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Maxwell’s Equations 
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 Electrodynamics before Maxwell’s  

 

 

 

 

 

 

But, there is a fatal inconsistency 

 



  
Ampere’s law is bound to fail nonsteady currents 
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 Applying divergence to eqn. (iii), then 

                                                                  𝛻 ∙ 𝐵 = 0                                               

  Applying divergence to eqn. (iv) 

                                                                          0     

𝛻 ∙ 𝐽 = 0      For steady current 

   Note: divergence of a curl vanishes: it's a vector identity. 
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For non-steady currents eqn.(iv)  

                                     𝛻 ∙ 𝐽 = 𝜕𝜌
𝜕𝑡 ≠ 0 

 Ampere’s law cannot be right for non-steady currents! 

There's another way to see that Ampere's law is bound to fail 

for non-steady current. 

   Consider the process of charging up a capacitor. 

Ampere’s law reads,  
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 We want to apply it to the Amperian loop or Amperian surface. 

 How do we determine 𝑰𝒆𝒏𝒄?                  𝒔𝟐                                       𝒔𝟏 

 

 

 

 

 For the surface 𝑠1, 𝐼𝑒𝑛𝑐 = I 

 For the surface 𝑠2, 𝐼𝑒𝑛𝑐 = 0(No current passes through it) 

 
 The conflict arises only when charge is piling up somewhere (in this 

case, on the capacitor plates). 

 For nonsteady currents, "the current enclosed by a loop" is an ill 
defined notion, since it depends entirely on what surface you use. 

 



How Maxwell fixed ampere’s law 
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 The inconsistent problem arose on Ampere’s law when; 

 𝛻 ∙ (𝛻𝑋𝐵) ≠ 𝛻. 𝐽  for nonsteady currents 

 Applying continuity equation  and Gauss’s law 

 

 

 

 

 

                                                 The inconsistency in Ampere’s 
law is now cured. 
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 Ampere’s law can generally be expressed as 

 

 

                                  A changing electric field induces a magnetic field 

 

 



Maxwell’s equation  

9 

 

 

 
                                     ………………………………Eqn.3  

 

Together with the force law  

 they summarize the entire theoretical content of classical 
electrodynamics. 

 

 

 

 



Magnetic Charge? 
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                                    The symmetry between E and B is spoiled 

                                                                      by the charge term and the current.    

 

 

If we had  𝜌𝑚  (the density of magnetic charge) and 𝐽𝑚   (the current of magnetic charge),   

If we replace E           B, B            -𝜇𝑜  𝜖𝑜  𝐸 

 

 

 

 

 There could be a pleasing symmetry between E and B. 

 



Maxwell’s equation in matter 
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 It would be nice to reformulate Maxwell‟s eqn. in the form (3) 

when you are working with material that are subjected to electric 

and magnetic polarization  

 For inside polarized matter there will be accumulation of bound 

charges and current over which you exert no direct control.  

𝜌𝑏 = 𝛻. P…………………………..(4) 

Magnetic polarization M results in a bound current is 

𝐽𝑏 = 𝛻𝑋𝑴………………………… . (5) 

 

 

 

 

 

 



Maxwell's Equations in Matter 
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𝜌𝑏 = 𝛻. P 

 If P is time-varying, we expect there to be a current 𝐽𝑝 associated 

with the resulting changes in 𝜌𝑏. In fact, the above expression 

suggests a good definition of 𝐽𝑝 : 

 

 That is, the definition on the left naturally gives the continuity 

relation between 𝐽𝑝 and 𝜌𝑏 one would like. 

