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Linear algebra has in recent years become an essential part of the mathemtical background required by
mathematicians and mathematics teachers, engineers, computer scientists, physicists, economists, and statisti-
cians, among others. This requirement reflects the importance and wide applications of the subject matter.

This book is designed for use as a textbook for a formal course in linear algebra or as a supplement to all
current standard texts. It aims to present an introduction to linear algebra which will be found helpful to all
readers regardless of their fields of specification. More material has been included than can be covered in most
first courses. This has been done to make the book more flexible, to provide a useful book of reference, and to
stimulate further interest in the subject.

Each chapter begins with clear statements of pertinent definitions, principles and theorems together with
illustrative and other descriptive material. This is followed by graded sets of solved and supplementary
problems. The solved problems serve to illustrate and amplify the theory, and to provide the repetition of basic
principles so vital to effective learning. Numerous proofs, especially those of all essential theorems, are included
among the solved problems. The supplementary problems serve as a complete review of the material of each
chapter.

The first three chapters treat vectors in Euclidean space, matrix algebra, and systems of linear equations.
These chapters provide the motivation and basic computational tools for the abstract investigation of vector
spaces and linear mappings which follow. After chapters on inner product spaces and orthogonality and on
determinants, there is a detailed discussion of eigenvalues and eigenvectors giving conditions for representing a
linear operator by a diagonal matrix. This naturally leads to the study of various canonical forms, specifically,
the triangular, Jordan, and rational canonical forms. Later chapters cover linear functions and the dual space V*,
and bilinear, quadratic and Hermitian forms. The last chapter treats linear operators on inner product spaces. For
completeness, there is an appendix on polynomials over a field.

The main changes in the third edition have been for pedagogical reasons rather than in content. Specifically,
the abstract notion of a linear map and its matrix representation appears before and motivates the study of
eigenvalues and eigenvectors and the diagonalization of matrices (under similarity). There are also many
additional solved and supplementary problems.

Finally, we wish to thank the staff of the McGraw-Hill Schaum’s Outline Series, especially Barbara Gilson,
for their unfailing cooperation.

SEYMOUR LIPSCHUTZ
MARC LARS LIPSON
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Vectors in R" and C”,
Spatial Vectors

1.1 INTRODUCTION

There are two ways to motivate the notion of a vector: one is by means of lists of numbers and
subscripts, and the other is by means of certain objects in physics. We discuss these two ways below.

Here we assume the reader is familiar with the elementary properties of the field of real numbers,
denoted by R. On the other hand, we will review properties of the field of complex numbers, denoted by C.
In the context of vectors, the elements of our number fields are called scalars.

Although we will restrict ourselves in this chapter to vectors whose elements come from R and then
from C, many of our operations also apply to vectors whose entries come from some arbitrary field K.

Lists of Numbers

Suppose the weights (in pounds) of eight students are listed as follows:

156, 125, 145, 134, 178, 145, 162, 193
One can denote all the values in the list using only one symbol, say w, but with different subscripts; that is
Wi, Wy, W3, Wy, Ws, W, W, Wy
Observe that each subscript denotes the position of the value in the list. For example,
w, = 156, the first number, w, = 125, the second number, ...
Such a list of values,
w = (Wy, Wy, W3, ..., Wg)

is called a linear array or vector.
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2 VECTORS IN R"” AND C", SPATIAL VECTORS [CHAP. 1

Vectors in Physics

Many physical quantities, such as temperature and speed, possess only “magnitude”. These quantities
can be represented by real numbers and are called scalars. On the other hand, there are also quantities, such
as force and velocity, that possess both “magnitude” and “direction”. These quantities, which can be
represented by arrows having appropriate lengths and directions and emanating from some given reference
point O, are called vectors.

Now we assume the reader is familiar with the space R® where all the points in space are represented
by ordered triples of real numbers. Suppose the origin of the axes in R? is chosen as the reference point O
for the vectors discussed above. Then every vector is uniquely determined by the coordinates of its
endpoint, and vice versa.

There are two important operations, vector addition and scalar multiplication, that are associated with
vectors in physics. The definition of these operations and the relationship between these operations and the
endpoints of the vectors are as follows.

(1) Vector Addition: The resultant u+v of two vectors u and v is obtained by the so-called
parallelogram law; that is, w4+ v is the diagonal of the parallelogram formed by u and v.
Furthermore, if (a,b,c¢) and (d/,b,c’) are the endpoints of the vectors u and v, then
(a+d, b+ b, c+ ) is the endpoint of the vector u+ v. These properties are pictured in Fig.

1-1(a).
(a+ad, b+b, c+c) z
z e
(ka, kb, kc)
.M.
= (@ b,¢)
0 >
> y

(b) Scalar Multiplication

(a) Vector Addition

Fig. 1-1

(ii) Scalar Multiplication: The product ku of a vector u by a real number £ is obtained by multiplying
the magnitude of u by & and retaining the same direction if k£ > O or the opposite direction if k£ < 0.
Also, if (a, b, ¢) is the endpoint of the vector u, then (ka, kb, kc) is the endpoint of the vector ku.
These properties are pictured in Fig. 1-1(b).

Mathematically, we identify the vector u with its (a, b, ¢) and write u = (a, b, ¢). Moreover, we call the
ordered triple (a, b, ¢) of real numbers a point or vector depending upon its interpretation. We generalize
this notion and call an n-tuple (a,, a,, .. ., a,) of real numbers a vector. However, special notation may be
used for the vectors in R® called spatial vectors (Section 1.6).

1.2 VECTORS IN R”
The set of all n-tuples of real numbers, denoted by R”, is called n-space. A particular n-tuple in R”, say
u=I(a,a,...,a,)

is called a point or vector. The numbers a; are called the coordinates, components, entries, or elements of u.
Moreover, when discussing the space R”, we use the term scalar for the elements of R.
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Two vectors, u and v, are equal, written u = v, if they have the same number of components and if the
corresponding components are equal. Although the vectors (1,2, 3) and (2, 3, 1) contain the same three
numbers, these vectors are not equal since corresponding entries are not equal.

The vector (0, 0, ..., 0) whose entries are all 0 is called the zero vector, and is usually denoted by 0.

Example 1.1

(a) The following are vectors:
2,-5, (7.9, (0,0,0, (3,4,
The first two vectors belong to R? whereas the last two belong to R3. The third is the zero vector in R3.
(b) Find x,y,z such that (x —y, x+y, z—1)=(4,2,3).
By definition of equality of vectors, corresponding entries must be equal. Thus,
x—y=4, x+y=2, z—1=3

Solving the above system of equations yields x =3,y = —1,z =4.

Column Vectors

Sometimes a vector in n-space R” is written vertically, rather than horizontally. Such a vector is called
a column vector, and, in this context, the above horizontally written vectors are called row vectors. For
example, the following are column vectors with 2, 2, 3, and 3 components, respectively:

I 1.5
)]
’ 4| ’ 3
2 4 e

We also note that any operation defined for row vectors is defined analogously for column vectors.

1.3 VECTOR ADDITION AND SCALAR MULTIPLICATION

Consider two vectors u and v in R”, say
u=_(a;,a,...,a,) and v=(by,b,,...,b,)
Their sum, written « 4 v, is the vector obtained by adding corresponding components from « and v. That is,
u+v=_(a,+by, ay+b,, ..., a,+b,)

The scalar product or, simply, product, of the vector u by a real number k, written ku, is the vector obtained
by multiplying each component of u by k. That is,

ku=k(ay,a,...,a,) = (ka, ka,, ..., ka,)

Observe that 4+ v and ku are also vectors in R”. The sum of vectors with different numbers of components
is not defined.
Negatives and subtraction are defined in R” as follows:

—u=(—1u and u—v=u-+(—v)

The vector —u is called the negative of u, and u — v is called the difference of u and v.
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Now suppose we are given vectors u, U, ..., u, in R" and scalars k, k,, ..., k, in R. We can

multiply the vectors by the corresponding scalars and then add the resultant scalar products to form the
vector

v =k +kuy + kyuy + -+ kyuy,
Such a vector v is called a linear combination of the vectors u,, u,, ..., u,,.

Example 1.2
(a) Letu=(2,4,-5) and v = (1, —6,9). Then

u+v=Q2+1, 44(=5), -54+9=03,—1,4)
Tu = (1(2), 7(4), 1(=5)) = (14,28, —35)
—v=(=1)(1,-6,9) = (-1, 6, —9)
3u— 50 = (6,12, —15) + (=5, 30, —45) = (1,42, —60)

(b) The zero vector 0 = (0,0, ...,0) in R" is similar to the scalar 0 in that, for any vector u = (a;, a, ..., a,).

u+0=(@a, +0, a,+0, ..., a,+0)=(a;,a5,...,a,) =u

2 3 4 -9 =5
(¢) Letu= 3 |landv=| —1 |. Then 2u —3v = 6 |+ 3| = 9 1.
—4 -2 -8 6 -2

Basic properties of vectors under the operations of vector addition and scalar multiplication are
described in the following theorem.

Theorem 1.1: For any vectors u, v, w in R” and any scalars k, " in R,

1) wWH+v)+w=u+@W+w), V) k(u+v)=ovu+ ko,

(i) u+0=nu, i) (k+K)yu=ku+ku,
(i) wu+ (—u) =0, (vii) (kK )u = k(K u),
iv) u+v=v+u, (viil)  lu =u.

We postpone the proof of Theorem 1.1 until Chapter 2, where it appears in the context of matrices
(Problem 2.3).

Suppose u and v are vectors in R” for which u = kv for some nonzero scalar £ in R. Then u is called a
multiple of v. Also, u is said to be the same or opposite direction as v according as k > 0 or k < 0.

1.4 DOT (INNER) PRODUCT

Consider arbitrary vectors u and v in R”; say,
u="(a,,a,...,a,) and v=(by,b,,...,b,)
The dot product or inner product or scalar product of u and v is denoted and defined by
u-v=ab; +ab,+---+a,b,

That is, u - v is obtained by multiplying corresponding components and adding the resulting products. The
vectors # and v are said to be orthogonal (or perpendicular) if their dot product is zero, that is, if u - v = 0.
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Example 1.3

(@) Letu=(1,-2,3),v=(4,5,-1), w=(2,7,4). Then:
u-v=14)—25)+3(-1)=4-10-3=—9

u-w=2-14+12=0, v-w=8+35—-4=39
Thus u and w are orthogonal.
2 3
(b) Letu= 3landv=| —1 |.Thenu-v=6—-3+8=11.
—4 -2

(¢) Suppose u =(1,2,3,4) and v = (6, k, —8, 2). Find k so that « and v are orthogonal.
First obtain u - v = 6 4+ 2k — 24 + 8 = —10 + 2k. Then set u - v = 0 and solve for &:
—104+2k=0 or 2k =10 or k=5
Basic properties of the dot product in R” (proved in Problem 1.13) follow.

Theorem 1.2: For any vectors u, v, w in R"” and any scalar £ in R:
Q) w+v)-w=u-wt+v-w, (i) u-v=v-u,

(1) (ku)-v=k(u-v), (iv) u-u>0,andu-u=0iff u=0.

Note that (ii) says that we can “take k out” from the first position in an inner product. By (iii) and (ii),
u-(kv)y = (kv) - u = k(v-u) = k(u - v)

That is, we can also “take £ out” from the second position in an inner product.

The space R” with the above operations of vector addition, scalar multiplication, and dot product is
usually called Euclidean n-space.

Norm (Length) of a Vector

The norm or length of a vector u in R”, denoted by ||u||, is defined to be the nonnegative square root of
u - u. In particular, if u = (a;, a, ..., a,), then

lll = Vi u=Ja +ad+--+ a2

That is, |lu| is the square root of the sum of the squares of the components of u. Thus |u|| > 0, and
l#|| = 0 if and only if u = 0.

A vector u is called a unit vector if ||u|| = 1 or, equivalently, if « - u = 1. For any nonzero vector v in
R”, the vector

1 v
— =
lloll lloll

is the unique unit vector in the same direction as v. The process of finding © from v is called normalizing v.

ﬁ:

Example 1.4

(a) Suppose u = (1, —2, —4, 5,3). To find ||u||, we can first find ||u||*> = u - u by squaring each component of 1 and
adding, as follows:

full> = 12+ (=2 + (=4 + 52 +3> =1 +4+16+25+9 =55
Then |ju| = +/55.
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6 VECTORS IN R” AND C", SPATIAL VECTORS [CHAP. 1

(b) Letv=(1,-3,4,2)and w= (1, =1, 2 1) Then
2° 76766

/9 1 25 1 136
=4/ =/ d - — — _
[Iv]l 1+49+16+ 30 an [[w]| 36+36+36+36 36 «/T 1

Thus w is a unit vector but v is not a unit vector. However, we can normalize v as follows:
~_ v (1 =3 4 2
T (ﬁﬁﬁﬁ)

This is the unique unit vector in the same direction as v.

The following formula (proved in Problem 1.14) is known as the Schwarz inequality or Cauchy—
Schwarz inequality. It is used in many branches of mathematics.

Theorem 1.3 (Schwarz): For any vectors u, v in R", |u - v| < |Ju||||v].

Using the above inequality, we also prove (Problem 1.15) the following result known as the “triangle
inequality” or Minkowski’s inequality.

Theorem 1.4 (Minkowski): For any vectors u, v in R", |lu + v|| < |lu| + ||v|.

