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Introduction to Graphs
Def 1. A graph G = (V, E) consists of V, a nonempty 

set of vertices (or nodes), and E, a set of edges. 

Each edge has either one or two vertices 

associated with it, called its endpoints. An edge is 

said to connect its endpoints.

eg.

v1

v2

v3 v4

v7

v6

G=(V, E), where 

V={v1,v2,…, v7}

E={{v1,v2}, {v1,v3}, {v2,v3}

{v3,v4}, {v4,v5}, {v4,v6}

{v4,v7}, {v5,v6}, {v6,v7}}

v5
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Def Multigraph:

simple graph + multiple edges (multiedges)
(Between two points to allow multiple edges)

eg.
V1

V2

V3 V4

V7

V5

V6

Def A graph in which each edge connects two 

different vertices and where no two edges connect 

the same pair of vertices is called a simple graph.
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Def. Pseudograph:

simple graph  +  multiedge

+  loop

(a loop:      )

eg.
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Note:

u v

The two edges (u,v),(u,v) 

are multiedges.

u v

The two edges (u,v),

(v,u) are not multiedges.

Def 2. Directed graph (digraph): 

simple graph with each edge directed

Note:       is allowed in a directed graph

Def. Directed multigraph: digraph+multiedges
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Table 1. Graph Terminology

Type Edges Multiple 

Edges

Loops

(simple) graph undirected

edge: {u,v}
 

Multigraph  

Pseudograph  

Directed graph directed

edge: (u,v)

 

Directed multigraph  



Example 1. (Niche Overlap graph)

We can use a simple graph to represent interaction of 

different species of animals. Each animal is represented 

by a vertex. An undirected edge connects two vertices if 

the two species represented by these vertices compete.

Graph Models

eg

8



Example 2. (Acquaintanceship graphs)

We can use a simple graph to represent whether 

two people know each other. Each person is 

represented by a vertex. An undirected edge is used 

to connect two people when these people know each 

other.

eg

Jan Paula Todd

Lila Lizd Steve

Kamlesh

Amy

9



Example 3. (Influence graphs)

In studies of group behavior it is observed that 

certain people can influence the thinking of others. 

Simple digraph  Each person of the group is 

represented by a vertex. There is a directed edge 

from vertex a to vertex b when the person a

influences the person b.

eg Linda Brian

Deborah Fred Yvonne
10



Example 9. (Precedence graphs and concurrent processing)

Computer programs can be executed more rapidly by 

executing certain statements concurrently. It is important not to 

execute a statement that requires results of statements not yet 

executed. 

Simple digraph  Each statement is represented by a vertex, 

and there is an edge from a to b

if the statement of b cannot be 

executed before the statement of a. 

Eg.

S1 S2

S4

S5

S3

S6

S1: a:=0

S2: b:=1

S3: c:=a+1

S4: d:=b+a

S5: e:=d+1

S6: e:=c+d
11







10. Construct an influence graph for the board members

of a company if the President can influence the Director of

Research and Development, the Director of Marketing,

and the Director of Operations; the Director of Research

and Development can influence the Director of

Operations; the Director of Marketing can influence the

Director of Operations; and no one can influence, or be

influenced by, the Chief Financial Officer.



11. Construct the call graph for a set of seven telephone

numbers 555-0011, 555-1221, 555-1333, 555-8888, 555-

2222, 555-0091, and 555-1200 if there were three calls

from 555-0011 to 555-8888 and two calls from 555-8888 to

555-0011, two calls from 555-2222 to 555-0091, two calls

from 555-1221 to each of the other numbers, and one call

from 555-1333 to each of 555-0011, 555-1221, and 555-

1200.



12. Construct a precedence graph for the following 

program: 

S1: x := 0 

S2: x := x + 1 

S3: y := 2 

S4: z := y 

S5: x := x + 2 

S6: y := x + z 

S7: z := 4 
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Graph Terminology

Def 1. Two vertices u and v in a undirected graph G

are called adjacent (or neighbors) in G if {u, v}

is an edge of G.

