic 

fluctuations in productions from a repetitive process, they have a certain limitation as 

given below. 

1. These charts can be used only when the quality characteristic can be measured 

quantitatively and expressed in a certain units of measurement. In other words, they 

can be used only when we can take numerical observations on the sample units. 

2. Quite often, we make a large number of observations on each of the sampled unit. 

For example, we can take measurement of length, weight, diameter, thickness, 

tensile strength on each of the sample units, say, steel pipes. Each of these 

characteristics could be a possible candidate for  and R or   and s charts. Things 

become very difficult if the number of such candidates is very large because it is 

very inconvenient, impracticable and uneconomical to draw a very large number of 

control charts. 



                                  

 As an alternative of to  and R or  and s charts we have the control charts for attributes 

which are used: 

(i) When we deal with quality characteristics which can not be measured 

quantitatively. In such cases the inspection of units is accompanied by classifying 

them as acceptable or non acceptable, defective or non defective. 

(ii) When we deal with characteristics which are actually observed as attributes 

although they could be measured quantitatively. 

 Remark: we shall be using two words ‘defect’ and ‘defective’ in connection with control 

charts for attributes. Any instance of a characters tics or unit not conforming to 

specification (required standards) is termed as defect. A defective is a unit which contains 

more than allowable number (usually one) of defects. 

Types of control charts for attributes  

Control charts dealing with the number of defects or nonconformities are called c charts 

(for count).  

Control charts dealing with the proportion or fraction of defective product are called  p 

charts (for proportion).  

There is another chart which handles defects per unit, called the u chart (for unit). This 

applies when we wish to work with the average number of nonconformities per unit of 

product.  

Generally control charts for attributes are: 

(a) control charts for number of defects per unit, i.e. c harts  

(b) control charts for proportion or fraction of defectives p charts  

(c) Control charts for number of defectives i.e. np chats or d charts.        

                  

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc331.htm
http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc331.htm
http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc332.htm
http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc332.htm


                                  

                    2.4.1 Control Charts for Number of Defects per unit (c-chart) 

As already pointed out defects as any instance of a characters tics or unit not conforming 

to one or more of the given specification or standards. Accordingly every defective unit 

contains one or more defects. For instance, a defective casting may further be examined 

for blow holes, could shuts, rough surface, weak structure etc…  

The literature differentiates between defects and defective, which is the same as 

differentiating between nonconformity and nonconforming units. This may sound like 

splitting hairs, but in the interest of clarity let's try to unravel this man-made mystery.  

Consider a wafer with a number of chips on it. The wafer is referred to as an "item of a 

product". The chip may be referred to as "a specific point". There exist certain 

specifications for the wafers. When a particular wafer (e.g., the item of the product) does 

not meet at least one of the specifications, it is classified as a nonconforming item. 

Furthermore, each chip, (e.g., the specific point) at which a specification is not met 

becomes a defect or nonconformity.  

So, a nonconforming or defective item contains at least one defect or nonconformity. It 

should be pointed out that a wafer can contain several defects but still be classified as 

conforming. For example, the defects may be located at no critical positions on the wafer. 

If, on the other hand, the number of the so-called "unimportant" defects becomes 

alarmingly large, an investigation of the production of these wafers is warranted.  

Control charts involving counts can be either for the total number of nonconformities 

(defects) for the sample of inspected units, or for the average number of defects per 

inspection unit.  

The c chart is used when we count the number of defects per unit rather than classifying a 

unit as good or bad, i.e. defective or non-defective. In a number of manufacturing 

processes we come across situations where: 

(i) The opportunities for the occurrence of a defect in any unit are very large.  

.



                                  

(ii) The actual occurrences of a defect are rare, i.e. the probability of occurrences 

of a defect in any spot is very small. 

     Poisson approximation for numbers or counts of defects 

Let us consider an assembled product such as a microcomputer. The opportunity for the 

occurrence of any given defect may be quite large. However, the probability of 

occurrence of a defect in any one arbitrarily chosen spot is likely to be very small. In such 

a case, the incidence of defects might be modeled by a Poisson distribution. Actually, the 

Poisson distribution is an approximation of the binomial distribution and applies well in 

this capacity according to the following rule of thumb:  

The sample size n should be equal to or larger than 20 and the probability of a single 

success, p, should be smaller than or equal to .05. If n 100, the approximation is 

excellent if np is also 10.  

    Illustrate Poisson approximation to binomial 

To illustrate the use of the Poisson distribution as an approximation of a 

binomial distribution, consider the following comparison: Let p, the 

probability of a single success in n = 200 trials, be .025.  

Find the probability of exactly 3 successes. If we assume that p remains 

constant then the solution follows the binomial distribution rules, that is:  

 

By the Poisson approximation we have  

 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm


                                  

and  

 

Before the control chart parameters are defined there is one more definition: 

the inspection unit.



                                  

practioners.  

 Example 1 may help to illustrate the construction of control limits for counts 

data. We are inspecting 25 successive wafers, each containing 100 chips. 

Here the wafer is the inspection unit. The observed number of defects are  

 

Wafer  Number  Wafer  Number  

Number  of Defects  Number  of Defects  

 

1  16  14  16  

2  14  15  15  

3  28  16  13  

4  16  17  14  

5  12  18  16  

6  20  19  11  

7  10  20  20  

8  12  21  11  

9  10  22  19  

10  17  23  16  

11  19  24  31  

12  17  25  13  

13  14        

 

From this table we have  

 



                                  

 

 

                             Control Chart for Counts  

 

Transforming Poisson Data  

We have seen that the 3-sigma limits for a c chart, where c represents the 

number of nonconformities, are given by  

 

where it is assumed that the normal approximation to the Poisson distribution 

holds, hence the symmetry of the control limits. It is shown in the literature 

that the normal approximation to the Poisson is adequate when the mean of 

the Poisson is at least 5. When applied to the c chart this implies that the 

mean of the defects should be at least 5. This requirement will often be met in 

practice, but still, when the mean is smaller than 9 (solving the above 



                                  

equation) there will be no lower control limit.  

Let the mean be 10. Then the lower control limit = 0.513. However, P(c = 0) 

= .000045, using the Poisson formula. This is only 1/30 of the assumed area 

of .00135. So one has to raise the lower limit so as to get as close as possible 

to .00135. From Poisson tables or computer software we find that P(1) = 

.0005 and P(2) = .0027, so the lower limit should actually be 2 or 3.  



                                  

 

Draw a control chart for the number of defects and comment weather the process is under 

control or not? 

Solution: let the number of defects per unit (equal length of cloth) be denoted by c. then 

the average number of defects in the 10 sample units is given by: 

C (grand) = total number of defects \total number of samples 

               = 2+3+4+…+2\10 

              = 36\10 =3.6 

The 3-  control limits for c-charts are given by: 

   

= 3.6 +3 * √3.6 

that are highly skewed (see Ryan and Schwertman (1997) for more about the 

possibly extreme consequences of doing this).  

  

Uses of c charts: in spite of its restricted field of application as compared 

with  and R charts, a number of practical situations exist in many industries 

where c-chart is needed. Some of its field of application given below: 

1. Number of defects observed in a bale of cloth, sheet of photographic 

film, roll of coated paper etc.. 

2. Number of defects in a galvanized sheet or a painted, plated or enamel 

surface of a given area. 

3. Number of defects of all types in air crafts sub-assemblies or final 

assembly and so on.   

Example 2: during an examination of equal length of cloth, the following are 

the number of defects is observed. 

 

Sample number 1 2 3 4 5 6 7 8 9 10 

Number of defects 2 3 4 0 5 6 7 4 3 2 
 

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm#Ryan, T. P. and


                                  

= 3.6+3*1.8974 

= 3.6+5.6922 = 9.2922 

 

= 3.6 -3*√3.6 

= 3.6- 5.6922 

-2.0922 ~ = 0, since the number of defects can not be negative. 

 

CLs= 3.6 

The c- chart i.e. the control charts for the number of defects is obtained on 

plotting c values against the corresponding sample number, together with the 

control limits and is given below. 
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Since the entire sample points are with in the control limits, the process is in 

statistical control. 

 



                                  

 

 

2.4.2 Control Charts for Proportion or Fraction of Defects ( P charts ) 

                                                     

                               P is the fraction defective in a lot or population  

 

The proportion or fraction nonconforming (defective) in a population is defined as the 

ratio of the number of nonconforming items in the population to the total number of items 

in that population. The item under consideration may have one or more quality 

characteristics that are inspected simultaneously. If at least one of the characteristics does 

not conform to standard, the item is classified as nonconforming.  

The fraction or proportion can be expressed as a decimal, or, when multiplied by 100, as 

a percent. The underlying statistical principles for a control chart for proportion 

nonconforming are based on the binomial distribution.  

Let us suppose that the production process operates in a stable manner, such that the 

probability that a given unit will not conform to specifications is p. Furthermore, we 

assume that successive units produced are independent. Under these conditions, each unit 

that is produced is a realization of a Bernoulli random variable with parameter p. If a 

random sample of n units of product is selected and if D is the number of units that are 

nonconforming, the D follows a binomial distribution with parameters n and p  

      The binomial distribution model for number of defectives in a sample 

 
The mean of D is np and the variance is np (1-p). The sample proportion nonconforming 

is the ratio of the number of nonconforming units in the sample, D, to the sample size n,  

 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm


                                  

The mean and variance of this estimator are  

 
And  

 

This background is sufficient to develop the control chart for proportion or fraction 

nonconforming. The chart is called the p-chart. 
 

P control charts for lot proportion defective  

If the true fraction conforming p is known (or a standard value is given), then the center 

line and control limits of the fraction nonconforming control chart is  

 

 

 

When the process fraction (proportion) p is not known, it must be estimated from the 

available data. This is accomplished by selecting m preliminary samples, each of size n. 

If there are Di defectives in sample i, the fraction nonconforming in sample i is  

 
And the average of these individuals sample fractions is  

 

The is used instead of p in the control chart setup.  

Generally a control chart for fraction of defectives is used when sample unit as a whole 

classified as goods or bads, i.e. defective or non-defective. 

Construction of p charts: as in the case of  and R charts we take the sample number 

along the horizontal scale and the statistic ‘p’ along the vertical scale. The sample 

fraction defective p1, p2, p3…pk are plotted against the corresponding sample numbers as 



                                  

points (dots). The central line is drawn as a dark horizontal line at (grand) and UCLp 

and LCLp are plotted as dotted horizontal lines at the computed value given. 

Remarks: 1. since p can not be negative, if LCLp computed from the above formula 

comes out to be negative then it is taken as zero. 

2 Interpretation of p charts:  p charts interpreted exactly similarly as an  or R charts. 

If all the sample points fall with in the control limits, the process is termed to be in 

statistical control. If one or more of the points go out sides the control limits, it is said to 

be out of control. If the point goes above the UCLp, it reflects the lack of the statistical 

control since it has changed for the worse. Such a point, known as high spot, indicates 

deterioration in the lot quality. Reasons for this should be traced and eliminated. If the 

point goes below the LCLp, it again exhibits lack of control as the process has changed 

for the better. Such a point, known as low spot, indicates improvement in the lot quality. 

Reasoning for this should be looked for and incorporated in to the process if possible. 

Example of a p-chart 

A numerical example will now be given to illustrate the above mentioned principles.  

The location of chips on a wafer is measured on 30 wafers. On each wafer 50 chips are measured and  

a defective is defined whenever a miss registration, in terms of horizontal and/or vertical distances  

from the center, is recorded. The results are  

Sample  Fraction  Sample  Fraction  Sample  Fraction  

Number  Defectives  Number  Defectives  Number  Defectives  

 

1  .24  11  .10  21  .40  

2  .30  12  .12  22  .36  

3  .16  13  .34  23  .48  

4  .20  14  .24  24  .30  

5  .08  15  .44  25  .18  

6  .14  16  .16  26  .24  

7  .32  17  .20  27  .14  

8  .18  18  .10  28  .26  

9  .28  19  .26  29  .18  



                                  

10  .20  20  .22  30  .12  
 

Sample proportions 

control chart  

The corresponding control chart is given below:  

 

Since from above charts two sample points are lies out of the control limit, 

indicates the process is out of control. 

 

2.4.3 Control Charts for Number of Defectives (np or d charts) 

 

If the sample size is constant for all samples, say n, then the sampling distribution of the 

statistic,  

                    d= number of defective in the sample = np is given by, 

                                                 E (d) =np 

                                                S.E (d) = npQ  

Hence, the 3-  control limits for np charts are given by 

   E (d) ± S.E (d) = np ± npQ  

                                             If p̂  is the known or specified values of p then 

                                                  UCL=n + npQ                                                    

                                               LCL = n - npQ  

                                                    CL = n p̂   

If p is not known, then its unbiased estimate provided by (grand) given in previous 

charts i.e. p –charts  

      

                         UCLd== n (grand) +3   

 



                                  

                         LCLd= n (grand) -3 ))(1)(( grandPgrandP   

                         

                                CLd= n (grand) 

 

Remarks: np charts vs. p charts; if the sample size is varies from sample to sample, then 

np chart would be quite uncomfortable to use because the central lines as well as the 

control limits would vary from sample to sample. In such a case p chart would be better 

to use. However, in case of constant sample size for all samples any one of d or p charts 

may be used but, inpractice, p chart commonly used.  

  

Example:  during an examination of equal length of cloth, the following are the number 

of defects is observed. 

 

Sample number 1 2 3 4 5 6 7 8 9 10 

Number of 

defectives  
2 3 4 0 5 6 7 4 3 2 

Draw a control chart for the number of defectives (np charts) and comment weather the 

process is under control or not? 

Solution:- d =2+3+…+2=36 

An estimate of the process of defective is given by p(grand) 

N=1+2+3+…+10=55 

P (grand) =36\55=0.65455 

1- P (grand) =1-0.65455=0.345454 

So, the 3-  control limits for np charts are given by: 

                         UCLd== n (grand) +3 ))(1)(( grandPgrandP   

 = 55*0.6545+3 345454.0*6545.0*55  = 8.154 

                         LCLd= n (grand) -3 ))(1)(( grandPgrandP   



                                  

                                = 55*0.6545-3 345454.0*6545.0*55 = -0.243 since there is no 

negative number of defectives LCLd=0 

 

                           CLd= n (grand) 

                        = 55*0.654545=3.6 since there are 10 samples per each defectives.   

So, the control charts for the number of defective units is obtained in plotting the number 

of defectives against the corresponding sample number is given below.      
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Since one sample point corresponding to the 4

th
 sample lies out side the control limits, the 

process is not in a state of statistical control. 

 

              2.5 Process and Measurement System Capability Analysis  

 

Process capability compares the output of an in-control process to the specification limits 

by using capability indices. The comparison is made by forming the ratio of the spread 

between the process specifications (the specification "width") to the spread of the process 

values, as measured by 6 process standard deviation units (the process "width").  

A process capability index uses both the process variability and the process 

specifications to determine whether the process is "capable" 



                                  

               

 

 

 

Process Capability Indices 

We are often required to compare the output of a stable process with the process specifications  

and make a statement about how well the process meets specification.   

To do this we compare the natural variability of a stable process with the process specification limits.   

A capable process is one where almost all the measurements fall inside the specification limits.  

This can be represented pictorially by the plot below:  

 

There are several statistics that can be used to measure the capability of a process:  Cp, Cpk, Cpm.  

Most capability indices estimates are valid only if the sample size used is 'large enough'.  

Large enough is generally thought to be about 50 independent data values.   

The Cp, Cpk, and Cpm statistics assume that the population of data values is normally distributed.  