Distance, Angles, Projections

The distance between vectors u = (a;,a, ...,a,) and v = (b}, b,,...,b,) in R" is denoted and
defined by

A, ) = = vl =\ (@) — by + (@ — by + -+ + (@, — by)

One can show that this definition agrees with the usual notion of distance in the Euclidean plane R? or
3
space R°.

The angle 0 between nonzero vectors u, v in R” is defined by
u-v

el lloll
This definition is well defined, since, by the Schwarz inequality (Theorem 1.3),
u-v
L<—=x
el lloll

Note that if u-v =0, then § =90° (or 0 = =/2). This then agrees with our previous definition of
orthogonality.

The projection of a vector u onto a nonzero vector v is the vector denoted and defined by

proj(u, v) = LZU

llvll
We show below that this agrees with the usual notion of vector projection in physics.
Example 1.5
(a) Suppose u =(1,—2,3) and v = (2,4, 5). Then
d(u,v):\/(l — 2P (2-4 + (B -5 =V1+36+4=+41
To find cos 6, where 6 is the angle between u and v, we first find
u-v=2—8+15=9, lul> =14+4+9 =14, lol? =4+ 16 +25 =45
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Then
0— u-v o 9
lullllvl  /14/45
Also,

u-v 9 1 2 4
j =——v=—0(2,4,5=-2,4,5=|-,-,1
proj(u, v) ”vﬂzv 45(, ,5) 5(, ,5) [5,5, ]

(b) Consider the vectors u and v in Fig. 1-2(a) (with respective endpoints 4 and B). The (perpendicular) projection of
u onto v is the vector #* with magnitude

u-v u-v

lw* |l = Nlull cos 6 = ||u| =
lulloll vl

To obtain u*, we multiply its magnitude by the unit vector in the direction of v, obtaining
voou-v v u-v

W=t — = — = ——p
ol = loll el — Jlo)?

This is the same as the above definition of proj(u, v).

oA z 4

P(bi-ay, by-ay by-ay)

i B(by, by, b3)

i u A(ay, ay, az)

- - 0, >
0 P *3 y
X
Projection u* of u onto v u=B-4
(@) (b
Fig. 1-2
1.5 LOCATED VECTORS, HYPERPLANES, LINES, CURVES IN R”
This section distinguishes between an n-tuple P(a;) = P(a,, a,, . . ., a,) viewed as a point in R” and an

n-tuple u = [¢, ¢y, ..., ¢,] viewed as a vector (arrow) from the origin O to the point C(c,, ¢, ..., ¢,).

Located Vectors

Any pai_rgf points A(a;) a_nc)i B(b;) in R" defines the located vector or directed line segment from A to
B, written AB. We identify AB with the vector

u:B_A:[bl—al, bz_az, ey bn_an]
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8 VECTORS IN R” AND C", SPATIAL VECTORS [CHAP. 1

since E} and u have the same magnitude and direction. This is pictured in Fig. 1-2(b) for the
points A(a,,a,,a;) and B(b;,b,,b;) in R® and the vector u =B — A which has the endpoint
P(by —ay, by — ay, by — a3).

Hyperplanes
A hyperplane H in R" is the set of points (x;, x,, ..., x,) which satisfy a linear equation
axy+ax,+...+ax,=b
where the vector u = [a,, a,, . . ., a,] of coefficients is not zero.Thus a hyperplane H in R? is a line and a

hyperplane H in R® is a plane. We show below, as pictured in Fig. 1-3(a) for R?, that u is orthogonal to
any directed line segment PQ, where P(p;) and O(g;) are points in H. [For this reason, we say that u is
normal to H and that H is normal to u.]

Since P(p;) and O(g,) belong to H, they satisfy the above hyperplane equation, that is,

ap,+ap,+...+ap,=b and ajq; +ayq, +...+a,q,=>b
—
Let v="PQ =0-P=[q—P1.92= P2+ qn =Pl
Then

u-v=ay(gy —p1)+a(q —p) +... +a,(q, —p,)
=(aq +aq+ ... +a,q,) —(@p+ap,+...+ap,)=b—-b=0

—_— . .
Thus v = PQ is orthogonal to u, as claimed.

A

P+t
P
u
P-1tu
L
(a) (h)
Fig. 1-3
Lines in R”
The line L in R” passing through the point P(b,, b,, ..., b,) and in the direction of a nonzero vector
u=/la,a,,...,a, consists of the points X(x, x,, ..., x,) that satisfy
Xl = alt —+ bl
=at+b
X=P+u or BEIED o L) = (4t + by)
X, =a,t+b,

where the parameter t takes on all real values. Such a line L in R? is pictured in Fig. 1-3(b).
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Example 1.6
(a) Let H be the plane in R® corresponding to the linear equation 2x — 5y + 7z = 4. Observe that P(1, 1, 1) and

(®)

(©)

0(5, 4, 2) are solutions of the equation. Thus P and Q and the directed line segment
—
v=P0=0Q0-P=[5—-1, 4—-1, 2—-1]1=1[4,3,1]
lie on the plane H. The vector u = [2, —5, 7] is normal to H, and, as expected,
u-v=1[2,-57-[4,3,11=8—15+7=0

That is, u is orthogonal to v.

Find an equation of the hyperplane H in R* that passes through the point P(1, 3, —4, 2) and is normal to the
vector u = [4, —2, 5, 6].

The coefficients of the unknowns of an equation of H are the components of the normal vector u; hence the
equation of H must be of the form

4x) —2x5 +5x3 + 6x, = k
Substituting P into this equation, we obtain
41) =23)+5(—4)+6(2) =k or 4-6-204+12=k or k=-10

Thus 4x; — 2x, 4 5x3 + 6x, = —10 is the equation of H.

Find the parametric representation of the line L in R* passing through the point P(1, 2, 3, —4) and in the direction
of u =15,6,—7,8]. Also, find the point Q on L when ¢ = 1.
Substitution in the above equation for L yields the following parametric representation:

x; =5t+1, X, =6t +2, x3=—Tt+3, x, =8t—4
or, equivalently,
Lit)=(5t+1,60+2,-7t+3,8—4)

Note that 7 = 0 yields the point P on L. Substitution of ¢ = 1 yields the point Q(6, 8, —4,4) on L.

Curves in R”

Let D be an interval (finite or infinite) on the real line R. A continuous function F: D — R”" is a curve

in R”. Thus, to each point ¢ € D there is assigned the following point in R":

E() = [Fi(0), F(0), ..., Fy(0)]

Moreover, the derivative (if it exists) of F'(¢) yields the vector

V(t) =

dr)  [dF,@) dF, (1) dF,(t)
dt _[ e odr 7 dt]

which is tangent to the curve. Normalizing V' (¢) yields

V)

TO = v

Thus T(¢) is the unit tangent vector to the curve. (Unit vectors with geometrical significance are often
presented in bold type.)
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Example 1.7. Consider the curve F(r) = [sint, cost, f] in R®. Taking the derivative of F(¢) [or each component of F(f)]
yields

V(t) = [cost, —sint, 1]
which is a vector tangent to the curve. We normalize V' (¢). First we obtain
IVOI? = cos’t+sin’t+1=1+1=2
Then the unit tangent vection T(¢) to the curve follows:

V(t) [cost —sint 1]

TO=woi~vz v ¥~

1.6 VECTORS IN R® (SPATIAL VECTORS), ijk NOTATION

Vectors in R?, called spatial vectors, appear in many applications, especially in physics. In fact, a
special notation is frequently used for such vectors as follows:

i =1, 0, 0] denotes the unit vector in the x direction.
j =10, 1, 0] denotes the unit vector in the y direction.
k = [0, 0, 1] denotes the unit vector in the z direction.
Then any vector u = [a, b, c] in R® can be expressed uniquely in the form
u=|a,b,c]l=ai+ bj+cj
Since the vectors i, j, k are unit vectors and are mutually orthogonal, we obtain the following dot products:
i-i=1, j-j=1, k-k=1 and i-j=0,i-k=0, j-k=0

Furthermore, the vector operations discussed above may be expressed in the ijk notation as follows.
Suppose

u=a)i+ ayj + a3k and v=Dbi+ bj+ b3k
Then
ut+v=-_(a;+b)i+(a,+b)j+(a;+b3)k and cu=cai+ ca,j+ ca;k
where ¢ is a scalar. Also,

u-v=ab +aby+azhy  and  ull = Vu-u=a +a3+al

Example 1.8 Suppose v = 3i+ 5j — 2k and v = 4i — 8j + 7k.
(a) To find u + v, add corresponding components, obtaining u + v = 7i — 3j + S5k
(b) To find 3u — 2v, first multiply by the scalars and then add:
3u—2v=(9i+ 13j — 6k) + (—8i+ 16j — 14k) =i + 29j — 20k
(¢) To find u - v, multiply corresponding components and then add:
u-v=12-40—-14=-42

(d) To find ||u||, take the square root of the sum of the squares of the components:

lull = /9 +25+4=+/38
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Cross Product

There is a special operation for vectors u and v in R? that is not defined in R” for n # 3. This operation
is called the cross product and is denoted by u x v. One way to easily remember the formula for u x v is to
use the determinant (of order two) and its negative, which are denoted and defined as follows:

a b a b

d =ad — bc and e d

= bc —ad

Here a and d are called the diagonal elements and b and ¢ are the nondiagonal elements. Thus the
determinant is the product ad of the diagonal elements minus the product bc of the nondiagonal elements,
but vice versa for the negative of the determinant.

Now suppose u = a;i + a,j + a;k and v = b,i + b,j + b;k. Then

u X v =_(ayb; — azby)i+ (azb; — a;b3)j + (a;b, — a,b,)k
a, a4, a; a, |4y a;
:‘ b by byl lb by by
That is, the three components of u x v are obtained from the array
[al a, a3]
by b, by

(which contain the components of u above the component of v) as follows:

a, a; 4
by by by

i- i+

(1) Cover the first column and take the determinant.
(2) Cover the second column and take the negative of the determinant.
(3) Cover the third column and take the determinant.

Note that # x v is a vector; hence u x v is also called the vector product or outer product of u and v.
Example 1.8. Find u x v where: (a) u = 4i+ 3j + 6k, v =2i+5j — 3k, (b) u =[2,—1,5], v=[3,7, 6].

(a) Use [g g _g] togetuxv = (=9 —-30)i+ (124 12)j + (20 — 6)k = —39i + 24j + 14k

(b) Use |:§ 7; 2] togetuxv = [-6—-3515—-12,14+3] = [-41,3,17]
Remark: The cross products of the vectors i, j, k are as follows:
in:k, ij:i, kxi:j
jxi=—k, k xj=—i, ixk=—j

Thus, if we view the triple (i, j, k) as a cyclic permutation, where i follows k and hence k precedes i, then
the product of two of them in the given direction is the third one, but the product of two of them in the
opposite direction is the negative of the third one.

Two important properties of the cross product are contained in the following theorem.
Theorem 1.5: Let u, v, w be vectors in R°.
(a) The vector u x v is orthogonal to both u and v.
(b) The absolute value of the “triple product”
U-VXW

represents the volume of the parallelopiped formed by the vectors u,v, w.
[See Fig. 1-4(a).]
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Yolume =g-v x w Complex plane

{a) h)
Fig. 1-4
We note that the vectors u, v, u x v form a right-handed system, and that the following formula gives
the magnitude of u x v:
llu x vll = [lull[lv]| sin6

where 0 is the angle between u and v.

1.7 COMPLEX NUMBERS

The set of complex numbers is denoted by C. Formally, a complex number is an ordered pair (a, b) of
real numbers where equality, addition and multiplication are defined as follows:

(a,b) =(c,d) ifandonlyifa=candb =4d
(a,b)+ (c,d)=(a+c, b+d)
(a,b) - (c,d) = (ac — bd, ad + bc)

We identify the real number a with the complex number (a, 0); that is,
a < (a,0)

This is possible since the operations of addition and multiplication of real numbers are preserved under the
correspondence; that is,

@ 0)+(b,0)=(@+b, 0) and  (a,0)- (b, 0) = (ab,0)

Thus we view R as a subset of C, and replace (a, 0) by @ whenever convenient and possible.

We note that the set C of complex numbers with the above operations of addition and multiplication is
a field of numbers, like the set R of real numbers and the set Q of rational numbers.

The complex number (0, 1) is denoted by i It has the important property that

P? =ii=(0,1)(0,1) =(=1,0) = —1 or i=+/—1
Accordingly, any complex number z = (a, b) can be written in the form

z2=(a,b) = (a,0) +(0,5) = (a,0) + (b,0) - (0, 1) = a + bi
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The above notation z = a + bi, where a = Re z and b = Im z are called, respectively, the real and
imaginary parts of z, is more convenient than (a, b). In fact, the sum and product of complex number
z=a+ bi and w = ¢+ di can be derived by simply using the commutative and distributive laws and
2 .
ir=—1:

z+w=(a+bi)+(c+di)=a+c+bi+di=(a+b)+ (c+d)i
zw = (a + bi)(c + di) = ac + bci + adi + bdi* = (ac — bd) + (bc + ad)i

We also define the negative of z and subtraction in C by
—z=—1z and w—z=w+(—2)

Warning: The letter i representing +/—1 has no relationship whatsoever to the vector i = [1, 0, 0] in
Section 1.6.

Complex Conjugate, Absolute Value
Consider a complex number z = a + bi. The conjugate of z is denoted and defined by
Z=a+bi=a—bi
Then zz = (a + bi)(a — bi) = o> — b*i* = a® + b*. Note that z is real if and only if z = z.

