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Preface 

This is a textbook on electricity and magnetism, designed for an undergraduate course at 
the junior or senior level. It can be covered comfortably in two semesters, maybe even 
with room to spare for special topics (AC circuits, numerical methods, plasma physics, 
transmission lines, antenna theory, etc.) A one-semester course could reasonably stop 
after Chapter 7. Unlike quantum mechanics or thermal physics (for example), there is a 
fairly general consensus with respect to the teaching of electrodynamics; the subjects to 
be included, and even their order of presentation, are not particularly controversial, and 
textbooks differ mainly in style and tone. My approach is perhaps less formal than most; I 
think this makes difficult ideas more interesting and accessible. 

For the third edition I have made a large number of small changes, in the interests of 
clarity and grace. I have also modified some notation to avoid inconsistencies or ambiguities. 
Thus the Cartesian unit vectors i, j ,  and k have been replaced with 2,  f ,  and i, so that all 
vectors are bold, and all unit vectors inherit the letter of the corresponding coordinate. 
(This also frees up k to be the propagation vector for electromagnetic waves.) It has always 
bothered me to use the same letter r for the spherical coordinate (distance from the origin) 
and the cylindrical coordinate (distance from the z axis). A common alternative for the 
latter is p, but that has more important business in electrodynamics, and after an exhaustive 
search I settled on the underemployed letter S :  I hope this unorthodox usage will not be 
confusing. 

Some readers have urged me to abandon the script letter a (the vector from a source point 
r' to the field point r) in favor of the more explicit r - r'. But this makes many equations 
distractingly cumbersome, especially when the unit vector k is involved. I know from my 
own teaching experience that unwary students are tempted to read a as r-it certainly makes 
the integrals easier! I have inserted a section in Chapter 1 explaining this notation, and I 
hope that will help. If you are a student, please take note: a =. r - r', which is not the same 
as r. If you're a teacher, please warn your students to pay close attention to the meaning of 
a. I think it's good notation, but it does have to be handled with care. 

The main structural change is that I have removed the conservation laws and potentials 
from Chapter 7, creating two new short chapters (8 and 10). This should more smoothly 
accommodate one-semester courses, and it gives a tighter focus to Chapter 7. 

I have added some problems and examples (and removed a few that were not effective). 
And I have included more references to the accessible literature (particularly the American 
Journal of Physics). I realize, of course, that most readers will not have the time or incli- 
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nation to consult these resources, but I think it is worthwhile anyway, if only to emphasize 
that electrodynamics, notwithstanding its venerable age, is very much alive, and intriguing 
new discoveries are being made all the time. I hope that occasionally a problem will pique 
your curiosity, and you will be inspired to look up the reference-some of them are real 
gems. 

As in  the previous editions, I distinguish two kinds of problems. Some have a specific 
pedagogical purpose, and should be worked immediately after reading the section to which 
they pertain; these I have placed at the pertinent point within the chapter. (In a few cases 
the solution to a problem is used later in the text; these are indicated by a bullet (e) in the 
left margin.) Longer problems, or those of a more general nature, will be found at the end 
of each chapter. When I teach the subject I assign some of these, and work a few of them 
in class. Unusually challengibg problems are flagged by an exclamation point (!) in the 
margin. Many readers have asked that the answers to problems be provided at the back 
of the book; unfortunately, just as many are strenuously opposed. I have compromised, 
supplying answers when this seems particularly appropriate. A complete solution manual 
is available (to instructors) from the publisher. 

I have benefitted from the comments of many colleagues-I cannot list them all here. 
But I would like to thank the following people for suggestions that contributed specifically 
to the third edition: Burton Brody (Bard), Steven Grimes (Ohio), Mark Heald (Swarth- 
more), Jim McTavish (Liverpool), Matthew Moelter (Puget Sound), Paul Nachman (New 
Mexico State), Gigi Quartapelle (Milan), Car1 A. Rotter (West Virginia), Daniel Schroeder 
(Weber State), Juri Silmberg (Ryerson Polytechnic), Walther N. Spjeldvik (Weber State), 
Larry ~ a n k e r s l e ~  (Naval Academy), and Dudley Towne (Amherst). Practically everything I 
know about electrodynamics-certainly about teaching electrodynamics-I owe to Edward 
Purcell. 

David J. Griffiths 



Advertisement 

What is electrodynamics, and how does it fit into the 
general scheme of physics? 

Four Realms of Mechanics 

In the diagram below I have sketched out the four great realms of mechanics: 

Classical Mechanics 
(Newton) 

Special Relativity 
(Einstein) 

Quantum Mechanics 
(Bohr, Heisenberg, 
Schrodinger, et al.) 

Quantum Field Theory 
(Dirac, Pauli, Feynman, 

Schwin~er, et al. ) 

Newtonian mechanics was found to be inadequate in the early years of this century-it's 
all right in "everyday life," but for objects moving at high speeds (near the speed of light) 
it is incorrect, and must be replaced by special relativity (introduced by Einstein in 1905); 
for objects that are extremely small (near the size of atoms) it fails for different reasons, 
and is superseded by quantum mechanics (developed by Bohr, Schrodinger, Heisenberg, 
and many others, in the twenties, mostly). For objects that are both very fast and very 
small (as is common in modem particle physics), a mechanics that combines relativity and 
quantum principles is in order: this relativistic quantum mechanics is known as quantum 
field theory-it was worked out in the thirties and foi-ties, but even today it cannot claim 
to be a completely satisfactory system. In this book, save for the last chapter, we shall 
work exclusively in the domain of classical mechanics, although electrodynamics extends 
with unique simplicity to the other three realms. (In fact, the theory is in most respects 
automatically consistent with special relativity, for which it was, historically, the main 
stimulus.) 
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Four Kinds of Forces 

Mechanics tells us how a system will behave when subjected to a given force. There are 
just four basic forces known (presently) to physics: I list them in the order of decreasing 
strength: 

l .  Strong 
2. Electromagnetic 
3. Weak 
4. Gravitational 

The brevity of this list nlay surprise you. Where is friction? Where is the "normal" force 
that keeps you from falling through the floor? Where are the chemical forces that bind 
molecules together? Where is the force of impact between two colliding billiard balls? The 
answer is that all these forces are electromagnetic. Indeed, it is scarcely an exaggeration 
to say that we live in an electromagnetic world-for virtually every force we experience in 
everyday life, with the exception of gravity, is electron~agnetic in origin. 

The strong forces, which hold protons and neutrons together in the atomic nucleus, 
have extremely short range, so we do not "feel" them, in spite of the fact that they are a 
hundred times more powerful than electrical forces. The weak forces, which account for 
certain kinds of radioactive decay, are not only of short range; they are far weaker than 
electromagnetic ones to begin with. As for gravity, it is so pitifully feeble (compared to all 
of the others) that it is only by virtue of huge mass concentrations (like the earth and the sun) 
that we ever notice it at all. The electrical repulsion between two electrons is 1 0 ~ ~  times 
as large as their gravitational attraction, and if atoms were held together by gravitational 
(instead of electrical) forces, a single hydrogen atom would be much larger than the known 
universe. 

Not only are electromagnetic forces overwhelmingly the dominant ones in everyday 
life, they are also, at present, the only ones that are completely understood. There is, of 
course, a classical theory of gravity (Newton's law of universal gravitation) and a relativistic 
one (Einstein's general relativity), but no entirely satisfactory quantum mechanical theory 
of gravity has been constructed (though many people are working on it). At the present 
time there is a very successful (if cumbersome) theory for the weak interactions, and a 
strikingly attractive candidate (called chromodynamics) for the strong interactions. All 
these theories draw their inspiration from electrodynamics; none can claim conclusive 
experimental verification at this stage. So electrodynamics, a beautifully complete and 
successful theory, has become a kind of paradigm for physicists: an ideal model that other 
theories strive to emulate. 

The laws of classical electrodynamics were discovered in bits and pieces by Franklin, 
Coulomb, Ampkre, Faraday, and others, but the person who completed the job, and packaged 
it all in the compact and consistent form it has today, was James Clerk Maxwell. The theory 
is now a little over a hundred years old. 
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The Unification of Physical Theories 

In the beginning, electricity and magnetism were entirely separate subjects. The one dealt 
with glass rods and cat's fur, pith balls, batteries, currents, electrolysis, and lightning; the 
other with bar magnets, iron filings, compass needles, and the North Pole. But in 1820 
Oersted noticed that an electric current could deflect a magnetic compass needle. Soon 
afterward, Ampkre correctly postulated that all magnetic phenomena are due to electric 
charges in motion. Then, in 183 1, Faraday discovered that a moving magnet generates an 
electric current. By the time Maxwell and Lorentz put the finishing touches on the theory, 
electricity and magnetism were inextricably intertwined. They could no longer be regarded 
as separate subjects. but rather as two aspects of a single subject: electromagnetism. 

Faraday had speculated that light, too, is electrical in nature. Maxwell's theory provided 
spectacular justification for this hypothesis, and soon optics-the study of lenses, mirrors, 
prisms, interference, and diffraction-was incorporated into electromagnetism. Hertz, who 
presented the decisive experimental confirmation for Maxwell's theory in 1888, put it this 
way: "The connection between light and electricity is now established . . . In every flame, 
in every luminous particle, we see an electrical process . . . Thus, the domain of electricity 
extends over the whole of nature. It even affects ourselves intimately: we perceive that we 
possess . . . an electrical organ-the eye." By 1900, then, three great branches of physics, 
electricity, magnetism, and optics, had merged into a single unified theory. (And it was 
soon apparent that visible light represents only a tiny "window" in the vast spectrum of 
electromagnetic radiation, from radio though microwaves, infrared and ultraviolet, to x- 
rays and gamma rays.) 

Einstein dreamed of a further unification, which would combine gravity and electrody- 
namics, in much the same way as electricity and magnetism had been combined a century 
earlier. His unified field theory was not particularly successful, but in recent years the same 
impulse has spawned a hierarchy of increasingly ambitious (and speculative) unification 
schemes, beginning in the 1960s with the electroweak theory of Glashow, Weinberg, and 
Salam (which joins the weak and electromagnetic forces), and culminating in the 1980s with 
the superstring theory (which, according to its proponents, incorporates all four forces in a 
single "theory of everything"). At each step in this hierarchy the mathematical difficulties 
mount, and the gap between inspired conjecture and experimental test widens; nevertheless, 
it is clear that the unification of forces initiated by electrodynamics has become a major 
theme in the progress of physics. 

The Field Formulation of Electrodynamics 

The fundamental problem a theory of electromagnetism hopes to solve is this: I hold up 
a bunch of electric charges here (and maybe shake them around)-what happens to some 
other charge, over there? The classical solution takes the form of a field theory: We say 
that the space around an electric charge is permeated by electric and magnetic fields (the 
electromagnetic "odor," as it were, of the charge). A second charge, in the presence of these 
fields, experiences a force; the fields, then, transmit the influence from one charge to the 
other-they mediate the interaction. 



xiv ADVERTISEMENT 

When a charge undergoes acceleration, a portion of the field "detaches" itself, in a 
sense, and travels off at the speed of light, carrying with it energy, momentum, and angular 
momentum. We call this electromagnetic radiation. Its existence invites (if not conzpels) 
us to regard the fields as independent dynamical entities in their own right, every bit as 
"real" as atoms or baseballs. Our interest accordingly shifts from the study of forces 
between charges to the theory of the fields themselves. But it takes a charge to produce an 
electromagnetic field, and it takes another charge to detect one, so we had best begin by 
reviewing the essential properties of electric charge. 

Electric Charge 

1 .  Charge comes in two varieties, which we call "plus" and "minus," because their effects 
tend to cancel (if you have +q and -q at the same point, electrically it is the same as having 
no charge there at all). This may seem too obvious to warrant comment, but I encourage you 
to contemplate other possibilities: what if there were 8 or 10 different species of charge? 
(In chromodynamics there are, in fact, tlzree quantities analogous to electric charge, each 
of which may be positive or negative.) Or what if the two kinds did not tend to cancel? 
The extraordinary fact is that plus and minus charges occur in exactly equal amounts, to 
fantastic precision, in bulk matter, so that their effects are almost completely neutralized. 
Were it not for this, we would be subjected to enormous forces: a potato would explode 
violently if the cancellation were imperfect by as little as one part in 10". 

2. Charge is consewed: it cannot be created or destroyed-what there is now has always 
been. (A plus charge can "annihilate" an equal minus charge, but aplus charge cannot simply 
disappear by itself-somet/zing must account for that electric charge.) So the total charge of 
the universe is fixed for all time. This is called global conservation of charge. Actually, I can 
say something much stronger: Global conservation would allow for a charge to disappear 
in New York and instantly reappear in San Francisco (that wouldn't affect the total), and yet 
we know this doesn't happen. If the charge was in New York and it went to San Francisco, 
then it must have passed along some continuous path from one to the other. This is called 
local conservation of charge. Later on we'll see how to formulate a precise mathematical 
law expressing local conservation of charge-it's called the continuity equation. 

3. Charge is quantized. Although nothing in classical electrodynamics requires that it be 
so, the fact is that electric charge comes only in discrete lumps-integer multiples of the 
basic unit of charge. If we call the charge on the proton +e, then the electron carries charge 
-e, the neutron charge zero, the pi mesons + e ,  0, and -e, the carbon nucleus +6e, and 
so on (never 7.392e, or even 1 /2e  j. This fundamental unit of charge is extremely small, 
so for practical purposes it is usually appropriate to ignore quantization altogether. Water, 
too, "really" consists of discrete lumps (molecules); yet, if we are dealing with reasonably 
large large quantities of it we can treat it as a continuous fluid. This is in fact much closer 
to Maxwell's own view; he knew nothing of electrons and protons-he must have pictured 

Actually, protons and neutrons are composed of three quarks, which carry fractional charges (i e and f 4 e ) .  
However,free quarks do not appear to exist in nature, and in any event this does not alter the fact that charge is 
quantized; it merely reduces the size of the basic unit. 



charge as a kind of "jelly" that could be divided up into portions of any size and smeared 
out at will. 

These, then, are the basic properties of charge. Before we discuss the forces between 
charges, some mathematical tools are necessary; their introduction will occupy us in Chap- 
ter 1. 

Units 

The subject of electrodynamics is plagued by competing systems of units, which sometimes 
render it difficult for physicists to conlmunicate with one another. The problem is far worse 
than in mechanics, where Neanderthals still speak of pounds and feet; for in mechanics 
at least all equations look the same, regardless of the units used to measure quantities. 
Newton's second law remains F = ma, whether it is feet-pounds-seconds, kilograms- 
meters-seconds, or whatever. But this is not so in electromagnetism, where Coulomb's law 
may appear variously as 

qlq2 * 4142* 1 q1q2 
-4  (Gaussian), or - - / I .  (SI), or --i (HL). a2 4neo 4n  a2 

Of the systems in common use, the two most popular are Gaussian (cgs) and S1 (mks). Ele- 
mentary particle theorists favor yet a third system: Heaviside-Lorentz. Although Gaussian 
units offer distinct theoretical advantages, most undergraduate instructors seed to prefer 
SI, I suppose because they incorporate the familiar household units (volts, amperes, and 
watts). In this book, therefore, I have used S1 units. Appendix C provides a "dictionary" 
for converting the main results irlto Gaussian units. 





Chapter 1 

Vector Analysis 

l .  l Vector Algebra 

1.1.1 Vector Operations 

If you walk 4 miles due north and then 3 miles due east (Fig. l .  l) ,  you will have gone a 
total of 7 miles, but you're not 7 miles from where you set out-you're only 5. We need an 
arithmetic to describe quantities like this, which evidently do not add in the ordinary way. 
The reason they don't, of course, is that displacements (straight line segments going from 
one point to another) have direction as well as magnitude (length), and it is essential to 
take both into account when you combine them. Such objects are called vectors: velocity, 
acceleration, force and momentum are other examples. By contrast, quantities that have 
magnitude but no direction are called scalars: examples include mass, charge, density, 
and temperature. I shall use boldface (A, B, and so on) for vectors and ordinary type 
for scalars. The magnitude of a vector A is written IAl or, more simply, A .  In diagrams, 
vectors are denoted by arrows: the length of the arrow is proportional to the magnitude of 
the vector, and the arrowhead indicates its direction. Minus A (-A) is a vector with the 

Figure 1 . 1  Figure 1.2 
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same magnitude as A but of opposite direction (Fig. 1.2). Note that vectors have magnitude 
and direction but not location: a displacement of 4 miles due north from Washington is 
represented by the same vector as a displacement 4 miles north from Baltimore (neglecting, 
of course, the curvature of the earth). On a Uiagram, therefore, you can slide the arrow 
around at will, as long 2s you don't changg its length or direction. 

We define four vector operations: addition and three kinds of multiplication. 
(i) Addition of two vectors. Place the tail of B at the head of A: the sum, A + B, is 

the vector from the tail of A to the head of B (Fig. 1.3). (This mle generalizes the obvious 
procedure for combining two displacements.) Addition is commutati~~e: 

3 miles east followed liy 4 miles north gets you to the same place as 4 miles north followed 
by 3 miles east. Addition is also associati~?e: 

(A + B) + C = A + (B + C). 

To subtract a vector (Fig. 1.4), add its opposite: 

Figure 1.3 Figure 1.4 

(ii) Multiplication by a scalar. Multiplication of a vector by a positive scalar a mul- 
tiplies the magnitzide but leaves the direction unchanged (Fig. 1.5). (If a is negative, the 
direction is reversed.) Scal& multiplication is distributive: 

(iii) Dot product of two vectors. The dot product of two vectors is defined by 

where 6 is the angle they form when placed tail-to-tail (Fig. 1.6). Note that A . B is itself a 
scalar (hence the alternative name scalar product). Tlie dot product is commutative, 
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Figure 1.5 Figure 1.6 

and distributive, 
A . ( B + C )  = A . B + A . C .  

Geometrically, A . B is the product of A times the projection of B along A (or the product 
of B times the projection of A along B). If the two vectors are parallel, then A . B = A B. 
In particular, for any vector A, 

A .  A = A'. (1.3) 

If A and B are perpendicular, then A . B = 0. 

Example 1.1 

Let C = A - B (Fig. 1.7), and calculate the dot product of C with itself. 

Solution: 
C.C=(A-B).(A-B)=A.A-A-B-B.A+B.B, 

or 
2 2 7  C = A  +B"-2ABcosO. 

This is the law of cosines. 

(iv) Cross product of two vectors. The cross product of two vectors is defined by 

where n is a unit vector (vector of length 1 )  pointing perpendicular to the plane of A and 
B. (I shall use a hat (") to designate unit vectors.) Of course, there are two directions 
perpendicular to any plane: "in" and "out." The ambiguity is resolved by the right-hand 
rule: let your fingers point in the direction of the first vector-and curl around (via the smaller 
angle) toward the second; then your thumb indicates the direction of n. (In Fig. 1.8 A X B 
points into the page; B X A points out of the page.) Note that A X B is itself a vector (hence 
the alternative name vector product). The cross product is distributive, 

A X ( B + C )  = (A X B ) +  (A X C), (1.5) 
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Figure 1.7 Figure 1.8 

but not commutative. In fact, 

(B X A) = -(A X B).  

Geometrically, IA X B1 is the area of the parallelogram generated by A and B (Fig. 1.8). If 
two vectors are parallel, their cross product is zero. In particular, 

for any vector A. 

Problem 1.1 Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that 
the dot product and cross product are distributive, 

a) when the three vectors are coplanar; 

! b) in the general case. 

Problem 1.2 Is the cross product associative? 

If so, prove it; if not, provide a counterexample. 

1.1.2 Vector Algebra: Component Form 

In the previous section I defined the four vector operations (addition, scalar multiplication, 
dot product, and cross product) in "abstract" form-that is, without reference to any partic- 
ular coordinate system. In practice, it is often easier to set up Cartesian coordinates X, y, z 
and work with vector "components." Let 2, f ,  and i be unit vectors parallel to the X,  y,  and 
z axes, respectively (Fig. 1.9(a)). An arbitrary vector A can be expanded in terms of these 
basis vectors (Fig. 1.9(b)): 

A = A , % % +  A,?  + A,?. 
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Figure 1.9 

The numbers A,, A,, and A,, are called components of A; geometrically, they are the 
projections of A along the three coordinate axes. We can now reformulate each of the four 
vector operations as a rule for manipulating components: 

A + B = (A,? + Ay? + AZi)  + (B,? + B,? + B$) 

= (A, + B,x)? + (A, + By)f + (Az + B,$. (1.7) 

(i) Rule: To add vectors, add like components. 

a A  = (aAX)? + (aAS)? + (aA,) i .  

(ii) Rule: To nzultiply by a scalar; multiply each component. 

Because 2,  f ,  and i are mutually perpendicular unit vectors, 

Accordingly, 

A .  B = (A,? + A,? + A?;) - (B,? + B,? + B7i) 

= A.xBx+AyBy +AzBz.  (1.10) 

(iii) Rule: To calculate the dot product, multiply like components, and add. 
In particular, 

A . A  = A: +A:  + A ? ,  

(This is, if you like, the three-dimensional generalization of the Pythagorean theorem.) Note 
that the dot product of A with any unit vector is the component of A along that direction 
(thus A .  2 = A,, A .  f = A,, and A .  i = A,).  
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Therefore, 

This cumbersome expression can be written more neatly as a determinant: 

(iv) Rule: To calculate the cross product, form the determinant whosefirst row is 2, f , i, 
whose second row is A (in component.form), aizd whose third row is B. 

Example 1.2 

Find the angle between the face diagonals of a cube. 

Solution: We might as well use a cube of side 1, and place it as shown in Fig. 1.10, with one 
corner at the origin. The face diagonals A and B are 

xAL 0,0) 

Figure 1.10 

l ~ h e s e  signs pertain to a riglzt-handed coordinate system (1--axis out of the page, y-axis to the right, z-axis up, 
or any rotated version thereof). In a lefi-handed system (z-axis down) the signs are reversed: 2 X f = -i, and so 
on. We shall use right-handed systems exclusively. 
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So, in  component form, 
A ~ B = 1 ~ 0 + 0 ~ 1 + 1 ~ 1 = 1 .  

On the other hand, in  "abstract" form, 

Therefore, 
cose=1/2,  or 8=60° .  

Of course, you can get the answer more easily by drawing in a diagonal across the top of the 
cube, completing the equilateral triangle. But in  cases where the geometry is not so simple, 
this device of comparing the abstract and compohent forms of the dot product can be a very 
efficient means of finding angles. 

Problem 1.3 Find the angle between the body diagonals of a cube. 

Problem 1.4 Use the cross product to find the cdmponenis of the unit vector n perpendicular 
to the plane shown in Fig. 1.1 1 .  

1.1.3 Triple Products 

Since the cross product of two vectors is itself a vector, it can be dotted or crossed with a 
third vector to form a triple product. 

(i) Scalar triple product: A . (B X C). Geometrically, IA . (B X C ) (  is the volume 
of the parallelepiped generated by A, B, and C, since IB X Cl is the area of the base, and 
[A cos Q I is the altitude (Fig. 1.12). Evidently, 

for they all correspond to the same figure. Note that "alphabetical" order is preserved-in 
view of Eq, 1.6, the "nonalphabetical" triple products, 

B 

Figure 1.12 Figure 1.1 1 
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have the opposite sign. In component form, 

Note that the dot and cross can be interchanged: 

(this follows immediately from Eq. 1.15); however, the placement of the parentheses is 
critical: (A . B) X C  is a meaningless expression-you can't make a cross product from a 
scalar and a vector. 

(ii) Vector triple product: A  X (B X C). The vector triple product can be simplified 
by the so-called BAC-CAB rule: 

Notice that 
(A X B) X C  = -C X (A X B) = -A(B . C )  + B ( A e C )  

is an eptirely different vector. Incidentally, all higher vector products can be similarly 
reduced, often by repeated application of Eq. 1.17, so it is never necessary for an expression 
to contain more than one cross product in any term. For instance, 

(A X B ) . ( C  xD) = ( A . C ) ( B + D )  - ( A e D ) ( B . C ) ;  

A  X (B X (C X D)) = B ( A . ( C  X D)) - ( A . B ) ( C  X D). (1.18) 

-- 

Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component form. 

Problem 1.6 Prove that 

[A X (B X C)] + [B X (C X A)] + [C X (A X B)] = 0. 

Under what conditions does A X (B X C) = (A X B) X C? 

-p- 

1.1.4 Position, Displacement, and Separation Vectors 

The location of a point in three dimensions can be described by listing its Cartesian coor- 
dinates (x, y ,  z ) .  The vector to that point from the origin (Fig. 1.13) is called the position 
vector: 

r = x k + y f + z i .  (1.19) 
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source point 
l 

Figure 1.13 Figure 1.14 

I will reserve the letter r for this purpose, throughout the book. Its magnitude, 

is the distance from the origin, and 

is a unit vector pointing radialIy outward. The infinitesimal displacement vector, from 
( x , y . z )  to ( x + d x , y  + d y , z  +dz) , i s  

(We could call this dr, since that's what it is, but it is useful to reserve a special letter for 
infinitesimal displacements.) 

In electrodynamics one frequently encou~lters problems involving two points-typically, 
a source point, r', where an electric charge is located, and a field point, r, at which you 
are calculating the electric or magnetic field (Fig. 1.14). It pays to adopt right from the start 
some short-hand notation for the separation vector from the source point to the field point. 
I shall use for this purpose the script letter a: 

Its magnitude is 

4 = lr - r'l, 

and a unit vector in the direction from r' to r is 

* a  r - r '  
a = - = - .  

% Ir-rf/  
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In Cartesian coordinates, 

(from which you can begjn to appreciate the advantage of the script-% notation). 

Problem 1.7 Find the separatiop vector4 from the source point (2,8,7) to the field point (4,6,8). 
Determine its magnitude (a), and construct the unit vector &. 

1.1.5 How Vectors Transform 

The definition of a vector as "a quantity with a magnitude and direction" is not altogether 
satisfactory: What precisely does "directjon" mean?: This may seem a pedantic question, 
but we shall shortly encounter a s~ecies  of derivative that looks rather like a vector, and 
we'll want to know for sure whether it is one. You might be inclined to say that a vector 
is anything that has three components that combine properly under addition. Well, how 
about this: We have a barrel of fruit that contains Nx pears, N, apples, and NZ bananas. 
Is N = N , i  + Ny? + Nzi a vector? It has thee components, and when you add another 
barrel with M, pears, My apples, and Mz bananas the result is ( N ,  + M,) pears, (Ns +My) 
apples, (NZ + M,) bananas. So it does add like a vector. Yet it's obviously not a vector, in 
the physicist's sense of the word, because it doesn't really have a direction. What exactly 
is wrong with it? 

The answer is that N does not transforrp properly when you change coordinates. The 
coordinate frame we use to describe positions in space is of course entirely arbitrary, but 
there is a specific geometrical transformation law for converting vector components from 
one frame to another. Suppose, for instance, the T,y, 7 system is rotated by angle 4, relative 
to X ,  y,  z ,  a b ~ u t  the common X = T axes. From Fig. 1.15, 

while 

- 
A,  = A cos = A cos(% - 4) = A(cos % cos 4 + sin 8 sin 4) 

= cos #A, + sin +A,, 
- 
A Z  = ~ s i n H = A s i n ( % - 4 ) = A ( s i n % c o s $ - c o s 8 s i n + )  

= - sin @Ay + COS @Az. 

2 ~ h i s  section can be skipped without loss of continuity. 
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Figure 1.15 

We might express this conclusion in matrix notation: 

cos @ sin @ 
( ? ) = ( - s i n @  cosqj)(t~)~ 

More generally, for rotation about an arbitran axis in three dimensions, the transfor- 
mation law takes the form 

or, more compactly, 

where the index l stands for X, 2 for y ,  and 3 for z .  The elements of the matrix R can be 
ascertained, for a given rotation, by the same sort of geometrical arguments as we used for 
a rotation about the X axis. 

Now: Do the components of N transform in this way? Of course not-it doesn't matter 
what coordinates you use to represent positions in space, there is still the same number of 
apples in the barrel. You can't convert a pear into a banana by choosing a different set of 
axes, but you can turn A, into Ay. Formally, then, a vector is any set ofthree componeirts 
that transforms in the same manner as a displacement when you charrge coordinates. As 
always, displacement is the model for the behavior of all vectors. 

By the way, a (second-rank) tensor is a quantity with nine components, 7;cx, Txv, Txz, 
TY,, . . . , Tzz ,  which transforms with rwo factors of R: 
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or, Inore compactly, 
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In general, an nth-rank tensor has n indices and 3" components, and transforms with n 
factors of R. In this hierarchy, a vector is a tensor of rank 1, and a scalar is a tensor of rank 
zero. 

Problem 1.8 

(a) Prove that the two-dimensional rotation matrix (1.29) preserves dot products. (That is, - -  - -  
show that A y B y  + AzBZ = AyBy + AzBZ.) 

(b) What constraints must the elements ( R i j )  of the three-dimensional rotation matrix (1.30) 
satisfy in order to preserve the length of A (for all vectors A)? 

Problem 1.9 Find the transformation matrix R that describes a rotation by 120' about an axis 
from the origin through the point (1, 1, 1). The rotation is clockwise as you look down the 
axis toward the origin. 

Problem 1.10 

(a) How do the components of a vector transform under a translation of coordinates (Y = X ,  
- 

y = y - a, z = z ,  Fig. 1.16a)? 

(b) How do the components of a vector transform under an inversion of coordinates (F = -X, 
- 
y = - y ,  7 = -2, Fig. 1.16b)? 

(c) How does the cross product (1.13) of two vectors transform under inversion? [The cross- 
product of two vectors is properly called a pseudovector because of this "anomalous" be- 
havior.] Is the cross product of two pseudovectors a vector, or a pseudovector? Name two 
pseudovector quantities i n  classical mechanics. 

(d) How does the scalar triple product of three vectors transform under inversions? (Such an 
object is called a pseudoscalar.) 

Figure 1.16 
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1.2 Differential Calculus 

1.2.1 "Ordinary" Derivatives 

Question: Suppose we have a function of one variable: f (X). What does the derivative, 
df/dx, do for us? Answer: It tells us how rapidly the function f (X) varies when we change 
the argument x by a tiny amount, dx: 

df = (g) dx. 

In words: If we change X by an amount dx, then f changes by an amount df ;  the derivative 
is the proportionality factor. For example, in Fig. 1.17(a), the function varies slowly with 
.X, and the derivative is correspondingly small. In Fig. 1.17(b), f increases rapidly with X, 
and the derivative is large, as you move away from X = 0. 

Geomerrical Interpretation: The derivative d f /dx is the slope of the graph off  versus x.  

Figure 1.17 

1.2.2 Gradient 

Suppose, now, that we have a function of three variables-say, the temperature T(x, y ,  z )  
in a room. (Start out in one corner, and set up a system of axes; then for each point (X, y ,  z )  
in the room, T gives the temperature at that spot.) We want to generalize the notion of 
"derivative" to functions like T, which depend not on one but on three variables. 

Now a derivative is supposed to tell us how fast the function varies, if we move a little 
distance. But this time the situation is more complicated, because it depends on what 
direction we move: If we go straight up, then the temperature will probably increase fairly 
rapidly, but if we move horizontally, it may not change much at all. In fact, the question 
"How fast does T vary?'has an infinite number of answers, one for each direction we 
might choose to explore. 

Fortunately, the problem is not as bad as it looks. A theorem on partial derivatives states 
that 
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This tells us how T changes when we alter all three variables by the infinitesimal amounts 
dx ,  dy, dz. Notice that we do not require an infinite number of derivatives-three will 
suffice: the partial derivatives along each of the three coordinate directions. 

Equation 1.34 is reminiscent of a dot product: 

= (VT) . (dl), 

where 

is the gradient of T. VT is a vector quantity, with three components; it is the generalized 
derivative we have been looking for. Equation 1.35 is the three-dimensional version of 
Eq. 1.33. 

Geometrical Interpretation of the Gradient: Like any vector, the gradient has magnitude 
and directiort. To determine its geometrical meaning, let's rewrite the dot product (1.35) in 
abstract form: 

d T  = VT . d l  = lVTlldllcos8, (1.37) 

where 8 is the angle between VT and dl. Now, if wejix the magnitude Jdll and search 
around in various directions (that is, vary @), the maximum change in T evidentally occurs 
when 8 = 0 (for then cos 8 = 1). That is, for a fixed distance IdlJ, d T  is greatest when I 
move in the same direction as V T. Thus: 

The gradient V T points in the direction of maximum increase of the function 
T. 

Moreover: 

The magnitude 1 V T I gives the slope (rate of increase) along this ma.xima1 
direction. 

Imagine you are standing on a hillside. Look all around you, and find the direction 
of steepest ascent. That is the direction of the gradient. Now measure the slope in that 
direction (rise over run). That is the magrritude of the gradient. (Here the function we're 
talking about is the height of the hill, and the coordinates it depends on are positions- 
latitude and longitude, say. This function depends on only two variables, not three, but the 
geometrical meaning of the gradient is easier to grasp in two dimensions.) Notice from 
Eq. 1.37 that the direction of maximurn descent is opposite to the direction of maximum 
ascent, while at right angles (13 = 90") the slope is zero (the gradient is perpendicular to 
the contour lines). You can conceive of surfaces that do not have these properties, but they 
always have "kinks" in them and correspond to nondifferentiable functions. 

What would it mean for the gradient to vanish? If VT = 0 at (X, y ,  z ) ,  then d T  = 0 
for s~nall displacements about the point (.X, y ,  z ) .  This is, then, a stationary point of the 
function T (X, y ,  c). It could be a maximum (a summit), a minimum (a valley), a saddle 
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point (a pass), or  a "shoulder." This is analogous to the situation for functions of one 
variable, where a vanishing derivative signals a maximum, a minimum, or  an inflection. In 
particular, jf you want to locate the extrema of a function of three variables, set its gradient 
equal to zero. 

Example 1.3 

Find the gradient of r = d x 2  + y2 + i2 (the magnitude of the position vector). 

Solution: 

Does this make sense? Well, it says that the distance from the origin increases most rapidly in 
the radial direction, and that its rate of increase in that direction is l .  . .just what you'd expect. 

Problem 1.11 Find the gradients of the following functions: 

(a) f (X, y,  2) = x2 + y3 + z4. 
2 3 4  (b) f ( x , y . z )  = X  y i . 

(C) f (.X, y, z) = ex sin(y) In(z). 

Problem 1.12 The height of a certain hill (in feet) is given by 

where y is the distance (in miles) north, x the distance east of South Hadley. 

(a) Where is the top of the hill located? 

(b) How high is the hill? 

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile east of South 
Hadley? In what direction is the slope s;eepest, at that point'? 

a Problem 1.13 Let /c be the separatipn vector from a fixed point (X ' ,  y ' ,  z ' )  to the point (.r , y,  z ) ,  
and let 4 be its length. Show that 

(a) V (a2) = 2h. 

(b) V ( 1 / 4 )  = -k/a2, 

(C) What is the general formula for V(an)? 
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! Problem 1.14 Suppose that f  is a function of two variables ( y  and z )  only. Show that the 
gradient V f  = ( a  f l a y  ji + (a f  / a z ) i  transforms as a vector under rotations, Eq. 1.29. [Hint: 
( a f / a y )  = ( a f ' / a y j ( a y / a y j  + ( a  f / a z ) ( a z / a s j ,  and the analogous formula for a f p ? .  We 
know that = y  cos 4 + i sin 4 and = -?l sin @ + z cos @; "solve" these equations for y and 
z (as functions of 7 and ?), and compute the needed derivatives d y / Q ,  d z / a y ,  etc.] 

1.2.3 The Operator V 

The gradient has the formal appearance of a vector, V, "multiplying" a scalar T :  

(For once 1 write the unit vectors to the Le& just so no one will think this means aii/ax, and 
so on-which would be zero, since i is constant.) The term in parentheses is called "del": 

Of course, del is not a vector, in the usual sense. Indeed. it is without specific meaning until 
we provide it with a function to act upon. Furthermore, it does not "multiply" T; rather, it 
is an instruction to dzj5erentiute what follows. To be precise, then, we should say that V is 
a vector operator that acts upon l ,  not a vector that multiplies T. 

With this qualification, though, V mimics the behavior of an ordinary vector in virtually 
every way; alrnost anything that can be done with other vectors can also be done with V, if 
we merely translate "multiply" by "act upon." So by all means take the vector appearance 
of V seriously: it is a marvelous piece of notational simplification, as you will appreciate if 
you ever consult Maxwell's original work on electromagnetism, written without the benefit 
of V. 

Now an ordinary vector A can multiply in three ways: 

I .  Multiply a scalar a : AN ; 

2. Multiply another vector B, via the dot product: A B; 

3. Multiply another vector via the cross product: A X B. 

Correspondingly, there are three ways the operator V can act: 

1. On a scalar function T : V T (the gradient); 

2. On a vector function v, via the dot product: V . v (the divergence); 

3. On a vector function v, via the cross product: V X v (the curl). 

We have already discussed the gradient. In the followiilg sections we examine the other 
two vector derivatives: divergence and curl. 
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1.2.4 The Divergence 

From the definition of V we construct the divergence: 

Observe that the divergence of a vector function v is itself a scalar V v. (You can't have 
the divergence of a scalar: that's meaningless.) 

Geometrical Interpretation: The name divergence is well chosen, for V .v is ameasure 
of how much the vector v spreads out (diverges) from the point in question. For example, 
the vector function in Fig. 1.18a has a large (positive) divergence (if the arrows pointed in, 
it would be a large negative divergence), the function in Fig. 1.18b has zero divergence, and 
the function in Fig. 1 . 1 8 ~  again has a positive divergence. (Please understand that v here is 
a function-there's a different vector associated with every point in space. In the diagrams, 

t t t t t t t  

Figure 1.18 
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of course, I can only draw the arrows at a few representative locations.) Imagine standing 
at the edge of a pond. Sprinkle some sawdust or pine needles on the surface. If the material 
spreads out, then you dropped it at a point of positive divergence; if it collects together, 
you dropped it at a point of negative divergence. (The vector function v in this model is the 
velocity of the water-this is a two-dimensional example, but it helps give one a "feel" for 
what the divergence means. A point of positive divergence is a source, or "faucet"; a point 
of negative divergence is a sink, or "drain.") 

Example 1.4 

Suppose the functions in Fig. 1.18 are v, = r = x i + y i + z 2, vb = 2,  and v, = z i. 
Calculate their divergences. 

Solution: 

As anticipated, this function has a positive divergence. 

as expected. 

Problem 1.15 Calculate the divergence of the following vector functions: 

(a) v, = .w2 2 + 3xz2 j - 2.xz i. 

(b)vb = ~ y i + 2 ~ z i  +3z.r i .  

(C) v, = v2 i + (2xy + z2) j + 2yz i. 

Problem 1.16 Sketch the vector function 

and compute its divergence. The answer may surprise you. . . can you explain it'! 

! Problem 1.17 In two dimensions, show that the divergence transforms as a scalar under rota- 
tions. [Hint: Use Eq. 1.29 to determine E, and G,, and the method of Prob. 1 . l4 to calculate 
the derivatives. Your aim is to show that aG,/a:y + aiiz/a7 = a u v / a y  + au , /az . ]  
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1.2.5 The Curl 

From the definition of V we construct the curl: 

Notice that the curl of a vector function v is, like any cross product, a vector. (You cannot 
have the curl of a scalar; that's meaningless.) 

Geometrical Interpretntion: The name curl is also well chosen, for V X v is a measure 
of how much the vector v "curls around" the point in question. Thus the three functions in 
Fig. 1.18 all have zero curl (as you can easily check for yourself), whereas the functions 
in Fig. 1.19 have a substantial curl, pointing in the z-direction, as the natural right-hand 
rule would suggest. Imagine (again) you are standing at the edge of a pond. Float a small 
paddlewheel (a cork with toothpicks pointing out radially would do); if it starts to rotate, 
then you placed it at a point of nonzero curl. A whirlpool would be a region of large curl. 

Figure 1.19 

Example 1.5 

Suppose the function sketched in Fig. 1.19a is = - y i  + . x i ,  and that in Fig. 1.19b is 
vh = X ? .  Calculate their curls. 

and 

Solution: 

= 22, V X V, = 
Ei i z 

a / a ~  a / a y  a / a z  
-Y X  0 
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As expected, these curls point in the +z direction. (Incidentally, they both have zero divergence, 
as you might guess from the pictures: nothing is "spreading out". . .it just "curls around.") 

Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15. 

Problem 1.19 Construct a vector function that has zero divergence and zero curl everywhere.. 
(A constant will do the job, of course, but make it something a little more interesting than 
that!) 

1.2.6 Product Rules 

The calculation of ordinary derivatives is facilitated by a number of general rules, such as 
the sum rule: 

the rule for multiplying by a constant: 

the product rule: 

and the auotient rule: 

Similar relations hold for the vector derivatives. Thus, 

and 
V(k f )=kVf ,  V . ( k A ) = k ( V . A ) ,  V x ( k A ) = k ( V x A ) ,  

as you can check for yourself. The product rules are not quite so simple. There are two 
ways to construct a scalar as the product of two functions: 

f g  (product of two scalar functions), 
A . B (dot product of two vector functions), 

and two ways to make a vector: 

f A (scalar times vector), 
A X B (cross product of two vectors). 
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Accordingly, there are six product rules, two for gradients: 

(ii) V ( A . B ) = A x  (V x B ) + B x  (V x A ) + ( A . V ) B + ( B . V ) A ,  

two for divergences: 

(iv) V . ( A x B )  = B . ( V  x A ) - A . ( V  X B), 

and two for curls: 

You will be using these product rules so frequently that I have put them on the inside front 
cover for easy reference. The proofs come straight from the product rule for ordinary 
derivatives. For instance, 

It is also possible to formulate three quotient rules: 

However, since these can be obtained quickly from the corresponding product rules, I 
haven't bothered to put them on the inside front cover. 
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Problem 1.20 Prove product rules (i), (iv), and (v). 

Problem 1.21 

(a) If A and B are two vector functions, what does the expression (A . V)B mean'? (That is, 
what are its X ,  y, and z components in terms of the Cartesian components of A, B, and V?) 

(b) Compute (i. - V ) i ,  where i. is the unit vector defined in Eq. 1.2 1 .  

(c) For the functions in Prob. 1.15, evaluate (v, . V)vb. 

Problem 1.22 (For masochists only.) Prove product rules (ii) and (vi). Refer to Prob. 1.2 1 for 
the definition of ( A .  V)B. 

Problem 1.23 Derive the three quotient rules. 

Problem 1.24 

(a) Check product rule (iv) (by calculating each term separately) for the functions 

(b) Do the same for product rule (ii). 

(c) The same for rule (vi). 

1.2.7 Second Derivatives 

The gradient, the divergence, and the curl are the only first derivatives we can make with 
V; by applying V twice we can construct five species of second derivatives. The gradient 
V T  is a vector, so we can take the divergence and curl of it: 

( l )  Divergence of gradient: V . (V T )  . 
(2 )  Curl of gradient: V X (V T) . 

The divergence V + v is a scalnr-all we can do is take its grudierzt: 

(3) Gradient of divergence: V(V v). 

The curl V X v is a vector, so we can take its divergence and curl: 

(4) Divergence of curl: V . (V X v). 

( 5 )  Curl of curl: V X (V X v). 

This exhausts the possibilities, and in fact not all of them give anything new. Let's 
consider them one at a time: 

a . a  . a ) . ( a ~ .  81. aT.) ( I )  V .  (VT) = 2- + y -  +z- ( ax ay a z  
--X + --y + --z 
ax ay a~ 
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This object, which we write V ~ T  for short, is called the Laplacian of T; we shall be 
studying it in great detail later on. Notice that the Laplacian of a sculur T is a scular. 
Occasionally, we shall speak of the Laplacian of a vectol; v2v.  By this we mean a vector 
quantity whose X-component is the Laplacian of v,, and so on? 

This is nothing more than a convenient extension of tbe meaning of v2. 
(2) The curl of a gradient is always zero: 

V X (VT) = O .  (1.44) 

This is an important fact, which we shall use repeatedly; you can easily prove it from the 
definition of V, Eq. 1.39. Beware: You might think Eq. 1.44 is "obviously" true-isn't it 
just (V X V)T, and isn't the cross product of any vector (in this case, V) with itself always 
zero? This reasoning is suggestive but not quite conclusive, since V is an operator and does 
not "multip1y" in the usual way. The proof of Eq. 1.44, in fact, hinges on the equality of 
cross derivatives: 

If you think I'm being fussy, test your intuition on this one: 

(VT) X (VS). 

Is that always zero? (It would be, of course, if you replaced the V's by an ordinary vector.) 
(3) V (V v) for some reason seldom occurs in physical applications, and it has not been 

given any special name of its own-it's just the gradient of the divergence. Notice that 
V(V v) is not the same as the Laplacian of a vecror: v 2 v  = (V . V)v # V(V - v). 

(4) The divergence of a curl, like the curl of a gradient, is olwciys zero: 

You can prove this for yourself. (Again, there is a fraudulent short-cut proof, using the 
vector identity A (B X C) = (A X B) - C.) 

(5) As you can check from the definition of V: 

So curl-of-curl gives nothing new; the first term is just number (3) and the second is the 
Laplacian (of a vector). (In fact, Eq. 1.47 is often used to define the Laplacian of a vector, 
in preference to Eq. 1.43, which makes specific reference to Cartesian coordinates.) 

Really, then, there are just two kinds of second derivatives: the Laplacian (which is 
of fundamental importance) and the gradient-of-divergence (which we seldom encounter). 

3 ~ n  curvilinearcoordinates, where the unit vectors themselves depend on position. they too must be differentiated 
(see Sect. 1.4.1). 
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We could go through a similar ritual to work out third derivatives, but fortunately second 
derivatives suffice for practically all physical applications. 

A final word on vector differential calculus: It all flows from the operator V, and from 
taking seriously its vector character. Even if you remembered only the definition of V, you 
should be able, in principle, to reconstruct all the rest. 

Problem 1.25 Calculate the Laplacian of the following functions: 

(a)T, = x 2  +2xy +3z+4.  

(b) Tb = sin x sin y sin z .  

(C) Tc = e P 5 ~  sin4y cos 3z. 

(d) v = x2ii +3xz2 9 - 2 . ~ ~ 2  

Problem 1.26 Prove that the divergence of a curl is always zero. Check it for function Va in 
Prob. 1.15. 

Problem 1.27 Prove that the curl of a gradient is always zero. Check it for function (b) in 
Prob. 1.11. 

1.3 Integral Calculus 

1.3.1 Line, Surface, and Volume Integrals 

In electrodynamics we encounter several different kinds of integrals, among which the most 
important are line (or path) integrals, surface integrals (or flux), and volume integrals. 

(a) Line Integrals. A line integral is an expression of the form 

(1.48) 

where v is a vector function, dl is the infinitesimal displacement vector (Eq. 1.22), and the 
integral is to be carried out along a prescribed path P from point a to point b (Fig. 1.20). If 
the path in question forms a closed loop (that is, if b = a), I shall put a circle on the integral 
sign: 

f v .  dl. (1.49) 

At each point on the path we take the dot product of v (evaluated at that point) with the 
displacement dl to the next point on the path. To a physicist, the most familiar example of 
a line integral is the work done by a force F: W = F . dl. 

Ordinarily, the value of a line integral depends critically on the particular path taken 
from a to b, but there is an important special class of vector functions for which the line 
integral is independent of the path, and is determined entirely by the end points. It will be 
our business in due course to characterize this special class of vectors. (A force that has 
this property is called conservative.) 
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Figure 1.20 Figure 1.2 1 

Example 1.6 

Calculate the line integral of the function v = y2 2 + 2x(y + 1)  jl from the point a = (1, 1, 0) 
to the point b = (2,2,0) ,  along the paths (1) and (2) in Fig. 1.21. What is $ v .  dl for the loop 
that goes from a to b along (1) and returns to a along (2j? 

Solution: As always, dl = dx 2 + dy f + dz 2. Path (1) consists of two parts. Along the 
"horizontal" segment dy = dz = 0, so 

On the "vertical" stretch dx = dz = 0, so 

( i i ) d l = d y f ,  x = 2 ,  ~ . d l = 2 ~ ( y + l ) d y = 4 ( y + 1 ) d ~ , S o  

By path ( l ) ,  then. 

Meanwhile, on path (2) x = y ,  dx = dy, and dz = 0, so 

(The strategy here is to get everything in terms of one variable; I could just as well have 
eliminated x in favor of y.) 

For the loop that goes out (1) and back (2), then, 
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(b) Surface Integrals. A surface integral is an expression of the form 

v .  da, (1.50) 

where v is again some vector function, and da is  an infinitesimal patch of area, with direction 
perpendicular to the surface (Fig. 1.22). There are, of course, two directions perpendicular 
to any surface, so the sign of a surface integral is intrinsically ambiguous. If the surface is 
closed (forming a "balloon"), in which case I shall again put a circle on the integral sign 

! v - da,  

then tradition dictates that "outward" is positive, but for open surfaces it's arbitrary. If v 
describes the flow of a fluid (mass per unit area per unit time), then v . d a  represents the 
total mass per unit time passing through the surface-hence the alternative name, "flux." 

Ordinarily, the value of a surface integral depends on the particular surface chosen, but 
there is a special class of vector functions for which it is independent of the surface, and 
is determined entirely by the boundary line. We shall soon be in a position to characterize 
this special class. 

(iii) 
t 

2 Y 

Figure 1.22 Figure 1.23 

Example 1.7 

Calculate the surface integral of v = 2xz i + (X + 2) $ + y (72 - 3) 2 over five sides (excluding 
the bottom) of the cubical box (side 2) in Fig. 1.23. Let "upward and outward be the positive 
direction, as indicated by the arrows. 

Solution: Taking the sides one at a time: 

( i )x  = 2 ,  da=dydzrZ, v . d a = 2 x z d y d z = 4 z d y d z ,  so 
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(iv) y = 0 ,  d a  = -dx dz 9 ,  v .  d a  = - (X  + 2)  d x  d z ,  so 

Evidently the total flux is 

J v . d a =  16+O+ 12-  1 2 + 4 = 2 0 .  
surface 

(C) Volume Integrals. A volu~ne integral is an expression of the form 

where T is a scalar function and d t  is an infinitesimal volume element. In Cartesian 
coordinates, 

d t  = d x  d y  d z .  (1.52) 

For example, if T is the density of a substance (which might vary from point to point), then 
the volume integral would give the total mass. Occasionally we shall encounter volume 
integrals of vector functions: 

v d t  = ( v ,  2 + v,, f + v, i ) d t  = f v,dt  + y v , d t  + z v z d t ;  (1.53) S S S - S  - - S  
because the unit vectors are constants, they come outside the integral. 

Example 1.8 

Calculate the volume integral of T = xyz2 over the prism in Fig. 1.24. 

Solution: You can do the three integrals in any order. Let's do x first: it runs from 0  to ( 1  - y ) ;  
then y (it goes from 0  to 1); and finally z (0 to 3 ) :  
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Figure 1.24 

Problem 1.28 Calculate the line integral of the function v = x2 i + 2 y z  f + y2  i from the 
origin to the point (1,1,1) by three different routes: 

(c) The direct straight line. 

(d) What is the line integral around the closed loop that goes out along path (a) and back along 
path (b)? 

Problem 1.29 Calculate the surface integral of the function in Ex. 1.7, over the bottom of the 
box. For consistency, let "upward be the positive direction. Does the surface integral depend 
only on the boundary line for this function? What is the total flux over the closed surface of the 
box (including the bottom)? [Note: For the closed surface the positive direction is "outward," 
and hence "down." for the bottom face.] 

Problem 1.30 Calculate the volume integral of the function T = z2 over the tetrahedron with 
corners at (0,0,0), (1,0,0), (0,1,0), and (0,0,1). 

1.3.2 The Fundamental Theorem of Calculus 

Suppose f ( X )  is a function of one variable. The fundamental theorem of calculus states: 

In case this doesn't look familiar, let's write it another way: 

where df /dx = F ( X ) .  The fundamental theorem tells you how to integrate F (X): you 
think up a function f (X) whose d8rivative is equal to F. 
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Geometrical Interpretation: According to Eq. 1.33, df = (d f /dx)dx is the infinitesi- 
mal change in f when you go from (X) to (X + dx). The fundamental theorem (1 -54) says 
that if you chop the interval from a to b (Fig. 1.25) into many tiny pieces, dx, and add up 
the increments df from each little piece, the result is (not surprisingly) equal to the total 
change in f :  f (b) - f (a). In other words, there are two ways to determine the total change 
in the function: either subtract the values at the ends or go step-by-step, adding up all the 
tiny increments as you go. You'll get the same answer either way. 

Notice the basic format of the fundamental theorem: the integral of a derivative over 
an interval is given by the value of the function a t  the end points (boundaries). In vector 
calculus there are three species of derivative (gradient, divergence, and curl), and each has 
its own "fundamental theorem," with essentially the same format. I don't plan to prove 
these theorems here; rather, I shall explain what they mean, and try to make themplazwible. 
Proofs are given in Appendix A. 

L r . . , , , ,  . . I  
a dx X X 

Figure 1.25 Figure 1.26 

1.3.3 The Fundamental Theorem for Gradients 

Suppose we have a scalar function of three variables T(x, y, z ) .  Starting at point a, we 
move a small distance dll (Fig. 1.26). According to Eq. 1.37, the function T will change 
by an amount 

d T  = (VT) . dll .  

Now we move a little further, by an additional small displacement d12; the incremental 
change in T will be (VT) . d12. In this manner, proceeding by infinitesimal steps, we make 
the journey to point b. At each step we compute the gradient of T (at that point) and dot it 
into the displacement dl.. . this gives us the change in T. Evidently the total change in T 
in going from a to b along the path selected is 

lb (VT) dl = T(b) - T(a). 
P 
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This is called the fundamental theorem for gradients; like the "ordinary" fundamental 
theorem, it says that the integral (here a line integral) of a derivative (here the gradient) is 
given by the value of the function at the boundaries (a and b). 

Geometrical Interpretation: Suppose you wanted to determine the height of the Eiffel 
Tower. You could climb the stairs, using a ruler to measure the rise at each step, and adding 
them all up (that's the left side of Eq. 1 .S), or you could place altimeters at the top and 
the bottom, and subtract the two readings (that's the right side); you should get the same 
answer either way (that's the fundamental theorem). 

Incidentally, as we found in Ex. 1.6, line integrals ordinarily depend on the path taken 
from a to b. But the right side of Eq. 1.55 makes no reference to the path-only to the 
end points. Evidently, gradients have the special property that their line integrals are path 
independent: 

Corollary 1: J , ~ ( v T )  . dl is independent of path taken from a to b. 

Corollary 2: $(V T )  . dl = 0, since the beginning and end points 
are identical, and hence T  (b) - T (a) = 0. 

Example 1.9 

Let T = xy2, and take point a to be the origin (0,O. 0) and b the point (2, 1,O). Check the 
fundamental theorem for gradients. 

Solution: Although the integral is independent of path, we must pick a specific path in order 
to evaluate it. Let's go out along the x axis (step i) and then up (step ii) (Fig. 1.27). As always, 
d l = d x 2 2 + d y f + d z i ; ~ ~  = y222+2xyf. 

( i ) y  = O ;  d l = d x % ,  V T . d l = y 2 d x = 0 , s o  

(iii ii) '/A[ + 

a 
1 2 X 

b 
Figure 1.27 
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Evidently the total line integral is 2. Is this consistent with the fundamental theorem? Yes: 
T(b) - T ( a )  = 2 - 0  = 2. 

Now, just to convince you that the answer is independent of path, let me calculate the same 
integral along path iii (the straight line from a to b): 

1 2  (iii) y  = $ X ,  d y  = -i d s ,  V T  . d l  = y d x  + 2 x y  d y  = $ x 2 d x ,  SO 

Problem 1.31 Check the fundamental theorem for gradients, using T = x2 + 4xy f 2 y z 3 ,  thc 
points a = (0 ,0 ,0) ,  b = ( 1 ,  1 ,  l ) ,  and the three paths in Fig. 1.28: 

(a)(O,O,O) + (1,0,0) + (1 .  1,O) + ( l ,  1 .  1); 

(b) (0,O.O) + (O,O,  l ) +  (O,l, 1 )  + ( l , ] ,  1); 

(c) the parabolic path z = x 2  ; y = x 

Figure 1.28 

1.3.4 The Fundamehtal Theorem for Divergences 

The fundamental theorem for divergences states that: 

In honor, I suppose of its great importance, this theorem has at least three special names: 
Gauss's theorem, Green's theorem, or, simply, the divergence theorem. Like the other 
"fundamental theorems," it says that the integral of a derivative (in this case the divergence) 
over a region (in this case a volume) is equal to the value of the function at the boundary 



3 2 CHAPTER 1 .  VECTOR ANALYSIS 

(in this case the surJace that bounds the volume). Notice that the boundary term is itself 
an integral (specifically, a surface integral). This is reasonable: the "boundary" of a line is 
just two end points, but the boundary of a volunze is a (closed) surface. 

Geometrical Interpretation: If v represents the flow of an incompressible fluid, then 
the flux of v (the right side of Eq. 1.56) is the total amount of fluid passing out through the 
surface, per unit time. Now, the divergence measures the "spreading out" of the vectors 
from a point-a place of high divergence is like a "faucet," pouring out liquid. If we have 
lots of faucets in a region filled with incompressible fluid, an equal amount of liquid will 
be forced out through the boundaries of the region. In fact, there are two ways we could 
determine how much is being produced: (a) we could count up all the faucets, recording 
how much each puts out, or (b) we could go around the boundary, measuring the flow at 
each point, and add it all up. You get the same answer either way: 

J (faucets within the volume) = (flow out through the surface). 

This, in essence, is what the divergence theorem says. 

Example 1.10 

Check the divergence theorem using the function 

and the unit cube situated at the origin (Fig. 1.29). 

Solution: In this case 
v . v  = 2 ( x  + y ) ,  

and 

Figure 1.29 

b 
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Evidently, 

So much for the left side of the divergence theorem. To evaluate the surface integral we must 
consider separately the six sides of the cube: 

( i i )  

(iii) 

So the total flux is: 

as expected. 

Problem 1.32 Test the divergence theorem for the function v = ( x y )  + (2~:) f + (3zx) 2. 
Take as your volume the cube shown in Fig. 1.30, with sides of length 2. 
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Figure 1.30 

1.3.5 The F'undamentaI Theorem for Curls 

The fundamental theorem for curls, which goes by the special name of Stokes' theorem, 
states that 

As always, the integral of a derivative (here, the curl) over a region (here. a Patch of su$ace) 
is equal to the value of the function at the boundary (here, the perimeter of the patch). As 
in the case of the divergence theorem, the boundary term is itself an integral-specifically, 
a closed line integral. 

Geometrical Interpretation: Recall that the curl measures the "twist" of the vectors v; a 
region of high curl is a whirlpool-if you put a tiny paddle wheel there, it will rotate. Now, 
the integral of the curl over some surface (or, more precisely, the$ux of the curl through 
that surface) represents the "total amount of swirl," and we can determine that swirl just as 
well by going around the edge and finding how much the flow is following the boundary 
(Fig. 1.3 1). You may find this a rather forced interpretation of Stokes' theorem, but it's a 
helpful mnemonic, if nothing else. 

You might have noticed an apparent ambiguity in Stokes' theoreni: concerning the 
boundary line integral, which way are we supposed to go around (clockwise or counter- 
clockwise)? If we go the "wrong" way we'll pick up an overall sign error. The answer is 
that it doesn't matter which way you go as long as you are con~istent, for there is a com- 
pensating sign ambiguity in the surface integral: Which way does da point? For a closed 
surface (as in the divergence theorem) da points in the direction of the outward normal; but 
for an open surface, which way is "out?'Consistency in Stokes' theorem (as in all such 
matters) is given by the right-hand rule: If your fingers point in the direction of the line 
integral, then your thumb fixes the direction of da (Fig. 1.32). 

Now, there are plenty of surfaces (infinitely many) that share any given boundary line. 
Twist a paper clip into a loop and dip it in soapy water. The soap film constitutes a surface, 
with the wire loop as its boundary. If you blow on it, the soap film will expand, making 
a larger surface, with the same boundary. Ordinarily, a flux integral depends critically on 
what surface you integrate over, but evidently this is not the case with curls. For Stokes' 
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Figure 1.3 1 Figure 1.32 

theorem says that ](V X v) da is equal to the line integral of v around the boundary, and 
the latter makes no reference to the specific surface you choose. 

Corollary l: S(V X v) . da depends only on the boundary line, not 
on the particular surface used. 

Corollary 2: $(V X v) . da = 0 for any closed surface, since the 
boundary line, like the mouth of a balloon, shrinks 
down to a point. and hence the right side of Eq. 1.57 
vanishes. 

These corollaries are analogous to those for the gradient theorem. We shall develop the 
parallel further in due course. 

Example 1.11 

Suppose v = (2xz + 3.y2) j l  + ( 4 y i 2 ) f .  Check Stokes' theorem for the square surface shown 
in Fig. 1.33. 

Solution: Here 

V x  v = ( 4 z 2 - 2 x ) i + 2 z i  and d a = d y d z i .  

Figure 1.33 
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(In saying that da points in the x direction, we are committing ourselves to a counterclockwise 
line integral. We could as well write da = -dy dz 2, but then we would be obliged to go 
clockwise.) Since x  = 0  for this surface, 

Now, what about the line integral? We must break this up into four segments: 

l (i) x = 0 .  z = O .  v - d l = 3 y 2 d y ,  l v . d l = & 3 y 2 d Y = l ,  

(iv) x = 0 .  y = ~ ,  v . t i I = o ,  J v . d l = J l  o Odz=O.  

It checks. 

A point of strategy: notice how I handled step (iii). There is a temptation to write dl = - d j ~  y 
here, since the path goes to the left. You can get away with this, if you insist, by running the 
integral from 0 + 1. Personally, I prefer to say til = dx f + dy 9 + dz i always (never any 
minus signs) and let the limits of the integral take care of the direction. 

Problem 1.33 Test Stokes' theorem for the function v = (xy)  i + ( 2 y z )  y + (3zx) i, using the 
triangular shaded area of Fig. 1.34. 

Problem 1.34 Check Corollary I by using the same function and boundary line as in Ex. l . l  1, 
but integrating over the five sides of the cube in Fig. 1.35. The back of the cube is open. 

Figure 1.34 Figure 1.35 
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1.3.6 Integration by Parts 

The technique known (awkwardly) as integration by parts exploits the product rule for 
derivatives: 

Integrating both sides, and invoking the fundamental theorem: 

That's integration by parts. It pertains to the situation in which you are called upon to 
integrate the product of one function ( f )  and the derivative of another ( g ) ;  it says you can 
transfer the derivative from g to f ,  at the cost of a minus sign and a boundary term. 

Example 1.12 

Evaluate the integral 

I" x e A X  tix . 

Solution: The exponential can be expressed as a derivative: 

in this case, then, f (X) = .X, g (X) = - e - X ,  and df l d x  = 1, so 

00 00 

I" . r C x d x  = C x d x  - . r e - x o  = - e C x  = I .  S," 0 

We can exploit the product rules of vector calculus, together with the appropriate fun- 
damental theorems, in exactly the same way. For example, integrating 

over a volume, and invoking the divergence theorem, yields 
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Here again the integrand is the product of one function ( f )  and the derivative (in this case 
the divergence) of another (A), and integration by parts licenses us to transfer the derivative 
from A to f (where it becomes a gradient), at the cost of a minus sign and a boundary term 
(in this case a surface integral). 

You might wonder how often one is likely to encounter an integral involving the product 
of one function and the derivative of another; the answer is surprisingly often, and integration 
by parts turns out to be one of the most powerful tools in vector calculus. 

Problem 1.35 

(a) Show that 

(b) Show that 

B . ( V x A ) d t =  A . ( V x B ) d t +  i ( A  X B) da. 

1.4 Curvilinear Coordinates 

l . .  Spherical Polar Coordinates 

The spherical polar coordinates (r, G,@) of a point P are defined in Fig. 1.36; r is the 
distance from the origin (the magnitude of the position vector), Q (the angle down from the 
z axis) is called the polar angle, and $J (the angle around from the X axis) is the azimuthal 
angle. Their relation to Cartesian coordinates (X, y ,  z )  can be read from the figure: 

Figure 1.36 

b 



1.4. CURVILINEAR COORDINATES 39 

Figure 1.36 also shows three unit vectors, i ,  6 , 4 ,  pointing in the direction of increase 
of the corresponding coordinates. They constitute an orthogonal (mutually perpendicular) 
basis set (just like i ,  f, i), and any vector A can be expressed in terms of them in the usual 
way: 

A = A , ~ + A ~ ~ + A ~ J .  (1.63) 

A,, Ae, and A4  are the radial, polar, and azimuthal components of A. In terms of the 
Cartesian unit vectors, 

as you can easily check for yourself (Prob. 1.37). I have put these formulas inside the back 
cover, for easy reference. 

But there is a poisonous snake lurking here that I'd better warn you about: i, 6, and 
are associated with aparticularpoint P, and they change direction as P moves around. For 
example, i. always points radially outward, but "radially outward" can be the x direction, 
the y direction, or any other direction, depending on where you are. In Fig. 1.37, A = f and 
B = -f, and yet both of them would be written as i in spherical cooi-dinates. One could 
take account of this by explicitly indicating the paid of reference: ?(U, #), 8(8, #), &Q, #), 
but this would be cumbersome, and as long as you are alert to the problem I don't think it 
will cause difficultiesa4 In particular, do not nayvely combihe the spherical components of 
vectors associated with different points (in Fig. 1.37, A + B = 0, not 2i, and A . B = - 1, 
not + l ) .  Beware of differentiating a vector that is expressed in spherical coordinates, since 

A 

the unit vectors themselves are functions of position (a?/dQ = 8, for example). And do 
not take i ,  6, and 4 outside an integral, as we did with 2,  j r ,  and 2 in Eq. 1.53. In general, 
if you're uncertain about the validity of an operation, reexpress the problem in Cartesian 
coordinates, where this difficulty does not arise. 

Figure 1.37 

41 claimed on the very first page ;hat vectors have no location, and I'll stand by that. The vectors themselves 
live "out there," completely independedt of oqr choice of coordinates. But the notation we use to represent them 
does depend on the point in question, in curvilinear coordinates. 



40 CHAPTER 1 .  VECTOR ANALYSIS 

An infinitesimal displacement in the ? direction is simply d r  (Fig. 1.38a), just as an 
infinitesimal element of length in the x direction is dx: 

dl, = dr. (1.65) 

On the other hand, an infinitesimal eIement of length in the 8 direction (Fig. 1.38b) is not 
just dH (that's an angle-it doesn't even have the right units for a length), but rather r dB: 

Similarly, an infinitesimal element of length in the 6 direction (Fig. 1.3%) is r sin B d@: 

d14 = p. sin B d@. (1.67) 

Thus, the general infinitesimal displacement dl is 

This plays the role (in line integrals, for example) that d l  = dx i + dy 9 + dz i played in 
Cartesian coordinates. 

Figure 1.38 

The infinitesimal volume element d t ,  in spherical coordinates, is the product of the 
three infinitesimal displacements: 

ds = dl, dle dl+ = r2 sin 6' d r  dB d@. (1.69) 

I cannot give you a general expression for surface elements da,  since these depend on the 
orientation of the surface. You simply have to analyze the geometry for any given case (this 
goes for Cartesian and curvilinear coordinates alike). If you are integrating over the surface 
of a sphere, for instance, then r is constant, whereas B and @ change (Fig. 1.39), so 

da l  = dlo d14 i = r2 sin H dQ d@ f .  

On the other hand, if the surface lies in the xy plane, say, so that B is constant (to wit: n/2) 
while r and @ vary, then 

A A 

da2 = dl, dl+ 8 = r d r  d@ 8. 
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Figure 1.39 

Notice, finally, that r ranges from 0 to cm, 4 from 0 to 2n ,  and 8 from 0 to n (not 
2n-that would count every point t ~ i c e ) . ~  

Example 1.13 

Find the volume of a sphere of radius R. 

Solution: 

- - (lR r 2  ir ) (Qi sin iii) 
i4) 

(Not a big surprise.) 

So far we have talked only about the geometry of spherical coordinates. Now I would 
like to "translate" the vector derivatives (gradient, divergence, curl, and Laplacian) into I . ,  

8 ,  4 notation. In principle this is entirely straightforward: in the case of the gradient, 

for instance, we would first use the chain rule to reexpress the partials: 

5~lternatively, you could run 4 from 0 to rr (the "eastern hemisphere") and cover the "western hemisphere" by 
extending 8 from rr up to 2n. But this is very bad notation, since, among other things, sin 0 will then run negative, 
and you'll have to put absolute value signs around that term in volume and surface elements (area and volulne 
being intrinsically positive quantities). 
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The terms in parentheqes could be worked out from Eq. 1.62--or rather, the inverse of 
those equations (Prob. 1.36). Theq we'd do the same for dT/dy  and dT/az.  Finally, we'd 
substitute in the formulas for 2,  f ,  and i in terms of ;, 6, and 4 (Prob. 1.37). It would take 
an hour to figure out the gradient in spherical coordinates by this brute-force method. I 
suppose this is how it was first done, but there is a much more efficient indirect approach, 
explained in Appendix A, which has the extra advantage of treating all coordinate systems 
at once. I described the "straightforwqrd method only to show you that there is nothing 
subtle or mysterious about transforming to spherical coordinates: you're expressing the 
same quantity (gradient, divergence, or whatever) in different notation, that's all. 

Here, then, are the vector derivatives in spherical coordinates: 

Gradient: 

Divergence: 

l a  , 1 a 1 av, 
V . v  = --(r-v,) + -- (sin8ve) + --. 

r 2  dr r sin I3 dI3 r sin I3 a@ 
Curl. 

1 av, a 
V x v  = 

Laplacian: 

2 l V T = - -  r - +-- l a 2 ~  
ry ar ( %:) r2  sin 0 aI3 a (sin g) + r2 842 

(1.73) 

For reference, these formulas are listed inside the front cover. 

Prnblsm 1.36 Find formulas for r, 8 ,  #I in terms of X ,  y ,  z (the inverse, in other words, of 
Eq. 1.62). 

Problem 1.37 Express the unit vectors ? , e ^ , J  in terms of i ,  9 ,  P (that is, derive Eq. 1.64). 
7 A A ?  - ? A  

Check your answers several ways (2.  2 = 1 ,  4 . 4  = 0, C; X 0 = 4, . . .). Also work out the 
A A 

inverse formulas, giving 2, j l ,  i in ternis of i., 0 , @  (and 8,qh). 

Problem 1.38 

(a) Check the divergence theorem for the function v, = r2?, using as your volume the sphere 
of radius R,  centered at the origin. 

b) Do the same for v2 = (l/r2)1. (If the answer surprises you, look back at Prob. 1.16.) 
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Figure 1.40 Figure 1.4 1 

Problem 1.39 Compule Lhe divergence of the function 

Check the divergence theorem for this function, using as your volume the inverted hemispher- 
ical bowl of radius R,  resting on the xy plane and centered at the origin (Fig. l .40). 

Problem 1.40 Compute the gradient and Laplacian of the function T = r (cos Q + sin Q cos 4). 
Check the Laplacian by converting T to Cartesian coordinates and using Eq. 1.42. Test the 
gradient theorem for this function, using the path shown in Fig. 1.41, from ( O , O ,  0)  to (O,O,  2). 

1.4.2 Cylindrical Coordinates 

The cylindrical coordinates (S, 4, z )  of a point P are defined in Fig. 1.42. Notice that @ 
has the same meaning as in spherical coordinates, and z is the same as Cartesian; s is the 
distance to P from the (7 axis, whereas the spherical coordinate r is the distance from the 
origin. The relation to Cartesian coordinates is 

The unit vectors (Prob. 1.4 1) are 

The infinitesimal displacements are 
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Figure 1.42 

and the volume element is 

d t  = s d s d 4 d z .  

The range of s is 0 += CO, 4 goes from 0 + 2n, and z from -CO to m. 

The vector derivatives in cylindrical coordinates are: 

Gradient: 

Divergence: 

Curl: 

Laplacian: 

These formulas are also listed inside the front cover. 

Problem 1.41 Express the cylindrical unit vectors 6, 8,  2 in terms of i ,  9 ,  2 (that is, derive 
Eq. 1.75). "Invert" your formulas to get i, 9 ,  i in terms of i, 8,  2 (and 4). 
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Figure 1.43 Figure 1.44 

Problem 1.42 

(a) Find the divergence of the function 

(b) Test the divergence theorem for this function, using the quarter-cylinder (radius 2, height 
5) shown in Fig. 1.43. 

(C) Find the curl of v. 

1.5 The Dirac Delta Function 

1.5.1 The Divergence of i / r 2  

Consider the vector function 
1 A 

v = - r .  (1 $3) 
r2  

At every location, v is directed radially outward (Fig. 1.44); if ever there was a function that 
ought to have a large positive divergence, this is it. And yet. when you actually calculate 
the divergence (using Eq. 1.7 l ) ,  you get precisely zero: 

1 a v . v = - -  y -  =--  
l a ( ) r2 at- 

(1) = 0. 
r2 ar 

(You will have encountered this paradox already, if you worked Prob. 1.16.) The plot 
thickens if you apply the divergence theorem to this function. Suppose we integrate over a 
sphere of radius R, centered at the origin (Prob. 1.38b); the surface integral is 
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But the volume integral, V . v d t ,  is zero, if we are really to believe Eq. 1.84. Does this 
mean that the divergence theorem is false? What's going on here? 

The source of the problem is the point r = 0, where v blows up (and where, in Eq. 1.84, 
we have unwittingly divided by zero). It is quite true that V v = 0 everywhere except 
the origin, but right ut the origin the situation is more complicated. Notice that the surface 
integral (1.85) is independent of R; if the divergence theorem is right (and it is), we should 
get /(V . V) d t  = 43c for any sphere centered at the origin, no matter how small. Evidently 
the entire contribution must be coming from the point r = O! Thus, V . v has the bizarre 
property that it vanishes everywhere except at one point, and yet its integral (over any 
volume containing that point) is 4n. No ordinary function behaves like that. (On the other 
hand, aphysical example does come to mind: the density (mass per unit volume) of a point 
particle. It's zero except at the exact location of the particle, and yet its integral is finite- 
namely, the mass of the particle.) What we have stumbled on is a mathematical object 
known to physicists as the Dirac delta function. It arises in many branches of theoretical 
physics. Moreover, the specific problem at hand (the divergence of the function f / r 2 )  is not 
just some arcane curjosity-it is, in fact, central to the whole theory of electrodynamics. 
So it is worthwhile to pause here and study the Dirac delta function with some care. 

1.5.2 The One-Dimensional Dirac Delta Function 

The one dimensional Dirac delta function, 6(x), can be pictured as an infinitely high, 
infinitesimally narrow "spike," with area l (Fig. 1.45). That is to say: 

and 

Technically, 6(x) is not a function at all, since its value is not finite at X = 0. In the 
mathematical literature it is known as a generalized function, or distribution. It is, if you 

Figure 1.45 
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Figure 1.46 

like, the limit of a sequence of functions, such as rectangles R ,  (X), of height n and width 
l l n ,  or  isosceles triangles T, (X), of height n and base 2 / n  (Fig. 1.46). 

If f (.X) is some "ordinary" function (that is, not another delta function-in fact, just 
to be on the safe side let's say that f (X) is continuous), then the product f (x)6(x) is zero 
everywhere except at X = 0. It follows that 

(This is the most important fact about the delta function, so make sure you understand why 
it is true: since the product is zero anyway except at X = 0,'we may as well replace f (X) 
by the value it assumes at the origin.) In particular 

Under an integral, then, the delta function "picks out" the value of f (X) at x = 0. (Here 
and below, the integral need not run from -W to +m; it is sufficient that the domain extend 
across the delta function, and - E  to + E  would do as well.) 

Of course, we can shift the spike from X = O to some other point, X = a (Fig. 1.47): 

0, i f x f a  
6(x - a )  = } with 1: 6 ( x - a ) d x =  1. 

m, i f x = a  
(1.90) 

Equation 1.88 becomes 
f (x)S(x - a )  = f (a)b(x - a ) ,  

and Eq. 1.89 generalizes to 
W 

f (x)S(x - a)  dx = f ( a ) .  

Example 1.14 

Evaluate the integral 

L3 . x36 (x  - 2) dx.  
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a X 

Figure 1.47 

Solution: The delta function picks out the value of x3 at the point x = 2, so the integral is 
23 = 8. Notice, however, that if the upper limit had been 1 (instead of 3) the answer would be 
0, because the spike would then be outside the domain of integration. 

Although 6 itself is not a legitimate function, integrals over 6 are perfectly acceptable. 
In fact, it's best to think of the delta function as something that is always intended for use 
under an integral sign. In particular, two expressions involving delta functions (say, D1 ( X )  
and D 2 ( x ) )  are considered equal if 

for all ("ordinary") functions f (X). 

Example 1.15 

Show that 

where k is any (nonzcro) constant. (In particular, 6 ( - X )  = S ( x ) . )  

Solution: For an arbitrary test function f ( X ) ,  consider the integral 

Changing variables, we let y k x ,  so that x = y / k ,  and dx = l / k  d y .  If k is positive, the 
integration still runs from -CC to +CC, but if k  is negative, then X = CC implies y = -CC, and 

6 ~ h i s  is not as arbitrary as it may sound. The crucial point is that the integrals must be equal for any f ( X ) .  

Suppose D1 (X) and D2(x)  actually differed, say, in the neighborhood of the point X = 17. Then we could pick a 
function f'(x) that was sharply peaked about x = 17, and the integrals would not be equal. 
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vice versa, so the order of the limits is reversed. Restoring the "proper" order costs a minus 
sign. Thus 

(The lower signs apply when k is negative, and we account for this neatly by putting absolute 
value bars around the final k, as indicated.) Under the integral sign, then, 8(kx) serves the 
same purpose as ( l  Ilk l)S (X): 

OC) 

f(x)S(kx)di = /m f(x)  [ i S ( x ) ]  dx. 
-00 

According to criterion 1.93, therefore, S(kx) and (l / l  kl)S(x) are equal. 

Problem 1.43 Evaluate the following integrals: 

6 
(a) (3x2 - 2x - 1)S(x - 3)dx. 

(C) J; x3S(x + l )  dx.  

(d) ln(x + 3) + 2) dx. 

Problem 1.44 Evaluate the following integrals: 

(b) 1;(x3 + 3n + 2)S(1 -x )dx  

(C) 9x28(3x + l) dx.  

(d) If, 8(x - b) dx. 

Problem 1.45 

(a) Show that 

[Hint: Use integration by parts.] 

(b) Let 8(x) be the step function: 

i fx  > O  

i f x  5 0 

Show that d0ldx = S(x). 
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1.5.3 The Three-Dimensional Delta Function 

It is an easy matter to generalize the delta function to three dimensions: 

(As always, r  X 2 + y + z 2 is the position vector, extending from the origin to the point 
(X. y ,  z ) ) .  This three-dimensional delta function is zero everywhere except at (0, 0, O), 
where it blows up. Its volume integral is I : 

S 3 S ( r)dr  =lN IN S_: S(x)S(y)S(z)dxdydz = l .  (1.97) 
911 space -00 -02 

And, generalizing Eq. 1.92, 

S f (r)s3(r - a ) d t  = f (a). 
all space 

As in the one-dimensional case, integration with S picks out the value of the function f at 
the location of the spike. 

We are now in a position to resolve the paradox introduced in Sect. 1.5.1. As you will 
recall, we found that the divergence of ; / r 2  is zero everywhere except at the origin, and 
yet its integral over any volume containing the origin is a constant (to wit: 4n). These are 
precisely the defining conditions for the Dirac delta function; evidently 

More generally, 

where, as always, a is the separation vector: a = r - r'. Note that differentiation here is 
with respect to r ,  while r' is held constant. Incidentally, since 

(Prob. 1.13), it follows that 

2 1 3 v - = -4ns (a). 
4 
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Example 1.16 

Evaluate the integral 

where V is a sphere of radius R centered at the origin. 

Solution 1: Use Eq. 1.99 to rewrite the divergence, and Eq. 1.98 to do the integral: 

This one-line solution demonstrates something of the power and beauty of the delta function, 
but I would like to show you a second method, which is much more cumbersome but serves to 
illustrate the method of integration by parts, Sect. 1.3.6. 

Solution 2: Using Eq. 1.59, we transfer the derivative from i / r2  to ( r2  + 2): 

The gradient is 

v(r2 + 2) = 2 r i ,  

so the volume integral becomes 

Meanwhile, on the boundary of the sphere (where r  = R), 

da = sin 8 d0 d@ i, 

so the surface integral becomes 

Putting it all together, then, 

as before. 
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Problem 1.46 

(a) Write an expression for the electric charge density p(r) of a point charge q at r'. Make 
sure that the voluille integral of p equals q.  

(b) What is the charge density of an electric dipole, consisting of a point charge -q at the 
origin and a point charge +q at a? 

(C) What is the charge density of a uniform, infinitesimally thin spherical shell of radius R and 
total charge Q ,  centered at the origin? [Beware: the integral over all space must equal Q.] 

Problem 1.47 Evaluate the following integrals: 

(a) Jail (r2 + r . a + ir2)d3(r - a) ds ,  where a is a fixed vector and a is its magnitude. 

(b)lv r-b12d3(5r) dr ,  where V is acube of side 2, centered on theorigin, and b = 4 f + 3  i. 

(c) .fv< r4  + r2 (r . C) + c4)a3 ( r  - C) d s, where V is a sphere of radius 6 about the origin, 
c = 5 % + 3 4 + 2 i, and c is its magnitude. 

(d) r . (d - r)d"e - r) ds ,  where d = ( 1 .  2, 3), e = (3. 2, l),  and V is a sphere of radius 
1.5 centered at (2, 2, 2). 

Problem 1.48 Evaluate the integral 

(where V is a sphere of radius R, centered at the origin) by two different methods, as in Ex. 1.16. 

The Theory of Vector Fields 

1.6.1 The Helmholtz Theorem 

Ever since Faraday, the laws of electricity and magnetism have been expressed in terms of 
electric and magnetic fields, E and B. Like many physical laws, these are most compactly 
expressed as differential equations. Since E and B are vectors, the differential equations 

naturally involve vector derivatives: divergence and curl. Indeed, Maxwell reduced the 
entire theory to four equations, specifying respectively the divergence and the curl of E and 
B . ~  

7~trictly speaking, this is only true in the static case; in general. the divergence and curl are given in terms of 
time derivatives of the fields themselves. 
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Maxwell's formulation raises an important mathematical question: To what extent is a 
vector function determined by its divergence and curl? In other words, if I tell you that the 
divergence of F (which stands for E or B, as the case may be) is a specified (scalar) function 

D, 
V . F =  D, 

and the curl of F is a specified (vector) function C, 

(for consistency, C must be divergenceless, 

because the divergence of a curl is always zero), can you then determine the function F? 
Well.. . not quite. For example, as you may have discovered in Prob. 1.19, there are 

many functions whose divergence and curl are both zero everywhere-the trivial case F = 0, 
of course, but also F = y z  i+ zx f + x y  i, F = sin X cosh y 2 -cos X sinh y f ,  etc. To solve 
a differential equation you must also be supplied with appropriate boundary conditions. 
In electrodynamics we typically require that the fields go to zero "at infinity" (far away 
from all charges).8 With that extra information the Helmholtz theorem guarantees that the 
field is uniquely determined by its divergence and curl. (A proof of the Helmholtz theorem 
is given in Appendix B.) 

1.6.2 Potentials 

If the curl of a vector field (F) vanishes (everywhere), then F can be written as the gradient 
of a scalar potential (V): 

V x F = O - F = - V V .  (1.103) 

(The minus sign is purely conventional.) That's the essential burden of the following 
theorem: 

Theorem 1: Curl-less (or "irrotational") fields. The following con- 
ditions are equivalent (that is, F satisfies one if and only 
if it satisfies all the others): 
(a) V X F = 0 everywhere. 
(b) 1; F F d l  is independent of path, for any given end 
points. 
(C) $ F . dl  = 0 for any closed loop. 
(d) F is the gradient of some scalar, F = -VV.  

'1n some textbook problems the charge itself extends to infinity (we speak, for instance, of the electric field of 
an infinite plane, or the magnetic field of an infinite wire). In such cases the normal boundary conditions do not 
apply, and one must invoke symmetry arguments to determine the fields uniquely. 
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The scalar potential is not unique-any constant can be added to V with impunity, since 
this will not affect its gradient. 

If the divergence of a vector field (F) vanishes (everywhere), then F can be expressed 
as the curl of a vector potential (A): 

That's the main conclusion of the following theorem: 

Theorem 2: Divergence-less (or "solenoidal") fields. The following 
conditions are equivalent: 
(a) V . F = 0 everywhere. 
(b) 1 Fads is independent of surface, for any given bound- 
ary line. 
(c) $ F . da = 0 for any closed surface. 
(d) F is the curl of some vector. F = V X A. 

The vector potential is not unique-the gradient of any scalar function can be added to A 
without affecting the curl, since the curl of a gradient is zero. 

You should by now be able to prove all the connections in these theorems, save for 
the ones that say (a), (b), or (c) implies (d). Those are more subtle, and will come later. 
Incidentally, in all cases (whatever its curl and divergence may be) a vector field F can be 
written as the gradient of a scalar plus the curl of a vector: 

F = - V V + V x A  (always). (1.105) 

Problem 1.49 

(a) Let F1 = x 2  i and F2 = x i + y f + z 2. Calculate the divergence and curl of F1 and Fz. 
Which one can be written as the gradient of a scalar? Find a scalar potential that does the job. 
Which one can be written as the curl of a vector? Find a suitable vector potential. 

(b) Show that F3 = y z  i + z.r + xy i can be written both as the gradient of a scalar and as 
the curl of a vector. Find scalar and vector potentials for this function. 

Problem 1.50 For Theorem 1 show that (d) =+ (a), (a) + (c). (c) j (b), (b) + (c), and 

(C) + (a). 

Problem 1.51 For Theorem 2 show that (d) j (a), (a) j (c). (c) + (b), (b) + (c), and 
(c) + (a). 
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Problem 1.52 

(a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a scalar? Find a 
scalar function that does the job. 

(b) Which can be expressed as the curl of a vector? Find such a vector. 

More Problems on Chapter l 

Problem 1.53 Check the divergence theorem for the function 

using as your volume one octant of the sphcrc of radius R (Fig. 1.48). Make sure you include 
the entire surface. [Answer: n ~ ~ / 4 ]  

Problem 1.54 Check Stokes' theoremusing the function v = a y  f +bx 9 (a  and b are constants) 
and the circular path of radius R, centered at the origin in the x y  plane. [Answer: n ~ ~ ( b  - Q ) ]  

Problem 1.55 Compute the line integral of 

along the triangular path shown in Fig. 1.49. Check your answer using Stokes' theorem. 
[Answer: 8/31 

Problem 1.56 Compute the line integral of 

around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coordinates). Do 
it either in cylindrical or in spherical coordinates. Check your answer, using Stokes' theorem. 
[Answer: 3rr/2] 

Figure 1.48 Figure 1.49 Figure 1.50 
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Figure 1.5 1 Figure 1.52 

Problem 1.57 Check Stokes' theorem for the function v = y 2, using the t f  angular surface 
shown in Fig. 1.5 l .  [Answer: a2]  

Problem 1.58 Check the divergence theorem for the function 

using the volume of the "ice-cream cone" shown in Fig. 1.52 (the top surface is spherical, with 
radius R and centered at the origin). [Answer: ( r r ~ ~ /  12)(2n + 3 a ) ]  

Problem 1.59 Here are two cute checks of the fundamental theorems: 

(a) Combine Corollary 2 to the gradient theorem with Stokes' theorem (v = VT, in this case). 
Show that the result is consistent with what you already knew about second derivatives. 

(b) Combine Corollary 2 to Stokes' theorem with the divergence theorem. Show that the result 
is consistent with what you already knew. 

Problem 1.60 Although the gradient, divergence, and curl theorems are the fundamental in- 
tegral theorems of vector calculus, it is possible to derive a number of corollaries from them. 
Show that: 

(a)JV(VT)dt = T da. [Hint: Let v = cT, where c is a constant, in the divergence 
theorem; use the product rules.] 

(b) Jv(V X v) d t  = V X da. [Hint: Replace v by (v X c) in the divergence theorem.] 

(C) jv [T v2 U + (VT) . (V U)] d r  = (T V U) . da. [Hinl: Let v = TV U in the divergence 
theorem.] 

(d) J V ( ~ v 2 u  - U V ~ T )  d t  = &(TVU - UVT) . da. [Comment: This isknown as Green's 
theorem; it follows from (c), which is sometimes called ~ r e e n ' s  identity.] 

(e) IS V T X d a  = - j$ T dl. [Hint: Let v = cT in Stokes' theorem.] 
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Problem 1.61 The integral 

is sometimes called the vector area of the surface S. If S happens to befit, then lal is the 
ordinar?, (scalar) area, obviously. 

(a) Find the vector area of a hemispherical bowl of radius R.  

(b) Show that a = 0 for any closed surface. [Hint: Use Prob. 1.60a.l 

(c) Show that a is the same for all surfaces sharing the same boundary. 

(d) Show that 

where the integral is around the boundary line. [Hint: One way to do it is to draw the cone 
subtended by the loop at the origin. Divide the conical surface up into infinitesimal triangu- 
lar wedges. each with vertex at the origin and opposite side dl, and exploit the geometrical 
interpretation of the cross product (Fig. 1.8).] 

(e) Show that 

f (C . r )  dl = a X c ,  

for any constant vector c.  [Hint: let T = c . r in Prob. 1.60e.l 

Problem 1.62 

(a) Find the divergence of the function 
r 

v =  -. 
I 

First compute it directly, as in Eq. 1.84. Test your result using the divergence theorem, as in 
Eq. 1.85. Is there a delta function at the origin, as there was for ?/r2? What is the general 
formula for the divergence of rn?? [Answer: V . (rn?) = (n + 2 ) rn - l ,  unless n = -2, in 
which case it is 437a3 (r)] 

(b) Find the curl of rn?.  Test your conclusion using Prob. 1.60b. [Answer: V X (rn?) = 01 



Chapter 2 

Electrostatics 

The Electric Field 

2.1.1 Introduction 

The fundamental problem electromagnetic theory hopes to solve is this (Fig. 2.1): We have 
some electric charges, ql , q2, q 3 ,  . . . (call them source charges); what force do they exert 
on another charge, Q (call it the test charge)? The positions of the source charges are given 
(as functions of time); the trajectory of the test particle is to be calculated. In general, both 
the source charges and the test charge are in motion. 

The solution to this problem is facilitated by the principle of superposition, which states 
that the interaction between any two charges is completely unaffected by the presence of 
others. This means that to determine the force on Q, we can first compute the force F1, due 
to q1 alone (ignoring all the others); then we compute the force F2, due to q? alone; and so 
on. Finally, we take the vector sum of all these individual forces: F = F1 + F2 + F3 + . . . 
Thus, if we can find the force on Q due to a single source charge q ,  we are, in principle, 
done (the rest is just a question of repeating the same operation over and over, and adding 
it all up).' 

Well, at first sight this sounds very easy: Why don't I just write down the formula for 
the force on Q due to q ,  and be done with it? I could, and in Chapter 10 I shall, but you 
would be shocked to see it at this stage, for not only does the force on Q depend on the 
separation distance4 between the charges (Fig. 2.2), it also depends on both their velocities 
and on the acceleration of q.  Moreover, it is not the position, velocity, and acceleration 
of q right now that matter: Electromagnetic "news" travels at the speed of light, so what 
concerns Q is the position, velocity, and acceleration q had at some earlier time, when the 
message left. 

'The principle of superposition may seem "obvious" to you, but it did not have to be so simple: if the electromag- 
netic force were proportional to the square of the total source charge, for instance, the principle of superposition 
would not hold, since (gl + g212 # g; + g; (there would be "cross terms" to consider). Superposition is not a 
logical necessity, but an aperintental fact. 
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"Source" charges 

Figure 2.1 

"Test" charge 

Figure 2.2 

Therefore, in spite of the fact that the basic question ("What is the force on Q due to 
q?') is easy to state, it does not pay to confront it head on; rather, we shall go at it by 
stages. In the meantime, the theory we develop will permit the solution of more subtIe 
electromagnetic problems that do not present themselves in quite this simple format. To 
begin with, we shall consider the special case of electrostatics in which all the source 
charges are stationary (though the test charge may be moving). 

2.1.2 Coulomb's Law 

What is the force on a test charge Q due to a single point charge q which is at rest a distance 
.z away? The answer (based on experiments) is given by Coulomb's law: 

The constant €0 is called the permitivity of free space. In S1 units, where force is in 
Newtons (N), distance in meters (m), and charge in coulombs (C) ,  

In words, the force is proportional to the product of the charges and inversely proportional 
to the square of the separation distance. As always (Sect. 1.1.4),& is the separation vector 
from r' (the location of q)  to r (the location of Q): 

.z is its magnitude, and & is its direction. The force points along the line from q to Q; it is 
repulsive if q and Q have the same sign, and attractive if their signs are opposite. 

Coulomb's law and the principle of superposition constitute the physical input for 
electrostatics-the rest, except for some special properties of matter, is mathematical elab- 
oration of these fundamental rules. 
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Problem 2.1 

(a) Twelve equal charges, q ,  are situated at the corners of a regular 12-sided polygon (for 
instance, one on each numeral of a clock face). What is the net force on a test charge Q at the 
center? 

(b) Suppose one of the I2 q's is removed (the one at "6 o'clock"). What is the force on Q? 
Explain your reasoning carefully. 

( C )  Now 13 equal charges, q ,  are placed at the corners of a regular 13-sided polygon. What is 
the force on a test charge Q at the center? 

(d) If one of the 13 q's is removed, what is the force on Q? Explain your reasoning. 

2.1.3 The Electric Field 

If we have several point charges ql , q 2 ,  . . . , q,, at distancesal, 4 2 ,  . . . ,a, from Q, the total 
force on Q is evidently 

where 

E is called the electric field of the source charges. Notice that it is a function of position (r), 
because the separation vectors 4, depend on the location of the field point P (Fig. 2.3). But 
it makes no reference to the test charge Q. The electric field is a vector quantity that varies 

Source point 

point 

Figure 2.3 
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from ~ o i n t  to point and is determined by the configuration of source charges; physically, 
E(r) is the force per unit charge that would be exerted on a test charge, if you were to place 
one at P. 

What exactly is an electric field? I have deliberately begun with what you might call 
the "minimal" interpretation of E, as an intermediate step in the calculation of electric 
forces. But I encourage you to think of the field as a "real" physical entity, filling the 
space in the neighborhood of any electric charge. MaxweIl himself came to believe that 
electric and magnetic fields represented actual stresses and strains in an invisible primordial 
jellylike "ether." Special relativity has forced us to abandon the notion of ether, and with it 
Maxwell's mechanical interpretation of electromagnetic fields. (It is even possible, though 
cumbersome, to formulate classical electrodynamics as an "action-at-a-distance" theory, 
and dispense with the field concept altogether.) I can't tell you, then, what a field is-only 
how to calculate it and what it can do for you once you've got it. 

Problem 2.2 

(a) Find the electric field (magnitude and direction) a distance z above the midpoint between 
two equal charges, g ,  a distance d apart (Fig. 2.4). Check that your result is consistent with 
what you'd expect when z >> d. 

(b) Repeat part (a), only this time make the right-hand charge -q instead of +q. 

Figure 2.4 

(a) Continuous (b) Line charge, h 
distribution 

(c) Surface charge, o (d) Volume charge, p 

Figure 2.5 

2.1.4 Continuous Charge Distributions 

Our definition of the electric field (Eq. 2.4), assumes that the source of the field is a collection 
of discrete point charges qi. If, instead, the charge is distributed continuously over some 
region, the sun becomes an integral (Fig. 2.5a): 
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If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length h, then 
dq = h dl' (where dl! is an element of length along the line); if the charge is smeared 
out over a sur$ace (Fig. 2.5c), with charge-per-unit-area o ,  then d q  = o da' (where da' 
is an element of area on the surface); and if the charge fiIls a volume (Fig. 2.5d), with 
charge-per-unit-volume p, then dq = p dr'  (where d t '  is an element of volume): 

dq + h dl' - o da' - p d t ' .  

Thus the electric field of a line charge is 

for a surface charge, 

and for a volume charge, 

Equation 2.8 itself is often referred to as "Coulomb's law," because it is such a short 
step from the original (2.1), and because a volume charge is in a sense the most general 
and realistic case. Please note carefully the meaning of 4 in these formulas. Originally, in 
Eq. 2.4, ai stood for the vector from the source charge qi to the field point r. Correspondingly, 
in Eqs. 2.5-2.8, 4 is the vector from d q  (therefore from dl', da', or d r')  to the field point 

Example 2.1 

Find the electric field a distance z above the midpoint of a straight line segment of length 2L, 
which carries a uniform line charge h (Fig. 2.6). 

Solution: It is advantageous to chop the line up into symmetrically placed pairs (at % X ) ,  for 
then the horizontal components of the two fields cancel, and the net field of the pair is 

Warning: The unit vectork is not constant; its directton depends on the source point r'. and hence it cannot be 
taken outside the integrals 2.5-2.8. In practice, you must work with Cartesian components (2, $, i are constant. 
and do come out), even if you use curvilinear coordinates to perform the integration. 
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Figure 2.6 

Here cos8 = z/a,a = Jz2 + x 2 ,  andx runs from0 to L: 

and it aims in the z-direction. 

For points far from the line ( z  >> L), this result simplifies: 

which makes sense: From far away the line "looks" like a point charge q = 2hL, so the field 
reduces to that of point charge q / ( 4 ~ ~ 0 z 2 ) .  In the limit L + W, on the other hand, we obtain 
the field of an infinite straight wire: 

or, more generally, 

where s is the distance from the wire. 

Problem 2.3 Find the electric field a distance z above one end of a straight line segment of 
length L (Fig. 2.7), which carries a uniform line charge h. Check that your formula is consistent 
with what you would expect for the case z >> L. 



CHAPTER 2. ELECTROSTATICS 

Figure 2.7 Figure 2.8 Figure 2.9 

Problem 2.4 Find the electric field a distance z above the center of a square loop (side a )  
carrying uniform line charge h (Fig. 2.8). [Hint: Use the result of Ex. 2.1 .] 

Problem 2.5 Find the electric field a distance z above the center of a circular loop of radius r 
(Fig. 2.9). which carries a uniform line charge h. 

Problem 2.6 Find the electric field a distance z above the center of a flat circular disk of radius 
R (Fig. 2.10), which carries a uniform surface charge a .  What does your formula give in the 
limit R + m? Also check the case z >> R. 

Problem 2.7 Find the electric field a distance z from the center of a spherical surface of radius 
R (Fig. 2.1 l), which carries a uniform charge density a. Treat the case z < R (inside) as well 
as z > R (outside). Express your answers in terms of the total charge q on the sphere. [Hint: 
Use the law of cosines to write .z in terms of R and 8 .  Be sure to take the positive square root: 

J R ~  + z2 - 2Rz = (R - z )  if R > z, but it's (z - R) if R < z.1 

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a sphere of radius 
R, which carries a uniform volume charge density p. Express your answers in terms of the 
total charge of the sphere, q.  Draw a graph of IE/ as a function of the distance from the center. 

Figure 2.1 1 
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2.2 Divergence and Curl of Electrostatic Fields 

2.2.1 Field Lines, Flux, and Gauss's Law 

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us how to 
compute the field of a charge distribution, and Eq. 2.3 tells us what the force on a charge Q 
placed in this field will be. Unfortunately, as you may have discovered in working Prob. 2.7, 
the integrals involved in computing E can be formidable, even for reasonably simple charge 
distributions. Much of the rest of electrostatics is devoted to assembling a bag of tools and 
tricks for avoiding these integrals. It all begins with the divergence and curl of E. I shall 
calculate the divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show 
you a more qualitative, and perhaps more illuminating, intuitive approach. 

Let's begin with the simplest possiblc casc: a singlc point charge q ,  situated at the 
origin: 

To get a "feel" for this field, I might sketch a few representative vectors, as in Fig. 2.12a. 
Because the field falls off like l / r2 ,  the vectors get shorter as you go farther away from the 
origin; they always point radially outward. But there is a nicer way to represent this field, 
and that's to connect up the arrows, to form field lines (Fig. 2.12b). You tnight think that I 
have thereby thrown away information about the strength of the field, which was contained 
in the length of the arrows. But actually I have not. The magnitude of the field is indicated 
by the density of the field lines: it's strong near the center where the field lines are close 
together, and weak farther out, where they are relatively far apart. 

In truth, the field-line diagram is deceptive, when I draw it on a two-dimensional surface, 
for the density of lines passing through a circle of radius r is the total number divided by the 
circumference (n/2nr) ,  which goes like ( l / r ) ,  not ( l / r2 ) .  But if you imagine the model in 
three dimensions (a pincushion with needles sticking out in all directions), then the density 
of lines is the total number divided by the area of the sphere (n/4nr2),  which IZOP,~ go like 
( l  /r2).  

Figure 
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Equal but opposite charges 

Figure 2.13 

Such diagrams are also convenient for representing more complicated fields. Of course, 
the number of lines you draw depends on how energetic you are (and how sharp your pencil 
is), though you ought to include enough to get an accurate sense of the field, and you must 
be consistent: If charge q gets X lines, then 2q deserves 16. ~ b d  you must space them 
fairly-they emanate from a point charge syrmnetrically in all directions. Field lines begin 
on positive charges and end on negative ones; they cannot simply terminate in midair, though 
they may extend out to infinity. Moreover, field lines can never cross-at the intersection, 
the field would have two different difections at once! With all this in mind, it is easy to 
sketch the field of any simple configuration of point charges: Begin by drawing the lines 
in the neighborhood of each charge, and then connect them up or extend them to infinity 
(Figs. 2.13 and 2.14). 

Equal charges 

Figure 2.14 
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Figure 2.1 5 

In this model the jux  of E through a surface S, 

is a measure of the "number of field lines" passing through S. I put this in quotes because of 
course we can only draw a representative sample of the field lines-the total number would 
be infinite. But for a given sampling rate the flux is proportional to the number of lines 
drawn, because the field strength, remember, is proportional to the density of field lines 
(the number per unit area), and hence E . da is proportional to the number of lines passing 
through the infinitesimal area da. (The dot product picks out the component of da along 
the direction of E, as indicated in Fig. 2.15. It is only the area in the plane perpendicular 
to E that we have in mind when we say that the density of field lines is the number per unit 
area.) 

This suggests that the flux through any closed surface is a measure of the total charge 
inside. For the field lines that originate on a positive charge must either pass out through 
the surface or else terminate on a negative charge inside (Fig. 2.16a). On the other hand, a 
chargc outside thc surfacc will contribute nothing to the total flux, since its field lines pass 
in one side and out the other (Fig. 2.1 6b). This is the essence of Gauss's law. Now let's 
make it quantitative. 

Figure 2.16 
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In the case of a point charge y at the origin, the flux of E through a sphere of radius r is 

Notice that the radius of the sphere cancels out, for while the surface area goes up as r2 ,  the 
field goes down as 1 /r2, and so the product is constant. In terms of the field-line picture, this 
makes good sense, since the same number of field lines passes through any sphere centered 
at the origin, regardless of its size. In fact, it didn't have to be a sphere-any closed surface, 
whatever its shape, would trap the same number of field lines. Evidently theflux through 
any su$ace enclosing the charge is q/co. 

Now suppose that instead of a single charge at the origin, we have a bunch of charges 
scattered about. According to the principle of superposition, the total field is the (vector) 
sum of all the individual fields: 

n 

i=l 

The flux through a surface that encloses them all, then, is 

For any closed surface, then, 

where Qenc is the total charge enclosed within the surface. This is the quantitative state- 
ment of Gauss's law. Although it contains no information that was not already present in 
Coulomb's law and the principle of superposition, it is of almost magical power, as you will 
see in Sect. 2.2.3. Notice that it all hinges on the l / r 2  character of Coulomb's law; without 
that the crucial cancellation of the r 's in Eq. 2.12 would not take place, and the total flux 
of E would depend on the surface chosen, not merely on the total charge enclosed. Other 
l / r 2  forces (I am thinking particularly of Newton's law of universal gravitation) will obey 
"Gauss's laws" of their own, and the applications we develop here carry over directly. 

As it stands, Gauss's law is an integral equation, but we can readily turn it into a 
differensial one, by applying the divergence theorem: 

Rewriting QC,, in ternls of the charge density p,  we have 

Qenc = p d t .  S 
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S o  Gauss's law becomes 

/(V E ) d r  = 1 (:) d r .  

And since this holds for any volume, the integrands must be equal: 

Equation 2.14 carries the same message as Eq. 2.13; it is Gauss's law in differential 
form. The differential version is tidier, but the integral form has the advantage in that it 
accommodates point, line, and surface charges more naturally. 

Problem 2.9 Suppose the electric field in some region is found to be E = k r 3 i ,  in spherical 
coordinates (k is some constant). 

(a) Find the charge density p. 

(b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it two 
different ways.) 

Problem 2.10 A charge q sits at the back corner of a cube, as shown in Fig. 2.17. What is the 
flux of E through the shaded side? 

Figure 2.17 

2.2.2 The Divergence of E 

Let's go back, now, and calculate the divergence of E directly from Eq. 2.8: 

all space 

(Originally the integration was over the volume occupied by the charge, but I may as 
well extend it to all space, since p = 0 in the exterior region anyway.) Noting that the 
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r-dependence is contained in .)L = r - r', we have 

This is precisely the divergence we calculated in Eq. 1.100: 

Thus 

V + E = -  ' S  1 
4nd"r - r f )p ( r ' )  d t '  = -p(r) ,  

4j-r t o  €0 

which is Gauss's law in differential form (2.14). To recover the integral form (2.13), WC 

run the previous argument in reverse-integrate over a volume and apply the divergence 
theorem: 

1 
V - E d t  = E . d a  = S I 

v S v 

2.2.3 Applications of Gauss's Law 

I must interrupt the theoretical development at this point to show you the extraordinary 
power of Gauss's law, in integral form. When symmetry permits, it affords by far the 
quickest and easiest way of computing electric fields. I'll illustrate the method with a series 
of examples. 

Example 2.2 

Find the field outside a uniformly charged solid sphere of radius R and total charge q. 

Solution: Draw a spherical surface at radius I. > R (Fig. 2.18); this is called a "Gaussian 
surface" in the trade. Gauss's law says that for this surface (as for any other) 

and Q,,, = q .  At first glance this doesn't seem to get us very far, because the quantity we 
want (E) is buried inside the surface integral. Luckily, symmetry allows us to extract E from 
under the integral sign: E certainly points radially o ~ t w a r d , ~  as does da, so we can drop the 
dot product, 

S S 
-- 

3 ~ f  you doubt that E is radial, consider the alternative. Suppose, say, that i t  points due east, at the "equator." But 
the orientation of the equator is perfectly arbitrary-nothing is spinning here, so there is no natural "north-south" 
axis-any argument purporting to show that E points east could just as well be used to show it points west, or 
north, or any other direction. The only urzique direction on a sphere is mdiul. 



Gaussian 
surface 

Figure 2.18 

and the magnitude of E is constant ovcr thc Gaussian surface, so it comes outside the integral: 

Thus 

Notice a remarkable feature of this result: The field outside the sphere is exactly the same as 
it would have been ifall the charge had been concentrated at the center. 

Gauss's law is always true, but it is not always useful. If p had not been uniform (or, at 
any rate, not spherically symmetrical), or if I had chosen some other shape for my Gaussian 
surface, it would still have been true that the flux of E is ( l / ~ o ) q ,  but I would not have 
been certain that E was in :he same direction as da and constant in magnitude over the 
surface, and without thdt I could not pull IEl out of the integral. Symmetry is crucial to this 
application of Gauss's law. As fat as I know, there are only three kinds of symmetry that 
work: 

1 .  Spherical symmetry. Make your Gaussian surface a concentric sphere. 
2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder 

(Fig. 2.19). 
3.  Plane symmetry. Use a Gaussian "pillbox," which straddles the surface 

(Fig. 2.20). 

Although (2) and ( 3 )  technically require infinitely long cylinders, and planes extending to 
infinity in all directions, we shall often use them to get approximate answers for "long" 
cylinders or "large" plane surfaces, at points far from the edges. 
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Figure 2.1 9 Figure 2.20 

Example 2.3 

A long cylinder (Fig. 2.21) carries a charge density that is proportional to the distance from 
the axis: p = ks, for some constant k.  Find the electric field inside this cylinder. 

Solution: Draw a Gaussian cylinder of length l and radius s. For this surface, Gauss's law 
states: 

The enclosed charge is 

S,' 2 3 Qenc = / P d r  = / ( k s ' ) ( r ' c l s 1 d 9 d r )  = 2nkl  sr2ds'  = - n k l s  3 . 

(I used the volume element appropriate to cylindrical coordinates, Eq. 1.78, and integrated q5 
from 0 to 2n, dz from 0 to I .  I put a prime on the integration variable X', to distinguish it from 
the radius s  of the Gaussian surface.) 

\ Gaussian 
surface 

Figure 2.21 
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Now, symmetry dictates that E must point radially outward, so for the curved portion of the 
Gaussian cylinder we have: 

while the two ends contribute nothing (here E is perpendicular to da). Thus, 

or, finally, 

~ 

Example 2.4 

An infinite plane carries a uniform surface charge g. Find its electric field. 

Solution: Draw a "Gaussian pillbox," extending equal distances above and below the plane 
(Fig. 2.22). Apply Gauss's law to this surface: 

In this case, Qenc = C A ,  where A is the area of the lid of the pillbox. By symmetry, E points 
away from the plane (upward for points above, downward for points below). Thus, the top and 
bottom surfaces yield 

Figure 2.22 
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whereas the sides contribute nothing. Thus 

where n is a unit vector pointing away from the surface. In Prob. 2.6, you obtained this same 
result by a much more laboriors method. 

