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Exercise 4 PROVE or DISPROVE : Through any point P off a line L, there passes
a unique line parallel to the given line L.

Exercise 5 Show that three points P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3)

are collinear if and only if ��������
1 1 1

x1 x2 x3

y1 y2 y3

�������� = 0.

1.2 Transformations

One of the most important concepts in geometry is that of a transformation.

Note : Transformations are a special class of functions. Consider two sets S and

T. A function (or mapping) α from S to T is a rule that associates with each element

s of S a unique element t = α(s) of T; the element α(s) is called the image of s

under α, and s is a preimage of α(s). The set S is called the domain (or source) of

α, and the set T is the codomain (or target) of α. The set of all α(s) with s ∈ S
is called the image (or range) of α and is denoted by α(S). If any two different

elements of the domain have different images under α (that is, if α(s1) = α(s2)

implies that s1 = s2), then α is one-to-one (or injective). If all elements of the

codomain are images under α (that is, if α(S) = T), then α is onto (or surjective).

If a function is injective and surjective, it is said to be bijective.

Exercise 6 If there exists a one-to-one mapping f : A → A which is not onto,
what can be said about the set A ?

When both the domain and codomain of a mapping are “geometrical” the

mapping may be referred to as a transformation. We shall find it convenient

to use the word transformation ONLY IN THE SPECIAL SENSE of a bijective

mapping of a set (space) onto itself. We make the following definition.

1.2.1 Definition. A transformation on the plane is a bijective mapping

of E 2 onto itself.
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Transformations will be denoted by lowercase Greek letters.

For a given transformation α, this means that for every point P there is a

unique point Q such that α(P ) = Q and, conversely, for every point S there

is a unique point R such that α(R) = S.

Note : Not every mapping on E2 is a transformation. Suppose a mapping α is

given by (x, y) �→ (α1(x, y), α2(x, y)). Then α is a bijection (i.e. a transformation)
if and only if, given the equations (of α)

x� = α1(x, y)

y� = α2(x, y),

one can solve uniquely for (the “old” coordinates) x and y in terms of (the “new”

coordinates) x� and y� : x = β1(x�, y�) and y = β2(x�, y�).

1.2.2 Examples. The following mappings on E 2 are transformations:

1. (x, y) �→ (x, y) (identity);

2. (x, y) �→ (−x, y) (reflection);

3. (x, y) �→ (x− 1, y+ 2) (translation);

4. (x, y) �→ (−y, x) (rotation);

5. (x, y) �→ (2x, 2y) (dilation);

6. (x, y) �→ (x+ y, y) (shear);

7. (x, y) �→ (−x + y2 , x+ 2) (affinity);

8. (x, y) �→ (x, x2 + y) (generalized shear);

9. (x, y) �→ (x, y3);

10. (x, y) �→ (x+ |y|, y).

1.2.3 Examples. The following mappings on E 2 are not transformations:
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1. (x, y) �→ (x, 0);

2. (x, y) �→ (xy, xy);

3. (x, y) �→ (x2, y);

4. (x, y) �→ �−x + y2 , 2x− y�;
5. (x, y) �→ (ex cosy, ex sin y).

1.2.4 Example. Consider the mapping

β : E2 → E2 , (x, y) �→ (x�, y�) = (x2 − y2, 2xy).

Let us first use polar coordinates r, t so that

x = r cos t , y = r sin t , 0 ≤ t ≤ 2π.

By using some trigonometric identities, we can express β((x, y)) as

β((r cos t, r sin t)) = (r2 cos2t, r2 sin2t) , 0 ≤ t ≤ 2π.

From this it follows that under β the image curve of the circle of radius r and

center at the origin counterclockwise once is the circle of radius r2 and center

at the origin counterclockwise twice. Thus the effect of β is to wrap the plane

E
2 smoothly around itself, leaving the origin fixed, since β((0, 0)) = (0, 0), and

therefore β is surjective but not injective.

Exercise 7 Verify that the mapping

(x, y) �→
�
x− 2a

a2 + b2
(ax+ by + c), y − 2b

a2 + b2
(ax+ by + c)

�
is a transformation.

Collineations

1.2.5 Definition. A transformation α with the property that if L is a
line, then α(L) is also a line is called a collineation.
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Note : We take the view that a line is a set of points and so α(L) is the set of
all points α(P ) with point P on line L; that is,

α(L) = {α(P ) |P ∈ L} ⊂ E2.

Clearly, α(P ) ∈ α(L) ⇐⇒ P ∈ L.

1.2.6 Example. The mapping

α : E 2 → E 2, (x, y) �→ (x, y3)

is a transformation as (u, 3
√
v) is the unique point sent to (u, v) for given

numbers u and v (given the equations u = x and v = y3, one can solve

uniquely for x and y in terms of u and v). However, α is not a collineation,

since the line with equation y = x is not sent to a line, but rather to the cubic

curve with equation y = x3.

