Undergraduate Texts in Mathematics

Serge Lang

Linear
Algebra
Third Edition

€)) Springer



Springer
New York
Berlin
Heidelberg
Hong Kong
London

Milan

Paris

Tokyo

Undergraduate Texts in Mathematics

Editors

S. Axler

F. W. Gehring
K. A. Ribet



BOOKS OF RELATED INTEREST BY SERGE LANG

Math! Encounters with High School Students
1995, ISBN 0-387-96129-1

Geometry: A High School Course (with Gene Morrow)
1988, ISBN 0-387-96654-4

The Beauty of Doing Mathematics
1994, ISBN 0-387-96149-6

Basic Mathematics
1995, ISBN 0-387-96787-7

A First Course in Calculus, Fifth Edition
1993, ISBN 0-387-96201-8

Short Calculus
2002, ISBN 0-387-95327-2

Calculus of Several Variables, Third Edition
1987, ISBN 0-387-96405-3

Introduction to Linear Algebra, Second Edition
1997, ISBN 0-387-96205-0

Undergraduate Algebra, Second Edition
1994, ISBN 0-387-97279-X

Math Talks for Undergraduates
1999, ISBN 0-387-98749-5

Undergraduate Analysis, Second Edition
1996, ISBN 0-387-94841-4

Complex Analysis, Fourth Edition
1998, ISBN 0-387-98592-1

Real and Functional Analysis, Third Edition
1993, ISBN 0-387-94001-4

Algebraic Number Theory, Second Edition
1996, ISBN 0-387-94225-4

Introduction to Differentiable Manifolds, Second Edition
2002, ISBN 0-387-95477-5

Challenges
1998, ISBN 0-387-94861-9



Serge Lang

Linear Algebra
Third Edition

With 21 Illustrations

&) Springer



Serge Lang

Department of Mathematics

Yale University
New Haven, CT 06520
USA

Editorial Board

S. Axler

Mathematics Department

San Francisco State
University

San Francisco, CA 94132

USA

F.W. Gehring
Mathematics Department
East Hall

University of Michigan
Ann Arbor, M] 48109
USA

K.A. Ribet

Mathematics Department

University of California,
at Berkeley

Berkeley, CA 94720-3840

USA

Mathematics Subject Classification (2000): 15-01

Library of Congress Cataloging-in-Publication Data
Lang, Serge

Linear algebra.

(Undergraduate texts in mathematics)

Includes bibliographical references and index.

I. Algebras, Linear. [I. Title. IIl. Series.
QA251.L.26 1987 512°.5 86-21943
ISBN 0-387-96412-6 Printed on acid-free paper.

The first edition of this book appeared under the title /ntroduction to Linear Algebra © 1970

by Addison-Wesley, Reading, MA. The second edition appeared under the title Linear Algebra
© 1971 by Addison-Wesley, Reading, MA.

© 1987 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY
10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in the United States of America.
19 18 17 16 15 14 13 12 11 (Corrected printing, 2004) SPIN 10972434
Springer-Verlag is part of Springer Science+Business Media

springeronline.com



Foreword

The present book is meant as a text for a course in linear algebra, at the
undergraduate level in the upper division.

My Introduction to Linear Algebra provides a text for beginning stu-
dents, at the same level as introductory calculus courses. The present
book is meant to serve at the next level, essentially for a second course
in linear algebra, where the emphasis is on the various structure
theorems: eigenvalues and eigenvectors (which at best could occur only
rapidly at the end of the introductory course); symmetric, hermitian and
unitary operators, as well as their spectral theorem (diagonalization);
triangulation of matrices and linear maps; Jordan canonical form; convex
sets and the Krein-Milman theorem. One chapter also provides a com-
plete theory of the basic properties of determinants. Only a partial treat-
ment could be given in the introductory text. Of course, some parts of
this chapter can still be omitted in a given course.

The chapter of convex sets is included because it contains basic results
of linear algebra used in many applications and “geometric” linear
algebra. Because logically it uses results from elementary analysis (like a
continuous function on a closed bounded set has a maximum) I put it at
the end. If such results are known to a class, the chapter can be covered
much earlier, for instance after knowing the definition of a linear map.

I hope that the present book can be used for a one-term course. The
first six chapters review some of the basic notions. I looked for effi-
ciency. Thus the theorem that m homogeneous linear equations in n
unknowns has a non-trivial soluton if n > m is deduced from the dimen-
sion theorem rather than the other way around as in the introductory
text. And the proof that two bases have the same number of elements
(ie. that dimension is defined) is done rapidly by the “interchange”
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method. I have also omitted a discussion of elementary matrices, and
Gauss elimination, which are thoroughly covered in my Introduction to
Linear Algebra. Hence the first part of the present book is not a substi-
tute for the introductory text. It is only meant to make the present book
self contained, with a relatively quick treatment of the more basic mate-
rial, and with the emphasis on the more advanced chapters. Today’s
curriculum is set up in such a way that most students, if not all, will
have taken an introductory one-term course whose emphasis is on
matrix manipulation. Hence a second course must be directed toward
the structure theorems.

Appendix 1 gives the definition and basic properties of the complex
numbers. This includes the algebraic closure. The proof of course must
take for granted some elementary facts of analysis, but no theory of
complex variables is used.

Appendix 2 treats the Iwasawa decomposition, in a topic where the
group theoretic aspects begin to intermingle seriously with the purely linear
algebra aspects. This appendix could (should?) also be treated in the
general undergraduate algebra course.

Although from the start I take vector spaces over fields which are
subfields of the complex numbers, this is done for convenience, and to
avoid drawn out foundations. Instructors can emphasize as they wish
that only the basic properties of addition, multiplication, and division are
used throughout, with the important exception, of course, of those theor-
ies which depend on a positive definite scalar product. In such cases, the
real and complex numbers play an essential role.

New Haven, SERGE LANG
Connecticut
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CHAPTER |

Vector Spaces

As usual, a collection of objects will be called a set. A member of the
collection is also called an element of the set. It is useful in practice to
use short symbols to denote certain sets. For instance, we denote by R
the set of all real numbers, and by C the set of all complex numbers. To
say that “x is a real number” or that “x is an element of R” amounts to
the same thing. The set of all n-tuples of real numbers will be denoted
by R* Thus “X is an element of R"” and “X is an n-tuple of real
numbers” mean the same thing. A review of the definition of C and its
properties is given an Appendix.