The absolute value of z, denoted by |z], is defined to be the nonnegative square root of zz. Namely,
2l = VZ = V@ + b
Note that |z| is equal to the norm of the vector (a, b) in R>.
Suppose z # 0. Then the inverse z~! of z and division in C of w by z are given, respectively, by

—1

z = and ———=wz

z a b . w o owz )
— = 351 - =
zz a?+b A2+ z zz

Example 1.9. Suppose z =2+ 3i and w = 5 — 2i. Then

Z+w=Q+3)+(5—-2)=2+5+3I—-2i=T7+i
w=0Q2+3)5-2)=10+15 —4i — 62> =16+ 11i
z=2+43i=2-3i and w=5-2i=54+2i
w o 5-2 (5-2)2-=3) 4—19 4 19,
Z 243 Q+3)2-3) 13 13 13
lZl=+v4+9=+13 and |w=+25+4=+29

Complex Plane

Recall that the real numbers R can be represented by points on a line. Analogously, the complex
numbers C can be represented by points in the plane. Specifically, we let the point (a, b) in the plane
represent the complex number a + bi as shown in Fig. 1-4(d). In such a case, |z| is the distance from the
origin O to the point z. The plane with this representation is called the complex plane, just like the line
representing R is called the real line.



Lipschutz-Lipson:Schaum’s | 1. Vectors in R*n and C/n, Text © The McGraw-Hill

Outline of Theory and Spatial Vectors Companies, 2004
Problems of Linear
Algebra, 3/e

14 VECTORS IN R"” AND C", SPATIAL VECTORS [CHAP. 1

1.8 VECTORS IN C”

The set of all n-tuples of complex numbers, denoted by C”, is called complex n-space. Just as in the
real case, the elements of C” are called points or vectors, the elements of C are called scalars, and vector
addition in C”" and scalar multiplication on C" are given by

[Zl,Zz,...,Zn]+[W1,W2, ""W}'I] = [Z] +W], 22+W2, ey Zn +Wn]
Zlzy, 2y, ...y 2, = 221, 22, . . ., 22,,)
where the z;, w;, and z belong to C.
Example 1.10. Consider vectors u =[2+3i, 4 —i, 3] and v =[3 —2i, 5i, 4 —6i] in C3. Then

u4v = [2+43i, 4—1i, 3]+[3—2i, 5i, 4—6i] = [5+i, 4+4i, T— 6]
(5=2iu = [(5-2)2+3i), (5-2)4—1i), 5-20)3)] = [16+11i, 18— 13i, 15— 6i]

Dot (Inner) Product in C"
Consider vectors u = [z1, 2z, . . ., z,] and v = [w, w,, ..., w,] in C". The dot or inner product of u and
v is denoted and defined by
u-v :Z]wl +Zzﬁ/2 + .. +Znﬂ/n

This definition reduces to the real case since w; = w; when w; is real. The norm of u is defined by

lull = Vu-u= 2z, + 202, + -+ 2,2, = \/|21|2 + 1zl + -+ o,
We emphasize that « - u and so ||u| are real and positive when u 7% 0 and 0 when u = 0.
Example 1.10. Consider vectors u = [2+3i, 4 —i, 3+ 5i] and v =[3 —4i, 5i, 4 —2i] in C;. Then

u-v= 24303 —4i)+ (4 — )(5i) + (3 + 5i)(4 — 2i)
= (24 3)(3 + 4i) + (4 — D)(—5i) + (3 + 5i)(4 + 2i)

= (=64 13i) 4+ (=5 —20))+ (2 +26i)) = —9+19i
uu=P2R4+3P+4—iP+34+5 = 4+9+16+1+9+25 = 64
lull = V64 =8

The space C" with the above operations of vector addition, scalar multiplication, and dot product, is
called complex Euclidean n-space. Theorem 1.2 for R" also holds for C" if we replace - v =v-u by

Uu-v=u-v

On the other hand, the Schwarz inequality (Theorem 1.3) and Minkowski’s inequality (Theorem 1.4) are
true for C” with no changes.

Solved Problems

VECTORS IN R”
1.1. Determine which of the following vectors are equal:
U :(17253)5 u2:(2735 l)a u3:(17352)5 U4:(2,3,1)

Vectors are equal only when corresponding entries are equal; hence only u, = u,.
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1.2. Letu=(2,-7,1),v=(-3,0,4), w= (0,5, —8). Find:
(a) 3u— 4,
(b) 2u+43v—>5w.
First perform the scalar multiplication and then the vector addition.
(@) 3u—4v=3(2,-7,1)—4(-3,0,4) =(6,-21,3)+ (12,0, —16) = (18, —21, —13)
(b) 2u+3v—-5w=(4-14,2)+(-9,0,12) + (0, —25,40) = (-5, =39, 54)

5 —1 3
13. Letu= 3 |,v= 5|,w=| —1]. Find:
—4 2 -2

(a) Su-—2v,
(b) —2u+4v—3w.

First perform the scalar multiplication and then the vector additioin:

5 -1 25 2 27
(@ S5u—2v=5| 3|-=2| 5|= 15|14+ -10| = 5
—4 2 -20 —4 —24
—10 —4 -9 -23
b)) —2u+4v-3w=| —6 [+ 20|+ 3| = 17
8 8 6 22

1.4. Find x and y, where: (a) (x,3) =2, x+y), b)) @&,y)=x(_2,3).
(a) Since the vectors are equal, set the corresponding entries equal to each other, yielding
x =2, 3=x+y

Solve the linear equations, obtaining x = 2, y = 1.

(b) First multiply by the scalar x to obtain (4, y) = (2x, 3x). Then set corresponding entries equal to each
other to obtain

Solve the equations to yield x = 2, y = 6.

1.5.  Write the vector v = (1, —2, 5) as a linear combination of the vectors u; = (1, 1, 1), u, = (1, 2, 3),
Uy = (2, —1, 1).

We want to express v in the form v = xu; + yu, + zuz with x, y, z as yet unknown. First we have

1 1 1 2 X+ y+2z
2 |=x|1|4+y|2|+z| -1 |=|x+2y— 2z
5 1 3 1 x+3y+ z

(It is more convenient to write vectors as columns than as rows when forming linear combinations.) Set
corresponding entries equal to each other to obtain

X+ y+2z= 1 x4+ y+2z= 1 x+y+2z= 1
x+2y— z=-2 or y—3z=-3 or y—3z=-3
x+3y+ z= 5 2y— z= 4 5z=10

This unique solution of the triangular system is x = —6, y = 3, z = 2. Thus v = —6u; + 3u, + 2u;.
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1.6. Write v = (2, —5, 3) as a linear combination of u; = (1, —3,2), u, = (2, —4, —1), u; = (1, =5, 7).

Find the equivalent system of linear equations and then solve. First,

2 1 2 1 X424 z
=S |=x| -3 |4+y| 4 |+z| -5|=]| 3x—4 -5z
3 2 -1 7 2x— y+7z

Set the corresponding entries equal to each other to obtain

x+2y+ z= 2 x+2y+ z= 2 x+2y+ z=2
—3x—4y—-5z=-5 or 2y—2z= 1 or 2y —2z=1
2x— y+7z= 3 —5y+5z=-1 0=3

The third equation, Ox + Oy 4+ 0z = 3, indicates that the system has no solution. Thus v cannot be written as a
linear combination of the vectors u,, u,, us.

DOT (INNER) PRODUCT, ORTHOGONALITY, NORM IN R”
1.7. Find u - v where:
(@ u=(2,-5,6)and v =(8,2,-3)
b)) u=@4,2,-3,5,—-1)and v=(2,6,—1,—4,8).
Multiply the corresponding components and add:
(@ wu-v=208)-52)+6(-3)=16—10—-18=—-12
b) u-v=8+12+3-20-8=-5

1.8. Letu=(54,1),v=0,—4,1), w=(1, -2, 3). Which pair of vectors, if any, are perpendicular
(orthogonal)?

Find the dot product of each pair of vectors:
u-v=15-16+1=0, v-w=3+8+3=14, u-w=5-8+3=0

Thus u and v are orthogonal, u# and w are orthogonal, but v and w are not.

1.9. Find & so that u and v are orthogonal, where:
(@) u=(1,k,—3)and v=(2,-5,4)
() u= 2,3k —4,1,5) and v = (6, —1, 3, 7, 2k).
Compute u - v, set u - v equal to 0, and then solve for £:
(@ u-v=1Q2)+k(—5)—3(4) = —5k — 10. Then —5k — 10 =0, or k = —2.
b)) u-v=12-3k—12+7+10k=7k+7. Then 7k +7 =0, or k = —1.

1.10. Find ||ul||, where: (@) u = (3, —12,—4), b)) u=1(2,-3,8,-17).
First find ||u||> = u - u by squaring the entries and adding. Then ||u|| = /||ul|*.

@ Jlul®=B) +(=12)* + (—4)> =9+ 144 + 16 = 169. Then |lu|| = +/169 = 13
(®) Nlul®> =4+9+ 64 +49 = 126. Then ||lu|| = +/126.
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1.11. Recall that normalizing a nonzero vector v means finding the unique unit vector ¢ in the same
direction as v, where

1
—
llvll
Normalize: (a) u = (3, —4), b)) v=(4,-2,-3,8), © w=@&2%-d
(a) First find |lu|| = /9 + 16 = +/25 = 5. Then divide each entry of u by 5, obtaining 7 = (%, —%).
(b) Here ||v]| = /16 + 4 + 9 + 64 = +/93. Then

V=

. 4 -2 -3 8
== = 7= =
(«/ 93 V93 V93 93)
(c¢) Note that w and any positive multiple of w will have the same normalized form. Hence first multiply w by
12 to “clear fractions”, that is, first find w' = 12w = (6, 8, —3). Then

~ 6 8 =3
W =+36+64+9=+109 and fv:wﬂ:( , , )
i v/109 /109 /109

1.12. Letu=(1,-3,4) and v = (3,4, 7). Find:
(a) cos0, where 0 is the angle between u and v;
(b) proj(u, v), the projection of u onto v;
(¢) d(u,v), the distance between u and v.

Firstfind u-v=3— 12428 =19, [[ul>=1+9+16=26, [[v]> =9+ 16 +49 = 74. Then

: 19
(a) cos():uivzi,
llullloll  /264/74
wv 19 57 76 133\ (57 38 133
by projuv) = o= 3,47 = (2,20 %) (27 3 1
(®) proj(u,v) =10 =733 4.7) (74 74 74) (74 37 74)

(© du,v)= llu—vl =(=2,-7=3) = V4+49 +9 = V62.

1.13. Prove Theorem 1.2: For any u, v, w in R” and & in R:
i) w+v)y-w=u-w+v-w, () (ku)-v=*k(u-v), (i) u-v="v-u,
(v) u-u>0,andu-u=0iff u=0.

Let u = (uj,ty, ... 1), V=01, 03, ...,0,), W= (Wi, Ws, ..., W,).
(1) Since u+v=(u;+vy, Uy +0y, ..., U, +70,),
(M+U)'W:(ul+vl)wl+(u2+02)w2+"'+(un+vn)wn

UWy + 0wy Wy + e W, U, W,
= w; +uywy + -+ u,w,) + (0w + oWy + -+ v,w,)
=u-w+v-w
(ii) Since ku = (kuy, ku,, ..., ku,),
(ku) - v = kuyv; + kuyvy + -+ - + ku,v, = k(v + uyvy + -+ - + u,v,) = k(u - v)
(1) u-v=wv +uyvy + -+ +u,v, = U + VsUy + -+ VU, =V-u
(iv) Since u? is nonnegative for each i, and since the sum of nonnegative real numbers is nonnegative,
uu=w+uk+--+ut>0

Furthermore, u - u = 0 iff u; = 0 for each i, that is, iff u = 0.
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1.14. Prove Theorem 1.3 (Schwarz): |u - v| < |jull|lv].
For any real number #, and using Theorem 1.2, we have

0<(tu+v)-(tu+v) = u)+2w-v)+ - v) = ul®? +20u- o)t + ||v]?

Let a = ||ul|®, b=2(u-v), ¢ = |[v||>. Then, for every value of t, a> + bt + ¢ > 0. This means that the
quadratic polynomial cannot have two real roots. This implies that the discriminant D = b*> — 4ac < 0 or,
equivalently, > < 4ac. Thus

4u - v)* < 4ul?|lv)?

Dividing by 4 gives us our result.

1.15. Prove Theorem 1.4 (Minkowski): |lu 4 v|| < |ju|l + ||v|l.
By the Schwarz inequality and other properties of the dot product,

e+ 0l* = (+v) - (@ +0) = (- u) + 20 - 0) + (0 0) < [ull® + 2lulllo]l + o> = (lull + o))
Taking the square root of both sides yields the desired inequality.

POINTS, LINES, HYPERPLANES IN R”

Here we distinguish between an n-tuple P(a,, a,, ..., a,) viewed as a point in R” and an n-tuple
u=|cy,cy,...,c,] viewed as a vector (arrow) from the origin O to the point C(c;, ¢y, ..., c,).

1.16. Find the vector u identified with the directed line segment P—Q> for the points:
(@) P(1,-2,4)and Q(6,1,—5)inR?, (b)) P(2,3,—6,5)and O(7, 1,4, —8) in R*.

@ u=P0=0-P=[6-1, 1 —(=2), —=5—4]=15,3, —9]
() u=PO=0—P=[T—2, 1-3, 446, —8—5] =[5, 2,10, —13]

1.17. Find an equation of the hyperplane H in R* that passes through P(3, —4, 1, —2) and is normal to
u=1[2,5,-6,-3].

The coefficients of the unknowns of an equation of H are the components of the normal vector . Thus an
equation of H is of the form 2x; 4+ 5x, — 6x; — 3x, = k. Substitute P into this equation to obtain k = —26.
Thus an equation of H is 2x; + 5x, — 6x3 — 3x, = —26.

