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Similarity Transformations

As we saw in the previous chapter, orthogonal transforma-
tions leave invariant both the shape and the dimensions of
geometric figures. If we discard the demand that our trans-
formations preserve dimension but still insist that shapes be
preserved, the set of transformations we get is the group of
similarity transformations (of the plane or of space). We shall
see that such transformations increase or decrease all lengths
in the same ratio but leave shapes unchanged.

Elementary geometry studies those properties of figures that
are preserved under orthogonal transformations and also those
properties that are preserved under similarity transformations.
For example, such properties of a triangle asits area and the
lengths of its sides are invariant under orthogonal transfor-
mations, but, in general, are not invariant under similarity
transformations. On the other hand such properties as its
angles or the position of its center of gravity are invariant
under similarity transformations as well as under orthogonal
transformations.

14. Similarity Mappings

A mapping « of a plane 7 into a plane n’ is called a similarity
mapping with coefficient k > 0, or simply a similarity, provided
it has the following property: if A and B are any two points of

i
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n, and 4', B’ are their images under «, then A'B’ = kAB. If
k=1, a is an orthogonal mapping; and, conversely, any
orthogonal mapping of n onto n’ is a similarity with coefficient
k =1. We shall show first that any mapping of = into n’ that
preserves all shapes must be a similarity.

Let o be a mapping of the plane 7 into the plane n’ such that
the shape of the image triangle A’B’'C’ is the same as the shape
of any given triangle ABC in =n. This is a weaker requirement
than that « preserve all shapes, but we shall see that it is equiva-
lent and also equivalent to the requirement that o be a simi-
larity. Consider first the case where o maps every point of =
onto a single point O of #n’. Since the image of any figure in =
is a single point, its shape is undefined, and we may, if we like,
say that o preserves shapes by definition. But then we can also
say that « is a (degenerate) similarity with coefficient k = 0.
Conversely, any mapping « of n into #’, which is a similarity
except that the coefficient £ = 0, maps every point of 7 onto a
single point of 7". The proof is left to the reader. In the future,
we exclude such degenerate mappings.

Suppose, then, that 4, B are two points of 7 whose images
A’, B’ under « are distinct. Let C, D be any two points of =,
not both on AB. Then at least one of 4 and B does not lie
on the line CD, say, for instance, 4. Since not both of C and D
lie on AB, suppose, for example, that C does not. Then ABC
is a triangle similar to its image A'B'C’ in n’. We define the
(positive) number k by the equation A'B’ = kAB. Since the
sides of similar triangles are in proportion, 4A'C’ = kAC. Next,
since A does not lie on CD, the triangle ACD is similar to its
image A'C'D’, and since A'C’ = kAC, we also have C'D’ =
kCD. We have thus shown that all segments not on 4B have
their lengths changed by a factor k under the mapping «. Now
choose two points C, D not lying on 4B and repeat the whole
argument with C, D in place of 4, B. We find that all lengths
of segments not lying on CD, and, in particular, of all segments
lying on AB, are changed by a factor k. We have thus shown
that o is a similarity, and, since the image plane =’ is a scale
model of n (the scale factor being k), that « preserves all shapes.
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It is clear that a similarity is one-one, and we may prove it is
onto almost exactly as we proved the same for orthogonal
maps (Section 4). So a similarity « has an inverse o', and it is
clear that o™ ! is itself a similarity of z’ onto =, with coefficient
1/k.

A similarity o of = onto itself is called a similarity trans -
formation. The product of two similarity transformations with
coefficients k&, and k, is a similarity transformation with coeffi-
cient k k,. We regard the identity transformation as a simi-
larity transformation with coefficient 1. It is clear then that the
set of all similarity transformations (of a plane or of space) is a
group, of which the orthogonal group is a subgroup.

