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Orthogonal Transformations

The concept of transformation in geometry first arose from
a consideration of displacement—the movement of rigid
bodies from one place to another. A characteristic of such
motion, and the most important one from the point of view
of geometry, is the preservation of the size and the shape of a
body. Throughout its displacement, a moving body preserves
its shape and dimensions and is the same at the end of the dis-
placement as at the beginning. Thus, if we consider only the
initial and final moments of the motion, we can establish a
correspondence between the points of the body in its initial
and in its final positions. To the point M in space occupied by
a certain point P in the body at the start of the displacement
we make correspond the point M’ occupied by P at the end of
the displacement. If M goes into M’ and N into N’, then the
lengths of the segments MN and M’N’ are equal, each segment
being equal to the distance between two fixed points of the
rigid body. In geometry, as opposed to kinematics, a displace-
ment is not regarded as an actual process of motion from one
point to another but merely as a correspondence between the
points occupied by the figure in its initial and final positions:
such an approach allows us to regard displacements in geom-
etry as mappings that take intervals into equal intervals (that is,
mappings that “preserve distance’). From the geometric
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point of view, such mappings are the simplest, since they pre-
serve both the dimensions and the shapes of figures and change
only their position. We shall start our study of geometric
transformations in the plane and in space with transformations
of this type. We shall not call these transformations displace-
ments, since there are distance-preserving transformations
which are not displacements (for example, reflections) but
rather orthogonal mappings (or orthogonal transformations). The
reason for the use of this terminology will appear later.
Throughout this book we shall regard mappings and trans-
formations as defined on the whole plane or the whole of space.
Transformations and mappings of figures will be regarded as
induced by such mappings.

4. Orthogonal Mappings

Definition. An orthogonal mapping of a plane 7 into a plane
7’ is a mapping under which line segments of n are carried into
equal line segments of n’. More precisely, the mapping a of n
into 7’ is said to be orthogonal if, for any two points M, N of =,
the distance between M and N is equal to the distance (in =)
between a(M) and a(N). We take the notion of distance in the
plane to be fundamental.

Orthogonal mappings of 7 into =" are one-one and onto. For
suppose M, and M, are distinct points of n. Then their images
M, and M, must also be distinct, since the line segments
M, M, and M,"M,’ are equal. Suppose, next, M’ is any point
of n'. We show that it has an inverse image M inn. Let A, B, C
be the vertices of a triangle in n, and let A’, B', C' be their
respective images in n'. Then A’, B, C' are the vertices of a
triangle. For otherwise B’, say, would be between A’ and C’,
and A'C' = A'B’ + B'C’'. But then AC = AB + BC, which is a
contradiction, since the total length of two sides of a triangle is
always greater than the length of the third side. Since 4A'B'C" is
a triangle, the point M’ does not lie on at least one of its sides,
say the side A'B’. Let M" be the reflection in A'B’ (perhaps
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extended) of M’; then the triangles A'B'M’ and A’B'M" are
congruent. Let us construct points M, and M, in the plane =
such that the triangles ABM, and ABM, are both congruent
to A’'B'M’ and A'B’'M". The distances from the point M, to 4
and B are M4 and M, B, respectively. So the image of M,
must be the same distances from 4’ and B’ and must therefore
be either M’ or M". Similarly the image of M, must be either
M’ or M". And since M, and M, cannot both have the image
M" (for they have distinct images), one of them has the image
M’'. Thus M’ has an inverse image, and, in fact, a unique
inverse image. Since an orthogonal mapping is one-on¢ and
onto, it has an inverse mapping, and as the inverse mapping also
clearly preserves distances, the inverse of an orthogonal map-
ping is itself an orthogonal mapping.

Definition. An orthogonal mapping of a plane onto itself
is called an orthogonal transformation of the plane.

It is clear that the product of any two orthogonal trans-
formations is itself an orthogonal transformation, and we have
already seen that the same holds for the inverse of an
orthogonal transformation; it follows that the set of all or-
thogonal transformations of the plane forms a group, which we
call the orthogonal group (of the plane).

In a similar way we may define orthogonal transformations
of space and show that they form a group.

5. Properties of Orthogonal Mappings

Theorem . Under an orthogonal mapping, any three col-
linear points are taken into three collinear points, and any three
noncollinear points are taken into three noncollinear points.

Proof. Let P, @, R be three collinear points, and suppose,
for example, that Q lies between P and R.
Then
PQ + QR =PR.
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Suppose the respective images of P, @, Rare P, Q', R'. Then
by the definition of orthogonality, P'Q’ = PQ, etc., and so

PIQl + Q!RI — PfRf

But this is possible only if P/, @', R’ lie on a line, with Q'
in the middle; otherwise we should have

PIQI + Q!RI > PIRI

Let P, Q, R be noncollinear points, and suppose their images
are collinear. Then the inverse mapping which takes P’ into
P, etc., would take the collinear points P', ', R into collinear
points, by what we have already proved (since the inverse
of an orthogonal mapping is orthogonal). But P, Q, R are not
collinear; this contradiction shows that the images are not
collinear. Y

Theorem 2. Let o be an orthogonal map of the plane n
onto the plane n'. Then the image under o of a line | in n is a line
U in =’'. More precisely. given a line l in n, there is a linel' in 7’
such that every point of | is mapped onto some point of l', and
moreover every point of ' has precisely one point of | mapped
onto it. We may say more concisely that o induces a one-one
mapping of l onto I'.

Proof. Let 4 and B be any two distinct points of /, and let
A’ and B’ be their (distinct) images. Let /" be the line of =’
through A’ and B’. Then, by Theorem 1, any point C of the
line / is mapped into a point of /'. For C 1s collinear with A4
and B, so that its image must be collinear with A" and B'.

Conversely let C’ be any point of /'. Then, by the same argu-
ment, its image under the inverse mappinga~' of #’ onto = must
lie on /, so that every point of I’ has an inverse image on /.

We have shown that the line / is mapped onto the line /’. That
the mapping of / is one-one follows from the fact that « is
one-onc. Y
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As in the definitions of Section 2 (Chapter I), we call I’ the
image of / and [ the inverse image of I’ under «.

Theorem 3. Under an orthogonal mapping o of space into
itself, the image of a plane n is a plane n’'. Moreover, the mapping
of m onto ' is itself an orthogonal mapping.

Proof. Let A, B, C be three noncollinear points of n, and
A', B', C' their images under «, By Theorem 1, A’, B’, and ('
are not collinear.

Let n’ be the plane passing through 4’, B', and C’. Suppose
M is an arbitrary point of z. If it lies on one of the lines BC,
CA, or AB, then by Theorem 1 its image lies on B'C’ or C'A’
or A'B’, as the case may be. If not, suppose M A meets BC in P
(Fig. 11). Then the image P’ of P lies on B'C’ and thus lies in

the plane '. Since A, M, P are collinear,

A so too are their images A, M’, P’. But
M\ A’ and P’ lie in 7', so that the whole line
¢ 5 8 A'P’ and, in particular, M’ lie inn’. We
c have shown that the image of the plane

7t lies in the plane n’. But the inverse

P ,  transformation of space must clearly

map 7’ into n (by what we have

already shown), which means in particu-

g' lar that « maps = onto n'. For every

Fig. 11 point in n’ has an inverse image (an

image under the inverse mapping) in 7.

That the mapping of = onto n’ is one-one and orthogonal
follows at once from the corresponding properties of a.

Theorem 4. Under an orthogonal mapping of a plane = onto
a plane ', the image of two parallel lines of n is two parallel
lines of n’.

Proof. By Theorem 2, two parallel lines of n go into two
lines of =’. If these two lines had a point in common, the inverse
image of this point would be a point common to the two
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parallel lines of #, which is impossible. Thus the lines in n’ have
no common point; that is, they are parallel.

Theorem 5. Under an orthogonal mapping of space:

1. the image of two parallel lines is two parallel lines;

2. the image of two parallel planes is two parallel planes,

3. the image of a plane and a line parallel to it is a plane and
a line parallel to it.

The proofs of these propositions are left to the reader.

Theorem 6. Under an orthogonal mapping, the order of
points on a line is preserved. That is to say, if P', R’ are the images
of two points P, R, then the interior points of the segment PR
go into the interior points of the segment P'R’, while the exterior
points of PR go into the exterior points of P'R’.

We have already given a proof in our proof of Theorem .

Corollary. Ifthe points P, Q lie on opposite sides of a line 1,
then their images P’, Q' lie on opposite sides of the image I’ of L.

Let PO meet /in R. Then Ris an interior point of PQ, so that
its image R’ is an interior point of P'Q’. But R’ lies on /', so that
P’ and Q' must lie on opposite sides of /'.

If the points P and @ lie on the same side of /, then their
images lie on the same side of /'.

Theorem 7. Orthogonal mappings preserve angles.

Proof. Let a and b be two rays through a point O. Choose
points A, B on a, b respectively, neither being the point O.
Let O', A’, B’ be the images of the three points under the
orthogonal mapping. Then O’A’, O’'B’ will be the images of
a and b respectively (by Theorem 6).

By the orthogonality of the mapping, the triangles O4B and
O'A'B' are congruent (three pairs of equal sides). So the
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respective angles are equal, and, in particular, / AOB =
LAOPB. Y

Theorem 8. Let A, B, C be three noncollinear points of the
plane n, and A', B’, C' three points of the plane n’ such that
B'C'=BC,C'A' = CA, A'B' = AB. Then there exists one and
only one orthogonal mapping of the plane n onto the plane '
such that the images under it of A, B, C are A', B', C’, respec-
tively.

Proof. We construct a mapping as follows: we make A, B,
C correspond to 4', B, C’, respectively. If P is a point of AC,
we make 1t correspond to the point P’ of A'C’ such that
A'P’ = AP; if P lies on the extension of AC, we let its image P’
be the point on the extension of A'C’ such that (1) AP = A'P’,
and (2) the points P’, A’, C’ lie in the same order along the
line A'C’ as do P, A, and C along the line AC.

It is easy to see that if P and P, are any points of AC, and
P’, P,’ their images, then PP; = P'P,’ and that the order of the
points P’, P,’, A, C along the line A'C’ is the same as the order
of P, P;, A, C along the line AC. We place the points Q of AB
in correspondence with the points Q' of 4A’B’ in just the same
way (Fig. 12).

Suppose now that M is a point of the plane not lying on
either of the lines AB or AC. We draw parallels through M to

Va4
A7

A _C P P

Fig. 12
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meet AB and AC in Q and P, respectively. Let Q" and P’ be the
images of Q and P on A'B"  and A'C’. Through Q" and P’ draw
parallels to A'C’ and A'B’ respectively, and suppose these
parallels meet in M’. Then we put M in correspondence with M.
We have now said what we put in correspondence with every
point of 7. Let us show that the mapping we have defined is
orthogonal. Let M and M, be two points of # and M’, M’ their
respective images. If M and M, both lie on AB, orbothon AC,
then we already know MM, =M'M,’'. If M and M, both lie on
a line parallel to AC (say), then MM, = PP, = P'P,' = M'M’
(where the notation is obvious). In the general case, let MQ
meet M P, in S, so that M'Q’ meets M,'P,’ in the image §’
of S (in case M, for example, lies on 4B, we interpret M Q to be
the line through M parallel to AC, and @ = M). Then MS =
PP, =PP/ =MS,and SM, =00, = 0'Q, =5 M,". Next,
the sides of the angles BAC and M,SM are parallel, so that
the angles must be equal or supplementary. If they are equal,
then so are the angles B’ A'C’ and M,'S’M’, but if BAC and
MSM, are supplementary, B'A’C’ and M'S’M," will be too.
But £ BAC = [ BA'C’, so that , MSM, = [ M'S’M,’. Thus
the triangles MSM, and M'S'M,’ are congruent (two sides and
included angle), and, in particular, MM, = M'M,’. We have
shown that the mapping we have constructed is orthogonal.