                                  

Assuming a two-sided specification, if and are the mean and standard deviation, respectively,  

of the normal data and USL, LSL, and T are the upper and lower specification limits and the 

 target value, respectively, then the population capability indices are defined as follows:  

                               

Definitions of 

various process 

capability indices  
 

 

 

 

 Sample estimates of capability indices  

Sample estimators for these indices are given below. (Estimators are indicated with a 

"hat" over them).  

 

 

 

The estimator for Cpk can also be expressed as Cpk = Cp(1-k), where k is a scaled distance 

between the midpoint of the specification range, m, and the process mean, .  

Denote the midpoint of the specification range by m 



                                  

 

(The absolute sign takes care of the case when ). To determine the 

estimated value, , we estimate by . Note that .  

The estimator for the Cp index, adjusted by the k factor, is  

 

Since , it follows that .                      

 

Plot showing Cp for 

To get an idea of the value of the Cp statistic for varying process widths, consider the 

following plot  

 
This can be expressed numerically by the table below:   

Translating 

capability into 

"rejects"  

USL - LSL  6   8   10   12   



                                  

Where ppm = parts per million and ppb = parts per billion. Note that the reject figures are 

based on the assumption that the distribution is centered at .  

We have discussed the situation with two spec. limits, the USL and LSL. This is known 

as the bilateral or two-sided case. There are many cases where only the lower or upper 

specifications are used. Using one spec limit is called unilateral or one-sided. The 

corresponding capability indices are 

 

One-sided 

specifications and 

the corresponding 

capability indices  

 
and  

 
 

Where and are the process mean and standard deviation, respectively.  

Estimators of Cpu and Cpl are obtained by replacing and by and s,   

respectively.  

The following relationship holds  

Cp = (Cpu + Cpl) /2.  

This can be represented pictorially by  

 



                                  

                          

Note that we also can write:  

Cpk = min {Cpl, Cpu}. 

                 

 Confidence Limits for Capability Indices 

                    

Confidence intervals for indices 

Assuming normally distributed process data, the distribution of the sample follows 

from a Chi-square distribution and and have distributions related to the non-

central t distribution. Fortunately, approximate confidence limits related to the normal 

distribution have been derived. Various approximations to the distribution of have 

been proposed, including those given by Bissell (1990), and we will use a normal 

approximation.  

The resulting formulas for confidence limits are given below:  

100(1- )% Confidence Limits for Cp  

 
Where  

.



                                  

             

= degrees of freedom  

                Confidence Intervals for Cpu and Cpl 

Approximate 100(1- )% confidence limits for Cpu with sample size n are:  

 

 

With z denoting the percent point function of the standard normal distribution. If is not 

known, set it to .  

Limits for Cpl are obtained by replacing by .  

 

 

                                    Confidence Interval for Cpk 

Zhang et al. (1990) derived the exact variance for the estimator of Cpk as well as an 

approximation for large n. The reference paper is Zhang, Stenback and Wardrop (1990), 

"Interval Estimation of the process capability index", Communications in Statistics: 

Theory and Methods, 19(21), 4455-4470.  

The variance is obtained as follows:  

Let  

 

 

 

Then  

 

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm#Zhang1990


                                  

 

 

 

 

 

Their approximation is given by:  

 
where  

 
The following approximation is commonly used in practice  

 
It is important to note that the sample size should be at least 25 before these 

approximations are valid. In general, however, we need n 100 for capability studies. 

Another point to observe is that variations are not negligible due to the randomness of 

capability indices.  

                         Capability Index Example  

For a certain process the USL = 20 and the LSL = 8. The observed process average, = 

16, and the standard deviation, s = 2. From this we obtain  

 

This means that the process is capable as long as it is located at the midpoint, m = (USL 

+ LSL)/2 = 14.  

But it doesn't, since = 16. The factor is found by  

 
and  

 



                                  

We would like to have at least 1.0, so this is not a good process. If possible, reduce 

the variability or/and center the process. We can compute the and  

 

 

From this we see that the , which is the smallest of the above indices, is 0.6667. Note 

that the formula is the algebraic equivalent of the min { , }  

definition.  

 

       

 

 What happens if the process is not approximately normally distributed? 

           

What you can do with non-normal data 

The indices that we considered thus far are based on normality of the process distribution. 

This poses a problem when the process distribution is not normal. Without going into the 

specifics, we can list some remedies.  

1. Transform the data so that they become approximately normal. A popular 

transformation is the Box-Cox transformation  

2. Use or develop another set of indices, that apply to non normal distributions. One 

statistic is called Cnpk (for non-parametric Cpk). Its estimator is calculated by  

 

Where p (0.995) is the 99.5th percentile of the data and p(.005) is the 0.5th 

percentile of the data.  

There is, of course, much more that can be said about the case of non normal data. 

However, if a Box-Cox transformation can be successfully performed, one is encouraged 

to use it.  

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc52.htm#Box-Cox


                                  

Exercise 

1. Given below are the values of samples mean ( ) and the range (R) for ten 

samples of size 5 each.  

Sample 

number  

1 2 3 4 5 6 7 8 9 10 

 43 49 37 44 45 37 51 46 43 47 

R 5 6 7 7 7 4 8 6 4 6 

 

Given (A3 = 0.58 for n=5) 

Draw appropriate mean chart and range chart and comment on the state of control of 

the process. 

2. Construct the control chart for mean and range for the following data on the bases 

of fuses, samples of 5 being taken every nour (each set of 5 has been arranged in 

ascending order of magnitude). Comment on weather the production seems to be 

under control, assuming that these are the first data. 

    

42   42  19    36   42   51  60   18   15     69    64    61 

65   45   24   54   51   74  60    20   30   109   90     78 

75    68   80   69  57   75  72    27   39    113  93      94 

78   72   81   77  59   78    95   42   62   118  109   109 

87   90  81   84  78   132 138  60   84    153 112   136 

3. The following data shows the values of sample mean  and the range R ten samples of 

5 each. Calculate the value of central line and control limits for mean chart, and range 

chart and determine weather the process is in control. 

 

Sample  

number  

1 2 3 4 5 6 7 8 9 10 

Mean  11.2 11.8 10.8 11.6 11.0 9.6 10.4 9.6 10.6 10.0 

Range  7 4 8 5 7 4 8 4 7 9 

 

(Conversion factor n=5 are A2=0.577, D3=0 and D4=2.115) 

4. The following data gives readings for 10 samples of size 6 in the production of a 

certain component. 

 

Sample  1 2 3 4 5 6 7 8 9 10 

Mean  383 505 532 508 557 337 514 614 707 753 

S .D 30.5 41.6 39.5 32.2 25.4 24.2 48.7 89 13.1 33.9 

Range  95 128 100 91 68 65 148 28 37 80 



                                  

 

Draw the control charts for ,   and R. Calculate the limits of , in two ways. Can 

within                                                                                                                               



                                  

8. The average number of defectives in 22 sampled lots of 2000 rubber belts each was 

found to be 10%. Draw an appropriate control charts.  

 

 

 

 

 

9. A TV voltage stabilizer manufacturer cheeks the quality of 50 units of his product 

daily for 15 days and finds the fraction of non conforming units and number of 

defectives as follows. 

 

 

 

 

Days  Fraction defectives  No. of defectives  

1 0.10 5 

2 0.20 10 

3 0.06 3 

4 0.04 2 

5 0.16 8 

6 0.02 1 

7 0.08 4 

8 0.06 3 

9 0.02 1 

10 0.16 8 

11 0.12 6 

12 0.14 7 

13 0.08 4 

14 0.10 5 

15 0.06 3 

  

(i) Construct 3-sigma trial control limit for fraction defectives.  

(ii) Construct 3-sigma trial control limits for np chart. 

 

10. A manufacture of a soft drink uses control charts to check the CO2 contents of the 

drink. In a prerun of m= 26 samples of size n= 4 the following data of CO2  content 





                                  

                                             Chapter 3  

 

    3. Other Statistical Process-Monitoring and Control Techniques  

  

                 3.1 Cumulative Sum Control Charts (CUSUM control charts )  

 
CUSUM is an efficient alternative to Shewhart procedures 

 CUSUM charts, while not as intuitive and simple to operate as Shewhart charts, have 

been shown to be more efficient in detecting small shifts in the mean of a process. In 

particular, analyzing ARL's for CUSUM control charts shows that they are better than 

Shewhart control charts when it is desired to detect shifts in the mean that are 2 sigma or 

less.  

CUSUM works as follows: Let us collect k samples, each of size n, and compute the 

mean of each sample. Then the cumulative sum (CUSUM) control chart is formed by 

plotting one of the following quantities 

                  

                      Definition of cumulative sum  

  

Against the sample number m, where is the estimate of the in-control mean and is 

the known (or estimated) standard deviation of the sample means. The choice of which of 

these two quantities is plotted is usually determined by the statistical software package. In 

either case, as long as the process remains in control centered at , the cusum plot will 

show variation in a random pattern centered about zero. If the process mean shifts 

upward, the charted cusum points will eventually drift upwards, and vice versa if the 

process mean decreases.  

V-Mask used 

to determine 

if process is 

out of 

control  

A visual procedure proposed by Barnard in 1959, known as the V-Mask, 

is sometimes used to determine whether a process is out of control. More 

often, the tabular form of the V-Mask is preferred. The tabular form is 

illustrated later in this section.  

\

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3231.htm
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is more common in the literature, = 1/2 the vertex angle) as the design parameters, and 

we would end up with the same V-Mask.  

In practice, designing and manually constructing a V-Mask is a complicated procedure. A 

cusum spreadsheet style procedure shown below is more practical, unless you have 

statistical software that automates the V-Mask methodology. Before describing the 

spreadsheet approach, we will look briefly at an example of a software V-Mask.  

 

              JMP example of V-Mask 

JMP 

example of 

V-Mask  

An example will be used to illustrate how to construct and 

apply a V-Mask procedure using JMP. The 20 data points  

324.925, 324.675, 324.725, 324.350, 325.350, 325.225, 

324.125, 324.525, 325.225, 324.600, 324.625, 325.150, 

328.325, 327.250, 327.825, 328.500, 326.675, 327.775, 

326.875, 328.350  

are each the average of samples of size 4 taken from a process 

that has an estimated mean of 325. Based on process data, the 

process standard deviation is 1.27 and therefore the sample 

means used in the cusum procedure have a standard deviation 

of 1.27/4
1/2

  = 0.635.  

After inputting the 20 sample means and selecting "control 

charts" from the pull down "Graph" menu, JMP displays a 

"Control Charts" screen and a "CUSUM Charts" screen. Since 

each sample mean is a separate "data point", we choose a 

constant sample size of 1. We also choose the option for a two 

sided Cusum plot shown in terms of the original data.  

JMP allows us a choice of either designing via the method 

using h and k or using an alpha and beta design approach. For 

the latter approach we must specify  



                                  

 , the probability of a false alarm, i.e., concluding that a 

shift in the process has occurred, while in fact it did not  

 , the probability of not detecting that a shift in the process 

mean has, in fact, occurred  

 (Delta), the amount of shift in the process means that we 

wish to detect, expressed as a multiple of the standard 

deviation of the data points (which are the sample means).  

Note: Technically, alpha and beta are calculated in terms of 

one sequential trial where we monitor Sm until we have either 

an out-of-control signal or Sm returns to the starting point (and 

the monitoring begins, in effect, all over again).  

JMP 

menus 

for 

inputting 

options 

to the 

cusum 

procedur

e  

In our example we choose an  of 0.0027 (equivalent to the plus or minus 3 

sigma criteria used in a standard Shewhart chart), and a  of 0.01. Finally, 

we decide we want to quickly detect a shift as large as 1 sigma, which sets 

delta = 1. The screen below shows all the inputs.  



                                  

 

 

 JMP output from CUSUM procedure 

 

When we click on chart we see the V-Mask placed over the last data point. 

The mask clearly indicates an out of control situation.  



                                  

 

We next "grab" the V-Mask and move it back to the first point that indicated 

the process was out of control. This is point number 14, as shown below.  

 

JMP CUSUM chart after moving V-Mask to first out of control point 

 

 
 

 



                                  

 
Rule of thumb for choosing h and k 

Note: A general rule of thumb (Montgomery) if one chooses to design with the h and k 

approach, instead of the alpha and beta method illustrated above, is to choose k to be half 

the delta shift (.5 in our example) and h to be around 4 or 5.  

 Tabular or Spreadsheet Form of the V-Mask  

A 

spreadsheet 

approach to 

cusum 

monitoring  

Most users of cusum procedures prefer tabular charts over the V-

Mask. The V-Mask is actually a carry-over of the pre-computer era. 

The tabular method can be quickly implemented by standard 

spreadsheet software.  

To generate the tabular form we use the h and k parameters expressed 

in the original data units. It is also possible to use sigma units.  

The following quantities are calculated:  

Shi(i) = max(0, Shi(i-1) + xi - - k)  

Slo(i) = max(0, Slo(i-1) + - k - xi) )  

where Shi(0) and Slo(0) are 0. When either Shi(i) or Slo(i) exceeds h, the 

process is out of control.  

Example of spreadsheet calculation 

Construct a cusum tabular chart for the example described above. For this example, the 

JMP parameter table gave h = 4.1959 and k = .3175. Using these design values, the 

tabular form of the example is  

 
h  k  

325  4.1959  0.3175  

 

We will construct a cusum tabular chart for the example 

described above. For this example, the JMP parameter table 

gave h = 4.1959 and k = .3175. Using these design values, the 

tabular form of the example is  

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm#Montgomery,


                                  

 
h  k  

325  4.1959  0.3175  

         Increase 

in mean  

   Decrease 

in mean  

      

Group  x  x-

325  

x-325-k  Shi  325-k-x  Slo  Cusum  

  

1  324.93  0.07  -0.39  0.00  -0.24  0.00  -0.007  

2  324.68  0.32  -0.64  0.00  0.01  0.01  -0.40  

3  324.73  0.27  -0.59  0.00  -0.04  0.00  -0.67  

4  324.35  0.65  -0.97  0.00  0.33  0.33  -1.32  

5  325.35  0.35  0.03  0.03  -0.67  0.00  -0.97  

6  325.23  0.23  -0.09  0.00  -0.54  0.00  -0.75  

7  324.13  0.88  -1.19  0.00  0.56  0.56  -1.62  

8  324.53  0.48  -0.79  0.00  0.16  0.72  -2.10  

9  325.23  0.23  -0.09  0.00  0.54  0.17  -1.87  

10  324.60  0.40  -0.72  0.00  0.08  0.25  -2.27  

11  324.63  0.38  -0.69  0.00  0.06  0.31  -2.65  

12  325.15  0.15  -0.17  0.00  0.47  0.00  -2.50  

13  328.33  3.32  3.01  3.01  -3.64  0.00  0.83  

14  327.25  2.25  1.93  4.94*  -0.57  0.00  3.08  

15  327.83  2.82  2.51  7.45*  -3.14  0.00  5.90  

16  328.50  3.50  3.18  10.63*  -3.82  0.00  9.40  

17  326.68  1.68  1.36  11.99*  -1.99  0.00  11.08  

18  327.78  2.77  2.46  14.44*  -3.09  0.00  13.85  

19  326.88  1.88  1.56  16.00*  -2.19  0.00  15.73  

20  328.35  3.35  3.03  19.04*  -3.67  0.00  19.08  

* = out of control signal  

 

 

 

 

 

 

 

 

 



                                  

3.2.1 Cumulative Sum (CUSUM) Average Run Length  
 

Time to Detection or Average Run Length (ARL) 
Waiting time to signal "out of control"  

Two important questions when dealing with control charts are:  

3. How often will there be false alarms where we look for an assignable cause but 

nothing has changed?  