Def 2. The degree of a vertex v, denoted by deg(v),

in an undirected graph is the number of edges

incident with it.

(Note : A loop adds 2 to the degree.)



Example 1. What are the degrees of the 

vertices in the graph H ?

deg(a)=4, deg(b)=6,

deg(c)=1, deg(d)=5,

deg(e)=6, and deg(f)=0

H

a b
c

e d f

Def. A vertex of degree 0 is called isolated.

Solution :

18

Def. A vertex is pendant if and only if it has degree

one.



Theorem 1. (The Handshaking Theorem)

Let G = (V, E) be an undirected graph with

e edges (i.e., |E| = e). Then

19

1. Because of the analogy between an edge having two

endpoints and a handshake involving two hands. 2. Each

edge contributes two to the sum of the degrees of the

vertices because an edge is incident with exactly two

(possibly equal) vertices. This means that the sum of the

degrees of the vertices is twice the number of edges.



eg. The graph H has 11   

edges, and





Vv

v 22)deg(

Example 3. How many edges are there in a 

graph with 10 vertices each of 

degree six?

Solution : 10  6 = 2e  e=30

H

a b c

e d f

20
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THEOREM 2: An undirected graph has an even number of

vertices of odd degree.

1 2

2

2 deg( ) deg( ) deg( )

deg( ) is even.

Thus,  there are an even number of vertices of odd degree.

v V v V v V

v V

m v v v

v

  



  



  



Proof: Let V1 and V2 be the set of vertices of even degree

and the set of vertices of odd degree, respectively, in an

undirected graph G = (V, E) with m edges.

Then



Definition 3:

G = (V, E): directed graph,

e = (u, v)  E : u is adjacent to v

v is adjacent from u

u : initial vertex of e

v : terminal (end) vertex of e

The initial vertex and 

terminal vertex of a 

loop are the same

u v

u
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Def 4.

G = (V, E) : directed graph,  vV

deg-(v) : # of edges with v as a terminal.

(in-degree)

deg+(v) : # of edges with v as a initial vertex
(out-degree)

Example 4.

deg-(a)=2, deg+(a)=4

deg-(b)=2, deg+(b)=1

deg-(c)=3, deg+(c)=2

deg-(d)=2, deg+(d)=2

deg-(e)=3, deg+(e)=3

deg-(f )=0, deg+(f )=0

a
b

c

e d f



24

Thm 3. Let G = (V, E) be a digraph. Then



eg. K4 is 3-regular.

Regular Graph

A simple graph G=(V, E) is called regular if 

every vertex of this graph has the same 

degree. A regular graph is called n-regular if 

deg(v)=n , vV.

25
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Example 5: The complete graph on n vertices, 

denoted by Kn, is the simple graph that 

contains exactly one edge between each pair 

of distinct vertices.

Some Special Simple Graphs

K1 K2 K3 K4

Note. Kn is (n-1)-regular, |V(Kn)|=n, 
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Example 6. The cycle Cn, n3, consists of n

vertices v1, v2, …, vn and edges {v1,v2}, 

{v2,v3}, …, {vn-1,vn}, {vn,v1}.

Note Cn is 2-regular, |V(Cn)| = n, |E(Cn)| = n

C5C3 C4



Example 7. We obtained the wheel Wn when 

we add an additional vertex to the cycle Cn 

for n3, and connect this new vertex to 

each of the n vertices in Cn, by new edges.

W5
W6

Note. |V(Wn)| = n + 1, |E(Wn)| = 2n, 

Wn is not a regular graph if n  3. 28



Example 8. The n-dimensional hypercube, or 

n-cube, denoted by Qn, is the graph that has 

vertices representing the 2n bit strings of length n.

Two vertices are adjacent if and only if the bit 

strings that they represent differ in exactly one 

bit position.

Q2

Note. Qn is n-regular, |V(Qn)| = 2n, |E(Qn)| = (2nn)/2 =2n-1n

Q1

0 1

10 11

00 01

Q3

100

110 111

011
010

000 001

101

29



Def 5. A simple graph G=(V, E) is called bipartite if 

V can be partitioned into V1 and V2, V1∩V2=, 

such that every edge in the graph connect a 

vertex in V1 and a vertex in V2.