1.2.7 Example. The mapping

β : E 2 → E 2, (x, y) �→
�
−x + y

2
, x+ 2

�
is a collineation. Indeed, from (the equations of β)

x� = −x + y
2

y� = x + 2

we get (uniquely)

x = y� − 2
y = 2x� + 2y� − 4.

Hence β is a transformation.

Now consider the line L with equation ax+by+c = 0, and let P � = (x�, y�)
denote the image of the (arbitrary) point P = (x, y) under (the transforma-

tion) β. Recall that

P � = (x�, y�) ∈ β(L) ⇐⇒ P = (x, y) ∈ L.
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Then

a(y� − 2) + b(2x� + 2y� − 4) + c = 0
or, equivalently,

(2b)x� + (a+ 2b)y�+ c− 4b− 2a = 0.

(Observe that (2b)2 + (a + 2b)2 �= 0 since a2 + b2 �= 0.) So the line L with
equation ax+ by + c = 0 goes to the line with equation (2b)x+ (a+ 2b)y+

c− 4b− 2a = 0. Hence β is a collineation.

Exercise 8 PROVE or DISPROVE : Collineations preserve parallelness among lines

(i.e. the images of two parallel lines under a given collineation are also parallel lines).

1.3 Properties of Transformations

Various sets of transformations correspond to important geometric properties.

We will look at properties of sets of transformations that make them alge-

braically interesting. Let G be a set of transformations.

Sets of transformations will be denoted by uppercase Gothic letters.

1.3.1 Definition. The transformation defined by

ι : E 2 → E 2, P �→ P

is called the identity transformation.

Note : No other transformation is allowed to use the Greek letter iota. The identity

transformation may seem of little importance by itself, but its presence simplifies

investigations about transformations, just as the number 0 simplifies addition of

numbers.

If ι is in the set G, then G is said to have the identity property.

Recall that α is a transformation if (and only if ) for every point P there

is a unique point Q such that α(P ) = Q and, conversely, for every point S
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there is a point R such that α(R) = S. From this definition we see that the

mapping α−1 : E 2 → E 2, defined by

α−1(A) = B ⇐⇒ α(B) = A

is a transformation, called the inverse of α.

Note : We read “α−1 ” as “alpha inverse”. If (the transformation) α is given by

(x, y) �→ (x�, y�) = (α1(x, y), α2(x, y))

with x = β1(x
�, y�) and y = β2(x�, y�), then (the transformation)

β : (x, y) �→ (β1(x, y), β2(x, y))

is the inverse of a; that is, β = α−1.

If α−1 is also in G for every transformation α in our set G of transfor-

mations, then G is said to have the inverse property.

Whenever two transformations are brought together they might form new

transformations. In fact, one transformation might form new transformations

by itself, as we can see by considering α = β below.

1.3.2 Definition. Given two transformations α and β, the mapping

βα : E 2 → E 2 , P �→ β(α(P ))

is called the product of the transformation β by the transformation α.

Note : Transformation α is applied first and then transformation β is applied.

We read “βα ” as “the product beta-alpha”.

1.3.3 Proposition. The product of two transformations is itself a trans-

formation.

Proof : Let α and β be two transformations. Since for every point C

there is a point B such that α(B) = C and for every point B there is a

point A such that α(A) = B, then for every point C there is a point A
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such that βα(A) = β(α(A)) = β(B) = C. So βα is an onto mapping. Also,

βα is one-to-one, as the following argument shows. Suppose βα(P ) = βα(Q).

Then β(α(P )) = β(α(Q)) by the definition of βα. So α(P ) = α(Q) since

β is one-to-one. Then P = Q as α is one-to-one. Therefore, βα is both

one-to-one and onto. ✷

If our set G has the property that the product βα is in G whenever α

and β are in G, then G is said to have the closure property. Since both

α−1α(P ) = P and αα−1(P ) = P for every point P , we see that

α−1α = αα−1 = ι.

Hence ifG is a nonempty set of transformations having both the inverse prop-

erty and the closure property, thenG must necessarily have the identity prop-

erty.

Our setG of transformations is said to have the associativity property,

as any elements α, β, γ in G satisfy the associativity law :

γ(βα) = (γβ)α.

Indeed, for every point P ,

(γ(βα))(P ) = γ(βα(P )) = γ(β(α(P ))) = (γβ)(α(P )) = ((γβ)α)(P ).

Groups of transformations

The important sets of transformations are those that simultaneously satisfy

the closure property, the associativity property, the identity property, and the

inverse property. Such a set is called a group (of transformations).

Note : We mention all four properties because it is these four properties that are

used for the definition of an abstract group in algebra. However, when we want to

check that a nonempty set G of transformations forms a group, we need check only

the closure property and the inverse property.
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1.3.4 Proposition. The set of all transformations forms a group.

