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After completion of this course students should be able to: 

 
 identify simple application of classical and quantum statistics, 

 apply statistical approaches in studying different properties of a system, 

 derive and apply equi-partition theorem, 

 explain the applications of laws of thermodynamics, 

 employ Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics in describing a 

given system, 

 explain magnetic properties of substances at low temperature, 

 discuss about different properties of substances related with their movement by 

using kinetic theory of transport process, 

 Understand the ways of incorporating the interaction term while studying dynamics of 

interacting particles. 
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UNIT-ONE 

REVIEW OF THERMODYNAMICS 

 

 After completion of this unit the learner will be able to: 

 Explain the laws of thermodynamics 

 Obtain the thermodynamics relations 

 Determine the expressions of the thermodynamic potential 

 Describe the Maxwell’s thermodynamic relations 

INTRODUCTION 

 What is Thermodynamics? 

 Thermodynamics is the study of relations among the state variables describing a 

thermodynamic system, and of transformations of heat into work and vice versa. 

 Thermodynamic systems contain large numbers of constituent particles, and are 

described by a set of state variables which describe the system’s properties in an average 

sense. 

1.1 State of variable and equation of state 

 State variables are classified as being either extensive or intensive. 

 Intensive variables (independent of their size) have the same value everywhere in the 

system. Examples: pressure p, temperature T, chemical potential µ, density, electric 

field E, etc Intensive variables may also be inhomogeneous. 

 Extensive variables, such as volume V , particle number N , total internal energy E, 

magnetization M , etc., scale linearly with the system size. 

 Extensive state variables correspond to quantities which can be determined, measured, or 

prescribed directly. 

 Equation of state is a thermodynamics equation relating state of variables which describe 

the state of matter under a given set of physical conditions, such as pressure, volume, 

temperature (PVT), or internal energy. 

PV= nRT – ideal gas law 

(P +
   

  
)(V –nb) –nRT - van der Waals equation, where a, and b are van der Waals 

1.2 Laws of thermodynamics 
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 Zeroth law of thermodynamics state that: If two systems are separately in equilibrium 

with a third, then they must also be in equilibrium with each other. The temperature of a 

system in equilibrium is constant throughout the system. 

First Law of Thermodynamics 

 The first law of thermodynamics represents an adaptation of the law of conservation of 

energy to thermodynamics, where energy can be stored in internal degrees of freedom. 

 The first law of thermodynamics states that energy is conserved. The change in internal 

energy E of a system is equal to the sum of the amount of heat energy added to the 

system & the amount of work done on the system. 

dE =dQ + dW 

Second law of thermodynamics 

 The second law of thermodynamics tells us that life is not free. According to the first law 

we can change heat into work, apparently without limits. The second law, however, puts 

restrictions on this exchange. There are two versions of the second law, due to Kelvin and 

Claussius. 

The Second law of thermodynamics-The second law can be formulated in many 

equivalent ways. The two statements generally considered to be the most clear are those 

due to Claussius and to Kelvin. 

 Claussius statement: There exists no thermodynamic transformation whose sole effect is 

to transfer heat from a colder reservoir to a warmer reservoir. 

 Kelvin statement: There exists no thermodynamic transformation whose sole effect is to 

extract heat from a reservoir and to convert that heat entirely into work. 

 Paraphrasing, the Claussius statement expresses the common experience that heat 

naturally flows downhill from hot to cold, whereas the Kelvin statement says that no heat 

engine can be perfectly efficient. Both statements merely express facts of common 

experience in thermodynamic language. 

 It is relatively easy to demonstrate that these alternative statements are, in fact, equivalent 

to each other. Although these postulates may appear somewhat mundane, their 

consequences are quite profound; most notably, the second law provides the basis for the 

thermodynamic concept of entropy. 
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 There exists a state function of the extensive parameters of any thermodynamic system, 

called entropy S, with the following properties: 

1. The values assumed by the extensive variables are those which maximize S consistent 

with the external constraints; and 

2. The entropy of a composite system is the sum of the entropies of its constituent 

subsystems. 

 Third Law of Thermodynamics: 

 The Third Law of Thermodynamics state as: The change in entropy that results from any 

isothermal reversible transformation of a condensed system approaches zero as the 

temperature approaches zero. 

 

          =0 

1.3 Thermodynamic potential 

 

Thermodynamic potential includes the parameters such as Helmholtz free energy (F), 

Enthalpy (H) & Gibbs free energy (G), where, H=E+PV,  F=E-TS,& G=F-TS+PV 

Entropy defined as: dS= 
  

 
  TdS =dQ 

 

dE=TdS –dW, where dW=PdV, Then 

 

dE= TdS-PdV  Ffundamental relation of thermodynamics 

 

 From dE= TdS– pdV , E =E(S,V) 

 d(PV) =PdV +VdP  PdV = d(PV) – VdP 

 dE= TdS– pdV 

 dE= TdS– d(PV) + VdP 

 dE +d(PV) =TdS +VdP 

 d(E +PV) = TdS +VdP where, H= E +PV then 

 dH = TdS +VdP  H= H(S,P)-Enthalpy 

 dE= TdS– pdV 

 Let d(TS) =TdS + SdT TdS = d(TS) – SdT,then 



6 | P a g e  
 

 dE =d(TS) – SdT – pdV 

 d(E –TS) = – SdT – pdV, where F=E-TS 

 dF = – SdT – pdV, F=F(T,V)- Helmholtz free energy 

Exercise start from dE= TdS– pdV show that dG= -SdT +VdT 

1.4 Gibbs Durem’s and Maxwell’s relations 

Maxwell’s relations 

 dE= TdS– pdV ---------------------------------------(1) 

E =E(S,V) 

 dE =( 
  

  
   dS + 

  

  
    dV-------------------------------(2) 

 

Comparing equation 1 & 2 

 T= 
  

  
  ,   P=- 

  

  
   

(
  

  
   = 

   

    
 ,   

  

  
   - 

   

    
   Then, ( 

  

  
   = -(

  

  
   

 The four Maxwell relations below are easily derived (verify!) for simple compressible 

systems. 

 

E=E(S,V) 
  

  
   =  

  

  
   

 

Exercise: Derive each all the four Maxwell relations above. 

Gibbs Durem’s Equations 

 Consider a system E, N, composed from several molecules Ni 

 Systems in nature classify as: 

1) Isolated system-no interaction (no exchange of energy with the environments). Energy - 

constant 
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2) Closed system- no exchange of particles (matter). N-constant, mass-constant, charge-constant 

3) Open system- a system can interact with the environment. N- Vary (not constant) 

E=E(S,V,  ,  , …..,   ), m-types of molecules 

S=S(E, V,   ,   , ……..,   ) 

dS= 
  

  
    dE +  

  

  
     dV+∑

  

   
    

 
   d   

  -constant 

  =-T 
  

   
       

dS= 
  

  
    dE +  

  

  
     dV-∑

  

 

 
   d   

 
  

  
  =T          

  

  
  = 

 

 
 

 
  

  
  = -P 

  

  
.
  

  
 =-P.

 

 
 , Then we get 

  

  
=

  

 
 

dS= 
  

 
 + 

 

 
dV -∑

  

 
d   

TdS=dE+PdV-∑  d   

dE=TdS-PdV+∑  d    dE=d(TS)-SdT-PdV+∑  d  , Then, 

dF=-SdT-PdV+∑  d   

Again for Gibb’s free energy it derives as follows: 

dE=d(TS)-SdT-d(PV) +VdP+∑  d  , 

dG=-SdT +VdP+∑  d  , If  S & V are constant 

dE=TdS-PdV+∑  d  , but dE=∑  d  ,   =( 
  

   
   

dF=∑          =
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dG=∑  d  ,   =
  

   
 

Therefore, dE dF dG 

G=G (T, P, N)-for one molecules (i-molecules) 

G=G (T, P,   ), G     

g(T,P)= 
 

  


  

   
 =   

Consider a system have S, N, V 

S  S, V  V & N  N 

Suppose E(S, V, N) 

E( S,  V,  N)   E, Assume  =1+ ,    1 

E=  EE=E( +1) 

f(x+h)=f(x) +hf’(x) +
  

 
f’’(x)……+

  

 
  (x)=∑    

  
 Taylor theorem 

E( S,  V,   N) = E(S, V, N)+ 
  

  
)N,V S+  

  

  
       + 

  

  
       

= E(S, V, N)+   
  

  
)N,VS+  

  

  
      + 

  

  
       ] 

E=S 
  

  
     +   

  

  
     +∑   

  

   
     

dE=TdS+SdT-PdV-VdP +∑  d  +∑  d   

dE=TdS+-PdV +∑  d   

SdT-VdP +∑  d   =0   Gibb’s Durem’s relation 

1.5) Response functions 

The experimental important response functions are obtained by the second –order differential of 

the internal energy. Consider the entropy S expressed as a function of T, V, and N : 
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Dividing by dT , multiplying by T , and assuming dN = 0 throughout, we have 

 

Appealing to a Maxwell relation derived from F (T, V, and N), and then we get: 

 

This allows to writing as: 

 

We define the response function as: 

  isothermal compressibility 

 Adiabatic compressibility 

  thermal expansivity ,    thus 

 

It also interms of intensive quantity expressed as follows: 
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Where, as always, v = 
   

 
  is the molar volume. 