I5. Properties of Similarity Transformations

Under a similarity transformation, the images of three
collinear points A, B, C are three collinear points 4’, B, C’.
For, if this is not so, then A’'B’C’ is a triangle, and its image
under the inverse transformation must be a similar triangle—
a contradiction, since A4, B, C are collinear. It is clear that if B
lies between 4 and C, then B’ lies between 4’ and C’'. As in the
previous chapter, we may show that the image of a line is a line
and in a similarity transformation of space the image of a plane
is a plane.

The ratio of the lengths of any two line segments is equal to
the ratios of the lengths of their images under a similarity
transformation. For let 4B and CD be any two segments, and
let A’B’ and C'D’ be their images (the image of a line segment
is a line segment by what we said above). Then, for some
positive k, A'B'=kAB, and C'D' = kCD, whence (since
k# 0)

A'B’ AB
Cc'D' CD’

Under a similarity, parallel lines are taken into parailel lines,
for the image of a line is a line, and the two image lines can have
no point in common, since a similarity is one-one. Similarities
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also preserve angles. For let 4 be the vertex of an angle and
B and C points on the two arms. Let A4’, B’, C’ be the respective
images. Then the triangles A'B'C’ and ABC are similar, and
so they have corresponding angles equal. In particular, a
similarity takes perpendicular lines into perpendicular lines.

Suppose that we are given three noncollinear points 4, B, C
of the plane 7 and three points 4", B, C’ of the plane 7', which
are such that A'B'=kAB;, BC'=kBC, C'A' =kCA. Then
there exists one, and only one, similarity of = onto 7" that takes
A, B, Cinto A', B', (', respectively.

To prove this, let us choose points B* and C* on the rays
A’'B" and A'C’ such that A’B* = AB and A'C* = AC. Then the
triangles ABC and A'B*C* are congruent (two sides and in-
cluded angle), so that B¥*C* = BC. By Theorem 8 of Section 5,
there exists an orthogonal transformation of n onto @', say f,
that takes 4, B, Cinto A’, B*, C*, respectively. Let us define a
transformation y of the plane =’ by making each point M of =’
correspond to the point M’ for which A'M’' = kA'M and
make A’ correspond to itself. We shall prove in the next
section that y is a similarity transformation of n’ with coefficient
k, and it is clear that f is a similarity of = onto n’ with coeffi-
cient 1. So the composite mapping yf of n onto 7’ that
takes each point M of n to M’ via M* is a similarity with
coefficient £ of 7 onto 7', Moreover, it is clear that yf takes
A, B, Cinto A’, B', C’, respectively.

To prove uniqueness, suppose that o and f are two simi-
larities of = onto n’, each having the same effect on 4, B, and C.
Consider the composite mapping '« of  onto itself. Since a
and f have the same coefficient k, B~ has coefficient k™!, and
B~ '« has coefficient 1. So 7'« is an orthogonal mapping of
onto itself, and it is clear that it leaves invariant the points
A, B, C. By Theorem 8, Section 5, it must be the identity trans-
formation, so o = f.

Under a similarity, the image of a circle is a circle (we leave
the proof to the reader). It is not hard to show that a similarity
either preserves the orientation of every triangle (that is, every
triangle of the plane has the same orientation as its image)
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or reverses the orientation of every triangle. We say a similarity
transformation is of the first or second kind, depending on
which of these cases holds.

It may be shown (just as for orthogonal transformations)
that, given two points 4, B and two points A’, B’, there exists
precisely one similarity of each kind that takes 4, B into 4’, B,
respectively, where A, B are distinct points of a plane n and
A’, B’ are distinct points of a plane n'.