 Time dependence of M yields time dependence of 𝐽𝑏, which 

produces time dependence of B and H 
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• The charge and current densities have the following parts 

•                                                                                          ………….6 

 

• Using Gauss's law,  

• 𝜀𝑜𝛻. 𝐸 = 𝜌𝑓 − 𝛻. 𝑃 𝑎𝑛𝑑 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 the displacement field  

                  D= 𝜀𝑜𝐸+P we obtain 
𝛻. 𝐷 = 𝜌𝑓 …………………7 

Ampere's Law with the displacement current term is  

𝛻𝑋𝐵 = µ𝑜(𝐽𝑓 + 𝛻 ×𝑀 +
𝜕𝑃

𝜕𝑡
)+µ𝑜𝜖𝑜

𝜕𝐸

𝜕𝑡
………8 
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 We use B=µ𝑜(H+M) as well as   D= 𝜖𝑜𝐸+P  we obtain 

𝛻 × 𝐻 = 𝐽𝑓+
𝜕𝐷

𝜕𝑡
.................................9 

 Faraday's Law and 𝛻 ∙ 𝐵 = 0 are not affected since they do not 
depend on the free and bound currents.  

 Thus, Maxwell's Equations in matter are (again, putting all the 
fields on the left sides and the sources on the right): 

 

 



 Boundary Conditions for Maxwell's Equations 
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 In general the fields E,B,D & H will be discontinuous at a 

boundary between two different media or at a surface that carries 

charge density σ or current density k. 

 The integral form of Maxwell’s equations can deduct the boundary conditions 
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 Applying (i) to a tiny, wafer-thin Gaussian pillbox extending 
just slightly into the material on either side of the boundary 
we obtain 

 𝐷1𝑎 − 𝐷2𝑎=σ𝑓𝑎……………(12) 

 

 

 

 Thus the component of D that is perpendicular to the 
interface is discontinuous in the amount 

𝐷1
⊥-𝐷2

⊥ =σ𝑓 …………………….(13) 
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 Identical reasoning applied to (ii) yields 

 𝐵1
⊥-𝐵2

⊥ =0 …………………….(14) 

 Turning to (iii) a very thin Amperian loop straddling the surface 

(fig.) yields 

 𝐸1𝐼 − 𝐸2𝐼=
𝑑

𝑑𝑡
 𝐵 ∙ 𝑑𝑎
𝑠

 

 

 

 

 But in the limit as width of the loop goes to zero the flux vanishes.  
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 Therefore 

𝐸1
‖
-𝐸2

‖
=0 ……………………….(15) 

 That is the component of E parallel to the interface are 

continuous across the boundary.  

 By the same token (iv) implies  

𝐻1𝐼 − 𝐻2𝐼=𝐼𝑓𝑒𝑛𝑐 

Where 𝐼𝑓𝑒𝑛𝑐 is free current passing through Amperian loop 
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 𝐼𝑓𝑒𝑛𝑐= 𝐾𝑓 ∙ 𝑛 × 𝐼 = 𝐾𝑓 × 𝑛 ∙ 𝐼 

And hence 

          𝐻1
‖
−𝐻2

‖
= 𝐾𝑓 × 𝑛 ∙ 𝐼…………………….16 

 So the parallel components of H are discontinuous by an 

amount proportional to the free surface current density. 
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Equation 13-16 are the general boundary conditions for 
electrodynamics 

 

 

In the case of linear media,  

 

 

 

 If there is no free charge or free current at the interface 

 

 

 

 



 Conservation Laws 
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 Under this we will study conservation of  

 Charge  

 Energy  

 Momentum 

 Not only is there no creation or destruction of charge over the whole 

universe, there is also no creation or destruction of charge at a given 

point.  

 Charge cannot jump from one place to another without a current owing 

to move that charge. 