This above relation generalizes to any conjugate force-displacement pair (−p, V ) → (y, X ): 

 

For example, we could have (y, X) = (  ,  ) 

A similar relationship can be derived between the compressibility    and  . We then clearly 

must start with the volume, writing 

 

Dividing by dP, multiplying by −   , and keeping N constant, we have 

 

Again we appeal to a Maxwell relation, writing 

 

Then, after involving chain rule 

 

We get, 
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Comparing the above two equations, we obtain 

 

This result entails 

 

The corresponding result for magnetic systems is 

 

Where m = M/ν is the magnetization per mole of substance, and isothermal susceptibility: 

 

adiabatic susceptibility: 

 

Here the enthalpy and Gibbs free energy are 

 

Remark: The previous discussion has assumed an isotropic magnetic system where M and H are 

collinear, hence H · M = HM . 
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In this case, the enthalpy and Gibbs free energy are 

 

1.6) Condition for equilibrium 

The principle of maximum entropy requires that any spontaneous transformation of an isolated 

system increases its entropy. Thus, if a system begins in some arbitrary non equilibrium 

condition, internal changes tend to accumulate until the entropy reaches the maximum possible 

value compatible with the external constraints, which finally becomes the state of 

thermodynamic equilibrium. For the present purposes, we can consider a system to be isolated if 

all of its extensive quantities (such as energy, volume, and particle number) are fixed. However, 

the distribution of these extensive quantities is generally non uniform in some arbitrary initial 

configuration. Suppose that an isolated system is divided into two subsystems which share the 

total internal energy, volume, particle number, and any other extensive quantities needed to 

characterize its state, such that 

E=   +    

V=  +    

N=  +    

If the system is isolated, these extensive quantities are conserved, such that 

dE=0 d  = -    , dV=0 d  = -    , and dN=0 d  = -    

Thus, variations of the total entropy S=   +   can then be expressed as 
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Thermal equilibrium between the two subsystems requires that dS be stationary with respect to 

first-order variations of each variable independently, such that 

 

Where the fundamental relations 

are used to identify the intensive 

parameters 8T, p, m, ∫<conjugate to the extensive variables {U, V, N,…}for each subsystems. 

Therefore, thermal equilibrium between two systems requires equality between their intensive 

parameters. These intensive parameters govern the sharing of a conserved extensive quantity 

between interacting subsystems. Furthermore, by choosing one of the systems to be a small but 

macroscopic portion of a larger system, we conclude that equilibrium requires the intensive 

parameters like temperature, pressure, and chemical potential to be uniform throughout the 

system. Any local fluctuations in these parameters would induce unbalanced forces that tend to 

restore equilibrium by eliminating gradients in the intensive parameters. Obviously, temperature 

or pressure gradients would induce heat or mass flows that tend to homogenize the system. 

The maximum entropy principle can also be applied to systems that are in thermal, mechanical, 

or chemical contact with an environment that constrains one or more of its intensive parameters. 

For example, we often seek to determine the equilibrium state for a system with fixed 

temperature and pressure instead of fixed energy and volume. Under these conditions it is useful 

to consider a small subsystem with energy   and volume   in thermal and mechanical contact 

with a much larger reservoir. If the initial configuration is not in equilibrium there will be 

exchanges of energy and volume between the subsystem and the reservoir. We assume that the 

reservoir is sufficiently large that small transfers of energy or volume do not change the 

temperature   T0or pressure   of the reservoir. The net change in entropy for the combined 

system can be expressed as 
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Where 

 

The principle of maximum entropy then requires 

 

The increase in the entropy of the subsystem is at least as large as the decrease of the entropy of 

the reservoir that occurs when heat is transferred from the reservoir to the subsystem. The change 

in the internal energy of the subsystem can be expressed as 

d  =dQ+dW= 

 

where it is convenient to divide the work into two contributions, dW=-  d  +d  , where  d   

is non mechanical work performed upon the subsystem in some form other than mechanical 

work against the constant external pressure   . The requirement that the total entropy increases 

can now be expressed as 

 

where the availability Ais defined as 

A=  -     +      dA= d   -      +  d   

Although this availability function strongly resembles the Gibbs free enthalpy    for the 

subsystem, it is important to recognize that we do not require the temperature and pressure of the 

subsystem to match those of the environment; hence,   T0and    appear as fixed parameters in 
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A. At equilibrium, the first derivatives of availability with respect to any of the system 

parameters must vanish. Furthermore, if the equilibrium is to be stable, the second derivatives 

must all be positive. Applying these observations to temperature and pressure, we require. 

 

1.7 Thermodynamics of phase transitions 

A typical phase diagram of a p-V -T system is shown in the Fig. below. The solid lines delineate 

boundaries between distinct thermodynamic phases. These lines are called coexistence curves. 

Along these curves, we can have coexistence of two phases, and the thermodynamic potentials 

are singular. The order of the singularity is often taken as a classification of the phase transition. 

i.e. if the thermodynamic potentials E, F , G, and H have discontinuous or divergent     

derivatives, the transition between the respective phases is said to be     order . Modern 

theories of phase transitions generally only recognize two possibilities: first order transitions, 

where the order parameter changes discontinuously through the transition, and second order 

transitions , where the order parameter vanishes continuously at the boundary from ordered to 

disordered phases. 
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Chapter -Two 

Simple Applications of Statistical 

2.1) Partition function and their properties ideal monatomic gas 

Consider a system in contact with a heat reservoir. The systems in the representative ensemble 

are distributed over their accessible states in accordance with the Boltzmann distribution. Thus, 

the probability of occurrence of some state r with energy   is given by 

--------------------------------------------(2.1) 

The mean energy is written as 

------------------------------------------(2.2) 

where the sum is taken over all states of the system, irrespective of their energy. 

Note that 

------------(2.3) 

Where, 

--------------------------------------------------------(2.4) 

It follows that 

------------------------------------------------(2.5) 

The quantity Z, which is defined as the sum of the Boltzmann factor over all states, irrespective 

of their energy, is called the partition function. 

It is clear that all important macroscopic quantities associated with a system can be expressed in 

terms of its partition function Z. Let us investigate how the partition function is related to 

thermodynamically quantities. Partition function is the basic parameter in statistical physics. 

Z      

Z=∑     ,   =
 

   
      ----------------------------------------------------------------(2.6) 
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Recall that Z is a function of both β and x (where x is the single external parameter). Hence, Z = 

Z(β, x), and we can write 

----------------------------------------(2.7) 

Consider a quasi-static change by which x and β change so slowly that the system stays close to 

equilibrium, and, thus, remains distributed according to the Boltzmann distribution. 

-------------------------------------------(2.8) 

Then, we get 

---------------------------------------(2.9) 

Hence,      S =
 

 
  or dS= 

  

 
            --------------------------------------------------------2.10) 

--------------------------------------------------------(2.11) 

This expression enables us to calculate the entropy of a system from its partition function. 