It seems surprising, at first, tha! the field of an infinite plane is independent of how far away 
you are. What about the l / r 2  iq Coulomb's law? Well, the point is that as you move farther 
and farther away from the plane, more and more charge comes into your "field of view" (a 
cone shape extending out from your eye), and this compensates for the diminishing influence 
of any particular piece. The electric field of a sphere falls off like l / r 2 ;  the electric field of an 
infinite line falls off like I/r;  and the electric field of an infinite plane does not fall off at all. 

Although the direct uqe of Gauss's law to compute electric fields is limited to cases of 
spherical, cylindrical, and planar symmetry, we can put together combinations of objects 
possessing such symmetry, even though the arrangement as a whole is not symmetrical. 
For example, invoking the principle of superposition, we could find the field in the vicinity 
of two uniformly charged parallel cyIinders, or a sphere near an infinite charged plane. 

Example 2.5 

Two infinite parallel planes carry equal but opposite uniform charge densities f o (Fig. 2.23). 
Find the field in each of the three regions: (i) to the left of both, (ii) between them, (iii) to the 
right of both. 

Solution: The left plate produces a field ( 1 / 2 ~ ~ ) 0  which points away from it (Fig. 2.24)-to 
the left in region (i) and to the right in regions (ii) and (iii). The right plate, being negatively 
charged, produces a field (1/2cO)q, which points toward it-to the right in regions (i) and 
(ii) and to the left in region (iii). The two fields cancel in regions (i) and (iii); they conspire 
in region (ii). Conclusion: The field is (1/c0)a, and points to the right, between the planes; 
elsewhere it is zero. 

+G -0 

Figure 2.23 

+G -0 

Figure 2.24 

E+ 

E - 
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E+ 
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E- 
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Problem 2.11 Use Gauss's law to find the electric field inside and outside a spherical shell of 
radius R, which carries auniform surface charge density a.  Compare your answer to Prob. 2.7. 

Problem 2.12 Use Gauss's law to find the electric field inside a uniformly charged sphere 
(charge density p). Compare your answer to Prob. 2.8. 

Problem 2.13 Find the electric field a distance s from an infinitely long straight wire, which 
carries a uniform line charge h. Compare Eq. 2.9. 

Problem 2.14 Find the electric field inside a sphere which carries a charge density proportional 
to the distance from the origin, p = kr, for some constant k. [Hint: This charge density is not 
uniform, and you must integrate to get the enclosed charge.] 

Problem 2.15 A hollow spherical shell carries charge density 

in the region a 5 r 5 h (Fig. 2.25). Find the electric field in the three regions: (i) r < a ,  (ii) 
a < r < h, (iii) r > h. Plot (El as a function of r .  

Problem 2.16 A long coaxial cable (Fig. 2.26) carries a uniform volume charge density p on 
the inner cylinder (radius a), and a uniform sueace charge density on the outer cylindrical 
shell (radius h). This surface charge is negative and of just the right magnitude so that the 
cable as a whole is electrically neutral. Find the electric field in each of the three regions: (i) 
inside the inner cylinder ( S  < a), (ii) between the cylinders (a i s < h), (iii) outside the cable 
(S > h). Plot /El as a function of s. 

Problem 2.17 An infinite plane slab, of thickness 2d, carries a uniform volume charge density 
p (Fig. 2.27). Find the electric field, as a function of y, where y = 0 at the center. Plot E 
versus y, calling E positive when it points in the +Y direction and negative when it points in 
the - v  direction. 

Problem 2.18 Two spheres, each of radius R and carrying uniform charge densities +p  and 
-p, respectively, are placed so that they partially overlap (Fig. 2.28). Call the vector from the 
positive center to the negative center d. Show that the field in the region of overlap is constant, 
and find its value. [Hint: Use the answer to Prob. 2.12.1 

Figure 2.25 Figure 2.26 
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Figure 2.27 Figure 2.28 

2.2.4 The Curl of E 

I'll calculate the curl of E,  as I did the divergence in Sect. 2.2.1, by studying first the simplest 
possible configuration: a point charge at the origin. In this case 

Now, a glance at Fig. 2.12 should convince you that the curl of this field has to be zero, but 
I suppose we ought to come up with something a little more rigorous than that. What if we 
calculate the line integral of this field from some point a to some other point b (Fig. 2.29): 

lb E . dl.  

In spherical coordinates, d l  = d r  i + r d6 6 + r sin 6 dq5 4, so 

E . & =  -- I dr. 
4neo r2  

Therefore, 

where r, is the distance from the origin to the point a and rb is the distance to b. The 
integral around a closed path is evidently zero (for then r, = rb): 
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Figure 2.29 

and hence, applying Stokes' theorem, 

Now, I proved Eqs. 2.19 and 2.20 only for the field of a single point charge at the origirz, 
but these results make no reference to what is, after all, a perfectly arbitrary choice of 
coordinates; they also hold no matter where the charge is located. Moreover, if we have 
many charges, the principle of superposition states that the total field is a vector sum of 
their individual fields: 

E = E 1  + E 2 + . . . ,  

Thus, Eqs. 2.19 and 2.20 hold for any static charge distribution whatever: 

Problem 2.19 Calculate V X E directly from Eq. 2.8, by the method of Sect. 2.2.2. Refer to 
Prob. 1.62 if you get stuck. 

Electric Potential 

2.3.1 Introduction to Potential 

The electric field E  is not just any old vector function; it is a very special kind of vector 
function, one whose curl is always zero. E = y i ,  for example, could not possibly be 
an electrostatic field; no set of charges, regardless of their sizes and positions, could ever 
produce such a field. In this section we're going to exploit this special property of electric 
fields to reduce a vector problem (finding E) down to a much simpler scalar problem. The 
first theorem in Sect. 1.6.2 asserts that any vector whose curl is zero is equal to the gradient 
of some scalar. What I'm going to do now amounts to a proof of that claim, in the context 
of electrostatics. 
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a 
(ii) 

Figure 2.30 

Because V X E = 0, the line integral of E around any closed loop is zero (that follows 
from Stokes' theorem). Because $ E  dl = 0, the line integral of E from point a to point 
b is the same for all paths (otherwise you could go out along path (i) and return along path 
(ii)-Fig. 2 . 3 k a n d  obtain $ E  dl # 0). Because the line integral is independent of path, 
we can define a function4 

Here 0 is some standard reference point on which we have agreed beforehand; V then 
depends only on the point r. It is called the electric potential. 

Evidently, the potential di-erence between two points a and b is 

Now, the fundamental theorem for gradients states that 

Since, finally, this is true for any points a and b, the integrands must be equal: 

Equation 2.23 is the cfifferential version of Eq. 2.21; it says that the electric field is the 
gradient of a scalar potential, which is what we set out to prove. 

'TO avoid any possible ambiguity I should perhaps put a prime on the integration variable: 

V(r) = - E(rl) . dl'. 6 
But this makes for cumbersome notation, and I prefer whenever possible to reserve the primes for source points. 
However, when (as in Ex. 2.6) we calculate such integrals explicitly, I shall put in the primes. 
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Notice the subtle but crucial role played by path independence (or, equivalently, the fact 
that V X E = 0) in this argument. If the line infegfal of E depended on the path taken, then 
the "definition" of V,  Eq. 2.21, would be nonqense. It simply would not define a function, 
since changing the path kould alter the value of V(r). By the way, don't let the minus sign 
in Eq. 2.23 distract you; it carries over from 2.21 and is largely a matter of convention. 

Problem 2.20 One of these is an impossible electrostatic field. Which one? 

(a) E = k [ x y  i + 2 y z  S7 + 3xz 51; 

Here k is a constant with the appropriate units. For the possible one, find the potential, using 
the origin as your reference point. Check your answer by computing V V.  [Hint: You must 
select a specific path to integrate along. It doesn't matter what path you choose, since the 
answer is path-independent, but you simply cannot integrate unless you have a particular path 
in mind.] 

2.3.2 Comments on Potential 

(i) The varpe. The word "potential" is a hdeous misnomer because it inevitably 
reminds you of potential energy. T h s  is particularly confusing, because there is a connection 
between "potential" and "potential energy," as you will see in Sect. 2.4. I'm sorry that it 
is impossible to escape this word. The best I can do is to insist once and for all that 
"potential" and "potential energy" are completely different terms and should, by all rights, 
have different names. Incidentally, a surface over whch the potential is constant is called 
an equipotential. 

(ii) Advantage of the potential formulation. If you know V, you can easily get 
E-just take the gradient: E = - V V .  This is quite extraordinary when you stop to think 
about it, for E is a vector quantity (three components), but V is a scalar (one component). 
How can one function possibly contain all the information that three independent functions 
carry? The answer is that the three components of E are not really as independent as 
they look; in fact, they are explicitly interrelated by the very condition we started with, 
V X E = 0. In terms of components. 

This brings us back to my observation at the beginning of Sect. 2.3.1: E is a very special 
kind of vector: What the potential formulation does is to exploit this feature to maximum 
advantage, reducing a vector problem down to a scalar one, in which there is no need to 
fuss with components. 
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(iii) The reference point 0. There is an essential ambiguity in the definition of 
potential, since the choice of reference point 0 was arbitrary. Changing reference points 
amounts to adding a constant K to the potential: 

where K is the line integral of E from the old reference point C? to the new one 0'. Of 
course, adding a constant to V will not affect the potential diflererzce between two points: 

since the K's cancel out. (Actually, it was already clear from Eq. 2.22 that the potential 
difference is independent of C?, because it can be written as the line integral of E from a to 
b, with no reference to 0.) Nor does the ambiguity affect the gradient of V: 

vv' = vv, 

since the derivative of a constant is zero. That's why all such V's, differing only in their 
choice of reference point, correspond to the same field E. 

Evidently potential as such carries no real physical significance, for at any given point 
we can adjust its value at will by a suitable relocation of C?. In this sense it is rather like 
altitude: If I ask you how high Denver is, you will probably tell me its height above sea level, 
because that is a convenient and traditional reference point. But we could as well agree 
to measure altitude above Washington D.C., or Greenwich, or wherever. That would add 
(or, rather, subtract) a fixed amount from all our sea-level readings, but it wouldn't change 
anything about the real world. The only quantity of intrinsic interest is the digereace in 
altitude between two points, and that is the same whatever your reference level. 

Having said this, however, there is a "natural" spot to use for 0 in electrostatics- 
analogous to sea level for altitude-and that is a point infinitely far from the charge. Or- 
dinarily, then, we "set the zero of potential at infinity." (Since V(0 )  = 0, choosing a 
reference point is equivalent to selecting a place where V is to be zero.) But I must warn 
you that there is one special circumstance in which this convention fails: when the charge 
distribution itself extends to infinity. The symptom of trouble, in such cases, is that the 
potential blows up. For instance, the field of a uniformly charged plane is (a/2co)n, as we 
found in Ex. 2.4; if we nai'vely put 0 = m, then the potential at height z above the plane 
becomes 

The remedy is simply to choose some other reference point (in this problem you might use 
the origin). Notice that the difficulty occurs only in textbook problems; in "real life" there 
is no such thing as a charge distribution that goes on forever, and we can alwa.ys use infinity 
as our reference point. 
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(iv) Potential obeys the superposition principle. The original superposition princi- 
ple of electrodynamics pertains to the force on a test charge Q. It says that the total force 
on Q is the vector sum of the forces attributable to the source charges individually: 

Dividing through by Q, we find that the electric field, too, obeys the superposition principle: 

Integrating from the common reference point to r, it follows that the potential also satisfies 
such a principle: 

That is, the potential at any given point is the sum of the potentials due to all the source 
charges separately. Only this time it is an ordinaly sum, not a vector sum, which makes it 
a lot easier to work with. 

(v) Units of Potential. In our units, force is measured in newtons and charge in 
coulombs, so electric fields are in newtons per coulomb. Accordingly, potential is measured 
in newton-meters per coulomb or joules per coulomb. A joule per coulomb is called a volt. 

Example 2.6 

Find the potential inside and outside a spherical shell of radius R (Fig. 2.3 l),  which canies a 
uniform surface charge. Set the reference point at infinity. 

Figure 2.3 l 
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Solution: From Gauss's law, the field outside is 

where y is the total charge on the sphere. The field inside is Lero. For points outside the sphere 
(1. > R) ,  

To find the potential inside the sphere (r < R), we must break the integral into two sections, 
using in each region the field that prevails there: 

Notice that the potential is not zero inside the shell, even though the field is. V is a constant 
in this region, to be sure, so that V V = 0-that's what matters. In problems of this type you 
must always work your way in from the reference point; that's where the potential is "nailed 
down." It is tempting to suppose that you could figure out the potential inside the sphere on 
the basis of the field there alone, but this is false: The potential inside the sphere is sensitive to 
what's going on outside the sphere as well. If I placed a second uniformly charged shell out at 
radius R' > R,  the potential inside R would change, even though the field would still be zero. 
Gauss's law guarantees that charge exterior to a given point (that is, at larger r )  produces no 
netjielcl at that point, provided it is spherically or'cylindrically symmetric; but there is no such 
rule for potential, when infinity is used as the reference point. 

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere whose 
radius is R and whose total charge is q .  Use infinity as your reference point. Compute the 
gradient of V in each region, and check that it yields the correct field. Sketch V(r). 

Problem 2.22 Find the potential a distance s from an infinitely long straight wire that carries 
a uniform line charge h. Compute the gradient of your potential, and check that it yields the 
correct field. 

Problem 2.23 For the charge configuration of Prob. 2.15, find the potential at the center, using 
infinity as your reference point. 

Problem 2.24 For the configuration of Prob. 2.16, find the potential difference between a point 
on the axis and a point on the outer cylinder. Note that it is not necessary to commit yourself 
to a particular reference point if you use Eq. 2.22. 
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2.3.3 Poisson's Equation and Laplace's Equation 

We found in Sect. 2.3.1 that the electric field can be written as the gradient of a scalar 
potential. 

E = - V V .  

The question arises: What do the fundamental equations for E, 

P V . E = -  and V x E = O ,  
€0 

look like, in terms of V? Well, V . E = V . (-V V) = -v2v, SO, apart from that persisting 
minus sign, the divergence of E is the Laplacian of V. Gauss's law then says that 

This is known as Poisson's equation. In regions where there is no charge, so that p = 0, 
Poisson's equation reduces to Laplace's equation, 

We'll explore these equations more fully in Chapter 3. 
So much for Gauss's law. What about the curl law? This says that 

must equal zero. But that's no condition on V-curl of gradient is always zero. Of course, 
we used the curl law to show that E  could be expressed as the gradient of a scalar, so it's not 
really surprising that this works out: V X E  = Opermits E = -V V; in return, E = -V V 
guarantees V X E  = 0. It takes only one differential equation (Poisson's) to determine V, 
because V is a scalar; for E we needed two, the divergence and the curl. 

2.3.4 The Potential of a Localized Charge Distribution 

I defined V in terms of E (Eq. 2.21). Ordinarily, though, it's E  that we're looking for (if we 
already knew E there wouldn't be much point in calculating V). The idea is that it might be 
easier to get V first, and then calculate E by taking the gradient. Typically. then, we know 
where the charge is (that is, we know p), and we want to find V .  Now, Poisson's equation 
relates V and p, but unfortunately it's "the wrong way around": it would give us p ,  if we 
knew V ,  whereas we want V ,  knowing p.  What we must do, then, is "invert" Poisson's 
equation. That's the program for this section. although I shall do it by roundabout means, 
beginning, as always, with a point charge at the origin. 
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Figure 2.32 

Setting the reference point at infinity, the potential of a point charge q at the origin is 

(You see here the special virtue of using infinity for the reference point: it kills the lower 
limit on the integral.) Notice the sign of V; presumably the conventional minus sign in 
the definition of V (Eq. 2.21) was chosen precisely in order to make the potential of a 
positive charge come out positive. It is useful to remember that regions of positive charge 
are potential "hills," regions of negative charge are potential "valleys," and the electric field 
points "downhill," from plus toward minus. 

In general, the potential of a point charge q is 

where 6, as always, is the distance from the charge to r (Fig. 2.32). Invoking the superpo- 
sition principle, then, the potential of a collection of charges is 

or, for a continuous distribution, 

In particular, for a volume charge, it's 

This is the equation we were looking for, telling us how to compute V when we know p ;  it 
is, if you like, the "solution" to Poisson's equation, for a localized charge di~tribution.~ I 

' ~ ~ u a t i o n  2.29 is an example of the Helmholtz theorem (Appendix B), in the context of electrostatics, where 
the curl of E is zero and its divergence is p lco .  
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invite you to compare Eq. 2.29 with the corresponding formula for the electricjeld in terms 
of p (Eq. 2.8): 

The main point to notice is that the pesky unit vector k is now missing, so there is no need 
to worry about components. Incidentally, the potentials of line and surface charges are 

I should warn you that everything in this section is predicated on the assumption that 
the reference point is at infinity. This is hardly apparent in Eq. 2.29, but remember that we 
got that equation from the potential of a point charge at the origin, (1/4nco)(q/r) ,  which 
is valid only when C3 = CO. If you try to apply these formulas to one of those artificial 
problems in which the charge itself extends to infinity, the integral will diverge. 

Example 2.7 

Find the potential of a uniformly charged spherical shell of radius R (Fig. 2.33). 

Solution: This is the same problem we solved in Ex. 2.6, but this time we shall do it using 
Eq. 2.30: 

Let's set the point r on the z axis and use the law of cosines to express 4 in terms of the polar 
angle 8 : 

2 2 2  4 = R + z  - 2 ~ z c o s 8 ' .  

Figure 2.33 
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An element of surface area on this sphere is R2 sin 8 'dQf  d$', so 

sin 8' 
d8' 

JR" z2 - 2Rz cos Of  

+ z2 - 2Rz cos Of > I  I 

At this stage we must be very careful to take thepositive root. For points outside the sphere, z is 
greater than R, and hence Jm = z -  R;  for points inside the sphere, = R-z. 
Thus, 

R ~ T  R 2 0  
---[(R + 2) - (z - R)] = ----, outside; V(z) = 2toz 

cgz 

In terms of the total charge on the shell, q = 4 n  R2a ,  V(z) = (1  / 4n~g) (q / z )  (or, in general, 
V(r) = (1/4nco)(q/r)) for points outside the sphere, and (1/4ne0)(q/R) for points inside. 

Of course, in this particular case, it was easier to get V by using 2.21 than 2.30, because 
Gauss's law gave us E with so little effort. But if you compare Ex. 2.7 with Prob. 2.7, you will 
appreciate the power of the potential formulation. 

Problem 2.25 Using Eqs. 2.27 and 2.30, find the potential at a distance z above the center of 
the charge distributions in Fig. 2.34. In each case, compute E = - V V ,  and compare your 
answers with Prob. 2.2a, Ex. 2.1, and Prob. 2.6, respectively. Suppose that we changed the 
right-hand charge in Fig. 2.34a to - q ;  what then is the potential at P? What field does that 
suggest? Compare your answer to Prob. 2.2b, and explain carefully any discrepancy. 

(a) Two point charges (b) Uniform line charge (c) uniformsurface charge 

Figure 2.34 
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Problem 2.26 A conical surface (an empty ice-cream cone) carries a uniform surface charge 
a .  The height of the cone is h, as is the radius of the top. Find the potential difference between 
points a (the vertex) and b (the center of the top). 

Problem 2.27 Find the potential on the axis of a uniformly charged solid cylinder, a distance 
z from the center. The length of the cylinder is L, its radius is R,  and the charge density is p.  
Use your result to calculate the electric field at this point. (Assume that z > L/2. )  

Problem 2.28 Use Eq. 2.29 to calculate the potential inside a uniformly charged solid sphere 
of radius R and total charge q. Compare your answer to Prob. 2.21. 

Problem 2.29 Check that Eq. 2.29 satisfies Poisson's equation, by applying the La~lacian and 
using Eq. 1.102. 

2.3.5 Summary; Electrostatic Boundary Conditions 

In the typical electrostatic problem you are given a source charge distribution p, and you 
want to find the electric field E it produces. Unless the symmetry of the problem admits a 
solution by Gauss's law, it is generally to your advantage to calculate the potential first, as 
an intermediate step. These, then, are the three fundamental quantities of electrostatics: p, 
E, and V. We have, in the course of our discussion, derived all six formulas interrelating 
them. These equations are neatly summarized in Fig. 2.35. We began with just two exper- 
imental observations: (1) the principle of superposition-a broad general rule applying to 
all electromagnetic forces, and (2) Coulomb's law-the fundamental law of electrostatics. 
From these, all else followed. 

Figure 2.35 
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Figure 2.36 

You may have noticed, in studying Exs. 2.4 and 2.5, or working problems such as 2.7, 
2.1 1, and 2.16, that the electric field always undergoes a discontinuity when you cross a 
surface charge a. In fact, it is a simple matter to find the amount by which E changes at 
such a boundary. Suppose we draw a wafer-thin Gaussiin pillbox, extending just barely 
over the edge in each direction (Fig. 2.36). Gauss's law states that 

where A is the area of the pillbox lid. (If a varies from point to point or the surface is 
curved, we must pick A to be extremely small.) Now, the sides of the pillbox contribute 
nothing to the flux, in the limit as the thickness E goes to zero, so we are left with 

where denotes the component of E that is perpendicular to the surface immediately 
above, and E&,,, is the same. only just below the surface. For consistency, we let "upward 
be the positive direction for both. Conclusion: The normal component of E is discontinuous 
by an amount cr/cU at any boundaq. In particular, where there is no surface charge, E' is 
continuous, as for instance at the surface of a uniformly charged solid sphere. 

The tangential component of E, by contrast, is always continuous. For if we apply 
Eq. 2.19, 

E . dl = 0,  

to the thin rectangular loop of Fig. 2.37, the ends give nothing (as E + 0). and the sides 
II II give - Ebelowz), 
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Figure 2.37 

where E I ~  stands for the components of E parallel to the surface. The boundary conditions 
on E (Eqs. 2.31 and 2.32) can be combined into a single formula: 

where n is a unit vector perpendicular to the surface, pointing from "below" to "ab~ve . "~  
The potential, meanwhile, is continuous across any boundary (Fig, 2.38). since 

as the path length shrinks to zero, so too does the integral: 

Figure 2.38 

6 ~ o t i c e  that it doesn't matter which side you call "above" and which "below," since reversal would switch the 
direction of I?. Incidentally, if you're only interested in the field due to the (essentially flat) local patch ofssrfnce 
charge itself; the answer is (u/2cO)ii immediately above the surface, and -(u/2co)ii immediately below. This 
follows from Ex. 2.4, for if you are close enough to the patch it "looks" like an infinite plane. Evidently the entire 
discontinuity in E is attributable to this local patch of charge. 
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However. the gradient of V inherits the discontinuity in E; since E = - V V ,  Eq. 2.33 
implies that 

or, more conveniently, 
a Vabove a Vbelow 1 
p-p--- - 

an an 0 7 

€0 

where av 
- = V V . f i  (2.37) 
art 

denotes the normal derivative of V (that is, the rate of change in the direction perpendicular 
to the surface). 

Please note that these boundary conditions relate the fields and potentials just above and 
just below the surface. For example, the derivatives in Eq. 2.36 are the limiting values as 
we approach the surface from either side. 

Problem 2.30 

(a) Check that the results of Exs. 2.4 and 2.5, and Prob. 2.11, are consistent with Eq. 2.33. 

(b) Use Gauss's law to find the field inside and outside a long hollow cylindrical tube, which 
carries a uniform surface charge D .  Check that your result is consistent with Eq. 2.33. 

(c) Check that the result of Ex. 2.7 is consistent with boundary conditions 2.34 and 2.36. 

2.4 Work and Energy in Electrostatics 

2.4.1 The Work Done to Move a Charge 

Suppose you have a stationary configuration of source charges, and you want to move a test 
charge Q from point a to point b (Fig. 2.39). Queition: How much work will you have to 
do? At any point along the path, the electric force on Q is F = QE; the force you must 
exert, in opposition to this electrical force, is -QE. (If the sign bothers you, think about 
lifting a brick: Gravity exerts a force mg downward, but you exert a force mg upward. Of 
course, you could apply an even greater force-then the brick would accelerate, and part 

Figure 2.39 
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of your effort would be "wasted" generating kinetic energy. What we're interested in here 
is the minimum force you must exert to do the job.) The work is therefore 

Notice that the answer is independent of the path you take from a to b; in mechanics, then, 
we would call the electrostatic force "conservative." Dividing through by Q, we have 

In words, the potential diflerence between points a and b is equal to the workper urti t  charge 
required to carq  a particle from a to b. In particular, if you want to bring the charge Q in 
from far away and stick it at point r, the work you must do is 

so, if you have set the reference point at infinity, 

In this sense potential is potential energy (the work it takes to create the system) per unit 
charge Gust as thejeld is the force per unit charge). 

2.4.2 The Energy of a Point Charge Distribution 

How much work would it take to assemble an entire collection of point charges? Imagine 
bringing in the charges, one by one, from far away (Fig. 2.40). The first charge, ql,  takes 
no work, since there is no field yet to fight against. Now bring in qz. According to Eq. 2.39, 
this will cost you q 2  V1 (r2), where Vl is the potential due to ql,  and r2 is the place we're 
putting q 2  : 

Figure 2.40 
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(412 is the distance between ql and q2 once they are in position). Now bring in q3; this 
requires work q3V1,*(r3), where V1,2 is the potential due to charges ql and q2, namely, 

(1/4neo)(q1/".13 + 421423). Thus 

Similarly, the extra work to bring in 44 will be 

The total work necessary to assemble the first four charges, then, is 

You see the general rule: Take the product of each pair of charges, divide by their separation 
distance, and add it all up: 

The stipulation j > i is just to remind you not to count the same pair twice. A nicer way 
to accomplish the same purpose is intentionally to count each pair twice, and then divide 
by 2: 

l n n  
W _ -  4i4j C C ,  8nco . 1=1 j = l  

(we must still avoid i = j, of course). Notice that in this form the answer plainly does not 
depend on the order in which you assemble the charges, since every pair occurs in the sum. 
Let me next pull out the factor qi: 

The term in parentheses is the potential at point ri (the position of qi) due to all the other 
charges-all of them, now, not just the ones that were present at some stage in the building- 
up process. Thus, 

d II 

That's how much work it takes to assemble a configuration of point charges; it's also the 
amount of work you'd get back out if you dismantled the system. In the meantime, it 
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represents energy stored in the configuration ("potential" energy, if you like, though for 
obvious reasons I prefer to avoid that word in this context). 

Problem 2.31 

(a) Three charges are situated at the corners of a square (side a) ,  as shown in Fig. 2.41. How 
much work does it take to bring in another charge, +q, from far away and place it in the fourth 
corner? 

(b) How much work does it take to assemble the whole configuration of four charges? 

+4 -4 

Figure 2.4 1 

2.4.3 The Energy of a Continuous Charge Distribution 

For a volume charge density p, Eq. 2.42 becomes 

(The corresponding integrals for line and surface charges would be AV dl and a V da, 
respectively.) There is a lovely way to rewrite this result, in which p and V are eliminated 
in favor of E. First use Gauss's law to express p in terms of E: 

Now use integration by parts (Eq. 1.59) to transfer the derivative from E to V 

But V V  = -E,so 
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But what volume is this we're integrating over? Let's go back to the formula we started 
with, Eq. 2.43. From its derivation, it is clear that we should integrate over the region 
where the charge is located. But actually, any larger volume would do just as well: The 
"extra" territory we throw in will contribute nothing to the integral anyway, since p = 0 
out there. With this in mind, let's return to Eq. 2.44. What happens here, as we enlarge the 
volume beyond the minimum necessary to trap all the charge? Well, the integral of can 
only increase (the integrand being positive); evidently the surface integral must decrease 
correspondingly to leave the sum intact. In fact, at large distances from the charge, E goes 
like l / r 2  and V like l / r ,  while the surface area grows like r2.  Roughly speaking, then, 
the surface integral goes down like l l r .  Please understand that Eq. 2.44 gives you the 
correct energy W. whatever volume you use (as long as it encloses all the charge), but the 
contribution from the volume integral goes up, and that of the surface integral goes down, 
as you take larger and larger volumes. In particular. why not integrate over all space? Then 
the surface integral goes to zero, and we are left with 

I all space I 

Example 2.8 

Find the energy of a uniformly charged spherical shell of total charge q and radius R. 

Solution 1: Use Eq. 2.43, in the version appropriate to surface charges: 

Now, the potential at the sulface of this sphere is ( 1 / 4 n r g ) q / R  (a constant), so 

Solution 2: Use Eq. 2.45. Inside the sphere E = 0; outside, 

1 q -  E = -  2 -r. SO E = q2 
4rrr0 r2  ( 4 ~ c ~ ) ~ r ~  

Therefore, 

Wtot = 
E0 

~ ( 4 n r ~ ) ~  1 ($1 ( r 2  sin Q 
outside 

- l q 2 4 x L m ; f i d r = - - ,  1 q2 
32rr 2 ~ o  8 r c o  R 
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Problem 2.32 Find the energy stored in a uniformly charged solid sphere of radius R and 
charge y. Do it three different ways: 

(a) Use Eq. 2.43. Yell found the potential in Prob. 2.2 1 .  

(b) Use Eq. 2.45. Don't forget to integrate over all space. 

( c )  Use Eq. 2.44. Take a spherical volume of radius a. Notice what happens as a + W. 

Problem 2.33 Here is a fourth way of computing the energy of a uniformly charged sphere: 
Assemble the sphere layer by layer, each time bringing in an infinitesimal charge dq from far 
away and smearing it uniformly over the surface, thereby increasing the radius. How much 
work d W does it take to build up the radius by an amount dr? Integrate this to find the work 
necessary to create the entire sphere of radius R and total charge y. 

2.4.4 Comments on Electrostatic Energy 

(i) A perplexing "inconsistency." Equation 2.45 clearly implies that the energy of a 
stationary charge distribution is always positive. On the other hand, Eq. 2.42 (from which 
2.45 was in fact derived), can be positive or negative. For instance, according to 2.42, the 
energy of two equal but opposite charges a distance G apart would be - ( 1 / 4 ~ t o ) ( q ~ / ~ ) .  
What's gone wrong? Which equation is correct? 

The answer is that both equations are correct, but they pertain to slightly different 
situations. Equation 2.42 does not take into account the work necessary to make the point 
charges in the first place; we started with point charges and simply found the work required 
to bring them together. This is wise policy, since Eq. 2.45 indicates that the energy of a 
point charge is in fact iifznite: 

Equation 2.45 is more complete, in the sense that it tells you the total energy stored in 
a charge configuration, but Eq. 2.42 is more appropriate when you're dealing with point 
charges, because we prefer (for good reason!) to leave out that portion of the total energy 
that is attributable to the fabrication of the point charges themselves. In practice, after 
all, the point charges (electrons, say) are given to us ready-made; all we do is move them 
around. Since we did not put them together, and we cannot take them apart, it is immaterial 
how much work the process would involve. (Still, the infinite energy of a point charge 
is a recurring source of embartassment for electromagnetic theory, afflicting the quantum 
version as well as the classical. We shall return to the problem in Chapter 1 1 .) 

Now, you may wonder where the inconsistency crept into an apparently water-tight 
derivation. The "flaw" lies between Eqs. 2.42 and 2.43: In the former, V(ri) represents 
the potential due to all the other charges hut not qi, whereas in the latter, V(r) is thefull 
potential. For a continuous distribution there is no distinction, since the amount of charge 
right a t  the point r is vanishingly small, and its contribution to the potential is zero. 
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(ii) Where is the energy stored? Equations 2.43 and 2.45 offer two different ways of 
calculating the same thing. The first is an integral over the charge distribution; the second 
is an integral over the field. These can involve completely different regions. For instance, 
in the case of the spherical shell (Ex. 2.8) the charge is confined to the surface, whereas the 
electric field is present everywhere outside this surface. Where is the energy, then? Is it 
stored in the field, as Eq. 2.45 seems to suggest, or is it stored in the charge, as Eq. 2.43 
implies? At the present level, this is simply an unanswerable question: I can tell you what 
the total energy is, and I can provide you with several different ways to compute it, but it is 
unnecessary to worry about where the energy is located. In the context of radiation theory 
(Chapter 11) it is useful (and in General Relativity it is essential) to regard the energy as 
being stored in the field, with a density 

CO 2 -E = energy per unit volume. 
2 

But in electrostatics one could just as well say it is stored in the charge, with a density t pv .  
The difference is purely a matter of bookkeeping. 

(iii) The superposition principle. Because electrostatic energy is quadratic in the 
fields, it does not obey a superposition principle. The energy of a compound system is 11ot 
the sum of the energies of its parts considered separately-there are also "cross terms": 

For example, if you double the charge everywhere, you quadruple the total energy. 

Problem 2.34 Consider two concentric spherical shells, of radii a and h. Suppose the inner 
one cames a charge q ,  and the outer one a charge -q (both of them uniformly distributed 
over the surface). Calculate the energy of this configuration, (a) using Eq. 2.45, and (b) using 
Eq. 2.47 and the results of Ex. 2.8. 

Conductors 

2.5.1 Basic Properties 

In an insulator, such as glass or rubber, each electron is attached to a particular atom. In a 
metallic conductor, by contrast, one or more electrons per atom are free to roam about at will 
through the material. (In liquid conductors such as salt water it is ions that do the moving.) 
Apefect conductor would be a material containing an unlimited supply of completely free 
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charges. In real life there are no perfect conductors, but many substances come amazingly 
close. From this definition the basic electrostatic properties of ideal conductors itntnediately 
follow: 

(i) E = 0 inside a conductor. Why? Because if there were any field, those free charges 
would move, and it wouldn't be electrostatics any more. Well . . . that's hardly a satisfactory 
explanation; maybe all it proves is that you can't have electrostatics when conductors are 
present. We had better examine what happens when you put a conductor into an external 
electric field E. (Fig. 2.42). Initially, this will drive any free positive charges to the right, 
and negative ones to the left. (In practice it's only the negative charges-electrons-that 
do the moving, but when they depart the right side is left with a net positive charge-the 
stationary nuclei-so it doesn't really matter which charges move; the effect is the same.) 
When they come to the edge of the material, the charges pile up: plus on the right side, 
minus on the left. Now, these induced charges produce a field of their own. E l ,  which, as 
you can see from the figure, is in the opposite direction to Eo. That's the crucial point, for 
it means that the field of the induced charges rends to cancel o f t h e  original$eld. Charge 
will continue to flow until this cancellation is complete, and the resultant field inside the 
conductor is precisely zero.' The whole process is practically instantaneous. 

Figure 2.42 

(ii) p = 0 inside a conductor. This follows from Gauss's law: V . E = p / c o  If E = 0, 
so also is p. There is still charge around, but exactly as much plus charge as minus, so the 
net charge density in the interior is zero. 

(iii) Any net charge resides on the surface. That's the only other place it can be. 

(iv) A conductor is an equipotential. For if a and b are any two points within (or at the 
surface of) a given conductor, V (b) - V (a) = - ~ ; h  E . dl  = 0. and hence V (a) = V (b). 

'0utsicle the conductor the field is not zero, for here E. and El do not cancel. 
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Figure 2.43 

(v) E is perpendicular to the surface, just outside a conductor. Otherwise, as in (i), 
charge will immediately flow around the surhce uritil it kills off the tangential component 
(Fig. 2.43). (Perpendicular to the surface, charge cannot flow, of course, since it is confined 
to the conducting object.) 

I think it is strange that the charge on a conductor flows to the surface. Because of their 
mutual repulsion, the charges naturally spread out as much as possible, but for all of them 
to go to the surface seems like a waste of the interior space. Surely we could do better, from 
the point of view of making each charge as far as possible from its neighbors, to sprinkle 
some of them throughodt the volume. . . Well, it simply is not so. You do best to put all the 
charge on the surface, and this is true regardless of the size or shape of the condu~tor .~  

The problem can also be phrased in terms of energy. Like any other free dynamical 
system, the charge on a conductor will seek the configuration that minimizes its potential 
energy. What property (iii) asserts is that the electrostatic energy of a solid object (with 
specified shape and total charge) is a minimum when that charge is spread over the surface. 
For instance, the energy of a sphere is (1/8nco)(q2/ R) if the charge is uniformly distributed 
over the surface, as we found in  Ex. 2.8, but it is greater, ( 3 / 2 0 n c ~ ) ( ~ ~ R ) ,  if the charge is 
uniformly distributed throughout the volume (Prob. 2.32). 

2.5.2 Induced Charges 

If you hold a charge +g near an uncharged conductor (Fig. 2.44), the two will attract one 
another. The reason for this is that q wiil pull minus charges over to the near side and repel 
plus charges to the far side. (Another way to think of it is that the charge moves around in 
such a way as to cancel off the field of q for points inside the conductor, where the total 
field must be zero.) Since the negative induced charge is closer to g ,  there is a net force of 
attraction. (In Chapter 3 we shall calculate this force explicitly, for the case of a spherical 
conductor.) 

8 ~ y  the way, the one- and two-dimensional analogs are quite different: The charge on a conducting disk does 
not all go to the perimeter (R. Friedberg, Am. J. of Phys. 61, 1084 (19931), nor does the charge on a conducting 
needle go to the ends (D. J. Griffiths and Li, Am.  J. of Phys. 64, 706 (1996)). See Prob. 2.52. 



2.5. CONDUCTORS 

Figure 2.44 Figure 2.45 

By the way, when I speak of the field, charge, or potential "inside" a conductor, I 
mean in the "meat" of the conductor; if there is some cavity in the conductor, and within 
that cavity there is some charge, then the field in the cavity will not be zero. But in a 
remarkable way the cavity and its contents are electrically isolated from the outside world 
by the surrounding conductor (Fig. 2.45). No external fields penetrate the conductor; they 
are canceled at the outer surface by the induced charge there. Similarly. the field due to 
charges within the cavity is killed off, for all exterior points, by the induced charge on the 
inner surface. (However, the compensating charge left over on the outer surface of the 
conductor effectively "communicates" the presence of q to the outside world, as we shall 
see in Ex. 2.9.) Incidentally, the total charge induced on the cavity wall is equal and opposite 
to the charge inside, for if we surround the cavity with a Gaussian surface, all points of 
which are in the conductor (Fig. 2.45), $E  . da = 0, and hence (by Gauss's law) the net 
enclosed charge must be zero. But eenc = q f q induced , SO q induced = -q -  

Example 2.9 

An uncharged spherical conductor centered at the origin has a cavity of some weird shape 
carved out of it (Fig. 2.46). Somewhere within the cavity is a charge q.  Questioit: What is the 
field outside the sphere? 

Figure 2.46 
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Solution: At first glance it would appear that the answer depends on the shape of the cavity 
and on the placement of the charge. But that's wrong: The answer is 

regczrdless. The conductor conceals from us all information concerning the nature of the cavity, 
revealing only the total charge it contains. How can this be? Well, the charge +q induces 
an opposite charge -q on the wall of the cavity, which distributes itself in such a way that 
its field cancels that of q ,  for all points exterior to the cavity. Since the conductor canies no 
net charge, this leaves +q to distribute itself uniformly over the surface of the sphere. (It's 
uniform because the asymmetrical influence of the point charge +q is negated by that of the 
induced charge -q on the inner surface.) For points outside the sphere, then, the only thing 
that survives is the field of the leftover +q, uniformly distributed over the outer surface. 

It may occur to you that in one respect this argumcnt is open to challenge: There are actually 
three fields at work here, E q ,  Einduced , and El,ft,,,, . All we know for certain is that the sum 
of the three is zero inside the conductor, yet I claimed that the first two alorze cancel, while 
the third is separately zero there. Moreover, even if the first two cancel within the conductor, 
who is to say they still cancel for points outside? They do not, after all, cancel for points 
inside the cavity. I cannot give you a completely satisfactory answer at the moment, but this 
much at least is true: There exists a way of distributing -q over the inner surface so as to 
cancel the field of q at all exterior points. For that same cavity could have been carved out of 
a huge spherical conductor with a radius of 27 miles or light years or whatever. In that case 
the leftover +q on the outer surface is simply too far away to produce a significant field, and 
the other two fields would have to accomplish the cancellation by themselves. So we know 
they can do it . . . but are we sure they choose to? Perhaps for small spheres nature prefers 
some complicated three-way cancellation. Nope: As we'll see in the uniqueness theorems of 
Chapter 3, electrostatics is very stingy with its options; there is always precisely one way-no 
more-of distributing the charge on a conductor so as to make the field inside zero. Having 
found a possible way, we are guaranteed that no alternative exists even in principle. 

If a cavity surrounded by conducting material is itself empty of charge, then the field 
within the cavity is zero. For any field line would have to begin and end on the cavity wall, 

going from a plus charge to a minus charge (Fig. 2.47). Letting that field line be part of a 
closed loop, the rest of which is entirely inside the conductor (where E = O), the integral 

Figure 2.47 
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$ E .  dl is distinctly positive, in violation of Eq. 2.19. It  follows that E = 0 within an empty 
cavity, and thcrc is in fact no charge on thc surface of thc cavity. (This is why you are 
relatively safe inside a metal car during a thunderstonn-you may get cooked, if lightning 

strikes, but you will not be electrocuted. The same principle applies to the placement of 
sensitive apparatus inside a grounded Faraday cage, to shield out stray electric fields. In 
practice, the enclosure doesn't even have to be solid conductor--chicken wire will often 
suffice.) 

Problem 2.35 A metal sphere of radius R ,  canying charge q, is surrounded by a thickconcentric 
metal shell (inner radius a ,  outer radius b, as in Fig. 2.48). The shell canies no net charge. 

(a) Find the surface charge density a at R, at a ,  and at b. 

(b) Find the potential at the center, using infinity as the reference point. 

(c) Now the outer surface is touched to a grounding wire, which lowers its potential to zero 
(same as at infinity). How do your answers to (a) and (h) change? 

Problem 2.36 Two spherical cavities, of radii a and b, are hollowed out from the interior of a 
(neutral) conducting sphere of radius R (Fig. 2.49). At the center of each cavity a point charge 
is placed--call these charges q, and qb. 

(a) Find the surface charges a,, ab, and D R .  

(b) What is the field outside the conductor? 

(C) What is the field within each cavity? 

(d) What is the force on q, and qb? 

(e) Which of these answers would change if a third charge, q,, were brought near the conductor? 

Figure 2.48 Figure 2.49 
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2.5.3 Surface Charge and the Force on a Conductor 

Because the field inside a conductor is zero, boundary condition 2.33 requires that the field 
immediately outside is 

consistent with our earlier conclusion that the field is normal to the surface. In terms of 
potential, Eq. 2.36 yields 

av 
U = -CO-. (2.49) a 

These equations enable you to calculate the surface charge on a conductor, if you can 
determine E or V ;  we shall use them frequently in the next chapter. 

In the presence of an electric field, a surface charge will, naturally, experience a force; the 
force per unit area, f ,  is aE. But there's a problem here, for the electric field is discontinuous 
at a surface charge, so which value are we supposed to use: Eabove, Ebelow, or something in 
between? The answer is that we should use the average of the two: 

1 
f = CJE average = - 0 (E above + E below). 

2 

Why the average? The reason is very simple, though the telling makes it sound complicated: 
Let's focus our attention on a small patch of surface surrounding the point in question 
(Fig. 2.50). Make it tiny enough so it is essentially flat and the surface charge on it is 
essentially constant. The total field consists of two parts-that attributable to the patch 
itself, and that due to everything else (other regions of the surface, as well as any external 
sources that may be present): 

E = E p t c h  + E other . 

Now, the patch cannot exert a force on itself, any more than you can lift yourself by standing 
in a basket and pulling up on the handles. The force on the patch, then, is due exclusively 
to Eorher, and this suffers no discontinuity (if we removed the patch, the field in the "hole" 
would be perfectly smooth). The discontinuity is due entirely to the charge on the patch, 

Figure 2.50 
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which puts out a field (a/2to) on either side, pointing away from the surface (Fig. 2.50). 
Thus, 

0 A 

E above = Eother + -n, 
260 

a A 

E below = E other - -n, 
2to 

and hence 
1 

E other = (E above f E below) = E average - 2 

Averaging is really just a device for removing the contribution of the patch itself. 
That argument applies to any surface charge; ill the particular case of a conductor, the 

field is zero inside and (a/ro)ii outside (Eq. 2.48), so the average is (a/2ro)ii, and the force 
per unit area is 

This amounts to an outward electrostatic pressure on the surface, tending to draw the 
conductor into the field, regardless of the sign of a. Expressing the pressure in terms of the 
field just outside the surface, 

Problem 2.37 Two large metal plates (each of area A) are held a distance d apart. Suppose 
we put a charge Q on each plate; what is the electrostatic pressure on the plates? 

Problem 2.38 A metal sphere of radius R carries a total charge Q. ~ h a i  is the force of 
repulsion between the "northern" hemisphere and the "sou&ernw hemisphere? 

2.5.4 Capacitors 

Supposc WC havc two conductors, and we put charge +Q on one and -Q on the other 
(Fig. 2.51). Since V is constant over a conductor, we can speak unambiguously of the 
potential difference between them: 

We don't know how the charge distributes itself over the two conductors, and calculating 
the field would be a mess, if their shapes are complicated, but this much we do know: E is 
proportional to Q. For E is given by Coulomb's law: 
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Figure 2.5 1 

so if you double p, you double E. (Wait a minute! How do we know that doubling Q (and 
also -Q) simply doubles p? Maybe the charge moves around into a completely different 
configuration, quadrupling p in some places and halving it in others, just so the total charge 
on each conductor is doubled. The fact is that this concern is unwarranted-doubling Q 
does double p everywhere; it doesn't shift the charge around. The proof of this will come 
in Chapter 3; for now you'll just have to believe me.) 

Since E is proportional to Q, so also is V.  The constant of proportionality is called the 
capacitance of the arrangement: 

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and separation 
of the two conductors. In S1 units, C is measured in farads (F); a farad is a coulomb-per-volt. 
Actually, this turns out to be inconveniently large;9 more practical units are the microfarad 
( 1  o - ~  F) and the picofarad (10-" F). 

Notice that V is, by definition, the potential of the positive conductor less that of the 
negative one; likewise, Q is the charge of the positive conductor. Accordingly, capacitance 
is an intrinsically positive quantity. (By the way, you will occasionally hear someone 
speak of the capacitance of a single conductor. In this case the "second conductor," with 
the negative charge, is an imaginary spherical shell of infinite radius surrounding the one 
conductor. It contributes nothing to the field, so the capacitance is given by Ey. 2.53, where 
V is the potential with infinity as the reference point.) 

. . 

Example 2.10 

Find the capacitance of a "parallel-plate capacitor" consisting of two metal surfaces of area A 
held a distance d apart (Fig. 2.52). 

Figure 2.52 

9 ~ n  the second edition I claimed you would need a forklift to carry a 1 F capacitor. This is no longer the 
case-you can now buy a 1 F capacitor that fits comfortably in a soup spoon. 
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Solution: If we put +Q on the top and -Q on the bottom, they will spread out uniformly over 
the two surfaces, provided the area is reasonably large and the separation distance small.'0 
The surface charge density, then, is a = Q/A on the top plate, and so the field, according to 
Ex. 2.5, is ( I / E ~ ) Q / A .  The potential hfference between the plates is therefore 

and hence 

If, for instance, the plates are square with sides 1 cm long, and they are held l mm apart, then 
the capacitance is 9 x 10-13 F. 

Example 2.1 1 

Find the capacitance of two concentric spherical metal shells, with radii u and b. 

Solution: Place charge +Q on the inner sphere, and -Q on the outer one. The field between 
the spheres is 

so the potential difference between them is 

As promised, V is proportional to Q; the capacitance is 

To "charge up" a capacitor, you have to remove electrons from the positive plate and 
carry them to the negative plate. In doing so  you fight against the electric field, which is 
pulling them back toward the positive conductor and pushing them away from the negative 
one. How much work does it take, then, to charge the capacitor up to a final amount Q? 
Suppose that at some intermediate stage in the process the charge on the positive plate is 
q ,  so that the potential difference is q / C .  According to Eq. 2.38, the work you must do to 
transport the next piece of charge, d q ,  is 

d W  = (;) d q .  

' O ~ h e  exact solution is not easy-veri for the simpler case of circular plates. See G. T. Carlson and B. L. Illman, 
Am. J. Phys. 62, L099 (1994). 
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The total work necessary, then, to go  from q = 0 to q = Q, is 

or, since Q = C V ,  
1 2  W = - C V  , (2.55) 
2 

where V is the final potential of the capacitor. 

Problem 2.39 Find the capacitance per unit length of two coaxial metal cylindrical tubes, of 
radii a and b (Fig. 2.53). 

Figure 2.53 

Problem 2.40 Suppose the plates of a parallel-plate capacitor move closer together by an 
infinitesimal distance E,  as a result of their mutual attraction. 

(a) Use Eq. 2.52 to express the amount of work done by electrostatic forces, in terms of the 
field E, and the area of the plates, A. 

(b) Use Eq. 2.46 to express the energy lost by the field in this process. 

(This problem is supposed to be easy, but it contains the embryo of an alternative derivation 
of Eq. 2.52, using conservation of energy.) 

More Problems on Chapter 2 

Problem 2.41 Find the electric field at a height z above the center of a square sheet (side a) 
carrying a uniform surface charge D. Check your result for the limiting cases a -+ oo and 

[Answer: (a/2co){(4/n) tan-' - l}] 

Problem 2.42 If the electric field in some region is given (in spherical coordinates) by the 
expression 

A ? +  ~ s i n 8 c o s @ &  
E(r) = 

r 

where A and B are constants, what is the charge deqsity? [Answer: co(A - B sin @ ) / r 2 ]  
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Problem 2.43 Find the net force that the southern hemisphere of a uniformly charged sphere 
exerts on the northern hemisphere. Express your answer in terms of the radius R and the total 
charge Q. [Answer: (1/4nc0)(3 Q'/ 1 6 ~ ' ) ~  

Problem 2.44 An inverted hemispherical bowl of radius R carries a uniform surface charge 
density a.  Find the potential difference between the "north pole" and the center. [Answer: 
(~a/2c0)(1/2  - 1 )l 

Problem 2.45 A sphere of radius R carries a charge density p(r) = kr (where k is a constant). 
Find the energy of the configuration. Check your answer by calculating it in at least two 
different ways. [Answer: nk2 ~ ~ / 7 c ~ ]  

Problem 2.46 The electric potential of some configuration is given by the expression 

- k r  
V(r) = A-, 

r 

where A and h are constants. Find the electric field E(r), the charge density p(r), and the total 
charge Q. [Answer: p = e O ~ ( 4 n s 3 ( r )  - h2e-"/r)] 

! Problem 2.47 Two infinitely long wires running parallel to the X axis carry uniform charge 
densities +h and -h (Fig. 2.54). 

(a) Find the potential at any point (X, .v, z ) ,  using the origin as your reference. 

(b) Show that the equipotential surfaces are circular cylinders, and locate the axis and radius 
of the cylinder corresponding to a given potential Vo. 

1 Problem 2.48 In a vacuum diode, electrons are "boiled" off a hot cathode, at potential zero, 
and accelerated across a gap to the anode, which is held at positive potential Vo. The cloud of 
moving electrons within the gap (called space charge) quickly builds up to the point where it 
reduces the field at the surface of the cathode to zero. From then on a steady current I flows 
between the plates. 

Suppose the plates are large relative to the separation (A >> d2 in Fig. 2.55). so that edge 
effects can be neglected. Then V, p ,  and v (the speed of the electrons) are all functions of .X 

alone. 

Figure 2.54 

. " 

(V = 0) 

Figure 2.55 
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(a) Write Poisson's equation for the region between the plates. 

(b) Assuming the electrons start from rest at the cathode, what is their speed at point X, where 
the potential is V(x)? 

(c) In the steady state, I is independent of X. What, then, is the relation between p and v? 

(d) Use these three results to obtain a differential equation for V, by eliminating p and v. 

(e) Solve this equation for V as a function of X, Vo, and d. Plot V(x), and compare it to the 
potential without space-charge. Also, find p and v as functions of X. 

(f) Show that 
3/2 I = K V O  , (2.56) 

and find the constant K.  (Equation 2.56 is called the Child-Langmuir law. It holds for other 
geometries as well, whenever space-charge limits the current. Notice that the space-charge 
limited diode is noniinear-it does not obey Ohm's law.) 

! Problem 2.49 Imagine that new and extraordinarily precise measurements have revealed an 
~ - 

error in Coulomb's law. The actual force of interaction between two point charges is found to 
be 

where h is a new constant of nature (it has dimensions of length, obviously, and is a huge 
number-say half the radius of the known universe-so that the correction is small, which is 
why no one ever noticed the discrepancy before). You are charged with the task of reformulating 
electrostatics to accommodate the new discovery. Assume the principle of superposition still 
holds. 

(a) What is the electric field of a charge distribution p (replacing Eq. 2.8)? 

(b) Does this electric field admit a scalar potential? Explain briefly how you reached your 
conclusion. (No formal proof necessary-just a persuasive argument.) 

(c) Find the potential of a point charge q-the analog to Eq. 2.26. (If your answer to (b) was 
''no:' better go back and change it!) Use oo as your reference point. 

(d) For a point charge q at the origin, show that 

where S is the surface, V the volume, of any sphere centered at q. 

(e) Show that this result generalizes: 

for any charge distribution. (This is the next best thing to Gauss's Law, in the new "electro- 
statics.") 

(f) Draw the triangle diagram (like Fig. 2.35) for this world, putting in all the appropriate 
formulas. (Think of Poisson's equation as the formula for p in terms of V, and Gauss's law 
(differential form) as an equation for p in tenns of E.) 
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Problem 2.50 Suppose an electric field E(x, y ,  z )  has the form 

E, = ax, E ,  = 0, EZ = 0 

where a is a constant. What is the charge density? How do you account for the fact that the 
field points in a particular direction, when the charge density is uniform? [This is a more subtle 
problem than it looks, and worthy of careful thought.] 

Problem 2.51 All of electrostatics follows from the 1 / r 2  character of Coulomb's law, together 
with the principle of superposition. An analogous theory can therefore be constructed for 
Newton's law of universal gravitation. What is the gravitational energy of a sphere, of mass M 
and radius R, assuming the density is uniform? Use your result to estimate the gravitational 
energy of the sun (look up the relevant numbers). The sun radiates at a rate of 3.86 x 1 oZ6 W; 
if all this came from stored gravitational energy, how long would the sun last? [The sun is in 
fact much older than that, so evidently this is not the source of its power.] 

Problem 2.52 We know that the charge on a conductor goes to the surface, but just how it 
distributes itself there is not easy to determine. One famous example in which the surface 
charge density can be calculated explicitly is the ellipsoid: 

In this case1 l 

where Q is the total charge. By choosing appropriate values for a ,  b, and c, obtain (from 
Eq. 2.57): (a) the net (both sides) surface charge density ~ ( r )  on a circular disk of radius R ;  
(h) the net surface charge density ~ ( x )  on an infinite conducting "ribbon" in the x J plane, 
which straddles the y axis from x = -a to x = a (let A be the total charge per unit length 
of ribbon); (c) the net charge per unit length h ( x )  on a conducting "needle", running from 
x  = -a to x  = a. In each case, sketch the graph of your result. 

' 'For the derivation (which is a real tour de,force) see W. R. Smythe, Static and Djnamic Electricir?; 3rd ed. 
(New York: Hemisphere, 1989), Sect. 5.02. 



Chapter 3 

Special Techniques 

3.1 Laplace's Equation 

3.1.1 Introduction 

The primary task of electrostatics is to find the electric field of a given stationary charge 
distribution. In principle, this purpose is accomplished by Coulomb's law, in the form of 
Eq. 2.8: 

Unfortunately, integrals of this type can be difficult to calculate for any but the simplest 
charge configurations. Occasionally we can get around this by exploiting symmetry and 
using Gauss's law, but ordinarily the best strategy is first to calculate the potential, V, which 
is given by the somewhat more tractable Eq. 2.29: 

Still, even this integral is often too tough to handle analytically. Moreover. in problems 
involving conductors p itself may not be known in advance: since charge is free to move 
around, the only thing we control directly is the total charge (or perhaps the potential) of 
each conductor. 

In such cases it is fruitful to recast the problem in differential form, using Poisson's 
equation (2.24), 

2 1 
V v = - -p ,  

€0 
(3.3) 

which, together with appropriate boundary conditions, is equivalent to Eq. 3.2. Very often, 
in fact, we are interested in finding the potential in a region where p = 0. (If p = 0 
everywlzere, of course, then V = 0, and there is nothing further to say-that's not what I 
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mean. There may be plenty of charge elsewhere, but we're confining our attention to places 
where there is no charge.) In this case Poisson's equation reduces to Laplace's equation: 

or, written out in Cartesian coordinates, 

This formula is so fundamental to the subject that one might almost say electrostatics is 
the study of Laplace's equation. At the same time, it is a ubiquitous equation, appearing in 
such diverse branches of physics as gravitation and magnetism, the theory of heat, and the 
study of soap bubbles. In mathematics it plays a major role in analytic function theory. To 
get a feel for Laplace's equation and its solutions (which are called harmonic functions), 
we shall begin with the one- and two-dimensional versions, which are easier to picture 
and illustrate all the essential properties of the three-dimensional case (though the one- 
dimensional example lacks the richness of the other two). 

3.1.2 Laplace's Equation in One Dimension 

Suppose V depends on only one variable, X .  Then Laplace's equation becomes 

The general solution is 
V ( x )  = mx + b, 

the equation for a straight line. It contains two undetermined constants (m and b), as 
is appropriate for a second-order (ordinary) differential equation. They are fixed, in any 
particular case, by the boundary conditions of that problem. For instance, it might be 
specified that V  = 4 at X = l, and V = 0 at x = 5. In that case m = - 1 and b = 5, so 
V = -X + 5 (see Fig. 3.1). 

Figure 3.1 
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I want to call your attention to two features of this result; they may seem silly and 
obvious in one dimension, where I can write down the general solution explicitly, but the 
analogs in two and three dimensions are powerful and by no means obvious: 

1. V(.r) is thenver~peof V(x + a )  and V(x - a ) ,  for any a: 

V(x) = $[V(x + a )  + V(x - a)]. 

Laplace's equation is a kind of averaging instruction; it tells you to assign to the point 
x the average of the values to the left and to the right of x .  Solutions to Laplace's 
equation are, in this sense, as boring as they could possibly be, and yet fit the end 
points properly. 

2. Laplace's equation tolerates no local maxinza or  minima; extreme values of V must 
occur at the end points. Actually, this is a consequence of (l), for if there were a local 
maximum, V at that point would be greater than on either side, and therefore could 
not be the average. (Ordinarily, you expect the second derivative to be negative at 
a maximum and positive at a minimum. Since Laplace's equation requires, on the 
contrary, that the second derivative be zero, it seems reasonable that solutions should 
exhibit no extrema. However, this is not aprooj since there exist functions that have 
maxima and minima at points where the second derivative vanishes: x" for example, 
has such a minimunl at the point x = 0.) 

3.1.3 Laplace's Equation in Two Dimensions 

If V depends on two variables, Laplace's equation becomes 

This is no longer an ordinary differential equation (that is, one involving ordinary derivatives 
only); it is aparticrl differential equation. As a consequence, some of the simple rules you 
may be familiar with do not apply. For instance, the general solution to this equation doesn't 
contain just two arbitrary constants-or, for that matter, any finite number-despite the fact 
that it's a second-order equation. Indeed, one cannot write down a "general solution" (at 
least, not in a closed form like Eq. 3.6). Nevertheless, it is possible to deduce certain 
properties common to all solutions. 

It may help to have a physical example in mind. Picture a thin rubber sheet (or a soap 
film) stretched over some support. For definiteness, suppose you take a cardboard box, cut 
a wavy line all the way around. and remove the top part (Fig. 3.2). Now glue a tightly 
stretched rubber membrane over the box, so that it fits like a drum head (it won't be a.flat 
drumhead, of course, unless you chose to cut the edges off straight). Now, if you lay out 
coordinates (X, y) on the bottom of the box, the height V ( x ,  y) of the sheet above the point 
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Figure 3.2 

(X ,  y)  will satisfy Laplace's equation.' (The one-dimensional analog would be a rubber 
band stretched between two points. Of course, it would form a straight line.) 

Harmonic functions in two dimensions have the same properties we noted in one di- 
mension: 

1. The value of V at a point (X, y) is the average of those around the point. More 
precisely, if you draw a circle of any radius R about the point (X, y) ,  the average 
value of V on the circle is equal to the value at the center: 

circle 

(This, incidentally, suggests the method of relaxation on which computer solutions 
to Laplace's equation are based: Starting with specified values for V at the boundary, 
and reasonable guesses for V on a grid of interior points, the first pass reassigns to 
each point the average of its nearest neighbors. The second pass repeats the process, 
using the corrected values, and so on. After a few iterations, the numbers begin to 
settle down, so that subsequent passes produce negligible changes, and a numerical 
solution to Laplace's equation, with the given boundary values, has been achieved.12 

2. V has no local maxima or minima; all extrema occur at the boundaries. (As before, 
this follows from (l).) Again, Laplace's equation picks the most featureless func- 
tion possible, consistent with the boundary conditions: no hills, no valleys, just the 
smoothest surface available. For instance, if you put a ping-pong ball on the stretched 
rubber sheet of Fig. 3.2, it will roll over to one side and fall off-it will not find a 

'Actually, the equation satisfied by a rubber sheet is 

: (gg)+5(gg)=~, where g =  [ l +  (:v)2 ; + - 

it reduces (approximately) to Laplace's equation as long as the surface does not deviate too radically from a plane. 
2 ~ e e ,  for example, E. M. Purcell, Electricity and Magnetism, 2nd ed., problem 3.30 (p. 119) (New York: 

McGraw-Hill, 1985). 
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"pocket" somewhere to settle into, for Laplace's equation allows no such dents in 
the surface. From a geometrical point of view, just as a straight line is the shortest 
distance between two points, so a harmonic function in two dimensions minimizes 
the surface area spanning the given boundary line. 

3.1.4 Laplace's Equation in Three Dimensions 

In three dimensions I can neither provide you with an explicit solution (as in one dimension) 
nor offer a suggestive physical example to guide your intuition (as I did in two dimensions). 
Nevertheless, the same two properties remain true, and this time I will sketch a proof. 

1. The value of V  at point r is the average value of V  over a spherical surface of radius 
R  centered at r: 

# V d a .  V(r) = - 
4n R2 

sphere 

2. As a consequence, V can have no local maxima or minima; the extreme values of V  
must occur at the boundaries. (For if V had a local maximum at r ,  then by the very 
nature of maximum I could draw a sphere around r over which all values of V-and 
a fortiori the average-would be less than at r.) 

Proof: Let's begin by calculating the average potential over a spherical surface 
of radius R  due to a single point charge q located outside the sphere. We may 
as well center the sphere at the origin and choose coordinates so that q lies on 
the z-axis (Fig. 3.3). The potential at a point on the surface is 

where 
a" z2 + R2 - 2zRcos8, 

- - 4 1 -p 

1 cl 
[(z + R )  - (Z - R ) ]  = --. 

4n €0 22 R 4 ~ 6 0  z 

But this is precisely the potential due to q at the center of the sphere! By the 
superposition principle, the same goes for any collection of charges outside the 
sphere: their average potential over the sphere is equal to the net potential they 
produce at the center. qed 
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Figure 3.3 

Problem 3.1 Find the average potential over a spherical surface of radius R due to a point 
charge q located inside (same as above, in other words, only with z < R).  (In this case, of 
course, Laplace's equation does not hold within the sphere.) Show that, in general, 

where VCent,, is the potential at the center due to all the external charges, and Qenc is the total 
enclosed charge. 

Problem 3.2 In one sentence, justify Earnshaw's Theorem: A clzarged particle cannot be 
held in a stable equilibrium by electrostatic forces alone. As an example, consider the cubical 
arrangement of fixed charges in Fig. 3.4. It looks, off hand, as though a positive charge at 
the center would be suspended in midair, since it is repelled away from each corner. Where 
is the leak in this "electrostatic bottle"'? [To harness nuclear fusion as a practical energy 
source it is necessary to heat a plasma (soup of charges particles) to fantastic temperatures-so 
hot that contact would vaporize any ordinary pot. Ebrnshaw's theorem says that electrostatic 
containnlent is also out of the question. Fortunately, it is possible to confine a hot plasma 
magnetically. .] 

Figure 3.4 
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Problem 3.3 Find the general solution to Laplace's equation in spherical coordinates, for the 
case where V depends only on r .  Do the same for cylindrical coordinates, assuming V depends 
only on S. 

3.1.5 Boundary Conditions and Uniqueness Theorems 

Laplace's equation does not by itself determine V; in addition, a suitable set of boundary 
conditions must be supplied. This raises a delicate question: What are appropriate boundary 
conditions, sufficient to determine the answer and yet not so strong as to generate incon- 
sistencies? The one-dimensional case is easy, for here the general solution V = mx + b 
contains two arbitrary constants, and we therefore require two boundary conditions. We 
might, for instance, specify the value of the function at the two ends, or we might give the 
value of the function and its derivative at one end, or the value at one end and the derivative 
at the other, and so on. But we cannot get away with just the value or just the derivative at 
one end-this is insufficient information. Nor would it do to specify the derivatives at both 
ends-this would either be redundant (if the two are equal) or inconsistent (if they are not). 

In two or three dimensions we are confronted by a partial differential equation, and it 
is not so easy to see what would constitute acceptable boundary conditions. Is the shape 
of a taut rubber membrane, for instance, uniquely determined by the frame over which it 
is stretched, or, like a canning jar lid, can it snap from one stable configuration to another? 
The answer, as I think your intuition would suggest, is that V is uniquely determined by 
its value at the boundary (canning jars evidently don't obey Laplace's equation). However, 
other boundary conditions can also be used (see Prob. 3.4). The proof that a proposed set of 
boundary conditions will suffice is usually presented in the form of a uniqueness theorem. 
There are many such theorems for electrostatics, all sharing the same basic format-I'll 
show you the two most useful onese3 

First uniqueness theorem: The solution to Laplace's equation in some volume 
V is uniquely determined if V is specified on the boundary surface S. 

Proof: In Fig. 3.5 I have drawn such a region and its boundary. (There could 
also be "islands" inside, so long as V is given on all their surfaces; also, the 
outer boundary could be at infinity, where V is ordinarily taken to be zero.) 
Suppose there were two solutions to Laplace's equation: 

v2v1 = 0 and v2v2 = 0, 

both of which assume the specified value on the surface. I want to prove that 
they must be equal. The trick is look at their dlference: 

'I do not intend to prove the existence of solutions here-that's a much more difficult job. In context, the 
existence is generally clear on physical grounds. 
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V specified 
on this 

surface (S) 

Figure 3.5 

This obeys Laplace's equation, 

and it takes the value zero on all boundaries (since Vl and V2 are equal there). 
But Laplace's equation allows no local maxima or minima-all extrema oc- 
cur on the boundaries. So the maximum and minimum of V3 are both zero. 
Therefore V3 must be zero everywhere, and hence 

Vl = V2. qed 

- 

Example 3.1 

Show that the potential is constant inside an enclosure completely surrounded by conducting 
material, provided there is no charge within the enclosure. 

Solution: The potential on the cavity wall is some constant, V. (that's item (iv), in Sect. 2.5.1), 
so the potential inside is a hnction that satisfies Laplace's equation and has the constant value 
V0 at the boundary. It doesn't take a genius to think of one solution to this problem: V = V. 
everywhere. The uniqueness theorem guarantees that this is the only solution. (It follows that 
the jeld inside an empty cavity is zero-the same result we found in Sect. 2.5.2 on rather 
different grounds.) 

The uniqueness theorem is a license to your imagination. It doesn't matter how you 
come by your solution; if (a) it satisfies Laplace's equation and (b) it has the correct value 
on the boundaries, then it's right. You'll see the power of this argument when we come to 
the method of images. 

Incidentally, it is easy to improve on the first uniqueness theorem: I assumed there was 
no charge inside the region in question, so the potential obeyed Laplace's equation, but 
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we may as well throw in some charge (in which case V obeys Poisson's equation). The 
argument is the same, only this time 

SO 

2 2 2 1 1 v v3 = v  v1 - v  v2 = ---p + --p = o .  
€0  €0 

Once again the difference (V3 V1 - V2) satisfies Laplace's equation and has the value 
zero on all boundaries, so V3 = 0 and hence V1 = V2. 

Corollary: The potential in a volume V is uniquely determined if (a) the charge 
density throughout the region, and (b) the value of V on all boundaries, are 
specified. 

3.1.6 Conductors and the Second Uniqueness Theorem 

The simplest way to set the boundary conditions for an electrostatic problem is to specify the 
value of V on all surfaces surrounding the region of interest. And this situation often occurs 
in practice: In the laboratory, we have conductors connected to batteries, which maintain 
a given potential, or to ground, which is the experimentalist's word for V = 0. However, 
there are other circumstances in which we do not know the potential at the boundary, but 
rather the charges on various conducting surfaces. Suppose I put charge Ql  on the first 
conductor, Q2 on the second, and so on-I'm not telling you how the charge distributes 
itself over each conducting surface, because as soon as 1 put it on, it moves around in a way 
I do not control. And for good measure, let's say there is some specified charge density p 
in the region between the conductors. Is the electric field now uniquely determined? Or 
are there perhaps a number of different ways the charges could arrange themselves on their 
respective conductors, each leading to a different field? 

Second uniqueness theorem: In a volume V surrounded by conductors and 
containing a specified charge density p,  the electric field is uniquely determined 
if the total charge on each conductor is given (Fig. 3.6). (The region as a whole 
can be bounded by another conductor, or else unbounded.) 

Proof: Suppose there are two fields satisfying the conditions of the problem. 
Both obey Gauss's law in differential form in the space between the conductors: 

And both obey Gauss's law in integral form for a Gaussian surface enclosing 
each conductor: 

i th conducting 
surface 

i th conducting 
surface 
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Integration surfaces - 

could be at infinity 

Figure 3.6 

Likewise, for the outer boundary (whether this is just inside an enclosing con- 
ductor or at infinity), 

outer 
boundary 

outer 
boundary 

As before, we examine the difference 

which obeys 
V , E 3 = 0  

in the region between the conductors, and 

over each boundary surface. 

Now there is one final piece of information we must exploit: Although 
we do not know how the charge Qi distributes itself over the ith conducting 
surface, we do know that each conductor is an eguipotential, and hence V3 is 
a constant (not necessarily the same constant) over each conducting surface. 
(It need not be zero, for the potentials VI and V2 may not be equal-all we 
know for sure is that both are constant over any given conductor.) Next comes 
a trick. Invoking product rule number (5) ,  we find that 
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Here I have used Eq. 3.7, and E 3  = -VV3. Integrating this over the entire 
region between the conductors, and applying the divergence theorem to the left 
side: 

The surface integral covers all boundaries of the region in question-the con- 
ductors and outer boundary. Now V3 is a constant over each surface (if the 
outer boundary is infinity, V3 = 0 there), so it comes outside each integral, and 
what remains is zero, according to Eq. 3.8. Therefore, 

But this integrand is never negative; the only way the integral can vanish is if 
E3 = 0 everywhere. Consequently, E l  = E2, and the theorem is proved. 

This proof was not easy, and there is a real danger that the theorem itself will seem 
more plausible to you than the proof, In case you think the second uniqueness theorem is 
"obvious," consider this example of Purcell's: Figure 3.7 shows a comfortable electrostatic 
configuration, consisting of four conductors with charges f Q, situated so that the plusses 
are near the minuses. It looks very stable. Now, what happens if we join them in pairs, 
by tiny wires, as indicated in Fig. 3.8? Since the positive charges are very near negative 
charges (which is where they like to be) you might well guess that nothing will happen-the 
configuration still looks stable. 

Well, that sounds reasonable, but it's wrong. The configuration in Fig. 3.8 is impossible. 
For there are now effectively two conductors, and the total charge on each is zero. One 
possible way to distribute zero charge over these conductors is to have no accumulation of 
charge anywhere, and hence zero field everywhere (Fig. 3.9). By the second uniqueness 
theorem, this must be the solution: The charge will flow down the tiny wires, canceling 
itself off. 

00 

Figure 3.7 Figure 3.8 
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Figure 3.9 

Problem 3.4 Prove that the field is uniquely determined when the charge density p is given 
and either V or the normal derivative a V/an  is specified on each boundary surface. Do not 
assume the boundaries are conductors, or that V is constant over any given surface. 

Problem 3.5 A more elegant proof of the second uniqueness theorem uses Green's identity 
(Prob. 1.60c), with T = U = V3. Supply the details. 

3.2 The Method of Images 

3.2.1 The Classic Image Problem 

Suppose a point charge q  is held a distance d above an infinite grounded conducting plane 
(Fig. 3.10). Question: What is the potential in the region above the plane? It's not just 
( 1 / 4 n ~ ~ ) q / a ,  for q will induce a certain amount of negative charge on the nearby surface 
of the conductor; the total potential is due in part to q directly, and in part to this induced 
charge. But how can we possibly calculate the potential, when we don't know how much 
charge is induced or how it is distributed? 

Figure 3.10 
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Figure 3.1 1 

From a mathematical point of view our problem is to solve Poisson's equation in the 
region z > 0, with a single point charge q at (0, 0,  d), subject to the boundary conditions: 

1. V = 0 when z = 0 (since the conducting plane is grounded), and 

2. V -+ 0 far from the charge (that is, for x2 + v2 + z2 >> d2). 

The first uniqueness theorem (actually, its corollary) guakantees that there is only one 
function that meets these requirements. If by trick or clever guess we can discover such a 
function, it's got to be the right answer. 

Trick: Forget about the actual problem; we're going to study a conzpletely different 
situation. This new problem consists of two point charges, +q at (0, 0, d)  and -q at 
(0,O, -d) ,  and no conducting plane (Fig. 3.1 1). For this configuration I can easily write 
down the potential: 

(The denominators represent the distances from (X, y , z) to the charges +q and -q, respec- 
tively.) It follows that 

1. V = 0 when z = 0, and 

and the only charge in the region z > 0 is the point charge +q at (0, 0, d). But these 
are precisely the conditions of the original problem! Evidently the second configuration 
happens to produce exactly the same potential as the first configuration, in the "upper" 
region z 3 0. (The "lower" region, z < 0, is completely different, but who cares? The 
upper part is all we need.) Conclusion: The potential of a point charge above an infinite 
grounded conductor is given by Eq. 3.9, for z 3 0. 

Notice the crucial role played by the uniqueness theorem in this argument: without it, 
no one would believe this solution, since it was obtained for a completely different charge 
distribution. But the uniqueness theorem certifies it: If it satisfies Poisson's equation in the 
region of interest, and assumes the correct value at the boundaries, then it must be right. 
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3.2.2 Induced Surface Charge 

Now that we know the potential, it is a straightforward matter to compute the surface charge 
a induced on the conductor. According to Eq. 2.49, 

where a V/an is the normal derivative of V at the surface. In this case the normal direction 
is the z-direction, so 

From Eq. 3.9, 

As expected, the induced charge is negative (assuming q is positive) and greatest at X = 
y  = 0. 

While we're at it, let's compute the total induced charge 

This integral, over the xy plane, could be done in Cartesian coordinates, with d a  = dx dy, 
but it's a little easier to use polar coordinates (r, #), with r 2  = x 2  + y 2  and da  = r d r  d4 .  
Then 

a( r )  = -qd 
2n( r2  + d2)3/2 ' 

and 

-qd r -d rd4  = 
Q = i2T im 27r(r2 + d2I3i2 

= -4. (3.1 1) 

Evidently the total charge induced on the plane is -q, as (with benefit of hindsight) you 
can perhaps convince yourself it had to be. 

3.2.3 Force and Energy 

The charge q is attracted toward the plane, because of the negative induced charge. Let's 
calculate the force of attraction. Since the potential in the vicinity of q is the same as in 
the analog problem (the one with +q and -q but no conductor), so also is the field and, 
therefore, the force: 
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Beware: It is easy to get carried away, and assume that everything is the same in the two 
problems. Energy, however, is not the same. With the two point charges and no conductor, 
Eq. 2.42 gives 

But for a single charge and conducting plane the energy is halfof this: 

Why half? Think of the energy stored in the fields (Eq. 2.45): 

In the first case both the upper region (z > 0) and the lower region (z < 0) contribute-and 
by symmetry they contribute equally. But in the second case only the upper region contains 
a nonzero field, and hence the energy is half as great. 

Of course, one could also determine the energy by calculating the work required to 
bring q in from infinity. The force required (to oppose the electrical force in Eq. 3.12) is 
(1/4rcO) (q2/4z2)i, so 

As I move q toward the conductor, I do work only on q. It is true that induced charge 
is moving in over the conductor, but this costs me nothing, since the whole conductor is 
at potential zero. By contrast, if I simultaneously bring in two point charges (with no 
conductor), I do work on both of them, and the total is twice as great. 

3.2.4 Other Image Problems 

The method just described is not limited to a single point charge; any stationary charge 
distribution near a grounded conducting plane can be treated in the same way, by introducing 
its mirror image-hence the name method of images. (Remember that the image charges 
have the opposite sign; this is what guarantees that the xy plane will be at potential zero.) 
There are also some exotic problems that can be handled in similar fashion; the nicest of 
these is the following. 

Example 3.2 

A point charge q is situated a distance a from the center of a grounded conducting sphere of 
radius R (Fig. 3.12). Find the potential outside the sphere. 
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Figure 3.1 2 Figure 3.13 

Solution: Examine the completely different configuration, consisting of the point charge q 
together with another point charge 

I R q = - - g  
a 

placed a distance 

to the right of the center of the sphere (Fig. 3.13). No conductor, now-just the two point 
charges. The potential of this configuration is 

where LL and a' are the distances from q and q', respectively. Now, it happens (see Prob. 3.7) 
that this potential vanishes at all points on the sphere, and therefore fits the boundary conditions 
for our original problem, in the exterior region. 

Conclusion: Eq. 3.17 is the potential of a point charge near a grounded conducting 
sphere. (Notice that b is less than R ,  so the "image" charge q' is safely inside the sphere-you 
cannot p u t  image charges in the region where you are calculating V ;  that would change p,  
and you'd be solving Poisson's equation with the wrong source.) In particular, the force of 
attraction between the charge and the sphere is 

This solution is delightfully simple, but extraordinarily lucky. There's as much art as 
science in the method of images, for you must somehow think up the right "auxiliary problem" 
to look at. The first person who solved the problem this way cannot have known in advance 
what image charge q' to use or where to put it. Presumably, he (she?) started with an arbitrary 
charge at an arbitrary point inside the sphere, calculated the potential on the sphere, and then 
discovered that with 4' and b just right the potential on the sphere vanishes. But it is really a 
miracle that any choice does the job-with a cube instead of a sphere, for example, no single 
charge anywhere inside would make the potential zero on the surface. 
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Figure 3.14 

Problem 3.6 Find the force on the charge +q in Fig. 3.14. (The xy plane is a grounded 
conductor.) 

Problem 3.7 

(a) Using the law of cosines, show that Eq. 3.17 can be written as follows: 

V(r, 6) = -- 
l I 9 - 9 1 3 (3.19) 

437~0 Jr2 + a 2  - 2ra cos 6 JR* + (ra/R12 - 2ra cos 6 

where r and 6 are the usual spherical polar coordinates, with the z axis along the line through 
g. In this form it is obvious that V = 0 on the sphere, r = K.  

(b) Find the induced surface charge on the sphere, as a function of 6. Integrate this to get the 
total induced charge. (What should it be?) 

( C )  Calculate the energy of this configuration. 

Problem 3.8 In Ex. 3.2 we assumed that the conducting sphere was grounded (V = 0). But 
with the addition of a second image charge, the same basic model will handle the case of a 
sphere at any potential Vg (relative, of course, to infinity). What charge should you use, and 
where should you put it? Find the force of attraction between a point charge g and a neutral 
conducting sphere. 

Problem 3.9 A uniform line charge h is placed on an infinite straight wire, a distance d above 
a grounded conducting plane. (Let's say the wire runs parallel to the x-axis and directly above 
it, and the conducting plane is the xy plane.) 

(a) Find the potential in the region above the plane. 

(b) Find the charge density CJ induced on the conducting plane. 

Problem 3.10 Two semi-infinite grounded conducting planes meet at right angles. In the 
region between them, there is a point charge g ,  situated as shown in Fig. 3.15. Set up the 
image configuration, and calculate the potential in this region. What charges do you need, and 
where should they be located? What is the force on g?  How much work did it take to bring 
q in from infinity? Suppose the planes met at some angle other than 90"; would you still be 
able to solve the problem by the method of images? If not, for what particular angles does the 
method work? 



3.3. SEPARATION OF VARIABLES 

Figure 3.15 Figure 3.16 

! Problem 3.11 Two long. straight coppei- pipes, each of radius R,  are held a distance 2d apart. 
One is at potential Vo, the other at - V0 (Fig. 3.16). Find the potential everywhere. [Suggestion: 
Exploit the result of Prob. 2.47.1 

23 Separation of Variables 

In this section we shall attack Laplace's equation directly, using the method of separation 
of vai-iables, which is the physic;st's favorite tool for solving partial differential ecfuations. 
The method is applicable in circumstances where the potential ( V )  or the charge dehsity 
(a) is specified on the boundaries of some region, and we are asked to find the potential 
in the interior. The basic strategy is very simple: We look for solrrtions that are products 
of functions, each of which depends on only one of the coordinates. The algebraic details, 
however, can be formidable, so I'm going to develop the method through a sequence of 
examples. We'll start with Cartesian coordinates and then do spherical coordinates (I'll 
leave the cylindrical case for you to tackle on your own, in Prob. 3.23). 

3.3.1 Cartesian Coordinates 

Example 3.3 

Two infinite grounded metal plates lie parallel to the xz plane, one at y = 0, the other at y = a 
(Fig. 3.17). The left end, at X = 0, is closed off with an infinite strip insulated from the two 
plates and maintained at a specific potential Vo(y) .  Find the potential inside this "slot." 

Solution: The configuration is independent of z ,  so this is really a two-dimensional problem. 
In mathematical terms, we must solve Laplace's equation, 
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Figure 3.1 7 

subject to the boundary conditions 

(i) V = O w h e n y = O ,  
(ii) V = 0 when y = a ,  
(iii) V = Vo(y) when X = 0, 
(iv) V + 0 as X + W. l 

(The latter, although not explicitly stated in the problem, is necessary on physical grounds: as 
you get farther and farther away from the "hot" strip at X = 0, the potential should drop to 
zero.) Since the potential is specified on all boundaries, the answer is uniquely determined. 

The first step is to look for solutions in the form of products: 

On the face of it, this is an absurd restriction-the overwhelming majority of solutions to 
Laplace's equation do not have such a form. For example, V(x, y )  = (5x + 6 y )  satisfies 
Eq. 3.20. but you can't express it as the product of a function X times a function y.  Obviously. 
we're only going to get a tiny subset of all possible solutions by this means, and it would be a 
miracle if one of them happened to fit the boundary conditions of our problem . . . But hang on. 
because the solutions we do get are very special, and it turns out that by pasting them together 
we can construct the general solution. 

Anyway, putting Eq. 3.22 into Eq. 3.20, we obtain 

The next step is to "separate the variables" (that is, collect all the x-dependence into one term 
and all the y-dependence into another). Typically, this is accomplished by dividing through 
by V: 

Here the first term depends only on x and the second only on y ;  in other words, we have an 
equation of the form 

f (X) + g(?t )  = 0. (3.24) 
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Now, there's only one way this could possibly be true: f and g must both be constant. For 
what if f (X) changed, as you vary X-then if we held y fixed and fiddled with X, the sum 
f (X) + g(x) would change, in violation of Eq. 3.24, which says it's always zero. (That's a 
simple but somehow rather elusive argument: don't accept it without due thought, because the 
whole method rides on it.) It follows from Eq. 3.23, then, that 

1 d 2 x  
-P 

l d 2 y  
= C l  and -- = C2, with C l  + C? = 0. (3.25) 

X dx2 Y dy2 

One of these constants is positive, the other negative (or perhaps both are zero). In general, one 
must investigate all the possibilities; however, in our particular problem we need C1 positive 
and C2 negative, for reasons that will appear in a moment. Thus 

Notice what has happened: A partial differential equation (3.20) has been converted into two 
ordinary differential equations (3.26). The advantage of this is obvious-ordinary differential 
equations are a lot easier to solve. Indeed: 

so that 
V(x, y) = (A&' + BeCk")(c  sink?? + D cos k y ) .  (3.27) 

This is the appropriate separable solution to Laplace's equation: it remains to impose the 
boundary conditions, and see what they tell us about the constants. To begin at the end, 
condition (iv) requires that A equal zero.4 Absorbing B into C and D, we are left with 

Condition (i) now demands that D equal zero, so 

V(x, y)  = c e P k x  sin k y .  (3.28) 

Meanwhile (ii) yields sin ka = 0, from which it follows that 

(At this point you can see why I chose C ,  positive and C2 negative: If X were sinusoidal, we 
could never arrange for it to go to zero at infinity, and if Y were exponential we could not make 
it vanish at both 0 and a .  Incidentally, rz = 0 is no good, for in that case the potential vanishes 
ever.vwlzei-e. And we have already excluded negative 11's.) 

That's as far as we can go, using separable solutions, and unless Vo(y )  just happens to have the 
form sin(nrry/u) for some integer n we simply can'tfit the final boundary condition at .X = 0. 
But now comes the crucial step that redeems the method: Separation of variables has given 
us an infinite set of solutions (one for each n), and whereas none of them by itself satisfies 

4 ~ ' m  assuming k is positive, but this involves no loss of generality-negative k gives the same solution (3.27). 
only with the constants shuffled ( A  t, B, C + -C). Occasionally (but not in this example) k = 0 must also be 
included (see Prob. 3.47). 
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the final boundary condition, it is possible to combine them in a way that does. Laplace's 
equation is linealr ih the sense that if V], V2, V3, . . . satisfy it, so does any linear combination, 
V  = a1 V1 + a2 V2 + a3 V3 + . . . , where al, a 2 ,  . . . are arbitrary constants. For 

Exploiting this fact, we can patch together the separable solutions (3.28) to construct a much 
more general solution: 

This still satisfies the first three boundary conclitions; the question is, can we (by astute choice 
of the coefficients C,) fit the last boundary condition? 

00 

V(O, y) = C cx s i n ( n ~ y / a j  = vg(y) .  (3.3 1 ) 
n=1 

well, you may recognize this sum-it's a Fourier sine series. And Dirichlet's theorem5 guaran- 
tees that virtually any function Vg(y)-it can even have a finite number of discontinuities--can 
be expanded in such a series. 

But how do we actually deterntine the coefficients C,, buried as they are in that infinite sum? 
The device for accomplishing this is so lovely it deserves a name-I call it Fourier's trick, 
though it seems Euler had used essentially the same idea somewhat earlier. Here's how it goes: 
Multiply Eq. 3.31 by sin(nrny/a) (where n' is a positive integer), and integrate from 0 to a :  

You can work out the integral on the left for yourself; the answer is 

Thus all the terms in the series drop out, save only the one where n' = n, and the left side of 
Eq. 3.32, reduces to ( ~ / 2 ) C , ~ f .  ~onclusicin:~ 

C, = Sa V g ( j )  sin(nny/a) dy. 
a 0 

That does it: Eq. 3.30 is the solution, with coefficients given by Eq. 3.34. As a concrete 
example, suppose the strip at X = 0 is a metal plate with constant potential Vg (remember, it's 
insulated from the grounded plates at y = 0 and y = a) .  Then 

5 ~ o a s ,  M., Mathematical Methods in the Physical Sciences, 2nd ed. (New York: John Wiley, 1983). 
6 ~ o r  aesthetic reasons I've dropped the prime: Eq. 3.34 holds for n = 1,2,  3, . . . , and it doesn't matter 

(obviously) what letter you use for the "dummy" index. 
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~ V O  ~ e - f l T , y / a  V (X, y )  = --- sin ( n n y  /U) .  
7r 

11=1,3,5 ... 

Figure 3.18 is a plot of this potential; Fig. 3.19 shows how the first few terms in the Fourier 
series combine to make a better and better approximation to the constant Vg: (a) is n = 1 only, 
(b) includes n up to 5 ,  (c)  is the sum of the first 10 terms, and (d) is the sum of the first 100 
terms. 

?'/a 

Figure 3.1 9 
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Incidentally, the infinite series in Eq. 3.36 can be summed explicitly (try your hand at it, if 
you like); the result is 

In this form it is easy to check that Laplace's equation is obeyed and the four boundary 
conditions (3.2 1 ) are satisfied. 

The success of this method hinged on two extraordinary properties of the separable 
solutions (3.28): completeness and orthogonality. A set of functions f, (y) is said to be 
complete if any other function f (y) can be expressed as a linear combination of them: 

The functions sin(nny/a) are complete on the interval 0 5 y 5 a .  It was this fact, 
guaranteed by Dirichlet7s theorem, that assured us Eq. 3.31 could be satisfied, given the 
proper choice of the coefficients C,.  (The proof of completeness, for a particular set of 
functions, is an extremely difficult business, and I'm afraid physicists tend to assume it's 
true and leave the checking to others.) A set of functions is orthogonal if the integral of 
the product of any two different members of the set is zero: 

The sine functions are orthogonal (Eq. 3.33); this is the property on which Fourier's trick 
is based, allowing us to kill off all terms but one in the infinite series and thereby solve 
for the coefficients C,. (Proof of orthogonality is generally quite simple, either by direct 
integration or by analysis of the differential equation from which the functions came.) 

Example 3.4 

Two infinitely long grounded metal plates, again at y = 0 and y = a, are connected at x = -+b 
by metal strips maintained at a constant potential Vo, as shown in Fig. 3.20 (a thin layer 
of insulation at each corner prevents them from shorting out). Find the potential inside the 
resulting rectangular pipe. 

Solution: Once again, the configuration is independent of z .  Our problem is to solve Laplace's 
equation 

subject to the boundary conditions 

(i) V = 0 when y = 0, 
(ii) V=Owheny=a,  
(iii) V =  Vowhenx=b, 
(iv) V=Vowhenx=-b. 
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Figure 3.20 

The argument runs as before, up to Eq. 3.27: 

V(x, y) = ( ~ e ~ "  + B C k x ) ( c  sin k y  + D cos ky). 

This time, however, we cannot set A = 0; the region in question does not extend to x = m, 
so ekx is perfectly acceptable. On the other hand, the situation is symmetric with respect to X, 
so V(-X, y) = V(x, y), and it follows that A = B. Using 

,kx + e-kx = 2 cosh kx, 

and absorbing 2A into C and D, we have 

Boundary conditions (i) and (ii) require, as before, that D = 0 and k = nn/a ,  so 

Because V ( x ,  y) is even in X, it will automatically meet condition (iv) if it fits (iii). It remains, 
therefore, to construct the general linear combination, 

and pick the coefficients Cn in such a way as to satisfy condition (iii): 

This is the same problem in Fourier analysis that we faced before; I quote the result from 
Eq. 3.35: 

0, if n is even 

Cn cosh(nnb/a) = 

(3, n n ifnisocld 
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I 
0.8 

VNo ::f 
0.2 

0 

Figure 3.21 

Conclusion: The potential in this case is given by 

This function is shown in Fig. 3.21. 

-- -- -. . . p 

Example 3.5 

An infinitely long rectangular metal pipe (sides a and h) is grounded, but one end, at x = 0,  is 
maintained at a specified potential Vo(y ,  z ) ,  as indicated in Fig. 3.22. Find the potential inside 
the pipe. 

Solution: This is a genuinely three-dimensional problem, 

Figure 3.22 
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subject to the boundary conditions 

(i) V = 0 when y = 0, 
(ii) V = O w h e n y = a ,  
(iii) V = 0 when z = 0, 
(iv) V = 0 when z = b, 
(V) V + Oasx + m, 
(vi) V=Vo(y , z )whenx=O.  

As always, we look for solutions that are products: 

Putting this into Eq. 3.43, and dividing by V, we find 

It follows that 

1 d 2 x  
-- 

l d 2 y  
= C 1 ,  -- 

l d 2 z  
= c2, -- - - Cg, with Cl +C2 + C 3  = O .  

X dx2  Y dy2 Z dz2 

Our previous experience (Ex. 3.3) suggests that C1 must be positive, C2 and C3 negative. 
2 2 2 Setting C2 = -k and C3 = -l2, we have C1 = k + 1 , and hence 

Once again, separation of variables has turned a partial differential equation into ordina~y 
differential equations. The solutions are 

X(x) = Ae-x   be--^ 
Y (y) = C sin ky + D cos ky, 

Z(z) = E s i n l z + F c o s l z .  
l .  

Boundary condition (v) implies A = 0, (i) gives D = 0, and (iii) yields F = 0, whereas (ii) 
and (iv) require that k = nn/a and 1 = mnlb,  where n and m are positive integers. Combining 
the remaining constants, we are left with 

This solution meets all the boundary conditions except (vi). It contains two unspecified 
integers (n and m), and the most general linear combination is a double sum: 

We hope to fit the remaining boundary condition, 
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by appropriate choice of the coefficients C,,,, . To determine these constants, we multiply by 
sin(nfny/a) sin(mfnz/b), where n' and m' are arbitrary positive integers, and integrate: 

= La Sob V. ( y ,  z) sin(ntny/a) sin(m'xz/b) dy d;. 

Quoting Eq. 3.33, the left side is (ab/4)Cn/,,,, so 

b 
C,,,, = /" Vo(y. Z) sin(nny/a) sin(mnz/b) dy dz. 

a b  0 

Equation 3.48, with the coefficients given by Eq. 3.50, is the solution to our problem. 

For instance, if the end of the tube is a conductor at constunt potential Vo, 

I O 3  
if n or m is even, 

, if n and m are odd. 

In this case 

Notice that the successive terms decrease rapidly; a reasonable approximation would be ob- 
tained by keeping only the first few. 

Problem 3.12 Find the potential in the infinite slot of Ex. 3.3 if the boundary at x = 0 consists 
of two metal strips: one, from y = 0 to y = a/2, is held at a constant potential Vo, and the 
other, from y = a /2  to y = a ,  is at potential -Vo. 

Problem 3.13 For the infinite slot (Ex. 3.3) determine the charge density n ( y )  on the strip at 
x = 0, assuming it is a conductor at constant potential Vo. 

Problem 3.14 A rectangular pipe, running parallel to the z-axis (from -m to +m), has three 
grounded metal sides, at y = 0, y  = a,  and x = 0. The fourth side, at x = h, is maintained at 
a specified potential Vo(y). 

(a) Develop a general formula for the potential within the pipe. 

(b) Find the potential explicitly, for the case Vo(y) = V. (a constant). 

Problem 3.15 A cubical box (sides of length a )  consists of five metal plates, which are welded 
together and grounded (Fig. 3.23). The top is made of a separate sheet of metal, insulated from 
the others, and held at a constant potential Vo. Find the potential inside the box. 
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Figure 3.23 

3.3.2 Spherical Coordinates 

In the examples considered so far, Cartesian coordinates were clearly appropriate? since the 
boundaries were planes. For round objects spherical coordinates are more natural. In the 
spherical system, Laplace's equation reads: 

I shall assume the problem has azimuthal symmetry, so that V is independent of 4;7 in 
that case Eq. 3.53 reduces to 

I a 
(r2:) + - - (sin@%) = 0. 

ar sin 8 80 

As before, we look for solutions that are products: 

Putting this into Eq. 3.54, and dividing by V,  

Since the first term depends only on r ,  and the second only on B, it follows that each must 
be a constant: 

1 
(r-2:) = l ( l +  11, -L ( s i n o g )  = - l ( ~  + 1). (3.57) 

O sin 8 dB 

Here 1(1+ I)  is just a fancy way of writing the separation constant-you'll see in a minute 
why this is convenient. 

7 ~ h e  general case, for #-dependent potentials, is treated in all the graduate texts. See, for instance, J. D. 
Jackson's Clnssical Electrodvnamics, 3rd ed., Chapter 3 (New York: John Wiley, 1999). 
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As always, separation of variables has converted a partial differential equation (3.54) 
into ordinaly differential equations (3.57). The radial equation, 

has the general solution 

Z B  R(r) = Ar + - 
&+l ' (3.59) 

as you can easily check; A and B are the two arbitrary constants to be expected in the 
solution of a second-order differential ec$atiun. But the angular equation, 

is not so simple. The solutions are Legendre polynomials in the variable cos 8: , , 

Pl (X) is most conveniently defined by the Rodrigues formula: 

The first few Legendre polynomials are listed in Table 3.1. 

Table 3.1 Legendre Polynomials 

Notice that P2 (X) is (as the name suggests) an lth-order polynomial in X;  it contains only 
even powers, if l is even, and odd powers, if 1 is odd. The factor in front (1 /2'1!) was chosen 
in order that 

P1 (l) = l. (3.63) 

The Rodrigues formula obviously works only for nonnegative integer values of I. More- 
over, it provides us with only one solution. But Eq. 3.60 is second-order, and it should pos- 
sess twq independent solutions, for eve? value of 1. It turns out that these "other solutions" 
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blow up at 8  = 0 andlor 8  = n, and are therefore unacceptable on physical  ground^.^ For 
instance, the second solution for 1 = 0 is 

@ ( Q )  = 111 (tan i) . 
You might want to check for yourself that this satisfies Eq. 3.60. 

In the case of azimuthal symmetry, then, the most general separable solution to Laplace's 
equation, consistent with minimal physical requirements, is 

(There was no need to include an overall constant in Eq. 3.61 because it can be absorbed into 
A and B at this stage.) As before, separation of variables yields an infinite set of solutions, 
one for each 1. The general solution is the linear combination of separable solutions: 

The following examples illustrate the power of this important result. 

Example 3.6 

The potential Vo(B) is specified on the surface of a hollow sphere, of radius R.  Find the 
potential inside the sphere. 

Solution: In this case B1 = O for all I-otherwise the potential would blow up at the origin. 
Thus, 

At I- = R this must match the specified function V0 ( B  ): 

Can this equation be satisfied, for an appropriate choicc of cocfficients A[? Yes: The Legendre 
polynomials (like the sines) constitute a complete set of functions, on the interval - 1 5 .r 5 1 

- 

'1n rare cases where the z axis is for some reason inaccessible, these "other solutions" may have to be considered. 
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(0 5 8 5 n). How do we determine the constants? Again, by Fourier's trick, for the Legendre 
polynomials (like the sines) are orthogonal f ~ n c t i o n s : ~  

Jo 
PI (cos B) Pp (cos B) sin B d8 

Thus, multiplying Eq. 3.67 by Pp (cos 8 )  sin 8 and integrating, we have 

Al = - 2iil kK Vo(B) Pl(cos B) sin B do. 

Equation 3.66 is the solution to our problem, with the coefficients given by Eq. 3.69. 

In can be difficult to evaluate integrals of the form 3.69 analytically, and in practice it is often 
easier to solve Eq. 3.67 "by eyeball."10 For instance, suppose we are told that the potential on 
the sphere is 

v. (0) = k sin2 (8/2), (3.70) 

where k is a constant. Using the half-angle formula, we rewrite this as 

k k 
Vo(8) = - (1   COS^) = - [P~(COSO)  - P~(COSO)].  

2 2 

Putting this into Eq. 3.67, we read off immediately that A. = k/2, A1 = -k/(2R), and all 
other A1 'S vanish. Evidently, 

Example 3.7 

The potential V0 (8) is again specified on the surface of a sphere of radius R, but this time we 
are asked to find the potential outside, assuming there is no charge there. 

Solution: In this case it's the Al's that must be zero (or else V would not go to zero at oo), so 

9 ~ .  Boas, Mathematical Methods in the Physical Sciences, 2nd ed., Section 12.7 (New York: John Wiley. 
1983). 
''This is certainly true whenever VO(0) can be expressed as a polynomial in cos 0. The degree of the polynomial 

tells us the highest I we require, and the leading coefficient determines the corresponding A l .  Subtracting off 
A[ R' Pl(cos 8 )  and repeating the process, we systematically work our way down to Ao. Notice that if V0 is an 
even function of cos0, then only even terms will occur in the sum (and likewise for odd functions). 
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At the surface of the sphere we require that 

Multiplying by Pp (cos 8 )  sin 8 and integrating-exploiting, again, the orthogonality relation 
3.68-we have 

+ R'+' SOir V. ( H )  P, (cos 8)  sin H d8. B1 = - 
2 

Equation 3.72, with the coefficients given by Eq. 3.73, is the solution to our problem. 

Example 3.8 

An uncharged metal sphere of radius R is placed in an otherwise uniform electric field E = Eoi.  
[The field will push positive charge to the "northern" surface of the sphere, leaving a negative 
charge on the "southern" surface (Fig. 3.24). This induced charge, in turn, distorts the field in 
the neighborhood of the sphere.] Find the potential in the region outside the sphere. 

Solution: The sphere is an equipotential-we may as well set it to zero. Then by symmetry 
the entire xy plane is at potential zero. This time, however, V does rlot go to zero at large i .  
In fact, far from the sphere the field is Eoi,  and hence 

Figure 3.24 
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Since V = 0 in the equatorial plane, the constant C must be zero. Accordingly, the boundary 
conditions for this problem are 

(i) V = O  w h e n r = R ,  1 
(ii) V + - E o r c o s 8  f o r r > > R .  ) 

We must fit these boundary conditions with a function of the form 3.65. 

The first condition yields 

For r >> R, the second term in parentheses is negligible, and therefore condition (ii) requires 
that 

Evidently, only one term is present: l = 1. In fact, since P1 (cos 8)  = cos 8, we can read off 
immediately 

A 1 = - Eo, all other A1 'S zero. 

Conclusion: 

The first term (- Eor cos 6') is due to the external field: the contribution attributable to the 
induced charge is evidently 

E0 - cos 6' 
r2 

If you want to know the induced charge density, it can be calculated in the usual way: 

As expected, it is positive in the "northern" hemisphere (0 5 6' 5 n/2) and negative in the 
"southern" (n /2  5 6' ( n). 

Example 3.9 

A specified charge density ~ ~ ( 6 ' )  is glued over the surface of a spherical shell of radius R. Find 
the resulting potential inside and outside the sphere. 

Solution: You could, of course, do this by direct integration: 
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but separation of variables is often easier. For the interior region we have 

(no Bl terms-they blow up at the origin); in the exterior region 

(no Al terms-they don't go to zero at infinity). These two functions must be joined together 
by the appropriate boundary conditions at the surface itself. First, the potential is continuous 
at r = R (Eq. 2.34): 

It follows that the coefficients of like Legendre polynomials are equal: 

(To prove that formally, multiply both sides of Eq. 3.80 by Plr (cos 19) sin 0 and integrate from 
0 to n, using the orthogonality relation 3.68.) Second, the radial derivative of V suffers a 
discontinuity at the surface (Eq. 2.36): 

Thus 

or, using Eq. 3.81: 
00 

From here, the coefficients can be determined using Fourier's trick: 

Equations 3.78 and 3.79 constitute the solution to our problem, with the coefficients given by 
Eqs. 3.81 and 3.84. 

For instance, if 
ao(O) = kc0s6 = kP1(cosO), 

for some constant k, then all the Al's are zero except for I = 1, and 

k 
A~ = - [ P I  (cos 19)12 sin 19 cl19 = - . 

3t-o 
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The potential inside the sphere is therefore 

whereas outside the sphere 

In particular, if ao(8) is the induced charge on a metal sphere in an external field Eo2, so 
that k = kOEO (Eq. 3.77), then the potential inside is Eor cos 6' = E0z, and the field is 
-Eo&exactly right to cancel off the external field, as of course it should be. Outside the 
sphere the potential due to this surface charge is 

R~ 
E. - cos 8 ,  

1.2 

consistent with our conclusion in Ex. 3.8. 

Problem 3.16 Derive P3 (X) from the Rodrigues formula, and check that P3 (cos 8 )  satisfies the 
angular equation (3.60) for E = 3. Check that P3 and P1 are orthogonal by explicit integration. 

Problem 3.17 

(a) Suppose the potei~tial is a consfant V0 over the surface of the sphere. Use the results of 
Ex. 3.6 and Ex. 3.7 to find the potential inside and outside the sphere. (Of course, you know 
the answers in advance-this is just a consistency check on the method.) 

(b) Find the potential inside and outside a spherical shell that carries a uniforrtl surface charge 
DO, using the results of Ex. 3.9. 

Problem 3.18 The potential at the surlace of a sphere (radius R )  is given by 

V. = k cos 38, 

where k is a constant. Find the potential inside and outside the sphere, as well as the surface 
charge density a ( Q )  on the sphere. (Assume there's no charge inside or outside the sphere.) 

Problem 3.19 Suppose the potential V. ( 8 )  at the surface of a sphere is specified, and there is 
no charge inside or outside the sphere. Show that the charge density on the sphere is given by 

where 
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Problem 3.20 Find the potential outside a charged metal sphere (charge Q, radius R) placed 
in an otherwise uniform electric field Eo. Explain clearly where you are setting the zero of 
potential. 

Problem 3.21 In Prob. 2.25 you found the potential on the axis of a uniformly charged disk: 

(a) Use this, together with the fact that Pl (1) = 1,  to evaluate the first three terms in the 
expansion (3.72) for the potential of the disk at points off the axis, assuming r 2 R. 

(b) Find the potential for r < R by the same method, using (3.66). [Note: You must break 
the interior region up into two hemispheres, above and below the disk. Do not assume the 
coefficients A1 are the same in both hemispheres.] 

Problem 3.22 A spherical shell of radius R carries a uniform surface charge 00 on the "north- 
ern" hemisphere and a uniform surface charge -00 on the "southern" hemisphere. Find the 
potential inside and outside the sphere, calculating the coefficients explicitly up to A6 and B6. 

Problem 3.23 Solve Laplace's equation by separation of variables in cylindrical coordinates, 
assuming there is no dependence on z (cylindrical symmetry). [Make sure you find all solutions 
to the radial equation: in particular, your result must accommodate the case of an infinite line 
charge, for which (of course) we already know the answer.] 

Problem 3.24 Find the potential outside an infinitely long metal pipe, of radius R, placed at 
right angles to an otherwise uniform electric field Eo. Find the surface charge induced on the 
pipe. [Use your result from Prob. 3.23.1 

Problem 3.25 Charge density 
a (4) = a sin 5 4  

(where a is a constant) is glued over the surface of an infinite cylinder of radius R (Fig. 3.25). 
Find the potential inside and outside the cylinder. [Use your result from Prob. 3.23.1 

Figure 3.25 
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3.4 Multipole Expansion 

3.4.1 Approximate Potentials at Large Distances 

If you are very far away from a localized charge distribution, it "looks" like a point charge. 
and the potential is-to good appro~imation-(1/4n~~)Q/r,  where Q is the total charge. 
We have often used this as a check on formulas for V. But what if Q is zero? You might 
reply that the potential is then approximately zero, and of course, you're right, in a sense 
(indeed, the potential at large r is pretty small even if Q is not zero). But we're looking for 
something a bit more informative than that. 

Example 3.10 

A (physical) electric dipole consists of two equal and opposite charges (f q)  separated by a 
distance d. Find the approximate potential at points far from the dipole. 

Solution: Let 4- be the distance from -q and a+ the distance from +q (Fig. 3.26). Then 

1 
V(r) = - 

and (from the law of cosines) 

We're interestedin the rkgime r >> d,  so the third term is negligible, and the binomial expansion 
yields 

1 1  d -1/2 

- - ( c o s )  r S ; ( I * - C O S B  2r 

Thus 
1 l - d  - - - -  - - coso, 

a+ 4- r* 

and hence 
1 qdcos8 

V(r) 2 --. 
4nto r 2  

Figure 3.26 
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+-. - + - m- + - + 
Monopole Dipole Quadrupole Octopole 
( V -  llr) (V - l/r2) ( V -  l / r 3 )  (V - 

Figure 3.27 

Evidently the potential of a dipole goes like l / r 2  at large I . ;  as we might have anticipated, 
it falls off more rapidly than the potential of a point charge. Incidentally. if we put together 
a pair of equal and opposite dipoles to make a quadrupole, the potential goes like l / r3 ;  for 
back-to-back qrrad~.lcpoles (an octopole) it goes like l / r4 ;  and so on. Figure 3.27 summarizes 
this hierarchy; for completeness I have included the electric monopole (point charge), whose 
potential, of course, goes like l /  r .  

Example 3.10 pertained to a very special charge configuration. I propose now to develop 
a systematic expansion for the potential of an arbitrary localized charge distribution, in 
powers of l / r .  Figure 3.28 defines the appropriate variables; the potential at r is given by 

Using the law of cosines, 

where 

For points well outside the charge distribution, c is much less than 1, and this invites a 
binomial expansion: 

Figure 3.28 
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or, in terms of r ,  r', and 8': 

2 
= [l + (F) (cosQf) + (F) (3 cos2 of - 1)/2 

r 

In the last step I have collected together like powers of ( r f / r )  ; surprisingly, their coefficients 
(the terms in parentheses) are Legendre polynomials! The remarkable result1' is that 

where 8' is the angle between r and r'. Substituting this back into Eq. 3.91, and noting that 
r is a constant, as far as the integration is concerned, I conclude that 

or, more explicitly, 

l 
V ( r )  = - [ 1 p )  r + r'  cosQfc(r') d r '  

4n c0 

This is the desired result-the multipole expansion of V in powers of l l r .  The 
first term (n = 0) is the monopole contribution (it goes like l l r ) ;  the second (n = 1) 
is the dipole (it goes like l / r2) ;  the third is quadrupole; the fourth octopole; and so on. 
As it stands, Eq. 3.95 is exact, but it is useful primarily as an approximation scheme: the 
lowest nonzero term in the expansion provides the approximate potential at large r ,  and the 
successive terms tell us how to improve the approximation if greater precision is required. 

llIncidentally, this affords a second way of obtaining the Legendre polynomials (the first being Rodrigues' 
formula); 114 is called the generating function for Legendre polynomials. 
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Problem 3.26 A sphere of radius R,  centered at the origin, cames charge density 

where k is a constant, and r, 0 are the usual spherical coordinates. Find the approximate 
potential for points on the z axis, far from the sphere. 