4. How quickly will we detect certain kinds of systematic changes, such as mean 

shifts?  

The ARL tells us, for a given situation, how long on the average we will plot successive 

control charts points before we detect a point beyond the control limits.  

For an chart, with no change in the process, we wait on the average 1/p points before a 

false alarm takes place, with p denoting the probability of an observation plotting outside 

the control limits. For a normal distribution, p = .0027 and the ARL is approximately 

371.  

A table comparing Shewhart chart ARL's to Cumulative Sum (CUSUM) ARL's for 

various mean shifts is given later in this section.  

The Average Run Length of Cumulative Sum Control Charts 

The ARL of CUSUM  

The operation of obtaining samples to use with a cumulative sum (CUSUM) control chart 

consists of taking samples of size n and plotting the cumulative sums  

 

Versus the sample number r, where the sample is mean and k is a reference value.  

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3231.htm


                                  

In practice, k might be set equal to ( + 1)/2, where is the estimated in-control 

mean, which is sometimes known as the acceptable quality level, and 1 is referred to as 

the 



                                  

 

mean shift   Shewart  

(k = .5)  4  5   

 

0  336  930  371.00  

.25  74.2  140  281.14  

.5  26.6  30.0  155.22  

.75  13.3  17.0  81.22  

1.00  8.38  10.4  44.0  

1.50  4.75  5.75  14.97  

2.00  3.34  4.01  6.30  

2.50  2.62  3.11  3.24  

3.00  2.19  2.57  2.00  

4.00  1.71  2.01  1.19  

in control), and a low ARL, L1, when the process mean shifts to an 

unsatisfactory level.  

In order to determine the parameters of a CUSUM chart, the 

acceptable and reject able quality levels along with the desired 

respective ARL ' s are usually specified. The design parameters can 

then be obtained by a number of ways. Unfortunately, the 

calculations of the ARL for CUSUM charts are quite involved.  

There are several nomographs available from different sources that 

can be utilized to find the ARL's when the standardized h and k are 

given. Some of the nomographs solve the unpleasant integral 

equations that form the basis of the exact solutions, using an 

approximation of Systems of Linear Algebraic Equations (SLAE). 

This Handbook used a computer program that furnished the required 

ARL's given the standardized h and k. An example is given below:  

    Example of finding ARL's given the standardized h and k 



                                  

 

 

Using the 

table  

If k = .5, then the shift of the mean (in multiples of the standard 

deviation of the mean) is obtained by adding .5 to the first column. 

For example to detect a mean shift of 1 sigma at h = 4, the ARL = 

8.38. (at first column entry of .5).  

The last column of the table contains the ARL's for a Shewhart 

control chart at selected mean shifts. The ARL for Shewhart = 1/p, 

where p is the probability for a point to fall outside established 

control limits. Thus, for 3-sigma control limits and assuming 

normality, the probability to exceed the upper control limit = .00135 

and to fall below the lower control limit is also .00135 and their sum 

= .0027. (These numbers come from standard normal distribution 

tables or computer programs, setting z = 3). Then the ARL = 1/.0027 

= 370.37. This says that when a process is in control one expects an 

out-of-control signal (false alarm) each 371 runs.  

ARL if a 1 

sigma shift has 

occurred  

When the means shifts up by 1 sigma, then the distance between the 

upper control limit and the shifted mean is 2 sigma (instead of 3 ). 

Entering normal distribution tables with z = 2 yields a probability of p 

= .02275 to exceed this value. The distance between the shifted mean 

and the lower limit is now 4 sigma and the probability of < -4 is 

only .000032 and can be ignored. The ARL is 1 / .02275 = 43.96.  

Shewhart is 

better for 

detecting large 

shifts, CUSUM 

is faster for 

small shifts  

The conclusion can be drawn that the Shewhart chart is superior for 

detecting large shifts and the CUSUM scheme is faster for small 

shifts. The break-even point is a function of h, as the table shows.  



                                  

       3.3  Exponentially Weighted Moving Average Control Charts 

(EWMA) 

EWMA statistic 

The Exponentially Weighted Moving Average (EWMA) is a statistic for monitoring the 

process that averages the data in a way that gives less and less weight to data as they are 

further removed in time. 

Comparison of Shewhart control chart and EWMA control chart techniques  

For the Shewhart chart control technique, the decision regarding the state of control of 

the process at any time, t, depends solely on the most recent measurement from the 

process and, of course, the degree of 'trueness' of the estimates of the control limits from 

historical data. For the EWMA control technique, the decision depends on the EWMA 

statistic, which is an exponentially weighted average of all prior data, including the most 

recent measurement.  

By the choice of weighting factor, , the EWMA control procedure can be made sensitive 

to a small or gradual drift in the process, whereas the Shewhart control procedure can 

only react when the last data point is outside a control limit.  

Definition of EWMA  

The statistic that is calculated is:  

EWMAt = Yt + ( 1- ) EWMAt-1    for t = 1, 2, ..., n.  

Where  

 EWMA0 is the mean of historical data (target)  

 Yt is the observation at time t  

 n is the number of observations to be monitored including EWMA0  

 0 < 1 is a constant that determines the depth of memory of the EWMA.  

The equation is due to Roberts (1959). 

 

 

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc32.htm


                                  

Choice of weighting factor  

The parameter  determines the rate at which 'older' data enter into the calculation of the 

EWMA statistic. A value of = 1 implies that only the most recent measurement 

influences the EWMA (degrades to Shewhart chart). Thus, a large value of = 1 gives 

more weight to recent data and less weight to older data; a small value of  gives more 

weight to older data. The value of  is usually set between 0.2 and 0.3 (Hunter) although 

this choice is somewhat arbitrary. Lucas and Saccucci (1990) give tables that help the 

user select .  

 

 Variance of EWMA statistic  

The estimated variance of the EWMA statistic is approximately  

s
2

ewma = ( / (2- )) s
2
  

when t is not small, where s is the standard deviation calculated from the historical data. 

Definition of control limits for EWMA 

The center line for the control chart is the target value or EWMA0. The control limits are:  

UCL = EWMA0 + ksewma  

LCL = EWMA0 - ksewma  

where the factor k is either set equal 3 or chosen using the Lucas and Saccucci (1990) 

tables. The data are assumed to be independent and these tables also assume a normal 

population.  

As with all control procedures, the EWMA procedure depends on a database of 

measurements that are truly representative of the process. Once the mean value and 

standard deviation have been calculated from this database, the process can enter the 

monitoring stage, provided the process was in control when the data were collected. If 

not, then the usual Phase 1 work would have to be completed first.  

 

    Example of calculation of parameters for an EWMA control chart 

To illustrate the construction of an EWMA control chart, consider a process with the 

following parameters calculated from historical data:  

http://www.itl.nist.gov/div898/handbook/pmc/section7/refs.htm
http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm#Lucas, and Saccucci
http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm#Lucas, and Saccucci


                                  

EWMA0 = 50  

s = 2.0539  

with chosen to be 0.3 so that / (2- ) = .3 / 1.7 = 0.1765 and the square root = 0.4201. 

The control limits are given by  

UCL = 50 + 3 (0.4201)(2.0539) = 52.5884  

LCL = 50 - 3 (0.4201) (2.0539) = 47.4115  

Sample data  Consider the following data consisting of 20 points where 1 - 10 are 

on the top row from left to right and 11-20 are on the bottom row 

from left to right:  

  52.0 47.0 53.0 49.3 50.1 47.0  
  51.0 50.1 51.2 50.5 49.6 47.6  
  49.9 51.3 47.8 51.2 52.6 52.4  
  53.6 52.1  

EWMA statistics for sample data 

These data represent control measurements from the process which is to be monitored 

using the EWMA control chart technique. The corresponding EWMA statistics that are 

computed from this data set are:  

 50.00 50.60 49.52 50.56 50.18 

  50.16 49.12 49.75 49.85 50.26 

  50.33 50.11 49.36 49.52 50.05 

  49.34 49.92 50.73 51.23 51.94 



 



                                  

 

 

Interpretation of EWMA control chart 

The red dots are the raw data; the jagged line is the EWMA statistic over time. The chart 

tells us that the process is in control because all EWMAt lie between the control limits. 

However, there seems to be a trend upwards for the last 5 periods.  

  

3.4 Other Univariate Statistical Process Monitoring And Control Charts  

  

                                Individual control charts  

Samples are Individual Measurements 

Moving range used to derive upper and lower limits  

Control charts for individual measurements, e.g., the sample size = 1, use the moving 

range of two successive observations to measure the process variability.  

The moving range is defined as  

 



                                  

which is the absolute value of the first difference (e.g., the difference between two 

consecutive data points) of the data. Analogous to the Shewhart control chart, one can 

plot both the data (which are the individuals) and the moving range.  

Individuals 

control limits 

for an 

observation  

For the control chart for individual measurements, the lines plotted 

are:  

 

 

 

where  is the average of all the individuals and  is the 

average of all the moving ranges of two observations. Keep in mind 

that either or both averages may be replaced by a standard or target, 

if available. (Note that 1.128 is the value of d2 for n = 2).  

  Example: The following example illustrates the control chart for individual 

observations. A new process was studied in order to monitor flow rate. The first 10 

batches resulted in the following table. 

 

Batch 

Number  

Flowrate 

x  

Moving 

Range 

MR  

 

1  49.6     

2  47.6  2.0  

3  49.9  2.3  

4  51.3  14  

5  47.8  3.5  

6  51.2  3.4  

7  52.6  1.4  

8  52.4  0.2  

9  53.6  1.2  

10  52.1  1.5  

   = 50.81  = 1.8778  



                                  

Alternative for constructing individuals control chart 

It is preferable to have the limits computed this way for the start of Phase 2. 

 

 

 

Limits for the 

moving range chart  

This yields the parameters below. 

  

 

 

 

Example of 

individuals chart  

The control chart is given below  

The process is in control, since none of the plotted points fall 

outside either the UCL or LCL.  

Note: Another way to construct the individuals chart is by using the standard deviation. 

Then we can obtain the chart from  

 



                                  

 

                         3.5 Multivariate Control Charts  

                                   Multivariate control charts and Hotelling's T
 2

 statistic 

It is a fact of life that most data are naturally multivariate. Hotelling in 1947 introduced a 

statistic which uniquely lends itself to plotting multivariate observations. This statistic, 

appropriately named Hotelling's T
 2

, is a scalar that combines information from the 

dispersion and mean of several variables. Due to the fact that computations are laborious 

and fairly complex and require some knowledge of matrix algebra, acceptance of 

multivariate control charts by industry was slow and hesitant.  

Multivariate control charts now more accessible 

Nowadays, modern computers in general and the PC in particular have made complex 

calculations accessible and during the last decade, multivariate control charts were given 

more attention. In fact, the multivariate charts which display the Hotelling T
 2

 statistic 

became so popular that they sometimes are called Shewhart charts as well (e.g., Crosier, 

1988), although Shewhart had nothing to do with them.  

Hotelling charts for both means and dispersion 

As in the univariate case, when data are grouped, the T
 2

 chart can be paired with a chart 

that displays a measure of variability within the subgroups for all the analyzed 

characteristics. The combined T
 2

 and (dispersion) charts are thus a multivariate 

counterpart of the univariate and S (or and R) charts.  

 

 

 

 

 

 

 

 

 

 

 



                                  

 

Hotelling mean and dispersion control 

An example of a Hotelling T
 2
 and  pair of charts is given below charts. 

 

 
Interpretation of sample Hotelling control charts: Each chart represents 14 consecutive 

measurements on the means of four variables. The T
 2

 chart for means indicates an out-of-

control state for groups 1, 2 and 9-11. The T
 2

d chart for dispersions indicate that groups 

10, 13 and 14 are also out of control. The interpretation is that the multivariate system is 

suspect. To find an assignable cause, one has to resort to the individual univariate control 

charts or some other univariate procedure that should accompany this multivariate chart.  

 

                        3.5.1 Elements of Multivariate Analysis  

 
                                      Multivariate analysis  

 

Multivariate analysis is a branch of statistics concerned with the analysis of multiple 

measurements, made on one or several samples of individuals. For example, we may 

wish to measure length, width and weight of a product.  

Multiple measurement, or observation, as row or column vector 

A multiple measurement or observation may be expressed as  

x = [4  2  0.6]  



                                  

referring to the physical properties of length, width and weight, respectively. It is 
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                   3.5.2 Hotelling Control Charts 

 
Definition of Hotelling's T

 2
 "distance" statistic  

The Hotelling T
 2

 distances is a measure that accounts for the covariance structure of a 

multivariate normal distribution. It was proposed by Harold Hotelling in 1947 and is 

called Hotelling T
 2

. It may be thought of as the multivariate counterpart of the Student's-t 

statistic.  

The T
 2

 distance is a constant multiplied by a quadratic form. This quadratic form is 

obtained by multiplying the following three quantities:  

1. The vector of deviations between the observations and the mean m, which is 

expressed by (X-m)',  

2. The inverse of the covariance matrix, S
-1

,  

3. The vector of deviations, (X-m).  

It should be mentioned that for independent variables, the covariance matrix is a diagonal 

matrix and T
 2
 becomes proportional to the sum of squared standardized variables.  

In general, the higher the T
 2

 value, the more distant is the observation from the mean. 

The formula for computing the T
 2
 is:  

 

The constant c is the sample size from which the covariance matrix was estimated.  

T
 2

 readily graph able: The T
 2

 distances lend themselves readily to graphical displays 

and as a result the T
 2
-chart is the most popular among the multivariate control charts.  

 

 

 

 

 

 



                                  

Estimation of the Mean and Covariance Matrix 

 

Mean and Covariance matrices 

 

Let X1,...Xn be n p-dimensional vectors of observations that are sampled independently 

from Np(m, ) with p < n-1, with  the covariance matrix of X. The observed mean 

vector and the sample dispersion matrix  

 

Are the unbiased estimators of m and , respectively.  

  

                  3.5.3 Principal component control charts  

 
                          Problems with T

 2
 charts: Although the T

 2
 chart is the most popular, 

easiest to use and interpret method for handling multivariate process data, and is 

beginning to be widely accepted by quality engineers and operators, it is not a panacea. 

First, unlike the univariate case, the scale of the values displayed on the chart is not 

related to the scales of any of the monitored variables. Secondly, when the T
 2

 statistic 

exceeds the upper control limit (UCL), the user does not know which particular 

variable(s) caused the out-of-control signal.  

 

Run univariate charts along with the multivariate ones 

With respect to scaling, we strongly advise to run individual univariate charts in tandem 

with the multivariate chart. This will also help in honing in on the culprit(s) that might 

have caused the signal. However, individual univariate charts cannot explain situations 

that are a result of some problems in the covariance or correlation between the variables. 

This is why a dispersion chart must also be used.  

 

 

 



                                  

Another way to monitor multivariate data: Principal Components control charts 

Another way to analyze the data is to use principal components. For each multivariate 

measurement (or observation), the principal components are linear combinations of the 

standardized p variables (to standardize subtract their respective targets and divide by 

their standard deviations). The principal components have two important advantages:  

1. The new variables are uncorrelated (or almost)  

2. Very often, a few (sometimes 1 or 2) principal components may capture 

most of the variability in the data so that we do not have to use all of the p 

principal components for control.  

Eigenvalues: Unfortunately, there is one big disadvantage: The identity of the original 

variables is lost! However, in some cases the specific linear combinations corresponding 

to the principal components with the largest eigenvalues may yield meaningful 

measurement units. What is being used in control charts are the principal factors.  

A principal factor is the principal component divided by the square root of its eigenvalue.  