Note. The reader should check that our proof still holds
when one of M, M, lies on AB or AC, and even when one of
them lies on one of AB, AC and the other on the other.

We have proved that there is an orthogonal mapping of the
plane = onto the plane =" in which A4, B, C have 4', B', C’ for
their images. It remains to prove that the mapping is unique.
Let o be the mapping we have constructed and f any orthogonal
mapping with the required properties. Then f§ carries any point
P of AC onto a point B(P) of A’C’ such that AP = 4’f(P) and
CP =C’B(P). But this means that f(P) =P’ = «(P), so that
o and B coincide for points of AC and similarly on AB. Suppose
now M is a point of n not on AB or AC, and P and Q are
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defined as before. Then the image of PM under fisaline parallel
to A'B’' (Theorem 4) and through P’ (since P’ is the image of P
under f). Similarly, the image under f of MQ is the line
through Q' parallel to A'C’. But these lines intersect in M/,
so that we must have (M) = M’. Thus the effect of § is the
same as that of « for every point of n, and so ff = a. We have
proved the uniqueness as well as the existence of an orthogonal
mapping taking A, B, Cinto A", B, C'.

6. Orientation

For a more detailed investigation of orthogonal trans-
formations and the establishment of the connection between
them and displacements, we shall need to introduce the im-
portant geometric concept of orientation. A graphic illustration
of this concept is provided by a comparing two figures whose
boundaries are traversed
in a definite sense. Thus

(Fig. 13), we say that the B .

triangles ABCand A'B'C’ A

have the same orientation, ﬁ B CAA"

since in both cases the ¢

vertices are traversed the A

same way round (clock- Fig. 13

wise). On the other hand,

the triangles ABC and A”B"C” have opposite orientations.
The concept of orientation arises when we measure angles

or discuss the areas of figures bounded by complicated curves

(in particular, self-intersecting curves) and also in a number of

questions of higher mathematics (topology). We now give a

mathematical definition of orientation.

c

Definition |. An oriented triangle is an ordered triple of
noncollinear points. Here the points are the vertices of the
triangle, and the orientation is given by the order in which the
vertices appear.
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Definition 2. A chain of triangles joining the oriented
triangle ABC with the oriented triangle A'B'C’ is a finite
sequence of oriented triangles, the first triangle being ABC,
the last A’B’'C’, such that each pairing of adjacent triangles (in
the sequence) differs either by the order of the vertices alone
or by one vertex which occupies the same place (first, second,
or third) in each of the triangles.

Theorem |. Any two oriented triangles ABC and A'B'C’
can be joined by a chain.

Proof. One such chain is
ABC, ABQ, APQ, A'PQ, A'B'Q, A'BC,

where Q is any point not on AB or A'B’ and P is any point not
on AQor A'Q (Fig. 14). ¢

Fig. 14

Definition 3. We say two oriented triangles with the same
vertices are co-oriented if the vertices of one of them can be
obtained by a cyclic permutation of the vertices of the other.
If not, we call them anti-oriented. (This cumbersome termin-
ology will only be required for a couple of pages.)

Thus the triangles ABC, BCA, CAB are co-oriented in pairs,
as are also the triangles ACB, CBA, BAC, while each of the
latter is anti-oriented with each of the former.

Definition 4. We say two oriented triangles differing in one
vertex that occupies the same position in each of them are
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co-oriented if these vertices lic on the same side of the line
joining the other two vertices and otherwise anti-oriented. Thus
if C and D lie on the same side of the line 4B, the triangles ABC
and ABD are co-oriented If C and D are on opposite sides of
AB, then these triangles are anti-oriented. (Fig. 15).

D C

o<\ :

A 8 A B

Fig. 15

Definition 5. Given two oriented triangles 4BC and A’'B'C’
and a chain joining them, we say ABC and A'B’C’ have the
same orientation if the number of pairs of adjacent triangles
(in the chain) that are anti-oriented is even, and otherwise
we say ABC and A’ B’C’ have opposite orientations (Figs. 16 and
17). In order to show that this is a meaningful definition, we
need to establish:

ABC, PBC, PQC, PQC, A'QC, A'B'C’ ABC, PBC, PQC, PQC, AQC, A'B'C’

Fig. 16 Fig. 17

Theorem 2. Given two oriented triangles ABC and A'B'C’,
the number of pairs of adjacent triangles in a chain joining ABC

to A'B'C’ that are anti-oriented is either always even or always
odd.



28 {l. Orthogonal Transformations

If we prove this theorem, we shail have shown that the prop-

erty of two triangles of having the same or opposite orientation

is independent of the choice of a chain between them.
Theorem 2 is a consequence of:

Theorem 3. Let (x;, y;) and (x;, y,) be the coordinates of
the vertices of the oriented triangles ABC and A'B'C’, respec-
tively (i =1,2,3). In order that the triangles have the same
orientation (with respect to a given chain), it is necessary and
sufficient that the determinants

x; yp |1 xy' oy o1
X, y, 1 and x,' oy 1
x3 y3 1 x;3" ys o1

have the same sign.

Let us first see why this theorem entails Theorem 2. Suppose
ABC and A'B’C’ have the same orientation with respect to a
chain D. Then, by the *“necessary” part of Theorem 3, the
determinants (1) have the same sign. Let D’ be any chain
joining the triangles. Then by the “sufficient”” part of Theorem
3 the triangles have the same orientation with respect to D’. We
see, therefore, that if the triangles have the same orientation with
respect to one chain, they have it with respect to every chain,
and it follows that if they have the opposite orientation with
respect to one chain, they have it with respect to every chain.
So the property of pairs of oriented triangles of having the same
or opposite orientations is independent of the connecting chains.

Proof. Consider a pair of adjacent triangles in the given
chain joining ABC to A'B’C’, and suppose first that they differ
in one vertex. If the triangles are MNS and MNT, we show that
the determinants

Xy Ym 1 Xy Im 1
51 = XN yN 1 and 52= xN yN 1

Xs Vs 1 xp yr 1
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(the notation being obvious) have the same or opposite sign,
according as S and T lie on the same or opposite sides of MN.
Now the equation of the line MN is

Xy yum |1
xN yN 1 = 0.
x y 1

It is known from analytic geometry that S and T lie on the
same side of MN if and only if the substitution of their co-
ordinates in the left side of the equation for MN gives us two
numbers with the same sign, that is, if and only if 4, and §,
have the same sign. Thus, by Definition 4, §; and d, have the
same sign if and only if MNS and MNT are co-oriented.

If two adjacent triangles of the chain differ only in the order
of their vertices, then the corresponding determinants (con-
structed as was ¢,) have the same sign if and only if the vertices
of one triangle are obtained from those of the other by a cyclic
permutation; that is, if and only if these triangles are co-orien-
ted (Definition 3).

Thus the number of sign changes in the sequence of determin-
ants corresponding to the successive triangles of our chain is
equal to the number of pairs of adjacent triangles which are
anti-oriented. So if the determinants (1) have the same sign,
the number of sign changes in the sequence of determinants must
be even, and the number of pairs of adjacent triangles which are
anti-oriented must be even. Similarly, if the determinants (1)
have opposite signs, then the number of sign changes, and there-
fore also the number of pairs of adjacent anti-oriented trian-
gles, must be odd. This proves the theorem. W

Note. It follows from this theorem that co-oriented tri-
angles have the same orientation, and anti-oriented ones op-
posite orientations. Therefore, we no longer need to talk of
co- or anti-oriented triangles.

The concept of orientation may be extended to three-
dimensional space:
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Definition 6. An oriented tetrahedron is an ordered quad-
ruple of points in space (the vertices) not all lying in one plane.

Definition 7. A chain of tetrahedra connecting an oriented
tetrahedron 4 = 4,4,4;A, with an oriented tetrahedron
A'AA," A A, is a finite sequence of oriented tetrahedra,the
first of which is 4 and the last 4’, such that two adjacent
tetrahedra of the sequence differ either only by the order of
their vertices or by a single vertex occupying the same place in
both of them.

It can easily be shown that any two tetrahedra can be joined
by a chain.

Definition 8. We say that two oriented tetrahedra with the
same vertices are co-oriented if the vertices of one of them can
be obtained from those of the other by an even permutation.

We say that a permutation taking a sequence of elements
into a different sequence of the same elements is even if the
second sequence can be obtained from the first by an even
number of transpositions of pairs of elements. It can be shown
that whatever sequence of transpositions we choose in order to
take one given sequence into another, we shall either always
need an odd number or always an even number. A permutation
in which an odd number of transpositions is required is called

an odd permutation. For example, the permutation (% g i ;)

is even, since we may go from the sequence 2341 to the sequence
1243 by means of the following two transpositions:
2341 — 1342; 1342 - 1243.

On the other hand, the permutation (? g i g) is odd, since

we may reach 1243 from 2314 by means of three transpositions
as follows: 2314 — 1324 - 1234 —» 1243, So, for example, the
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oriented tetrahedra A,A4,4,A4, and A, A,A,A, are co-oriented,
but A,A3A4, A4 and A, A4,A,A; are anti-oriented.

Definition 9. Two oriented tetrahedra differing in a single
vertex that occupies the same position in each of them are
said to be co-oriented if these vertices lie on the same side of the
plane through the other three vertices, and otherwise anti-
oriented .

Definition 10. If a chain joining the oriented tetrahedra
A and A’ is such that the number of pairs of adjacent tetra-
hedra in it that are anti-oriented is even, then 4 and A’ are said
to have the same orientation, and otherwise they are said to
have opposite orientations.

This definition is justified by the following theorem, which,
like Theorem 2, may be proved by a consideration of deter-
minants:

Theorem 4. In any two chains joining the given oriented
tetrahedra A and A’, the respective numbers of pairs of anti-
oriented adjacent tetrahedra will be both even or both odd.

The definition we have given of orientation in Euclidean
three-dimensional space can be generalized to n-dimensional
space.

7. Orthogonal Transformations of the First and Second
Kinds

Theorem ). If a triangle ABC and its image A’B'C’ under
an orthogonal transformation of the plane have the same ori-
entation, then so also do any triangle and its image. Conversely,
if ABC and A'B'C’ have opposite orientations, so also do any
triangle and its image.
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Proof. Suppose the triangles ABC and A'B’C’ have the
same orientation, and let PQR be any triangle and P'Q'R’ its
image. We show that PQR and P'Q’R’ have the same orienta-
tion. We start by making the following remark: If D,, D,,
..., D, is any sequence of triangles, then D, and D, will have the
same orientation if the number of pairs of adjacent triangles
in the sequence having opposite orientation is even, and other-
wise they will have opposite orientation. The proof is given by
supplying a chain of triangles between each pair D,, D,,, and
we leave it to the reader. Suppose now S is a chain of triangles
joining POR to ABC. It will be mapped under the orthogonal
transformation « into a chain S’ joining P'Q'R" and A’B'C’'. The
number of anti-oriented pairs in S’ is the same as the number
in S, so that A'B'C’ and P'Q'R’ will have the same orientation
if and only if ABC and PQR do. On considering the sequence
of triangles POR, ABC, A'B'C’, P'Q’'R’, the reader will see that
in any case PQR and P'Q'R’ have the same orientation.