1.18. Find an equation of the plane A/ in R® that contains P(1, —3, —4) and is parallel to the plane H’
determined by the equation 3x — 6y + 5z = 2.

The planes H and H’ are parallel if and only if their normal directions are parallel or antiparallel (opposite
direction). Hence an equation of H is of the form 3x — 6y 4+ 5z = k. Substitute P into this equation to obtain
k = 1. Then an equation of H is 3x — 6y + 5z = 1.

1.19. Find a parametric representation of the line L in R* passing through P(4, —2, 3, 1) in the direction
ofu=1[2,5,-7,8].

Here L consists of the points X (x;) that satisfy
X=P+tu or x;=ait+b; or L(t) = (a;t + b))
where the parameter ¢ takes on all real values. Thus we obtain

X, =442t x=-2+42t, x3=3-Tt, x4=1+8t or L(t)=@A+2t, —2+2¢t, 3—-7Tt, 1+ 8¢)
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1.20. Let C be the curve F(f) = (2, 3t—2, £, #+5) in R* where 0 <t < 4.

(@)
(b)
(©)

(@)
(b

(©)

Find the point P on C corresponding to ¢ = 2.
Find the initial point Q and terminal point Q’ of C.
Find the unit tangent vector T to the curve C when t = 2.

Substitute # = 2 into F(¢) to get P =f(2) = (4,4,8,9).

The parameter ¢ ranges from =0 to t=4. Hence Q=f(0)=(0,-2,0,5) and
Q' =F(4) = (16, 10, 64,21).

Take the derivative of F(¢), that is, of each component of F(¢), to obtain a vector V' that is tangent to the

curve:
F
V) = dd—gt) =[2t,3, 31, 21]

Now find ¥V when ¢=2; that is, substitute r=2 in the equation for V() to obtain
V =V(2)=1[4,3,12,4]. Then normalize V' to obtain the desired unit tangent vector T. We have

4 3 12 4
V| =+/16+9+ 144 + 16 = /185  and T:[ , , , ]
g V185 /185 /185 /185

SPATIAL VECTORS (VECTORS IN R%), ijk NOTATION, CROSS PRODUCT
1.21. Letu=2i—3j+4Kk, v =3i+j— 2k, w =i+ 5j + 3k. Find:

(@)

(@)
(b

(©)

(d)

u+v, (b) 2u—3v+4w, (¢) u-vandu-w, (d) |lu|l and |lv].
Treat the coefficients of i, j, k just like the components of a vector in R>.

Add corresponding coefficients to get u + v = 5i — 2j — 2k.
First perform the scalar multiplication and then the vector addition:

2u — 30+ 4w = (4i — 6j + 8K) + (—9i + 3j + 6K) + (4 + 20j + 12K)
= —i+ 17j + 26k

Multiply corresponding coefficients and then add:
u-v=6-3-8=-5 and u-w=2-15+12=-1
The norm is the square root of the sum of the squares of the coefficients:

lul =v4+9+16=+29 and v =9+ 1+4=1+/14

1.22. Find the (parametric) equation of the line L:

(@)
(b

(@)

(b)

through the points P(1, 3,2) and Q(2, 5, —6);

containing the point P(1,—2,4) and perpendicular to the plane H given by the equation
3x+5y+7z=15.

First find v = PO = O — P = [1,2, —8] = i + 2j — 8k. Then
LO)y=(@+1, 2t+3, =8t+2)=(¢+ Di+ Qt+3)j+ (=8 +2)k

Since L is perpendicular to H, the line L is in the same direction as the normal vector N = 3i + 5j + 7k
to H. Thus

L) =@Gt+1, 5t—2, Tt+4) =Gt + Di+ (5t — 2)j + (7t + Dk
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1.23.

1.24.

1.25.

1.26.

1.27.

VECTORS IN R" AND C”, SPATIAL VECTORS [CHAP. 1

Let S be the surface x)? + 2yz = 16 in R>.

(a) Find the normal vector N(x, y, z) to the surface S.
(b) Find the tangent plane H to S at the point P(1, 2, 3).

(a) The formula for the normal vector to a surface F(x, y,z) = 0 is
N(x,y,2) = F\i+ Fj+ F.k

where F,, F,, I, are the partial derivatives. Using F(x,y,z) = xy? + 2yz — 16, we obtain

F, =47, F, =2xy+ 2z, F.=2y
Thus N(x, y, 2) = y*i + 2xy + 22)j + 2vk.
(b) The normal to the surface S at the point P is
N(P) =N(1, 2,3) = 4i+ 10j + 4k

Hence N = 2i + 5j + 2k is also normal to S at P. Thus an equation of A has the form 2x + 5y + 2z = c.
Substitute P in this equation to obtain ¢ = 18. Thus the tangent plane H to S at P is 2x + 5y + 2z = 18.

Evaluate the following determinants and negative of determinants of order two:
A3 4] 12 -1 ... |4 =5
@ O3 o) G, S| G|

® o-; S}a-[] 3 a-l3 3

a b
d

b

Use d

’:ad—bcand —“; ‘:bc—ad.Thus:

(@ ({)27-20=71, (i) 6+4 =10, (i) —8+15="7.
(b) (1) 24—6=18, (ii) —15— 14 = —29, (iii) —8 + 12 = 4.

Let u=2i—3j+4k, v=3i+j—2k, w=i+5j+3k.
Find: (a) uxv, (b) uxw
P 4 . . . .
(a) Use 3 1 _2} togetuxv=(06—-4)i+(12+4)j+Q2+9k=2i+16j+ 11k
[2 -3 4 . . . .
(b) Use ) 5 3i|togetu><w:(—9—20)1—|—(4—6)]-i—(10—|—3)k:—291—2J—|—13k
Find u x v, where: (a) u=1(1,2,3),v=(4,5,6); (b) u=(—4,7,3),v=(6,-5,2).
(a) Use ‘1‘ ? Z]togetuxv:[lZ—lS, 12—-6, 5—-8]=[-3,6,-3]
(-4 7 3
(B Use| ¢ s 2] to get u x v=[14+15, 18+8, 20— 42] = [29, 26, —22]
Find a unit vector u orthogonal to v =[1, 3,4] and w = [2, —6, —5].

First find v x w, which is orthogonal to v and w.
The array [; _2 _2] gives v x w=[—15+24, 8§45, —6—-61]1=1[9,13,—-12]

Normalize v x w to get u = [9/4/394, 13/4/394, —12/+/394]
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1.28. Let u=(a;,a5,a3) and v= (b}, by, by) so uxv=/_(ayb; —asb,, asb; —a,bs,a;b, — a,b)).
Prove:

(a) u x v is orthogonal to u and v [Theorem 1.5(i)]
®) Nuxvl*=@-u)v-v)—(u- vy (Lagrange’s identity).
(a) We have
u-(uxv) = ay(abs — azb,) + ay(azby — a,b3) + as(a1b, — ayb,)
= a,a,b3 — aya3b, + ayasby — aja,by + aya3by, — ayasby =0
Thus u x v is orthogonal to u. Similarly, # x v is orthogonal to v.
(b) We have
llu x ol* = (ayby — ash,)* + (a3by — aybs)’ + (ab, — ayb,)* ey

(- u)(v-v) = (- 0)’ = (@f +a5 + )b + b3+ 03) — (@by + arb, + ashy)’ b

Expansion of the right-hand sides of (1) and (2) establishes the identity.

COMPLEX NUMBERS, VECTORS IN C"

1.29. Suppose z=5+3iand w=2 —4i. Find: (a) z+w, (b) z—w, (c) zw.
Use the ordinary rules of algebra together with i> = —1 to obtain a result in the standard form a + bi.

(@ z+w=0+3)+Q2—-4)=7—-i
b)) z—w=0G+3)—-Q2—-4)=5+3I—2+4=3+7i
© w=054+3)2—-4)=10—14i — 12> =10 — 14i + 12 =22 — 14i

1.30. Simplify: (@) (5 +3)Q2—=7i), (b) (4 =30 (¢) (1+2i)’.
(@) (54302 —7i) =10+ 6i —35i — 212 =31 — 29i
(b) (4—=30)*=16—24i+92 =7 —24i
(© (42 =1+46i+122+83=1+6i—12—-8i=—11-2i

1.31. Simplify: (@) ©,3,&, ) £,6,7,8, () #°, i7", 22, 8V

(@ =1, P=~PO=DO=—i, =@ =)-D)=1

B P="O=MO=i ="@=MF)=~>=-1, '=i=-i, f=i'=1

(¢) Using i* =1 and " = i**" = (i*)%" = 19/" = i", divide the exponent n by 4 to obtain the remainder
P9 = O Z (#YP = 19 = P = ) A, P20, 317 _

1.32. Find the complex conjugate of each of the following:
(@) 6+4i, 7—5i, 44+i, -3 —1i, (b)) 6, =3, 4i, —9i
(@) 64+4i=6—-4i, 7T-5=7+5i, 4+i=4—-1i, 3 —-i=-3+1.
() 6=6, —3=-3, 4i=—4i, —9i=09i.

(Note that the conjugate of a real number is the original number, but the conjugate of a pure imaginary number
is the negative of the original number.)

1.33. Find zz and |z| when z = 3 + 4i.
For z = a + bi, use zz = a* + b* and z = /zz = Va2 + b>.
Z=9416=25 2| = 25 = 5
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2—7i

1.34. Simpify

5430
To simplify a fraction z/w of complex numbers, multiply both numerator and denominator by w, the
conjugate of the denominator:
27 (2-7)(5-3i) —11-41 11 41,
= = = 1
5431 (5+3)(05-30) 34 34 34

1.35. Prove: For any complex numbers z, w e C, () z+w=z+w, (ii) zw =zw, (i) z =z
Suppose z = a + bi and w = ¢ + di where a, b,c,d € R.

(i) z+w= (a+b)+(c+di) = (a+c)+ b+
=(a+c)—(b+d)i = a+c—bi—di
=(a—bi)+(c—di) = z+w

(i) zw= (a+ bi)(c+di) = (ac — bd) + (ad + bc)i

= (ac — bd) — (ad + bc)i = (a — bi)(c —di) = zw

(iii) z=a+bi=a—-bi=a—(-bi=a+bi=z

1.36. Prove: For any complex numbers z, w € C, |zw| = |z||w].
By (ii) of Problem 1.35,
lzw]> = (2w)@W) = (@wW)Ew) = @E)ww) = |zI*|w]

The square root of both sides gives us the desired result.

1.37. Prove: For any complex numbers z, w € C, |z 4+ w| < |z| + |w|.

Suppose z = a + bi and w = ¢ + di where a, b, ¢, d € R. Consider the vectors u = (a, b) and v = (¢, d)
in R. Note that

|zl = Va* + b = |lul, wl =ve2+d*> = o

z+wl =la+)+G+d)il=(a+c +G+d)?=la+c.b+d)| =u+v|

By Minkowski’s inequality (Problem 1.15), |lu + v|| < |lu]| + ||v||, and so

and

1z +wl = llu+ ol < llull + vl = |z] 4 |w]

1.38. Find the dot products u-v and v-u where: (@) u=(1-2i, 3+1i), v=>4+2i, 5—06i),
b)) u=0@—-2i, 4, 14+60),v=054+1i 2-3i, 7+ 2i).
Recall that conjugates of the second vector appear in the dot product
@1z Wy, w) =z2yW + -+ Z,W,
(@ w-v=(1-2))4+2))+ B +i)5—6i)
=1-204-20)+GB+)5+6i) = —10i+9+23i = 94 13i
veu=@A+20)1-2)+G—-6)3+1)
=@+20)1+2)+G—-6)3—i7) = 10i+9—-23i = 9—13i
b)) u-v=0C-2)5+10)+ (4)2 —3i) + (1 + 6i)(7 + 2i)
=@ =-20)5-)+@)2+3)+ (1 +6i)(7—2i) = 204 35i

v-u= (5413 =2i)+ (2 — 30i) (&) + (7 + 2i)(1 + 61)
= (5+ )3 +2i) + (2 — 3i)(—4i) + (7 + 2)(1 — 6i) = 20 —35i

In both cases, v-u = u-v. This holds true in general, as seen in Problem 1.40.
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1.39. Letu=(7—2i, 2+ 5i)and v =(1+i, —3 — 6i). Find:
(@ utv;  (b) 2iu; () G—ip; (@ wu-v; (e) [ull and [o].
(@ utv=0T-2i+1+i, 245 -3—-6)=8—i, —1—1i)
(b) 2iu = (14i — 4%, 4i+10%) = (4 + 14i, —10 + 4i)
© GBG-ido=0@+3i—i—=>2 —9—18i+3i+6i*) = (4+2i, —15—15i)
d u-v=(7-2)0+0)+@Q+5)=3—6i)
=7 =200 —)+Q+5)(-3+6i) = 5-9—36—3i = —31—12i

© Nl =7+ (=27 +2 +5 = V&2 and o]l = /12 + 12 + (=3) + (=6)* = /47

1.40. Prove: For any vectors u,v € C" and any scalar z€ C, (i) u-v="0-u, (i) (zu)-v==z(u -v),
(iii) u - (zv) = z(u - v).

Suppose u = (2,2, ...,2,) and v = (W}, Wy, ..., W,).