Example 9.

v1

v3

v5

v2

v4

v6

∴ C6 is bipartite.

V1 V2

Some Special Simple Graphs

30
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Example 10. Is the graph G bipartite ?

Yes !

a b

g

f

e

d

c

G

a

g

f

e

c

b

d
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Thm 4. A simple graph is bipartite if and only if it is 

possible to assign one of two different colors to 

each vertex of the graph so that no two adjacent 

vertices are assigned the same color.

Example 12. Use Thm 4 to show that G is bipartite.

a b

g

f

e

d

c

G

1

2

2

2

2

1

1
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Definition: Complete Bipartite Graphs

A complete bipartite graph Km,n is a graph that has its

vertex set partitioned into two subsets of m and n

vertices, respectively with an edge between two

vertices if and only if one vertex is in the first subset and

the other vertex is in the second subset.
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Example 11: Complete Bipartite graphs (Km,n)

K2,3
K3,3

Note: |V(Km,n)| = m+n, |E(Km,n)| = mn,

Km,n is regular if and only if m=n.



EXERCISE

For which values of n are these graphs bipartite? 

a) Kn

b) Cn

c) Wn

d) Qn
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Example 14. A subgraph of K5

Def 6. A subgraph of a graph G=(V, E) is a 

graph H=(W, F) where W  V and F  E.

a

b

cd

e

K5
subgraph of K5

a

b

c

e

New Graphs from Old
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Def 7. The union of two simple graphs 

G1=(V1, E1) and G2=(V2, E2) is the simple graph

G1∪G2=(V1∪V2, E1∪E2)

a b c

d e f

G1∪G2

Example 15.
a b c

d f

a b c

d e

G1 G2
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Example 1. Use adjacency lists to describe the 

simple graph given below.

b

a

e d

c

Vertex Adjacent Vertices

a b,c,e

b a

c a,d,e

d c,e

e a,c,d

Sol :

Adjacency and Terminal vertices
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Example 2. (digraph)

a

b

e d

c

Initial vertex Terminal vertices

a b,c,d,e

b b,d

c a,c,e

d

e b,c,d
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Adjacency Matrices

Def. G=(V, E) : simple graph, V={v1,v2,…,vn}.

A matrix A is called the adjacency matrix of G

if A=[aij]nn , where aij =    1, if {vi,vj}E, 

0, otherwise.
Example 3.

a

c

b

d

Note: 
1.There are n! different adjacency matrices for a graph with n vertices.

2.The adjacency matrix of an undirected graph is symmetric. 

3. aii = 0 (simple matrix has no loop)



Example 5. (Pseudograph) (Matrix may not be 0,1 matrix.)

Def. If A=[aij] is the adjacency matrix for the directed

graph, then 

aij =

1    , if 

0    , otherwise

(So the matrix is 

not necessarily 

symmetrical)

a b

c
d

vi vj

45



EXERCISES

Identify whether 

the adjacency 

matrix of the 

following directed 

graphs is 

symmetrical or not.



Incidence Matrices

Def. Let G=(V, E) : be an undirected graph. Suppose that

v1,v2,…,vn are the vertices and e1,e2,…,en are the edges of G .

Then the incidence matrix with respect to this ordering of V

and E is the n x m matrix M=[mij], where

47

1 when edge  is incident with ,

, 0 otherwise.
j ie v

i jm 

Example 6.
Example 7.



Def 1. The simple graphs G1=(V1, E1) and G2=(V2,

E2) are isomorphic if there is an one-to-one

and onto function f from V1 to V2 with the

property that a~b in G1 iff f(a)~f(b) in G2,

a,bV1. f is called an isomorphism.

Isomorphism of Graphs

u1

G H

u3

u2

u4

v2

v4

v1

v3

G is isomorphic to H

48



Example 8. Show that G and H are  isomorphic.