Suppose that we are dealing with a system   (0) consisting of two systems A and    which only 

interact weakly with one another. Let each state of A be denoted by an index r and have a 

corresponding energy  . Likewise, let each state of    be denoted by an index s and have a 

corresponding energy   
 . A state of the combined system    is then denoted by two indices r 

and s. Since A and    only interact weakly their energies are additive, and the energy of state rs 

is 

------------------------------------------------------(2.12) 

The partition function    takes the form 
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----------------------(2.13) 

Hence,               --------------------------------------------------------(2.14) 

Yields ,    ----------------------------------------------------(2.15) 

Where Z and    are the partition functions of A and  , respectively. It follows that the mean 

energies of  , A, and    are related by 

-----------------------------------------------(2.16) 

The respective entropies of these systems are also related 

-------------------------------------------(2.17) 

Hence, the partition function tells us that the extensive thermodynamic functions of two weakly 

interacting systems are simply additive. 

 

2.2) Calculations of thermodynamic quantities 

 

Consider a gas consisting of N identical monatomic molecules of mass m enclosed in a container 

of volume V. Let us denote the position and momentum vectors of the     molecule by    and  , 

respectively. Since the gas is ideal, there are no interatomic forces, and the total energy is simply 

the sum of the individual kinetic energies of the molecules: 

---------------------------------------------(2.18) 
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Let us treat the problem classically. In this approach, we divide up phase-space into cells of 

equal volume  
 
. Here, f is the number of degrees of freedom, and    is a small constant with 

dimensions of angular momentum which parameterizes the precision to which the positions and 

momenta of molecules are determined. Each cell in phase-space corresponds to a different state. 

The partition function is the sum of the Boltzmann factor exp(−β   ) over all possible states, 

where    is the energy of state r. Classically, we can approximate the summation over cells in 

phase-space as an integration over all phase-space. Thus, 

-----------------------(2.19) 

where 3N is the number of degrees of freedom of a monatomic gas containing N molecules. 

Then, the above equation reduces to: 

-----------(2.20) 

Note that the integral over the coordinates of a given molecule simply yields the volume of the 

container, V , since the energy E is independent of the locations of the molecules in an ideal gas. 

There are N such integrals, so we obtain the factor    in the above expression. The partition 

function Z of the gas is made up of the product of N identical factors: i.e., 

--------------------------------------------------(2.21) 

Where 

-----------------------------------------------(2.22) 

This equation is the partition function for a single molecule. Of course, this result is obvious, 

since we have already shown that the partition function for a system made up of a number of 

weakly interacting subsystems is just the product of the partition functions of the subsystems. 

The integral in Eq. (2.22) is easily evaluated: 
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------------(2.23) 

---------------------------------(2.24) 

Thus, 

------------------------------------------------(2.25) 

And, 

--------------------------------(2.26) 

Then the expression for the mean pressure yields as: 

-----------------------------------------------(2.27) 

 

Which reduces to the ideal gas equation of state 

---------------------------------------------------(2.28) 

Where, N =     and R = k  , then the mean energy of the gas is obtained as: 

------------------------------------------(2.29) 

Note that the internal energy is a function of temperature alone, with no dependence on volume. 

The molar heat capacity at constant volume of the gas is given by 
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----------------------------------------------(2.30) 

Therefore, the mean energy written as 

---------------------------------------------------(2.31) 

Now let us use the partition function to calculate a new result. The entropy of the gas can be 

calculated quite simply from the expression 

-----------------------------------------------------(2.32) 

Thus, 

-------------------------------(2.33) 

Or                   ----------------------------------(2.34) 

Where,             ------------------------------------------(2.35) 

2.3) Gibbs paradox 

Thermodynamic quantities can be divided into two groups, extensive and intensive. Extensive 

quantities increase by a factor α when the size of the system under consideration is increased by 

the same factor. Intensive quantities stay the same. Energy and volume are typical extensive 

quantities. Pressure and temperature are typical intensive quantities. Entropy is very definitely an 

extensive quantity. Suppose that we have a system of volume V containing ν moles of ideal gas 

at temperature T. Doubling the size of the system is like joining two identical systems together to 

form a new system of volume 2 V containing 2 ν moles of gas at temperature T. Let 

 

------------------------------(2.36) 
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Denote the entropy of the original system, and let 

 

---------------------------------------(2.37) 

Denote the entropy of the double-sized system. Clearly, if entropy is an extensive quantity 

(which it is!) then we should have 

      = 2S                           ---------------------------------------------2.38) 

But, in fact, we find that 

---------------------------------------------(2.39) 

So, the entropy of the double-sized system is more than double the entropy of the original 

system. Where does this extra entropy come from? 

 

2.4) Validity of the classical approximation 

Suppose the mean intermolecular separation  ⃗  can be estimated by imaging each molecule at 

center of a little cube of side ⃗ , these cubes filling the available volume V. Then 

 

or                                           ------------------------------------------------

(2.40) 

The mean momentum  ⃗  can be estimated from the known mean energy   of a molecule in the 

gas at temperature T. 

 

------------------------------------(2.41) 

Hence the condition becomes 
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----------------------------(2.42) 

 

2.5) Proof of equipartition 

 

The internal energy of a monatomic ideal gas containing N particles is (3/2) N k T .This means 

that each particle possess, on average, (3/2) k T units of energy. Mon-atomic particles have only 

three translational degrees of freedom, corresponding to their motion in three dimensions. They 

possess no internal rotational or vibrational degrees of freedom. Thus, the mean energy per 

degree of freedom in a monatomic ideal gas is (1/2) k T. In fact, this is a special case of a rather 

general result. 

Suppose that the energy of a system is determined by some f generalized coordinates    and 

corresponding f generalized momenta   , so that 

---------------------------------------------(2.43) 

a) The total energy splits additively into the form 

-----------------------------------------------(2.44) 

Where    involves only one variable   , and the remaining part    does not depend on   p. 

b) The function    is quadratic in   pi, so that 

-----------------------------------------------------(2.45) 

Where b is constant 

 

The most common situation in which the above assumptions are valid is where   a momentum 

is. This is because the kinetic energy is usually a quadratic function of each momentum 

component, whereas the potential energy does not involve the momenta at all. However, if a 

coordinate    were to satisfy assumptions 1 and 2 then the theorem we are about to establish 

would hold just as well. In the classical approximation, the mean value of    is expressed in 

terms of integrals over all phase-space: 
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-----------------------------------(2.46) 

Condition 1 gives 

---------------------(2.47) 

 

where use has been made of the multiplicative property of the exponential function, and where 

the last integrals in both the numerator and denominator extend over all variables    and    

except   . These integrals are equal and, thus, cancel. Hence 

 

--------------------------(2.48) 

This expression can be simplified further since 

-----------------(2.49) 

-------------------------(2.50) 

According to condition 2 

 

------(2.51) 

 

Where y= √     , Thus, 

----------------------(2.52) 

Note that the integral on the right-hand side does not depend on β at all. Then it follows from 

eq.(2.49) 
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-----------------------------------(2.53) 

It gives 

-------------------------------------(2.54) 

This is the famous equipartition theorem of classical physics. It states that the mean value of 

every independent quadratic term in the energy is equal to (1/2) k T . 

 

2.6) Simple applications 

Suppose a gas of a system consists r,    and its total kinetic energy is  K=∑
  

  
=

 

  
(  

  

+  
 +  

 ) 

   =
 

 
kT                                                   -----------------------------------------------------------(2.52) 

  =      = 
 

 
  kT                                    ----------------------------------------------------------(2.55) 

 

2.7 Specific heat of solids 

Consider simple solid containing N atoms. Now, atoms in solids cannot translate (unlike those in 

gases), but are free to vibrate about their equilibrium positions. Such vibrations are called lattice 

vibrations, and can be thought of as sound waves propagating through the crystal lattice. In 

normal mode coordinates, the total energy of the lattice vibrations takes the particularly 

simple form 

---------------------------------------------(2.56) 

Where    is the (angular) oscillation frequency of the     normal mode. It is clear that in normal 

mode coordinates, the linearized lattice vibrations are equivalent to 3 N independent harmonic 

oscillators (of course, each oscillator corresponds to a different normal mode). 