3.4.2 The Monopole and Dipole Terms 

Ordinarily, the multipole expansion is dominated (at large r )  by the monopole term: 

where Q = 1 p d t  is the total charge of the configuration. This is just what we expected 
for the approximate potential at large distances from the charge. Incidentally, for a point 
charge at the origin, V,,, represents the exact potential everywhere, not merely a first 
approximation at large r; in this case all the higher multipoles vanish. 

If the total charge is zero, the dominant term in the potential will be the dipole (unless, 
of course, it also vanishes): 

Vdip ( r )  = - - r f  COS O1p(r ' )  dz ' .  

Since Q f  is the angle between r' and r (Fig. 3.28), 

and the dipole potential can be written more succinctly: 

This integral, which does not depend on r at all, is called dipole moment of the distribution: 

and the dipole contribution to the potential simplifies to 

vdip (r) = - - 
4nco r2 
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The dipole moment is determined by the geometry (size, shape, and density) of the 
charge distribution. Equation 3.98 translates in the usual way (Sect. 2.1.4) for point, line, 
and surface charges. Thus, the dipole moment of a collection of point charges is 

For the "physical" dipole (equal and opposite charges, f q) 

p = qr; - q r i  = q(rk  - r l )  = q d ,  

where d is the vector from the negative charge to the positive one (Fig. 3.29). 
Is this consistent with what we got for a physical dipole, in Ex. 3.10? Ycs: If you 

put Eq. 3.100 into Eq. 3.99, you recover Eq. 3.90. Notice, however, that this is only 
the approximate potential of the physical dipole--evidently there are higher multipole 
contributions. Of course, as you go farther and farther away, Vdip becomes a better and 
better approximation, since the higher terms die off more rapidly with increasing r .  By the 
same token, at a fixed r the dipole approximation improves as you shrink the separation d. 
To construct a "pure" dipole whose potential is given e.xactly by Eq. 3.99, you'd have to let d 
approach zero. Unfortunately, you then lose the dipole term too, unless you simultaneously 
arrange for q to go to infinity! Aphysical dipole becomes a pure dipole, then, in the rather 
artificial limit d + 0, q + m, with the product qd = p held fixed. (When someone uses 
the word "dipole," you can't always tell whether they mean a physical dipole (with finite 
separation between the charges) or apure (point) dipole. If in doubt, assume that d is small 
enough (compared to r )  that you can safely apply Eq. 3.99.) 

Dipole moments are vectors, and they add accordingly: if you have two dipoles, p1 and 
p2, the total dipole moment is p, + p2. For instance, with four charges at the corners of a 
square, as shown in Fig. 3.30. the net dipole moment is zero. You can see this by combining 
the charges in pairs (vertically. J, + = 0 ,  or horizontally, + + t = 0) or by adding up 
the four contributions individually, using Eq. 3.100. This is a quadrupole, as I indicated 
earlier, and its potential is dominated by the quadrupole term in the multipole expansion.) 

Figure 3.29 Figure 3.30 
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Figure 3.3 1 

Problem 3.27 Four particles (one of charge q? one of charge 39, and two of charge -2q) are 
placed as shown in Fig. 3.31, each a distance a from the origin. Find a simple approximate 
formula for the potential, valid at points far from the origin. (Express your answer in spherical 
coordinates.) 

Problem 3.28 In Ex. 3.9 we derived the exact potential for a spherical shell of radius R, which 
carries a surface charge a = k cos H .  

(a) Calculate the dipole moment of this charge distribution. 

(b) Find the approximate potential, at points far from the sphere, and cornpare the exact answer 
(3.87). What can you conclude about the higher multil?oles? 

Problem 3.29 For the dipole in Ex. 3.10, expand l/'& to order (d/  r ) 3 ,  and use this to determine 
the quadrupole and octopole terms in the potential. 

3.4.3 Origin of Coordinates in Multipole Expansions 

I mentioned earlier that a point charge at the origin constitutes a "pure" monopole. If it is 
not at the origin, it's no longer a pure monopole. For instance, the charge in Fig. 3.32 has a 
dipole moment p = q d f ,  and a corresponding dipole term in its potential. The monopole 
potential (1 /4nco)q /r  is not quite correct for this configuration; rather, the exact potential 
is (1/4rrro)q/a. The multipole expansion is, remember, a series in inverse powers of r (the 
distance to the origin), and when we expand l/& we gef all powers, not just the first. 

So moving the origin (or, what amounts to the same thiog, moving the charge) can 
radically alter a multipole expansion. The monopole moment Q does not change, since the 
total charge is obviously independent of the coordinate system. (In Fig. 3.32 the monopole 
term was unaffected when we moved q away from the origin-it's just that it was no 
longer the whole story: a dipole term-and for that matter all higher poles-appeared as 
well.) Ordinarily, the dipole moment does change when you shift the origin, but there is an 
important exception: If the total charge is zero, then the dipole moment is independent of 
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Figure 3.32 

X 

Figure 3.33 

the choice of origin. For suppose we displace the origin by an amount a (Fig. 3.33). The 
new dipole moment is then 

P = S ifp (r') dr '  = (rf - a)p (r') dr' S 
= r'p(rf) d r '  - a p(r') d r f  = p - Q,. S 

In particular, if Q = 0, then p = p. So if someone asks for the dipole moment in 
Fig. 3.34(a), you can answer with confidence "qd," but if you're asked for the dipole 
moment in Fig. 3.34(b) the appropriate response would be: "With respect to what origin?' 

Figure 3.34 

Problem 3.30 Two point charges, 3q and -q, are separated by a distance a .  For each of the 
arrangements in Fig. 3.35, find (i) the monopole moment, (ii) the dipole moment, and (iii) 
the approximate potential (in spherical coordinates) at large r (include both the monopole and 
dipole contributions). 
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Figure 3.35 

3.4.4 The Electric Field of a Dipole 

So far we have worked only withpotentials. Now I would like to calculate the electricfield 
of a (pure) dipole. If we choose coordinates so that p  lies at the origin and points in the z 
direction (Fig. 3-36), then the potential at r, Q is (Eq. 3.99): 

h p  pcos0 
Vdip (r, Q )  = - - 

4ncor2 - 4rrcsor2 ' 

To get the field, we take the negative gradient of V: 

Thus 

1 av 
E,$ = = 0. 

r sin 6' 

Figure 3.36 
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This formula makes explicit reference to a particular coordinate system (spherical) and 
assumes a particular orientation for p (along z ) .  It can be recast in a coordinate-free form, 
analogous to the potential in Eq. 3.99-see Prob. 3.33. 

Notice that the dipole field falls off as the inverse cube of r ;  the monopole field 
( ~ / 4 n c ~ r ~ ) i  goes as the inverse square, of course. Quadrupole fields go like l / r4 ,  oc- 
topole like l / r5 ,  and so on. (This merely reflects the fact that rnonopole potentials fall off 
like l /r,  dipole like l / r2 ,  quadrupole like l / r3 ,  and so on-the gradient introduces another 
factor of l l r . )  

Figure 3.37(a) shows the field lines of a "pure" dipole (Eq. 3.103). For comparison. 
1 have also sketched the field lines for a "physical" dipole, in Fig. 3.37(b). Notice how 
similar the two pictures become if you blot out the central region; up close, however, they 
are entirely different. Only for points r >> d does Eq. 3.103 represent a valid approximation 
to the field of a physical dipole. As I mentioned earlier, this regime can be reached either 
by going to large r or by squeezing the charges very close together.12 

(a) Field of a "pure" dipole (a) Field of a "physical" dipole 

Figure 3.37 

Problem 3.31 A "pure" dipole p is situated at the origin, pointing in the z direction. 

(a) What is the force on a point charge q at (a, 0,O) (Cartesian coordinates)? 

(b) What is the force on q at (0, 0, a)?  

(C) How much work does it take to move q from (a, 0,O) to (0, 0, a)? 

1 2 ~ v e n  in the limit, there remains an infinitesimal region at the origin where the field of aphysical dipole points 
in the "wrong" direction, as you can see by "walking" down the z axis in Fig. 3.35(b). If you want to explore this 
subtle and important point, work Prob. 3.42. 
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Figure 3.38 

Problem 3.32 Three point charges are located as shown in Fig. 3.38. each a distance a from the 
origin. Find the approximate electric field at points far from the origin. Express your answer 
in spherical coordinates, and include the two lowest orders in the multipole expansion. 

Problem 3.33 Show that the electric field of a ("pure") dipole (Eq. 3.103) can be written in 
the coordinate-free form 

1 1  
Edip (r)  = - - [3(p . i)i - p]. 

4 n t 0  ,3 

More Problems on Chapter 3 

Problem 3.34 A point charge q of mass m is released from rest at a distance d from an infinite 
grounded conducting plane. How long will it take for the charge to hit the plane? [Answer: 
(nd/q)-.I 

Problem 3.35 Two infinite parallel grounded conducting planes are held a distance a apart. 
A point charge q is placed in the region between them. a distance x froin one plate. Find the 
force on g.  Check that your answer is correct for the special cases a + cc and .X = a/2. 
(Obtaining the induced surface is not so easy. See B. G. Dick, Am. J. Plzys. 41, 1289 (1973). 
M. Zahn, Am. J. Phys. 44, 1 132 (1976), J. Pleines and S. Mahajan, Am. J. Phys. 45, 868 
(1977). and Prob. 3.44 below.) 

Problem 3.36 Two long straight wires, carrying opposite uniform line charges &A, are situated 
on either side of a long conducting cylinder (Fig. 3.39). The cylinder (which carries no net 
charge) has radius R, and the wires are a distance a from the axis. Find the potential at point r. 

A (s2 + a 2  + 2sa cos #)[(,a/ + - 2sa cos $1 
Answer: V(s, @) = - 

(s2 + a 2  - 2sa c o s @ ) [ ( s a / ~ ) ~  + R2 + 2sa cos@] l1 
Problem 3.37 A conducting sphere of radius a ,  at potential Vo, is surrounded by a thin con- 
centric spherical shell of radius b, over which someone has glued a surface charge 
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Figure 3.39 Figure 3.40 

where k is a constant, and 8 is the usual spherical coordinate. 

(a) Find the potential in each region: (i) r > b, and (ii) a < r < b. 

(b) Find the induced surface charge D; (8) on the conductor. 

(c) What is the total charge of this system? Check that your answer is consistent with the 
behavior of V at large r. 

Problem 3.38 A charge + Q  is distributed uniformly along the z axis from z = -a to z = +a. 
Show that the electric potential at a point r is given by 

for r > a .  

Problem 3.39 A long cylindrical shell of radius R carries a uniform surface charge DO on the 
upper half and an opposite charge -00 on the lower half (Fig. 3.40). Find the electric potential 
inside and outside the cylinder. 

Problem 3.40 A thin insulating rod, running from z = -a to z = +a, carries the indicated 
line charges. In each case, find the leading term in the multipole expansion of the potential: 
(a) h = kcos(nz/2a), (b) h = k sin(nz/a), (c) h = k cos(nz/a), where k is a constant. 

Problem 3.41 Show that the average field inside a sphere of radius R, due to all the charge 
within the sphere, is 

where p is the total dipole moment. There are several ways to prove this delightfully simple 
result. Here's one method: 
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(a) Show that the average field due to a single charge q at point r inside the sphere is the same 
as the field at r due to a uniformly charged sphere with p = - q / ( { n ~ ~ ) ,  namely 

where It is the vector from r to dz ' .  

(b) The latter can be found from Gauss's law (see Prob. 2.12). Express the answer in terms of 
the dipole moment of q. 

(C) Use the superposition principle to generalize to an arbitrary charge distribution. 

(d) While you're at it, show that the average field over the sphere due to all the charges outside 
is the same as the field they produce at the center. 

Problem 3.42 Using Eq. 3.103, calculate the average electric field of a dipole, over a spherical 
volume of radius R ,  centered at the origin. Do the angular intervals first. [Note: You must 
express i and 6 in terms of 2, f ,  and 2 (see back cover) before integrating. If you don't 
understand why, reread the discussion in Sect. 1.4. l.] Compare your answer with the general 
theorem Eq. 3.105. The discrepancy here is related to the fact that the field of a dipole blows 
up at r = 0. The angular integral is zero, but the radial integral is infinite, so we really don't 
know what to make of the answer. To resolve this dilemma, let's say that Eq. 3.103 applies 
outside a tiny sphere of radius t-its contribution to Eav, is then unambiguously zero, and the 
whole answer has to come from the field inside the t-sphere. 

(b) What must the field inside the t-sphere be, in order for the general theorem (3.105) to hold? 
[Hint: since t is arbitrarily small, we're talking about something that is infinite at r = 0 and 
whose integral over an infinitesimal volume is finite.] [Answer: - (p /3 t0 )~3  (f)] 

[Evidently, the true field of a dipole is 

1 1  
Edip (r) = - - l 3  [3(p. i)? - p] - --p6 (r). 

4n t0  r3 3 ~ 0  

You may well wonder how we missed the delta-function term when we calculated the field 
back in Scct. 3.4.4. Thc answer is that the differentiation leading to Eq. 3.103 is perfectly valid 
except at r = 0, but we should have known (from our experience in Sect. 1 S.1) that the point 
r = 0 is problematic. See C. P. Frahm, Am. J. Phys. 51, 826 (1983), or more recently R. 
Esuada and R. P. Kanwal, Am. J. Plzys. 63, 278 (1995). For further details and applications. 
see D. J. Griffiths, Am. J. Phys. 50,698 (1982).] 

Problem 3.43 

(a) Suppose a charge distribution p1 (r) produces a potential V1 (r),  and some other charge dis- 
tribution p2(r) produces a potential V2(r). [The two situations may have nothing in common, 
for all I care-perhaps number 1 is a uniformly charged sphere and number 2 is a parallel-plate 
capacitor. Please understand that p1 and p2 are not present at the same time; we are talking 
about two differentproblems, one in which only p1 is present, and another in which only p2 is 
present.] Prove Green's reciprocity theorem: 

J J 
all space all space 
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a b 

Figure 3.41 

[Hint: Evaluate 1 El  . E2 dt two ways, first writing El = -V V1 and using integration-by- 
parts to transfer the derivative to E2, then writing E2 = -V V2 and transferring the derivative 
to El .l 
(b) Suppose now that you have two separated conductors (Fig. 3.4 1). If you charge up conductor 
a by amount Q (leaving b uncharged) the resulting potential of b is, say. V,b. On the other 
hand, if you put that same charge Q on conductor b (leaving a uncharged) the potential of 
a would be Vb,. Use Green's reciprocity theorem to show that V,b = Vb, (an astonishing 
result, since we assumed nothing about the shapes or placement of the conductors). 

Problem 3.44 Use Green's reciprocity theorem (Prob. 3.43) to solve the following two prob- 
lems. [Hint: for distribution 1, use the actual situation; for distribution 2, remove q, and set 
one of the conductors at potential Vo.] 

(a) Both plates of a parallel-plate capacitor are grounded, and a point charge q is placed between 
them at a distance x from plate 1. The plate separation is d. Find the induced charge on each 
plate. [Answer: Q1 = q(x/d - 1) ;  Q2 = -qx/d] 

(b) Two concentric spherical conducting shells (radii a and b) are grounded, and a point charge 
q is placed between them (at radius r ) .  Find the induced charge on each sphere. 

Problem 3.45 

(a) Show that the quadrupole term in the multipole expansion can be written 

where 
' 2  - (r ) ~ ~ ; ] ~ ( r ' ) d t '  

Here 

is the Kronecker delta, and Qi j  is the quadrupole moment of the charge distribution. Notice 
the hierarchy: 
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The monopole moment (Q) is a scalar, the dipole moment (p) is a vector, the quadrupole 
moment ( Q i j )  is a second-rank tensor, and so on. 

(b) Find all nine components of Qij for the configuration in Fig. 3.30 (assume the square has 
side a and lies in the xy plane, centered at the origin). 

(C) Show that the quadrupole moment is independent of origin if the monopole and dipole 
moments both vanish. (This works all the way up the hierarchy-the lowest nonzero multipole 
moment is always independent of origin.) 

(d) How would you define the octopole moment? Express the octopole term in the multipole 
expansion in terms of the octopole moment. 

Problem 3.46 In Ex. 3.8 we determined the electric field outside a spherical conductor (radius 
R) placed in a uniform external field Eo. Solve the problem now using the method of images, 
and check that your answer agrees with Eq. 3.76. [Hint: Use Ex. 3.2, but put another charge, 
-q, diametrically opposite q.  Let a + m, with ( 1 / 4 n ~ ~ ) ( 2 ~ / a ~ )  = - E0 held constant.] 

! Problem 3.47For the infinite rectangular pipe in Ex. 3.4, suppose the potential on the bottom 
(y = 0) and the two sides (.X = Lb)  is zero, but the potential on the top (y = a )  is a nonzero 
constant Vo. Find the potential inside the pipe. [Note: This is arotated version of Prob. 3.14(b), 
but set it up as in Ex. 3.4 using sinusoidal functions in y and hyperbolics in X. It is an unusual 
case in which k = 0 must be included. Begin by finding the general solution to Eq. 3.26 when 
k = 0. For further discussion see S. Hassani, Am. J. Phys. 59,470 (1 991).] 

Problem 3.48 

(a) A long metal pipe of square cross-section (side a )  is grounded on three sides, while the 
fourth (which is insulated from the rest) is maintained at constant potential Vo. Find the net 
charge per unit length on the side opposite to Vo. [Hint: Use your answer to Prob. 3.14 or 
Prob. 3.47.1 

(b) A long metal pipe of circular cross-section (radius R )  is divided (lengthwise) into four 
equal sections, three of them grounded and the fourth maintained at constant potential Vg. 
Find the net charge per unit length on the section opposite to Vo. [Answer to both (a) and (b): 
h = -eo V. In 21 13 

Problem 3.49 An ideal electric dipole is situated at the origin, and points in the z direction, 
as in Fig. 3.36. An electric charge is released from rest at a point in the xy plane. Show that 
it swings back and forth in a semi-circular arc, as though it were a pendulum supported at the 
origin. [This charming result is due to R. S. Jones, Am. J. Phys. 63, 1042 (1995).] 

1 3 ~ h e s e  are special cases of the Thompson-Lampard theorem; see J .  D. Jackson, Am. J. Phys. 67, 107 (1999). 



Chapter 4 

Electric Fields in Matter 

Polarization 

4.1.1 Dielectrics 

In this chapter we shall study electric fields in matter. Matter, of course, comes in many 
varieties-solids, liquids, gases, metals, woods, glasses-and these substances do not all 
respond in the same way to electrostatic fields. Nevertheless, rriost everyday objects belong 
(at least, in good approximation) to one of two large classes: conductors and insulators (or 
dielectrics). We have already talked about conductors; these are substances that contain 
an "unlimited" supply of charges that are free to move about through the material. In 
practice what this ordinarily means is that many of the electrons (one or two per atom in a 
typical metal) are not associated with any particular nucleus, but roam around at will. In 
dielectrics, by contrast, all charges are attached to specijic atoms or molecules-they're 
on a tight leash, and all they can do is move a bit within the atom or molecule. Such 
microscopic displacements are not as dramatic as the wholesale rearrangement of charge in 
a conductor, but their cumulative effects account for the characteristic behavior of dielectric 
materials. There are actually two principal mechanisms by which electric fields can distort 
the charge distribution of a dielectric atom or molecule: stretching and rotating. In the next 
two sections I'll discuss these processes. 

4.1.2 Induced Dipoles 

What happens to a neutral atom when it is placed in an electric field E? Your first guess 
might well be: "Absolutely nothing-since the atom is not charged, the field has no effect 
on it." But that is incorrect. Although the atom as a whole is electrically neutral, there is a 
positively charged core (the nucleus) and a negatively charged electron cloud surrounding 
it. These two regions of charge within the atom are influenced by the field: the nucleus 
is pushed in the direction of the field, and the electrons the opposite way. In principle, if 
the field is large enough, it can pull the atom apart completely, "ionizing" it (the substance 
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then becomes a conductor). With less extreme fields, however, an equilibrium is soon 
established, for if the center of the electron cloud does not coincide with the nucleus, these 
positive and negative charges attract one another, and this holds the atoms together. The 
two opposing forces-E pulling the electrons and nucleus apart, their mutual attraction 
drawing them together-reach a balance, leaving the atom polarized, with plus charge 
shifted slightly one way, and minus the other. The atom now has a tiny dipole moment 
p, which points in the same direction as E. vpically, this induced dipole moment is 
approximately proportional to the field (as long as the latter is not too strong): 

The constant of proportionality a is called atomic polarizability. Its value depends on the 
detailed structure of the atom in cpestion. Table 4.1 lists some experimentally determined 
atomic polarizabilities. 

Table 4.1 Atomic Polarizabilities (a/4nco, in units of I O - ~ O  m3). 
Source: Handbook of Chemistry and Plzysics, 78th ed. 

(Boca Raton: CRC Press, Inc., 1997). 

Example 4.1 

A primitive model for an atom consists of a point nucleus (+g) surrounded by a uniformly 
charged spherical cloud ( -g )  of radius a (Fig. 4.1). Calculate the atomic polarizability of such 
an atom. 

Solution: In the presence of an external field E, the nucleus will be shifted slightly to the right 
and the electron cloud to the left, as shown in Fig. 4.2. (Because the actual displacements 

Figure 4.1 Figure 4.2 
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involved are extremely small, as you'll see in Prob. 4.1, it is reasonable to assume that the 
electron cloud retains its spherical shape.) Say that equilibrium occurs when the nucleus is 
displaced a distance d from the centei of the sphere. At that point the external field pushing 
the nucleus to the right exactly balances the internal field pulling it to the left: E = E,, where 
E, is the field produced by the electron cloud. Now the field at a distance d from the center of 
a uniformly charged sphere is 

(Prob. 2.12). At equilibrium, then, 

The atomic polarizability is therefore 

where v is the volume of the atom. Although this atomic model is extremely crude, the result 
(4.2) is not too bad-it's accurate to within a factor of four or so for many simple atoms. 

For molecules the situation is not quite so simple, because frequently they polarize 
more readily in some directions than others. Carbon dioxide (Fig. 4.3), for instance, has 
a polarizability of 4.5 X 1 0 ~ ~ ~  C2- m/N when you apply the field along the axis of the 
molecule, but only 2 X 10-40 for fields perpendicular to this direction. When the field is 
at some angle to the axis, you must resolve it into parallel and perpendicular components. 
and multiply each by the pertinent polarizabilit y : 

In this case the induced dipole moment may not even be in the same direction as E. And 
C02 is relatively simple, as mblecules go, since the atoms at least arrange themselves in 
a straight line; for a completely asymmetrical molecule Eq. 4.1 is  replaced by the most 
general linear relation between E and p: 

px  = a x r  E, + axy E y  + 
P!: = a,, E, + a,,E, + ayz E: 
y = a,, E., + azy E, + a" 7: 

Figure 4.3 
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The set of nine constants ai, constitute the polarizability tensor for the molecule. Their 
actual values depend on the orientation of the axes you chose, though it is always possible to 
choose "principal" axes such that all the off-diagonal terms (axy,  a,,x, etc.) vanish, leaving 

just three nonzero polarizabilities: a,,, ayy, and azz.  

Problem 4.1 A hydrogen atom (with the Bohr radius of half an angstrom) is situated between 
two metal plates 1 mm apart. which are connected to opposite terminals of a 500 V battery. 
What fraction of the atomic radius does the separation distance d amount to, roughly? Estimate 
the voltage you would need with this apparatus to ionize the atom. [Use the value of cr in Table 
4.1. Moral: The displacements we're talking about are minute, even on an atomic scale.] 

Problem 4.2 According to quantum mechanics, the electron cloud for a hydrogen atom in the 
ground state has a charge density. 

where q is the charge of the electron and a is the Bohr radius. Find the atomic polarizability of 
such an atom. [Hint: First calculate the electric field of the electron cloud, E, ( r )  ; then expand 
the exponential, assuming r << a. For a more sophisticated approach. see W. A. Bowers. Am. 
J. Phys. 54,347 (1986).] 

Problem 4.3 According to Eq. 4.1, the induced dipole moment of an atom is proportional to 
the external field. This is a "rule of thumb," not a fundamental law, and it is easy to concoct 
exceptions-in theory. Suppose, for example, the charge density of the electron cloud were 
proportional to the distance from the center, out to a radius R. To what power of E would 
p be proportional in that case? Find the condition on p ( r )  such that Eq. 4.1 will hold in the 
weak-field limit. 

Problem 4.4 A point charge q is situated a large distance r from a neutral atom of polarizability 
u. Find the force of attraction between them. 

4.1.3 Alignment of Polar Molecules 

The neutral atom discussed in Sect. 4.1.2 had no dipole moment to start with-p was 
induced by the applied field. Some tnolecules have built-in, permanent dipole moments. 
In the water molecule, for example, the electrons tend to  cluster around the oxygen atom 
(Fig. 4.4), and since the molecule is bent at 105', this leaves a negative charge at the vertex 
and a net positive charge at the opposite end. (The dipole moment of water is unusually 
large: 6.1 X 10-~' C.m; in fact, this is what accounts for its effectiveness as  a solvent.) 
What happens when such molecules (called polar molecules) are placed in an electric field? 
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Figure 4.4 Figure 4.5 

If the field is uniform, the force on the positive end, F+ = qE, exactly cancels the force 
on the negative end, F- = -qE (Fig. 4.5). However, there will be a torque: 

N = (r+ X F+) + (r- X F-) 
= [(d/2) X (qE)1+ [(-d/2) x (-qE)I = qd X E. 

Thus a dipole p = qd in a uniform field E experiences a torque 

Notice that N is in such a direction as to line p up parallel to E; a polar molecule that is 
free to rotate will swing around until it points in the direction of the applied field. 

If the field is nonuniform, so that F+ does not exactly balance F-, there will be a net 
force on the dipole, in addition to the torque. Of course, E must change rather abruptly 
for there to be significant variation in the space of one molecule, so this is not ordinarily a 
major consideration in discussing the behavior of dielectrics. Nevertheless, the formula for 
the force on a dipole in a nonuniform field is of some interest: 

where A E  represents the difference between the field at the plus end and the field at the 
minus end. Assuming the dipole is very short, we may use Eq. 1.35 to approximate the 
stnall change in E,: 

AE,  (VE,)  . d, 

with corresponding formulas for E, and E,. More compactly, 
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and therefore1 -1 
For a "perfect" dipole of infinitesimal length, Eq. 4.4 gives the torque about the center of 
the dipole even in a nonuniform field; about any other point N = (p X E) + (r X F). 

Problem 4.5 In Fig. 4.6, p1 and p2 are (perfect) dipoles a distance r apart. What is the torque 
on p1 due to p2? What is the torque on p2 due to p1 ? [In each case I want the torque on the 
dipole about its own center. If it bothers you that the answers are not equal and opposite, see 
Prob. 4.29.1 

Figure 4.6 Figure 4.7 

Problem 4.6 A (perfect) dipole p is situated a distance z above an infinite grounded conducting 
plane (Fig. 4.7). The dipole makes an angle 8 with the perpendicular to the plane. Find the 
torque on p. If the dipole is free to rotate, in what orientation will it come to rest? 

Problem 4.7 Show that the energy of an ideal dipole p in an electric field E is given by 

Problem 4.8 Show that the interaction energy of two dipoles separated by a displacement r is 

[Hint: use Prob. 4.7 and Eq. 3.104.1 

Problem 4.9 A dipole p is a distance r from a point charge q,  and oriented so that p makes an 
angle 8 with the vector r from q to p. 

(a) What is the force on p? 

(b) What is the force on q? 

' In the present context Eq. 4.5 could be written more conveniently as F = V(p . E). However, it is safer to 
stick with ( p .  V)E, because we will be applying the formula to materials in which the dipole moment (per unit 
volume) is itself a function of position and this second expression would imply (incorrectly) that p too is to be 
differentiated. 
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4.1.4 Polarization 

In the previous two sections we have considered the effect of an external electric field on an 
individual atom or molecule. We are now in a position to answer (qualitatively) the original 
question: What happens to a piece of dielectric material when it is placed in an electric field? 
If the substance consists of neutral atorns (or nonpolar molecules), the field will induce in 
each a tiny dipole moment, pointing in the same direction as the field.2 If the material is 
made up of polar molecules, each permanent dipole will experience a torque, tending to 
line it up along the field direction. (Random thermal motions compete with this process, so 
the alignment is never complete, especially at higher temperatures, and disappears almost 
at once when the field is removed.) 

Notice that these two mechanisms produce the same basic result: a lot of little dipole., 
pointing along tlze direction of the ,field-the material becomes polarized. A convenient 
measure of this effect is 

P = dipole nzonlent per unit volume, 

which is called the polarization. From now on we shall not worry much about how the 
polarization got there. Actually, the two mechanisms I described are not as clear-cut as I 
tried to pretend. Even in polar molecules there will be some polarization by displacement 
(though generally it is a lot easier to rotate a molecule than to stretch it, so the second 
mechanism dominates). It's even possible in some materials to "freeze in" polarization, so 
that it persists after the field is removed. But let's forget for a moment about the cause of 
the polarization and study the field that a chunk of polarized material itselfproduces. Then. 
in Sect. 4.3, we'll put it all together: the original field, which was responsible for P, plus 
the new field, which is due to P. 

4.2 The Field of a Polarized Object 

4.2.1 Bound Charges 

Suppose we have a piece of polarized material-that is, an object containing a lot of micro- 
scopic dipoles lined up. The dipole moment per unit volume P is given. Questicm: What 
is the field produced by this object (not the field that may have caused the polarization. 
but the field the polarization itselfcauses)? Well, we know what the field of an individual 
dipole looks like, so why not chop the material up into infinitesimal dipoles and integrate 
to get the total? As usual it's easier to work with the potential. For a single dipole p we 
have equation (Eq. 3.99). 

2 ~ n  asymmetric molecules the induced dipole moment may not be parallel to the field, but if the molecules are 
randomly oriented, the perpendicular contributions will allerage to zero. Within a single crystal, the orientations 
are certainly not random, and we would have to treat this case separately. 
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Figure 4.8 

where n, is the vector from the dipole to the point at which we are evaluating the potential 
(Fig. 4.8). In the present context we have a dipole moment p = P d r '  in each volumc 
element dr ' ,  so the total potential is 

V(r) = - d t ' .  
417 c. 

v 

That does it, in principle. But a little sleight-of-hand casts this integral into a much 
more illuminating form. Observing that 

where (unlike Prob. 1.13) the differentiation is with respect to the source coordinates (r'), 
we have 

Integrating by parts, using product rule number 5, gives 

or, using the divergence theorem, 

The first term looks like the potential of a surface charge 
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(where n is the normal unit vector), while the second term looks like the potential of a 
volume charge 

-1 (4.12) 

With these definitions, Eq. 4.10 becomes 

What this means is that the potential (and hence also the field) of a polarized object is 
the same as that produced by a volume charge density ph = -V - P plus a surface charge 
density oh = P .  n. Instead of integrating the contributions of all the infinitesimal dipoles, as 
in Eq. 4.9, we just find those bound charges, and then calculate the fields tizey produce, in 
the same way we calcula?e the field of any other volume and surface charges (for example. 
using Gauss's law). 

Example 4.2 

Find the electric field produced by a uniformly polarized sphere of radius R. 

Solution: We may as well choose the z axis to coincide with the direction of polarization 
(Fig. 4.9). The volume bound charge density pb is zero, since P is uniform, but 

where 8 is the usual spherical coordinate. What we want, then, is the field produced by a 
charge density P cos 0 plastered over the surface of a sphere. But we have already computed 
the potential of such a configuration in Ex. 3.9: 

P -- cos 0,  
360 r2  

forr  5 R,  

for r > R. 

Figure 4.9 
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Since r cos 8 = z ,  thefield inside the sphere is uniform, 

This remarkable result will be very useful in what follows. Outside the sphere the potential is 
identical to that of a perfect dipole at the origin, 

1 p . i  v=-- forr  > R ,  
4xe0 72 ' 

whose dipole moment is, not surprisingly, equal to the total dipole moment of the sphere: 

p = i n  R ~ P .  (4.16) 

The field of the uniformly polarized sphere is shown in Fig. 4.10. 

Figure 4.10 

Problem 4.10 A sphere of radius R carries a polarization 

P( r )  = kr ,  

where k is a constant and r is the vector from the center. 

(a) Calculate the bound charges ab and pb. 

(b) Find the field inside and outside the sphere. 
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Problem 4.11 A short cylinder, of radius a and length L, cames a "frozen-in" uniform polar- 
ization P, parallel to its axis. Find the bound charge, and sketch the electric field (i) for L >> a.  
(ii) for L << a,  and (iii) for L % a .  [This device is known as a bar electret; it is the electrical 
analog to a bar magnet. In practice, only very special materials-barium titanate is the most 
"familiar" example-will hold a permanent electric polarization. That's why you can't buy 
electrets at the toy store.] 

Problem 4.12 Calculate the potential of a uniformly polarized sphere (Ex. 4.2) directly from 
Eq. 4.9. 

4.2.2 Physical Interpretation of Bound Charges 

In the last section we found that the field of a polarized object is identical to the field 
that would be produced by a certain distribution pf "bound charges," ab and pb. But this 
conclusion emerged in the course of abstract ~nanipulations on the integral in Eq. 4.9, and 
left us with no clue as to the physical meaning of these bound charges. Indeed, some 
authors give you the impression that bound charges are in some sense "fictitious"-mere 
bookkeeping devices used to facilitate the calculation of fields. Nothing could be farther 
from the truth; pb and ab represent pe$ectly genuine accumulations of charge. In this 
section I'll explain how polarization leads to such accumulations of charge. 

The basic idea is very simple: Suppose we have a long string of dipoles, as shown in 
Fig. 4.1 1. Along the line, the head of one effectively cancels the tail of its neighbor, but at 
the ends there are two charges left over: plus at the right end and minus at the left. It is as 
if we had peeled off an electron at one end and carried it all the way down to the other end. 
though in fact no single electron made the whole trip-a lot of tiny displacements add up to 
one large one. We call the net charge at the ends bound charge to remind ourselves that it 
cannot be removed; in a dielectric every electron is attached to a specific atom or molecule. 
But apart from that, bound charge is no different from any other kind. 

Figure 4.1 1 

To calculate the actual arnount of bound charge resulting from a given polarization. 
examine a "tube" of dielectric parallel to P. The dipole moment of the tiny chunk shown 
in Fig. 4.12 is P(Ad) ,  where A is the cross-sectional area of the tube and d is the length of 
the chunk. In terms of the charge (q) at the end, this same dipole moment can be written 
qd. The bound charge that piles up at the right end of the tube is therefore 

q = PA.  

If the ends have been sliced off perpendicularly, the surface charge density is 
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Figure 4.12 Figure 4.13 

For an oblique cut (Fig. 4.13), the charge is still the same, but A = Aend COS 0, SO 

The effect of the polarization, then, is to paint a bound charge = P n over the surface 
of the material. This is exactly what we found by more rigorous means in Sect. 4.2.1. But 
now we know where the bound charge comes from. 

If the polarization is nonuniform we get accumulations of bound charge within the 
material as well as on the surface. A glance at Fig. 4.14 suggests that a diverging P results 
in a pileup of negative charge. Indeed, the net bound charge pb dz  in a given volume is 
equal and opposite to the ainount that has been pushed out through the surface. The latter 
(by the same reasoning we used before) is P . n per unit area, so 

Since this is true for any volume, we have 

confirming, again, the more rigorous conclusion of Sect. 4.2.1. 

Figure 4.14 
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Example 4.3 

There is another way of analyzing the uniformly polarized sphere (Ex. 4.2), which nicely 
illustrates the idea of a bound charge. What we have, really, is two spheres of charge: a 
positive sphere and a negative sphere. Without polarization the two are superimposed and 
cancel completely. But when the material is uniformly polarized, all the plus charges move 
slightly upward (the z direction), and all the minus charges move slightly downward (Fig. 4.15 ). 
The two spheres no longer overlap perfectly: at the top there's a "cap" of leftover positive charge 
and at the bottom a cap of negative charge. This "leftover" charge is precisely the bound surface 
charge ab. 

Figure 4.15 

In Prob. 2.18 you calculated the field in the region of overlap between two uniformly charged 
spheres; the answer was 

where q is the total charge of the positive sphere, d is the vector from the negative center 
the positive center, and R is the radius of the sphere. We can express this in terms of the 

4 3 polarization of the sphere, p = qd = (gn  R )P, as 

Meanwhile, for points outside, it is as though all the charge on each sphere were concentrated 
at the respective center. We have, then, a dipole, with potential 

(Remember that d is some small fraction of an atomic radius; Fig. 4.15 is grossly exaggerated. ) 
These answers agree, of course, with the results of Ex. 4.2. 
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Problem 4.13 A very long cylinder, of radius a, carries a uniform polarization P perpendicular 
to its axis. Find the electric field inside the cylinder. Show that the field outside the cylinder 
can he expressed in the form 

U 

E(r) = - [2(P. i)i - P]. 
2 ~ ~ x 2  

[Careful: I said "uniform," not "radial"!] 

Problem 4.14 When you polarize a neutral dielectric, charge moves a bit, but the t o ~ l  remains 
zero. This fact should be reflected in the bound charges ob and pb. Prove from Eqs. 4.1 1 and 
4.12 that the total bound charge vanishes. 

4.2.3 The Field Inside a Dielectric 

I have been sloppy about the distinction between "pure" dipoles and "physical" dipoles. In 
developing the theory of bound charges, I assumed we were working with the pure kind- 
indeed, I started with Eq. 4.8, the formula for the potential of a pure dipole. And yet, an 
actual polarized dielectric consists of physical dipoles, albeit extremely tiny ones. What is 
more, I presumed to represent discrete molecular dipoles by a continuous density function 
P. How can I justify this method? Outside the dielectric there is no real problem: here 
we are far away from the molecules (n, is many times greater than the separation distance 
between plus and minus charges), so the dipole potential dominates overwhelmingly and 
the detailed "graininess" of the source is blurred by distance. Inside the dielectric, however, 
we can hardly pretend to be far from all the dipoles, and the procedure I used in Sect. 4.2.1 
is open to serious challenge. 

In fact, when you stop to think about it, the electric field inside matter must be fantas- 
tically complicated, on the microscopic level. If you happen to be very near an electron, 
the field is gigantic, whereas a short distance away it may be small or point in a totally 
different direction. Moreover, an instant later, as the atoms move about, the field will have 
altered entirely. This true microscopic field would be utterly impossible to calculate, nor 
would it be of much interest if you could. Just as, for macroscopic purposes, we regard 
water as a continuous fluid, ignoring its molecular structure, so also we can ignore the 
microscopic bumps and wrinkles in the electric field inside matter, and concentrate on the 
macroscopic field. This is defined as the avemge field over regions large enough to contain 
many thousands of atoms (so that the uninteresting microscopic fluctuations are smoothed 
over), and yet small enough to ensure that we do not wash out any significant large-scale 
variations in the field. (In practice, this means we must average over regions much smaller 
than the dimensions of the object itself.) Ordinarily, the macroscopic field is what people 
 near^ when they speak of "the" field inside matter.3 

3 ~ n  case the introduction of the macroscopic field sounds suspicious to you, let me point out that you do exactly 
the same averaging whenever you speak of the densih of a material. 
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Figure 4.16 

It remains to show that the macroscopic field is what we actually obtain when we use 
the methods of Sect. 4.2.1. The argument is subtle, so hang on. Suppose I want to calculate 
the macroscopic field at some point r within a dielectric (Fig. 4.16). I know I must average 
the true (microscopic) field over an appropriate volume, so let me draw a small sphere about 
r, of radius, say, a thousand times the size of a molecule. The macroscopic field at r, then. 
consists of two parts: the average field over the sphere due to all charges outside, plus the 
average due to all charges inside: 

Now you proved in Prob. 3.41(d) that the average field (over a sphere), produced b! 
charges outside, is equal to the field they produce at the center, so EOut is the field at r due to 
the dipoles exterior to the sphere. These are far enough away that we can safely use Eq. 4.9: 

Vout = - d t ' .  

outside 

The dipoles inside the sphere are too close to treat in this fashion. But fortunately all a-e 
need is their average field, and that, according to Eq. 3.105, is 

regardless of the details of the charge distribution within the sphere. The only relevant 
quantity is the total dipole moment, p = (in R ~ )  P: 

Now, by assumption the sphere is small enough that P does not vary significantly over 
its volume, so the term left out of the integral in Eq. 4.17 corresponds to the field at the 
center of a uniformly polarized sphere, to wit: -(1/3ro)P (Eq. 4.14). But this is precisel! 
what Ei, (Eq. 4.18) puts back in! The macroscopic field, then, is given by the potential 
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where the integral runs over the entire volume of the dielectric. This is, of course, what 
we used in Sect. 4.2.1; without realizing it, we were correctly calculating the averaged, 
macroscopic field, for points inside the dielectric. 

You may have to reread the last couple of paragraphs for the argument to sink in. 
Notice that it all revolves around the curious fact ha1 Lhe average field over any sphere 
(due to the charge inside) is the same as the field at the center of a uniformly polarized 
sphere with the same total dipole moment. This means that no matter how crazy the actual 
microscopic charge configuration, we can replace it by a nice smooth distribution of perfect 
dipoles, if all we want is the macroscopic (average) field. Incidentally, while the argument 
ostensibly relies on the spherical shape I chose to average over, the macroscopic field is 
certainly independent of the geometry of the averaging region, and this is reflected in the 
final answer, Eq. 4.19. Presumably, one could reproduce the same argument for a cube or 
an ellipsoid or whatever-the calculation might be more difficult, but the conclusion would 
be the same. 

The Electric Displacement 

4.3.1 Gauss's Law in the Presence of Dielectrics 

In Sect. 4.2 we found that the effect of polarization is to produce accumulations of bound 
charge, pb = -V . P within the dielectric and ah = P - n on the surface. The field due 
to polarization of the medium is just the field of this bound charge. We are now ready to 
put it all together: the field attributable to bound charge plus the field due to everything 
else (which, for want of a better term, we call free charge). The free charge might consist 
of electrons on a conductor or ions embedded in the dielectric material or whatever; any 
charge, in other words, that is not a result of polarization. Within the dielectric, then, the 
total charge density can be written: 

and Gauss's law reads 

where E is now the total field, not just that portion generated by polarization. 
It is convenient to combine the two divergence terms: 

The expression in parentheses, designated by the letter D, 

is known as the electric displacement. In terms of D, Gauss's law reads 
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or, in integral form, 
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where Q fen, denotes the total free charge enclosed in the volume. This is a particularly 
useful way to express Gauss's law, in the context of dielectrics, because it makes reference 
only to free charges, and free charge is the stuff we control. Bound charge comes along 
for the ride: when we put the free charge in place, a certain polarization automatically 
ensues, by the mechanisms of Sect. 4.1, and this polarization produces the bound charge. 
In a typical problem, therefore, we know p f ,  but we do not (initially) know pb; Eq. 4.23 
lets us go right to work with the information at hand. In particular, whenever the requisite 
symmetry is present, we can immediately calculate D by the standard Gauss's law methods. 

Example 4.4 

A long straight wire, carrying uniform line charge A, is surrounded by rubber insulation out to 
a radius a (Fig. 4.17). Find the electric displacement. 

Figure 4.17 

Solution: Drawing a cylindrical Gaussian surface, of radius s and length L,  and applying 
Eq. 4.23, we find 

D(2nsL) = AL. 

Therefore, 

Notice that this formula holds both within the insulation and outside it. In the latter region. 
P = 0, so 

Inside the rubber the electric field cannot be determined. since we do not know P. 

It may have appeared to you that I left out the surface bound charge ab in deriving 
Eq. 4.22, and in a sense that is true. We cannot apply Gauss's law precisely at the surface of 
a dielectric, for here pb blows up, taking the divergence of E with it. But everywhere else 
the logic is sound, and in fact if we picture the edge of the dielectric as having some finite 
thickness within which the polarization tapers off to zero (probably a more realistic model 
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than an abrupt cut-off anyway), then there is no surface bound charge; pb varies rapidly 
but smoothly within this "skin," and Gauss's law can be safely applied everywhere. A t  any 
rate, the integral form (Eq. 4.23) is free from this "defect." 

Problem 4.15 A thick spherical shell (inner radius U ,  outer radius b)  is made of dielectric 
material with a "frozen-in" polarization 

where k is a constant and r is the distance from the center (Fig. 4.18). (There is no free charge 
in the problem.) Find the electric field in all three regions by two different methods: 

(a) Locate all the bound charge, and use Gauss's law (Eq. 2.13) to calculate the field it produces. 

(b) Use Eq. 4.23 to find D, and then get E from Eq. 4.21. [Notice that the second method is 
much faster, and avoids any explicit reference to the bound charges.] 

Problem 4.16 Suppose the field inside a large piece of dielectric is Eo, so that the electric 
displacement is Do = coEo + P. 

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find the field at 
the center of the cavity in terms of E. and P. Also find the displacement at the center of the 
cavity in terms of Do and P. 

(b) Do the same for a long needle-shaped cavity running parallel to P (Fig. 4.19b). 

(c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fig. 4.19~).  

[Assume the cavities are small enough that P, Eo, and Do are essentially uniform. Hint: 
Carving out a cavity is the same as superimposing an object of the same shape but opposite 
polarization.] 

(a) Sphere (b) Needle (c) Wafer 

Figure 4.1 8 Figure 4.19 
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4.3.2 A Deceptive Parallel 

Equation 4.22 looks just like Gauss's law, only the total charge density p is replaced by the 
.free charge density p f ,  and D is substituted for roE. For this reason, you may be tempted 
to conclude that D is "just like" E (apart from the factor to), except that its source is p ,  
instead of p: "To solve problems involving dielectrics, you just forget all about the bound 
charge~alcu la te  the field as you ordinarily would, only call the answer D instead of E." 
This reasoning is seductive, but the conclusion is false; in particular, there is no "Coulomb's 
law" for D: 

The parallel between E and D is more subtle than that. 
For the divergence alone is insufficient to determine a vector field; you need to knon 

the curl as well. One tends to forget this in the case of electrostatic fields because the curl 
of E is always zero. But the curl of D is not always zero. 

and there is no reason, in general, to suppose that the curl of P vanishes. Sometimes it does. 
as in Ex. 4.4 and Prob. 4.15, but more often it does not. The bar electret of Prob. 4.1 1 is a 
case in point: here there is no free charge anywhere, so if you really believe that the onl) 
source of D is p f ,  you will be forced to conclude that D = 0 everywhere, and hence that 
E = (- l / t o )P  inside and E = 0 outside the electret, which is obviously wrong. (I leave it 
for you to find the place where V X P # 0 in this problem.) Because V X D # 0, moreover. 
D cannot be expressed as the gradient of a scalar-there is no "potential" for D. 

Advice: When you are asked to compute the electric displacement, first look for sym- 
metry. If the problem exhibits spherical, cylindrical, or plane symmetry, then you can get D 
directly from Eq. 4.23 by the usual Gauss's law methods. (Evidently in such cases V X P is 
automatically zero, but since symmetry alone dictates the answer you're not really obliged 
to worry about the curl.) If the requisite symmetry is absent, you'll have to think of another 
approach and, in particular, you must not assume that D is determined exclusively by the 
free charge. 

4.3.3 Boundary Conditions 

The electrostatic boundary conditions of Sect. 2.3.5 can be recast in terms of D. Equation 
4.23 tells us the discontinuity in the component perpendicular to an interface: 

while Eq. 4.25 gives the discontinuity in parallel components: 
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In the presence of dielectrics these are sometimes more useful than the corresponding 
boundary conditions on E (Eqs. 2.31 and 2.23): 

and 
/I II 

Eabove - Ebelow = (4.29) 

You might try applying them, for example, to Probs. 4.16 and 4.17. 

Problem 4.17 For the bar electret of Prob. 4.1 1, make three careful sketches: one of P, one of 
E, and one of D. Assume L is about 2a. [Hint: E lines terminate on charges; D Iines terminate 
on free charges.] 

4.4 Linear Dielectrics 

4.4.1 Susceptibility, Permittivity, Dielectric Constant 

In Sects. 4.2 and 4.3 we did not commit ourselves as to the cause of P; we dealt only with the 
eflects of polarization. From the qualitative discussion of Sect. 4. I ,  though, we know that 
the polarization of a dielectric ordinarily results from an electric field, which lines up the 
atomic or n~olecular dipoles. For many substances, in fact, the polarization is proportional 
to the field, provided E is not too strong: 

The constant of proportionality, X,, is called the electric susceptibility of the medium (a 
factor of €0 has been extracted to make X, dimensionless). The value of X, depends on the 
microscopic structure of the substance in question (and also on external conditions such as 
temperature). I shall call materials that obey Eq. 4.30 linear  dielectric^.^ 

Note that E in Eq. 4.30 is the total field; it may be due in part to free charges and in 
part to the polarization itself. If, for instance, we put a piece of dielectric into an external 
field Eo, we cannot compute P directly from Eq. 4.30; the external field will polarize the 
material, and this polarization will produce its own field, which then contributes to the total 
field, and this in turn modifies the polarization, which . . . Breaking out of this infinite 
regress is not always easy. You'll see some examples in a moment. The simplest approach 
is to begin with the displacement, at least in those cases where D can be deduced directly 
from the free charge distribution. 

41n modem optical applications, especially, nonlinear materials have become increasingly important. For these 
there is a second term in the formula for P as a function of E-typically a cubic one. In general, Eq. 4.30 can be 
regarded as the first (nonzero) term in the Taylor expansion of P in powers of E. 
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In linear media we have 

so D is also proportional to E: 
D = EE, 

where 

r0(1+ xe). 

This new constant t is called the permittivity of the material. (In vacuum, where there is 
no matter to polarize, the susceptibility is zero, and the permittivity is t o .  That's why €0 

is called the permittivity of free space. I dislike the term, for it suggests that the vacuum 
is just a special kind of linear dielectric, in which the permittivity happens to have the 
value 8.85 X 10-l2 C 2 / ~ . m 2 . )  If you remove a factor of to, the remaining dimensionless 
quantity 

is called the relative permittivity, or dielectric constant, of the material. Dielectric con- 
stants for some common substances are listed in Table 4.2. Of course, the permittivity 
and the dielectric constant do not convey any information that was not already available in 
the susceptibility, nor is there anything essentially new in Eq. 4.32; the physics of linear 
dielectrics is all contained in Eq. 4.30.~ 

Table 4.2 Dielectric Constants (unless otherwise specified, values given are for 1 atm, 
20" C). Source: Handbook o f  Chemistry and Physics, 78th ed. 

(Boca Raton: CRC Press, Inc., 1997). 

Material Dielectric Constant 
Vacuum 1 
Helium 1.000065 
Neon 1.00013 
Hydrogen 1.00025 
Argon 1.00052 
Air (dry) 1.00054 
Nitrogen 1.00055 
Water vapor (100" C) 1.00587 

5 ~ s  long as we are engaged in this orgy of unnecessary terminology and notation, I might as well mention that 
formulas for D in terms of E (Eq. 4.32, in the case of linear dielectrics) are called constitutive relations. 

Material Dielectric Constant 
Benzene 2.28 
Diamond 5.7 
Salt 5.9 
Silicon 11.8 
Methanol 33.0 
Water 80.1 
Ice (-30" C) 99 
KTaNb03 (0" C) 34,000 
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Figure 4.20 

Example 4.5 

A metal sphere of radius u carries a charge Q (Fig. 4.20). It is surrounded, out to radius b, by 
linear dielectric material of permittivity E .  Find the potential at the center (relative to infinity). 

Solution: To compute V, we need to know E; to find E, we might first try to locate the bound 
charge; we could get the bound charge from P, but we can't calculate P unless we already 
know E (Eq. 4.30). We seem to be in a bind. What we do know is the free charge Q, and 
fortunately the arrangement is spherically symmetric, so let's begin by calculating D, using 
Eq. 4.23: 

for all points r > n. 

(Inside the metal sphere, of course, E = P = D = 0.) Once we know D, it is a trivial matter 
to obtain E, using Eq. 4.32: 

The potential at the center is therefore 

As it turns out, it was not necessary for us to compute the polarization or the bound charge 
explicitly, though this can easily be done: 



CHAPTER 4. ELECTRIC FIELDS IN MATTER 

in the dielectric, and hence 

while 

at the outer surface, 

O b = P . " =  r ' , at the inner surface. 
4x642 

Notice that the surface bound charge at a is negative (n points outward with respect to the 
dielectric, which is +? at b but -i at a) .  This is natural, since the charge on the metal 
sphere attracts its opposite in all the dielectric molecules. It is this layer of negative charge 
that reduces the field, within the dielectric, from 1 / ~ T L E ~ ( Q / ~ ~ ) ~  to 1 / 4 x c ( ~ / r ~ j i .  In this 
respect a dielectric is rather like an imperfect conductor: on a conducting shell the induced 
surface charge would be such as to cancel the field of Q completely in the region a < r < h: 
the dielectric does the best it can, but the cancellation is only partial. 

You might suppose that linear dielectrics would escape the defect in the parallel between 
E and D. Since P and D are now proportional to E, does it not follow that their curls, like 
E's, must vanish? Unfortunately, it does not, for the line integral of P around a closed path 
that straddles the boundary between one type o f  material and another need not be zero, even 
though the integral of E around the same loop must be. The reason is that the proportionalit! 
factor C O X ,  is different on the two sides. For instance, at the interface between a polarized 
dielectric and the vacuum (Fig. 4.2 l), P is zero on one side but not on the other. Around this 
loop $ P . dl # 0, and hence, by Stokes' theorem, the curl of P cannot vanish everywhere 
within the loop (in fact, it is injnite at the boundary). 

P = 0 
Vacuum I 1 

Dielectric I L V 

P#O 

Figure 4.2 1 

Of course, if the space is entirely filled with a homogeneous6 linear dielectric, then this 
objection is void; in this rather special circumstance 

V . D =  p f  and V X D = 0 ,  

so D can be found from the free charge just as though the dielectric were not there: 

where E,, is the field the same free charge distribution would produce in the absence of 
any dielectric. According to Eqs. 4.32 and 4.34, therefore, 

6~ homogeneous medium is one whose properties (in this case the susceptibility) do not vary with position 



4.4. LINEAR DIELECTRICS 183 

Conclusion: When all space is filled with a homogeneous linear dielectric, the field every- 
where is simply reduced by a factor of one over the dielectric constant. (Actually, it is not 
necessary for the dielectric to fill all space: in regions where the field is zero anyway, it can 
hardly matter whether the dielectric is present or not, since there's no pqlarization in any 
event.) 

For example, if a free charge q is embedded in a large diele~tric, the field it produces is 

(that's c, not to), and the force it exerts on nearby chyges is reduced accordingly. But it's 
not that there is anything wrong with Coulomb's law; rather, the polarization of the medium 
partially "shields" the charge, by surrounding it with bound charge of the opposite sign 
(Fig. 4.22).7 

Figure 4.22 

Example 4.6 

A parallel-plate capacitor (Fig. 4.23) is filled with insulating material of dielectric constant E , .  

What effect does this have on its capacitance? 

Solution: Since the field is confined to the space between the plates, the dielectric will reduce 
E, and hence also the potential difference V, by a factor l/€, . Accordingly, the capacitance 
C = Q /  V is increased by a fuctor of the dielectric constant, 

This is, in fact, a common way to beef up a capacitor. 

7 ~ n  quantum electrodynamics the vacuum itself can be polarized, and this means that the effective (or "renor- 
malized") charge of the electron, as you might measure it in the laboratory, is not its true ("bare") value, and in 
fact depends slightly on how far away you are! 
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Figure 4.23 

By the way, a crystal is generally easier to polarize in some directions than in others,' 
and in this case Eq. 4.30 is replaced by the general linear relation 

just as Eq. 4.1 was superseded by Eq. 4.3 for asymmetrical molecules. The  nine coefficients. 

xe,, , x e X s ,  . - . , constitute the susceptibility tensor. 

Problem 4.18 The space between the plates of a parallel-plate capacitor (Fig. 4.24) is filled 
with two slabs of linear dielectric material. Each slab has thickness U, so the total distance 
between the plates is 2u. Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric 
constant of 1 .S. The free charge density on the top plate is a and on the bottom plate -a. 

(a) Find the electric displacement D in each slab. 

(b) Find the electric field E in each slab. 

(c )  Find the polarization P in each slab. 

(d) Find the potential difference between the plates. 

(e) Find the location and amount of all bound charge. 

(f) Now that you know all the charge (free and bound), recalculate the field in each slab, and 
confirm your answer to (b). 

8~ medium is said to be isotropic if its properties (such as susceptibility) are the same in all directions. Thus 
Eq. 4.30 is the special case of Eq. 4.38 that holds for isotropic media. Physicists tend to be sloppy with their 
language, and unless otherwise indicated the term "linear dielectric" certainly means "isotropic linear dielectric." 
and probably means "homogeneous isotropic linear dielectric." 
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Slab 1 

Slab 2 

Figure 4.24 

Problem 4.19 Suppose you have enough linear dielectric material, of dielectric constant E,, 

to half-fill a parallel-plate capacitor (Fig. 4.25). By what fraction is the capacitance increased 
when you distribute the material as in Fig. 4.25(a)? How about Fig. 4.25(b)? For a given 
potential difference V between the plates, find E, D, and P, in each region, and the free and 
bound charge on all surfaces, for both cases. 

Figure 4.25 

Problem 4.20 A sphere of linear dielectric material has embedded in it a uniform free charge 
density p.  Find the potential at the center of the sphere (relative to infinity), if its radius is R 
and its dielectric constant is E,. 

Problem 4.21 A certain coaxial cable consists of a copper wire, radius a,  surrounded by a 
concentric copper tube of inner radius c (Fig. 4.26). The space between is partially filled (from 
b out to c) with material of dielectric constant E,, as shown. Find the capacitance per unit 
length of this cable. 
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Figure 4.26 

4.4.2 Boundary Value Problems with Linear Dielectrics 

In a homogeneous linear dielectric the bound charge density (ph) is proportional to the free 
charge density (pf ):9 

In particular, unless free charge is actually embedded in the material, p = 0, and any 
net charge must reside at the surface. Within such a dielectric, then, the potential obeys 
Laplace's equation, and all the machinery of Chapter 3 carries over. It is convenient. 
however, to rewrite the boundary conditions in a way that makes reference only to the free 
charge. Equation 4.26 says 

or (in terms of the potential), 

a Vabove a Vbelow 
€above an  - €below = -af , an 

whereas the potential itself is, of course, continuous (Eq. 2.34): 

Vabove = Vbelow. (4.42) 

Example 4.7 

A sphere of homogeneous linear dielectric material is placed in an otherwise uniform electric 
field E. (Fig. 4.27). Find the electric field inside the sphere. 

 his does not apply to the surface charge (ab), because X, is not independent of position (obviously) at the 
boundary. 
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Figure 4.27 

Solution: This is reminiscent of Ex. 3.8, in which an uncharged cond~rczing sphere was 
introduced into a uniform field. In that case the field of the induced charge completely canceled 
E0 within the sphere; in a dielectric, the cancellation (from the bound charge) is only partial. 

Our problem is to solve Laplace's equation, for Vi, (r. Q) when r R,  and VOut (r, Q) when 
r 2 R,  subject to the boundary conditions 

(iii) Vout -+ - Eor cos 6 ,  for r >> R. I 
(The second of these follows from Eq. 4.41, since there is no free charge at the surface.) Inside 
the sphere Eq. 3.65 says 

00 

Vi, (r. 8) = C A, r' P' (cos 0); 
I =o 

outside the sphere, in view of (iii), we have 
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Boundary condition (i) requires that 

Meanwhile, condition {ii) yields 

It follows that 

Evidently 

and hence the field inside the sphere is (surprisingly) uniform: 

Example 4.8 

Suppose the entire region below the plane z = 0 in Fig. 4.28 is filled with uniform linear 
dielectric material of susceptibility X,. Calculate the force on a point charge q situated a 
distance d above the origin. 

Solution: The surface bound charge on the xv plane is of opposite sign to g ,  so the force will 
be attractive. (In view of Eq. 4.39, there is no volume bound charge.) Let us first calculate q. 
using Eqs. 4.11 and 4.30. 

r ~ b  = P . n  = P, = E0XeEZ, 

 emem ember, PI (cos 0)  = cos 0, and the coefficients must be equal for each l, as you could prove by multiplying 
by Pi, (cos 0) sin 0, integrating from 0 to X, and invoking the orthogonality of the Legendre polynomials (Eq. 3.68). 
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Figure 4.28 

where E, is the z-component of the total field just inside the dielectric, at z = 0. This field 
is due in part to q and in part to the bound charge itself. From Coulomb's law, the former 
contribution is 

where r = ,/'m is the distance from the origin. The z component of the field of the 
bound charge, meanwhile, is -CJb/2€0 (see footnote 6, p. 89). Thus 

which we can solve for Q: 

Apart from the factor x,/(xe +2), this is exactly the same as the induced charge on an infinite 
conducting plane under similar circumstances (Eq. 3.10).l Evidently the total bound charge 
is 

We could, of course, obtain the field of a), by direct integration 

l ~ o r  some purposes a conductor can be regarded as the limiting case of a linear dielectric, with X ,  --P m. This 
is often a useful check-try applying it to Exs. 4.5.4.6, and 4.7. 
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But as in the case of the conducting plane, there is a nicer solution by the method of images. 
Indeed, if we replace the dielectric by a single point charge qb at the image position (0, 0, -d), 
we have - 

in the region z > 0. Meanwhile, a charge (q + qb) at (0, 0, d )  yields the potential 

for the region z C 0. Taken together, Eqs. 4.52 and 4.53 constitute a function which satisfies 
Poisson's equation with a point charge q at (0,O. d), which goes to zero at infinity, which 
is continuous at the boundary z = 0, and whose normal derivative exhibits the discontinuity 
appropriate to a surface charge q, at z = 0: 

Accordingly, this is the correct potential for our problem. In particular, the force on q is: 

I do not claim to have provided a compelling motivation for Eqs. 4.52 and 4.53-like all 
image solutions, this one owes its justification to the fact that it works: it solves Poisson's 
equation, and it meets the boundary conditions. Still, discovering an image solution is not 
entirely a matter of guesswork. There are at least two "rules of the game": (1 )  You must never 
put an image charge into the region where you're computing the potential. (Thus Eq. 4.57 
gives the potential for z > 0, but this image charge qg is at z = -d; when we turn to the region 
z C 0 (Eq. 4.531, the image charge ( g  + qb)  is at z = +d.) (2) The image charges must add 
up to the correct total in each region. (That's how I knew to use qb to account for the charge 
in the region z _( 0, and (g + qb) to cover the region z > 0.) 

Problem 4.22 A very long cylinder of linear dielectric material is placed in an otherwise 
uniform electric field Eo. Find the resulting field within the cylinder. (The radius is a,  the 
susceptibility X,, and the axis is perpendicular to EO.) 

Problem 4.23 Find the field inside a sphere of linear dielectric material in an otherwise uniform 
electric field E. (Ex. 4.7) by the following method of successive approximations: First pretend 
the field inside is just Eg, and use Eq. 4.30 to write down the resulting polarization PO. This 
polarization generates a field of its own. El (Ex. 4.2), which in turn modifies the polarization 
by an amount P1,  which further changes the field by an amount E2. and so on. The resulting 
field is E. + El  + E2 + . . .. Sum the series, and compare your answer with Eq. 4.49. 

Problem 4.24 An uncharged conducting sphere of radius a is coated with a thick insulating 
shell (dielectric constant E,)  out to radius b. This object is now placed in an otherwise uniform 
electric field Eo. Find the electric field in the insulator. 



4.4. LINEAR DIELECTRICS 191 

! Problem 4.25 Suppose the region above the x y  plane in Ex. 4.8 is also filled with linear 
dielectric but of a different susceptibility XL. Find the potential everywhere. 

4.4.3 Energy in Dielectric Systems 

It takes work to charge up a capacitor (Eq. 2.55): 

If the capacitor is filled with linear dielectric, its capacitance exceeds the vacuum value by 
a factor of the dielectric constant, 

C = ~r Cvac, 

as we found in Ex. 4.6. Evidently the work necessary to charge a dielectric-filied capacitor 
is increased by the same factor. The reason is pretty clear: you have to pump on more (free) 
charge to achieve a given potential, because part of the field is canceled off by the bound 
charges. 

In Chapter 2, I derived a general formula for the energy stored in any electrostatic system 
(Eq. 2.45): 

W = 21 ~ " 7 .  (4.55) 
2 

The case of the dielectric-filled capacitor suggests that this should be changed to 

in the presence of linear dielectrics. To prove it, suppose the dielectric material is fixed 
in position, and we bring in the free charge, a bit at a time. As pf is increased by an 
amount Apf, the polarization will change and with it the bound charge distribution; but 
we're interested only in the work done on the incremental free charge: 

Since V - D = pf ,  Apf = V - (AD), where AD is the resulting change in D, so 

Now 
V [(AD)V] = [V . (AD)]V + AD (V V ) .  

and hence (integrating by parts): 
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The divergence theorem turns the first term into a surface integral, which vanishes if we 
integrate over all of space. Therefore, the work done is equal to 

So far, this applies to any material. Now, if the medium is a linear dielectric, then 
D = €E, SO 

$A(D.  E) = f A ( F E ~ )  = ~ ( A E ) .  E = (AD) .  E 

(for infinitesimal increments). Thus 

The total work done, then, as we build the free charge up from zero to the final configuration. 
is 

as anticipated. l2  

It may puzzle you that Eq. 4.55, which we derived quite generally in Chapter 2, does not 
seem to apply in the presence of dielectrics, where it is replaced by Eq. 4.58. The point is 
not that one or the other of these equations is wrong, but rather that they speak to somewhat 
different questions. The distinction is subtle, so let's go right back to the beginning: What 
do we mean by "the energy of a system"? Answer: It is the work required to assemble the 
system. Very well-but when dielectrics are involved there are two quite different ways 
one might construe this process: (1) We bring in all the charges (free and bound), one bj 
one, with tweezers, and glue each one down in its proper final location. If this is what you 
mean by "assemble the system," the Eq. 4.55 is your formula for the energy stored. Notice. 
however. that this will not include the work involved in stretching and twisting the dielectric 
molecules (if we picture the positive and negative charges as held together by tiny springs. i t  
does not include the spring energy, $kx2, associated with polarizing each molecule).13 ( 2  I 
With the unpolarized dielectric in place, we bring in thefree charges, one by one, allowing 
the dielectric to respond as it sees fit. If this is what you mean by "assemble the system" 
(and ordinarily it is, since free charge is what we actually push around), then Eq. 4.58 is the 
formula you want. In this case the "spring" energy is included, albeit indirectly, because the 
force you must apply to the free charge depends on the disposition of the bound charge; as 
you move the free charge you are automatically stretching those "springs." To put it another 

121n case you are wondering why I did not do this more simply by the method of Sect. 2.4.3, starting with 
W = 1 p f  V dt, the reason is that this formula is untrue, in general. Study the derivation of Eq. 2.42 and you 
will S& that it applies only to the total charge. For linear dielectrics it happens to hold for the free charge alone. 
but this is scarcely obvious a priori and, in fact, is most easily confirmed by working backward from Eq. 4.58. 

1 3 ~ h e  "spring" itself may be electrical in nature, but it is still not included in Eq. 4.55, if E is taken to be the 
inacroscopic field. 
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way, in method (2) the total energy of the system consists of three parts: the electrostatic 
energy of the free charge, the electrostatic energy of the bound charge, and the "spring" 
energy: 

Wtot = Wfree + Wbound + Wspringa 

The last two are equal and opposite (in procedure (2) the bound charges are always in 
equilibrium, and hence the net work done on them is zero); thus method (2), in calculating 
Wfree, actually delivers Wt,,, whereas method (l), by calculating Wfree+Wbound, leaves out 
Wspring- 

Incidentally, it is sometimes alleged that Eq. 4.58 represents the energy even for nonlinear 
dielectrics, but this is false: To proceed beyond Eq. 4.57 one must assume linearity. In fact, 
for dissipative systems the whole notion of "stored energy" loses its meaning, because the 
work done depends not only on the final configuration but on how it got there. If the molec- 
ular "springs" are allowed to have some friction, for instance, then Wspring can be made 
as large as you like, by assembling the charges in such a way that the spring is obliged 
to expand and contract many times before reaching its final state. In particular, you get 
nonsensical results if you try to apply Eq. 4.58 to electrets, with frozen-in polarization (see 
Prob. 4.27). 

Problem4.26 A spherical conductor, ofradius a,  carries acharge Q (Fig. 4.29). It is surrounded 
by linear dielectric material of susceptibility X,, out to radius b. Find the energy of this 
configuration (Eq. 4.58). 

Figure 4.29 

Problem 4.27 Calculate W, using both Eq. 4.55 and Eq. 4.58, for a sphere of radius R with 
frozen-in uniform polarization P (Ex. 4.2). Comment on the discrepancy. Which (if either) is 
the "true" energy of the system? 

4.4.4 Forces on Dielectrics 

Just as a conductor is attracted into an electric field (Eq. 2.51), so too is a dielectric-and 
for essentially the same reason: the bound charge tends to accumulate near the free charge 
of the opposite sign. But the calculation of forces on dielectrics can be surprisingly tricky. 
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Dielectric 

Figure 4.30 

Consider, for example, the case of a slab of linear dielectric material, partially inserted 
between the plates of a parallel-plate capacitor (Fig. 4.30). We have always pretended that 
the field is uniform inside a parallel-plate capacitor, and zero outside. If this were literally 
true, there would be no net force on the dielectric at all, since the field everywhere would be 
perpendicular to the plates. However, there is in reality a fringing field around the edges. 
which for most purposes can be ignored but in this case is responsible for the whole effect. 
(Indeed, the field could not terminate abruptly at the edge of the capacitor, for if it did the 
line integral of E around the closed loop shown in Fig. 4.3 1 would not be zero.) It is this 
nonuniform fringing field that pulls the dielectric into the capacitor. 

Fringing fields are notoriohsly difficult to calculate; luckily, we can avoid this altogether. 
by the following ingenious method. Let W be the energy of the system-it depends, of 
course, on the amount of overlap. If I pull the dielectric out an infinitesimal distance dx. 
the energy is changed by an amount equal to the work done: 
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J 
Fringing region 

Figure 4.3 1 

where F,, is the force I must exert, to counteract the electrical force F on the dielectric: 
F,n, = -F. Thus the electrical force on the slab is 

Now, the energy stored in the capacitor is 

and the capacitance in this case is 

where l is the length of the plates (Fig. 4.30). Let's assume that the total charge on the 
plates (Q = C V )  is held constant, as the dielectric moves. In terms of Q, 

SO 

But 

and hence 
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(The minus sign indicates that the force is in the negative x direction; the dielectric is pulled 
into the capacitor.) 

It is a common error to use Eq. 4.61 (with V constant), rather than Eq. 4.63 (with Q 
constant), in computing the force. One then obtains 

which is off by a sign. It is, of course, possible to maintain the capacitor at a fixed potential, 
by connecting it up to a battery. But in that case the battery also does work as the dielectric 
moves; instead of Eq. 4.59, we now have 

dW = F,,dx + V d Q ,  (4.66) 

where V d Q is the work done by the battery. It follows that 

the same as before (Eq. 4.64), with the correct sign. (Please understand, the force on the 
dielectric cannot possibly depend on whether you plan to hold Q constant or V constant-it 
is determined entirely by the distribution of charge, free and bound. It's simpler to calculate 
the force assuming constant Q, because then you don't have to worry about work done by 
the battery; but if you insist, it can be done correctly either way.) 

Notice that we were able to determine the force without knowing anything about the 
fringingfields that are ultimately responsible .for it! Of course, it's built into the whole 
structure of electrostatics that V X E = 0, and hence that the fringing fields must be 
present; we're not really getting something for nothing here-just cleverly exploiting the 
internal consistency of the theory. The energy stored in the fringing fields themselves 
(which was not accounted for in this derivation) stays constant, as the slab moves; what 
does change is the energy well inside the capacitor. where the field is nice and uniform. 

Problem 4.28 Two long coaxial cylindrical metal tubes (inner radius a ,  outer radius b) stand 
vertically in a tank of dielectric oil (susceptibility X,, mass density p). The inner one is 
maintained at potential V,  and the outer one is grounded (Fig. 4.32). To what height (h )  does 
the oil rise in the space between the tubes? 
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Figure 4.32 

More Problems on Chapter 4 

Problem 4.29 

(a) For the configuration in Prob. 4.5, calculate the force on p2 due to p1 , and the force on p1 
due to p2. Are the answers consistent with Newton's third law'? 

(b) Find the total torque on p2 with respect to the center of p ] ,  and compare it with the torque 
on p1 about that same point. [Hint: combine your answer to (a) with the result of Prob. 4.5.1 

Problem 4.30 An electric dipole p, pointing in the y direction, is placed midway between two 
large conducting plates, as shown in Fig. 4.33. Each plate makes a small angle 0 with respect 
to the X axis, and they are maintained at potentials * V .  What is the direction of the net force 
on p? (There's nothing to calculate, here, but do explain your answer qualitatively.) 

Figure 4.33 
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Problem 4.31 A dielectric cube of side a ,  centered at the origin, carries a "frozen-in" polar- 
ization P = kr, where k is a constant. Find all the bound charges, and check that they add up 
to zero. 

Problem 4.32 A point charge q is imbedded at the center of a sphere of linear dielectric material 
(with susceptibility ,ye and radius R). Find the electric field, the polarization, and the bound 
charge densities, pb and Q. What is the total bound charge on the surface? Where is the 
compensating negative bound charge located? 

Problem 4.33 At the interface between one linear dielectric and another the electric field lines 
bend (see Fig. 4.34). Show that 

assuming there is no free charge at the boundary. [Comment: Eq. 4.68 is reminiscent of Snell's 
law in optics. Would a convex "lens" of dielectric material tend to "focus," or "defocus," the 
electric field?] 

Figure 4.34 

Problem 4.34 A point &pole p is imbedded at the center of a sphere of linear dielectric material 
(with radius R and dielectric constant 6 , ) .  Find the electric potential inside and outside the 
sphere. 

p COS Q r3 (tr p 1) 
Answer : - 1 + 2 - - - -  

pcOsQ ( ) (1-3 R ) ]  , ( r  5 R ) ;  - - 
4n t r2  R3 (er 2) 4rrt0r2 tr + 2 

Problem 4.35 Prove the following uniqueness theorem: A volume V contains a specified free 
charge distribution, and various pieces of linear dielectric material, with the susceptibility of 
each one given. If the potential is specified on the boundaries S of V ( V  = 0 at infinity 
would be suitable) then the potential throughout V is uniquely determined. [Hint: integrate 
V . (V3D3) over V.] 
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Figure 4.35 

Problem 4.36 A conducting sphere at potential V. is half embedded in linear dielectric material 
of susceptibility X,, which occupies the region i 0 (Fig. 4.35). Claim: the potential 
everywhere is exactly the same as it would have been in the absence of the dielectric! Check 
this claim, as follows: 

(a) Write down the formula for the proposed potential V ( r ) ,  in terms of Vo, R ,  and r .  Use it 
to determine the field, the polarization, the bound charge, and the free charge distribution on 
the sphere. 

(b) Show that the total charge configuration would indeed produce the potential V @ ) .  

(C) Appeal to the uniqueness theorem in Prob. 4.35 to complete the argument. 

(d) Could you solve the configurations in Fig. 4.36 with the same potential? If not, explain 
why. 

Figure 4.36 

Problem 4.37 According 10 Eq. 4.5, the force on a single dipole is (p . V)E, so the net force 
on a dielectric object is 

F =  (P .V)Eextd t .  S 
[Here Eext is the field of everything except the dielectric. You might assume that it wouldn't 
matter if you used the total field; after all, the dielectric can't exert a force on itseg However, 
because the field of the dielectric is discontinuous at the location of any bound surface charge, 
the derivative introduces a spurious delta function, and you must either add a compensating 
surface term, or (better) stick with Eext, which suffers no such discontinuity.] Use Eq. 4.69 
to determine the force on a tiny sphere or radius R ,  conlposed o l  linear dielectric material 
of susceptibility X,, which is situated a distance s from a fine wire carrying a uniform line 
charge h. 
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Problem 4.38 In a linear dielectric, the polqization is proportional to the field: P = eOxeE.  
If the material consists of atoms (or nonpolar molecules), the induced dipole moment of each 
one is likewise proportional to the field p = aE. Question: What i s  the relation between the 
atomic polarizability a and the susceptibility X,? 

Since P (the dipole moment per unit volume) is p (the dipole moment per atom) times N 
(the number of atoms per unit volume). P = N p  = N a E ,  one's first inclination is to say that 

And in fact this is not far off, if the density is low. But closer inspection reveals a subtle problem, 
for the field E in Eq. 4.30 is the total macroscopic field in the medium, whereas the field in 
Eq. 4.1 is due to everything except the particular atom under consideration (polarizability was 
defined for an isolated atom subject to a specified external field); call this field E,],,. Imagine 
that the space allotted tp: each atom is a sphere of radius R ,  and show that 

Use this to conclude that 

Equation 4.72 is known as the Clausius-Mossotti formula, or, in its application to optics, the 
Lorentz-Lorenz equation. 

Problem 4.39 Check the Clausius-Mossotti relation (Eq. 4.72) for the gases listed in Table 4.1. 
(Dielectric constants are given in Table 4.2.) (The densities here are so small that Eqs. 4.70 and 
4.72 are indistinguishable. For experimental data that confirm the Clausius-Mossotti correction 
term see, for instance, the first edition of ~urceil's Electricity and Magnetism, Problem 9.28.)'' 

Problem 4.40 The Clausius-Mossotti equation (Prob. 4.38) tells you how to calculate the 
susceptibility of a nonpolar substance, in terms of the atomic polarizability a. The Langevin 
equation tells you how to calculate the susceptibility of a polar substance, in terms of the 
permanent molecular dipole moment p. Here's how it goes: 

(a) The energy of a dipole in an external field E is U = - p  . E (Eq. 4.6); it ranges from 
- p E  to + P E ,  depending on the orientation. Statistical mechanics says that for a material in 
equilibrium at absolute temperature T, the probability of a given molecule having energy u is 
proportional to the Boltzmann factor, 

The average energy of the dipoles is therefore 

1 4 ~ .  M. Purcell, electric it^^ and Magnetism (Berkeley Physics Course, Vol. 2), (New York: McGraw-Hill, 1963). 
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where the integrals run from - p E  to + p  E .  Use this to show that the polarization of a substance 
containing N molecules per uriit volunle is 

That's the Langevin formula. Sketch P / N p  as a function of p E / k T .  

(b) Notice that for large fieldsJlow temperatures, vi~tually all the molecules are lined up, and 
the material is nonlinear. Ordinarily, however, kT is much greater than P E .  Show tliat in 
this rCgime the material is linear, and calculate its susceptibility, in terms of N ,  p ,  T, and k.  
Compute the susceptibility of water at 20° C, and compare the experimental value in Table 
4.2. (The dipole moment of water is 6.1 x 1oP3O Cm.) This is rather far off, because we have 
again neglected the distinction between E and Eels,. The agreement is better in low-density 
gases, for which the difference between E and Eelse is negligible. Try it for water vapor at 
100° and 1 atm. 



Chapter 5 

Magnetostatics 

5.1 The Lorentz Force Law 

5.1.1 Magnetic Fields 

Remember the basic problem of classical electrodynamics: We have a collection of charges 
41, q 2 ,  43, . . . (the "source" charges), and we want to calculate the force they exert on 
some other charge Q (the "test" charge). (See Fig. 5.1 .) According to the principle of 
superposition, i t  is sufficient to find the force of a single source charge-the total is then 
the vector sum af all the individual forces. Up to now we have confined our attention to the 
simplest case, electrostatics, in which the source charge is at rest (though the test charge 
need not be). The time has come to consider the forces between charges in motion. 

Source charges 

Figure 5.1 

Test charge 

To give you some sense of what is in store, imagine that I set up the following demon- 
stration: Two wires hang from the ceiling, a few centimeters apart; when I turn on a current. 
so that it passes up one wire and back down the other, the wires jump apart-they evidentl! 
repel one another (Fig. 5.2(a)). How do you explain this? Well, you might suppose that 
the battery (or whatever drives the current) is actually charging up the wire, and that the 
force is simply due to the electrical repulsion of like charges. But this explanation is in- 
correct. I could hold up a test charge near these wires and there would be no force on it. 
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(a) Currents in opposite 
directions repel. 

(b) Currents in same 
directions attract. 

Figure 5.2 

for the wires are in fact electrically neutral. (It's true that electrons are flowing down the 
line-that's what a current is-but there are just as many stationary plus charges as moving 
minus charges on any given segment.) Moreover, I could hook up my demonstration so as 
to make the current flow up both wires (Fig. 5.2(b)); in this case they are found to attract! 

Whatever force accounts for the attraction of parallel currents and the repulsion of 
antiparallel ones is not electrostatic in nature. It is our first encounter with a magnetic 
force. Whereas a stationary charge produces only an electric field E in the space around it, 
a moving charge generates, in addition, a magnetic field B. In fact, magnetic fields are a lot 
easier to detect, in practice-all you need is a Boy Scout compass. How these devices work 
is irrelevant at the moment; it is enough to know that the needle points in the direction of 
the local magnetic field. Ordinarily, this means north, in response to the earth's magnetic 
field, but in the laboratory, where typical fields may be hundreds of times stronger than that, 
the compass indicates the direction of whatever magnetic field is prescnt. 

Now, if you hold up a tiny compass in the vicinity of a cursent-carrying wire, you 
quickly discover a very peculiar thing: The field does not point toward the wire, nor away 
from it, but rather it circles around the wire. In fact, if you grab the wire with your right 
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l Current 

field 

Wire 1 Wire 2 

Figure 5.3 Figure 5.4 

hand-thumb in the direction of the current-your fingers curl around in the direction of 
the magnetic field (Fig. 5.3). How can such a field lead to a force of attraction on a nearb~ 
parallel current? At the second wire the magnetic field points into the page (Fig. 5.4), the 
velocity of the charges is upward, and yet the resulting force is to the left. It's going to take a 
strange law to account for these directions! I'll introduce this law in the next section. Later 
on, in Sect. 5.2, we'll return to what is logically the prior question: How do you calculate 
the magnetic field of the first wire? 

5.1.2 Magnetic Forces 

It may have occurred to you that the combination of directions in Fig. 5.4 is just right for 
a cross product. In fact, the magnetic force in a charge Q, moving with velocity v in a 
magnetic field B, is1 

(5.1 

This is known as the Lorentz force law. In the presence of both electric and magnetic 
fields, the net force on Q would be 

I do not pretend to have derived Eq. 5.1, of course; it is a fundamental axiom of the theoq. 
whose justification is to be found in experiments such as the one I described in Sect. 5.1.1. 
Our main job from now on is to calculate the magnetic field B (and for that matter the 
electric field E as well, for the rules are more complicated when the source charges are in 
motion). But before we proceed, it is worthwhile to take a closer look at the Lorentz force 
law itself; it is a peculiar law, and it leads to some truly bizarre particle trajectories. 

Since F and v are vectors, B is actually a pseudovector. 



5.1. THE LORENTZ FORCE L A  W 205 

Example 5.1 

Cyclotron motion 

The archctypical motion of a charged particle in a inagnetic field is circular, with the magnetic 
force providing the centripetal acceleration. In Fig. 5.5, a uniform magnetic field points into 
the page; if the charge Q moves counterclockwise, with speed v,  around a circle of radius R ,  
the magnetic force (5.1) points inward, and has a fixed magnitude QvB-just right to sustain 
uniform circular motion: - 

where m is the particle's mass and p = mu is its momentum. Equation 5.3 is known as the 
cyclotron formula because it describes the motion of a particle in a cyclotron-the first of the 
modem particle accelerators. It also suggests a simple expcrimcntal technique for finding the 
momentum of a particle: send it through a region of known magnetic field, and measure the 
radius of its circular trajectory. This is in fact the standard means for determining the momenta 
of elementary particles. 

Incidentally, I assumed that the charge moves in a plane perpendicular to B. If it starts out 
with some additional speed v11 parallel to B, this component of the motion is unaffected by the 
magnetic field, and the particle moves in a helix (Fig. 5.6). The radius is still given by Eq. 5.3, 
but the velocity in question is now the component perpendicular to B, vl. 

Figure 5.5 Figure 5.6 

Example 5.2 

Cycloid Motion 

A more exotic trajectory occurs if we include a uniform electric field, at right angles to the 
magnetic one. Suppose, for instance, that B points in the X-direction, and E in the z-direction, 
as shown in Fig. 5.7. A particle at rest is released from the origin; what path will it follow? 

Solution: Let's think it through qualitatively, first. Initially, the particle is at rest, so the 
magnetic force is zero, and the electric field accelerates the charge in the z-direction. As it 
picks up speed, a magnetic force develops which, according to Eq. 5.1, pulls the charge around 
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Figure 5.7 

to the right. The faster it goes, the stronger becomes; eventually, it curves the particle 
back around towards they axis. At this point the charge is moving against the electrical force. 
so it begins to slow down-the magnetic force then decreases, and the electrical force takes 
over, bringing the charge to rest at point a ,  in Fig. 5.7. There the entire process commences 
anew, carrying the particle over to point b, and so on. 

Now let's do it quantitatively. There being no force in the X-direction, the position of the 
particle at any time t can be described by the vector (0, y(t) .  ~ ( t ) ) ;  the velocity is therefore 

v = (0, y ,  t), 

and hence, applying Newton's second law, 

F =  Q ( E + v x B ) =  Q ( E f + B i . f - B j 1 ) = m a = m ( j ; f + i i ) .  

where dots indicate time derivatives. Thus 

Or, treating the f and i components separately, 

Q B i = m j ,  Q E - Q B j = n z i ' .  

V X B =  

For convenience, let 

m 
(This is the cyclotron frequency, at which the particle would revolve in the absence of an\ 

k i i  
0 j i 
B 0  0 

electric field.) Then the equations of motion take the form 

= B ? ? - B y ; ,  

Their general solution2 is 

y(t) = Cl cos wt + C2 sin wt + (E/B)r + C3, 
z ( t )  = C2coswt -C1s inwt+C4.  

(5.6, 

*AS coupled differential equations, they are easily solved by differentiating the first and using the second to 

eliminate ?. 



But the particle started from rest ( j (0)  = t ( O )  = 0), at the origin (y(0) = z(0) = 0); these 
four conditions determine the constants Cl ,  C2, C3,  and Cq: 

E E 
y ( t )  = --(wr - sinwt), z(t) = -(l - coswt). 

wB wB 

In this form the answer is not terribly enlightening, but if we let 

and eliminate the sines and cosines by exploiting the trigonometric identity sin2 wt +cos2 wt = 
1, we find that 

2 2 2 ( y  - Rwt) + ( z  - R) = R . (5.9) 

This is the formula for a circle, of radius R, whose center (0, Rwt, R) travels in the y-direction 
at a constant speed, 

E 
U = wR = -. 

B 
(5.10) 

The particle moves as though it were a spot on the rim of a wheel, rolling down the y axis at 
speed v. The curve generated in this way is called a cycloid. Notice that the overall motion is 
not in the direction of E, as you might suppose, but perpendicular to it. 

One feature of the magnetic force law (Eq. 5.1) warrants special attention: 

1 Magnetic forces do no work. 1 
For if Q moves an amount dl = v dr, the work done is 

This follows because (v X B) is perpendicular to v, so  (v X B) . v = 0. Magnetic forces may 
alter the direction in which a particle moves, but they cannot speed it up or slow it down. 
The fact that magnetic forces do  no work is an elementary and direct consequence of the 
Lorentz force law, but there are many situations in which it appears so manifestly false that 
one's confidence is bound to waver. When a magnetic crane lifts the carcass of a junked 
car, for instance, something is obviously doing work, and it seems perverse to deny that the 
magnetic force is responsible. Well, perverse or not, deny it we must, and it can be a very 
subtle matter to figure out what agency does deserve the credit in such circumstances. I'll 
show you several examples as we go along. 

Problem 5.1 A particle of charge g enters a region of uniform magnetic field B (pointing into 
the page). The field deflects the particle a distanced above the original line of flight, as shown 
in Fig. 5.8. Is the charge positive or negative? In terms of a, d ,  B and g ,  find the momentum 
of the particle. 

Problem 5.2 Find and sketch the trajectory of the particle in EX. 5.2, if it starts at the origin 
with velocity 

( a )  v(O) = (E /B) i ,  

(6) v(01 = (E/2B)?, 

( C )  ~ ( 0 )  = (E /B) ( i  + 2) .  
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Field region 

Figure 5.8 

Problem 5.3 In 1897 J. J. Thomson "discovered the electron by measuring the charge-to-mass 
ratio of "cathode rays" (actually, streams of electrons, with charge q and mass m )  as follows: 
(a) First he passed the beam through uniform crossed electric and magnetic fields E and B 
(mutually perpendicular, and both of them perpendicular to the beam), and adjusted the electric 
field until he got zero deflection. What, then, was the speed of the particles (in terms of E and 
B)? 

(b) Then he turned off the electric field, and measured the radius of curvature, R,  of the beam. 
as deflected by the magnetic field alone. In terms of E, B, and R ,  what is the charge-to-mass 
ratio (qlm) of the particles? 

5.1.3 Currents 

The current in a wire is the charge per unit time passing a given point. By definition. 
negative charges moving to the left count the same as positive ones to the right. This 
conveniently reflects the physical fact that almost all phenomena involving moving charges 
depend on the product of charge and velocity-if you change the sign of q and v, you 
get the same answer, so it doesn't really matter which you have. (The Lorentz force lan 
is a case in point; the Hall effect (Prob. 5.39) is a notorious exception.) In practice, it i$ 
ordinarily the negatively charged electrons that do the moving-in the direction opposirt) 
the electric current. To avoid the petty complications this entails, I shall often pretend it'\ 
the positive charges that move, as in fact everyone assumed they did for a century or so 
after Benjamin Franklin established his unfortunate c~nvent ion.~ Current is measured in  
coulombs-per-second, or amperes (A): 

A line charge h traveling down a wire at speed v (Fig. 5.9) constitutes a current 

I = h v ,  (5.13) 

because a segment of length v a t ,  carrying charge h v A t ,  passes point P in a time interval 
At.  Current is actually a vector: 

I = AV; (5.141 

3 ~ f  we called the electron plus and the proton minus, the problem would never arise. In the context of Frank1in.t 
experiments with cat's fur and glass rods. the choice was completely arbitrary. 
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Figure 5.9 

since the path of the flow is dictated by the shape of the wire, most people don't bother 
to display the vectorial character of I explicitly, but when it comes to surface and volume 
currents we cannot afford to be so casual, and for the sake of notational consistency it is 
a good idea to acknowledge this right from the start. A neutral wire, of course, contains 
as many stationary positive charges as mobile negative ones. The former do not contribute 
to the current-the charge density h in Eq. 5.13 refers only to the moving charges. In the 
unusual situation where both types move, I = h+v+ + h-v-. 

The magnetic force on a segment of current-carrying wire is evidently 

Inasmuch as I and dl both point in the same direction, we can just as well write this as 

Typically, the current is constant (in magnitude) along the wire, and in that case I comes 
outside the integral: 

Fmag = I (dl X B). S (5.17) 

Example 5.3 

A rectangular loop of wire, supporting a mass m, hangs vertically with one end in a uniform 
magnetic field B, which points into the page in the shaded region of Fig. 5.10. For what 
current I, in the loop, would the magnetic force upward exactly balance the gravitational force 
downward? 

Solution: First of all, the current must circulate clockwise, in order for (I X B) in the horizontal 
segment to point upward. The force is 

Fmag = I B a ,  

where a  is the width of the loop. (The magnetic forces on the two vertical segments cancel.) 
For Fmag to balance the weight (mg) ,  we must therefore have 

The weight just hangs there, suspended in mid-air! 
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Figure 5.10 

What happens if we now increase the current? Then the upward magnetic force exceeds the 
downward force of gravity, and the loop rises, lifting the weight. Somebody's doing work, and 
it sure looks as though the magnetic force is responsible. Indeed, one is tempted to write 

Wmag = Fmaglt = I Bah (5.19) 

where h is the distance the loop rises. But we know that magnetic forces never do work. 
What's going on here? 

Well, when the loop starts to rise, the charges in the wire are no longer moving horizontally- 
their velocity now acquires an upward component U,  the speed of the loop (Fig. 5.1 l ) ,  in addition 
to the horizontal component W associated with the current (I = hw). The magnetic force. 
which is always perpendicular to the velocity, no longer points straight up, but tilts back. It 
is perpendicular to the net displacement of the charge (which is in the direction of v), and 
therefore it does no work on g .  It does have a vertical component (qwB); indeed, the net 
vertical force on all the charge (ha) in the upper segment of the loop is 

(as before); but now it also has a horizontal component (quB), which opposes the flow of 
current. Whoever is in charge of maintaining that current, therefore, must now push those 
charges along, against the backward component of the magnetic force. 

4 W 

Figure 5.1 1 
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Figure 5.12 

The total horizontal force on the top segment is evidently 

In a time dt  the charges move a (horizontal) distance U) d t ,  so the work done by this agency 
(presumably a battery or a generator) is 

which is precisely what we nai'vely attributed to the magnetic force in Eq. 5.19. Was work 
done in this process? Absolutely! Who clid it? The battery! What, then, was the role of the 
magnetic force? Well, it redirected the horizontal force of the battery into the vertical motion 
of the loop and the weight. 

It may help to consider a mechanical analogy. Imagine you're pushing a trunk up a frictionless 
ramp, by pushing on it horizontally with a mop (Fig. 5.12). The normal force (N) does no 
work, because it is perpendicular to the displacement. But it does have a vertical component 
(which in fact is what lifts the trunk), and a (backward) horizontal component (which you have 
to overcome by pushing on the mop). Who is doing the work here? You are, obviously-and 
yet your force (which is purely horizontal) is not (at least, not directly) what lifts the box. The 
normal force plays the same passive (but crucial) role as the magnetic force in Ex. 5.3: while 
doing no work itself, it redirects the efforts of the active agent (you. or the battery, as the case 
may be), from horizontal to vertical. 

When charge flows over a surface, we describe it by the surface current density, K, 
defined as follows: Consider a "ribbon" of infinitesimal width dl l ,  running parallel to the 
flow (Fig. 5.13). If the current in this ribbon is dI, the surface current density is 

In words, K is the currentper unit width-perpendicular-to--OM;. In particular, if the (mobile) 
surface charge density is a and its velocity is v, then 

K = a v .  (5.23) 

In general, K will vary from point to point over the surface, reflecting variations in rr andtor 
v. The magnetic force on the surface current is 
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Figure 5.1 3 

Caveat: Just as E suffers a discontinuity at a surface charge, so B is discontinuous at a 
surface current. In Eq. 5.24, you must be careful to use the average field, just as we did in 
Sect. 2.5.3. 

When the flow of charge is distributed throughout a three-dimensional region, we de- 
scribe it by the volume current density, J, defined as follows: Consider a "tube" of 
infinitesimal cross section d a l ,  running parallel to the flow (Fig. 5.14). If the current in 
this tube is dI ,  the volume current density is 

In words, J is the current per unit area-perpendicular-to-@W. If the (mobile) volume 
charge density is p and the velocity is v, then 

J = pv. (5.26 r 

The magnetic force on a volume current is therefore 

Figure 5.14 
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Figure 5.15 Figure 5.1 6 

Example 5.4 

(a) A current I is uniformly distributed over a wire of circular cross section, with radius a 
(Fig. 5.15). Find the volume current density J .  

Solution: The area-perpendicular-to-flow is n a 2 ,  so 

This was trivial because the current density was uniform. 

(b) Suppose the current density in the wire is proportional to the distance from the axis, 

(for some constant k). Find the total current in the wire. 

Solution: Because J varies with S, wc must integrate Eq. 5.25. The current in the shaded 
patch (Fig. 5.16) is Jda l ,  and d a l  = s d s  d+. So, 

According to Eq. 5.25, the current crossing a surface S can be written as 

(The dot product serves neatly to pick out the appropriate component of da.) In particular, 
the total charge per unit time leaving a volume V is 
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Because charge is conserved, whatever flows out through the surface must come at the 
expense of that remaining inside: 

(The minus sign reflects the fact that an outward flow decreases the charge left in V.) Since 
this applies to any volume, we conclude that 

This is the precise mathematical statement of local charge conservation; it is called the 
continuity equation. 

For future reference, let me summarize the "dictionary" we have implicitly developed 
for translating equations into the fonns appropriate to point, line, surface, and volume 
currents: 

n 

C( kivi -1 ( ) ~ d l  1 ( ) ~ d a  1 S ) Jdr .  (5.30) 
i = l  line surface volume 

This correspondence, which is analogous to q -- h dl -- o da -- p d t for the various charge 
distributions, generates Eqs. 5.15, 5.24, and 5.27 from the original Lorentz force law (5. l ). 

Problem 5.4 Suppose that the magnetic field in some region has the form 

(where k is a constant). Find the force on a square loop (side a), lying in the yz plane and 
centered at the origin, if it carries a current I, flowing counterclockwise, when you look down 
the .X axis. 

Problem 5.5 A current 1 flows down a wire of radius a .  

(a) If it is uniformly distributed over the surface, what is the surface current density K?  

(b) If it is distributed in such a way that the volume current density is inversely proportional 
to the distance from the axis, what is J? 

Problem 5.6 

(a) A phonograph record carries a uniform density of "static electricity" c. If it rotates at 
angular velocity w ,  what is the surface current density K at a distance r from the center? 

(b) A uniformly charged solid sphere, of radius R and total charge Q, is centered at the origin 
and spinning at a constant angular velocity w about the z axis. Find the current density J at 
any point (r ,  Q, 4) within the sphere. 

Problem 5.7 For a configuration of charges and currents confined within a volume V, s h o ~  
that 

~ d t  = dpld t ,  

where p is the total dipole moment. [Hint: evaluate Jv V . (xJ) d t  .] 
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5.2 The Biot-Savart Law 

5.2.1 Steady Currents 

Stationary charges produce electric fields that are constant in time; hence the term electro- 
s tat ic~ .~  Steady currents produce magnetic fields thaf are constant in time; the theory of 
steady currents is called magnetostatics. 

Stationary charges + constant electric fields: electrostatics. 
Steady currents ' + constant magnetic fields: magnetostatics. 

By steady current I mean a continuous flow that has been going on forever, with- 
out change and without charge piling up anywhere. (Some people call t;hem "stationary 
currents"; to my ear, that's a contradiction in terms.) Of course, there's no such thing 
in practice as a truly steady current, any more than &ere is a truly stationary charge. In 
this sense both electrostatics and magnetostatics describe artificial worlds. that exist only in 
textbooks. However, they represent suitable approximations as long as the actual fluctua- 
tions are reasonably slow; in fact, for most purposes magnetostatics applies very well to 
household currents, which alternate 60 timks a second! 

Notice that a moving point charge cannot possibly constitute a steady current. If it's 
here one instant, it's gone the next. This may ssem like 'a minor thing to you, but it's a 
major headache for me. I developed each topic in eliitrostatics by starting out with the 
simple case of a point charge at rest; then I generalized to an arbitrary charge distribution 
by invoking the superposition principle. This approach,is ~ o t  open to us in magnetostatics 
because a moving point charge does not produce a static field in the first place. We are 
forced to deal with extended current distributions, right from the start, and as a result the 
arguments are bound to be more cumbersome. 

When a steady current flows in a wire, its magnitude I must be the same all along the 
line; otherwise, charge would be piling up somewhere, and it wouldn't be a steady current. 
By the same token, ap/at = 0 in magnetostatics, and hence the continuity equation (5.29) 
becomes 

V . J = O .  (5.31) 

5.2.2 The Magnetic Field of a Steady Current 

The magnetic field of a steady line current is given by the Biot-Savart law: 

4~ctually, it is not necessary that the charges be stationary, but only that the charge density at each point be 
constant. For example, the sphere in Prob. 5.6b produces an electrostatic field I / ~ ~ E ~ ( Q / T ~ ) ~ ,  even though it is 
rotating, because p does not depend on t. 



CHAPTER 5. MAGNETOSTATICS 

Figure 5.17 

The integration is along the current path, in the direction of the flow; dl' is an element 
of length along the wire, and 4, as always, is the vector from the source to the point r 
(Fig. 5.17). The constant ~0 is called the permeability of free 

These units are such that B itself comes out in newtons per ampere-meter (as required by 
the Lorentz force law), or teslas (T ) :~  

As the starting point for magnetostatics, the Biot-Savart law plays a role analogous to 
Coulomb's law in electrostatics. Indeed, the dependence is common to both laws. 

Example 5.5 

I Find the magnetic field a distance s from a long straight wire carrying a steady current I 
(Fig. 5.18). 

Solution: In the diagram, (dl' X i) points out of the page, and has the magnitude 

dl' sin a = dl' cos Q.  

Also, 1' = s tan Q,  so 

and s = +cos@, so 

'This is an exact number, not an empirical constant. It serves (via Eq. 5.37) to define the ampere, and the ampere 
in turn defines the coulomb. 

6 ~ o r  some reason, in this one case the cgs unit (the gauss) is more commonly used than the S1 unit: 1 tesla = 
lo4 gauss. The earth's magnetic field is about half a gauss; a fairly strong laboratory magnetic field is, say, 10,000 
gauss. 
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I 
I a 
] 1' 

I dl' 

Figure 5.1 8 

Wire segment 

Figure 5.19 

Thus 

- p01 "01 /02 Cos 0 d0 = -(sin O2 - sin Q1). 
4ns 0, 4ns 

Equation 5.35 gives the field of any straight segment of wire, in terms of the initial and final 
angles O1 and O2 (Fig. 5.19). Of course, a finite segment by itself could never support a steady 
current (where would the charge go when it got to the end?), but it might be a piece of some 
closed circuit, and Eq. 5.35 would then represent its contribution to the total field. In the case 
of an infinite wire, 81 = -n/2 and O2 = n/2,  so we obtain 

Notice that the field is inversely proportional to the distance from the wire-just like the 
electric field of an infinite line charge. In the region below the wire, B points into the page, and 
in general, it "circles around" the wire, in accordance with the right-hand rule stated earlier 
(Fig. 5.3). 

, \ l  
As an application, let's find the force of attraction between two long, parallel wires a distance 

1 d apart, carrying currents I I  and 12 (Fig. 5.20) The field at (2) due to (l) is 

and it points into the page. The Lorentz force law (in the form appropriate to line currents, 
Eq. 5.17) predicts a force directed towards (l), of magnitude 

F = I2 (g) / d l .  

The total force, not surprisingly, is infinite, but the force per unit length is 
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Figure 5.20 

If the currents are antiparallel (one up, one down), the force is repulsive-consistent again 
with the qualitative observations in Sect. 5.1.1. 

Example 5.6 

Find the magnetic field a distance z above the center of a circular loop of radius R, which 
canies a steady current I (Fig. 5.21). 

Figure 5.2 1 

Solution: The field dB attributable to the segment dl' points as shown. As we integrate dl' 
around the loop, dB sweeps out a cone. The horizontal components cancel, and the vertical 
components combine to give 

(Notice that dl' and 4 are perpendicular, in this case; the factor of cos 0 projects out the vertical 
component.) Now, cos 0 and 4' are constants, and 1 dl' is simply the clrcurnference, 2n R, so 
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For surface and volume currents the Biot-Savart law becomes 

K(rr) X k 
B ( r ) = E J '  22 da' and B ( r ) = -  d t ' ,  (5.39) 

4n 

respectively. You might be tempted to write down the corresponding formula for a moving 
point charge, using the "dictionary" 5.30: 

but this is simply wrong.7 As I mentioned earlier, a point charge does not constitute a steady 
current, and the Biot-Savart law, which only holds for steady currents, does not correctly 
determine its field. 

Incidentally, the superposition principle applies to magnetic fields just as it does to 
electric fields: If you have a collection of source currents, the net field is the (vector) sum 
of the fields due to each of them taken separately. 

Problem 5.8 

(a) Find the magnetic field at the center of a square loop, which carries a steady current I .  Let 
R be the distance from center to side (Fig. 5.22). 

(b) Find the field at the center of a regular n-sided polygon, carrying a steady current I.  Again, 
let R be the distance from the center to any side. 

(c) Check that your formula reduces to the field at the center of a circular loop, in the limit 
n + 00. 

Problem 5.9 Find the magnetic field at point P for each of the steady current configurations 
shown in Fig. 5.23. 

L 
I 

Figure 5.22 

(a) (b) 

Figure 5.23 

7~ say this loud and clear to emphasize the point of principle; actually, Eq. 5.40 is nppro.ximntely right for 
nonrelativistic charges ( v  << c), under conditions where retardation can be neglected (see Ex. 10.4). 

. . 
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(a) (b) 

Figure 5.24 

Problem 5.10 

(a) Find the force on a square loop placed as shown in Fig. 5.24(a), near an infinite straight 
wire. Both the loop and the wire cany a steady current I. 

(b) Find the force on the triangular loop in Fig. 5.24(b). 

Figure 5.25 

Problem 5.11 Find the magnetic field at point P on the axis of a tightly wound solenoid (helical 
coil) consisting of n turns per unit length wrapped around a cylindrical tube of radius a and 
carrying current I (Fig. 5.25). Express your answer in terms of Q1 and Q2 (it's easiest that 
way). Consider the turns to be essentially circular, and use the result of Ex. 5.6. What is the 
field on the axis of an infinite solenoid (infinite in both directions)? 

Figure 5.26 

Problem 5.12 Suppose you have two infinite straight line charges h ,  a distance d apart, moving 
along at a constant speed v (Fig. 5.26). How great would v have to be in order for the magnetic 
attraction to balance the electrical repulsion? Work out the actual number. . . Is this a reasonable 
sort of speed?' 

8 ~ f  you've studied special relativity, you may be tempted to look for complexities in this problem that are nor 
really there--A and v are both measured in the laboratory frarne, and this is ordinary electrostatics (see footnote 4). 
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5.3 The Divergence and Curl of B 

5.3.1 Straight-Line Currents 

The magnetic field of an infinite straight wire is shown in Fig. 5.27 (the current is coming 
out of the page). At a glance, it is clear that this field has a nonzero curl (something you'll 
never see in an electmstatic field); let's calculate it. 

Figure 5.27 

According to Eq. 5.36, the integral of B around a circular path of radius S, centered at 
the wire, is 

Notice that the answer is independent of S ;  that's because B decreases at the same rate as 
the circumference increases. In fact, it doesn't have to be a circle; any old loop that encloses 
the wire would give the same answer. For if we use cylindrical coordinates (S, @, z ) ,  with 
the current flowing along the z axis, 

This assumes the loop encircles the wire exactly once; if it went around twice, the @ would 
run from 0 to 4n, and if it didn't enclose the wire at all, then @ would go from @I to 4 2  and 
back again, with 1 d$ = 0 (Fig. 5.28). 
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Figure 5.28 Figure 5.29 

Now suppose we have a bundle of straight wires. Each wire that passes through our 
loop contributes poI ,  and those outside contribute nothing (Fig. 5.29). The line integral 
will then be 

B . d l  = pore,,. (5.4' 1 

where Ienc stands for the total current enclosed by the integration path. If the flow of charge 
is represented by a volume current density J, the enclosed current is 

Zen, = J . da ,  S (5.43 r 

with the integral taken over the surface bounded by the loop. Applying Stokes' theorem to 
Eq. 5.42, then, 

/ (V x B) - d a  = p. J - da. S 
and hence 

V X B = poJ 

With minimal labor we have actually obtained the general formula for the curl of B. 
But our derivation is seriously flawed by the restriction to infinite straight line currents (and 
combinations thereof). Most current configurations cunnot be constructed out of infinite 
straight wires, and we have no right to assume that Eq. 5.44 applies to them. So the next 
section is devoted to the formal derivation of the divergence and curl of B, starting from the 
Biot-Savart law itself. 

5.3.2 The Divergence and Curl of B 

The Biot-Savart law for the general case of a volume current reads 

J(rf) X 
B(r) = I*o dt '  

4n  a2 
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Figure 5.30 

This formula gives the magnetic field at a point r = ( X ,  y, z )  in terms of an integral over the 
current distribution J(x ' ,  yr ,  z r )  (Fig. 5.30). It is best to be absolutely explicit at this stage: 

B is a function of ( X ,  y , z )  , 

J is a function of ( X ' ,  yr, z'), 

= ( X  - X ' )  ri + ( y  - y f )  f + (2  - 2') 2 ,  

d t '  = dxrdy '  dz'. 

The integration is over the primed coordinates; the divergence and the curl are to be taken 
with respect to the unprimed coordinates. 

Applying the divergence to Eq. 5.45, we obtain: 

Invoking product rule number (6 ) ,  

But V X J = 0, because J doesn't depend on the unprimed variables (X, y, z ) ,  whereas 
V X (;/a2) = 0 (Prob. l.62), so 

(5.48) 

Evidently, the divergence of the magnetic field is zero. 
Applying the curl to Eq. 5.45, we obtain: 

Again, our strategy is to expand the integrand, using the appropriate product rule-in this 
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(I have dropped terms involving derivatives of J, because J does not depend on X, y ,  z . )  The 
second termintegrates to zero, as we'll see in the next paragraph. The first term involves 
the divergence we were at pains to calculate in Chapter 1 (Eq. 1.100): 

Thus 

V X B = - ~ ( r ' ) 4 n s ~ ( r  - r') d r '  = poJ(r), 
4 r  S 

which confirms that Eq. 5.44 is not restricted to straight-line currents, but holds quite 
generally in magnetostatics. 

To complete the argument, however, we must check that the second term in Eq. 5.50 
integrates to zero. Because the derivative acts only on &/a2, we can switch from V to V' at 
the cost of a minus sign:9 

The X component, in particular, is 

(using product rule 5). Now, for steady currents the divergence of J is zero (Eq. 5.31), so 

and therefore this contribution to the integral (5.49) can be written 

(The reason for switching from V to V' was precisely to permit this integration by parts. I 
But what region are we integrating over? Well, it's the volume that appears in the Biot- 
Savart law (5.45)-large enough, that is, to include all the current. You can make it bigger 
than that, if you like; J = 0 out there anyway, so it will add nothing to the integral. The 
essential point is that on the boundary the current is zero (all current is safely inside) and 
hence the surface integral (5.53) vanishes." 