The second part may be proved analogously, but it follows
from what we know already. Thus, suppose ABC and A'B'C’
have opposite orientations and PQR is any triangle, If POR
and P'Q’'R’ have the same orientation, then, by what we have
already proved, every triangle has the same orientation as its
image; in particular, the triangle 4 BC. This contradiction shows
that POR and P’'Q’'R’ must have opposite orientations. W

Definition 1. An orthogonal transformation will be said
to be of the first kind if it preserves the orientation of every
triangle. If the transformation changes the orientation of every
triangle, it will be said to be of the second kind. Theorem 1
shows that every orthogonal transformation is either of the
first or of the second kind. The classification into transforma-
tions of the first and second kind can be extended into space,
and even into n-dimensional Euclidean space for any positive
integer n.

Definition 2. An orthogonal transformation of the first
kind is called a displacement.
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In mechanics and physics a displacement is commonly
regarded as a process in which a body moves from one position
to another. During the motion, lengths of segments and sizes
of angles, and also orientation, are preserved. In a number of
questions in geometry we are interested only in the initial and
final positions of the body. So, instead of thinking of a body
that moves through space from one position to another, we
think of an orthogonal transformation such that the image of a
plane figure (the ““ body”’ in its initial position) is another plane
figure (the body in its final position). The transformation has
to be orthogonal, since we want the image to be congruent with
the original figure, and it has to be of the first kind, since we
wish the orientation of the image to be the same as that of the
original. The set of all orthogonal transformations of the plane
of the first kind is a subgroup of the full orthogonal group.
For it is clear that the product of two orientation-preserving
maps also preserves orientation, and so does the inverse of an
orientation-preserving map.

Let us note that the product of an orthogonal transformation
of the first and second kinds is of the second kind and that the
product of two transformations of the second kind is of the
first kind. Compare Example 7 at the end of Chapter I, where
I'; is the set of orthogonal transformations of the line of the
first kind, B those of the second, and D the full orthogonal
group of the line.

We showed above that there exists a unique orthogonal
transformation carrying three given points ABC into three
given points A'B'C’ such that the triangles 4ABC and A’B'C’
are congruent. We can now sharpen this result.

Theorem 2. Given two distinct points A, B and two points
A', B’ such that A'B' = AB, there exists a unique orthogonal
transformation of the first kind and a unique orthogonal trans-
Sformation of the second kind (each defined on the plane) such that
the images of A and B are A' and B', respectively.

Proof. Choose an arbitrary point C not lying on the line AB,
and let C' and C” be the two points of the plane for which the
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triangles A'B'C’' and A’B'C”" are congruent with the triangle
ABC. It is clear that any orthogonal transformation of the plane
which takes 4 and B into A’ and B’ must take C into either C’
or C”. Moreover, there is precisely one transformation «
taking 4, B, C into A, B', C’, respectively, and precisely one
orthogonal transformation f taking 4, B, Cinto A’, B, C”, by
Theorem 8 of Section 5. Now C’ and C” lie on opposite sides
of A'B’, so that the triangles A'B'C’ and A'B’'C”", have opposite
orientations. So just one of them, say A'B’'C’, has the same
orientation as ABC. But then « is of the first kind, by Theorem
1 and S is of the second. Thus, exactly one of the two possible
orthogonal transformations taking 4, B into A’, B’ is of the
first kind, and one is of the second. WY

8. The Fundamental Types of Orthogonal Trans-
formation (Translation, Reflection,
Rotation)

In this section we consider the fundamental types of orthog-
onal transformation, in terms of which every such transforma-
tion can be expressed.

8.1. TRANSLATION

Suppose we are given a vector a of the plane n. We make
correspond to each point M of n the point M’ for which
MM' = a (Fig. 18). This correspondence is a transformation
of the plane called a translation. Thus, under a translation,
every point is carried a given distance in a given direction.

Translations are orthogonal transformations of the plane.
For suppose M, and M, are given points and M,’, M,’ their
images under the given translation (Fig. 19). Then, by the de-

finition of a translation, M, M,’ = M,M,’ = a. Adding to both
—_— > >

sides the vector M,'M,, we find that M,M," + M|\'M, =

M,/'M, + M,M,', or M\M, = M;'M,’, so that the segments
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M M, and M,"M,’ are equal (actually, we have even shown
that they are parallel).

M i
// / M; M.
M
M,
Fig. 18 Fig. 19

A translation is an orthogonal transformation of the first
kind. For suppose the translation takes some point 4 into A4',
and A4’ into A”. Let C be any point not lying on 44', and sup-
pose its image is C'. We show that the oriented triangles A4'C
and A"A”"C' have the same orientation. It will follow at once
from Theorem 1 that the translation is a transformation of the
first kind. Consider the chain of triangles:

AA'C, C'A'C, CA'A", AAC.

Since ACC’A’ is a parallelogram, 4 and C’ lie on opposite
sides of CA’, so that the first pair of triangles in the chain is
anti-oriented. Similarly, A'CC’A" is a parallelogram, so that
C and A" lie on opposite sides of C'4’, and the second pair in
the chain is anti-oriented. Finally, the last pair is related by a
cyclic permutation and so is co-oriented. Thus in the chain
there are two changes of orientation, and therefore 44'C and
its image A’4"C have the same orientation.

Let us note that any transformation of the plane in which
vectors are transformed into equal vectors is a translation. For

(with the obvious notation) if M, M2 M, Mz it follows that
M1M2 + MZM1 = M,M, + M;’M,’ so that MIM1 =
M,M," = a, where a is a constant vector not depending on our
choice of M.

We have already seen (Example 3 at the end of Chapter 1)
that the set of all translations (including the identity trans-
formation) is a group.
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8.2. REFLECTION IN A LINE

Suppose in'the plane we are given a line /. Let us make cor-
respond to each point M of the plane its reflection M’ in / (we
say M’ is the reflection of M in [ if [ is the perpendicular bi-
sector of the segment M M’). We make the points of / correspond
to themselves. This correspondence is called a reflection
(Fig. 20).

M
C
|
! A B
M ¢
Fig. 20 Fig. 21

A reflection is an orthogonal transformation of the second
kind. It is clear that lengths are not altered by a reflection, so
that it is an orthogonal transformation. To show it is of the
second kind, let 4 and B be two points of / and C a point not on
I. Let C’ be the reflection of C in [ (Fig. 21). Then the triangle
ABC is mapped by the reflection into the triangle ABC’. These
two triangles are anti-oriented by definition, so that they have
opposite orientations (consider the chain whose only two mem-
bers are ABC, ABC’). So, by Theorem 1, Section 7, the re-
flection changes the orientation of every triangle and thus is of
the second kind.

A reflection may be defined as the unique transformation,
other than the identity, that leaves fixed atleast two given points.

Suppose we are given that the transformation « leaves fixed
the points 4 and B. We already know of two transformations
that leave 4 and B fixed: the identity and the reflection in the
line AB. By Theorem 2, Section 7, these are the only two, and
since « is not the identity by hypothesis, it must be the refiec-
tion.
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8.3. REFLECTION IN A POINT

Suppose we are given a point O of the plane. Let us make cor-
respond to each point M of the plane the point M’ symmet-
rically opposite it with respect to O. That is, M’ is that point
of the plane for which O is the midpoint of MM’. We make O
correspond to itself. The transformation we have defined is
called the reflection in O. We show that reflection in O is an
orthogonal transformation of the first kind. Let 4’, B’ be the
images under the reflection of two given points A, B, re-
spectively. Then, if A4, B, O are not collinear, the triangles
AOB and A’OB’ are congruent (two sides and included angle),
so that A'B’ = AB. We leave the case where 4, B, O are collinear
to the reader. This shows that reflection is an orthogonal
transformation. To see that it is of the first kind, choose 4 and
B not collinear with G and consider the sequence

AOB, A'OB, A'OB.

The triangles AOB and A’OB have opposite orientation,
since 4 and A’ areonoppositesidesof OB;and A'OBand A'OB’
have opposite orientation, since B and B’ are on opposite sides
of OA’. So AOB and A’'OB’ have the same orientation, and the
transformation is of the first kind.

Under a reflection in a point, each segment is transformed
into an equal segment having the opposite direction: strictly

speaking, A’ AR = --AB for every pair of points A4, B. If A and
B are collinear with O, then A’ B’ is collinear with 4 B, and other-
wise it is parallel (but pointing the other way).

Conversely, it is true that any transformation of the plane
in which vectors are taken into their negatives is a reflection
in a point.

For it is first clear that the transformation is orthogonal.
It is not the identity, so choose a point 4 whose image A’ is
distinct from it. Let O be the midpoint of 44" and M any point
not on the line A4’. We show that the i image M’ of M is its re-

flection in O. We know that AM = — A'M’ = MA' so that
AMA'M'’ form the vertices of a parallelogram. Its diagonals
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bisect each other in O, so that O is the midpoint of MM’.
The proof that the image of a point on A4’ is its reflection in O
is left to the reader.

8.4. ROTATION

Suppose that we fix in the plane a point 0. We wish to define
the transformation consisting of a rotatton about O through a
given angle. The reader will probably have a fairly clear idea
without any explanation what such a transformation should be.
We need to give a rigorous definition, which is best done by first
considering the concept of an oriented angle.

Let S be the circle with center O and radius 1. If M and N are
any points on S, the ordinary angle / MON may be defined
as the pair of rays (OM, ON) and its (radian) measure as the
shorter distance between M and N measured around S.

For our purposes, this notion is inadequate. We wish to
distinguish between the rotation about O that carries M into N
and the rotation that carries N into M. We shall thus need to
distinguish between the angle 2 MON (the angle from M to N)
and / NOM (the angle from N to M). The distinction is
exactly parallel to the one we must make for translations; we
need to distinguish between the translation that carries M into

N (translation through the vector Efﬁ ), and that which carries

N into M (translation through the vector }_\17\-)4). The concept
corresponding to “line segment AN’ here is ““ ordinary angle

/. MON,” and the concept corresponding to ‘vector W ”
will be “ oriented angle /. MON.”

The formal definition of an oriented angle is quite easy: it is
an ordered pair of rays OM and ON from a given origin O. This
definition is exactly similar to the definition of a vector or a
directed line segment as an ordered pair of points. Thus the
notation we should perhaps use is (OM, ON), where we take
note of the order; this angle is to be considered distinct from
(ON, OM.) However, it is usual in practice to use the same
notation as for an unoriented angle. Of course, we still have to
take note of the order; 2 MON is different from £ NOM.
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We define the oriented angles + MON and £ M'O’N’ to be
equal provided there is an orthogonal transformation of the
first kind carrying OM onto O'M’ and ON onto O'N’. An
equivalent definition is as follows. Since M and N are only
used to indicate the two rays, we may as well take OM =1 =
ON and O'M’ =1 = O'N’. Then the oriented angles /7 MON
and £ M'O'N’ are equal if and only if the triangles MON and
M'O’N’ are congruent and have the same orientation.

Our next task is to define the measure of an oriented angle
L MON, just as we would have to define lengths if we were
talking about segments. We start by defining a counterclock-
wise arc from M to N (we are assuming as before that M and N
both lie on the circle S with center 0). We fix an oriented
triangle ABC in the plane. Then a certain one of the arcs from
M to N will be said to be the counterclockwise arc if the
triangle MPN has the same orientation as the triangle ABC,
where P is some point of the
arc we are considering. Of
course, we must verify that
this gives us an unambiguous
answer. Verification follows
from the facts that if P and Q
lie on the same one of the arcs B
from M to N, the oriented A
triangles MPN and M QN will Q, c A
have the same orientation, S
whereas if they lie on opposite Fig. 22
arcs, these triangles will have
opposite orientations (Fig. 22). To make this definition accord
with our usual idea of what “ counterclockwise arc” should
mean, we merely have to choose the orientation of triangle ABC
suitably. Our choice does not make any difference to the
mathematics involved—all it affects is the appropriateness of
our terminology. Of course, once we have chosen our triangle,
we must remain with our choice.