Instead of saying that u is an element of a set S, we shall also fre-
quently say that u lies in S and write ueS. If S and §' are sets, and if
every element of S’ is an element of S, then we say that S’ is a subset of
S. Thus the set of real numbers is a subset of the set of complex
numbers. To say that S’ is a subset of S is to say that §’ is part of S.
Observe that our definition of a subset does not exclude the possibility
that §'=S. If §' is a subset of §, but §’ # S, then we shall say that §’ is
a proper subset of S. Thus C is a subset of C, but R is a proper subset
of C. To denote the fact that S’ is a subset of S, we write §' = S, and
also say that S’ is contained in S.

If §,, S, are sets, then the intersection of S; and S,, denoted by
S; N S,, is the set of elements which lie in both §; and §,. The union of
S; and §S,, denoted by S; U S,, is the set of elements which lie in S, or
in S,.



2 VECTOR SPACES [T, §1]

I, §1. DEFINITIONS

Let K be a subset of the complex numbers C. We shall say that K is a
field if it satisfies the following conditions:

(a) If x, y are elements of K, then x + y and xy are also elements of
K.

(b) If xeK, then —x is also an element of K. If furthermore x # 0,
then x~! is an element of K.

(c) The elements 0 and 1 are elements of K.

We observe that both R and C are fields.

Let us denote by Q the set of rational numbers, i.e. the set of all frac-
tions m/n, where m, n are integers, and n # 0. Then it is easily verified
that Q is a field.

Let Z denote the set of all integers. Then Z is not a field, because
condition (b) above is not satisfied. Indeed, if n is an integer # O, then
n~!=1/n is not an integer (except in the trivial case that n=1 or
n= —1). For instance { is not an integer.

The essential thing about a field is that it is a set of elements which
can be added and multiplied, in such a way that additon and multiplica-
tion satisfy the ordinary rules of arithmetic, and in such a way that one
can divide by non-zero elements. It is possible to axiomatize the notion
further, but we shall do so only later, to avoid abstract discussions which
become obvious anyhow when the reader has acquired the necessary
mathematical maturity. Taking into account this possible generalization,
we should say that a field as we defined it above is a field of (complex)
numbers. However, we shall call such fields simply fields.

The reader may restrict attention to the fields of real and complex
numbers for the entire linear algebra. Since, however, it is necessary to
deal with each one of these fields, we are forced to choose a neutral
letter K.

Let K, L be fields, and suppose that K is contained in L (i.e. that K
is a subset of L). Then we shall say that K is a subfield of L. Thus
every one of the fields which we are considering is a subfield of the com-
plex numbers. In particular, we can say that R is a subfield of C, and Q
is a subfield of R.

Let K be a field. Elements of K will also be called numbers (without
specification) if the reference to K is made clear by the context, or they
will be called scalars.

A vector space V over the field K is a set of objects which can be
added and multiplied by elements of K, in such a way that the sum of
two elements of V' is again an element of V, the product of an element of
V by an element of K is an element of V, and the following properties
are satisfied:
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VS 1. Given elements u, v, w of V, we have
u+ov)+w=u+(+w).
VS 2. There is an element of V, denoted by O, such that

O+u=u+0=u

for all elements u of V.

VS 3. Given an element u of V, there exists an element —u in V such
that
u+(—u)=0.
VS 4. For all elements u, v of V, we have
ut+ov=ov+u
VS 5. If ¢ is a number, then c(u + v) = cu + cv.
VS 6. If a, b are two numbers, then (a + b)v = av + bv.

VS 7. If a, b are two numbers, then (ab)v = a(bv).

VS 8. For all elements u of V, we have 1-u = u (1 here is the number
one).

We have used all these rules when dealing with vectors, or with func-
tions but we wish to be more systematic from now on, and hence have
made a list of them. Further properties which can be easily deduced

from these are given in the exercises and will be assumed from now on.

Example 1. Let VV = K" be the set of n-tuples of elements of K. Let
A=(ay,....a,) and B = (by,....,b,)

be elements of K". We call a,,...,a, the components, or coordinates, of A.
We define

A+B=(a,+b,,...,a,+b,).
If ce K we define

cA = (cay,...ca,).
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Then it is easily verified that all the properties VS 1 through VS8 are
satisfied. The zero elements is the n-tuple

0 =(0,...,0)
with all its coordinates equal to O.

Thus C" is a vector space over C, and Q" is a vector space over Q.
We remark that R"” is not a vector space over C. Thus when dealing
with vector spaces, we shall always specify the field over which we take
the vector space. When we write K", it will always be understood that it
is meant as a vector space over K. Elements of K" will also be called
vectors and it is also customary to call elements of an arbitrary vector
space vectors.

If u, v are vectors (i.e. elements of the arbitrary vector space V), then

u+(—v)

is usually written u — v.

We shall use 0 to denote the number zero, and O to denote the ele-
ment of any vector space V satisfying property VS 2. We also call it
zero, but there is never any possibility of confusion. We observe that
this zero element O is uniquely determined by condition VS 2 (cf. Exer-
cise 5).

Observe that for any element v in V' we have

Ov = 0.
The proof is easy, namely
ov+ov=0+1v=0+ v=1v=no.

Adding —v to both sides shows that Ov = O.

Other easy properties of a similar type will be used constantly and are
given as exercises. For instance, prove that (—1)v = —o.

It is possible to add several elements of a vector space. Suppose we
wish to add four elements, say u, v, w, z. We first add any two of them,
then a third, and finally a fourth. Using the rules VS 1 and VS 4, we see
that it does not matter in which order we perform the additions. This is
exactly the same situation as we had with vectors. For example, we have

(u+v)+w+z=W+@+w)+z
=((w+w)+u)+z
=@w+w)+ (u+z), etc
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Thus it is customary to leave out the parentheses, and write simply
ut+v+w+z

The same remark applies to the sum of any number n of elements of V,
and a formal proof could be given by induction.

Let V be a vector space, and let W be a subset of V. We define W to
be a subspace if W satisfies the following conditions:

(1) If v, w are elements of W, their sum v + w is also an element of
w.

(i) If v is an element of Wand ¢ a number, then cv is an element of
W.
(iit) The element O of Vis also an element of W.

Then W itself is a vector space. Indeed, properties VS 1 through VS 8§,
being satisfied for all elements of V, are satisfied a fortiori for the ele-
ments of W,

Example 2. Let V= K" and let W be the set of vectors in V whose last
coordinate is equal to 0. Then W is a subspace of ¥, which we could
identify with K",

Linear Combinations. Let V be an arbitrary vector space, and let
vy,...,0, be elements of V. Let x,,...,x, be numbers. An expression of
type

X0y + -+ X,0,
is called a linear combination of v,,... v

n

Let W be the set of all linear combinations of v,,...,v,. Then W is a
subspace of V.