9 ~ h e  point here is that /t depends only on the difference between the coordinates, and (a1a.s) f (X - X') = 
- ( a / a n l ) f ( ~  -X'). 

1°1f J itself extends to infinity (as in the case of an infinite straight wire), the surface integral is still typicall! 
zero, though the analysis calls for greater care. 
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5.3.3 Applications of Ampiire's Law 

The equation for the curl of B 

is called Ampkre's law (in differential form). It can be converted to integral form by the 
usual device of applying one of the fundamental theorems-in this case Stokes' theorem: 

Now, J . da is the total current passing through the surface (Fig. 5.3 l), which we call I,,, 
(the current enclosed by the amperian loop). Thus 

This is the integral version of Ampkre's law; it generalizes Eq. 5.42 to arbitrary steady 
currents. Notice that Eq. 5.55 inherits the sign ambiguity of Stokes' theorem (Sect. 1.3.5): 
Which way around the loop am I supposed to go? And which direction through the surface 
corresponds to a "positive" current? The resolution, as always, is the right-hand rule: If the 
fingers of your right hand indicate the direction of integration around the boundary, then 
your thumb defines the direction of a positive current. 

Boundary line 

Figure 5.3 1 

Just as the Biot-Savart law plays a role in magnetostatics that Coulomb's law assumed 
in electrostatics, so Ampkre's plays the role of Gauss's: 

Electrostatics : Coulomb + Gauss, 
Magnetostatics: Biot-Savart + Amp&re. 

In particular, for currents with appropriate symmetry, Amphe's law in integral form offers 
a lovely and extraordinarily efficient means for calculating the magnetic field. 
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Example 5.7 

Find the magnetic field a distance s from a long straight wire (Fig. 5.32),  carrying a steady 
current I (the same problem we solved in Ex. 5.5, using the Biot-Savart law). 

Solution: We know the direction of B is "circumferential," circling around the wire as indicated 
by the right hand rule. By symmetry. the magnitude of B is constant around an amperian loop 
of radius S ,  centered on the wire. So Ampbre's law gives 

This is the same answer we got before (Eq. 5.36), but it was obtained this time with far less 
effort. 

Sheet of current =l K 

Amperian loop 

X 

Figure 5.32 Figure 5.33 

Example 5.8 

Find the magnetic field of an infinite unifonn surface current K = K 2, flowing over the X \  

plane (Fig. 5.33). 

Solution: First of all, what is the direction of B'? Could it have any X-component? No: A glance 
at the Biot-Savart law (5.39) reveals that B is perpendicular to K. Could it have a z-component? 
No again. You could confirm this by notitlg that any vertical contribution from a filament at 
+y is canceled by the corresponding filament at -v. But there is a nicer argument: Suppose 
the field pointed away from the plane. By reversing the direction of the current, I could make 
it point toward the plane (in the Biot-Savart law, changing the sign of the current switches the 
sign of the field). But the z-component of B cannot possibly depend on the direction of the 
current in the xy plane. (Think about it!) So B can only have a y-component, and a quick 
check with your right hand should convince you that it points to the left above the plane and 
to the right below it. 
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With this in mind we draw a rectangular amperian loop as shown in Fig. 5.33, parallel to the 
yz plane and extending an equal distance above and below the surface. Applying Ampkre's 
law, we find 

(one B1 comes from the top segment, and the other from the bottom), so B = (p0/2) K. or, 
more precisely, 

+ p 0 ) K  9 for z < 0. 
-(p0/2) K 9 for z > 0. 

Notice that the field is independent of the distance from the plane, just like the electric field of 
a uniform surface charge (Ex. 2.4). 

Example 5.9 

Find the magnetic field of a very long solenoid, consisting of n closely wound turns per unit 
length on a cylinder of radius R and carrying a steady current I (Fig. 5.34). [The point of 
making the windings so close is that one can then pretend each turn is circular. If this troubles 
you (after all, there is a net current I in the direction of the solenoid's axis, no matter how tight 
the winding), picture instead a sheet of aluminum foil wrapped around the cylinder, carrying the 
equivalent unifonn surface current K = n l  (Fig. 5.35). Or make a double winding, going up 
to one end and then-always in the same sense-going back down again, thereby eliminating 
the net longitudinal current. But, in truth, this is all unnecessary fastidiousness, for the field 
inside a solenoid is huge (relatively speaking), and the field of the longitudinal current is at 
most a tiny refinement.] 

Solution: First of all, what is the direction of B? Could it have a radial component? No. 
For suppose B ,  were positive; if we reversed the direction of the current, Bs would then be 
negative. But switching I is physically equivalent to turning the solenoid upside down, and 

Figure 5.34 Figure 5.35 
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Amperian loops 

Figure 5.36 Figure 5.37 

that certainly should not alter the radial field. How about a "circumferential" component? No. 
For B@ would be constant around an amperian loop concentric with the solenoid (Fig. 5.36). 
and hence 

! B . dl  = B4 (2ns) = l,,, = 0, 

since the loop encloses no current. 

So the magnetic field of an infinite, closely wound solenoid runs pamllel to the axis. From 
the right hand rule, we expect that it points upward inside the solenoid and downward outside. 
Moreover, it certainly approaches zero as you go very far away. With this in mind, let's 
apply Ampere's law to the two rectangular loops in Fig. 5.37. Loop 1 lies entirely outside the 
solenoid, with its sides at distances a and b from the axis: 

SO 

B(a) = B(b). 

Evidently thejeld outside does not depend on the distancefrom the axis. But we know that i~ 
goes to zero for large S. It must therefore be zero everywhere! (This astonishing result can also 
be derived from the Biot-Savart law, of course, but it's much more difficult. See Prob. 5.44.) 

As for loop 2, which is half inside and half outside, Ampkre's law gives 

where B is the field inside the solenoid. (The right side of the loop contributes nothirig, since 
B = 0 out there.) Conclusiotz: 

p012 I i, inside the solenoid, 
0, outside the solenoid. 

Notice that the field inside is uniform; in this sense the solenoid is to magnetostatics what 
the parallel-plate capacitor is to electrostatics: a simple device for producing strong uniform 
fields. 
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Like Gauss's law, Ampere's law is always true (for steady currents), but it is not always 
useful. Only when the symmetry of the problem enables you to pull B outside the integral 
$ B . dl  can you calculate the magnetic field from Ampitre's law. When it does work, it's 
by far the fastest method; when it doesn't, you have to fall back on the Biot-Savart law. The 
current configurations that can be handled by Ampitre's law are 

1. Infinite straight lines (prototype: Ex. 5.7). 
2. Infinite planes (prototype: Ex. 5.8). 
3. Infinite solenoids (prototype: Ex. 5.9). 
4. Toroids (prototype: Ex. 5.10). 

The last of these is a surprising and elegant application of Ampere's law; it is treated in the 
following example. As in Exs. 5.8 and 5.9, the hard part is figuring out the direction of the 
field (which we will now have done, once and for all, for each of the four geometries); the 
actual application of Ampitre's law takes only one line. 

Example 5.10 

A toroidal coil consists of a circular ring, or "donut," around which a long wire is wrapped 
(Fig. 5.38). The winding is uniform and tight enough so that each turn can be considered 
a closed loop. The cross-sectional shape of the coil is immaterial. I made it rectangular in 
Fig. 5.38 for the sake of simplicity, but it could just as well be circular or even some weird 
asymmetrical form, as in Fig. 5.39, just as long as the shape remains the same all the way 
around the ring. In that case it follows that the ~nagneticjield of the tni-oid is circumjerential 
ut all points, both inside and outside the coil. 

Figure 5.38 

Proof: According to the Biot-Savart law, the field at r due to the current element at rf is 

We may as well put r in the xz  plane (Fig. 5.39), so its Cartesian components are (X, 0, z ) ,  
while the source coordinates are 

rr = (S' COS#', s r  sin #', z'). 

Then 
I a =  ( X - S  COS+', -sfsin+',z-z') .  

Since the current has no + component, I = I, B + Iz 2 ,  or (in Cartesian coordinates) 

I = (I, cos#', I,  sin +I,  I,). 
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Figure 5.39 

Accordingly, 

X i 
1 x 4  = I, cos 0' I, sin #/ 

( X  - S' COS 4') (-S/ sin #I) ( 2  - z') 

+ [ I Z ( x  - srcos+/)  - I, cos #'(z - z')] $ + [-I,yx sin#/] 2. 

But there is a symmetrically situated current element at r", with the same S', the same 4. the 
same dl ' ,  the same Is, and the same I z ,  but negative 4' (Fig. 5.39). Because sin#' change\ 
sign, the 2 and i contributions from r' and r" cancel, leaving only a f term. Thus the field at 

r is in the i direction, and in general the field points in the 8 direction. qed 
Now that we know the field is circumferential, determining its magnitude is ridiculousl> 

easy. Just apply Ampbe's law to a circle of radius s about the axis of the toroid: 

and hence 

for points inside the coil, 
B(r) = 2ns  (5.58 I 

for points outside the coil, 

where N is the total number of turns. 
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Problem 5.13 A steady current I flows down a long cylindiical wire of radius a (Fig. 5.40). 
Find the magnetic field, both inside and outside the wire, if 

(a) The current is uniformly distributed over the outside surface of the wire. 

(b) The current is distributed in such a way that J is pr~portional to S, the distance from the 
axis. 

Figure 5.40 Figure 5.41 

Problem 5.14 A thick slab extending from z = -a to, z = +U carries a hniform volume 
current J = J rZ (Fig. 5.41). Find the magnetic field, as a furlktion of z ,  both inside and outside 
the slab. 

Problem 5.15 Two long coaxial solenoids each carry curfent I, but in opposite directions, as 
shown in Fig. 5.42. The inner solenoid (radius a)  has n i  turns per unit length, and the outer 
one (radius b) has n2.  Find B in each of the three regions: (i) inside the inner solenoid, (ii) 
between them, and (iii) outside both. 

Figure 5.42 Figure 5.43 

Problem 5.16 A lafge parallel-plate capacitor with uniform surface charge a on the upper 
plate and -a on the lower is nioving with a constant speed v ,  as shown in Fig. 5.43. 

(a) Find the magnetic field between the plates and also above and below them. 

(b) Find the magnetic force per unit area on the upper plate, including its directiofi. 

(c) At what speed v would the magnetic force balance the electrical force?" 

' l  See footnote 8. 
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! Problem 5.17 Show that the magnetic field of an infinite solenoid runs parallel to the axis. 
regardless ofthe cross-.sectional shape oj'the coil, as long as that shape is constant along the 
length of the solenoid. What is the magnitude of the field, inside and outside of such a coil'? 
Show that the toroid field (5.58) reduces to the solenoid field, when the radius of the donut is 
so large that a segment can be considered essentially straight. 

Problem 5.18 In calculating the current enclosed by an amperian loop, one must, in general. 
evaluate an integral of the form 

n 

I.., = J . da. 

The trouble is, there are infinitely many s~~rfaces that share the same boundary line. Which 
one are we supposed to use? 

5.3.4 Comparison of Magpetostatics and Electrostatics 

The divergence and curl of the electrostatic field are 

1 
V . E = - p ,  (Gauss's law); 

€0 

I v ~ E = o ,  (no name). 

These are Maxwell's equations for electrostatics. Together with the boundary condition 
E -+ 0 far from all charges, Maxwell's equations determine the field, if the source charge 
density p is given; they contain essentially the same information as Coulomb's law plus the 
principle of superposition. The divergence and curl of the magnetostatic field are 

l 
V . B = 0 ,  (no name); 

V  X B = pOJ, (Ampkre's law). 

These are Maxwell's equations for magnetostatics. Again, together with the boundan 
condition B  -+ 0 far from all currents, Maxwell's equations determine the magnetic field: 
they are equivalent to the Biot-Savart law (plus superposition). Maxwell's equations and 
the force law 

F = Q ( E + v x B )  

constitute the most elegant formulation of electrostatics and magnetostatics. 
The electric field diverges away from a (positive) charge; the magnetic field line cul-1.5 

around a current (Fig. 5.44). Electric field lines originate on positive charges and terminate 
on negative ones; magnetic field lines do not begin or end anywhere-to do so would 
require a nonzero divergence. They either form closed loops or extend out to infinity. 
To put it another way, there are no point sources for B, as there are for E; there exists 
no magnetic analog to electric charge. This is the physical content of the statement V  . 
B = 0. Coulomb and others believed that magnetism was produced by magnetic charges 
(magnetic monopoles, as we would now call them), and in some older books you will still 
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(a) Electrostatic field 
of a point charge 

(b) Magnetostatic field 
of a long wire 

Figure 5.44 

find references to a magnetic version of Coulomb's law, giving the force of attraction or 
repulsion between them. It was Ampkre who first speculated that all magnetic effects are 
attributable to electric charges in motion (currents). As far as we know, Ampkre was right; 
nevertheless, it remains an open experimental question whether magnetic monopoles exist 
in nature (they are obviously pretty rare, or somebody would have found onei2), and in 
fact some recent elementary particle theories require them. For our purposes, though, B is 
divergenceless and there are no magnetic monopoles. It takes a moving electric charge to 
produce a magnetic field, and it takes another moving electric charge to "feel" a magnetic 
field. 

Typically, electric forces are enormously larger than magnetic ones. That's not sorne- 
thing you can tell from the theory as such; it has to do with the sizes of the fundamental 
constants €0 and PO. In general, it is only when both the source charges and the test charge 
are moving at velocities comparable to the speed of light that the magnetic force approaches 
the electric force in strength. (Problems 5.12 and 5.16 illustrate this rule.) How is it, then, 
that we ever notice magnetic effects at all? The answer is that both in the production of 
a magnetic field (Biot-Savm) and in its detection (Lorentz) it is the current (charge times 
velocity) that enters, and we can compensate for a smallish velocity by pouring huge quan- 
tities of charge down the wire. Ordinarily, this charge would simultaneously generate so 
large an electric force as to swamp the magnetic one. But if we arrange to keep the wire 
rleutral, by embedding in it an equal amount of opposite charge at rest, the electric field 
cancels out, leaving the magnetic field to stand alone. It sounds very elaborate, but of course 
this is precisely what happens in an ordinary current carrying wire. 

I 2 ~ n  apparent detection (B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982)) has never been reproduced-and not for 
want of trying. For a delightful brief history of ideas about magnetism, see Chapter 1 in b. C. Mattis, The Theory 
of Magnetism (New York: Harper and Row, 1965 j. 
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Problem 5.19 

(a) Find the density p of mobile charges in a piece of copper, assuming each atom contributes 
onc frcc clcctron. [Look up thc necessary physical constants.] 

(b) Calculate the average electron velocity in a copper wire 1 mm in diameter, carrying a 
current of 1 A. [Note: this is literally a snail's pace. How, then, can you carry on a long 
distance telephone conversation?] 

(c) What is the force of attraction between two s u ~ h  wires, 1 cm apart? 

(d) If you could somehow remove the stationary positive ions, what would the electrical 
repulsion force be? How mauy times greater than the magnetic force is it? 

Problem 5.20 Is Ampere's law consistent with the general rule (Eq. 1.46) that divergence-of- 
curl is always zero? Show that Ampkre's law cannot be valid, in general, outside magneto- 
statics. Is there any such "defect" in the other three Maxwell equations? 

Problem 5.21 Suppose there did exist pagnetic monopoles. How would you modify Maxwell's 
equations and the force law, to accommodate them? If you think there are several plausible 
options, list them, and suggest how youifnight decide experimentally which one is right. 

5.4 Magnetic Vector Potential 

5.4.1 The Vector Potential 

Just as V X E = 0 permitted us to introduce a scalar potential ( V )  in electrostatics, 

so V - B = 0 invites the introduction of a vector potential A in magnetostatics: 

The former is authorized by Theorem 1 (of Sect. 1.6.2), the latter by Theorem 2 (the proof 
of Thearem 2 is developed in Prob. 5.30). The potential formulation automatically takes 
care of V . B = 0 (since the divergence of a curl is always zero); there remains Ampkre's 
law: 

V X B = V X (V X A) = V(V . A )  - V ~ A  = poJ. (5.60) 

Now, the electric potential had a built-in ambiguity: you can add to V any function whose 

gradient is zero (which is to say, any constant), without altering the physical quantity E. 
Likewise, you can add to the magnetic potential any function whose curl vanishes (which 
is to say, the gradient of any scalar), with no effect on B. We can exploit this freedom to 

eliminate the divergence of A: m1 
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To prove that this is always possible, suppose that our original potential, A,, is not 
divergenceless. If we add to it the gradient of h (A = A, + Vh) ,  the new divergence is 

We can accommodate Eq. 5.61, then, if a function h can be found that satisfies 

v2h = -V . A,. 

But this is matheinatically identical to Poisson's equation (2.24), 

with V.Ao in place of plco as the "source." And we know how to solve Poisson's equation- 
that's what electrostatics is all about ("given the charge distribution, find the potential"). In 
particular, if p goes to zero at infinity, the solution is Eq. 2.29: 

and by the same token, if V . A, goes to zero at infinity, then 

If V . A, does not go to zero at infinity, we'll have to use other means to discover the 
appropriate h, just as we get the electric potential by other means when the charge distribu- 
tion extends to infinity. But the essential point remains: It is always possible to make the 
vectorpotential divergenceless. To put it the other way around: The definition B = V X A 
specifies the curl of A ,  but it doesn't say anything about the divergence-we are at liberty 
to pick that as we see fit, and zero is ordinarily the simplest choice. 

With this condition on A. Ampkre's law (5.60) becomes 

This again is nothing but Poisson's equation-or rather, it is three Poisson's equations, one 
for each cartesian13 component. Assuming J goes to zero at infinity, we can read off the 
solution: 

131n Cxtesian coordinates, V ~ A  = ( v ~ A , ) ~ z  + ( v ~ A , ) ~  + ( v 2 A Z ) f ,  so Eq. 5.62 reduces to v2A,  = -WO J,T, 

V ~ A ,  = -/1,0.1,,, and V ~ A ~  = -PO J z .  In curvilinear coordinates the unit vectors themselves are functions of 
position, and must be differentiated, so it is not the case, for example, that V ~ A ,  = -KO Jr .  The safest way to 
calculate the Laplacian of a vector, in terms of its curvilinear components, is to use V*A = V(V .A)  -V X (V X A). 
Remember also that even if you ccrlcrclate integrals such as 5.63 using curvilinear coordinates. you must first express 
J in terms of its Caifesian components {see Sect. 1.4.1). 
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For line and surface currents, 

(If the current does not go to zero at infinity, we have to find other ways to get A; some of 
these are explored in Ex. 5.12 and in the problems at the end of the section.) 

It must be said that A is not as useful as V.  For one thing, it's still a vector, and although 
Eqs. 5.63 and 5.64 are somewhat easier to work with than the Biot-Savart law, you still have 
to fuss with components. It would be nice if we could get away with a scalar potential, 

but this is incompatible with Ampkre's law, since the curl of a gradient is always zero. (A 
magnetostatic scalar potential can be used, if you stick scrupulously to simply-connected. 
current-free regions, but as a theoretical tool it is of limited interest. See Prob. 5.28.) More- 
over, since magnetic forces do no work, A does not admit a simple physical interpretation 
in terms of potential energy per unit charge. (In some contexts it can be interpreted as 
momentum per unit charge.14) Nevertheless, the vector potential has substantial theoretical 
importance, as we shall see in Chapter 10. 

Example 5.11 

A spherical shell, of radius R, carrying a uniform surface charge a ,  is set spinning at angular 
velocity w. Find the vector potential it produces at point r (Fig. 5.45). 

Solution: It might seem natural to align the polar axis along w,  but in fact the integration is 
easier if we let r lie on the z axis, so that w is tilted at an angle $. We may as well orient the 
.X axis so that w lies in the xz plane, as shown in Fig. 5.46. According to Eq. 5.64, 

Figure 5.45 Figure 5.46 

1 4 ~ .  D. Sernon and J. R. Taylor, Am. J. Phys. 64, 1361 (1996). 
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where K = ov. .z = J R ~  + r2  - 2Rr cosQ', and da' = R2 sin0'dQf d4'. Now the velocity 
of a point r' in a rotating rigid body is given by a, X r'; in this case, 

= R@[- (COS $ sin Q' sin 4') ri + (cos $ sin 8' cos 4' -sin + cos 8') 5 +(sin $ sin Q' sin 4') t ] .  
Notice that each of these terms, save one, involves either sincp' or cos 4'. Since 

v = a , x r f =  

2n 
sin 4' d4' = L cos 4' d4'  = 0. 

,. i X z 
us in$  0 W cos $h 
R sin 8' cos 4' R sin @'sin 4' R cos 8' 

such terms contribute nothing. There remains 

R 3  sin $ (6' COS Q' sin Q' 
A ( r ) = -  

J R ~  + r2 - 2Rr  cos8' 

Letting u r cos Q', the integral becomes 

u (R2 + r2 + Rra) J--- - /;1 JR2 + r 2  - 2Rru 
du = - R + r  -2Rru 

3R2r2 

If the point r lies inside the sphere, then R > r ,  and this expression reduces to (21-13 R2):  if r lies 
outside the sphere, so that R < r ,  it reduces to (2R/3r2). Noting that (w X r )  = -wr sin $ f ,  
we have. finally, 

(a, x r). for points inside the sphere, 
3 

A(r) = (5.66) 

(a, X r),  for points outside the sphere. 
3r3 

Having evaluated the integral, I revert to the "natural" coordinates of Fig. 5.45, in which w 
coincides with the i axis and the point r is at (I-, Q,#) :  

Curiously, the field inside this spherical shell is uniform: 

2po R o a  ,. 2 
B = V x A =  

2 
(COSQ i - sine€)) = -pooRw2 = - p o a R w  

3 
(5.68) 

3 3 
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Example 5.12 

Find the vector potential of an infinite solenoid with n turns per unit length, radius R, and 
current I .  

Solution: This time we cannot use Eq. 5.64, since the current itself extends to infinity. But 
here's a cute method that does the job. Notice that 

where 0 is the flux of B through the loop in question. This is reminiscent of Ampkre's law in 
the integral form (3.55). 

B . d l  = p0Ienc. 

In fact, it's the same equation, with B + A  and /,/,ofenc + 0. If symmetry permits, we can 
determine A  from @ in the same way we got B from Ienc, in Sect. 5.3.3. The present problem 
(with a uniform longitudinal magnetic field pon I inside the solenoid and no field outside) is 
analogous to the Ampkre's law problem of a fat wire carrying a uniformly distributed current. 
The vector potential is "circumferential" (it mimics the magnetic field of the wire); using a 
circular "amperian loop" at radius s inside the solenoid, we have 

For an amperian loop outside the solenoid, the flux is 

since the field only extends out to R. Thus 

pot21 
A = - -  4, fors > R. 

2 S 

If you have any doubts about this answer, check it: Does V X A  = B? Does V . A  = O? If so. 
we're done. 

Typically, the direction of A will mimic the direction of the current. For instance, both 
were azimuthal in Exs. 5.1 1 and 5.12. Indeed, if all the current flows in one direction, then 
Eq. 5.63 suggests that A must point that way too. Thus the potential of a finite segment of 
straight wire (Prob. 5.22) is in the direction of the current. Of course, if the current extends 
to infinity you can't use Eq. 5.63 in the first place (see Probs. 5.25 and 5.26). Moreover. 
you can always add an arbitrary constant vector to A-this is analogous to changing the 
reference point for V, and it won't affect the divergence or curl of A, which is all that matters 
(in Eq. 5.63 we have chosen the constant so that A goes to zero at infinity). In principle 
you could even use a vector potential that is not divergenceless, in which case all bets are 
off. Despite all these caveats, the essential point remains: Ordinarilj~ the direction of A 
will match the direction of the current. 
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Problem 5.22 Find the magnetic vector potential of a finite segment of straight wire, carrying 
a current I. [Put the wire on the z axis, from z l  to 22, and use Eq. 5.64.1 Check that your 
answer is consistent with Eq. 5.35. 

Problem 5.23 What current density would produce the vector potential, A = k 4 (where k is 
a constant), in cylindrical coordinates? 

Problem 5.24 If B is uniform, show that A(r) = - i ( r  X B) works. That is, check that 
V . A = 0 and V X A = B. Is this result unique, or are there other functions with the same 
divergence and curl'? 

Problem 5.25 

(a) By whatever means you can think of (short of looking it up), find the vector potential a 
distance s from an infinite straight wire carrying a current I. Check that V . A = 0 and 
V x A = B .  

(b) Find the magnetic potential inside the wire, if it has radius R and the current is uniformly 
distributed. 

Problem 5.26 Find the vector potential above and below the plane surface current in Ex. 5.8. 

Problem 5.27 

(a) Check that Eq. 5.63 is consistent with Eq. 5.61, by applying the divergence. 

(b) Check that Eq. 5.63 is consistent with Eq. 5.45, by applying the curl. 

(C) Check that Eq..5.63 is consistent with Eq. 5.62, by applying the Laplacian. 

Problem 5.28 Suppose you want to define a magnetic scalar potential U (Eq. 5.65). in the 
vicinity of a current-carrying wire. First of all, you must stay away from the wire itself (there 
V X B # 0); but that's not enough. Show, by applying Ampkre's law to a path that starts at a 
and circles the wire, returning to (Fig. 5.47), that the scalar potential cannot be single-valued 
(that is, U (a) # U (b), even jf they represent the same physical point). As an example, find 
the scalar potential for an infinite straight wire. (To avoid a multivalued potential, you must 
restrict yourself to simply-connected regions that remain on one side or the other of every wire, 
never allowing you to go all the way around.) 

Amperian loop 

Figure 5.47 
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Problem 5.29 Use the results of Ex. 5.11 to find the field inside a uniformly charged sphere. 
of total charge Q and radius R,  which is rotating at a constant angular velocity U. 

Problem 5.30 

(a) Complete the proof of Theorem 2, Sect. 1.6.2. That is, show that any divergenceless vector 
field F can be written as the curl of a vector potential A. What you have to do is find A,, A,-. 
and A, such that: (i) aA,/ay - aAy/az = F,; (ii) aA,/az - aA,/ax = Fy;  and (iii) 
aAy/ax - aA,/ay = FZ. Here's one way to do it: Pick A, = 0, and solve (ii) and (iii) for 
A y  and AZ. Note that the "constants of integration" here are themselves functions of y and 
z-they're constant only with respect to x. Now plug these expressions into (i), and use the 
fact that V . F = 0 to obtain 

v 

Ay = l" FZ(xf, y ,  Z )  dxf ;  A; = S,. &(O.  i )  dyl  - FV(xr,  y, Z) dxf S," 
(b) By direct difTerentiation, check that the A you obtained in part (a) satisfies V X A = F. Is 

A divergenceless? [This was a very asymmetrical construction, and it would be surprising if 
it were-although we know that there exists a vector whose curl is F and whose divergence i5  

zero.] 

(C) As an example, let F = y i + z + X  i. Calculate A, and confirm that V X A = F. (For 
further discussion see Prob. 5.5 1 .) 

5.4.2 Summary; Magnetostatic Boundary Conditions 

In Chapter 2, I drew a triangular diagram to summarize the relations among the three 
fundamental quantities of electrostatics: the charge density p, the electric field E, and the 
potential V.  A similar diagram can be  constructed for magnetostatics (Fig. 5.48), relating 

Figure 5.48 
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the current density J, the field B, and the potential A. There is one "missing link" in the 
diagram: the equation for A in terms of B. It's unlikely you would ever need such a formula, 
but in case you are interested, see Probs. 5.50 and 5.5 1. 

Just as the electric field suffers a discontinuity at a surface charge, so the magnetic field 
is discontinuous at a surface current. Only this time it is the tangential component that 
changes. For if we apply Eq. 5.48, in the integral form 

to a wafer-thin pillbox straddling the surface (Fig. 5.49), we get 

As for the tangential components, an amperian loop running perpendicular to the current 
(Fig. 5.50) yields 

Thus the component of B that is parallel to the surface but perpendicular to the current is 
discontinuous in the amount p. K. A similar amperian loop running parallel to the current 
reveals that the parallel component is continuous. These results can be summarized in a 
single formula: 

Babove - Bbelow = PO (K X n) (5.74) 

where ii is a unit vector perpendicular to the surface, pointing "upward." 

above 1 B1 

Figure 5.49 
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Figure 5.50 

Like the scalar potential in electrostatics, the vector potential is continuous across an! 
boundary: 

Aabove = Abelow , (5.75 1 

for V . A = 0 guarantees1' that the normal component is continuous, and V x A = B, in 
the form 

means that the tangential components are continuous (the flux through an amperian loop ot 
vanishing thickness is zero). But the derivative of A inherits the discontinuity of B: 

Problem 5.31 

(a) Check Eq. 5.74 for the configuration in Ex. 5.9. 

(b) Check Eqs. 5.75 and 5.76 for the configuration in Ex. 5.1 1 

Problem 5.32 Prove Eq. 5.76, using Eqs. 5.61,5.74, and 5.75. [Suggestion: I'dset up Cartesian 
coordinates at the surface, with z perpendicular to the surface and X parallel to the current.] 

5.4.3 Multipole Expansion of the Vector Potential 

If you want an approximate formula for the vector potential of a localized current distri- 
bution, valid at distant points, a multipole expansion is in order. Remember: the idea of a 
multipole expansion is to write the potential in the form of a power series in l l r ,  where r i \  
the distance to the point in question (Fig. 5.5 1); if r is sufficiently large, the series will be 

1 5 ~ o t e  that Eqs. 5.75 and 5.76 presuppose that A is divergenceless 



5.4. MAGNETIC VECTOR POTENTIAL 

Figure 5.51 

dominated by the lowest nonvanishing contribution, and the higher terms can be ignored. 
As we found in Sect. 3.4.1 (Eq. 3.94), 

Accordingly, the vector potential of a current loop can be written 

or, more explicitly: 

As in the multipole expansion of V ,  we call the first term (which goes like l / r )  the monopole 
term, the second (which goes like l / r 2 )  dipole. the third quadrupole, and so on. 

Now, it happens that the magnetic rnonopole term is always zero, for the integral is just 
the total vector displacement around a closed loop: 

i dl' = 0. 

This reflects the fact that there are (apparently) no magnetic monopoles in nature (an as- 
sumption contained in Maxwell's equation V . B = 0, on which the entire theory of vector 
potential is predicated). 
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In the absence of any monopole contribution, the dominant term is the dipole (except 
in the rare case where it, too, vanishes): 

$ r' cos or m' = - Adip(r) = 
4nr2 

$(F - r')dlr. 
4n r2 

This integral can be rewritten in a more illuminating way if we invoke Eq. 1.108, with c = f :  

Then 

where m is the magnetic dipole moment: 

Here a is the "vector area" of the loop (Prob. 1.61); if the loop i s ja t ,  a is the ordinary area 
enclosed, with the direction assigned by the usual right hand rule (fingers in the direction 
of the current). 

Example 5.13 

Find the magnetic dipole moment of the "bookend-shaped" loop shown in Fig. 5.52. All side5 
have length W ,  and it canies a current I. 

Solution: This wire could be considered the superposition of two plane square loops (Fig. 5.53 1. 

The "extra" sides (A B) cancel when the two are put together, since the currents flow in opposite 
directions. The net magnetic dipole moment is 

its magnitude is 1/21z02, and it points along the 45" line z = v .  

Figure 5.52 
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Figure 5.53 

It is clear from Eq. 5.84 that the magnetic dipole moment is independent of the choice of 
origin. You may remember that the electric dipole moment is independent of the origin only 
when the total charge vanishes (Sect. 3.4.3). Since the magnetic monopole moment is always 
zero, it is not really surprising that the magnetic dipole moment is always independent of 
origin. 

Although the dipole term dominates the multipole expansion (unless m = O), and thus 
offers a good approximation to the true potential, it is not ordinarily the exact potential; 
there will be quadrupole, octopole, and higher contributions. You might ask, is it possible to 
devise a current distribution whose potential is "pure" dipole-for which Eq. 5.83 is exact? 
Well, yes and no: like the electrical analog, it can be done, but the model is a bit contrived. 
To begin with, you must take an infinitesimally small loop at the origin, but then, in order to 
keep the dipole moment finite, you have to crank the current up to infinity, with the product 
m = Ia held fixed. In practice, the dipole potential is a suitable approximation whenever 
the distance r greatly exceeds the size of the loop. 

The magnetic jeld of a (pure) dipole is easiest to calculate if we put m at the origin 
and let it point in the z-direction (Fig. 5.54). According to Eq. 5.83, the potential at point 

Figure 5.54 
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(a) Field of a "pure" dipole (a) Field of a "physical" dipole 

Figure 5.55 

p0 m sin 8 
Adip (r) = - - 

4n r 2  45 

and hence 
,uom Bdip(r) = V X A = - ( 2 c o s 8 i +  s i n 8 8 ) .  (5.861 
4nr3 

Surprisingly, this is identical in structure to the field of an electric dipole (Eq. 3.103)! (Up 
close, however, the field of a physical magnetic dipole-a small current loop-looks quits 
different from the field of a physical electric dipole-plus and minus charges a short distance 
apart. Compare Fig. 5.55 with Fig. 3.37.) 

Problem 5.33 Show that the magnetic field of a dipole can be written in coordinate-free form: 

Problem 5.34 A circular loop of wire, with radius R,  lies in the x y  plane, centered at the origin. 
and carries a current I running counterclockwise as viewed from the positive z axis. 

PO 1 Bdip(r) = - - [3(m . f)F - m]. 
4n r3 ' 

(a) What is its magnetic dipole moment? 

(5.87 r 

(b) What is the (approximate) magnetic field at points far from the origin? 

(c) Show that, for points on the axis, your answer is consistent with the exact field (Ex. 5.6 r .  
when z >> R.  

Problem 5.35 A phonograph record of radius R,  carrying a uniform surface charge (7. I. 

rotating at constant angular velocity w.  Find its magnetic dipole moment. 

Problem 5.36 Find the magnetic dipole moment of the spinning spherical shell in Ex. 5.1 1 
Show that for points r r R the potential is that of a perfect dipole. 

Problem 5.37 Find the exact magnetic field a distance z above the center of a square loop 01 

side W ,  carrying a current I .  Verify that it reduces to the field of a dipole, with the appropriatc 
dipole moment. when i >> W .  
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More Problems on Chapter 5 

Problem 5.38 It may havepccurred to you that since parallel currents attract, the current within 
a single wire should contract into a tiny concentrated stream along the axis. Yet in practice the 
current typically distributes itself quite uniformly over the wire. How do you account for this? 
If the positive charges (density p+) are at rest, and the negative charges (density p-) move at 
speed v (and none of these depends on the distance from the axis), show that p- = 

where y -= 1 / J m  and c2 = l/poco. If the wire as a whole is neutral, where is 
the compensating charge located?16 [Notice that for typical velocities (see Prob. 5.19) the 
two charge densities are essentially unchanged by the current (since x 1). In plasmas, 
however, where the positive charges are also free to move, this so-called pinch effect can be 
very significant.] 

Problem 5.39 A current I flows to the right through a rectangular bar of conducting material, 
in the presence of a uniform magnetic field B pointing out of the page (Fig. 5.56). 

(a) If the moving charges are positive, in which direction are they deflected by the magnetic 
field? This deflection results in an accumulation of charge on the upper and lower surfaces of 
the bar, which in turn produces an electric force to counteract the magnetic one. Equilibrium 
occurs when the two exactly cancel. (This phenomenon is known as the Hall effect.) 

(b) Find the resulting potential difference (the Hall voltage) between the top and bottom of 
the bar, in terms of B,  v (the speed of the charges), and the relevani dimensions of the bar.17 

(c) How would your analysis change if the moving charges were negative? [The Hall effect is 
the classic way of determining the sign of the mobile charge carriers in a material.] 

Figure 5.56 Figure 5.5 7 

Problem 5.40 A plane wire loop of irregular shape is situated so that part of it is in a uniform 
magnetic field B (in Fig. 5.57 the field occupies the shaded region, and points perpendiculai 
to the plane of the loop). The loop carries a current I. Show that the net magnetic fmce on the 
loop is F = I Bw, where W is the chord subtended. Generalize this result to the case where 
the magnetic field region itself has an irregular shape. What is the direction of the force? 

1 6 ~ o r  further discussion, see D. C. Gabuzda, Am. J. Phys. 61,360 (1993). 
1 7 ~ h e  potential within the bar makes an interesting boundary-value problem. See M. J. Moelter, J. Evans, and 

G. Elliot, Am. J. Phys. 66,668(1998). 
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Field region 

Figure 5.58 

Problem 5.41 A circularly symmetrical magnetic field (B depends only on the distance from 
the axis), pointing perpendicular to the page, occupies the shaded region in Fig. 5.58. If the 
total flux (1 B .  da) is zero, show that a charged particle that starts out at the center will emerge 
from the field region on a radial path (provided it escapes at all-if the initial velocity is too 
great, it may simply circle around forever). On the reverse trajectory, a particle fired at the 
center from outside will hit its target, though it may follow a weird route getting there. [Hirzt: 
Calculate the total angular momentum acquired by the particle, using the Lorentz force law.] 

Problem 5.42 Calculate the magnetic force of attraction between the northern and southern 
hemispheres of a spinning charged spherical shell (Ex. 5.11). [Answer: (n/4)p0n2w2 R'.] 

! Problem 5.43 Consider the motion of a particle with mass m and electric charge qe in the field 
of a (hypothetical) stationary magnetic monopole g,, at the origin: 

(a) Find the acceleration of g, ,  expressing your answer in terms of g ,  g , ,  m ,  r (the position of 
the particle), and v (its velocity). 

(b) Show that the speed v = Ivl is a constant of the motion. 

(c) Show that the vector quantity 

is a constant of the motion. [Hint: differentiate it with respect to time, and prove-using the 
equation of motion from (a)-that the derivative is zero.] 

(d) Choosing spherical coordinates (r, 0, $1, with the polar (2) axis along Q, 

(i) calculate Q .I$, and show that 0 is a constant of the motion (so g, moves on the surface 
of a cone-something Poincart first discovered in 1896)18; 

181n point of fact the charge follows a geodesic on the cone. The original paper is H. PoincdrL, Comptes rendlr~ 
de I'Academie des Sciences 123,530 (1 896); for a more modem treatment see B. Rossi and S. Olbert, Introducrro~~ 
to the Physics of Space (New York: McGraw-Hill, 1970). 
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(ii) calculate Q . i, and show that the magnitude of Q is 

(iii) calculate Q 6,  show that 
d4 - k - - - 
dt r2' 

and determine the constant k. 

(e) By expressing v2 in spherical coordinates, obtain the equation for the trajectory, in the form 

(that is: determine the function f (r)). 

(f) Solve this equation for r(4) .  

Problem 5.44 Use the Biot-Savart law (most conveniently in the form 5.39 appropriate to 
surface currents) to find the field inside and outside an infinitely long solenoid of radius R,  
with n turns per unit length, carrying a steady current I. 

Problem 5.45 A semicircular wire carries a steady current I  (it must be hooked up to some other 
wires to complete the circuit, but we're not concerned with them here). Find the magnetic field 

at a point P on the other semicircle (Fig. 5.59). [Answer: ( ,uoI/8n R )  Initan (v) / tan ($))l 

Figure 5.59 Figure 5.60 

Problem 5.46 The magnetic field on the axis of a circular current loop (Eq. 5.38) is far from 
uniform (it falls off sharply with increasing 2). You can produce a more nearly uniform field 
by using two such loops a distance d apart (Fig. 5.60). 

(a) Find the field (B) as a function of z ,  and show that a B /az  is zero at the point midway 
between them ( z  = 0). Now, if you pick d just right the second derivative of B  will also vanish 
at the midpoint. This arrangement is known as a Helmholtz coil; it's a convenient way of 
produci~g relatively uniform fields in the laboratory. 

(b) Determine d such that a2 ~ / a z ~  = 0 at the midpoint, and find the resulting magnetic field 
at the center. [Answer: 8 p 0 1 / 5 & ~ ]  
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! Problem 5.47 Find the magnetic field at a point z > R on the axis of (a) the rotating disk and 
(b) the rotating sphere, in Prob. 5.6. 

Problem 5.48 Suppose you wanted to find the field of a circular loop (Ex. 5.6) at a point r 
that is not directly above the center (Fig. 5.61). You might as well choose your axes so that r 
lies in the yz plane at (0, y,  z). The source point is (R cos@', R sin @', O), and 4' runs from 0 
to 2n. Set up the integrals from which you could calculate B,, B y ,  and B,, and evaluate B, 
explicitly. 

X /  

Figure 5.61 

dl l 

Figure 5.62 

Problem 5.49 Magnetostatics treats the "source current" (the one that sets up the field) and 
the "recipient current" (the one that experiences the force) so asymmetrically that it is by no 
means obvious that the magnetic force between two current loops is consistent with Newton's 
third law. Show, starting with the Biot-Savart law (5.32) and the Lorentz force law (5.16), that 
the force on loop 2 due to loop 1 (pig. 5.62) can be written as 

In thls form it is clear that F2 = -F1, since 6 changes direction when the roles of 1 and 2 are 
interchanged. (If you seem to be getting an "extra" term, it will help to note that dlz .6 = da. 1 

Problem 5.50 

(a) One way to fill in the "missing link" in Fig. 5.48 is to exploit the analogy between the 
defining equations for A (V . A = 0, V X A = B) and Maxwell's equations for B (V . B = 0. 
V X B = pO J). Evidently A depends on B in exactly the same way that B depends on poJ (to 
wit: the Biot-Savart law). Use this observation to write down the formula for A in lernis of B. 

(b) The elecbical analog to your result in (a) is 

dt'. 

Derive it, by exploiting the appropriate analogy. 
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! Problem5.51 Another way to fill in the "missing link" in Fig. 5.48 is to look for amagnetostatic 
analog to Eq. 2.21. The obvious candidate would be 

r 
A(r) = SO (B X dl). 

(a) Test this formula for the simplest possible case-uniform B (use the origin as your reference 
point). Is the result consistent with Prob. 5.24'? You could cure this problem by throwing in a 
factor of :, - but the flaw in this equation runs deeper. 

(b) Show that I ( B  X dl) is not independent of path, by calculating $(B X dl) around the 
rectangular loop shown in Fig. 5.63. 

As far as I know19 the best one can do along these lines is the pair of equations 
1 (i) V(r) = -r . SO E(Ar) dA, 

[Equation (i) amounts to selecting a mditrl path for the integral in Eq. 2.21; equation (ii) 
constitutes a more "symmetrical" solution to Prob. 5.30.1 

(c) Use (ii) to find the vector potential for uniform B. 

(d) Use (ii) to find the vector potential of an infinite straight wire carrying a steady current I. 
Does (ii) automatically satisfy V  . A = O? [Answer: (po I/2ns)(z i - s z]  

Figure 5.63 

Problem 5.52 

(a) Construct the scalar potential U  (r)  for a "pure" magnetic dipole m. 

(b) Construct a scalar potential for the spin~~ing spherical shell (Ex. 5.11). [Hint: for r > R 
this is a pure dipole field, as you can see by comparing Eqs. 5.67 and 5 35.1 

(c) Try doing the same for the interior of asolid spinning sphere. [Hiizt: if you solved Prob. 5.29, 
you already know the,field; set it equal to - V U ,  and solve for U. What's the trouble?] 

1 9 ~ .  L. Bishop and S. I. Goldberg, Tensor Anuiy~is on Munqold.7, Section 4.5 (New York: Macmillan, 1968). 



CHAPTER 5. MAGNETOS TATICS 

Problem 5.53 Just as V . B = 0 allows us to express B as the curl of a vector potential 
(B = V X A), so V . A = 0 permits us to write A itself as the curl of a "higher" potential: 
A = V X W. (And this hierarchy can be extended ad infinitum.) 

(a) Find the general formula for W (as an integral over B), which holds when B -+ 0 at ca. 

(b) Determine W for the case of a unzform magnetic field B. [Hint: see Prob. 5.24.1 

(c) Find W inside and outside an infinite solenoid. [Hint: see Ex. 5.12.1 

Problem 5.54 Prove the following uniqueness theorem: If the current density J is specified 
throughout a volume V, and either the potential A or the magnetic field B is specified on the 
surface S bounding V, then the magnetic field itself is uniquely determined throughout V. 
[Hint: First use the divergence theorem to show that 

/{(V x U) ( V  n V) - U .  [V X (V X V)])dr  = {[U X (V X V ) ]  da, 

for arbitrary vector functions U and V.] 

Problem 5.55 A magnetic dipole m = -m0 i is situated at the origin, in an otherwise uniform 
magnetic field B = B. i. Show that there exists a spherical surface, centered at the origin. 
through which no magnetic field lines pass. Find the radius of this sphere, and sketch the field 
lines, inside and out. 

Problem 5.56 A thin uniform donut, carrying charge Q and mass M, rotates about its axis as 
shown in Fig. 5.64. 

(a) Find the ratio of its magnetic dipole moment to its angular momentum. Thls is called the 
gyromagnetic ratio (or magnetomechanical ratio). 

(b) What is the gyromagnetic ratio for a uniform spinning sphere? [This requires no new 
calculation; simply decompose the sphere into infinitesimal rings, and apply the result of pan 
(a).] 

(c) According to quantum mechanics, the angular momentum of a spinning electron is ; h .  
where f i  is Planck's constant. What, then, is the electron's magnetic dipole moment, in A .  m'.? 
[This semiclassical value is actually off by a factor of almost exactly 2. Dirac's relativistic 
electron theory got the 2 right, and Feynman, Schwinger, and Tomonaga later calculated tin! 
further corrections. The determination of the electron's magnetic dipole moment remains the 
finest achievement of quantum electrodynamics, and exhibits perhaps the most stunning]! 
precise agreement between theory and experiment in all of physics. Incidentally, the quantity 
(etz/2m), where e is the charge of the electron andm is its mass, is called the Bohr magneton.] 

Figure 5.64 
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Problem 5.57 

(a) Prove that the average magnetic field, over a sphere of radius R,  due to steady currents 
within the sphere, is 

PO 2m B,, = -- 
4n R~ ' 

where m is the total dipole moment of the sphere. Contrast the electrostatic result, Eq. 3.105. 
[This is tough, so I'll give you a start: 

Write B as (V X A), and apply Prob. 1.60b. Now put in Eq. 5.63, and do the surface integral 
first, showing that 

(see Fig. 5.65). Use Eq. 5.91, if you like.] 

(b) Show that the average magnetic field due to steady currents outside the sphere is the same 
as the field they produce at the center. 

Figure 5.65 

Problem 5.58 A uniformly charged solid sphere of radius R carries a total charge Q, and is 
set spinning with angular velocity w about the z axis. 

(a) What is the magnetic dipole moment of the sphere? 

(b) Find the average magnetic field within the sphere (see Prob. 5.57). 

(C) Find the approximate vector potential at a point (r,  6) where r  >> R. 

( d )  Find the exact potential at a point (r ,  6) outside the sphere, and check that it is consistent 
with (C). [Hint: refer to Ex. 5.1 1 .] 

(e) Find the magnetic field at a point (r ,  19) inside the sphere, and check that it is consistent 
with (b). 

Problem 5.59 Using Eq. 5.86, calculate the average magnetic field of a dipole over a sphere 
of radius R centered at the origin. Do the angular integrals first. Compare your answer with 
the general theorem in Prob. 5.57. Explain the discrepancy, and indicate how Eq. 5.87 can be 
corrected to resolve the ambiguity at r = 0. (If you get stuck, refer to Prob. 3.42.) 
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Evidently the true field of a magnetic dipole is 

Cc0 1 2wo 3 ISdip(') = - - [3(m. f)? - m] + -m8 (r). 
47t r3 3 

Compare the electrostatic analog, Eq. 3.106. [Incidentally, the delta-function term is respon- 
sible for the hyperfine splitting in atomic spectra-see, for example, D. J. Griffiths, Anz. J. 
Phys. 50, 698 (1  982).] 

Problem 5.60 1 worked out the multipole expansion for the vector potential of a line current 
because that's the most common type, and in some respects the easiest to handle. For a volunze 
current J: 

(a) Write down the multipole expansion, analogous to Eq. 5.78. 

(b) Write down the monopole potential, and prove that it vanishes. 

(C) Using Eqs. 1.107 and 5.84, show that the dipole moment can be written 

Problem 5.61 A thin glass rod of radius R and length L carries a uniform surface charge D.  

It is set spinning about its axis, at an angular velocity w.  Find the magnetic field at a distance 
s >> R from the center of the rod (Fig. 5.66). [Hint: treat it as a stack of magnetic dipoles.] 
[Arzswer: L ~ ~ / 4 [ s ~  + ( ~ / 2 ) * ] ~ / ~ ]  

Figure 5.66 



Chapter 6 

Magnetic Fields in Matter 

Magnetization 

6.1.1 Diamagnets, Paramagnets, Ferromagnets 

If you ask the average person what "magnetism" is, you will probably be told about horse- 
shoe magnets, compass needles, and the North Pole-none of which has any obvious 
connection with moving charges or current-carrying wires. Yet all magnetic phenomena 
are due to electric charges in motion, and in fact, if you could examine a piece of magnetic 
material on an atomic scale you would find tiny currents: electrons orbiting around nuclei 
and electrons spinning about their axes. For macroscopic purposes, these current loops are 
so small that we may treat them as magnetic dipoles. Ordinarily, they cancel each other 
out because of the random orientation of the atoms. But when a magnetic field is applied, 
a net alignment of these magnetic dipoles occurs, and the medium becomes magnetically 
polarized, or magnetized. 

Unlike electric polarization, which is almost always in the same direction as E, some 
materials acquire a magnetization pamllel to B (pummagnets) and some opposite to B 
(diamagnets). A few substances (called ferromagnets, in deference to the most common 
example, iron) retain their magnetization even after the external field has been removed- 
for these the magnetization is not determined by the present field but by the whole magnetic 
"history" of the object. Permanent magnets made of iron are the most familiar examples 
of magnetism, though from a theoretical point of view they are the most complicated; 
I'll save ferron~agnetism for the end of the chapter, and begin with qualitative models of 
paramagnetism and diamagnetism. 

6.1.2 Torques and Forces on Magnetic Dipoles 

A magnetic dipole experiences a torque in a magnetic field, just as an electric dipole does 
in an electric field. Let's calculate the torque on a rectangular current loop in a uniform 
field B. (Since any current loop could be built up from infinitesimal rectangles, with all 
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Figure 6.1 

the "internal" sides canceling, as indicated in Fig. 6.1, there is no actual loss of generality 
in using this shape; but if you prefer to start from scratch with an arbitrary shape, see 
Prob. 6.2.) Center the loop at the origin, and tilt it an angle 6' from the z axis towards the 
axis (Fig. 6.2). Let B point in the z direction. The forces on the two sloping sides cancel 
(they tend to stretch the loop, but they don't rotate it). The forces on the "horizontal" sides 
are likewise equal and opposite (so the net force on the loop is zero), but they do generate 
a torque: 

N = a F  s i n e i .  

The magnitude of the force on each of these segments is 

and therefore 

Figure 6.2 
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or 

where m = l a b  is the magnetic dipole moment of the loop. Equation 6.1 gives the 
exact torque on any localized current distribution, in the presence of a uniform field; in a 
nonuniform field it is the exact torque (about the center) for aperfect dipole of infinitesimal 
size. 

Notice that Eq. 6.1 is identicql in form to the electrical analog, Eq. 4.4: N = p X E. In 
particular, the torque is again in such a direction as to line the dipole uppnrnllel to the field. It 
is this torque that accounts for paramagnetism. Since every electron constitutes a magnetic 
dipole (picture it, if you wish, as a tiny spinning sphere of charge), you might expect 
paramagnetism to be a universal phenomepon. Actually, the laws of quantum mechanics 
(specifically, the Pauli exclusion principle) dictate that the electrons within a given atom 
lock together in pairs with opposing spins, and this effectively neutralizes the torque on the 
combination. As a result, paramagnetism pormally occurs in atoms or molecules with an 
odd number of electrons, where the "extra" unpaired member is subject to the magnetic 
torque. Even here the alignment is far from complete, since random thermal collisions tend 
to destroy the order. 

In a uniform field, the net force on a current loop is zero: 

the constant B comes outside the integral, and the net displacement $ dl around a closed 
loop vanishes. In a nonuniform field this is no longer the case. For example, suppose a 
circular wire of radius R, carrying a current I ,  is suspended above a short solenoid in the 
"fringing" region (Fig. 6.3). Here B has a radial component, and there is a net downward 
force on the loop (Fig. 6.4): 

F = 2nIRBcosO. (6.2) 

U 

Figure 6.3 Figure 6.4 
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For an infinitesinlal loop, with dipole moment m, in a field B, the force is 

(see Prob. 6.4). Once again the magnetic formula is identical toits electrical "twin," provided 
we agree to write the latter in the form F = V (p E). 

If you're starting to get a sense of clejh r lu ,  perhaps you will have more respect for those 
early physicists who thought magnetic dipoles consisted of positive and negative magnetic 
"charges" (north and south "poles," they called them), separated by a small distance, just 
like electric dipoles (Fig. 6.5(a)). They wrote down a "Coulomb's law" for the attraction 
and repulsion of these poles, and developed the whole of magnetostatics in exact analog 
to electrostatics. It's not a bad model, for many purposes-it gives the correct field of a 
dipole (at least, away from the origin), the right torque on a dipole (at least, on a statiorzcrl:\ 
dipole), and the proper force on a dipole (at least, in the absence of external currents). But 
it's bad physics, because there 'S  izo suclz thing as a single magnetic north pole or south pole. 
If you break a bar magnet in half, you don't get a north pole in one hand and a south pole 
in the other; you get two complete magnets. Magnetism is not due to magnetic monopoles. 
but rather to moving electric charges; magnetic dipoles are tiny current loops (Fig. 6.5(c)). 
and it's an extraordinary thing, really, that the formulas involving m bear any resemblance 
at all to the corresponding formulas for p. Sometimes it is easier to think in terms of 
the "Gilbert" model of a magnetic dipole (separated monopoles) instead of the physicall! 
correct "Ampkre" model (current loop). Indeed, this picture occasionally offers a quick 
and clever solution to an otherwise cumbersome problem (you just copy the correspondinf 
result from electrostatics, changing p to m, ]/cO to PO,  and E to B). But whenever the 
close-up features of the dipole come into play, the two models can yield strikingly different 
answers. My advice is to use the Gilbert model, if you like, to get an intuitive "feel" for a 
problem, but never rely on it for quantitative results. 

(a) Magnetic dipole (b) Electric dipole (a) Magnetic dipole 
(Gilbert model) (Ampere model) 

Figure 6.5 
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Problem 6.1 Calculate the torque exerted on the square loop shown in Fig. 6.6, due to the 
circular loop (assume r is much larger than a or h).  If the square loop is free to rotate, what 
will its equilibrium orientation be? 

r 

Figure 6.6 

Problem 6.2 Starting from the Lorentz force law, in the form of Eq. 5.16, show that the torque 
on any steady current distribution (not just a square loop) in a uniform field B is m X B. 

Problem 6.3 Find the force of attraction between two magnetic dipoles, m1 and m2, oriented 
as shown in Fig. 6.7, a distance r apart, (a) using Eq. 6.2, and (b) using Eq. 6.3. 

Figure 6.7 Figure 6.8 

Problem 6.4 Derive Eq. 6.3. [Here's one way to do it: Assume the dipole is an infinitesimal 
square, of side t (if it's not, chop it up into squares, and apply the argument to each one). 
Choose axes as shown in Fig. 6.8, and calculate F = I S(dl X B) along each of the four sides. 
Expand B in a Taylor series--on the right side, for instance, 

For a more sophisticated method, see Prob. 6.22.1 
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Problem 6.5 A uniform current density J = Jo i fills a slab straddling the yz plane, from 
.X = -a to .X = fa .  A magnetic dipole m = mg is situated at the origin. 

(a) Find the force on the dipole, using Eq. 6.3. 

(b) Do the same for a dipole pointing in  the y direction: m = moi.  

(c) In the electrostatic case the expressions F = V(p  . E) and F = (p  . V ) E  are equivalent 
(prove it), but this is not the case for the magnetic analogs (explain why). As an example. 
calculate (m . V)B for the configurations in (a) and (b). 

6.1.3 Effect of a Magnetic Field on Atomic Orbits 

Electrons not only spin; they also revolve around the nucleus-for simplicity, let's assume 
the orbit is a circle of radius R (Fig. 6.9). Although technically this orbital motion does not 
constitute a steady current, in practice the period T = 2n R / v  is so short that unless you 
blink awfully fast, it's going to look like a steady current: 

Accordingly, the orbital dipole moment (In R ~ )  is 

(The minus sign accounts for the negative charge of the electron.) Like any other magnetic 
dipole, this one is subject to a torque (m X B) when the atom is placed in a magnetic field. 
But it's a lot harder to tilt the entire orbit than it is the spin, so the orbital contribution to 
paramagnetism is small. There is, however, a more significant effect on the orbital motion: 

Figure 6.9 
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Figure 6.10 

The electron speeds up or slows down, depending on the orientation of B. For whereas the 
centripetal acceleration v2/ R is ordinarily sustained by electrical forces alone,' 

in the presence of a magnetic field there is an additional force, - e ( v  X B). For the sake of 
argument, let's say that B is perpendicular to the plane of the orbit, as shown in Fig. 6.10; 
then 

Under these conditions, the new speed G is greater than v: 

me 7 7 m, - 
eCB = -(v- - v-) = -(v + v)(G - v), 

R R 

or, assuming the change AV = v - v is small, 

When B is turned on, then, the electron speeds u p 2  
A change in orbital speed means a change in the dipole moment (6.4): 

Notice that the change in m is opposite to the direction of B. (An electron circling the other 
way would have a dipole moment pointing upward, but such an orbit would be slowed 

'To avoid confusion with the magnetic dipole moment m, I'll write the electron mass with subscript: m,. 
21 said earlier (Eq. 5.1 1) that magnetic fieIds do no work, and are incapable of speeding a particle up. I stand 

by that. However, as we shall see in Chapter 7, a changing magnetic field induces an electric field, and it is the 
latter that accelerates the electrons in this instance. 
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down by the field, so the change is still opposite to B.) Ordinarily, the electron orbits are 
randomly oriented, and the orbital dipole moments cancel out. But in the presence of a 
magnetic field, each atom picks up a little "extra" dipole moment, and these increments 
are all antiparallel to the field. This is the mechanism responsible for diamagnetism. I t  
is a universal phenomenon, affecting all atoms. However, it is typically much weaker than 
paramagnetism, and is therefore observed mainly in atoms with even numbers of electrons. 
where paramagnetism is usually absent. 

In deriving Eq. 6.8 I assumed that the orbit remains circular, with its original radius R. 1 
cannot offer a justification for this at the present stage. If the atom is stationary while the field 
is turned on, then my assumption can be proved-this is not magnetostatics, however, and 
the details will have to await Chapter 7 (see Prob. 7.49). If the atom is moved illto the field. 
the situation is enormously more complicated. But never mind-I'm only trying to give 
you a qualitative account of diamagnetism. Assume, if you prefer, that the velocity remain4 
the same while the radius changes-the formula (6.8) is altered (by a factor of 2), but the 
concl~ision is unaffected. The truth is that this classical model is fundamentally flawed 
(diamagnetism is really a quantilnz phenomenon), so there's not much point in refining the 
 detail^.^ What is important is the empirical fact that in diamagnetic materials the induced 
dipole moments point opposite to the magnetic field. 

6.1.4 Magnetization 

In the presence of a magnetic field, matter becomes rnagnetizect; that is, upon microscopic 
examination it will be found to contain many tiny dipoles, with a net alignment along some 
direction. We have discussed two mechanisms that account for this magnetic polarization: 
(1) paramagnetism (the dipoles associated with the spins of unpaired electrons experience a 
torque tending to line them up parallel to the field) and (2) diamagnetism (the orbital speed 
of the electrons is altered in such a way as to change the orbital dipole moment in a direction 
opposite to the field). Whatever the cause, we describe the state of magnetic polarization 
by the vector quantity 

M r magnetic dipole moment per unit uolume. (6.9 t 

M is called the magnetization; it plays a role analogous to the polarization P in elrc- 
trostatics. In the following section, we will not worry about how the magnetization gor 
there-it could be paramagnetism, diamagnetism, or even ferromagnetism-we shall take 
M as given, and calculate the field this magnetization itself produces. 

Incidentally, it may have surprised you to learn that materials other than the famou4 
ferromagnetic trio (iron, nickel, and cobalt) are affected by a magnetic field a t  all. You 
cannot, of course, pick up a piece of wood or aluminum with a magnet. The reason is that 
diamagnetism and paramagnetism are extremely weak: It takes a delicate experiment and 
a powerful magnet to detect them at all. If you were to suspend a piece of paramagnetic 

3 ~ .  L. O'Dell and R .  K. P. Zia, Am. J. Phys. 54, 32, (1986); R. Peierls, Surprises in Theoretical PI?,,slc.~. 
Section 4.3 (Rinceton, N.J.: Princeton University Press, 1979); R. P. Feynrnan, R. B. Leighton, and M. Sand,. 
The Feynmcm Lectures on Physics, Vol. 2, Sec. 34-36 (New York: Addison-Wesley, 1966). 



material above a solenoid, as in Fig. 6.3, the induced magnetization would be upward, and 
hence the force downward. By conti-ast, the magnetization of a diamagnetic object would be 
downward and the force upward. In general, when a sample is placed in a region of nonuni- 
form field, the paramaknet is attracted into the Jield, whereas the diamagnet is repelled 
away. But the actual forces are pitifully weak-in a typical experimental arrangement the 
force on a comparable sample of iron would be 10' or 10"imes as great. That's why it 
was reasonable for us to calculate the field inside a piece of copper wire, say, in Chapter 5, 
without worrying about the effects of magnetization. 

Problem 6.6 Of the following materials, whichwould you expect to be paramagnetic and which 
diamagnetic? Aluminurn, copper, copper chloride (CuCI2), carbon, lead, nitrogen (N2), salt 
(NaCI), sodium, sulfur, water. (Actually, copper is slightly diamagnetic; otherwise they're all 
what you'd expect.) 

6.2 The Field of a Magnetized Object 

6.2.1 Bound Currents 

Suppose we have a piece of magnetized material; the magnetic dipole moment per unit 
volume, M, is given. What field does this object produce? Well, the vector potential of a 
single dipole m is given by Eq. 5.83: 

In the magnetized object, each volume element d t '  carries a dipole moment M d t ' ,  so the 
total vector potential is (Fig. 6.1 1) 

A(rj = - d s'. 
4n *O S 

Figure 6. l l 
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That does it, in principle. But as in the electrical case (Sect. 4.2.1), the integral can be 
cast in a more illuminating form by exploiting the identity 

With this. 

Integrating by parts, using product rule 7, gives 

M@') 
A(r) = {I I [ v f  X M(r')l d r f  - V' X [_l dr '}  . 

4n n, 

Problem 1.60(b) invites us to express the latter as a surface integral, 

The first term looks just like the potential of a volume current, 

while the second looks like the potential of a surface current, 

where n is the normal unit vector. With these definitions. 

What this means is that the potential (and hence also the field) of a magnetized object is 
the same as would be produced by a volume current Jb = V X M throughout the material. 
plus a surface current K b  = M X n, on the boundary. Instead of integrating the contributions 
of all the infinitesimal dipoles, as in Eq. 6.1 1, we first determine these bound currents, and 
then find the field they produce, in the same way we would calculate the field of any other 
volume and surface currents. Notice the striking parallel with the electrical case: there the 
field of a polarized object was the same as that of a bound volume charge pb = -V P plus 
a bound surface charge ob = P . n. 

Example 6.1 

Find the magnetic field of a uniformly magnetized sphere. 

Solution: Choosing the z axis along the direction of M (Fig. 6.1 2), we have 



6.2. THE FIELD OF A MAGNETIZED OBJECT 

Figure 6.1 2 

Now. a rotating spherical shell. of uniform surface charge U, corresponds to a surface current 
density 

A 

K = u v = u w R s i n O # .  

It follows, therefore, that the field of a uniformly magnetized sphere is identical to the field of 
a spinning spherical shell, with the identification o Ro + M. Refemng back to Ex. 5.1 1, I 
conclude that 

2 
B = -pOM, 

3 
(6.16) 

inside the sphere, whereas the field outside is the same as that of a pure dipole, 

Notice that the internal field is utzijivrm, like the electric field inside a uniformly polarized 
sphere (Eq. 4.14). although the actual forrnulas for the two cases are curiously different ($ in 

place of - f ). The external fields are also analogous: pure dipole in both instances. 

Problem 6.7 An infinitely long circular cylinder cames a uniform magnetization M parallel 
to its axis. Firid the magnetic field (due to M) inside and outside the cylinder. 

Problem 6.8 A long circular cylinder of radius R carries a magnetization M = ks2 I$, where k 
is a constant, s is the distance from the axis, and 4 is the usual azimuthal unit vector (Fig. 6.13). 
Find the magnetic field due to M, for points inside and outside the cylinder. 

Prublem 6.9 A short circular cylinder of radius a and length L carries a "frozen-in" uniform 
magnetization M parallel to its axis. Find the bound current, and sketch the magnetic field 
of the cylinder. (Make three sketches: one for L >> a ,  one for L << a ,  and one for L a.) 
Compare this bar magnet with the bar electret of Prob. 4.1 1. 
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Figure 6.13 Figure 6.14 

Problem 6.10 An iron rod of length L and square cross section (side a ) ,  is given a uniform 
longitudinal magnetization M, and then bent around into a circle with a narrow gap (width W). 
as shown in Fig. 6.14. Find the magnetic field at the center of the gap, assuming W << n << L. 
[Hint: treat it as the superposition of a complete torus plus a square loop with reversed current.] 

6.2.2 Physical Interpretation of Bound Currents 

In the last section we found that the field of a magnetized object is identical to the field 
that would be produced by a certain distribution of "bound" currents, Jb and Kb. I want to 
show you how these bound currents arise physically. This will be a heuristic argument-the 
rigorous derivation has already been given. Figure 6.15 depicts a thin slab of uniformly 
magnetized material, with the dipoles represented by tiny current loops. Notice that all the 
"internal" currents cancel: every time there is one going to the right, a contiguous one is 
going to the left. However, at the edge there is no adjacent loop to do the canceling. The 
whole thing, then, is equivalent to a single ribbon of current I flowing around the boundaq 
(Fig. 6.16). 
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Figure 6.15 Figure 6.16 

What is this current, in terms of M? Say that each of the tiny loops has area a and 
thickness t (Fig. 6.17). In terms of the magnetization M. its dipole moment is m = M a t .  
In terms of the circulating current I, however. nz = I a .  Therefore I = Mt, so the surface 
current is Kh = I / t  = M. Using the outward-drawn unit vector n (Fig. 6.161, the direction 
of Kh is conveniently indicated by the cross product: 

(This expression also records the fact that there is n o  current on the top or bottom surface 
of the slab; here M is parallel to n, so the cross product vanishes.) 

Figure 6.17 

This bound surface current is exactly what we obtained in Sect. 6.2.1. It is a peculiar 
kind of current, in the sense that no single charge makes the whole trip--on the contrary, 
each charge moves only in a tiny little loop within a single atom. Nevertheless, the net 
effect is a macroscopic current flowing over the surface of the magnetized object. We call 
it a "bound current to remind ourselves that every charge is attached to a particular atom, 
but it's a perfectly genuine current, and it produces a magnetic field in the same way any 
other current does. 

When the magnetization is nonuniform, the internal currents no longer cancel. Figure 
6.18a shows two adjacent chunks of magnetized material, with a larger arrow on the one 
to the right suggesting greater magnetization at that point. On the surface where they join 
there is a net current in the X-direction, given by 

a M, 
M : ( y ) ]  d z  = -- dy d z .  
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Figure 6.18 

The corresponding volume current density is therefore 

By the same token, a nonuniform magnetization in the y-direction would contribute an 
amount - a M y / a z  (Fig. 6.18b), so 

In general, then, 
J b = V x M ,  

consistent, again, with the result of Sect. 6.2.1. Incidentally, like any other steady current. 
Jb should obey the conservation law 5.3 1 : 

Does it? Yes, for the divergence of a curl is always zero. 

6.2.3 The Magnetic Field Inside Matter 

Like the electric field, the actual microscopic magnetic field inside matter fluctuates wildl) 
from point to point and instant to instant. When we speak of "the" magnetic field in matter. 
we mean the macroscopic field: the average over regions large enough to contain man) 
atoms. (The magnetization M is "smoothed out" in the same sense.) It is this macroscopic 
field one obtains when the methods of Sect. 6.2.1 are applied to points inside magnetized 
material, as you can prove for yourself in the following problem. 

Problem 6.11 In Sect, 6.2.1, we began with the potential of a perfect dipole (Eq. 6.10). 
whereas in fact we are dealing with physical dipoles. Show, by the method of Sect. 4.2.3, that 
we nonetheless get the correct macroscopic field. 
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6.3 The Auxiliary Field H 

6.3.1 Arnpkre's law in Magnetized Materials 

In Sect. 6.2 we found that the effect of magnetization is to establish bound currents Jb = 
V X M within the material and Kb = M X ii on the surface. The field due to magnetization 
of the medium is just the field produced by these bound currents. We are now ready 
to put everything together: the field attributable to bound currents, plus the field due to 
everything else-which I shall call the free current. The free current might flow through 
wires imbedded in the magnetized substance or, if the latter is a conductor, through the 
material itself. In any event, the total current can be written as 

There is no new physics in Eq. 6.17; it is simply a convenience to separate the current into 
these two parts because they got there by quite different means: the free current is there 
because somebody hooked up a wire to a battery-it involves actual transport of charge; the 
bound current is there because of magnetization-it results from the conspiracy of many 
aligned atomic dipoles. 

In view of Eqs. 6.1 3 and 6.17, Ampkre's law can be written 

or, collecting together the two curls: 

The quantity in parentheses is designated by the letter H: 

In terms of H,  then, Ampkre's law reads 

or, in integral form, 

f H - dl  = I/e,,, 

where I is the total free current passing through the Amperian loop. 
H plays a role in magnetostatics analogous to D in electrostatics: Just as D allowed us 

to write Gauss's law in terms of the free charge alone, H permits us to express AmpPre's 
law in terms of the free current alone-and free current is what we control directly. Bound 
current, like bound charge, comes along for the ride-the material gets magnetized, and 
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this results in bound currents; we cannot turn them on or off independently, as we can free 
currents. In applying Eq. 6.20 all we need to worry about is the free current, which we know 
about because we put it there. In particular, when symmetry permits, we can calculate H 
immediately from Eq. 6.20 by the usual Ampkre's law methods. (For example, Probs. 6.7 
and 6.8 can be done in one line by noting that H = 0.) 

Example 6.2 

A long copper rod of radius R carries a uniformly distributed (free) current I (Fig. 6.19). Find 
H inside and outside the rod. 

Solution: Copper is weakly diamagnetic, so the dipoles will line up opposite to the field. This 
results in a bound current running arztiparallel to I within the wire and parallel to I along the 
surface (see Fig. 6.20). Just how great these bound currents will be we are not yet in aposition 

Amperian loop 

Figure 6.19 Figure 6.20 



6.3. THEAUXILIARYFIELD H 27 1 

to say-but in order to calculate H it is sufficient to realize that all the currents are longitudinal, 
so B, M, and therefore also H, are circumferential. Applying Eq. 6.20 to an Arnperian loop of 
radius s .= R, 

1 

within the wire. Meanwhile, outside the wire 

In the latter region (as always, in empty space) M = 0, so 

the same as for a nonmagnetized wire (Ex. 5.7). It~side the wire B cannot be determined at this 
stage, since we have no way of knowing M (though in practice the magnetization in copper is 
so slight that for most purposes we can ignore it altogether). 

As it turns out, H is a more useful quantity than D. In the laboratory you will frequently 
hear people talking about H (more often even than B), but you will never hear anyone speak 
of D (only E). The reason is this: To build an electromagnet you run a certain (free) current 
through a coil. The current is the thing you read on the dial, and this determines H (or at any 
rate, the line integral of H); B depends on the specific materials you used and even, if iron is 
present, on the history of your magnet. On the other hand, if you want to set up an electric 
field, you do not plaster a known free charge on the plates of a parallel plate capacitor; 
rather, you connect then1 to a battery of known voltage. It's the potential difference you 
read on your dial, and that determines E (or at any rate, the line integral of E); D depends 
on the details of the dielectric you're using. If it were easy to measure charge, and hard 
to measure potential, then you'd find experimentalists talking about D instead of E .  So the 
relative familiarity of H, as contrasted with D, derives from purely practical considerations; 
theoretically, they're all on equal footing. 

Many authors call H, not B, the "magnetic field." Then they have to invent a new 
word for B: the "flux density," or magnetic "induction" (an absurd choice, since that term 
already has at least two other meanings in electrodynamics). Anyway, B is indisputably the 
fundamental quantity, so I shall continue to call it the "magnetic field," as everyone does in 
the spoken language. H has no sensible name: just call it 

4 ~ o r  those who disagree, I quote A. Sommerfeld's Electrodjnamics (New York: Academic Press, 1952), p. 
45: "The unhappy term 'magnetic field' for H should be avoided as far as possible. It seems to us that this term 
has led into error none less than Maxwell himself.. . " 
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Problem 6.12 An infinitely long cylinder, of radius R, carries a "frozen-in" magnetization. 
parallel to the axis, 

M = k s i ,  

where k is a constant and s is the distance from the axis; there is no free current anywhere. 
Find the magnetic field inside and outside the cylinder by two different methods: 

(a) As in Sect. 6.2, locate all the bound currents, and calculate the field they ~roduce. 

(b) Use Ampkre's law (in the form of Eq. 6.20) to find H, and then get B from Eq. 6.18. (Notice 
that the second method is much faster, and avoids any explicit reference to the bound currents. I 

Problem 6.13 Suppose the field inside a large piece of magnetic material is Bo, so that H. = 

(l/po)Bo - M. 

(a) Now a small spherical cavity is hollowed out of the material (Fig. 6.21). Find the field at 
the center of the cavity, in terms of B. and M. Also find H at the center of the cavity, in term3 
of H. and M. 

(b) Do the same for a long needle-shaped cavity running parallel to M. 

(c) Do the same for a thin wafer-shaped cavity perpendicular to M. 

(a) Sphere (b) Needle (c) Wafex 

Figure 6.21 
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Assume the cavities are small enough so that M, Bo, and H. are essentially constant. Com- 
pare Prob. 4.16. [Hint: Carving out a cavity is the same as superimposing an object of the 
same shape but opposite magnetization.] 

6.3.2 A Deceptive Parallel 

Equation 6.19 looks just like Ampike's original law (5.54)' only the total current is replaced 
by the free current, and B is replaced by p0H. As in the case of D, however, I must warn 
you against reading too much into this correspondence. It does not say that poH is "just 
like B, only its source is Jf instead of J." For the curl alone does not determine a vector 
field-you must know the divergence as well. And whereas V B = 0, the divergence of 
H is not, in general, zero. In fact, from Eq. 6.18 

Only when the divergence of M vanishes is the parallel between B and pOH faithful. 

If you think I'm being pedantic, consider the example of the bar magnet-a short cylinder 
of iron that carries a permanent uniformmagnetization M parallel to its axis. (See Probs. 6.9 
and 6.14.) In this case there is no free current anywhere, and a naive application of Eq. 6.20 
might lead you to suppose that H = 0, and hence that B = poM inside the magnet and 
B = 0 outside, which is nonsense. It is quite true that the curl of H vanishes everywhere, 
but the divergence does not. (Can you see where V - M = O?) Advice: When you are asked 
to find B or H in a problem involving magnetic materials, first look for symmetry. If the 
problem exhibits cylindrical, plane, solenoidal, or toroidal symmetry, then you can get H 
directly from Eq. 6.20 by the usual Amp2re's law methods. (Evidently, in such cases V . M 
is automatically zero, since the free current alone determines the answer.) If the requisite 
symmetry is absent, you'll have to think of another approach, and in particular you must 
not assume that H is zero just because you see no free current. 

6.3.3 Boundary Conditions 

The magnetostatic boundary conditions of Sect. 5.4.2 can be rewritten in terms of H and 
the free current. From Eq. 6.23 it follows that 

while Eq. 6.19 says 

II l I 
Habove - Hbelow = K.f X 
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In the presence of materials these are sometimes more useful than the corresponding bound- 
ary conditions on B (Eqs. 5.72 and 5.73): 

and 
I l I l 

Babove - Bbelow = PO (K X (6.27) 

You might want to check them, for Ex. 6.2 or Rob. 6.14. 

Problem 6.14 For the bar magnet of Prob. 6.9, make careful sketches of M. B, and H, assuming 
L is about 2a. Compare Prob. 4.17. 

Problem 6.15 If J = 0 everywhere, the curl of H vanishes (Eq. 6.19) and we can express H 
as the gradient of a scalar potential W: 

According to Eq. 6.23. then, 
v2w = ( V . M ) ,  

so W obeys Poisson's equation, with V . M as the "source." This opens up all the machiner! 
of Chapter 3. As an example, find the field inside a uniformly magnetized sphere (Ex. 6.1) b! 
separation of variables. [Hint: V . M = 0 everywhere except at the surface (r = R), so I\. 
satisfies Laplace's equation in the regions r < R and r > R ;  use Eq. 3.65, and from Eq. 6.74 
figure out the appropriate boundary condition on W.] 

6.4 Linear and Nonlinear Media 

6.4.1 Magnetic Susceptibility and Permeability 

In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when 
B is removed, M disappears. In fact, for most substances the magnetization isproportiorrlil 
to the field, provided the field is not too strong. For notational consistency with the electrical 
case (Eq. 4.301, I should express the proportionality thus: 

1 
M = -X , B (' incorrect!) 

PO 

But custom dlctates that it be written in terms of H, instead of B: 

The constant of proportionality X, is called the magnetic susceptibility; it is a dimen- 
sionless quantity that varies from one substance to another-positive for paramagnets and 
negative for diamagnets. Typical values are around 1oP5 (see Table 6.1). 
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Bismuth -1.6 X 1 0 - ~  
~ 0 1 d  -3.4 1 0 4  
Silver -2.4 X 1 0 - ~  
Copper -9.7 X 1 0 - ~  
Water -9.0 X 1 0 - ~  
Carbon Dioxide - 1.2 X 1 0-8 
Hydrogen -2.2 1 0 - ~  

Material Susceptibility 
Diamagnetic: 

Oxygen 1.9 X 1oP6 
Sodium 8.5 X 1oP6 
Aluminum 2.1 1 0 ~ ~  
Tungsten 7.8 X 1oU5 
Platinum 2.8 X 1 0 - ~  
Liquid Oxygen (-200" C) 3.9 X 

Gadolinium 4.8 X 10-I 

Material Susceptibility 
Pa ranzagnetic: 

Table 6.1 Magnetic Susceptibilities (unless otherwise specified, values are for 
I 1 atm, 20" C). Source: Handbook of Chenzistry and Physics, 67th ed. 

l (Boca Raton: CRC Press, Inc., 1986). 

Materials that obey Eq. 6.29 are called linear media. In view of Eq. 6.18, 

B = po(H + M) = p o ( l +  xrn)H, 

for linear media. Thus B is also proportional to H : ~  

B = p H ,  

where 

p E ~ 0 ( 1  + xm). 

p is called the permeability of the material.6 In a vacuum, where there is no matter to 
magnetize, the susceptibility X, vanishes, and the permeability is po. That's why p0 is 
called the permeability of free space. 

Example 6.3 

An infinite solenoid (n turns per unit length, current I) is filled with linear material of suscep- 
tibility X,, . Find the magnetic field inside the solenoid. 

Solution: Since B is due in part to bound currents (which we don't yet know), we cannot 
compute it directly. However, this is one of those symmetrical cases in which we can get H 
from the free current alone, using Ampere's law in the form of Eq. 6.20: 

S~hysically, therefore, Eq. 6.28 would say exactly the same as Eq. 6.29, only the constant K, would have a 
different value. Equation 6.29 is a little more convenient, because experimentalists find it handier to work with H 
than B. 

6 ~ f  you factor out po, what's left is called the relative permeability: p, = 1 + K, = ,-c/pO. By the way, 
formulas for H in terms of B (Eq. 6.31, in the case of linear media) are called constitutive relations, just like 
those for D in terms of E. 
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Figure 6.22 

(Fig. 6.22). According to Eq. 6.3 1, then, 

If the medium is paramagnetic, the field is slightly enhanced; if it's diamagnetic, the field i. 
somewhat reduced. This reflects the fact that the bound surface current 

is in the same direction as I, in the former case (X, > O), and opposite in the latter ( X ,  0 1 

You might suppose that linear media avoid the defect in the parallel between B and H: 
since M and H are now proportional to B, does it not follow that their divergence, like B's. 
must always vanish? Unfortunately, it does not; at the boundary between two materials of 
different permeability the divergence of M can actually be infinite. For instance, at the end 
of a cylinder of linear paramagnetic material, M is zero on one side but not on the other. 
For the "Gaussian pillbox" shown in Fig. 6.23,$ M da # 0, and hence, by the divergencs 
theorem, V M cannot vanish everywhere within. 

Gaussian pillbox 

Figure 6.23 
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Incidentally, the volume bound current density in a homogeneous linear material is  
proportional to the free current density: 

In particular, unless free current actually flows tlzrough the material, all bound current will 
be at the surface. 

Problem 6.16 A coaxial cable consists of two very long cylindrical tubes. separated by linear 
insulating material of magnetic susceptibility X,.  A current I flows down the inner conductor 
and returns along the outer one; in each case the current distributes itself uniformly over the 
surface (Fig. 6.24). Find the magnetic field in the region between the tubes. As a check, 
calculate the magnetization and the bound currents, and confirm that (together, of course, with 
the free currents) they generate the correct field. 

Figure 6.24 

Problem 6.17 A current I flows down a long straight wire of radius a .  If the wire is made of 
linear material (copper, say, or aluminum) with susceptibility X, ,  and the current is distributed 
uniformly, what is the magnetic field a distance s from the axis? Find all the bound currents. 
What is the net bound current flowing down the wire? 

! Problem 6.18 A sphere of linear magnetic material is placed in an otherwise uniform magnetic 
field Bo. Find the new field inside the sphere. [Hint: See Prob. 6.15 or Prob. 4.23.1 

Problem 6.19 On the basis of the naive model presented in Sect. 6.1.3, estimate the magnetic 
susceptibility of a diamagnetic metal such as copper. Compare your answer with the empirical 
value in Table 6.1, and comment on any discrepancy. 
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6.4.2 Ferromagnetism 

In a linear medium the alignment of atomic dipoles is maintained by a magnetic field im- 
posed from the outside. Ferromagnets-which are emphatically not linear7-require no 
external fields to sustain the magnetization; the alignment is "frozen in." Like paramag- 
netism, ferromagnetism involves the magnetic dipoles associated with the spins of unpaired 
electrons. The new feature, which makes ferromagnetism so different from paramagnetism. 
is the interaction between nearby dipoles: In a ferromagnet, each dipole "likes" to  point in 
the same direction as its neighbors. The reason for this preference is essentially quantum 
mechanical, and I shall not endeavor to explain it here; it is enough to know that the cor- 
relation is so strong as to align virtually 100% of the unpaired electron spins. If you could 
somehow magnify a piece of iron and "see" the individual dipoles as tiny arrows, it would 
look something like Fig. 6.25, with all the spins pointing the same way. 

t t  

t t t  

C C C  

C C 

Figure 6.25 

But if that is true, why isn't every wrench and nail a powerfulmagnet? The answer is that 
the alignment occurs in relatively small patches, called domains. Each domain contains 
billions of dipoles, all lined up (these domains are actually visible under a microscope. 
using suitable etching techniques-see Fig. 6.26), but the domains themselves are randoml! 
oriented. The household wrench contains an enormous number of domains, and their 
magnetic fields cancel, so the wrench as a whole is not magnetized. (Actually, the orientation 
of domains is not conzpletely random; within a given crystal there may be some preferential 
alignment along the crystal axes. But there will be just as many domains pointing one wa! 
as the other, so there is still no large-scale magnetization. Moreover, the crystals themselves 
are randomly oriented within any sizable chunk of metal.) 

How, then, would you produce a permanent magnet, such as they sell in toy stores? If 
you put a piece of iron into a strong magnetic field, the torque N = m X B tends to align 
the dipoles parallel to the field. Since they like to stay parallel to their neighbors, most of 
the dipoles will resist this torque. However, at the boundary between two domains, there 

'ln this sense it is misleading to speak of the susceptibility or permeability of a ferromagnet. The terms o~z .  
used for such materials, but they refer to the proportionality factor between a differential increase in H and tht 
resulting differmtial change in M (or B); moreover, they are not constants, but functions of H. 
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Ferromagnetic domains. (Photo courtesy of R. W. DeBlois) 

Figure 6.26 

are conlpeting neighbors, and the torque will throw its weight on the side of the domain 
most nearly parallel to the field; this domain will win over some converts, at the expense 
of the less favorably oriented one. The net effect of the magnetic field, then, is to move the 
donzairl boundaries. Domains parallel to the field grow, and the others shrink. If the field 
is strong enough, one domain takes over entirely, and the iron is said to be "saturated." 

It turns out that this process (the shifting of domain boundaries in response to an external 
field) is not entirely reversible: When the field is switched off, there will be some return to 
randomly oriented domains, but it is far from complete-there remains a preponderance of 
domains in the original direction. The object is now a permanent magnet. 

A simple way to accomplish this, in practice, is to wrap a coil of wire around the object 
to be magnetized (Fig. 6.27). Run a current I through the coil; this provides the external 
magnetic field (pointing to the left in the diagram). As you increase the current, the fie!d 
increases, the domain boundaries move, and the magnetization grows. Eventually, you 
reach the saturation point, with all the dipoles aligned, and a further increase in current has 
no effect on M (Fig. 6.28, point b). 

Now suppose you reduce the current. Instead of retracing the path back to M = 0, 
there is only apartial return to randomly oriented domains. M decreases, but even with the 
current off there is some residual magnetization (paint c). The wrench is now a permanent 
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Figure 6.27 

magnet. If you want to eliminate the remaining magnetization, you'll have to run a current 
backwards through the coil (a negative I). Now the external field points to the right, and a5 

you increase I (negatively), M drops down to zero (point d). If you turn I still higher, you 
soon reach saturation in the other direction-all the dipoles now pointing to the right ( e ) .  At 
this stage switching off the current will leave the wrench with a permanent magnetization to 
the right (point f ) .  To complete the story, turn I on again in the positive sense: M returns 
to zero (point g), and eventually to the forward saturation point (b). 

The path we have traced out is called a hysteresis loop. Notice that the magnetization 
of the wrench depends not only on the applied field (that is, on I), but also on its previous 
magnetic "history."* For instance, at three different times in our experiment the current 
was zero (a ,  c, and f ) ,  yet the magnetization was different for each of them. Actually, it i \  
customary to draw hysteresis loops as plots of B against H, rather than M against I. (If our 
coil is approximated by a long solenoid, with n turns per unit length, then H = n l ,  so H 
and I are proportional. Meanwhile, B = po(H + M), but in practice M is huge compared 
to H, so to all intents and purposes B is proportional to M.) 

( ~ e r m a n e f f l  Magnet) 

Figure 6.28 

8~tymologically, the word hysteresis has nothing to do with the word history-nor with the word hysteria 11 
derives from a Greek verb meaning "to lag behind." 
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To make the units consistent (teslas), I have plotted (poH) horizontally (Fig. 6.29); 
notice, however, that the vefiical scale is 104 tiines greater than the horizontal one. Roughly 
speaking, poH is the field our coil would have produced in the absence of any iron; B is 
what we actuallq, got, and compared to poH it is gigantic. A little current goes a long way 
when you have ferromagnetic materials around. That's why anyone who wants to make a 
powerful electromagget will wrap the coil around an iron core. It doesn't take much of an 
external field to move the domain boundaries, and as soon as you've done that, you have 
all the dipoles in the iron working with you. 

Figpre 6.29 

One final point concerning ferromagnetism: It all follows, remember, from the fact that 
the dipoles within a given domain line up parallel to one another, Random thermal motions 
compete with this ordering, but as long as the temperature doesn't get too high, they cannot 
budge the dipoles out of line. It's not surprising, though, that very high temperatures do 
destroy the alignment. What is surprising is that this occurs at a precise temperature (770" 
C, for iron). Below this temperature (called the Curie point), iron is ferromagnetic; above, 
it is paramagnetic. The Curie point is rather like the boiling point or the freezing point in that 
there is no gradual transition from ferro- to para-magnetic behavior, any more than there is 
between water and ice. These abrupt changes in the properties of a substance, occurring at 
sharply defined temperatures, are known in statistical mechanics as phase transitions. 

Problem 6.20 How would you go about demagnetizing a permanent magnet (such as the 
wrench we have been discussing, at point c in the hysteresis loop)? That is, how could you 
restore it to its original state, with M = O at I = O? 

Problem 6.21 

(a) Show that the energy of a magnetic dipole in a magnetic field B is given by 
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Figure 6.30 

[Assume that the magnitude of the dipole moment isfuced, and all you have to do is move it into 
place and rotate it into its final orientation. The energy required to keep the current flowing i4 
a different problem, which we will confront in Chapter 7.1 Compare Eq. 4.6. 

(b) Show that the interaction energy of two magnetic dipoles separated by a displacement r 1. 

given by 
PO 1 U = - -[ml . m2 - 3(ml . ;)(m2. i ) ] .  (6.35 1 

4n r3 

Compare Eq. 4.7. 

(c) Express your answer to (b) in terms of the angles 91 and Q2 in Fig. 6.30, and use the result 
to find the stable configuratiotl two dipoles would adopt if held a fixed distance apart, but l e i ~  
free to rotate. 

(d) Suppose you had a large collection of compass needles, mounted on pins at regular interval4 
along a straight line. How would they point (assuming the earth's magnetic field can br. 
neglected)? [A rectangular array of compass needles also aligns itself spontaneously, and thi4 
is sometimes used as a demonstration of "ferromagnetic" behavior on a large scale. It's a bit 
of a fraud, however, since the mechanism here is purely classical, and much weaker than tht. 
quantum mechanical exchange forces that are actually responsible for ferromagnetism.] 

More Problems on Chapter 6 

I Problem 6.22 In Prob. 6.4 you calculated the force on a dipole by "brute force." Here's a more 
elegant approach. First write B(r) as a Taylor expansion about the center of the loop: 

where ro is the position of the dipole and V. denotes differentiation with respect to ro. Pur 
this into the Lorentz force law (Eq. 5.16) to obtain 

F = I d l  X [(r . VO)B(rO)]. 

Or, numbering the Cartesian coordinates from 1 to 3: 
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where t i jk  is the Levi-Civita symbol (+l  if i j k  = 123, 23 1, or 3 12; - l  if ijk = 132, 
213, or 321; 0 otherwise), in tenns of which the cross-product can be written (A X B)i = 

3 t i j k A  B k .  Use Eq. 1.108 to evaluate the integral. Note that 

where S, j  is the Kronecker delta   rob.' 3.45). 

Problem 6.23 Notice the following parallel: 

V . D = O ,  V x E = O ,  c O E = D - P ,  (no free charge): 
V . B = 0, V X H = 0, poH = B - poM, (no free current) 

Thus, the transcription D + B, E + H, P + ~ L ~ M ,  €0 + p0 turns an electrostatic problem 
into an analogous magnetostatic one. Use this observation, together with your knowledge of 
the electrostatic results, to rederive 

(a) the magnetic field inside a uniformly magnetized sphere (Eq. 6.16); 

(b) the magnetic field inside a sphere of linear magnetic material in an otherwise uniform 
magnetic field (Prob. 6.18); 

(c) the average magnetic field over a sphere, due to steady currents within the sphere (Eq. 5.89). 

Problem 6.24 Compare Eqs. 2.15,4.9, and 6.1 1. Notice that if p,  P, and M are uniform, the 
same integral is involved in all three: 

S $ d.' 
Therefore, if you happen to know the electric field of a uniformly charged object, you can 
immediately write down the scalar potential of a uniformly polarized object, and the vector 
potential of a uniformly magnetized object, of the same shape. Use this observation to obtain V 
inside and outside a uniformly polarized sphere (Ex. 4.2), and A inside and outside a uniformly 
magnetized sphere (Ex. 6.1). 

Problem 6.25 A familiar toy consists of donut-shaped permanent magnets (magnetization 
parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.3 1). Treat the magnets 
as dipoles, with mass md and dipole moment m. 

(a) If you put two back-to-back magnets on the rod, the upper one will "floatM-the magnetic 
force upward balancing the gravitational force downward. At what height ( z )  does it float? 

(b) If you now add a third magnet (parallel to the bottom one), what is the ratio of the two 
heights? (Deternline the actual number, to three significant digits.) 

2 [Answer: (a) [3pOm /2nmdg]1/4; (b) 0.85011 

Problem 6.26 At the interrace between one linear magnetic material and another the magnetic 
field lines bend (see Fig. 6.32). Show that tan Q2/ tan Q1 = p2/p1 ,  assuming there is no free 
current at the boundary. Compare Eq. 4.68. 
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Figure 6.3 1 Figure 6.32 

! Problem 6.27 A magnetic dipole m is imbedded at the center of a sphere (radius R )  of linear 
magnetic material (permeability p) .  Show that the magnetic field inside the sphere (0 < r 5 R )  
is 

What is the field outside the sphere? 

Problem 6.28 You are asked to referee a grant application, which proposes to determine 
whether the magnetization of iron is due to "Ampitre" dipoles (current loops) or "Gilbert" 
dipoles (separated magnetic monopoles). The experiment will involve a cylinder of iron (radius 
R and length L = lOR), uniformly magnetized along the direction of the axis. If the dipoles 
are Ampere-type, the magnetization is equivalent to a surface bound current Kb = M 4; ~f 
they are Gilbert-type, the magnetization is equivalent to surface monopole densities oh = *M 
at the two ends. Unfortunately, these two configurations produce identical magnetic fields, at 
exterior points. However, the interior fields are radically different-in the first case B is in the 
same general direction as M, whereas in the second it is roughly opposite to M. The applicant 
proposes to measure this internal field by carving out a small cavity and finding the torque on 
a tiny compass needle placed inside. 

Assuming that the obvious technical difficulties can be overcome, and that the question itself 
is worthy of study, would you advise funding this experiment? If so, what shape cavity would 
you recommend? If not, what is wrong with the proposal? [Hint: refer to Probs. 4.11,4.16, 
6.9, and 6.13.1 



Chapter 7 

Electrodynamics 

Electromotive Force 

7.1.1 Ohm's Law 

To make a current flow, you have to push on the charges. How fast they move, in response 
to a given push, depends on the nature of the material. For most substances, the current 
density J is proportional to the force per unit charge, f: 

J = of. (7.1) 

The proportionality factor o (not to be confused with surface charge) is an empirical con- 
stant that varies from one material to another; it's called the conductivity of the medium. 
Actually, the handbooks usually list the reciprocal of c, called the resistivity: p = I/a 
(not to be confused with charge density-I'm sorry, but we're running out of Greek let- 
ters, and this is the standard notation). Some typical values are listed in Table 7.1. Notice 
that even insulators conduct slightly, though the conductivity of a metal is astronomically 
greater-by a factor of 102* or SO. In fact, for most purposes metals can be regarded as 
perfect conductors, with a = m. 

In principle, the force that drives the charges to produce the current could be anything- 
chemical, gravitational, or trained ants with tiny harnesses. For our purposes, though, it's 
usually an electromagnetic force that does the job. In this case Eq. 7.1 becomes 

Ordinarily, the velocity of the charges is sufficiently small that the second term can be 
ignored: 

J=oE.I (7.3) 

(However, in plasmas, for instance, the magnetic contribution to f can be significant.) 
Equation 7.3 is called Ohm's law, though the physics behind it is really contained in 
Eq. 7.1, of which 7.3 is just a special case. 
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Silver 
Copper 
Gold 
Aluminum 
Iron 
Mercury 
Nichrome 
Manganese 

Material Resistivity 
Conductors: 

Salt water (saturated) 4.4 X 1 0V2 
Germanium 4.6 X 10-' 
Diamond 2.7 
Silicon 2.5 X lo3 
Insulators: 
Water (pure) 2.5 X lo5 
Wood log - 10" 
Glass 101° - l0l4 

Material Resistivity 
Semiconductors: 

L ~ r a ~ h i t e  1.4 X 1or5 1 Quartz (fused) 1016 1 

Table 7.1 Resistivities, in ohm-meters (all values are for 1 atm, 20" C). 
Source: Handbook of Chemistry and Physics, 78th ed. 

(Boca Raton: CRC Press, Inc., 1997). 

I know: you're confused because I said E = 0 inside a conductor (Sect. 2.5.1). But 
that's for stationaq charges (J = 0). Moreover, for pe$ect conductors E = J/o = 0 even 
if current is flowing. In practice, metals are such good conductors that the electric field 
required to drive current in them is negligible. Thus we routinely treat the connecting wires 
in electric circuits (for example) as equipotentials. Resistors, by contrast, are madc from 
poorly conducting materials. 

Example 7.1 

A cylindrical resistor of cross-sectional area A  and length L is made from material with 
conductivity D.  (See Fig. 7.1; as indicated, the cross section need not be circular, but I t k )  
assume it is the same all the way down.) If the potential is constant over each end, and the 
potential difference between the ends is V, what current flows? 

Figure 7.1 

Solution: As it turns out, the electric field is unzform within the wire (I'll prove this in a 
moment). It follows from Eq. 7.3 that the current density is also uniform, so 

a A 
I =  J A = o E A =  --V. 

L 
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Example 7.2 

Two long cylinders (radii n and b) are separated by material of conductivity a (Fig. 7.2). If 
they are maintained at a potential difference V,  what current flows from one to the other, in  a 
length L? 

Figure 7.2 

Solution: The field between the cylinders is 

where A is the charge per unit length on the inner cylinder. The current is therefore 

(The integral is over any su~face enclosing the inner cylinder.) Meanwhile, the potential 
difference between the cylinders is 

As these examples illustrate, the total current flowing from one electrode to the other 
is proportional to the potential difference between them: 

I V = I R .  I 
This, of course, is the more familiar version of Ohm's law. The constant of proportionality 
R is called the resistance; it's a function of the geometry of the arrangement and the 
conductivity of the medium between the electrodes. (In Ex. 7.1, R = ( L / o A ) ;  in Ex. 7.2, 
R = In (b /a) /2na L.) Resistance is measured in ohms (Q): an ohm is a volt per ampere. 
Notice that the proportionality between V and I is a direct consequence of Eq. 7.3: if you 
want to double V, you simply double the charge everywhere-but that doubles E, which 
doubles J, which doubles I .  
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For steady culrents and zdnifarm conductivity, 

1 
V . E = - V . J = O ,  

CJ 
(7.5) 

(Eq. 5.31), and therefore the charge density is zero; any unbalanced charge resides on the 
suqace. (We proved this long ago, for the case of stationary charges, using the fact that 
E = 0; evidently, it is still true when the charges are allowed to move.) It follows, in 

particular, that Laplace's equation holds within a homogeneous ohmic material canying 

a steady current, so all the tools and tricks of Chapter 3 are available for computing the 

potential. 

Example 7.3 
I asserted that the field in Ex. 7.1 is uniform. Let's prove it. 

Solution: Within the cylinder V obeys Laplace's equation. What are the boundary conditions'? 
At the left end the potential is constant-we may as well set it equal to zero. At the right end 
the potential is likewise constant+all it Vg. On the cylindrical surface, J . fi = 0, or else 
charge would be lealung out into the surrounding space (which we take to be nonconducting). 
Therefore E . n = 0, and hence a V l a n  = 0. With V or its normal derivative specified on all 
surfaces, the potential is uniquely determined (Prob. 3.4). But it's easy to guess one potential 
that obeys Laplace's equation and fits these boundary conditions: 

where z is measured along the axis. The uniqueness theorem guarantees that this is the solution. 
The corresponding field is 

v0 E = - V V  = --z, 
L 

which is indeed uniform. qed 

Figure 7.3 

Contrast the e~zornzoursly more difficult problem that arises if the conducting material is 
removed, leaving only a metal plate at either end (Fig. 7.3). Evidently in the present case 
charge arranges itself over the surface of the wire in just such a way as to produce a nice 
uniform field within. l 

Calculating this surface charge is not easy. See, for example, J. D. Jackson, Am. J. Phys. 64,855 (1996). Nor 
is it a simple matter to determine the field outside the wire-see Prob. 7.57. 
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I don't suppose there is any formula in physics more widely known than Ohm's law, and 
yet it's not really a true law, in the sense of Gauss's law or Ampkrc's law; rather, it is a "rule 
of thumb" that applies pretty well to many substances. You're not going to win a Nobel 
prize for finding an exception. In fact, when you stop to think about it, it's a little surprising 
that Ohm's law ever holds. After all, a given field E produces a force q E  (on a charge 
q ) ,  and according to Newton's second law the charge will accelerate. But if the charges 
are accelerating, why doesn't the current increase with time, growing larger and larger the 
longer you leave the field on? Ohm's law implies, on the contrary, that a constant field 
produces a constant current, which suggests a constant velocity. Isn't that a contradiction 
of Newton's law? 

No, for we are forgetting the frequent collisions electrons make as they pass down the 
wire. It's a little like this: Suppose you're driving down a street with a stop sign at every 
intersection, so that, although you accelerate constantly in between, you are obliged to start 
all over again with each new block. Your average speed is then a constant, in spite of the 
fact that (save for the periodic abrupt stops) you are always accelerating. If the length of a 
block is h and your acceleration is a ,  the time it takes to go a block is 

and hence the average velocity is 

But wait! That's no good either! It says that the velocity is proportional to the square 
root of the acceleration, and therefore that the current should be proportional to the square 
root of the field! There's another twist to the story: The charges in practice are already 
moving quite fast because of their thermal energy. But the thermal velocities have random 
directions, and average to zero. The net drift velocity we're concerned with is a tiny extra 
bit (Prob. 5.19). So the time between collisions is actually much shorter than we supposed; 
in fact, 

h 
t = -  

Uthermal 

and therefore 
1 ah  

Vave = -at = 
2 2~thermal '  

If there are n molecules per unit volume and f free electrons per molecule, each with charge 
q and mass m, the current density is 

I don't claim that the tenn in parentheses is an accurate formula for the ~onductivity,~ but it 

 his ciassical model (due to Drude) bears little resemblance to the modem quantum theory of conductivity. 
See, for instance, D. Park's Introduction to the Qlcnnrum Theory, 3rd ed., Chap. 15 (New York: McGraw-Hill, 
1992). 
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does indicate the basic ingredients, and it correctly predicts that conductivity is proportional 

to  the density of the moving charges and (ordinarily) decreases with increasing temperature. 

As a result of all the collisions, the work done by the electrical force is converted into 

heat in the resistor. Since the work done per unit charge is V and the charge flowing per 
unit time is 1 ,  the power delivered is 

This is the Jouie heating law. With I in amperes and R in  ohms, P comes out in watts 

(joules per second). 

Problem 7.1 Two concentric metal spherical shells, of radius a and b, respective1 y, are separated 
by weakly conducting material of conductivity CT (Fig. 7.44. 

(a) If they are maintained at a potential difference V, what current flows from one to the other'? 

(b) What is the resistance between the shells? 

(c) Notice that if 17 >> a the outer radius (bj is irrelevant. How do you account for that? Exploit 
this observation to determine the current flowing between two metal spheres, each of radiu. 
a ,  immersed deep in the sea and held quite far apart (Fig. 7.4b), if the potential difference 
between them is V. (This arrangement can be used to measure the conductivity of sea water. I 

Figure 7.4 

Problem 7.2 A capacitor C has been charged up to potential Vo; at time t = 0 it is connected 
to a resistor R, and begins to discharge (Fig. 7.5a). 

(a) Determine the charge on the capacitor as a function of time, Q ( t ) .  What is the current 
through the resistor, I ( t ) ?  



7.1. ELECTROMOTIVE FORCE 

Figure 7.5 

(b) What was the original energy stored in the capacitor (Eq. 2.55)? By integrating Eq. 7.7, 
confirm that the heat delivered to the resistor is equal to the energy lost by the capacitor. 

Now imagine charging up the capacitor, by connecting it (and the resistor) to a battery of 
tixed voltage Vo, at time t = 0 (Fig. 7.5b). 

(C) Again, determine Q(t) and I ( t ) .  

(d) Find the total energy output of the battery (S VoI d t ) .  Determine the heat delivered to the 
resistor. What is the final energy stored in the capacitor? What fraction of the work done by 
the battery shows up as energy in the capacitor? [Notice that the answer is independent of R!] 

Problem 7.3 

(a) Two metal objects are embedded in weakly conducting material of conductivity CT (Fig. 7.6). 
Show that the resistance between them is related to the capacitance of the arrangement by 

€0 R =  --. 
CTC 

(b) Suppose you connected a battery between 1 and 2 and charged them up to a potential 
difference V". If you then disconnect the battery, the charge will gradually leak off. Show that 
V ( t )  = v O e p t / ' ,  and find the time constant, t, in terms of €0 and CT. 

Figure 7.6 

Problem 7.4 Suppose the conductivity of the material separating the cylinders in Ex. 7.2 is 
not uniform; specifically, U($) = kls .  for some constant k. Find the resistance between the 
cylinders. [Hint: Because CT is a function of position, Eq. 7.5 does not hold, the charge density 
is not zero in the resistive medium. and E does not go like l / X .  But we do know that for steady 
currents I is the same across each cylindrical surface. Take it from there.] 
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7.1.2 Electromotive Force 

If you think about a typical electric circuit (Fig. 7.7)-a battery hooked up to a light bulb, 
say-there arises a perplexing question: In practice, the current is the same all the nray 
around the loop, at any given moment; wlzy is this the case, when the only obvious driving 
force is inside the battery? Off hand, you might expect this to produce a large current in  
the battery and none at all in the lamp. Who's doing the pushing in the rest of the circuit, 
and how does it happen that this push is exactly right to produce the same current in each 
segment? What's more, given that the charges in a typical wire move (literally) at a snail 'S 

pace (see Prob. 5.19), why doesn't it take half an hour for the news to reach the light bulb? 
How do all the charges know to start moving at the same instant? 

Figure 7.7 Figure 7.8 

Answer: If the current is not the same all the way around (for instance, during the first 
split second after the switch is closed), then charge is piling up somewhere, and-here's the 
crucial point-the electric field of this accumulating charge is in such a direction as to even 
out the flow. Suppose, for instance, that the current into the bend in Fig. 7.8 is greater than 
the current out. Then charge piles up at the "knee," and this produces a field aiming away 
from the kink. This field opposes the current flowing in (slowing it down) and promotes the 
current flowing out (speeding it up) until these currents are equal, at which point there is 
no further accumulation of charge, and equilibrium is established. It's a beautiful system, 
automatically self-correcting to keep the current uniform. and it does it all so quickly that, 
in practice, you can safely assume the current is the same all around the circuit even in 
systems that oscillate at radio frequencies. 

The upshot of all this is that there are really two forces involved in driving current around 
a circuit: the source, f,, which is ordinarily confined to one portion of the loop (a battery, 
say), and the electrostatic force, which serves to smooth out the flow and communicate the 
influence of the source to distant parts of the circuit: 

The physical agency responsible for f, can be any one of many different things: in a battery 
it's a chemical force; in a piezoelectric crystal mechanical pressure is converted into an 
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electrical impulse; in a thermocouple it's a temperature gradient that does the job; in a 
photoelectric cell it's light; and in a Van de Graaff generator the electrons are literally 
loaded onto a conveyer belt and swept along. Whatever the mechanism, its net effect is 
determined by the line integral o f f  around the circuit: 

(Because E . dl = 0 for electrostatic fields, it doesn't matter whether you use f or f, .) 
& is called the electromotive force, or emf, of the circuit. It's a lousy term, since this is 
not a force at all-it's the integral of a force per unit charge. Some people prefer the word 
electromotance, but emf is so ingrained that I think we'd better stick with it. 

Within an ideal source of ernf (a resistanceless battery,3 for instance), the net force on 
the charges is zero (Eq. 7.1 with a = m), so E = -f,. The potential difference between 
the terminals (a and b) is therefore 

(we can extend the integral to the entire loop because f, = 0 outside the source). The 
function of a battery, then, is to establish and maintain a voltage difference equal to the 
electromotive force (a 6 V battery, for example, holds the positive terminal 6 V above the 
negative terminal). The resulting electrostatic field drives current around the rest of the 
circuit (notice, however, that inside the battery fs drives current in the direction opposite to 

E) 
Because it's the line integral of f,y, & can be interpreted as the workdotze, per unit charge, 

by the source-indeed, in some books electromotive force is defined this way. However, 
as you'll see in the next section, there is some subtlety involved in this interpretation, so I 
prefer Eq. 7.9. 

Problem 7.5 A battery of emf E and internal resistance r is hooked up to a variable "load" 
resistance, R. If you want to deliver the maximum possible power to the load, what resistance 
R should you choose? (You can't change E and r, of course.) 

Problem 7.6 A rectangular loop of wire is situated so that one end (height h )  is between the 
plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the field E. The other end 
is way outside, where the field is essentially zero. What is the emf in this loop? If the total 
resistance is R ,  what current flows? Explain. [Warning: this is a trick question, so be careful; 
if you have invented a perpetual motion machine, there's probably something wrong with it.] 

3 ~ e u l  batteries have a certain internal resistance, r ,  and the potential difference between their terminals is 
t' - I r ,  when a current I is flowing. For an illuminating discussion of how batteries work, see D. Roberts, Am. 
J. Phys. 51, 829 (1983). 
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Figure 7.9 

7.1.3 Motional emf 

In the last section I listed several possible sources of electromotive force in a circuit, batterie4 
being the most familiar. But I did not mention the most common one of all: the generator. 
Generators exploit motional emf's, which arise when you move a wire through a magnetic. 
field. Figure 7.10 shows a primitive model for a generator. In the shaded region there is a 

uniform magnetic field B, pointing into the page, and the resistor R represents whatever it 
is (maybe a light bulb or a toaster) we're trying to drive current through. If the entire loop 
is pulled to the right with speed v, the charges in segment a b  experience a magnetic force 
whose vertical component qv B drives current around the loop, in the clockwise direction. 
The emf is 

where h is the width of the loop. (The horizontal segments bc and ad contribute nothing. 
since the force here is perpendicular to the wire.) 