     Poynting's Theorem: Conservation of Energy 
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 Work necessary to assemble charge distribution (againist 
coloumbs repulsion of like charge) 

                                                    ……………………17 

 Likewise, the work required to get currents going (againist 
the back emf) 

                                                   ……………………….18 

 Therefore the total energy stored in EMF is 

 

                                                          …………19 
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 We will prove this by considering the work done to move 
charges as currents 

 Given a single particle of charge q acted on by the 
electromagnetic field, the work done on it as it moves by 
𝑑𝑙 is 

                                                                    ………….20 

 Now,  q= 𝜌𝑑𝜏 𝑎𝑛𝑑 𝜌𝑣 = 𝐽 so the rate at which work is 
done on all the charges in volume 𝑉 is 

                                                      …………..21 
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 Let's manipulate the integrand using Ampere's Law: 
 
 

 From product rule 𝛻 ∙ 𝐸 × 𝐵 = 𝐵 ∙ 𝛻 × 𝐸 − 𝐸 ∙
𝛻 × 𝐵  

 Invoking Faraday’s law  

𝐸 ∙ 𝛻 × 𝐵 = −𝐵 ∙
𝜕𝐵

𝜕𝑡
− 𝛻 ∙ 𝐸 × 𝐵  

Meanwhile −𝐵 ∙
𝜕𝐵

𝜕𝑡
=

1𝜕

2𝜕𝑡
(𝐵2) 

So E∙ 𝐽 =
1𝜕

2𝜕𝑡
𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2 −

1

𝜇𝑜
𝛻 ∙ 𝐸 × 𝐵 ……………..22 
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 Putting this into  equation (21) and applying divergence theorem 

to the 2nd term 

𝑑𝑊

𝑑𝑡
= −

𝑑

𝑑𝑡
 
1

2

𝜕

𝜕𝑡
𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2 𝑑𝜏 −

1

𝜇𝑜
 𝐸 × 𝐵 ∙ 𝑑𝑎… .23 

                          Where 𝑆 is the surface bounding 𝑉.  

 This  poynting‟s theorem; it is the “work-energy theorem” of 

electrodynamics.  
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 The first integral on the right is the total energy stored in the 

fields. The 2nd term evidently represent the rate at which energy 

is carried out of 𝑉, across its boundary surface by the EMF.  

 Poynting‟s theorem state that, the work done on the charges by 

the electromagnetic force is equal to the decrease in energy 

stored in the fields, less the energy that flowed out through the 

surface.  



March, 2020 
 

27 

 The energy per unit time, per unit area, transported 

by fields is called the poynting vector: 

𝑆 =
1

𝜇𝑜
𝐸 × 𝐵 ………..24 

where S is the energy flux density 

𝑑𝑊

𝑑𝑡
= −

𝑑𝑈𝑒𝑚

𝑑𝑡
−

1

𝜇𝑜
 𝑆 ∙ 𝑑𝑎
𝑆

…….25 

Another useful form is given by putting the eld energy 
density term on the left side: 
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 Conservation of Momentum 
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 According to Newton‟s second law 

 F =
𝑑𝑃𝑚𝑒𝑐ℎ

𝑑𝑡
 

                                                                                     ………………26 

Where 𝑃𝑚𝑒𝑐ℎ is the total momentum of particle contained in the volume 

V and T is the Maxwell Stress Tensor 

                                                                                         ……….27 
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 The indices I and j refer to the coordinates x,y and z, so the stress 

tensor has a total of nine components (𝑇𝑥𝑥, 𝑇𝑦𝑦, 𝑇𝑧𝑧 and so on). 

  The kronecker delta 𝛿𝑖𝑗 𝑖𝑠 1 𝑖𝑓 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑛𝑑 𝑧𝑒𝑟𝑜 𝑖𝑓 𝑛𝑜𝑡 

 Therefore  

 

                                                   

                                                                          and so on 
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 Eqn. (26) states that the rate of change of the mechanical momentum in a volume V is equal 

to the integral over the surface of the volume of the stress tensor's flux through that surface 

minus the rate of change of the volume integral of the Poynting vector. 