Proof. Let y,,...,y, be numbers. Then
(xlvl + e+ xnvn) + (ylvl + oo+ ynvn) = (xl + yl)vl + -+ (xn + yn)vn'

Thus the sum of two elements of W is again an element of W, i.e. a
linear combination of v,,...,v,. Furthermore, if ¢ is a number, then

c(xvy + -+ x,0,) =cx 0, + -+ + cx,0,

is a linear combination of v,...,v,, and hence is an element of W.
Finally,

0 =00, + -+ O,

is an element of W. This proves that W is a subspace of V.
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The subspace W as above is called the subspace generated by
Uy,...,0,- If W=V, 1e. if every element of V is a linear combination of
vy,...,0,, then we say that v,,...,v, generate V.

Example 3. Let V=K" Let 4 and BeK", A =(a,,...,a,) and
B = (b,,...,b,). We define the dot product or scalar product

A-B=ab, + -+ a,b,.
It is then easy to verify the following properties.
SP1. We have A-B = B- A.
SP 2. If A, B, C are three vectors, then
A B+C)=A-B+A-C=(B+0(C)- A
SP3. If xeK then

(xA)-B=x(4-B) and  A-(xB)= x(A-B).

We shall now prove these properties.
Concerning the first, we have

albl + + anbn = blal + + bnam
because for any two numbers a, b, we have ab = ba. This proves the
first property.
For SP 2, let C = (¢y,...,¢,). Then
B+ C= (b, +cy....b,+c,)

and

A'(B + C) = al(bl + Cl) + PP + an(bn + C”)
=ab, +ac; +... +a,b, + a,c,.

Reordering the terms yields
aby+---+ab,+ac, +---+a,c,
which is none other than A-B + A-C. This proves what we wanted.
We leave property SP 3 as an exercise.

Instead of writing A- A for the scalar product of a vector with itself, it
will be convenient to write also 42. (This is the only instance when we
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allow ourselves such a notation. Thus 4% has no meaning.) As an exer-
cise, verify the following identities:

(A+ B)= A% + 2A4-B + B?
(A— B)?=A4?> —2A4-B + B>

A dot product A-B may very well be equal to 0 without either 4 or
B being the zero vector. For instance, let 4 =(1,2,3) and B = (2,1, —%).
Then A-B = 0.

We define two vectors A, B to be perpendicular (or as we shall also
say, orthogonal) if 4-B =0. Let A be a vector in K". Let W be the set
of all elements B in K" such that B-4 = 0, i.e. such that B is perpen-
dicular to 4. Then W is a subspace of K". To see this, note that
O0-A =0, so that O is in W. Next, suppose that B, C are perpendicular to
A. Then

(B+C)A=B-A+C-A=0,

so that B + C is also perpendicular to A. Finally, if x is a number, then
(xB)-A =x(B-A) =0,

so that xB is perpendicular to A. This proves that W is a subspace of
K"

Example 4. Function Spaces. Let S be a set and K a field. By a func-
tion of S into K we shall mean an association which to each element of
S associates a unique element of K. Thus if fis a function of S into K,
we express this by the symbols

f:S—>K.
We also say that fis a K-valued function. Let V be the set of all func-
tions of § into K. If f, g are two such functions, then we can form their

sum f+g. It is the function whose value at an element x of S is
S(x) + g(x). We write

(f + 9(x) =f(x) + g(x).
If ce K, then we define ¢f to be the function such that

(¢f )x) = ¢f ().

Thus the value of ¢f at x is ¢f(x). It is then a very easy matter to verify
that Vis a vector space over K. We shall leave this to the reader. We
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observe merely that the zero element of V is the zero function, i.e. the
function f such that f(x) =0 for all xeS. We shall denote this zero
function by 0.

Let V be the set of all functions of R into R. Then V is a vector
space over R. Let W be the subset of continuous functions. If f, g are
continuous functions, then f+ g is continuous. If ¢ is a real number,
then cf is continuous. The zero function is continuous. Hence W is a
subspace of the vector space of all functions of R into R, i.e. Wis a sub-
space of V.

Let U be the set of differentiable functions of R into R. If f, g are
differentiable functions, then their sum f + g is also differentiable. If ¢ is
a real number, then c¢f is differentiable. The zero function is differenti-
able. Hence U is a subspace of V. In fact, U is a subspace of W, because
every differentiable function is continuous.

Let V again be the vector space (over R) of functions from R into R.
Consider the two functions ¢, e?’. (Strictly speaking, we should say the
two functions f, g such that f(t) = ¢' and g(t) = e* for all teR.) These
functions generate a subspace of the space of all differentiable functions.
The function 3e' + 2e? is an element of this subspace. So is the function
2¢' + me*.

Example 5. Let V be a vector space and let U, W be subspaces. We
denote by U n W the intersection of U and W, i.e. the set of elements
which lie both in U and W. Then U n Wis a subspace. For instance, if
U, W are two planes in 3-space passing through the origin, then in gen-
eral, their intersection will be a straight line passing through the origin,
as shown in Fig. 1.

Figure 1
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Example 6. Let U, W be subspaces of a vector space V. By

U+ W

we denote the set of all elements u + w with ue U and we W. Then we
leave it to the reader to verify that U + W is a subspace of V, said to be
generated by U and W, and called the sum of U and W.

, §1. EXERCISES

1.

10.

11.

12.

13.

Let V be a vector space. Using the properties VS 1 through VS 8, show that
if ¢ is a number, then cO = O.

Let ¢ be a number # 0, and v an element of V. Prove that if cv = O, then
v=0.

. In the vector space of functions, what is the function satisfying the condition

VS 2?

Let V be a vector space and v, w two elements of V. If v + w = O, show that
w= —0.

. Let V be a vector space, and v, w two elements of V such that v + w =v.

Show that w = O.

Let A4,, A, be vectors in R”. Show that the set of all vectors B in R" such
that B is perpendicular to both A, and A4, is a subspace.

Generalize Exercise 6, and prove: Let A4,,...,A4, be vectors in R". Let W be
the set of vectors B in R” such that B- A4; = 0 for every i = 1,...,r. Show that
W is a subspace of R".

Show that the following sets of elements in R? form subspaces.
(a) The set of all (x, y) such that x = y.

(b) The set of all (x, y) such that x — y =0.