We now define the measure of the oriented angle 2 MON to
be the length o of the counterclockwise arc from M to N. To

b
Q
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ensure that this definition is respectable, we must check that
equal angles have the same measure. But this is obvious. We
shall write £ MON = a to mean that the angle /. MON has
measure «.

We next define the sum of two oriented angles. We define
L. MON + £ N'O'P’ to be the angle /. MOP, where / NOP =
L N'O'P'. That is, we construct an angle / NOP with initial
ray ON, and equal to the angle /. N'O'P’ (Fig. 23). We may

Fig. 23

easily verify that the sums of angles equal in pairs are them-
selves equal (according to our definition of equality of oriented
angles). We must now establish the connection between the
sum of two angles (an angle) and the sum of their measures
(a number). A little thought will convince the reader that what
we would like to say is: if £ AOC =aand £ B'O'D’" = f, then
their sum / AOC + £ B'O’'D’ has measure o + f§. After all,
we can make exactly corresponding assertion about line seg-
ments, and it is just this correspondence between numbers and
segments (congruent segments have equal lengths, and the sum
of two segments has length equal to the sum—different meaning
of sum!—of the lengths of its components) that makes numbers
relevant to calculations with lengths.

In our case, however, this equivalence will not work com-
pletely. For the measure of an oriented angle is the length of an
arc of the unit circle and thus is a number lying between 0 and
2n. Yet o + B in the assertion above might be greater than 27
(Fig. 24).
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Intuitively we would say there is no ) A
difficulty; a rotation counterclockwise
through 27 + o brings us to the same '
point as a rotation through «. So perhaps 4?"
we might say that an oriented angle

/. MON should be allowed measure «
whenever a point moving counterclock-
wise around S through a distance «
starting from M would end up at N. This
would allow the point to make a number Fig. 24

of revolutions before stopping and would

also allow a number of different measures to the same angle.
However, as far as a formal definition is concerned, it is
somewhat difficult to capture this concept. The dynamic
concept of a point moving around a circle is much more elusive
than the static concept of a counterclockwise arc. So we will
content ourselves with two possible formulations that can be
made rigorous, and the reader (and author!) need not stop
thinking about moving points in deference to the formulations
if he does not wish.

The first course is to allow an infinity of values for the meas-
ure of the angle £ MON. If « is the value we have already
defined (the *‘ principal value’), we also allow all the values
o+ 2n, o« + 4, o + 67, ... . It is convenient, in addition, to
allow the values o — 2xn, o — 4n, ... . Intuitively, these would
correspond to the idea of a point reaching N from M by going
so many revolutions clockwise after first going « counterclock-
wise.

The second course is to perform all our arithmetic with the
measure of oriented angles not in the real numbers, but in the
real numbers “modulo 2x.”” Since we are concerned only with
addition of angles, we are working in the additive group of real
numbers mcdulo 2x. It is a group because every element has an
additive inverse; the inverse of o is 27 — «, since the sum of
these is 27, which we agree to identify with 0. There is no diffi-
cuity in a corresponding definition of subtraction for angles;
we may define — /. MON = / NOM, and then define / AOC
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— £ B'O'D’ to be the same as / AOC+ (— L B'O’D")(Fig.25).

The question of which definition to adopt is one of conveni-
ence. If we are working, for example, with a problem concern-
ing lengths of cable unrolling from a drum, the first definition
is the more appropriate. If we are working with rotations of
the plane, as we will be, the second is the more appropriate,
because the rotation through o and the rotation through 27 + «
are identical in their effect on the plane, even if they are not
identical on a spool of thread.

LAOC- £B'OD = LAOE
a- B = a+@r-B)

Fig. 25

Whichever course we adopt, we can now safely say that if
/L AOC=0o and LBO'D =8, then LAOC+ LBO'D =
o + B. In the first case this says that if a is one of the measures
of the angle £ AOC and f is one of the measures of / B'O'D’,
then « + f (the ordinary sum of the ordinary signed numbers)
is one of the measures of the sum angle / AOC + [ B'O' D'
(constructed according to the definition we gave earlier).

In the second case this says that if o is the measure of the
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angle . AOC and f is the measure of the angle . B'O’'D’,
then « + B is the measure of the sum angle. However, in this
case, a and f are not strictly real numbers, but elements of the
group of real numbers modulo 2x, and « + f§ is the result of
performing the operation of addition as defined in this group.
If we represent « and f§ as real numbers lying between 0 and 2x,
then their sum will be represented either as o« + f (the ordinary
sum) or o+ f—2n. For example, n/4 + n/2 = 3n/4, but
7/4 + 3n/4 =0, n/2 + 3n/4 = n/4.

We are now in a position to define a rotation. Given the
center of rotation O, and an oriented angle / AOC = a, the
angle of rotation, we make correspond to each point M of the
plane the point M’ for which OM = OM’ and the oriented
angle /£ MOM’ = a. Of course, O’ = O.

A rotation about O is completely defined by its effect on a
single point M # O. For if the image of M is M’, then the ro-
tation is the one through the angle a = £ MOM'.

A rotation is an orthogonal transformation of the first kind.
For given M and N, let the oriented angle / MON have
measure 0 (principal value). Then

LMON = L MOM+ [ MON + /. NON'’
=—~a+0+a
= 0.

We examine what this sequence of equalities says. The first
line asserts the equality (according to our definition of equality
of oriented angles) of the left-hand angle and the sum angle of
the three angles on the right. Actually the two are not merely
equal; they are identical. We have already discussed the step
from the first equality to the second. The last step is purely
algebraic. In the first interpretation, it is an equality in the
additive group of reals; in the second, it is an equality in the
additive group of reals mod 2n.

We have thus shown that the triangles MON and M'ON’
have the same principal value for their oriented angle at O.
But then they also have the same ordinary angle at O. It will be
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gif O<60<n and 2n — 0 otherwise. Now OM = OM’ and
ON = ON’, by definition of the rotation. So the triangles are
congruent (side, angle, side). We do
not exclude the case where M, O, and
N are collinear (6 =0 or =n);

congruence still follows. A reference
to our original definition of equality
of oriented angles shows more; the
two angles have the same orientation.

We have thus proved our assertion
(Fig. 26).

9. Representations of Orthogonal Transformations
as Products of the Fundamental Orthogonal
Transformations: Translations,
Reflections, and Rotations

We have examined three special types of orthogonal trans-
formation: translation, reflection, and rotation. In this section
we shall show that any plane orthogonal transformation may be
represented as a product of such special transformations.

Theorem 1. Any (plane) orthogonal transformation of the
first kind is either a translation or a rotation (including the
possibility of a rotation through n, that is, reflection in a point).

Proof. Let A4 be any point of the plane, B its image under
the transformation «, and C the image of B under «.
There are three possible cases to consider:

Case |. The line segments AB and BC lie on the same line and
point t]ﬁame : way (Fig. 27). In this case, the translation by the
vector AB (=BC) has the same effect on 4 and B as does «
So by Theorem 2 of Section 7, «, in fact, is this translation.

Case 2. The line segments 4B and BC lie on the same line but
point in opposite directions. In this case, the points C and A
coincide (Fig. 28).
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A B C A B
c

Fig. 27 Fig. 28

o takes A4 into B and B into A4, but so too does the reflection
in the midpoint O of AB. Since the reflection too is a trans-
formation of the first kind, again by Theorem 2 (Section 7),
o must be this reflection.

Case 3. The line segments AB

and BC do not lie on the same : B
line (Fig. 29). Let O be the point
of intersection of the perpen- C
dicular bisectors to AB and BC.
Then A0 = BO = CO, so that
the triangles ABO, BCO are con-
gruent. But then the rotation f
about O that carries A4 into Balso
carries B into C, so that by the
usual argument f =a,and xis a Fig. 29
rotation.

0

Note. If in the plane we are given two equal line segments
AB and A'B’, then we may give a direct description of the
orthogonal transformation of the first kind that takes 4 into A’
and Binto B'. For, if AB and A'B’ are parallel and point in the
same direction, the transformation is the translation through
—_— —>
AA" = BB'. If AB and A'B’ are parallel but point in opposite
directions, the transformation is the reflection in the midpoint
O of AA’ (or BB'). (These assertions remain true even when AB
and A'B’ are collinear.) Suppose now AB and A'B’ are not
parallel. We know (Theorem 2 of Section 7) that there exists
a unique transformation of the first kind taking 4 to 4" and
B to B’. Now this transformation cannot be either a translation
or a reflection in a point (since this would take the line segment
AB into a parallel line segment); it must therefore be a rotation.
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8 If the center of this rotation is
O, then 04 = 0OA’, so that O lies
A on the perpendicular bisector of
AA’, and similarly O lies on the
perpendicular bisector of BB’. Thus
O is the point of intersection of these
A (nonparallel!) lines. The reader
should give a direct proof for him-
self that the rotation about Q that

8 takes 4 into 4’ will also take B into
Fig. 30 B’ (Fig. 30).

Theorem 2. Any plane orthogonal transformation o of the
second kind can be represented uniquely as the product of a
reflection ¢ in some line | and a translation © parallel to I. The
line | is uniquely defined by o, and o1 = 10.

Proof. We distinguish the same three cases as we did for
Theorem 1. Let B be the image of the point 4 under «, and let
C be the image of B.

Case [. AB and BC lie on the same line and point the same
way (F1g 31). Let 7 be the translation determined by the vector

AB (= BC) and ¢ the reflection in the line AB.

Then f = ot = 10, like a, carries A into B and B into C.
Since o and B are both of the second kind, Theorem 2 (Section
7) shows that they are the same.

Fig. 31 Fig. 32 Fig. 33

Case 2. C coincides with 4 (Fig. 32). Then « is, by the familiar
argument, the reflection ¢ in the perpendicular bisector of AB.



9. Representations as Products 47

In this case we take 7 to be the identity translation, and have
67 = 10 = 0.

Case 3. 4B and BC do not lie on the same line (Fig. 33).
Let / be the line through the midpoints of 4B and BC, and
let D be the midpoint of AC. Let ¢ be the reflection in / and t

the translation along AD = DC. Then o takes 4 to E,and t
takes E to B, so that to takes A4 to B, Similarly, o takes Bto D,
and 7 takes D to C, so that 7o takes B to C. By the usual
argument, o = t¢. It is easily checked that o1 = 10.

We now show that such a representation of « is unique. Sup-
pose a = o1, where 7 is not the identity. Then / is the only line
mapped into itself by «. For if m meets / in P, its image m’
meets / in P’ # P (Fig. 34), so that m’ # m. If n is parallel to /
then n’ # n (Fig. 35).

I\P><P' ~ ,n
/\ ~

Fig. 34 Fig. 35

Suppose now that a = g't’, where ¢’ and ' have axis /. By
what we have proved, I’ =1/ (since [’ is invariant under a).
Thus ¢’ = ¢', and, by cancellation (end of Chapter I}, v’ = 1.

We have shown that if « has one representation o« =ar,
where t # ¢, then the representation is unique. The only
remaining possibility is that for every representation, 7 = ¢,
But then « = ¢ has the unique representation oe. W

Theorem 3. Any orthogonal transformation of the first kind
may be represented as the product of two reflections in lines; any
orthogonal transformation of the second kind either is itself a
reflection in a line or can be represented as the product of three
such reflections.
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Proof. Let o be an orthogonal transformation of the first
kind. Then, by Theorem 1, it is either a rotation or a translation
or a reflection in a point.

(1) Suppose first that « is a translation, and that a(4) = 4’
(Fig. 36). Let /, be the perpendicular bisector of 44" and 7, the
perpendicular to A4’ through A’. Let o, and o, be the reflec-
tions in these two lines, respectively.