     

3.5.4 Multivariate Exponentially Weighted Moving Average  (EWMA) 

Charts 

 
Multivariate EWMA Control Chart  

Univariate EWMA model: - The model for a univariate EWMA chart is given by:  

 

where Zi is the ith EWMA, Xi is the  ith  observation, Z0 is the average from the historical 

data, and 0 < 1.  

 

Multivariate EWMA model:- In the multivariate case, one can extend this formula to  

 

where Zi is the ith EWMA vector, Xi is the the ith observation vector i = 1, 2, ..., n, Z0 is 

the vector of variable values from the historical data,  is the diag ( 1, 2, ... , p) which 

is a diagonal matrix with 1, 2, ... , p on the main diagonal, and p is the number of 

variables; that is the number of elements in each vector.  

 

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc532.htm#eigenvalues


                                  

Illustration of multivariate EWMA:- The following illustration may clarify this. There are 

p variables and each variable contains n observations. The input data matrix looks like:  

 
The quantity to be plotted on the control chart is  

 
Simplification:- It has been shown (Lowry et al., 1992) that the (k, l)th element of the 

covariance matrix of the ith EWMA, , is  

 
where is the (k,l)th element of 

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm#Lowry,


                                  

                      Table for selected values of  and i 

The following table gives the values of (1- ) 
2i

 for selected values of  and i.  

   2i  

1 -  4  6  8  10  12  20  30  40  50  

.9  .656  .531  .430  .349  .282  .122  .042  .015  .005  

.8  .410  .262  .168  .107  .069  .012  .001  .000  .000  

.7  .240  .118  .058  .028  .014  .001  .000  .000  .000  

.6  .130  .047  .017  .006  .002  .000  .000  .000  .000  

.5  .063  .016  .004  .001  .000  .000  .000  .000  .000  

.4  .026  .004  .001  .000  .000  .000  .000  .000  .000  

.3  .008  .001  .000  .000  .000  .000  .000  .000  .000  

.2  .002  .000  .000  .000  .000  .000  .000  .000  .000  

.1  .000  .000  .000  .000  .000  .000  .000  .000  .000  

 

 Specified formula not required:- 

 

It should be pointed out that a well-meaning computer program does not have to adhere 

to the simplified formula, and potential inaccuracies for low values for  and i can thus 

be avoided.  

 

MEWMA computer out put for Lowry data:-  

Here is an example of the application of an MEWMA control chart. To facilitate comparison with 

 existing literature, we used data from Lowry et al. The data were simulated from a bivariate normal 

 distribution with unit variances and a correlation coefficient of 0.5. The value for = .10 and the values for  

were obtained by the equation given above. The covariance of the MEWMA vectors was  

obtained by using the non-simplified equation. That means that for each MEWMA control statistic,  

the computer computed a covariance matrix, where i = 1, 2, ...10. The results of the computer routine are: 

 

 

 

 

 

 



                                  

 

******************** *********************************  
*      Multi - Variate EWMA Control Chart             *  
*****************************************************  
 
DATA SERIES            MEWMA Vector          MEWMA  
   1          2          1         2       STATISTIC  
- 1.190     0.590     - 0.119     0.059        2.1886  
 0.120     0.900     - 0.095     0.143        2.0697  
- 1.690     0.400     - 0.255     0.169        4.8365  
 0.300     0.460     - 0.199     0.198        3.4158  
 0.890    - 0.750     - 0.090     0.103        0.7089  
 0.82 0     0.980      0.001     0.191        0.9268  
- 0.300     2.280     - 0.029     0.400        4.0018  
 0.630     1.750      0.037     0.535        6.1657  
 1.560     1.580      0.189     0.639        7.8554  
 1.460     3.050      0.316     0.880       14.4158  
 
 
VEC    XBAR      MSE      Lamda  
 1     .260     1.200     0.100  
 2    1.124     1.774     0.100  
 
 
The UCL = 5.938 for = .05. Smaller choices of  are also used.  

           

            Sample MEWMA plots  

 

The following is the plot of the above MEWMA 

 

 

 



                                  

 

                                               Chapter 4  

 

                            4 Acceptance Sampling  

 

                        4.1  Introduction   

 
So far we confined our attention to ‘process control ‘which is achieved through the 

powerful tool of shewhart’s control charts. In this case producer had the complete 

control of the process which made the product, but when it comes to the marketing of 

the product, the problem is different.  Here we have to take in to consideration the 

requirements of the customers and the firms or companies who receive the end 

products from the process. For this we need that it termed as ‘product control’  in 

which the producer wants to ensure himself that the manufactured goods are 

according to the specifications of the customers or the receiving firms or companies 

and do not  contain a large number of defectives. For this, it is imperative that he 

should have his product examined at strategic points, which is designed as receiving 

inspection. The inspection may be on sample basis or census basis. The basic tool 

used for the examination of the finished product is called acceptance sampling in 

which the decision to accept or reject a lot is made on the basis of random samples 

draw from it.    Acceptance sampling plan invented by Dodge, H.F.and Roming, H.G. 

are powerful tools for product control. They basically designed these plans for lot 

quality protection so that a lot as poor as a given quality has a small chance of being 

accepted. They aimed at:  

(i) Providing a definite assurance against accepting any unsatisfactory lot. 

(ii) Minimizing the amount of inspection (and hence the inspection costs) 

subject to the degree of protection provide in the above (i). 

Like control charts for variables and attributes we have sampling inspection plans for 

attributes and variables. The acceptance sampling plans for attributes are relatively easy 

to carry on and are described here briefly.   

 



                                  

                              4.2 Concepts of Acceptance Sampling  

 
It looks to the point to inspect each and every items produced by a manufacturing unit 

and make sure about the quality specification before releasing it for sale. But cent per 

cent inspection has its own weakness. 

Firstly, due to fatigue of checking a large number of items, the efficency of inspection 

goes down and hence one can not expect that no defective or non-conforming item 

will not be left out after inspection.  

 Secondly, cent per cent inspection is impossibility in cases where the produce or 

items are perished under inspection such as inspection for life of electric bulbs, life of 

battery cells, combustibility of coke, etc. 

Thirdly, the item and cost are other two important economic factors which discourage 

a manufacture from 100 percent inspections. So the acceptance or rejection of a lot is 

usually based on the inspection of sample drawn from the lots at regular intervals 

during the manufacturing process. Usually people call it acceptance sampling plan. 

Thus under acceptance sampling plan one takes the decision whether a lot is to be 

accepted or rejected. Broadly, three purposes are served by sampling inspection plans. 

(i) It enables to know whether the process is producing the product which meets 

the quality specification or not.  

(ii) It reveals whether the furnished product is good for marketing or not. 

(iii) It minimizes the risk of the consumer and protects the producer from future 

losses. 

In spite of many factors against cent per cent inspections, it is still preferred under 

special situations such as: 

(i) A defective item may cause danger to life. 

(ii) A defect may stop the whole function of the system. 

(iii) The lot size is small 

(iv) The income quality is very poor.  

Before discussing the inspection plans we shall first explain the various terms and 

concepts. 

 



                                  

Definitions of basic Acceptance Sampling terms  

Deriving a plan, within one of the categories listed above, is discussed in the pages that 

follow. All derivations depend on the properties you want the plan to have. These are 

described using the following terms:  

 Acceptable Quality Level (AQL): The AQL is a percent defective that is the base 

line requirement for the quality of the producer's product. The producer would 

like to design a sampling plan such that there is a high probability of accepting a 

lot that has a defect level less than or equal to the AQL.  

 Lot Tolerance Percent Defective (LTPD): The LTPD is a designated high defect 

level that would be unacceptable to the consumer. The consumer would like the 

sampling plan to have a low probability of accepting a lot with a defect level as 

high as the LTPD.  

 Type I Error (Producer's Risk): This is the probability, for a given (n,c) sampling 

plan, of rejecting a lot that has a defect level equal to the AQL. The producer 

suffers when this occurs, because a lot with acceptable quality was rejected. The 

symbol  is commonly used for the Type I error and typical values for  range 

from 0.2 to 0.01.  

 Type II Error (Consumer's Risk): This is the probability, for a given (n,c) 

sampling plan, of accepting a lot with a defect level equal to the LTPD. The 

consumer suffers when this occurs, because a lot with unacceptable quality was 

accepted. The symbol  is commonly used for the Type II error and typical values 

range from 0.2 to 0.01.  

 Operating Characteristic (OC) Curve: This curve plots the probability of 

accepting the lot (Y-axis) versus the lot fraction or percent defectives (X-axis). 

The OC curve is the primary tool for displaying and investigating the properties 

of a LASP.  

 Average Outgoing Quality (AOQ): A common procedure when sampling and 

testing is non-destructive, is to 100% inspect rejected lots and replace all 

defectives with good units. In this case, all rejected lots are made perfect and the 

only defects left are those in lots that were accepted. AOQ's refer to the long term 



                                  

defect level for this combined LASP and 100% inspection of rejected lots process. 

If all lots come in with a defect level of exactly p, and the OC curve for the 

chosen (n,c) LASP indicates a probability pa of accepting such a lot, over the long 

run the AOQ can easily be shown to be:  

                                

Where N is the lot size.  

 Average Outgoing Quality Level (AOQL): A plot of the AOQ (Y-axis) versus the 

incoming lot p (X-axis) will start at 0 for p = 0, and return to 0 for p = 1 (where 

every lot is 100% inspected and rectified). In between, it will rise to a maximum. 

This maximum, which is the worst possible long term AOQ, is called the AOQL.  

 Average Total Inspection (ATI): When rejected lots are 100% inspected, it is 

easy to calculate the ATI if lots come consistently with a defect level of p. For a 

LASP (n,c) with a probability pa of accepting a lot with defect level p, we have  

ATI = n + (1 - pa) (N - n)  

Where N is the lot size.  

 Average Sample Number (ASN): For a single sampling LASP (n,c) we know 

each and every lot has a sample of size n taken and inspected or tested. For 

double, multiple and sequential LASP's, the amount of sampling varies depending 

on the number of defects observed. For any given double, multiple or sequential 

plan, a long term ASN can be calculated assuming all lots come in with a defect 

level of p. A plot of the ASN, versus the incoming defect level p, describes the 

sampling efficiency of a given LASP scheme.  

                   4.3  Lot By Lot Acceptance Sampling  

 

The acceptance or rejection of a lot is based on inspections of a sample drawn from a 

submitted lot. Usually the submission based on the number or proportion of 



                                  

defectives present in the sample according to attributes under consideration. But the 

item classified as defective and non- defective on the basis of measurable quality 

characteristics as well. For instance, an item heavier than a fixed weight or shorter 

than a fixed weight or shorter than a fixed length can be classified as defective.  

 

                LASP is a sampling scheme and a set of rules  

 

A lot acceptance sampling plan (LASP) is a sampling scheme and a set of rules for 

making decisions. The decision, based on counting the number of defectives in a sample, 

can be to accept the lot, reject the lot, or even, for multiple or sequential sampling 

schemes, to take another sample and then repeat the decision process.  

                   Types of acceptance plans to choose from  

Lot acceptance sampling plans (LASPs) fall in one of the following:- 

 Single sampling plans: One sample of items is selected at random from a lot and 

the disposition of the lot is determined from the resulting information. These 

plans are usually denoted as (n, c) plans for a sample size n, where the lot is 

rejected if there are more than c defectives. These are the most common (and 

easiest) plans to use although not the most efficient in terms of average number of 

samples needed.  

 Double sampling plans: After the first sample is tested, there are three 

possibilities:  

1. Accept the lot  

2. Reject the lot  

3. No decision  

If the outcome is (3), and a second sample is taken, the procedure is to combine 

the results of both samples and make a final decision based on that information.  

 Multiple sampling plans: This is an extension of the double sampling plans 

where more than two samples are needed to reach a conclusion. The advantage of 

multiple sampling is smaller sample sizes.  

.



                                  

 

where items are selected from a lot one at a time and after inspection of each item 

a decision is made to accept or reject the lot or select another unit.  

 Skip lot sampling plans: Skip lot sampling means that only a fraction of the 

submitted lots are inspected.  

The final choice is a tradeoff decision: - Making a final choice between single or multiple 

sampling plans that have acceptable properties is a matter of deciding whether the 

average sampling savings gained by the various multiple sampling plans justifies the 

additional complexity of these plans and the uncertainty of not knowing how much 

sampling and inspection will be done on a day-by-day basis.  

 

                           4.3.1 Single Sampling Plan  

 A sampling plan in which a decision about the acceptance or rejection of a lot is based 

on one of the sample that has been inspected. Suppose a lot consists of N items having a 

proportion of defectives as P and in all D defectives, i.e. D=NP. A sample of size n drawn 

from a submitted lot which contains d defectives. Let c be the maximum allowable 

number of defectives in the sample, c is known as acceptance number. The quantities n 

and c can either be determined by lot quality protection approach or by an average quality 

protection approach.  

The procedure to arrive at a decision about the acceptance or rejection of a lot is as 

follows:- 

(i) Select a random sample of size n from the submitted lot. 

(ii) Inspect each and every unit included in the sample and classify them as 

defective or non-defective. Suppose the number of defectives in the sample is 

d. the criteria for the acceptance or rejection of lot is, 

(a) If d c , the lot is accepted. In this case all the defective items in the sample are 

replaced by non-defectives and the lot is release for marketing. 

Sequential  sampling  plans: This  is  the  ultimate  extension  of  multiple  sampling 



                                  

(b) If d>c, the lot is rejected. In this situation, inspect the whole lot and replace all 

defectives found in the lot by non defectives and release the lot for sale. 

In single sampling plan, the variable d follows the hyper geometric distribution. Various 

probabilities under this plan can be worked out by the following formula. 

1. The probability of obtaining d defectives in a sample of size n from the lot 

is, 

Pd = 
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2. The probability of accepting the lot having not more than c defectives in 

the sample of n items is,  

Pa = 
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3. The consumer risk when the lot having the proportion defectives pt 

accepted. 
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4. The producer’s risk when the lot containing a proportion  of defectives 

is rejected. 

     Pp =  

                    

= 1-  

              

From the above expression we draw the following conclusions 

(a) 



                                  

 

         Number of defectives is approximately binomial 

It is instructive to show how the points on this curve are obtained, once we have a 

sampling plan (n,c) - later we will demonstrate how a sampling plan (n,c) is obtained.  

We assume that the lot size N is very large, as compared to the sample size n, so that 

removing the sample doesn't significantly change the remainder of the lot, no matter how 

many defects are in the sample. Then the distribution of the number of defectives, d, in a 

random sample of n items is approximately binomial with parameters n and p, where p is 

the fraction of defectives per lot.  

The probability of observing exactly d defectives is given by  

      

The probability of acceptance is the probability that d, the number of defectives, is less 

than or equal to c, the accept number. This means that  

 

    Sample table for Pa, Pd using the binomial distribution 

   Using this formula with n = 52 and c=3 and p = .01, .02, ...,.12 we find  

Pa  Pd  

.998  .01  

.980  .02  

.930  .03  

.845  .04  

.739  .05  

.620  .06  

.502  .07  

.394  .08  

.300  .09  

.223  .10  



                                  

.162  .11  

.115  .12  

Equations for calculating a sampling plan with a given OC curve 

In order to design a sampling plan with a specified OC curve one needs two designated 

points. Let us design a sampling plan such that the probability of acceptance is 1-  for 

lots with fraction defective p1 and the probability of acceptance is  for lots with fraction 

defective p2. Typical choices for these points are: p1 is the AQL, p2 is the LTPD and , 

are the Producer's Risk (Type I error) and Consumer's Risk (Type II error), respectively.  

If we are willing to assume that binomial sampling is valid, then the sample size n, and 

the acceptance number c are the solution to  

 

These two simultaneous equations are nonlinear so there is no simple, direct solution. 