(c) The set of all (x, y) such that x + 4y = 0.

Show that the following sets of elements in R*® form subspaces.
(a) The set of all (x, y, z) such that x + y +z = 0.

(b) The set of all (x, y, z) such that x =y and 2y = z.

(c) The set of all (x, y, z) such that x + y = 3z.

If U, W are subspaces of a vector space V, show that U n Wand U + W are
subspaces.

Let K be a subfield of a field L. Show that L is a vector space over K. In
particular, C and R are vector spaces over Q.

Let K be the set of all numbers which can be written in the form a + bﬁ,
where a, b are rational numbers. Show that K is a field.

Let K be the set of all numbers which can be written in the form a + bi,
where a, b are rational numbers. Show that K is a field.
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14. Let ¢ be a rational number > 0, and let y be a real number such that y? = c.
Show that the set of all numbers which can be written in the form a + by,
where a, b are rational numbers, is a field.

l, §2. BASES

Let V be a vector space over the field K, and let v,,...,v, be elements of
V. We shall say that v,,...,v, are linearly dependent over K if there exist
elements a,,...,a, in K not all equal to O such that

a vy +---+aw,=0.
If there do not exist such numbers, then we say that v,,...,v, are linearly

independent. In other words, vectors v,,...,v, are linearly independent if
and only if the following condition is satisfied:

Whenever a,,...,a, are numbers such that
a vy +---+aw,=0,
then a; =0 for all i = 1,... n.
Example 1. Let V= K" and consider the vectors
E, = (1,0,...,0)
E, = o0,0,...,1).
Then E,,...,E, are linearly independent. Indeed, let a,,...,a, be numbers

such that
a1E1 + M + anEn - 0.

Since
a,E,+- -+ a,E,=(ay,...,a,),
it follows that all a; = 0.
Example 2. Let V be the vector space of all functions of a variable ¢.

Let f,,...,f, be n functions. To say that they are linearly dependent is
to say that there exists n numbers a,,...,a, not all equal to O such that

alfl(t) + -t anfn(t) = 0

for all values of t.
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The two functions &', e*' are linearly independent. To prove this, sup-
pose that there are numbers a, b such that

ae' + be* =0
(for all values of t). Differentiate this relation. We obtain
ae' + 2be* = 0.

Subtract the first from the second relation. We obtain be? =0, and
hence b = 0. From the first relation, it follows that ae' = 0, and hence
a =0. Hence ¢, e*' are linearly independent.

If elements v,,...,v, of V generate V and in addition are linearly inde-
pendent, then {v,,..,v,} is called a basis of V. We shall also say that the
elements v,,...,v, constitute or form a basis of V.

The vectors E,,... ,E, of Example 1 form a basis of K".

Let W be the vector space of functions generated by the two functions

¢, e*. Then {¢,e*} is a basis of W.

We shall now define the coordinates of an element ve V with respect
to a basis. The definition depends on the following fact.

Theorem 2.1. Let V be a vector space. Let v,,...,v, be linearly inde-

pendent elements of V. Let x,,...,x, and y,,...,y, be numbers. Suppose
that we have

X0y + -+ X, 0, = Y10y + -+ Y0,
Then x; = y; for i=1,...,n.
Proof. Subtracting the right-hand side from the left-hand side, we get
XUy — Y0y + - + x,0, — y,0, = O.
We can write this relation also in the form
(xy — yoy + -+ + (X, — Yo, = O.

By definition, we must have x; — y, =0 for all i = 1,...,n, thereby prov-
Ing our assertion.

Let ¥V be a vector space, and let {v,,...,v,} be a basis of V. The ele-
ments of V can be represented by n-tuples relative to this basis, as fol-

lows. If an element v of Vis written as a linear combination

V=X0y + -+ X,0,
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then by the above remark, the n-tuple (x,,...,x,) is uniquely determined
by v. We call (x,,...,x,) the coordinates of v with respect to our basis,
and we call x; the i-th coordinate. The coordinates with respect to the
usual basis E,,... E, of K" are the coordinates of the n-tuple X. We say
that the n-tuple X = (x,,...,x,) is the coordinate vector of v with respect
to the basis {v,,...,0,}.

Example 3. Let V be the vector space of functions generated by the
two functions €', e*’. Then the coordinates of the function

3e' + 5¢*

with respect to the basis {e, e*'} are (3, 5).

Example 4. Show that the vectors (1, 1) and (—3, 2) are linearly inde-
pendent.
Let a, b be two numbers such that

a(1,1) + b(—3,2) = 0.
Writing this equation in terms of components, we find
a—3b=0, a+2b=0.

This is a system of two equations which we solve for a and b. Subtract-
ing the second from the first, we get —5b = 0, whence b = 0. Substitut-
ing in either equation, we find a = 0. Hence a, b are both 0, and our
vectors are linearly independent.

Example 5. Find the coordinates of (1,0) with respect to the two vec-
tors (1, 1) and (—1, 2), which form a basis.
We must find numbers a, b such that

a(1,1) + b(—1,2) = (1, 0).
Writing this equation in terms of coordinates, we find

a—b=1, a+2b=0.

Solving for a and b in the usual manner yields b= —3% and a=3%.

Hence the coordinates of (1,0) with respect to (1,1) and (—1,2) are

Example 6. Show that the vectors (1, 1) and (—1,2) form a basis of
R2.
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We have to show that they are linearly independent and that they
generate R? To prove linear independence, suppose that a, b are
numbers such that

a(1,1) + b(—1,2) = (0, 0).
Then

a—b=0, a+2b=0.
Subtracting the first equation from the second yields 3b =0, so that
b=0. But then from the first equation, a = 0, thus proving that our

vectors are linearly independent. Next, let (a, b) be an arbitrary element
of R%. We have to show that there exist numbers x, y such that

x(l’ 1) + y(_ la 2) = (aa b)
In other words, we must solve the system of equations

X —y=a,
x+ 2y =b.

Again subtract the first equation from the second. We find

3y=b—a,
whence
b—a
y= 3
and finally
b—a
XxX=y+a= 3 +a

This proves what we wanted. According to our definitions, (x, y) are the
coordinates of (a, b) with respect to the basis {(1, 1), (—1, 2)}.

Let {v,,...,v,} be a set of elements of a vector space V. Let r be a
positive integer < n. We shall say that {v,,...,v,} is a maximal subset of
linearly independent elements if v,,...,v, are linearly independent, and if
in addition, given any v; with i > r, the elements v,,...,v,, v; are linearly
dependent.