(1) Using the properties of the conjugate,

Tu=wE A wh A wE = wiE A wh e+
=Wz + Wz + Wz, =z W Wy W, =u v
(i) Since zu = (zzy, zz,, . . . , 22,),
(zu) - v =zzyw| +zZyWy + - - - + zz,W, = z(Zy W] + Wy + - +zZ,W,) = z(u - V)
(Compare with Theorem 1.2 on vectors in R".)
(iii) Using (i) and (ii),

u-(zv)=(zv) - u=z(v-u) =z(0-u) =z(u - v)

Supplementary Problems

VECTORS IN R”
141. Letu=(1,-2,4),v=(3,51),w=(2,1,-3). Find:

(@ 3u—2v; (b)) Su+3v—4w; (@ w-v,u-wyoo-wy (@ ull, vl
(e) cos0, where 0 is the angle between u and v; ) du,v); (g) proj(u, v).

1 2 3
1.42. Repeat Problem 1.41 for vectors u = 3Lbo=|(1|,w=|=2
—4 5 6

1.43. Letu=1(2,-5,4,6,-3)and v =(5,-2,1,—7, —4). Find:
(@) 4u—3uy; (b) Su+2v; (© u-v (@ llull and |lvll; (e) proj(u, v);
) d(u,v).

1.44. Normalize each vector:

(@ u=(5,-7); b)) v=(1,2,-2,4); (c) w:(%,—%,%).

1.45. Letu=(1,2,-2),v=(3,—12,4), and k = -3.
(@) Find [lull, llvll, llu+oll, [kl
(b) Verify that |lkull = |k|[|u|| and |lu + v]| < [lull + ||v]l.

1.46. Find x and y where:
(@ & y+D=0r-2,6; (b x2y=x1 -2).
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1.47. Find x,y,z where (x, y+ 1, y+2) = 2x+y, 4, 32).

1.48. Write v = (2, 5) as a linear combination of #; and u, where:
(@ wuy=(1,2)and u, =(3,5);
) uy =@3,—4) and u, = (2, -3).

9 1 2 4
1.49. Write v = | —3 | as a linear combination of u; = | 3 [, u, = Sluy=1]-2
16 3 -1 3

1.50. Find £ so that « and v are orthogonal, where:
(@ u=QG,k =2),v=(6,-4,-3)
b) u=Gk-4,2),v=_~1,-3,2,2k);
© u=U, 7, k+2, =2),v=3,k,—3,k).

LOCATED VECTORS, HYPERPLANES, LINES IN R”
1.51. Find the vector v identified with the directed line segment FQ for the points:

(@) P(2,3,-7)and O(1, —6, —5) in R?;
(b) P(1,—8,—4,6) and O(3, 5,2, —4) in R*.

1.52. Find an equation of the hyperplane H in R* that:

(a) contains P(1,2, —3,2) and is normal to u = [2, 3, —5, 6];
(b) contains P(3, —1,2,5) and is parallel to 2x; — 3x, + 5x3 — 7x, = 4.

1.53. Find a parametric representation of the line in R* that:

(a) passes through the points P(1,2, 1,2) and O(3, -5, 7, —-9);
(b) passes through P(1, 1, 3, 3) and is perpendicular to the hyperplane 2x; + 4x, + 6x; — 8x4 = 5.

SPATIAL VECTORS (VECTORS IN R®), ijk NOTATION
1.54. Given u=3i—4j+2k, v=2i+5j—3k, w=4i+7j+2k Find:
(@ 2u—=3v; (b)) 3utdv=2w; () w-v,u-w,v-w;  (d) |ul, ol [l

1.55. Find the equation of the plane H:

(a) with normal N = 3i — 4j + 5k and containing the point P(1, 2, —3);
(b) parallel to 4x + 3y — 2z = 11 and containing the point Q(2, —1, 3).

1.56. Find the (parametric) equation of the line L:

(a) through the point P(2, 5, —3) and in the direction of v = 4i — 5j + 7k;
(b) perpendicular to the plane 2x — 3y + 7z = 4 and containing P(1, —5, 7).

1.57. Consider the following curve C in R? where 0 < ¢ < 5:
F()=rfi—Aj+@Qt-3)k
(a) Find the point P on C corresponding to ¢ = 2.

(b) Find the initial point Q and the terminal point Q'.

(¢) Find the unit tangent vector T to the curve C when t = 2.
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1.58. Consider a moving body B whose position at time ¢ is given by R(¢) = £*i + £3j + 3tk. [Then V() = dR(¢)/dt
and A(¢t) = dV(t)/dt denote, respectively, the velocity and acceleration of B.] When ¢ = 1, find:

(a) position; (b) velocity v; (c) speed s; (d) acceleration a of B.

1.59. Find a normal vector N and the tangent plane H to each surface at the given point:

(a) surface x*y 4 3yz = 20 and point P(1, 3, 2);
(b) surface x> + 3y — 52> = 160 and point P(3, =2, 1).

CROSS PRODUCT

1.60. Evaluate the following determinants and negative of determinants of order two:

@ |23 3 -6 4 -2
D3 6l |1 -4l 7 -3

6 4 1 -3 8 -3
®) _‘7 5) _‘2 40 _‘—6 —2'

1.61. Given u =3i—4j+2k, v=2i+5j—3k, w=4i+7j+ 2k, Find:

(a) uxwv, b) uxw, (c) vxw

1.62. Givenu=1[2,1,3], v=[4,—2,2], w=[l, 1, 5], find:

(@) uxwv, (b) uxw, (c) vxw.

1.63. Find the volume V' of the parallelopiped formed by the vectors u, v, w in:
(a) Problem 1.60, (b) Problem 1.61.

1.64. Find a unit vector u orthogonal to:
(@) v=][1,2,3]land w=[1, —1,2];
b) v=3i—j+2kand w=4i—-2j—k.

1.65. Prove the following properties of the cross product:

(@) uxv=—(xu) d ux@+w) =@wxv)+@xw)
(b) u x u =0 for any vector u (&) (w+w)xu=@wxu)+wxu)
(¢) (ku) x v =k(u x v) = u x (kv) () wxv)yxw=w-wo— Q- -wu

COMPLEX NUMBERS
1.66.  Simplify:

@ G-T)O+2); B G-50% ke

357

(e (1—iy.

)

) @

a—7

1 2 +3i 1\?
167 Simplify: (@) 5 () 7“_L 3;; © i,5,8% () ( )
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1.68. Letz=2—5iand w="7+ 3i. Find:
(@ v+w; ®) zw; (© z/w; @ z,w @ lzI, wl.
1.69. Show that:

(@ Rez=1%(z+2) () Imz=1(z—2) (¢) zw=0 impliesz=0 or w=0.

VECTORS IN C”
1.70. Letu=(1+4+7i, 2 —6i)and v = (5—2i, 3 —4i). Find:
(@ u+v Bb) G+idu (¢) 2iu+@+7iw d) wu-v (e) |ul and |v].

1.71.  Prove: For any vectors u, v, w in C":

(@ wu+v)-w=u-wt+ov-w, (b) w-(u+v)y=w-u+w-o.

1.72. Prove that the norm in C" satisfies the following laws:

[N;] For any vector u, |lu|| > 0; and ||u|| = 0 if and only if u = 0.
[N,] For any vector # and complex number z, ||zu| = |z|||u].

[N;] For any vectors u and v, |lu + v|| < [lull + [|v]|.

Answers to Supplementary Problems

141. (a) (=3,-16,4); () (6,1,35); (¢) —3,12,8; (d) ~/21,+/35,/14;
(@ —3/V2IV35% (N V6 (@ -5 G5 D=(-5% -3 -H

1.42. (Column vectors) (a) (—1,7, —22); b) (1,26, -29); (¢) —15,-27,34,
d) V26,30, (o) —15/(v26v30); (/) V86 (o) —Ru=(-1,-3,-3)

143. (a) (—13,—14,13,45,0); () (20,-29,22,16,—-23); (¢c) —6; (d) ~/90,+/95,
(e) —%v; ) 167

L4, (@ G/NT69VTO: () (.3.-2h (O (6/v/133.—4/133,9V133)
145. (a) 3, 13, V/120,9

1.46. (a) x=-3,y=5; b)) x=0,y=0, and x=1,y=2

1.47. x:—3,y:3,z:%

1.48. (a) v=>5u —uy; (b) v=16u; —23u,

1.49. v=3u; —uy +2uy

1.50. (a) 6; b) 3; (o) %

1L51. (@) v=[-1,-92]; () [2.3,6,—10]
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1.52. (a)
1.53. (a)
1.54. (a)
1.55. (a)
1.56. (a)
1.57. (a)
(0
1.58. (a)
1.59. (a)
1.60. (a)
1.61. (a)
1.62. (a)
1.63. (a)
1.64. (a)
1.66. (a)
1.67. (a)
1.68. (a)
1.69. (c)
1.70. (a)

(d)

VECTORS IN R” AND C”, SPATIAL VECTORS 27

2x) 4 3x, — 5x3 + 6x, = 35; (b) 2x; —3x, +5x3 — x4 = —16

Re+1, =7t42, 6141, —111+2];  (b) [2t+1, 4+1, 6t+3, —8+3]
—23j+13k; (b)) 3i—6j—10k; (¢) —20,—12,37; (d) ~/29,+/38,/69
3x —4y + 5z = -20; (b) 4x+3y—2z=-1

[4t+2, =5t4+5, 7t—3); (b)) [2t+1, =3t—5, 7t+7]

P=FQ2)=8i—4j+k; (b)) 0=F(0)= -3k, O =F(5)=125i —25j+7k;
T = (6i — 2j + k)/+/41

itj+2k; (b)) 2i+3j+2k (o) V1T, (@ 2i+6j

N=6i+7j+9k, 6x+7y+92=45  (b) N =6i—12j—10k, 3x—6y—5z=16
—3,-6,26; (b) —2,-10,34

2i4 13j+23k; (b)) —22i+2j+37k;  (c) 3li—16j— 6k

[5.8, =6, (b [2.-7.1; () [-7,—18,5]

143; (b)) 17

(7,1,-3)/v/39;  (b) (5i+11j—2k)//150

50—-55; (b)) —16-30;; (c) &@+7); (d) L(1+30); (e —-2-2i
=i () &KG+27); (0 —Li—-1; (@ +4+30)

9—2i;  (b) 29-29; (o) &(-1—4li); () 2450, 7-3i; (o) +/29,V/58
Hint: 1f zw = 0, then |zw| = |z||w| = 10| =0

(6450, 5—10i); (b)) (—4+22i, 12—16); (¢) (—8—4li, —4 —33i);
1242, (e) /90, /34
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Algebra of Matrices

2.1 INTRODUCTION

This chapter investigates matrices and algebraic operations defined on them. These matrices may be
viewed as rectangular arrays of elements where each entry depends on two subscripts (as compared with
vectors, where each entry depended on only one subscript). Systems of linear equations and their solutions
(Chapter 3) may be efficiently investigated using the language of matrices. Furthermore, certain abstract
objects introduced in later chapters, such as “change of basis”, “linear transformations”, and “quadratic
forms”, can be represented by these matrices (rectangular arrays). On the other hand, the abstract treatment
of linear algebra presented later on will give us new insight into the structure of these matrices.

The entries in our matrices will come from some arbitrary, but fixed, field K. The elements of K are
called numbers or scalars. Nothing essential is lost if the reader assumes that K is the real field R.

2.2 MATRICES

A matrix A over a field K or, simply, a matrix A (when K is implicit) is a rectangular array of scalars
usually presented in the following form:

ap app . a,
4 = Ay dayy e ay,
An1 Qpa oo Apy

The rows of such a matrix 4 are the m horizontal lists of scalars:

(@y1, arps s ay,)s (@1 @apy s Goy)s ooy (@yyts Qs+ - > i)

and the columns of A are the n vertical lists of scalars:

an ap ayy
as) as ayy
A1 A2 Ayun

Note that the element a;;, called the ij-entry or ij-element, appears in row i and column j. We frequently
denote such a matrix by simply writing 4 = [a;].

28
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A matrix with m rows and n columns is called an m by n matrix, written m x n. The pair of numbers m
and # is called the size of the matrix. Two matrices 4 and B are equal, written A = B, if they have the same
size and if corresponding elements are equal. Thus the equality of two m x n matrices is equivalent to a
system of mn equalities, one for each corresponding pair of elements.

A matrix with only one row is called a row matrix or row vector, and a matrix with only one column is
called a column matrix or column vector. A matrix whose entries are all zero is called a zero matrix and will
usually be denoted by 0.

Matrices whose entries are all real numbers are called real matrices and are said to be matrices over R.
Analogously, matrices whose entries are all complex numbers are called complex matrices and are said to
be matrices over C. This text will be mainly concerned with such real and complex matrices.

Example 2.1
(a) The rectangular array 4 = |:1 —4 _;] is a 2 x 3 matrix. Its rows are (1, —4,5) and (0, 3, —2), and its

0 3
columns are
1 —4 5
0 30 -2

0000]

(b) The 2 x 4 zero matrix is the matrix 0 = [ 00 0 0

X4y 2z+4t] [3 7
x—y z—t | |1 5

By definition of equality of matrices, the four corresponding entries must be equal. Thus:

(¢) Find x, y, z, t such that

x+y=13, x—y=1, 2z+t=17, z—t=5

Solving the above system of equations yields x =2,y =1,z=4,t= —1.