There are however a number of iterative techniques available that give approximate so 

that composition of a computer program posses few problems. 

We can also calculate the AOQ for a (n,c) sampling plan, provided rejected lots are 100% 

inspected and defectives are replaced with good parts100% inspected and defectives are 

replaced with good parts.  

Assume all lots come in with exactly a p0 proportion of defectives. After screening a 

rejected lot, the final fraction defectives will be zero for that lot. However, accepted lots 

have fraction defective p0. Therefore, the outgoing lots from the inspection stations are a 

mixture of lots with fractions defective p0 and 0. Assuming the lot size is N, we have.  

 

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Acceptable Quality Level
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Lot Tolerance Percent Defective
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Type I Error (Producers
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Type II Error(Consumers
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Average Outgoing Quality


                                  

For example, let N = 10000, n = 52, c = 3, and p, the quality of incoming lots, = 0.03. 

Now at p = 0.03, we glean from the OC curve table that pa = 0.930 and  

AOQ = (.930)(.03)(10000-52) / 10000 = 0.02775. 

Sample table of AOQ versus p 

Setting p = .01, .02, ..., .12, we can generate the following table  
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Interpretation of AOQ plot:- From examining this curve we observe that when the 

incoming quality is very good (very small fraction of defectives coming in), then the 

outgoing quality is also very good (very small fraction of defectives going out). When the 

incoming lot quality is very bad, most of the lots are rejected and then inspected. The 

"duds" are eliminated or replaced by good ones, so that the quality of the outgoing lots, 

the AOQ, becomes very good. In between these extremes, the AOQ rises, reaches a 

maximum, and then drops.  

The maximum ordinate on the AOQ curve represents the worst possible quality that 

results from the rectifying inspection program. It is called the average outgoing quality 

limit, (AOQL ).  

From the table we see that the AOQL = 0.0372 at p = .06 for the above example.  

One final remark: if N >> n, then the AOQ ~ pa p.  

Calculating the Average Total Inspection 

What is the total amount of inspection when rejected lots are screened?  

If all lots contain zero defectives, no lot will be rejected.  

If all items are defective, all lots will be inspected, and the amount to be inspected is N.  

Finally, if the lot quality is 0 < p < 1, the average amount of inspection per lot will vary 

between the sample size n, and the lot size N.  

Let the quality of the lot be p and the probability of lot acceptance be pa, then the ATI per 

lot is  

ATI = n + (1 - pa) (N - n)  

For example, let N = 10000, n = 52, c = 3, and p = .03 we know from the OC table that pa 

= 0.930. Then ATI = 52 + (1-.930) (10000 - 52) = 753. (Note that while 0.930 was 

rounded to three decimal places, 753 were obtained using more decimal places.)  

 

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Average Outgoing Quality Level


                                  

              Sample table of ATI versus p 

 Setting p= .01, .02, ....14 generates the following table  

ATI  P  

70  .01  

253  .02  

753  .03  

1584  .04  

2655  .05  

3836  .06  

5007  .07  

6083  .08  

7012  .09  

7779  .10  

8388  .11  

8854  .12  

9201  .13  

9453  .14  

 

 Plot of ATI versus p 

 

A plot of ATI versus p, the Incoming Lot Quality (ILQ) is given below.  

 

A plot of ATI versus p, the Incoming Lot Quality 

(ILQ) is given below.  

 

                           

 

We can also calculate the AOQ for a (n,c) sampling 

plan, provided rejected lots are 100% inspected and 

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Average Outgoing Quality


                                  

Let  is proportion of defective items in the batch  

 X = number of defectives in the sample, we accept the batch if X  where c is constant. 

otherwise reject the batch if X c  

Case 1 where N is infinite  

X~ Bin (n, )  X = 0,1,2…..n 



                                  

 

Example 2:-We might assume c=0 , the conditions “ be 99% of a certain rejecting a batch with 2%  

of defectives  

Solution :-  , OC(  

                    OC(0.02) 01.0  

but for single stage sampling OC( )1()  
n    

                       
= (1-0.02)

n 

 (1-0.02)
n 

01.0  

By taking natural logarithm both sides we get,  

nlog(0.98)  

n  =227.9 

 = n  228 since n must be an integer ,so that we can “take a sample of 228 observation accept the  

batch if every object is good and reject if there is defectives”  

 

Example 3 (instead of fixing c , fix n) :- let take n =100 what will give us a 95% chance of rejecting  

a batch that has 5% defectives. 

Solution: - we can calculate OC (0.05) , the value of c is 0, 1, 2, 3…n =100. 

 c= 0,OC(0.05) = (1-0.05)
100

 

        = (0.95)
100 

        = 0.00592 

C=1,OC(0.05) = p(x  

= p(x=0) + p(x=1) by using the binomial distribution we can get  

= (0.95)
100   

+ (0.05)
1
 (0.95)

99
 

 = 0.037 

C=2  OC(0.05) =p(x  = p(x=0) + p(x=1) +p(x=2) 

by using the binomial distribution we can get  

= (0.95)
100   

+ (0.05)
1
 (0.95)

99
 + (0.05)

2
 (0.95)

98 

 



                                  

= 0.11  

OC(0.05) =  

 

Example 3:- (fix c\n) a buyers test a sample of n fuses from infinite batch (population) of fuses.  

She will accept the batch if the sample contains defectives. she is considering by taking a sample  

of n = 25,50,75,100 etc…fuses .how large should “n” be if she wants to be 90% of certain of rejecting  

a batch with 10% of defectives? i.e.c\n =0.04 find the value of c and n. 

 

Solution :- let us check possible solutions C=1,n=25 

                                                                    C=2,n=50 

                                                                    C=3, n=75 

                                                                     C=4, n=100 

OC(0.1)  C=1,n=25 

 

OC(0.1) = p(x = p(x=0) +p(x =1) 

                               = (0.9)
25

 + (0.1)
1
 (0.9)

24
 =0.27 

 OC(0.1) = 0.27 >10%  

 This is not solution set. 

C=2,n=50, OC(0.1) =P(x =p(x =0)+ p(x =1) +p(x =2) 

= (0.9)
50

 + 








1

50
(0.1)

1
 (0.9)

49
 + (0.1)

2
 (0.9)

48
 

= 0.11>10% 

 This is also not solution set. 

C=3,n=75, OC(0.1) =P(x = P(x=0) +…P(x=3) 

We finally get as, the same procedure above, = 0.059<10% 

 OC(0.1) = 0.059 

 This is a solution set. 

 we need n  and c=3 



                                  

Case 2  N is finite (N< :- 

Here we have a batch of N items, M of this are defectives ;  is proportion of defectives =M\N 

Note:-  can only take the values  

0, 1\N,2\N, 3\N, ….N-1\N,1 

X= number of defective in the sample has hyper- geometric distribution  

P(X=x) =            

                                                                           

where x , n-x  

P(X=x) = The probability of getting ‘x ‘defective in the sample. 

 

Example 4 :- Suppose N=100,c=0,choose n to make sure OC(0.05)  i.e. we have a batch of  

size 1000 we use the rule “accept if the sample contains no defectives” choose n so that we are 95% 

of rejecting a batch is 5% defectives. 

  Choose the sample observation n when OC(0.05)  

   since , M=N =50 

   OC(x =0\M=50) 

= P(every sample observation have no defective\M=50) 

= 950\100  

 by inspection OC(0.05)  when n  

Example 5:- Suppose the batch size is N= 40 and we take c=0 how can we choose n so that  

OC (0.05)  for this value of n calculate the OC functions? 

Solution N=40, ,  

               M=N  =0.05  

                OC(0.05) = P(accept the batch\M=2) 

= P(1
st
 item is good ) P(2

nd
 item is good\1

st
 item is good) P(3

rd
 item is good\1

st
 and 2

nd
 item is good)  

……  P(n
th

  item is good \1
st
 ,2

nd
 ,3

rd
 ….(n-1)

th
 item is good) 

    



                                  

OC(0.05) = P(X =     

  

                             

                                     =  

 38\40 )\(40-(n+1)) =(40-n)(39-n)\(40  

(40-n)(39-n)\(40   also by inspection n=31 =0.046 

 We need to choose n=31 , n is the minimum sample observation we must use n  

 

                         

 

                                                         

                                      How double sampling plans work:- 

Double and multiple sampling plans were invented to give a questionable lot another chance. 

 For example, if in double sampling the results of the first sample are not conclusive with regard to 

 accepting or rejecting, a second sample is taken. Application of double sampling requires that a  

First sample of size n1 is taken at random from the (large) lot. The number of defectives is then counted 

 and compared to the first sample's acceptance number a1 and rejection number r1.  

Denote the number of defectives in sample 1 by d1 and in sample 2 by d2, then:  

If d1 a1, the lot is accepted.  

If d1 r1, the lot is rejected.  

If a1 < d1 < r1, a second sample is taken.  

If a second sample of size n2 is taken, the number of defectives, d2, is counted.  

The total number of defectives is D2 = d1 + d2. Now this is compared to the acceptance number a2 and  

the rejection number r2 of sample 2. In double sampling, r2 = a2 + 1 to ensure a decision on the sample.  

                                              If D2



                                  

Design of a double sampling plan 

The parameters required to construct the OC curve are similar to the single sample case.  

The two points of interest are (p1, 1- ) and (p2, , where p1 is the lot fraction defective for plan 1 

and p2 is the lot fraction defective for plan 2. As far as the respective sample sizes are concerned,  

the second sample size must be equal to, or an even multiple of, the first sample size.  

There exist a variety of tables that assist the user in constructing double and multiple sampling plans. 

 The index to these tables is the p2/p1 ratio, where p2 > p1. 

 One set of tables, taken from the Army Chemical Corps Engineering Agency for = .05 and = .10,  

is given below:  

Tables for n1 = n2  

   accept     approximation  values  

R =  numbers     of pn1  for  

p2/p1  c1  c2  P = .95  P = .10  

 

11.90  0  1  0.21  2.50  

7.54  1  2  0.52  3.92  

6.79  0  2  0.43  2.96  

5.39  1  3  0.76  4.11  

4.65  2  4  1.16  5.39  

4.25  1  4  1.04  4.42  

3.88  2  5  1.43  5.55  

3.63  3  6  1.87  6.78  

3.38  2  6  1.72  5.82  

3.21  3  7  2.15  6.91  

3.09  4  8  2.62  8.10  

2.85  4  9  2.90  8.26  

2.60  5  11  3.68  9.56  

2.44  5  12  4.00  9.77  

2.32  5  13  4.35  10.08  

2.22  5  14  4.70  10.45  

2.12  5  16  5.39  11.41  

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm#Army Chemical


                                  

Tables for n2 = 2n1  

   accept     approximation  values  

R =  numbers     of pn1  for  

p2/p1  c1  c2  P = .95  P = .10  

 

14.50  0  1  0.16  2.32  

8.07  0  2  0.30  2.42  

6.48  1  3  0.60  3.89  

5.39  0  3  0.49  2.64  

5.09  0  4  0.77  3.92  

4.31  1  4  0.68  2.93  

4.19  0  5  0.96  4.02  

3.60  1  6  1.16  4.17  

3.26  1  8  1.68  5.47  

2.96  2  10  2.27  6.72  

2.77  3  11  2.46  6.82  

2.62  4  13  3.07  8.05  

2.46  4  14  3.29  8.11  

2.21  3  15  3.41  7.55  

1.97  4  20  4.75  9.35  

1.74  6  30  7.45  12.96  
 

              Example of a double sampling plan:- 

We wish to construct a double sampling plan according to  

p1 = 0.01     = 0.05     p2 = 0.05     = 0.10     and n1 = n2  

The plans in the corresponding table are indexed on the ratio  

R = p2/p1 = 5  

We find the row whose R is closet to 5. This is the 5th row (R = 4.65). This gives c1 = 2 and c2 = 4. 

 The value of n1 is determined from either of the two columns labeled pn1.  

The left holds  constant at 0.05 (P = 0.95 = 1 - ) and the right holds constant at 0.10. (P = 0.10).  

Then holding  constant we find pn1 = 1.16 so n1 = 1.16/p1 = 116.  



                                  

And, holding constant we find pn1 = 5.39, so n1 = 5.39/p2 = 108. Thus the desired sampling plan is  

n1 = 108     c1 = 2     n2 = 108     c2 = 4  

If we opt for n2 = 2n1, and follow the same procedure using the appropriate table, the plan is:  

n1 = 77     c1 = 1     n2 = 154     c2 = 4  

The first plan needs less samples if the number of defectives in sample 1 is greater than 2, 

 while the second plan needs less samples if the number of defectives in sample 1 is less than 2.  

                              

                          ASN Curve for a Double Sampling Plan 

Since when using a double sampling plan the sample size depends on whether or not a second  

sample is required, an important consideration for this kind of sampling is the  

Average Sample Number (ASN) curve.  

This curve plots the ASN versus p', the true fraction defective in an incoming lot.  

We will illustrate how to calculate the ASN curve with an example.  

Consider a double-sampling plan n1 = 50, c1= 2, n2 = 100, c2 = 6,  

where n1 is the sample size for plan 1, with accept number c1, and n2, c2, are the sample size and  

accept number, respectively, for plan 2.  

Let p' = .06. Then the probability of acceptance on the first sample, which is the chance of getting two or 

 less defectives, is .416 (using binomial tables). The probability of rejection on the second sample,  

which is the chance of getting more than six defectives, is (1-.971) = .029.  

The probability of making a decision on the first sample is .445, equal to the sum of .416 and .029.  

With complete inspection of the second sample, the average size sample  

is equal to the size of the first sample times the probability that there will be only one sample  

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Average Sample Number


                                  

plus the size of the combined samples times the probability that a second sample will be necessary.  

For the sampling plan under consideration,  

the ASN with complete inspection of the second sample for a p' of .06 is  

50(.445) + 150(.555) = 106  

The general formula for an average sample number curve of a double-sampling plan with complete  

inspection of the second sample is  

ASN = n1P1 + (n1 + n2)(1 - P1) = n1 + n2(1 - P1)  

where P1 is the probability of a decision on the first sample. 

 The graph below shows a plot of the ASN versus p'.  

 

 

 

 

 



                                  

                         4..2.5 Multiple Stage Sampling  

 

                                      
 

Multiple sampling is an extension of double sampling.  

It involves inspection of 1 to k successive samples as required to reach an ultimate decision.  

Mil-Std 105D suggests k = 7 is a good number.  

Multiple sampling plans are usually presented in tabular form:  

Procedure for multiple sampling 

The procedure commences with taking a random sample of size n1from a large lot of size N  

and counting the number of defectives, d1.  

if d1 a1 the lot is accepted.  

if d1 r1 the lot is rejected.  

if a1 < d1 < r1, another sample is taken.  

If subsequent samples are required, the first sample procedure is repeated sample by sample.  

For each sample, the total number of defectives found at any stage, say stage i, is  

 

This is compared with the acceptance number ai and the rejection number ri 

 for that stage until a decision is made.  

Sometimes acceptance is not allowed at the early stages of multiple sampling;  

However, rejection can occur at any stage.  

Efficiency measured by the ASN:- 

Efficiency for a multiple sampling scheme is measured by the average sample number (ASN)  

Required for a given Type I and Type II set of errors.  

The number of samples needed when following a multiple sampling scheme may vary from trial to trial,  

and the ASN represents the average of what might happen over many trials with  

a fixed incoming defect level 

 

 

 

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Average Sample Number
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Type I Error (Producers
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Type II Error (Consumers


                                  

                 4.2.6 Sequential Sampling Plan  

 



                                  

Description of sequential sampling graph :- 

The cumulative observed number of defectives is plotted on the graph.  