The next theorem gives us a useful criterion to determine when a set
of elements of a vector space is a basis.

Theorem 2.2. Let {v,,...,v,} be a set of generators of a vector space V.
Let {v,,...,v,} be a maximal subset of linearly independent elements.
Then {v,,...,v,} is a basis of V.
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Proof. We must prove that v,,...,v, generate V. We shall first prove
that each v; (for i > r) is a linear combination of v,,...,v,. By hypothe-
sis, given v;, there exist numbers x,,...,x,, y not all 0 such that

X0y + -+ x,0, + yv; = 0.

Furthermore, y # 0, because otherwise, we would have a relation of lin-
ear dependence for v;,...,v,. Hence we can solve for v;, namely

Xy
Ui=701+...+
-y -y

r

v

ro°

thereby showing that v; is a linear combination of v,,...,v,.
Next, let v be any element of V. There exist numbers c,,...,c, such
that

v=1cC0; + -+ C,0,.

In this relation, we can replace each v; (i > r) by a linear combination of
vy,...,0,. If we do this, and then collect terms, we find that we have ex-
pressed v as a linear combination of v,,...,v,. This proves that v,,...,v
generate V, and hence form a basis of V.

r

l, §2. EXERCISES

1. Show that the following vectors are linearly independent (over C or R).

(@) (1,1,1)and (0, 1, —2) (b) (1,0)and (1, 1)
(¢) (—=1,1,0)and (0, 1, 2) (d) 2, —1)and (1,0)
(e) (n,0)and (0, 1) ) (1,2)and (1, 3)

(g) (1,1,0),(1,1,1),and (0, 1, — 1) (h) (0,1, 1),(0,2,1),and (1, 5, 3)

2. Express the given vector X as a linear combination of the given vectors A, B,
and find the coordinates of X with respect to A, B.
(@ X=(1,0,4=(,1, B=(0,1)
®)X=21,4=(,—-1),B=(1,1)
© X=01,1),4A=2,1), B=(—-1,0)
d X=143),4=2,1), B=(—-1,0)

3. Find the coordinates of the vector X with respect to the vectors A4, B, C.
(@ X=(@1,0,0,4=(1,1,1), B=(—-1,1,0),C=(1,0,-1)
® X=01,1,1,4A=0,1,—-1),B=(1,1,0), C=(1,0,2)
(c) X=(0,0,1),4=(1,1,1), B=(—110),C=(,0,—-1)

4. Let (a,b) and (c,d) be two vectors in the plane. If ad — bc = 0, show that
they are linearly dependent. If ad — bc # 0, show that they are linearly inde-
pendent.
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5. Consider the vector space of all functions of a variable t. Show that the fol-
lowing pairs of functions are linearly independent.
@ Lt (b)) t,t2 () t,t* (d) &,t (e) te', e* (f)sint,cost (g) t,sint
(h) sint,sin2t (i) cost,cos 3t

6. Consider the vector space of functions defined for t > 0. Show that the fol-
lowing pairs of functons are linearly independent.
(@) t,1/t (b) €, logt

7. What are the coordinates of the function 3sint + 5 cos t = f(t) with respect
to the basis {sint, cos t}?

8. Let D be the derivative d/dt. Let f(t) be as in Exercise 7. What are the
coordinates of the function Df(t) with respect to the basis of Exercise 7?

9. Let 4,,...,4, be vectors in R" and assume that they are mutually perpen-
dicular (ie. any two of them are perpendicular), and that none of them is
equal to O. Prove that they are linearly independent.

10. Let v, w be elements of a vector space and assume that v # O. If v, w are
linearly dependent, show that there is a number a such that w = av.

I, §3. DIMENSION OF A VECTOR SPACE

The main result of this section is that any two bases of a vector space
have the same number of elements. To prove this, we first have an inter-
mediate result.

Theorem 3.1. Let V be a vector space over the field K. Let {vy,...,0,}
be a basis of V over K. Let w,,...,w, be elements of V, and assume that
n>m. Then wy,...,w, are linearly dependent.

Proof. Assume that w,,...,w, are linearly independent. Since
{vy,...,U,} is a basis, there exist elements a,,...,a, € K such that

Wl - (111)1 + cct + amvm.

By assumption, we know that w, # O, and hence some g; # 0. After re-
numbering v,,...,v,, if necessary, we may assume without loss of generali-
ty that say a, # 0. We can then solve for v,, and get

all)l = Wl _azvz — e —qa, v

m~“m>

v, =aj; 'w, —aylta,v, —--- —ajla,v,.

The subspace of V generated by w,, v,,...,v, contains v,, and hence must
be all of V since v,,v,,...,v,, generate V. The idea is now to continue
our procedure stepwise, and to replace successively v,,v3,... by
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W,, ws,... until all the elements v,,...,v,, are exhausted, and w,....w,,
generate V. Let us now assume by induction that there is an integer r
with 1 <r < m such that, after a suitable renumbering of v,,...,v,, the
elements w,,...,w,, v,,,-...,0,, generate V. There exist elements

biy.oisbys Coy1seeesCim

in K such that

Wei1 =b1W1 +“.+b'w"+cr+lvr+1 +---4+c.v

m-m-*

We cannot have c¢; =0 for j=r + 1,...,m, for otherwise, we get a rela-
tion of linear dependence between wy,...,w,, ;, contradicting our assump-
tion. After renumbering v,, ,,...,0, if necessary, we may assume without
loss of generality that say c,,, # 0. We then obtain

Cre1lUpt1 = Wrpq1 — blwl - brwr “Cr42Upya — 1 T CpUpy

Dividing by c,.,;, we conclude that v,,, is in the subspace generated by
WiseoosWoi1, Upyns---50,.- By our induction assumption, it follows that
WiyeoosWyi 1o Upgase-- U, generate V. Thus by induction, we have proved
that w,,...,w,, generate V. If n > m, then there exist elements

dy,...d,eK

m

such that

w,=dw; +---+d,w

m>°

thereby proving that w,,...,w, are linearly dependent. This proves our
theorem.

Theorem 3.2. Let V be a vector space and suppose that one basis has n
elements, and another basis has m elements. Then m = n.

Proof. We apply Theorem 3.1 to the two bases. Theorem 3.1 implies
that both alternatives n > m and m > n are impossible, and hence m = n.