Notice that the integral you perform to calculate I (Eq. 7.9 or 7.11) is carried out at o w  

instant of time-take a "snapshot" of the loop, if you like, and work from that. Thus dl. for 
the segment ab in Fig. 7.10, points straight up, even though the loop is moving to the right. 
You can't quarrel with this-it's simply the way emf is dejned-but it is important to be 
clear about it. 

Figure 7.10 
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Figure 7.1 1 

In particular, although the magnetic force is responsible for establishing the emf, it is 
certainly not doing any work-magnetic forces never do work. Who, then, is supplying the 
energy that heats the resistor? Answer: The person who's pulling on the loop! With the 
current flowing, charges in segment a b  have a vertical velocity (call it U) in addition to the 
horizontal velocity v they inherit from the motion of the loop. Accordingly, the magnetic 
force has a component qu B to the left. To counteract this, the person pulling on the wire 
must exert a force per unit charge 

fpull = U B 

to the right (Fig. 7.11). This force is transmitted to the charge by the structure of the wire. 
Meanwhile, the particle is actually moving in the direction of the resultant velocity W, and 
the distance it goes is (h/ cos 8).  The work done per unit charge is therefore 

(sin 8 coming from the dot product). As it turns out, then, the work done per unit charge 
is exactly equal to the emf, though the integrals are taken along entirely different paths 
(Fig. 7.12) and completely different forces are involved. To calculate the emf you integratc 
around the loop at one instant, but to calculate the work done you follow a charge in its 
motion around the loop; fpull contributes nothing to the emf, because it is pe@endicular to 
the wire, whereas fmag contributes nothing to work because it is perpendicular to the motion 
of the charge." 

There is a particularly nice way of expressing the emf generated in a moving loop. Let 
@ be the flux of B through the loop: 

For the rectangular loop in Fig. 7.10, 

= Bhx. 

4 ~ o r  further discussion, see E. P. Mosca, Am. J. Phys. 42, 295 (1974) 



CHAPTER 7. ELECTRODYNAMICS 

(a) Integration for computing (b) Integration path for calculating work 
&(follow the wire at one instant done (follow the charge around the loop). 
of time). 

Figure 7.12 

As the loop moves, the flux decreases: 

(The minus sign accounts for the fact that dx/dt is negative.) But this is precisely the 
emf (Eq. 7.11); evidently the emf generated in the loop is minus the rate of change of flux 
through the loop: 

This is the flux rule for motional emf. Apart from its delightful simplicity, it has the virtue 
of applying to nonrectangular loops moving in arbitrary directions through nonuniform 
magnetic fields; in fact, the loop need not even maintain a fixed shape. 

Proof: Figure 7.13 shows a loop of wire at time t and also a short time d t  later. 
Suppose we compute the flux at time t, using surface S, and the flux at time 
t + dt ,  using the surface consisting of S plus the "ribbon" that connects the 
new position of the loop to the old. The change in flux, then, is 

d @  = @(t d t )  - @(t)  = @ribbon = S B da. 
ribbon 

Focus your attention on point P: in time dt  it moves to P'. Let v be the velocjty 
of the wire, and U the velocity of a charge down the wire; W = v + U is the 
resultant velocity of a charge at P. The infinitesimal element of area on the 
ribbon can be written as 

da = (v X dl) d t  
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Surface S 

P' 

Enlargement of da 

Loop at Loop at 
time t time ( t + dt) 

Figure 7.13 

(see inset in Fig. 7.13). Therefore 

Since W = (v + U) and U is parallel to dl, we can also write this as 

= f B (W X dl). 
dt 

Now, the scalar triple-product can be rewritten: 

B .  (W X dl) = -(W X B) - dl, 

But (W X B) is the magnetic force per unit charge, fmag, so 

d @  
= - f f a g  dl, dt 

and the integral of fmag is the emf 

Ribbon 
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There is a sign ambiguity in the definition of emf (Eq. 7.9): Which way around the 
loop are you supposed to integrate? There is a compensatory ambiguity in the definition 
of flux (Eq. 7.12): Which is the positive direction for da? In applying the flux rule, sign 
consistency is governed (as alwqys) by your right hand: If your fingers define the positive 
direction around the loop, then your thurnb indicates the direction of da.  Should the einf 
come out negative, it means the current will flow in the negative direction around the circuit. 

The flux rule is a nifty short-cut for calculating motional ernf's. It does not contain any 
new physics. Occasionally you will run across problems that cannot be handled by the flux 
rule; for these one must g o  back to the Lorentz force law itself. 

Example 7.4 

A metal disk of radius a rotates with angular velocity w about a vertical axis, through a uniform 
field B, pointing up. A circuit is made by connecting one end of a resistor to the axle and the 
other end to a sliding contact, which touches the outer edge of the disk (Fig. 7.14). Find the 
current in the resistor. 

(Sliding contact) 

Figure 7.14 

Solution: The speed of a point on the disk at a distance s from the axis is v = ws, so the force 
per unit charge is fmag = v X B = ws BB. The emf is therefore 

and the current is 
E w B a  2 

I = - = - .  
R 2 R  

The trouble with the flux rule is that it assumes the current flows along a well-defined path. 
whereas in this example the current spreads out over the whole disk. It's not even clear what 
the "flux through the circuit" would mean in this context. Even more tricky is the case of eddy 
currents. Take a chunk of aluminum (say), and shake it around in a nonuniform magnetic 
field. Currents will be generated in the material, and you will feel a kind of "viscous dragv-as 
though you were pulling the block through molasses (this is the force I called fpull in the 
discussion of motional emf). Eddy currents are notoriously difficult to ca l~ula te ,~  but easy 
and dramatic to demonstrate. You may have wimessed the classic experiment in which an 

5 ~ e e ,  for example, W. M. Saslow, Am. J. Phys., 40, 693 (1992). 
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Figure 7.1 5 

aluminum disk mounted as a pendulum on a horizontal axis swings down and passes between 
the poles of a magnet (Fig. 7.1%). When it enters the field region it suddenly slows way down. 
To confirm that eddy currents are responsible, one repeats the process using a disk that has 
many slots cut in it, to prevent the flow of large-scale currents (Fig. 7.15b). This time the disk 
swings freely, unimpeded by the field. 

Problem 7.7 A metal bar of mass m slides frictionlessly on two parallel conducting rails a 
distance l apart (Fig. 7.16). A resistor R is connected across the rails and a uniform magnetic 
field B, pointing into the page, fills the entire region. 

Figure 7.1 6 
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(a) If the bar moves to the right at speed v ,  what is the current in the resistor? In what direction 
does it flow? 

(b) What is the magnetic force on the bar? In what direction? 

(c) If the bar starts out with speed v0 at time t = 0, and is left to slide, what is its speed at a 
later time t ? 

(d) The initial kinetic energy of the bar was, of course, $rnvO2. Check that the energy delivered 
1 2  to the resistor is exactly mu0 . 

Problem 7.8 A square loop of wire (side a )  lies on a table, a distances from a very long straight 
wire, which carries a current I, as shown in Fig. 7.17. 

(a) Find the flux of B through the loop. 

(b) If someone now pulls the loop directly away from the wire, at speed v,  what emf i, 
generated? In what direction (clockwise or counterclockwise) does the current flow? 

(c) What if the loop is pulled to the riglzt at speed v ,  instead of away? 

- 
1 

Figure 7.1 7 

Problem 7.9 An infinite number of different surfaces can be fit to a given boundary line, and 
yet, in defining the magnetic flux through a loop, @ = J" B .  da, I never specified the particular 
surface to be used. Justify this apparent oversight. 

Problem 7.10 A square loop (side a) is mounted on a vertical shaft and rotated at angular 
velocity w (Fig. 7.18). A uniform magnetic field B points to the right. Find the E ( r )  for thi. 
alternating current generator. 

Problem 7.11 A square loop is cut out of a thick sheet of aluminum. It is then placed so that the 
top portion is in a uniform magnetic field B, and allowed to fall under gravity (Fig. 7.19). (In 
the diagram, shading indicates the field region; B points into the page.) If the magnetic field 
is 1 T (a pretty standard laboratory field), find the terminal velocity of the loop (in mls). Find 
the velocity of the loop as a function of time. How long does it take (in seconds) to reach, sa!. 
90% of the terminal velocity? What would happen if you cut a tiny slit in the ring, breaking 
the circuit? [Note: The dimensions of the loop cancel out; determine the actual numbers, in 
the units indicated.] 
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Figure 7.18 Figure 7.19 

'.Z Electromagnetic Induction 

7.2.1 Faraday's Law 

In 1831 Michael Faraday reported on a series of experiments, including three that (with 
some violence to history) can be characterized as follows: 

Experiment 1. He pulled a loop of wire to the right through a magnetic field (Fig. 7.20a). 
A current flowed in the loop. 

Experiment 2. He moved the magnet to the left, holding the loop still (Fig. 7.20b). Again, 
a current flowed in the loop. 

Experiment 3. With both the loop and the magnet at rest (Fig. 7.20c), he changed the 
strength of the field (he used an electromagnet, and varied the current in the coil). 
Once again, current flowed in the loop. 

(''1 
changing 

magnetic field 

Figure 7.20 
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The first experiment, of course, is an example of motional emf, conveniently expressed by 
the flux rule: 

d @  
& = --. 

dt  
I don't think it will surprise you to learn that exactly the same emf arises in Experiment 2- 
all that really matters is the relative motion of the magnet and the loop. Indeed, in the light 
of special relativity is has to be so. But Faraday knew nothing of relativity, and in classical 
electrodynamics this simple reciprocity is a coincidence, with remarkable implications. For 
if the loop moves, it's a magnetic force that sets up the emf, but if the loop is statio~zaq. 
the force cannot be magnetic-stationary charges experience no magnetic forces. In that 
case, what is responsible? What sort of field exerts a force on charges at rest? Well, electric 
fields do, of course, but in this case there doesn't seem to be any electric field in sight. 

Faraday had an ingenious inspiration: 

A changing magnetic field induces an electric field. 

It is this "induced" electric field that accounts for the emf in Experiment 2.6 Indeed, if (a4 
Faraday found empirically) the emf is again equal to the rate of change of the flux, 

then E is related to the change in B by the equation 

This is Faraday's law, in integral form. We can convert it to differential form by applying 
Stokes' theorem: 

(7.161 

Note that Faraday's law reduces to the old rule $ E  . dl = 0 (or, in differential form. 
V X E = 0) in the static case (constant B) as, of course, it should. 

In Experiment 3 the magnetic field changes for entirely different reasons, but according 
to Faraday's law an electric field will again be induced. giving rise to an emf - d @ / d t .  
Indeed, one can subsume all three cases (and for that matter any combination of them) into 
a kind of universal flux rule: 

Whenever (and for whatever reason) the magnetic flux through a loop changes, 
an emf 

will appear in the loop. 

6 ~ o u  might argue that the magnetic field in Experiment 2 is not really changing-just moving. What I mean I. 
that if you sit at afied location, the field does change, as the magnet passes by. 
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Many people call this "Faraday's law." Maybe I'm overly fastidious, but I find this confus- 
ing. There are really two totally different mechanisms underlying Eq. 7.17, and to identify 
them both as "Faraday's law" is a little like saying that because identical twins look alike 
we ought to call them by the same name. In Faraday's first experiment it's the Lorentz force 
law at work; the emf is unagnetic. But in lhe other two it's an electric field (induced by 
the changing magnetic field) that does the job. Viewed in this light, it is quite astonishing 
that all three processes yield the same formula for the ernf. In fact, it was precisely this 
"coincidence" that led Einstein to the special theory of relativity-he sought a deeper un- 
derstanding of what is, in classical electrodynamics, a peculiar accident. But that's a story 
for Chapter 12. In the meantime I shall reserve the term "Faraday's law'" for electric fields 
induced by changing magnetic fields, and I do nat regard Experiment l as an instance of 
Faraday' S law. 

Example 7.5 

A long cylindrical magnet of length L and radius a carries a uniform magnetization M parallel 
to its axis. It passes at constant velocity v through a circular wire ring of slightly larger diameter 
(Fig. 7.21). Graph the emf induced in the ring, as a function of time. 

Figure 7.21 

Solution: The magnetic field is the same as that of a long solenoid with surface current 
Kb = M 6. So the field inside is B = FOM, except near the ends, where it starts to spread 
out. The flux through the ring is zero when the magnet is f a  away; it builds up to a maximum 
of , u o ~ n a 2  as the leading end passes through; and it drops back to zero as the trailing end 
emerges (Fig. 7.22a). The emf is (minus) the derivative of @ with respect to time, so it consists 
of two spikes, as shown in Fig. 7.22b. 

Keeping track of the signs in Faraday's law can be a real headache. For instance, in 
Ex. 7.5 we'would like to know which way around the ring the induced current flows. In 
principle, the right-hand rule does the job (we called @ positive to the left, in Fig. 7.22a, so 
the positive direction for current in the ring is counterclockwise, as viewed from the left; 
since the first spike in Fig. 7.22b is negative, the first current pulse flows clockwise, and the 
second counterclockwise). But there's a handy rule, called Lenz's law, whose sole purpose 
is to help you get the directions right:7 

7 ~ e n z ' s  law applies to rnot~orzal emf's, too, but for them it is usually easier to get the direction of the current 
from the Lorentz force law. 
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Figure 7.22 

1 Nature abhors a change in flux. I 
The induced current will flow ih such a direction that the flux it produces tends to cancel the 
change. (As the front end of the magnet in Ex. 7.5 enters the ring, the flux increases, so the 
current in the ring must generate a field to the right-it therefore flows clockwise.) Notice 
that it is the change in flux, not the flux itself, that nature abhors (when the tail end of the 
magnet exits the ring, the flux drops, so the induced current flows counterclockwise, in an 
effort to restore it). Faraday induction is a kind of "inertial" phenomenon: A conducting 
loop "likes" to maintain a constant flux through it; if you try to change the flux, the loop 
responds by sending a current around in such a direction as to frustrate your efforts. (It 
doesn't succeed completely; the flux produced by the induced current is typically only L\ 

tiny fraction of the original. All Lenz's law tells you is the direction of the flow.) 

Example 7.6 

The "jumping ring" demonstration. If you wind a solenoidal coil around an iron core (the 
iron is there to beef up the magnetic field), place a metal ring on top, and plug it in, the ring 
will jump several feet in the air (Fig. 7.23). Why? 

Solution: Before you turned on the current, the flux through the ring was zero. Aftentlard a 
flux appeared (upward, in the diagram), and the emf generated in the ring led to a current (in 
the ring) which, according to Lenz's law, was in such a direction that its field tended to cancel 
this new flux. This means that the current in the loop is opposite to the current in the solenoid. 
And opposite currents repel, so the ring flies off.' 

 or further discussion of the jumping ring (and the related "floating ring"), see C. S. Schneider and J. P. Ertel. 
Ant. J .  Phvs. 66,686 (1998). 
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U 

Figure 7.23 

solenoid 

Problem 7.12 A long solenoid, of radius a ,  is driven by an alternating current, so that the field 
inside is sinusoidal: B(t) = B. cos(wt) 4. A circular loop of wire, of radius a /2  and resistance 
R. is placed inside the solenoid, and coaxial with it. Find the current induced in the loop, as a 
function of time. 

Problem 7.13 A square loop of wire, with sides of length a ,  lies in the first quadrant of the 
x y  plane, with one corner at the origin. In this region there is a nonuniform time-dependent 
magnetic field B(y, t )  = ky3t2  2 (where k is a constant). Find the emf induced in the loop. 

Problem 7.14 As a lecture demonstration a short cylindrical bar magnet is dropped down a 
vertical aluminum pipe of slightly larger diameter, about 2 meters long. It takes several seconds 
to emerge at the bottom, whereas an otherwise identical piece of utzmagnetized iron makes the 
trip in a fraction of a second. Explain why the magnet falls more slowly. 

7.2.2 The Induced Electric Field 

What Faraday's discovery tells us is that there are really two distinct kinds of electric fields: 
those attributable directly to electric charges, and those associated with changing magnetic 
 field^.^ The  former can be calculated (in the static case) using Coulomb's law; the latter 
can be found by exploiting the analogy between Faraday's law, 

9 ~ o u  could, I suppose, introduce an entirely new word to denote the field generated by a changing B. Electro- 
dynamics would then involve three fields: E-fields, produced by electric charges [V . E  = (1/eo)p, V X E = 01; 
B-fields, produced by electric currents [V . B = 0, V X B = poJ]; and G-fields, produced by changing magnetic 
fields [V - G  = 0, V X G = -aB/at]. Because E and G exert forces in the same way [F = q(E + G ) ] ,  it is tidier 
to regard their sum as a single entity and call the whole thing "the electric field." 
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and Amphe ' s  law, 

V x B  =poJ. 

Of course, the curl alone is not enough to determine a field-you must also specify the 
divergence. But as Iong as E is a pure Faraday field, due exclusively to a changing B (with 
p = 0), Gauss's law says 

V . E = O ,  

while for magnetic fields, of course, 
V . B = O  

always. So the parallel is complete, and I conclude that Faraday-induced electricfields at-? 
determined by -(aB/at)  in exactly the same way as magnetostatic fields are determined 
by POJ. 

In particular, if symmetry permits, we  can use all the tricks associated with Arnpkre.4 
law in integral form, 

,- 

only this time it's Famday's law in integral form: 

The rate of change of (magnetic) flux through the Amperian loop plays the role formerl! 
assigned to p0 I,,,. 

Example 7.7 

A uniform magnetic field B(t), pointing straight up, fills the shaded circular region of Fis. 
7.24. If B is changing with time, what is the induced electric field? 

Solution: E points in the circumferential direction, just like the magnetic field inside a long 
straight wire carrying a uniform current density. Draw an Amperian loop of radius s. and 
apply Faraday's law: 

d Q  d 2  2 d B  E .  d l =  E(&$) = -- = -- (ns ~ ( t ) )  = -ns  b. 
d t  d t  t 

Therefore 

If B is increasing, E runs clockwise, as viewed from above. 

Example 7.8 

A line charge h is glued onto the rim of a wheel of radius b. which is then suspended horizontall!. 
as shown in Fig. 7.25, so that it is free to rotate (the spokes are made of some nonconducting 
material-wood, maybe). In the central region, out to radius a ,  there is a uniform magnetic 
field Bo, pointing up. Now someone turns the field off. What happens? 
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Amperian loop of radius s h 

Figure 7.24 Figure 7.25 

Solution: The changing magnetic field will induce an electric field, curling around the axis of 
the wheel. This electric field exerts a force on the charges at the rim, and the wheel starts to 
turn. According to Lenz's law, it will rotate in such a direction that its field tends to restore 
the upward flux. The motion, then, is counterclockwise, as viewed from above. 

Quantitatively, Faraday's law says 

Now, the torque on a segment of length dl is (r X F), or bh E dl. The total torque on the wheel 
is therefore 

2 d B  EdE=-bhnn -, 
dt  

and the angular momentum imparted to the wheel is 

It doesn't matter how fast or slow you turn off the field; the ultimate angular velocity of the 
wheel is the same regardless. (If you find yourself wondering where this angular momentum 
canze from, you're getting ahead of the story! Wait for the next chapter.) 

A final word on this example: It's the electric field that did the rotating. To convince you of 
this I deliberately set things up so that the magnetic field is always zero at the location of the 
charge (on the rim). The experimenter may tell you she never put in any electric fields-all she 
did was switch off the magnetic field. But when she did that, an electric field automatically 
appeared, and it's this electric field that turned the wheel. 
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I must wan1 you, now, of a small fraud that tarnishes many applications of Faraday's law: 
Electromagnetic induction, of course, occurs only when the magnetic fields are changing. 
and yet we would like to use the apparatus of magnetostatics (Ampkre's law, the Biot-Savart 
law, and the rest) to calculate those magnetic fields. Technically, any result derived in this 
way is only approximately correct. But in practice the error is usually negligible unless the 
field fluctuates extremely rapidly, or you are interested in points very far from the source. 
Even the case of a wire snipped by a pair of scissors (Prob. 7.18) is static enough for 
Ampkre's law to apply. This rkgime, in which magnetostatic rules can be used to calculate 
the magnetic field on the right hand side of Faraday's law, is called quasistatic. Generall! 
speaking, it is only when we come to electromagnetic waves and radiation that we must 
worry seriously about the breakdown of magnetostatics itself. 

Example 7.9 

An infinitely long straight wire carries a slowly varying current I ( t ) .  Determine the induced 
electric field. as a function of the distance s  from the wire. l0 

- 1 -  

I 
I 
I Amperian loop 
I 

Figure 7.26 

Solution: In the quasistatic approximation, the magnetic field is ( p 0 1 / 2 n s ) ,  and it circle\ 
around the wire. Like the B-field of a solenoid, E here runs parallel to the axis. For the 
rectangular "Amperian loop" in Fig. 7.26, Faraday's law gives: 

Thus 

where K is a constant (that is to say, it is independent of S-it might still be a function oi 
t ) .  The actual value of K depends on the whole history of the function I (t)-we'll see some 
examples in Chaptcr 10. 

'O~h i s  example is artificial, and not just in the usual sense of involving infinite wires, but in a more subtle respect 
It assumes that the current is the same (at any given instant) all the way down the line. This is a safe assumption 
for the short wires in typical electric circuits, but not (in practice) for long wires (transmission lines), unless you 
supply a distributed and synchronized driving mechanism. But never mind-the problem doesn't inquire how you 
would produce such a current; it only asks whatfields would result if you did. (Variations on this problem arc. 
discussed in M. A. Heald. Am. J. Phys. 54, 1 142 (1986). and references cited therein.) 
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Equation 7.19 has the peculiar implication that E blows up as s goes to infinity. That can't 
be true . . . What's gone wrong? Answer: We have overstepped the limits of the quasistatic 
approximation. As we shall see in Chapter 9, electromagnetic "news" travels at the speed of 
light, and at large distances B depends not on the current now, but on the current as it was at 
some earlier time (indeed, a whole range of earlier times, since different points on the wire are 
different distances away). If r is the time it takes I to change substantially, then the quasistatic 
approximation should hold only for 

S <( CT, (7.20) 

and hence Eq. 7.19 simply does not apply, at extremely large S .  

Problem 7.15 A long solenoid with radius a and n turns per unit length carries a time-dependent 
current I ( t )  in the 6 direction. Find the electric field (magnitude and direction) at a distance 
s from the axis (both inside and outside the solenoid), in the quasistatic approximation. 

Problem 7.16 An alternating current I = IO cos (wt )  flows down a long straight wire, and 
returns along a coaxial conducting tube of radius a. 

(a) In what direction does the induced electric field point (radial, circumferential, Or longitu- 
dinal)? 

(b) Assuming that the field goes to zero as s + m, find E(s, t ) .  [Incidentally, this is not at 
all the way electric fields actually behave in coaxial cables, for reasons suggested in footnote 
10. See Sect. 9.5.3, or J. G. Cherveniak, Am. J. Phys., 54, 946 (1986), for a more realistic 
treatment.] 

Problem 7.17 A long solenoid of radius a ,  carrying n turns per unit length, is looped by a wire 
with resistance R ,  as shown in Fig. 7.27. 

(a) If the current in the solenoid is increasing at a constant rate ( d l l d t  = k), what current 
flows in the loop, and which way (left or right) does it pass through the resistor? 

(b) If the current I in the solenoid is constant but the solenoid is pulled out of the loop and 
reinserted in the opposite direction, what total charge passes through the resistor? 

Figure 7.27 
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Figure 7.28 

Problem 7.18 A square loop, side a. resistance R ,  lies a distance s from an infinite straight 
wire that cames current I (Fig. 7.28). Now someone cuts the wire, so that I drops to zero. In 
what direction does the induced current in the square loop flow, and what total charge passes a 
given point in the loop during the time this current flows? If you don't like the scissors model. 
turn the current down gradually: 

( l  a t )  for0 5 t l la ,  
I ( t )  = 

for t  > l l a .  

Problem 7.19 A toroidal coil has a rectangular cross section, with inner radius a, outer radius 
a + W, and height h .  It cames a total of N tightly wound turns, and the current is increasing 
at a constant rate (dZ /d t  = k). If W and h are both much less than a ,  find the electric field at a 
point z above the center of the toroid. [Hint: exploit the analogy between Faraday fields and 
magnetostatic fields, and refer to Ex. 5.6.1 

7.2.3 Inductance 

Suppose you have two loops of wire, at rest (Fig. 7.29). If you run a steady current 11 
around loop l, it produces a magnetic field B , .  Some of the field lines pass through loop 
2; let O2 b e  the flux of B1 through 2. You might have a tough time actually calczclating B , .  
but a glance at the Biot-Savart law, 

reveals one significant fact about this field: It is proportional to the current I1 . Therefore. 
so  too is the flux through loop 2: 
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4 Loop 2 

A Loop 1 d l ,  

Figure 7.29 Figure 7.30 

Thus 
4 2  = M21 11, 

where M2] is the constant of proportionality; it is known as the mutual inductance of the 
two loops. 

There is a cute formula for the mutual inductance, which you can derive by expressing 
the flux in terms of the vector potential and invoking Stokes' theorem: 

Now, according to Eq. 5.63, 

and hence 

Evidently 

This is the Neumann formula; it involves a double line integral-one integration around 
loop 1, the other around loop 2 (Fig. 7.30). It's not very useful for practical calculations, 
but it does reveal two important things about mutual inductance: 

1. M 2 ~  is a purely geometrical quantity, having to do with the sizes, shapes, and relative 
positions of the two loops. 

2. The integral in Eq. 7.22 is unchanged if we switch the roles of loops l and 2; it follows 
that 

M2,  = M I 2 .  (7.23) 
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This is an astonishing conclusion: Whatever the slzapes and positions of the loops, 
theflux through 2 when we run a current I amund I is identical to tlzeflux tlzrough l 
when we send the same current l around 2. We may as well drop the subscripts and 
call them both M. 

Example 7.10 

A short solenoid (length l and radius a,  with n l turns per unit length) lies on the axis of a veq 
long solenoid (radius b, n2 turns per unit length) as shown in Fig. 7.31. Current I flows in the 
short solenoid. What is the flux through the long solenoid? 

Figure 7.3 1 

Solution: Since the inner solenoid is short, it has a very complicated field; moreover, it put5 
a different amount of flux through each turn of the outer solenoid. It would be a misemble 
task to compute the total flux this way. However, if we exploit the equality of' the mutual 
inductances, the problem becomes very easy. Just look at the reverse situation: run the current 
I through the outer solenoid, and calculate the flux through the inner one. The field inside the 
long solenoid is constant: 

B = ~ o n 2 I  

(Eq. 5.57), so the flux through a single loop of the short solenoid is 

2 2 Bna = pon2Ina . 

There are n l l  turns in all, so the total flux through the inner solenoid is 

This is also the flux a current I in the short solenoid would put through the long one, which i h  

what we set out to find. Incidentally, the mutual inductance, in this case, is 

Suppose now that you vary the current in loop l. The flux through loop 2 will vary 
accordingly, and Faraday's law says this changing flux will induce an emf in loop 2: 

(In quoting Eq. 7.21-which was based on the Biot-Savart law-I am tacitly assuming that 
the currents change slowly enough for the configuration to be considered quasistatic.) What 



7.2. ELECTROMAGNETIC' INDUCTION 

'--r 

Figure 7.32 

a remarkable thing: Every time you change the current in loop 1, an induced current flows 
in loop 2-even though there are no wires connecting them! 

Come to think of it, a changing current not only induces an emf in any nearby loops, it 
also induces an emf in the source loop itself(Fig 7.32). Once again, the field (and therefore 
also the flux) is proportional to the current: 

@ = LI. (7.25) 

The constant of proportionality L is called the self-inductance (or simply the inductance) 
of the loop. As with M, it depends on the geometry (size and shape) of the loop. If the 
current changes, the emf induced in the loop is 

Inductance is measured in henries (H); a henry is a volt-second per ampere. 

Example 7.11 

Find the self-inductance of a toroidal coil with rectangular cross section (inner radius a ,  outer 
radius b, height h), which carries a total of N turns. 

Solution: The magnetic field inside the toroid is (Eq. 5.58) 

The flux through a single turn (Fig. 7.33) is 

The total flux is N times this, so the self-inductance (Eq. 7.25) is 
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Axis 

Figure 7.33 

Inductance (like capacitance) is an intrinsically positive quantity. Lenz's law, which is 
enforced by the minus sign in Eq. 7.26, dictates that the emf is in such a direction as to 
oppose any change in current. For this reason, it is called a back emf. Whenever you try 
to alter the current in a wire, you must fight against this back emf. Thus inductance plays 
somewhat the same role in electric circuits that mass plays in mechanical systems: The 
greater L is, the harder it is to change the current, just as the larger the mass, the harder it 
is to change an object's velocity. 

Example 7.12 

Suppose a current I is flowing around a loop when someone suddenly cuts the wire. The 
current drops "instantaneously" to zero. This generates a whopping back em€, for although 
I  may be small, d I / d t  is enormous. That's why you often draw a spark when you unplug 
an iron or toaster<lectromagnetic induction is desperately trying to keep the current going. 
even if it has to jump the gap in the circuit. 

Nothing so dramatic occurs when you plug in a toaster or iron. In this case induction 
opposes the sudden increase in current, prescribing instead a smooth and continuous buildup. 
Suppose, for instance, that a battery (which supplies a constant emf EO) is connected to a circuit 
of resistance R and inductance L (Fig. 7.34). What current flows? 

Figure 7.34 
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Figure 7.35 

Solution: The total emf in this circuit is that provided by the battery plus that resulting from 
the self-inductance. Ohm's law, then, says1 l 

d I  
E. - L- = IR.  

d t  

This is a first-order differential equation for I  as a function of time. The general solution, as 
you can easily derive for yourself, is 

where k is a constant to be determined by the initial conditions. In particular, if the circuit is 
"plugged in" at time f = 0 (so I(0) = 0), then k has the value -&()/R, and 

This function is plotted in Fig. 7.35. Had there been no inductance in the circuit, the current 
would have jumped immediately to &()/R. In practice, ever?, circuit has some self-inductance, 
and the current approaches E0/R asymptotically. The quantity t - L / R  is called the time 
constant; it tells you how long the current takes to reach a substantial fraction (roughly two- 
thirds) of its final value. 

Problem 7.20 A small loop of wire (radius a) lies a distance z above the center of a large loop 
(radius b),  as shown in Fig. 7.36. The planes of the two loops are parallel, and perpendicular 
to the common axis. 

(a) Suppose current I flows in the big loop. Find the flux through the little loop. (The little 
loop is so small that you may consider the field of the big loop to be essentially constant.) 

(b) Suppose current I  flows in the little loop. Find the flux through the big loop. (The little 
loop is so small that you may treat it as a magnetic dipole.) 

(c) Find the mutual inductances, and confirm that M12 = M21. 

I1Notice that - L ( d l j d t )  goes on the lt-ff side of the equation-it is part of the emf that (together with Eo) 
establishes the voltage across the resistor (Eq. 7.10). 
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Figure 7.36 Figure 7.37 

Problem 7.21 A square loop of wire, of side a,  lies midway between two long wires, 3a apart. 
and in the same plane. (Actually, the long wires are sides of a large rectangular loop, but the 
short ends are so far away that they can be neglected.) A clockwise current I in the square 
loop is gradually increasing: d I / d t  = k (a constant). Find the emf induced in the big loop. 
Which way will the induced current flow? 

Problem 7.22 Find the self-inductance per unit length of a long solenoid, of radius R, carrying 
n turns per unit length. 

Problem 7.23 Try to compute the self-inductance of the "hairpin" loop shown in Fig. 7.37. 
(Neglect the contribution from the ends; most of the flux comes from the long straight section.) 
You'll run into a snag that is characteristic of many self-inductance calculations. To get a 
definite answer, assume the wire has a tiny radius E ,  and ignore any flux through the wire itself. 

Problem 7.24 An alternating current Zo cos(ot) (amplitude 0.5 A, frequency 60 Hz) flows 
down a straight wire, which runs along the axis of a toroidal coil with rectangular cross section 
(inner radius 1 cm, outer radius 2 cm, height 1 cm, 1000 turns). The coil is connected to a 500 
C2 resistor. 

(a) In the quasistatic approximation, what emf is induced in the toroid? Find the current, I, ( t ) .  
in the resistor. 

(b) Calculate the back emf in the coil, due to the current I,([). What is the ratio of the 
amplitudes of this back emf and the "direct" emf in (a)? 

Problem 7.25 A capacitor C is charged up to a potential V and connected to an inductox L. 
as shown schematically in Fig. 7.38. At time t = 0 the switch S is closed. Find the current in 
the circuit as a function of time. How does your answer change if a resistor R is included in 
series with C and L? 
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Figure 7.38 

7.2.4 Energy in Magnetic Fields 

It takes a certain amount of energy to start a current flowing in a circuit. I'm not talking 
about the energy delivered to the resistors and converted into heat-that is irretrievably lost 
as far as the circuit is concerned and can be large or small, depending on how long you let 
the current run. What I am concerned with, rather, is the work you must do against the back 
emf to get the current going. This is ajixed amount, and it is recoverable: you get it back 
when the current is turned off. In the meantime it represents energy latent in the circuit; as 
we'll see in a moment, it can be regarded as energy stored in the magnetic field. 

The work done on a unit charge, against the back emf, in one trip around the circuit is 
-I (the minus sign records the fact that this is the work done by you against the emf, not 
the work done by the emf). The amount of charge per unit time passing down the wire is I. 
So the total work done per unit time is 

If we start with zero current and build i t  up to a final value I ,  the work done (integrating 
the last equation over time) is 

It does not depend on how long we take to crank up the current, only on the geometry of 
the loop (in the form of L) and the final current I. 

There is a nicer way to write W ,  which has the advantage that it is readily generalized 
to surface and volume currents. Remember that the flux Q through the loop is equal to L1 
(Eq. 7.25). On the other hand, 

where P is the perimeter of the loop and S is any surface bounded by P. Thus, 
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and therefore 

The vector sign might as well go on the I: 

In this form, the generalization to volume currents is obvious: 

But we can do even better, and express W entirely in terms of the magnetic field: 
Ampkre's law, V X B = poJ, lets us eliminate J: 

Integration by parts enables us to move the derivative from B to A; specifically, product 
rule 6 states that 

V . ( A x B ) = B . ( V  x A ) - A . ( V x B ) ,  

SO 

A - ( V  x B ) = B . B - V 9 ( A x B ) .  

Consequently, 

where S is the surface bounding the volume V. 
Now, the integration in Eq. 7.31 is to be taken over the entire volume occupied by the 

current. But any region larger than this will do just as well, for J is zero out there anywaj-. 
In Eq. 7.33 the larger the region we pick the greater is the contribution from the volume 
integral, and therefore the smaller is that of the surface integral (this makes sense: as the 
surface gets farther from the current, both A and B decrease). In particular, if we agree to 
integrate over all space, then the surface integral goes to zero, and we are left with 

-1 
~ P o  a11 space 

In view of this result, we say the energy is "stored in the magnetic field," it1 the amount 
( ~ 9 2 ~ ~ )  per unit volume. This is a nice way to think of it, though someone looking at 
Eq. 7.31 might prefer to say that the energy is stored in the current distribution, in the 
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amount ;(A J) per unit volume. The distinction is one of bookkeeping; the important 
quantity is the total energy W, and we shall not worry about where (if anywhere) the energy 
is "located." 

You might find it strange that is takes energy to set up a magnetic field-after all, 
magnetic fields themselves do no work. The point is that producing a magnetic field, where 
previously there was none, requires changing the field, and a changing B-field, according 
to Faraday, induces an electric field. The latter, of course, can do work. In the beginning 
there is no E, and at the end there is no E; but in between, while B is building up, there is an 
E ,  and it is against this that the work is done. (You see why I could not calculate the energy 
stored in a magnetostatic field back in Chapter 5.) In the light of this, it is extraordinary 
how similar the magnetic energy formulas are to their electrostatic counterparts: 

1 
W,,,= ; / ( ~ . ~ ) d - c  = - ~ P O  / d-c. 

(2.43 and 2.45) 

(7.3 1 and 7.34) 

Example 7.13 

A long coaxial cable carries current I (the current flows down the surface of the inner cylinder, 
radius a, and back along the outer cylinder, radius b) as shown in Fig. 7.39. Find the magnetic 
energy stored in a section of length l. 

Figure 7.39 

Solution: According to Ampkre's law, the field between the cylinders is 

Elsewhere, the field is zero. Thus, the energy per unit volume is 

The energy in a cylindrical shell of length I, radius S ,  and thickness ' l s ,  then, is 
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Integrating from a to b, we have: 

By the way, this suggests a very simple way to calculate the self-inductance of the cable. 
According to Eq. 7.29, the energy can also be written as L z2. Comparing the two expres- 

sions, 12 

This method of calculating self-inductance is especially useful when the current is not confined 
to a single path, but spreads over some surface or volume. In such cases different parts of the 
current may circle different amounts of flux, and it can be very tricky to get L directly from 
Eq. 7.25. 

Prpblem 7.26 Find the energy stored in a section of length l of a long solenoid (radius R. 
current I, n turns per unit length), (a) using Eq. 7.29 (you found L in Prob. 7.22); (b) using 
Eq. 7.30 (we worked out A in Ex. 5.12); (c) using Eq. 7.34; (d) using Eq. 7.33 (take as your 
volume the cylindrical tube from radius a < R out to radius b > R). 

Problem 7.27 Calculate the energy stored in the toroidal coil of Ex. 7.1 1, by applying Eq. 7.33. 
Use the answer to check Eq. 7.27. 

Problem 7.28 A long cable carries current in one direction uniformly distributed over its 
(circular) cross section. The current returns along the surface (there is a very thin insulating 
sheath separating the currents). Find the self-inductance per unit length. 

Problem 7.29 Suppose the circuit in Fig. 7.40 has been connected for a long time when 
suddenly, at time t = 0, switch S is thrown, bypassing the battery. 

Figure 7.40 

12~otice the similarity to Eq. 7.27-in a sense, the rectangular toroid is a short coaxial cable, turned on its side. 
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Figure 7.41 

(a) What is the current at any subsequent time t?  

(b) What is the total energy delivered to the resistor? 

(c) Show that this is equal to the energy originally stored in the inductor. 

Problem 7.30 Two tiny wire loops, with areas a1 and a?, are situated a displacement /L apart 
(Fig. 7.41). 

(a) Find their mutual inductance. [Hint: Treat them as magnetic dipoles, and use Eq. 5.87.1 Is 
your formula consistent with Eq. 7.23? 

(b) Suppose a current I1 is flowing in loop 1 ,  and we propose to turn on a current I2 in loop 
2. How much work must be done, against the mutually induced emf, to keep the current I I  
flowing in loop l ?  In light of this result, comment on Eq. 6.35. 

Maxwell's Equations 

7.3.1 Electrodynamics Before Maxwell 

So far, we have encountered the following laws, specifying the divergence and curl of 
electric and magnetic fields: 

l 
(i) V - E = - p  (Gauss's law), 

€0 

(ii) V - B = 0 (110 name), 

aB 
(iii) V x E = - -  (Faraday's law), 

at 

(iv) V X B = poJ (Ampkre's law). 

These equations represent the state of electromagnetic theory over a century ago, when 
Maxwell began his work. They were not written in so compact a form in those days, but 
their physical content was familiar. Now, it happens there is a fatal inconsistency in these 
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formulas. It has to do with the old rule that divergence of curl is always zero. If you appl) 
the divergence to number (iii), everything works out: 

The left side is zero because divergence of curl is zero; the right side is zero by virtue of 
equation (ii). But when you do the same thing to number (iv), you get into trouble: 

V .  (V X B) = po(V.  J); (7.35 1 

the left side must be zero, but the right side, in general, is nor. For steady currents, the 
divergence of J is zero, but evidently when we go beyond magnetostatics Ampere's law 
cannot be right. 

There's another way to see that Ampkre's law is bound to fail for nonsteady current>. 
Suppose we're in the process of charging up a capacitor (Fig. 7.42). In integral for~n. 
Ampkre's law reads 

I want to apply it to the Amperian loop shown in the diagram. How do I determine I,,,," 
Well, it's the total current passing thtough the loop, or, more precisely, the current piercinf 
a surface that has the loop for its boundary. In this case, the simplest surface lies in the 
plane of the loop--the wire punctdres this surface, so I,,, = I. Fine-but what if I draa 
instead the balloon-shaped surface in Fig. 7.42'? No current passes through this surface, and 
I conclude that I,,, = O! We never had this problem in magnetostatics because the conflict 
arises only when charge is piling up somewhere (in this case, on the capacitor plates). But 
for nonsteady currents (such as this one) "the current enclosed by a loop" is an ill-de$rred 
notion, since it depends entirely oh what surface you use. (If this seems pedantic to you- 
"obviously one should use the planar surface9'-remember that the Amperian loop could 
be some contorted shape that doesn't even lie in a plane.) 

t Capacitor 

LI~I- 
Battery 

Figure 7.42 
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Of course, we had no right to expect Ampkre's law to hold outside of magnetostatics; 
after all, we derived it from the Biot-Savart law. However, in Maxwell's time there was 
no experimental reason to doubt that Ampkre's law was of wider validity. The flaw was a 
purely theoretical one, and Maxwell fixed it by purely theoretical arguments. 

7.3.2 How Maxwell Fixed Ampkre's Law 

The problem is on the right side of Eq. 7.35, which should he zero, but isn't. Applying the 
continuity equation (5.29) and Gauss's law, the offending term can be rewritten: 

It might occur to you that if we were to combine co(aE/at) with J, in Ampkre's law, i t  
would be just right to kill off the extra divergence: 

(Maxwell himself had other reasons for wanting to add this quantity to Ampkre's law. To 
him the rescue of the continuity equation was a happy dividend rather than aprimary motive. 
But today we recognize this argument as a far more compelling one than Maxwell's, which 
was based on a now-discredited model of the ether.)I3 

Such a modification changes nothing, as far as magnetostatics is concerned: when E is 
constant, we still have V X B = poJ. In fact, Maxwell's term is hard to detect in ordinary 
electromagnetic experiments, where it must compete for recognition with J; that's why 
Faraday and the others never discovered it in the laboratory. However, it plays a crucial 
role in the propagation of electromagnetic waves, as we'll see in Chapter 9. 

Apart from curing the defect in Ampkre's law, Maxwell's term has a certain aesthetic 
appeal: Just as a changing magnetic field induces an electric field (Faraday's law), so 

I A changing electric field induces a magnetic field. I 
Of course, theoretical convenience and aesthetic consistency are only suggestive-there 
might, after all, be other ways to doctor up Ampkre's law. The real confirmation of 
Maxwell's theory came in 1888 with Hertz's experiments on electromagnetic waves. 

Maxwell called his extra term the displacement current: 

It's a misleading name, since co(aE/at) has nothing to do with current, except that it adds 
to J in Ampkre's law. Let's see now how the displacement current resolves the paradox of 
the charging capacitor (Fig. 7.42). If the capacitor plates are very close together (I didn't 

I 3 ~ o r  the history of this subject, see A. M. Bork. Am. J. P h y .  31, 854 (1963). 
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draw them that way, but the calculation is simpler if you assume this), then the electric field 
between them is 

where Q is the charge on the plate and A is its area. Thus, between the plates 

Now, Eq. 7.36 reads, in integral form, 

j' B - dl= pole, + ~ o ~ o  ( da. 

If we  choose theJlat surface, then E = 0 and Ienc = I .  If, on the other hand, we use the 
balloon-shaped surface, then I,,, = 0, but / ( a ~ / a t )  da = I/ro. So we  get the same 
answer for either surface, though in the first case it comes from the genuine current and in 
the second from the displacement current. 

Problem 7.31 A fat wire, radius a, carries a constant current I, uniformly distributed over its 
cross section. A narrow gap in the wire, of width W << a, forms a parallel-plate capacitor. a> 
shown in Fig. 7.43. Find the magnetic field in the gap, at a distance s < a from the axis. 

Figure 7.43 

Problem 7.32 The preceding problem was an artificial model for the charging capacitor, de- 
signed to avoid complications associated with the current spreading out over the surface of 
the plates. For a more realistic model, imagine thin wires that connect to the centers of the 
plates (Fig. 7.44a). Again, the current I is constant, the radius of the capacitor is a, and thr' 
separation of the plates is W << a. Assume that the current flows out over the plates in such a 
way that the surface charge is uniform, at any given time, and is zero at t = 0. 

(a) Find the electric field between the plates, as a function oft.  



7.3. MAX WELL'S EQUATIONS 

Figure 7.44 

(b) Find the displacement current through a circle of radius s in the plane midway between the 
plates. Using this circle as your "Amperian loop," and the flat surface that spans it, find the 
magnetic field at a distance s from the axis. 

(C) Repeat part (b), but this time use the cylindrical surface in Fig. 7.44b, which extends to 
the left through the plate and terminates outside the capacitor. Notice that the displacement 
current through this surface is zero, and there are two contributions to 

Problem 7.33 Refer to Prob. 7.16, to which the correct answer was 

(a) Find the displacement current density J d .  

(b) Integrate it to get the total displacement current, 

(C) Compare Id and I. (What's their ratio?) If the outer cylinder were, say, 2 mm in diameter, 
how high would the frequency have to be. for Id to be 1 % of I ?  [This problem is designed to 
indicate why Faraday never discovered displaccmcnt currents, and why it is ordinarily safe to 
ignore them unless the frequency is extremely high.] 

1 4 ~ h i s  problem raises an interesting quasi-philosophical question: If you measure B in the laboratory, have you 
detected the effects of displacement current (as (b) would suggest), or merely confirmed the effects of ordinary 
currents (as (c) implies)? See D. F. Bartlett, Am. J. Phys. 58, 1 168 (1990). 
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7.3.3 Maxwell's Equations 

In the last section we put the finishing touches on Maxwell's equations: 

1 (ii) V . B = O  (no name), 

aE  
(iv) V X B = , L L ~  J + ~ O E O -  (Ampkre's law with 

a t  
Maxwell's correction). 

Together with the force law, 
F = q(E  + v X B), 

they summarize the entire theoretical content of classical e le~trod~narnics '~ (save for some 
special properties of matter, which we encountered in Chapters 4 and 6). Even the continuit! 
equation, 

which is the mathematical expression of conservation of charge, can be derived from 
Maxwell's equations by applying the divergence to number (iv). 

I have written Maxwell's equations in the traditional way, which emphasizes that the! 
specify the divergence and curl of E and B. In this form they reinforce the notion that electric 
fields can be produced either by charges (p) or  by changing magnetic fields (aBlat), and 
magnetic fields can be produced either by currents (J) or  by changing electric fields (aE/at 1. 

Actually, this is somewhat misleading, because when you come right down to it aB/ar and 
aEla t  are themselves due to charges and currents. I think it is logically preferable to write 

1 a s  
(i) V . E =  - p ,  (iii) V X E + - = 0, 

€0 at 

(ii) V - B = 0, 
aE  

(iv) V X B - po~o- = poJ, 
at I 

with the fields (E and B) on the left and the sources ( p  and J) on the right. This notation 
emphasizes that all electromagnetic fields are ultimately attributable to charges and currents. 
Maxwell's equations tell you how charges produce fields; reciprocally, the force law tells 
you howfields affect charges. 

I 5 ~ i k e  any differential equations, Maxwell's must be supplemented by suitable boundary conditions. Becauw 
these are typically "obvious" from the context (e.g. E and B go to zero at large distances from a localized charge 
distribution), it is easy to forget that they play an essential role. 
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Problem 7.34 Suppose 

(the theta function is defined in Prob. 1.45b). Show that these fields satisfy all of Maxwell's 
equations, and deteimine p and J. Describe the physical situation that gives rise to these fields. 

7.3.4 Magnetic Charge 

There is a pleasing symmetry about Maxwell's equations; it is particularly striking in free 
space, where p and J vanish: 

If you replace E by B and B by -pocoE, the first pair of equations turns into the second, 
and vice versa. This symmetry'6 between E and B is spoiled, though, by the charge term 
in Gauss's law and the current term in Ampkre's law. You can't help wondering why the 
corresponding quantities are "missing" from V  . B = 0 and V  X E = -aB/at. What if we 
had 

l 
(i) V  . E = -pe, (iii) V X E = - ~ J , , - ~ ,  I 

€0 
(7.43) 

aE 
(ii) V  . B = pop,. (iv) V  X B = p 0 J e  + POGO -. 

at 

Then p, would represent the density of magnetic "charge," and p, the density of electric 
charge; J, would be the current of maghetic charge, and J, the current of electric charge. 
Both charges would be conserved: 

a p,, a pe V .  J - - and VeJ ,  = --. m - at a t  

The former follows by application of the divergence to (iii), the latter by taking the diver- 
gence of (iv). 

In a sense, Maxwell's equations beg for magnetic charge to exist-it would fit in so 
nicely. And yet, in spite of a diligent search, no one has ever found any.I7 As far as we 
know, p,, is zero everywhere, and so is J,,,; B is not on equal footing with E: there exist 

" ~ o n ' t  be distracted by the pesky constants po and to: these are present Only because the S1 system measures 
E and B in different units, and would not occur, for instance, ifi the Gaussian system. 

1 7 ~ o r  an extensive bibliography, see A. S. Goldhaber and W. P. Trower, Am, J. Phys. 58,429 (1990). 
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stationary sources for E (electric charges) but none for B. (This is reflected in the fact that 
magnetic multipole expansions have no monopole term, and magnetic dipoles consist of 
current loops, not separated north and south "poles.") Apparently God just didn't make 
any magnetic charge. (In the quantum theory of electrodynamics, by the way, it's a more 
than merely aesthetic shame that magnetic charge does not seem to exist: Dirac showed 
that the existence of magnetic charge would explain why electric charge is quantized. See 
Prob. 8.12.) 

Problem 7.35 Assuming that "Coulomb's law" for magnetic charges (q,,) reads 

work out the force law for a monopolc g, moving with velocity v through electric and magnetic 
fields E and B. [For interesting commentary. see W. Rindler. Am. J.  Phj~s. 57,993 (1989).] 

Problem 7.36 Suppose a magnetic monopole q ,  passes through a resistanceless loop of wire 
with self-inductance L. What current is induced in the loop? [This is one of the methods used 
to search for monopoles in the laboratory; see B. Cabrera, Phys. Rev. Letr. 48, 1378 (1982).] 

7.3.5 Maxwell's Equations in Matter 

Maxwell's equations in the form 7.39 are complete and correct as they stand. However. 
when you are working with materials that are subject to electric and magnetic polarization 
there is a more convenient way to write them. For inside polarized matter there will be 
accumulations of "bound" charge and current over which you exert no direct control. It 
would be nice to reformulate Maxwell's equations in such a way as to make explicit reference 
only to those sources we control directly: the "free" charges and currents. 

We have already learned, from the static case, that an electric polarization P produces 
a bound charge density 

pb = -V ' P  (7.46) 

(Eq. 4.12). Likewise, a magnetic polarization (or "magnetization") M results in a bound 
current 

J b = V x M  (7.47) 

(Eq. 6.13). There's just one new feature to consider in the ~zonstatic case: Any change 
in the electric polarization involves a flow of (bound) charge (call it JP), which must be 
included in the total current. For suppose we examine a tiny chunk of polarized material 
(Fig. 7.45.) The polarization introduces a charge density ab = P at one end and -ab at the 
other (Eq. 4.1 1). If P now increases a bit, the charge on each end increases accordingly. 
giving a net current 
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Figure 7.45 

The current densitv, therefore. is 

This polarization current has nothing whatever to do with the bound current Jb. The 
latter is associated with magnetization of the material and involves the spin and orbital 
motion of electrons; JP, by contrast, is the result of the linear motion of charge when the 
electric polarization changes. If P points to the right and is increasing, then each plus 
charge moves a bit to the right and each minus charge to the left; the cumulative effect is the 
polarization current JP.  In this connection, we ought to check that Eq. 7.48 is consistent 
with the continuity equation: 

Yes: The continuity equation is satisfied; in fact, JP is essential to account for the con- 
servation of bound charge. (Incidentally, a changing magnetization does not lead to any 
analogous accumulation of charge or current. The bound current Jb = V X M varies in 
response to changes in M, to be sure, but that's about it.) 

In view of all this, the total charge density can be separated into two parts: 

and the current density into three parts: 

Gauss's law can now be written as 

where D, as in the static case, is given by 
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Meanwhile, Ampkre's law (with Maxwell's term) becomes 

where. as before. 

Faraday's law and V . B = 0 are not affected by our separation of charge and current into 
free and bound parts, since they do not involve p or J. 

In terms of free charges and currents, then, Maxwell's equations read 

(ii) V . B = 0, (iv) V x H = J f  +--. 
aD a t  l 

Some people regard these as the "true" Maxwell's equations, but please understand that they 
are in no way more "general" than 7.39; they simply reflect a convenient division of charge 
and current into free and nonfree parts. And they have the disadvantage of hybrid notation, 
since they contain both E and D, both B and H. They must be supplemented, therefore, by 
appropriate constitutive relations, giving D and H in terms of E and B. These depend on 
the nature of the material; for linear media 

P = E O X ~ E ,  and M = x ~ H ,  (7.56) 

SO 
1 

D = EE,  and H  = -B, (7.57) 
P 

where E = cO(1 + xe) and P po(l + zm).  Incidentally, you'll remember that D is called 
the electric "displacement"; that's why the second term in the AmpkelMaxwell equation 
(iv) is called the displacement current, generalizing Eq. 7.37: 

Problem 7.37 Sea water at frequency v = 4 x log Hz has permittivity t = 8 1 to, permeability 
p = PO, and resistivity p = 0.23 S2.m. What is the ratio of conduction current to displacement 
current? [Hint: consider a parallel-plate capacitor immersed in sea water and driven by a 
voltage V0 cos ( 2 n  vt ) .l 
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7.3.6 Boundary Conditions 

In general, the fields E, B, D, and H will be discontinuous at a boundary between two 
different media, or at a surface that carries charge density a or current density K. The 
explicit form of these discontinuitics can be deduced from Maxwell's equations (7.5.9, in 
their integral form 

over any closed surface S. 

(ii) h B . d a = O  

(iii) I for any surface S 
bounded by the 

(iv) 6 H . dl = Ifen, + closed loop F .  

Applying (i) to a tiny, wafer-thin Gaussian pillbox extending just slightly into the material 
on either side of the boundary, we obtain (Fig. 7.46): 

(The positive direction for a isfrom 2 toward l .  The edge of the wafer contributes nothing 
in the limit as the thickness goes to zero, nor does any volume change density.) Thus, the 
component of D that is perpendicular to the interface is discontinuous in the amount 

Figure 7.46 
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Figure 7.47 

Identical reasoning, applied to equation (ii), yields 

Turning to (iii), a very thin Amperian loop straddling the surface (Fig. 7.47) gives 

But in the limit as the width of the loop goes to zero, the flux vanishes. (1 have already 
dropped the contribution of the two ends to $E  . dl, on the same grounds.) Therefore, 

That is, the components of E parallel to the interface are continuous across the boundary. 
By the same token, (iv) implies 

where If,, is the free current passing through the Amperian loop. No volume current 
density will contribute (in the limit of infinitesimal width) but a suqace current can. In fact. 
if n is a unit vector perpendicular to the interface (pointing from 2 toward l), so that (n X I) 
is normal to the Amperian loop, then 

and hence 

So the parallel components of H are discontinuous by an amount proportional to the free 
surface current density. 
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Equations 7.59-62 are the general boundary conditions for electrodynamics. In the case 
of linear media, they can be  expressed in terms of E and B alone: 

I (i) t l  E: - q E 2  = of, (iii) E, II - E! = 0, 

I 1 ll (ii) B: - B2 = 0, (iv) - B ~  - -B! = K~ x 1. 
P l P2 

In particular, if there is no free charge or free current at the interface, then 

As we shall see in Chapter 9, these equations are the basis for the theory of reflection and 
refraction. 

More Problems on Chapter 7 

Problem 7.38 Two very large metal plates are held a distance d apart, one at potential zero, the 
other at potential V. (Fig. 7.48). A metal sphere of radius a (a  << d )  is sliced in two. and one 
hemisphere placed on the grounded plate, so that its potential is likewise zero. If the region 
between the plates is filled with weakly conducting material of uniform conductivity a,  what 
current flows to the hemisphere? [Answer: ( 3 n a 2 0 / d )  VO. Hint: study Ex. 3.8.1 

I Problem 7.39 Two long, straight copper pipes, each of radius a, are held a distance 2d apart 
(see Fig. 7.49). One is at potential Vo, the other at -Vo. The space surrounding the pipes is 
filled with weakly conducting material of conductivity o. Find the current, per unit length, 
which flows from one pipe to the other. [Hint: refer to Prob. 3.1 l.] 

Problem 7.40 A common textbook problem asks you to calculate the resistance of a cone- 
shaped object, of resistivity p,  with length L, radius a at one end, and radius b at the other 
(Fig. 7.50). The two cnds are flat, and are taken to be equipotentials. The suggested method is 
to slice it into circular disks of width d z ,  find the resistance of each disk, and integrate to get 
the total. 

v = o  

Figure 7.48 Figure 7.49 
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(C) The induced current on the surface of the superconductor (the xy plane) can be determined 
from the boundary condition on the tangential component of B (Eq. 5.74): B = po(K X 2). 
Using the field you get from the image configuration, show that 

where r is the distance from the origin. 

1 Problem 7.44 If a magnetic dipole levitating above an infinite superconducting plane (Prob. 
7.43) is free to rotate, what orientation will it adopt, and how high above the surface will it 
float? 

Problem 7.45 A perfectly conducting spherical shell of radius a rotates about the z axis with 
angular velocity w, in auniform magnetic field B = B. i. Calculate the emf developed between 
the "north pole" and the equator. [Answer: ~ ~ w a ~ ]  

! Problem 7.46 Refer to Prob. 7.1 1 (and use the result of Prob. 5.40, if it helps): 

(a) Does the square ring fall faster in the orientation shown (Fig. 7.19), or when rotated 45' 
about an axis coming out of the page? Find the ratio of the two terminal velocities. If you 
dropped the loop, which orientation would it assume in falling? [Answer: (a - 2 y / l ) 2 .  
where 1 is the length of a side, and y is the height of the center above the edge of the magnetic 
field, in the rotated configuration.] 

(b) How long does is take a circular ring to cross the bottom of the magnetic field, at its 
(changing) terminal velocity? 

Problem 7.47 

(a) Use the analogy between Faraday's law and Ampkre's law, together with the Biot-Savart 
law. to show that 

I a /B(r';) x i  
E(r ,  t )  = -- - dt', 

4n at 
for Faraday-induced electric fields. 

(b) Referring to Prob. 5.50a, show that 

where A is the vector potential. Check this result by taking the curl of both sides. 

(c) A spherical shell of radius R carries a uniform surface charge a. It spins about a fixed 
axis at an angular velocity w ( t )  that changes slowly with time. Find the electric field inside 
and outside the sphere. [Hint: There are two contributions here: the Coulomb field due to the 
charge, and the Faraday field due to the changing B. Refer to Ex. 5.1 1, and use Eq. 7.66.1 

Problem 7.48 Electrons undergoing cyclotron motion can be speeded up by increasing the 
magnetic field; the accompanying electric field will impart tangential acceleration. This is 
the principle of the betatron. One would like to keep the radius of the orbit constant durins 
the process. Show that this can be achieved by designing a magnet such that the average 
field over the area of the orbit is twice the field at the circumference (Fig. 7.52). Assume the 
electrons start Gum rest in zero field, and Lhat the apparatus is symlrietric about the center o i  
the orbit. (Assume also that the electron velocity remains well below the speed of light, so 
that nonrelativistic mechanics applies.) [Hint: differentiate Eq. 5.3 with respect to time, and 
use F = mu = qE.]  
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Figure 7.5 1 

A superconductor is a perfect conductor with the additional property that the (constant) B 
inside is in fact zero. (This "flux exclusion" is known as the Meissner effect.'') 

(C) Show that the current in a superconductor is confined to the surface. 

(d) Superconductivjty is lost above a certain critical temperature (T,), which varies from one 
material to another. Suppose you had a sphere (radius a )  above its critical temperature, and 
you held it in a uniform magnetic field Boi while cooling it below Tc . Find the induced surface 
current density K, a5 a function of the polar angle 8 .  

Problem 7.43 A familiar demonstration of superconductivity (Prob. 7.42) is the levitation of 
a magnet over a piece of superconducting material. This phenomenon can be analyzed using 
the method of images. Treat the magnet as a perfect dipole m, a height z above the origin 
(and constrained to point in the z direction), and pretend that the superconductor occupies 
the entire half-space below the xy plane. Because of the Meissner effect, B = 0 for z 5 0, 
and since B is divergenceless, the normal ( z )  component is continuous, so B, = 0 just above 
the surface. This boundary condition is met by the image configuration in which an identical 
dipole ib placed at -z ,  as a stand-in for the superconductor; the two arrangements therefore 
produce the same magnetic field in the region z > 0. 

(a) Which way should the image dipole point (+z or - z )?  

(b) Find the force on the magnet due to the induced currents in the superconductor (which is 
to say, the force due to the image dipole). Set it equal to Mg (where M is the mass of the 
magnet) to determine the height h at which the magnet will "float." [Hint: refer to Prob. 6.3.1 

1 8 ~ h e  Meissner effect is sometimes referred to as 'perfect diamagnetism," in the sense that the field inside is not 
merely reduced, but canceled entirely. However. the surface currents responsible for this areflee, not bound, so 
the actual mechanism is quite different. 
I9w. M. Saslow, Am. J. Phys. 59, 16 (1991). 
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Figure 7.50 

(a) Calculate R this way. 

(b) Explain why this method is fundamentally flawed. [See J. D. Romano and R. H. Price, Am. 
J. Phys. 64, 1 150 (1996).] 

(C) Suppose the ends are, instead, spherical surfaces, centered at the apex of the cone. Calculate 
the resistance in that case. (Let L be the distance between the centers of the circular perimeter, 

of the end caps.) [Answer: (p/2xab)(b - a)2/(  J L ~  + (b - a)2 - L)] 

! Problem 7.41 A rare case in which the electrostatic field E for a circuit can actually be 
calculated is the following [M. A. Heald, Am. J. Phys. 52,522 (1984)l: Imagine an infinitel! 
long cylindrical sheet, of uniform resistivity and radius a .  A slot (corresponding to the batter) ) 

is maintained at i V0/2, at @ = h ,  and a steady current flows over the surface, as indicated 
in Fig. 7.5 1. According to Ohm's law, then, 

(a) Use separation of variables in cylindrical coordinates to determine V(s, @) inside and 
outside the cylinder. [Answer: (Vo/x) tan-' [(S sin @)/(a + S  cos @)l, (S < a) ;  (V0/=) tan-' 
[(a sin @)/(S + u cos@)], (S > a)] 

(bj Find the surface charge density on the cylinder. [Answer: (co VO/xa) tan(@/2)] 

Problem 7.42 In a perfect conductor, the conductivity is infinite, so E = 0 (Eq. 7.3), and an! 
net charge resides on the surface (just as it does for an imperfect conductor, in electrostatics). 

(a) Show that the magnetic field is constant (aB/at = O), inside a perfect conductor. 

(b) Show that the magnetic flux through a perfectly conducting loop is constant. 
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- - 

b 
Solenoid 

11 

Figure 7.52 Figure 7.53 

Problem 7.49 An atomic electron (charge g )  circles about the nucleus (charge Q) in an orbit 
of radius I . ;  the centripetal acceleration is provided, of course, by the Coulomb attraction of 
opposite charges Now a small magnetic field d B  is slowly turned on, perpendicular to the 
plane of the orbit. Show that the increase in kinetic energy, d T ,  imparted by the induced 
electric field, is just right to sustain circular motion at the same radius r. (That's why, in my 
discussion of diamagnetism, I assumed the radius is fixed. See Sect. 6.1.3 and the references 
cited there.) 

Problem 7.50 The current in a long solenoid is increasing linearly with time, so that the flux 
is proportional to t :  @ = cut. Two voltmeters are connected to diametrically opposite points 
(A and B), together with resistors (R1 and R2), as shown in Fig. 7.53. What is the reading 
on each voltmeter? Assume that these are ideal voltmeters that draw negligible current (they 

b have huge internal resistance), and that a voltmeter registers S, E . dl between the terminals 
and through the meter. [Answer: V1 = cuR1/(R1 + R2); V2 = -uR2/(R1 + R 2 ) .  Notice 
that V1 # V2, even though they are connected to the same points! See R. H. Romer, Am. J. 
Phys. 50, 1089 (1982j.l 

Problem 7.51 In the discussion of motional emf (Sect. 7.1.3) 1 assumed that the wire loop 
(Fig. 7.10) has a resistance R; the current generated is then I = vBh/R. But what if the wire 
is made out of perfectly conducting material, so that R is zero? In that case the current is 
limited only by the back emf associated with the self-inductance L of the loop (which would 
ordinarily be negligible in comparison with I R). Show that in this regime the loop (mass m )  
executes simple harmonic motion, and find its frequency.20 [Answer: o = ~ h / a ]  

Problem 7.52 

(a) Use the Neumann formula (Eq. 7.22) to cdculate the mutual inductance of the configuration 
in Fig. 7.36, assuming a is very small (a << b, a << z) .  Compare your answer to Prob. 7.20. 

(b) For the general case (not assuming a is small) show that 

P P P P 

2 0 ~ o r  a collection of related problems, see W. M. Saslow, Am. J. Phys. 55, 986 (1987), and R. H. Romer, Eur: 
J. Phys. 11, 103 (1990). 
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Primary 
(NI turns) 

where 

L I - 

Secondary 
(N2 tums) 

U 

Figure 7.54 

Problem 7.53 Two coils are wrapped around a cylindrical form in such a way that the same 
flux passes through every turn of both coils. (In practice this is achieved by inserting an iron 
core through the cylinder; this has the effect of concentrating the flux.) The "primary" coil 
has N I  tums and the secondary has N2 (Fig. 7.54). If the current I in the primary is changing. 
show that the emf in the secondary is given by 

where El is the (back) emf of the primary. [This js a primitive transformer-a device for 
raising or lowering the emf of an alternating current source. By choosing the appropriate 
number of turns, any desired secondary emf can be obtained. If you think this violates the 
conservation of energy, check out Prob. 7.54.1 

Problem 7.54 A transformer (Prob. 7.53) takes an input AC voltage of amplitude Vl, and 
delivers an output voltage of amplit~~de V2,  which is determined by the turns ratio (V?/ V1 = 
N2/N1). If NZ > N I  the output voltage is grkater than the input voltage. Why doesn't this 
violate conservation of energy? Answer: Power is the product of voltage and current; evidentl) 
if the voltage goes trp, the current must come down. The purpose of this problem is to see 
exactly how this works out, in a simplified model. 

(a) In an ideal transformer the same flux passes through all turns of the primary and of the 
secondary. Show that in this case M' = L1 L?, where M is the mutual inductance of the coils. 
and L1, L2 are their individual self-inductances. 

(b) Suppose the primary is driven with AC voltage Vi, = V1 cos ( a t ) ,  and the secondary is 
connected to a resistor, R. Show that the two currents satisfy the relations 



7.3. MAXWELL'S EQUATIONS 339 

(c) Using the result in (a), solve these equations for Il ( t )  and 12(t). (Assume I1 has no DC 
component.) 

(d) Show that the output voltage (Vout = IZR) divided by the input voltage ( v n )  is equal to 
the turns ratio: VOut/ Vin = N 2 /  NI. 

(e) Calculate the input power (Pin = VinIl) and the output power (Pout = VoUtI2), and show 
that their averages over a full cycle are equal. 

Problem 7.55 Suppose J(r) is constant in time but p (r, t ) is not--conditions that might prevail, 
for instance, during the charging of a capacitor. 

(a) Show that the charge density at any particular point is a linear function of time: 

where p(r,  0) is the time derivative of p at t = 0. 

This is not an electrostatic or magnetostatic configuration;* l nevertheless-rather surprisingly- 
both Coulomb's law (in the form of Eq. 2.8) and the Biot-Savart law (Eq. 5.39) hold, as you 
can confirm by showing that they satisfy Maxwell's equations. In particular: 

(b) Show that 

B(r) = - d t '  

obeys Ampere's law with Maxwell 'S displacement current term. 

Problem 7.56 The magnetic field of an infinite straight wire carrying a steady current I can be 
obtained from the displacement current term in the Amp&re/Maxwell law, as follows: Picture 
the current as consisting of a uniform line charge h moving along the z axis at speed v (so that 
I = hu), with a tiny gap of length E ,  which reaches the origin at time t = 0. In the next instant 
(up to t = 6/21) there is no real current passing through a circular Amperian loop in the xy 
plane, but there is a displacement current, due to the "missing" charge in the gap. 

(a) Use Coulomb's law to calculate the z component of the electric field, for points in the xy 
plane a distance s from the origin, due to a segment of wire with uniform density -h extending 
fromzl = u t  - c  to22 = vt. 

(b) Determine the flux of this electric field through a circle of radius a in the xy plane. 

(c) Find the displacement current through this circle. Show that Id is equal to I ,  in the limit 
as the gap width ( E )  goes to zero. [For a slightly different approach to the same problem, see 
W. K. Terry, Am. J. Phys. 50, 742 (1982).] 

Problem 7.57 The magnetic field outside a long straight wire carrying a steady current I is (of 
course) 

21 Some authors would regard this as magnetostatic, since B is independent of r .  For them. the Biot-Savart law is 
a general rule of magnetostatics, but V . J = 0 and V X B = poJ apply only under the additional assumption that 
p is constant. In such a formulation Maxwell's displacement term can (in this very special case) be derived from 
the Biot-Savart law, by the method of part (b). See D. F Bartlett. Am. J. Phys. 58, 1168 (1990); D. J. Griffiths 
and M. A. Heald, Am. J. Phy.7. 59, 1 l 1 (1991 ). 
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Figure 7.55 

The electricjeld inside the wire is uniform: 

where p is the resistivity and ( I  is the radius (see Exs. 7.1 and 7.3). Question: What is the 
electric field outside the wire? This is a famous problem, first analyzed by Sommerfeld, and 
known in its most recent incarnation as "Merzbacher's puzzle."22 The answer depends on how 
you complete the circuit. Suppose the current returns along a perfectly conducting grounded 
coaxial cylinder of radius b (Fig. 7.55). In the region (1  < s < b, the potential V(s, z) satisfies 
Laplace's equation, with the boundary conditions 

Unfortunately, this does not suffice to determine the answer-we still need to specify boundarq 
conditions at the two ends. In the literature it is customary to sweep this ambiguity under the 
rug by simply asserting (in so many words) that V ( s ,  z) is proportional to z: V(s, z )  = zf (S).  

On this assumption: 

(a) Determine V (S, z) . 
(b) Find E(s, z ) .  

(C) Calculate the surface charge density a(z)  on the wire. 

[Answer: V = ( -~zp/nu~)[ ln(s /b) /  ln(n/b) J This is apeculiur result, since Es and a ( z )  are 
nor independent of z-as one would certainly expect for a truly injnite wire.] 

Problem 7.58 A certain transmission line is constructed from two thin metal "ribbons," of 
width U], a very small distance h << W apart. The current travels down one strip and back 
along the other. In each case it spreads out uniformly over the surface of the ribbon. 

(a) Find the capacitance per unit length, C. 

(b) Find the inductance per unit length, L. 

(c) What is the product LC, numerically? [L and C will, of course, vary from one kind of 
transmission line to another, but their product is a universal constant-check, for example, the 
cable in Ex. 7.13-provided the space between the conductors is a vacuum. In the theory of 
transmission lines, this product is related to the speed with which a pulse propagates down the 
line: v = 1/m.] 

2 2 ~ .  Sommerfeld, Electrodpamics, p. 125 (New York: Acade~nic Press, 1952); E. Merzbacher, Am. 3. P h ~ s .  
48, 104 (1980); further references in M. A. Heald, Am. J. Phys. 52,522 (1984). 



(d) If the strips are insulated from one another by a nonconducting material of permittivity 
c and permeablility p, what then is the product CC? What is the propagation speed? [Hint: 
see Ex. 3.6; by what factor does L change when an inductor is immersed in linear material of 
permeability p?] 

Problem 7.59 Prove Alfven's theorem: In a perfectly conducting fluid (say, a gas of free 
electrons), the magnetic flux through any closed loop moving with the fluid is constant in time. 
(The magnetic field lines are, as it were, "frozen" into the fluid.) 

(a) Use Ohm's law, in the form of Eq. 7.2, together with Faraday's law, to prove that if a = cc 
and J is finite, then 

aB 
- =. V X (V X B). 
at 

(b) Let S be the surface bounded by the loop (P) at time t ,  and S' a surface bounded by the 
loop in its new position (P') at time t + d t  (see Fig. 7.56). The change in flux is 

Show that 

B(t + d t )  . da + B(t + d t )  . da = 

(where R is the "ribbon" joining P and P') ,  and hence that 

(for infinitesimal dt ). Use the method of Sect. 7.1.3 to rewrite the second integral as 

and invoke Stokes' theorem to conclude that 

- - V X (V X B)) . da. 
at 

Together with the result in (a), this proves the theorem. 

Figure 7.56 
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Problem 7.60 

(aj Show that Maxwell's equations with magnetic charge (Eq. 7.43) are invariant under the 
duality transformation 

E' = E c o s a f c B s i n a ,  
cBf = cBcosa - Esina ,  
cq; = cq, cos a + q,, sin a, 

= q,, cos a - cqe sin a, I 
where c = I/- and a is an arbitrary rotation angle in "Em-space." Charge and current 
densities transform in the same way as q, and q,. [This means, in particular, that if you know 
the fields produced by a configuration of electric charge, you can immediately (using a = 90') 
write down the fields produced by the corresponding arrangement of magnetic charge.] 

(b) Show that the force law (Prob. 7.35) 

is also invariant under the duality transformation. 



Intermission 

All of our cards are now on the table, and in a sense my job is done. In the first 
seven chapters we assembled electrodynamics piece by piece, and now, with Maxwell's 
equations in their final form, the theory is complete. There are no more laws to be learned, 
no further generalizations to be considered, and (with perhaps one exception) no lurking 
inconsistencies to be resolved. If yours is a one-semester course, this would be a reasonable 
place to stop. 

But in another sense we have just arrived at the startingpoint. We are at last in possession 
of a full deck, and we know the rules of the game-it's time to deal. This is the fun part, in 
which one comes to appreciate the extraordinary power and richness of electrodynamics. 
In a full-year course there should be plenty of time to cover the remaining chapters, and 
perhaps to supplement them with aunit on plasma physics, say, or AC circuit theory, or even 
a little General Relativity. But if you have room only for one topic, I'd recommend Chapter 
9, on Electromagnetic Waves (you'll probably want to skim Chapter 8 as preparation). 
This is the segue to Optics, and is historically the inost important application of Maxwell's 
theory. 





Chapter 8 

Conservation Laws 

8.1 Charge and Energy 

8.1.1 The Continuity Equation 

In this chapter we study conservation of energy, momentum, and angular momentum, in 
electrodynamics. But I want to begin by reviewing the conservation of charge, because it is 
the paradigm for all conservation laws. What precisely does conservation of charge tell us? 
That the total charge jn the universe is constant? Well, sure-that's global conservation of 
charge; but local conservation of charge is a much stronger statement: If the total charge 
in some volume changes, then exactly that amount of charge must have passed in or out 
through the surface. The tiger can't simply rematerialize outside the cage; if it got from 
inside to outside it must have found a hole in the fence. 

Formally, the charge in a volume V is 

and the current flowing out through the boundary S is SS J . da, so local conservation of 
charge says 

Using Eq. 8.1 to rewrite the left side, and invoking the divergence theorem on the right, we 
have 

and since this is true for any volume, it follows that 
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This is, of course, the continuity equation-the precise mathematical statement of local 
conservation of charge. As I indicated earlier, it can be derived from Maxwell's equations- 
conservation of charge is not an independent assumption, but a consequence of the laws of 
electrodynamics. 

The purpose of this chapter is to construct the corresponding equations [or conservation 
of energy and conservation of momentum. In the process (and perhaps more important) we 
will learn how to express the energy density and the momentum density (the analogs to p). 
as well as the energy "current7' and the momentum "current" (analogous to J). 

8.1.2 Poynting's Theorem 

In Chapter 2, we found that the work necessary to assemble a static charge distribution 
(against the Coulomb repulsion of like charges) is (Eq. 2.45) 

where E is the resulting electric field. Likewise, the work required to get currents going 
(against the back emf) is (Eq. 7.34) 

where B is the resulting magnetic field. This suggests that the total energy stored in elec- 
tromagnetic fields is 

I propose to derive Eq. 8.5 more generally, now, in the context of the energy conservation 
law for electrodynamics. 

Suppose we have some charge and current configuration which, at time t ,  produces 
fields R arid B. In the next instant, d t ,  the charges move around a bit. Question: How much 
work, d W ,  is done by the electromagnetic forces acting on these charges in the interval dr? 
According to the Lorentz force law, the work done on a charge q is 

Now, q = pdr and pv = J, so the rate at which work is done on all the charges in a volume 

Evidently E . J is the work done per unit time, per unit volume-which is to say, the 
power delivered per unit volume. We can express this quantity in terms of the fields alone. 
using the Ampkre-Maxwell law to eliminate J: 
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From product rule 6, 

lnvoking Faraday's law (V X E = -aB/at) ,  it follows that 

Meanwhile, 

Putting this into Eq. 8.6, and applying the divergence theorem to the second term, we 
have 

dW 
- 

1 1 
- - -L / I ( q ~ '  + -B2)  d r  - - f (E x B) - da,  
d t dt  v 2  PO PO S 

(8.9) 

where S is the surface bounding V. This is Poynting's theorem; it is the "work-energy 
theorem" of electrodynamics. The first integral on the right is the total energy stored in 
the fields, Uem (Eq. 8.5). The second term evidently represents the rate at which energy 
is carried out of V, across its boundary surface, by the electromagnetic fields. Poynting's 
theorem says, then, that the work done on the charges by the electromagnetic force is equal 
to the decrease in energy stored in the jeld, less the energy that flowed out through the 
s u ~ a c e .  

The energy per unit time, per unit area, transported by the fields is called the Poynting 
vector: 

S E -(E X B).  1 ;O 1 
Specifically, S - da is the energy per unit time crossing the infinitesimal surface da-the 
energyflux, if you like (so S is the energy flux density).' We will see many applications 
of the Poynting vector in Chapters 9 and I l ,  but for the moment I am mainly interested in 
using it to express Poynting's theorem more compactly: 

'1f you're very fastidious, you'll notice a small gap in the logic here: We know from Eq. 8.9 that $ S  . da 
is the total power passing through a closed surface, but this does not prove that f S . da is the power passing 
through any open surface (there could be an extra term that integrates to zero over all closed surfaces). This is, 
however, the obvious and natural interpretation; as always, the precise location of energy is not really determined 
in electrodynamics (see Sect. 2.4.4). 
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Of course, the work W done on the charges will increase their mechanical energy 
(kinetic, potential, or whatever). If we let umech denote the mechanical energy density, so 
that 

and use ue, for the energy density of the fields, 

then 

and hence 

This is the differential version of Poynting's theorem. Compare it with the continuity 
equation, expressing conservation of charge (Eq. 8.4): 

the charge density is replaced by the energy density (mechanical plus electromagnetic), and 
the current density is replaced by the Poynting vector. The latter represents the flow of 
energy in exactly the same way that J describes the flow of charge.2 

Example 8.1 

When current flows down a wire, work is done, which shows up as Joule heating of the wire 
(Eq. 7.7). Though there are certainly easier ways to do it, the energy per unit time delivered to 
the wire can be calculated using the Poynting vector. Assuming it's uniform, the electric field 
parallel to the wire is 

where V is the potential difference between the ends and L is the length of the wire (Fig. 8.1). 
The magnetic field is "circumferential"; at the surface (radius a) it has the value 

Accordingly, the magnitude of the Poynting vector is 

2 ~ n  the presence of linear media, one is typically interested only in the work done on free charges and currents 
(see Sect. 4.4.3). In that case the appropriate energy density is (E. D + B .  H), and the Poynting vector beconles 
(E X H). See J. D. Jackson, Classical Electrodynamics, 3rd. ed., Sect. 6.7 (New York: John Wiley, 1999). 
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Figure 8.1 

and it points radially inward. The energy per unit time passing in through the surface of the 
wire is therefore 

which is exactly what we concluded, on much more direct grounds, in Sect. 7.1 . l .  

ProbIem 8.1 Calculate the power (energy per unit time) transported down the cables of Ex. 7.13 
and Prob. 7.58, assuming the two conductors are held at potential difference V, and carry current 
I (down one and back up the other). 

Problem 8.2 Consider the charging capacitor in Prob. 7.3 1. 

(a) Find the electric and magnetic fields in the gap. as functions of the distance s from the axis 
and the time t .  (Assume the charge is zero at t = 0.) 

(b) Find the energy density U,, and the Poynting vector S in the gap. Note especially the 
direction of S. Check that Eq. 8.14 is satisfied. 

(c) Determine the total energy in the gap, as a function of time. Calculate the total power 
flowing into the gap, by integrating the Poynting vector over the appropriate surface. Check 
that the power input is equal to the rate of increase of energy in the gap (Eq. 8.9-in this case 
W = 0, because there is no charge in the gap). [If you're worried about the fringing fields, do 
it for a volume of radius b a well inside the gap.] 

Momentum 

8.2.1 Newton's Third Law in Electrodynamics 

Imagine a point charge q traveling in along the X axis at a constant speed v. Because it is 
moving, its electric field is not given by Coulomb's law; nevertheless, E still points radially 
outward from the instantaneous position of the charge (Fig. 8.2a), as we'll see in Chapter 10. 
Since, moreover, a moving point charge does not constitute a steady current, its magnetic 
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Figure 8.2 

field is not given by the Biot-Savart law. Nevertheless, it's a fact that B still circles around 
the axis in a manner suggested by the right-hand rule (Fig. 8.2b); again, the proof will come 
in Chapter 10. 

Now suppose this charge encounters an identical one, proceeding in at the same speed 
along the y axis. Of course, the electromagnetic force between them would tend to drive 
them off the axes, but let's assume that they're mounted on tracks, or something, so they're 
forced to maintain the same direction and the same speed (Fig. 8.3). The electric force 
between them is repulsive, but how about the magnetic force? Well. the magnetic field of 
ql points into the page (at the position of q2), so the magnetic force on q 2  is toward the 
right, whereas the magnetic field of q2 is out of the page (at the position of ql), and the 
magnetic force on ql is upward. The electromagnetic force of ql  on q2 is equal hut rjot 
opposite to the force of q2 on q ~ ,  in violation of Newton's third law. In electrostatics and 
magnetostatics the third law holds, but in electrodynamics it does not. 

Figure 8.3 
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Well, that's an interesting curiosity, but then, how often does one actually use the third 
law, in practice'? Answer: A11 the time! For the proof of conservation of momentum rests 
on the cancellation of internal forces, which follows from the third law. When you tamper 
with the third law, you are placing conservation of momentum in jeopardy, and there is no 
principle in physics more sacred than that. 

Momentum conservation is rescued i n  electrodynamics by the realization that thejields 
themselves carry momentum. This is not so surprising when you consider that we have 
already attributed energy to the fields. In the case of the two point charges in Fig. 8.3, 
whatever momentum is lost to the particles is gained by the fields. Only when the field 
momentum is added to the mechanical momentum of the charges is momentum conservation 
restored. You'll see how this works out quantitatively in the following sections. 

8.2.2 Maxwell's Stress Tensor 

Let's calculate the total electromagnetic force on the charges in volume V: 

Theforce per unit volume is evidently 

f = p E + J x B .  

As before, I propose to write this in terms of fields alone, eliminating p and J by using 
Maxwell's equations (i) and (iv): 

Now 

and Faraday's law says 

Thus 

I a 
f = eO[(V - E)E - E  X (V X E)] - -[B X (V X B)] - co-(E X B). (8.17) 

PO a t  
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Just to make things look more symmetrical, let's throw in a term (V . B)B; since V B = 0, 
this costs us nothing. Meanwhile, product rule 4 says 

v ( E 2 )  = 2 (E .  V)E + 2E x (V x E), 

1 
E X (V X E) = - v ( E ~ )  - ( E .  V)E, 

2 
and the same goes for B. Therefore, 

1 
f = eO[(V . E)E + ( E .  V)E] + -[(V . B)B + (B V)B] 

PO 

Ugly! But it can be simplified by introducing the Maxwell stress tensor, 

The indices i and j refer to the coordinates X, y, and z ,  so the stress tensor has a total of nine 
components (Txx, Tyy, Txz, Tyx,  and so on). The Kronecker delta, aij, is 1 if the indices 
are the same (6,, = 6,, = 6,, = l )  and zero otherwise (axy = Srz = 8,, = 0). Thus 

and so on. Because it carries two indices, where a vector has only one, z j  is sometimes 
written with a double arrow: fi'. One can form the dot product of tit with a vector a: 

the resulting object, which has one remaining index, is itself a vector. In particular, the 
divergence of fi' has as its jth component 

Thus the force per unit volume (Eq. 8.1 8) can be written in the much simpler form 

as 
f = v .  tit - € O ~ O - - ,  

at  

where S is the Poynting vector (Eq. 8.10). 
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The total force on the charges in V (Eq. 8.15) is evidently 

F ' = ~ * - d n - c ~ ~ o -  3 S d r .  

(I used the divergence theorem to convert the first term to a surface integral.) In the static 
case (or, more generally, whenever 1 S d r  is independent of time), the second term drops 
out, and the electromagnetic force on the charge configuration can be expressed entirely 
in terms of the stress tensor at the boundary. Physically, fi' is the force per unit area 
(or stress) acting on the surface. More precisely, Tij  is the force (per unit area) in the ith 
direction acting on an element of surface oriented in the jth direction-"diagonal" elements 
(Txxr  Tyy , TzZ)  represent pressures, and "off-diagonal" elements (T,, , T,, , etc.) are shears. 

Example 8.2 

Determine the net force on the "northern" hemisphere of a uniformly charged solid sphere of 
radius R and charge Q (the same as Prob. 2.43, only this time we'll use the Maxwell stress 
tensor and Eq. 8.22). 

'1 Bowl 

J 
X 

Disk 

Figure 8.4 

Solution: The boundary surface consists of two parts-a hemispherical "bowl" at radius R, 
and a circular disk at 6' = 7c/2 (Fig. 8.4). For the bowl, 

and 

In Cartesian components, 
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The net force is obviously in the z-direction, so it suffices to calculate 

(!? da), = T-, do, + TZv duy + Tzz dui = f? (L)~  sin8 cos 8 d 8  d# 
2 4 n t o R  

The force on the "bowl" is therefore 

Meanwhile, for the equatorial disk, 

and (since we are now inside the sphere) 

Thus 

and hence 
Q 2 

(y .  da), = 3 (---) r 3  d r  d # .  
2 4nrOR3 

The force on the disk is therefore 

Combining Eqs. 8.24 and 8.26, I conclude that the net force on the northern hemisphere is 

Incidentally, in applyink Eq. 8.22, ally volume that encloses all of the charge in question (and 
no other charge) will do the job. For example, in the present case we could use the whole region 
z > 0. In that case the boundary surface cdnsisls of the entire .ry plane (plus a hemisphere at 
r = oo, but E = 0 out there anyway, so it contributes nothing). In place of the "bowl," we 
now have the outer portion of the plane (r > R). Here 

(Eq. 8.23 with 8 = n / 2  and R + r), and da is given by Eq. 8.25, so 

l (f da), = 3 (a) - d r  d#,  
2 4 n t 0  r3 

and the contribution from the plane for r > R is 

the same as for the bowl (Eq. 8.24). 
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I hope you didn't get too bogged down in the details of Ex. 8.2. If so, take a moment to 
appreciate what happened. We were calculating the force on a soIid object, but instead of 
doing a volilme integral, as you might expect, Eq. 8.22 allowed us to set it up as a su$ace 
integral; somehow the stress tensor sniffs out what is going on inside. 

! Problem 8.3 Calculate the force of magnetic attraction between the northern and southern 
hemispheres of a uniformly charged spinning spherical shell. with radius R, angular velocity 
W ,  and surface charge density a .  [This is the same as Prob. 5.42, but this time use the Maxwell 
stress tensor and Eq. 8.22.1 

Problem 8.4 

(a) Consider two equal point charges g, separated by a distance 2a. Construct the plane 
equidistant from the two charges. By integrating Maxwell's stress tensor over this plane, 
determine the force of one charge on the other. 

(b) Do the same for charges that are opposite in sign. 

8.2.3 Conservation of Momentum 

According to Newton's second law, the force on an object is equal to the rate of change of 
its momentum: 

d ~ r n e c h  F = - .  
dt 

Equation 8.22 can therefore be written in the form 

where pmech is the total (mechanical) momentum of the particles contained in the volume V. 
This expression is similar in structure to Poynting's theorem (Eq. 8.9), and it invites an anal- 
ogous interpretation: The first integral represents momentum stored in the electrornugnetic 
fields themselves: 

while the second integral is the rnomentunz per unit time flowing in through the sufuce. 
Equation 8.28 is the general statement of consewation ofnzonzenturn in electrodynamics: 
Any increase in the total momentum (mechanical plus electromagnetic) is equal to the 
momentum brought in by the fields. (If V is u L L  of space, then no momentum flows in or 
Out, and Pmech + Pem is constant.) 

As in the case of conservation of charge and conservation of energy, conservation of 
momentum can be given a differential formulation. Let ,pmech be the density of mechanical 
momentum, and g,, the density of momentum in the fields: 



CHAPTER 8. CONSERVATION LAWS 

Then Eq. 8.28, in differential form, says 

Evidently -T is the momentum flux density, playing the role of J (current density) in the 
continuity equation, or S (energy flux density) in Poynting's theorem. Specifically, - E j  is 
the momentum in the i direction crossing a surface oriented in the j direction, per unit area, 
per unit time. Notice that the Poynting vector has appeared in two quite different roles: S 
itself is the energy per unit area, per unit time, transported by the electromagnetic fields, 
while potOS is the momentum per unit volume stored in those fields. Similarly, ti' plays 
a dual role: itself is the electromagnetic stress (force per unit area) acting on a surface. 
and t i '  describes the flow of momentum (the momentum current density) transported by 
the fields. 

Example 8.3 

A Iong coaxiaI cable, of length 1 ,  consists of an inner conductor (radius a)  and an outer conductor 
(radius h). It is connected to a battery at one end and a resistor at the other (Fig. 8.5). The inner 
conductor carries a uniform charge per unit length h,  and a steady current I to the right; the 
outer conductor has the opposite charge and current. What is the electromagnetic momentum 
stored in the fields? 

Solution: The fields are 
1 h ,  E = - -  PO I - s, B = - - &  

2rrc0 s 2n s 

The Poynting vector is therefore 

Evidently energy is flowing down the line. from the battery to the resistor. In fact, the power 
transported is 

Figure 8.5 
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as it should be. But that's not what we're interested in right now. The momentum in the fields 
is 

This is an astonishing result. The cable is not moving, and the fields are static, and yet we are 
asked to believe that there is momentum in the system. If something tells you this cannot be the 
whole story, you have sound intuitions. In fact, if the center of mass of a localized system is at 
rest, its total momentum must be zero. In this case it turns out that there is "hidden" mechanical 
momentum associated with the flow of current, and this exactly cancels the momentum in the 
fields. But locating the hidden momentum is not easy, and it is actually a relativistic effect, 
so I shall save it for Chapter 12 (Ex. 12.12). 

Suppose now that we turn up the resistance, so the current decreases. The changing magnetic 
field will induce an electric field (Eq. 7.19): 

This field exerts a force on &h: 

The total momentum imparted to the cable, as the current drops from I to 0, is therefore 

which is precisely the momentum originally stored in the fields. (The cable will not recoil, 
however, because an equal and opposite impulse is delivered by the simultaneous disappearance 
of the hidden momentum.) 

Problem 8.5 Consider an infinite parallel-plate capacitor, with the lower plate (at z = -d/2) 
carrying the charge density -a, and the upper plate (at z = +d/2) carrying the charge density 
+a. 

(a) Determine all nine elements of the stress tensor, in the region between the plates. Display 
your answer as a 3 X 3 matrix: 

(b) Use Eq. 8.22 to determine the force per unit area on the top plate. Compare Eq. 2.5 1 .  

(c) What is the momentunl per unit area, per unit time, crossing the xy plane (or any other 
plane parallel to that one, between the plates)? 

(d) At the plates this momentum is absorbed, and the plates recoil (unless there is some 
nonelectrical force holding them in position). Find the recoil force per unit area on the top 
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Figure 8.6 

plate, and compare your answer to (b). [Note: This is not an additional force, but rather an 
alternative way of calculating the same force-in (b) we got it from the force law, and in (d} 
we did it by conservation of momentum.] 

Problem 8.6 A charged parallel-plate capacitor (with uniform electric field E = E f) is placed 
in a uniform magnetic field B = B i, as shown in Fig. 8.6.3 

(a) Find the electromagnetic momentum in the space between the plates. 

(b) Now a resistive wire is connected between the plates, along the z axis, so that the capacitor 
slowly discharges. The current through the wire will experience a magnetic force; what is the 
totaI impulse delivered to the system, during the discharge? 

(c) Instead of turning off the electric field (as in (b)), suppose we slowly reduce the magnetic 
field. This will induce a Faraday electric field, which in turn exerts a force on the plates. Shofi- 
that the total impulse is (again) equal to the momentum originally stored in the fields. 

8.2.4 Angular Momentum 

By now the electromagnetic fields (which started out as mediators of forccs between charges) 
have taken on a life of their own. They carry energy (Eq. 8.13) 

and rnomentum (Eq. 8.30) 
,pem = pocoS = eo(E X B), 

and, for that matter, angular momentum: 

3 ~ e e  F. S. Johnson, B. L. Cragin, and R. R. Hodges, Am. J. Phys. 62, 33 (1994). 
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Evenperfectly staticJields can harbor momentum and angular momentum, as long as E X B 
is nonzero, and it is only when these field contributions are included that the classical 

conservation laws hold. 

Example 8.4 

Imagine a very long solenoid with radius R ,  n turns per unit length, and current I. Coaxial 
with the solenoid are two long cylindrical shells of length l-one, inside the solenoid at radius 
a ,  cames a charge +Q, uniformly distributed over its surface; the other, outside the solenoid 
at radius h, cames charge -Q (see Fig. 8.7: 1 is supposed to be much greater than b). When 
the current in the solenoid is gradually reduced, the cylinders begin to rotate, as we found in 
Ex. 7.8. Question: Where does the angular momentum come from?4 

Solution: It was initially stored in the fields. Before the current was switched off, there was 
an electric field, 

l < 
Figure 8.7 

4 ~ h i s  is a variation on the "Feynman disk paradox" (R. P. Feynman, R. B. Leighton, and M. Sands, The Feynrnan 
 lecture.^, v01 2, pp. 17-5 (Reading, Mass.: Addison-Wesley, 1964) suggested by F. L. Boos, Jr. (Am. J.  Phys. 52, 
756 (1984)). A similar model was proposed earlier by R. H. Rorner (Am. J. Phys. 34, 772 (1966)). For further 
references, see T.-C. E. Ma, Am. J. Phys. 54, 949 (1986). 
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in the region between the cylinders, and a magnetic field, 

B = ponl  i ( s  < R ) ,  

inside the solenoid. The momentum density (Eq. 8.33) was therefore 

in the region a < s < R. The angular momentum density was 

which is constant, as it turns out; to get the total angular momentum in the fields, we simply 
multiply by the volume, n ( R 2  - a2) l :  

When the current is turned off, the changing magnetic field induces a circumferential electric 
field, given by Faraday's law: 

Thus the torque on the outer cylinder is 

1 ,dZh 
Nb = r X (-QE) = - p o n Q R  -z. 

2 d t 

and it picks up an angular momentum 

Similarly, the torque on the inner cylinder is 

and its angular momentum increase is 

So it all works out: L,, = L, + Lb. The angular momentum lost by the fields is precisely 
equal to the angular momentum gained by the cylinders, and the total angular momentum 
(fields plus matter) is conserved. 
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Incidentally, the angular case is in some respects cleaner than the linear analog (Ex. 8.3), 
because there is no "hidden" angular momentum to compensate for the angular momentum in 
the fields, and the cylinders really do rotate when the magnetic field is turned off. If a localized 
system is not moving, its total linear momentum /us to be zero,5 but there is no corresponding 
theorem for angular momentum, and in Prob. 8.12 you will see a beautiful example in which 
nothing at all is moving-not even currents-and yet the angular momentuni is nonzero. 

Problem 8.7 In EX. 8.4, suppose that instead of turning off the magnetic field (by reducing 
I) we turn off the electric field, by connecting a weakly6 conducting radial spoke between 
the cylinders. (We'll have to cut a slot in the solenoid, so the cylinders can still rotate freely.) 
From the magnetic force on the current in the spoke, determine the total angular momentum 
delivered to the cylinders, as they discharge (they are now rigidly connected, so they rotate 
together). Compare the initial angular momentum stored in the fields (Eq. 8.35). (Notice that 
the vnechtznism by which angular momentum is transferred from the fields to the cylinders is 
entirely different in the two cases: in Ex. 8.4 it was Faraday's law, but here it is the Lorentz 
force law.) 

! Problem Imagine an iron sphere of radius R that c h e s  a charge Q and a uniform 
magnetization M = M?. The sphere is initially at rest. 

(a) Compute the angular momentum stored in the electromagnetic fields. 

(b) Suppose the sphere is gradually (and uniformly) demagnetized (perhaps by heating it up 
past the Curie point). Use Faraday's law to determine the induced electric field, find the torque 
this field exerts on the sphere, and calculate the total angular momentum imparted to the sphere 
in the course of the demagnetization. 

(C) Suppose instead of demagrtetizing the sphere we discharge it, by connecting a grounding 
wire to the north pole. Assume the current flows over the surface in such a way that the 
charge density remains uniform. Use the Lorentz force law to determine the torque on the 
sphere, and calculate the total angular momentum imparted to the sphere in the course of the 
discharge. (The magnetic field is discontinuous at the surface . . .does this matter?) [Aizswer; 
~ W O M Q R ~ I  

- 

More Problems on Chapter 8 

Problem A very long solendid of radius a ,  with n turns per unit length, carries a current 
l , .  Coaxial with the solenoid, at radius h >> a,  is a circular ring of wire, with resistance R.  
When the current ;n the solenoid is (gradually) decreased, a current I ,  is induced in the ring. 

5 ~ .  Coleman and J. H. van Vleck, Phys. Rev. 171, 1370 (1968). 
6 ~ n  Ex. 8.4 we turned the current off slowly, to keep things quasistatic; here we reduce the electric field slowly 

to keep the displacement current negligible. 
 his version of the Feynman disk paradox was proposed by N. L. Sharma (Am. J. Phys. 56, 420 (1988)); 

similar models were analyzed by E. M. Pugh and G. E. Pugh, Am. J.  Phys. 35, 153 (1967) and by R. H. Romer, 
Am. J. Plzys. 35, 445 (1967). 

8 ~ o r  extensive discussion, see M. A. Heald, Am. J. Phys. 56,540 (1988). 



CHAPTER 8. CONSERVATION LAWS 

(a) Calculate I r ,  in terms of d Is/dt. 

(b) The power (I,? R) delivered to the ring must have come from the solenoid. Confirm this 
by calculating the Poynting vector just outside the solenoid (the electric field is due to the 
changing flux in the solenoid; the magnetic field is due to the current in the ring). Integrate 
over the entire surface of the solenoid, and check that you recover the correct total power. 

Problem 8 . 1 0 ~  A sphere of radius R canies a uniform polarization P and a uniform magneti- 
zation M (not necessarily in the same direction). Find the electromagnetic momentum of this 
configuration. [Answer: (4/9)np0 (M X P)] 

Problem 8.11" Picture the electron as a uniformly charged spherical shell, with charge e and 
radius R, spinning at angular velocity w .  

(a) Calculate the total energy contained in the electromagnetic fields. 

(b) Calculate the total angular momentum contained in the fields. 

(C) According to the Einstein formula (E = mc2), the energy in the fields should contribute 
to the pass of the electron. Lorentz and others speculated that the entire mass of the electron 

2 might be accounted for in this way: Uem = lnec . Suppose, moreover, that the electron's 
spin angular momentum is entirely attributable to the electromagnetic fields: L,, = h / 2 .  On 
these t y ~  assumptions, determine the radius and angular velocity of the electron. What is their 
product, wR? Does this classical model make sense? 

! l1  Problem 8.12 Suppose you had an electric charge g, and a magnetic monopole g,. The 
field of the electric charge is 

of course, and the field of the magnetic monopole is 

Find the total angular momentum stored in the fields, if the two charges are separated by a 
distance d .  [Answer: (p0/4n)qeq, .]l2 

Problem 8.13 Paul DeYoung, of Hope College, points out that because the cylinders in Ex. 8.4 
are left rotating (at angular velocities W, and wb, say), there is actually a residual magnetic 
field, and hence angular momentum in the fields, even after the current in the solenoid has been 
extinguished. If the cylinders are heavy, this correction will be negligible, but it is interesting 
to do the problem without making that assumption. 

9 ~ ~ r  an interesting discussion and references, see R. H. Romer, Am. J. Phys. 63,777 ( 1995). 
"see J. Higbie, Anz. J. Phys. 56, 378 (1988). 
l l ~ h i s  system is known as Thornson's dipole. See I. Adawi, Am. J. Phys. 44,762 (1976) and Phys. Rev. D31. 

3301 (1985), and K. R. Brownstein. Am. J. Phys. 57,420 (1989), for discussion and references. 
12~ote  that this result is independent of the separation distance d (!); it points from q, toward q,. In quantum 

mechanics angular momentum comes in half-integer multiples of h,  so this result suggests that if magnetic 
monopoles exist. electric and magnetic charge must be quantized: pgqeq,,/4n = ~zh /2 ,  for IZ = 1, 2, 3, . . . , an 
idea first proposed by Dirac in 193 1. If even one monopole exists somewhere in the universe, this would "explain" 
why electric charge comes in discrete units. 
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(a) Calculate (in terms of wa and wb) the final angular momentum in the fields. 

(b) As the cylinders begin to rotate, their changing magnetic field induces an extra azimuthal 
electric field, which, in turn, will make an additional contribution to the torques. Find the re- 
sulting extra angular momentum, and compare it to your result in (a). [Answer: p g  e2ub(h2  - 
a2)/4nl] 

Problem 8.14'~ A point charge q is a distance n > R from the axis of an infinite solenoid 
(radius R,  n turns per unit length, current I). Find the linear momentum and the angular 
momentum in the fields. (Put q on the X axis, with the solenoid along z ;  treat the solenoid as 
a nonconductor, so you don't need to worry about induced charges on its surface.) [Answer: 

Pem = ( p o q n 1 ~ ~ / 2 a )  9; Lem = 01 

Problem 8 . 1 5 ' ~  (a) Carry through the argument in Sect. 8.1.2, starting with Eq. 8.6, but using 
Jf i n  place of J. Show that the Poynting vector becomes 

and the rate of change of the energy density in the fields is 

For linear media. show that 
1 

ue, = - ( E . D + B . H ) .  
2 

(b) In the same spirit, reproduce the argument in Sect. 8.2.2, starting with Eq. 8.15, with pf 
and Jf in place of p and J. Don't bother to construct the Maxwell stress tensor, but do show 
that the momentum density is 

p = D x B .  

13See F. S. Johnson, B. L. Cragin, and R. R. Hodges, Am. J. Phys. 62, 33 (1994), for a discussion of this and 
related problems. 

1 4 ~ h i s  problem was suggested by David Thouless of the University of Washington. Refer to Sect. 4.4.3 for the 
meaning of "energy" in this context. 



Chapter 9 

Electromagnetic Waves 

9.1 Waves in One Dimension 

9.1.1 The Wave Equation 

What is a "wave?'I don't think I can give you an entirely satisfactory answer-the concept 
is intrinsically somewhat vague-but here's a start: A wave is a disturbunce of U continrlous 
medium that propagates with aJixed shape at constant velocity. Immediately I must add 
qualifiers: In the presence of absorption, the wave will diminish in size as it moves; if 
the medium is dispersive different frequencies travel at different speeds; in two or three 
dimensions, as the wave spreads out its amplitude will decrease; and of course standing 
waves don't propagate at all. But these are refinements; let's start with the simple case: 
fixed shape, constant speed (Fig. 9.1). 

How would you represent such an object mathematically? In the figure I have drawn 
the wave at two different times, once at t = 0, and again at some later time t-each point on 
the wave fonn simply shifts to the right by an amourit vt ,  where v is the velocity. Maybe the 
wave is generated by shaking one end of a taut string; f ( z ,  t )  represents the displacement 
of the string at the point z ,  at time t .  Given the initial shape of the string, g ( z )  = f ( z ,  0),  

Figure 9.1 
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what is the subsequent form, f (z, t)? Evidently, the displacement at point z ,  at the later 
time t, is the same as the displacement a distance vt to the left (i.e. at z - vt), back at time 
t =0:  

That statement captures (mathematically) the essence of wave motion. It tells us that the 
function f ( z ,  t ) ,  which rnight have depended on z and t in any old way, in fact depends on 
them only in the very special combination z - vt: when that is true, the function f (z, t)  
represents a wave of fixed shape traveling in the z direction at speed v. For example, if A 
and b are constants (with the appropriate units), 

A 
f i  (z, t) = Ae- b(z-ut)2, f2(z, t )  = A sin[b(z - vt)], f3(z. t) = 

h(z - 11t)~ + 1 

all represent waves (with different shapes, of course), but 

f4(i, t)  = Ae-b(bz2+ut) , and fs(z, t )  = A sin(bz) c ~ s ( b v t ) ~ ,  

do not. 
Why does a stretched string support wave motion? Actually, it follows from Newton's 

second law. Imagine a very long string under tension T. If it is displaced from equilibrium, 
the net transverse force on the segment between z and z + Az (Fig. 9.2) is 

where 8' is the angle the string makes with the z-direction at point z + Az, and 0 is the 
corresponding angle at point z. Provided that the distortion of the string is not too great, 
these angles are small (the figure is exaggerated, obviously), and we can replace the sine 
by the tangent: 

A F 2 T (tan 8' - tan 0) = T 

Figure 9.2 
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If the mass per unit length is p, Newton's second law says 

and therefort: 
a 2 f  - -- P a 2 f  

p 

az2 ~ a t z  

Evidently, small disturbances on the string satisfy 

where v (which, as we'll soon see, represents the speed of propagation) is 

Equation 9.2 is known as the (classical) wave equation, because it admits as solutions 
all functions of the form 

.f (z, t)  = g(z - ut), (9.4) 

(that is, all functions that depend on the variables z and t in the special combination u - 
,- - ut), and we have just learned that such functions represent waves propagating in the z 
direction with speed v. For Eq. 9.4 means 

and 

Note that g(u) can be nlzy (differentiable) function whatever: If the disturbance propagates 
without changing its shape, then it satisfies the wave equation. 

But functions of the form g ( z  - ut) are not the only solutions. The wave equation 
involves the square of U ,  so we can generate another class of solutions by simply changing 
the sign of the velocity: 

f (z, t) = h(z + vt). (9.5) 

This, of course, represents a wave propagating in the negative z direction, and it is certainly 
reasonable (on physical grounds) that such solutions would be allowed. What is perhaps 
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surprising is that the most general solution to the wave equation is the sum of a wave to the 
right and a wave to the left: 

f ( z ,  t )  = g(z  - vt) + h(z + vt). (9.6) 

(Notice that the wave equation is linear: The sum of any two solutions is itself a solution.) 
E v e v  solution to the wave equation can be expressed in this form. 

Like the simple harmonic oscillator equation. the wave equation is ubiquitous in physics. 
If something is vibrating, the oscillator equation is almost certainly responsible (at least, 
for small amplitudes), and if samething is waving (whether the context is mechanics or 
acoustics, optics or oceanography), the wave equation (perhaps with some decoration) is 
bound to be involved. 

Problem 9.1 By explicit differentiation, check that the functions , f I ,  f2 ,  and ,f3 in the text 
satisfy the wave equation. Show that ,f4 and ffi do not. 

Problem 9.2 Show that the standing wave f ( 2 ,  t )  = A sin(kz) cos(kvt) satisfies the wave 
equation, and express it as the sum of a wave traveling to the left and a wave traveling to the 
right (Eq. 9.6). 

