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3.1 Contour Integrals

® DEFINITION31 @
QGEEEEEDD oo ntega >

Let f be defined at points of a smooth curve C given
by z=x(t)+iy(t),a<t<b. The contour integral
of falong C is

jcf(z)dz= lim Zn:f(z[j)Azk

1Az, |0 4=
. @)
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® THEOREM31 @ .
Evaluation of a Contour Integral

If f IS continuous on a smooth curve C given by
Z(t) =x(t)+iy(t),a<t<b , then

[.f@dz=[ f 1)z dt 2)

- J
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Example 1

Evaluate jcidz

where Cis given by x =3t,y =t*,—-1<t < 4.

Solution

z(t) =3t +it%, z'(t) = 3+ 2it
f(z(t)) =3t +it* =3t —it*

Thus, jcidz —

" (3t-it?)(3+ 2it)dt

" (2t + 9t)dt +i[ 3t2dt =195 + 651
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Example 2

1
Evaluate (ch ~dz
7

where Cisthecircle x=cost,y=sint,0<t<2x
Solution

z(t) =cost +isint =e', z'(t) =ie"

f(2) g
/

27T
0

Thus. {ﬁdz _ [ etietdt = 27
Z
C

Ch18_6



idﬂ T 7
J ?:ui—u{—ﬂz%—(—%):ifr.HmDiﬂhﬂmmplezp]anemdﬁulﬂandﬂmnegaﬁv&real

axis (where Ln 7 1s not analytic). Obviously, [) 1s a simply connected domain. il
g—3wi B-3mi . _
[ ePdp =267 =R - TR =
B B+
since ¢ 1s periodic with period 271, L
L+i 1+
l l 2 1
[ Zdi=-2| =-(l+)’=--+=i N
! R 303
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Integral of a Nonanalytic Function. Dependence on Path

Integrate f(z) = Rez = x from 0 to 1 + 2i {a) along C* in Fig. 343, (b) along C consisting of Cy and Ca.

Solution.
x(f) = t on C¥. We now calculate

1
J'Rezdz: [I{l+2i}d¢=l{l+2f}:l+i.
c* [ 2 2

(h) We now have

Cy: zlt) = 1, an =1, flzm=xn=t (0=t=1)
Corzifi =1+t A =i, flzin) ==xH=1 =1=2)
Using (6) we calculate

1 a
|
JRezdz= [ Rezdz+JRezdz:J:d:+ J l-idt=—+ 2.
o 8 g 1] ] 1

Note that this result differs from the result in (a).

{a) C* can be represented by z{fi = ¢t + 2it(0 = 1 = 1). Hence 2f) =1+ 2§ and flzin)] =

yz=14+2s

Fig. 343,

X

Paths in Example 7
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Cont’d

® THEOREM32 @ .
Properties of Contour Integrals \

Suppose f and g are continuous in a domain D and C
IS @ smooth curve lying entirely in D. Then:

() [kf(z)dz=Kk| f(z)dz, kaconstant
(ii) [f(z)+g(z)]dz—j f(z)dz+| g(2) dz

(iii) fC f(z)dz= jcl f(z) dz +IC2 t(z) dz,where C is the
union of the smooth curve C, and C.,.

(iv) I_C f(z)dz=- IC f (z) dz, where —C denotes the
\_ curve having the opposite orientation of C. -
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Example 3

Evaluate |, (X" +iy?)dz
where C Is the contour in Fig 3.1.

Solution Y
Fig 3.1 1 I 42
G,
T 1 +1
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We have

jc (X2 +iy?)dz = jcl(x2 +iy?)dz + jcz (x? +iy?)dz

Since C; Is defined by y =%, then z(X) = x+ 11X, 2’(X) = 1
+ 1, f(z(x)) = x% + ix?, and

[ O +iy?)dz= [ (x? +ix)(@+i)dx

_ oo 2.
=(1+1) on dX—gl
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The curve C, is defined by x=1,1<y<2. Then
Z(y)=1+1iy, 2’(y) =1, f(z(y)) =1 +iy2 Thus

[ (¢ +iy?)dz = [ (L+iy?)idy

:_fyzdy+ifdy:—;+i

. 2 ool 2. (.. 7 5.
Flnally,jc(x +1y )dz_§|+(—§+|)_—§+§|
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Cont’d

® THEOREM33 @ . A
QREEERD . - cing Theoren

If f is continuous on a smooth curve C and if |f (z) <M
for all z on C, then I f(z)dz| < ML, where L is the length
\of C. C

J

* This theorem Is sometimes called the ML-inequality
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Example 4

Find an upper bound for the absolute value of

JA
<j> ° dz
Cz+1
where C is the circle |z| = 4.
Solution
Since |z +1| > |z| — 1 = 3, then
e le’| e
. - (3)
z+1 |z|-1 3

|
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In addition, |e?| = eX, with |z| = 4, we have the
maximum value of x 1s 4. Thus (3) becomes

Z 4
e < e

z+1 3

Hence from Theorem 3.3,

Z

(Pe dz <
Cz+1 3
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3.2 Cauchy-Goursat Theorem

Cauchy’s Theorem
Suppose that a function f is analytic in a simply
connected domain D and that f” Is continuous in D.
Then for every simple closed contour C in D,

<}‘>C f(z)dz=0

This proof is based on the result of Green’s Theorem.