Let V be a vector space having a basis consisting of n elements. We
shall say that n is the dimension of V. If V consists of O alone, then V
does not have a basis, and we shall say that V has dimension 0.
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Example 1. The vector space R" has dimension n over R, the vector
space C" has dimension n over C. More generally for any field K, the
vector space K" has dimension n over K. Indeed, the n vectors

(1,0,...,0), (0,1,...,0), ..., (0,...,0,1)
form a basis of K" over K.

The dimension of a vector space V over K will be denoted by dimy V,
or simply dim V.

A vector space which has a basis consisting of a finite number of ele-
ments, or the zero vector space, is called finite dimensional. Other vector
spaces are called infinite dimensional. It is possible to give a definition
for an infinite basis. The reader may look it up in a more advanced text.
In this book, whenever we speak of the dimension of a vector space in
the sequel, it is assumed that this vector space is finite dimensional.

Example 2. Let K be a field. Then K is a vector space over itself,
and it is of dimension 1. In fact, the element 1 of K forms a basis of K
over K, because any element x € K has a unique expresssion as x = x- 1.

Example 3. Let V be a vector space. A subspace of dimension 1 is
called a line in V. A subspace of dimension 2 is called a plane in V.

We shall now give criteria which allow us to tell when elements of a
vector space constitute a basis.

Let v,,...,v, be linearly independent elements of a vector space V. We
shall say that they form a maximal set of linearly independent elements of
V if given any element w of V, the elements w, v,,...,v, are linearly de-
pendent.

Theorem 3.3. Let V be a vector space, and {v,,...,v,} a maximal set of
linearly independent elements of V. Then {v,,...,v,} is a basis of V.

Proof. We must show that v,,...,v, generates V, i.e. that every element
of ¥V can be expressed as a linear combination of v,,...,v,. Let w be an
element of V. The elements w, v,,...,v, of ¥V must be linearly dependent
by hypothesis, and hence there exist numbers x,, x;,...,x, not all 0 such
that

XoW + X0y + -+ + x,0, = O.
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We cannot have x, = 0, because if that were the case, we would obtain a
relation of linear dependence among v,,...,v,. Therefore we can solve for
w in terms of v,,...,v,, namely

xl xn
W:——vl_..._;v
Xo X0

This proves that w is a linear combination of v,,...,v,, and hence that
{v4,...,0,} is a basis.

Theorem 3.4. Let V be a vector space of dimension n, and let v,,... v,
be linearly independent elements of V. Then v,,...,v, constitute a basis
of V.

Proof. According to Theorem 3.1, {v,,...,v,} is a maximal set of lin-
early independent elements of V. Hence it is a basis by Theorem 3.3.

Corollary 3.5. Let V be a vector space and let W be a subspace. If
dim W =dim V then V = W.

Proof. A basis for W must also be a basis for V by Theorem 3.4.

Corollary 3.6. Let V be a vector space of dimension n. Let r be a posi-
tive integer with r < n, and let v,,...,v, be linearly independent elements
of V. Then one can find elements v,, ,,...,v, such that

(V15 s,

is a basis of V.

Proof. Since r < n we know that {v,,...,v,} cannot form a basis of V,
and thus cannot be a maximal set of linearly independent elements of V.
In particular, we can find v,,, in V such that

Uyseeeslpyy

are linearly independent. If r + 1 < n, we can repeat the argument. We
can thus proceed stepwise (by induction) until we obtain n linearly inde-
pendent elememts {v,,...,v,}. These must be a basis by Theorem 3.4 and
our corollary is proved.

Theorem 3.7. Let V be a vector space having a basis consisting of n
elements. Let W be a subspace which does not consist of O alone. Then
W has a basis, and the dimension of W is < n.
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Proof. Let w, be a non-zero element of W. If {w,} is not a maximal
set of linearly independent elements of W, we can find an element w, of
W such that w,, w, are linearly independent. Proceeding in this manner,
one element at a time, there must be an integer m < n such that we can
find linearly independent elements w,, w,,...,w,,, and such that

{Wiseoo oW}

is a maxmal set of linearly independent elements of W (by Theorem 3.1
we cannot go on indefinitely finding linearly independent elements, and
the number of such elements is at most n). If we now use Theorem 3.3,
we conclude that {w,,...,w,} is a basis for W.

I, §4. SUMS AND DIRECT SUMS

Let V be a vector space over the field K. Let U, W be subspaces of V.
We define the sum of U and W to be the subset of V consisting of all
sums u + w with ue U and we W. We denote this sum by U + W. It is
a subspace of V. Indeed, if u,, u,e U and w,, w, € W then

U, +w)+ W +wy))=u, +u, +w, +w,elU + W.
If ce K, then
cu, +wy)=cu; +cw,eU + W.

Finally, O + O € W. This proves that U + W is a subspace.
We shall say that V is a direct sum of U and W if for every element v
of V there exist unique elements ue U and we W such that v =u + w.

Theorem 4.1. Let V be a vector space over the field K, and let U, W be
subspaces. If U+ W =1V, and if U W = {0}, then V is the direct
sum of U and W.

Proof. Given veV, by the first assumption, there exist elements ue U
and we W such that v =u +w. Thus V is the sum of U and W. To
prove it is the direct sum, we must show that these elements u, w are
uniquely determined. Suppose there exist elements u' € U and w' € W such
that v =u' + w'. Thus

u+w=u +w.
Then

u—u =w —w.
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But u —u'eU and w — we W. By the second assumption, we conclude
that u—u'=0 and w —w=0, whence u=u and w=w, thereby
proving our theorem.

As a matter of notation, when V is the direct sum of subspaces U, W
we write
V=U®®W.

Theorem 4.2. Let V be a finite dimensional vector space over the field
K. Let W be a subspace. Then there exists a subspace U such that V is
the direct sum of W and U.

Proof. We select a basis of W, and extend it to a basis of ¥V, using
Corollary 3.6. The assertion of our theorem is then clear. In the nota-
tion of that theorem, if {v,,...,v,} is a basis of W, then we let U be the
space generated by {v,,,...,0,}.

We note that given the subspace W, there exist usually many subs-
paces U such that V is the direct sum of W and U. (For examples, see
the exercises.) In the section when we discuss orthogonality later in this
book, we shall use orthogonality to determine such a subspace.

Theorem 4.3. If V is a finite dimensional vector space over K, and is
the direct sum of subspaces U, W then

dim V=dim U + dim W,

Proof. Let {u,,...,u,} be a basis of U, and {w,,...,w,} a basis of W.
Every element of U has a unique expression as a linear combination
xiuy + -+ x,u,, with x;€ K, and every element of W has a unique ex-
pression as a linear combination y;w,; + --- + y;w, with y;e K. Hence by
definition, every element of V has a unique expression as a linear com-
bination

XUy + -+ xu, + ywy e+ YWy,

thereby proving that u,,...,u,, w,,...,w, is a basis of ¥, and also proving
our theorem.