Under the transformation o,0,, the point A will go into A4,
and any point B such that AB is parallel to /;will go into the
same point B’ as it would under the transformation a. So, by
the usual argument, « = 0,0, .

Fig. 36 Fig. 37

(2) Suppose now that o is a rotation. Let O be its center and
A’ the image of some point A (Fig. 37). Let OS be the perpen-
dicular bisector of 44’ and ¢, and ¢, the reflections in OS and
OA’', respectively. Then, under o,0,, O remains in place, and 4
is taken to A’. So, by the usual argument, « = 7,0, .

The reader should check that this construction works also
for a reflection in O; in this case, OS will be perpendicular to
AOA'.

Suppose now that « is an orthogonal transformation of the
second kind. Then either it is itself a reflection or it can be
represented as the product of a reflection and a translation
(this is part of the content of Theorem 2). But a translation can
itself be represented as the product of two reflections, as we
have just seen. So a can be represented as the product of three
reflections. W
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Note that the representation of an orthogonal transformation
as a product of reflections is not unique. For transformations of
the first kind, we make the situation clear in Theorem 4; for
transformations of the second kind, the situation is more com-
plicated.

Theorem 4. Consider the translation 1 = 6,6,, where o,
and 6, are reflections. Let I, and I, be the axes of 6, and 6, , and
suppose that 1 is the translation associated with the vector a. Then
Iy and 1, are both perpendicular to a. Subject to this condition,
we may choose either o, or ¢, arbitrarily, but our choice then
fixes the other.

Consider next the rotation p = 0,0,, where o, and o, are
reflections. Let 1, and I, be the axes of o, and 6, , and let the
center of the rotation be the point O. Then I, and |, both pass
through O. Subject to this condition, we may choose either
6, or 6, arbitrarily, but our choice then fixes the other.

We leave the proofs of these statements, which are quite easy,
to the reader.

10. Orthogonal Transformations of the Plane in
Coordinates

Let us introduce in the plane a rectangular Cartesian system
of coordinates xOy with unit points E, and E, . Let M(x, y) be
any point of the plane and M’'(x’, y’) its image under the
orthogonal transformation «. In this section we shall derive
formulas expressing the coordinates x’, 3’ of M’ in terms of the
coordinates x, y of M (all in the given coordinate system).

10.1. TRANSLATION

Let 7 be the plane translation determined by the vector t.
Suppose that in the given coordinate system t has the coordi-
nates a, b (Fig. 38). Let x, y, x, 3’ be as above, where & = 1.
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. . é .
m Then, by definition, MM’ =t. This
y - !
M/ means that the coordinates of MM’

are a and b (since two vectors are

E, t equal if and only if they have the same
o X coordinates). But the coordinates of

0! £ — .
MM’ are the differences between the
Fig. 38 coordinates of its endpoint and its

initial point: that is, x’ — x, " — y.
So we have x’ —x=a;y'— y=>5; and

xX=x+4+a, y=y+05>

This is the expression for a translation, written coordinatewise.
We may also write it t(x, y) = (x + a, y + b).

10.2. REFLECTION IN A LINE

We shall consider only reflection in a line through O, for a
reason that will appear in
Section 10.5.

Let / be a line through O
making an oriented angle 7y
with the x axis. Let M be an
arbitrary point other than O,
and let (r, 8) be its polar co-
ordinates. That is, OM =r,
and the oriented angle xOM
= 0. Then (Fig. 39), the
polar coordinates of M’ are (r, 2y — 8). So

" Fig. 39

x'=rcos(2y —0)=rcos2ycos @+ rsin 2ysin 0;

y' =rsin(2y — 0) = r sin 2y cos 6 — r cos 2y sin 0.
But
x=rcos 0,

y=rsinb,
So
x' = xcos 2y + ysin 2y,

: (1)
y' = xsin 2y — y cos 2y.
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This is the equation of the reflection in the line /. Note that
the addition formulas for sin and cos that we used, as well as
the formulas x = r cos 0, y = r sin 6 for the point M(x, y) with
polar coordinates (r, #), are true only when we take o and 0
to be oriented angles.

We did not consider the formula for the point into which O is
taken, but we see at once that (1) is valid for it too.

Note the special cases where / is the x axis or the y axis. Inthe
first case, y = 0, and (1) reduces to

’

xX'=x, y=—y

In the second case, y = /2, and the formula reduces to

’

x' = —x, y =y.

10.3. REFLECTION IN A POINT

We take the point to be the origin O (Fig. 40). Then, for any
point M(x, y), the point M’ symmetrically opposite it with
respect to the origin is M(x’, ), where

X' = —x, y = -y 2
y y
M
E, M o
M

) N X E,

8

) £ X
\
Fig. 40 Fig. 41

10.4. RoTATION

We take the center of the rotation to be the origin (Fig. 41).
Let p be the rotation about O through the oriented angle g.
Let M be any point of the plane other that O, and (r, 6) its
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polar coordinates. If p(M) = M’, then clearly the polar co-
ordinates of M’ are (r, @ + B). So if M’ = M'(x', '), we have

x'=rcos(6 + pB)=rcosBcosf —rsin@sin f,
y =rsin(6 + B) =rcos@sin f + rsin 6 cos f.
But x = rcos 8, y =rsin 0, so that

x'=xcosf— ysin f};
, . 3)
y' = xsin B + y cos f.

This formula for the result of a rotation clearly holds also for
the point O. Note that the case of Section 10.3 (that of reflection
in O) is obtained from (3) by taking f = =n; that is, reflection
in a point is the same as rotation through two right angles.

10.5. THE GENERAL CASE

I. Suppose now that « is any orthogonal transformation of
the first kind, and «(0) = O’(a, b). We introduce a new system
of coordinates with origin at O’ and axes parallel to the old.
Let us use the notation M(x, y) = M'(x*, y*) to mean that the
point whose coordinates in the old system are x, y has co-
ordinates x*, y* in the new system. Then M(x, y) = M'(x — a,
y — b). Let 1 be the translation which takes O into O'. Then
o = a’'r, where o’ is another orthogonal transformation of the
first kind, which leaves O’ fixed. By a result in Section 8, a' is
the rotation about O’ through an oriented angle of, say, .

Then, for any point M(x, y), we have

a(M(x, y)) = £ tU(M(x, y)) = &' (M(x + a, y + b))
= o«'(M'(x, ))
= M’'(x cos f — ysin 8, x sin f + y cos ff)

= M(xcosp—ysinff + a,xsin § + ycosf +b).
Thus we have
x'=xcosff—ysinf+a;

: @
y =xsinfi+ycosf+b
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Note that we have incidentally proved the following theorem:

Theorem . A given orthogonal transformation o of the
first kind may be expressed in the form a = pt(x = 1'p’), for
some translation © (') and rotation p (p'), if and only if p (p') is a
rotation through a certain fixed angle 8, determined by a.

If the center of p is O, then 7 is the translation along the

—_
vector O0', where O is the inverse image under a of O'; if the

center of p' is O, then 1’ is the translation through %", where
0’ = a(0).

II. Suppose that « is an orthogonal transformation of the
second kind. Let «(O) = O'(a, b), and let t be the translation

through the vector OO’. Then « = «'t, where ' i1s a trans-
formation of the second kind leaving O’ fixed. By a result in
Section 8, « is a reflection in a line through O’. We introduce
new coordinates as before, and since in these coordinates o' 1s
given by Eq. (1), we find, as before, that a(M(x, y)) = (x', ),
where

x'=xcos2y+ ysin2y +a,

, : (3
y' =Xxsin2y — ycos 2y + b.

We also have:

Theorem 2. A given orthogonal transformation o of the
second kind may be expressed in the form a = ot(a = 1'6"), for
some translation ©(t") and reflection o(c’), if and only if 6(c¢’) is
the reflection in some line I(I') parallel to a given line m deter-
mined by «a.

Here m is any line making an oriented angle y with the x axis,
in our notation. If O’ is any point on the axis / of o, then t is the
transiation through W, where O is the inverse image of O’.
Similarly, if O is any point on /', 7’ is the translation through the
vector w, where O’ is the image of O.

Note that the general equation [Eq. (4) or (5)] is linear in the
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coordinates and that, if a is of the first kind, its determinant is
equal to +1:

cosfi —sinf
sin f§ cos f8

whereas if it is of the second kind, its determinant is —1:
cos 2y sin 2y

sin2y —cos2y =-L

It may be suggested that the sign indicates whether the trans-
formation preserves orientation, and its absolute value, I,
indicates that areas are multiplied by a factor of 1.

Il. Orthogonal Transformations in Space

Orthogonal transformations in space are defined in exactly
the same way as for the plane and, like those in the plane, fall
into two classes—transformations of the first and second kind—
according to whether they do or do not preserve orientation.

If A, B, C, D are four non-coplanar points and if 4’, B, C’,
D' are four points such that AB= A'B’, AC=A'C’, AD =
A'D', BC=BC’', BD=BD',and CD = C'D’, then there is a
unique orthogonal transformation taking 4, B, C, D to A, B,
C’, D', respectively.

If A, B, C are any three noncollinear points and 4’, B', C’
three points such that the triangles ABC and A'B’'C’ are con-
gruent, then there is a unique orthogonal transformation of
each kind (first and second) taking A4 into A’, etc. The proofs
of these theorems may be carried out similarly to the planar
case (Theorem 8, Section 5, and Theorem 2, Section 7).

The set of all orthogonal transformations of space is a group,
and the subset of all transformations of the first kind is a sub-
group of this group.

The fundamental types of orthogonal transformation in
space are translation, reflection in a plane, rotation about a
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line (including rotation through two right angles, which is
reflection in the line), and reflection in a point.

11.1. TRANSLATION

A translation is defined exactly as in the plane: each point M

is taken into the point M’ for which MM = a, where a is a
given fixed vector. Translation is an orthogonal transformation
of the first kind. That it is an orthogonal transformation may
be proved as in the case of the plane; we now show that it is of
the first kind. Let 4 be any point, A’ its image, and = any plane
through AA’. Then a induces an orthogonal transformation on
n. Let ABC be any triangle in 7, and let A'B'C’ be its image
under a. Then A'B'C’ lies in © and has the same orientation
as ABC. Let S be any point not in 7 and S’ its image under «.
Consider any chain D of triangles joining ABC to A'B'C’; the
number of pairs of adjacent triangles in D that have opposite
orientations is even. Let D’ be the chain of tetrahedra joining
ABCS to A'B'C'S, obtained from D by letting S be the fourth
vertex of each tetrahedron, the other vertices being those of
the triangles of D in order. The reader should verify that D’
is a chain and that adjacent tetrahedra in the sequence have the
same orientation if and only if the corresponding triangles in D
have the same orientation. It follows that the number of pairs
of adjacent tetrahedra that have opposite orientation is even,
so that ABCS and A'B'C’'S have the same orientation. But
A'B'C'S and A'B'C’S’ have the same orientation, since S and
S’ lie on the same side of 7, and therefore so do ABCS and
A'B’'C’S’. This shows that « is of the first kind.

In order that an orthogonal transformation be a translation,

. —_—
it is necessary and sufficient that every vector AB be trans-

formed into an equal vector A'B. The proof is just as for the
case of the plane. The set of all translations in space (including
the identity transformation, which is the translation by the zero
vector) forms a subgroup of the group of orthogonal trans-
formations of the first kind.
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11.2. REFLECTION IN A PLANE

Suppose we are given a plane n in space. We place in corres-
pondence with each point M of space its reflection M’ in 7.
That is to say, n is the perpendicular bisector of MM’'. The
points of = itself are placed in correspondence with themselves.

Such a transformation is called the reflection in . As in the
planar case, we may show that reflection in a plane is an or-
thogonal transformation of the second kind. It is also true that
a is the reflection in a plane if and only if there are three non-
collinear points which remain invariant under «, and « is not
the identity. The proof is as in the planar case, the plane =
of reflection being the plane through the given three points.