9.1.2 Sinusoidal Waves 

(i) Terminology. Of all possible wave forms, the sinusoidal one 

f (z. t )  = A cos[k(z - vt) -k 61 (9.7) 

is (for good reason) the most familiar. Figure 9.3 shows this function at time t = 0. A is 
the amplitude of the wave (it is positive, and represents the maximum displacement from 
equilibrium). The argument of the cosine is called the phase, and 6 is the phase constant 
(obviously, you can add any integer multiple of 2n to 8 without changing f (2, t ) :  ordinarily, 
one uses a value in the range 0 5 6 < 2x1. Notice that at z -- v t  - 6/k, the phase is zero; 
let's call this the "central maximum." If 6 = 0, the central maximum passes the origin 
at time t = 0; more generally, 6 / k  is the distance by which the central maximum (and 

Central 
maximum 

\ 

Figure 9.3 
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therefore the entire wave) is "delayed." Finally, k is the wave number; it is related to the 
wavelength h by the equation 

2 n  

for when z advances by 2n/ k7  the cosine executes one complete cycle. 
As time passes, the entire wave train proceeds to the right, at speed v .  At any fixed 

point z ,  the string vibrates up and down, undergoing one full cycle in a period 

The frequency v (number of oscillations per unit time) is 

For our purposes, a more convenient unit is the angular frequency w,  so-called because 
in the analogous case of uniform circular motion it represents the number of radians swept 
out per unit time: 

w = 2 n v  = kv. (9.11) 

Ordinarily, it's nicer to write sinusoidal waves (Eq. 9.7) in terms of w, rather than v :  

f (z, t )  = A cos(kz - wt + 6 ) .  (9.12) 

A sinusoidal oscillation of wave number k and (angular) frequency w traveling to the 
left would be written 

f (z, t )  = Acos (kz + wt -6 ) .  (9.13) 

The sign of the phase constant is chosen for consistency with our previous convention that 
6 / k  shall represent the distance by which the wave is "delayed" (since the wave is now 
moving to the lej?, a delay means a shift to the right). At t = 0, the wave looks like Fig. 9.4. 
Because the cosine is an even function, we can just as well write Eq. 9.13 thus: 

Comparison with Eq. 9.12 reveals that, in effect, we could simply switch the sign of k 
to produce a wave with the same amplitude, phase constant, frequency, and wavelength, 
traveling in the opposite direction. 

f (2, 0) Central 

Figure 9.4 
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(ii) Complex notation. In view of Euler's formula, 

the sinusoidal wave (Eq. 9.12) can be written 

where Re(6) denotes the real part of the complex number 6. This invites us to introduce 
the complex wave function 

- i (k z -or )  f ( z ,  t )  = Ae , (9.17) 

with the complex amplitude A - ~ e ' '  absorbing the phase constant. The actual wave 
function is the real part of fl: 

f (2, t )  = ~ e [ f " ( z ,  t)]. (9.18) 

If you know f, it is a simple matter to find f ;  the advantage of the complex notation is that 
exponentials are much easier to manipulate than sines and cosines. 

Example 9.1 

Suppose you want to combine two sinusoidal waves: 

with 6 = fi + f2. You simply add the corresponding complex wave functions, and then take 
the real part. In particular, if they have the same frequency and wave number, 

f3 = A l e i ( k i - o r )  + A2ei(kz-wt)  - - A3e i (kz -wt )  

where 
2 3  = + A 2 ,  or ~ 3 e ~ ~ ~  = ~ ~ e ~ ~ '  + ~ ~ e ~ ~ ~ ;  (9.19) 

evidently, you just add the (complex) amplitudes. The combined wave still has the same 
frequency and wavelength, 

f 3 ( z ,  t )  = A3 COS ( k z  - wf + S 3 ) ,  

and you can easily figure out A3 and S3 from Eq. 9.19 (Prob. 9.3). Try doing this without using 
the complex notation-you will find yourself loolung up trig identities and sloggng through 
nasty algebra. 

(iii) Linear combinations of sinusoidal waves. Although the sinusoidal function 9.17 is a 
very special wave form, the fact is that any wave can be expressed as a linear combination 
of sinusoidal ones: 

03 

i ( z ,  t) = S__ A ( k ) e i ( k z - w t )  d k  (9.20) 

Here w is a function of k (Eq. 9.1 l), and I have allowed k to run through negative values in 
order to include waves going in both directions.' 

 h his does not mean that h and o are negative-wavelength and frequency are always positive. If we allow 
negative wave numbers, then Eqs. 9.8 and 9.11 should really be written h = 2rrllkl and o = Iklv. 
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The formula for A(k), in terms of the initial conditions f ( z ,  0) and f(z ,  O), can be 
obtained from the theory of Fourier transforms (see Prob. 9.32), but the details are not 
relevant to my purpose here. The poiat is that any wave can be written as a linear combination 
of sinusoidal waves, and therefore if you know how sinusoidal waves behave, you know 
in principle how any wave behaves. So from now on we shall confine our attention to 
sinusoidal waves. 

Problem 9.3 Use Eq. 9.19 to determine A3 and S j  in terms of A I ,  A2, S1, and S2. 

Problem 9.4 Obtain Eq. 9.20 directly from the wave equation, by separation of variables. 

9.1.3 Boundary Conditions: Reflection and Transmission 

So far I have assumed the string is infinitely long-or at any rate long enough that we 
don't need to worry about what happens to a wave when it reaches the end. As a matter of 
fact, what happens depends a lot on how the string is attached at the end-that is, on the 
specific boundary conditions to which the wave is subject. Suppose, for instance, that the 
string is simply tied onto a second string. The tension T is the same for both, but the mass 
per unit length F presumably is not, and hence the wave velocities v l  and v2 are different 
(remember, v = m). Let's say, for convenience, that the knot occurs at z = 0. The 
incident wave 

t) = Alei(klz-ut) , ( ~ ( 0 ) ~  (9.21) 

coming in from the left, gives rise to a reflected wave 

traveling back along string l (hence the minus sign in front of kl), in addition to a trans- 
mitted wave 

fT(z, t )  =  AT^ i(X.22-wt) , ( z > O ) ,  (9.23) 

which continues on to the right in string 2. 
The incident wave fi (z, t)  is a sinusoidal oscillation that extends (in principle) all the 

way back to z = -m, and has been doing so for all of history. The same goes for f R  
and f~ (except that the latter, of course, extends to z = +m). All parts of the system are 
oscillatirzg a t  the same frequency w (a frequency determined by the person at z = -m, 
who is shalung the string in the first place). Since the wave velocitjes are different in the 
two strings, however, the wavelengths and wave numbers are also different: 

Of course, this situation is pretty artificial-what's more, with incldent and reflected waves 
of infinite extent traveling on the same piece of string, it's going to be hard for a spectator to 
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tell them apart. You might therefore prefer to consider an incident wave of finite extent- 
say, the pulse shown in Fig. 9.5. You can work out the details for yourself, if you like 
(Prob. 9.5). The trouble with this approach is that no finite pulse is truly sinusoidal. The 
waves in Fig. 9.5 may look like sine functions, but they're not: they're little pieces of sines, 
joined onto an entirely different function (namely, zero). Like any other waves, they can be 
built up as linear cornbinations of true sinusoidal functions (Eq. 9.20), but only by putting 
together a whole range of frequencies and wavelengths. If you want a single incident 
frequency (as we shall in the electromagnetic case), you must let your waves extend to 
infinity. In practice, if you use a very long pulse with many oscillations, it will be close to 
the ideal of a single frequency. 

(a) Incident pulse (b) Reflected and transmitted pulses 

Figure 9.5 

For a sinusoidal incident wave, then, the net disturbance of the string is: 

I 
A l e i ( k l e w t )  + ARei(-kl"wt) , for z < 0, 

f"(z, t>  = (9.25) 
ATe i (k?z -wt )  for z > 0. 

At the join (z = O), the displacement just slightly to the left (z = 0-) must equal the 
displacement slightly to the right ( z  = O+), or else there would be a break between the two 
strings. Mathematically, f ( z ,  t )  is contintious at z = 0: 

If the knot itself is of negligible mass, then the derivative of f must also be continuous: 

Otherwise there would be a net force on the knot, and therefore an infinite acceleration 
(Fig. 9.6). These boundary conditions apply directly to the real wave function f (2, t ) .  But 
since the imaginary part of f" differs from the real part only in the replacement of cosine by 
sine (Eq. 9.15), it follows that the complex wave function f ( z ,  t )  obeys the same rules: 
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(a) Discontinuous slope; force on knot (a) Continuous slope; no force on knot 

Figure 9.6 

When applied to Eq. 9.25, these boundary conditions determine the outgoing amplitudes 
( A R  and AT ) in terms of the incoming one (61): 

from which it follows that 

Or, in terms of the velocities (Eq. 9.24): 

The real amplitudes and phases, then, are related by 

If the second string is lighter than the first (k2 < p 1, so that v2 > v l ) ,  all three waves 
have the same phase angle ( S R  = ST = S ! ) ,  and the outgoing amplitudes are 

If the second string is heavier than the first (v2  < v l )  the reflected wave is out of phase by 
180" ( S R  $ n = ST = 81).  In other words, since 

cos ( - k l z  - at + 6 1  - n) = - cos (-klz  - wt + S I ) ,  

the reflected wave is "upside down." The amplitudes in this case are 

V 1  - v2 

A ~ = ( - ) A I  v2 + V I  
and A T =  
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In particular, if the second string is infinitely massive-or, what amounts to the same thing, 
if the first string is simply nailed down at the end-then 

AR = AI and AT = 0. 

Naturally, in this case there is no transmitted wave-all of it reflects back. 

! Problem 9.5 Suppose you send an incident wave of specified shape, g1 (z - 111 t ) ,  down string 
number 1. It gives rise to a reflected wave, hR ( z  + v l t ) ,  and a transmitted wave. g ~ ( z  - v2t). 
By imposing the boundary conditions 9.26 and 9.27, find h R  and g r  . 

Problem 9.6 

(a) Formulate an appropriate boundary condition, to replace Eq. 9.27, for the case of two strings 
under tension T joined by a knot of mass m. 

(b) Find the amplitude and phase of the reflected and transmitted waves for the case where the 
knot has a mass m and the second string is massless. 

1 Problem 9.7 Suppose string 2 is embedded in a viscous medium (such as molasses), which 
imposes a drag force that is proportional to its (transverse) speed: 

(a) Derive the modified wave equation describing the motion of the string. 

(b) Solve this equation, assuming the string oscillates at the incident frequency w. That is, 
look for solutions of the form j ( z ,  t )  = e iwtF(z ) .  

(C) Show that the waves are attenuated (that is, their amplitude decreases with increasing z ) .  
Find the characteristic penetration distance, at which the amplitude is l / e  of its original value, 
in temis of y ,  T, p ,  and w. 

(d) If a wave of amplitude A l ,  phase 81 = 0, and frequency w is incident from the left (string 
l), find the reflected wave's amplitude and phase. 

9.1.4 Polarization 

The waves that travel down a string when you shake it are called transverse, because the 
displacement is perpendicular to the direction of propagation. If the string is reasonably 
elastic, it is also possible to stimulate compression waves, by giving the string little tugs. 
Compression waves are hard to see on a string, but if you try it with a slinky they're quite 
noticeable (Fig. 9.7). These waves are called longitudinal, because the displacement from 
equilibrium is along the direction of propagation. Sound waves, which are nothing but 
compression waves in air, are longitudinal; electromagnetic waves, as we shall see, are 
transverse. 
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Figure 9.7 

Now there are, of course, two dimensions perpendicular to any given line of propagation. 
Accordingly, transverse waves occur in two independent states of polarization: you can 
shake the string up-and-down ("vertical" polarization-Fig. 9.8a), 

f (- t) = Ae'("-"') A 

U L ,  X, (9.34) 

or left-and-right ("horizontal" polarization-Fig. 9.8b), 
- i(kz-wt) - &(z, t )  = Ae Y 3 

or along any other direction in the xy plane (Fig. 9 . 8 ~ ) :  

f(z, t )  = Ae i(kz-wt) - n. 

The polarization vector n defines the plane of vibration2 Because the waves are transverse, 
n is perpendicular to the direction of propagation: 

n . i = O .  (9.37) 

In terms of the polarization angle 8 ,  

Thus, the wave pictured in Fig. 9 . 8 ~  can be considered a superposition of two waves-one 
horizontally polarized, the other vertically: 

f ( z ,  t )  = (A cos 6)e i ( k z - a t )  g + (A sin ~ ) ~ i ( k ~ - w t )  f .  (9.39) 

Problem 9.8 Equation 9.36 describes the most general linearly polarized wave on a string. 
Linear (or "plane") polarization (so called because the displacement is parallel to a fixed 
vector n) results from the combination of horizontally and vertically polarized waves of the 
same phase (Eq. 9.39). If the two components are of equal amplitude, but out oj'phase by 90' 
(say, 6, = 0, Sh  = 90°), the result is a circularly polarized wave. In that case: 

(a) At a fixed point z ,  show that the string moves in a circle about the z axis. Does it go 
clochwise or counterclockwise, as you look down the axis toward the origin? How would you 
construct a wave circling the other way? (In optics, the clockwise case is called right circular 
polarization, and the counterclockwise, left circular polarization.) 

(b) Sketch the string at time t = 0. 

(C) How would you shake the string in order to produce a circularly polarized wave? 

2 ~ o t i c e  that you can always switch the sign of fi, provided you simultaneously advance the phase constant by 
1 80°, since both operations change the sign of the wave. 



9.2. ELECTROMAGNETIC WAVES IN VACUUM 375 

(a) Vertical polarization (b) Horizontal polarization 

(c) Polarization vector 

Figure 9.8 

9.2 Electromagnetic Waves in Vacuum 

9.2.1 The Wave Equation for E and B 

In regions of space where there is no charge or current, Maxwell's equations read 

(i) V . E = O ,  (iii) V  x E = - - ,  a r 

a E  
(ii) V . B = O ,  (iv) V x B = p o c o - .  I at 

They constitute a set of coupled, first-order, partial differential equations for E and B. They 
can be decoupled by applying the curl to (iii) and (iv): 
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Or, since V . E = 0 and V . B = 0, 

V E = ~ O E O -  l at' ' 

We now have separate equations for E and B, but they are of second order; that's the price 
you pay for decoupling them. 

In vacuum, then, each Cartesian component of E and B satisfies the three-dimensional 
wave equation, 

(This is the same as Eq. 9.2, except that a2 f/8z2 is replaced by its natural generaliza- 
tion, v2 f .) SO Maxwell's equations imply that empty space supports the propagation of 
electromagnetic waves, traveling at a speed 

which happens to be precisely the velocity of light, c. The implication is astounding: 
Perhaps light is an electromagnetic wave.3 Of course, this conclusion does not surprise 
anyode today, but imagine what a revelation it was in Maxwell's time! Remember how 
and p 0  came into the theory in the first place: they were constants in Coulomb's law and 
the Biot-Savart law, respectively. You measure them in experiments involving charged pith 
balls, batteries, and wires-experiments having nothing whatever to do with light. And 
yet, according to Maxwell's theory you can calculate c from these two numbers. Notice 
the crucial role played by Maxwell's contribution to Ampkre's law (pocoaE/at); without 
it, the wave equation would not emerge, and there would be no electromagnetic theory of 
light. 

9.2.2 Monochromatic Plane Waves 

For reasons discussed in Sect. 9.1.2, we may confine our attention to sinusoidal waves of 
frequency o. Since different frequencies in the visible range correspond to different colors, 
such waves are called monochromatic (Table 9.1). Suppose, moreover, that the waves are 
traveling in the z direction and have no x or y dependence; these are called plane waves,4 
because the fields are uniform over every plane perpendicular to the direction of propagation 
(Fig. 9.9). We are interested, then, in fields of the form 

3 ~ s  Maxwell himself put it, "We can scarcely avoid the inference that Light consists in the transverse undulations 
of the same medium which is the cause of electric and magnetic phenomena." See Ivan Tolstoy, James Clerk 
Mruwell, A Biography (Chicago: University of Chicago Press, 1983). 

4 ~ o r  a discussion of spherical waves, at this level, see J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations 
of Electromagnetic Theory, 3rd ed., Sect. 17-5 (Reading, MA: Addison-Wesley, 1979). Or work Prob. 9.33. Of 
course, over small enough regions any wave is essentially plane, as long as the wavelength is much less than the 
radius of the curvature of the wave front. 
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The Electromagnetic Spectrum 
Frequency (Hz) Type Wavelength (m) 
1 0 ~ ~  10-13 / 10zl gamma rays 10- l~  
1 020 10-l' 
1019 10- l0 

1018 X rays 1 0 - ~  
1017 
1016 ultraviolet 1 0 - ~  
l0l5 visible 
l0l4 infrared W 
1013 10-4 
1o12 1 0 - ~  
10' 1 10-' 
10'O microwave 10-' 
109 1 
1 o8 TV, FM 10 
107 1 02 
106 AM 1 o3 
1 0" 1 o4 
1 o4 RF 10" 
1 o3 1 o6 

The Visible Range 
Frequency (Hz) Color Wavelength (m) 
1.0 1 0 ' ~  near ultraviolet 3.0 I O - ~  
7.5 ioi4 shortest visible blue 4.0 X I O - ~  
6.5 X 1ot4 blue 4.6 X 1 0 - ~  
5.6 X 10'" green 5.4 X 1 0 - ~  
5.1 X l0l4 yellow 5.9 1 0 - ~  
4.9 l0l4 orange 6.1 X lop7 
3.9 l0l4 longest visible red 7.6 X 1 0 - ~  
3.0 X 1014 near infrared 1.0 X I O - ~  

Table 9.1 

where and are the (complex) amplitudes (the physical fields, of course, are the real 
parts of E and B). 

Now, the wave equations for E and B (Eq. 9.41) were derived from Maxwell's equations. 
However, whereas every solution to Maxwell's equations (in empty space) must obey the 
wave equation, the converse is not true; Maxwell's equations impose extra constraints on 
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Figure 9.9 

and BO. In particular, since V . E = 0 and V . B = 0, it follows5 that 

That is, electromagnetic waves are transverse: the electric and magnetic fields are per- 
pendicular to the direction of propagation. Moreover, Faraday's law, V X E = -aB/ar. 
implies a relation between the electric and magnetic amplitudes, to wit: 

- k ( ~ o ) ~  = w ( $ ) ~ .  k(&dr =  go)^, (9.45) 

or, more compactly: 

Evidently, E and B are in phase and mutually perpendicular; their (real) amplitudes are 
related by 

k 1 
B. = -Eo = -Eo. (9.47) 

0 C 

The fourth of Maxwell's equations, V X B = poto(aE/i3t), does not yield an independent 
condition; it simply reproduces Eq. 9.45. 

Example 9.2 

If E points in the x direction, then B points in the y direction (Eq. 9.46): 

or (taking the real part) 

'~ecause  the real part of E differs from the imaginary part only in the replacement of sine by cosine, if the 
former obeys Maxwell's equations, so does the latter, and hence E as well. 
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Figure 9.10 

This is the paradigm for a monochromatic plane wave (see Fig. 9.10). The wave as a whole is 
said to be polarized in the X direction (by convention, we use the direction of E to specify the 
polarization of an electromagnetic wave). 

There is nothing special about the z direction, of course-we can easily generalize to 
monochromatic plane waves traveling in an arbitrary direction. The notation is facilitated 
by the introduction of the propagation (or wave) vector, k, pointing in the direction 
of propagation, whose magnitude is the wave number k. The scalar product k - r is the 
appropriate generalization of kz  (Fig. 9.1 l), so 

where n is the polarization vector. Because E is transverse, 

A 

i i . k = O .  

Figure 9.1 1 
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(The transversality of B follows automatically from Eq. 9.49.) The actual (real) electric and 
magnetic fields in a monochromatic plane wave with propagation vector k and polarization 
ii are 

E(r,t) = Eocos(k . r -o t+G)i ' i ,  (9.51) 

1 
B(r,  t )  = -Eo cos (k . r - ot + G ) &  x ii). (9.52) 

C 

Problem 9.9 Write down the (real) electric and magnetic fields for a monochromatic plane 
wave of amplitude Eo, frequency w,  and phase angle zero that is (a) traveling in the negative 
X direction and polarized in the z direction; (b) traveling in the direction from the origin to the 
point ( l ,  1 ,  l), with polarization parallel to the X z plane. In each case, sketch the wave, and 
give the explicit Cartesian conlponents oT k and fi. 

9.2.3 Energy and Momentum in Electromagnetic Waves 

According to Eq. 8.13, the energy per unit volume stored in electromagnetic fields is 

In the case of a monochromatic plane wave (Eq. 9.48) 

so the electric and magnetic cotztributio?~~ are equal: 

As the wave travels, it carries this energy along with it. The energy flux density (energy per 
unit area, per unit time) transported by the fields is given by the Poynting vector (Eq. 8.10): 

l 
S = -(E X B). 

PO 

For monochromatic plane waves propagating in the z direction, 

2 2 S =  c t o E o ~ o s  (kz -o t  +G)?= cuf .  (9.57) 

Notice that S is the energy density (U) times the velocity of the waves (c 2)-as it should be. 
For in a time At, a length c At passes through area A (Fig. 9.12), carrying with it an energy 
uAc At. The energy per unit time, per unit area, transported by the wave is therefore uc. 
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Figure 9.12 

Electromagnetic fields not only carry energy, they also carry momentum. In fact, we 
found in Eq. 8.30 that the momentum density stored in the fields is 

For monochromatic plane waves, then, 

In the case of light, the wavelength is so short (- 5 X 1 0 - ~  m), and the period so brief 
(- 10-I5 S), that any macroscopic measurement will encompass many cycles. Typically, 
therefore, we're not interested in the fluctuating cosine-squared term in the energy and 
momentum densities; all we want is the average value. Now, the average of cosine-squared 
over a complete cycle6 is 1, so 

1 
(S) = -cco E; i, 

2 

1 2 ,  (g) = -cOEO z. 
2c 

I use brackets, ( ), to denote the (time) average over a complete cycle (or many cycles, if 
you prefer). The average power per unit area transported by an electromagnetic wave is 
called the intensity: 

1 2  I ( S )  = -ctoEo. 
7 

%bere is a cute trick for doing this in your head: sin2 0 + cos2 8 = 1, and over a complete cycle the avcrage 
of sin2 0 is equal to the average of cos2 8 ,  so (sin2) = (cos2) = 112. More formally, 

jT cos2 (ki - 2 n t l T  + S )  di = 112. 
T 0 
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When light falls on a perfect absorber it delivers its momentum to the surface. In a 
time At the momentum transfer is (Fig. 9.1 2) Ap = ( g ) A c  At, so the radiation pressure 
(average force per unit area) is 

(On a perfect rejector the pressure is twice as great, because the momentum switches 
direction, instead of simply being absorbed.) We can account for this pressure qualitatively, 
as follows: The electric field (Eq. 9.48) drives charges in the X direction, and the magnetic 
field then exerts on them a force (qvx B) in the z direction. The net force on all the charges 
in the surface produces the pressure. 

Problem 9.10 The intensity of sunlight hitting the earth is about 1300 w/m2.  If sunlight 
strikes a perfect absorber, what pressure does it exert? How about a perfect reflector? What 
fraction of atmospheric pressure does this amount to? 

Problem 9.11 In the complex notation there is a clever device for finding the time average of 
a product. Suppose f(r,  t )  = Acos(k.  r - o t  + a U )  and g( r ,  t )  = B cos (k . r - ot + Sb). 
Show that ( f  g) = ( 1  /2)Re(fg*), where the star denotes complex conjugation. [Note that this 
only works if the two waves have the same k and o, but they need not have the same amplitude 
or phase.] For example 

1 1 1 
( U )  = - R e ( t O ~  . E* + -B . B*) and (S) = - R ~ ( E  X B*). 

4 PO 2 ~ 0  

Problem 9.12 Find all elements of the Maxwell stress tensor for a monochromatic plane wave 
traveling in the z direction and linear1 polarized in the X direction (Eq. 9.48). Does your 
answer make sense? (Remember that +- represents the momentum flux density.) How is the 
momentum flux density related to the energy density, in this case? 

9.3 Electromagnetic Waves in Matter 

9.3.1 Propagation in Linear Media 

Inside matter, but in regions where there is no free charge or free current, Maxwell's equa- 

If the medium is linear, 
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and homogeneous (so t and p do not vary from point to point), Maxwell's equations reduce 

which (remarkably) differ from the vacuum analogs (Eqs. 9.40) only in the replacement of 
po~o by Evidently electromagnetic waves propagate through a linear homogeneous 
medium at a speed 

where 

is the index of refraction of the material. For most materials, p  is very close to po, so 

where cl. is the dielectric constant (Eq. 4.34). Since c, is almost always greater than 1, light 
travels more slowly through matter-a fact that is well known from optics. 

All of our previous results carry over, with the simple transcription EO --+ E,  p0 + p, 
and hence c + v (see Prob. 8.15). The energy density is8 

and the Poynting vector is 
1 

S = -(E X B). 
P 

For monochromatic plane waves the frequency and wave number are related by w = kv 
(Eq. 9.1 l), the amplitude of B is l l v  times the amplitude of E (Eq. 9.47), and the intensity 
is 

7 ~ h i s  observation is mathematically pretty trivial, but the physical implications are astonishing: As the wave 
passes through, the fields busily polarize and magnetize all the motecules, and the resulting (oscillating) dipoles 
create their own electric and magnetic fields. These combine with the original fields in such a way as to create a 
single wave with the same frequency but a different speed. This extraordinary conspiracy is responsible for the 
phenomenon of transparency. It is a distinctly nontrivial consequence of the linearity of the medium. For further 
discussion see M. B. James and D. J. Griffiths, Am. J. Phys. 60, 309 (1992). 

' ~ e f e r  to Sect. 4.4.3 for the precise meuning of "energy density," in theeontext of linear media. 
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The interesting question is this: What happens when a wave passes from one transparent 
medium into another-air to water, say, or glass to plastic? As in the case of waves on a 
string, we expect to get a reflected wave and a transmitted wave. The details depend on 
the exact nature of the electrodynamic boundary conditions, which we derived in Chapter 
7 (Eq. 7.64): 

I II - E l l  (i) c1El = c ~ E $ ,  (iii) E, - 2 ,  1 
(ii) B; = B:, 

P2 

These equations relate the electric and magnetic fields just to the left and just to the right of 
the interface between two linear media. In the following sections we use them to deduce 
the laws governing reflection and refraction of electromagnetic waves. 

9.3.2 Reflection and Transmission at Normal Incidence 

Suppose the xy plane forms the boundary between two linear media. A plane wave of 
frequency w ,  traveling in the z direction and polarized in the x direction, approaches the 
interface from the left (Fig. 9.13): 

It gives rise to a reflected wave 

Y 

Figure 9.1 3 
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which travels back to the left in medium ( l ) ,  and a transmitted wave 

ET(z, t)  = EoTe i (k2z-wt)  - 
X, 1 

which continues on the the right in medium (2). Note the minus sign in B R ,  as required 
by Eq. 9.49-or, if you prefer, by the fact that the Poynting vector aims in the direction of 
propagation. 

At z = 0, the combined fields on the left, EI + E R  and B, + B R ,  must join the fields on 
the right, ET and B T ,  in accordance with the boundary conditions 9.74. In this case there 
are no components perpendicular to the surface, so (i) and (ii) are trivial. However, (iii) 
requires that 

Eo, + EoR = EoT 7 

while (iv) says 
1 

(9.79) 

where 

Equations 9.78 and 9.80 are easily solved for the outgoing amplitudes, in terms of the 
incident amplitude: 

These results are strikingly similar to the ones for waves on a string. Indeed, if the 
permittivities p are close to their values in vacuum (as, remember, they are for most media), 
then B = v1 / v z ,  and we have 

which are identical to Eqs. 9.30. In that case, as before, the reflected wave is in phase (right 
side up) if v2 > v1 and out of phase (upside down) if v2 < v l ;  the real amplitudes are 
related by 

v2 - v1 2212 
E,,. = 1 P 1 EO] 9 E ~ T  = (-1 E ~ l  (9.84) 

v2 + v1 v2 + v1 

or, in terms of the indices of refraction, 
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What fraction of the incident energy is reflected, and what fraction is transmitted? 
According to Eq. 9.73, the intensity (average power per unit area) is 

If (again) p 1 = p2 = PO, then the ratio of the reflected intensity to the incident intensity is 

whereas the ratio of the transmitted intensity to the incident intensity is 

R is called the reflection coefficient and T the transmission coefficient; they measure the 
fraction of the incident energy that is reflected and transmitted, respectively. Notice that 

as conservation of energy, of course, requires. For instance, when light passes from air 
(n1 = l )  into glass (n2 = 1 S), R = 0.04 aid T = 0.96. Not surprisingly, most of the light 
is transmitted. 

Problem 9.13 Calculate the exact reflection and transmission coefficients, without assuming 
p1 = p2 = PO. Confirm that R + T = 1. 

Problem 9.14 In writing Eqs. 9.76 and 9.77,1 tacitly assumed that the reflected and transmitted 
waves have the same polarization as the incident wave-along the x direction. Prove that this 
must be so. [Hint: Let the polarization vectors of the transmitted and reflected waves be 

and prove from the boundary conditions that 8~ = BR = 0.1 

9.3.3 Reflection and Transmission at Oblique Incidence 

In the last section I treated reflection and transmission at normal incidence-that is, when 
the incoming wave hits the interface head-on. We now turn to the more general case of 
oblique incidence, in which the incoming wave meets the boundary at an arbitrary angle 8 ,  
(Fig. 9.14). Of course, normal incidence is really just a special case of oblique incidence, 
with 8[ = 0, but I wanted to treat it separately, as a kind of warm-up, because the algebra 
is now going to get a little heavy. 
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Figure 9.14 

Suppose, then, that a monochromatic plane wave 

approaches from the left, giving rise to a reflected wave, 

and a transmitted wave 

All three waves have the same frequency m-that is determined once and for all at the source 
(the flashlight, or whatever, that produces the incident beam). The three wave numbers are 
related by Eq. 9.1 1 : 

The combined fields in medium (l),  El + E R  and BI + BR, must now be joined to the 
fields ET and BT in medium (2), using the boundary conditions 9.74. These all share the 
generic structure 

1'11 fill in the parentheses in a moment; for now, the important thing to notice is that the 
X ,  y, and t dependence is confined to the exponents. Because the boundaty conditions 
must hold at all points on the plane, and for all times, these e,xponential factors must be 
equal. Otherwise, a slight change in X ,  say, would destroy the equality (see Prob. 9.15). Of 
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course, the time factors are already equal (in fact, you could regard this as an independent 
confirmation that the transmitted and reflected frequencies must match the incident one). 
As for the spatial terms, evidently 

kr  . r = kR . r = k~ - r, when z = 0, (9.94) 

or, more explicitly, 

for all x and all y. 
But Eq. 9.95 can only hold if the components are separately equal, for if x = 0, we get 

while y = 0 gives 

= ( ~ R L  = ( ~ T L .  

We may as well orient our axes so that k l  lies in the x z plane (i.e. (kr),, = 0); according 
to Eq. 9.96, so too will k R  and kT. Conclusion: 

First Law: The incident, reflected, and transmitted wave vectors form a plane 
(called the plane of incidence), which also includes the normal to the surface 
(here, the z axis). 

Meanwhile, Eq. 9.97 implies that 

k l  sin = k R  sin QR = kT sin QT,  (9.98) 

where Of is the angle of incidence, QR is the angle of reflection, and BT is the angle of 
transmission, more commonly known as the angle of refraction, all of them measured with 
respect to the normal (Fig. 9.14). In view of Eq. 9.92, then, 

Second Law: The angle of incidence is equal to the angle of reflection, 

This is the law of reflection. 

As for the transmitted angle, 

Third Law: 
sin 8~ r z l  -- - - 
sin 81 n2 

This is the law of refraction, or Snell's law. 



9.3. ELECTROMAGNETIC WAVES IN MATTER 389 

These are the three fundamental laws of geometrical optics. It is remarkable how 
little actual electrodynamics went into them: we have yet to invoke any speclfic boundary 
conditions-all we used was their generic form (Eq. 9.93). Therefore, any other waves 
(water waves, for instance, or sound waves) can be expected to obey the same "optical" 
laws when they pass from one medium into another. 

Now that we have taken care of the exponential factors-they cancel, given Eq. 9.94- 
the boundary conditions 9.74 become: 

where B. = ( l / u ) k  x in each case. (The last two represent pairs of equations, one for 
the X-component and one for the y-component.) 

Suppose that the polarization of the incident wave is parallel to the plane of incidence 
(the X z plane in Fig. 9.15); it follows (see Prob. 9.14) that the reflected and transmitted 
waves are also polarized in this plane. (I shall leave it for you to analyze the case of 
polarization perpendicular to the plane of incidence; see Prob. 9.16.) Then (i) reads 

(ii) adds nothing (0 = 0), since the magnetic fields have no z components; (iii) becomes 

Eo, cos 8! + Eo, cos O R  = E g ,  cos QT ; (9.103) 

Figure 9.1 5 
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and (iv) says 

Given the laws of reflection and refraction, Eqs. 9.102 and 9.104 both reduce to 

where (as before) 
PIU1 Pln2 p = - -  - 
P2V2 P2n1 

and Eq. 9.103 says a, + ioR = a ~ o T .  

where 
cos QT 

W = -. 
cos er 

Solving Eqs. 9.105 and 9.107 for the reflected and transmitted amplitudes, we obtain 

These are known as Fresnel's equations, for the case of polarization in the plane of inci- 
dence. (There are two other Fresnel equations, giving the reflected and transmitted ampli- 
tudes when the polarization is perpendicular to the plane of incidence-see Prob. 9.16.) 
Notice that the transmitted wave is always in phase with the incident one: the reflected 
wave is either in phase ("right side up7'), if a > B ,  or 180" out of phase ("upside down"). 
if a B.9 

The amplitudes of the transmitted and reflected waves depend on the angle of incidence. 
because a is a function of 81 : 

,/C&$ J ~ - [ ( n ~ / n ~ ) s i n @ ~ i ~  
a = - (9.110) 

cos er cos er 
In the case of normal incidence (81 = 0), a = 1, and we recover Eq. 9.82. At grazing 
incidence (81 = 90°), a diverges, and the wave is totally reflected (a fact that is painfully 
familiar to anyone who has driven at night on a wet road). Interestingly, there is an in- 
termediate angle, (called Brewster's angle), at which the reflected wave is completely 
extinguished.10 According to Eq. 9.109, this occurs when a = 0 ,  or 

2 l - p 2  sin = 
(n1 /n2I2 - p2 ' 

 here is an unavoidable ambiguity in the phase of the reflected wave, since (as I mentioned in footnote 2 )  
changing the sign of the polarization vector is equivalent to a 180' phase shift. The convention I adopted in 
Fig. 9.15, with E R  positive "upward," is consistent with some, but not all, of the standard optics texts. 

10~ecause  waves polarized perpendicular to the plane of incidence exhibit no corresponding quenching of the 
reflected component, an arbitrary beam incident at Brewster's angle yields a reflected beam that is totally polarized 
parallel to the interface. That's why Polaroid glasses, with the transmission axis vertical, help to reduce glare off 
a horizontal surface. 
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Figure 9.1 6 

For the typical case p1 2 p2, SO B G n2/n 1, sin2 BB 2 #?"(l + p), and hence 

Figure 9.16 shows a plot of the transmitted and reflected amplitudes as functions of QI, for 
light incident on glass (1.12 = 1.5) from air (n l  = 1). (On the graph, a negative number 
indicates that the wave is 180" out of phase with the incident beam-the amplitude itself is 
the absolute value.) 

The power per unit area striking the interface is S . P. Thus the incident intensity is 

while the reflected and transmitted intensities are 

l 2 1 
I R =  - - C ~ U ~ E ~ ~ C O S Q R ,  and IT = - r 2 u 2 ~ ~ T c o s ~ T .  

2 2 

(The cosines are there because I am talking about the average power per unit area of 
interfnce, and the interface is at an angle to the wave front.) The reflection and transmission 
coefficients for waves polarized parallel to the plane of incidence are 
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Figure 9.17 

They are plotted as functions of the angle of incidence in Fig. 9.17 (for the airlglass inter- 
face). R is the fraction of the incident energy that is reflected-naturally, it goes to zero at 
Brewster's angle; T is the fraction transmitted-it goes to 1 at O B .  Note that R + T = 1. 
as required by conservation of energy: the energy per unit time reaching a particular patch 
of area on the surface is equal to the energy per unit time leaving the patch. 

- Problem 9.15 Suppose + ~e~~~ - ccicx , for some nonzero cotlslants A, B, C, a ,  b. 
c ,  and for all X. Prove that cr = b = c and A + B = C .  

! Problem 9.16 Analyze the case of polarization perperzdicular to the plane of incidence (i.e. 
electric fields in they direction, inFig. 9.15). Impose the boundary conditions 9.101, and obtain 
the Fresnel equations for E0, and EO,. Sketch (EO,  /EO, )  and (EoT /Eo , )  as functions of B,. 
for the case p = n z / n  l = 1.5. (Note that for this #3 the reflected wave is always 180" out o f  
phase.) Show that there is no Brewster's angle for any n  1 aqd n2: Eo, is never zero (unless, of 
course, n I = n z  and p1 = p2, in which case the two media are optically indistinguishable). 
Confirm that your Fresnel equations reduce to the proper forms at normal incidence. Compute 
the reflection and transmission coefficients, and check that they add up to 1. 

Problem 9.17 The index of refraction of diamond is 2.42. Construct the graph analogous to 
Fig. 9.16 for the airldiamond interface. (Assume g1 = p2 = PO.) In particular, calculate 
(a) the amplitudes at normal incidence, (b) Brewster's angle, and (c) the "crossover" angle, at 
which the reflected and transmitted amplitudes are equal. 

9.4 Absorption and Dispersion 

9.4.1 Electromagnetic Waves in Conductors 

In Sect. 9.3 I stipulated that the free charge density pf and the free current density J f  are 
zero, and everything that followed was predicated on that assumption. Such a restriction 
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is perfectly reasonable when you're talking about wave propagation through a vacuum or 
through insulating materials such as glass or (pure) water. But in the case of conductors we 
do not independently control the flow of charge, and in general Jf is certainly not zero. In 
fact, according to Ohm's law, the (free) current density in a conductor is proportional to the 
electric field: 

Jf = aE.  (9.1 17) 

With this, Maxwell's equations for linear media assume the form 

1 a B  
(i) V . E =  - p f ,  (iii) V x E = - - ,  

E at 

Now the continuity equation for free charge, 

together with Ohm's law and Gauss's law (i), gives 

for a homogeneous linear medium, from which it follows that 

Thus any initial free charge density pf (0) dissipates in a characteristic time t €/a. This 
reflects the familiar fact that if you put some free charge on a conductor, it will flow out 
to the edges. The time constant t affords a measure of how "good a conductor is: For a 
"perfect" conductor a = oo and t = 0; for a "good" conductor, t is much less than the 
other relevant times in the problem (in oscillatory systems, that means t << l / u ) ;  for a 
"poor" conductor, t is greater than the characteristic times in the problem (t >> l/w).ll 
At present we're not interested in this transient behavior-we'll wait for any accumulated 
free charge to disappear. From then on p j  = 0, and we have 

aB 
(i) V . E = O ,  (iii) V x E = - - ,  

at l (9.121) 
a E  

(ii) V - B  = 0 ,  (iv) V X B  = pc- + p a E .  
at 

l 'N. Ashby, Am. J. Phys. 43,553 (1975), points out that for good conductors t is absurdly short (10-l9 S, for 
copper, whereas the time between collisions is tc = 10-l4 S). The problem is that Ohm's law itself breaks down 
on time scales shorter than t,; actually, the time it takes free charge to dissipate in a good conductor is of order t,, 
not t. Moreover, H. C. Ohanian, Am. J. Phys. 51,1020 (1983), shows that it takes even longer for the fields and 
currents to equilibrate. But none of this is relevant to our present purpose; the free charge density in a conductor 
does eventually dissipate, and exactly how long the process takes is beside the point. 
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These differ from the corresponding equations for nonconducting media (9.67) only in the 
addition of the last term in (iv). 

Applying the curl to (iii) and (iv), as before, we obtain modified wave equations for E 
and B: 

2 a 2 ~  2 aB V E =p€--- + P O - ,  V B = pc- +PO-.  a t 2  at at2 
(9.122) 

at 

These equations still a d d t  plane-wave solutions, 

E(z, t )  = Eoe i (kz-wt)  - i (kz -wt)  , ~ ( z ,  t )  = Boe , (9.123) 

but this time the "wave number" is complex: 

-2 k = pcm2 + i p o - ~ ,  (9.124) 

as you can easily check by plugging Eq. 9.123 into Eq. 9.122. Taking the square root, 

k = k + i ~ ,  (9.125) 

where 

The imaginary part of k results in an attenuation of the wave (decreasing amplitude with 
increasing z ) :  

The distance it takes to reduce the amplitude by a factor of l /e (about a third) is called the 
skin depth: 

it is a mcasurc of how far thc wavc penetrates into the conductor. Meanwhile, the real part 
of determines the wavelength, the propagation speed, and the index of refraction, in the 
usual way: 

The attenuated plane waves (Eq. 9.1 27) satisfy the modified wave equation (9.122) for 
any E. and Bo. ~ u t  Maxwell's equations (9.121) impose further constraints, which serve 
to determine the relative amplitudes, phases, and polarizations of E and B. As before, (i) 
and (ii) rule out any z components: the fields are transverse. We may as well orient our 
axes so that E i~ polarized along the x direction: 
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Then (iii) gives - 

(Equation (iv) says the same thing.) Once again, the electric and magnetic fields are mutually 
perpendicular. 

Like any complex number, k can be expressed in terms of its modulus and phase: 

where 

and 
= t a n - ' ( ~ l k ) .  (9.134) 

According to Eq. 9.130 and 9.13 1, the complex amplitudes E. = ~ o e ' "  and = B ~ ~ ' ' B  
are related by 

Evidently the electric and magnetic fields are no longer in phase; in fact, 

the magnetic field lags behind the electric field. Meanwhile. the (real) amplitudes of E and 
B are related by 

The (real) electric and magnetic fields are, finally, 

E(z, t )  = EOePKz cos (kz - a t  + SE) 2 ,  1 
B(z, t)  = Boe-KZ cos (kz - wt + S E  + 4 )  ?. 

These fields are shown in Fig. 9.18. 

Problem 9.18 

(a) Suppose you imbedded some free charge in a piece of glass. About how long would it take 
for the charge to flow to the surface? 

(b) Silver is an excellent conductor, but it's expensive. Suppose you were designing a mi- 
crowave experiment to operate at a frequency of 101° Hz. How thick would you make the 
silver coatings? 

(C) Find the wavelength and propagation speed in copper for radio waves at 1 MHz. Compare 
the corresponding values in air (or vacuum). 
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Figure 9.18 

Problem 9.19 

(a) Show that the skin depth in a poor conductor (a << we) is ( 2 / o ) m  (independent of 
frequency). Find the skin depth (in meters) for (pure) water. 

(b) Show that the skin depth in a good conductor (o >> we) is h/2n (where h is the wavelength 
in the conductor). Find the skin depth (in nanometers) for a typical metal ( a  % 107 (S2 m)-') 
in the visible range (w x 1015/s), assuming c to and p pg. Why are metals opaque? 

(c) Show that in a good conductor the magnetic field lags the electric field by 45", and find the 
ratio of their amplitudes. For a numerical example, use the "typical mctal" in part (b). 

Problem 9.20 

(a) Calculate the (time averaged) energy density of an electromagnetic plane wave in a conduct- 
ing medium (Eq. 9.138). Show that the magnetic contribution always dominates. [Answer-: 
(k2/2pw2)~ie-2Kz]  

(b) Show that the intensity is (kl2pw) ~ i e - ~ ~ ' .  

9.4.2 Reflection at a Conducting Surface 

The boundary conditions we used to analyze reflection and refraction at an  interface between 
two dielectrics do  not hold in the presence of free charges and currents. Instead, we  have 
the more general relations (7.63): 

I I1 
(i) ~ ~ E : - c ~ E ~  = o f ,  (iii) E, -E! =O, 

1 
(ii) BiL - B: = 0,  II (iv) -B! - -B2 = Kr X 8, 

P l P2 l 
where of (not to be confused with conductivity) is the free surface charge, Kf the free 
surface current, and n (not to be confused with the polarization of the wave) is a unit 
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vector perpendicular to the surface, pointing from medium (2) into medium (1). For ohmic 
conductors (Jf = aE) there can be no free surface current, since this would require an 
infinite electric field at the boundary. 

Suppose now that the xy plane forms the boundary between a nonconducting linear 
medium (1) and a conductor (2). A monochromatic plane wave, traveling in the z direction 
and polarized in the X direction, approaches from the left, as in Fig. 9.13: 

This incident wave gives rise to a reflected wave, 

propagating back to the left in medium (l), and a transmitted wave 

'2 - i(k2z-wt) A Br(z,  t )  = EoTe 2 -  , (i, l) = - E ~ , ~  Y , (9.142) 
(L, 

which is attenuated as it penetrates into the conductor. 
At z = 0, the combined wave in medium ( l )  must join the wave in medium (2), pursuant 

to the boundary conditions 9.139. Since E' = 0 on both sides, boundary condition (i) yields 
af = 0. Since B' = 0. (ii) is automatically satisfied. Meanwhile, (iii) gives 

and (iv) (with Kf = 0) says 

or 

where 

It follows that 
1 - 8  2 

R = (L) l + )  '0, t,, = (-)Eo1. l + )  

These results are formally identical to the ones that apply at the boundary between nonconductors 
(Eq. 9.82). but the resemblance is deceptive since ,I? is now a complex number. 

For aperfrct conductor (a = m), k2 = CO (Eq. 9.126), so ) is infinite, and 
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In this case the wave is totally reflected, with a 180' phase shift. (That's why excellent 
conductors make good mirrors. In practice, you paint a thin coating of silver onto the back 
of a pane of glass-the glass has nothing to do with the rejection; it's just there to support 
the silver and to keep it from tarnishing. Since the skin depth in silver at optical frequencies 
is on the order of 100 W, you don't need a very thick layer.) 

Problem 9.21 Calculate the reflection coefficient for light at an air-to-silver interface (F 1 = 
7 

,U:! = p g ,  c l  = c g ,  (7 = 6 X 10 (a. m)-'), at optical frequencies (m = 4 X 1015/s). 

9.4.3 The Frequency Dependence of Permittivity 

In the preceding sections, we have seen that the propagation of electromagnetic waves 
through matter is governed by three properties of the material, which we took to be constants: 
the permittivity c ,  the permeability p, and the conductivity a. Actually, each of these 
parameters depends to some extent on the frequency of the waves you are considering. 
Indeed, if the permittivity were truly constant, then the index of refraction in a transparent 
medium, n G 6, would also be constant. But it is well known from optics that n is 
a function of wavelength (Fig. 9.19 shows the graph for a typical glass). A prism or a 
raindrop bends blue light more sharply than red, and spreads white light out into a rainbow 
of colors. This phenomenon is called dispersion. By extension, whenever the speed of a 
wave depends on its frequency, the supporting medium is called dispersive. l" 

1.450 l I I l I 

4000 5000 6000 7000 Angstroms 
Wavelength, h (in air) 

Figure 9.19 
- -- 

12~onductors, incidentally, are dispersive: see Eqs. 9.126 and 9.129. 
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Because waves of different frequency travel at different speeds in a dispersive medium, 
a wave form that incorporates a range of frequencies will change shape as it propagates. A 
sharply peaked wave typically f attens out, and whereas each sinusoidal component travels 
at the ordinary wave (or phase) velocity, 

the packet as a whole (the "envelope") travels at the so-called group velocity13 

[You can demonstrate this by dropping a rock into the nearest pond and watching the waves 
that form: While the disturbance as a whole spreads out in a circle, moving at speed v g ,  
the ripples that go to make it up will be seen to travel twice as fast (v = 2vg in this 
case). They appear at the back end of the packet, growing as they move forward to the 
center, then shrinking again and fading away at the front (Fig. 9.20).] We shall not concern 
ourselves with these matters-I'll stick to monochromatjc waves, for which the problem 
does not arise. But I should just mention that the energy carried by a wave packet in a 
dispersive medium ordinarily travels at the group velocity, not the phase velocity. Don't be 
too alarmed, therefore, if in some circumstances v comes out greater than ..l4 

Figure 9.20 

My purpose in this section is to account for the frequency dependence of c in nonconduc- 
tors, using a simplified model for the behavior of electrons in dielectrics. Like all classical 
models of atomic-scale phenomena, it is at best an approximation to the truth; nevertheless, 
it does yield quqlitatively satisfactory results, and it provides a plausible mechanism for 
dispersion in transparent media. 

The electrons in a nonconductor are bound to specific molecules. The actual binding 
forces can be quite complicated, but we shall picture each electron as attached to the end 
of an imaginary spring, with force constant kspring (Fig. 9.21 ): 

13see A. P. French, Vihvatiorrs and Waves, p .  230 (New York: W. W. Norton & Co., 1971), or F. S. Crawford, 
Jr., Waves, Sect. 6.2 (New York: McGraw-Hill, 1968). 

l 4 ~ v e n  the group velocity can exceed c in special cases-see P. C. Peters, Am. J. Phys. 56, 129 (1988). 
Incidentally, if two different "speeds of light" are not enough to satisfy you, check out S. C. Bloch, Am. J. Phys. 
45, 538 (19771, in which no fewer than eight distinct velocities are identified! 
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. Electron 

Figure 9.2 1 

where X is displacement from equilibrium, m is the electron's mass, and 00 is the natural 
oscillation frequency, J-. [If this strikes you as an implausible model, look back at 
Ex. 4.1, where we were led to a force of precisely this form. As a matter of fact, practically 
any binding force can be approximated this way for sufficiently small displacements from 
equilibrium, as you can see by expanding the potential energy in a Taylor series about the 
equilibrium point: 

2 11 U(x) = U(0) + x u f ( 0 )  + -X u (0) t. - . 
2 

The first term is a constaht, with no dynamical significance (you can always adjust the 
zero of potential energy so that U ( 0 )  = 0). The second term automatically vanishes, 
since dU/dx = -F, and by the nature of an equilibrium the force at that point is zero. 
The third term is precisely the potential energy of a spring with force constant kspring = 
d2u /dx2  1, (the second derivative is positive, for a point of stable equilibrium). As long as 
the displacements are small, the higher terms in the series can be neglected. Geometrically. 
all I am saying is that virtually any function can be fit near a minimum by a suitable parabola.] 

Meanwhile, there will presumably be some damping force on the electron: 

[Again I have chosen the simplest possible form; the damping must be opposite in direction 
to the velocity, and making it proportional to the velocity is the easiest way to accomplish 
this. The cause of the damping does not concern us here-among other things, an oscillating 
charge radiates, and the radiation siphons off energy. We will calculate this "radiation 
damping" in Chapter 1 1 .] 

In the presence of an electromagnetic wave of frequency m, polarized in the x direction 
(Fig. 9.21), the electron is subject to a driving force 

Fdriving = E = E. COS (Ot) , 

where q is the charge of the electron and E. is the amplitude of the wave at the point c 
where the electron is situated. (Since we're only interested in one point, I have reset the 
clock so that the maximum E occurs there at t = 0.) Putting all this into Newton's second 
law gives - 
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Our model, then, describes the electron as a damped harmonic oscillator, driven at frequency 
w. (I assume that the much more massive nuclei remain at rest.) 

Equation 9.154 is easier to handle if we regard it as the real part of a conzplex equation: 

In the steady state, the system oscillates at the driving frequency: 

.i (t) = ioe-iwt. 

Inserting this into Eq. 9.155, we obtain 

- 
xo = qim Eo. 

wg - w2 - iiyw 

The dipole moment is the real part of 

~ ( t >  = q i ( t )  = q2/m E O e - i ~ t  
W: w 2  - i y w  

(9.158) 

The imaginary term in the denominator means that p is out of phase with E-lagging 
behind by an angle tan-' [ y w / ( w i  - w2)] that is very small when w << y, and rises to n 
when w  >> COO. 

In general, differently situated electrons within a given molecule experience different 
natural frequencies and damping coefficients. Let's say there are f j  electrons with frequency 
oj and damping y j  in each molecule. If there are N molecules per unit volume, the 
polarization P is given by1' the real part of 

Now, I defined the electric susceptibility as the proportionality constant between P and E 
(specifically, P = eOxeE). In the present case P is not proportional to E (this is not, strictly 
speaking, a linear medium) because of the difference in phase. However, the coirzplex 
polarization P is proportional to the corrrplex field P, and this suggests that we introduce a 
complex susceptibility, )?,: - - 

P = c0ieE. (9.160) 

1 5 ~ h i s  applies directly to the case of a dilute gas; for denser materials the theory is modified slightly, in accordance 
with the Clausius-Mossotti equation (Prob. 4.38). By the way, don't confuse the "polarization" of a medium, P, 
with the "polarization" of a wuve-same word, but two completely unrelated meanings. 
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All of the manipulations we went through before carry over, on the understanding that the 
physical polarization is the real part of P, just as the physical field is the real part of E. In 
particular, the proportionality between D and E is the complex permittivity t = t o  ( l  +K,), 
and the complex dielectric constant (in this model) is 

Ordinarily, the imaginary term is negligible; however, when W is very close to one of the 
resonant frequencies ( a j )  it plays an important role, as we shall see. 

In a dispersive medium the wave equation for a given frequency reads 

it admits plane wave solutions, as before, 

with the complex wave number 
k = & w .  

Writing k in terms of its real and imaginary parts, 

Eq. 9.163 becomes 
- K Z  i (kz-wt)  E(z, t )  = Eoe e 

Evidently the wave is attenuated (this is hardly surprising, since the damping absorbs 
energy). Because the intensity is proportional to (and hence to the quantity 

is called the absorption coefficient. Meanwhile, the wave velocity is w /  k, and the index 
of refraction is 

ck 
n =  -. 

W 
(9.168) 

I have deliberately used notation reminiscent of Sect. 9.4.1. However, in the present case 
k and K have nothing to do with conductivity; rather, they are determined by the parameters 
of our damped harmonic oscillator. For gases, the second term in Eq. 9.161 is small, and 
we can approx'imate the square root (Eq. 9.164) by the first term in the binomial expansion. 

1 1/m E 1 + Z E .  Then 
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Figure 9.22 

and 

In Fig. 9.22 I have plotted the index of refraction and the absorption coefficient in the 
vicinity of one of the resonances. Most of the time the index of refraction rises gradually with 
increasing frequency, consistent with our experience from optics (Fig. 9.19). However, in 
the immediate neighborhood of a resonance the index of refraction cErops sharply. Because 
this behavior is atypical, it is called anomalous dispersion. Notice that the region of 
anomalous dispersion (wl  < w i 0 2 ,  in the figure) coincides with the region of maximum 
absorption; in fact, the material may be practically opaque in this frequency range. The 
reason is that we are now driving the electrons at their "favorite" frequency; the amplitude 
of their oscillation is relatively large, and a correspondingly large amount of energy is 
dissipated by the damping mechanism. 

In Fig. 9.22, n runs below 1 above the resonance, suggesting that the wave speed exceeds 
c. As I mentioned earlier, this is no cause for alarm, since energy does not travel at the 
wave velocity but rather at the group velocity (see Prob. 9.25). Moreover, the graph does 
not include the contributions of other terms in the sum, which add a relatively constant 
"background" that, in some cases, keeps n > 1 on both sides of the resonance. 
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If you agree to stay away from the resonances, the damping can be ignored, and the 
formula for the index of refraction simplifies: 

For most substances the natural frequencies w j  are scattered all over the spectrum in a rather 
chaotic fashion. But for transparent materials, the nearest significant resonances typically 
lie in the ultraviolet, so that w < oj . In that case 

and Eq. 9.172 takes the form 

Or, in terms of the wavelength in vacuum (h = 2nc /o ) :  

This is known as Cauchy's formula; the constant A is called the coefficient of refraction 
and B is called the coefficient of dispersion. Cauchy's equation applies reasonably well 
to most gases, in the optical region. 

What I have described in this section is certainly not the complete story of dispersion in 
nonconducting media. Nevertheless, it does indicate how the damped harmonic motion of 
electrons can account for the frequency dependence of the index of refraction, and it explains 
why n is ordinarily a slowly increasing function of w, with occasional "anomalous" regions 
where it precipitously drops. 

Prablem 9.22 

(a) Shallow water is nondispersive; the waves travel at a speed that is proportional to the 
square root of the depth. In deep water, however, the waves can't "feel" all the way down to 
the bottom-they behave as though the depth were proportional to h. (Actually, the distinction 
between "shallow" and "deep" itself depends on the wavelength: If the depth is less than h 
the water is "shallow"; if it is substantially greater than h the water is "deep.") Show that the 
wave velocity of deep water waves is twice the group velocity. 

(b) In quantum mechanics, a free particle of mass m traveling in the X direction is described 
by the wave function 

q ( x ,  t )  = Ae i ( p x - E t ) / f i  

where p is the momentum, and E = p2 /2m is the kinetic energy. Calculate the group velocity 
and the wave velocity. Which one corresponds to the classical speed of the particle? Note that 
the wave velocity is halfthe group velocity. 
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Problem 9.23 If you take the model in Ex. 4.1 at face value, what natural frequency do you get? 
Put in the actual numbers. Where, in the electromagnetic spectrum, does this lic, assuming 
the radius of the atom is 0.5 A? Find the coefficients of refraction and dispersion and compare 
them with those for hydrogen at O°C and atmospheric pressure: A = 1.36 x 1oW4, B = 
7.7 x 1 0 - ' ~ m ~ .  

Problem 9.24 Find the width of the anomalous dispersion region for the case of a single 
resonance at frequency cog. Assume y << wg. Show that the index of refraction assumes its 
maximum and minimum values at points where the absorption coefficient is at half-maximum. 

Problem 9.25 Assuming negligible damping (yj = 0), calculate the group velocity (v,: = 
dw/dk)  of the waves described by Eqs. 9.166 and 9.169. Show that vg < c, even when v > c. 

9.5 Guided Waves 

9.5.1 Wave Guides 

So far, we  have dealt with plane waves of infinite extent; now we consider electromagnetic 
waves confined to the interior of a hollow pipe, o r  wave guide (Fig. 9.23). We'll assume 
the wave guide is a perfect conductor, so  that E = 0 and B = 0 inside the material itself, 
and hence the boundary conditions at the inner wall are16 

(i) E I ~  = 0, 

I (ii) B = 0. l 

Figure 9.23 

16see Eq. 9.139 and Prob. 7.42. In a perfect conductor E = 0, and hence (by Faraday's law) a B / a t  = 0: 
assuming the magnetic field started out zero, then, it will remain SO. 
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Free charges and currents will be induced on the surface in such a way as to enforce these 
constraints. We are interested in monochromatic waves that propagate down the tube, so E 
and B have the generic form 

(i) E(X, y, z ,  t )  = EO(X, y)e i(kz-wt) 

(9.176) 

(ii) ~ ( x ,  y, z ,  t) = BO(X, y)e 
i(kz-at)  

(For the cases of interest k is real, so I shall dispense with the tilde.) The electric and 
magnetic fields must, of course, satisfy Maxwell's equations, in the interior of the wave 
guide: 

The problem, then, is to find functions EO and B. such that the fields (9.176) obey the 
differential equations (9.177), subject to boundary conditions (9.175). 

As we shall soon see, confined waves are not (in general) transverse; in order to fit the 
boundary conditions we shall have to include longitudinal components (E, and B,):" 

where each of the components is afunction of X and y. Putting this into Maxwell's equations 
(iii) and (iv), we obtain (Prob. 9.26a) 

aEy aEx aBv i3Bx 
(i) - - - =iwB,, (iv) ---- - 

ax ay a~ ay 1 
a Ez aBZ (ii) - - i k E y  = iwB,, (v) - - i k B ,  = --E,, } (9.179) 

Q., 1.. P2 

a Ez (iii) i k E ,  - - a Bz - = iwBy, (vi) ikB, - - - -- ax a~ i w ~ Y .  c2 1 
1 7 ~ o  avoid cumbersome notation I shall leave the subscript 0 and the tilde off the individual components. 
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Equations (ii), (iii), (v), and (vi) can be solved for E,, E,, B,, and B,: 

i 
(i) E, = 

(w/c)' - k2  

i 
(ii) E ,  = 

( W I C ) ~  - k2 

1 aB, W aE, 
(iii) B - k -  - -- 

" - ( ~ / c ) ~  - k2 

1 W aE, 

, 

(iv) B, = 
( o / ~ ) ~  - k2 

It suffices, then, to determine the longitudinal components E, and BZ;  if we knew those, 
we could quickly calculate all the others, just by differentiating. Inserting Eq. 9.180 into 
the remaining Maxwell equations (Prob. 9.26b) yields uncoupled equations for E, and B,: 

If E z  = 0 we call these TE ("transverse electric") waves; if B, = 0 they are called TM 
("transverse magnetic") waves; if both E, = 0 and B, = 0, we call them TEM waves.18 
It turns out that TEM waves cannot occur in a hollow wave guide. 

Proof: If E, = 0, Gauss's law (Eq. 9.1771) says 

and if B, = 0, Faraday's law (Eq. 9.1 775) says 

Indeed, the vector E~ in Eq. 9.178 has zero divergence and zero curl. It can 
therefore be written as the gradient of a scalar potential that satisfies Laplace's 
equation. But the boundary condition on E (Eq. 9.175) requires that the surface 
be an equipotential, and since Laplace's equation admits no local maxima or 
minima (Sect. 3.1.4), this means that the potential is constant throughout, and 
hence the electric field is zero--no wave at all. qed 

181n the case of TEM waves (including the unconfined plane waves of Sect. 9.2). k = w/c ,  Eqs. 9.180 are 
indeterminate, and you have to go bick to Eqs. 9.179. 
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Notice that this argument applies only to a completely empty pipe-if you run a separate 
conductor down the middle, the potential at its surface need not be the same as on the outer 
wall, and hence a nontrivial potential is possible. We'll see an example of this in Sect. 9.5.3. 

! Problem 9.26 

(a) Derive Eqs. 9.179, and from these obtain Eqs. 9.180. 

(b) Put Eq. 9.180 into Maxwell's equations (i) and (ii) to obtain Eq. 9.181. Check that you get 
the same results using (i) and (iv) of Eq. 9.179. 

9.5.2 TE Waves in a Rectangular Wave Guide 

Suppose we have a wave guide of rectangular shape (Fig. 9.24), with height a and width b, 
and we are interested in the propagation of TE waves. The problem is to solve Eq. 9.18lii, 
subject to the boundary condition 9.17%. We'H do it by separation of variables. Let 

so that 

Divide by XY and note that the X- and y-dependent terms must be constant: 

with 
- 

Figure 9.24 
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The general solution to Eq. 9.182i is 

X (X) = A sin (k,x) + B cos (k,x). 

But the boundary conditions require that B,-and hence also (Eq. 9.180iii) dX/dx- 
vanishes at x = 0 and X = a.  So A = 0, and 

The same goes for Y, with 

and we conclude that 
B, = B. cos (mirxla) cos (nirylb). (9.1 86) 

This solution is called the TE,, mode. (The first index is conventionally associated 
with the larger dimension, so we assume a > b. By the way, at least one of the indices 
must be nonzero-see Prob. 9.27.) The wave number (k) is obtained by putting Eqs. 9.184 
and 9.1 85 into Eq. 9.183: 

If 

W < cir J-=w,,. (9.188) 

the wave number is imaginary, and instead of a traveling wave we have exponentially 
attenuated fields (Eq. 9.176). For this reason W,,, is called the cutoff frequency for the 
mode in question. The lowest cutoff frequency for a given wave guide occurs for the mode 
TElo: 

W ~ O  = cn/a. (9.189) 

Frequencies less than this will not propagate at all. 
The wave number can be written more simply in terms of the cutoff frequency: 

The wave velocity is 

which is greater than c. However (see Prob. 9.29), the energy c a ~ e d  by the wave travels 
at the group velocity (Eq. 9.150): 
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Wave fronts 

Figure 9.25 

There's another way to visualize the propagation of an electromagnetic wave in a rect- 
angular pipe, and it serves to illuminate many of these results. Consider an ordinary plane 
wave, traveling at an angle B to th'e z axis, and reflecting perfectly off each conducting 
surface (Fig. 9.25). In the x and y directions the (multiply reflected) waves interfere to 
form standing wave patterns, of wavelength h, = 2a/m and h,  = 2b/n  (hence wave num- 
ber k, = 2rr/h, = n m / a  and k ,  = n n / b ) ,  respectively. Meanwhile, in the z direction 
there remains a traveling wave, with wave number k, = k. The propagation vector for the 
"original" plane wave is therefore 

and the frequency is 

Only certain angles will lead to one of the allowed standing wave patterns: 

The plane wave travels at speed c,  but because it is going at an angle 19 to the z axis, its net 
velocity down the wave guide is 

The wave velocity, on the other hand, is the speed of the wave fronts (A, say, in Fig. 9.25) 
down the pipe, Like the intersection of a line of breakers with the beach, they can move 
much faster than the waves themselves-in fact 

cos 6' 41 - ( ~ r n n / u ) ~ j  
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Problem 9.27 Show that the mode TEoo cannot occur in a rectangular wave guide. [Hint: In 
this case w / c  = k, so Eqs. 9.180 are indeterminate, and you must go back to 9.179. Show that 
B, is a constant, and hence-applying Faraday's law in integral form to a cross section-that 
B, = 0, so this would be a TEM mode.] 

Problem 9.28 Consider a rectangular wave guide with dimensions 2.28 cm X 1.01 cm. What 
TE modes will propagate in this wave guide, if the driving frequency is 1.70 x 10'' Hz? 
Suppose you wanted to excite only one TE mode; what range of frequencies could you use'? 
What are the corresponding wavelengths (in open space)? 

Problem 9.29 Confirm that the energy in the TE,, mode travels at the group velocity. [Hint: 
Find the time averaged Poynting vector {S} and the energy density (U) (use Prob. 9.1 1 if you 
wish). Integrate over the cross section of the wave guide to get the energy per unit time and 
per unit length carried by the wave, and take their ratio.] 

Problem 9.30 Work out the theory of TM modes for a rectangular wave guide. In particular, 
find the longitudinal electric field, the cutoff frequencies, and the wave and group velocities. 
Find the ratio of the lowest TM cutoff frequency to the lowest TE cutoff frequency, for a given 
wave guide. [Caution: What is the lowest TM mode?] 

9.5.3 The Coaxial Transmission Line 

In Sect. 9.5.1, I showed that a hollow wave guide cannot support TEM waves. But a coaxial 
transmission line, consisting of a long straight wire of radius a,  surrounded by a cylindrical 
conducting sheath of radius b (Fig. 9.26), does admit modes with E, = 0 and B, = 0. In 
this case Maxwell's equations (in the form 9.179) yield 

(so the waves travel at speed c,  and are nondispersive), 

cBy  = E, and CB, = -E, (9.194) 

(so E and B are mutually perpendicular), and (together with V . E = 0, V B = 0): 

Figure 9.26 
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These are precisely the equations of electrostatics and magnetostatics, for empty space, in 
two dimensions; the solution with cylindrical symmetry can be borrowed directly from the 
case of an infinite line charge and an infinite straight current, respectively: 

for some constant A.  Substituting these into Eq. 9.1 76, and taking the real part: 

A cos ( k z  - w t )  , 
E(s. d. 7 .  t )  = S. 1 

A cos (kz  - w t )  
B(s, 4,  z, t )  = 

C S  

Problem 9.31 

(a) Show directly that Eqs. 9.197 satisfy Maxwell's equations (9.177) and the boundary con- 
ditions 9.175. 

(b) Find the charge density, h(z,  t ) ,  and the current, I ( z ,  t ) ,  on the inner conductor. 

More Problems on Chapter 9 

! Problem 9.32 The "inversion theorem" for Fourier transforms states that 

Use this to determine j ( k ) ,  in Q. 9.20, in terms o f f  ( z ,  0 )  and f ( z ,  0). 

[Answer: ( l  /2n) SF, [ f ( z ,  0 )  + ( i / w )  j ( z ,  ~ ) ] e - ~ ~ '  dzl 

Problem 9.33 Suppose 

sin 6 a W 
E(r, 6, #, t )  = A---- [cos (kr - wt) - ( l l k r )  sin (kr - w t ) ]  4, with - = c. 

r k 

(This is, incidentally, the simplest possible spherical wave. For notational convenience, let 
(kr - wt)  - u in your calculations.) 

(a) Show that E obeys all four of Maxwell's equations, in vacuum, and find the associated 
magnetic field. 

(b) Calculate the Poynting vector. Average S over a full cycle to get the intensity vector I. 
(Does it point in the expected direction? Does it fall off like r -2 ,  as it should?) 

(c) Integrate I . da over a spherical surface to determine the total power radiated. [Answer: 
4 1 r ~ ~ / 3 ~ ~ ~ ]  
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! Problem 9.34 Light of (angular) frequency w passes from medium 1, through a slab (thickness 
d) of medium 2, and into medium 3 (for instance, from water through glass into air, as in 
Fig. 9.27). Show that the transmission coefficient for normal incidence is given by 

[Hint: To the lej?, there is an incident wave and a reflected wave; to the right, there is a 
transmitted wave; inside the slab there is a wave going to the right and a wave going to the 
left. Express each of these in terms of its complex amplitude, and relate the amplitudes by 
imposing suitable boundary conditions at the two interfaces. All three media are linear and 
homogeneous; assume p ]  = p2 = p3 = po.] 

Figure 9.27 

Problem 9.35 A microwave antenna radiating at 10 GHz is to be protected from the environment 
by a plastic shield of dielectric constant 2.5. What is the minimum thickness of this shielding 
that will allow perfect transmission (assuming normal incidence)? [Hint: use Eq. 9.1991 

4 Problem 9.36 Light from an aquarium (Fig. 9.27) goes from water (n = 3 )  through a plane 

of glass (n = $) into air (n = 1). Assuming it's a monochromatic plane wave and that it 
strikes the glass at normal incidence, find the minimum and maximum transmission coefficients 
(Eq. 9.199). You can see the fish clearly; how well can it see you? 

Problem 9.37 According to Snell's law, when light passes from an optically dense medium into 
a less dense one (n 1 > n2) the propagation vector k bends away from the normal (Fig. 9.28). 
In particular, if the light is incident at the critical angle 

QC = sin-' (n2/nl) ,  (9.200) 

then QT = 90°, and the transmitted ray just grazes the surface. If Q[ exceeds Q,, there is no 
refracted ray at all, only a reflected one (this is the phenomenon of total internal reflection, 
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Figure 9.28 

on which light pipes and fiber optics are based). But thefields are not zero in medium 2; what 
we get is a so-called evanescent wave, which is rapidly attenuated and transports no energy 
into medium 2.19 

A quick way to construct the evanescent wave is simply to quote the results of Sect. 9.3.3. 
with kT = wn?/c and 

kT = kT (sin QT 2 + cos QT 2 ) :  

the only change is that 
n l  . sin 67- = - sin 91 
n2 

is now greater than 1, and 

is imaginary. (Obviously, QT can no longer be interpreted as an angle!) 

(a) Show that 
" - K Z  i ( k x - ~ t )  t) = EO,e e 

where 

This is a wave propagating in the x direction (parallel to the interface!), and attenuated in the 
z direction. 

(b) Noting that a (Eq. 9.108) is now imaginary, use Eq. 9.109 to calculate the reflection 
coefficient for polarization parallel to the plane of incidence. [Notice that you get 100% 
reflection, which is better than at a conducting surface (see, for example, Prob. 9.21).] 

(C) DO the same for polarization perpendicular to the plane of incidence (use the results of 
Prob. 9.16). 

I 9 ~ h e  evanescent fields can be detected by placing a second interface a short distance to the right of the first: in 
a close analog to quantum mechanical tunneling, the wave crosses the gap and reassembles to the right. See F. 
Albiol, S. Navas, and M. V. Andres,Am. J. Phys. 61, 165 (1993). 
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(d) In the case of polarization perpendicular to the plane of incidence, show that the (real) 
evanescent fields are 

E(r, t )  = EOeCKZ cos(kx - wt) j r ,  I 

(e) Check that the fields in (cl) satisfy all of Maxwell's equations (9.67). 

(f) For the fields in (d), construct the Poynting vector, and show that, on average, no energy is 
transmitted in the z direction. 

! Problem 9.38 Consider the resonant cavity produced by closing off the two ends of a rect- 
angular wave guide, at z = 0 and at z = d,  making a perfectly conducting empty box. Show 
that the resonant frequencies for both TE and TM modes are given by 

wimn = c n  J ~ i d ) ~  + ( r n ~ o ) ~  + ( n ~ h ) ~ .  (9.204) 

for integers l, m ,  and n. Find the associated electric and magnetic fields. 



Chapter 10 

Potentials and Fields 

10.1 The Potential Formulation 

10.1.1 Scalar and Vector Potentials 

In this chapter we ask how the sources (p  and J) generate electric and magnetic fields; in 
other words, we seek the general solution to Maxwell's equations, 

1 
(i) V . E = - p ,  

aB 
(iii) V X E = --, 

60 at l (10.1 ) 

(ii) V B = 0, 
aE  

(iv) V X B = poJ + P ~ E ~ - - .  
at  

Given p(r,  t )  and J(r,  t), what are the fields E(r ,  t) andB(r, t )?  In the static case Coulomb's 
law and the Biot-Savart law provide the answer. What we're looking for, then, is the 
generalization of those laws to time-dependent configurations. 

This is not an easy problem, and it pays to begin by representing the fields in terms of 
potentials. In electrostatics V X E = 0 allowed us to write E as the gradient af a scalar 
potential: E = - V V .  In electrodynamics this is no longer possible, because the curl of E 
is nonzero. But B remains divergenceless, so we can still write 

as in magnetostatics. Putting this into Faraday's law (iii) yields 

a 
V X E = --(V X A), 

at 
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Here is a quantity, unlike F, alone? whose curl does vanish; it cqp therefore be written as the 
gradient of a scalar: 

In terms of V and A, then, 

This reduces to the old form, of course, when A  is constant. 
The potential representation (Eqs. 10.2 and 10.3) automatically fulfills the two homoge- 

neous Maxwell equations, (ii) and (iii). How about Gauss's law (i) and the Ampkre/Maxwell 
law (iv)? Putting Eq. 10.3 into (i), we find that 

this replaces Poisson's equation (to which it reduces in the static case). Putting Eqs. 10.2 
and 10.3 into (iv) yields 

or, using the vector identity V X (V X A) = V(V . A) - V ~ A ,  and rearranging the terms 
a bit: 

Equations 10.4 and 10.5 contain all the information in Maxwell's equations. 

Example 10.1 

Find the charge and current distributions that would give rise to the potentials 

2 - 
V = O ,  A =  

for 1 . ~ 1  > ct, 

where k is a constant, and c = 1 /m. 
Solution: First we'll determine the electric and magnetic fields, using Eqs. 10.2 and 10.3: 
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Figure 10.1 

(plus for .X > 0, minus for x < 0). These are for 1 . ~ 1  cr et; when 1x1 > et, E = B = 0 
(Fig. 10.1). Calculating every derivative in sight, I find 

As you can easily check, Maxwell's equations are all satisfied, with p and J both zero. Notice, 
however, that B has a discontinuity at X = 0, and this signals the presence of a surface current 
K in the yz plane; boundary condition (iv) in Eq. 7.63 gives 

and hence 
K = k t f .  

Evidently we have here a uniform surface current flowing in the z direction over the plane 
x = 0, which starts up at t = 0, and increases in propartion to f .  Notice that the news travels 
out (in both directions) at the speed of light: for points Ix l > cr the message (that current is 
now flowing) has not yet arrived, so the fields are zero. 

Problem 10.1 Show that the differential equations for V and A (Eqs. 10.4 and 10.5) can be 
written in the more symmetrical form 

where 
a2 av 

n2 v2 - p o c o ~  and L = V . A + p O t O - .  
a t  
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Figure 10.2 

Problem 10.2 For the configuration in Ex. 10.1, consider a rectangular box of length 1, width 
W ,  and height h ,  situated a distance d above the y z  plane (Fig. 10.2). 

(a) Find the energy in the box at time tl = d /c ,  and at tz = (d + h) /c .  

(b) Find the Poynting vector, and determine the energy per unit time flowing into the box 
during the interval tl i t i t 2 .  

(C) Integrate the result in (b) from tl to t2 and confirm that the increase in energy (part (a)) 
equals the net influx. 

10.1.2 Gauge Transformations 

Equations 10.4 and 10.5 are ugly, and you might be inclined at this stage to abandon the 
potential formulation altogether. However, we have succeeded in reducing six problems- 
finding E and B (three components each)-down to four: V  (one component) and A  (three 
more). Moreover, Eqs. 10.2 and 10.3 do not uniquely define the potentials; we are free to 
impose extra conditions on V and A, as long as nothing happens to E and B. Let's work out 
precisely what this gauge freedom entails. Suppose we have two sets of potentials, (V, A) 
and (V', A'), which correspond to the same electric and magnetic fields. By how much can 
they differ? Write 

A r = A + a  and V ' =  V + B .  

Since the two A's give the same B, their curls must be equal, and hence 

We can therefore write a as the gradient of some scalar: 

a = V h .  
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The two potentials also give the same E, so 

The term in parentheses is therefore independent of position (it could, however, depend on 
time); call it k(t): 

Actually, we might as well absorb k(t) into h, defining a new h by adding 1; k(tr)dt' to the 
old one. This will not affect the gradient of h; it just adds k(t) to aA/at. It follows that 

Conclusion: For any old scalar function A, we can with impunity add V h  to A, provided 
we simultaneously subtract ah/at from V. None of this will affect the physical quantities E 
and B. Such changes in V and A are called gauge transformations. They can be exploited 
to adjust the divergence of A, with a view to simplifying the "ugly" equations 10.4 and 
10.5. In magnetostatics, it was best to choose V - A = 0 (Eq. 5.61); in electrodynamics 
the situation is not so clear cut, and the most convenient gauge depends to some extent on 
the problem at hand. There are many famous gauges in the literature; I'll show you the two 
most popular ones. 

Problem 10.3 Find the fields, and the charge and current distributions, corresponding to 

Problem 10.4 Suppose V = 0 and A = A0 sin(k.u - w t )  9,  where Ao, w ,  and k are constants. 
Find E and B, and check that they satisfy Maxwell's equations in vacuum. What condition 
must you impose on w and k? 

Problem 10.5 Use the gauge function h = - ( 1 / 4 n c o ) ( q t / r )  to transform the potentials in 
Prob. 10.3, and comment on the result. 
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10.1.3 Coulomb Gauge and Lorentz* Gauge 
The Coulomb Gauge. As in magnetostatics, we pick 

With this, Eq. 10.4 becomes 

This is Poisson's equation, and we already know how to solve it: setting V = 0 at infinity, 

Don't be fooled, though-unlike electrostatics, V  by itself doesn't tell you E; you have to 
know A as well (Eq. 10.3). 

There is apeculiar thing about the scalar potential in the Coulomb gauge: it is determined 
by the distribution of charge right now. If I move an electron in my laboratory, the potential 
V  on the moon immediately records this change. That sounds particularly odd in the light 
of special relativity, which allows no message to travel faster than the speed of light. The 
point is that V by itselfis not a physically measurable quantity-all the man in the moon can 
measure is E, and that involves A as well. Somehow it is built into the vector potential, in the 
Coulomb gauge, that whereas V instantaneously reflects all changes in p, the combination 
- V V  - (aA/at) does not; E will change only after sufficient time has elapsed for the 
"news" to arrive. l 

The advantage of the Coulomb gauge is that the scalar potential is particularly simple to 
calculate; the disadvantage (apart from the acausal appearance of V)  is that A is particularly 
dzfJicult to calculate. The differential equation for A (10.5) in the Coulomb gauge reads 

The Lorentz gauge. In the Lorentz gauge we pick 

This is designed to eliminate the middle term in Eq. 10.5 (in the language of Prob. 10.1, it 
sets L = 0). With this 

Meanwhile, the differential equation for V, (10.4), becomes 

*There is some question whether this should be attibuted to H. A. Lorentz or to L. V. Lorenz (see J. Van Bladel, 
IEEE Antennas and Propagation Magazine 33(2), 69 ( 1  99 I ) ) .  But all the standard textbooks include the t, and to 
avoid possible confusion I shall adhere to that practice. 

'See 0. L. Brill and B. Goodman. Am. J. Phys. 35,832 (1967). 
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The virtue of the Lorentz gauge is that it treats V and A on an equal footing: the same 
differential operator 

(called the d'Alembertian) occurs in both equations: 

This democratic treatment of V and A is particularly nice in the context of special relativity, 
where the d' Alembertian is the natural generalization of the Laplacian, and Eqs. 10.16 can 
be regarded as four-dimensional versions of Poisson's equation. (In this same spirit the wave 
equation, for propagation speed c, cl2 f = 0, might be regarded as the four-dimensional 
version of Laplace's equation.) In the Lorentz gauge V and A satisfy the inhomogeneous 
wave equation, with a "source" term (in place of zero) on the right. From now on I shall 
use the Lorentz gauge exclusively, and the whole of electrodynamics reduces to the problem 
of sol~iing the inhomogeneous wave eq~tation for specified sources. That's my project for 
the next section. 

Problem 10.6 Which of thepotentials in Ex. 10.1, Prob. 10.3, and Prob. 10.4 are in the Coulomb 
gauge? Which are in the Lorentz gauge? (Notice that these gauges are not mutually exclusive.) 

Problem 10.7 In Chapter 5 ,  I showed that it is always possible to pick a vector potential 
whose divergence is zero (Coulomb gauge). Show that it is always possible to choose V . A = 
-pOcO(a V l a t ) ,  as required for the Lorentz gauge, assuming you know how to solve equations 
of the form 10.16. Is it always possible to pick V = O? How about A = O? 

10.2 Continuous Distributions 

10.2.1 Retarded Potentials 

In the static case, Eqs. 10.16 reduce to (four copies of) Poisson's equation, 

with the familiar solutions 
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Figure 10.3 

where a, as always, is the distance from the Source point r' to the field point r (Fig. 10.3). 
Now, electromagnetic "news" travels at the speed of iight. In the nonstatic case, therefore, 
it's not the status of the source right now that matters, but rather its condition at some earlier 
time t, (called the retarded time) when the "message" left. Since this message must travel 
a distance 4, the delay is a/c: 

The natural generalization of Eq. 10.17 for nonstatic sources is therefore 

Here p(rl ,  t , )  is the charge density that prevailed at point r' at the retarded time t,. Because 
the integrands are evaluated at the retarded time, these are called retarded potentials. (I 
speak of "the" retarded time, but of course the most distant parts of the charge distribution 
have earlier retarded times than nearby ones. It's just like the night sky: The light we see 
now left each star at the retarded time corresponding to that star's distance from the earth.) 
Note that the retarded potentials reduce properly to Eq. 10.17 in the static case, for which 
p and J are independent of time. 

Well, that all sounds reasonable-and surprisingly simple. Blit are we sure it's right? 1 
didn't actually derive these formulas for V and A; all I did was invoke a heuristic argument 
("electromagnetic news travels at the speed of light") to make them seem plausible. To 
prove them, I must show that they satisfy the inhomogeneous wave equation (10.16) and 
meet the Lorentz condition (10.12). In case you think I'm being fussy, let me warn you that 
if you apply the same argument to thefields you'll get entirely the wrong answer: 

J(r l ,  t,) X i 
d t', 
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as you would expect if the same "logic" worked for Coulomb's law and the Biot-Savart law. 
Let's stop and check, then, that the retarded scalar potential satisfies Eq. 10.16; essentially 
the same argument would serve for the vector pptential.2 I shall leave it for you (Prob. 10.8) 
to check that the retarded potentials obey the Lorentz condition. 

In calculating the Laplacian of V(r, t), the crucial point to notice is that the integrand 
(in Eq. 10.19) depends on r in two places: explicitly, in the denominator (n, = Ir - r'l), and 
implicitly, through t, = t - a/c ,  in the numerator. Thus 

and 
1 

Vp = 'bvt, = --bVa 
C 

(the dot denotes differentiation with respect to time).' Now Vn, = 4 and V ( l  /'L) = -$/a2 
(Prob. 1.13), so 

Taking the divergence, 

I v2v = - 4n €0 { -  c [ 'L V V (f)] - [& a2 ( v p )  + p \  (:)l} d r f .  

But 

as in Eq. 10.21, and 

(Prob. 1.62), whereas 

(Eq. 1.100). So 

confirming that the retarded potential (10.19) satisfies the inhomogeneous wave equation 
(10.16). qed 

2~'11 give you the straightforward but culnbersolne proof; for a clever indirect argument see M. A. Heald and J .  
B. Marion, Classical Electmmugnetic Radiation, 3d ed., Sect. 8.1 (Orlando, FL: Saunders (1995)). 

3 ~ o t e  that i l lat ,  = i l l a t ,  since tr = t - n,/c and a is independent of r .  
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Incidentally, this proof applies equally well to the advanced potentials, 

in which the charge and the current densities are evaluated at the advanced time 

A few signs are changed, but the final result is unaffected. Although the advanced potentials 
are entirely consistent with Maxwell's equations, they violate the most sacred tenet in all of 
physics: the principle of causality. They suggest that the potentials now depend on what 
the charge and the current distribution will be at some time in the future-the effect, in 
other words, precedes the cause. Although the advanced potentials are of some theoretical 
interest, they have no direct physical ~ignificance.~ 

Example 10.2 

An infinite straight wire carries the current 

I 0, for t 5 0, 
I ( t )  = 

lo, f o r t 1 0 .  

That is, a constant current l. is turned on abruptly at t = 0. Find the resulting electric and 
magnetic fields. 

Solution: The wire is presumably electrically neutral, so the scalar potential is zero. Let the 
wire lie along the z axis (Fig. 10.4); the retarded vector potential at point P is 

For t < s l c ,  the "news" has not yet reached P, and the potential is zero. For t > s/c, only 
the segment 

1.1 5 4- (10.25) 

contributes (outside this range t, is negative, so I ( t , )  = 0); thus 

p- - 

4 ~ e c a u s e  the d' Alembertian involves t 2  (as opposed to t ) ,  the theory itself is tide-reversal invariant, and does 
not distinguish "past" from "future." Time asymmetry is introduced when we select the retarded potentials in 
preference to the advanced ones, reflecting the (not unreasonable!) belief that electromagnetic influences propagate 
forward, not backward, in time. 
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Figure 10.4 

The electric field is 
a A 

E(s, t )  = - - = - PO lot 
at Z n J m  '' 

and the magnetic field is 

A 

Notice that as t  -+ cc we recover the static case: E = 0, B = ( p o I o / 2 r s )  4. 

! Problem 10.8 Confirm that the retarded potentials satisfy the Lorentz gauge condition. [Hint: 

where V denotes derivatives with respect to r, and V' denotes derivatives with respect to rl. 
Next, noting that J(rl, t -ale) depends on r' both explicitly and through a, whereas it depends 
on r only through a, confirm that 

Use this to calculate the divergence of A (Eq. 10.19).] 

! Problem 10.9 

(a) Suppose the wire in Ex. 10.2 carries a linearly increasing current 

l i t )  = k t ,  

for t  > 0. Find the electric and magnetic fields generated. 

(b) Do the same for the case of a sudden burst of current: 
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Figure 10.5 

Problem 10.10 A piece of wire bent into a loop, as shown in Fig. 10.5, carries a current that 
increases linearly with time: 

I (t) = kt. 

Calculate the retarded vector potential A at the center. Find the electric field at the center. Why 
does this (neutral) wire produce an electric field? (Why can't you determine the magnetic field 
from this expression for A?) 

10.2.2 Jefimenko's Equations 

Given the retarded potentials 

it is, in principle, a straightforward matter to determine the fields: 

But the details are not entirely trivial because, as I mentioned earlier, the integrands depend 
on r both explicitly, through .z = Ir - r'l in the denominator, and implicitly, through the 
retarded time t, = t - .z/c in the argument of the numerator. 

I already calculated the gradient of V (Eq. 10.22); the time derivative of A is easy: 

Putting them together (and using c2 = l /p0eo):  

This is the time-dependent generalization of Coulomb's law, to which it reduces in the static 
case (where the second and third terms drop out and the first term loses its dependence on t,). 
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As for B. the curl of A contains two terms: 

Now 

and 

I .  . a n )  L .  
(V X J), = -- J Z  - Jy -  = - [J X 

C a z 

But Va = 4 (Prob. 1.13), so 

Meanwhile V (1 /a) = -;/a2 (again, Prob. 1.13), and hence 

This is the time-dependent generalization of the Biot-Savart law, to which it reduces in the 
static case. 

Equations 10.29 and 10.31 are the (causal) solutions to Maxwell's equations. For some 
reason they do not seem to have been published until quite recently-the earliest explicit 
statement of which I am aware was by Oleg Jefimenko, in 1966.~ In practice Jefimenko's 
equations are of limited utility, since it is typically easier to calculate the retarded potentials 
and differentiate them, rather than going directly to the fields. Nevertheless, they provide 
a satisfying sense of closure to the theory. They also help to clarify an observation I made 
in the previous section: To get to the retarded potentials, all you do is replace t by t ,  in 
the electrostatic and magnetostatic formulas, but in the case of the fields not only is time 
replaced by retarded time, but completely new terms (involving derivatives of p and J) 
appear. And they provide surprisingly strong support for the quasistatic approximation (see 
Prob. 10.12). 

50. D. Jefimenko, Electricity und Mugnetism, Sect. 15.7 (New York: Appleton-Century-Crofts, 1996). Closely 
related expressions appear in W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Sect. 14.3 
(Reading, MA: Addison-Wesley, 1962). See K. T. McDonald, Am. J. Phys. 65, 1074 (1997) for illuminating 
commentary and references. 



10.3. POlNT CHARGES 429 

Problem 10.11 Suppose J(r) is constant in time, so (Prob. 7.55) p(r. t )  = p(r, 0) + p(r, 0)t. 
Show that 

that is, Coulomb's law holds, with the charge density evaluated at the non-retarded time. 

Problem 10.12 Suppose the current density changes slowly enough that we can (to good 
approximation) ignore all higher derivatives in the Taylor expansion 

(for clarity, I suppress the r-dependence, which is not at issue). Show that a fortuitous cancel- 
lation in Eq. 10.3 1 yields 

That is: the Biot-Savart law holds, with J evaluated at the non-retarded time. This means that 
the quasistatic approximation is actually much better than we had any right to expect: the two 
errors involved (neglecting retardation and dropping the second term in Eq. 10.31) cancel one 
another, to first order. 

10.3 Point Charges 

10.3.1 Liknard-Wiechert Potentials 

My next project is to calculate the (retarded) potentials, V(r, t )  and A(r ,  t), of a point 
charge q that is moving on a specified trajectory 

w(t) position of q at time t. (10.32) 

The retarded time is determined implicitly by the equation 

for the left side is the distance the "news" must travel, and (t - tr) is the time it takes to 
make the trip (Fig. 10.6). I shall call w(t,) the retarded position of the charge; a is the 
vector from the retarded position to the field point r: 

It is important to note that at most one point on the trajectory is "in communication" 
with r at any particular time t .  For suppose there were two such points, with retarded times 
tl  and t2: 

a,  = c(t - t l )  and 42 = c(t - t2). 
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Retarded 
position \ Particle 

Present 
/ position 

Figure 10.6 

Then a1 - 42 = c(t2 - tl ), so the average velocity of the particle in the direction of r would 
have to be c-and that's not counting whatever velocity the charge might have in other 
directions. Since no charged particle can travel at the speed of light, it follows that on14 
one retarded point contributes to the potentials, at any given m ~ m e n t . ~  

Now, a nai've reading of the formula 

might suggest to you that the retarded potential of a point charge is simply 

(the same as in the static case, only with the understanding that a is the distance to the 
retarded position of the charge). But this is wrong, for a very subtle reason: It is true that 
for a point source the denominator a comes outside the integral,7 but what remains, 

S p p ' ,  t,) d t ' .  

is not equal to the charge of the particle. To calculate the total charge of a configuration you 
must integrate p over the entire distribution at one instant of time, but here the retardation. 
tr = t -a/c, obliges us to evaluate p at different times for different parts of the configuration. 
If the source is moving, this will give a distorted picture of the total charge. You might 

6 ~ o r  the same reason, an observer at r sees the particle in only one place at a time. By contrast, it is possible to 
hear an object in two places at once. Consider a bear who growls at you and then runs toward you at the speed of 
sound and growls again; you hear both growls at the same time, coming from two different locations, but there.. 
only one bear. 

 h here is, however, an implicit change in its functional dependence: Before the integration, a = Ir - r '  1, .I 
function of r and r'; affer the integration (which fixes r' = w(t,)) 4 = Ir - w(t,) I is (like t,) a function of r and 7 
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think that this problem would disappear for point charges, but it doesn't. In Maxwell's 
electrodynamics, formulated as it is in terms of charge and current densities, a point charge 
must be regarded as the limit of an extended charge, when the size goes to zero. And for 
an extended particle, no matter how small, the retardation in Eq. 10.36 throws in a factor 
(1 - 4. "/c)-', where v is the velocity of the charge at the retarded time: 

S p(r', t r )  dt' = 4 
l - 4. v/c 

Proof: This is a purely geometrical effect, and it may help to tell the story in 
a less abstract context. You will not have noticed it, for obvious reasons, but 
the fact is that a train coming towards you looks a little longer than it really is, 
because the light you receive from the caboose left earlier than the light you 
receive simultaneoysly from the engine, and at that earlier time the train was 
farther away (Fig. 10.7). In the interval it takes light from the caboose to travel 
the extra distance L', the train itself moves a distance L' - L: 

So approaching trains appear longer, by a factor (1 - v / c ) - l .  By contrast, a 
train going away from you looks shorter,' by a factor ( l + v / c ) -  l .  In general, if 
the train's velocity makes an angle B with your line of sight,9 the extra distance 
light from the caboose must cover is L' cos B (Fig. 10.8). In the time L' cos @/c ,  
then, the train moves a distance (L' - L) :  

Figure 10.7 

'please note that this has nothing whatever to do with special relativity or Lorentz contraction-L is the length 
of the nzoving train, and its rest length is not at issue. The argument is somewhat reminiscent of the Doppler effect. 

91 assume the train is far enough away or (more to the point) short enough so that rays from the caboose and 
engine can be considered parallel. 
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Figure 10.8 

Notice that this effect does not distort the dimensions perpendicular to the 
motion (the height and width of the train). Never mind that the light from the 
far side is delayed in reaching you (relative to light from the near side)-since 
there's no motion in that direction, they'll still look the same distance apart. 
The apparent volume t' of the train, then, is related to the actual volume t by 

where 4 is a unit vector from the train to the observer. 
In case the connection between moving trains and retarded potentials escapes 

you, the point is this: Whenever you do an integral of the type 10.37, in which 
the integrand is evaluated at the retarded time, the effective volume is modified 
by the factor in Eq. 10.38, just as the apparent volume of the train was-and 
for the same reason. Because this correction factor makes no reference to the 
size of the particle, it is every bit as significant for a point charge as for an 
extended charge. qed 

It follows, then, that 

where v is the velocity of the charge at the retarded time, and a is the vector from the retarded 
position to the field point r. Meanwhile, since the current density of a rigid object is pv 
(Eq. 5.26), we also have 
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Equations 10.39 and 10.40 are the famous Liknard-Wiechert potentials for a moving point 
charge.'' 

Example 10.3 

Find the potentials of a point charge moving with constant velocity. 

Solution: For convenience, let's say the particle passes through the origin at time t = 0, so 
that 

w( t )  = v t .  

We first compute the retarded time, using Eq. 10.33: 

or, squaring: 

Solving for t ,  by the quadratic formula, I find that 

(c2t - r . v)  f J(c2t  - r . v)2 + (c* - v2)(r2 - c 2 t 2 )  
tr = (10.41) 

c2 - v2 

To fix the sign, consider the limit v  = 0: 

In this case the charge is at rest at the origin, and the retarded time should be ( t  - r / c ) ;  evidently 
we want the minus sign. 

Now, from Eqs. 10.33 and 10.34, 

r - vt,  
.z = c(t  - t r ) ,  and k =  

~ ( t  - t r )  ' 

'O~here  are many ways to obtain the Liknard-Wiechert potentials. I have tried to emphasize the geometrical 
origin of the factor (1 -4. v/c)-] ; for illuminating commentary see W. K. H. Panofsky and M. Phillips, Classical 
Electricity and Magnetism, 2d ed., pp. 342-3 (Reading, MA: Addison-Wesley, 1962). A more rigorous derivation 
is provided by J. R. Reitz, F. J. Milford, and R. W. Christy, Forindations of Electromagnetic Theory, 3d ed., 
Sect. 21.1 (Reading, MA: Addison-Wesley, 1979), or M. A. Heald and J. B. Marion, Classical Electromagnetic 
Radiation, 3d ed., Sect. 8.3 (Orlando, FL: Saunders, 1995). 
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(I used Eq. 10.41, with the minus sign, in the last step). Therefore, 

and (Eq. 10.40) 

Problem 10.13 A particle of charge q moves in a circle of radius a at constant angular velocity 
w.  (Assume that the circle lies in the x y  plane, centered at the origin, and at time t = 0 the 
charge is at (a, U), on the positive x axis.) Find the Lienard-Wiechert potentials for points on 
the z axis. 

Problem 10.14 Show that the scalar potential of a point charge moving with constant velocity 
(Eq. 10.42) can be written equivalently as 

where K r - vt is the vector from the present (!) position of the particle to the field point 
r ,  and 8 is the angle between R and v (Fig. 10.9). Evidently for nonrelativistic velocities 
(v2 << c2 1, 

Figure 10.9 

Problem 10.15 1 showed that at most one point on the particle trajectory communicates with 
r a t  any given time. In some cases there may be no such point (an observer at r would not see 
the particle-in the colorful language of General Relativity it is "beyond the horizon"). As an 
example, consider a particle in hyperbolic motion along the x axis: 
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(In Special Relativity this is the trajectory of a particle subject to a constant force F = rnc2/b.) 
Sketch the graph of W versus t .  At four or five representative points on the curve, draw the 
trajectory of a light signal emitted by the particle at that point-both in the plus X direction 
and in the minus X direction. What region on your graph corresponds to points and times (X, t )  
from which the particle cannot be seen? At what time does someone at point x first see the 
particle? (Prior to this the potential at x is evidently zero.) Is it possible for a particle, once 
seen. to disappear from view? 

! Problem 10.16 Deternline the LiCnard-Wiechert potentials for a charge in hyperbolic motion 
(Eq. 10.45). Assume the point r is on the X axis and to the right of the charge. 

10.3.2 The Fields of a Moving Point Charge 

We are now in a position to calculate the electric and magnetic fields of a point charge in 
arbitrary motion, using the Liknard-Wiechert potentials:ll 

and the equations for E and B: 

The differentiation is tricky, however, because 

4 = r - wit,) and v = w ( t r )  (10.47) 

are both evaluated at the retarded time, and tr--defined implicitly by the equation 

-is itselfa function of r and t.12 S o  hang on: the next two pages are rough going . . .but 
the answer is worth the effort. 

Let's begin with the gradient of V: 

'2 c - 1  V V  = - V(M - a .  v).  
4 x 6 0  (M - 4 2. vl2 

"You can get the fields directly from Jefimenko's equations, but it's not easy. See. for example, M. A. Heald 
and J. B. Marion, Classical Electromagnetic Radiation, 3d ed., Sect. 8.4 (Orlando, FL: Saunders, 1995). 

1 2 ~ h e  following calculation is done by the most direct, "brute force" method. For a more clever and efficient 
approach see J. D. Jackson, Classical Elrctrodvnamics, 3d ed., Sect. 14.1 (New York: John Wiley, 1999). 
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Since a = c ( t  - t , ) ,  
V s  = - cVt r .  

As for the second term, product rule 4 gives 

Evaluating these terms one at a time: 

d v  at, d v  at, d v  atr 
= a,--- +ay-- +az-- 

dt,  ax dt ,  ay dt, a 2  

where a ir is the acceleration of the particle at the retarded time. Now 

(V - V)a = ( V .  V ) r  - ( v .  V ) w ,  (10.53) 

and 

while 
( v .  V ) w  = v(v . V t , )  

(same reasoning as Eq. 10.52). Moving on to the third term in Eq. 10.51, 

Finally, 
V x & = V x r - v x w ,  

but V X r = 0, while, by the same argument as Eq. 10.55, 
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Putting all this back into Eq. 10.51, and using the "BAC-CAB" rule to reduce the triple 
cross products, 

Collecting Eqs. 10.50 and 10.58 together, we have 

To complete the calculation, we need to know Vtr. This can be found by taking the 
gradient of the defining equation (10.48)-which we have already done in Eq. 10 .5kand  
expanding out Va: 

But 
(4 - V)& = & - V(&. Vt,) 

(same idea as Eq. 10.53), while (from Eq. 10.56 and 10.57) 

Thus 
1 l 

-cVtr = -[& - V ( & .  Vtr) + & X (V X Vtr)] = -[a - (4. v)Vtr], 
a a 

and hence 
-& 

Vt, = 
4C-&.V 

Incorporating this result into Eq. 10.59, I conclude that 

A similar calculation, which I shall leave for you (Prob. 10.17), yields 
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Combining these results, and introducing the vector 

I find 
4 4 E(r, t )  = -- [(c2 - v2)u + a  X (U X a)]. 

4nco (a - u ) ~  

Meanwhile, 

1 l 
V X A =  -V X (Vv) = -[V(V x v )  - v  X (VV)]. 

c2 c2 

We have already calculated V X v (Eq. 10.55) and V V (Eq. 10.62). Putting these together. 

1 4  1 V X A =  a X [(c2 - u2)v + (a .  a)v + (a - u)a]. 
c 4nc0 (U 

The quantity in brackets is strikingly similar to the one in Eq. 10.65, which can be written. 
using the BAC-CAB rule, as [(c2 - v2)u + (a. a)u - (a - u)a]; the main difference is that we 
have v's instead of U'S in the first two terms. In fact, since it's all crossed into a anyway, we 
can with impunity change these v's into -U'S; the extra term proportional to 4 disappears 
in the cross product. It follows that 

B(r, t )  = -a X E(r, t). 7 
Evidently the nzagneticJield of a point charge is always perpendicular to the electricJield, 
and to the vector from the retarded point. 

The first term in E (the one involving (c2 - v2)u) falls off as the inverse square of the 
distance from the particle. If the velocity and acceleration are both zero, this term alone 
survives and reduces to the old electrostatic result 

For this reason, the first term in E is sometimes called the generalized Coulomb field. 
(Because it does not depend on the acceleration, it is also known as the velocity field.) The 
second term (the one involving a X (U X a)) falls off as the inverse.first power of 4 and is 
therefore dominant at large distances. As we shall see in Chapter 11, it is this term that is 
responsible for electromagnetic radiation; accordingly, it is called the radiation field-or. 
since it is proportional to a, the acceleration field. The same terminology applies to the 
magnetic field. 

Back in Chapter 2, I commented that if we could only write down the formula for the 
force one charge exerts on another, we would be done with electrodynamics, in principle. 
That, together with the superposition principle, would tell us the force exerted on a test 
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charge Q by any configuration whatsoever. Well. . .here we are: Eqs. 10.65 and 10.66 give 
us the fields, and the Lorentz force law determines the resulting force: 

where V is the velocity of Q ,  and 5 U, v, and a are all evaluated at the retarded time. The 
entire theory of classical electrodynamics is contained in that equation.. .but you see why 
I preferred to start out with Coulomb's law. 

Example 10.4 

Calculate the electric and magnetic fields of a point charge moving with constant velocity. 

Solution: Putting a = 0 in Eq. 10.65, 

q ( c 2 -  v2)", E = -  U .  
( I .  u ) ~  

In this case, using W = v t ,  

au = c& -",v = c(r  - vt , )  - c(t - t,)v = c(r  - v t ) .  

In Ex. 10.3 we found that 

W - I .  v = I .  u = ,/(c21 - r . v12 + (c2 - v2)(r2 - c2t2). 

In Prob. 10.14, you showed that this radlcal could be written as 

where 
R - r - v t  

is the vector from the present location of the particle to r, and 0 is the angle between R and v 
(Fig. 10.9). Thus 

Notice that E points along the line from the present position of the particle. This is an 
extraordinary coincidence, since the "message" came from the retarded position. Because of 
the sin2 0 in the denominator, the field of a fast-moving charge is flattened out like a pancake in 
the direction perpendicular to the motion (Fig. 10.10). In the forward and backward directions 

2 2 E is reduced by a factor ( I  - v / c  ) relative to the field of a charge at rest; in the perpendicular 
direction it is enhanced by a factor 1 / J m 2 .  
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Figure 10.10 

As for B, we have 

and therefore 

B = - ( a x E )  = -(v x E). ,il 
Lines of B circle around the charge, as shown in Fig. 10.1 1. 

Figure 10.1 l 

The fields of a point charge moving at constant velocity (Eqs. 10.68 and 10.69) were first 
obtained by Oliver Heaviside in 1888. '~  When v 2  << c2 they reduce to 

The first is essentially Coulomb's law, and the latter is the "Biot-Savart law for a point charge" 
I warned you about in Chapter 5 (Eq. 5.40). 

1 3 ~ o r  history and references, see 0. J. Jefirnenko, Am. J. Phys. 62,79 (1994). 
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Problem 10.17 Derive Eq. 10.63. First show that 

Problem 10.18 Suppose a point charge q  is constrained to move along the x axis. Show that 
the fields at points on the axis to the right of the charge are given by 

What are the fields on the axis to the lep of the charge? 

Problem 10.19 

(a) Use Eq. 10.68 to calculate the electric field a distance d from an infinite straight wire 
carrying a uniform line charge h, moving at a constant speed v down the wire. 

(b) Use Eq. 10.69 to find the magnetic field of this wire. 

Problem 10.20 For the configuration in Prob. 10.13, find the electric and magnetic fields at 
the center. From your formula for B, determine the magnetic field at the center of a circular 
loop carrying a steady current I, and compare your answer with the result of Ex. 5.6 

More Problems on Chapter 10 

Problem 10.21 Suppose you take a plastic ring of radius U and glue charge on it, so that 
the line charge density is h0 l sin(Q/2) I. Then you spin the loop about its axis at an angular 
velocity w. Find the (exact) scalar and vector potentials at the center of the ring. [Answer: 
A = (pohooa/3n) {sin[w(t - ale)] 22 - cos[w(t - ale)] i)] 

Problem 10.22 Figure 2.35 summarizes the laws of electrostatics in a "triangle diagram" 
relating the source (p) ,  the field (E), and the potential (V). Figure 5.48 does the same for 
magnetostatics, where the source is J, the field is B, and the potential is A. Construct the 
analogous diagram for electrodynamics, with sources p and J (constrained by the continuity 
equation), fields E and B, and potentials V and A (constrained by the Lorentz gauge condition). 
Do not include fo~~nulas  for V and A in terms of E and B. 

Problem 10.23 Check that the potentials of a point charge moving at constant velocity 
(Eqs. 10.42 and 10.43) satisfy the Lorentz gauge condition (Eq. 10.12). 

Problem 10.24 One particle, of charge q l ,  is held at rest at the origin. Another particle, of 
charge q2, approaches along the x axis, in hyperbolic motion: 

it reaches the closest point, h, at time t = 0, and then returns out to infinity. 
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(a) What is the force F2 on q2 (due to ql ) at time t'? 

(b) What total impulse ( I 2  = F;dt) is delivered by q2 to ql ? 

(c) What is the fbrce F1 on ql (due to q 2 )  at time t? 

(d) What total impulse ( I I  = Fldt )  is delivered to ql by q2? [Hint: It might help to 
review Prob. 10.15 before doing this integral. Answer: I2 = -11 = q 1 q 2 / 4 ~ O h c ]  

Problem 10.25 A particle of charge q  is traveling at constant speed v along the x axis. Calculate 
the total power passing through the plane X = a, at the moment the particle itself is at the 
origin. [Ariswer: q 2 v / 3 2 n ~ O a 2 ]  

Problem 10.2614 A particle of charge ql is at rest at the origin. A second particle, of charge 
q2, moves along the z axis at constant velocity v. 

(a) Find the force F12 (t) of ql on q2, at time t (when q2 is at z = vt). 

(b) Find the force F21 (t) of q2 on q l ,  at time t .  Does Newton's third law hold, in this case? 

! (c)Calculate the linear momentum p(t) in the electromagnetic fields, at time t. (Don't bother 
with any terms that are constant in time, since you won't need them in part (d)). [Answer: 

( ~ o q l  q2 /4nt )  21 
(d) Show that the sum of the forces is equal to minus the rate of change of the momentum in 
the fields, and interpret this result physically. 

14see J.  J. G. Scanio, Am. J. Phys. 43,258 (1975). 



Chapter 11 

Radiation 

1 1.1 Dipole Radiation 

111.1 What is Radiation? 

In Chapter 9 we discussed the propagation of plane electromagnetic waves through various 
media, but I did not tell you how the waves got started in the first place. Like all electro- 
magnetic fields. their source is some arrangement of electric charge. But a charge at rest 
does not generate electromagnetic waves; nor does a steady current. It takes accelerating 
charges, and changing currents, as we shall see. My purpose in this chapter is to show you 
how such configurations produce electromagnetic waves-that is, how they radiate. 

Once established, electromagnetic waves in vacuum propagate out "to infinity," carrying 
energy with them; the signature of radiation is this irreversible flow of energy away from 
the source. Throughout this chapter I shall assume the source is localized1 near the origin. 
Imagine a gigantic spherical shell, out at radius r (Fig. 11.1); the total power passing out 
through this surface is the integral of the Poynting vector: 

The power radiated is the limit of this quantity as r goes to infinity: 

Prad -- lim P(r) .  
r-+m 

This is the energy (per unit time) that is transported out to infinity, and never comes back. 
Now, the area of the sphere is 4nr2, so for radiation to occur the Poynting vector must 

decrease (at large r )  no faster than l / r 2  (if it went like l / r3 ,  for example, then P( r )  would 
go like I / r ,  and Prad would be zero). According to Coulomb's law, electrostatic fields 
fall off like l / r 2  (or even faster, if the total charge is zero), and the Biot-Savart law says 

'For nonlocalized sources, such as infinite planes, wires, or solenoids, the whole concept of "radiation" must 
be reformulated-see Prob. 11.24. 
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Figure 11.1 

that magnetostatic fields go like l/r2 (or faster), which means that S -- l / r4 ,  for static 
configurations. So static sources do not radiate. But Jefimenko's equations (10.29 and 
10.31) indicate that time-dependent fields include terms (involving b and J) that go like 
l / r ;  it is these terms that are responsible for electromagnetic radiation. 

The study of radiation, then, involves picking out the parts of E and B that go like l / r  at 
large distances from the source, constructing from them the l / r 2  term in S, integrating over 
a large spherical2 surface, and taking the limit as r -+ oo. I'll carry through this procedure 
first for oscillating electric and magnetic dipoles; then, in Sect. 11.2, we'll consider the 
more difficult case of radiation from an accelerating point charge. 

11.1.2 Electric Dipole Radiation 

Picture two tiny metal spheres separated by a distance d and connected by a fine wire 
(Fig. 11.2); at time t the charge on the upper sphere is q ( t ) ,  and the charge on the lower 
sphere is -q(t). Suppose that we drive the charge back and forth through the wire, from 
one end to the other, at an angular frequency w: 

The result is an oscillating electric dipole:3 

where 

PO = qod 

is the the maximum value of the dipole moment. 