 

If the lattice vibrations behave classically then, according to the equipartition theorem, each 

normal mode of oscillation has an associated mean energy k T in equilibrium at temperature T 
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[(1/2) k T resides in the kinetic energy of the oscillation, and (1/2) k T resides in the potential 

energy]. Thus, the mean internal energy per mole of the solid is 

------------------------------------------------(2.57) 

It follows that the molar heat capacity at constant volume is 

--------------------------------------------------(2.58) 

 

We can use the quantum mechanical result for a single oscillator to write the mean energy of the 

solid in the form 

------------------------------------(2.59) 

The molar heat capacity is defined as: 

 

----------------------------(2.60) 

Then it gives 

-----------------------------(2.61) 

Which reduces to: 

-----------------------------------(3.62) 

Where,  

 

 

2.8) General calculation of magnetism 

Consider a system consisting of N non-interacting atoms in a substance in a substance at absolute 

temperature T and placed in an external magnetic field H pointing along the z-direction. Then the 

magnetic energy of an atom can be written as: 
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   = - H                                           -------------------------------------(2.63) 

Here   is the magnetic moment of the atom. It is proportional to the total angular momentum J 

of the atom and is conventionally written in the form: 

 =g  J                                         -----------------------------(2.64) 

Where    is the standard unit of magnetic moment (usually the Bohr magneton    =e/2mc, m is 

electron mass) and where g is a number of the order of unit, the so called g factor of the atom. 

 

 

 

 

 

2.9) Maxwell’s velocity distribution 

Consider a molecule of a mass m in a dilute gas. The gas may consist of several different kinds 

of molecules, the molecules under consideration may also be polyatomic. If the external force 

field neglect, the energy   of this molecule is equal to: 

 

------------------------------(2.65) 

The distribution function for momenta is given by 

-------------------------------(2.66) 

Note that g(p) = 〈       〉 (p is the same for every particle, independent of its label i. We 

compute the average 

〈 〉= 
         ̂    

       ̂   
. Setting i = 1, all the integrals other than that over    divide out between 

numerator and denominator. We then have 
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-------------------(2.67) 

The note commonly refer to the velocity distribution f (v), which is related to g(p) by 

---------------------------(2.68) 

Hence 

---------------- (2.69) 

This is known as the Maxwell velocity distribution. Note that the distributions are normalized, 

viz. 

-------------------- (2.70) 

 

If we are only interested in averaging functions of v = |v| which are isotropic, then we can define 

the Maxwell speed distribution,  ̃(v), as 

 

 

------ (2.71) 

Note that  ̃(v), is normalized according to 

------------------ (2.72) 

It is convenient to represent v in units of   =√
   

 
, in which case 



29 | P a g e  
 

------------ (2.73) 

 

The distribution ϕ(s) is shown in fig. below. Computing averages, we have 

----------------(2.74) 

Thus,   = 1,   =√
 

 
,   = 3, etc. The speed averages are 

 

----------------------- (2.75) 

Note that the average velocity is 〈 〉 =0 but the average speed is 〈 〉 =√
    

  
. 

The speed distribution is plotted as follows 
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Figure 2.1: Maxwell distribution of speeds 

 

The root mean square speed is given as: 

 

 

--------------(2.76) 

 

 

2.10) Related velocity distribution 

Consider the most probable maximum velocity  ̂ is  given as: 

 

---------- (2.77) 

Hence  ̂ is obtained as 

------------------------------------- (2.78) 

 

All these various speeds are proportional to  
  

 
   

 ⁄ . Thu the molecular speed increases when 

the temperature is raised. 
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2.11 Number of molecule striking a surface 

Consider that the container is a box in the form of parallelepiped, the area of one end wall being 

A. How many molecules per unit time strike this end wall? Suppose that there are n molecules 

per unit volume in this gas. Since they move in random direction , assume one third of them (
 

 
) 

molecules per unit volume. Half of these molecules, i.e,   ⁄  molecules per unit volume, have 

velocity in the +z-direction so that they will strike the end wall under consideration. If the mean 

speed of the molecules is  ̅, these molecules cover in an infinitesimal 

time dt a mean distance   ̅dt. Thus the number of molecules which strike the end wall of area A 

in time dt is equal to the number of molecules  having velocity  ̅, in the z-direction and 

contained  in the cylinder of volume A  ̅dt. It is given by: 

 

   = 
 

 
A  ̅dt                                                                    ------------------------ (2.79) 

The total number    of molecules which strike unit area of the wall per unit time ( i.e, the total 

molecular flux) is give as: 

 

  = 
 

 
n   ̅ 

 

 

Figure 2.2 molecules colliding with walls 

The dependence of    on the temperature T and mean pressure  ̅ of the gas follows immediately 

: 
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-------------------------- (2.80) 

 

Furthermore, by the equipartition theorem: 

---------------------------------------- (2.81) 

Thus the above equation implies that : 

---------------------------------- (2.82) 

The volume of this cylinder is dAvdt    , while the number of molecules per unit volume  in 

the velocity range is f(v)  v.  Hence the number of molecules of this type which strike the area 

dA of the wall in time dt is equal to[ f(v)  v][dAvdt    ] 

Where  (v)  v   the number of molecules, with velocity b/n v and v + dv, which strike a unit 

area of the wall per unit time. 

------------------------ (2.83) 

In other words, we have to sum over all possible velocities v to the restriction that velocity  

component    v      0, since molecules with       0 will not collide with the element of area. 

------------------------------------------- (2.84) 

After we goes further, the equation becomes 

----------------------------(2.85) 
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2.12 Effusions 

 

Consider a small hole or slit is made in the wall of container, the equilibrium of the gas inside the 

container is disturbed to a negligible extent. I n the case the number of molecule which emerges 

through the small hole is the same as the number of molecules which strike the area occupied by 

the hole if the latter were closed off. The process whereby molecules emerge through such a 

small hole is called effusion. 

 

 

Figure 2.3 shows that formation of a molecular beam by effusing molecules. 

The number of molecules which have speed in the range b/n v and v +dv and which emerge per 

second from  a small area A into a solid angle range dΩ in the forward direction    0 is given 

as: 

------------ (2.86) 

 

The number of molecules which pass per second through the hole from left to right  equals the 

number of molecules which pass per second through the hole  from right to left. This leads to the 

simple equality: 

------------------------------------- (2.87) 

 

2.13 Pressure and momentum 
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We from a detailed kinetic point of view how a gas exerts a pressure. The mean force exerted on 

the wall of the container is due to collision of molecules with the wall. If there are a collision b/n 

the molecules, there will be a change of momentum. 

 

Let denote by      the mean molecular momentum crossing this surface dA per unit time from 

left to right, and by      the mean molecular momentum crossing this surface dA per unit time 

from right to left. 

---------------------------- (2.88) 

Where F = 
  

  
 

 

------------ (2.89) 

 And 

 

------------ (2.90) 

Then 

--------- (2.91) 
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Chapter Three 

Quantum Statistics of Ideal Gases 

3.1 Isolated systems: micro canonical ensembles 

In statistical mechanics, there are three basic types of ensembles. 

i. Micro canonical  ensemble 

ii. Canonical ensemble 

iii. Grand canonical ensemble 

 

The micro canonical ensemble 

An isolated system is both thermally insulated and mechanically undisturbed. According to 

the first law of thermodynamics, the internal energy of such a system is constant. We define the 

following ensemble to describe isolated systems: 

A micro canonical ensemble is an ensemble of fixed E, V and N 

 

The basic postulate of statistical mechanics says that every microstate of an ensemble of isolated 

systems occurs with equal probability. Thus, if the ensemble has W different microstates, the 

probability that any particular member of the ensemble is in a particular microstate is 

  = 
 

 
                                                                  --------------------------(3.1) 

 

since the sum of all the probabilities have to add to 1 and they all must be equal. Another 

way to think about this equation is that the micro canonical partition function is just W . 

The entropy of a micro canonical ensemble is calculated using the Boltzmann equation: 

S = k                                                       ------------------------------------- (3.2) 

 

3.2   System at mixed temperature 

Temperature can be defined for a micro canonical ensemble using equation  = 
  

  
     To apply 

this equation, we first note that the number of microstates available to the system depends on the 

energy, so W = W (E). This means that S depends on E. We can therefore write 
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T =    
     

  
         =     

       

  
                               ------------------------------(3.3) 

Assume we have T; we can define other quantities that depend on it, like the Helmholtz free 

energy: 

F = E − T S = E − kT                                                ---------------------------------------- (3.4) 

Canonical ensemble  - is used to describe system in contact  with a heat reservoir. The total 

number of particles are constant. 