11.3. REFLECTION IN A LINE

Suppose we are given a line / in space. We place in corres-
pondence with each point M of space its reflection M’ in /. That
is to say, the lines MM’ and [ intersect in the midpoint of the
former and at right angles. The points of / are put in corres-
pondence with themselves. Such a transformation is called a
reflection (the reflection in the line /), and / is called its axis.

Reflection in a line is an orthogonal transformation of space
of the first kind. For any segment parallel to the axis is trans-
formed into an equal segment also parallel to it. Any segment
lying in a plane n perpendicular to /is transformed into an equal
and parallel segment lying in 7 (since « induces in 7 the trans-
formation that reflects each point of # in the point O of inter-
section of n with /). Suppose now MN is a segment neither
parallel nor perpendicular to /. Let 7 be the plane through M
perpendicular to /, and let P be the base of the perpendicular
from N to n. Let M’, N, P’ be the reflections in [ of M, N,
P, respectively. Then, by what we have already said, M'P'=
MP, and N'P’' = NP. Since MPN and M'P’'N’ are both right-
angled triangles, it follows that M'N' = MN.

We show now that reflection in / is a transformation of the
first kind. Let O and S be any points of / and 4 and B be points
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of the plane = through O and perpendicular to / but not
collinear with O. Let A’, B’ be the reflections in / of 4 and B,
respectively. Then the triangles AOB and A'OB’ both lie in n
and have the same orientation, since they are refiections of each
other in O. It follows, by the same argument as in the section
on translations, that the tetrahedra SAOB and SA'OB’ also
have the same orientation.

11.4. ROTATION

Let / be any line of space and f a fixed oriented angle. For an
arbitrary point M not on /, let = be the plane through M and
perpendicular to /, and suppose that = intersects [ in O. Then
we put in correspondence with M its image M’ under the rota-
tion of n with the center O and through the oriented angle S.
We put each point of !/ in correspondence with itself. This
transformation of space is called the |
rotation about | through B, and it is
an orthogonal transformation of the
first kind. To prove this, we note first
that, if MP is a segment parallel to /,
then its image under o is an equal
segmentalso parallel to / (see Fig. 42).
For the triangles OPP’ and O*M M’
are congruent (two equal sides and the
included angle ), and since OO* and Fig. 42
PM are perpendicular to n, so too
must P'M’ be. It is clear also that the image of a line segment
PN perpendicular to / is an equal segment. The proof that the
image of any line segment MN is an equal segment is now
completed as in Section 11.3. The proof that the rotation is of
the first kind is identical to the proof for the case of a refiection
in / (11.3).

A rotation about a line is uniquely determined by its axis
/ and a pair of corresponding points 4 and 4’ not on /. For if
n is the plane through 4 and A4’ perpendicular to /, and P is
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the point of intersection of / and =, then the rotation is through
B =/ APA’. Conversely, given a line / and points 4 and A’
not on /, there exists a rotation with axis / taking 4 to A’ if
and only if 4 and 4’ are equidistant from /, and 44’ LI

The set of all rotations about a given line / forms a group
(of course, we include the rotation through =, that is, the re-
flection in /; and the rotation through 0, that is, the identity
transformation). In fact, each rotation is associated with an
oriented angle in exactly the same way as the case of a plane
rotation about a given point, and the group of space rotations
about a line and plane rotations about a point are effectively
the same. These groups are infinite and commutative.

11.5. REFLECTION IN A POINT

Let O be a fixed point of space. Let us make correspond to
each point M of space its reflection M’ in O. That is, O is the
midpoint of the line segment MM’. We made O correspond to
itself. The transformation we have thus defined is called the
reflection in O, and O is called its center,

A reflection of space in a point is an orthogonal transforma-
tion of the second kind. For let M and N be any two points not
collinear with O and n the plane through O, M, N. Then the
reflection induces a reflection about O in the plane =, and since
we already know this reflection is an orthogonal map, we con-
clude that M'N’ = MN (of course, M’ and N’ lie in 7). If O lies
on MN, we leave the proof to the reader.

To show that the transformation is of the second kind, let
OABC be any tetrahedron, and consider the chain of tetrahedra

OABC,” OABC', OAB'C', OA'B'C'

The members of any successive pairing of these tetrahedra have
opposite orientations, a total of three orientation changes.
Thus OA'B’C’ has the opposite orientation from OABC.
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12. Representation of an Orthogonal
Transformation of Space as a Product of Fundamental
Orthogonal Transformations

Theorem |. (Chasles). Any orthogonal transformation of
the first kind having at least one fixed point is a rotation about an
axis | passing through this point (in particular, it may be the
reflection in I or the identity transformation).

Proof. Let a be an orthogonal transformation of the first
kind, having the fixed point O. It may be that « is the identity
transformation, and we exclude this case. Let 4 be a point
whose image B under « does not coincide with it, and let C
be the image of B. Then C # B, since BC=AB. If C= A,
and O, A, B are not collinear, then a has the same ei‘fect on
0, A, B as the reflection o in the line OD, where D is the mid-
point of the segment AB. (Note that 04 = OB.) Since ¢« and ¢
are both of the first kind and have the same effect on three
noncollinear points, they coincide, and « is a reflection. If, on
the other hand, O4 = OB lie on the same line for every choice
of A, then a would clearly be the reflection in O—a contradic-
tion, since this reflection is of the second kind.

Suppose finally that 4, B, C are all distinct. 4 and B are not
reflections of each other in O, since otherwise the line AOB
would be mapped into BOC, so that the distinct lines AB and
BC would have the two common points O and B. 4, B, C
cannot be collinear, since they are equidistant from O and are
distinct in pairs. Let = and n’ be the planes through O and
perpendicular to AB and BC, respectively, and let / be their
line of intersection. Then [/ is perpendicular to AB and to
BC and, therefore, to the plane ABC. Let / meet this plane in
O*. Consider the tetrahedron QO*A4B. Its faces O0O*4 and
OO*B are both right triangles, and since O4 = OB and 00* is
common, they are congruent. So 0*4 = O*B. Similarly O*B =
O*C, and the triangles 40*B and BO*C are congruent (since
they have three equal sides), and in particulary = 7 40* B =
L. BO*C. Let p be the rotation about / through the angle y. Then
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clearly p takes A into B and B info C, and since (Section 11.4)
it is of the first kind, we havea = p. W

Theorem 2. Any orthogonal transformation of the first kind
either is the identity, a translation, or a rotation; or can be
represented uniquely as the product v of a rotation y about some
axis I and a translation B parallel to I. Moreover, v = By.

Proof. Let « be an orthogonal transformation of the first
kind.

If « is the identity, f= ¢ =7%. So suppose that it is
not,and let A4 be a point such that a(d4)=A4"# 4. Let
B be the translation which takes A4 into A’. Set y = «f~". Then
y is an orthogonal transformation of the first kind that leaves
A’ fixed, and so, by Theorem I, it is the rotation about some
axis [ through A’ (or the identity). If A lies on /, then ¢ = yf is
the required representation of «. It is clear that yﬁ ﬁy

Suppose next that 44’ does notlie on /. Set 44" = AP + A_é

where AP is parallel to / and AQ is perpendicular to it (Fig. 43).
Let 8, and f, be the translauons defined by
—_—

the vectors AP and AQ respectively. Then
B = BBy, so that a=1f,5,. Set 9B, =7,.

p p  Then a=1v,p,. We assert that this is the re-
quired representation of «. The transformation
v, = yP, leaves every plane n perpendicular to
! invariant as a whole. Thus it induces in each
A Q@ such plane an orthogonal transformation §,,
which is clearly of the first kind, since it is the
product of a translation j, through P4’ and a
Fig. 43 rotation 7 about the point A4’ of intersection of

7 with [ (see Fig. 43). By Theorem 1 of Section 9,

this is either a translation or a rotation. But if ¥, is a transla-
tion, then 7 = 7,85 ' is the product of two translations, and so
is itself a translation, whereas we know that 7 is a rotation.
(We write a bar over a transformation to denote its restriction
to the plane 7.) Thus y induces a rotation, indeed the same
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rotation, in every plane 7 perpendicular to / (where points of
these planes are identified if one lies vertically above or below
the other); the locus of the centers of all these rotations is a
vertical line m, and 7y, is a rotation about m.

Consider now the equation a = y,f,. If B, reduces to the
identity (which happens when 44’ is perpendicular to /), then
o = v, is the rotation about m. If not, y, is the rotation about
a line parallel to /, and f, is a translation parallel to /, and so
also parallel tom. In any case « = 7y,f; is the required
representation of «. It is clear that y,8, = f,7, . )

We must now prove the uniqueness of this representation.
Under the transformation a = y,,, the line m is carried into
itself. We show that m is the only line with this property. We
shall assume that neither y, nor f3; is the identity.

Let p be an arbitrary line, and suppose first it is skew to m.
Let SP be the common perpendicular to m and p (S on m and
P on p). Under o, m and p are transformed into skew lines m’
and p’, and SP goes into S'P’, which is distinct from SP, since
S is taken by f; into a point S’ distinct from it, and S’ remains
invariant under y,. Inasmuch as angles are preserved under
orthogonal maps, S$'P’ is the common perpendicular to m and
p', so that, as it is not SP, p and p’ must be distinct.

Suppose now that p intersects m in S. Then, under g, , S goes
into S, while under y, , S’ remains in place. So, under «, S goes
into the distinct point S’. But S’ is the point of intersection of
m and p’, so that p’ cannot be the same line as p.

Suppose finally that p is parallel to m. Then under j, it is
transformed into itself, and under y, it goes into a line p’
parallel to p and m, but distinct from p.

We have thus shown that m is the only line invariant under
«. Suppose that a = y,f, for some reflection vy, in a line m, and
translation f,. Then, by what we have proved, the line m,
(which is evidently invariant under « = y,f,) must be the line
m. So 7, is a rotation about m, and g, is a translation along
m. Now a = y,8; = oo, and y5 'y, = Bofy '. Since y, and 3,
are both rotations about m, so too are y5! and y5'y,, and
since B, and B, are both translations parallel to m, f;' and
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BoP1 ! are so also. Thus we find that a rotation about m is equal
to a translation parallel to m. Under the rotation, every point
of m remains fixed, so that the translation is the identity. But
then the rotation is also the identity; that is, y5 'y, = BoBi " = &.
Hence yo = y; and B, = B, .

We have now shown that if « has one representation a = fiy
of the required type, and if neither of f and y is the identity, then
this representation is unique. There remains only the following
case: in every representation of a of the required type, either
B or y is the identity. But then the other must be a, so that the
representation is « = ag = ea. In this case either « is a rotation,
and ¢ is thought of as the identity translation, or « is a trans-
lation and ¢ is thought of as the identity rotation.

Theorem 3. Any orthogonal transformation o of the second
kind either is a reflection in a plane or can be represented as the
product of a reflection in a plane and a rotation about a
line perpendicular to this plane or can be represented as the
product of a reflection in a plane and a translation in some
direction parallel to this plane, according as « has more than one
fixed point, just one fixed point, or no fixed point.

Such a representation is unique except in the second case when
the rotation in the line is through two right angles. In this (and
only in this) case, « is the reflection in a point O (the point of
intersection of the line and the plane), and then it may be repre-
sented as the product of the reflection in any plane = through O
and the rotation through two right angles about the line through O
perpendicular to .

Proof. Case 1. Let us suppose first that the orthogonal
transformation « of the second kind has a fixed point O. Since
« is not the identity (which is of the first kind), we may choose
a point A whose image B under « does not coincide with it. Let
C be the image of B. Then clearly C does not coincide with B.