For each point, the x-axis is the total number of items thus far selected,  and the y-axis is the total 

 number of observed defectives. If the plotted point falls within the parallel lines the process continues by drawing another 

sample. As soon as a point falls on or above the upper line, the lot is rejected.  And when a point falls on or below the lower 

line, the lot is accepted. The process can theoretically last until the lot is 100% inspected.  However,  

as a rule of thumb, sequential-sampling plans are truncated after the number inspected reaches three times the number that 

would have been inspected using a  corresponding single sampling plan.  

Equations for the limit lines  The equations for the two limit lines are functions of the parameters 

 p1, , p2, and .  

 

 
where  

 

 

 

 
Instead of using the graph to determine the fate of the lot,  

one can resort to generating tables (with the help of a computer program).  

 

Example of a 

sequential 

sampling plan  

As an example, let p1 = .01, p2 = .10, = .05, = .10. The resulting 

equations are  

 

 
Both acceptance numbers and rejection numbers must be integers. 

The acceptance number is the next integer less than or equal to xa and 

the rejection number is the next integer greater than or equal to xr. 

Thus for n = 1, the acceptance number = -1, which is impossible, and 

the rejection number = 2, which is also impossible. For n = 24, the 

acceptance number is 0 and the rejection number = 3.  

.



                                  

The results for n =1, 2, 3... 26 are tabulated below.  

n 

inspect  

n 

accept  

n 

reject  

n 

inspect  

n 

accept  

n 

reject  

 

1  x  x  14  x  2  

2  x  2  15  x  2  

3  x  2  16  x  3  

4  x  2  17  x  3  

5  x  2  18  x  3  

6  x  2  19  x  3  

7  x  2  20  x  3  

8  x  2  21  x  3  

9  x  2  22  x  3  

10  x  2  23  x  3  

11  x  2  24  0  3  

12  x  2  25  0  3  

13  x  2  26  0  3  

So, for n = 24 the acceptance number is 0 and the rejection number is 

3. The "x" means that acceptance or rejection is not possible.  

Other sequential plans are given below.  

n 

inspect  

n 

accept  

n 

reject  

 

49  1  3  

58  1  4  

74  2  4  

83  2  5  

100  3  5  

109  3  6  

The corresponding single sampling plan is (52,2) and double 

sampling plan is (21,0), (21,1).  



                                  

Efficiency measured 

by ASN  

Efficiency for a sequential sampling scheme is measured by the 

average sample number (ASN) required for a given Type I and Type 

II set of errors. The number of samples needed when following a 

sequential sampling scheme may vary from trial to trial, and the ASN 

represents the average of what might happen over many trials with a 

fixed incoming defect level. Good software for designing sequential 

sampling schemes will calculate the ASN curve as a function of the 

incoming defect level. 

 

 

              4.2.7 Skip Lot Sampling Plan 

                                               

Skip Lot sampling means that only a fraction of the submitted lots are inspected.  

This mode of sampling is of the cost-saving variety in terms of time and effort.  

However skip-lot sampling should only be used when it has been demonstrated that the quality of  

the submitted product is very good.  

Implementation of skip-lot sampling plan:- 

  

A skip-lot sampling plan is implemented as follows:  

1. Design a single sampling plan by specifying the alpha and beta risks and the consumer/producer's risks. This plan is 

called "the reference sampling plan".  

2. Start with normal lot-by-lot inspection, using the reference plan.  

3. When a pre-specified number, i, of consecutive lots are accepted, switch to inspecting only a fraction f of the lots. The 

selection of the members of that fraction is done at random.  

4. When a lot is rejected return to normal inspection.  

The f and i parameters  The parameters f and i are essential to calculating the probability of  

Acceptance for a skip-lot sampling plan. In this scheme, i,  

t

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Average Sample Number
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Type I Error (Producers
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Type II Error (Consumers
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Type II Error (Consumers
http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc23.htm


                                  

called the clearance number, is a positive integer and the sampling fraction 

 f is such that 0 < f < 1. Hence, when f = 1 there is no longer skip-lot  

Sampling.  

The calculation of the acceptance probability for the skip-lot sampling plan is 

performed via the following formula  

 

where P is the probability of accepting a lot with a given proportion of  

incoming defectives p, from the OC curve of the single sampling plan.  

The following relationships hold:  

for a given i, the smaller is f, the greater is Pa  

for a given f, the smaller is i, the greater is Pa  

An illustration of a a skip-lot sampling plan is given below 

 

 

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Operating Characteristic (OC)


                                  

ASN of skip-lot sampling plan:- 

An important property of skip-lot sampling plans is the average sample number (ASN ).  

The ASN of a skip-lot sampling plan is  

ASNskip-lot = (F)(ASNreference)  

where F is defined by  

 

Therefore, since 0 < F < 1, it follows that the ASN of skip-lot sampling is smaller than the  

ASN of the reference sampling plan.  

In summary, skip-lot sampling is preferred when the quality of the submitted lots is excellent and 

 the supplier can demonstrate a proven track record.  

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc22.htm#Average Sample Number


                                  

4.3 Curves For Sampling Plan  

The following curves are quite essential in understanding the behavior and operation of 

sampling inspection plan. 

1. 



                                  

Applying OC-Curve to Evaluate Sampling Plans 

 
Figure 1. OC-Curve. (Operating Characteristic) 

The Operating Characteristic (OC) curve shows the probability of acceptance, Pa, for any 

level of lot quality. See Figure 1. On the horizontal axis is the quality characteristic.  

This OC-curve enables you to evaluate the probability of acceptance for any true lot 

quality level-on a what-if basis. This way, you can design sampling plans that perform 

the way you want.  

Interpret the curve according to this example:  

  1. If the lot quality is 0.093 fractions defective, then the probability of acceptance, Pa, is 

0.05.  

2. If the lot quality is 0.018 fractions defective, then the probability of acceptance, Pa, is 

0.95. 

APPLYING OC-CURVES to COMPARE SAMPLING PLANS 

 
Figure 2. Comparing Alternative Plans, A and B 

You can use OC-curves to compare alternative plans. See Figure 2. Choose between the 

plans by their relative ability to detect reject able lots. You should expect that the steeper 

the curve, the larger the sample size.  



                                  

Complete this picture by comparing the costs of the sampling to the resulting 

performance. 

 APPLYING OC-CURVES to DESIGN -- THE TWO-POINT METHOD 

The Two-Point method for developing acceptance sampling plans requires that you 

specify two points of the operating characteristic curve (OC-curve).  

Producer's Point 

 
Figure 3. The Two-Point Method  

The producer's point controls the acceptance of lots that are at an acceptable quality 

level. (See figure 3) The goal: prevent good lots from being rejected.  

Consumer's Point 

The consumer's point controls the rejection of lots that are at a reject able quality level. 

(See figure 3) The goal: prevent bad lots from being accepted.  

Decision Table Defines the Two Points 



                                  



                                  

Matching the OC Curves of Different Types of Plan 

An important ability is to match sampling plans by their OC-curves. Two matched plans 

have the same operating characteristic curve, but different decision rules. You can safely 

choose between matched plans for economy, knowing they offer equal protection. The 

following table shows useful matches.  

Plan A  Plan B  

Attribute  Variables  

Fixed-n 
Double, Multiple, 

Sequential  

Variables - Known 

standard deviation 

Variables - 

Unknown standard 

deviation 

The following series of sampling plan examples shows how various types of plan are 

matched to the same OC-curve. The OC-curve of this example is characterized by the 

two points: (AQL=0.01, =0.05) and (RQL=0.10, =0.05). For convenience we will refer to 

the curve as "OC-Curve X". 

Attribute Sequential Sampling Plan  
(Matched to OC-Curve X) 

Sequential Probability Ratio method (SPR)  

 

(AQL=0.01, =0.05) and (RQL=0.10, =0.05) 

 



                                  

 

http://www.samplingplans.com/modern3.htm#SPRTSS#SPRTSS


                                  

SPR Sequential 

(n) (Ac)  (Re) 

1 ###  12.55 

2 1.13  8.74 

3 2.40  7.48 

4 3.04  6.84 

5 3.42  6.46 

6 3.67  6.21 

7 3.85  6.03 

8 3.99  5.89 

9 4.09  5.78 

10 4.18  5.70 

11 4.25  5.63 

12 4.31  5.57 

13 4.36  5.52 

Variables Sequential Sampling Plan, unknown Sigma  

(Matched to OC-Curve X) 

TSS = Truncatable Single Sample  
(AQL=0.01, =0.05) and (RQL=0.10, =0.05)  

 

  

Variables 
TSS Sequential  
Unknown Sigma 

http://www.samplingplans.com/modern3.htm#SPRTSS#SPRTSS


                                  

(n) K (Re)  K (Ac)  

2     

3 -3.83    

4 -1.03    

5 -0.20    

6 0.21    

7 0.46    

8 0.63  8.94  

9 0.76  6.86  

10 0.87  5.66  

11 0.96  4.88  

12 1.03  4.33  

13 1.10  3.92  

14 1.16  3.61  

15 1.21  3.36  

16 1.26  3.15  

17 1.30  2.98  

18 1.35  2.83  

19 1.39  2.69  

20 1.43  2.58  

21 1.47  2.47  

22 1.51  2.37  

23 1.55  2.27  

24 1.59  2.18  

25 1.64  2.08  

26 1.70  1.96  

27 1.80  1.80  

 

Relationship of Sampling to Control Charts 

Shewhart Control Charts are not Acceptance Plans 

Shewhart Xbar and R charts analyze processes that involve a series of lots produced over 

time. They concern the relationship of the subgroups to each other, and not to any 

externally imposed specification. Use Xbar and R charts to discover the factors that 

contribute to process variability.  



                                  

Shewhart charts cannot ensure against accepting poor or recallable lots. Even an in-

control characteristic can have a substantial fraction of non-conformities. Xbar and R 

charts do not control the consumer’s risk (ß) of accepting RQL or recallable lots.  

Acceptance Control Charts.  

Acceptance control charts are acceptance sampling plans that you convert into chart form 

for implementation. They control the producers point and the consumer’s point of the oc-

curve. Acceptance charts provide a valid visible means for making acceptance sampling 

decisions.  

Acceptance Sampling for Acceptance Decisions 

The best way to make the accept/reject decision - whether a process is out-of-control or 

in-control-is to use both the producer's risk and the consumer's risk. In other words, honor 

both the process capability and the product specifications 

2. Average Outgoing Quality (AOQ) Curve:- 

AOQ curve shows the relation ship between incoming lot quality p and average out going 

quality AOQ. For a single sampling plan AOQ curves given by  

                     AOQ = P (N-n) .Pa (p) 

                                             N 

Where symbols have their usual meaning. If sample size n is small compared with lot size 

N, so that sampling fraction n\N can being noted. This can be approximated by 

AOQ = P














 NnN Pa (p) 

.



                                  

= P












 
N

n1
Pa (p) 

  AOQ P.Pa (p) 

2 Average Total Inspection (A.T.I) Curve:- 

It depicts graphically the relation ship between the incoming lot quality ‘p’ and the 

average total number of units inspected per lot, including sampling and sorting 100%. 

For instance in case of single sampling plan A.T.I curve is given by:  

ATI = n+ (N-n)  )(1 pPa  , since n items to be inspected in each case and the 

remaining N-n items will be inspected only if lot is rejected (i.e. if d>c); Pa (p) being 

the probability of acceptance for a lot of incoming quality p.   

Exercise 

1. Write down OC function for a binomial sampling scheme with c = 0 (your answer 

is based on a function of n). Differentiate this function and show its derivative at 0 

equals’ n. 

2. Suppose we have a binomial sampling scheme and take c = 0. how large should we 

take n if we want to make sure : 

a. We are at least 99% certain rejection of a batch which has 8% 

defectives? 

b. We are at least 90% certain of accept a batch which has 1% of 

defectives? 

3. Suppose we intend  to create a binomial sampling scheme and we want make sure: 

a. We are at least 90% of certain rejecting a batch which has 10% of 

defectives? 



                                  

b. We are at least 90% of a certain acceptance a batch which has 3% 

of defectives? 

c. The scheme uses c = 0 

It is possible to create this scheme? If it is, what are the 

possible values of n we can take? 

4. Suppose we have a binomial sampling scheme with n = 40. what value should we 

take for c we want to make sure : 

a. We are at least 90% of certain rejecting a batch which has 10% 

of defectives? 

b. We are at least 90% certain of accept a batch which has 1% of 

defectives? 

It is possible to create the scheme so that we are 90% of certain 

rejecting a batch which has 10% of defectives and 90% of 

certain of accepting a batch which has1% of defectives? 

5. write down OC function  

a. for binomial sampling scheme with c = 1(your answer will be a 

function of n) 

b. Differentiate this function and show that its derivative at 0 equals’ 

n. compares this with your answers to question 1.interpriate your 

answer. 

c. Calculate OC (0101), OC (0.03), OC (0.05), OC (0.15) and OC 

(0.10) for binomial sampling scheme with c = 1 and n = 80.sktech 

the function. 

.



                                  

6. Suppose we have a binomial sampling scheme with c = 1. Show that if we want to 

make sure we are at least 95% certain rejecting a batch that has 10% of defectives 

we need to take n .46  

7. An engineer receives a large batch of items and need to decide whether or not she 

will accept the batch. She consider using the following sampling schemes 

(i). take a sample of 65 items and accept the batch if there are 

no defective items in the sample. 

(ii). Take a sample of 100 items and accept the batch if there is 

at most one defective items in the sample. 

Use your answers to question 1 and 5 to write down the OC 

functions corresponding to each of these samples. Show that 

OC1 (0.05) is approximately equal to OC2 (0.05). Sketch the 

two OC functions on the same graph. What does this tell you 

about the two schemes? 

8. Consider the binomial sampling with c = 0.002n. Derive the following table (note 

this is quick to do in excel using the function BINOMDIST, but can be quite long 

to do by hand. Just check one or two entries if not familiar with excel or don’t have 

access to it.)   

 

n                                               

0.01 0.05 0.10 

50 0.911 0.279 0.034 

100 0.921 0.118 0.002 

150 0.935 0.005 0.000 

200  0.026 0.000 



                                  

 

9.  Suppose we have a batch size N. What is the OC function of the hyper geometric 

sampling scheme with c =1.  

  

10.  Consider two acceptance sampling scheme defined by the following rules: 

 

(i). the single stage binomial sampling schemes with n = 59 

and c = 0. “Take a sample size of 59 and accept the batch if it 

contains no defectives” 

(ii). in double – stage binomial sampling scheme with n = 70, 

c1 = 0, d1 =2 and c2 = 1:”take a sample of size 70. Then  

a. If it contains no defectives accept the batch. 

b. If it contains two or more defectives reject the batch. 

c. If it contains exactly one defective take a further sample of size 

m and accept the batch if this sample has no defectives. 

Calculate the OC function for each of these schemes. We saw from 

the module OC1 (0.05) = 0.05. Calculate also OC1 (0.01) and OC1 

(0.10); find the smallest values of m so that OC2 (0.05) <0.05. For 

this value of m calculate OC2 (0.01), OC2 (0.05) and OC2 (0.10). 

Interpret your results. 

 

11. consider the double stage binomial sampling scheme with n = 50, m = 80, 

c1 = 0, d1 = 2 and c2 =1: this means we take a sample of size 50 then: 

a. if it contains no defectives accept the batch 

b. if it contain two or more defectives reject the batch 

c. If it contains exactly one defective take a further sample of size 80 and accept the 

batch if this sample has no defective, calculate OC functions of these schemes. 

Calculate OC(0.01), OC(0.05), and OC(0.10) 

d. The probability that the batch is accepted after the second stage. 

e. The probability that the batch is rejected after the second stage, suppose   = 0.1. 