[ f(2)dz

JC

= jcu(x, y) dx=v(X, y)dy+i LV(X, y) dx+u(x, y) dy

0 _%—%]dAHH(Z—i—%]dA (4)
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“* Now since f Is analytic, the Cauchy-Riemann
equations Imply the integral in (4) is identical zero.

® THEOREM 34 @ A
—Cauchy-Goursat Theorem

Suppose a function f is a analytic in a simply connected
domain D. Then for every simple closed C in D,

<j%f(z)dz:o

-
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«» Since the interior of a simple closed contour Is a
simply connected domain, the Cauchy-Goursat
Theorem can be stated as
If f Is analytic at all points within and on a simple
closed contour C,

f&:f(z)dz:O (5)
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Example 1

Evaluate <j§c eZd7z

where C Is shown In Fig 3.2.

Solution
The function e? Is entire and C Is a simple closed
contour. Thus the integral Is zero.
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Example 5

Evaluate %

C ZZ
where C is the ellipse (x —2)° + (y —5)4/4 = 1.

Solution
We find that 1/z2 is analytic except atz=0andz=10is
not a point interior to or on C. Thus the integral is zero.
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Cauchy-Goursat Theorem for Multiply Connected

Domains

“*Fig 3.3(a) shows that C; surrounds the “hole” in the
domain and is interior to C.

(a)

Ch18_22



» Suppose also that f is analytic on each contour and at
each point interior to C but exterior to C;. When we
Introduce the cut AB shown In Fig 3.3(b), the region
bounded by the curves is simply connected. Thus
from (5)

<j>cf(z)dz+g%f(z)dz=o

and

fj)cf(z)dz:fj%lf(z)dz )
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(b)
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Example 6

Evaluate § 92

Cz—1]
where C Is the outer contour In Fig 4.
Solution

From (6), we choose the simpler circular contour C;. |z —
I| =1 in the figure. Thusx=cost,y=1+sint, 0<t<
2rorz=i+¢et 0<t<2m Then

{;Zd — 1;d _r”'e dt _|j'2”dt_27z|
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95 9
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“* The result in Example 6 can be generalized. We can
show that If z, Is any constant complex number
Interior to any simple closed contour C, then

(f dz |27, n=1
C(z-z,)" |0, naninteger #1 (7)
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Example 7

52+ 7

Evaluate 5 dz
Cz°4+2z2-3
where C Is the circle |z — 2| =
Solution
52+7 3 N 2
2°+22-3 z-1 z+3
and so

5z + 7
Z=3
(J%?zz+22—3 (ﬁ CZ+3 ©
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Cont’d

Since z=11s Interior to C and z = —3 Is exterior to C,
we have

52+ 7 . .
'ﬁ:zz +22_3dz =3(27i) + 2(0) = 67
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“»See Fig 5. We can show that
<j>cf(z)dz=<jsclf(z)dz+{>c2 f(z)dz

D
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® THEOREM35 @
—Cauchy-Goursat Theorem for \

Multiply Connected Domain
Suppose C, C,, ..., C, are simple closed curves with a

positive orientation such that C,, C,, ..., C, are interior
to C but the regions interior to each C,, k=1, 2, ..., n,
have no points in common. If fis analytic on each

contour and at each point interior to C but exterior to all
the C,, k=1, 2, ..., n, then

_ {% f(z)dz:kzz{%k f(z) dz (7)/
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Example 8

Evaluate 2dz
Cze+1
where C is the circle |z| = 3.
Solution
1 1/2 B 1/ 2i
7°+1 7—i z+i

dz 1 1 1
= — dz
£22+1 2i (Pc[z—i z+i}
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We now surround the points z =1 and z = —1 by circular
contours C, and C,. See Fig 6, we have

{) dz
Cz% 41
el
21°Cl z—1 z+1 Z—1 z+|
1 dz 1 dz 1
S — +
2| CGz—1 210G z+1 2|§>sz—| j
Since d—z_i = 27l, £| = 27l
Cz—1 Co 741

thus (8) becomes zero.
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3.3 Independence of Path

® DEFINITION3.2 @ A
— Independence of the Path

Let z, and z; be points in a domain D. A contour
integral fﬁc f (z) dz is said to be independent of the path

If its value Is the same for all contours C in D with an
_Initial point z, and a terminal point z;.