16. Homothetic Transformations

Let O be any point of a given plane and & a given positive
number. Then the homothetic transformation of the plane with
center O and coefficient & is that transformation y of the plane
which leaves O fixed and takes every other point M into the

point M’ for which OM’' =kOM (0O, M, M’ are collinear,
with M and M’ on the same side of O). The transformation y
which we introduced on the previous page was a homothetic
transformation of the plane n” with center 4" and coefficient k.
The set of all homothetic transformations of the plane with a
given center O forms a group of transformations. For if « and
p are the homothetic transformations with center O and co-
efficients k; and k,, then aff = fa is the homothetic trans-
formation with center O and coefficient k k,, and o~ ! is the
homothetic transformation with center O and coefficient 1/k, .
The identity transformation is the one with coefficient £ = 1.
Note that the identity transformation may be regarded as the
homothetic transformation with coefficient 1 and any center.

Theorem . A homothetic transformation y with center O and
coefficient k is a similarity transformation with coefficient k and
is of the first kind.

Proof. Let 4 and B be any two distinct points of the plane
and A’, B’ their images. Suppose first that 4 and B lie on a
line through O. If 4 and B lie on the same side of O, then so
do A" and B', and A'B' = |OB' — 0A'| = |kOB — kOA| =
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k|OB — OA} = kAB; while if A and B lie on opposite sides of
0,A'B=0A"+ OB'=kOA + kOB =k(0OA + OB) = kAB.

Suppose next that A and B do not lie on a line through O.
Then the triangles AOB and A'OB’ are similar (they have
two pairs of corresponding sides with a common ratio, since
OA" = kOA and OB’ = kOB, and the included angle A0B =
A'OB’ equal). So the third pair of corresponding sides is also
in the same ratio; that is, A'B’' = kAB. We have thus shown
that for any two points A, B, A'B' = kAB, and 7y is a similarity
transformation with coefficient k.

We show next that it is a similarity transformation of the
first kind. Let A and B be points not on a line through O and
A’, B’ their images under y. In the chain of triangles

OAB, OA’'B, OA'B,

both pairs of adjacent triangles have the same orientation, so
that the same is true of O4AB and OA'B’. ¢

It is easy to see that under a homothetic transformation the
image of a line is the same or a parallel line, and, moreover,
that the sense along a line is preserved; that is, if 4, B are

— —_—
distinct points, then the vectors AB and A'B’ are parallel and

— ——
point in the same direction. In fact, we have A'B’ = kAB. -
Conversely, if a is a similarity transformation with coefficient
k # 1 under which each line / is taken into the same or a parallel
line I’, and, moreover, such that sense is preserved, then « is a
homothetic transformation. The hypothesis may be restated

in the form: if A'B' = kAB for all 4 and B and some fixed
positive constant k # 1, then o is a homothetic transformation.

Proof. 1fthe image of every line is the same line, then a is the
identity. For given any point O, choose distinct lines /, m
through it. Then O’ is the point of intersection of /" and m' and
since [’ =/ and m’ = m, we have Q' = 0. Suppose then that
A and B are two points whose images 4’, B’ do not lie on AB.
Since A'B’ is parallel but not equal to AB, ABB'A’ is not a
parallelogram, and therefore A4’ and BB’ meet in a point O
(note that 44" and BB’ are well-defined lines, since we may
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easily see that A" = A or B’ = B is impossible). Consider the
image of the line O4 A’ under «. It is the same or a parallel line
through the image 4’ of 4, and so it must be the same line.
Similarly, OBB’ is invariant under a. So the point O of inter-
section of these lines is invariant under «. Next, the triangles
OAB and OA’'B’ are similar, so that 04’ : OA = OB’ . OB =
A'B': AB=k. Thus OA' = kOA and OB’ = kOB, and since
A and 4’, and B and B’, are on the same side of O, the homo-
thetic transformation with center O and coefficient k, like «,
leaves O fixed and takes 4 to 4" and B to B'. By a result in
Section 15, this means that « is the homothetic transformation
with center 0. WY

Note |. There is nothing to stop us from allowing a
negative coefficient k in the definition of a homothetic trans-
formation. In this case M is taken to a point M’ lying on OM
but on the other side of O from where M is located. Thus a
homothetic transformation with negative coefficient —k and
center O is the product in either order of the (ordinary)
homothetic transformation with center O and coefficient k,
and the reflection in O. The set of *“ homothetic” transforma-
tions with center O is a commutative group, of which our
previous group is a subgroup. We now have Note 2:

Note 2. In our proof of the converse to Theorem 1 we used

the fact that 4'B’ pointed the same way as AB only in order to
deduce that 4 and A’ (and B and B’) lay on the same side of O.
If we allow homothetic transformations to have negative

coefficients, we may restate the converse to Theorem 1 as
follows:

If o is a transformation such that for some k # 0,1 we have

__;, —_—
A'B" = kAB for all A and B, then o is a homothetic transform-
ation with coefficient k.

This result can be improved still further:

If a is a similarity transformation carrying every vector into a
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parallel vector, then u is either a homothetic transformation or a
translation.

If « has coefficient k, thisamounts to sayingthatif forevery

A, B we have AB = ikAE, then we must either always take
the + sign, or always take the — sign.

This result suggests that a translation might be regarded as
a homothetic transformation with center at infinity and
coefficient 1.

Note 3. The use of geometric transformations allows us, in
many cases, to give a simple solution of geometric problems
that would otherwise be much more difficult. We give an
example by proving the following theorems, due to Euler:

- Theorem 2. Let ABC be any triangle, H its orthocenter (the

point of intersection of its altitudes), G its centroid or center of
gravity (the point of intersection of its medians), and O its cir-
cumcenter (the center of the circumscribed circle S or the point
of intersection of the perpendicular bisectors of the sides). Then
0, G, H are collinear, with G between O and H, and

OG:GH=1:2.

In particular, if two of O, G, H coincide, then they all do.

Theorem 3. The following nine points lie in a circle known
as Euler’s circle s: the midpoints of the sides of ABC, the bases
of its altitudes, and the midpoints of the line segments joining H
with the vertices. The center E of s is the midpoint of OH, and its
radius is half that of the circumscribed circle.

Proof. Consider the “homothetic’ transformation y with
center G and coefficient —4. Since G lies a third of the way
between each side and the opposite vertex, y will take 4, B, C
into the midpoints A’, B’, C’ of the opposite side. Consider the
altitude of ABC through A. Its image is a parallel line through
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the image A’ of A, that is, the perpendicular bisector of BC, and
similarly for the other altitudes. So the image of the point H of
intersection of the altitudes is the point O of intersection of the
perpendicular bisectors of the sides. It follows that H and O
lie on opposite sides of G and that OG:GH=1:2. V.

The image of the circumcircle S of ABC is a circle s, whose
center 1s the image of O under y and which passes through the
images A’, B, C’ of the vertices. Since the image of O is the
midpoint E of OH, we see that the circle s through the mid-
points of the sides has center E. Since the coefficient of y (as a
similarity transformation) is 4, the radius of s will be half
that of S. Now E is equidistant from O and H, and so it is also
equidistant from the projections of O and H onto any line, in
particular, the sides of ABC. But these projections are just the
midpoints of the sides and the bases of the altitudes. Since s
with center E passes through the former, it must also pass
through the latter.

Consider now the homothetic transformation § with center
H and coefficient 1. Just as for y, the point O is taken into E,
and S is taken into a circle with center E and radius half that
of §; that is, the circle s. But under f§ the vertices of ABC go
into the midpoints of AH, BH, CH, so that these points lie on s.

The circle s is known as the nine-point, or Euler, circle
associated with the triangle ABC. V¢

Note 4. Let 4,, By, C, be the second points in which the
altitudes of 4BC meet S. Under f§, these points must go into
points of s also on the altitudes (since the altitudes pass through
the center H of ) and on the same side of H as are Ay, B,, C,.
So their images are the feet of the altitudes. It follows that BC
1s the perpendicular bisector of HA,, and so on; in other
words, the reflections of H in the three sides of ABC lie on the
circumcircle,

Note 5. In Sections 17 and 18 we shall use the expression
“homothetic transformation” to apply only to those trans-
formations which have positive coefficients.
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I7. Representation of a Similarity Transformation
as the Product of a Homothetic Transformation
and an Orthogonal Transformation

Theorem |. Any similarity transformation o« with coefficient
k can be represented as the product of the homothetic trans-
Jormation Bwith coefficient k and prescribed center O, and an
orthogonal transformation v.