Sol. The function f with f(u1) = v1, f(u2) = v4, f(u3) = v3, 

and f(u4) = v2 is a one-to-one correspondence 

between V(G) and V(H).

※Isomorphism graphs there will be:

(1) The same number of points (vertices)

(2) The same number of edges

(3) The same number of degree

u1

G H

u3

u2

u4

v2

v4

v1

v3

49



Given figures, judging whether they are isomorphic in 
general is not an easy task.

Example 9. Show that G and H are not isomorphic.

Sol :

G has a vertex of degree  = 1 , H don’t

G H

50



Example 10.

Determine whether G and H are isomorphic.

HG

a b

d c

e

h

f

g

s

v

t

u

w x

z y

Sol : ∵ In G, deg(a)=2, which must correspond to either t, u, 

x, or y in H degree 

Each of these four vertices in H is adjacent to 

another vertex of degree two in H,

which is not true for a in G

∴ G and H are not isomorphic.

51



Example 11. Determine whether the graphs G and H

are isomorphic.

G Hu1 u2

u4 u3

u5

u6

v1

v2

v3

v4

v5
v6

Sol: 

f(u1)=v6, f(u2)=v3, f(u3)=v4, f(u4)=v5, f(u5)=v1, f(u6)=v2

Yes

52













Def. 1 :

In an undirected graph, a path of length n from u
to v is a sequence of n + 1 adjacent vertices going 
from vertex u to vertex v. 
(e.g., P: u=x0, x1, x2, …, xn=v.) ( P has n edges.)

Def. 2:

path: Points and edges in unrepeatable
trail:  Allows duplicate point (path not repeatable)
walk: Allows duplicate point and duplicate path

Example 1:

Connectivity

58

u

v w

x y

path: u, v, y

trail: u, v, w, y, v, x, y

walk: u, v, w, v, x, v, y
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Def: 

cycle: path with u=v

circuit: trail with u=v

closed walk: walk with u=v

G

u

v w

x y

cycle: u, v, y, x, u

trail: u, v, w, y, v, x, u

walk: u, v, w, v, x, v, y, x, u

Example



Paths in Directed Graphs

The same as in undirected graphs, but the path 

must go in the direction of the arrows.

Connectedness in Undirected Graphs

Def. 3:

An undirected graph is connected if there is a 

path between every pair of distinct vertices in the 

graph.

61
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CONNECTED COMPONENTS: A connected component

of a graph G is a connected sub-graph of G that is not a

proper sub-graph of another connected sub-graph of G.

That is, a connected component of a graph G is a

maximal connected sub-graph of G. A graph G that is not

connected has two or more connected components that

are disjoint and have G as their union.
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EXAMPLE 6: The graph G1 in Figure 2 is connected,

because for every pair of distinct vertices there is a path

between them (the reader should verify this). However,

the graph G2 in Figure 2 is not connected. For instance,

there is no path in G2 between vertices a and d.



Def:
A cut vertex separates one connected component 
into several components if it is removed.
A cut edge separates one connected component 
into two components if it is removed.

Example 8. Find the cut vertices and cut edges in the
graph G.  

b

a

c

d

e h

gf

G
cut vertices: b, c, e

cut edges: 

{a, b}, {c, e} 

Sol:

64
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Connectedness in Directed Graphs

Def. 4: (a) A directed graph is strongly connected if

there is a path from a to b and from b to a whenever a

and b are vertices in the graph.

For a directed graph to be strongly connected there

must be a sequence of directed edges from any vertex

in the graph to any other vertex. A directed graph can

fail to be strongly connected but still be in “one piece.”



Ch9-66

(b) A directed graph is weakly connected if there is a

path between every two vertices in the underlying

undirected graph.

That is, a directed graph is weakly connected if and only

if there is always a path between two vertices when the

directions of the edges are disregarded. Clearly, any

strongly connected directed graph is also weakly

connected.



Example 9 Are the directed graphs G and H strongly

connected or weakly connected?

e

a

d

b

G c H

e

a

d

b

c

strongly connected weakly connected

67



Paths and Isomorphism

Example 12. Determine whether the graphs G and 

H are isomorphic.