 Let 𝑝𝑒𝑚 𝑏𝑒 the density of momentum in fields and 

𝑝𝑚𝑒𝑐ℎ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑜𝑓 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 

 𝑝𝑒𝑚=𝜖𝑜𝜇𝑜𝑆 


𝜕

𝜕𝑡
𝑝𝑒𝑚 + 𝑝𝑚𝑒𝑐ℎ =𝛻 ∙ 𝑇 



Potential and Fields 
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 Potential formulation 

 If you are asking your self how the sources (𝜌 𝑎𝑛𝑑 𝐽) generate 

electric field and magnetic fields; so this topic answer for your 

question. 

 RECALL MAXWELL‟S EQUATION………….. 

 Recall how we arrived at Maxwell's Equations. We first developed 

Faraday's Law by incorporating both empirical information and the 

requirement of the Lorentz Force being consistent with Galilean 

relativity. 
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                                                               ………………..1 

 However, Faraday's Law implies that 𝛻 × 𝐸 ≠ 0 when B has time 

dependence. 

 Therefore, we cannot assume E = 𝛻𝑉 However, using B = 𝛻 × 𝐴 , 

we see that 

 

 Thus, the Helmholtz Theorem implies 

                                                                                 …………..2 
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 Eqn. (1) & (2) fulfill the homogenous Maxwell equation (ii) & (iii) 

what about Gauss  (i) & Ampere‟s-Maxwell (iv) law.  Putting (2) in 

(i) ;                                                ………………..3 

 Putting (1) & (2) in (iv) yields 

                                                                     …………………..4 

 Or using the vector identity                                                   and 

some rearranging terms a bit 

                                                                                        ………..5 

 



Cont’ 

March, 2020 34 

Eqn. (3) & (5) contain all the information in Maxwell‟s 

equations. 



Coulombs and Lorentz  gauges 
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 Coulombs  gauges 

 As in magnetostatics we pick ;  

                𝛻 ∙ 𝐴 = 0…………………6 

 This eqn. (3) yields ; 

                                    ……………7 

 

 That is, the charge density sets the potential in the same way as in 
electrostatics, so changes in charge density propagate into the 
potential instantaneously.  

 Of course, you know from special relativity that this is not possible. 

We will see that there are corrections from  𝜕𝐴 𝜕𝑡  that prevent E 
from responding instantaneously to such changes.  
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• The differential equation for A becomes 

                                                ………………..8 

 

Advantage is that the scalar potential is particularly 
simple to calculate; 

Disadvantage is that A is particularly difficult to 
calculate. 
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          The  Lorenz Gauge 

 

 In Lorentz gauge we pick 

 𝛻 ∙ 𝐴 = −𝜖𝑜𝜇𝑜
𝜕𝑉

𝜕𝑡
……………………….9 

This is designed to eliminate the middle term in Eqn. 5.with this  

                                                      ….. …………10 

 Meanwhile , the differential eqn. for V, (3) becomes 

                                         …………………..11 

 

The virtual of Lorentz gauge is that it treats V and A on equal footing: 

the same differential operator   

                                                                                ……………….13 
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                                                               …………….14 

  

where  □2 called the d’ Alembertian 

 V and A have the same differential operator of l’Alembertian (4-dim. 

operator) 

 Under the Lorentz gauge, the whole of electrodynamics reduces to the 

problem of solving the inhomogeneous wave equation for specified 

sources. 



Continuous charge distributions 
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• Retarded Potentials 

• In static case Eqs. 14 reduce to poisson’s eqs. 

•                                                    ……….15 

 

• With the familiar solution 

•                                                              …………16 
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• In non-static case, therefore it‟s not the status of the sources 

right now that matters, but rather its condition at some earlier 

time 𝑡𝑟(called retarded time) when the message left. 

•  Since this message must travel a distance r, the delay is 
r

𝑐
 

𝑡𝑟 ≡ 𝑡 − 
r

𝑐
 ……… . . 17 

• The natural generalization of eqn. (16) for non-static sources 

is therefore 
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                                                                                     …(18) 

Here 𝜌(𝑟′, 𝑡𝑟) is the charge density that prevailed at point 

𝑟′ 𝑎𝑡 𝑡ℎ𝑒 𝑟𝑒𝑡𝑎𝑟𝑑𝑒𝑑 𝑡𝑖𝑚𝑒 .  Because the integrand are 

evaluated at the retarded time, these called „Retarded 

potentials‟. 