Proof. If k = 1, we take the homothetic transformation to
be the identity (regarded as the homothetic transformation
with center at the given point O and coefficient 1). Let § be the
homothetic transformation with coefficient k& and center the
given point O, and let y = B~ 'a. Then « = By. By results in
Section 14, y is a similarity transformation with coeflicient
k~'k =1 and is thus an orthogonal transformation. W

We leave it to the reader to show that f and y are uniquely
determined by « and O and the requirement that y be an
orthogonal transformation.

Theorem 2. Given any similarity transformation o of the
plane, exactly one of the following holds:

(1) « is an orthogonal transformation.

(2) «is not orthogonal and of the first kind. In this case, a has
a unique representation o = yp such that vy is a homothetic
transformation and p is a rotation about the center O of y. More-
over, o. = py. We allow the special cases where p is the rotation
through O (that is, the identity) or m (that is, the reflection in O).

(3) « is not orthogonal and of the second kind. In this case, o
has a unique representation o = yo such that y is a homothetic
transformation and ¢ is the reflection in some line through the
center O of y. Moreover, a=o0y.

Proof. Case 1. Let o be a similarity transformation with
coefficient k. If k = 1, we have the first case. So we assume from
now on that k # 1.
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Case 2. Let 4 be any point, B its image under «, and C the
image of B. Then BC/AB = k. We distinguish three cases.

i. A, B, C are collinear with B in the middle. There is a
unique point O lying on 4B, outside the segment A B, such that
OB/OA = k.

If kK > 1 then O lies on BA produced in the direction of 4 and
so outside the segment AC. So

OC OB+ BC kOA+kAB
OB OA+ AB OA+ AB

If k < 1, then O lies on AB produced beyond B, and since

OB OB s
OA OB+ BA
and
BC
4B~ "

we must have OB > BC, and therefore O lies on BC produced
beyond C. So
OC OB—-BC kOA—kAB f
OB 0A-—-AB O0A-AB

Consider the homothetic transformatton y with center O and
coefficient k. Like «, y takes A4 into B and B into C, and since
o and y are both of the first kind, a = y. To prove part 2 of the
theorem, we take p to be the identity (rotation through 0
about 0).

. A, B, C are collinear, and B is not in the middle.
Suppose k > I. Choose the point O inside the segment AB
for which

OB _

OA
Since BC/AB = k, C lies on BA produced beyond A, and there-
fore

k.

OC_BC-OB_kAB—kOA_k
OB AB-0A AB—-04
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Also A4 and B, and B and C, lie on opposite sides of O. Let
y be the homothetic transformation with center O and coeffici-
ent k, and let ¢ be the reflection in 0. Then, by the usual argu-
ment, we see that a = yo = og7y.

If k < 1, consider the inverse transformation a~!. It takes C
into B and B into A; B is not in the middle, and the coefficient
is > 1. So, by what we have just proved, a~* = yo = gy, where
y is a homothetic transformation with coefficient k™1, and o is
the reflection in its center. But then a = 6y~ =y~ 'g, where
1~ !is a homothetic transformation with coefficient (k)" = k,
and o is the reflection in its center (which is the same as that
of 7).

iii. A4, B, C are not collinear. Let S be the circle through 4
and B tangent to BC at B, and let T be the circle through B and
C tangent to AB at B. S and T intersect in two points, one of
which is B, the other O, say. Produce CB to a point P and AB to
Q. Then /. AOB = [ PBA (both are equal to half the arc AB),
and similarly / BOC = /. QBC. But /. PBA = [/ QBC (verti-
cally opposite), so that

L. AOB = /| BOC.

Furthermore, / OAB = / OBC. It follows that the triangles
OAB and OBC are similar, the scale factor being BC : AB = k.
Let p be the rotation about O through the angle # which takes
the ray OA4 into OB and OB into OC. Then it is clear that py,
like «, takes A4 into B and B into C, where y is the homothetic
transformation with coefficient k¥ and center O. Since « and
py are both of the first kind, they are equal, and it is clear that
also py = yp.