G

u1

u2

u3

u4

u5

u6

H

v1

v2

v3

v4

v5

v6

Sol: No, Because G has no simple circuit of length three, but H does

Note that connectedness, and the existence of a 

circuit or simple circuit of length k are graph 

invariants with respect to isomorphism.

68



Example 13. Determine whether the graphs G and 

H are isomorphic.

G
u2

u1 u3

u4
u5

H
v1

v5 v2

v3
v4

Both G and H have 5 vertices, 6 edges, two vertices of 

deg 3, three vertices of deg 2, a 3-cycle, a 4-cycle, and 

a 5-cycle.  G and H may be isomorphic.

The function f with f(u1) = v1, f(u2) = v4,  f(u3) = v3, 

f(u4) = v2 and f(u5) = v5 is a one-to-one correspondence 

between V(G) and V(H).  G and H are isomorphic.

Sol.

69











Counting Paths between Vertices

Theorem 2: 

Let G be a graph with adjacency matrix A with respect to 

the ordering v1, v2, …, vn. The number of walks of length r

from vi to vj is equal to (Ar)i,j.

74



Example 14. How many walks of length 4 are

there from a to d in the graph G?

G

a b

cd

Sol.

The adjacency matrix of G

(ordering as a, b, c, d) is






















8008

0880

0880

8008

     4A  8

75

a-b-a-b-d, a-b-a-c-d, a-c-a-b-d, a-c-a-c-d,

a-b-d-b-d, a-b-d-c-d, a-c-d-b-d, a-c-d-c-d



Def 1:

(a) An Euler circuit in a graph G is a simple circuit 

containing every edge of G.

(b) An Euler path in G is a simple path containing  

every edge of G.

76

Thm. 1: A connected multigraph with at least two

vertices has an Euler circuit if and only if

each of its vertices has even degree.

Thm. 2: A connected multigraph has an Euler path

(but not an Euler circuit) if and only if it has

exactly 2 vertices of odd degree.



Example 1. Which of the following graphs 

have an Euler circuit or an Euler 

path? 

77

a b

G1

c

e

d

a b

G2

c

e

d

a b G3

c ed

Euler circuit Euler pathnone



Def. 2: A simple path in a graph G that passes

through every vertex exactly once is called a

Hamilton path, and a simple circuit in a graph G

that passes through every vertex exactly once is

called a Hamilton circuit.

78

Example 1. Which of the following graphs have 

a Hamilton circuit or a Hamilton path? 

a b

G2

cd

Hamilton circuit: G1

a b

G1

c

d

e

a b

G3

d ec

g

f

Hamilton path: G1,G2



Thm. 3 (Dirac’s Thm.):

If G is a simple graph with n  3 vertices such 

that the degree of every vertex in G is at least 

n/2, then G has a Hamilton circuit. 

79

each vertex has deg  n/2 =3.5

Hamilton circuit exists

Such as: a, c, e, g, b, d, f, a

b a

f
d

c
g

Example

e
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Thm. 4 (Ore’s Thm.):

If G is a simple graph with n  3 vertices such that 

deg(u) + deg(v)  n for every pair of nonadjacent 

vertices u and v, then G has a Hamilton circuit. 

each nonadjacent vertex pair 

has deg sum  n = 7

Hamilton circuit exists

Such as: a, d, f, e, c, b, g, a

b a

f
d

c
g

Example

e



Shortest-Path Problems

Def:

1. Graphs that have a number assigned

to each edge are called weighted graphs.

2. The length of a path in a weighted graph is

the sum of the weights of the edges of this

path.

3. Short-Path is the path of least sum of the

weights between two vertices in a weighted

graph.

81
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Example 1. What is the length of a shortest path 

between a and z in the weighted graph G? 