Calculate the expected number of items sampled. 



                                  

12. Write down the OC function of the one stage acceptance sampling scheme 

with c= 0 which values of n define an admissible scheme in each of the following 

cases: 

a. RQL 5%, OC (RQL) < 5% 

b. AQL = 1% OC(AQL)>90% 

c. AOQL<1% 

13. |Suppose we take k =2 what values of n make sure 

(i). we are at least 90% certain of rejecting a batch which has 7% of defectives? 

(ii) We are at least 99% certain rejection of which has 1% of defectives? 

14. Design an acceptance sampling scheme that satisfy OC (RQL) <    and OC 

(AQL) >1-  for the values given below. (Assume N= ). State the value of n and 

k you would use. 

(i). RQL =10%, AQL = 1%. %5 , %10  

(ii). RQL= 20%, AQL=10%, %10 , %10  

(iii)RQL= 5%, AQL=1%, %1 , %1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                  

                                    Chapter Five  

 

                          5. Reliability and Life Testing  

 

 

                                5.1 Introduction  
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in an experiment. For maintaining reliability internally, a researcher will use as many 

repeat sample groups as possible, to reduce the chance of an abnormal sample group 

skewing the results. 

Reliability and Statistics 

Physical scientists expect to obtain exactly the same results every single time, due to the 

relative predictability of the physical realms. If you are a nuclear physicist or an 

inorganic chemist, repeat experiments should give exactly the same results, time after 

time.  

Ecologists and social scientists, on the other hand, understand fully that achieving exactly 

the same results is an exercise in futility. Research in these disciplines incorporates 

random factors and natural fluctuations and, whilst any experimental design must attempt 

to eliminate confounding variables and natural variations, there will always be some 

disparities.  

http://www.experiment-resources.com/internal-consistency-reliability.html
http://www.experiment-resources.com/confounding-variables.html


                                  

The key to performing a good experiment is to make sure that your results are as reliable 

as is possible; if anybody repeats the experiment, powerful statistical tests will be able to 

compare the results and the scientist can make a solid estimate of statistical reliability. 

The definition of reliability vs. validity 

Reliability and validity are often confused, but the terms actually describe two 

completely different concepts, although they are often closely inter-related. This distinct 

difference is best summed up with an example:  

A researcher devises a new test that measures IQ more quickly than the standard IQ test: 

 If the new test delivers scores for a candidate of 87, 65, 143 and 102, then the test 

is not reliable or valid, and it is fatally flawed.  

 If the test consistently delivers a score of 100 when checked, but the candidates 

real IQ is 120, then the test is reliable, but not valid.  

 If the researcher’s test delivers a consistent score of 118, then that is pretty close, 

and the test can be considered both valid and reliable. 

Reliability is an essential component of validity but, on its own, is not a sufficient 

measure of validity. A test can be reliable but not valid, whereas a test cannot be valid yet 

unreliable. 

Reliability, in simple terms, describes the repeatability and consistency of a test. Validity 

defines the strength of the final results and whether they can be regarded as accurately 

describing the real world. 

The definition of reliability �– an example 

Imagine that a researcher discovers a new drug that she believes helps people to become 

more intelligent, a process measured by a series of mental exercises. After analyzing the 

results, she finds that the group given the drug performed the mental tests much better 

than the control group.  

http://www.experiment-resources.com/conducting-an-experiment.html
http://www.experiment-resources.com/significance-test.html
http://www.experiment-resources.com/statistical-reliability.html
http://www.experiment-resources.com/validity-and-reliability.html
http://www.experiment-resources.com/types-of-validity.html
http://www.experiment-resources.com/internal-consistency-reliability.html
http://www.experiment-resources.com/scientific-control-group.html


                                  

For her results to be reliable, another researcher must be able to perform exactly the same 

experiment on another group of people and generate results with the same statistical 

significance. If repeat experiments fail, then there may be something wrong with the 

original research. 

The real difference between reliability and validity is mostly a matter of definition. 

Reliability estimates the consistency of your measurement, or more simply the degree to 

which an instrument measures the same way each time it is used in under the same 

conditions with the same subjects. Validity, on the other hand, involves the degree to 

which you are measuring what you are supposed to, more simply, the accuracy of your 

measurement. It is my belief that validity is more important than reliability because if an 

instrument does not accurately measure what it is supposed to, there is no reason to use it 

even if it measures consistently (reliably).  

         

5.2 Definition of Reliability 

Definition: Reliability is the consistency of your measurement, or the degree to which an 

instrument measures the same way each time it is used under the same condition with the 

same subjects. In short, it is the repeatability of your measurement. A measure is 

considered reliable if a person's score on the same test given twice is similar. It is 

important to remember that reliability is not measured, it is estimated.  

There are two ways that reliability is usually estimated: test/retest and internal 

consistency.  

Test/Retest 

Test/retest is the more conservative method to estimate reliability. Simply put, the idea 

behind test/retest is that you should get the same score on test 1 as you do on test 2. The 

three main components to this method are as follows:  

http://www.experiment-resources.com/significance-test.html
http://www.experiment-resources.com/significance-test.html


                                  

1). Implement your measurement instrument at two separate times for each subject;  

2).Compute the correlation between the two separate measurements; and  

3) Assume there is no change in the underlying condition (or trait you are trying to 

measure) between test 1 and test 2. 

Internal-Consistency 

Internal consistency estimates reliability by grouping questions in a questionnaire that 

measure the same concept. For example, you could write two sets of three questions that 

measure the same concept (say class participation) and after collecting the responses, run 

a correlation between those two groups of three questions to determine if your instrument 

is reliably measuring that concept.  

One common way of computing correlation values among the questions on your 

instruments is by using Cronbach's Alpha. In short, Cronbach's alpha splits all the 

questions on your instrument every possible way and computes correlation values for 

them all (we use a computer program for this part). In the end, your computer output 

generates one number for Cronbach's alpha - and just like a correlation coefficient, the 

closer it is to one, the higher the reliability estimate of your instrument. Cronbach's alpha 

is a less conservative estimate of reliability than test/retest.  

The primary difference between test/retest and internal consistency estimates of 

reliability is that test/retest involves two administrations of the measurement instrument, 

whereas the internal consistency method involves only one administration of that 

instrument.         

      5.2.1 Relation and Difference between Validity and Reliability  

Definition: Validity is the strength of our conclusions, inferences or propositions. More 

formally, Cook and Campbell (1979) define it as the "best available approximation to the 

truth or falsity of a given inference, proposition or conclusion." In short, were we right? 

Let's look at a simple example. Say we are studying the effect of strict attendance policies 

on class participation. In our case, we saw that class participation did increase after the 



                                  

policy was established. Each type of validity would highlight a different aspect of the 

relationship between our treatment (strict attendance policy) and our observed outcome 

(increased class participation).  

Types of Validity:  

There are four types of validity commonly examined in social research. 

1. Conclusion validity asks is there a relationship between the program and the 

observed outcome? Or, in our example, is there a connection between the 

attendance policy and the increased participation we saw?  

2. Internal Validity asks if there is a relationship between the program and the 

outcome we saw, is it a causal relationship? For example, did the attendance 

policy cause class participation to increase?  

3. Construct validity is the hardest to understand in my opinion. It asks if there is 

there a relationship between how I operational zed my concepts in this study to 

the actual causal relationship I'm trying to study/? Or in our example, did our 

treatment (attendance policy) reflect the construct of attendance, and did our 

measured outcome - increased class participation - reflect the construct of 

participation? Overall, we are trying to generalize our conceptualized treatment 

and outcomes to broader constructs of the same concepts.  

4. External validity refers to our ability to generalize the results of our study to 

other settings. In our example, could we generalize our results to other 

classrooms? 

Threats to Internal Validity  

There are three main types of threats to internal validity - single group, multiple group 

and social interaction threats.  



                                  

Single Group Threats apply when you are studying a single group receiving a program 

or treatment. Thus, all of these threats can be greatly reduced by adding a control group 

that is comparable to your program group to your study.  

A History Threat  occurs when an historical event affects your program group such that 

it causes the outcome you observe (rather than your treatment being the cause). In our 

earlier example, this would mean that the stricter attendance policy did not cause an 

increase in class participation, but rather, the expulsion of several students due to low 

participation from school impacted your program group such that they increased their 

participation as a result.  

A Maturation Threat to internal validity occurs when standard events over the course of 

time cause your outcome. For example, if by chance, the students who participated in 

your study on class participation all "grew up" naturally and realized that class 

participation increased their learning (how likely is that?) - That could be the cause of 

your increased participation, not the stricter attendance policy.  

A Testing Threat to internal validity is simply when the act of taking a pre-test affects 

how that group does on the post-test. For example, if in your study of class participation, 

you measured class participation prior to implementing your new attendance policy, and 

students became forewarned that there was about to be an emphasis on participation, they 

may increase it simply as a result of involvement in the pretest measure - and thus, your 

outcome could be a result of a testing threat - not your treatment.  

An Instrumentation Threat to internal validity could occur if the effect of increased 

participation could be due to the way in which that pretest was implemented.  

A Mortality Threat to internal validity occurs when subjects drop out of your study, and 

this leads to an inflated measure of your effect. For example, if as a result of a stricter 

attendance policy, most students drop out of a class, leaving only those more serious 

students in the class (those who would participate at a high level naturally) - this could 

mean your effect is overestimated and suffering from a mortality threat.  



                                  

The last single group threat to internal validity is a Regression Threat. This is the most 

intimating of them all (just its name alone makes one panic). Don't panic. Simply put, a 

regression threat means that there is a tendency for the sample (those students you study 

for example) to score close to the average (or mean) of a larger population from the 

pretest to the posttest. This is a common occurrence, and will happen between almost any 

two variables that you take two measures of. Because it is common, it is easily remedied 

through either the inclusion of a control group or through a carefully designed research 

plan (this is discussed later). For a great discussion of regression threats, go to Bill 

Trochim's Center for Social Research Methods.  

In sum, these single group threats must be addressed in your research for it to remain 

credible. One primary way to accomplish this is to include a control group comparable to 

your program group.  

Multiple Group Threats to internal validity involve the comparability of the two groups 

in your study, and whether or not any other factor other than your treatment causes the 

outcome. They also (conveniently) mirror the single group threats to internal validity.  

A Selection-History threat occurs when an event occurring between the pre and post test 

affects the two groups differently.  

A Selection-Maturation threat occurs when there are different rates of growth between 

the two groups between the pre and post test.  

Selection-Testing threat is the result of the different effect from taking tests between the 

two groups.  

A Selection-Instrumentation threat occurs when the test implementation affects the 

groups differently between the pre and post test.  

A Selection-Mortality Threat occurs when there are different rates of dropout between 

the groups which leads to you detecting an effect that may not actually occur.  

http://trochim.human.cornell.edu/
http://trochim.human.cornell.edu/


                                  

Finally, a Selection-Regression threat occurs when the two groups regress towards the 

mean at different rates.  

Diffusion or "Imitation of Treatment occurs when the comparison group learns about 

the program group and imitates them, which will lead to an equalization of outcomes 

between the groups. 

Compensatory Rivalry means that the comparison group develops a competitive attitude 

towards the program group, and this also makes it harder to detect an effect due to your 

treatment rather than the comparison groups’ reaction to the program group.  

Resentful Demoralization is a threat to internal validity that exaggerates the posttest 

differences between the two groups. This is because the comparison group (upon learning 

of the program group) gets discouraged and no longer tries to achieve on their own.  

Compensatory Equalization of Treatment is the only threat that is a result of the actions 

of the research staff - it occurs when the staff begins to compensate the comparison group 

to be "fair" in their opinion, and this leads to equalization between the groups and makes 

it harder to detect an effect due to your program.  

Generally, the real difference between reliability and validity is mostly a matter of 

definition. Reliability estimates the consistency of your measurement, or more simply the 

degree to which an instrument measures the same way each time it is used in under the 

same conditions with the same subjects. Validity, on the other hand, involves the degree 

to which you are measuring what you are supposed to, more simply, the accuracy of your 

measurement. It is my belief that validity is more important than reliability because if an 

instrument does not accurately measure what it is supposed to, there is no reason to use it 

even if it measures consistently (reliably).  

 Reliability does not imply validity. That is, a reliable measure is measuring something 

consistently, but not necessarily what it is supposed to be measuring. For example, while 

there are many reliable tests of specific abilities, not all of them would be valid for 

predicting, say, job performance. In terms of accuracy and precision, reliability is 

http://en.wikipedia.org/wiki/Validity_(psychometric)
http://en.wikipedia.org/wiki/Accuracy_and_precision


                                  

precision, while validity is accuracy. An example often used to illustrate the difference 

between reliability and validity in the experimental sciences involves a common 

bathroom scale. If someone who is 200 pounds steps on a scale 10 times and gets 

readings of 15, 250, 95, 140, etc., the scale is not reliable. If the scale consistently reads 

http://en.wikipedia.org/wiki/Bathroom_scale
http://en.wikipedia.org/wiki/Engineering
http://www.socialresearchmethods.net/kb/reliablt.php


                                  

  Inter-Rater or Inter-Observer Reliability 

When multiple people are giving assessments of some kind or are the subjects of some 

test, then similar people should lead to the same resulting scores. It can be used to 

calibrate people, for example those being used as observers in an experiment. 

Inter-rater reliability thus evaluates reliability across different people.  

Two major ways in which inter-rater reliability is used are (a) testing how similarly 

people categorize items, and (b) how similarly people score items. 

This is the best way of assessing reliability when you are using observation, as observer 

bias very easily creeps in. It does, however, assume you have multiple observers, which 

is not always the case. 

Inter-rater reliability is also known as inter-observer reliability or inter-coder 

reliability. 

Examples 

Two people may be asked to categorize pictures of animals as being dogs or cats. A 

perfectly reliable result would be that they both classify the same pictures in the same 

way. 

Observers being used in assessing prisoner stress are asked to assess several 'dummy' 

people who are briefed to respond in a programmed and consistent way. The variation 

in results from a standard gives a measure of their reliability. 

In a test scenario, an IQ test applied to several people with a true score of 120 should 

result in a score of 120 for everyone. In practice, there will be usually be some variation 

between people. 

Whenever you use humans as a part of your measurement procedure, you have to worry 

about whether the results you get are reliable or consistent. People are notorious for their 

inconsistency. We are easily distractible. We get tired of doing repetitive tasks. We 

daydream. We misinterpret. 



                                  

So how do we determine whether two observers are being consistent in their 

observations? You probably should establish inter-rater reliability outside of the context 

of the measurement in your study. After all, if you use data from your study to establish 

reliability, and you find that reliability is low, you're kind of stuck. Probably it's best to 

do this as a side study or pilot study. And, if your study goes on for a long time, you may 

want to reestablish inter-rater reliability from time to time to assure that your raters aren't 

changing. 

There are two major ways to actually estimate inter-rater reliability. If your measurement 

consists of categories -- the raters are checking off which category each observation falls 

in  you can calculate the percent of agreement between the raters. For instance, let's say 

you had 100 observations that were being rated by two raters. For each observation, the 

rater could check one of three categories. The other major way to estimate inter-rater 

reliability is appropriate when the measure is a continuous one. There, all you need to do 

is calculate the correlation between the ratings of the two observers. For instance, they 

might be rating the overall level of activity in a classroom on a 1-to-7 scale.  

Test-Retest Reliability 

An assessment or test of a person should give the same results whenever you apply the 

test.  

Test-retest reliability evaluates reliability across time. 