Proof : The closure property and the inverse property hold for the set of

all transformations. ✷

Exercise 9 Let α be a collineation. Show that, given a line L, there exists a line
M such that α(M) = L.

1.3.5 Proposition. The set of all collineations forms a group.

Proof : We suppose α and β are collineations. Suppose L is a line. Then
α(L) is a line since α is a collineation, and β(α(L)) is then a line since β
is a collineation. Hence, βα(L) is a line, and βα is a collineation. So the
set of collineations satisfies the closure property. There is a line M such that

α(M) = L. So

α−1(L) = α−1(α(M)) = α−1α(M) = ι(M) =M.

Hence, α−1 is a collineation, and the set of all collineations satisfies the inverse

property. The set is not empty as the identity is a collineation. Therefore, the

set of all collineations forms a group. ✷

If every element of transformation groupG� is an element of transformation

group G, then G� is a subgroup of G. All of our groups will be subgroups

of the group of all collineations. These transformation groups will be a very

important part of our study of geometry.

Note : The word group now has a technical meaning and should never be used as

a general collective noun in place of the word set.

Transformations α and β may or may not satisfy the commutativity law :

αβ = βα. If the commutativity law is always satisfied by the elements from a

group, then that group is said to be commutative (or Abelian). The term

Abelian is after the Norwegian mathematician N.H. Abel (1801-1829).

Orders and generators
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Given a transformation α, the product αα . . .α (n times) is denoted by

αn. As expected, we define α0 to be ι. Also, we write

�
α−1
�n
= α−n, n ∈ Z.

If group G has exactly n elements, then G is said to be finite and have

order n; otherwise,G is said to be infinite. Analogously, if there is a smallest

positive integer n such that αn = ι, then transformation α is said to have

order n; otherwise α is said to have infinite order.

1.3.6 Example. Let ρ be a rotation of 360n degrees about the origin with

n a positive integer and let

τ : E2 → E2, (x, y) �→ (x+ 1, y).

Then

• ρ has order n,

• the set {ρ, ρ2, . . . , ρn} forms a group,

• τ has infinite order,

• the set {τk : k ∈ Z} forms an infinite group.

If every element of a group containing α is a power of α, then we say that

the group is cyclic with generator α and denote the group as �α�.

1.3.7 Example. If ρ is a rotation of 36◦, then �ρ� is a cyclic group of
order 10. Note that this same group is generated by β where β = ρ3. In

fact, we have

�ρ� = �ρ3� = �ρ7� = �ρ9�.

So a cyclic group may have more than one generator.
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Note : Since the powers of a transformation always commute (i.e. αmαn =

αm+n = αnαm for integers m and n ), we see that a cyclic group is always Abelian.

If G = �α, β, γ, . . . , � , then every element of group G can be written
as a product of powers of α, β, γ, . . . and G is said to be generated by

{α, β, γ, . . .}.

Involutions and multiplication tables

Among the particular transformations that will command our attention

are the involutions.

1.3.8 Definition. A transformation α is an involution if α2 = ι but

α �= ι.

Note : The identity transformation is not an involution by definition.

1.3.9 Example. The following transformations are involutions :

1. (x, y) �→ (y, x) ;

2. (x, y) �→ (−x + 2a,−y + 2b) ;

3. (x, y) �→ � 12 (x+√3 y), 12(√3x− y)�.
1.3.10 Proposition. A nonidentity transformation α is an involution if

and only if α = α−1.

Proof : (⇒) Assume the nonidentity transformation α is an involution.
Then α2 = ι. By multiplying both sides by α−1, we get

α−1(αα) = α−1ι ⇐⇒ (α−1α)α = α−1 ⇐⇒ ια = α−1 ⇐⇒ α = α−1 .

(⇐) Conversely, assume the nonidentity transformation α is such that α =
α−1. Then by multiplying both sides by α, we get

α2 = αα = αα−1 = ι.

✷
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Exercise 10 Determine whether the transformation

(x, y) �→
�
x− 2a

a2 + b2
(ax+ by + c), y − 2b

a2 + b2
(ax+ by + c)

�
is an involution.

A multiplication table for a finite group is often called a Cayley table

for the group. This is in honour of the English mathematician A. Cayley

(1821-1895). In a Cayley table, the product βα is found in the row headed

“β” and the column headed “α”.

1.3.11 Example. Consider the group C4 that is generated by a rotation

ρ of 90◦ about the origin. The Cayley table for C4 is given below :

C4 ι ρ ρ2 ρ3

ι ι ρ ρ2 ρ3

ρ ρ ρ2 ρ3 ι

ρ2 ρ2 ρ3 ι ρ

ρ3 ρ3 ι ρ ρ2

Clearly, C4 is a group of order 4 (it is easy to check the closure property and

the inverse property). Group C4 is cyclic and is generated by ρ. Since

(ρ3)2 = ρ6 = ρ2 , (ρ3)3 = ρ9 = ρ , and (ρ3)4 = ρ12 = ι ,

then C4 is also generated by ρ3. So

C4 = �ρ� = �ρ3� .