G

b c

ed

a
z

2

1

3

3

4

2

3

Sol. 

length=6

a

L=0
(1) (2)

d

a

2
L=2

(3)

b

d

a

4

2

L=4

(4)

b

ed

a

4

2

3

L=5

ed

a z

12

3

4 L=6(5)
b
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Example 2. Use Dijkstra’s algorithm to find the 

length of a shortest path between a and z in the 

weighted graph. 

b d

ec

a z

6

3

8

5

4

2

10

1 2

b d

ec

a z

6

3

8

5

4

2

10

1 2

0

 





Sol. 

0

b d

ec

a z

6

3

8

5

4

2

10

1 2

4(a)




2(a)




0

b d

ec

a z

6

3

8

5

4

2

10

1 2

3(c) 10(c)



12(c)2(a)


0

b d

ec

a z

6

3

8

5

4

2

10

1 2

3(c) 8(b)



12(c)2(a)


d

0

b

ec

a z

6

3

8

5

4

2

10

1 2

3(c) 8(b)

14

(d)

10(d)2(a)
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d

0

b

ec

a z

6

3

8

5

4

2

10

1 2

3(c) 8(b)

14(d)

10(d)2(a)



d

0

b

ec

a z

6

3

8

5

4

2

10

1 2

3(c) 8(b)

13(e)

10(d)2(a)


13(e)

d

0

b

ec

a z

6

3

8

5

4

2

10

1 2

3(c) 8(b)

10(d)2(a)

 path: a, c, b, d, e, z

length: 13

Contd
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excersice
1. Use Dijkstra’s algorithm (on page 712 of your text 

book) to find the length of a shortest path between a

and z in the weighted graph. 



Planar Graphs

Def 1.

A graph is called planar if it can be drawn in the 

plane without any edge crossing. Such a drawing 

is called a planar representation of the graph.

87

Example 1: Is K4 planar?

K4
K4 drawn with

no crossings

 K4 is planar
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Example 3: Show that K3,3 is nonplanar.

Example 2: Is Q3 planar?

Q3 Q3 drawn with no crossings

 Q3 is planar

v1

v4

v2 v3

v5 v6

Sol. In any planar representation of K3,3, the

vertices v1 and v2 must be connected to both

v4 and v5. These four edges form a closed

curve that splits the plane into two regions,

R1 and R2, as shown in Figure 7(a).
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The vertex v3 is in either R1 or R2. When v3 is in R2, the inside

of the closed curve, the edges between v3 and v4 and

between v3 and v5 separate R2 into two sub-regions, R21 and

R22, as shown in Figure 7(b).
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Next, note that there is no way to place the final vertex v6

without forcing a crossing. For if v6 is in R1, then the edge

between v6 and v3 cannot be drawn without a crossing.

If v6 is in R21, then the edge between v2 and v6 cannot be

drawn without a crossing. If v6 is in R22, then the edge

between v1 and v6 cannot be drawn without a crossing.

A similar argument can be used when v3 is in R1. The

completion of this argument is left for the reader. It follows

that K3,3 is not planar.
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Euler’s Formula

A planar representation of a graph splits the plane 

into regions, including an unbounded region.

Example : How many regions are there in the 

following graph?

R1

R2

R4

R3

R5
Sol. 6

Thm 1 (Euler’s Formula)

Let G be a connected planar simple graph with e

edges and v vertices. Let r be the number of regions 

in a planar representation of G. Then r = e-v +2.

R6
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Example 4: Suppose that a connected planar 

graph has 20 vertices, each of degree 3. Into 

how many regions does a representation of this 

planar graph split the plane?

Sol. 

v = 20, 2e = 320 = 60, e = 30

r = e-v+2 = 30-20+2 = 12

Corollary 1

If G is a connected planar simple graph with e

edges and v vertices, where v  3, then e  3v - 6.

Example 5: Show that K5 is nonplanar.

Sol. 

v= 5, e = 10,  but 3v - 6 = 9. 
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Corollary 3

If a connected planar simple graph has e edges 

and v vertices with v  3 and no circuits of length 

three, then  e  2v - 4.

Example 6: Show that K3,3 is nonplanar by Cor. 3.

Sol. 