*1t doesn't have to be a sphere, of course, but this makes the calculations a lot easier. 
3 ~ t  might occur to you that a more natural model would consist of equal and opposite charges mounted on a 

spring, say, so that q is constant while d oscillates, instead of the other way around. Such a model would lead 
to the same result, but there is a subtle problem in calculating the retarded potentials of a moving point charge. 
which I would prefer to save for Sect. 11.2. 
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z t  

Figure 1 1.2 

The retarded potential (Eq. 10.19) is 

where, by the law of cosines, 

Now, to make this physical dipole into a pe$ect dipole, we want the separation distance to 
be extremely small: 

approximation 1 : d << r.  ( 1  1.7) 

Of course, if d is zero we get no potential at all; what we want is an expansion camed to 
first order in d .  Thus 

It follows that 

and 

cos[@ ( t  - as /c) ]  2 cos W ( t  - r / c )  f - cos 6 
2c " l 

In the perfect dipole limit we have, further, 

C 
approximation 2 : d << - . 

W 
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(Since waves of frequency w have a wavelength h = 2nc/o,  this amounts to the requirement 
d << h.) Under these conditions 

wd 
cos[o(t - c4/c)] E cos[w(t - r/c)] 7 - cos 8 sin[o(t - rlc)]. (11.11) 

2c 

Putting Eqs. 1 1.9 and 1 l .  1 1 into Eq. 1 1.5, we obtain the potential of an oscillating 
perfect dipole: 

In the static limit (w + 0) the second term reproduces the old formula for the potential of 
a stationary dipole (Eq. 3.99): 

p0 cos 0 v = 
4 ~ c € ~ r ~  ' 

This is not, however, the term that concerns us now; we are interested in the fields that 
survive at large distances from the source, in the so-called radiation zone:4 

C 
approximation 3 : r >> - . (11.13) 

W 

(Or, in terms of the wavelength, r >> h.) In this region the potential reduces to 

V(r, 0,  t )  = -- *Ow ( )  - s i n  t - r/c)]. 
4neoc 

Meanwhile, the vector potential is determined by the current flowing in the wire: 

Referring to Fig. 1 1.3, 

d / 2  -qow sin[w(t - c/c)] 2 
A(r, t )  = - dz. 

c 

Because the integration itself introduces a factor of d, we can, to first order, replace the 
integrand by its value at the center: 

(Notice that whereas I implicitly used approximations l and 2, in keeping only the first 
order in d, Eq. 1 1.17 is not subject to approximation 3.) 

4 ~ o t e  that approximations 2 and 3 subsume approximation 1 ; all together, we have d  << h << v 
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Figure 1 1.3 

From the potentials, it is a straightforward matter to compute the fields. 

a v ,  l a v a  
V V = - r + - - 8  

dr r  a9 

- 0 
- 

sin 9 
sin[w ( t  - r / c> l8  

r  C 

(I dropped the first and last terms, in accordance with approximation 3 . )  Likewise, 

aA 
--p - 'opow2 cos[o (t - r/c)l(cos Q i - sin 9 81, 
a t  4rt r  

and therefore 

Meanwhile 

- sin Q - -= {E sin0 ca[ol(t - , / c ) ]  + - sin[w(t - r / c ) ]  
4nr c  r  

The second term is again eliminated by approximation 3, so 
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Equations 1 1.18 and 1 1.19 represent monochromatic waves of frequency o traveling in 
the radial direction at the speed of light. E and B are in phase, mutually perpendicular, and 
transverse; the ratio of their amplitudes is EO/BO = c. All of which is precisely what we 
expect for electromagnetic waves in free space. (These are actually spherical waves, not 
plane waves, and their amplitude decreases like l / r  as they progress. But for large r, they 
are approximately plane over small regions-just as the surface of the earth is reasonably 
flat, locally.) 

The energy radiated by an oscillating electric dipole is determined by the Poynting 
vector: 

sin 8 

The intensity is obtained by averaging (in time) over a complete cycle: 

Notice that there is no radiation along the axis of the dipole (here sin 6 = 0); the intensity 
profile5 takes the form of a donut, with its maximum in the equatorial plane (Fig. 11.4). 
The total power radiated is found by integrating {S) over a sphere of radius r : 

S popio4 S sin2 
(P)  = (S) . d a  = r  s i n 8 d 8 d # =  

PO p iu4  
(1 1.22) 

32n2c r2  12nc ' 

Figure 1 1.4 

 he "radial" coordinate in Fig. 11.4 represents the magnitude of (S) (at fixed r), as a function of Q and 4. 
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It is independent of the radius of the sphere, a s  one  would expect from conservation of 
energy (with approximation 3 we were anticipating the Iimit r + 00). 

Example 11.1 

The sharp frequency dependence of the power formula is what accounts for the blueness of 
the sky. Sunlight passing through the atmosphere stimulates atoms to oscillate as tiny dipoles. 
The incident solar radiation covers a broad range of frequencies (white light), but the energy 
absorbed and reradiated by the atmospheric dipoles is stronger at the higher frequencies because 
of the w4 in Eq. 1 1.22. It is more intense in the blue, then, than in the red. It is this reradiated 
light that you see when you look up in the sky-unless, of course, you're staring directly at 
the sun. 

Because electromagnetic waves are transverse, the dipoles oscillate in a plane orthogonal 
to the sun's rays. In the celestial arc perpendicular to these rays, where the blueness is most 
pronounced, the dipoles oscillating along the line of sight send no radiation to the observer 
(because of the sin2 0 in equation Eq. 1 1.21); light received at this angle is therefore polarized 
perpendicular to the sun's rays (Fig. 11.5). 

Sun's rays - J / This dipole does not 

X 1  radiate to the observer 

Figure 1 1.5 

The redness of sunset is the other side of the same coin: Sunlight coming in at a tangent to the 
earth's surface must pass through a much longer stretch of atmosphere than sunlight coming 
from overhead (Fig. 11.6). Accordingly, much of the blue has been removed by scattering and 
what's left is red. 

Problem 11.1 Check that the retarded potentials of an oscillating dipole (Eqs. 1 1.12 and I 1.17) 
satisfy the Lorentz gauge condition. Do not use approximation 3. 

Problem 11.2Equation 1 1.14 can be expressed in "coordinate-free" form by writing p0 cos B = 
PO.;.  Doso,andlikewiseforEqs. 11.17, 11.18. 11.19,and 11.21. 



CHAPTER I I .  RADIATION 

Atmosphere (thickness grossly exaggerated) 

. 

Sun's 
rays 

Figure 1 1.6 

Problem 11.3 Find the radiation resistance of the wire joining the two ends of the dipole. 
(This is the resistance that would give the same average power loss-to heat-as the oscillating 
dipole in fact puts out in the form of radiation.) Show that R = 790 (d/h12 Q, where h is the 
wavelength of the radiation. For the wires in an ordinary radio (say, d = 5 cm), should you 
worry about the radiative contribution to the total resistance? 

Figure 1 1.7 

! Problem 11.4 A rotating electric dipole can be thought of as the superposition of two oscillating 
dipoles, one along the x axis, and the other along the y axis (Fig. 1 1.7), with the latter out of 
phase by 90' : 

p = pO[cos(wt) 2 + sin(wt) f]. 

Using the principle of superposition and Eqs. 1 1.18 and 1 1.19 (perhaps in the form suggested 
by Prob. 11.2), find the fields of a rotating dipole. Also find the Poynting vector and the 
intensity of the radiation. Sketch the intensity profile as a function of the polar angle Q, and 
calculate the total power radiated. Dcies the answer seem reasonable? (Note that power, being 
quadratic in the fields, does not satisfy the superposition principle. In this instance, however. 
it seems to. Can you account for this?) 
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Figure 1 1.8 

11.1.3 Magnetic Dipole Radiation 

Suppose now that we have a wire loop of radius b (Fig. 11.8), around which we drive an 
altcrnating currcnt: 

1 (t) = I0 cos(wt). (1 1.23) 

This is a model for an oscillating magnetic dipole, 

7 
m(t) = mb-I ( t )  i = m0 cos(wf) i ,  (1 1.24) 

where 
2 mo = r b  I. 

is the maximum value of the magnetic dipole moment. 
The loop is uncharged, so the scalar potential is zero. The retarded vector potential is 

For a point r directly above the X axis (Fig. 11.8), A must aim in the y direction, since the 
X components from symmetrically placed points on either side of the X axis will cancel. 
Thus 

A(r, t)  = - COS 4' d4' 
41t r 

(cos 4' serves to pick out the y-component of dl'). By the law of cosines, 
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where @ is the angle between the vectors r and b: 

r=rs inOr i+rcosOi ,  b=bcos4 'G+bsin$ ' f .  

So rb cos @ = r . b = rb sin 8 cos #', and therefore 

'L = Jr2 + b2 - 2rb sin o cos 4'. 

For a "perfect" dipole, we want the loop to be extremely small: 

approximation 1 : b << r. 

To first order in b, then, 

and 
o b  

cos[o (t - 'L/c)] G cos o (t - r/c) + - sin O cos 4' 
C l 

= cos[w(t - r/c)] cos - sin[o(t - r/c)] sin 

As before. we also assume the size of the dipole is small compared to the wavelength 
radiated: 

C 
approximation 2 : b << - . (11.31) 

W 

In that case, 

Wb 
cos[o(t - a/c)] 2 cos[w(t - r/c)] - - sin 0 cos 4' sin[o(t - r/c)7. 

C 
(1 1.32) 

Inserting Eqs. 1 1.30 and 11.32 into Eq. 11.27, and dropping the second-order term: 

W + b sin 6' cos 4' cos[w(t - r/c)] - - sin[w(t - r/c)] 
C 

The first term integrates to zero: 

1 cos +'d$' = 0. 
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The second term involves the integral of cosine squared: 

Putting this in, and noting that in general A points in the &direction, I conclude that the 
vector potential of an oscillating perfect magnetic dipole is 

In the static limit ( a  = 0) we recover the familiar formula for the potential of a magnetic 
dipole (Eq. 5.85) 

p0  no sin B 
A(r, 8 )  = - 

4n r 2  6. 
In the radiation zone, 

C 
approximation 3 : r >> -, 

0 

the first term in A is negligible, so 

From A we obtain the fields at large r :  

and 

(I used approximation 3 in calculating B.) These fields are in phase, mutually perpendicular, 
and transverse to the direction of propagation (i), and the ratio of their amplitudes is 
Eo/Bo = c, all of which is as expected for electromagnetic waves. They are, in fact, 
remarkably similar in structure to the fields of an oscillating electric dipole (Eqs. 1 1.18 and 
1 1.19), only this time it is B that points in the 8 direction and E in the 6 direction. whereas 
for electric dipoles it's the other way around. 

The energy flux for magnetic dipole radiation is 

the intensity is 
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and the total radiated power is 
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Once again, the intensity profile has the shape of a donut (Fig. 1 1.4), and the power radiated 
goes like w4. There is, however, one important difference between electric and magnetic 
dipole radiation: For configurations with comparable dimensions, the power radiated elec- 
trically is enormously greater. Comparing Eqs. 1 1.22 and 1 1.40, 

where (remember) m0 = nb210, and p0 = qod. The amplitude of the current in the 
electrical case was I. = qow (Eq. 1 1.15). Setting d = n b, for the sake of comparison, I get 

But wb/c is precisely the quantity we assumed was very small (approximation 2), and here it 
appears squared. Ordinarily, then, one should expect electric dipole radiation to dominate. 
Only when the system is carefully contrived to exclude any electric contribution (as in the 
case just treated) will the magnetic dipole radiation reveal itself. 

Problem 11.5 Calculate the electric and magnetic fields of an oscillating magnetic dipole 
without using approximation 3. [Do they look familiar? Compare Prob. 9.33.1 Find the 
Poynting vector, and show that the intensity of the radiation is exactly the same as we got using 
approximation 3. 

Problem 11.6 Find the radiation resistance (Prob. 11.3) for the oscillating magnetic dipole in  
Fig. 1 1.8. Express your answer in terms of h and b, and compare the radiation resistance of 
the electric dipole. [Answer: 3 X 1 o5 (b1l.1~ Q] 

Problem 11.7 Use the "duality" transformation of Prob. 7.60, together with the fields of an 
oscillating electric dipole (Eqs. 1 1.18 and 1 1.19), to determine the fields that wouldbe produced 
by an oscillating "Gilbert" nlagnetic dipole (composed of equal and opposite magnetic charges. 
instead of an electric current loup). Cumpare Eqs. 1 I .36 and 1 1.37, and comment on the result. 

11.1.4 Radiation from an Arbitrary Source 

In the previous sections we studied the radiation produced by two specific systems: os- 
cillating electric dipoles and oscillating magnetic dipoles. Now I want to apply the same 
procedures to a configuration of charge and current that is entirely arbitrary, except that 
it is localized within some finite volume near the origin (Fig. 11.9). The rctarded scalar 
potential is 
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Figure 1 1.9 

where 

As before, we shall assume that the field point r is far away, in comparison to the dimensions 
of the source: 

approximation 1 : r' << r. (1 1.45) 

(Actually, r' is a variable of integration; approximation 1 means that the maximum value 
of r', as it ranges over the source, is much less than r . )  On this assumption, 

SO 

and 

Expanding p as a Taylor series in t about the retarded time at the origin, 

we have 

p(r', t - a/c) g ,o(rl, l ~ )  + b(r' ,  to) (F) + . . . (1 1.49) 

where the dot signifies differentiation with respect to time. The next terms in the series 
would be 

1 f . r f  1 far' 3 

2 
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We can afford to drop them, provided 

C C C 
approximation 2 : r'  << - 

1ij/bl3 lp/bl1/2 l-p/bl1/3 ' . . . (1 1.50) 

For an oscillating system each of these ratios is c lw ,  and we recover the old approximation 
2. In the general case it's more difficult to interpret Eq. 11.50, but as a procedural matter 
approximations 1 and 2 amount to keeping only thefirst-order terns in r'. 

Putting Eqs. 11.47 and 11.49 into the formula for V (Eq. 11.43), and again discarding 
the second-order term: 

V(r, t) 2 - 
' 1 r'p(r1, to) d r f  . p(r r ,  to) d r '  + - . rrp(r', to) d r '  + - - 

r S c dt  1 
The first integral is simply the total charge, Q, at time to. Because charge is conserved, 
however, Q is actually independent of time. The other two integrals represent the electric 
dipole moment at time to. Thus 

In the static case. the first two terms are the monopole and dipole contributions to the 
multipole expansion for V; the third term, of course, would not be present. 

Meanwhile, the vector potential is 

A(r, t )  = E / J(r', t - */C) 
dt'. 

4 n  n, 

As you'll see in a moment, to first order in r' it suffices to replace n, by r in the integrand: 

A(r, t )  2 - Iro 1 J(rr ,  to) dr ' .  
4 n  r 

According to Prob. 5.7, the integral of J is the time derivative of the dipole moment, so 

Now you see why it was unnecessary to carry the approximation of .z beyond the zeroth 
order (n, 2 r): p is already first order in r', and any refinements would be corrections of 
second order. 

Next we must calculate the fields. Once again, we we interested in the radiation zone 
(that is, in the fields that survive at large distances from the source), so we keep only those 
terms that go like l / r  : 

approximgtion 3 : discard l / r 2  terms in E and B. (1 1.55) 

For instance. the Coulomb field. 
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coining from the first term in Eq. 1 1 .S 1, does not contribute to the electromagnetic radiation. 
In fact, the radiation comes entirely from those terms in which we differentiate the argument 
to. From Eq. 1 1.48 it follows that 

and hence 

Similarly, 

while 

PO E(r, t )  2 - [(f - p)f - 
437 r  

where p is evaluated at time to = t - r / c ,  and 

In particular, if we use spherical polar coordinates, with the z axis in the direction of 
p(to), then 

The Poynting vector is 

and the total radiated power is 

Notice that E and B are mutually perpendicular, transverse to the direction of propagation 
(P), and in the ratio E / B  = c, as always for radiation fields. 

l 
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Example 11.2 

(a) In the case of an oscillating electric dipole, 

2 p(t) = p0 cos(wr), p(r) = -w p0 cos(cor), 

and we recover the results of Sect. 1 1.1.2. 

(b) For a single point charge q,  the dipole moment is 

where d is the position of q with respect to the origin. Accordingly, 

~ ( t )  = qa(t), 

where a is the acceleration of the chargc. In this casc thc powcr radiatcd (Eq. 1 1.60) is 

This is the famous Larmor formula; I'll derive it again, by rather different means, in the next 
section. ' Notice that the power radiated by a point charge is proportional to the square of its 
accileration. 

What I have done in this section amounts to a multipole expansion of the retarded 
potentials, carried to the lowest order in r' that is capaQle of producing electromagnetic 
radiation (fields that go like l l r ) .  This turns out to be the electric dipole term. Because 
charge is conserved, an electric monopole does not radiate-if charge were not conserved, 
the first term in Eq. 1 1.5 1 would read 

and we would get a monopole field proportional to l / r : 

You might think that a charged sphere whose radius oscillates in and out would radiate, but 
it doesn 't-the field outside, according to Gauss's law, is exactly ( ~ / 4 r c ~ r ~ ) f ,  regardless 
of the fluctuations in size. (In the acoustical analog, by the way, monopoles do radiate: 
witness the croak of a bullfrog.) 

If the electric dipole moment should happen to vanish (or, at any rate, if its second time 
derivative is zero), then there is no electric dipole radiation, and one must look to the next 
term: the one of second order in r'. As it happens, this term can be separated into two parts, 
one of which is related to the magnetic dipole moment of the source, the other to its electric 
quadrupole moment. (The fo&er is a generalization of the magnetic dipole radiation we 
considered in Sect. 11.1.3.) If the magnetic dipole and electric quadrupole contributions 
vanish, the (r'13 term must be considered. This yields magnetic quadrupole and electric 
octopole radiation . . . and so it goes. ' 
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Problem 11.8 Apply Eqs. 1 1.59 and 1 1.60 to the rotating dipole of Prob. 1 1.4. Explain any 
apparent discrepancies with your previous answer. 

Problem 11.9 An insulating circular ring (radius b) lies in the xy plane, centered at the origin. 
It carries a linear charge density h = h0 sin 4, where h0 is constant and 4 is the usual azimuthal 
angle. The ring is now set spinning at a constant angular velocity w about the z axis. Calculate 
the power radiated. 

Problem 11.10 An electron is released from rest and falls under the influence of gravity. In 
the first centimeter, what fraction of the potential energy lost is radiated away? 

-p() cos wt 'V 
Figure 11.10 

! Problem 11.11 As a model for electric quadrupole radiation, consider two oppositely oriented 
oscillating electric dipoles, separated by a distance d, as shown in Fig. 11.10. Use the results 
of Sect. 11.1.2 for the potentials of each dipole, but note that they are not located at the origin. 
Keeping only the terms of first order in d: 

(a) Find the scalar and vector potentials. 

(b) Find the electric and magnetic fields. 

(c) Find the Poynting vector and the power radiated. Sketch the intensity profile as a function 
of 8 .  

! Problem 11.12 A current I ( t )  flows around the circular ring in Fig. 1 1 .S. Derive the general 
formula for the power radiated (analogous to Eq. 1 1.60), expressing your answer in terms of 
the magnetic dipole moment (rn( t ) )  of the loop. [Answer: P = C L O ~ 2 / 6 n ~ 3 ]  
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11.2 Point Charges 

112.1 Power Radiated by a Point Charge 

In Chapter 10 we derived the fields of a point charge q in arbitrary motion (Eqs. 10.65 and 
10.66): 

q b E(r ,  t) = -- [(c2 - u2)u +a  X (U X a)], 
4 r c0  (4 - 

where U = c; - v, and 
1, 

B(r,  t) = -a X E(r,  t) .  (1 1.63) 
C 

The first term in Eq. 11.62 is called the velocity field, and the second one (with the triple 
cross-product) is called the acceleration field. 

The Poynting vector is 

l l 1 
S = -(E X B) = -[E X (G X E)] = -[E~;- (k-E)E]. (1 1.64) 

PO P O C  POC 

However, not all of this energy flux constitutes radiation; some of it is just field energy 
carried along by the particle as it moves. The radiated energy is the stuff that, in effect, 
detaches itself from the charge and propagates off to infinity. (It's like flies breeding on a 
garbage truck: Some of them hover around the truck as it makes its rounds; others fly away 
and never come back.) To calculate the total power radiated by the particle at time t,, we 
draw a huge sphere of radius 4 (Fig. 1 1.1 l) ,  centered at the position of the particle (at time 
t,), wait the appropriate interval 

for the radiation to reach the sphere, and at that moment integrate the Poynting vector over 
the s ~ r f a c e . ~  I have used the notation t, because, in fact, this is the retarded time for all 
points on the sphere at time t .  

Now, the area of the sphere is proportional to b2, so any tern1 in S that goes like l/+' 
will yield a finite answer, but terms like 11%~ or will contribute nothing in the limit 
n, + oo. For this reason only the acceleration fields represent true radiation (hence their 
other name, radiation fields): 

4 4  Erad = - - [a X (U X a)]. 
4 n q  ( a .  u ) ~  

6 ~ o t e  the subtle change in strategy here: In Sect. 11.1 we worked from a fixed point (the origin), but here it is 
more appropriate to use the (moving) location of the charge. The implications of this change in perspective will 
become clearer in a moment. 
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Figure l l. l l 

The velocity fields carry energy, to be sure, and as the charge moves this energy is dragged 
along-but it's not radiation. (It's like the flies that stay with the garbage truck.) Now Erad 
is perpendicular to G, so the second term in Eq. 11.64 vanishes: 

If the charge is instantaneously at rest (at time t,.), then U = c;, and 

In that case 

where 0 is the angle between i and a. No power is radiated in the forward or backward 
direction-rather, it is emitted in a donut about the direction of instantaneous acceleration 
(Fig. 11.12). 

Figure 1 1.12 
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The total power radiated is evidently 
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pOq2a2 J si;: B 
Srad . da = - - %2 sin 8 d8 d 4 ,  

16r2c  

This, again, is the Larmor formula, which we obtained earlier by another route (Eq. 1 1.61). 
Although I derived them on the assumption that v = 0, Eqs. 11.69 and 11.70 actually 

hold to good approximation as long as v << c. An exact treatment of the case v # 0 is 
more diff i~ul t ,~ both for the obvious reason that Erad is more complicated, and also for the 
more subtle reason that Srad, the rate at which energy passes through the sphere, is not the 
same as the rate at which energy left the particle. Suppose someone is firing a stream of 
bullets out the window of a moving car (Fig.1 l. 13). The rate Nt at which the bullets strike 
a stationary target is not the same as the rate Ng at which they left the gun, because of the 
motion of the car. In fact, you can easily check that N, = (1 - v/c)Nt, if the car is moving 
towards the target, and 

for arbitrary directions (here v is the velocity of the car, c is that of the bullets-relative to 
the ground-and is a unit vector from car to target). In our case, if d W / d t  is the rate at 
which energy passes through the sphere at radlus a, then the rate at which energy left the 
charge was 

Figure l l .  13 

7 ~ n  the context of special relativity, the condition v = 0 simply represents an astute choice of reference system. 
with no essential loss of generality. If you can decide how P transforms, you can deduce the general (Liknard~ 
result from the v = 0 (Larmor) formula (see Prob. 12.69). 
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(I used Eq. 10.77 to express at,/at.) But 

which is precisely the ratio of N,  to N, ;  it's a purely geometrical factor (the same as in the 
Doppler effect). 

The power radiated by the particle into a patch of area a2 sin 8 d 8  d 4  = a2 dSt on the 
sphere is therefore given by 

where dS2 = sin 0 dB d 4  is the solid angle into which this power is radiated. Integrating 
over 8 and 4 to get the total power radiated is no picnic, and for once I shall simply quote 
the answer: 

where y = 1 / J m .  This is Lienarcs generalization of the Larrnor formula (to 
which it reduces when v << C). The factor y6 means that the radiated power increases 
enormously as the particle velocity approaches the speed of light. 

Example 11.3 

Suppose v and a are instantaneously collinear (at time t , .) ,  as, for example, in straight-line 
motion. Find the angular distribution of the radiation (Eq. 11.72) and the total power emitted. 

Solution: In this case (U X a)  = c(; x a), so 

Now 
2 2 

& X  ( ; x a ) = ( k . a ) & - a ,  s o F x ( & x a ) l  = a  - ( & . a )  2 

In particular, if we let the z axis point along v, then 

where B = vlc. This is consistent, of course, with Eq. 11.69, in the case v = 0. However, for 
very largc v (#l I )  the donut of radi~tion (Fig. 1 1.12) is stretched out and pushed forward 
by the factor (1 - B cos Q)-', as indicated in Fig. 11.14. Although there is still no radiation in 
precisely the forward direction, most of it is concentrated within an increasingly narrow cone 
about the forward direction (see Prob. 11.15). 
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Figure 1 1.14 

The total power emitted is found by integrating Eq. 1 1.74 over all angles: 

p = / c d ~ = -  ds-2 sin2 0 / (1 - p c 0 s 8 ) ~  
sin 8 d8  d 4 .  

The 4 integral is 2n; the 8 integral is simplified by the sllbstitution x cos 8:  

Integration by parts yields :(I - and 1 conclude that 

 his result is cotlsistent with the Litnard formula (Eq. 11.73), for the case of collinear v and a. 
Notice that the angular distribution of the radiation is the same whether the particle is accel- 
erating or decelerating; it only depends on the square of a ,  and is concentrated in the forward 
direction (with respect to the velocity) in either case. When a high speed electron hits a metal 
target it rapidly decelerates, giving off what is called bremsstrahlung, or "braking radiation." 
What I have described in this example is essentially the classical theo~y of bremsstrahlung. 

Problem 11.13 

(a) Suppose an electron decelerated at a constant rate a from some initial velocity v0 down 
to zero. What fraction of its initial kinetic energy is lost to radiation? (The rest is absorbed 
by whatever mechanism keeps the acceleration constant.) Assume vg << c so that the Larmor 
fonnula can be used. 

(b) To get a sense of the numbers involved, suppose the initial velocity is thermal (around lo5 
rnls) and the distance the electron goes is 30 A. What can you conclude about radiation losses 
for the electrons in an ordinary conductor? 

Problem 11.14 In Bohr's theory of hydrogen, the electron in its ground state was supposed to 
travel in a circle of radius 5 x 10-l 'm, held in orbit by the Coulomb attraction of the proton. 
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According to classical electrodynamics, this electron should radiate, and hence spiral in to 
the nucleus. Show that 11 << c. for most of the trip (so you can use the Larmor formula), and 
calculate the lifespan of Bohr's atom. (Assume each revolution is essentially circular.) 

Problem 11.1 5 Find the angle at which the maximum radiation is emitted, in Ex. 1 1.3 
(see Fig. 11.14). Show that for ultrarelativistic speeds ( v  close to c ) ,  Q,, 2 Jw. 
What is the intensity of the radiation in this maximal direction (in the ultrarelativistic case), 
in proportion to the same quantity for a particle instantaneously at rest? Give your answer in 
terms of y .  

Figure 1 1.15 Figure 11.16 

! Problem 11.16 In Ex. 1 1.3 we assumed the velocity and acceleration were (instantaneously, 
at least) collinear: Carry out the same analysis for the case where they are perpendicular. 
Choose your axes so that v lies along the z axis and a along the X axis (Fig. 1 1 .l 5), so that 
v = v i, a = a 2,  and k = sin 8 cos 4 2 + sin 6' sin 4 j + cos 8 2. Check that P is consistent 
with the Lienard formula. [Answer: 

d~ poq2a2 [(l - B cos 6 ~ ) ~  - ( 1  - p2)  sin2 6' cos2 41 2 2  J 
--P . P =  /-L04 a ?' 

d a  16n2c (1 - B  COS^)^ 6 n  c 

For relativistic velocities (B x 1) the radiation is again sharply peaked in the forward direction 
(Fig. 1 l . l  6) .  The most important application of these formulas is to circular motion-in this 
case the radiation is called synchrotron radiation. For a relativistic electron the radiation 
sweeps around like a locomotive's headlight as the particle moves.] 

11.2.2 Radiation Reaction 

According to the laws of classical electrodynamics, an accelerating charge radiates. This 
radiation carries off energy, which must come at the expense of the particle's kinetic energy. 
Under the influence of a given force, therefore, a charged particle accelerates less than a 
neutral one of the same mass. The radiation evidently exerts a force (Ft.ad) back on the 
charge-a recoil force, rather like that of a bullet on a gun. In this section we'll derive the 
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radiation reaction force from conservation of energy. Then in the next section I'll show 
you the actual mechanism responsible, and derive the reaction force again in the context of 
a simple model. 

For a nonrelativistic particle ( v  << c )  the total power radiated is given by the Larmor 
formula (Eq. 1 1.70) : 

m 

Conservation of energy suggests that this is also the rate at which the particle loses energy, 
under the influence of the radiation reaction force Frad: 

I say "suggests" advisedly, because this equation is actually wrong. For we calculated the 
radiated power by integrating the Poynting vector over a sphere of "infinite" radius; in this 
calculation the velocity fields played no part, since they fall off too rapidly as a function of 4 

to make any contribution. But the velocity fields do carry energy-they just don't transport 
it out to infinity. As the particle accelerates and decelerates energy is exchanged between 
it and the velocity fields, at the same time as energy is irretrievably radiated away by the 
acceleration fields. Equation 11.77 accounts only for the latter, but if we want to know the 
recoil force exerted by the fields on the charge, we need to consider the total power lost 
at any instant, not just the portion that eventually escapes in the form of radiation. (The 
term "radiation reaction" is a misnomer. We should really call it thefield reaction. In fact. 
we'll soon see that Frad is determined by the time derivative of the acceleration and can be 
nonzero even when the acceleration itself is instantaneously zero, so that the particle is not 
radiating.) 

The energy lost by the particle in any given time intervhl, then, must equal the energy 
carried away by the radiation plus whatever extra energy has been pumped into the velocitj 
 field^.^ However, if we agree to consider only intervals over which the system returns to its 
initial state, then the energy in the velocity fields is the same at both ends, and the only net 
loss is in the form of radiation. Thus Eq. 11.77, while incorrect i?zstantaneously, is valid on 
the average: 

with the stipulation that the state of the system is identical at tl and t2. In the case of periodic 
motion, for instance, we rnust integrate over an integral number of full cycles.9 Now, the 

' ~ c t u a l l ~ ,  while the total field is the sum of velocity and acceleration fields, E = E, + E,, the energy is 
proporbonal to E2 = E: + 2E, . E, + E: and contains three terms: energy stored in the velocity fields alone 

( E ; ) ,  energy radiated away (E:), and a cross term E ,  . E,. For the sake of simplicity, I'm referring to the 
cornbination ( E ;  + 2E, . E,) as "energy stored in the velocity fields." These terms go like 1/a4 and 11%'. 
respectively, so neither one contributes to the radiation. 

 or nonperiodic motion the condition that the energy in the velocity fields be the same at r l  and tz  is more 
dirficult to achieve. It is not enough that the instantaneous velocities and accelerations be equal, since the field5 
farther out depend on u and a at earlier rimes. In principle, then, v and U ancl 1711 higher derivatives must be 
identical at t l  and t 2 .  Inpractice, since the velocity fields fall off rapidly with 4, it is sufficier~t that v and a be the 
same over a brief interval prior to tl and 12. 
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right side of Eq. 11.78 can be integrated by parts: 

v d t .  
dt' 

The boundary term drops out, since the velocities and accelerations are identical at t l  and 
t2 ,  SO Eq. 1 1.78 can be written equivalently as 

Equation 1 1.79 will certainly be satisfied if 

This is the Abraham-Lorentz formula for the radiation reaction force. 
Of course, Eq. 11.79 doesn't prove Eq. 11.80. It tells you nothing whatever about the 

component of Frad perpendicular to v; and it only tells you the time average of the parallel 
component-the average, moreover, over very special time intervals. As we'll see in the 
next section, there are other reasons for believing in the Abraham-Lorentz formula, but for 
now the best that can be said is that it represents the simplest form the radiation reaction 
force could take, consistent with conservation of energy. 

The Abraham-Lorentz formula has disturbing implications, which are not entirely un- 
derstood nearly a century after the law was first proposed. For suppose a particle is subject 
to no external forces; then Newton's second law says 

i l 0 q L  . 
Frad = -- a = mu, 

6 n c  

from which it follows that 
a(t) = a0erlT, 

where * 

(In the case of the electron, t = 6 X 1 0 ~ ~ ~ s . )  The acceleration spontaneously increases 
exponentially with time! This absurd conclusion can be avoided if we insist that a0 = 0, 
but it turns out that the systematic exclusion of such runaway solutions has an even more 
unpleasant consequence: If you do apply an external force, the particle starts to respond 
before the force acts! (See Prob. 11.19.) This acausal preacceleration jumps the gun 
by only a short time z; nevertheless, it is (to my mind) philosophically repugnant that the 
theory should countenance it at all.'' 

'O~hese difficulties persist in the relativistic version of the Abraham-Lorentz equation. which can be derived 
by starting with Liknard's formula instead of Larmor's (see Prob. 12.70). Perhaps they are telling us that there 
can be no such thing as a point charge in classical electrodynamics, or inaybe they presage the onset of quantum 
mechanics. For guides to the literature see Philip Pearle's chapter in D. Teplitz, ed., Elecrrorr~agnrtism: Paths ta 
Reserirch (New York: Plenum. 1982) and F. Rohrlich, Am. J. Ph,vs. 65. 1051 ( 1997). 
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Example 11.4 

Calculate the radiation damping of a charged particle attached to a spring of natural frequency 
wo, dnven at frequency W. 

Solution: The equation of motion is 

With the system oscillating at frequency w, 

SO 

Therefore 

and the damping factor y is given by 
2  y = w  t. (1 1.84) 

[When I wrote Fdamping = - y m v ,  back in Chap. 9 (Eq. 9.152), I assumed for simplicity that 
the damping was proportional to the velocity. We now know that radiation damping, at least. 
is proportional to v. But it hardly matters: for sinusoidal oscillations any even number of 
derivatives of v would do, since they're all proportional to v.] 

Problem 11.17 

(a) A particle of charge q moves in a circle of radius R  at a constant speed v. To sustain the 
motion, you must, of course, provide a centripetal force m v 2 / ~ ;  what additional force (F,) 
must you exert, in order to counteract the radiation reaction? [It's easiest to express the answer 
in terms of the instantaneous velocity v.] What power (P,) does this extra force deliver? 
Compare P, with the power radiated (use the Larmor formula). 

(b) Repeat part (a) for a particle in simple harmonic motion with amplitude A and angular 
frequency w (w(t) = A cos(wt) l). Explain the discrepancy. 

(C) Consider the case of a particle in free fall (constant acceleration g). What is the radiation 
reaction force? What is the power radiated? Comment on these results. 

Problem 11.18 

(a) Assuming (implausibly) that y is entirely attributable to radiation damping (Eq. 11.84), 
show that for optical dispersion the damping is "small" ( y  << oo). Assume that the relevant 
resonances lie in or near the optical frequency range. 

(b) Using your results from Prob. 9.24, estimate the width of the anomalous dispersion region, 
for the model in Prob. 9.23. 



! Problem 11.19 With the inclusion of the radiation reaction force (Eq. 1 1.80), Newton's second 
law for a charged particle becomes 

F 
a = t i + - ,  

m 

where F is the external force acting on the particle. 

(a) In contrast to the case of an uncl~arged particle (a = Flm) ,  acceleration (like position 
and velocity) must now be a continuous function of time, even if the force changes abruptly. 
(Physically, the radiation reaction damps out any rapid change in a .)  Prove that a is continuous 
at any time t, by integrating the equation of motion above from (t - E )  to (t + c )  and taking 
the limit c 4 0. 

(b) A particle is subjected to a constant force F, beginning at time t = 0 and lasting until time 
T. Find the most general solution a ( t )  to the equation of motion in each of the three periods: 
(i) t < 0; ( i i )O t < T ;  (iii)t > T. 

(c) Impose the continuity conditioli (a) at t = 0 and t = T. Show that you can either eliminate 
the runaway in region (iii) or avoid preacceleration in region (i), but not both. 

(d) If you choose to eliminate the runaway, what is the acceleration as a function of time, in 
each interval? How about the velocity? (The latter must, of course, be continuous at t = 0 
and t = T.) Assume the particle was originally at rest: v(-00) = 0. 

(e) Plot a (t) and v(t), both for an unclzarged particle and for a (nonrunaway) charged particle, 
subject to this force. 

11.2.3 The Physical Basis of the Radiation Reaction 

In the last section I derived the Abraham-Lorentz formula for the radiation reaction, using 
conservation of energy. 1 made no attempt to identify the actual mechanism responsible 
for this force, except to point out that it must be a recoil effect of the particle's own fields 
acting back on the charge. Unfortunately, the fields of a point charge blow up right at 
the particle, so it's hard to see how one can calculate the force they exert." Let's avoid 
this problem by considering an exte~rded charge distribution, for which the field is finite 
everywhere; at the end, we'll take the limit as the size of the charge goes to zero. In general, 
the electromagnetic force of one part ( A )  on another part (B) is not equal and opposite to 
the force of B on A (Fig. 11.17). If the distribution is divided up into infinitesimal chunks, 
and the imbalances are added up for all such pairs, the result is a net force of the charge on 
itself. It is this self-force, resulting from the breakdown of Newton's third law within the 
structure of the particle, that accounts for the radiation reaction. 

Lorentz originally calculated the electromagnetic self-force using a spherical charge 
distribution, which seems reasonable but makes the mathematics rather cumbersome.12 
Because I am only trying to elucidate the mechanism involved, I shall use a less realistic 
model: a "dumbbell" in which the total charge q is divided into two halves separated by 

"It can be done by a suitable averaging of the field, but it's not easy. See T. H. Boyer, Am. J. Phys. 40, 1843 
(1972), and references cited there. 

'?see J. D. Jackson, Classical Electrodynamics, 3rd ed., Sect. 16.3 (New York: John Wiley, 1999). 
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Retarded Present 
position x(t,) position x(t,) 

Figure 1 1.17 Figure 1 1.18 

a fixed distance d (Fig. 11.18). This is the simplest possible arrangement of the charge 
that permits the essential mechanism (imbalance of internal electromagnetic forces) to 
function. Never mind that it's an unlikely model for an elementary particle: in the point 
limit (d + 0) any model must yield the Abraham-Lorentz formula, to the extent that 
conservation of energy alone dictates that answer. 

Let's assume the dumbbell moves in the X direction, and is (instantaneously) at rest at 
the retarded time. The electric field at (1)  due to (2) is 

(Eq. 10.65), where 
u = c k  and a = l i i + d F ,  

so that 

a . u = c a .  n . a = l a ,  and a=/-. (1 1.87) 

Actually, we're only interested in the x component of El ,  since the y components will 
cancel when we add the forces on the two ends (for the same reason, we don't need to worry 
about the magnetic forces). Now 

and hence 

By symmetry, E2, = El,,  so the net force on the dumbbell is 
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So far everything is exact. The idea now is to expand in powers of d ;  when the size of 
the particle goes to zero, all positive powers will disappear. Using Taylor's theorem 

we have. 

where T = t  - t,., for short. Now T is determined by the retarded time condition 

This equation tells us d .  in terms of T; we need to "solve" it for T as a function of d .  
There's a systematic procedure for doing this, known as reversion of series,13 but we can 
get the first couple of terms more informally as follows: Ignoring all higher powers of T, 

using this as an approximation for the cubic term, 

and so on. Evidently 

Returning to Eq. 1 1.91, we construct the power series for l in tenns of d :  

Putting this into Eq. 11.90, I conclude that 

Here a and ir are evaluated at the retarded time ( t r ) ,  but it's easy to rewrite the result in 
ternls of the present time t :  

d 
a(t,) = a ( t )  + a ( t ) ( t  - t,) + . . - = a ( t )  - ic(t)T + - . - = a ( t )  - k ( t ) -  + . , 

C 

13see, for example, the CRC Standard Mathematical Tables (Cleveland: CRC Press). 
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and it follows that 
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The first term on the right is proportional to the acceleration of the charge; if we pull it 
over to the other side of Newton's second law, it simply adds to the dumbbell's mass. In 
effect, the total inertia of the charged dumbbell is 

where m0 is the mass of either end alone. In the context of special relativity it is not surprising 
that the electrical repulsion of the charges should enhance the mass of the dumbbell. For 
the potential energy of this configuration (in the static case) is 

and according to Einsteifl's formula E = mc2, this energy contributes to the inertia of the 
object.14 

The second term in Eq. 1 1.96 is the radiation reaction: 

It alone (apart from the mass corre~t ion '~)  survives in the "point dumbbell" limit d + 0. 
Unfortunately, it differs from the Abraham-Lorentz formula by a factor of 2. But then, 
this is only the self-force associated with the interacrio~z between 1 and 2-hence, the 
superscript "int." There remains the force of each end on itseg When the latter is included 
(see Prob. 11.20) the result is 

reproducing the Abraham-Lorentz formula exactly. Conclusion: Tlze radiation reaction is 
due to the force of the charge on itself--or, more elaborately, the net force exerted by the 
fields generated by different parts of the charge distribution acting on one another. 

 he fact that the numbers work out pcrfcctly is a lucky feature of this configuration. If you do the same 
calculation for the dumbbell in longitudinal motion, the mass correction is only halfof what it "should" be (there's 
a 2. instead of a 4, in Eq. 11.97), and for a sphere it's off by a factor of 3/4. This notorious paradox has been the 
subject of much debate over the years. See D. J. Griftiths and R. E. Owen, Am. J. Phys. 51, 1120 (1983). 

150f course, the limit d + 0 has an embarrassing effect on the mass term. In a sense, it doesn't matter, since 
only the total mass m is observable; maybe mg somehow has a compensating (negative!) infinity, so that m comes 
out finite. This awkward problem persists in quanrutn electrodynamics, where it is "swept under the rug" in a 
process known as mass renormalization. 
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Problem 11.20 Deduce Eq. 1 1.100 from Eq. 1 1.99, as follows: 

(a) Use the Abraham-Lorentz formula to determine the radiation reaction on each end of the 
dumbbell; add this to the interaction term (Eq. 1 1.99). 

(b) Method (a) has the defect that it uses the Abraham-Lorentz formula-the very thing that 
we were trying to derive. To avoid this, smear out the charge along a strip of length L oriented 
perpendicular to the motion (the charge density, then, is h = q / L ) ;  find the cumulative 
interaction force for all pairs of segments, using Eq. 1 1.99 (with the correspondence q /2 + 
h dyl,  at one end and q / 2  + h dy2 at the other). Make sure you don't count the same pair 
twice. 

More Problems on Chapter 11 

Problem 11.21 A particle of mass m and charge q is attached to a spring with force constant k, 
hanging from the ceiling (Fig. 1 1.19). Its equilibrium position is a distance h above the floor. 
It is pulled down a distance d below equilibrium and released, at time t = 0. 

(a) Under the usual assumptions (d << k << h). calculate the intensity of the radiation hitting the 
floor, as a function of the distance R from the point directly below q. [Note: The intensity here 
is the average power per unit area ofjoor.] At what R is the radiation most intense? Neglect 
the radiative damping of the oscillator. [Answer: pOq2d2w4 ~ ~ h / 3 2 7 t ~ c ( ~ ~  + h2l5I2] 

(b) As a check on your formula, assume the floor is of infinite extent, and calculate the average 
energy per unit time striking the entire floor. Is it what you'd expect? 

(C) Because it is losing energy in the form of radiation, the amplitude of the oscillation will 
gradually decrease. After what time t has the amplitude been reduced to d i e?  (Assume the 
fraction of the total energy lost in one cycle is very small.) 

Problem 11.22 A radio tower rises to height h above flat horizontal ground. At the top is a 
magnetic dipole antenna, of radius b, with its axis vertical. FM station KRUD broadcasts from 
this antenna at angular frequency W ,  with a total radiated power P (that's averaged, of course, 
over a full cycle). Neighbors have complained about problems they attribute to excessive 

Figure 1 1.19 
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radiation from the tower-interference with their stereo systems, mechanical garage doors 
opening and closing mysteriously, and a variety of suspicious medical problems. But the city 
engineer who measured the radiation level at the base of the tower found it to be well below 
the accepted standard. You have been hired by the Neighborhood Association to assess the 
engineer's report. 

(a) In terms of the variables given (not all of which may be relevant, of course), find the 
formula for the intensity of the radiation at ground level, a distance R from the base of the 
tower. You may assume that a << L./W << h. [Note: we are interested only in the magnitude 
of the radiation, not in its direction-when measurements are taken the detector will be aimed 
directly at the antenna.] 

(b) How far from the base of the tower should the engineer have made the measurement? What 
is the formula for the intensity at this location? 

(C) KRUD's actual power output is 35 kilowatts, its frequency is 90 MHz, the antenna's 
radius is 6 cm, and the height of the tower is 200 m. The city's radio-emission limit is 200 
microwatts/cm2. Is KRUD in compliance? 

Problem 11.23 As you know, the magnetic north pole of the earth does not coincide with the 
geographic north pole-in fact, it's off by about 11'. Relative to the fixed axis of rotation. 
therefore, the magnetic dipole moment vector of the earth is changing with time, and the earth 
must be giving off magnetic dipole radiation. 

(a) Find the formula for the total power radiated, in terms of the following parameters: V, 

(the angle between the geographic and magnetic north poles), M (the magnitude of the earth's 
magnetic dipole moment), and w (the angular velocity of rotation of the earth). [Hint: refer to 
Prob. 1 1.4 or Prob. 1 1.12.1 

(b) Using the fact that the earth's magnetic field is about half a gauss at the equator, estimate 
the magnetic dipole moment M of the earth. 

(c) Find the power radiated. [Answer: 4 X 1 0 - ~  W] 

(d) Pulsars are thought to be rotating neutron stars, with a typical radius of 10 km, a rotational 
period of 1 o - ~ s ,  and a surface magnetic field of 1 o8 T. What sort of radiated power would you 
expect from such a star? [See J. P. Ostriker and J. E. Gunn, Astrophys. J. 157, 1395 (1969).] 
[Answer: 2 x 1 0 ~ ~  W] 

Problem 11.24 Suppose the (electrically neutral) y i plane carries a time-dependent but uni- 
form surface current K(t) 2. 

(a) Find the electric and magnetic fields at a height X above the plane if 

( i )  a constant c u ~ ~ e n t  is turned on at t = 0: 

(ii) a linearly increasing current is turned on at t = 0: 

0, t 5 0 ,  
K(t) = 

a t ,  t > 0 .  
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(b) Show that the retarded vector potential can be written in the form 

and from this determine E and B. 

(c) Show that the total power radiated per unit area of surface is 

Explain what you mean by "radiation," in this case, given that the source is not localized. [For 
discussion and related problems, see B. R. Holstein, Anz. J. Phys. 63,2 17 (1 9 9 9 ,  T. A. Abbott 
and D. J. Griffiths, Am. J. Phys. 53, 1203 (1985).] 

Problem 11.25 When a charged particle approaches (or leaves) a conducting surface, radiation 
is emitted, associated with the changing electric dipole moment of the charge and its image. If 
the particle has mass m and charge g ,  find the total radiated power, as a function of its height 
z above the plane. [Answer: (pocq2/4n)3 /6nt2z4] 

Problem 11.26 Use the duality transformation (Prob. 7.60) to construct the electric and mag- 
netic fields of a magnetic monopole q, in arbitrary motion, and find the "Larmor formula" for 
the power radiated. [For related applications see J. A. Heras, AN?. J. Phys. 63,242 (1995).] 

Problem 11.27 Assuming you exclude the runaway solution in Prob. 1 1.19, calculate 

(a) the work done by the external force, 

(b) the final hnetic energy (assume the initial kinetic energy was zero), 

(C) the total energy radiated. 

Check that energy is conserved in this process.16 

Problem 11.28 

(a) Repeat Prob. 11.19, but this time let the external force be a Dirac delta function: F ( t )  = 
k8(r) (for some constant k).I7 [Note that the acceleration is now discontinuous at t = 0 
(though the velocity must still be continuous); use the method of Prob. 1 1.19 (a) to show that 
Aa = - k / m t .  In this problem there are only two intervals to consider: (i) t < 0, and (ii) 
t > 0.1 

(b) As in Prob. 1 1.27. check that energy is conserved in this process. 

! Problem 11.29 A charged particle, traveling in from -cc along the X axis, encounters a 
rectangular potential energy barrier 

Uo, i f0  < x < L,  U(x) = 
0, otherwise. 

Show that, because of the radiation reaction, it is possible for the particle to tunnel through 
the barrier-that is: even if the incident kinetic energy is less than U@, the particle can pass 

'6Problerns 11.27 and 11.28 were suggested by G. L. Pollack. 
 h his example was first analyzed by P. A. M. Dirac, Pvoc. Roy. Soc. A167, 148 (1938). 
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through. (See F. Denef et al., Phys. Rev. E 56, 3624 (1997).) [Hint: Your task is to solve the 
equation 

F 
a = t a + - - ,  

lfl 

subject to the force 
F(x)  = Uo[-G ( X )  + 6(x - L)]. 

Refer to Probs. 11.19 and 11.28. but notice that this time the force is a specified function of 
x, not t .  There are three regions to consider: (i) x < 0, (ii) 0 < x < L, (iii) x > L. Find 
the general solution (for a@),  v(t), and x(t)) in each region, exclude the runaway in region 
(iii), and impose the appropriate boundary conditions at x = 0 and x = L. Show that the final 
velocity (vf) is related to the time T spent traversing the barrier by the equation 

and the initial velocity (at x = -m) is 

To simplify these results (since all we're looking for is a specific example), suppose the final 
kinetic energy is half the barrier height. Show that in this case 

In particular, if you choose L = v t/4, then v ;  = (4/3)vf. the initial kinetic energy is 
(8 /9)Uo,  and the particle makes it through, even though it didn't have sufficient energy to get 
over the barrier!] 

Problem 11.30 

(a) Find the radiation reaction force on a particle moving with arbitrary velocity in a straight 
line, by reconstructing the argument in Sect. 11.2.3 without assuming v(tY) = 0. [Answer: 
(wog2 y4/6nc) (a + 3 y2a2 v/c2)l 

(b) Show that this result is consistent (in the sense of Eq. 1 1.78) with the power radiated by 
such a   article (Eq. 1 1.75). 

Problem 11.31 

(a) Does aparticle in hyperbolic motion (Eq. 10.45) radiate? (Use the exact formula (Eq. 1 1.75) 
to calculate the power radiated.) 

(b) Does a particle in hyperbolic motion experience aradiation reaction? (Use the exact formula 
(Prob. 1 1.30) to determine the reaction force.) 

[Comment: These famous questions carry important implications for the principle of equiv- 
alence. See T. Fulton and F. Rohrlich, Annals of Physics 9,499 (1960); J. Cohn, Am. J. Phys. 
46.225 (1978); Chapter 8 of R. Peierls, Surprises in Theoretical Physics (Princeton: Princeton 
University Prcss, 1979); and the article by P. Pearle in Electrornagl~etisrrl: Paths to Re~eurrh, 
ed. D. Teplitz (New York: Plenum Press, 1982).] 



Chapter 12 

Electrodynamics and Relativity 

The Special Theory of Relativity 

12.1.1 Einstein's Postulates 

Classical mechanics obeys the principle of relativity: the same laws apply in any inertial 
reference frame. By "inertial" I mean that the system is at rest or moving with constant 
velocity.' Imagine, for example, that you have loaded a billiard table onto a railroad car, 
and the train is going at constant speed down a smooth straight track. The game would 
proceed exactly the same as it  would if the train were parked in the station; you don't have 
to "correct" your shots for the fact that the train is moving-indeed, if you pulled all the 
curtains you would have no way of knowing whether the train was moving or not. Notice by 
contrast that you would know it immediately if the train sped up, or slowed down, or turned 
a corner, or went over a b u m p t h e  billiard balls would roll in weird curved trajectories, 
and you yourself would feel a lurch. The laws of mechanics, then, are certainly not the 
same in accelerating reference frames. 

In its application to classical mechanics, the principle of relativity is hardly new; it was 
stated clearly by Galileo. Question: does it also apply to the laws of electrodynamics? 
At first glance the answer would seem to be no. After all, a charge in motion produces a 
magnetic field, whereas a charge at rest does not. A charge carried along by the train would 
generate a magnetic field, but someone on the train, applying the laws of electrodynamics 

 his raises an awkward problem: If the laws of physics hold just as well in a unifom~ly moving frame, then we 
have no way of identifying the "rest" frame in the first place, and hence no way of checking that some other frame 
is moving at constant velocity. To avoid this trap we define an inertial frame formally as one in which Newton's 
,first law holds. If you want to know whether you're in an inertial frame, throw some rocks around-if they travel 
in straight lines at constant speed, you've got yourself an rnertial frame, and any frame moving at constant velocity 
with respect to you will be another inertial frame (see Prob. 12.1). 
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Wire loop 

Figure 12.1 

in that system, would predict no magnetic field. In fact, many of the equations of elec- 
trodynamics, starting with the Lorentz force law, make explicit reference to "the" velocity 
of the charge. It certainly appears, therefore, that electromagnetic theory presupposes the 
existence of a unique stationary reference frame, with respect to which all velocities are to 
be measured. 

And yet there is an extraordinary coincidence that gives us pause. Suppose we mount 
a wire loop on a freight car, and have the train pass between the poles of a giant magnet 
(Fig. 12.1). As the loop rides through the magnetic field, a motional emf is established; 
according to the flux rule (Eq. 7.13), 

This emf, remember, is due to the magnetic force on charges in the wire loop, which are 
moving along with the train. On the other hand, if someone on the train naively applied the 
laws of electrodynainics in that system, what would the prediction be? No vnagnetic force, 
because the loop is at rest. But as the magnet flies by, the magnetic field in the freight car 
will change, and a changing magnetic field induces an electric field, by Faraday's law. The 
resulting electric force would generate an emf in the loop given by Eq. 7.14: 

Because Faraday's law and the flux rule predict exactly the same emf, people on the train will 
get the right answer, even though their physical interpretation of the process is conzpletel~ 
wrong. 

Or is it? Einstein could not believe this was a mere coincidence; he took it, rather, as a 
clue that electromagnetic phenomena, like mechanical ones, obey the principle of relativity. 
In his view the analysis by the observer on the train is just as valid as that of the observer 
on the ground. If their interpretations differ (one calling the process electric, the other 
magnetic), so be it; their actual predictions are in agreement. Here's what he wrote on the 
first page of his 1905 paper introducing the special theory of relativity: 



12.1. THE SPECIAL THEORY OF RELATIVITY 

It is known that Maxwell's electrodynamics-as usually understood at the 
present time-when applied to moving bodies, leads to asyrrlmetries which 
do not appear to be inherent in the phenomena. Take, for example, the re- 
ciprocal electrodynamic action of a magnet and a conductor. The observable 
phenomenon here depends only on the relative motion of the conductor and the 
magnet, whereas the customary view draws a sharp distinction between the two 
cases in which either one or the other of these bodies is in motion. For if the 
magnet is in motion and the conductor at rest, there arises in the neighborhood 
of the magnet an electric field . . . producing a current at the places where parts 
of the conductor are situated. But if the magnet is stationary and the conduc- 
tor in motion, no electric field arises in the neighborhood of the magnet. In 
the conductor, however, we find an electromotive force . . . which gives rise- 
assuming equality of relative motion in the two cases discussed-to electric 
currents of the same path and intensity as those produced by the electric forces 
in the former case. 

Examples of this sort, together with unsuccessful attempts to discover any 
motion of the earth relative to the "light medium," suggest that the phenomeila 
of electrodynamics as well as of mechanics possess no properties corresponding 
to the idea of absolute rests2 

But I'm getting ahead of the story. To Einstein's predecessors the equality of the two 
emf's was just a lucky accident; they had no doubt that one observer was right and the other 
was wrong. They thought of electric and magnetic fields as strains in an invisible jellylike 
medium called ether, which permeated all of space. The speed of the charge was to be 
measured with respect to the ether-only then would the laws of electrodynamics be valid. 
The train observer is wrong, because that frame is moving relative to the ether. 

But wait a minute! How do we know the ground observer isn't moving relative to the 
ether, too? After all, the earth rotates on its axis once a day and revolves around the sun once 
a year; the solar system circulates around the galaxy, and for all I know the galaxy itself 
may be moving at a high speed through the cosmos. All told, we should be traveling at well 
over 50 kmls with respect to the ether. Like a motorcycle rider on the open road, we face 
an "ether wind" of high velocity-unless by some miraculous coincidence we just happen 
to find ourselves in a tailwind of precisely the right strength, or the earth has some sort of 
"windshield" and drags its local supply of ether along with it. Suddenly it becomes a matter 
of crucial importance toJind the ether frame, experimentally, or else all our calculations 
will be invalid. 

The problem, then, is to determine our motion through the ether-to measure the speed 
and direction of the "ether wind." How shall we do it? At first glance you might suppose 
that practically any electromagnetic experiment would suffice: If Maxwell's equations are 
valid only with respect to the ether frame, any discrepancy between the experimental result 
and the theoretical prediction would be ascribable to the ether wind. Unfortunately, as 
nineteenth century physicists soon realized, the anticipated error in a typical experiment is 

2~ translation of Einstein's first relativity paper, "On the Electrodynamics of Moving Bodies," is reprinted in 
The Principle of Relativir?., by H. A. Lorentz et al. (New York: Dover, 1923). 
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extremely small; as in the example above, "coincidences" always seem to conspire to hide 
the fact that we are using the "wrong" reference frame. So it takes an uncommonly delicate 
experiment to do the job. 

Now, among the results of classical electrodynamics is the prediction that electromag- 
netic waves travel through the vacuum at a speed 

relative (presumably) to the ether. In principle, then, one should be able to detect the ether 
wind by simply measuring the speed of light in various directions. Like a motorboat on a 
river. the net speed "downstream" should be a maximum, for here the light is swept along 
by the ether; in the opposite direction, where it is bucking the current, the speed should 
be a minimum (Fig. 12.2). While the iden of this experiment could not be simpler, its 
exec~~tion is another matter, because light travels so inconveniently fast. If it weren't for 
that "technical detail" you could do it all with a flashlight and a stopwatch. As it happened. 
an elaborate and lovely experiment was devised by Michelson and Morley, using an optical 
interferometer of fantastic precision. I shall not go into the details here, because I do not 
want to distract your attention from the two essential points: ( l )  all Michelson and Morley 
were trying to do was compare the speed of light in different directions, and (2) what the) 
in fact discovered was that this speed is exactly the sarne in all directions. 

Ether wind 

Figure 12.2 

Nowadays, when students are taught in high school to snicker at the nayvet6 of the ether 
model, it takes some imagination to comprehend how utterly perplexing this result must 
have been at the time. All other waves (water- waves, sound waves, waves on a string) travel 
at a prescribed speed relative to the propagating medium (the stuff that does the waving). 
and if this mediurn is in motion with respect to the observer, the net speed is always greater 
"downstream" than "upstream." Over the next 20 years a series of improbable schemes 
were concocted in an effort to explain why this does not occur with light. Michelson and 
Morley themselves interpreted their experiment as confirmation of the "ether drag" hypoth- 
esis, which held that the earth somehow pulls the ether along with it. But this was found 
to be inconsistent with other observations, notably the aberration of starlight."arious so- 

3~ discussion of the Michelson-Morley experiment and related matters is to be found in R. Resnick's lnrroductio~~ 
to Special Relativih', Chap. 1 (New York: John Wiley, 1968). 
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called "emission" theories were proposed, according to which the speed of electromagnetic 
waves is governed by the motion of the source-as it would be in a corpuscular theory 
(conceiving of light as a stream of particles). Such theories called for implausible modifi- 
cations in Maxwell's equations, but in any event they were discredited by experiments using 
extraterrestrial light sources. Meanwhile, Fitzgerald and Lorentz suggested that the ether 
wind physically compresses all matter (including the Michelson-Morley apparatus itself) 
in just the right way to compensate for, and thereby conceal, the variation in speed with 
direction. As it turns out, there is a grain of truth in this, although their idea of the reason 
for the contraction was quite wrong. 

At any rate, it was not until Einstein that anyone took the Michelson-Morley result at 
face value and suggested that the speed of light is a universal constant, the same in all 
directions, regardless of the motion of the observer or the source. There is no ether wind 
because there is no ether. Any inertial system is a suitablc rcfcrcnce frame for the application 
of Maxwell's equations, and the velocity of a charge is to be measured not with respect to a 
(nonexistent) absolute rest frame, nor with respect to a (nonexistent) ether, but simply with 
respect to the particular reference system you happen to have chosen. 

Inspired, then, both by internal theoretical hints (the fact that the laws of electrodynamics 
are such as to give the right answer even when applied in the "wrong" system) and by external 
empirical evidence (the Michelson-Morley experiment4), Einstein proposed his two famous 
postulates: 

I. The principle of relativity. The laws of physics apply in all inertial 
reference systems. 

2. The universal speed of light. The speed of light in vacuum is the same 
for all inertial observers, regardless of the motion of the source. 

The special theory of relativity derives from these two postulates. The first elevates Galileo's 
observation about classical mechanics to the status of a general law, applying to all of 
physics. It states that there is no absolute rest system. The second might be considered 
Einstein's response to the Michelson-Morley experiment. It means that there is no ether. 
(Sorne authors consider Einstein's second postulate redundant-no more than a special case 
of the first. They maintain that the very existence of ether would violate the principle of 
relativity, in the sense that it would define a unique stationary reference frame. I think this 
is nonsense. The existence of air as a medium for sound does not invalidate the theory of 
relativity. Ether is no more an absolute rest system than the water in a goldfish bowl-which 
is a special system, if you happen to be the goldfish, but scarcely "ab~olute.")~ 

Unlike the principle of relativity, which had roots going back several centuries, the 
universal speed of light was radically new-and, on the face of it, preposterous. For if I 
walk 5 mi/h down the corridor of a train going 60 mih,  my net speed relative to the ground 

4~ctua l ly ,  Einstein appears to have been only dimly aware of the Michelson-Morley experiment at the time. 
For him, the theoretical argument alone was decisive. 

5~ put it this way in an effort to dispel some misunderstanding as to what constitutes an absolute rest frame. In 
1977, it became possible to measure the speed of the earth through the 3 K background radiation left over from the 
"big bang." Does this mean we have found an absolute rest system, and relativity is out the window? Of course 
not. 
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is "obviously" 65 milh-the speed of A (me) with respect to C (ground) is equal to the 
speed of A relative to B (train) plus the speed of B relative to C: 

And yet, if A is a Eight signal (whether is comes from a flashlight on the train or a lamp on 
the ground or a star in the sky) Einstein would have us believe that its speed is c relative to 
the train and c relative to the ground: 

Evidently, Eq. 12.1, which we now call Galileo's velocity addition rule (no one before 
Einstein would have bothered to give it a nhme at all) is incompatible with the second 
postulate. In special relativity, as we shall see, i t  is replaced by Einstein's velocity addition 
rule: 

v A B  + V B C  
VAC = 

For "ordinary" speeds ( V A B  << c,  U B C  << c).  the denominator is so close to 1 that the 
discrepancy between Galileo's formula and Einstein's formula is negligible. On the other 
hand, Einstein's formula has the desired property that if U A B  = c, then automatically 

But how can Galileo's rule, which seems to rely on nothing but common sense, possibly 
be wrong? And if it is wrong, what does this do to all of classical physics? The answer 
is that special relativity compels us to alter our notions of space and time themselves, and 
therefore also of such derived quantities as velocity, momentum, and energy. Although 
it developed historically out of Einstein's contemplation of electrodynamics, the special 
theory is not limited to any particular cIass of phenomena-rather, it is a description of 
the space-time "arena" in which all physical phenomena take place. And in spite of the 
reference to the speed of light in the second postulate, relativity has nothing to do with light: 
c is evidently a fundamental velocity, and it happens that light travels at that speed, but it 
is perfectly possible to conceive of a universe in which there are no electric charges, and 
hence no electrolnagnetic fields or waves, and yet relativity would still prevail. Because 
relativity defines the structure of space and time, it claims authority not merely over all 
presently known phenomena, but over those not yet discovered. It is, as Kant would say, a 
"prolegomenon to any future physics." 

Problem 12.1 Use Galileo's velocity addition rule. Let S be an inertial reference system. 

(a) Suppose that S moves with constant velocity relative to S. Show that S is also an inertial 
reference system. [Hint: use the definition in footnote l.] 

(b) Conversely, show that if S is an inertial system, then it moves with respect to S at constant 
velocity. 
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Problem 12.2 As an illustration of the principle of relativity in classical mechanics, consider 
the following generic collision: In inertial frame S ,  particlc A (mass m A ,  vclocity U A )  hits 
particle B (mass m g ,  velocity u g ) .  In the course of the collision some mass rubs off A and 
onto B, and we are left with particles C (mass m c ,  velocity uc) and D (mass r n ~ ,  velocity 
u g ) .  Assume that momentum (p - mu) is conserved in S. 

(a) Prove that momentum is also conserved in inertial frame S, which moves with velocity v 
relative to S. [Use Galileo's velocity addition rule-this is an entirely classical calculation. 
What must you assume about mass?] 

(b) Suppose the collision is elastic in S; show that it is also elastic in S. 

Problem 12.3 

(a) What's the percent error introduced when you use Galileo's rule, instead of Einstein's, with 
V A B  = 5 mi/h and v g ~  = 60 milh? 

(b) Suppose you could run at half the speed of light down the corridor of a train going three- 
quarters the speed of light. What would your speed be relative to the ground? 

(C) Prove, using Eq. 12.3, that if V A B  < c and v g ~  c then VAC c. Interpret this result. 

Figure 1 2.3 

3 Problem 12.4 As the outlaws escape in their getaway car, which goes ~ c ,  the police officer 
1 fires a bullet from the pursuit car, which only goes ~c (Fig. 12.3). The muzzle velocity of the 

bullet (relative to the gun) is :c. Does the bullet reach its target (a) according to Galileo, (b) 
according to Einstein? 

12.1.2 The Geometry of Relativity 

In this section I present a series of gedankelz (thought) experiments that serve to introduce 
the three most striking geometrical consequences of Einstein's postulates: time dilation, 
Lorentz contraction, and the relativity of simultaneity. In Sect. 12.1.3 the same results will 
be derived more systematically, using Lorentz transformations. 

(i) The relativity of simultaneity. Imagine a freight car, traveling at constant speed 
along a smooth, straight track (Fig. 12.4). In the very center of the car there hangs a 
light bulb. When someone switches it on, the light spreads out in all directions at speed 
c. Because the latnp is equidistant from the two ends, an observer on the train will find 
that the light reaches the front end at the same instant as  it reaches the back end: The two 
events in question-(a) light reaches the front end and (b) light reaches the back end- 
occur simultaneously. However, to an observer on the gro~lnd these same two events are not 
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Figure 12.4 Figure 12.5 

simultaneous. For as the light travels out from the bulb, the train itself moves forward, so 
the beam going to the back end has a shorter distance to travel than the one going forward 
(Fig. 12.5). According to this observer, therefore, event (b) happens before event (a). An 
observer passing by on an express train, meanwhile, would report that (a) preceded (b). 
Conclusion: 

Two events that are simultaneous in one inertial system are not, in 
general, simultaneous in another. 

Naturally, the train has to be going awfully fast before the discrepancy becomes detectable- 
that's why you don't notice it all the time. 

Of course, it is alulays possible for a naive witness to be mistaken about simultaneity: 
you hear the thunder after you see the lightning, and a child might infer that the source 
of the light was not simultaneous with the source of the sound. But this is a trivial error. 
having nothing to do with moving observers or relativity-obviously, you must correct for 
the time the signal (sound, light, carrier pigeon. or whatever) takes to reach you. When I 
speak of an observer, I mean someone having the sense to make this correction, and an 
observation is what an observer records after doing so. What you see, therefore, is not the 
same as what you obsenie. An observation cannot be made with a camera-it is an artificial 
reconstruction after the fact, when all the data are in. In fact, a wise observer will avoid the 
whole problem, by stationing assistants at strategic locations, each equipped with a watch 
synchronized to a master clock, so that time measurements can be made right at the scene. 
I belabor this point in order to emphasize that the relativity of simultaneity is a genuine 
discrepancy between measurements made by competent observers in relative motion, not a 
simple mistake arising from a failure to account for the travel time of light signals. 

Problem 12.5 Synchronized clocks are stationed at regular intervals, a million km apart, along 
a straight line. When the clock next to you reads 12 noon: 

(a) What time do you see on the 90th clock down the line? 

(b) What time do you o h s e ~ ~ ~ e  on that clock? 

Problem 12.6 Every 2 years, more or less, The Net )  York Times publishes an article in which 
some astronomer claims to have found an object traveling faster than the speed of light. Man) 
of these reports result from a failure to distinguish what is seen from what is observed-that 
is, from a failure to account for light travel time. Here's an example: A star is traveling with 
speed v at an angle 8 to the line of sight (Fig. 12.6). What is its apparent speed across the sky ' 
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To earth 

Figure 12.6 

(Suppose the light signal from b reaches the earth at a time A t  after the signal from a ,  and the 
star has meanwhile advanced a distance A s  across the celestial sphere; by "apparent speed" 
I mean AslAt . )  What angle 0 gives the maximum apparent speed? Show that the apparent 
speed can be much greater than c, even if v itself is less than c. 

(ii) Time dilation. Now let's consider a light ray that leaves the bulb and strikes the 
floor of the car directly below. Question: How long does it take the light to make this trip? 
From the point of view of an observer on the train, the answer is easy: If the height of the 
car is h, the time is 

(I'll use an overbar to denote measurements made on the train.) On the other hand, as 
observed from the ground this same ray must travel farther, because the train itself is 
moving. From Fig. 12.7 1 see that this distance is J-, so 

Figure 12.7 
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Solving for At, we have 
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and therefore 

1 A? = 41 - t12/c2 At.  1 
Evidently the time elapsed between the same hvo events-(a) light leaves bulb, and (b) light 
strikes center of floor-is different for the two observers. In fact, the interval recorded on 
the train clock, Ai, is shorter by the factor 

Conclusion: 

Moving clocks run slow. 

This is called time dilation. It doesn't have anything to do with the mechanics of clocks; it's 
a statement about the nature of time, which applies to all properly functioning timepieces. 

Of all Einstein's predictions, none has received more spectacular and persuasive confir- 
mation than time dilation. Most elementary particles are unstable: they disintegrate after a 
characteristic lifetime6 that varies from one species to the next. The lifetime of a neutron 
is 15 min, of a muon, 2 X 10@ S, of a neutral pion, 9 X 10-l7 S .  But these are lifetimes of 
particles at rest. When particles are ~noving at speeds close to c they last much longer, for 
their internal clocks (whatever it is that tells them when their time is up) are running slow, 
in accordance with Einstein's time dilation formula. 

Example 12.1 

A muon is ~aveling through the laboratory at three-fifths the speed of light. How long does it 
last? 

Solution: In this case, 
1 5 - - 

Y =  j m - 4 .  

so it lives longer (than at rest) by a factor of 2 :  

6~ctua l ly ,  an individual particle may last longer or shorter than this. Particle disintegration is a random process. 
and I should really speak of the average lifetime for the species. But to avoid irrelevant complication I shall 
pretend that every particle disintegrates after precisely the average lifetime. 
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It may strike you that time dilation is inconsistent with the principle of relativity. For if 
the ground observer says the train clock runs slow, the train observer can with equal justice 
claim that the ground clock runs slow-after all, from the train's point of view it is the 
ground that is in motion. Who's right? Answer: They're both right! On closer inspection 
the "contradiction," which seems so stark, evaporates. Let me explain: In order to check 
the rate of the train clock, the ground observer uses two of his own clocks (Fig. 12.8): one 
to compare times at the beginning of the interval, when the train clock passes point A ,  the 
other to compare times at the end of the interval, when the train clock passes point B. Of 
course, he must be careful to synchronize his clocks before the experiment. What he finds 
is that while the train clock ticked off, say, 3 minutes, the interval between his own two 
clock readings was 5 minutes. He concludes that the train clock runs slow. 

Train clock Train clock B Train clock A 

A - 

Ground clock A Ground clock B 

W Ground clock 

Figure 12.8 Figure 12.9 

Meanwhile, the observer on the train is checking the rate of the ground clock by the 
same procedure: She uses two carefully synchronized train clocks, and compares times 
with a single ground clock as it passes by each of them in turn (Fig. 12.9). She finds that 
while the ground clock ticks off 3 minutes, the interval between her train clocks is 5 min- 
utes, and concludes that the ground clock runs slow. Is there a contradiction? No, for the 
two observers have measured different things. The ground observer compared one train 
clock with two ground clocks; the train observer compared one ground clock with two train 
clocks. Each followed a sensible and correct procedure, comparing a single moving clock 
with two stationary ones. "So what," you say, "the stationary clocks were synchronized 
in each instance, so it cannot matter that they used two different ones." But there's the 
rub: Clocks that are properly synchronized in one system will not be synchronized when 
obsewedfiom another system. They can't be, for to say that two clocks are synchronized 
is to say that they read 12 noon simultaneously, and we have already learned that what's 
simultaneous to one observer is not simultaneous to another. So whereas each observer 
conducted a perfectly sound measurement, from hisher own point of view, the other ob- 
server, watching the process, considers that shelhe made the most elementary blunder, by 
using two unsynchronized clocks. That's how, in spite of the fact that his clocks "actually" 
run slow, he manages to conclude that hers are running slow (and vice versa). 
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Because moving clocks are not synchronized, it is essential when checking time dilation 
to focus attention on a single moving clock. All moving clocks run slow by the same factor, 
but you can't start timing on one clock and then switch to another because they weren't 
in step to begin with. But you can use as many stationary clocks (stationary with respect 
to you, the observer) as you please, for they are properly synchronized (moving observers 
would dispute this, but that's their problem). 

Example 12.2 

The twin paradox. On her 2 1st birthday, an astronaut takes off in a rocket ship at a speed of 
12 BC. After 5 years have elapsed on her watch, she turns around and heads back at the same 

speed to rejoin her twin brother, who stayed at home. Question: How old is each twin at their 
reunion? 

Solution: The traveling twin has aged 10 years (5 years out, 5 years back); she arrives at home 
just in time to celebrate her 3 1 st birthday. However, as viewed from earth, the moving clock 
has been running slow by a factor 

The time elapsed on earthbound clocks is X 10 = 26. and her brother will be therefore 
celebrating his 47th birthday-he is now 16 years older than his twin sister! But don't be 
deceived: This is no fountain of youth for the traveling twin, for though she may die later than 
her brother, she will not have lived any more-she's just done it slower. During the flight, all 
her biological processes-metabolism, pulse, thought, and speech-are subject to the same 
time dilation that affects her watch. 

The so-called twin paradox arises when you try to tell this story from the point of view of 
the traveling twin. She sees the eonh fly off at G C ,  turn around after 5 years. and return. From 
her point of view, it would seem, she3 at rest, whereas her brother is in motion, and hence 
it is he who should be younger at the reunion. An enormous amount has been written about 
the twin paradox, but the truth is there's really no paradox here at all: this second analysis is 
simply wrorzg. The two twins are not equivalent. The traveling twin experiences acceleration 
when she turns around to head home, but her brother does not. To put it in fancier language, 
the traveling twin is not in an inertial system-more precisely, she's in one inertial system 
on the way out and a completely different one on the way back. You'll see in Prob. 12.16 
how to analyze this problem correctly from her point of view, but as far as the resolution of 
the "paradox" is concerned, it is enough to note that the traveling twin cannot claim to be a 
stationary observer because you can't undergo acceleration and remain stationary. 

Problem 12.7 In a laboratory experiment a muon is observed to travel 800 m before disinte- 
grating. A graduate student looks up the lifetime of a muon (2 X 1 0 - ~  S) and concludes that 
its speed was 

Faster than light! Identify the student's error, and find the actual speed of this muon. 
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Problem 12.8 A rocket ship leaves earth at a speed of :c .  When a clock on the rocket says l 
hour has elapsed, the rocket ship sends a light signal back to earth. 

(a) According to earth clocks, when was the signal sent? 

(b) According to earth clocks, how long after the rocket left did the signal anive back 011 earth? 

(c) According to the rocket observer, how long after the rocket left did the signal anive back 
on earth? 

(iii) Lorentz contraction. For the third gedanken experiment you must imagine that we 
have set up a lamp at one end of a boxcar and a mirror at the other, so that a light signal can 
be sent down and back (Fig. 12.10). Question: How long does the signal take to complete 
the round trip? To an observer on the train, the answer is 

where A i  is the length of the car (the overbar, as before, denotes measurements made on 
the train). To an observer on the ground the process is more complicated because of the 
motion of the train. If Atl is the time for the light signal to reach the front end, and At2 is 
the return time, then (see Fig. 12.1 1): 

or, solving for Atl and At2: 

Ax Ax 
Atl  = - , At2 = -. 

C - U  c + v  

So the round-trip time is 

Meanwhile, these same intervals are related by the time dilation formula, Eq. 12.5: 

A i  = ,/l - v2/c2 At .  

uAt, vAt, 
m- - - - - - - - - - - 

Mirror 
Lamp 

--- I I 
7--- 

Figure 12.10 Figure 12.1 1 
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Applying this to Eqs. 12.7 and 12.8, I conclude that 

The length of the boxcar is not the same when measured by an observer on the ground, 
as it is when measured by an observer on the train-from the ground point of view it is 
somewhat shorter. Conclusion: 

Moving objects are shortened. 

We call this Lorentz contraction. Notice that the same factor, 

appears in both the time dilation formula and the Lorentz contraction formula. This makes 
it all very easy to remember: Moving clocks run slow, moving sticks are shortened, and the 
factor is always y. 

Of course, the observer on the train doesn't think her car is shortened-her meter sticks 
are contracted by that same factor, so all her measurements come out the same as when the 
train was standing in the station. In fact, from her point of view it is objects on the ground 
that are shortened. This raises again a paradoxical problem: If A says B's sticks are short, 
and B says A's sticks are short, who is right? Answer: They both are! But to reconcile the 
rival claims we must study carefully the actual process by which length is measured. 

Suppose you want to find the length of a board. If it's at rest (with respect to you) you 
simply lay your ruler down next to the board, record the readings at each end, and subtract 
them to get the length of the board (Fig. 12.12). (If you're really clever, you'll line up 
the left end of the ruler against the left end of the board-then you only have to read one 
number.) 

But what if the board is moving? Same story, only this time, of course, you must be 
careful to read the two ends at the same instant of time. If you don't, the board will move 
in the course of measurement, and obviously you'll get the wrong answer. But therein lies 
the problem: Because of the relativity of simultaneity the two observers disagree on what 
constitutes "the same instant of time." When the person on the ground measures the length 
of the boxcar, he reads the position of the two ends at the same instant in his system. But 

I Board I 

l 
Ruler 

Figure 12.12 
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the person on the train, watchirig him do it, complains that he read the front end first, then 
waited a moment before reading the back end. Naturally, he came out short, in spite of 
the fact that (to her) he was using an undersized meter stick, which would otherwise have 
yielded a number too large. Both observers measure lengths correctly (from the point of 
view of their respective inertial frames) and each finds the other's sticks to be shortened. 
Yet there is no inconsistency, for they are measuring different things, and each considers 
the other's method improper. 

Example 12.3 

The barn and ladder paradox. Unlike time dilation, there is no direct experimental confir- 
mation of Lorentz contraction, simply because it's too difficult to get an object of measurable 
size going anywhere near the speed of light. The following parable illustrates how bizarre the 
world would be if the speed of light were more accessible. 

There once was a farmer who had a ladder too long to store in his barn (Fig. 12.13a). He 
chanced one day to read some relativity, and a solution to his problem suggested itself. He 
instructed his daughter to run with the ladder as fast as she could-the moving ladder having 
Lorentz-contracted to a size the barn could easily accommodate, she was to rush through the 
door, whereupon the farmer would slam it behind her, capturing the ladder inside (Fig. 12.13b). 
The daughter. however, has read somewhat farther in the relativity book; she points out that in 
her reference frame the barn, not the ladder, will contract, and the fit will be even worse than 
it was with the two at rest (Fig. 12.13~). Question: Who's right? Will the ladder fit inside the 
barn, or won't it? 

(c) 

Figure 12.13 
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Solution: They're both right! When you say "the ladder is in the barn," you mean that all 
parts of it are inside at one instant of time, but in view of the relativity of simultaneity, that's a 
condition that depends on the observer. There are really two relevant events here: 

a. Back end of ladder makes it in the door. 
b. Front end of ladder hits far wall of barn. 

The farmer says a occurs before b, so there is a time when the ladder is entirely within the 
barn; his daughter says b precedes a, so there is not. Contradiction? Nope-just a difference 
in 

"But come now," I hear you protest, "when it's all over and the dust clears, either the ladder 
is inside the barn, or it isn't. There can be no dispute about that.'' Quite so, but now you're 
introducing a new element into the story: What happens as the ladder is brought to a stop? 
Suppose the farmer grabs the last rung of the ladder firmly with one hand, while he slams 
the door with the other. Assuming it remains intact, the ladder must now stretch out to its 
rest length. Evidently, the front end keeps going, even after the rear end has been stopped! 
Expanding like an accordian, the front end of the ladder smashes into the far side of the barn. 
In truth, the whole notion of a "rigid" object loses its meaning in relativity, for when it changes 
its speed, different parts do not in general accelerate simultaneously-in this way the material 
stretches or shrinks to reach the length appropriate to its new velocity. 

But to return to the question at hand: When the ladder finally comes to a stop, is it inside the 
barn or not? The answer is indeterminate. When the front end of the ladder hits the far side 
of the barn, something has to give, and the farmer is left either with a broken ladder inside the 
barn or with the ladder intact poking through a hole in the wall. In any event, he is unlikely to 
be pleased with the outcome. 

One final comment on Lorentz contraction. A moving object is shortened only along 
the direction of its motion: 

Dimensions perpendicular to the velocity are not contracted. 

Indeed, in deriving the time dilation formula I took it for granted that the height of the train 

is the same for both observers. I'll now justify this, using a lovely gedanken experiment 

suggested by Taylor and Wheeler.7 Imagine that we build a wall beside the railroad tracks, 
and 1 m above the rails, as measured on the ground, we paint a horizontal blue line. When 
the train goes by, a passenger leans out the window holding a wet paintbmsh l m above the 
rails, as measured on the train, leaving a horizontal red line on the wall. Question: Does 
the passenger's red line lie above or  below our blue one? If the rule were that perpendicular 

directions contract, then the person on the ground would predict that the red line is lower, 

while the person on the train would say it's the blue one (to the latter, of course, the ground 
is moving). The principle of relativity says that both observers are equally justified, but they 

cannot both be right. No  subtleties of simultaneity or synchronization can rationalize this 
contradiction; either the blue line is higher o r  the red one is-unless they exactly coincide, 

7 ~ .  E Taylor and J. A. Wheeler, Spacetime Physics (San Francisco: W. H. Freeman, 1966). A somewhat 
different version of the same argument is given in .l. H. Smith, Ir~troduction to Special Relativiv (Champaign, IL: 
Stipes, 1965). 
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which is the inescapable conclusion. There cannot be a law of contraction (or expansion) 
of perpendicular dimensions, for it would lead to irreconcilably inconsistent predictions. 

Problem 12.9 A Lincoln Continental is twice as long as a VW Beetle, when they are at rest. 
As the Continental overtakes the VW, going through a speed trap, a (stationary) policeman 
observes that they both have the same length. The VW is going at half the speed of light. How 
fast is the Lincoln going? (Leave your answer as a multiple of C . )  

Problem 12.10 A sailboat is manufactured so that the mast leans at an angle Q with respect to 
the deck. An observer standing on a dock sees the boat go by at speed v (Fig. 12.14). What 
angle does this observer say the mast makes? 

Figure 12.14 Figure 12.15 

! Problem 12.11 A record turntable of radius R rotates at angular velocity w (Fig. 12.15). The 
circumference is presumably Lorentz-contracted, but the radius (being perpendicular to the 
velocity) is not. What's the ratio of the circumference to the diameter, in terms of w and R? 
According to the rules of ordinary geometry, that has to be n. What's going on here? [This 
is known as Ehrenfest's paradox; for discussion and references see H. Arzelies, Relativistic 
Kinematics, Chap. IX (Elmsford, NY Pergamon Press, 1966) and T. A. Weber, Am. J. Phy,ys. 
65,486 ( 1997).] 

12.1.3 The Lorentz Transformations 

Any physical process consists of one or more events. An "event" is something that takes 
place at a specific location (X, y ,  z ) ,  at a precise time ( t ) .  The explosion of a firecracker, 
for example. is an event; a tour of Europe is not. Suppose that we know the coordinates 
(X, y ,  z )  of a particular event E in one inertial system S, and we would like to calculate the 
coordinates (i. j ,  2, F) of that same event in some other inertial system S. What we need 
is a "dictionary" for translating from the language of S to the language of S. 
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Figure 12.16 

We may as well orient our axes as shown in Fig. 12.16, so that S slides along the x axis 
at speed v. If we "start the clock" (t = 0) at the moment the origins ( 0  and 6) coincide. 
then at time t, 6 will be a distance v t  from 0, and hence 

where d is the distance from 0 to A at time t ( A  is the point on the 2 axis which is even 
with E when the event occurs). Before Einstein, anyone would have said immediately that 

and thus constructed the "dictionary" 

(i) i = X -  v t ,  

(ii) 7 = 11, 

(iii) Z = z ,  

(iv) f = t .  
0 

These are now called the Galilean transformations, though they scarcely deserve so fine 
a title-the last one, in particular, went without saying, since everyone assumed the flow 
of time was the same for all observers. In the context of special relativity, however, we 
must expect (iv) to be replaced by a rule that incorporates time dilation, the relativity of 
simultaneity, and the nonsynchronization of moving clocks. Likewise, there will be a 
modification in ( i )  to account for Lorentz contraction. As for (ii) and (iii), they, at least. 
remain unchanged, for we have already seen that there can be no modification of lengths 
perpendicular to the motion. 

But where does the classical derivation of (i) break down? Answer: I11 Eq. 12.1 1. For 
d is the distance from 6 to A as measured in S ,  whereas ,i is the distance from 6 to A crs 
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measured in S. Because a and A are at rest in S , 2  is the "moving stick," which appears 
contracted to S :  

l 
d = -x. (12.13) 

Y 
When this is inserted in Eq. 12.10 we obtain the relativistic version of (i): 

2 = ~ ( x  - vt). (12.14) 

Of course, we could have run the same argument from the point of view of S. The 
diagram (Fig. 12.17) looks similar, but in this case it depicts the scene at time i, whereas 
Fig. 12.16 showed the scene at time t .  (Note that t and frepresent the same physical instant 
at E, but not elsewhere, because of the relativity of simultaneity.) If we assume that also 
starts the clock when the origins coincide, then at time i, O will be a distance v? from 6, 
and therefore - 

,i = d - v t ,  (12.15) 

where d is the distance from O to A at time 7, and A is that point on the X axis which is 
even with E when the event occurs. The classical physicist would have said that X = d ,  
and, using (iv), recovered (i). But, as before, relativity demands that we observe a subtle 
distinction: X is the distance from O to A in S, whereas d is the distance from O to A in 
S. Because O and A are at rest in S ,  x is the "moving stick," and 

It follows that 
X = y(X + U;). 

This last equation comes as no surprise, for the symmetry of the situation dictates that 
the formula for X, in terms of x and f, should be identical to the formula for i in terms of 
x and t (Eq. 12.14), except for a switch in the sign of v. (If S is going to the right at speed 

Figure 12.17 
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v, with respect to S, then S is going to the left at speed v,  with respect to S.) Nevertheless, 
this is a useful result, for if we substitute ,7 from Eq. 12.14, and solve for i, we complete 
the relativistic "dictionary": 

(ii) j = p, 

(iii) Z = z ,  

These are the famous Lorentz transformations, with which Einstein replaced the 
Galilean ones. They contain all the geometrical information in the special theory, as the 
following examples illustrate. The reverse dictionary, which carries you from S back to 
S, can be obtained algebraically by solving (i) and (iv) for X and t ,  or, more simply, by 
switching the sign of v: 

Example 12.4 

(if) X = y(X + V ; ) ,  

(ii') y = 7 ,  

(iii') z = 2 ,  

U 
(iv'j t = y (it ?X) . 

7 

Simultaneity, synchronization, and time dilation. Suppose event A occurs at .XA = 0, r~ = 

0,  and event B occurs at xg = b ,  tg  = 0. The two events are simultaneous in S (they both 
take place at t = 0) .  But they are not simultaneous in S, for the Lorentz transformations give 

9 
. i ~  = 0, iA = 0 and i g  = yb ,  ;g = - y (v/cb)b.  According to the S clocks, then, B occurred 
before A. This is nothing new, of course-just the relativity of simultaneity. But I wanted yuu 
to see how it follows froin the Lorentz transforn~ations. 

, 

Now suppose that at time t = 0 observer S decides to examine all the clocks in S. He finds 
that they read diferent times, depending on their location; from (iv): 

Those to the left of the origin (negative X)  are ahead, and those to the right are behind, by an 
amount that increases in proportion to their distance (Fig. 12.18). Only the master clock at the 
origin reads i = 0. Thus, the nonsynchronization of moving clocks, too, follows directly from 
the Lorentz transformations. Of course, from the S viewpoint it is the S clocks that are out of 
synchronization, as you can check by putting = 0 into equation (iv'). 
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S clocks 

S clocks 

Figure 12.1 8 

Finally, suppose S focuses his attention on a single clock in the S frame (say, the one at 
.f = n j ,  and watches it over some interval At .  How much time elapses on the moving clock? 
Because i is fixed, (iv') gives At  = y A?, or 

That's the old time dilation formula, derived now from the Lorentz transformations. Please 
note that it's x we hold fixed, here, because we're watching one moving clock. If you hold .X 

fixed, then you're watching a whole series of different S clocks as they pass by, and that won't 
tell you whether any one of them is running slow. 

Example 12.5 

Lorentz contraction. Imagine a stick moving to the right at speed v. Its rest length (that is, its 
length as measured in S) is A i  = .Fr - . f l ,  where the subscripts denote the right and left ends 
of the stick. If an observer in S were to measure the stick, he would subtract the positions of 
the two ends at one instant of his time t :  Ax = x, - X L .  According to (i), then, 

This is the old Lorentz contraction formula. Note that it's t  we hold fixed, here, because we're 
talking about a measurement made by S, and he marks off the two ends at the same instant of 
his time. (S doesn't have to be so fussy, since the stick is at rest in her frame.) 

Example 12.6 

Einstein's velocity addition rule. Suppose a particle moves a distance dx (in S) in a time d t .  
Its velocity u is then 

d x  
U = -. 

dt  
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In S, meanwhile. it has moved a distance 

dx = y ( d x  - udt), 

as we see from (i), in a time given by (iv): 

d l =  y d t -  ,dx . ( 
The velocity in S is therefore 

- d,? y ( d x  - ud t )  ( d ~ / d t  - U )  U - v  
U = : =  - (12.20) 

d t  y  (d t  - u / c 2 d x )  l - u / c 2 d x / d t  1 - uu /c2  ' 

This is Einstein's velocity addition rule. To recover the more transparent notation of Eq. 12.3, 
let A be the particle, B be S, and C be S; then u = W A B ,  ii = V A C ,  and u  = u c ~  = -UBC,  
so Eq. 12.20 becomes 

as before. 

Problem 12.12 Solve Eqs. 12.18 for X ,  y,  z ,  t in terms of i, j ,  2 ,  f, and check that you recover 
Eqs. 12.19. 

Problem 12.13 Sophie Zabar, clairvoyante, cried out in pain at precisely the instant her twin 
brother, 500 km away, hit his thumb with a hammer. A skeptical scientist observed both events 
(brother's accident, Sophie's cry) from an airplane traveling at #c  to the right (see Fig. 12.19). 
Which event occurred first, according to the scientist? How much earlier was it, in seconds? 

Problem 12.14 

(a) In Ex. 12.6 we found how velocities in the x  direction transform when you go from S to 
S. Derive the analogous formulas for velocities in the y and z directions. 

(b) A spotlight is mounted on a boat so that its beam makes an angle 6 with the deck (Fig. 12.20). 
If this boat is then set in motion at speed v ,  what angle 0 does an observer on the dock say the 
beam makes with the deck? Compare Prob. 12.10, and explain the difference. 

Problem 12.15 You probably did Prob. 12.4 from the point of view of an observer on the 
ground. Now do it from the point of view of the police car, tbe outlaws, and the bullet. That 
is, fill in the gaps in the following table: 

speed of -. 
relatlve to 1 

Ground 
l 

Police 
Outlaws 
Bullet 

Ground 

o 
L 

Police 

I ri C 
Lt 

Outlaws 

r L  
3 .  

I 
5. 

Bullet 

1 

Do they escape'? 

I 
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Brother Sophie 
A - 

Figure 12.19 Figure 12.20 

! Problem 12.16 The twin paradox revisited. On their 2 1 st birthday, one twin gets on a moving 

sidewalk. which cames her out to star X at speed :c; her twin brother stays home. When the 
traveling twin gets to star X, she immediately jumps onto the returning moving sidewalk and 
comes back to earth, again at speed :c. She amves on her 39th birthday (as determined by 
her watch). 

(a) How old is her twin brother (who stayed at home)? 

(b) How far away is star X? (Give your answer in light years.) 

Call the outbound sidewalk system S and the inbound one S (the earth system is S) .  All three 
systems set their master clocks, and choose their origins, so that x = .i = i = 0, t = i = f = 0 
at the moment of departure. 

(c) What are the coordinates ( X ,  t )  of the jump (from outbound to inbound sidewalk) in S? 

(d) What are the coordinates (x', i) of the jump in S? 

(e) What are the coordinates (2.  F) of the jump in S? 

(f) If the traveling twin wanted her watch to agree with the clock in S, how would she have 
to reset it immediately after the jump? If she did this, what would her watch read when she 
got home? (This wouldn't change her age, of course-she's still 39-it would just make her 
watch agree with the standard synchronization in S. )  

(g) If the traveling twin is asked the question, "How old is your brother right rtow?', what is the 
correct reply (i) just before she makes the jump, (ii) just after she makes the jump? (Nothing 
dramatic happens to her brother during the split second between (i) and (ii), of course; what 
does change abruptly is his sister's notion of what "right now. back home" means.) 

(h) How many earth years does the return trip take? Add this to (ii) from (g) to determine how 
old she expects him to be at their reunion. Compare your answer to (a). 
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12.1.4 The Structure of Spacetime 

(i) Four-vectors. The Lorentz transformations take on a simpler appearance when expressed 
in terms of the quantities 

v 
x0 = e t ,  p = -. (12.21) 

C 

Using x0 (instead o f t )  and p (instead of v )  amounts to changing the unit of time from the 
second to the meter-l meter of xO corresponds to the time it takes light to travel 1 meter 
(in vacuum). If, at the same time, we number the M ,  y ,  z coordinates, so that 

then the Lorentz transformations read 

0 xo = y (X - px'),  1 

Or, in matrix form: 

Letting Greek indices run from 0 to 3, this can be distilled into a single equation: 

where A is the Lorentz transformation matrix in Eq. 12.24 (the superscript p labels the 
row, the subscript v labels the column). One virtue of writing things in this abstract manner 
is that we can handle in the same format a more general transformation, in which the relative 
motion is not along a common X 2 axis; the matrix A would be more complicated, but the 
structure of Eq. 12.25 is unchanged. 

If this reminds you of the rotations we studied in Sect. 1.1.5, it's no accident. There we 
were concerned with the change in components when you switch to a rotated coordinate 
system; here we are interested in the change of components when you go to a moving 
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system. In Chapter 1 we defined a (3-) vector as any set of three components that transform 
under rotations the same way (X, y ,  z )  do; by extension, we now define a Cvector as any 

2 3 set offour components that transform in the same manner as (xO, x l ,  x , x ) under Lorentz 
transformations: 

3 

For the particular case of a transformation along the X axis: 

There is a 4-vector analog to the dot product (A B - A, B, + Ay By + Az Bz), but it's 
not just the sum of the products of like components; rather, the zeroth components have a 
minus sign: 

-aobo + a l b l  + a2b2 + a3b3. 

This is the four-dimensional scalar product; you should check for yourself (Prob. 12.17) 
that it has the same value in all inertial systems: 

Just as the ordinary dot product is invariant (unchanged) under rotations, this combination 
is invariant under Lorentz transformations. 

To keep track of the minus sign it is convenient to introduce the covariant vector a,, 
which differs from the contravariant a p  only in the sign of the zeroth component: 

You must be scrupulously careful about the placement of indices in this business: upper 
indices designate contravariarzt vectors; lower indices are for covariant vectors. Raising 
or lowering the temporal index costs a minus sign (ao = -a0); raising or lowering a spatial 
index changes nothing (a1 = a' ,  a? = a2,  a3 = a3). The scalar product can now be written 
with the summation symbol, 

3 

or, more compactly still, 
a,, bp. 

Summation is implied whenever a Greek index is repeated in a product-once as a covariant 
index and once as contravariant. This is called the Einstein summation convention, after 
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its inventor, who regarded it as one of his most important contributions. Of course, we 
could as well take care of the minus sign by switching to covariant b: 

Problem 12.17 Check Eq. 12.29, using Eq. 12.27. [This only proves the invariance of the 
scalar product for transformations along the X direction. But the scalar product is also invariant 
under rotations, since the first tenn is not affected at all, and the last three constitute the three- 
dimensional dot product a.b. By a suitable rotation, the s direction can be aimed any way you 
please, so the four-dimensional scalar product is actually invariant under a r b i t r a ~  Lorentz 
transformations.] 

Problem 12.18 

(a) Write out the matrix that describes a Galilean transformation (Eq.  12.12). 

(b) Write out the matrix describing a Lorentz transformation along the y axis. 

(c) Find the matrix describing a Lorentz transformation with velocity v along the X axis followed 
by a Lorentz transformation with velocity ii along the y axis. Does it matter in what order the 
transformations are canied out? 

Problem 12.19 The parallel between rotations and Lorentz transformations is even more strik- 
ing if we introduce the rapidity: 

1 0 tanh- (v/c). (12.34) 

(a) Express the Lorentz transformation matrix A (Eq. 12.24) in terms of 0, and compare it to 
the rotation matrix (Eq. 1.29). 

In some respects rapidity is a more natural way to describe motion than velocity. [See E. 
F. Taylor and J. A. Wheeler, Spacetime Physics (San Francisco: W. H. Freeman, 1966).] For 
one thing, it ranges from -W to +W, instead of -c to +c. More significantly, rapidities add. 
whereas velocities do not. 

(b) Express the Einstein velocity addition law in terms of rapidity. 

(ii) The invariant interval. Suppose event A occlirs at (xi, xi. xi. xi). and event B 
at (X:, X;, X;, X;). The difference, 

is the displacement Cvector. The scalar product of A x Y  with itself is a quantity of special 
importance; w e  call it the interval between two events: 

where t is the time difference between the two events and d is their spatial separation. When 
you transform to a moving system, the time between A and B is altered (i # t ) ,  and so is 
the spatial sepamtion (d # d ) ,  but the interval I remains the same. 
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Depending on the two events in question, the interval can be positive, negative, or zero: 

1. If I < 0 we call the interval timelike, for this is the sign we get when 
the two occur at the same place (d = O), and are separated only temporally. 

2. 11 I > 0 we call the interval spacelike, for this is the sign we get when 
the two occur at the same time (t = O), and are separated only spatially. 

3. If I = 0 we call the interval lightlike, for this is the relation that holds 
when the two events are connected by a signal traveling at the speed of light. 

If the interval between the two events is timelike, there exists an inertial system (accessible 
by Lorentz transformation) in which they occur at the same point. For if I hop on a train 
going from (A) to (B) at the speed v = d l t ,  leaving event A when it occurs, I shall be 
just in time to pass B when it occurs; in the train system, A and B take place at the same 
point. You cannot do this for a spacelike interval, of course, because v would have to be 
greater than c ,  and no observer can exceed the speed of light (y  would be imaginary and the 
Lorentz transformations would be nonsense). On the other hand, if the interval is spacelike, 
then there exists a system in which the two events occur at the same time (see Prob. 12.21). 

Problem 12.20 

(a) Event A happens at point (XA = 5, Y A  = 3, z~ = 0) and at time tn given by c t ~  = 15; 
event B occurs at (10, 8,O) and c t ~  = 5 ,  both in system S. 

(i) What is the invariant interval between A and B? 

(ii) Is there an inertial system in which they occur simultaneouslj~'? If so, find its velocity 
(magnitude and direction) relative to S. 

(iii) Is there an inertial system in which they occur at the same point? If so, find its velocity 
relative to S 

(b) Repeat part (a) for A = (2 ,0 ,0) ,  ct = l ;  and B = ( 5 , 0 , 0 ) ,  ct = 3. 

Problem 12.21 The coordinates of event A are (xA , 0, 0), t ~ ,  and the coordinates of event B 
are (XB, 0. 0), tg.  Assuming the interval between them is spacelike, find the velocity of the 
system in which they are simultaneous. 

(iii) Space-time diagrams. If you want to represent the motion of a particle graphically, 
the normal practice is to plot the position versus time (that is, X runs vertically and t 
horizontally). On such a graph, the velocity can be read off as the slope of the curve. For 
some reason the convention is reversed in relativity: everyone plots position horizontally 
and time (or, better, x0 = c t )  vertically. Velocity is then given by the reciprocal of the 
slope. A particle at rest is represented by a vertical line; a photon, traveling at the speed of 
light, is described by a 45" line; and a rocket going at some intermediate speed follows a 
line of slope c l v  = 1 / B  (Fig. 12.21). We call such plots Minkowski diagrams. 

The trajectory of a particle on a Minkowski diagram is called a world line. Suppose 
you set out from the origin at time t = 0. Because no material object can travel faster 
than light, your world line can never have a slope less than l .  Accordingly, your motion is 
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Particle-: 
at rest 

ct' 1 1 /' 

Figure 12.21 

Rocket 

Your future at t 

4' 
/ / I 

Figure 1 2.22 

Photon I 
I 
I 
I 

restricted to the wedge-shaped region bounded by the two 4.5' lines (Fig. 12.22). We call 
this your "future," in the sense that it is the locus of all points accessible to you. Of course, 
as time goes on, and you move along your chosen world line, your options progressively 
narrow: your "future" at any moment is the forward "wedge" constructed at whatever point 
you find yourself. Meanwhile, the backward wedge represents your "past," in the sense that 
it is the locus of all points from which you might have come. As for the rest (the region 
outside the forward and backward wedges) this is the generalized "present." You can't get 
there, and you didn't come from there. In fact, there's no way can can influence any event 
in the present (the message would have to travel faster than light); it's a vast expanse of 
spacetime that is absolutely inaccessible to you. 

I've been ignoring the y and z directions. If we include a y axis coming out of the page, 
the "wedges" become cones-and, with an undrawable z axis, hypercones. Because their 
boundaries are the trajectories of light rays, we call them the forward light cone and the 
backward light cone. Your future, in other words, lies within your forward light cone. 
your past within your backward light cone. 

Notice that the slope of the line connecting two events on a space-time diagram tells 
you at a glance whether the invariant interval between them is timelike (slope greater than 
l), spacelike (slope less than l), or lightlike (slope 1). For example, all points in the past 
and future are timelike with respect to your present location, whereas points in the present 
are spacelike, and points on the light cone are lightlike. 

Hermann Minkowski, who was the first to recognize the full geometrical significance 
of special relativity, began a classic paper with the words, "Henceforth space by itself, and 
time by itself, are doomed to fade away into mere shadows, and only a kind of union of the 
two will preserve an independent reality." It is a lovely thought, but you must be careful 
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Figure 12.23 

not to read too much into it. For it is not at all the case that time is "just another coordinate, 
on the same footing with X ,  y, and z" (except that for obscure reasons we measure it on 
clocks instead of rulers). No: Time is utterly different from the others, and the mark of its 
distinction is the minus sign in the invariant interval. That minus sign imparts to spacetime 
a hyperbolic geometry that is much richer than the circular geometry of 3-space. 

Under rotations about the z axis. a point P in the x v plane describes a circle: the locus . L . L 

of all points a fixed distance r = d m  from the origin (Fig. 12.23). Under Lorentz 
transformations, however, it is the interval I = (x2 - c2t2) that is preserved, and the locus of 
all points with a given value of I is a hyperbola-or, if we include the y axis, a hyperboloid 
of revolution. When the interval is timelike, it's a "hyperboloid of two sheets" (Fig. 12.24a); 
when the interval is spacelike, it's a "hyperboloid of one sheet" (Fig. 12.24b). When you 
perform a Lorentz transformation (that is, when you go into a moving inertial system), the 
coordinates (X,  t )  of a given event will change to ( i ,  9, but these new coordinates will lie 
on the same hyperbola as (X,  t). By appropriate combinations of Lorentz transformations 

(b) 

Figure 12.24 
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and rotations, a spot can be moved around at will over the surface of a given hyperboloid, 
but no amount of transformation will carry it, say, from the upper sheet of the timelike 
hyperboloid to the lower sheet, or to a spacelike hyperboloid. 

When we were discussing simultaneity I pointed out that the time ordering of two events 
can, at least in certain cases, be reversed, simply by going into a moving system. But we now 
see that this is not always possible: Ifthe invariant interval between two events is timelike, 
their orderhg is absolute; ifthe interval is spacelike, their ordering depends on the inertial 
system from which they are observed. In terms of the space-time diagram, an event on 
the upper sheet of a timelike hyperboloid definitely occurred after (0, O), and one on the 
lower sheet certainly occurred before; but an event on a spacelike hyperboloid occurred at 
positive t ,  or negative t ,  depending on your reference frame. This is not an idle curiosity, for 
it rescues the notion of causality, on which all physics is based. If it were always possible to 
reverse the order of two events, then we could never say "A caused B," since a rival observer 
would retort that B preceded A. This embarrassment is avoided, provided the two events 
are timelike-separated. And causally related events are timelike-separated-otherwise no 
influence could travel from one to the other. Conclusion: The invariant interval between 
causally related events is always timelike, and their temporal ordering is the same for all 
inertial observers. 

Problem 12.22 

(a) Draw a space-time diagram representing a game of catch (or a conversation) between 
two people at rest, I0 ft apart. How is it possible lur them to communicate, given that their 
separation is spacelike? 

(b) There's an old limerick that runs as follows: 

There once was a girl nanied Ms. Bright, 
Who could travel much faster than light. 
She departed one day, 
The Einsteinian way, 
And returned on the previous night. 

What do you think? Even if she could travel faster than the speed of light, could she return 
before she set out? Could she arrive at some intermediate destination before she set out? Draw 
a space-time diagram representing this trip. 

Problem 12.23 Inertial system S moves i n  the x direction at speed relative to system S. 
(The ?r axis slides long the x axis, and the origins coincide at t = F = 0, as usual.) 

(a) On graph paper set up a Cartesian coordinate system with axes ct and X. Carefully draw 
in lines representing .? = -3, -2 ,  - 1 ,  0, 1, 2 ,  and 3 .  Also draw in the lines corresponding to 
ct  = - 3 ,  - 2 ,  - 1,0, 1,2, and 3. Label your lines clearly. 

(b) In 3, a free particle is observed to travel from the point i = -2  at time ci = -2  to the 
point .f = 2 at ct = +3. ~ndicate this displacement on your graph. From the slope of this line. 
determine the particle's speed in S. 

(c) Use the velocity addition rule to determine the velocity in S algebraically, and check that 
your answer is consistent with the graphical solution in (b). 
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12.2 Relativistic Mechanics 

12.2.1 Proper Time and Proper Velocity 

As you progress along your world linc, your watch runs slow; while the clock on the wall 
ticks off an interval d t  , your watch only advances d t : 

(I'll use u for the velocity of a particular object-you, in this instance-and reserve v for 
the relative velocity of two inertial systems.) The time t your watch registers (or, more 
generally, the time associated with the moving object) is called proper time. (The word 
suggests a mistranslation of the French propre, meaning "own.") In some cases t may be 
a more relevant or useful quantity than t .  For one thing, proper time is invariant, whereas 
"ordinary" time depends on the particular reference frame you have in mind. 

Now, imagine you're on a flight to Los Angeles, and the pilot announces that the plane's 
velocity is $c,  due South. What precisely does he mean by "velocity"? Well, of course, he 
means the displacement divided by the time: 

and, since he is presumably talking about the velocity relative to ground, both dl and d t  
are to be measured by the ground observer. That's the important number to know, if you're 
concerned about being on time for an appointment in Los Angeles, but if you're wondering 
whether you'll be hungry on arrival, you might be more interested in the distance covered 
per unit proper time: 

d l 
q ?S -. 

dt 

This hybrid quantity--distance measured on the ground, over time measured in the airplane- 
is called proper velocity; for contrast, I'll call U the ordinary velocity. The two are related 
by Eq. 12.37: 

1 
I 

J T ~ .  (12.40) 

For speeds much less than c, of course, the difference between ordinary and proper velocity 
is negligible. 

From a theoretical standpoint, however, proper velocity has an enormous advantage over 
ordinary velocity: it transforms simply, when you go from one inertial system to another. 
In fact, q is the spatial part of a 4-vector, 

whose zeroth component is 
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For the numerator, dxp, is a displacement 4-vector, while the denominator, dt, is invariant. 
Thus, for instance, when you go from system S to system S, moving at speed v along the 
common X X axis, 

More generally, 

r p  = f ' f v" ;  
is called the proper velocity 4-vector, or simply the 4-velocity. 
By contrast, the transformation rule for ordinary velocities is extremely cumbersome, 

as we found in Ex. 12.6 and Prob. 12.14: 

The reason for the added complexity is plain: we're obliged to transform both the numerator 
dl and the denominator d t ,  whereas for proper velocity the denominator d s  is invariant, so 
the ratio inherits the transfonnation rule of the numerator alone. 

Problem 12.24 

(a) Equation 12.40 defines proper velocity in terrns of ordinary velocity. Invert that equation 
to get the formula for u in terms of q. 