J

“»See Fig 7
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“*Note that C and C, form a closed contour. If fis
analytic in D then

jcf(z)dz+j_clf(z)dz:o (8)

Thus

jcf(z)dzzj

c f(z)dz (9)
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® THEOREM36 @

|

Analyticity Implies Path Independence

If f Is an analytic function in a simply connected

domain D, then fC f (z) dz is independent of the path

C.
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Evaluate IC 27 dz

where C is shown In Fig 8.
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Solution

Since f(z) = 2z 1s entire, we choose the path C, to
replace C (see Fig 7). C, Is a straight line segment
X=—1,0<y<1.Thusz=-1+1y, dz = Idy.

ICZZdZ = ICZZdz

=2 ydy-2i[ dy=-1-2i
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® DEFINITION33 @ . . )
Antiderivative

Suppose fIs continuous Iin a domain D. If there exists
a function F such that F’(z) = f(z) for each z in D, then
_F Is called an antiderivative of f.

J
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Cont’d

® THEOREM 3.7 @
Fundamentals Theorem for Contour\

Integrals

Suppose fis continuous in a domain D and F Is an
antiderivative of fin D. Then for any contour C in D
with initial point z, and terminal point z,,

jc f(z)dz=F(z)-F(z,) (10)
N\ Y,
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Proof
With F'(z) = f(z) for each z in D, we have

jC f(z)dz = j:f (z(t))z'(t)dt = I;F'(z(t))z'(t)dt

b d
= | —F(z(t))dt — chainRule
jadt (z(t)) Chain Rul

b
= |:(Z(t))a

= F(z(b)) - F(z(a)) = F(z) - F(z,)
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Example 10

In Example 9, the contour is from —1 to —1 + 1. The
function f(z) = 2z is entire and F(z) = z2 such that F’(z) =
22 = 1(z). Thus

—1+i —1+1 ]
_11 '22dz = 7° ——1-2i
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Example 11

Evaluate | c0s2dz
where C is any contour froz=0toz=2 +1.

Solution

2+i _ 2-|—|
jccos 2dz = |~ coszdz =sinz

= sin(2 +i) =1.4031-0.4891]
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Some Conclusions from Theorem 3.7

I
“*If Cis closed then z, = z,, then

t]SCf(z)dz:O (1)
** In other words:

If a continuous function f has an antiderivative F
In D, then IC f (z) dz Is iIndependent of the path.

«» Sufficient condition for the existence of an
antiderivative:
If f is continuous and JC f (z) dz is independent of
the path in a domain D, then f has an antiderivative
everywhere in D.
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Cont’d

® THEOREM 38 @ . . . . ™
—EX|stence of a Antiderivative

If fis analytic in a simply connected domain D, then f
has an antiderivative Iin D; that Is, there existence a
\function F such that F’(z) = f(z) for all z Iin D.
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Example 12

Evaluate [ 92

Cz
where C is shown In Fig 8.
I

2i

I

|

I

I
T

I
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Solution

Suppose that D is the simply connected domain defined
by x>0,y > 0. In this case Ln z Is an antiderivative of
1/z. Hence

2i dz A

|
—=Lnz =Ln2I-Ln3
3 7 3

Ln 2i = IogeZ+%i, Ln3=1log,3
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3.4 Cauchy Integral Formulas

THEOREM 3.9

Let f be analytic in a simply connected domain D, and
let C be a simple closed contour lying entirely within D.
If z, Is any point within C, then

®
Cauchy’s Integral Formula A

f(z)=1 4 12 g, (11)
V27 Tz, y
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Proof

Let C, be a circle centered at z, with radius small
enough that it is interior to C. Then we have
§ 1D az- ¢ 1 g
Cz-12, 17 — Z, (12)
For the right side of (12)
§ 1@ g g f@)-T@)+f@),
Ct Ct

Z
Z—1, Z— zO (13)

f(2)-f(z) g,
1Z—Z Cl L— L,

- f(zo)<JS
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From (4) of Sec. 3.2, we know
dz .
{3 = 27l

C

-1,
Thus (13) becomes
() ., f(2) - f(2)

35(:12_20 dz me(zo)+§é1 — dz (14)
However from the ML-inequality and the fact that the
length of C; Is small enough, the second term of the
right side in (4) Is zero. We complete the proof.

$ H(2)=1(z) 4, <527z(5j=27zg
G z-1, - 012 2
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* A more practical restatement of Theorem 3.9 Is :

If f Is analytic at all points within and on a simple
closed contour C, and z0 IS any point interior to C,

then f (Z)

f(z,)=—
@)=k,

dz (15)
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Example 13

2
Evaluate ¢ ° _4Z+4dz

C 741

where C Is the circle |z| = 2.