We now show that if « is a similarity transformation of the
first kind, then its representation as the product of a rotation
and a homothetic transformation with center at the center of
the rotation is unique.

Suppose then that « = py, where y is a rotation about some
point O and y is a homothetic transformation with center O.
Then O is fixed under « and is the only such point. For if 4 also
were fixed, then O4 = O'A’ = kOA, so that k = 1, contrary to
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the hypothesis that a is not orthogonal. So if « also can be
represented in the form p*y*, where p* and y* have the same
center, this center must be O.
It follows from
a=py=p*y*
that
= pT o,
But the right side is the product of two rotations about O, so
it is itself a rotation about O, and the left side is the product
of two homothetic transformations with center O, so it is itself
a homothetic transformation with center 0. However, a
homothetic transformation cannot be a rotation unless it is the
identity. Thus yy* ™! = p~1p* = ¢, and y = y*, p = p*.

Case 3. Let 4 be any point, B its image, and C the image of B.
Then BC/AB = k. We distinguish cases, as before.

i. A, B, C all lie on a line /, with B in the middle.

We have already shown (Case 2,i) that there exists a homo-
thetic transformation y with center O on [ taking 4 to B and
B to C. Let o be the reflection in /. Then ¢ leaves the points of /
invariant, and so it also takes 4 to B and B to C. By the usual
argument, « = yo = oy, and this is a representation in the re-
quired form.

1. A, B, C are collinear, with B not in the middle. In this
case, we know that there is a homothetic transformation y with
coefficient k and center O on /, such that oy takes A4 into B and
Binto C, where o is the reflection in O. Let m be the perpendicu-
lar to / through O, and let ¢’ be the reflection in m. Then ¢’
has the same effect on the points of / as does o. Thus ¢’y takes
Ainto B and Binto C, and, being of the second kind, it must be
a. Also a = yo'.

ili. A, B, C are not collinear. Choose points P and Q on the
line segments AB and BC, respectively, such that BP: PA =
CQ:0B=k. Let A* and B* be the reflections of 4 and B
in the line / = PQ. 4 and C lie on the same side of /, which is the
opposite side from B. Thus on one side of / lie A* and B and
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on the other A4, B*, and C. The ratio of the distances to / from
B and A* 1s k # 1, so that A*B intersects / in some point O
lying outside the segments 4*B, since A* and B are on the same
side of /.

Since
co
05~ "
we have
BC k
B = = B
¢ k+1 k+1 4B,
and since
BP
— =k,
PA
we have
k
PB =——"-AB,
k+1

so that BQ = PB, and / BPQ = / BQP = f3, say. Since B and
B* are symmetrically opposite I, /. B*PQ = f8, so that PB* is
parallel to BQ = BC (alternate angles). Since A*, P, B* are the
images of 4, P, B under the reflection in /, they are collinear.
Thus A*B* is parallel to BC.

We now show that B*C passes through O. Let C’ be the point
of intersection of OB* and BC (they are not parallel, since then
OB* would also be parallel to A*B*). Since A*B* is parallel to
BC,C’'Q: OB = B*P:PA* But B*P : PA*=PB : PA = k. Thus
C'Q:QB=k=CQ: OB, so that C’ coincides with C. Now
the triangles O0A4*B* and OBC are similar (since they have the
same angle at O and parallel bases), so that

OB _ BC BC
OA* A*B* AB
Let o be the reflection in /. It takes 4 and B into A* and B*

respectively. The homothetic transformation y with center O
and coefficient k takes 4* to B and, therefore, also takes B*

k.
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into C (for the image D of B* must lie on OB* and also be such
that BD is parallel to A*B*). Thus yo = a7, like a, takes 4 into
Band B and C, and, since both are of the second kind, we have

o = Y06 = 0y.