2.3 MATRIX ADDITION AND SCALAR MULTIPLICATION

Let 4 = [a;] and B = [b;] be two matrices with the same size, say m X n matrices. The sum of 4 and
B, written 4 + B, is the matrix obtained by adding corresponding elements from 4 and B. That is,

ay+by anp+by, ... a,+by,
A+B— ay +by  ap+by ... ay,+by,
Am + bml Ay + me BRI ¢ + bmn

The product of the matrix A by a scalar k, written k - 4 or simply k4, is the matrix obtained by multiplying
each element of 4 by k. That is,

ka” kalz kaln
A = kazl kazz e kaz,,
ka,, ka,, ... ka,,

Observe that 4 + B and kA4 are also m x n matrices. We also define
—A=(-1)4 and A—B=A4A+(-B)

The matrix —A4 is called the negative of the matrix 4, and the matrix 4 — B is called the difference of A and
B. The sum of matrices with different sizes is not defined.
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0 4 5 1 -3 -7

1+4 -2+46 3+38 5 4 11
0+1 4+4(=3) 5+(=7) 11 -2

[0 362 3@ _[3 6 9
_[3(0) 3(4) 3(5)}_[0 1 15}

{2 —4 6i| [—12 —18 —24} [—10 —22 —18i|
24— 3B = n _

0 8 10 -3 9 21 -3 17 31

The matrix 24 — 3B is called a linear combination of A and B.

Example 2.2. Let4 = [] -2 3:| and B = |:4 6 8]. Then

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

Theorem 2.1: Consider any matrices 4, B, C (with the same size) and any scalars k£ and k’. Then:

() +B)+C=A+B+C), () k(A+B)=kA+kB,

(i) A+0=0+A4=4, vi) (k+k)4d=kA+KkA,
(i) A+(—A)=(-A)+A4=0, (vi) (kk')4=k(KA4),
(iv) A+B=B+A4 (vii) 1-4 = 4.

Note first that the 0 in (ii) and (iii) refers to the zero matrix. Also, by (i) and (iv), any sum of matrices
A +A4y+-- 44,

requires no parentheses, and the sum does not depend on the order of the matrices. Furthermore, using (vi)
and (viii), we also have
A+ A =24, A+A+A =34,
and so on.
The proof of Theorem 2.1 reduces to showing that the ij-entries on both sides of each matrix equation
are equal. (See Problem 2.3.)
Observe the similarity between Theorem 2.1 for matrices and Theorem 1.1 for vectors. In fact, the

above operations for matrices may be viewed as generalizations of the corresponding operations for
vectors.

24 SUMMATION SYMBOL

Before we define matrix multiplication, it will be instructive to first introduce the summation symbol
(the Greek capital letter sigma).
Suppose f(k) is an algebraic expression involving the letter £. Then the expression

i f(k) or equivalently Y f(k)
=1

has the following meaning. First we set £ = 1 in f(k), obtaining
S
Then we set &k = 2 in f(k), obtaining f(2), and add this to f(1), obtaining
S +7Q2)
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Then we set £k = 3 in f(k), obtaining f(3), and add this to the previous sum, obtaining
S+ +/(3)

We continue this process until we obtain the sum
SO+ + - +f()

Observe that at each step we increase the value of k£ by 1 until we reach n. The letter & is called the index,
and 1 and » are called, respectively, the lower and upper limits. Other letters frequently used as indices are i
and j.

We also generalize our definition by allowing the sum to range from any integer », to any integer 7,.
That is, we define

52 £(0) = f(ny) + g + 1)+ fny +2) + -+ f(na)

k=n,

Example 2.3

5 n
(@ Yx=x+x+x+x+x5 and > ab;=ab +ab,+---+ab,
k=1 '

i=1

5 n
b)) 2 =224324+424+52=54 and Y ax' =ay+ax+axt+---+a,x"
j=2 i=0

P
(©) kz} apby = ayby; + apby + agby; + - - +aby,

2.5 MATRIX MULTIPLICATION

The product of matrices 4 and B, written AB, is somewhat complicated. For this reason, we first begin
with a special case.

The product 4B of a row matrix 4 = [g;] and a column matrix B = [b;] with the same number of
elements is defined to be the scalar (or 1 x 1 matrix) obtained by multiplying corresponding entries and
adding; that is,

by

b n
AB =laj, a5, ..., a,]| ? | =ayby +ayby +---+ab, = aib,
=
b,

We emphasize that AB is a scalar (or a 1 x 1 matrix). The product 4B is not defined when 4 and B have
different numbers of elements.

Example 2.4
3

(@ [7, —4,5]{ 2} =73)+(—4H2)+5(-1)=21 —-8—-5=28
-1

4
(®) [6,—1,8,3] :Z =2449—16+15=734
5

We are now ready to define matrix multiplication in general.
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Definition: Suppose 4 = [a;] and B = [b,;] are matrices such that the number of columns of 4 is equal
to the number of rows of B; say, 4 is an m x p matrix and B is a p X n matrix. Then the
product AB is the m x n matrix whose ij-entry is obtained by multiplying the ith row of 4 by
the jth column of B. That is,

ap alp bll . blj bln C11 N Cln
a; aip = Cl]
Qi v Gy | [y o by oo by, Ci Coun

p
Where Cij = ailblj + ai2b2j + e + aipbpj = kZ: aikbkj
=1
The product 4B is not defined if 4 is an m X p matrix and B is a ¢ X » matrix, where p # gq.
Example 2.5

. 1 3 2 0 —4
(a) FmdABwhereA_|:2 _1i|andB_|:5 5 6]'

Since 4 is 2 x 2 and Bis 2 x 3, the product 4B is defined and 4B is a 2 x 3 matrix. To obtain the first row of
the product matrix 4B, multiply the first row [1, 3] of 4 by each column of B,

BRI

[2+15 0—6 —4+18]_[17 —6 14]

respectively. That is,
AB =

To obtain the second row of 4B, multiply the second row [2, —1] of 4 by each column of B. Thus
17 —6 14 17 —6 14
AB—[4—5 042 —8—6]_[—1 2 —14]

(b) Suppose A = [1 2] and B = [5 6]. Then

3 4 0 -2
[ 540 6-4] [5 2 _[5+18 10+24] _[23 34
AB_[15+0 18—8]_[15 10] and BA_[0—6 0—8]_[—6 —8]

The above example shows that matrix multiplication is not commutative, i.e. the products 4B and BA
of matrices need not be equal. However, matrix multiplication does satisfy the following properties.

Theorem 2.2: Let 4, B, C be matrices. Then, whenever the products and sums are defined:
(1) (4AB)C = A(BC) (associative law),
(i) A(B+ C) = AB + AC (left distributive law),
(iii) (B + C)A = B4 + CA (right distributive law),
(iv) k(4AB) = (kA)B = A(kB), where k is a scalar.

We note that 04 = 0 and B0 = 0, where 0 is the zero matrix.
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2.6 TRANSPOSE OF A MATRIX

The transpose of a matrix 4, written AT, is the matrix obtained by writing the columns of 4, in order,
as rows. For example,

1

T 1 4
[i g 2} —|2 s and  [1,-3,-5] = | -3
36 s

In other words, if 4 = [q;

;] is an m x n matrix, then AT = [b;] is the n x m matrix where b; = a;.

Observe that the tranpose of a row vector is a column vector. Similarly, the transpose of a column
vector is a row vector.

The next theorem lists basic properties of the transpose operation.

Theorem 2.3: Let A and B be matrices and let £ be a scalar. Then, whenever the sum and product are

defined:
(i) +B) =4"+5, (i) (kd)” = kT,
(i) D" =4, (iv) (4B)f =BTA".

We emphasize that, by (iv), the transpose of a product is the product of the transposes, but in the
reverse order.

2.7 SQUARE MATRICES

A square matrix is a matrix with the same number of rows as columns. An n x n square matrix is said
to be of order n and is sometimes called an n-square matrix.

Recall that not every two matrices can be added or multiplied. However, if we only consider square
matrices of some given order n, then this inconvenience disappears. Specifically, the operations of addition,
multiplication, scalar multiplication, and transpose can be performed on any n x n matrices, and the result
is again an n X n matrix.

Example 2.6. The following are square matrices of order 3:

1 2 3 2 =5 1
A=| -4 —4 —4 and B=|10 3 =2
5 6 7 1 2 —4
The following are also matrices of order 3:
3 -3 4 2 4 6 1 -4 5
A+B=| -4 -1 -6 |, 24=| -8 -8 -8/, AT=12 -4 6
6 8 3 10 12 14 3 —4 7
5 7 —15 27 30 33
AB=| —12 0 20 |, BA=| -22 —-24 =26

17 7 =35 —27 =30 -33
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Diagonal and Trace

Let 4 = [a,;] be an n-square matrix. The diagonal or main diagonal of A consists of the elements with
the same subscripts, that is,

apy, an, ass, R Ay

The trace of A, written tr(4), is the sum of the diagonal elements. Namely,
tI‘(A) =daj +a22 +a33 +... +ann

The following theorem applies.

Theorem 2.4: Suppose 4 = [a;] and B = [b;] are n-square matrices and k is a scalar. Then:
(1) tr(4 + B) = tr(4) + tr(B), (i) tr(4”) = tr(A4),
(i) tr(k4) = k tr(A), (iv) tr(4AB) = tr(BA).

Example 2.7. Let 4 and B be the matrices 4 and B in Example 2.6. Then
diagonal of 4 = {1, —4, 7} and tr(d)=1—-4+7=4
diagonal of B = {2, 3, —4} and tr(B)=2+4+3—-4=1
Moreover,

t(d+B)=3—1+3=5, r(24d) =2 -8+ 14=8, trd)=1-4+7=4
tr(4B) = 5+ 0 — 35 = —30, tr(BA) = 27 — 24 — 33 = —30

As expected from Theorem 2.4,
tr(4 + B) = tr(4) + tr(B), tr(4”) = tr(4), tr(24) = 2 tr(4)

Furthermore, although 4B # BA, the traces are equal.

Identity Matrix, Scalar Matrices

The n-square identity or unit matrix, denoted by 7,, or simply /, is the n-square matrix with 1’s on the
diagonal and 0’s elsewhere. The identity matrix / is similar to the scalar 1 in that, for any n-square matrix
A’

Al =14 =4

More generally, if B is an m x n matrix, then BI, = I,B = B.
For any scalar k, the matrix A/ that contains k’s on the diagonal and 0’s elsewhere is called the scalar
matrix corresponding to the scalar k. Observe that

(kDA = k(I4) = k4
That is, multiplying a matrix 4 by the scalar matrix 4/ is equivalent to multiplying 4 by the scalar k.

Example 2.8. The following are the identity matrices of orders 3 and 4 and the corresponding scalar matrices for k = 5:
! 500 3
0 5 0f,

0 0 5

1 0
0 1
0 0 1 5

—_o O
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Remark 1: It is common practice to omit blocks or patterns of 0’s when there is no ambiguity, as in
the above second and fourth matrices.

Remark 2: The Kronecker delta function 9, is defined by

s _ [0 ifi#j
P i =y

Thus the identity matrix may be defined by 7 = [J,]

2.8 POWERS OF MATRICES, POLYNOMIALS IN MATRICES

Let 4 be an n-square matrix over a field K. Powers of A are defined as follows:
A=44, A=44 ..., AT=44 ..., ad A=I
Polynomials in the matrix 4 are also defined. Specifically, for any polynomial
f) =ag+ax+ax’ +--- +ax
where the a; are scalars in K, f(4) is defined to be the following matrix:
f(x) =ayl +a\ A+ aA* + -+ a,d"

[Note that f(A4) is obtained from f(x) by substituting the matrix 4 for the variable x and substituting the
scalar matrix a,/ for the scalar a,.] If f(4) is the zero matrix, then 4 is called a zero or root of f(x).

Example 2.8. Suppose 4 = |:; _‘21] Then

o [t 21 2] [ 7 -6 s o, [ 7 -6t 2] _[-11 38
A—[3 4|3 —4|7|-9 2 and A =LA=| o »]l3 —4]T| 57 106

Suppose f(x) = 2x> — 3x + 5 and g(x) = x*> + 3x — 10. Then

oo 7 T [t 2] L[t O _[ e 18
= [—9 22]_ [3 —4]+ [o 1]*[—27 61}

SO A N - D o B B
g()_[—9 22]+ [3 —4]_ [o 1]_[0 0]

Thus 4 is a zero of the polynomial g(x).

2.9 INVERTIBLE (NONSINGULAR) MATRICES

A square matrix A4 is said to be invertible or nonsingular if there exists a matrix B such that
AB=BA=1

where [ is the identity matrix. Such a matrix B is unique. That is, if AB; = BjA =1 and AB, = B,A =1,
then

B, =B\l = B|(4B,) = (B|4)B, = IB, = B,

We call such a matrix B the inverse of 4 and denote it by 4~!. Observe that the above relation is symmetric;
that is, if B is the inverse of 4, then A4 is the inverse of B.
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Example 2.9. Suppose that 4 = |:? g] and B = |:_3I _g] Then

_[6-5 —10+10] _[1 0 [ 6-5 15157 _[1 0
AB‘[3—3 —5+6]_[0 1] and BA_[—2+2 —5+6]_[0 1]

Thus 4 and B are inverses.

It is known (Theorem 3.15) that AB = [ if and only if BA = I. Thus it is necessary to test only one
product to determine whether or not two given matrices are inverses. (See Problem 2.17.)

Now suppose 4 and B are invertible. Then AB is invertible and (4B)"' = B~14~!. More generally, if
Ay, A4,, ..., A, are invertible, then their product is invertible and

A4y ... 4) " =47 474!

the product of the inverses in the reverse order.