 

 

3.3 Grand canonical ensembles 

 

Both the micro canonical and canonical ensembles deal with systems with a fixed number of 

particles N (or, in general, fixed values of the numbers of particles of each type,   ,   , . . . ). 

However, the number of molecules of a given type in a chemical system at equilibrium is not 

generally fixed. Due to chemical reactions, the number of molecules of each type fluctuates 

with time. 

A grand canonical ensemble is an ensemble of fixed T, V, and µ. Suppose that the energies of 

the two subsystems are   and   , and that the numbers of molecules in each subsystem are    

and   . Since the system is isolated, the total energy and number of molecules are conserved:      

E =    +    and N =    +    

Note: 

i. micro-canonical ensemble have constant N, V, E number of particles, volume, and 

energy 

ii. canonical ensemble have constant N, V, T number of particles, volume, temperature 

iii. grand-canonical ensemble have constant µ, V, T chemical potential, volume, 

temperature 

3.4 Identical Particles & Symmetry Requirements 

Consider a system of gas consisting of N identical particle enclosed in a container of volume V. 

suppose the collective coordinates of the i
th

 particle is represented by Qi and its quantum state by 

Si. The state of the system of gas is then described by the set of quantum number 
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{        }           ----------------------------------(3.5) 

The system of gas in this state can be described by the following wave function 

 =                                                            ----------------------------(3.6) 

If the particles are distinguishable and any number of particles are allowed to be in the same state 

S, then the particles are said to Obey Maxwell-Boltzmann statistics. This is called classical 

description of a system and it doesn’t impose symmetry requirements on the wave function when 

two particles are interchanged. 

However, the quantum mechanical description, where identical particles are considered to be 

indistinguishable imposes symmetry requirements on the wave function during interchanging 

two particles, i-e.  Interchanging two identical particles doesn’t lead the whole sytem to a new 

state. 

Each particle in the system has integral spin, and then the wave function of the system  must be 

symmetric under interchanging two particles. 

(…  …  …)    =  (         )  ------------------------------- (3.7) 

Particles satisfying this symmetry condition are said to obey Bose- Einstein statistics and they 

are called bosons. 

On the other hand if each particle in the system has half integral spin, then the wave function of 

the system satisfy anti symmetric condition during interchanging two particles. 

(…  …  …)    =    (         )  ------------------------------- (3.8) 

Particles satisfying this anti symmetric condition are said to obey Fermi- Dirac Statistics & they 

are called fermions. 

If two particles, Say i & j of the same state S are interchanged, the wave function of the system 

should remain the same. At the same time, if the particles have half-integral spin condition (4) 

must be satisfied. This leads to the conclusion that for a system containing two particles in the 
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same state the wave function should vanish.     

Thus in the Fermi-Dirac Case there exists no state of the whole gas for which two or more 

particles are in the same single particle state. This is called Pauli exclusion principle. 

 

3.5 Formulation of the statistical problem 

Consider a system of gas consisting of N weakly interacting identical particles enclosed in a 

container of volume V. Suppose the system is in equilibrium at temperature T.  Let    particles 

are in state r characterized by energy  . 

The energy of the whole system which is supposed to be in state R is then given by 

                   +      + … = ∑       -----------------------------------------(3.9) 

The partition function of the system can be given by 

Z = ∑   
           =     ∑   

                        ---------------------------------------(3.10) 

The mean number of particles in a particular state r is then 

 ̅  
∑   

                        

∑   
                                 =

 

 
∑  

 

  
 

   
                          

 

 

=    
 

 
   

 

 
  

 

   
∑   

                         

= -  
 

 

 

 

    

   
---------------------------------(3.11) 

  
  ̅̅ ̅̅

=
∑    

                          

∑   
                        = 

 

 
   

 

 

 

   
   

 

 

 

   
 ∑   

                    

= 
 

  

 

 

   

    
 = 

 

  
*

 

   
(

 

 

  

    
)  

 

  
 

 

   
  + 



39 | P a g e  
 

  
   = 

 

  *
 

   

    

    
  

 

 

  

   
  + 

= 
 

  *
 

   

    

    
     

  + 

= 
 

  

     

    
   +   

                             --------------------------------------(3.12) 

       ̅̅ ̅̅ ̅̅ ̅̅    =          ̅̅ ̅̅
  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       =  

 ̅̅ ̅  -   ̅̅ ̅  = 
 

  

     

    
    --------------------(3.13) 

If the particles under consideration obey Maxwell-Boltzmann statistics, partition function of the 

system can be obtained by eqn.(6) after summing over all possible values of      =0,1,2,3…) 

for each r provided that total no. of particles in the system is constant ∑    = N. 

Since the particles are considered to be distinguishable, in addition to specifying the no of 

particles in each state, it is necessary to specify which particular particles are in which state. 

In the case of Bose-Einstein statistics, the summation in equation (3.10) should be taken over all 

possible values of    for each r, and the total number of particles must be fixed. However, since 

the particles are considered to be indistinguishable, specifying the number of particles in each 

state is sufficient. A special case of Bose-Einstein statistics where total number of particles in the 

system is not constant, i.e, where the restriction in eq.(3.14) is lifted, is called photon statistics. 

Two possible values of   ,(   =0,1) for each r, since more than one particle on particular state is 

not allowed, and total number of the particles must be fixed. 

 

3.6 The quantum distribution functions 

 

Consider a system of gas containing N particles. Let the lowest energy level of a single 

particle is denoted by   . For a system of particles that obeys BE statistics, where there is no 

restriction on the number of particles in any state, the lowest energy level of the whole 

system can be obtained by placing all the particles in the lowest energy level, and hence for 

the lowest energy level of the whole system we can write   =N   
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In the case of FD statistics however, where we are not allowed to have more than one particle 

in any state, the lowest energy level  of the whole system can only obtained by placing one 

particle in each consecutive states of increasing energy starting from the lowest energy level 

  . For a system maintained at absolute temperature T, the mean number of particles in a 

particular state s is 

 

---------------------(3.14) 

Photon statistics: The summation in eq.(3.14) should be over all possible values of     for each s. 

Since there is no restriction on the total number of particles, the sums in the numerator & 

denominator of eq.(3.14) are the same. Hence we can write 

---------------------------- (3.15) 

However, the above expression can be rewritten 

 

---------------------------- (3.16) 

 

 

Now, the sum on the right-hand side of the above equation is an infinite geometric series, which 

can easily be evaluated. In fact, 

----------- (3.17) 

Thus, eq.(3.17) gives 
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----------------------(3.18) 

Which is called Planck distribution. 

 

Fermi-Dirac (FD) statistics: In this case    have only two values,   =0, 1 for each r and there 

is restriction on the total number of particles where it supposed to be fixed ∑    =N. 

Let us introduce the function 

 

--------------------------------  (3.19) 

Which is defined as the partition function for N particles distributed over all quantum states, 

excluding state s, according to Fermi-Dirac statistics. By explicitly performing the sum over    = 

0 and 1, the expression (3.14) reduces to 

 

--------------------------- (3.20) 

Which yields 

---------------------- (3.21) 

In order to make further progress, we must somehow relate   (N−1) to   (N). 

Suppose that ∆N   N. It follows that ln   (N − ∆N) can be Taylor expanded to give 

 

----------------- (3.22) 

Where 

------------------------------------- (3.23) 
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Taylor expand the slowly varying function in   (N), rather than the rapidly varying function 

  (N), because the radius of convergence of the latter Taylor series is too small for the series to 

be of any practical use. Equation (3.22) can be rearranged to give 

------------------------------(3.24) 

Since   (N) is a sum over very many different quantum states, we would not expect the 

logarithm of this function to be sensitive to which particular state s is excluded from 

consideration. Let us, introduce the approximation that    is independent of s, so that we can 

write 

------------------------ (3.25) 

For all s, it follows that the derivative (3.23) can be expressed approximately in terms of the 

derivative of the full partition function Z(N) (in which the N particles are distributed over all 

quantum states). In fact, 

 

--------------------- (3.26) 

Making use of Eq. (3.24), with ∆N = 1, plus the approximation (3.25), the expression (3.21) 

reduces to 

-------------------------- (3.27) 

 

This is called the Fermi-Dirac distribution. The parameter α is determined by the constraint that 

∑  ̅   =N: i.e., 

 

---------------------- (3.28) 
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Note that  ̅   0 if    becomes sufficiently large. On the other hand, since the denominator in 

Eq. (3.27) can never become less than unity, no matter how small   becomes, it follows that  ̅ ≤ 

1. Thus, 

 

----------------------------------- (3.29) 

in accordance with the Pauli exclusion principle. 