To prove the uniqueness of this representation, note that the
center O of y is the only point invariant under «. So if also
a = o*y*, where y* is a homothetic transformation with center
O* and o* the reflection in a line through O*, then we must
have O* = 0.

Since

o« =0y = a*y*,
we have
o* o=yt

But the left side, the product of reflections in two lines
through O, is a rotation about O, while the right side is a homo-
thetic transformation with center O. This means that both sides
are the identity, so that 6* =g, 7*=9. Y

18. Similarity Transformations of the
Plane in Coordinates

18.1. HOMOTHETIC TRANSFORMATIONS

Let y be the homothetic transformation with center O and
coefficient k. We introduce a system of rectangular coordinates
with origin at O. Let (x, y) be the co- y
ordinates of a point M of the plane and
(x’, ') those of its image M’ under ». Q ul
Drop perpendiculars MP and MQ from
M onto the x and y axes and perpendic-
ulars M'P’ and M’Q’ from M’ (Fig. 44).
Then

oM’ 0P 0Q
_or_o_ .
OM ~ 0P 00 Fig. 44
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So
OP’ = kOP,

0Q' = k0Q.

Now P and P’ lie on the same side of the same ray Ox through
0, and similarly for @ and Q'. It follows that

x' =kx,

y =ky.

18.2. THE GENERAL CASE

Let o be a similarity transformation with coefficient k. We
introduce rectangular coordinates with origin at any point O.
By Theorem 1 of the last section, we may write @ = wy, where
y is the homothetic transformation with center O and coefficient
k, and w is an orthogonal transformation.

By Section 18.1, y takes the point M(x, y) into the point
M*(x*, y*), where

x* =kx,
(1)
y¥=ky.
If o is of the first kind, so is w, and, by Eq. (4) in Section 10.5,
if o(M*) = M'(x', y'),

x' =x¥cosff—y*sinf + a,
2)
Yy =x*sin f + y*cos f +b.

Here (a, b) are the coordinates of the image O’ of O, and f is the
angle through which every vector is rotated by o (or ).
It follows from (1) and (2) that

x' =k(xcosf—ysinfl) +a,
y =k(xsin f + ycos f) + b.
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If « is of the second kind, then so is w and, as before, we have
x' = k(x cos 2y 4+ y sin 2y) + a,
y =k(xsin2y — ycos2y) + b,

where (a, b) are the coordinates of the image O’ of O under a,
and y is the angle that the axis of any reflection o, such that
o = o1 for some translation 7, makes with the x axis. Or we may
say that 2y is the angle between Ox and its image under « or w.

[9. Similarity Transformations in Space

Similarity transformations of space are defined just as for the
plane. Under them, lines go into lines, the order of points along
lines is preserved, planes go into planes, the images of two
parallel lines or planes are two parallel lines or planes, angles
between lines or planes are preserved, and the ratio between
the lengths of segments is preserved.

If A, B, C, D are any four noncoplanar points, and 4’, B/,
C’, D' are four points such that the tetrahedra ABCD and
A'B'C’D’ are similar, then there exists a unique similarity
transformation taking 4, B, C, D into A', B', C’, D', respec-
tively, and the coefficient of this transformation is the ratio
between any pair of corresponding sides of the two tetrahedra
(for example, A'B": AB). Just as for plane transformations,
similarity transformations of space can be divided into those
of the first and second kinds.

If A, B, C are three noncollinear points and 4’, B’, C' are
three points such that the triangles ABC and A'B'C’ are similar,
then there exists a unique similarity transformation of the first
kind and a unique one of the second kind, taking 4, B, C into
A', B, C', respectively. These two transformations have the
same coefficient k = B'C’ : BC.,

The set of all similarity transformations of space forms a
group, of which the orthogonal group of space is a subgroup.