Inverse of a 2 x 2 Matrix

Let A4 be an arbitrary 2 x 2 matrix, say 4 = |:Z 2i| We want to derive a formula for A7, the inverse

of 4. Specifically, we seek 22 = 4 scalars, say x,, y;, X,, ¥,, such that

a billx x| _ |1 0 or ax; +by; ax,+by, | |1 O
c dl||ly; »vo| |0 1 cxy+dy, ex,+dy, | |0 1
Setting the four entries equal to the corresponding entries in the identity matrix yields four equations,
which can be partitioned into two 2 x 2 systems as follows:
ax; + by, =1, ax, + by, =0
cxy +dy, =0, cxy +dy, =1

Suppose we let |A| = ab — bc (called the determinant of A). Assuming |4| # 0, we can solve uniquely for
the above unknowns x,, y, X,, ¥,, obtaining

d —c —b a
X =—, =—, Xy =—o, =—
T AV 27l SCRVT

e b ST AN bl L[ d —b
T le d| T | =c/lAl  a/l4l | JA|| —¢ a

In other words, when |4| # 0, the inverse of a 2 x 2 matrix 4 may be obtained from 4 as follows:

Accordingly,

(1) Interchange the two elements on the diagonal.
(2) Take the negatives of the other two elements.
(3) Multiply the resulting matrix by 1/|A4| or, equivalently, divide each element by |A4|.

In case |4| = 0, the matrix A is not invertible.

Example 2.10. Find the inverse of 4 = [‘21 §i| and B = [; Z]

First evaluate |4| = 2(5) — 3(4) = 10 — 12 = —2. Since |4| # 0, the matrix A4 is invertible and

_ 1 5 -3 -5 3
r_ - — 2 2
4 _—2{—4 2}_[ 2 —1]

Now evaluate |B| = 1(6) — 3(2) = 6 — 6 = 0. Since |B| = 0, the matrix B has no inverse.
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Remark: The above property that a matrix is invertible if and only if 4 has a nonzero determinant is
true for square matrices of any order. (See Chapter 8).

Inverse of an n x n Matrix

Suppose 4 is an arbitrary n-square matrix. Finding its inverse 4~! reduces, as above, to finding the
solution of a collection of n x n systems of linear equations. The solution of such systems and an efficient
way of solving such a collection of systems is treated in Chapter 3.

2.10 SPECIAL TYPES OF SQUARE MATRICES

This section describes a number of special kinds of square matrices.

Diagonal and Triangular Matrices

A square matrix D = [d;] is diagonal if its nondiagonal entries are all zero. Such a matrix is
sometimes denoted by

D = diag(d“,dzz, e d )

’ nn

where some or all the d; may be zero. For example,

6
300 4 0 0
0 =7 0 0 -5 -9
0 0 2
are diagonal matrices, which may be represented, respectively, by
diag(3, -7, 2), diag(4, —5), diag(6, 0, —9, 8)

(Observe that patterns of 0’s in the third matrix have been omitted.)

A square matrix 4 = [a;] is upper triangular or simply triangular if all entries below the (main)
diagonal are equal to 0, that is, if a; = 0 for i > j. Generic upper triangular matrices of orders 2, 3, 4 are as
follows:

€11 €12 €13 Cua

ap  dp bu b bis Cp €3 Cx4
0 a- I by by |, c ¢

22 by 33 cii

(As with diagonal matrices, it is common practice to omit patterns of 0’s.)
The following theorem applies.
Theorem 2.5:  Suppose 4 = [a;] and B = [b;] are n x n (upper) triangular matrices. Then:
(i) A+ B, kA, AB are triangular with respective diagonals.
(all+bll’ e ann+bnn)’ (kalh e kann)’ (allbll’ e annbnn)v

(ii) For any polynomial f(x), the matrix f(4) is triangular with diagonal
(flar).f(az), - - .. [ (@)

(iii) A is invertible if and only if each diagonal element a;; # 0, and when A~ exists it is
also triangular.
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A lower triangular matrix is a square matrix whose entries above the diagonal are all zero. We note
that Theorem 2.5 is true if we replace “triangular” by either “lower triangular” or “diagonal”.

Remark: A nonempty collection 4 of matrices is called an algebra (of matrices) if 4 is closed under
the operations of matrix addition, scalar multiplication, and matrix multiplication. Clearly, the square
matrices with a given order form an algebra of matrices, but so do the scalar, diagonal, triangular, and
lower triangular matrices.

Special Real Square Matrices: Symmetric, Orthogonal, Normal

Suppose now A is a square matrix with real entries, that is, a real square matrix. The relationship
between A4 and its transpose A” yields important kinds of matrices.

(a) Symmetric Matrices

A matrix 4 is symmetric if AT = A. Equivalently, 4 = [a;] is symmetric if symmetric elements (mirror
elements with respect to the diagonal) are equal, that is, if each a; = a;.

A matrix 4 is skew-symmetric if AT = —A or, equivalently, if each a; = —aj;. Clearly, the diagonal
elements of such a matrix must be zero, since a; = —a;; implies a; = 0.

(Note that a matrix 4 must be square if 47 = 4 or AT = —4.)

2 -3 5 0 3 -4 100
Example 2.11. Let4=|-3 6 7[,B=|-3 0 5 ’C:[o 0 1]'
5 7 -8 4 =5 0

(a) By inspection, the symmetric elements in 4 are equal, or A7 = 4. Thus 4 is symmetric.

(b) The diagonal elements of B are 0 and symmetric elements are negatives of each other, or B” = —B. Thus B is
skew-symmetric.

(c) Since C is not square, C is neither symmetric nor skew-symmetric.

(b) Orthogonal Matrices

A real matrix A is orthogonal if AT = A", that is, if A4T = A4 = I. Thus 4 must necessarily be
square and invertible.

[=IENEV-TRORNCTTS

Example 2.12. Let4 =

©l— ol ol

. Multiplying 4 by A7 yields I; that is, 44" = I. This means 474 = I, as well.

00 Ol& Ol—

9
Thus A7 = A7"; that is, 4 is orthogonal.

Now suppose 4 is a real orthogonal 3 x 3 matrix with rows
up =(ay, ay, az), uy = (by, by, b3), uy = (¢, ¢, ¢3)

Since 4 is orthogonal, we must have 447 = I. Namely

a, a, a3 a, b ¢ 1 00
AAT = b, by by||lay by o |=|0 1 0|=1I
6 a; by ¢ 0 0 1
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Multiplying 4 by A7 and setting each entry equal to the corresponding entry in / yields the following nine equations:

a+a+d=1, a,b; + ayby, + azb; =0, ajcy +aye, +aze3 =0
bia; + bya, + bya; =0, b +b+ b =1, bicy +bycy + b33 =0
c1a;, + 0, + cza3 =0, c1by + cyby +c3b3; =0, a+ad+ad=1

Accordingly, u; -u; =1, uy -u, = 1, u3 -u3 = 1, and u; - u; = 0 for i # j. Thus the rows u;, u,, u3 are unit vectors
and are orthogonal to each other.

Generally speaking, vectors u;, u,, ..., u,, in R" are said to form an orthonormal set of vectors if the
vectors are unit vectors and are orthogonal to each other, that is,
0 ifi#j
U u; = e 7&].
J 1 ifi=j

In other words, u; - u; = ;; where 9, is the Kronecker delta function.

We have shown that the condition 447 = I implies that the rows of 4 form an orthonormal set of
vectors. The condition 4”4 = I similarly implies that the columns of 4 also form an orthonormal set of
vectors. Furthermore, since each step is reversible, the converse is true.

The above results for 3 x 3 matrices is true in general. That is, the following theorem holds.

Theorem 2.6: Let 4 be a real matrix. Then the following are equivalent:
(a) A is orthogonal.
(b) The rows of A form an orthonormal set.
(¢) The columns of A4 form an orthonormal set.

For n = 2, we have the following result (proved in Problem 2.28).

Theorem 2.7: Let 4 be a real 2 x 2 orthogonal matrix. Then, for some real number 0,

4= cos sin0 4= cos 0 sin 0
T | —sinf cos0 or | sinf@ —cosf

(¢) Normal vectors

A real matrix 4 is normal if it commutes with its transpose A7, that is, if 447 = ATA. If A4 is
symmetric, orthogonal, or skew-symmetric, then 4 is normal. There are also other normal matrices.

6 -3
3 6

r [6 =31 6 3] [45 o [ 6 376 -3
AA_[3 6][—3 6]_[0 45] and AA_[—3 6][3 6}

Since 447 = A" 4, the matrix 4 is normal.

Example 2.13. Let 4 = [ ] Then

45 0
0 45

2.11 COMPLEX MATRICES

Let 4 be a complex matrix, that is, a matrix with complex entries. Recall (Section 1.7) that if
z = a + bi is a complex number, then z = a — bi is its conjugate. The conjugate of a complex matrix 4,
written 4, is the matrix obtained from 4 by taking the conjugate of each entry in 4. That is, if 4 = [a;],
then 4 = [b;], where b; = a;. (We denote this fact by writing 4 = [a;;].)
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The two operations of transpose and conjugation commute for any complex matrix 4, and the special
notation 47 is used for the conjugate transpose of 4. That is,

A = A" = A")
Note that if 4 is real, then A7 = A”. [Some texts use A* instead of 47.]

2—8i —6i

Example 2.14. LetA:[z—g.gl R g;;l.].ThanH: 543 144 |,
' ' ' 447 3-2i

Special Complex Matrices: Hermitian, Unitary, Normal

Consider a complex matrix 4. The relationship between 4 and its conjugate transpose A’ yields
important kinds of complex matrices (which are analogous to the kinds of real matrices described above).

A complex matrix 4 is said to be Hermitian or skew-Hermitian according as
A"=4 o A" =-4

Clearly, 4 = [a;] is Hermitian if and only if symmetric elements are conjugate, that is, if each a; = g, in
which case each diagonal element a; must be real. Similarly, if 4 is skew-symmetric, then each diagonal
element a; = 0. (Note that 4 must be square if 47 = 4 or 47 = —4.)

A complex matrix 4 is unitary if ATA™" = 474" = I, that is, if
AT =471,

Thus 4 must necessarily be square and invertible. We note that a complex matrix A4 is unitary if and only if
its rows (columns) form an orthonormal set relative to the dot product of complex vectors.

A complex matrix A4 is said to be normal if it commutes with 47, that is, if
A4 = 4" 4
(Thus A must be a square matrix.) This definition reduces to that for real matrices when 4 is real.

Example 2.15. Consider the following complex matrices:

3 1—2i 447 1 —i =14 .
A=| 142 -4 —2 B:% i 1 1 +i C:[Zﬂl 1412']
4—7i  2i 5 14+i —=14+i 0 ! !

(a) By inspection, the diagonal elements of 4 are real and the symmetric elements 1 — 2i and 1 4 2i are conjugate,
4 + 7i and 4 — 7i are conjugate, and —2i and 2i are conjugate. Thus 4 is Hermitian.

(b) Multiplying B by B yields I, that is, BB = I. This implies BB = I, as well. Thus B = B~!, which means B
is unitary.

(¢) To show C is normal, we evaluate CC* and C*C:

con_[2+3 1 q[2=3i < J_[ 14 4—4i
Tl r+2f| 1 1-2i| T |4+4 6

14

. He —
and similarly C"C = [ 44 4i

4 _641 ] Since CCH = CHC, the complex matrix C is normal.

We note that when a matrix A4 is real, Hermitian is the same as symmetric, and unitary is the same as
orthogonal.
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2.12 BLOCK MATRICES

Using a system of horizontal and vertical (dashed) lines, we can partition a matrix 4 into submatrices
called blocks (or cells) of A. Clearly a given matrix may be divided into blocks in different ways. For
example:

1 =20 1! 3 L =210 1 3 -2 01 3
2 3.5 7,2 2 3 5 7 2 2 3 5.7 -2
301459 3 11 4.5 9F 31 41509
4 6,3 1, 8 4776, -3 1 8 4 6 -3,1 8

The convenience of the partition of matrices, say 4 and B, into blocks is that the result of operations on 4
and B can be obtained by carrying out the computation with the blocks, just as if they were the actual
elements of the matrices. This is illustrated below, where the notation 4 = [4;] will be used for a block
matrix 4 with blocks 4.

Suppose that 4 = [4,;] and B = [B;] are block matrices with the same numbers of row and column
blocks, and suppose that corresponding blocks have the same size. Then adding the corresponding blocks
of A and B also adds the corresponding elements of 4 and B, and multiplying each block of 4 by a scalar £
multiplies each element of 4 by k. Thus

Ay +By Ap+B,n ... A4, +B,
Ay +B A, + B ee. Ay, +B
A+B= 21 21 22 22 2n 2n
Aml +Bml AmZ +Bm2 s Amn +an
and

kAll kAlZ DEEEEY kAln
kA — kAZl kA22 DEEEEY kA2n
ml kAmZ s kAmn

The case of matrix multiplication is less obvious, but still true. That is, suppose that U = [Uy] and
V' = [V};] are block matrices such that the number of columns of each block Uy is equal to the number of
rows of each block Vj;. (Thus each product Uy V}; is defined.) Then

Wll le CEEIEY Wln
Wy Wy ... W

uy=| TomEe T where Wy = UV + Uply + .+ Uy Yy
I/le VVmZ ce Wmn

The proof of the above formula for UV is straightforward, but detailed and lengthy. It is left as an exercise
(Problem 2.85).