Bose-Einstein statistics: The summation in eq.(3.14) is rang over all possible values of 

   (  =0,1,2,3, …), for each r and the total number of particles is restricted to be constant. 

Applying the concept of eq.(3.6) in eq.3.14) we can write 

 

--------------------- (3.30) 

Where   (N) is the partition function for N particles distributed over all quantum states, 

excluding state s, according to Bose-Einstein statistics [cf., Eq. (3.19)].Using Eq. (3.24), and the 

approximation (3.25), the above equation reduces to 

 

------------------------------------------- (3.31) 

Note that this expression is identical to (3.15), except that β   is replaced by α +β  . Hence, an 

analogous calculation to that outlined in the previous subsection yields 

-------------------------------------- (3.32) 

This is called the Bose-Einstein distribution. 

 

3.7 Maxwell-Boltzmann statistics 

 

MB statistics- is a classical approach. The partition function is 
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----------------------------- (3.33) 

Where the sum is over all distinct states R of the gas, and the particles are treated as 

distinguishable. For given values of   ,   , · · there are the number of possible ways of 

placing particles in the given states becomes 
  

             
 

 

In these arrangements yields distinct state for the system. Hence partition function of the system 

becomes 

-------------------------- (3.34) 

Where the sum is over all values of    = 0, 1, 2, · · · for each r, subject to the constraint that 

------------------------------------------ (3.35) 

Now, Eq. (3.34) can be written 

-------------------------- (3.36) 

Eq. (3.35) is by the result of expanding a polynomial it can be written as. 

----------------------- (3.37) 

In other word 

 

--------------------- (3.38) 

Note that the argument of the logarithm is simply the partition function for a single particle. 

Equations (3.18) and (3.38) can be combined to give 
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----------------------- (3.39) 

This is known as the Maxwell-Boltzmann distribution. 

 

3.8 Photon statistics 

 

We have the following relation for the partition function Z=∑                  
  

Where the summation is over all the possible state R of the whole system, or equivalently over 

all values of   =0, 1, 2, … for each r. We know that  ̅ =-
 

 

    

   
 

 

Z=∑        
      

        

 

=∑        
  

 ∑        
  

…. 

 

=  
 

      
)  

 

      
)…. 

 

        =  ∑
 

         = -∑           
 )         -----------------------------------(3.40) 

The mean number of particles in a particular state r with the corresponding energy    

Is given by 

 

 ̅ =-
 

 

    

   
 = 

 

 

 

   
∑           

    =
 

      
                                 ------------------------- (3.41) 

 

 

3.9 Bose-Einstein statistics 

 

Let us now consider Bose-Einstein statistics. The particles in the system are assumed to be 

massive, so the total number of particles N is a fixed number. Consider the expression (3.14). For 

the case of massive bosons, the numbers   ,   , · · · assume all values  =   0, 1, 2, · · · for each 
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r, subject to the constraint that ∑    =N Performing explicitly the sum over   , this expression 

reduces to 

 

------------(3.42) 

Where   (N) is the partition function for N particles distributed over all quantum states, 

excluding state s, according to Bose-Einstein statistics 

Let Z= Z(N), for a system    particles  the partition function is Z(  ). This function is rapidly 

increasing function of   , and hence  multiplying it by rapidly decreasing function      
 

produces  a function Z(  )     
 which usually  has a very sharp maximum. The proper choice 

of the positive parameter   will made the sharp maximum to occur at    =N. Thus we can write 

 

∑     
  )     

 =Z(N)                                               -------------------------------------- (3.43) 

Where Z(N)     is the maximum value of the summand while          N is the width of the 

maximum. 

--------------------(3.44) 

Taking the logarithm of eq.(3.44),then, obtain an excellent approximation 

----------------------- (3.45) 

Where we have neglected the term     ) which is utterly negligible compared to the other terms 

which are of order N. Here the sum eq.(3.44) is easily performed, since it extends over all 

possible numbers without any restriction. The quantity Z is called a grand partition function. 

Now let evaluate Z 

--------------- (3.46) 

Where the sum is over all possible numbers without restriction.  By regrouping terms one 

obtains. 
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------------ (3.47) 

 

This is just a product of simple geometric series. Hence 

    ------------------ (3.48) 

The eq.(3.44) yields 

 

---------------- (3.49) 

Our argument assumed that the parameter   is to be chosen so that the function Z(  )     
has 

its maximum for   =N, i.e, so that 

----------------------- (3.50) 

Since this condition involves the particular value   =N,   itself must be a function of N. By the 

virtue of eq.(3.45), the condition eq.(3.50) is equivalent to 

 

-------------------- (3.51) 

Using the expression of eq.(3.48), the relation of eq.(3.51) which determines   then 
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------------------- (3.52) 

By applying eq.(3.16) in to eq.(3.49), then obtains 

---------------- (3.53) 

The last term takes into account the fact that   is a function of    through the relation eq.(3.52). 

But this term vanishes by virtue of eq.(3.51). Hence it has simplify 

 

--------------------------- (3.54) 

The obvious requirement needed to satisfy the conservation of particles. The chemical potential 

of the gas is given by 

 

 

Then calculation of the dispresion 

 ---------------- (3.55) 

Hence 

----------------- (3.56) 
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Thus the relative dispersion does not become arbitrarily small even when  ̅  1. 

 

3.10 Fermi-Dirac statistics 

The partition function is given by 

------------------------ (3.57) 

Since the summation is over the two values, then it becomes 

----------------------- (3.58) 

Then 

------------------------- (3.59)   Except some 

important sign changes, this expression is the same form with the BE case. The parameter   is 

again to determined from the condition of eq.(3.49).Thus, 

     -------------------------- (3.60) 

By using other equation, we can obtain 

--------------------------- (3.61) 

This expression simplified as 
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------------------------------- (3.62) 

 

3.10 Quantum statistics in the classical limit 

The quantum statistics description of a system of ideal gas can be summarized by 

  ̅̅ ̅ = 
 

        
                      ---------------------------------(3.63) 

Where the +/- sign in the denominator represents FD/BE statistics & is supposed to be obtained 

from the relation  ∑   ̅̅ ̅   = ∑
 

            =   N ---------------------------------------------(3.64) 

Now we want to evaluate   under some limiting cases. 

Consider a system of gas where the concentration is sufficient low. This condition (39) can be 

satisfied only when each term in the sum over all states is sufficiently low,   ̅̅ ̅     or 

             for all r. 

Similarly for a system consisting of fixed number N of particles of the temperature is sufficiently 

large so that      , the parameter   must be largeenoughto prevent the sum from exceeding 

N, then we can have              or   ̅̅ ̅    . 

Under these conditions equation (38) becomes 

  ̅̅ ̅   =         ---------------------------------------------------------(3.65) 

Thus the parameter    can be determined from 

∑        
  =    ∑      

      = N 

      =  N  ∑      
     ---------------------------------------------------------(3.66) 

 

   ̅̅ ̅             =    N  
     

∑       
 ---------------------------------------------(3.67) 
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In the classical limit of sufficiently low concentration or sufficiently high temperature the 

quantum statistics, FD & BE statistics, reduces to MB statistics 

The quantum statistics the partition function satisfy the relation 

Lnz =    ∑     (1        )  ---------------------------------------------(3.68) 

           

for    X    

ln(1+x) = x-
  

  
  + 

  

  
      

 x 

Lnz =     ∑            

   + ∑  
       

   + N ------------------------------------------------------------------------(3.69) 

From Equation (41) 

-  = lnN – ln∑      
  

  = -lnN + ln∑      
  

Hence equation (44) becomes 

lnZ = NlnN + Nln∑      
 + N---------------------------------------------(3.70) 

=Nln∑      
  – lnN      ; lnN = NlnN-N 

= ln    – lnN!             ;     = ∑        
 

 

 Z = 
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3.12 Evaluation of Partition Function 

Consider a system of monatomic ideal gas. Suppose the system is in the classical limit, i.e., it has 

sufficiently low concentration or it is at sufficiently high temperature. The partition function of 

the system is then given by equation (45) 

lnZ = N(-lnN + ln∑      
 + 1) 

= N(-lnN + ln  + 1) ----------------------------------------------------------(3.71) 

Where   = ∑      
  and the sum is over all possible states of a single particle. To evaluate this 

sum we need to know the energy of a single particle corresponding to the possible states. 

