Preface

Mathematical modelling is a bridge between the ywtaflmathematics and the application of
mathematics to various fields. The module affotus $tudent an early opportunity to see how
the pieces of an applied problem fit together. $helent investigates meaningful and practical
problems chosen from common experiences encomgaseiny academic disciplines, including
the mathematical sciences, operation researchnesgng, and the management and life

science.

This module provides an introduction to the entwedelling process. The student will have
occasions to practice the module facets of modgllamd enhance their problem solving
capabilities. The aim of this module is to display examples some of the many facets of

mathematical modelling.

This module needs a student with a good knowledgmloulus, ordinary differential equation

and a little probability and matrix theory wouladi all of it accessible.

The module are organized according to a definitetpof view, the first chapter focused on
introduction of modelling and how to relate math&os model with other models. Although in

this part we try to show steps of modelling andpgrties of modelling.

The second and third chapter tries to explain ablouensional analysis and modelling using

graphical methods respectively.

The last two chapters focused on applications.hia thapter we try to show examples of

mathematical modelling related to differential etipuas and optimization.
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CHAPTER 1

Introduction to Modeling

Learning objectives

After studying this chapter students will béest:
= |dentify properties of Models & its relation witkality.
» Apply the mathematical modeling cycle to simplelpeons
» Understand some of the assumptions used when mgdeli
» Formulate a Mathematical model of real life probdem

Introduction

To help us better understand our world, we ofterscdee a particular phenomenon

mathematically (by means of a function or an e@umatfor instance). Such description is an

idealization (model) of the real-world phenomenond anever a completely accurate

representation. Although any model has its limitagi, a good one can provide valuable results
and conclusions.

In modeling our world, we are often interested liadicting the value of a variable at some time
in the future. Perhaps it is a population, a reshte value, or the number of people with a
communicative disease. Often a mathematical madehelp us understand a behavior better or
aid us in planning for the future. Let’s think of mathematical model as a mathematical
construct designed to study a particular real-wagldtem or behavior of interest. The model
allows us to reach mathematical conclusions abbetktehavior. These conclusions can be
interpreted to help a decision maker plan for thare.

Simplification

Most models simplify reality. Generally, models aarly approximate real-world behavior. One
very powerful simplifying relationship is propontiality.

DEFINITION:

Two variables y and x are proportional (to eackentif one is always a constant multiple of the

other; that is, If y=kx for some non zero constank, we write

y X X.

The definition means that the graph of y versugesx along a straight line through the
origin. This graphical observation is useful intiteg whether a given data collection reasonably
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assumes a proportionality relationship. If propmrélity is reasonable, a plot of one variable
against the other should approximate a straigbtttinough the origin. Here is an example.

EXAMPLE: Testing for Proportionality

Consider a spring-mass system, such as the onenshdwgure 1.1. We conduct an experiment
to measure the stretch of the spring as a functidhe mass (measured as weight) placed on the
spring. Consider the data collected for this expent, displayed in Table 1.1. A scatter plot
graph of the stretch or elongation of the springsue the mass or weight placed on it reveals an
approximate straight line passing through the aori¢ffigure 1.2).

The data appear to follow the proportionalityertihat elongatior is proportional to the
massm, or symbolically, elm The straight line appears to pass through the rorighis
geometric understanding allows us to look at theada determine if proportionality is a
reasonable simplifying assumption and, if so, toveste the slopé&. In this case, the assumption
appears valid, so we estimate the constant of ptiopality by picking the two points (200,
3.25) and (300, 4.875) as lying along the straliglet We calculate the slope of the line joining
these points as

slope = 4373~ 3.23 0.01625
PE= 300—200 ~
Table 1.1
Spring-mass
system Figure 1.1
Mass Elong Spring.m S}'ﬂtﬂm
50 1.000
100 1.875
150 2750
200 3.250
250 4375
300 4.875
350 5.675
400 6.500
450 7.250
500 8.000
550 8.750
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Thus the constant of proportionality is approxirha®0163 and we estimate our model as:
e=0163m

We then examine how close our model fits the dgtalotting the line it represents
superimposed on the scatter plot (Figure 1.3). Tneph reveals that the simplifying
proportionality model is reasonable.

Figure 1.3
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Modeling Change
A powerful paradigm to use in modeling change is
future value = present value + change
Often, we wish to predict the future on what weWwnwow, in the present, and add the change
that has been carefully observed. In such casebgegi@ by studying the change itself according

to the formula

change= future value— present value



By collecting data over a period of time and poglihat data, we often can discern patterns to
model that capture the trend of the change. Ifltekavior is taking place oveliscrete time
periods,the preceding construct leads to a difference émuathich we study in this chapter. If
the behavior is taking placeontinuouslywith respect to time, then the construct leads to a
differential equation. Both are powerful methodaésgfor studying change to explain and
predict behavior.

Modeling Change with Difference Equations

In this section we build mathematical models tocdbs change in an observed behavior. When
we observe change, we are often interested in stafeling why the change occurs in the way it
does, perhaps to analyze the effects of differentitions on the behavior or to predict what will
happen in the future. A mathematical modepéeis better understand a behavior while
allowing us to experiment mathematically with diéfiet conditions affecting it.

DEFINITION: For a sequence of numberd =140.a1,42,a3,...} the first
differences are

Aag =a; —ap
Aa; = a) — ay
Aay =a3—m
Aaz = a4 — a3
For each positive integer; the A" first difference is
Aa, = a,41 — a,

Note from Figure 1.4 that the first diface represents the rise or fall between consecutiv
values of the sequence; that is, the verttbaingen the graph of the sequence during one time



period.