If, for any point A, its image B lies on the line OA4, then
OA = OB, and therefore o is the reflection in the point 0. The
reflection can certainly be represented in the manner described
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in the second paragraph of the theorem. Moreover, it cannot be
represented in any of the other ways there listed. For reflection
in a plane followed by rotation in a perpendicular line is the
only type of representation which leaves invariant a single point:
the point of intersection of the line and the plane. Furthermore,
reflection in the plane 7, followed by rotation through an angle
B about the perpendicular line /, is a reflection in the point O
of intersection of m and / only if f = two right angles.

Suppose next that B does not lie on OA, and suppose that C
coincides with 4. Then « is the reflection in the plane n through
O and perpendicular to 4B, since, like this reflection, it takes
0O, A, B into O, B, C, respectively, and both transformations
are of the second kind.

Suppose next that B does not lie on OA, that C does not
coincide with A4, and that the four points O, 4, B, C are co-
planar. Then the transformation is the product of the reflection
in this plane = and the rotation about the perpendicular [/ to =
through O that takes 4 into B. For the reflection leaves O, A,
B, C invariant, and the rotation leaves O invariant and takes A
into B (such a rotation exists, since 04 = OB), and also takes
Binto C, since the triangles AOB and BOC are congruent (three
equal sides) and have the same orientation.

Suppose finally that B does not lie on OA, that C does not
coincide with 4, and that the four points OABC are not co-
planar. Let D be the midpoint of AB, E the midpoint of BC,
and = the plane through ODE. Let I be the perpendicular
through O to n. We show that « is the product of the reflection
o in w and a rotation p about /. For suppose that ¢ takes B into
B*. Then 4, B*, and C will all be on the same side of = and at
equal distances from it. Let A4, By*, and C, be the projections
of A, B* and C onto n. Then, since 04 = OB* = OC, we have
OAy = OBy* = OC,. Next, AB*B and CB*B are both right
triangles, since, for example, 4 and B* are the same distance
from =, so that AB* is parallel to n, while BB* is perpendicular
to it. Also AB = BC. Thus the triangles AB*B and CB*B are
congruent (since they are right triangles with a common side and
equal hypotenuses). AB* = B*C, and therefore also Ay By*=
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B*C, (since, for example, AB*B,* A, is a rectangle). Finally,
the triangles OA,By,* and OB,*C, are congruent (since they
have three equal sides), and it follows that / A,0B,* =
L B,*0OC,.

Let p be the rotation about / that takes A, into By* (this
rotation exists, since 7 is perpendicular to / and OA, = OB,*).
Then, by what we have just shown, p will take By* into C,.
Since A, B*, C are vertically “above” A4,, B,*, and C, and in
a parallel plane, p will take 4 into B* into C. Thus ap will, like o,
take O, A, B into O, B, C, respectively, so that, since both
these transformations are of the second kind, « = op. It is
clear also that op = pa.

Case 2, Suppose now that « is an orthogonal transformation
of the second kind, and that it has no fixed point. We shall need
the following two lemmas:

Lemma |. Ler o be the reflection in a plane n and B, a
translation perpendicular to n. Then af, is the reflection in a
plane " parallel to n.

Proof. Let 4, B, C be any three noncollinear points of =,
and 4’, B', C’ their images under of8,. Then AA’, BB', CC' are
equal segments, all perpendicular to n. Let 7’ be the plane that
passes through the midpoints of these segments. Then it is
clear that =’ is parallel to n and that the reflection o, in the
plane n" also takes 4, B, C into A’, B, C’, respectively. Since
of, and o, are both of the second kind, they are equal.

Lemma 2. Let p be a rotation (other than the identity)
about a line | and B, a translation parallel to a plane n perpen-
dicular to l. Then pf, is a rotation about a line n parallel to l.

Proof. Let ! meet = in O, and let P be the point (of n) such

that 3, is the translation associated with FB Let m be that per-
pendicular bisector of OP which lies in the plane n. Suppose that
p is the rotation about / through an oriented angle 6. Choose
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the point R on m for which the oriented angle /~ PRO = 4.
Then pf, is the rotation through 6 about the line n through
R and perpendicular to n (and so parallel to /). To prove this,
we can consider the restrictions of all the maps to the plane =n.
The restriction of pf; is an orthogonal map of the first kind.
Now f, takes R into the point Q for which POQR is a parallelo-
gram, and p takes Q through the oriented angle 6 = /£ PRO =
£ QOR to the point R (since QO = RP = RO). Thus the re-
striction map is of the first kind and leaves R invariant, so it is
the rotation about R. The same argument applies in every plane
parallel to 7, and the result follows immediately.

Let us return now to o and suppose that a(A4) = A’ (# A).

Let 8 be the translation through the vector AA'. Then B takes
Ainto A’, and y = «ff” ! leaves A’ invariant. But it is clear that y
is an orthogonal map of the second kind. So, by the first part
of this proof, y = ap is the product of the reflection ¢ in a plane
7 through 4" and a rotation p about the perpendicular / to
n through A’. (A representation of this form need not be
unique, and p may be the identity.) Let us represent f§ in the
form g = B,8,, where f, is a translation parallel to =, and §,
is a translation perpendicular to n (and so parallel to /). Such
a representation for § is always possible (in fact, is uniquely
possible). Then a = ¢pf, 8, .

Suppose now that p is not the identity. Then, by Lemma 2,
pf, is a rotation p; about a line » perpendicular to n. So

a=0pffs=apf;=pof,.

Next, by Lemma 1, g8, is a reflection o, in a plane n’ parallel
to n, and o = p,g,. But then the point S of intersection of n’
and n is invariant under «, which is contrary to hypothesis.

So p is the identity, and a = 8,8, = 68,8, = 6,8, . This is
the required representation of a.

Note that in each case in this theorem where o is represented
as the product of two simple transformations, these transfor-
mations commute. Thus, in Case 1 we have « = gp = pg, and,
in Case 2, « = 0,f8, = f,0,.
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We now have to prove the *‘ uniqueness”’ part of the theorem.
That is to say, we must prove that if o is an orthogonal trans-
formation of the second kind, then its representation as the
product of a reflection in a plane and a rotation about it (if it
has fixed points), or of a reflection in a plane and a translation
parallel to it (if not), is unique except for the case in which «a is
the reflection in a point.

Suppose first that « = gp, where o is the reflection in a plane
7 and p is a rotation—not through two right angles and not the
identity—about a line / perpendicular to n. Then = is the only
plane invariant (as a whole) under a. For if 4 is a parallel plane,
its image is a plane A’ parallel to A but on the other side of it
from =, whereas if A intersects n in the line m, then the image
of m 1s a line m’ distinct from mr (this i1s where we use the fact
that p is not a rotation through two right angles, for otherwise
m' = m if m passes through the point O of intersection of / with
7). So A, which intersects n" = 7 in m’, cannot be the same
plane as A.

Suppose now that a can also be represented in the form
a= o*p*, where o* is the reflection in a plane n*, and p* is a
rotation about a line perpendicular to n*. Then n* is invariant
under o*p* = «, and so is equal to n. But then ¢* = ¢, and
so also p* = p.

Suppose now that « = fo, where o is the reflection in a plane
n and B is a translation parallel to n. We allow the possibility
that B is the identity. Then = is the only plane invariant under «
whose orientation is preserved. For suppose first that the plane
A is parallel to n. Then its image under « is a plane A’ parallel
to A but on the other side of = from it. Suppose next that A
intersects # in the line m. Then if A is invariant under o (which
happens provided that A is perpendicular to n and, if f is not
the identity, m is parallel to the vector associated with f),
« induces in A the reflection in m, which is an orthogonal trans-
formation of the second kind. In n, « induces the translation S,
so that our assertion is proved.

Suppose that « has another representation o = f*o*, where
o* is the reflection in a plane n* and f* is a translation parallel
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to it. Then, by what we have just proved, n* is the only
plane invariant under a whose orientation is preserved.
But this means that n* =z and hence also that ¢* = ¢ and

A

Theorem 4. Any orthogonal transformation of the first kind
can be represented as the product of two or four reflections in
planes, and any orthogonal transformation of the first kind either
is itself a reflection in a plane or can be represented as the product
of three such.

Proof. Let a be an orthogonal transformation of the first
kind. Then, by Theorem 1, it either is a rotation or a translation
or can be represented as the product of a rotation and a trans-
lation.

(1) Suppose first that « is a rotation about a line /. Let =, be
any plane through /, and let 7, be its image under a. Let 7 be
the bisector of these planes lying inside the oriented angle
nyln,. Let ¢ be the reflection in n and o, the reflection in 7, .
Then o,0 takes n; into n,, and since it, like «, is of the first
kind, « =0,0. :

(2) Suppose next that « is the translation determined by the
vector AA’. Let 7 be the plane that bisects A4’ at right angles
and 7" the plane through A’ parallel to n. Let 6 and ¢’ be the
reflections in these two planes. It is clear that @ =¢’0.

(3) Suppose finally that o can be represented as the product
pt of a rotation and a translation. On substituting the product
of two reflections for each of p and t (by parts 1 and 2 of this
proof), we find that « can be represented as the product of four
reflections.

Suppose now that « is of the second kind. Then, by Theorem
3, either it is the reflection in some plane (in which case we are
through) or it can be represented as the product of a reflection
and a rotation or a translation. But either a translation or a
rotation can be represented as the product of two reflections,
so a can be represented as the product of three. W
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Note |. Since the product of two transformations of the
same kind is of the first kind, while the product of two trans-
formations of different kinds is of the second kind (we may
think of transformations of the first kind as positive and those
of the second kind as negative), and since reflection in a plane
is of the second kind, any representation of a transformation of
the first kind by reflections must have an even number of
reflections, while any representation of a transformation of the
second kind by reflections must have an odd number. Theorem
4 is “ best possible” in the sense that, although any transfor-
mation that can be represented as a product of » reflections
can also be represented as a product of (n + 2m) reflections for
any positive integer m, we cannot reduce the number of re-
flections required below that which is stated in Theorem 4.
This is clear for transformations of the second kind and for
rotations and translations (a product of 0 reflections may be
taken to mean the identity transformation), but if « is of the
first kind and not a rotation or a translation, it cannot be
represented as a product of two reflections (the only possible
number less than 4). For if these reflections are in planes n and
n’, and 7 and n” are parallel, then « is a translation in the direc-
tionof theircommon perpendicular, whereas if mand 7’ intersect
in the line /, then « is a rotation about /.

Note 2. The representation of a transformation as a prod-
uct of reflections is not unique. If a is a rotation or a translation,
the situation is analogous to that of Theorem 4, Section 9, but
in general it is more complicated.

13. Orthogonal Transformations of
Space in Coordinates

Let us introduce in space a system of rectangular Cartesian
coordinates with origin O and unit points E,, E,, Ej.

Let us place in correspondence with each point M(x, y, z) of
space the point M’'(x’, y, z’) whose coordinates are given by
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the linear equations
x' = aux + alzy + 0132 + a,
Y =ayx+azy+az+b,

2/ =ay;X + ayy + azz + ¢,
where
2 2 2
aj; +az +ay =1, )

2 2 2
aiz+ az;; +a3;=1,

2 2 2
aiy +az; +az; =1, o)
a1y, + ay,0;; + azyaz; =0,

Q12843 + A22033 + A32a33 =0,

Ay3ayy + Az30,; + d33a3;, = 0.

We shall show that this mapping of space into itself is an
orthogonal transformation. To do so, we need to show that, for
any two points M,(x,, ¥,, z;) and M,(x,,y,,z,), the distance
M,’M," between their images M,'(x,’, y,’, z;") and M,'(x,’,
¥2's 25"} is the same as the distance M, M, between them.

