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3.1 Contour Integrals 

 

Let f be defined at points of a smooth curve C given 

by       The contour integral   

of f along C is 

 

        (1) 

DEFINITION 3.1 
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If f is continuous on a smooth curve C given by 

         , then 

          (2) 

THEOREM 3.1 
Evaluation of a Contour Integral 
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Example 1 

 

 

Solution  
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Example 2 

Evaluate                    

 

where C is the circle x = cos t, y = sin t, 0  t  2. 

Solution 
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Cont’d 
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Cont’d 

 

Suppose f and g are continuous in a domain D and C 

is a smooth curve lying entirely in D. Then: 

(i) 

(ii) 

(iii)                                                            where C is the  

       union of the smooth curve C1 and C2. 

(iv)                                          where –C denotes the 

       curve having the opposite orientation of C. 

THEOREM 3.2 
Properties of Contour Integrals 
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Example 3 

Evaluate         

where C is the contour in Fig 3.1. 

Solution 

Fig 3.1 
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Cont’d 

We have 

 

 

Since C1  is defined by y = x, then z(x) = x + ix, z’(x) = 1 

+ i, f(z(x)) = x2 + ix2 , and  
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Cont’d    

The curve C2  is defined by x = 1, 1  y  2.  Then       

z(y) = 1 + iy, z’(y) = i, f(z(y)) = 1 + iy2. Thus 
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Cont’d 

This theorem is sometimes called the ML-inequality 

 

If f is continuous on a smooth curve C and if 

for all z on C, then                           where L is the length 

of C.  

THEOREM 3.3 
A Bounding Theorem 
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Example 4 

Find an upper bound for the absolute value of     

 

 

where C is the circle |z| = 4. 

Solution 

Since |z +1|  |z| − 1 = 3, then  
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Cont’d 

In addition, |ez| = ex, with |z| = 4, we have the 

maximum value of x is 4. Thus (3) becomes 

 

 

 

Hence from Theorem 3.3,  
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3.2 Cauchy-Goursat Theorem 

Cauchy’s Theorem 

Suppose that a function f is analytic in a simply 

connected domain D and that f  is continuous in D. 

Then for every simple closed contour C in D,  

 

This proof is based on the result of Green’s Theorem. 
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Now since f is analytic, the Cauchy-Riemann 

equations imply the integral in (4) is identical zero.  

 

Suppose a function f is a analytic in a simply connected  

domain D. Then for every simple closed C in D,  

 

THEOREM 3.4 
Cauchy-Goursat Theorem 
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Cont’d 

Since the interior of a simple closed contour is a 

simply connected domain, the Cauchy-Goursat 

Theorem can be stated as  

If f is analytic at all points within and on a simple 

closed contour C,  

        (5)  
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Example 1 

Evaluate  

 

where C is shown in Fig 3.2. 

Solution 

The function ez is entire and C is a simple closed 

contour. Thus the integral is zero. 
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Fig 3.2 
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Example 5 

Evaluate  

 

where C is the ellipse (x – 2)2 + (y – 5)2/4 = 1. 

Solution 

We find that 1/z2 is analytic except at z = 0 and z = 0 is 

not a point interior to or on C. Thus the integral is zero. 
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Cauchy-Goursat Theorem for Multiply Connected 

Domains 

Fig 3.3(a) shows that C1 surrounds the “hole” in the 

domain and is interior to C.  
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Cont’d 

Suppose also that f is analytic on each contour and at 

each point interior to C but exterior to C1. When we 

introduce the cut AB shown in Fig 3.3(b), the region 

bounded by the curves is simply connected. Thus 

from (5)  

 

 

and  
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Fig 3.3 (b) 
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Example 6 

Evaluate  

 

where C is the outer contour in Fig 4. 

Solution 

From (6), we choose the simpler circular contour C1: |z – 

i| = 1 in the figure. Thus x = cost, y = 1 + sin t, 0  t  

2, or z = i + eit, 0  t  2. Then  
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Fig. 4 
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 Cont’d 

The result in Example 6 can be generalized. We can 

show that if z0 is any constant complex number 

interior to any simple closed contour C, then  

 

        (7) 
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Example 7 

Evaluate  

 

where C is the circle |z – 2| = 2. 

Solution 
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Cont’d 

Since z = 1 is interior to C and  z = −3 is exterior to C, 

we have 
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Fig 5 

See Fig 5. We can show that  
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Suppose C, C1, …, Cn are simple closed curves with a  

positive orientation such that C1, C2, …, Cn are interior  

to C but the regions interior to each Ck, k = 1, 2, …, n, 

have no points in common. If f is analytic on each  

contour and at each point interior to C but exterior to all 

the Ck, k = 1, 2, …, n, then 

        (7) 

THEOREM 3.5 
Cauchy-Goursat Theorem for  

Multiply Connected Domain 
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Example 8 

Evaluate  

 

where C is the circle |z| = 3. 

Solution 
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Cont’d 

We now surround the points z = i and z = −i by circular 

contours C1 and C2. See Fig 6, we have  
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3.3 Independence of Path 

See Fig 7  

 

Let z0 and z1 be points in a domain D. A contour  

integral            is said to be independent of the path  

if its value is the same for all contours C in D with an   

initial point z0 and a terminal point z1. 

DEFINITION 3.2 
Independence of the Path 
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Fig 7 
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Note that C and  C1 form a closed contour. If f is 

analytic in D then  

     

        (8) 

 

Thus  

 

        (9)
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If f is an analytic function in a simply connected  

domain D, then                    is independent of the path 

C. 