A system of single non interacting particle of mass M, Position vector   & momentum      

confined in a container of volume V can be described by a wave function  (    ) of the plane 

wave form 

(  ,t) =A     ⃗⃗  ⃗        = (  )                                              ------------------------------------ (3.72) 

 

Which propagates in the direction of the wave vector ⃗ . The energy of these particles is then 

given by    =
 ⃗  

  
 =

   ⃗  

  
 

Where the momentum    of the particle given by de-Broglie relation 

  =  ⃗                                                                                                                 ------------------(3.73) 

 

   
  

  
(  

 
 +   

 
 +   

 
)                                                                       ----------------------(3.74) 

 

Wave function in eq.(3.72) is assumed to satisfy the periodic boundary condition, provided that 

dimensions of the container are large enough to the de-Broglie wave length of the particle. 

 

                  

(        )         

(           )         

}                     ------------------------------------------------ (3.75) 
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Where   ,   , &    are the dimensions of the container. 

(  )=    ⃗       =                                                 --------------------------------------------------

(3.76) 

Hence to satisfy the periodic boundary condition, eq.(3.75), we must have 

 

Where   ,   , &    are integers 

The eq.(3.74) can be rewritten as: 

--------- (3.77) 

 

Z=∑      
    =∑     

   

          
(  

 
 +  

 
+  

 
)]    ---------------------------------------(3.78) 

Successive  term in a sum in eq.(3.78) correspond to a very small  change like    =
  

  
, hence a 

small change b/n    &    +d   contains    =
  

  
d   terms which have nearly the same 

magnitude . 
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Chapter Four 

System of Interacting Particles 

4.1. Lattice Vibrations and Normal Modes 

Consider a system of solid consisting of N atoms. Let the mass and position vector of the i
th

 

particle are denoted by Mi and   ⃗⃗  and let the equilibrium position of this atom is   ⃗⃗ 
 
. Since the 

atoms can vibrate about their equilibrium position, the kinetic energy of vibration of the system 

is given by 

K = 
 

 
∑ ∑   

 
    

 
     ⃗⃗  

 
 = 

 

 
∑ ∑   

 
    

 
    ̇  

  

Where α stands for x., y and z components of vector and  ̇  
  =       

  is displacement of the 

atom from equilibrium position. 

If we assume a vibration over a relatively small amplitude, the potential energy V = V0  

+∑ (
  

    
)
 

          
 

 
∑ (

   

        
)
 

                +  … 

V0 is the potential energy in the equilibrium configuration of the atoms. At equilibrium V must 

be minimum, hence we can have (
  

    
)
 

   

 V V0  +
 

 
∑                    

Where,          (
   

        
)
 

 

The total energy associated with vibrations of the atoms in the is then 

H = V0 +
 

 
∑  ̇  

 
   + 

 

 
∑                    

This equation can be simplified by eliminating the cross product terms in the potential energy 

and this can be done changing the 3N old coordinates      to new set of 3N generalized 

coordinates qγ by a linear transformation. 

    = ∑            
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Thus the total energy can be rewritten as 

H = V0 +
 

 
∑ ( ̇ 

       
   

 )  
     

This expression is similar to that of the total energy of 3N independent 1D harmonic oscillators. 

The total energy of 1D harmonic oscillator is given by 

Hr= 
 

 
( ̇ 

       
   

 ) 

The corresponding energies for the possible quantum states of this oscillator are then 

Eγ = (nγ +
 

 
)  wγnγ = 0, 1, 2, 3…. 

The total energy of a system of 3N independent harmonic oscillators, where the state of the 

whole system specified by {n1, n2, ….,n3N}, becomes 

H = V0 +∑   
  
     

          
= V0 +∑ (    

 

 
)  

     wγ 

          
= V0 +

 

 
∑    

  
     +  ∑      

  
     

= Nη  +∑      
  
     

Where, Nη = V0 +
 

 
∑    

  
     independent of    

The partition function of the whole system is then 

Z = ∑     
  = ∑                 

        

= ∑                                        
        

=     ∑                                  
        

=     ∑           
     ∑           

      

=     (
 

         
) ----- (

 

          
) 
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lnZ =      +  ln(
 

         
) +  ------ + ln (

 

          
) 

=    (  (
 

         
)            (

 

          
)) 

=    ∑   (
 

         
)  

    

Angular frequencies       which also called normal mode frequencies are closely spaced. Hence, 

if _____ represents the number of normal modes with angular frequency in the range between w 

and    +d  the expression for     becomes, 

    =    ∫    
 

 
       σ(w)d  

The mean energy of the system is then 

 ̅ = 
     

  
 =     +  ∫

      

      

 

 
σ( )d   

=     +  ∫
  

       

 

 
σ( )d    

Cv = (
  ̅

  
)
 
 = (

  ̅

  
)
 
 (

  

  
)
 
 

  

  
 = 

 

  

 

   
 = 

 

     = 
 

   
  

 

 
 = β .    =      

Cv =     (
  ̅

  
)
 
 

=     (
 

  
)
 
*    ∫

  

       
      

 

 
+ 

= +     ∫
         

         
      

 

 
 

If    << 1;      = 1 +      +  
      

  
+  ---- 

= 1 +     

Cv =     ∫
              

           
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=   ∫
               

      
     

 

 
  

=   ∫      
 

 
  ; where we neglect     as compared to 1. 

= 3N   = 3 
 

  
  NA   = 3nR 

For 1 mole of system, n = 1, Cv = 3R 

4.2 Debye Approximation 

By employing Debye approximation it is possible to calculate the number      of normal mode 

frequencies. In Debye approximation the discreteness of atoms in solid is neglected and solid is 

treated as if it is a continuous elastic medium and these atoms are assumed to have 

approximately similar mass. 

The approximation of treating solid as continuous elastic medium is valid when λ>> a, where λ 

is the wavelength of the vibration of the elastic medium while “a” is mean interatomic separation 

in the solid. 

Consider a solid which can be treated as elastic continuous medium of volume V. Let   ⃗⃗⃗   (  ⃗⃗  ⃗ t) 

denote the displacement of a point in this medium from its equilibrium position. This 

displacement is expected to satisfy a wave equation which describes the propagation through the 

medium of sound waves travelling with some effective velocity Cs. 

From the previous chapter we have for a given wave vector   ⃗⃗  ⃗ the number ∆nx of possible 

integers nx for which Kx lies in the range between Kx and  Kx  +  dKx is 

∆nx = 
  

 
dKx 

Then number of states ρ(  ⃗⃗  ⃗)d3  ⃗⃗  ⃗ for which   ⃗⃗  ⃗ lies in the range between   ⃗⃗  ⃗ and   ⃗⃗  ⃗ + d  ⃗⃗  ⃗ is then 

ρd
3  ⃗⃗  ⃗ = ∆nx∆ny∆nz= 

      

 
dKxdKydKz= 

 

    
 d

3  ⃗⃗  ⃗ 
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The number of states     for which the value of    ⃗⃗  ⃗, /  ⃗⃗  ⃗/, lies in the range between K and  K  +  

dk↑ by summing the above relation over the volume in   ⃗⃗  ⃗ space of spherical shell of inner radius 

k and outer radius K  +  dk, 

ρx dx = 
 

    
 4  K

2 
dx 

= 
 

    
 K

2 
dx 

Since sound wave of wave vector   ⃗⃗  ⃗ corresponds to an angular frequency,   = Cs.K, the number 

of possible wave modes with frequency between w and     +d   is then, 

σc( )d   = 3 
 

     
 (4π k

2
dk) 

= 3 
 

     
 (4π) (

 

  
)
   

  
 

= 3 
 

   

  

  
 d   

According to Debye approximation, for law frequencies w the density of modes σc( ) for the 

continuous elastic medium is nearly the same as the mode density σ( ) for the actual solid. 