But
MM = (x; = x,)? + (y2' — p') + (25 — z,')?
= [(ay1x; + 412y, + 4132, + a)
—(ay1X; + ayay; + a3z, +a))?
+ [(a3,x; + a5y, + a3z, + b)
—(az1%y + @221 + a3z, + b))?
+ [(a31X; + a32Y2 + @332, + ¢)
—(a31%; + sy, + a3z, + 0)1°
= [a;1(x2 = x1) + a13(y2 — y) + a55(z; — 2,)]°
+ [azi(x; — x1) + a22(y2 — 1) + az23(z; — 2,)7?
+ [asi(x2 — x1) + a32(y2 — »3) + a33(2, — 2))°
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=(a}, + a3y + a3 )(x2 — x)? + (a3, + a3, + a3:)(y2— ¥))?
+ (al; + a3y + ads)z — 2))°
+ 2(ay1a1; + 31033 + a31a35)(X2 — X, (y2 — ¥1)
+ 2(a,28y3 + 032053 + 232033)(Y2 — Y1 {22 — 2y)
+ 2(ay3a;yy + ay382; + a33031 (22 — 2. 0(x2 — x,)
=(x2— x> + (2 — y)? + (22 — z,)* = M| M,?,

by the relations (2).
We shall now show that if « is any orthogonal transformation

taking the typical point M(x, y, z) into M'(x', ', z'), then « is
given by formulas of the form (1) and that, moreover, the
relations (2) are satisfied. Suppose that O'(a, b, ¢), E,'(py, 4> 1),
E,(p,,q5,13), E3'(Ps,q5,r;) are the images of 0(0, 0, 0),
E(1,0,0), E,(0, 1, 0), E4O, O, 1), respectively.
Let us define the numbers a;; by
a1 =p1—4a, ay2 = P2 — 4, a3 =p3—4a,
a3, =4g,— b, a2 =q,— b, dy3=q;—b, ()
a31=I‘1—C, a32=i‘2—c, 6133=r3—c.
Then
aty + a3 + a3 =(p, —a)’ +(q, — b)> +(r, — ¢)*
=0'E}=0E*=1,
and, similarly,
aiy + a3, +ajy =1,
aj; + a3; +aj; =1.

Next, since a is orthogonal, E,"O'E,’ is a right triangle and
also O'E," = O'E,’ = 1. So,
EJ/EZ2=0'E? + OEr=2
or
(p2— P+ (g3 — q)* + (r — r)* =2
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or
2
(ayy — a12)* + (a2 — a3;)* + (a3, —a3;))* =2,
2 2 2 ___2 )
ay, +az +ax (a;1a,2 + az1a;; + d3,a;;

+a?, +al, +a3=2.

But
2 2 2 2 2 2
ayy + a3 +az =ap;+az+azx =1,
so that
Ay1a32 + Ap,05, + a3 83, = 0.

The last two equations in (2) are proved similarly.

Let the orthogonal transformation f be defined by the
formulas (1), where the g;; are given by (3). Then it is clear that
p has the same effect as o« on the four non-coplanar points
O, E,, E,, E;. By a result stated at the beginning of Section 11,
B = a. We have thus proved that a transformation « of space is
orthogonal if and only if its expression in terms of coordinates
is given by (1) and the relations (2) are satisfied.

The reader may feel that the treatment we have given in this
section is somewhat artificial; we seem to have pulled Eqgs. (1)
and the relations (2) out of a hat, and then proved that any
orthogonal transformation can be expressed in this form, so to
speak, backwards. The reader with a little knowledge of vector
algebra may find the treatment that follows more natural.

Suppose we are given a system of rectangular Cartesian
coordinates in space, with origin 0. We identify each point

M(x;, x,, X;) of space with the vector OM = X, so that x is the
vector whose coordinates are (x,, x,, x;). We shall say that a
mapping o of space is /inear provided the following conditions
are satisfied:

a(ax) = a(x(x)), 4

(X +y) = a(x) + afy), &)



72 H. Orthogonal Transformations

for all vectors x and y and all numbers a. In particular, a linear
mapping takes the origin into itself.

Suppose now that a is an orthogonal transformation leaving O
invariant. We show that it is a linear mapping. We shall
typically write X’ for the image under a of the vector x.

Let x be any vector and 4 any real number. ThenlO, M(x),
N(ax} are collinear, so that their images O, M'(x’), N'((ax)’)
are also collinear. Suppose first that a is positive. Then ON =
aOM, and M and N lie on the same side of O. But then W =
aOM’', and N’" and M’ lie on the same side of O. Since N’ lies
on OM’, we have (ax)' = ax’. If a is negative, ON’ =|a|OM’,
and since in this case M’ and N’ lie on the same line through O
but on opposite sides of it, ON’ = —|a| OM' = aOM’ ; that is,
(ax) = ax’. We have thus proved (4), the case where a =0
being trivial.

Suppose next that M(x) and N(y) are any vectors (points).
Then the midpoint P of M N is P(3(x + y)). Under «, P goes into
the midpoint P’ of M'N’; that is, P'(3(x’ + ¥')). So

X +y)=GEx+y).

Using (4) with a = §, we find that (5) follows from this. We have
thus shown that an orthogonal transformation leaving the
origin fixed is a linear mapping.

Suppose now that the orthogonal transformation o with
fixed point O takes the unit vectors e, , e,, e, into the vectors
a,, a,, a,, where a,, for example, is the vector (ay,, a,,, a;;).
Let M(x, y, z) be a general point of space. Then M = M(xe, +
ye, +ze;). Since « is a linear transformation, a(M) = a(xe, +
ye, -+ zey) = xa, + ya, + za, [where we have used (4) and
(5)]. On rewriting this in coordinates, we have (1), with
a=b=c=0.

Next, the length of a; is a;2 =1, since a; is the image of the
unit vector e; (i = 1, 2, 3). This gives us the first three relations
of (2). Since ¢; and e; are perpendicular (i = j), so are a; and a;.
That is to say, a; - a; = 0. This gives us the last three relations
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of (2). We have thus shown that an orthogonal transformation
leaving the origin fixed is given by (1) (with a=b=c¢=0)
subject to the conditions (2). If « is an arbitrary orthogonal
transformation, and «(0) = O/, we set « = fiy, where B is the

translation through the vector OO’ = (a, b, ¢). Then y is an
orthogonal transformation leaving O fixed, and so it is of the
form we have just described. The translation f then takes
M(x, y, z) into yM(x, y, z) +—07))', which, written coordinate-
wise, is just (1). We have thus proved that any orthogonal
transformation can be expressed in the form (1), subject to (2).

Suppose next that « is the mapping of space given by (1) and
that (2) is satisfied. We show that a is an orthogonal transfor-
mation. Let § be the translation through the vector (q, b, ¢);
then o =yB~', where y is the transformation given by (1)
subject to (2), except that a, b, ¢ have been deleted. It may be
checked immediately that this map is linear, that is, satisfies (4)
and (5) above. Also the images under y of the e; are the a;
defined as before (i = 1, 2, 3). The relations (2) then state that
the a; are mutually perpendicular unit vectors. We show now
that this implies that y is an orthogonal map. Let P(p) and Q(q)
be any two points (vectors) and P'(p’), Q'(q’) their images under
y. If p=p,e +pre, + pse;, then p'=pa, + p,a, + pia,,
since y is a linear map. Because of the relations a,> = 1 and
a; - a;=0(i=), we have p'- ¢’ = p1q; + P29, + p3g: =P " g
(since the e; satisfy the same relations). In particular, taking
q = p, we find p’* = p?, and similarly q'* = ¢°. Now

PO*=(p—q’=p*—2p-q+q*=p?—-2p ¢ + q?
=(pl . q:)z =PrQr2'

Thus y preserves all lengths; that 1s, it is an orthogonal
transformation. And since the translation f§ is also an orthog-
onal transformation, so is « = fy. We have finally shown that
the transformation a is orthogonal if and only if it can be
represented in the form (1), subject to (2).
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Note |. Since the a; are unit vectors, a,,, a,;, @3, are the
direction cosines of O'E,’ in the given system of coordinates,
that is, the cosines of the angles that O'E," makes with the
respective axes—and similarly for the coordinates of a, and a, .
Since the a,; are mutually orthogonal, we could take them as a
new system of rectangular coordinates, and the direction co-
sines in this system of Ox, Oy, Oz are clearly (a,,, a,,, a;3),
and so on. Let us forget for the moment about the translation
part of a, takinga = b = ¢ = 0. Then « = y takes E;into E;" and
leaves O fixed. It follows that the inverse transformation y~*
takes E;’ into E; and leaves O fixed. But, in the new system of
coordinates, the equation for y~! is just (1) with the rows and
columns of the array (a;;) interchanged (by the remark we just
made about direction cosines). Since y~! is certainly an ortho-
gonal transformation, we conclude that

al'21+ai22+ai23=1 (l=192:3)3

and

dndj + G342 + a;38;3 = 0 (lj = 12, 23, 31).

It is a remarkable algebraic fact that the relations (2) imply in
this way these *‘ reciprocal ”’ relations, and the reader is invited
to deduce them directly. The theory of orthogonal transforma-
tions of space treated coordinatewise can be further developed
by the use of matrix theory: the interested reader is referred to
Leonid Mirsky, “An Introduction to Linear Algebra,” Oxford
Univ. (Clarendon) Press, 1955, or any book on linear algebra.

Note 2, If « is an orthogonal transformation of the first
kind, the tetrahedra OF,E,E, and OE,'E,’E;" have the same
orientation, and, in this case,

Ay, dy; Qi3
A=lay az dax;|=1, (6)

A3y Qix djsz
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while if « is an orthogonal transformation of the second kind,
A = —1.In fact, Ais related to the expression for the (oriented!)
volume of the oriented tetrahedron OE,'E,’E;’. In general,
the volume of the oriented tetrahedron ABCD is the absolute
value of the determinant

a, a, a; 1
by by by 1

E= c; ¢ c3 1 )
dy d, dy 1

(with the obvious notation), and in the case where one of the
vertices is O, this expression reduces to (6) above. The sign of E
is positive or negative according to whether ABCD has the
same orientation as OF, E, E, or the opposite orientation.

Note 3. The formulas and theorems we have proved for
orthogonal transformations in three-dimensional space have
very obvious extensions to spaces of higher dimension; we can
define points or vectors with n coordinates instead of three,
define distance by the obvious extension of Pythagoras’ rule,
and define orthogonal transformations. Then, for example, the
generalizations of (1) and (2) will hold, and we can define
orientation and ‘‘volume” of ‘“simplexes” (generalized
tetrahedra) by the analogs of (7) above. It will also turn out
that the orthogonal transformation given by the array (ai;)
(with i and j running from 1 to n) will be of the first or second
kind according to whether the determinant analogous to A
above is equal to +1 or —1. The reader should check that
Eqgs. (4) and (5) in Section 10.5 satisfy the two-dimensional
analog of Egs. (1) and (2) in this section and that the corres-
ponding statement about the analog of A is true.

Below we give the array (a,;) associated [as in Eq. (1)] with
the following orthogonal transformations, respectively: rota-
tion through f about Oz, reflection in the plane x sin o —
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ycos a = 0, reflection in the plane xOy, and reflection in O.

¢} cosfi —sinfi O (2) cos 2 sin 2o 0

sinff cosfi 0], sin2x —cos2x O |,
0 0 1 0 0 1
(3) i 0 0 (4) -1 0 0
0 1 01, 0 -1 0
0 0 -1 0 0 -1

Note added in proof. We conclude this chapter by calling
attention to a very elegant result on length-preserving mappings,
due to Peter Zvergnowski, of the University of Chicago. For
details, see Appendix (p. 152).