Suppose now that U, W are arbitrary vector spaces over the field K
(i.e. not necessarily subspaces of some vector space). We let U x W be
the set of all pairs (u, w) whose first component is an element u of U and
whose second component is an element w of W. We define the addition
of such pairs componentwise, namely, if (u,,w,)eU x W and
(u,, w,)e U x W we define

(uy, wy) + (uz, wy) = (uy + uy, wy + wy).
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If ce K we define the product c(u,, w,) by
c(uy, wy) = (cuy, cwy).

It is then immediately verified that U x W is a vector space, called the
direct product of U and W. When we discuss linear maps, we shall com-
pare the direct product with the direct sum.

If n is a positive integer, written as a sum of two positive integers,
n=r + s, then we see that K" is the direct product K" x K°*.

We note that

dim (U x W) =dim U + dim W.

The proof is easy, and is left to the reader.

Of course, we can extend the notion of direct sum and direct product
of several factors. Let V,,...,V, be subspaces of a vector space V. We
say that V is the direct sum

if every element ve V has a unique expression as a sum

v=0; 4+, with v, e V.

13 i

A “unique expression” means that if
v="0] + -+, with vieV,

then v =v, for i=1,... ,n
Similarly, let W,,...,W, be vector spaces. We define their direct pro-
duct

HW;'=W1><"'><W

n
i=1

to be the set of n-tuples (w,,...,w,) with w,e W,. Addition is defined
componentwise, and multiplication by scalars is also defined compo-
nentwise. Then this direct product is a vector space.
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l, §4. EXERCISES

1. Let V=R2, and let W be the subspace generated by (2,1). Let U be the sub-
space generated by (0, 1). Show that Vis the direct sum of W and U. If U’ 1s

the subspace generated by (1, 1), show that V is also the direct sum of W and
U'.

2. Let V= K3 for some field K. Let W be the subspace generated by (1,0, 0),
and let U be the subspace generated by (1, 1,0) and (0, 1, 1). Show that V is
the direct sum of W and U.

3. Let A, B be two vectors in R?, and assume neither of them is O. If there is
no number ¢ such that ¢4 = B, show that 4, B form a basis of R?, and that
R? is a direct sum of the subspaces generated by 4 and B respectively.

4. Prove the last assertion of the section concerning the dimension of U x W. If
{uy,...,u,} is a basis of U and {w,,...,w;} is a basis of W, what is a basis of
U x W?



CHAPTER I

Matrices

I, §1. THE SPACE OF MATRICES

We consider a new kind of object, matrices. Let K be a field. Let n, m
be two integers = 1. An array of numbers in K

a;; 4z a3 Ain
ay; A4y A4jzz az,
aml am2 am3 amn

is called a matrix in K. We can abbreviate the notation for this matrix
by writing it (a;), i=1,...,m and j=1,...,n. We say that it is an m by
n matrix, or an m x n matrix. The matrix has m rows and n columns.
For instance, the first column is

and the second row is (a,,, a,;,...,a,,). We call a;; the ij-entry or ij-
component of the matrix. If we denote by A4 the above matrix, then the
i-th row is denoted by A4;, and is defined to be

A; = (a;, Az, .- ,8;5)-
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The j-th column is denoted by A7, and is defined to be

Example 1. The following is a 2 x 3 matrix:

1 1 =2
-1 4 =5/

It has two rows and three columns.
The rows are (1,1, —2) and (—1,4, —5). The columns are

() () )

Thus the rows of a matrix may be viewed as n-tuples, and the columns
may be viewed as vertical m-tuples. a vertical m-tuple is also called a
column vector.

A vector (x,,...,x,) is a 1 X n matrix. A column vector

X1

is an n X 1 matrix.

When we write a matrix in the form (q;;), then i denotes the row and
j denotes the column. In Example 1, we have for instance a,, = 1,
a3 = —5.

A single number (a) may be viewed as a 1 x 1 matrix.

Let (a;;),i=1,...,mand j=1,...,n be a matrix. If m = n, then we say
that it is a square matrix. Thus

1 —1 5

1 2
( ) O) and 2 1 -1
3 1 —1

are both square matrices.
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We have a zero matrix in which a;; = 0 for all i, j. It looks like this:

000 ---0
000 ---0
000 ---0

We shall write it O. We note that we have met so far with the zero
number, zero vector, and zero matrix.

We shall now define addition of matrices and multiplication of ma-
trices by numbers.

We define addition of matrices only when they have the same size.
Thus let m, n be fixed integers = 1. Let A = (q;;) and B = (b;;) be two
m x n matrices. We define 4 + B to be the matrix whose entry in the
i-th row and j-th column is a;; + b;;. In other words, we add matrices of
the same size componentwise.

Example 2. Let
1 —1 0 5 1 -1
A=<2 3 4) and B‘(z 1 —1)‘

4+ B 6 0 —1
TE= <4 4 3)'

If O is the zero matrix, then for any matrix A (of the same size, of
course), we have O + A = A + O = A. This is trivially verified.

We shall now define the multiplication of a matrix by a number. Let
c be a number, and 4 = (a;;) be a matrix. We define c4 to be the ma-

trix whose ij-component is ca;;. We write ¢4 = (ca;;). Thus we multiply
each component of A by c.

Then

Example 3. Let A, B be as in Example 2. Let ¢ = 2. Then
2 =2 0 10 2 =2
24 = (4 6 8> and 2B = ( 4 y 2).

We also have
( ) _:2 -3 —4 )

For all matrices 4, we find that 4 + (—1)4 = O.
We leave it as an exercise to verify that all properties VS 1 through
VS 8 are satisfied by our rules for addition of matrices and multiplication
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of matrices by elements of K. The main thing to observe here is that
addition of matrices is defined in terms of the components, and for the
addition of components, the conditions analogous to VS 1 through VS 4
are satisfied. They are standard properties of numbers. Similarly, VS 5§
through VS 8 are true for multiplication of matrices by elements of K,
because the corresponding properties for the multiplication of elements of
K are true.

We see that the matrices (of a given size m x n) with components in a
field K form a vector space over K which we may denote by
Mat,, . (K).