 



Jefimenko's Equations 

42 

Time-varying charges and currents generate retarded scalar potential, 

retarded vector potential. 

 

 

  Potentials at a distance r from the source at time t depend on 

the values of 𝜌 and J at an earlier time (t - r/u) 

 Retarded in time(𝑡𝑟 = 𝑡 − 
r

𝑐
= 𝑡 −  

r

𝑐
 in vacuum) 
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•    

• time-dependent generalization of Coulomb's law                                                       
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• Similarly 

 

 time-dependent generalization of the Biot Savart law 

Taking the divergence 

 

 

 

 

 

 

The retarded potential also satisfies the inhomogeneous wave equation. 

 

 

 

 

 

 

 



Lienard-Wiechert Potentials 
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Lienard-Wiechert potentials for a moving point 

charge 

 



The Fields of a Moving Point Charge 
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•   

Let’s begin with the gradient of V: 



Radiation 

47 

• How accelerating charges and changing currents produce 

electromagnetic waves, how they radiate? 

• Assume a radiation source is localized near the origin. Total power 

passing out through a spherical shell is the integral of the Poynting 

vector 

 

• The total power radiated from the source is the limit of this 

quantity as r goes to infinity: 
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 Since the area of the sphere is 4𝜋𝑟2, so for radiation to occur (for Prad not to be zero), the 

Poynting vector must decrease (at large r) no faster than 1/𝑟2. 

 But, according to Coulomb‟s law and Bio-Savart law, S ~ 1/𝑟4  for static 

configurations. 

  Static sources do not radiate! 

  Jefimenko's Equations indicate that time dependent fields include 

terms that go like 1/ r;(𝜌 & 𝐽) it is these terms that are responsible for 

electromagnetic radiation. 

 



Electric Dipole Radiation 
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 Suppose the charge back and forth through the wire, from one end to 

the other, at an angular frequency ω: 

 Dipole charge: 

 Current: 

 Electric dipole: 

 The retarded scalar and vector potentials at P are 

                                                                    

 



Retarded scalar potential 
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• Approximation 1 : d « r       To make a perfect dipole, 

assume d to be extremely small 

•                                     

 

 

 

Approximation 2 : d « λ = 2𝜋c/ω       Assume d to be 

extremely smaller than wavelength 
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• In the static limit (𝜔    0)   

 

• Approximation 2 : d >> λ = 2𝜋c/ω      Assume 
r to be larger than wavelength (far-field 
radiation) 

 

 



Retarded vector potential: 
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• d « λ « r  

 Retarded potentials: 
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•   
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• E and B are in phase, mutually perpendicular, and transverse; the ratio 

of their amplitudes is 
𝐸𝑜

𝐵𝑜 =c. 

• These are actually spherical waves, not plane waves, and their 

amplitude decreases like 1/r. 

• The energy radiated by an oscillating electric dipole is determined by 

the Poynting vector: 
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•                                      Intensity obtained by averaging 

                                                                            

•                                                                             total power radiated  



Magnetic Dipole Radiation 
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• Magnetic dipole moment of an oscillating loop current: 

•                                     where 

 

 The loop is uncharged, so the scalar potential is zero. 

 The retarded vector potential is  

 

 For a point r directly above the x axis, A must aim in the y 
direction, since the x components from symmetrically placed 
points on either side of the x axis will cancel. 
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•                                                              ( 𝑐𝑜𝑠𝜑 serves to pick out the y- c     

omponent of dI').  
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Approximation 1 : b « r For a "perfect" dipole, the loop 

must be extremely small 

 

                                

 

 

Approximation 2 : b « λ= 2𝝅c/ω     Assume b to be 

extremely smaller than wavelength 
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In general A points in the ϕ-direction. 