Solution
First f =22 -4z + 4 is analytic and z, = —i is within C.
Thus
2 J—
$ 5220 47 = 27 (i) = 27i(3+ 4i) = 27(—4 +3)
Z+i
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Example 14

Evaluate 2 4z

Cz°+9
where C Is the circle |z — 21| = 4.
Solution

See Fig 8. Only z = 31 Is within C, and

V4

Z  _7+3i
7°+9 z-3i
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Cont’d

Let f(z)=—%—, then
Z + 3l

V4

$ o, dz= 2430 47 = 27if (3i) = 270> = i

7> +9 Cz-3i 6i
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Example 15

The complex function f(z) =k/(z - z1)

where k = a + Ib and z, are complex numbers, gives rise
to a flow In the domain z = z,. If C is a simple closed
contour containing z =z, In Iits interior, then we have

ej%ﬁ dz = ‘fcj:i: dz = 27i(a—ib)
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The circulation around C is 2ntb and the net flux across
C is 2na. If z; were In the exterior of C both of them
would be zero. Note that when k is real, the circulation
around C Is zero but the net flux across C i1s 2nk. The
complex number z, is called a source when k >0 and Is
a sink when k < 0.

See Fig 9.
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(a) Source: k>0 (b) Sink: k<0
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Cont’d

® THEOREM38 @
—Cauchy’s Integral Formula A

For Derivative
Let f be analytic in a simply connected domain D, and

let C be a simple closed contour lying entirely within D
If z, IS any point within C, then

My T r(2) (16)
00 it
o /
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Partial Proof

Prove only for n = 1. From the definition of the
derivative and (11)f (z) =k /(z — z1)

F'(zo) = lim F(zo+ AAZz ~ 1(z)

~lim_ $ ') dz—fj%f(z) az

N-027IAZ| ¢ 2 — (2, + AZ) Z—1,

~ lim 1_<} f(2)
Az—0 2771 ¥C (7 — Z, —AZ)(z - ZO)
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From the ML-inequality and

= %

Thus

f'(z,) = lim

{f%: > dz
(2—12p) “(z2-2y-Az)(z - 2,)

—Azf(2) , <2I\/|L|Az|

>0 asAz >0

(2-2,)2(2 — 2, - A7)

53

f(zg +Az)- 1(z) 14} f(z) 4
27

C(z- 20)2
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Example 16

I

Evaluate z+1 d7

Cz* +47°

where C Is the circle |z| =

Solution

This integrand Is not analytic at z=0, 4 butonly z=0

lies within C. Since Z+1

z+l 744
24 +478 78

Wegetz,=0,n=2,1z) =(z+1)/(z+4),T"(z2) =—6/(z
+ 4)3. By (6):

Z+1 Zm
d — rr —_—l
£z4+4z3 HO) 32
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Example 17

3
Evaluate "+3
Cz(z—1)?

where C is shown In Fig 9.
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Solution
Though C is not simple, we can think of it Is as the
union of two simple closed contours C; and C,, in Fig 10.

{) 25 +3 iy — 75 +3 dz+§> Z+3 1
Cz(z-1i)* C1z(z—1i)° C272(z —1i)°
z° +3 2°+3

= 2(2-1)° dz+<f> dz
Gz zz(z—l)

— __Il 4_ |2
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Cont’d

Forl,:2,=0,f(2) = (22 +3)/(z - 1)*:

Z°+3
=\ 2
Z(z—1i . .
Il:'if%:l ( . ) dz =271 (0) =—67xI
For I, 125 =i, n=1,1(2) = (° + 3)/z, f’(z) = (22° -3 )/z*:
Z°+3
|, = Z dZ:Z—ﬂif’(i):—27zi(3+2i):27z(—2+3i)
Co (2 —1)° 1!

We get

3
¢ 3 42— 1, + 1, = 677i + 27(—2 + 3) = drr(~1+ 3i)
Cz(z-1)
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Liouville’s Theorem

* If we take the contour C to be the circle |z —zy| =,
from (16) and ML-inequality that

! f(z)
M (z0)]= dz
| é(’)l 27 j<3(z—z0)”+1

n! 1 nlM (17)
<—M 1 27l = .

27T r r

where [f(z)| < M for all points on C. The result in (17)
1s called Cauchy’s mequality.
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® THEOREM 3.1l @ BB - N
—Llouwlle’s Theorem

The only bounded entire functions are constants.

.

Proof

For n =1, (17) gives |f *(zy)| £ M/r. By taking r
arbitrarily large, we can make |f ’(zp)| as small as we
wish. That is, |f ’(z)| = 0, f Is a constant function.
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Thank You !