We define one more notion related to a matrix. Let 4 = (a;;) be an
m x n matrix. The n x m matrix B = (b;;) such that b;; = q;; is called the
transpose of A, and is also denoted by ‘A. Taking the transpose of a
matrix amounts to changing rows into columns and vice versa. If A is
the matrix which we wrote down at the beginning of this section, then ‘4
is the matrix

Ay 4zy A4zy o Gy

Ay Q4zp Q3p ' Ay

aln a2n a3n amn

To take a special case:
2 1
2 1 0

If A= ) 3 5 then ‘4=11 3
0 5

If A=(2,1, —4) is a row vector, then

‘A= 1
—4
is a column vector.
A matrix A is said to be symmetric if it is equal to its transpose, i.e. if

‘A = A. A symmetric matrix is necessarily a square matrix. For instance,
the matrix

1 —1 2
—1 0 3
2 3 7

is symmetric.
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Let A4 = (a;;) be a square matrix. We call a,,...,a,, its diagonal com-
ponents. A square matrix is said to be a diagonal matrix if all its
components are zero except possibly for the diagonal components, i.e. if
a;; =0 if i #j. Every diagonal matrix is a symmetric matrix. A diagonal
matrix looks like this:

a, O 0
0 a, 0
0 O a

We define the unit n x n matrix to be the square matrix having all its
components equal to 0 except the diagonal components, equal to 1. We
denote this unit matrix by I,, or I if there is no need to specify the n.
Thus:

1 0 0
0 1 0
IL,=1. . .
00 1

I, §1. EXERCISES ON MATRICES

(1 23 g (-1 5 2
“\-t o 2/ ™ “\ 2 2 -1

Find A + B, 3B, —2B, A + 2B, 2A — B, A — 2B, B — A.

2. Let
(1 ! s (1 1
2 2 “( 0o —3)

Find A + B, 3B, —2B, A+ 2B, A— B, B — A.

1. Let

3. In Exercise 1, find ‘4 and 'B.
4. In Exercise 2, find ‘4 and ‘B.

5. If A, B are arbitrary m x n matrices, show that

A+ B)="'A + 'B.
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If ¢ is a number, show that

Y(cA) = c'A.

. If A =(a;;) is a square matrix, then the elements a; are called the diagonal

elements. How do the diagonal elements of A and ‘4 differ?

Find ‘(A + B) and ‘4 + ‘B in Exercise 2.

. Find A +'4 and B + 'B in Exercise 2.
10.
11.

Show that for any square matrix A, the matrix 4 + ‘4 is symmetric.

Write down the row vectors and column vectors of the matrices A, B in
Exercise 1.

Write down the row vectors and column vectors of the matrices A4, B in
Exercise 2.

Il, §1. EXERCISES ON DIMENSION

1.

What is the dimension of the space of 2 x 2 matrices? Give a basis for this
space.

What is the dimension of the space of m x n matrices? Give a basis for this
space.

. What is the dimension of the space of n x n matrices of all of whose com-

ponents are 0 except possibly the diagonal components?

What is the dimensison of the space of n x n matrices which are upper-
triangular, ie. of the following type:

Ayp Q12 v Ay
0 ay, Arpn 9
0 0 a

. What is the dimension of the space of symmetric 2 x 2 matrices (ie. 2 x 2

matrices A such that 4 =‘A)? Exhibit a basis for this space.

More generally, what is the dimension of the space of symmetric n x n ma-
trices? What is a basis for this space?

What is the dimension of the space of diagonal n x n matrices? What is a
basis for this space?

. Let V be a subspace of R2. What are the possible dimensions for V?

Let V be a subspace of R®. What are the possible dimensions for V?



[11, §2] LINEAR EQUATIONS 29

I, §2. LINEAR EQUATIONS

We shall now give applications of the dimension theorems to the solu-
tion of linear equations.

Let K be a field. Let A =(a;;),i=1,...,m and j=1,...,n be a matrix
in K. Let b,,...,b, be elements of K. Equations like

allxl + ot + al,,xn = b1
(%)

amlxl + -+ amn'xn = bm

are called linear equations. We shall also say that (x) is a system of lin-
ear equations. The system is said to be homogeneous if all the numbers
b,...,b, are equal to 0. The number n is called the number of un-
knowns, and m is called the number of equations. We call (g;;) the ma-
trix of coefficients.

The system of equations

allxl +"' +al,,X”=O

(%)

Ap1Xy + -+ appx, =0

mn-"n

will be called the homogeneous system associated with (x).

The system (k) always has a solution, namely, the solution ob-
tained by letting all x; = 0. This solution will be called the trivial solu-
tion. A solution (x,,...,x,) such that some x; # 0 is called non-trivial.

We consider first the homogeneous system (xx). We can rewrite it in
the following way:

or in terms of the column vectors of the matrix 4 = (a;)),
x A + - 4+ x, A" = 0.

A non-trivial solution X = (x,,...,x,) of our system (*x) is therefore
nothing else than an n-tuple X # O giving a relation of linear depen-
dence between the columns A!,...,4". This way of rewriting the system
gives us therefore a good interpretation, and allows us to apply Theorem



30 MATRICES [1I, §2]

3.1 of Chapter I. The column vectors are elements of K™, which has
dimension m over K. Consequently:

Theorem 2.1. Let

allxl + e +a1nxn=O
1%, + -+ apyx, =0

be a homogeneous system of m linear equations in n unknowns, with
coefficients in a field K. Assume that n > m. Then the system has a
non-trivial solution in K.

Proof. By Theorem 3.1 of Chapter, we know that the vectors
Al ... ,A" must be linearly dependent.

Of course, to solve explicitly a system of linear equations, we have so
far no other method than the elementary method of elimination from ele-
mentary school. Some computational aspects of solving linear equations
are discussed at length in my Introduction to Linear Algebra, and will
not be repeated here.

We now consider the original system of equations (x). Let B be the
column vector

b,

a, Ain b,

mn m

or abbreviated in terms of the column vectors of A4,
x;A* +--- + x,A" = B.

Theorem 2.2. Assume that m = n in the system (x) above, and that the
vectors A',... A" are linearly independent. Then the system (x) has a
solution in K, and this solution is unique.
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Proof. The vectors A,...,A" being linearly independent, they form a
basis of K". Hence any vector B has a unique expression as a linear
combination

B=x,A 4 - + x, A",

with x;€K, and X = (x,,...,x,) is therefore the unique solution of the
system.

Il, §2. EXERCISES

1. Let (**) be a system of homogeneous linear equations in a field K, and as-
sume that m =n. Assume also that the column vectors of coefficients are
linearly independent. Show that the only solution is the