The Debye approximation, σ( ) ≈σc( ), is valid not only for low frequencies but for all 3N 

lowest frequency modes of the elastic continuum, and it is defined by 

σD( )= {
              

             
 

Where   is called Debre frequency and it is chosen so that σD(w) yields the correct total 

number of 3N normal modes. 

∫        
 

 
 = ∫          

  

 
 = 3N 


  

      ∫      
  

 
= 

  

      

  

 
∫

 

 
= 

 

        
  = 3N 

   = (   
      

 
)
 

 ⁄

 =   (
    

 
)
 

 ⁄
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4. 3. Calculation of the Partition Function for Law densities 

Consider a mono atomic gas of N identical particles of mass M in a container of volume V at 

temperature T. Assume the system is at sufficiently high temperature and has sufficiently law 

density such that classical approximation is valid. The total energy of the system is then, 

H =  K  +  U 

Where K is kinetic energy K = 
 

  
∑   

  
    

And U is potential energy of intermolecular interaction and is a function of relative sepation 

between the two interacting molecules. 

U = U(Rij) ; Rij= ∕       ∕ 

Approximately U is given by the sum of all interactions between a pair of molecules 

U = ∑ ∑    
 
   

 
    = 

 

 
∑ ∑    

 
   

 
    

i< j                       i≠ j 

A semi empirical potential called Lennard-Jones potential is given by 

U(K) =   [(
  

 
)
  

 (
  

 
)
 

] 

U(R)

R
R0

U0  

The classical partition function of the system is given by 

Z = 
 

  
∫                    ⃗  
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= 
 

     
∫    ( ⃗    ⃗       ⃗  )    ⃗   ------   ⃗  ∫                       ------      

= 
 

     
∫  

 

  
( ⃗  

 
  ⃗  

 
     ⃗  

 
)    ⃗   ------   ⃗  ∫                       ------      

= 
 

     
(∫  

 

  
 ⃗   

 
   ⃗ )

 

∫                       ------      

= 
 

     
(
   

 
)
 

 ⁄  

∫                       ------      

= 
 

  
(

   

   
)
 

 ⁄  

Zu 

Where Zu = ∫                       ------      

For ideal gas U ≈ 0, for a system of high temperature β→ 0 

In both of these limiting cases    → 1, hence Zu→ V
N
 

For a system of gas whose density is not too large one can calculate the approximate value of Zu. 

The mean potential energy of the gas is 

 ̅ = 
∫                  

∫                
 = 

 

  
lnZu 

∫      
     

     
 = ∫  ̅  

 

 
 

lnZu (β) lnZu(0) = ∫  ̅    

 
     

For β = 0, Zu(0) = V
N
lnZu(0) = N ln V 

lnZu (β) = N ln V ∫  ̅    

 
     

For a system of N molecules, the number of pairs in the system is 

  

         
 = 

             

        
 = 

 

 
N(N  1) ≈

 

 
 N

2
 for N>>1 

 ̅ = 
 

 
 N

2 ̅  
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By approximating that the motion of any pair of molecules is not correlated appreciably with the 

motion of the remaining molecules, we can consider a system of pair of molecules is in thermal 

contact with a system containing the rest molecules (heat reservoir). 

Hence mean pair potential  ̅  is given by 

 ̅  = 
∫      

   ⃗ 

∫     
   ⃗ 

 = 
 

  
ln∫       ⃗  

∫       ⃗  = ∫               ⃗  = ∫   ⃗   ∫          ⃗  = V + I = V(1 + 
 

 
) 

Where I(β) = ∫          ⃗  = ∫             

 
   

 ̅  = 
 

  
ln (V(1 + 

 

 
)) 

= 
 

  
,          

 

 
- 

= 
 

  
ln(    

 

 
) ; since V is independent of β 

For I<< V, ln(    
 

 
) = (

 

 
   

 

 
  

 

 
  )      ≈

 

 
 

 ̅  = 
 

  
(

 

 
) = 

 

 

  

  
 

 ̅ = 
 

 
 N

2 ̅  = 
 

 

  

 

  

  
 

lnZu (β) = N ln V ∫ 
 

  

 

 

  

 

       

   
 dβ’ 

= N ln V + 
 

 

  

 
∫

       

       
 

 
 

= N ln V + 
 

 

  

 
I(β); since I(0) =0 

Zu (β) = V
N 

 √
 

  Z = 
 

  
(
   

   
)

 

 
 

   
 √

 

  

4.4. Equation of State and Varial Coefficients 
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Mean pressure of a system can be obtained from the partition function of the system as 

 ̅ = 
 

 

    

  
 

The partition function for a system of interacting particles is given by 

Z = 
 

  
(
   

   
)

 

 
 

   

ln Z = ln.
 

  
(
   

   
)

 

 
 

/ + lnZu 


    

  
 = 

     

  
 because the first term in r.h.s of the above equation is independent of qv. 

 ̅ = 
 

 

     

  
 = 

 

 

 

  
 (NlnV  +

 

 

  

 
  

= 
 

 
(
 

 


 

 

  

   ) 

β ̅ =
 ̅

   
 = 

 

 


 

 

  

    = n 
 

 
In

2
 

For ideal gas particles, equation of state is given by 

 ̅  = N    


 ̅

   
 = 

 

 
 = n 

The deviation of real gas equation from ideal gas can be considered by introducing correcting 

term in the above equation. This case is discussed by KamerlingOnnes and he introduced a virial 

expansion to generalize the ideal gas law. 


 ̅

   
 = n  +  β2(T)n

2
  +  B3(T)n

3
  +  … 

Where β2, β3, … are called virial coefficients 

The second virial coefficient B2 is then 
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β2= 
 

 
 I ∫ (     )

 

 
4πR

2
dR 

=  2π∫ (     )
 

 
R

2
dR 

Let the potential U(R) is approximately given by 

U(R)  {
           

  (
  

 
)

 

         
 

Where    is the minimum possible separation between particles: 

Then β2 =  2π∫ (     )
  

 
R

2
dR  2π∫ (     )

 

  
R

2
dR 

For     , U(R) = ∞    = 10 

β2= 2π∫     
  

 
 2π∫ (     )

 

  
R

2
dR 

= 
  

 
  

  2π∫ (     )
 

  
R

2
dR 

If   << 1,    ≈ 1    

β2 = 
  

 
  

  + 2π∫   
 

  
     

= 
  

 
  

  + 2πβ∫   (
  

 
)
  

  
     

= 
  

 
  

  2πβ    
 
∫

  

     

 

  
 

= 
  

 
  

  2πβ    
      

    
   

 
 

= 
  

 
  

  2πβ    
   

    

    
 

β2 = 
  

 
  

  2πβ    
  

    

 

  
     

= 
  

 
  

 
       

 

    

 

  
       

   



64 | P a g e  
 

= 
  

 
  

 
     

    
  

  

= 
  

 
  

 ,  
    

    
- 

= b’ βa’; where b’ = 
  

 
  

  and a’ = 
   

    
  

  

 
  

  

In the virial expansion, neglecting terms of order higher than n
2
 yields 

 ̅

   
 = n  +β2n

2
 

= n +        n
2
 

= n + (  
  

   
)n

2
 

 ̅ =     +    (  
  

   
)n

2
 

=     +             

 ̅+      =      (1 +      = 
    

          
 

For very low density such that 

                 + 
      

  
 ---- 

≈ 1     

 ̅ +      =
    

     
 = 

   
 

 
  

 

 ( ̅ +       = (
 

 
  ) =     

n= 
 

 
 = 

   

 
= 

  

  
 ; where V = 

 

  
 is number of moles 

where    = 
 

 
 is molar volume 
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( ̅   
    

 

  
 ) (

  

  
  )       

( ̅   
    

 

  
 )(              

( ̅   
 

  
 ) (   b) = RT, where a =   

   , b =      and R =      

or( ̅   
 

  ) (V Vb) = VRT  Van der Waals’ equation of state  a and b are called Van der 

Waals’ constants. 

 

 

 