Because K3,3 has no circuits of length three, 

and v = 6, e = 9,  but e = 9 > 2v - 4.

a

d

b c

e f
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Exercise: Determine whether the given graph is planar.
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Kuratowski’s Theorem

If a graph is planar, so will be any graph obtained by 

removing an edge {u, v} and adding a new vertex w

together with edges {u, w} and {v, w}.

wu v

Such an operation is called an elementary subdivision.

Two graphs G1 = (V1, E1), G2=(V2, E2) are called 

homeomorphic if they can be obtained from the same 

graph by a sequence of elementary subdivisons. 
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Example 7: Show that the graphs G1, G2, and G3 are 

all homeomorphic.

a

c

b

d e

a

c

b

d e

f

g

h i
a

c

b

d e

g

k

j

Sol: all three can be obtained from G1

Thm 2. (Kuratowski Theorem)

A graph is nonplanar if and only if it contains a 

subgraph homeomorphic to K3,3 or K5.
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32

5

7

1 6

8

4 9

Example 9: Show that the Petersen graph is not    

planar.
Sol:

1

654

7

2

8

3

9

It is homeomorphic to K3,3.
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Exercise: Determine

whether the given

graph is

homeomorphic to K3,3.



Graph Coloring

Def. 1:

A coloring of a simple graph is the assignment of a 
color to each vertex of the graph so that no two 
adjacent vertices are assigned the same color.
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Example:

2

1

1

5
2

4 3

5-coloring

2

1

3

1
1

3 2

3-coloring

Less the number of colors, the better



Def. 2:The chromatic number of a graph is the least 

number of colors needed for a coloring of this 

graph. (denoted by c(G))

100

1 2

5

4

3

Example 2: c(K5)=5

Note: c(Kn)=n

1

2

3

4

5
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Example: c(K2,3) = 2.

1 1

2 2 2

Note: c(Km,n) = 2

Note: If G is a bipartite graph, c(G) = 2.
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b

a

e

d
g

Example 1: What are the chromatic numbers of the 

graphs G and H?

c f

G

ga

H

Solution: The chromatic number of G is at least three,

because the vertices a,b, and c must be assigned different

colors. To see if G can be colored with three colors, assign

red to a, blue to b, and green to c. Then, d can (and must)

be colored red because it is adjacent to b and c.

b e

c f

d
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Furthermore, e can (and must) be colored green because it

is adjacent only to vertices colored red and blue, and f can

(and must) be colored blue because it is adjacent only to

vertices colored red and green. Finally, g can (and must) be

colored red because it is adjacent only to vertices colored

blue and green. This produces a coloring of G using exactly

three colors. Figure 4 displays such a coloring.

The graph H is made up of the graph G with an edge

connecting a and g. Any attempt to color H using three colors

must follow the same reasoning as that used to color G,

except at the last stage, when all vertices other than g have

been colored. Then, because g is adjacent (in H) to vertices

colored red, blue, and green, a fourth color, say brown,

needs to be used. Hence, H has a chromatic number equal

to 4. A coloring of H is shown in Figure 4.
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Blue

Red

Green

Red

Red

Green Blue

G

ga

H

Figure 4: Colorings of the graphs G and H.

Red

Blue

Green

Red

Blue

Brown

Green



Example 4: c(Cn) =    2 if n is even,

3 if n is odd.
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

Thm 1. (The Four Color Theorem)

The chromatic number of a planar graph is no 

greater than four.

1 2

3

2

1

Cn is bipartite

when n is even. 
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Example 5: K7 is not planar because its chromatic 

number is 7 which is greater than 4.

Corollary

Any graph with chromatic number > 4 is non-planar.
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excercise

2. Schedule the final exams for Math 115, Math 116,

Math 185, Math 195, CS 101, CS 102, CS 273, and CS

473, using the fewest number of different time slots, if

there are no students taking both Math115 and CS473,

both Math 116 and CS 473, both Math 195 and CS 101,

both Math195 and CS102, both Math115 and Math116,

both Math 115 and Math 185, and both Math 185 and

Math 195, but there are students in every other pair of

courses.(Hint: See Example 5 on page 732.)
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