Reliability can vary with the many factors that affect how a person responds to the test, 

including their mood, interruptions, time of day, etc. A good test will largely cope with 

such factors and give relatively little variation. An unreliable test is highly sensitive to 

such factors and will give widely varying results, even if the person re-takes the same 

test half an hour later. 

Generally speaking, the longer the delay between tests, the greater the likely variation. 

Better tests will give less retest variation with longer delays. 



                                  

Examples 

Various questions for a personality test are tried out with a class of students over 

several years. This helps the researcher determine those questions and combinations 

that have better reliability.  

In the development of national school tests, classes of children are given several tests 

that are intended to assess the same abilities. A week and a month later, they are given 

the same tests. With allowances for learning, the variation in the test and retest results 

are used to assess which tests have better test-retest reliability. 

We estimate test-retest reliability when we administer the same test to the same sample 

on two different occasions. This approach assumes that there is no substantial change in 

the construct being measured between the two occasions. The amount of time allowed 

between measures is critical. We know that if we measure the same thing twice that the 

correlation between the two observations will depend in part by how much time elapses 

between the two measurement occasions. The shorter the time gap, the higher the 

correlation; the longer the time gap, the lower the correlation. This is because the two 

observations are related over time -- the closer in time we get the more similar the factors 

that contribute to error. Since this correlation is the test-retest estimate of reliability, you 

can obtain considerably different estimates depending on the interval. 

 

Parallel-Forms Reliability 

One problem with questions or assessments is knowing what questions are the best ones 

to ask. A way of discovering this is do two tests in parallel, using different questions. 



                                  

Parallel-forms reliability evaluates different questions and question sets that seek 

to assess the same construct. 

Parallel-Forms evaluation may be done in combination with other methods, such as 

Split-half, which divides items that measure the same construct into two tests and 

applies them to the same group of people. 

Examples 

An experimenter develops a large set of questions. They split these into two and 

administer them each to a randomly-selected half of a target sample. 

In development of national tests, two different tests are simultaneously used in trials. The 

test that gives the most consistent results is used, whilst the other (provided it is 

sufficiently consistent) is used as a backup. 

In parallel forms reliability you first have to create two parallel forms. One way to 

accomplish this is to create a large set of questions that address the same construct and 

then randomly divide the questions into two sets. You administer both instruments to the 

same sample of people. The correlation between the two parallel forms is the estimate of 

reliability. One major problem with this approach is that you have to be able to generate 

lots of items that reflect the same construct. This is often no easy feat. Furthermore, this 

approach makes the assumption that the randomly divided halves are parallel or 

equivalent. Even by chance this will sometimes not be the case. The parallel forms 

approach is very similar to the split-half reliability described below. The major difference 

is that parallel forms are constructed so that the two forms can be used independent of 

each other and considered equivalent measures. For instance, we might be concerned 

about a testing threat to internal validity. If we use Form A for the pretest and Form B for 

the posttest, we minimize that problem. it would even be better if we randomly assign 

individuals to receive Form A or B on the pretest and then switch them on the posttest. 

With split-half reliability we have an instrument that we wish to use as a single 

measurement instrument and only develop randomly split halves for purposes of 

estimating reliability. 

.

http://www.socialresearchmethods.net/kb/intsing.php


                                  

 

 

Internal Consistency Reliability 

When asking questions in research, the purpose is to assess the response against a given 

construct or idea. Different questions that test the same construct should give consistent 

results. 

Internal consistency reliability evaluates individual questions in comparison with 

one another for their ability to give consistently appropriate results. 

Average inter-item correlation compares correlations between all pairs of questions that 

test the same construct by calculating the mean of all paired correlations.  

Average item total correlation takes the average inter-item correlations and calculates a 

total score for each item, then averages these. 

Split-half correlation divides items that measure the same construct into two tests, 

which are applied to the same group of people, then calculates the correlation between 

the two total scores. 

Cronbach's alpha calculates an equivalent to the average of all possible split-half 

correlations and is calculated thus: 

a = (N . r -bar) / (1 + (N -1) . r -bar)  
 
Where N is the number of components,  
and r -bar is the average of all Pearson correlation coefficients  

In internal consistency reliability estimation we use our single measurement instrument 

administered to a group of people on one occasion to estimate reliability. In effect we 



                                  

judge the reliability of the instrument by estimating how well the items that reflect the 

same construct yield similar results. We are looking at how consistent the results are for 

different items for the same construct within the measure. There are a wide variety of 

internal consistency measures that can be used. 

Average Inter-item Correlation  

The average inter-item correlation uses all of the items on our instrument that are 

designed to measure the same construct. We first compute the correlation between each 

pair of items, as illustrated in the figure. For example, if we have six items we will have 

15 different item pairings (i.e., 15 correlations). The average inter item correlation is 

simply the average or mean of all these correlations. In the example, we find an average 

inter-item correlation of .90 with the individual correlations ranging from .84 to .95. 

 

Average Item total Correlation 

This approach also uses the inter-item correlations. In addition, we compute a total score 

for the six items and use that as a seventh variable in the analysis. The figure shows the 

six item-to-total correlations at the bottom of the correlation matrix. They range from .82 

to .88 in this sample analysis, with the average of these at .85.



                                  

 

Split-Half Reliability  

In split-half reliability we randomly divide all items that purport to measure the same 

construct into two sets. We administer the entire instrument to a sample of people and 

calculate the total score for each randomly divided half. the split-half reliability estimate, 

as shown in the figure, is simply the correlation between these two total scores. In the 

example it is .87. 

 

Cronbach's Alpha



                                  

that's not how we compute it. Notice that when I say we compute all possible split-half 

estimates, I don't mean that each time we go a measure a new sample! That would take 

forever. Instead, we calculate all split-half estimates from the same sample. Because we 

measured our entire sample on each of the six items, all we have to do is have the 

computer analysis do the random subsets of items and compute the resulting correlations. 

The figure shows several of the split-half estimates for our six item example and lists 

them as SH with a subscript. Just keep in mind that although Cronbach's Alpha is 

equivalent to the average of all possible split half correlations we would never actually 

calculate it that way. Some clever mathematician (Cronbach, I presume!) figured out a 

way to get the mathematical equivalent a lot more quickly. 

 

Comparison of Reliability Estimators 

Each of the reliability estimators has certain advantages and disadvantages. Inter-rater 

reliability is one of the best ways to estimate reliability when your measure is an 

observation. However, it requires multiple raters or observers. As an alternative, you 

could look at the correlation of ratings of the same single observer repeated on two 

different occasions. For example, let's say you collected videotapes of child-mother 

interactions and had a rater code the videos for how often the mother smiled at the child. 

To establish inter-rater reliability you could take a sample of videos and have two raters 

code them independently. To estimate test-



                                  

they yielded consistent results. If you get a suitably high inter-rater reliability you could 

then justify allowing them to work independently on coding different videos. You might 

use the test-retest approach when you only have a single rater and don't want to train any 

others. On the other hand, in some studies it is reasonable to do both to help establish the 

reliability of the raters or observers. 

The parallel forms estimator is typically only used in situations where you intend to use 

the two forms as alternate measures of the same thing. Both the parallel forms and all of 

the internal consistency estimators have one major constraint -- you have to have multiple 

items designed to measure the same construct. This is relatively easy to achieve in certain 

contexts like achievement testing (it's easy, for instance, to construct lots of similar 

addition problems for a math test), but for more complex or subjective constructs this can 

be a real challenge. If you do have lots of items, Cronbach's Alpha tends to be the most 

frequently used estimate of internal consistency. 

The test-retest estimator is especially feasible in most experimental and quasi-

experimental designs that use a no-treatment control group. In these designs you always 

have a control group that is measured on two occasions (pretest and posttest). the main 

problem with this approach is that you don't have any information about reliability until 

you collect the posttest and, if the reliability estimate is low, you're pretty much sunk. 

Each of the reliability estimators will give a different value for reliability. In general, the 

test-retest and inter-rater reliability estimates will be lower in value than the parallel 

forms and internal consistency ones because they involve measuring at different times or 

with different raters. Since reliability estimates are often used in statistical analyses of 

quasi-experimental designs (e.g., the analysis of the nonequivalent group design), the fact 

that different estimates can differ considerably makes the analysis even more complex. 

Reliability Testing 

Reliability testing is the cornerstone of a reliability engineering program. It provides the 

most detailed form of reliability data because the conditions under which the data are 

collected can be carefully controlled and monitored. Furthermore, reliability tests can be 

http://www.socialresearchmethods.net/kb/statnegd.php


                                  

designed to uncover particular suspected failure modes and other problems. The type of 

reliability testing a product undergoes will change along different points of its life cycle, 

but the overriding goal is to insure that data from all or most of the tests were generated 

under similar enough conditions so that an "apples to apples" comparison can be made of 

the product's reliability characteristics at different points in the product's life. It is for this 

reason that consistent and thorough reliability specifications and a standard definition of 

failure are up-front requirements to implementing reliability testing. 

A properly designed series of tests, particularly during the product's earlier design stages, 

can generate data that would be useful in the implementation of a reliability growth 

tracking program. This will provide information that will be helpful in making 

management decisions regarding scheduling, development cost projections and so forth. 

This information will also be useful in planning the development cycle of future products. 

There are several different kinds of tests, including: Customer Usage Profiling, 

Development Testing and Manufacturing Testing 

Customer Usage Profiling 

An important requirement for designing useful reliability tests is to have a good idea of 

how the product is actually going to be used in the field. The tests should be based on a 

realistic expectation of the customer usage, rather than estimates or "gut feelings" about 

the way the customer will use the product. Tests based on mere speculation may result in 

a product that has not been rigorously tested and consequently may run into operational 

difficulties due to use stress levels being higher than anticipated. On the other hand, tests 

that are designed with a strong basis of information on how the product will be used will 

be more realistic and result in an optimized design that will exhibit fewer failures in field. 

Customer usage profiles can be designed to actively gather information on how the 

customers are actually using an organization's product. This design can range from a 

simple questionnaire to sophisticated instrumentation within the product that feeds back 

detailed information about its operation. An incentive is often useful to get customers to 

sign on for a usage measurement program, particularly if it is an intrusive process that 

.
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involves the installation of data collection equipment. Additionally, customers are often 

eager to participate in these programs in the knowledge that the information that they 

provide will ultimately result in a more reliable and user-friendly product.  

Developmental Testing 

Developmental testing occurs during the early phases of the product's life cycle, usually 

from project inception to product design release. It is vital to be able to characterize the 

reliability of the product as it progresses through its initial design stages so that the 

reliability specifications will be met by the time the product is ready for release. With a 

multitude of design stages and changes that could affect the product's reliability, it is 

necessary to closely monitor how the product's reliability grows and changes as the 

product design matures. There are a number of different test types that can be run during 

this phase of a product's life cycle to provide useful reliability information: 

 Component-level Testing: Although component-level testing can continue 

throughout the development phase of a product, it is most likely to occur very early 

in the process. This may be due to the unavailability of parts in the early stages of 

the development program. There may also be special interest in the performance of a 

specific component if it has been radically redesigned or if there is a separate or 

individual reliability specification for that component. In many cases, component-

level testing is undertaken to begin characterizing a product's reliability even though 

full system-level test units are unavailable or prohibitively expensive. However, 

system-level reliability characterization can be achieved through component-level 

testing. This is possible if sufficient understanding exists to characterize the 

interaction of the components. If this is the case, the system-level reliability can be 

modeled based on the configuration of components and the result of component 

reliability testing.  

 System-level Testing: Although the results of component-level tests can be used 

to characterize the reliability of the entire system, the ideal approach is to test the 

entire system, particularly if that is how the reliability is specified. That is, if the 

technical specifications call out a reliability goal for a specific system or 



                                  

configuration of components, that entire system or configuration should be tested to 

compare the actual performance with the stated goal. Although early system-level 

test units may be difficult to obtain, it is advisable to perform reliability tests at the 

system level as early in the development process as possible. At the very least, 

comprehensive system-level testing should be performed immediately prior to the 

product's release for manufacturing in order to verify design reliability. During such 

system-level reliability testing, the units under test should be from a homogeneous 

population and should be devoted solely to the specific reliability test. The results of 

the reliability test could be skewed or confounded by "piggybacking" other tests 

along with it and this practice should be avoided. A properly conducted system-level 

reliability test will be able to provide valuable engineering information above and 

beyond the raw reliability data.  

 Environmental and Accelerated Testing: It may be necessary in some cases to 

institute a series of tests in which the system is tested at extreme environmental 

conditions or with other stress factors accelerated above the normal levels of use. It 

may be that the product would not normally fail within the time constraints of the 

test and, in order to get meaningful data within a reasonable time, the stress factors 

must be accelerated. In other cases, it may be necessary to simulate different 

operating environments based on where the product will be sold or operated. 

Regardless of the cause, tests like these should be designed, implemented and 

analyzed with care. Depending on the nature of the accelerating stress factors, it is 

easy to draw incorrect conclusions from the results of these tests. A good 

understanding of the proper accelerating stresses and the design limits of the product 

are necessary to be able to implement a meaningful accelerated reliability test. For 

example, one would not want to design an accelerated test that would overstress the 

product and introduce failure modes that would not normally be encountered in the 

field. Given that there have been a lot of incredible claims about the capability of 

accelerated testing and the improbably high acceleration factors that can supposedly 

be produced, care needs to be taken when setting up this type of reliability testing 

program.  



                                  

Shipping Tests: Although shipping tests do not necessarily qualify as reliability tests 

per se, shipping tests or simulations designed to test the impact on the product of 

shipping and handling should be a part of the reliability testing program. This is because 

the effects of shipping will often have an impact on the reliability of the product as 

experienced by the customer. As such, it may be useful to incorporate shipping tests 

alongside the normal reliability testing. For example, it may be a good idea to put the 

units of a final design release reliability test through a non-destructive shipping test prior 

to the actual reliability testing in order to better simulate actual use conditions.  

 Manufacturing Testing  

     The testing that takes place after a product design has been released for production 

generally tends to measure the manufacturing process rather than the product, under the 

assumption that the released product design is final and good. However, this is not 

necessarily the case, as post-release design changes or feature additions are not 

uncommon. It is still possible to obtain useful reliability information from manufacturing 

testing without diluting any of the process-oriented information that these tests are 

designed to produce. 

 Functionality Testing and Burn-In: This type of testing usually falls under the 

category of operation verification. In these tests, a large proportion, if not all, of the 

products coming off of the assembly line are put on a very short test in order to 

verify that they are functioning. In some situations, they may be run for a 

predetermined "burn-in" time in order to weed out those units that would have early 

infantile failures in the field. Although it may not be possible to collect detailed 

reliability information from this type of testing, what is lost in quality is made up for 

in quantity. With the proper structuring, these tests can provide a fairly good picture 

of early-life reliability behavior of the product.  

 Extended Post-Production Testing: This type of testing usually gets 

implemented near the end or shortly after the product design is released to 

production. It is useful to structure these types of tests to be identical to the final 

reliability verification tests conducted at the end of the design phase. The purpose of 



                                  

these tests is to assess the effects of the production process on the reliability of the 

product. In many cases, the test units that undergo reliability testing prior to the 

onset of actual production are hand-built or carefully adjusted prior to the beginning 

of the reliability tests. By replicating these tests with actual production units, 

potential problems in the manufacturing process can be identified before many units 

are shipped.  

Design/Process Change Verification: This type of testing is similar to the extended 

post-production testing in that it should closely emulate the reliability verification testing 

that takes place at the end of the design phase. This type of testing should occur at regular 

intervals during production or immediately following a post-release design change or a 

change in the manufacturing process. These changes can have a potentially large effect 

on the reliability of the product and these tests should be adequate, in terms of duration 

and sample size, to detect such changes. 

 

 

.