THEOREM 3.6 
Analyticity Implies Path Independence 
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Example 9 

Evaluate  

 

where C is shown in Fig 8.  
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Cont’d 

Solution  

Since f(z) = 2z is entire, we choose the path C1 to 

replace C (see Fig 7). C1 is a straight line segment         

x = − 1, 0  y 1 . Thus z = −1 + iy, dz = idy. 
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Cont’d 

 

Suppose f is continuous in a domain D. If there exists 

a function F such that F’(z) = f(z) for each z in D, then 

F is called an antiderivative of f. 

DEFINITION 3.3 
Antiderivative 
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Cont’d 

 

Suppose f is continuous in a domain D and F is an 

antiderivative of f in D. Then for any contour C in D 

with initial point z0 and terminal point z1, 

        (10) 

THEOREM 3.7 
Fundamentals Theorem for Contour 

Integrals 
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Cont’d 

Proof  

With F(z) = f(z) for each z in D, we have  
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Example 10 

In Example 9, the contour is from −1 to −1 + i. The 

function f(z) = 2z is entire and F(z) = z2 such that F’(z) = 

2z = f(z). Thus 
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Example 11 

Evaluate  

where C is any contour fro z = 0 to z = 2 + i.  
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Some Conclusions from Theorem 3.7 

If C is closed then z0  = z2,  then 

 

              (11) 

In other words: 

If a continuous function f has an antiderivative F  

in D, then        is independent of the path.  

Sufficient condition for the existence of an 

antiderivative: 

If f is continuous and                  is independent of 

the path in a domain D, then f has an antiderivative 

everywhere in D.      
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Cont’d 

 

If f is analytic in a simply connected domain D, then f  

has an antiderivative in D; that is, there existence a  

function F such that F’(z) = f(z) for all z in D. 

THEOREM 3.8 
Existence of a Antiderivative 
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Example 12 

Evaluate  

 

where C is shown in Fig 8.  
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Cont’d 

Solution 

Suppose that D is the simply connected domain defined 

by x > 0, y > 0. In this case Ln z is an antiderivative of  

1/z. Hence  
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3.4 Cauchy Integral Formulas 

 

Let f be analytic in a simply connected domain D, and 

let C be a simple closed contour lying entirely within D. 

If z0 is any point within C, then 

        (11) 

 

THEOREM 3.9 
Cauchy’s Integral Formula 
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Cont’d 

Proof 

Let C1 be a circle centered at z0 with radius small 

enough that it is interior to C. Then we have 

 

        (12) 

For the right side of (12) 

 

        (13) 
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Cont’d 

From (4) of Sec. 3.2, we know  

 

 

Thus  (13) becomes  

 

        (14) 

However from the ML-inequality and the fact that the 

length of C1 is small enough, the second term of the 

right side in (4) is zero. We complete the proof. 
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Cont’d 

A more practical restatement of Theorem 3.9 is : 

 

If f is analytic at all points within and on a simple 

closed contour C, and z0 is any point interior to C, 

then       
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Example 13 

Evaluate  

 

where C is the circle |z| = 2. 

Solution 

First f  = z2 – 4z + 4  is analytic and z0 = −i is within C. 

Thus   

zd
iz

zz

C 

 442

)34(2)43(2)(2
442

iiiifizd
iz

zz

C





 

Ch18_53 



Example 14 

Evaluate  

 

where C is the circle |z – 2i | = 4. 

Solution 

See Fig 8. Only z = 3i is within C, and 
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Fig 8. 
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Example 15 

The complex function  

where k = a + ib and z1 are complex numbers, gives rise 

to a flow in the domain z  z1. If C is a simple closed 

contour containing z = z1 in its interior, then we have  
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Cont’d 

The circulation around C is 2b and the net flux across 

C is 2a. If z1 were in the exterior of C both of them 

would be zero. Note that when k is real, the circulation 

around C is zero but the net flux across C is 2k. The 

complex number z1 is called a source when k > 0 and is 

a sink when k < 0. 

See Fig 9. 
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Fig 9. 
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Cont’d 

 

Let f be analytic in a simply connected domain D, and 

let C be a simple closed contour lying entirely within D. 

If z0 is any point within C, then 

        (16) 

 

THEOREM 3.8 
Cauchy’s Integral Formula 
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Cont’d 

Partial Proof 

Prove only for n = 1. From the definition of the 

derivative and (11): )/()( 1zzkzf 
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From the ML-inequality and 
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Example 16 

Evaluate  

 

where C is the circle |z| = 1. 

Solution 

This integrand is not analytic at z = 0, −4 but only z = 0 

lies within C. Since 

 

 

We get z0 = 0, n = 2, f(z) = (z + 1)/(z + 4), f (z) = −6/(z 

+ 4)3. By (6): 
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Example 17 

Evaluate  

 

where C is shown in Fig 9. 

zd
izz

z

C 


2

3

)(

3

Ch18_64 



Cont’d 

Solution 

Though C is not simple, we can think of it is as the 

union of two simple closed contours C1 and C2 in Fig 10.  
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Cont’d 

For I1 : z0 = 0 , f(z) = (z3 + 3)/(z – i)2 : 

 

 

 

For I2 : z0 = i, n = 1, f(z) = (z3 + 3)/z,  f ’(z) = (2z3 –3 )/z2: 
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Liouville’s Theorem  

If we take the contour C to be the circle |z – z0| = r, 

from (16) and ML-inequality that 

 

 

         

        (17) 

 

 

where |f(z)|  M for all points on C. The result in (17) 

is called Cauchy’s inequality.  
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Proof  

For n = 1, (17) gives |f ’(z0)|  M/r. By taking r 

arbitrarily large, we can make |f ’(z0)| as small as we 

wish. That is, |f ’(z0)| = 0, f is a constant function.  

 

The only bounded entire functions are constants. 

THEOREM 3.11 
Liouville’s Theorem  
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