(b) What is the relation between proper velocity and rapidity (Eq. 12.34)? Assume the velocity 
is along the X direction, and find V as a function of 8 .  

Problem 12.25 A car is traveling along the 45' line in S (Fig. 12.25), at (ordinary) speed 
(2/-JJ)c. 

(a) Find the components U ,  and u y  of the (ordinary) velocity. 

(b) Find the components v, and qy of the proper velocity. 

(c) Find the zeroth component of the 4-velocity, 

System S is moving in the x direction with (ordinary) speed m e ,  relative to S. By using 
the appropriate transformation laws: 

(d) Find the (ordinary) velocity components G, and iiy in S. 
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Figure 12.25 

(e) Find the proper velocity components r ] ,  and f y  in S. 

(f) As a consistency check, verify that 

Problem 12.26 Find the invariant product of the 4-velocity with itself, 17p qp.  

Problem 12.27 Consider a particle in hyperbolic motion, 

(a) Find the proper time t as a function of t ,  assuming the clocks are set so that t = 0 when 
t = 0. [Hint: Integrate Eq. 12.37.1 

(b) Find X and v (ordinary velocity) as functions of t 

(c) Find v p  (proper velocity) as a function of t 

12.2.2 Relativistic Energy and Momentum 

In classical mechanics momentum is mass times velocity. I would like to extend this 
definition to the relativistic domain, but immediately a question arises: Should I use ordinary 
velocity orproper velocity? In classical physics q and U are identical, so there is no a priori 
reason to favor one over the other. However, in the context of relativity it is essential that 
we use proper velocity, for the law of conservation of momentum would be inconsistent 
with the principle of relativity if we were to define momentum as mu (see Prob. 12.28). 
Thus 

this is the relativistic momentum. 
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Relativistic momentum is the spatial part of a 4-vector. 

and it is natural to ask what the temporal component, 

represents. Einstein called 
m - JV 

the relativistic mass (so that p0 = rn,,lc and p = m,,lu; m itself was then called the rest 
mass), but modern usage has abandoned this terminology in favor of relativistic energy: 

(so = E / c ) . ~  Because is (apart from the factor l l c )  the relativistic energy, phL is 
called the energy-momentum 4-vector (or the momentum Cvector, for short). 

Notice that the relativistic energy is nonzero even whe~z the object is stationary; we call 
this rest energy: 

2 Erest G rtzc . (12.51) 

The remainder, which is attributable to the motioiz, we call kinetic energy 

l -- E -rnc2 = rnc- 
j i  - u2/c2 I ) .  

2 2 In the nonrelativistic r6gime (U << cj  the square root can be expanded in powers oP u /c , 
giving 

the leading term reproduces the classical formula. 
So far, this is all just notation. The phvsics resides in the experimental fact that E and 

p, as defined by Eqs. 12.46 and 12.50, are conserved: 

In every closed9 system, the total relativistic energy and momentum are 
conserved. 

' ~ i n c e  E and m,,l differ only by a constant factor (c2), there's nothing to be gained by keeping both terms in 
circulation, and m,,, has gone the way of the two dollar bill. 

'IS there are external forces at work, then (just as in the classical case) the energy and momentum of the system 
itself will not, in general, be consenred. 
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"Relativistic mass" (if you care to use that term) is also conserved-but this is equivalent 
to conservation of energy. Rest mass is not conserved-a fact that has been painfully familiar 
to everyone since 1945 (though the so-called "conversion of mass into energy" is really a 
conversion of rest energy into kinetic energy). Note the distinction between an invariant 
quantity (same value in all inertial systems) and a conserved quantity (same value before 
and after some process). Mass is invariant, but not conserved; energy is conserved but 
not invariant; electric charge (as we shall see) is both conserved and invariant; velocity is 
neither conserved nor invariant. 

The scalar product of p p  with itself is 

as you can quickly check using the result of Prob. 12.26. In terms of the relativistic energy, 

This result is extremely useful, for it enables you to calculate E (if you know p), or p 
(knowing E), without ever having to determine the velocity. 

Problem 12.28 

(a) Repeat Prob. 12.2 using the (incorrect) definition p = mu, but with the (correct) Einstein 
velocity addition rule. Notice that if momentum (so defined) is conserved in S, it is not 
conserved in S. Assume all motion is along the x axis. 

(b) Now do the same using the correct definition, p = my.  Notice that if momentum (so 
defined) is conserved in S it is automatically also conserved in S. [Hint: Use Eq. 12.43 to 
transform the proper velocity.] What must you assume about relativistic energy? 

Problem 12.29 If a particle's kinetic energy is n times its rest energy, what is its speed? 

Problem 12.30 Suppose you have a collection of particles, all moving in the x direction, with 
energies E l ,  E2, E3 ,  . . .and momenta p l ,  p*, p3, . . . . Find the velocity of the center of 
momentum frame, in which the total momentum is zero. 

12.2.3 Relativistic Kinematics 

In this section we'll explore some applications of the conservation laws to particle decays 
and collisions. 

Example 12.7 

Two lumps of clay, each of (rest) mass m,  collide head-on at $c  (Fig. 12.26). They stick 
together. Question: what is the mass (M) of the composite lump? 



CHAPTER 12. ELECTRODYNAMICS AND RELATIVITY 

(before) 

m 
M 

(after) 

Figure 12.26 

Solution: In this case conservation of momentum is trivial: zero before, zero after. The energy 
of each lump prior to the collision is 

and the energy of the composite lump after the collision is A4c2 (since it's at rest). So conser- 
vation of energy says 

5 2 5 2  2  4rnc + = MC , 

and hence 

M = ;m. 

Notice that this is greater than the sum of the initial masses! Mass was not conserved in this 
collision; lunetic energy was converted into rest energy, so the mass increased. 

In the classical analysis of such a collision, we say that kinetic energy was converted into 
thermal energy-the composite lump is hotter than the two colliding pieces. This is, of course. 
true in the relativistic picture too. But what is thermal energy? It's the sum total of the randoin 
kinetic and potential energies of all the atoms and molecules in the substance. Relativity tells 
us that these microscopic energies are represented in the mass of the object: a hot potato is 
heavier than a cold potato, and a compressed spring is heavier than a relaxed spring. Not by 
much, it's true-internal energy (U) contributes an amount v / c 2  to the mass, and c2 is a very 
large number by everyday standards. You could never get two lumps of clay going anywhere 
near fast enough to detect the nonconservation of mass in their collision. But in the realm of' 
elementary particles, the effect can be very striking. For example, when the neutral pi meson 
(mass 2.4 X 1 0 ~ ~ ~  kg) decays into an elechon and a positron (each of mass 9.1 1 X 10W31 kg). 
the rest energy is converted almost entirely into kinetic energy-less than 1% of the original 
mass remains. 

In classical mechanics there's no such thing as a massless particle-its kinetic energy 
($mu2)  and its momentum (mu) would be zero, you couldn't apply a force to it (F = ma). 
and hence (by Newton's third law) it couldn't apply a force on anything else-it's a cipher. 
as far as physics is concerned. You might at first assume that the same is true in relativity: 
after all, p and E are still proportional to m.  However, a closer inspection of Eqs. 12.46 and 
12.50 reveals a loophole worthy of a congressman: If u = c, then the zero in the numerator 
is balanced by a zero in the denominator, leaving p and E indeterminate (zero over zero). 
It is conceivable, therefore, that a massless particle could carry energy and momentum, 
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provided it altvnys travels at the speed of light. Although Eqs. 12.46 and 12.50 would no 
longer suffice to determine E and p, Eq. 12.55 suggests that the two should be related by 

E = pc. (12.56) 

Personally, I would regard this argument as a joke, were it not for the fact that at least 
one massless particle is known to exist i n  nature: the photon.1° Photons do travel at the 
speed of light, and they obey Eq. 12.56.' ' They force us to take the "loophole" seriously. 
(By the way, you might ask what distinguishes a photon with a lot of energy from one with 
very little-after all, they have the same mass (zero) and the same speed ( c ) .  Relativity 
offers no answer to this question: curiously, quantum mechanics does: According to the 
Planck formula. E = hv, where h is Planck's constant and LJ is the frequency A blue 
photon is more energetic than a red one!) 

Example 12.8 

A pion at rest decays into a muon and a neutrino (Fig. 12.27). Find the energy of  the  outgoing 

muon, in terms of the two masses, mn and m,, (assume nz, = 0). 

(before) (after) 

Figure 12.27 

Solution: In this case 

2 
Ebefore = n z ~ c  , Pbefore = 0. 

Eafter = E,, + E", Pafter = Pp + P v  

Conservation of  momentum requires that p, = -pp .  Conservation of  energy says that 

E~ + E,  = mnc2. 

" ~ n t i l  recently neutrinos were also generally assumed to be massless, but experiments in 1998 indicate that 
they may in fact carry a (very small) mass. 

''The photon is the quantum of the electromagnetic field, and it is no accident that the same ratio between 
energy and momentum holds for electromagnetic waves (see Eqs. 9.60 and 9.62). 
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Now, E, = ]pvlc, by Eq. 12.56, whereas lppl = JE;  - ni$c4 /C, by Eq. 12.55, so 

from which i t  follows that 
2 7 (m: + rnP)c- 

E, = 
2rn 

In a classical collision, momentum and mass are always conserved, whereas kinetic 
energy, in general, is not. A "sticky" collision generates heat at the expense of kinetic 
energy; an "explosive" collision generates kinetic energy at the expense of chemical energy 
(or some other kind). If the kinetic energy is conserved, as in the ideal collision of the 
two billiard balls, we call the process elastic. In the relativistic case, momentum and total 
energy are always conserved but mass and kinetic energy, in general, are not. Once again, 
we call the process elastic if kinetic energy is conserved. In such a case the rest energy 
(being the total minus the kinetic) is also conserved, and therefore so too is the mass. In 
practice this means that the same particles come out as went in. Examples 12.7 and 12.8 
were inelastic processes; the next one is elastic. 

Example 12.9 

Compton scattering. A photon of energy Eo "bounces" off an electron, initially at rest. Find 
the energy E of the outgoing photon, as a function of the scattering angle Q (see Fig. 12.28). 

E0 

%Z"-'T 
Electron 

(before) (after) 

Figure 12.28 

Solution: Conservation of momentum in the "vertical" direction gives p, sin 6 = p p  sin 6, 
or, since p p  = E/c ,  

E 
sin g5 = - sin Q. 

Pe C 

Conservation of momentum in the "horizontal" direction gives 

or 
2 2  2 2 . 2  2 pp" = (E0 - E C O S ~ )  + E sin Q = E. - 2EoEcosH + E ~ .  
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Finally, conservation of energy says that 

Solving for E, I find that 
1 
l 

E =  
(1 - cos 8) /mc2 + (1 / Eg) 

The answer looks nicer when expressed in terms of photon wavelength: 

The quantity (h lmc)  is called the Compton wavelength of the electron. 

Problem 12.31 Find the velocity of the muon in Ex. 12.8. 

Problem 12.32 A particle of mass m whose total energy is twice its rest energy collides with 
an identical particle at rest. If they stick together, what is the mass of the resulting conlposite 
particle? What is its velocity? 

3 Problem 12.33 A neutral pion of (rest) mass m and (relativistic) momentum p = jmc  decays 
into two photons. One of the photons is emitted in the same direction as the original pion, and 
the other in the opposite direction. Find the (relativistic) energy of each photon. 

Problem 12.34 In the past, most experiments in particle physics involved stationary targets: 
one particle (usually a proton or an electron) was accelerated to a high energy E, and collided 
with a target particle at rest (Fig. 12.29a). Far higher relative energies are obtainable (with 
the same accelerator) if you accelerate both particles to energy E. and fire them at each other 
(Fig. 12.29b). Classically, the energy E of one particle, relative to the other, is just 4E (why?)- 
not much of a gain (only a factor of 4). But relativisrically the gain can be enormous. Assuming 
the two particles have the same mass, m ,  show that 

0 
Target 

Figure 12.29 



CHAPTER 12. ELECTRODYNAMICSAND RELATIVITY 

7 Suppose you use protons (mc- = 1 GeV) with E = 30 GeV. What E do you get? What 
multiple of E does this amount to? (1 G ~ V = I O ~  electron volts.) [Because of this relativistic 
enhancement, most modem elementary particle experiments involve colliding beams, instead 
of fixed targets.] 

Problem 12.35 In a pair annihilation experiment, an electron (mass m )  with momentum 
p, hits a positron (same mass, but opposite charge) at rest. They annihilate, producing two 
photons. (Why couldn't they produce just one photon?) If one of the photons emerges at 60' 
to the incident electron direction, what is its energy? 

12.2.4 Relativistic Dynamics 

Newton'sjrst law is built into the principle of relativity. His second law, in the form 

retains its validity in relativistic mechanics, provided we use the relativistic momentum. 

Example 12.10 

Motion under a constant force. A particle of mass m is subject to a constant force F. If it 
starts from rest at the origin, at time t = 0, find its position (X), as a function of time. 

Solution: 

but since p = 0 at t = 0, the constant must be zero, and hence 

Solving for U ,  we obtain 

U = ( F / m ) t  

,/l + ( ~ t / m c ) ~  ' 

The numerator, of course, is the classical answer-it's approximately right, if (F/m)t  << c. 
But the relativistic denominator ensures that u never exceeds c; in fact, as t -+ oo, u i; c. 

To complete the problem we must integrate again: 

- - [ l ] .  F  (12.02) 

In place of the classical parabola, x(t)  = ( ~ / 2 r n ) t ~ ,  the graph i s  a hyperbola (Fig. 12.30); for 
this reason, motion under a constant force is often called hyperbolic motion. It occurs, for 
example, when a charged particle is placed in a uniform electric field. 



12.2. RELATIVISTIC MECHANICS 

~t 

Relativistic 
(hyperbola) 

45" 

l /' 
ct 

Figure 12.30 

Work, as always, is the line integral of the force: 

The work-energy theorem ("the net work done on a particle equals the increase in its 
kinetic energy") holds relativistically: 

while 

(Since the rest energy is constant, it doesn't matter whether we use the total energy, here, 
or the kinetic energy.) 

Unlike to the first two, Newton's third law does not, in general, extend to the relativistic 
domain. Indeed, if the two objects in question are separated in space, the third law is 
incompatible with the relativity of simultaneity. For suppose the force of A on B at some 
instant t is F(t), and the force of B on A at the same instant is -F(t); then the third 
law applies, in this reference frame. But a moving observer will report that these equal 
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and opposite forces occurred at difSerent times; in his system, therefore, the third law is 
violated. Only in the case of contact interactions, where the two forces are applied at the 
same physical point (and in the trivial case where the forces are constant), can the third law 
be retained. 

Because F is the derivative of momentum with respect to ordinnql time, it shares the 
ugly behavior of (ordinary) velocity, when you go from one inertial system to another: both 
the numerator and the denonzirlutclr must be transformed. ~ h u s , "  

and similarly for the z component: 

The x component is even worse: 

d ~ , r  d ~ O  F,  ($) 
- d l i ,  Y d p x  - y f l d p O  - 7 - 6 7  - C F, = - = - - 

Y B  B d x  d t  y d t  - - d x  1 - -- 1 - B u X / c  ' 

C c d t  
We calculated d E / d t  in Eq. 12.64; putting that in, 

Only in one special case are these equations reasonably tractable: If the particle is (instan- 
taneously) at rest in S ,  so that U = 0, then 

That is, the component of F parallel to the motion of S is unchanged, whereas components 
perpendicular are divided by y . 

It has perhaps occurred to you that we could avoid the bad transformation behavior 
of F by introducing a "proper" force, analogous to proper velocity, which would be the 
derivative of momentum with respect to proper time: 

This is called the Minkowski force; it is plainly a 4-vector, since pk is a 4-vector and 
proper time is invariant. The spatial components of KP are related to the "ordinary" force 

by 
1 

(12.70) 

'"emember: y and ,E pertain to the motion of S with respect S-they are constants; u is the velocity of the 
particle with respect to S. 
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while the zeroth component, 
dpO 1 d E  K 
d r  c d r '  

is, apart from the l /c ,  the (proper) rate at which the energy of the particle increases-in 
other words, the (proper) power delivered to the particle. 

Relativistic dynamics can be formulated in terms of the ordinary force or in terms of 
the Minkowski force. The latter is generally much neatec but since in the long run we 
are interested in the particle's trajectory as a function of ordinary time, the former is often 
more useful. When we wish to generalize some classical force law, such as Lorentz's, to 
the relativistic domain, the question arises: Does the classical formula correspond to the 
ordinary force or to the Minkowski force? In other words, should we write 

or should it rather be 
K = q ( E + u  x B ) ?  

Since proper time and ordinary time are identical in classical physics, there is no way at this 
stage to decide the issue. The Lorentz force law, as it turns out, is an ordinary force-later 
on 1'11 explain why this is so, and show you how to construct the electromagnetic Minkowski 
force. 

Example 12.11 

The typical trajectory of a charged particle in a uniform magnetic field is cyclotron motion 
(Fig. 12.3 1).  The magnetic force pointing toward the center, 

F = Q u B ,  

provides the centripetal acceleration necessary to sustain circular motion. Beware, however- 
in special relativity the centripetal force is not m u 2 / ~ ,  as in classical mechanics. Rather, as 
you can see from Fig. 12.32, d p  = p dB, so 

Figure 12.3 1 Figure 12.32 
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7 (Classically, of course, p = mu, so F = mu- /  R . )  Thus, 

U 
Q u B  = p - ,  

R  

or 
p = Q B R .  

In this form the relativistic cyclotron formulais identical to the nonrelativistic one, Eq. 5.3-the 
only difference is that p is now the relativistic momentum. 

Example 12.12 

Hidden momentum. As a model for a magnetic dipole m, consider a rectangular loop of wire 
carrying a steady current. Picture the current as a stream of noninteracting positive charges 
that move freely within the wire. When a uniform electric field E is applied (Fig. 12.33). 
the charges accelerate in the left segment and decelerate in the right one.13 Find the total 
momentum of all the charges in the loop. 

Figure 12.33 

Solution: The momenta of the left and right segments cancel, so we need only consider the 
top and the bottom. Say there are N+ charges in the top segment, going at speed U+ to the 
right, and N- charges in the lowcr segment, going at (slower) speed U- to the left. The current 
(I = hu) is the same in all four segments (or else charge would be piling up somewhere); in 
particular, 

where Q  is the charge of each particle, and I is the length of the rectangle. Classically, the 
momentum of a single particle is p = Mu (where M is its mass), and the total momentum (to 
the right) is 

I l I1  
pclassical = M N + u +  - M N - U -  = M -  - M -  = 0. 

Q Q 
-- 

1 3 ~ h i s  is not a very realistic model for a current-carrying wire, obviously, but other models lead to exactly the 
same result. See V. Hnizdo, Am. J. Phvs. 65, 92 (1997). 
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as one would certainly expect (after all, the loop as a whole is not moving). But relativistically 
p = y M u ,  and we get 

which is not zero, because the particles in the upper segment are moving faster. 

In fact, the gain in energy (j/ M C ~ ) ,  as a particle goes up the left segment, is equal to the work 
done by the electric force, Q E w ,  where W is the height of the rectangle, so 

and hence 
I l E w  

p = -. 
c2 

But I1 W is the magnetic dipole moment of the loop; as vectors, m points into the page and p 
is to the right, so 

1 
p =  -(m x E ) .  

c2 
Thus a magnetic dipole in an electric field carries linear momentum, even though it is not 
moving! This so-called hidden momentum is strictly relativistic, and purely mechanical; it 
precisely cancels the electromagnetic momentum stored in the fields (see Ex. 8.3; note that 
both results can be expressed in the form p = 11 v/c2). 

Problem 12.36 In classical mechanics Newton's law can be written in the more familiar form 
F = ma. The relativistic equation, F = dpldt, cannot be so simply expressed. Show, rather, 
that 

where a duldt is the ordinary acceleration. 

Problem 12.37 Show that it is possible to outrun a light ray, if you're given a sufficient head 
start, and your feet generate a constant force. 

Problem 12.38 Define proper acceleration in the obvious way: 

(a) Find crO and cu in tenns of u and a (the ordinary acceleration). 

(b) Express aPwl*  in terms of U and a. 

(c) Show that ql*aP = 0. 

(d) Write the Minkowski version of Newton's second law, Eq. 12.70, in terms of w p .  Evalwate 
the invariant product K p % .  
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Problem 12.39 Show that 

where 8 is the angle between u and F. 

Problem 12.40 Show that the (ordinary) acceleration of a particle of mass m and charge q ,  
moving at velocity U under the influence of electromagnetic fields E and B, is given by 

[Hint: Use Eq. 12.73.1 

12.3 Relativistic Electrodynamics 

12.3.1 Magnetism as a Relativistic Phenomenon 

Unlike Newtonian mechanics, classical electrodynamics is already consistent with special 
relativity. Maxwell's equations and the Lorentz force law can be applied legitimately in 
any inertial system. Of course, what one observer interprets as an electrical process asother 
may regard as magnetic, but the actual particle motions they predict will be identical. To 
the extent that this did i~ot  work out for Lorentz and others, who studied the question in the 
late nineteenth century, the fault lay with the nonrelativistic mechanics they used, not with 
the electrodynamics. Having corrected Newtonian mechanics, we are now in a position 
to develop a complete and consistent formulation of relativistic electrodynamics. But I 
emphasize that we will not be changing the n ~ l e s  of electrodynamics in the slightest-- 
lather, we will be expres.ring these rules in a notation that exposes and illuminates their 
relativistic character. As we go along, I shall pause now and then to rederive, using the 
Lorentz transformations, results obtained earlier by more laborious means. But the main 
purpose of this section is to provide you with a deeper understanding of the structure of 
electrodynamics-laws that had seemed arbitray and unrelated before take on a kind of 
coherence and inevitability when approached from the point of view of relativity. 

To begin with I'd like to show you why there had to be such a thing as magnetism, 
given electrostatics and relativity, and how, in particular, you can calculate the magnetic 
force between a current-carrying wire and a moving charge without ever invoking the laws 
of magnetism.14 Suppose you had a string of positive charges moving along to the right 
at speed v .  I'll assume the charges are close enough together so that we may regard them 
as a continuous line charge h.  Superimposed on this positive string is a negative one, -h 
proceeding to the left at the same speed v. We have, then, a net current to the right, of 
magnitude 

l = 2hv. ( 1  2.75) 

I 4 ~ h i s  and several other arguments in this section are adapted from E. M. Purcell's Electricity arld Magnetisn~. 
2d ed. (New York: McGraw-Hill, 1985). 
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Figure 12.34 

Meanwhile, a distance S away there is a point charge q traveling to the right at speed u < v 
(Fig. 12.34a). Because the two line charges cancel, there is no electrical fol-ce on q in this 
system (S). 

However, let's examine the same situation from the point of view of system S, which 
moves to the right with speed u (Fig. 12.34b). In this reference frame q is at rest. By the 
Einstein velocity addition r-ule, the velocities of the positive and negative lines are now 

Because v- is greater than v+, the Lorentz contraction of the spacing between negative 
charges is more severe than that between positive charges; in this frame, therefore, the wire 
carries a net negative charge! In fact, 

where 
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and h0 is the charge density of the positive line in its own rest system. That's not the same 
as h, of course-in S they're already moving at speed v,  so 

where 

It takes some algebra to put y* into simple form: 

Evidently, then, the net line charge in S is 

Conclusion: As a result of unequal Lorentz contraction of the positive and negative lines, 
a current-carrying wire that is electrically neutral in one inertial system will be charged in 
another. 

Now, a line charge htot sets up an electric field 

so there is an electrical force on q in S, to wit: 

But if there's a force on q in S, there must be one in S; in fact, we can calculate it by using 
the transformation rules for forces. Since q is at rest S, and F is perpendicular to U ,  the 
force in S is given by Eq. 12.68: 

The charge is attracted toward the wire by a force that is purely electrical in S (where the 
wire is charged, and q is at rest), but distinctly nonelectrical in S (where the wire is neutral). 
Taken together, then, electrostatics and relativity imply the existence of another force. This 
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"other force" is, of course, magnetic. In fact, we can cast Eq. 12.84 into more familiar form 
by using c2 = (copo)-' and expressing A V  in temls of the current (Eq. 12.75): 

The term in parentheses is the magnetic field of a long, straight wire, and the force is 
precisely what we would have obtained by using the Lorentz force law in system S. 

12.3.2 How the Fields Transform 

We have learned, in various special cases, that one observer's electric field is another's mag- 
netic field. It would be nice to know the general transformation rules for electromagnetic 
fields: Given the fields in S, what are the fields in S? Your first guess might be that E is 
the spatial part of one 4-vector and B the spatial part of another. If so, your intuition is 
wrong-it's more complicated than that. Let me begin by making explicit an assumption 
that was already used implicitly in Sect. 12.3.1: Charge is invariant. Like mass, but unlike 
energy, the charge of a particle is a fixed number, independent of how fast it happens to be 
moving. We shall assume also that the transformation rules are the same no matter how 
the fields were produced--electric fields generated by changing magnetic fields transform 
the same way as those set up by stationary charges. Were this not the case we'd have to 
abandon the field formulation altogether, for it is the essence of a field theory that the fields 
at a given point tell you all there is to know, electromagnetically, about that point; you do 
not have to append extra information regarding their source. 

With this in mind, consider the sinzplest possible electric field: the uniform field in the 
region between the plates of a large parallel-plate capacitor (Fig. 12.35). Say the capacitor 
is at rest in So and carries surface charges AGO. Then 

But what if we examine this same capacitor from system S, moving to the right at speed v0 
(Fig. 12.35b)? In this system the plates are moving to the left, but the field still takes the 
form 

the only difference is the value of the surface charge a. [Wait a minute! Is that the only 
difference? The formula E = g/co for a parallel plate capacitor came from Gauss's law, 
and whereas Gauss's law is perfectly valid for moving charges, this particular application 
also relies on symmetry. Are we sure that the field is still perpendicular to the plates? What 
if the field of a moving plane tilts, say, in the direction of motion, as in Fig. 12.35c? Well, 
even if it did (it doesn't), the field between the plates, being the superposition of the +a 
field and the -a field, would nevertheless run perpendicular to the plates. For the -a 
field would aim as indicated in Fig. 12.3% (changing the sign of the charges reverses the 
direction of the field), and the vector sum kills off the parallel components.] 
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Figure 12.35 

Now, the total charge on each plate is invariant, and the width ( W )  is unchanged, but the 
length ( 1 )  is Lorentz-contracted by a factor 

so the charge per unit area is increased by a factor yo: 

Accordingly. 
I I E = yoEo . 

1 have put in the superscript I to make it clear that this rule pertains to components of E that 
are perpendicular to the direction of motion of S. To get the rule for parallel components. 
consider the capacitor lined up with the y z plane (Fig. 12.36). This time it is the plate 
separation (d) that is Lorentz-contracted, whereas l and W (and hence also a )  are the same 
in both frames. Since the field does not depend on d, it follows that 
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Figure 12.36 

Example 12.13 

Electric field of a point charge in uniform motion. A point charge q is at rest at the origin in 
system So. Question: What is the electric field of this same charge in system S, which moves 
to the right at speed v0 relative to So? 

Solution: In So the field is 

From the transformation rules (Eqs. 12.90 and 12.91), we have 
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Figure 12.37 

These are still expressed in temls of the So coordinates (no, yo, zO) of the field point (P); I'd 
prefer to write them in terms of the S coordinates of P. From the Lorentz transformations (or, 
actually, the inverse transformations), 

where R is the vector from q to P (Fig. 12.37). Thus 

This, then, is the field of a charg: in uniform motion; we got the same result in Chapter 10 
using the retarded potentials (Eq. 10.68). The present derivation is far more efficient, and sheds 
some light on the remarkable fact that the field points away from the instantaneous (as opposed 
to the retarded) position of the charge: Ex gets a factor of yo from the Lorentz transformation 
of the coordinates; E y  and E, pick up theirs from the transformation of thejeld. It's the 
balancing of these two ye's that leaves E parallel to R. 

But Eqs. 12.90 and 12.91 are not the most general transformation laws, for we  began 
with a system So in which the charges were at rest and where, consequently, there was no  
magnetic field. To derive the general rule we  must start out in a system with both electric 
and magnetic fields. For this purpose S itself will serve nicely. In addition to the electric 
field 

there is a magnetic field due to the surface currents (Fig. 12.35b): 
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1 a (U relative to S) 

Figure 12.38 

By the right-hand rule, this field points in the negative z direction; its magnitude is given 
by Ampkre's law: 

Bz = -poavo. (12.95) 

In a third system, S, traveling to the right with speed v relative to S (Fig. 12.38), the fields 
would be - 

- 0 - 
E - -  B,=-@ - -  Y - oa v ,  (12.96) 

€0 

where i7 is the velocity of S relative to So: 

and 
a = Fao. 

It remains only to express E and B (Eq. 12.96), In terms of E and B (Eqs. 12.93 and 
12.95). In view of Eqs. 12.89 and 12.98, we have 

With a little algebra, you will find that 

where 

as always. Thus, 
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Figure 12.39 

whereas 

2 Or, since poeo = 1/c , 

This tells us how E, and B, transform-to do E, and B, we simply align the same 
capacitor parallel to the x y plane instead of the xz plane 12.39). The fields in S are 
then 

(Use the right-hand rule to get the sign of By .) The rest of the argument is identical- 
everywhere we had E, before, read E,, and everywhere we had B,, read - By : 

As for the X components, we have already seen (by orienting the capacitor parallel to 
the yz plane) that 

E, = E,. (12.104) 
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Figure 12.40 

Since in this case there is no accompanying magnetic field, we cannot deduce the trans- 
formation rule for B,. But another configuration will do the job: Imagine a long solenoid 
aligned parallel to the X axis (Fig. 12.40) and at rest in S. The magnetic field within the 
coil is 

where n is the number of turns per unit length, and I is the current. In system S, the length 
contracts, so n increases: 

i = yn. (12.106) 

On the other hand, time dilates: The S clock, which rides along with the solenoid, runs 
slow, so the current (charge per unit time) in S is given by 

The two factors of y exactly cancel, and we conclude that 

Like E, the component of B parallel to the motion is unchanged. 

Let's now collect together the complete set of transformation rules: 
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Two special cases warrant particular attention: 

1. If B = 0 in S, then 

or, since v = v 2, 

2. If E = 0 in S, then 

In other words, if either E or B is zero (at a particular point) in  one system, then in any 
other system the fields (at that point) are very simply related by Eq. 12.109 or Eq. 12.1 10. 

Example 12.14 

Magnetic field of a point charge in uniform motion. Find the magnetic field of a point 
charge q moving at constant velocity v. 

Solution: In the particle's rest frame (SO) the magnetic field is zero (everywhere), so in a 
system S moving to the right at speed v, 

1 
B = --(v c2 X E). 

We calculated the electric field in Ex.  12.13. The magnetic field, then, is 

* 
where 4 aims counterclockwise as you face the oncoming charge. Incidentally, in the nonrel- 
ativistic limit (v2 << c2),  Eq. 12.1 1 1 reduces to 

which is exactly what you would get by naive application of the Biot-Savart law to a point 
charge (Eq. 5.40). 
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Problem 12.41 Why can't the electric field in Fig. 12.35b have a z component? After all, the 
magnetic field does. 

Problem 12.42 A parallel-plate capacitor, at rest in So and tilted at a 45' angle to the KO axis, 
carries charge densities &ao on the two plates (Fig. 12.41). System S is moving to the right 
at speed v relative to So. 

(a) Find Eo, the field in So. 

(b) Find E, the field in S. 

(C) What angle do the plates make with the X axis? 

(d) Is the field perpendicular to the plates in S? 

Figure 12.41 

Problem 12.43 

(a) Check that Gauss's law, E .  da = ( l /co) Qenc, is obeyed by the field of a point charge in 
uniform motion, by integrating over a sphere of radius R centered on the charge. 

(b) Find the Poynting vector for a point charge in uniform motion. (Say the charge is going in 
the i direction at speed v, and calculate S at the instant q passes the origin.) 

Problem 12.44 

(a) Charge q~ is at rest at the origin in system S;  charge q~ flies by at speed v on a trajectory 
parallel to the x axis, but at y = d. What is the electromagnetic force on q g  as it crosses the 
y axis? 

(b) Now study the same problem from system S, which moves to the right with speed 11. What 
is the force on q g  when q~ passes the ?, axis? [Do it two ways: (i) by using your answer to (a) 
and transforming the force; (ii) by computing the fields in S and using the Lorentz force law.] 
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Figure 12.42 

Problem 12.45 Two charges f q,  are on parallel trajectories a distance d apart, moving with 
equal speeds v in opposite directions. We're interested in the force on +q due to -q at the 
instant they cross (Fig. 12.42). Fill in the following table, doing all the consistency checks you 
can think of as you go along. 

1 )  System A [ System B 1 System C 

Problem 12.46 

E a t  +q dueto -g: 
B at +q due to -q: 
F on +q due to -q: 

(a) Show that (E . B) is relativistically invariant. 

(b) Show that ( E ~  - c ~ B ~ )  is relativistically invariant. 

(Fig. 12.42) 

(c) Suppose that in one inertial system B = 0 but E # 0 (at some point P). Is it possible to 
find another system in which the electric field is zero at P? 

Problem 12.47 An electromagnetic plane wave of (angular) frequency w is traveling in the 
x direction through the vacuum. It is polarized in the y direction, and the amplitude of the 
electric field is Eo. 

( fq  at rest) 

(a) Write down the electric and magnetic fields, E(x, y ,  z ,  t )  and B(x, y ,  z ,  t ) .  [Be sure to 
define any auxiliary quantities you introduce, in terms of w, Eo, and the constants of nature.] 

(-q at rest) 

(b) This same wave is observed from an inertial system S moving in the x direction with speed 
v relative to the original system S. Find the electric and magnetic fields in S, and express 
them in terms of the S coordinates: ~ ( 2 ,  .F, Z ,  i) and ~ ( i ,  j ,  i. 7). [Again, be sure to define 
any auxiliary quantities you introduce.] 

(c) What is the frequency 6 of the wave in S? interpret this result. What is the wavelength 
h of the wave in S'? From and h, determine the speed of the waves in S. Is it what you 
expected? 
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(d) What is the ratio of the intensity in S to the intensity in S? As a youth, Einstein wondered 
what an electromagnetic wave would look like if you could run along beside it at the speed of 
light. What can you tell him about the amplitude, frequency, and intensity of the wave, as v 
approaches c? 

12.3.3 The Field Tensor 

As Eq. 12.108 indicates, E and B certainly do not transform like the spatial parts of the two 
4-vectors-in fact, the components of E and B are stirred together when you go from one 
inertial system to another. What sort of an object is this, which has six components and 
transforms according to Eq. 12.108? Answer: It's an antisymmetric, second-rank tensor. 

Remember that a 4-vector transforms by the rule 

(summation over v implied), where A is the Lorentz transformation matrix. lf S is moving 
in the X direction at speed v, A has the form 

and A: is the entry in row p, column v. A (second-rank) tensor is an object with two 
indices, which transform with two factors of A (one for each index): 

A tensor (in 4 dimensions) has 4 X 4 = 16 components, which we can display in a 4 X 4 
array: 

However, the 16 elements need not all be different. For instance, a symmetric tensor has 
the property 

tPV = t (symmetric tensor). (12.1 15) 

- In this case there are 10 distinct components; 6 of the 16 are repeats (to' = t lO ,  to2 - 
- l  , - t20, to3 = t30, t12 - 2' t l 3  - t31, t23 = r32). Similarly, an antisymmetric tensor obeys 

tpV = -t (antisymmetric tensor). (12.116) 
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Such an object has just 6 distinct elements--of the original 16, six are repeats (the same 
ones as before, only this time with a minus sign) and four are zero (too, t " ,  tZ2, and t33). 
Thus, the general antisymmetric tensor has the form 

Let's see how the transformation rule 12.114 works, for the six distinct components of 
an antisymmetric tensor, Starting with p', we have 

but according to Eq. 12.1 13, A! = 0 unless h = 0 or l ,  and A: = 0 unless 0 = (1 or 1. So 
there are four terms in the sum: 

On the other hand, too = t ' '  = 0, while to' = - t l O ,  so 

I'll let you work out the others-the complete set of transformation rules is 

These are precisely the rules we derived on physical grounds for the electromagnetic fields 
(Eq. 12.108)-in fact, we can construct the field tensor FwV by direct comparison: l5 

Written as an array, 

Thus relativity cornpletes and perfects the job begun by Oersted, combining the electric and 
magnetic fields into a single entity, FPv.  

If you followed that argument with exquisite care, you may have noticed that there was 
a diflerent way of imbedding E and B in an antisymmetric tensor: instead of comparing 

15some authors prefer the convention F O ~  - E,, cBZ, and so on, and some use the opposite signs. 
Accordingly, most of the equations from here on will look a little difterent, depending on the text. 
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the first line of Eq. 12.108 with the first line of Eq. 12.1 17, and the second with the second. 
we could relate the first line of Eq. 12.108 to the secortd line of Eq. 12.1 17, and vice versa. 
This leads to dual tensor, GPL': 

GP' can be obtained directly from FP' by the substitution Elc -+ B, B -+ -E/c. Notice 
that this operation leaves Eq. 12.108 unchanged-that's why both tensors generate the 
correct transformation rules for E and B. 

Problem 12.48 Work out  the remaining five parts to Eq. 12.117. 

Problem 12.49 Prove that the symmetry (or antisymmetry) of a tensor is preserved by Lorentz 
transformation (that is: if t p v  is symmetric, show that 7,'' is also symmetric, and likewise for 
antisymmetric). 

Problem 12.50 Recall that a covnritrnt 4-vector is obtained from a contravtrriant one by 
changing the sign of the zeroth component. The same goes for tensors: When you "lower 
an index" to make it covariant, you change the sign if that index is zero. Compute the tensor 
invariants 

FP" F,,, Gp"Gp,,, and Fp"GPV, 

in terms of E and B. Compare Prob. 12.46. 

Problem 12.51 A straight wire along the z axis carries a charge density h traveling in the +z 
direction at speed U .  Construct the field tensor and the dual tensor at the point (X, 0, 0). 

12.3.4 Electrodynamics in Tensor Notation 

Now that we know how to represent the fields in relativistic notation, it is time to reformulate 
the laws of electrodynamics (Maxwell's equations and the Lorentz force law) in that lan- 
guage. To begin with, we must determine how the sources of the fields, p and J, transform. 
Imagine a cloud of charge drifting by; we concentrate on an infinitesimal volume V, which 
contains charge Q moving at velocity u (Fig. 12.43). The charge density is 

and the current density16 is 
J = pu. 

I61'm dssuming all the charge in V is of one sign, and it all goes at the same speed. If not, you have to treat the 
constituents separately: J = p + u  + p-U-. But the argument is the same. 
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Figure 12.43 

I would like to express these quantities in terms of the proper charge density po, the density 
in the rest system ofthe charge: 

Q 

where V0 is the rest volume of the chunk. Because one dimension (the one along the 
direction of motion) is Lorentz-contracted, 

and hence 

Comparing this with Eqs. 12.40 and 12.42, we recognize here the components of proper 
velocity, multiplied by the invariant po. Evidently charge density and current density go 
together to make a 4-vector: 

Jl* = p0rlp, (12.122) 

whose components are 

We'll call it the current density 4-vector. 
The continuity equation (Eq. 5.29), 

expressing the local conservation of charge, takes on a nice compact form when written in 
terms of Jl*. For 

a J X  a J y  a J Z  a~~ V . J = - + - + - = c - ,  
a x  a y  a~ 

i = l  
a x Z  

while 
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while 

Thus, bringing ap la t  over to the left side, we have: 

with summation over p implied. Incidentally, a Jw/axw is the four-dimensional divergence 
of Jw, so the continuity equation states that the current density 4-vector is divergenceless. 

As for Maxwell's equations, they can be written 

with summation over v implied. Each of these stands for four equations-one for every 
value of p. If p = 0, the first equation reads 

This, of course, is Gauss's law. If p = 1 ,  we have 

aFIV 
- - 

aFIO aF" aF1' a ~ ' ~  +- +- 
axV a10 ax l  + ax? ax3 

Combining this with the corresponding results for p = 2 and p = 3 gives 

which is Amp6re's law with Maxwell's correction. 



540 CHAPTER 12. ELECTRODYNAMICS AND RELATIVITY 

Meanwhile, the second equation in 12.126, with = 0, becomes 

as, as, as, - - - +-+p- - V . B = O  
a~ ay a~ 

(the third of Maxwell's equations), whereas p = l yields 

So, combining this with the corresponding results for p = 2 and p = 3, 

which is Faraday's law. In relativistic notation, then, Maxwell's four rather cumbersome 
equations reduce to two delightfully simple ones. 

In terms of FCLV and the proper velocity q w ,  the Minkowski force on a charge q is given 
by m (1 2.127) 

For if p = l ,  we have 

with a similar formula for p = 2 and = 3. Thus, 

and therefore, referring back to Eq. 12.70, 

which is the Lorentz force law. Equation 12.127, then, represents the Lorentz force 
law in relativistic notation. 1'11 leave for you the interpretation of the zeroth component 
(Prob. 1 2.54). 
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Problem 12.52 Obtain the continuity equation (12.125) directly from Maxwell's equations 
(12.126). 

Problem 12.53 Show that the second equation in (12.126) can be expressed in terms of the 
field tensor FPV as follows: 

Problem 12.54 Work out, andinterpretphysically, the ,U = 0 component of the electromagnetic 
force law, Eq. 12.127. 

12.3.5 Relativistic Potentials 

From Chapter 10 we know that the electric and magnetic fields can be expressed in terms 
of a scalar potential V and a vector potential A: 

As you might guess, V and A together constitute a 4-vector: 

In terms of this 4-vector potential the field tensor can be written 

(Observe that the differentiation is with respect to the covariant vectors X, and X,, ; remem- 
ber, that changes the sign of the zeroth component: xo = -xO. See Prob. 12.55.) 

To check that Eq. 12.132 is equivalent to Eq. 12.1 30, let's evaluate a few terms explicitly. 
F o r p = O , v =  1, 

- 
l a A  Ex - -- (% + vv)  = -. 
C X C 

That (and its companions with v = 2 and v = 3) is the first equation in 12.130. For = l ,  
1j = 2 ,  we get 

1, a~~ a ~ '  aAv aA, 
- F p p  --p = (V xA) ,  = B:.  

ax, ax2 ax ay 
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which (together with the corresponding results for F13 and F 2 3  is the second equation in 
12.130. 

The potential formulation automatically takes care of the homogeneous Maxwell equa- 
tion (aGl*"/axU = 0). As for the inhomogeneous equation (a FP"/axv = p. JP), that 
becomes 

a a~~ a ~ A P  

a, (a,) -a, (F) ="o. '~.  

This is an intractable equation as it stands. However, you will recall that the potentials are 
not uniquely determined by the fields-in fact, it's clear from Eq. 12.1 32 that you could 
add to A" the gradient of any scalar function h: 

without changing FPV. This is precisely the gauge invariance we noted in Chapter l l; we 
can exploit it to simplify Eq. 12.133. In particular, the Lorentz gauge condition (Eq. 10.12) 

becomes, in relativistic notation, 

In the Lorentz gauge, therefore, Eq. 12.133 reduces to 

where n2 is the d'alembertian. 

Equation 12.136 combines our previous results into a single 4-vector equation-it represents 
the most elegant (and the simplest) formulation of Maxwell's equations.I7 

17~ncidentally, the Coulomb gauge is a bad one, from the point of view of relativity, because its defining condition, 
V .A = 0, is destroyed by Lorentz transformation. To restore this condition, it is necessary to perform an appropriate 
gauge transformation every time you go to a new inertial system, in addition to the Lorentz transformation itself. 
In this sense ALL is not a true 4-vector, in the Coulomb gauge. 



12.3. RELATIVISTIC ELECTRODYNAMICS 543 

Problem 12.55 You may have noticed that the four-dimensional gradient operator a/a,x@ 
functions like a covariant 4-vector-in fact, it is often written a@, for short. For instance, 
the continuity equation, a/, J @  = 0, has the form of an invariant product of two vectors. The 
corresponding contravczriant gradient would be a/* ax,,. Prove that is a (contravariant) 
4-vector, if 4 is a scalar function, by working out its transformation law, using the chain rule. 

Problem 12.56 Show that the potential representation (Eq. 12.132) automatically satisfies 
a G ~ " / a x L '  = 0. [Suggestion: Use Prob. 12.53.1 

More Problems on Chapter 12 

Problem 12.57 Inertial system S moves at constant velocity v = pc(cos 4 2 + sin 4 f )  with 
respect to S. Their axes are parallel to one another, and their origins coincide at t = f = 0, as 
usual. Find the Lorentz transformation matrix A (Eq. 12.25). 

Y -YB cos4 - yp sin 4 [ y f i c o s 4  ;ycos24+sin24:  ( y - l ) s i n 4 c - 4  0 
-yPsin@ (y-l)sinq5cos$ (y s in24+cos24)  0 

0 0 0 1 l! 
Problem 12.58 Calculate the threshold (minimum) momentum the pion must have in order 
for the process n + p + K + C to occur. Thc proton p is initially at rest. Use m,c2 = 
150, mKc2 = 500, mpc2 = 900, mCc2 = 1200 (all in MeV). [Hint: To formulate the 
threshold condition, examine the collision in the center-of-momentum frame (Prob. 12.30). 
Answer: 1133 MeVlc] 

Problem 12.59 A particle of mass m collides elastically with an identical particle at rest. 
Classically, the outgoing trajectories always make an angle of 90". Calculate this angle 
relativistically, in terms of 4 ,  the scattering angle, and 11, the speed, in the center-of-momentum 
frame. [Answer: tanp1 (2c2/v2 sin @)l 

Problem 12.60 Find x as a function o f t  for motion starting from rest at the origin under the - 
influence of a constant Minkowski force in the x direction. Leave your answer in implicit 

form ( r  as a function of X). [Answer: 2Kt/rric = z / g  + ln(z + JS), where 
z JP] 

! Problem 12.61 An electric dipole consists of two point charges (h g). each of mass t z .  fixed 
to the ends of a (massless) rod of length d. (Do not assume d is small.) 

(a) Find the net self-force on the dipole when it undergoes hyperbolic motion (Eq. 12.62) along 
a line perpendicular to its axis. [Hint: Start by appropriately modifying Eq. 11.90.1 

(b) Notice that this self-force is constant (t drops out), and points in the direction of motion- 
just right to produce hyperbolic motion. Thus it is possible for the dipole to undergo self- 
sustaining accelerated motion with no external force at a11!18 [Where do you suppose the 
energy comes from?] Determine the self-sustaining force, F, in terms of m, q ,  and d .  -[~nswer: 
( 2 r n ~ ~ / d ) J ( w ~ ~ ~ / 8 n m d ) ~ / ~  - l ]  

1 8 ~ .  H. J. Cornish, Am. J, Phys. 54, 166 (1986). 
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Problem 12.62 An ideal magnetic dipole moment m is located at the origin of an inertial 
system S that moves with speed v in the X direction with respect to inertial system S. In S the 
vector is 

(Eq. 5.83), and the electric potential V is zero. 

(a) Find the scalar potential V in S. [Answer: ( 1 1 4 ~  tO)(a . (v x m)/c2 $ ) ( l  - v2/c2)/(l  - 
(v2/c2) sin2 

(b) In the nonrelativistic limit, show that the scalar potential in S is that of an ideal electric 
dipole of magnitude 

v x m  p = -  
c2 ' 

located at 6. 

Figure 12.44 

! Problem 12.63 A stationary magnetic dipole, m = m P, is situated above an infinite uniform 
surface current, K = K fr (Fig. 12.44). 

(a) Find the torque on the dipole, using Eq. 6.1. 

(b) Suppose that the surface current consists of a uniform surface charge a ,  moving at velocity 
v = v i ,  so that K = a v ,  and the magnetic dipole consists of a uniform line charge h ,  
circulating at speed v (same v)  around a square loop of side l ,  as shown, so that m = hv12. 
Examine the same configuration from the point of view of system S, moving in the x direction 
at speed v.  In S the surface charge is at rest, so i t  generates no magnetic field. Show that in this 
frame the current loop carries an electric dipole moment, and calculate the resulting torque, 
using Eq. 4.4. 

Problem 12.64 In a certain inertial frame S, the electric field E and the magnetic field B are 
neither parallel nor perpendicular, at a particular space-time point. Show that in a different 
inertial system S, moving relative to S with velocity v given by 

the fields E and B are parallel at that point. Is there a frame in which the two are perpendicular.!) 
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Problem 12.65 Two charges f q approach the origin at constant velocity from opposite di- 
rections along the X axis. They collide and stick together, forming a neutral particle at rest. 
Sketch the electric field before and shortly after the collision (remember that electromagnetic 
"news" travels at the speed of light). How would you interpret the field after the collision, 
physically?19 

Problem 12.66 "Derive" the Lorentz force law, as follows: Let charge q be at rest in S, so 
F = q ~ ,  and let S move with velocity v = v i with respect to S. Use the transformation rules 
(Eqs. 12.68 and 12.108) to rewrite F in terms of F, and E in terms of E and B. From these 
deduce the formula for F in terms of E and B. 

Problem 12.67 A charge q is released from rest at the origin, in the presence of a uniform 
electric field E = Eoi  and a uniform magnetic field B = B0 2.  Determine the trajectory of 
the particle by transforming to a system in which E = 0. finding the path in that system and 
then transforming back to the original system. Assume E0 cBo. Compare your result with 
Ex. 5.2. 

Problem 12.68 

(a) Construct a tensor DpV (analogous to F""), out of D and H. Use it to express Maxwell's 
equations inside matter in terms of the free current density J P  [Answer:  DO^ = CD,, .f ' 
o 1 2  -- H ~ ,  etc.; aD"I1/axY = J?.] 

(b) Construct the dual tensor HpV (analogous to G"'). [Answer: H O ~  = H,, HI2 = -CD,, 
etc.] 

(c) Minkowski proposed the relativistic constitutive relations for linear media: 

where E is the proper20 permittivity, p is the proper permeability, and v@ is the 4-velocity 
of the material. Show that Minkowski's formulas reproduce Eqs. 4.32 and 6.31, when the 
material is at rest. 

(d) Work out the formulas relating D and H to E and B for a medium moving with (ordinary) 
velocity U. 

Problem 12.69 Use the Larmor formula (Eq. 11.70) and special relativity to derive the LiCnard 
formula (Eq. 1 1.73). 

Problem 12.70 The natural relativistic generalization of the Abraham-Lorentz formhla (Eq. 1 1.80) 
would seem to be 

da" " =L%-, 
6rre d r  

This is certainly a 4-vector, and it reduces to the Abraham-Lorentz formula in the non- 
relativistic limit v << c. 

''see E. M. Purcell, Electricity andMagnetism, 2d ed. (New York: McGraw-Hill, 1985), Sect. 5.7 and Appendix 
B (in which Purcell obtains the Larmor formula by masterful analysis of a similar geometrical construction), and 
R. Y. Tsien, Am. J. Phys. 40,46 (1972). 
2 0 ~ s  always, "proper" means "in the rest frame of the material." 
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(a) Show, nevertheless, that this is not a possible Minkowski force. [Hint: See Prob. 12.38d.l 

(b) Find a correction term that, when added to the right side, removes the objection you raised 
in (a), without affecting the 4-vector character of the formula or its nonrelativistic limit.21 

Problem 12.71 Generalize the laws of relativistic electrodynamics (Eqs. 12.126 and 12.127) 
to include magnetic charge. [Refer to Sect. 7.3.4.1 

21   or interesting commentary on the relativistic radiation reaction, see E Rohrlich, Am. J. Phys. 65, 105 1 ( 1  997). 



Appendix A 

Vector Calculus in Curvilinear 
Coordinates 

A.l  Introduction 

In this Appendix I sketch proofs of the three fundamental theorems of vector calculus. My 
aim is to convey the essence of the argument, not to track down every epsilon and delta. 
A much more elegant, modem, and unified-but necessarily also much longer-treatment 
will be found in M. Spivak's book, Calculus on Manifolds (New York: Benjamin, 1965). 

For the sake of generality, I shall use arbitrary (orthogonal) curvilinear coordinates 
(U, v ,  W), developing formulas for the gradient, divergence, curl, and Laplacian in any such 
system. You can then specialize them to Cartesian, spherical, or cylindrical coordinates, or 
any other system you might wish to use. If the generality bothers you on a first reading, and 
you'd rather stick to Cartesian coordinates, just read (X, y,  z )  wherever you see (U, v ,  W), 
and make the associated simplifications as you go along. 

A.2 Notation 

We identify a point in space by its three coordinates, U ,  v ,  and W ,  (in the Cartesian system, 
(X, y, z); in the spherical system, (r, O , @ ) ;  in the cylindrical system, (S, @, z)). I shall 
assume the system is orthogonal, in the sense that the three unit vectors, U, G ,  and W, 
pointing in the direction of the increase of the corresponding coordinates, are mutually 
perpendicular. Note that the unit vectors are functions of position, since their directions 
(except in the Cartesian case) vary from point to point. Any vector can be expressed in 
terms of h, G ,  and W-in particular, the infinitesimal displacement vector from (U, v ,  W )  to 
(U + d u ,  v +dv ,  W +dw)canbe  written 
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where f ,  g, and h are functions of position characteristic of the particular coordinate 
system (in Cartesian coordinates f = g = h = l ;  in spherical coordinates f = l, g = r ,  
h = r sin 0; and in cylindrical coordinates f = h = l ,  g = S ) .  As you'll soon see, these 
three functions tell you everything you need to know about a coordinate system. 

A.3 Gradient 

If you move from point (U, v ,  W) to point (U + du,  v + d v ,  W + dw), a scalar function 
t (U, v, W) changes by an amount 

this is a standard theorem on partial differentiation.' We can write it as a dot product, 

d t  = Vt . dl  = (Vt), f du + (Vt), g dv + ( V t ) ,  h dw, (A.3) 

provided we define 

The gradient of t, then, is 

If you now pick the appropriate expressions for f ,  g, and h from Table A.l, you can easily 
generate the formulas for Vt in Cartesian, spherical, and cylindrical coordinates, as they 
appear in the front cover of the book. 

System 
Cartesian 

Table A. 1 

Spherical 
Cylindrical 

From Eq. A.3 it follows that the total change in t ,  as you go from point a to point b 
(Fig. A. l), is 

b 
t(b) - ,(a) = ib dt  = 1 (Vt) dl, (A.5) 

u v w f g  
X y z 

which is the fundamental theorem for gradients (not much to prove, really, in this case). 

h 
1 1 l 

r 0 
s 4 z 

Notice that the integral is independent of the path taken from a to b. 

1 r r sin 0 
1 s 1 

'M. Boas. Muthemuticul Methorls in the Physical Scier~ces, 2nd ed., Chapter 4, Sect. 3 (New York: John Wiley, 
1983). 



Figure A. 1 

A.4 Divergence 

Suppose that we have a vector function, 

and we wish to evaluate the integral $ A  - d a  over the surface of the infinitesimal volume 
generated by starting at the point (U, v ,  W) and increasing each of the coordinates in succes- 
sion by an infinitesimal amount (Fig. A.2). Because the coordinates are orthogonal, this is 
(at least, in the infinitesimal limit) a rectangular solid, whose sides have lengths dl, = f du, 
dl,, = g d v, and d l ,  = h d W ,  and whose volume is therefore 

(The sides are not just d u ,  dv, d w-after all, v might be an angle, in which case dv doesn't 
even have the dimensions of length. The correct expressions follow from Eq. A. 1.) 

For the front surface, 
d a  = -(gh) dv dw U, 

so that 
A .  d a  = -(ghA,) dv dw.  

The back surface is identical (except for the sign), only this time the quantity ghA, is to be 
evaluated at (U + du), instead of U. Since for any (differentiable) function F(u) ,  

d F  
F ( u  + du) - F(u) = - d u ,  

d u 

(in the limit), the front and back together amount to a contribution 

By the same token, the right and left sides yield 
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+ dv, W + dw) 

Figure A.2 

and the top and bottom give 

1 a -- 
f g h  aw 

(f gAw) d t .  

All told, then, 

a + %(fhA,) + - ( f g ~ , )  a w  . dr. 
a l (A.7) 

The coefficient of dt serves to define the divergence of A in curvilinear coordinates: 



A.4. DIVERGENCE 

and Eq. A.7 becomes 

Using Table A. 1, you can now derive the formulas for the divergence in Cartesian, spherical, 
and cylindrical coordinates, which appear in the front cover of the book. 

As it stands, Eq. A.9 does not prove the divergence theorem, for it pertains only to 
infinitesimal volumes, and rather special infinitesimal volumes at that. Of course, a finite 
volume can be broken up into infinitesimal pieces, and Eq. A.9 can be applied to each one. 
The trouble is, when you then add up all the bits, the left-hand side is not just an integral 
over the outer surface, but over all those tiny internal surfaces as well. Luckily, however, 
these contributions cancel in pairs, for each internal surface occurs as the boundary of two 
adjacent infinitesimal volumes, and since d a  always points outward, A . d a  has the opposite 
sign for the two members of each pair (Fig. A.3). Only those surfaces that bound a single 
chunk-which is to say, only those at the outer boundary-survive when everything is 
added up. Forfinite regions, then, 

A .  d a  = ( V .  A) d t ,  I S (A. 10) 

and you need only integrate over the external s ~ r f a c e . ~  This establishes the divergence 
theorem. 

Figure A.3 

2 ~ h a t  about regions that cannot be fit perfectly by rectangular solids no matter how tiny they are-such as 
planes cut at an angle to the coordinate lines? It's not hard to dispose of this case; try thinking it out for yourself, 
or look at H. M. Schey's Div, Grad, Curl and All That (New York: W. W. Norton, 1973), starting with Prob. 11-15, 
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A.5 Curl 

To obtain the curl in curvilinear coordinates, we calculate the line integral, 

around the infinitesimal loop generated by starting at (U, v, W )  and successively increasing 
u and v by infinitesimal amounts, holding W constant (Fig. A.4). The surface is a rectangle 
(at least, in the infinitesimal limit), of length dl, = f du, width dl, = g d v, and area 

da = (fg)du dv W. (A. 1 1) 

Assuming the coordinate system is right-handed, i i  points out of the page in Fig. A.4. 
Having chosen this as the positive direction for da, we are obliged by the right-hand rule 
to run the line integral counterclockwise, as shown. 

+ dv, W) 

v, W> 

Figure A.4 

Along the bottom segment, 

d l =  f duG, 

Along the top leg, the sign is reversed, and f A, is evaluated at (v + dv) rather than v .  
Taken together, these two edges give 



A.5. CURL 

Similarly, the right and left sides yield 

so the total is 

j ~ - d l  = [k(gA,)--(fA,)  a a V l  dud^ 

(A. 12) 

The coefficient of da on the right serves to define the w-component of the curl. Constructing 
the u and V components in the same way, we have 

a V 

(A. 13) 
and Eq. A . l l  generalizes to 

A .  dl = (V X A) . da. (A. 14) 

Using Table A. 1, you can now derive the formulas for the curl in Cartesian, spherical, and 
cylindrical coordinates. 

Equation A. 14 does not by itself prove Stokes' Beorem, however, because at this point 
it pertains only to very special infinitesimal surfaces. Again, we can chop anyfinite surface 
into infinitesimal pieces and apply Eq. A. 14 to each one (Fig. AS). When we add them up, 
though, we obtain (on the left) not only a line integral around the outer boundary, but a lot 
of tiny line integrals around the internal loops as well. Fortunately, as before, the internal 

Figure A.5 
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contributions cancel in pairs, because every internal line is the edge of two adjacent loops 
running in opposite directions. Consequently, Eq. A.14 can be extended to finite surfaces, 

and the line integral is to be taken over the external boundary only.3 This establishes Stokes' 
theorem. 

.6 Laplacian 

Since the Laplacian of a scalar is by definition the divergence of the gradient, we can read 
off from Eqs. A.4 and A.8 the general formula 

1 a g h a t  f g  a t  - - + - - - + - - -  
v 2 t - s [ i i s ( f a U )  al(fph:) : w ( h  a J 1 . 1  (A. 16) 

Once again, you are invited to use Table A. 1 to derive the Laplacian in Cartesian, spherical, 
and cylindrical coordinates, and thus to confirm the formulas inside the front cover. 

3 ~ h a t  about surfaces that cannot be fit perfectly by tiny rectangles, no matter how small they are (such as 
triangles) or surfaces that do not correspond to holding one coordinate fixed? If such cases trouble you, and you 
cannot resolve them for yourself, look at H. M. Schey's Div, Grad, Curl, andAll That, Prob. 111-2 (New York: W. 
W. Norton, 1973). 



Appendix B 

The Helmholtz Theorem 

Suppose we are told that the divergence of a vector function F(r) is a specified scalar 
function D (r): 

V . F = D ,  (B.1) 

and the curl of F(r) is a specified vector function C(r): 

For consistency, C must be divergenceless, 

because the divergence of a curl is always zero. Question: can we, on the basis of this 
information, determine the function F? If D(r) and C(r) go to zero sufficiently rapidly at 
infinity, the answer is yes, as I will show by explicit construction. 

I claim that 
F = - V U + V x W ,  (B.4) 

where 

and 

the integrals are over all of space, and, as always, 4 = Jr - r'l. For if F is given by Eq. B.4, 
then its divergence (using Eq. 1.102) is 

(Remember that the divergence of a curl is zero, so the W term drops out, and note that the 
differentiation is with respect to r ,  which is contained in 4.) 
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So the divergence is right; how about the curl? 

(Since the curl of a gradient is zero, the U term drops out.) Now 

2 -V  W = -I 1 CO' (t) dr '  = 1 c(rf)6'(r - r f ) d r '  = C(.), 
47T 

which is perfect-I'll be done if I can just persuade you that the second term on the light 
side of Eq. B.7 vanishes. Using integration by parts (Eq. 1.59), and noting that derivatives 
of 4 with respect toprimed coordinates differ by a sign from those with respect to unprimed 
coordinates, we have 

But the divergence of C is zero, by assumption (Eq. B.3), and the surface integral (way out 
at infinity) will vanish, as long as C goes to zero sufficiently rapidly. 

Of course, that proof tacitly assumes that the integrals in Eqs. B.5 and B.6 converge- 
otherwise U and W don't exist at all. At the large r' limit, where 4 % r', the integrals have 
the form 

rn 
r''drr = 1 r f x ( r f )  dr'. 

(Here X stands for D or C, as the case may be). Obviously, X(r') must go to zero at large 
rf-but that's not enough: if X -- l / r f ,  the integrand is constant, so the integral blows 
up, and even if X - 1/rJ2, the integral is a logarithm, which is still no good at r' + m. 
Evidently the divergence and curl of F must go to zero more rapidly than l / r 2  for the proof 
to hold. (Incidentally, this is more than enough to ensure that the surface integral in Eq. B.8 
vanishes.) 

Now, assuming these conditions on D(r) and C(r) are met, is the solution in Eq. B.4 
unique? The answer is clearly no, for we can add to F any vector function whose divergence 
and curl both vanish, and the result still has divergence D and curl C. However, it so happens 
that there is no function that has zero divergence and zero curl everywhere and goes to zero 
at infinity (see Sect. 3.1.5). So if we include a requirement that F(r) goes to zero as r + m, 
then solution B.4 is unique.' 

' ~ ~ ~ i c a l l ~  we do expect the electric and magnetic fields to go to zero at large distances from the charges and 
currents that produce them, so this is not an unreasonable stipulation. Occasionally one encounters artificial 
problems in which the charge or current distribution itself extends to infinity-infinite wires, for instance, or 
infinite planes. In such cases other means must be found to establish the existence and uniqueness of solutions to 
Maxwell's equations. 



Now that all the cards are on the table, I can state the Helmholtz theorem more rigor- 
ously: 

If the divergence D(r) and the curl C(r) of a vector function F(r) are specified, 
and if they both go to zero faster than l / r 2  as r + m ,  and if F(r) goes to zero 
as r + m ,  then F is given uniquely by Eq. B.4. 

The Helmholtz theorem has an interesting corollary: 

Any (differentiable) vector function F(r) that goes to zero faster than l / r  as 
r + m can be expressed as the gradient of a scalar plus the curl of a ~ e c t o r : ~  

V )  d t '  ) + V  X (&[VrxF( r ' )  

4 d , ' )  (B.lO) 

For example, in electrostatics V . E = and V X E = 0, so 

(B. 11) 

where V is the scalar potential, while in magnetostatics V - B = 0 and V X B = poJ, SO 

where A is the vector potential. 

'AS a matter of fact, any differentiable vector function whatever (regardless of its behavior at infinity) can be 
written as a gradient plus a curl, but this more general result does not follow directly from the Helrnholtz theorem, 
nor does Eq. B.10 supply the explicit construction, since the integrals, in general, diverge. 



Appendix C 

Units 

In our units (the Systkme International) Coulomb's law reads 

Mechanical quantities are measured in meters, kilograms, seconds, and charge is in coulombs 
(Table C. I ) .  In the Gaussian system, the constant in front is, in effect, absorbed into the 
unit of charge, so that 

'I142 A F = -4 (Gaussian). 
a2 

Mechanical quantities are measured in centimeters, grams, seconds, and charge is in elec- 
trostatic units (or esu). For what it's worth, an esu is evidently a (dyne)1/2-centimeter. 
Converting electrostatic equations from S1 to Gaussian units is not difficult: just set 

For example, the energy stored in an electric field (Eq. 2.45), 

becomes 

d t  (Gaussian). 

(Formulas pertaining to fields inside dielectrics are not so easy to translate, because of 
differing definitions of displacement, susceptibility, and so on; see Table C.2.) 



Quantity 

Length 
Mass 
Time 
Force 
Energy 
Power 
Charge 
Current 
Electric field 
Potential 
Displacement 
Resistance 
Capacitance 
Magnetic field 
Magnetic flux 
H 

meter (m) 
kilogram (kg) 
second (S) 
newton (N) 
joule (J) 
watt (W) 
coulomb (C) 
ampere (A) 
voltjmeter 
volt (V) 
coulomb/meter2 
ohm (Q) 
farad (F) 
tesla (T) 
weber (Wb) 
amverelmeter 

Factor 

1 02 
1 o3 
1 
105 
107 
1 07 
3 X 109 
3 X 109 
(l/3) X 1 0 - ~  
1 /300 
1 2 ~  105 
(1/9) X 10-l' 
9 X 10" 
1 04 
1 o8 
4n X 1 0 - ~  

Gaussiah 

centimeter 
gram 
second 
dyne 

erg 
erg/second 
esu (statcoulomb) 
esulsedond (statampere) 
statvoltjcentimeter 
statvolt 
statcoulomb/centimete~ 
secondfcentimeter 
centimeter 
gauss 
maxwell 
oersted 

I Inductance h e w  (H) (l 9 X l ' second2/centimeter I 

Table C. l Conversion Factors. [Note: Except in exponents, every "3" is short for 
a = 2.99792458 (the numerical value of the speed of light), "9" means a2, 

and " 12" is 4a .] 

The Biot-Savart law, which for us reads 

becomes, in the Gaussian system, 

(Gaussian), 
C 

where c is the speed of light, and current is measured in esu/s. The Gaussian unit of 
magnetic field (the gauss) is the one quantity from this system in everyday use: people 
speak of volts, amperes, henries, and so on (all S1 units), but for some reason they tend to 
measure magnetic fields in gauss (the Gaussian unit); the correct S1 unit is the tesla (104 
gauss). 

One major virtue of the Gaussian system is that electric and magnetic fields have the 
same dimensions (in principle, one could measure the electric fields in gauss too, though 
no one uses the term in this context). Thus the Lorentz force law, which we have written 

F = q ( E + v  X B) (SI), (c.5) 
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S1 Gaussian 

I Maxwell's equations I 
In general: 

In matter: 

I DandH 

Definitions: 

P = eoxeE, D = EE P = xeE, D = EE 
Linear media: 1 

M = x m H ,  H = -B 1 
P M = x m H ,  H =  -B P 

Lorentz force law F = q (E + v X B) F = ~ ( E + ;  X B )  

I Energy and power l 
Energy: U = 1 J ( t o ~ ~  + &B') d r  U = -  87r l . f ( ~ ~ +  g2)  d r  

Poynting vector: 1 S = -(E X B) 
PO S =  & ( E x B )  

Larmor formula: 1 2 q2n2 p = --p 2 q2a2 p = -- 4nto 3 0 3  3 c3 

Table C.2 Fundamental Equations in S1 and Gaussian Units. 



(indicating that E /  B has the dimensions of velocity), takes the form 

v 
x B) (Gaussian). (c.6) 

In effect, the magnetic field is "scaled up" by a factor of c. This reveals more starkly the 
parallel structure of electricity and magnetism. For instance, the total energy stored in 
electromagnetic fields is 

(E' + iI2) d r  (Gaussian), 

eliminating the €0 and p,o that spoil the symmetry in the S1 formula, 

Table C.2 lists some of the basic formulas of electrodynamics in both systems. For 
equations not found here, and for Heaviside-Lorentz units, I refer you to the appendix of 
J. D. Jackson, Classical Electrodynamics, 3rd ed. (New York: John Wiley. 1999), where a 
more complete listing is to be found.] 

'FOT an interesting "primer" on electrical S1 units see N. M. Zirnmeman, Am. J. Phys. 66, 324 (1998). 



Index 

Abraham-Lorentz formula, 467,469. 472, 
545-546 

Absorption, 392-398 
Absorption coefficient, 402-403 
Acausality, 421,425,467 
Acceleration, 

field, 438, 460 
ordinary, 5 2 1 
proper, 521 

Advanced potentials, 425 
Advanced time, 425 
Alfven's theorem, 34 1 
Ampere (unit), 208, 21 6 
Ampkre, A. M., xiii 
Ampkre dipole, 258, 284 
Ampkre's law, 225, 232, 321-326, 539 

applications of, 225-232 
in matter, 269-27 1 
symmetry for, 229 

Amperian loop, 225, 239 
Angle, 

azimuthal, 38,43 
of incidence, 388 
of reflection, 388 
of refraction, 388 
polar, 38 

Angular momentum, 358-362 
density, 358 

Anomalous dispersion, 403-404 
Antisymmetric tensor, 535,537 
Atomic polarizability, 16 1, 200 
Auxiliary fields: 

D, 175-182,271,273,328,545 
H, 269-277,328-332,545 

Azimuthal angle, 38,43 

Azimuthal symmetry, 137 

BAC-CAB rule, 8 
Back emf, 3 14,3 17 
Bar electret, 170, 178 
Bar magnet, 265,274 
Barn and ladder paradox, 491-492 
Betatron, 336 
Biot-Savart law, 215-220, 339, 532 
Bohr atom, 

lifetime, 464-465 
polarizability, 163 

Bohr magneton, 252 
Bound charge, 166-173, 186, 328 
Bound current, 263-268,277,328 
Boundary conditions: 

for dielectrics, 178- 179, l 82, 186, 
198,331-333 

for electrodynamics, 53, 331-333 
for electromagnetic waves, 384,387, 

396 
for electrostatics, 87-90 
for Laplace's equation, 1 16- 1 20 
for magnetic materials, 273-274,283, 

331-333 
for magnetostatics, 240-242 
for Maxwell's equations, 323, 556 
for waves on a stGng, 370-373 

Boundary value problems, 12 1- 145, 186 
Bremsstrahlung, 464 
Brewster's angle, 390-39 1 

Capacitance, 104 
Capacitor, 103- 106 

charging, 105- 106, 324-325 



INDEX 

dielectric-filled, 183 
discharging, 290-29 1 
energy in, 105-106, 191 
parallel-plate, 74,104, 183,231,525 

Cartesian coordinates, 4, 127,547-548 
Cauchy's formula, 404 
Causality, 421,425,467, 506 
Cavity: 

in conductor, 99, 1 17 
in dielectric, 177 
in magnetic material, 272-273 
resonant, 415 

Center of momentum, 5 1 1 
cgs units, xv, 327, 559-562 
Charge: 

bound, 166- 173, 186,328 
conservation (see Conservation) 
electric, xiv, 58-59 
enclosed, 68 
free, 160, 175, 393 
induced, 97-1 01 
invariance, 525 
magnetic (see Monopole) 
quantization, xiv, 362 

Charge density: 
line, 62 
surface, 62, 102 
volume, 62 

Child-Langmuir law, 108 
Circular polarization, 374 
Clausius-Mossotti equation, 200 
Coaxial cable, 75,411-41 2 
Coefficient of: 

absorption, 402-403 
dispersion, 404 
reflection, 386,39 1-392 
refraction, 404 
transmission, 386, 391-392 

Colliding beam, 5 15-5 16 
Collision: 

classical, 483 
elastic, 514 
relativistic, 51 4-5 16 

Completeness, 132 

Complex notation, 369, 378, 382,401 
amplitude, 369 
permittivity, 402 
susceptibility, 401 
wave number, 402 

Component, 5 ,39  
Compton scattering, 5 14-5 15 
Compton wavelength, 5 15 
Conductivity, 285-286 
Conductor, 96-103, 160, 285 

"good and "poor", 393 
perfect, 285, 334, 341, 405 
surface charge on, 123, 126,288 

Conservation laws: 
global, xiv, 345 
local (see Continuity equation) 
relativistic, 5 10-5 16 

Conservation, electrodynamic, 345-363 
angular momentum, 358-361 
charge, xiv, 2 14, 327, 354,538 
energy, 346-349,386 
momentum, 355-357,442 

Constitutive relation, 180, 275, 330,545 
Continuity equation, xiv, 2 14-2 15, 327, 

345-346,348,356,538-539 
Contravariant vector, 501,543 
Coordinates: 

Cartesian, 4, 548 
curvilinear, 38,547-554 
cylindrical, 43-45,548 
inversion of, 12 
rotation of, 10- 12 
spherical, 38-43,548 
translation of, 12 

Cosines, law of, 3 
Coulomb (unit), 59,559 
Coulomb gauge, 42 1,54 1 
Coulomb's law, xv, 59,62 

magnetic, 328 
Covariant vector, 501,543 
Critical angle, 4 13 
Cross product, 3 ,6  
Curie point, 28 1 
Curl, 16, 19,552-553 



INDEX 

in Cartesian coordinates, 19 
in curvilinear coordinates, 553 
in cylindrical coordinates, 44 
in spherical coordinates, 42 
of A, 234,416 
of B, 221 -225 
of D, 178 
of E, 65,76,302,330 
of H, 269,330 

Curl-less fields, 53,77-79 
Current, 208-214 

bound, 263-268,277 
displacement, 323 
enclosed, 222, 225, 269, 322 
free, 269, 277 
induced, 304 
polarization, 329 
steady, 2 15 

Current density, 2 1 1 -2 14 
four-vector, 537-538 
surface, 2 1 1-2 12 
volume, 2 1 2-2 13 

Curvilinear coordinates, 38, 547-554 
Cutoff frequency, 409-41 1 
Cycloid motion, 205-207,545 
Cyclotron motion, 205, 5 19-520 
Cylindrical coordinates, 43-45,548 

D, (see Displacement, electric) 
d' Alembertian, 422,542 
Del operator, 16 
Delta function: 

Dirac, 45-52, 157 
Kronecker, 1 58,352 

Density of field lines, 65 
Derivative, 13 

normal, 90 
Diamagnetism, 255,260-263, 335, 337 
Dielectric, 160 

constant, 180 
linear, 179- 196 

Diode, vacuum, 107 
Dipole, electric, 66, 146, 149-1 55 

energy of, in electric field, 165 

energy of interaction of two, 165 
field of: 

static, 66, 153-155 
oscillating, 447 

force on, 164- 165 
induced, 160- 163 
moment, l49 
perfect, 150, 154 
permanent, 163 
physical, 150, 154 
potential of: 

static, 146-147, 149 
oscillating, 446 

radiation, 444-450 
runaway motion, 543 
torque on, 164 

Dipole, magnetic, 243-246 
Ampkre model, 258,284 
energy of, in magnetic field, 281 
energy of interaction of two, 282 
field of: 

static, 246, 253-254 
oscillating, 453 

force on, 257-259,282-283 
Gilbert model, 258, 284, 454 
moment, 244,254 
of electron, 252 
moving, 544 
perfect, 245-246 
physical, 245-246 
potential of: 

static, 244, 246 
oscillating, 453 

radiation, 45 1-455, 459 
Thomson, 362 
torque on, 255-257, 259 

Dirac, P. A. M., 362 
Dirac delta function, 45-52, 157 
Dirichlet's theorem, 130 
Discharge of capacitor, 290-291 
Discontinuity, 

in B, 241,274 
in E, 88-89 

Dispersion, 398-405 
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anomalous, 403-404 
coefficient, 404 

Displacement current, 323,325,330,339 
Displacement, electric, 175- 179 
Displacement vector: 

finite, 1, 8-9 
four-vector, 502 
infinitesimal: 

Cartesian, 9 
curvilinear, 547 
cylindrical, 44 
spherical, 40 

Divergence, 16, 17, 549-55 1 
four-dimensional, 539 
in Cartesian coordinates, 17 
in curvilinear coordinates, 550 
in cylindrical coordinates, 44 
in spherical coordinates, 42 
of A, 234 
of B, 221-223,330 
of D, 329-330 
of E, 65,69 
of H, 273 

Divergenceless fields, 54,240 
Divergence theorem, 3 1,55 1 
Domain, 278-280 
Dot product, 2,5, 501 
Drift velocity, 234, 289 
Drude, P. K. I., 289 
Dual tensor, 537, 545 
Duality transformation, 342,454 
Dumbbell model, 469-470 

Earnshaw's theorem, 115 
Earth's magnetic field, 216 
Eddy currents, 298-299,305 
Ehrenfest's paradox, 493 
Einstein, A., 303,478-479 
Einstein summation convention, 501 
Einstein velocity addition rule, 482-483, 

497-498 
Einstein's postulates, 477-482 
Elastic collision, 5 14 
Electret, 170, 178 

Electric (see Charge, Current, Dipole, Dis- 
placement, Energy, Field, Force, 
Polarization, Potential, Suscep- 
tibility) 

Electric field, 58, 61 
average over a sphere, 156- 157 
curl of, 65 
divergence of, 65 

Electric field of: 
dynamic configurations: 

arbitrary charge distribution, 427, 
457 

oscillating electric dipole, 447 
oscillating magnetic dipole, 453 
parallel-plate capacitor, moving, 

525-526,533 
point charge, arbitrary motion, 435- 

438 
point charge, constant velocity, 439, 

527-528 
point charge moving in straight 

line, 441 
rotating electric dipole, 450 

static configurations: 
bar electret, 170, 178 
conducting sphere in dielectric medium, 

199 
conducting sphere in external field, 

141-142 
continuous charge distribution, 61 
dielectric cylinder in external field, 

190 
dielectric sphere in external field, 

186-188 
dipole, 153-155, 157 
disk, 64 
finite line, 62-63 
infinite cylinder, 72 
infinite plane, 73 
infinite line, 63,75 
line charge, 62 
overlapping spheres, 75, 172 
parallel-plate capacitor, 74 
point charge distribution, 60 
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point charge near conducting plane, 
121-122 

point charge near dielectric plane, 
188-190 

polarized object, 166- 170 
ring, 64 
sphere, 64,70 
spherical shell, 64, 75 
surface charge distribution, 62 
uniformly polarized cylinder, 173 
uniformly polarized object, 283 
uniformly polarized sphere, 168 
volume charge distribution, 62 

Electromagnetic 
induction, 301 -320 
mass, 472 

paradox, 472 
radiation, xiv, 443 
spectrum, 377 
waves, 364-41 5 

Electromotance, 293 
Electron~otive force, 285-300, 314 
Electron, 

dipole moment, 252 
discovery, 208 
radiative time constant, 467 
spin, 252, 362 

Electrostatics, 59, 215, 225,232-233 
Electrostatic pressure, 103 
emf, 285-300,3 14 
Enclosed charge, 68 
Enclosed current, 222,225,269, 322 
Energy: 

conservation, 346-349, 386,5 10 
flux, 347 
in electric field, 346-348 
in magnetic field, 3 17-32 1, 346 
of capacitor, 106 
of charge in static field, 90-91 
of continuous charge distribution, 93- 

95 
of dipole, 165, 28 1-282 
of electromagnetic wave, 380-382 
of induc tor, 3 1 7 

of linear dielectric, 19 1 - 193 
of point charge distribution, 9 1 
ofpoint charge near conducting plane, 

1 24 
of spherical shell, 94-95 
of static charge distribution, 90 

Energy density: 
electromagnetic, 348, 380 
electrostatic, 93-96 
in linear media, 348 
magnetostatic, 31 8-3 19 
of electromagnetic wave, 380-383 

Energy-momentum four-vector, 5 10 
Energy, relativistic, 5 10 

kinetic, 5 10 
rest, 510 

Equipotential, 79, 97 
Equivalence principle, 476 
Ether, 479-48 1 

drag, 480 
wind, 479-481 

Euler's formula, 369 
Evanescent wave, 414 
Event, 493 

Farad (unit), 104 
Faraday, M., xiii, 301 
Faraday cage, 1 01 
Faraday's law, 301-310, 321, 336, 378- 

379,540 
Ferromagnetic domain, 278-280 
Ferromagnetism, 255,278-282 
Feynman disk paradox, 359-361 
Field (see also Electric, Magnetic) 

electric, 58 
average over sphere, 156- 157 
curl of, 65 
divergence of, 65 
in conductor, 97,285-286 
induced, 302, 305-3 10 
macroscopic, 173- 175 
microscopic, 173-175 

line, 65-67 
magnetic, 
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average over a sphere, 253 
curl of, 221 -225 
divergence of, 22 1-223, 330 
macroscopic, 268 
microscopic, 268 

point, 9,60 
tensor, 535-537,541 
theory, xiii, 52-55, 525 

Flux, 
electric, 65, 67 
magnetic, 295,300 

Flux density, 27 1 
energy, 347 
momentum, 356 

Flux integral, 24 
Flux rule, 296-298, 302-303,478-479 
Force: 

density, 351 
electric: 

between point charges, 59,439 
on conductor, 102- 103 
on dielectric, 193-196, 199 
on electric dipole, 164- 165 
on point charge in field, 60,204 
on point charge near conducting 

plane, 123- 124 
on point charge near dielectric plane, 

188-190 
on surface charge, 102- 103 

electromagnetic: 
between point charges, 439 

Lorentz, 204, 209, 5 19 
magnetic: 

between current loops, 250 
between monopoles, 328 
between parallel currents, 202-204, 

217,220,522-525 
between parallel planes, 231 
on current, 209,211-212 
on magnetic dipole, 257-259,282 
on magnetized material, 262 
on point charge, 204 

Minkowski, 5 18-5 19,521,540,543 
relativistic, 5 16 

Fourier series, 130 
Founer transform, 370,4 12 
Fourier's trick, 1 30, 140 
Four vector, 500-502 

acceleration, 521 
chargelcurrent, 537-538 
displacement, 502 
energylnlomentum, 5 10 
gradient, 543 
Minkowski force, 5 18,52 1,540,543 
posi tionftime, 500 
potential, 541-543 
velocity, 507-508 

Free charge, 175, 1 86,393 
Free current, 269, 277 
Fresnel equations, 390-392 
Fringing field, 194- 195 
Fundamental theorem of calculus, 28 

for curls, 34 
for divergences, 3 1,55 1 
for gradients, 29, 548 

Future, 504 

Galilean transformation, 494,502 
Galileo, 477 
Galileo's principle of relativity, 477 
Galileo's velocity addition rule, 482 
Gauge: 

Coulomb, 421,541 
invariance, 542 
Lorentz, 42 1-422,542 
transformation, 4 19-420 

Gauss (unit), 216,560 
Gaussian: 

"pillbox", 72-73 
surface, 70-73 
units, xv, 327,559-562 

Gauss's law, 65, 67-69,232, 321,539 
applications of, 70 
inside matter, 175- 177 
symmetry for, 7 1 

Gauss's theorem, 31 
Gedanken experiment, 483 
Generalized Coulomb field, 438 
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Generator, 294-300 
Gilbert dipole, 258, 284, 454 
Global conservation law, xiv, 345 
Gradient, 13, 14,548 

four-dimensional, 543 
in Cartesian coordinates, 13, 14 
in curvilinear coordinates, 548 
in cylindrical coordinates, 44 
in spherical coordinates, 42 
theorem, 29,548 

Green's identity, 56, 121 
Green's reciprocity theorem, 157- 158 
Green's theorem, 31, 56 
Ground, 1 18 
Group velocity, 399,410 
Guided wave, 405-4 12 
Gyromagnetic ratio, 252 

H, 269-274 
Hall effect, 247 
Harmonic function, l l l 
Heaviside-Lorentz units, xv, 56 1 
Helical motion, 205 
Helmholtz coil, 249 
Helmholtz theorem, 52-53,555-557 
Henry (unit), 3 13 
Hertz, H., xiii, 323 
Hidden momentum, 357,361,520-521 
Homogeneous medium, 182 
Horizon, 434-435 
Hyperbolic 

geometry, 505-506 
motion, 434, 441, 476, 509, 516, 

543 
Hysteresis, 280-28 1 

Images, method of, 121-125 
dipole and conducting plane, 165 
parallel cylinders, 127 
point charge and conducting plane, 

121-124,475 
point charge and conducting sphere, 

124-126 
point charge and dielectric plane, 190 

Incidence: 
angle of, 388 
plane of, 387-388 

Incident wave, 370, 384 
Index of refraction, 383, 388, 398,403 
Induced 

charge, 97-101, 123, 126 
current, 304 
dipole, 1 60- 163 
electric field, 305-3 10 
emf, 302 

Inductance, 310-3 16 
mutual, 310-312, 321 
self, 313-315 

Induction, 271, 301-320 
Inertial system, 477 
Inhomogeneous wave equation, 422 
Isotropic medium, 184 
Insulator, 96, 160 
Integration by parts, 37 
Intensity, 381 
Internal resistance, 293 
Internal reflection, 4 13 
Interval, spacetime, 502-503 

lightlike, 503,505-506 
spacelike, 503, 505-506 
timelike, 503, 505-506 

Invariance 
of charge, 525 
of mass, 5 11 
time-reversal, 425 

Invariant, 501,511,534,537 
interval, 501-503 
product, 501 

Inversion, 12,412 
Irrotational field, 53, 77-79 
Isotropic medium, 184 

Jefimenko's equations, 427-429 
Joule heating law, 290 
Jumping ring, 304-305 

Kinetic energy, 5 10 
Kronecker delta, 158, 352 
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LC circuit, 3 16 
Langevin equation, 200-20 1 
Laplace's equation, 83, 1 10- 1 14, 1 16 

in one dimension, 1 1 1- 1 12 
in three dimensions, 1 14, 1 16 
in two dimensions, 112- 114 

Laplacian, 23 
in Cartesian coordinates, 22, l l l 
in curvilinear coordinates, 235,554 
in cylindrical coordinates, 44 
in spherical coordinates, 42 
of A, 235 
of a scalar, 23 
of V, 83,87, 110 
of a vector, 23, 235 

Larmor formula, 458,462 
Law of cosines, 3 
Left-handed coordinates, 6 
Legendre polynomials, 138, 148 
Lenz's law, 303-304 
Levi-Civita symbol, 283 
Levitation, 335-336 
LiCnard formula, 463, 545 
Lienard-Wiechert potentials, 429-434 
Lifetime, 486,488 
Light, 364-415 

cone, 504 
speed of, 

linear medium, 383 
universal, 48 1 
vacuum, 376,480-48 1 

Lightlike interval, 503 
Line charge, 62 
Line current, 208-209 
Line element: 

Cartesian, 9 
curvilinear, 547 
cylindrical, 44 
spherical, 40 

Line integral, 24 
Linear combination, 130,369-370 
Linear equation, 130,367 
Linear medium, 382-384 

electric. 179- 196 

magnetic, 274-277 
Linear polarization, 374 
Local conservation (see Continuity) 
Longitudinal wave, 373 
Lorentz contraction, 481,489-493,497 

paradox, 490-49 1 
Lorentz force law, 202-214, 232, 519, 

540,545 
Lorentz gauge, 421-422,426,542 
Lorentz transformation, 493,500,543 
Lorentz, H. A., xiii, 469,481 
Lorentz-Lorenz equation, 200 

Macroscopic field, 173- 175,268 
Magnet, 265,274 
Magnetic (see Charge, Dipole, Energy, 

Field, Flux, Force, Magnetiza- 
tion, Potential, Susceptibility) 

Magnetic field, 202-204,271,522 
average over a sphere, 253 
curl of, 221-225 
divergence of, 221 -223,330 
in superconductor, 325 
of earth, 216 

Magnetic field of: 
dynamic configurations: 

arbitrary charge distribution, 428, 
457 

charging capacitor, 324-325 
oscillating electric dipole, 447 
oscillating magnetic dipole, 453 
parallel-plate capacitor, moving, 

528-530 
point charge, arbitrary motion, 2 19, 

435-439 
point charge, constant velocity, 440, 

532 
solenoid, moving, 530-53 1 

static configurations: 
bar magnet, 265,274 
circular loop, 218 
dipole, 246,253-254 
finite solenoid, 220 
finite straight line, 216 
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in cavity, 272-273 
infinite plane, 226 
infinite solenoid, 220, 227, 232, 

249 
infinite straight line, 217,221,226 
magnetized object, 263-264,268 
solenoid filled with magnetic ma- 

terial, 275-276 
sphere of linear material in exter- 

nal field, 277 
spinning sphere, 237,240, 253 
toroidal coil, 229-230 
uniformly magnetizedcylinder, 265 
uniformly magnetized object, 288 
uniformly magnetized sphere, 264- 

265 
Magnetic induction, 271, 301-320 
Magnetic monopole, 232-233, 248, 258, 

327-328,342,546 
Magnetic susceptibility, 274-275 
Magnetism, 522-525 
Magnetization, 255-263, 328-330 
Magnetomechanical ratio, 252 
Magnetostatics, 215,225, 232, 240, 339 
Mass: 

electromagnetic, 472 
relativistic, 5 10 
renormalization, 472 
rest, 510 

Massless particle, 5 12-5 15 
Matrix: 

Lorentz transformation, 500 
rotation, l l 

Maxwell, J. C., xiii, 321-323, 376 
Maxwell's equations, 232, 321, 539,542 

in gaussian units, 561 
inside matter, 328-330 
in vacuum, 327 
tensor form, 539 
with magnetic monopoles, 327,546 

Maxwell stress tensor, 35 1-355 
Meissner effect, 325 
Merzbacher's puzzle, 340 

Method (see Images, Relaxation, Separa- 
tion of variables) 

Michelson-Morley experiment, 480-481 
Microscopic field, 173-175,268 
Minkowski. H., 504 
Minkowski 

constitutive relations, 545 
diagram, 503 
force, 5 18-5 19,521-522, 540, 543 

mks units, xv, 327,559-562 
Momentum: 

angular, 358-36 1 
conservation, 355-357.442,s 10 
density, 355-356, 380 
flux, 356 
four-vector, 5 10 
hidden, 357,361,520-521 
in electromagnetic field, 349-357 
in electromagnetic wave, 380-382 
relativistic, 509-5 11 

Monochromatic wave, 376-380 
Monopole: 

electric, 147, 149, 458 
magnetic, 232-233, 243, 248, 327- 

328,342,362,546 
Motional emf, 294-300,478-479 
Multipole expansion: 

of electrostatic potential, 146-152 
of magnetostatic potential, 242 
of radiation fields, 458 

Mutual inductance, 310-312. 321 

Neumann forlllula, 3 11 
Newton's laws: 

first, 477 
second, 472,s 16 
third, 349-351,442,469,517-518 

Normal derivative, 90 
Normal incidence, 384-386 
Normal vector, 26, 89,241, 332 

Oblique incidence, 386-392 
Observer, 484 
Octopole, 147, 151, 159,458 
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Oersted, C., xiii, 536 
Ohm (unit), 287 
Ohm's law, 285-29 1 
Operator, 16 
Ordinary 

acceleration, 521 
force, 516, 519 
velocity, 507-508 

Orthogonal coordinates, 547 
Orthogonal functions, 130, 132, 140 
Orthogonality, 130, 132, 140 

Paradox (see Barn and ladder, Ehrenfest, 
Electromagnetic mass, Feynman 
disk, Lorentz contraction, Merzbacher, 
Time dilation, Twin) 

Parallel-platecapacitor, 74,104-105, 183, 
231,525-526 

Paramagnetism, 255-257,263 
Past, 504 
Path independence, 24-25, 30, 53,78 
Path integral, 24 
Perfect conductor, 285, 334, 341,405 
Permanent magnet, 265,280 
Permeability, 216,274-275,278,545 

of free space, 216, 275 
relative, 275 

Permittivity, 180, 545 
complex, 402 
of free space, 59, 180 
relative, 180 

Phase, 367 
constant, 367, 395-396 
transition. 28 1 
velocity, 399,410 

Photon, 504, 5 13-5 15 
Pill box, 72-73 
Pinch effect, 247 
Planck formula, 5 13 
Plane: 

of incidence, 387-388 
of polarization, 386 
wave, 376-380 

Plasma, 247, 341 

Point charge (see Electric, Force, Mag- 
netic, Monopole, Potential) 

Poisson's equation, 83, 1 10,235,274 
for A, 235 
for V, 83,87, 110 

Polar angle, 38 
Polar molecule, 163 
Polarizability, 

atomic, 161 
tensor, 162- 1 63 

Polarization (of a medium), 161, 166 
current, 329 
electric, 161, 166,328-330 
induced, 161 
magnetic (see Magnetization) 

Polarization (of a wave), 373-375 
angle, 374 
circular, 374 
linear, 374 
vector, 374 

Pole (magnetic), 232-233,248,258 
Position vector, 8-9 
Position-time four-vector, 500 
Postulates, Einstein's, 477-482 
Potential (see also Scalar, Vector), 557 

advanced, 425 
electric, 77-82 
four-vector, 541-543 
in electrodynamics, 4 16-422 
Lignard-Wiechert, 429-434 
magnetic scalar, 236, 239,251 
magnetic vector, 234-246,252 
retarded, 422-427 

Potential energy, 79 
of a charge configuration, 93 
of a point charge, 91 

Power: 
dissipated in resistor, 290, 348 
in electromagnetic wave, 38 1 
radiated by: 

arbitrary source, 457-458 
oscillating electric dipole, 448,454 
oscillating magnetic dipole, 453- 

454 
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point charge, 460-465 
Poynting's theorem, 346-349 
Poynting vector, 347, 380-383 
Preacceleration, 467, 469, 475 
Present, 504 
Pressure: 

electromagnetic, 353 
electrostatic, 103 
radiation, 382 

Principle (see Equivalence, Relativity, Su- 
perposition) 

Product rules, 20 
Propagation vector, 379 
Proper 

acceleration, 52 1 
time, 507-509 
velocity, 507-509 

Pseudoscalar, 12 
Pseudovector, 12,204 
Pulsar, 474 

Quadrupole : 
electric, 147, 150-151, 158,459 
magnetic, 243 
moment, 158 
radiation, 458-459 

Quantization of charge, xiv, 362 
Quasistatic, 308-309,429 
Quotient rules, 21 

RC circuit, 290-291 
RL circuit, 320 
Radiation, 443-476 

damping, 468 
electromagnetic, xiv, 443-444,460 
field, 438,460 
pressure, 382 
reaction, 465-473,476 
resistance, 450,454 
synchrotron, 465 
zone, 446,453,456 

Radiation by: 
arbitrary source, 454-459 
electric dipole, 444-450 

electric quadrupole, 458-459 
magnetic dipole, 45 1-454,473-474 
point charge, 460-465 

in hyperbolic motion, 476 
rotating electric dipole, 450 
surface current, 474-475 

Rapidity, 502 
Reference point: 

for electric dipole, 15 1- 152 
for magnetic dipole, 245 
for potential, 78, 80, 82 

Reflection, 384-392 
angle of, 388 
at conducting surface, 396-398 
coefficient, 386, 391-392 
internal, 413 
law of, 388 
waves on a string, 370-373 

Refraction, 384-392 
angle of, 388 
coefficient of, 404 
index of, 383,398,403 
law of, 388 

Relativistic, 
constitutive relations, 545 
dynamics, 5 16-522 
electrodynamics, 522-543 
energy, 509-5 11 
kinematics, 5 1 1-5 16 
mass, 5 10 
mechanics, 507-522 
momentum, 509-5 1 1 
potentials, 541-543 

Relativity: 
of simultaneity, 483-484,496-497 
principle of, 477-483 
special, xi, 477-546 

Relaxation, method of, 113 
Renormalization, 

of charge, 183 
of mass, 472 

Resistance, 287 
Resistivity, 285-286 
Resistor, 286 
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Resonant cavity, 415 
Rest energy, 5 10 
Rest mass, 5 10 
Retarded 

position, 429-432 
potentials, 422-427 
time, 423 

Reversion of series, 47 1 
Right hand rule, 3 
Right-handed coordinates, 6 
Rogrigues formula, 138, 144 
Rotation, 10 
Rotation matrix, 11 
Runaway motion, 467,469,543 

Saturation, 280 
Scalar, l 
Scalar potential, 53,416-442 

dynamic configurations: 
arbitrary charge distribution, 423, 

45 6 
oscillating electric dipole, 446 
oscillating magnetic dipole, 45 1 
point charge, arbitrary motion, 432 
point charge, constant velocity, 433- 

434 
static configurations: 

average over a sphere, 1 14- 1 15 
conducting sphere in external field, 

141-142 
continuous charge distribution, 83- 

84 
disk, 86 
electric dipole, 149 
finite cylinder, 87 
infinite line, 85-86 
multipole expansion, 146- 152 
point charges, 84 
polarized matter, 166-170 
ring, 86 
specified charge on surface of sphere, 

142-143 
specified electric field, 78, 25 1 

specified potential on surface of 
sphere, 139- 140 

spherical shell, 81, 85, 144 
surface charge, 85 
uniformly charged object, 283 
uniforn~ly charged sphere, 82, 87 
uniformly polarized sphere, 168- 

169, 172 
volume charge, 84 

Scalar potential, magnetic, 236,239,25 1, 
274 

Scalar product, 2,5,7,501-502 
Second derivative, 22-23 
Second-rank tensor, 1 1-12,535 
Self-force, 469-472 
Self-inductance, 3 12-3 15 
Semiconductor, 286 
Separation of variables, 127- 145 

Cartesian coordinates, 127- 136 
cylindrical coordinates, 145 
spherical coordinates, 1 37- 145 

Separation vector, ix, 9, 15, 59,224 
Shear, 353 
Shielding, 183 
Simultaneity, 483-484,496-497 
Sinusoidal waves, 367-370 
S1 units, xv, 327,559-562 
Skin depth, 394 
Sky, blueness of, 449 
Snell's law, 388 
Solenoid, 220,227-228 
Solenoidal field, 54, 240 
Source charge, 9,58-59,202 
Source point, 9,60 
Space charge, 107 
Spacelike interval, 503 
Spacetime: 

diagram, 503-506 
interval, 502-503 
structure, 500-506 

Special relativity, xi, 477-546 
Spectrum, electromagnetic, 377 
Speed, 

of charges in wire, 234,289 
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of light in linear medium, 383 
of light in vacuum, 376,480-481 
of waves on a string, 366 

Spherical coordinates, 38-43 
Spherical wave, 4 12 
Standing wave, 367,410 
Stationary charge, 59, 215 
Steady current, 21 5 
Step function, 49 
Stokes' theorem, 34, 552-554 
Stress, 353 
Stress tensor, 351-355 
String, waves on, 364-374 
Summation convention, 501-502 
Sun, age of, 109 
Sunset, redness of. 449 
Superconductor, 335 
Superlurninal velocity, 399,484-485 
Superposition principle, 58, 81,96 
Surface charge, 62, 102- 103, 288 
Surface current, 2 1 1-2 12 
Surface element, 26,40 
Surface integral, 24,26 
Susceptibility: 

complex, 401 
electric, 179, 200 
magnetic, 274-275,278 
tensor, 184 

Symmetric tensor, 535, 537 
Symmetry: 

azimuthal, 137 
duality, 342 
for Amphe's law, 229 
for Gauss's law, 71 
of E, B, D, and H, 283 
of Maxwell's equation, 327-328 

Synchronization, 484,487-488, 496 
Synchrotron radiation, 465 

TE waves, 407-4 1 l 
TEM waves, 407 
Tensor, 11-12 

antisymmetric, 535, 537 
contravariant, 5 37 

covariant, 537 
dual, 537,545 
field, 535-537 
polarizability, 162- 163 
second-rank, 1 1- 12,535 
stress, 35 1-355 
susceptibility, 184 
symmetric, 535,537 

Terminal velocity, 300, 336 
Tesla (unit), 216, 560 
Test charge, 58-59,202 
Theta function, 49 
Third law, 349-35 1,442,469,5 17-518 
Thompson-Lampard theorem, 159 
Thomson dipole, 362 
Three-dimensional wave equation, 376 
Threshold, 543 
Time, 

advanced, 425 
constant, 291, 315, 393,467 
dilation, 485-489, 496-497 

paradox, 487 
retarded, 423 
reversal, 425 

Timelike interval, 503 
TM waves, 407 
Toroidal coil, 229-230, 320 
Torque: 

on electric dipole, 164 
on magnetic dipole, 255-257, 259 

Total internal reflection, 4 13 
Transformation: 

duality, 342,454 
Galilean, 494, 502 
gauge, 419-420 
Lorentz, 493-498,500-501,543 
of angles, 493,499 
of charge and current density, 538 
of electromagnetic fields, 525-532 
of forces, 5 18 
of lengths, 489-493,497 
of momentum and energy, 5 10 
of velocity, 508 

Transformer. 338 
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Translation, 12 
Transmission: 

coefficient, 386,391-392 
line, 340,411-412 
of waves on a string, 370-373 

Transparency, 383 
Transverse wave, 373-375. 378, 394 
Triangle diagram: 

electrodynamics, 44 1 
electrostatics, 87 
magnetostatics, 240, 250-25 1 

Triple product, 7 
Tunneling, 4 14,475-476 
Twin paradox, 488,499 

Uniformly 
magnetized cylinder, 265 
magnetized object, 283,288 
magnetized sphere, 264-265 
moving charge, 440, 532 
polarized cylinder, 173 
polarized object, 167,283 
polarized sphere, 1 68- 170 

Uniqueness theorem, 1 16-120, 198,252 
Units, 559-562 

ampere, 208,2 16 
coulomb, 59,559 
esu (electrostatic unit), 559-560 
farad, 104 
gauss, 216,560 
henry, 3 13 
ohp, 287 
tesla, 216 560 
volt, 81 

Unit systems (see Gaussian, Heaviside- 
Lorentz, SI) 

Unit vectors, ix, 3-4, 9, 39,42 
Cartesian, 4 
curvilinear, 39, 547 
cylindrical, 43 
normal, 89 
spherical, 38,42 

Universal speed of light, 481 

Vacuum polarization, 183 
Vector, 1 

addition, 2, 5 
area, 57, 244 
component, 5, 39 
contravariant, 501 
covayiant, 50 1 
displacement, 1, 8-9 
four-, 500-502 
magnitude, 1 
operator, 16 
polarization, 374 
position, 8 
product, 

cross, 3, 6 
dot, 2 ,5  
scalar, 2,5,501-502 
vector, 3 , 6  

propagation, 379 
pseudo-, 12,204 
separation, ix, 9, 15,59-60,224 
subtraction, 2 
triple products, 7 
unit, (see Unit vectors) 

Vector potential, 54,234-246,416-442 
direction of, 238 
dynamic configurations: 

arbitrary charge distribution, 423, 
456 

oscillating electric dipole, 446, 
oscillating magnetic dipole, 453 
point charge, arbitrary motion, 433 
point charge, constant velocity, 433- 

434 
static configurations: 

arbitrary current configuration, 235- 
236 

fiqite line current, 239 
infinite line current, 239 
infinlte plane current, 239 
infinite solenoid, 238 
magnetic dipole, 244-246 
magnetized material, 263-264 
multipdle expansion, 242-246 



INDEX 

specified magnetic field, 25 1 
spinning sphere, 236-237,253 
uniform magnetic field, 239 

Velocity: 
addition rules, 482-483, 497-498 
drift, 234, 289 
field, 438,460 
four-, 507-509 
group, 399 
of light in linear medium, 383 
of light in vacuum, 376,480-48 1 
ordinary, 507 
phase, 399 
proper, 507 
waves on a string, 366 
wave, 399 

Visible range, 377 
Volt (unit), 8 l 
Voltmeter, 337 
Volume: 

charge, 62 
current, 212 
integral, 24,27 

Volume element, 
Cartesian, 27 
curvilinear, 549 
cylindrical, 44 
spherical, 40 

Wave: 
complex, 369 
guide, 405,408 
length, 368 
number, 368 
vector, 379 
velocity, 366, 376, 399 

Wave equation, 364367,375-376 
for A, 422 
for B, 375-376 
for E, 375-376 
for V,  422 
general solution, 367 
homogeneous, 366,376 
inhomogeneous, 422 

one-dimensional, 366 
three-dimensional, 376 

Waves : 
dispersive, 398 
electromagnetic, 364-415 
evanescent, 4 14 
guided, 405-4 12 
in conductors, 392-398 
in free space, 375-382 
in linear media, 382-392 
longitudinal, 373 
monochromatic, 376 
on a string, 364-367 
plane, 376-380 
sinusoidal, 367-370 
spherical, 4 12 
standing, 367,410 
transverse, 373-375,378 
Water, 404 

Work: 
and emf, 295,3 17 
and potential, 90-9 1 
-energy theorem, 5 16 
relativistic, 5 16 

Work done (see also Energy): 
against back ernf, 3 17 
by magnetic force, 207,210-21 1 
in charging a capacitor, 105-106 
in setting up a charge configuration, 

91 -93 
in moving a charge, 90-91 
in moving a dielectric, 194- 196 
in moving a wire loop, 294-296 
in polarizing a dielectric, 19 1 - 193 

World line, 503-504 



FUNDAMENTAL CONSTANTS 

CO = 8.85 X 10-l2 c 2 / ~ m 2  (permittivity of free space) 

po = 4n X ~ o - ~ N / A ~  (permeability of free space) 

c = 3.00 X losm/s (speed of light) 

e = 1.60 X 10-l~ C (charge of the electron) 

m = 9 . 1 1 ~ 1 0 - ~ ~ k ~  (mass of the electron) 

SPHERICAL AND CYLINDRICAL COORDINATES 

Spherical 
X = r s inQcos4  
y = r s inQsin#  
z = r cos6 l ri = sin6cosq5i.+cosQcosqie^ - sin 4 4  

ji = s i n Q s i n # f + c o s Q s i n ~ 6 + c o s ~ ~  

i = c o s ~ f - s i n 8 6  

Cylindrical 
X = S C O S ~  rZ = c o s 4 ~ - s i n @ $  
y = s sin q5 f = s i n @ ~ + c o s @ $  
z = Z 



BASIC EQUATIONS OF ELECTRODYNAMICS 

Maxwell's Equations 

In general : 

Auxiliary Fields 

In matter : 

Linear media : 

I P = eoxeE, D = EE 

Potentials 
i3A 

E = - V V - - ,  B = V x A  
at  

Lorentz force law 
P = q(E+v  x B )  

Energy, Momentum, and Power 

Energy 

Momentum : P = J'(E X ~ ) d t  

l 
Poynting vector : S = -(E X B)  

PO 

PO 2,2 Larmor formula : P = -g 
6nc 



VECTOR IDENTITIEi 

Triple Products 

(1) A . ( B  x C )  = B . ( C x A )  = C . ( A x B )  

(2) A x ( B x C ) = B ( A . C ) - C ( A . B )  

Product Rules 

(3) V f g )  = f ( V g ) + g ( V f )  

(4) V(A.  B) = A  X (V X B) + B  X (V X A) + ( A .  V)B + (B.  V)A 

( 5 )  V . ( f A )  = f ( V . A ) + A . ( V f )  

(6) V . ( A x B ) = B . ( V  x A ) - A . ( V  x B )  

(7) V X ( f A ) =  f ( V  x A ) - A x  (Vf)  

(8) V X (A x B )  = ( B . V ) A - ( A . V ) B + A ( V . B )  -B(V . A )  

Second Derivatives 

(9) V - (V X A) = 0 

(10) V x ( V f ) = O  

(11) V X (V X A) = V(V . A )  - V ~ A  

FUNDAMENTAL THEOREMS 

Gradient Theorem : I , ~ ( v  f )  . dl  = f (b) - f (a) 

Divergence Theorem : (V . A) d t = $ A . da  

Curl Theorem : J(v X A) . d a  = $ A . d l  



VECTOR DERIVATIVES 

at , at , at , 
Gradient : V t  = - X + - y + - z  a x  a y  a z  

av, avy av, 
Divergence : V . v = - + - + - 

ax ay a~ 

Curl 

a2r  a% t 2 t  
Laplacian : v 2 t  = --+T+- 

ax2 ay az2 

Spherical. dl =dr i .+rd08+rs inOdq i&;  d t  = r2sin0drd0dq5 

at , 1 at A I at 
Gradient : V t  = - r+- -8+- -  

ar r a 6  r s i n 6 a d  
6 

l i 3  2 1 a 1 av+ Divergence : V V = 7 -(r v r )  + - - (sin0 V@) + -- 
rr  ar r sin0 80 r sin0 aq5 

1 
Curl : 

a 
~ x v  = [ - ( a i n O v + ) - -  r s in0  a0 

aq5 l 

Laplacian : 2 
1 a 1 a 

V t = --(r2z)+-----(sin0$)+ r2  ar ar r 2  sin6 80 r2 sin2 1 0 W a2t 

Cylindrical. d l = d s i + s d q 5 J + d z f ;  d s = s d s d q 5 d z  

Gradient 

I a i a v +  av, 
Divergence: V . V  = - - ( s ~ s ) + - - + -  

as aq5 a z  

1 a v  I a 
curl : v x v  = [ - - - ~ ~ i + [ ~ - $ j r + . - [ - ( ~ ~ + ~ - -  S 34  as "" a 4 

Laplacian : 
I a I a2t a2t 

S as ~2 a42 a22 