Note, also, that group C4 contains the one involution ρ
2.

1.3.12 Example. Consider the group V4 = {ι, σO, σh, σv}, where

ι((x, y)) = (x, y) , σO((x, y)) = (−x,−y) ,

σh((x, y)) = (x,−y) , σv((x, y)) = (−x, y).
The Cayley table for V4 can be computed algebraically without any geomet-

ric interpretation.
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V4 ι σh σv σO

ι ι σh σv σO

σh σh ι σO σv

σv σv σO ι σh

σO σO σv σh ι

Group V4 is Abelian but not cyclic. Every element of V4 except the identity

is an involution.

1.4 Exercises

Exercise 11 Let P,Q, and R be three distinct points. Prove that

PQ+ QR = PR ⇐⇒ Q = (1− t)P + tR for some 0 < t < 1.

(The line segment PR consists of P,R and all points between P and R. Hence

PR = {(1− t)P + tR | 0 ≤ t ≤ 1}.)

Exercise 12 Which of the following mappings defined on the Euclidean plane E 2

are transformations ?

(a) (x, y) �→ (x3, y3).
(b) (x, y) �→ (cosx, siny).
(c) (x, y) �→ (x3 − x, y).
(d) (x, y) �→ (2x, 3y).
(e) (x, y) �→ (−x, x+ 3).
(f) (x, y) �→ (3y, x + 2).
(g) (x, y) �→ ( 3√x, ey).
(h) (x, y) �→ (−x,−y).
(i) (x, y) �→ (x+ 2, y − 3).

Exercise 13 Which of the transformations in the exercise above are collineations ?

For each collineation, find the image of the line with equation ax+ by + c = 0.
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Exercise 14 Find the image of the line with equation y = 5x+7 under collineation

α if α((x, y)) is :

(a) (−x, y).
(b) (x,−y).
(c) (−x,−y).
(d) (2y − x, x− 2) .

Exercise 15 TRUE or FALSE ? Suppose α is a transformation on the plane.

(a) If α(P ) = α(Q), then P = Q.

(b) For any point P there is a unique point Q such that α(P ) = Q.

(c) For any point P there is a point Q such that α(P ) = Q.

(d) For any point P there is a unique point Q such that α(Q) = P .

(e) For any point P there is a point Q such that α(Q) = P .

(f) A collineation is necessarily a transformation.

(g) A transformation is necessarily a collineation.

(h) A collineation is a mapping that is one-to-one.

(i) A collineation is a mapping that is onto.

(j) A transformation is onto but not necessarily one-to-one.

Exercise 16 Give three examples of transformations on the plane that are not

collineations.

Exercise 17 Find the preimage of the line with equation y = 3x + 2 under the

collineation

α : E 2→ E 2 , (x, y) �→ (3y, x − y).

Exercise 18 If 
x� = ax+ by + h

y� = cx+ dy + k

are the equations for mapping α : E2 → E2, then what are the necessary and sufficient
conditions on the coefficients for α to be a transformation ? Is such a transformation

always a collineation ?
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Exercise 19 Let P = {P1, . . . , Pn} be a finite set of points (in the plane), and let
C be its centre of gravity, namely

C : =
1

n
(P1 + · · ·+ Pn) .

Consider a transformation α : E2 → E2 of the form

(x, y) �→ (ax+ by + h, cx+ dy + k) with ad− bc �= 0

and let P �i = α(Pi), i = 1, 2, . . .n and C � = α(C). Show that

C � =
1

n
(P �1 + · · ·+ P �n) .

Exercise 20 Sketch the image of the unit square under the following transforma-

tions :

(a) (x, y) �→ (x, x+ y).
(b) (x, y) �→ (y, x).
(c) (x, y) �→ (x, x2 + y).
(d) (x, y) �→ (−x+ y

2 , x + 2).

Exercise 21 Prove that if α, β, and γ are elements in a group, then

(a) βα = γα implies β = γ ;

(b) βα = βγ implies α = γ ;

(c) βα = α implies β = ι ;

(d) βα = β implies α = ι ;

(e) βα = ι implies β = α−1 and α = β−1.

Exercise 22 TRUE or FALSE ?

(a) If α and β are transformations, then α = β if and only if α(P ) = β(P )

for every point P .

(b) Transformation ι is in every group of transformations.

(c) If αβ = ι, then α = β−1 and β = α−1 for transformations α and β.

(d) “αβ ” is read “the product beta-alpha”.

(e) If α and β are both in group G, then αβ = βα.