A homothetic transformation of space is defined in the same
way as a plane homothetic transformation. A given similarity
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can be represented in the form yf8, where y is a homo-
thetic transformation with prescribed center O, and f is an
orthogonal transformation of space.

Any similarity transformation « of space either is an or-
thogonal transformation or can be represented uniquely as the
product of a homothetic transformation y and a rotation p
about an axis / passing through the center O of y, if « is of the
first kind, or as a product ypo where y and p satisfy the con-
ditions above and ¢ is the reflection in the plane through O
perpendicular to /, if o is of the second kind. These transforma-
tions can be taken in any order. In particular, a similarity
transformation of space with coefficient £ # 1 has a unique
fixed point.

If we introduce rectangular coordinates in space, then a given
similarity transformation a with coefficient k is specified in
coordinates by a system of equations of the following form:

x'=klay,x + ayy + a7 + a,
Y =klanx + azy + azz) + b, (1)
Z’ = k(a31x + a32y + a33Z) + c,

where (x', y', z') are the coordinates of the image M’ of the
point M with coordinates (x, y, z). The image O’ of O has
coefficients (a, b, ¢), and the a,; are the direction cosines of the
angles that the images of the three coordinates axes make with
the coordinate axes. In particular, the a;; satisfy Eqs. (1) and
(2) of Section 13. We may prove (1) above exactly as we proved
the corresponding result for the plane in Section 18, by using
the results of Section 13. As a particular case of (1), the ana-
lytic expression for the homothetic transformation with center
O and coefficient k is

x =kx,
Y =Kky,
z'=kz.

We may use (1) to prove that a similarity transformation of
space with coefficient k # 1 has a unique fixed point. The
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coordinates of a fixed point M(x, y, z) must satisfy (1) when
we substitute x for x’, etc. Thus we have

(ag bk —Dx +aky +a3kz+a=0,
a, kx + (ak — 1)y + a,3kz+ b =0,
ay kx + as;ky +(as3k—1)z+¢=0.

To show that this system of equations has a unique solution
it is sufficient (and necessary) to show that the determinant
associated with it is nonzero, so that

agk—1 ak a,sk
ay.k az,k—1 a,;k #0.
as. k as,k as;k —1

But this determinant is zero if and only if there exist numbers

P, ¢, r such that

1
ap p+ag +a;r= % D

1

A p+ az,q + asr = P q, (2)
1
Az P+ azaq + aszsr =7€"-

Now the left-hand sides of these equations are the coordinates
of the image of the point P(p, g, r) under the orthogonal
transformation « whose analytic expression is given by (1)
of Section 13 (with ¢ = b = ¢ = 0). If this is the point P’, then
we must have OP’' = OP. But the coordinates of P’ are given
by the right-hand side of (2), and we see from them that
OP' = k™ 'OP. So the determinant cannot be zero if k # 1, and
the system (1) above has a unique solution.

We could establish in exactly the same way that a similarity
transformation of the plane has exactly one fixed point; having
done so, Theorem 2 of Section 17 becomes very easy, and the
result on the representation of a similarity transformation of
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space as a product of elementary transformations (given above)
becomes equally easy. For a direct proof (not using analytic
methods to establish the existence of a fixed point), see Jacques
Hadamard, “ Legons de géométrie élémentaire,” Vol. 1, p. 142,
A. Colin, Paris, 1898,

We may define similarity transformations in the obvious
manner for spaces of higher dimensions than three, and all the
obvious analogs of previous results continue to hold. In
particular, the analytic expression for such a transformation is
the obvious generalization of (1), subject to conditions general-
izing (2) in Section 13. A similarity transformation with co-
efficient k # 1 of a space of any number of dimensions has
exactly one fixed point.