 
 In the static limit (𝜔= 0), 

 
Approximation 3 : r » λ= 2𝝅c/ω     Assume r to be larger than wavelength (far-field 

radiation)  
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 These fields are in phase, mutually perpendicular, and transverse 

to the direction of propagation (r) and the ratio of their 
amplitudes is Eo/Bo = c, all of which is as expected for 
electromagnetic waves.  

 Energy flux: 
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• Total power radiated: 

• One important difference between electric and magnetic 

dipole radiation is that for configurations with 

comparable dimensions, the power radiated electrically 

is enormously greater. 



Radiation from an Arbitrary Source 
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• Consider a configuration of charge and current that is entirely 
arbitrary 

• The retarded scalar potential is 

 

 

 

• Approximation 1 : r’ « r (far field) 
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• Expanding 𝜌 as a Taylor series in t about the retarded time at 
the origin 
 

• Approximation 2 : r’ « 𝜆 = 2𝜋c/𝜔            
 

• r’   << 𝜆 ≪ r 
 
 
 

 In the static case, the first two terms are the monopole and dipole contributions 
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• Now, consider the vector potential: 

 

• To first order in r' it suffices to replace by r in the integrand: 

                                   (Ignore the effect of magnetic dipole moment) 

 

 
• Approximation 3 : r » 𝜆 = 2𝜋c/𝜔 (discard 1/r2 terms in E and B) 
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•   
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 In particular, if we use spherical polar coordinates, with the z axis 
in the direction of 

 

 

 

 Notice that E and B are mutually perpendicular, transverse to the 
direction of propagation (r) and in the ratio E/B = c, as always 
for radiation fields. 

 Poynting vector: 

 Total radiated power 
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 If the electric dipole moment should happen to vanish (or, at any rate, if its 

second time derivative is zero), then there is no electric dipole radiation, and one 

must look to the next term: the one of second order in r'. 

 As it happens, this term can be separated into two parts, one of which is related to 

the magnetic dipole moment of the source, the other to its electric quadrupole 

moment (The former is a generalization of the magnetic dipole radiation). 

 If the magnetic dipole and electric quadrupole contributions vanish, the (r')3 

term must be considered. 



Relativistic Electrodynamics 
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 Magnetism as a Relativistic Phenomenon 

 In the reference frame where q is at rest, 

 
 The line charge sets up an electric field 

 

 
 The force can be transformed into in S 

 

 But, in the wire frame (S) the total charge is neutral !  



Cont’ 

69 

• Electrostatics and relativity imply the existence of another force in 

view point of S frame          magnetic force. 

•                              and 

 

 

 

 

• One observer’s electric field is another’s magnetic field! 

• Therefore, the relativistic force F is the Lorentz force in system S, 
not Minkowski! 



Field transformation 
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• Let’s find the general transformation rules for electromagnetic 

fields: 

• Given the fields in a frame (s ), what are the fields in another frame 

( s’)? 

• consider the simplest possible electric field in a large parallel-plate 

capacitor in 𝑠𝑜 frame. 

• In the system S, moving to the right at speed v0, 

• the plates are moving to the left with the different surface charge 
: 



 
Field transformation 
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Cont’: 
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 Two special cases: 

• (1) If B = 0 in S frame, (E ≠0); 

 

 

 

• (2) If E =0 in S frame, (B ≠0); 

 

 If either E or B is zero (at a particular point) in one system, then in any 

other system the fields (at that point) are very simply related. 



 
Electromagnetic field tensor 
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• The components of E and B are stirred together when you go from 

one inertial system to another. 

•  What sort of an object is this, which has six components and 

transforms according to the above relations?  It's an antisymmetric, 

second-rank tensor. 

•                              and a second rank tensor is  

• Where                                                 Lorentz transformation matrix  



THE END 

THANK YOU 