Square Block Matrices

Let M be a block matrix. Then M is called a square block matrix if:

(i) M is a square matrix. (ii) The blocks form a square matrix.
(iii) The diagonal blocks are also square matrices.

The latter two conditions will occur if and only if there are the same number of horizontal and vertical
lines and they are placed symmetrically.
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Consider the following two block matrices:

1 2,3 4,5 1 2,3 4,5
111 11 111 1']1
A4=19787 65 and B=|9 8,7 6,5
4 414 414 4 414 414
3 5/3 5,3 35,3 5,3

The block matrix A4 is not a square block matrix, since the second and third diagonal blocks are not square.
On the other hand, the block matrix B is a square block matrix.

Block Diagonal Matrices

Let M = [4;;] be a square block matrix such that the nondiagonal blocks are all zero matrices, that is,
A; = 0 wheni # j. Then M is called a block diagonal matrix. We sometimes denote such a block diagonal
matrix by writing

M:diag(A“,A22,...,Arr) or M=A11 @AZZGB"'@AFV

The importance of block diagonal matrices is that the algebra of the block matrix is frequently reduced to
the algebra of the individual blocks. Specifically, suppose f(x) is a polynomial and M is the above block
diagonal matrix. Then f(M) is a block diagonal matrix and

(M) = diag(f(411), [ (42), - - ..[(4,,))

Also, M is invertible if and only if each 4;, is invertible, and, in such a case, M ™! is a block diagonal matrix
and

M™! = diag(4y], 45, ..., 40

s Ly

Analogously, a square block matrix is called a block upper triangular matrix if the blocks below the
diagonal are zero matrices, and a block lower triangular matrix if the blocks above the diagonal are zero
matrices.

Example 2.16. Determine which of the following square block matrices are upper diagonal, lower diagonal, or diagonal:

(a) A is upper triangular since the block below the diagonal is a zero block.
(b) B is lower triangular since all blocks above the diagonal are zero blocks.
(¢) C is diagonal since the blocks above and below the diagonal are zero blocks.

(d) D is neither upper triangular nor lower triangular. Also, no other partitioning of D will make it into either a block
upper triangular matrix or a block lower triangular matrix.
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Solved Problems

MATRIX ADDITION AND SCALAR MULTIPLICATION

2.1.

2.2.

2.3.

4 5 —6 7 1 8
(@ A+B, (b) 24-3B.

(a) Add the corresponding elements:

GiveAz[1 —2 3]and8:[_3 0 2:|,ﬁnd:

143 =240 3+2] [ 4 6 5
A+B—[4—7 541 —6+8]_[—3 6 2}

(b) First perform the scalar multiplication and then a matrix addition:

2 —4 6 -9 0 -6 -7 —4 0
24-38= [8 10 —12] + [ 21 -3 —24] = [—29 7 —36]
(Note that we multiply B by —3 and then add, rather than multiplying B by 3 and subtracting. This
usually prevents errors.)

. X y _ X 6 4 x+y
F1ndx,y,z,twhere3|:z t]_[—l 2t]+|:z+t 3 }

Write each side as a single equation:

3 3y| | x+4 x+y+6
3z 3| |z+t—1 2t+43

Set corresponding entries equal to each other to obtain the following system of four equations:
3x=x+4, 3y=x+y+6, 3z=z4+1t—-1, 3t=2t+3

or 2x =4, 2y =6+x, 2z=t—1, t=3

The solution is x =2, y=4,z=1,¢t=3.

Prove Theorem 2.1 (i) and (v): (i) A+ B)+ C=A4A+ (B+C), (v) k(4 + B) = kA + kB.

Suppose 4 = [a;], B = [b;], C = [¢;]. The proof reduces to showing that corresponding ij-entries in each
side of each matrix equation are equal. [We only prove (i) and (v), since the other parts of Theorem 2.1 are
proved similarly.]

(i) The ij-entry of 4 + B is a; + by; hence the ij-entry of (4 + B) + C is (a; + b;;) + ¢;;. On the other hand,
the ij-entry of B + C is b; + ¢;;, and hence the ij-entry of 4 + (B + C) is a;; + (b; + ¢;;). However, for
scalars in K,

(ay +by) + ¢y = ay + (b; +¢)

Thus (4 + B) + C and 4 + (B + C) have identical ij-entries. Therefore (4 + B) + C = A4 + (B + C).

(v) The ij-entry of 4 + B is a;; + by; hence k(a;; + by) is the ij-entry of k(4 + B). On the other hand, the
ij-entries of k4 and kB are ka;; and kb, respectively. Thus ka; + kb; is the ij-entry of k4 + kB. However,
for scalars in K,

k(ay; + by) = kay; + kb
Thus k(4 + B) and kA + kB have identical ij-entries. Therefore k(4 + B) = k4 + kB.
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MATRIX MULTIPLICATION

3
2.4. Calculate: (a) [8,—4,5]] 2|, () [6,-1,7,5]

5
) (C) [37 87 _234] -1
-1 6

4
-9
-3

2

(a) Multiply the corresponding entries and add:

3
8, —4,5]] 2| =83)+(=4)2)+5(-1)=24—-8—5=11

(b) Multiply the corresponding entries and add:
4

-9
[6,—-1,7,5] 3 =244+9-21410=22

2

(c¢) The product is not defined when the row matrix and the column matrix have different numbers of
elements.

2.5. Let (r x s) denote an r x s matrix. Find the sizes of those matrix products that are defined:
(@) 2x3)(3x4), (¢ (I1x2)(3x1), (&) 4x4)(3x3)
() 4xDAx2), (@ x2)2x3), () 2x2)2x4)
In each case, the product is defined if the inner numbers are equal, and then the product will have the size
of the outer numbers in the given order.

(a) 2x4, (¢) not defined, (e) not defined
b) 4x2, d) 5x3, (f) 2x4

26. Letd= [; _ﬂ and B = B _g _2}. Find: (a) 4B, (b) BA.
(a) Since 4isa2 x 2 and B a2 x 3 matrix, the product 4B is defined and is a 2 x 3 matrix. To obtain the
entries in the first row of AB, multiply the first row [1, 3] of 4 by the columns |:§ ] [ _(2) ] |: _2] of B,

respectively, as follows:

a1 32 0 4] _[2+9 0-6 —4+18]_[11 —6 14
T2 1|3 =2 6" -

To obtain the entries in the second row of 4B, multiply the second row [2, —1] of 4 by the columns of B:
1 3772 0 —4 11 —6 14
AB = =
2 —-1]13 =2 | 6 4-3 0+2 —-8-6

11 -6 14]

Thus

AB =
[1 2 14

(b) The size of B is 2 x 3 and that of 4 is 2 x 2. The inner numbers 3 and 2 are not equal ; hence the product
BA is not defined.
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5 3 g 2 -1 0 6
2.7. Find AB, where 4 = [4 5 5] and B=| 1 3 =51
4 1 -2 2

Since 4 is a 2 x 3 and B a 3 x 4 matrix, the product 4B is defined and is a 2 x 4 matrix. Multiply the
rows of 4 by the columns of B to obtain

44+43-4 24+9-1 0-—-15+2 1243-2| | 3 6 —13 13
8—24+20 -4-6+5 0+10—10 24—2410|" |26 -5 0 32

2.8. Find: (a) [_; ﬂ[_ﬂ @] [_ﬂ[_; 2] () [2,—7][_; 2}

(a) The first factor is 2 x 2 and the second is 2 x 1, so the product is defined as a 2 x 1 matrix:

R B

(b) The product is not defined, since the first factor is 2 x 1 and the second factor is 2 x 2.

a=|

(¢) The first factor is 1 x 2 and the second factor is 2 x 2, so the product is defined as a 1 x 2 (row) matrix:

2, —7][_; g] =[2+21, 12—35]=[23,-23]

2.9. Clearly 04 = 0 and A0 = 0, where the 0’s are zero matrices (with possibly different sizes). Find
matrices 4 and B with no zero entries such that AB = 0.

1 2 6 2 0 0
LetA:|:2 4]andB:|:_3 _1:|.ThenAB:|:O 0:|.

2.10. Prove Theorem 2.2(i): (4B)C = A(BC).
Let A=[ay;], B=[by], C=|[cy), andlet AB=S=[s;], BC=T=[t;]. Then

m n
Sie = 2 agby and by = bycy
=1 k=1

Multiplying S = 4B by C, the il-entry of (4B)C is
Spcy tSpCy t 80, = kZl SikCry = kZl X;(aybjk)ckl
= —1j=

On the other hand, multiplying 4 by T = BC, the il-entry of A(BC) is

m m n
apty +apty + ..+ apty =D agty =3 3 ay(bycy)
= j=1 k=t

The above sums are equal; that is, corresponding elements in (4B)C and A(BC) are equal. Thus
(4B)C = A(BC).

2.11. Prove Theorem 2.2(ii): A(B+ C) = AB + AC.
Let A = [ay], B=[by], C =[cy], and let D = B+ C = [dy], E = AB = [ey], F = AC = f;]. Then

m m
dy = by + cjp.s ey = ayby, S = 2 azcy
j=1 j=1
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Thus the ik-entry of the matrix 4B 4 AC is
e +fi :Jé aby +j: a;iCik :g; a;(by + ci)
On the other hand, the ij-entry of the matrix 4D = A(B + C) is
andy +apdy + -+ ay,dy = ,é a;dy = /é ay(bjx + ci)

Thus A(B + C) = AB + AC, since the corresponding elements are equal.

TRANSPOSE
2.12. Find the transpose of each matrix:
1 -2 3 I 2 3 2
A= 7 g —o9| B=1|2 4 5], C:[]’—375’_7]7 D=| -4
3 56 6

Rewrite the rows of each matrix as columns to obtain the transpose of the matrix:

17 1 2 3 _;
AT=| -2 8], Bl=|2 4 5/, cl = 5 | D" =[2,-4,6]
3 -9 356 3

(Note that BT = B; such a matrix is said to be symmetric. Note also that the transpose of the row vector C is a
column vector, and the transpose of the column vector D is a row vector.)

2.13. Prove Theorem 2.3(iv): (4B)" = BTA”.
Let 4 = [a;] and B = [by;]. Then the ij-entry of AB is
a,-lblj + a,—zsz +...+ al-mb,,y-
This is the ji-entry (reverse order) of (4B)”. Now column j of B becomes row j of B”, and row i of 4 becomes
column i of AT, Thus the ij-entry of BTAT is

T
[b1js by - - byllan. aips - - - @] = byjan + byap + ... + bya;,

Thus (4B)” = BT A7, since the corresponding entries are equal.

SQUARE MATRICES

2.14. Find the diagonal and trace of each matrix:
1 36 2 4 8 1 ) 3
(@ A=12 -5 8, (b) B= 3 -7 91, (o) C:|:4 _s 6]'
4 -2 9 =5 0 2
(a) The diagonal of 4 consists of the elements from the upper left corner of 4 to the lower right corner of A
or, in other words, the elements a;,, a,,, as;. Thus the diagonal of 4 consists of the numbers 1, —5, and
9. The trace of 4 is the sum of the diagonal elements. Thus

tr(4)=1-54+9=5
(b) The diagonal of B consists of the numbers 2, —7, and 2. Hence
tr(B)=2—-74+2=-3

(¢) The diagonal and trace are only defined for square matrices.
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2.15. Letd = |:i _§i|, and let f(x) = 2x> — 4x + 5 and g(x) = x> + 2x + 11. Find:

(a) 4%, (b) 4%, (0) f(4), (d) g(A).
I [ P

1 2] 9 —4 9-16 —4+34
3 2 _ —
®) 4" =dd _[—4 —3][—8 17]_[36+24 —16—51]

(c) First substitute 4 for x and 57 for the constant in f(x), obtaining

7]
(% o]
;)

g3 A =7 30 |1 1 0
f(4) =24 4A+5[_2[60 _e7 4 4 +5 0 1
Now perform the scalar multiplication and then the matrix addition:
. —14 60 —4 -8 50 —13 52
f(A)_[ 120 —134}{—16 12]+[0 5]_[104 —117]
(d) Substitute 4 for x and 11/ for the constant in g(x), and then calculate as follows:

(4) = A% + 24 111—[ o _4}+2[1 2] 11[1 O]
sl = T8 17 4 -3 01

_[ 9 —4]+[2 4]+ —11 07 [0 0
-8 17 8 —6 0 —11] [0 0
Since g(A) is the zero matrix, 4 is a root of the polynomial g(x).

1 3
4 -3
(b) Describe all such vectors.

2.16. Let A:|: ] (@) Find a nonzero column vector u = [;] such that Au = 3u.

(a) First set up the matrix equation Au = 3u, and then write each side as a single matrix (column vector) as

follows:
1 3 x| _,|x x+3y [ | 3x
[4 —J[y]_}[y]’ and then [4x—3y]_[3y]

Set the corresponding elements equal to each other to obtain a system of equations:
x+3y=3x or 2x—3y=0
4x — 3y =3y 4x—6y =0

The system reduces to one nondegenerate linear equation in two unknowns, and so has an infinite

number of solutions. To obtain a nonzero solution, let, say, y = 2; then x = 3. Thus u = (3, 2)T is a
desired nonzero vector.

or 2x—3y=0

(b) To find the general solution, set y = a, where a is a parameter. Substitute y = a into 2x — 3y =0 to
obtain x = %a. Thus u = (%a, a)T represents all such solutions.

INVERTIBLE MATRICES, INVERSES

1 0 2 —11 2 2
2.17. Showthat A=|2 -1 3 |and B= —4 0 1 | are inverses.
4 1 8 6 —1 -1

Compute the product 4B, 