Figure 1.4 a
The first difference of a 1

sequence is the rise in the a, b (n+ l;an+l)
graph during one time ,
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a, - >~
e —

(n+1)-n=1 time period
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Example: A savings Certificate

Consider the value of a savings certificate idigimlorth $1000 that accumulates interest paid
each month at 1% per month. The following sequefceimbers represents the value of the
certificate month by month:

A = (1000, 1010, 1020.10, 1030.30, ...)
The first differences are as follows:

Aay = ay; —ag = 1010 - 1000 = 10
Aa) = a; —a; = 1020.10 - 1010 = 10.10
Aay = a3 — ap = 1030.30 — 1020.10 = 10.20

Note that the first differences represent diange in the sequenahliring one time
period, or the interest earned in the case of the savings certificate example.

The first difference is useful for modeling chantgking place in discrete intervals. In
this example, the change in the value of the eeaté from one month to the next is merely the
interest paid during that month.rifis the number of months arg, the value of the certificate
after n months, then the change or interest growth in eachth is represented by thd' n
difference

Aap, = apy1 — a, = 0.01a,
This expression can be rewritten as the differexeeation



an+l = ay + 0.01(1,,

We also know the initial deposit (initial valu#)at then gives the dynamical system
model

any1 = 1.0la,, n=0123,..
ap = 1000 (1.1)

where an, represents the amount accrued aftesnths. Because represents the nonnegative
integers (O, I, 2, 3. ..), Equation (1.1) reprgseaninfinite setof algebraic equations, called a
dynamical system. Dynamical systems allow us t@miles thechangefrom one period to the
next. The difference equation formula computesigd term knowing the immediately previous
term in the sequence, but it does not compute #teevof a specific term directly (e.g., the
savings after 100 periods).

Because it is change we often observe, we canrchst difference equation by
representing or approximating the change from am®g to the next. To modify our example, if
we were to withdraw $50 from the account each mahtihchange during a period would be the
interest earned during that period minus the mgntithdrawal, or

Aa, = apy) — ay = 0.0la, — 50

In most examples, mathematically describing thengkais no going to be as precise a
procedure as illustrated here. Often it is necgssgrlot the change, observe a patteamd then
describe the changa mathematical terms. Thai is, we will be tryirgfind

change = Aa, = some function f

The change may be a function of previous ternthensequence (as was the case with no
monthly withdrawals), or it may also involve soméeznal terms (such as the amount of money
withdrawn in the current example or an expressiwolving the periodh). Thus, in constructing
models representing change in this chapter we lv@limodeling change in discrete intervals,
where

change = Aa, = an+1 — a, = f(terms in the sequence, external terms)

Modeling change in this way becomes the art ofrdg@teéng or approximating a functidrthat
represents the change.
Consider a second example in which a differememeon exactly models a behavior in

the real world.

Examples of problems where modeling could be used:
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* to determine the maximum speed of a car round d,ben
* to help define the design requirements of a sptaium,
» to evaluate new design options for a mountain bike,
» to work out how to send a space station into orbit.

etc.

1.1 Models and reality
The theoretical and scientific study of a situatoemters around a model, that is, something that

mimics (imitate) relevant features of the situatioging studied. For example, a road map, a
geological map, and a plant collection are all n®deat mimic different aspects of a portion of
the earth's surface.

The ultimate test of a model is how well it foems when it is applied to the problems it was

designed to handle.

Now we examine more closely the process of matheatahodeling. To gain an understanding
of the processes involved in mathematical modelogsider the two worlds depicted in Figure
1.5. Suppose we want to understand some behavigheromenon in the real world. We may
wish to make predictions about that behavior in fieire and analyze the effects various

situations have on it.

Figure 1.5 Real-world systems Mathematical world
The real and mathematical Model
els
worlds Observed behavior Mathematical operations
or phenomenon and rules

Mathematical conclusions

For example, when studying the populations of tateracting species, we may wish to
know if the species can coexist within their enmirent or if one species will eventually
dominate and drive the other to extinction. In¢hse of the administration of a drug to a person,
it is important to know the correct dosage andtthme between doses to maintain a safe and

effective level of the drug in the bloodstream.
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How can we construct and use models in the mathemhavorld to help us better
understand real-world systems? Before discussing \we link the two worlds together, let’s
consider what we mean by a real-world system andweéwould be interested in constructing a

mathematical model for a system in the first place.

A system is an assemblage of objects joined imesoregular interaction or
interdependence. The modeler is interested in gralating how a particular system works,
what causes changes in the system, and how senig\wsystem is to certain changes. He or she
is also interested in predicting what changes magisur and when they occur. How might such

information be obtained?

For instance, suppose the goal is to draw commiasabout an observed phenomenon in
the real world. One procedure would be to condumnes real-world behavior trials or

experiments and observe their effect on the realdrzehavior.

Figure .1.6 ,
. - Observation
Reaching conclusions Real-world M Model
. behavior Simplification
about the behavior of
real-world systems
Trials Analysis
1
Real-world ‘ Mathematical
conclusions Interpretation conclusions

This is depicted on the left side of Figure 1.6hAlgh such a procedure might minimize
the loss in fidelity incurred by a less direct aggurh, there are many situations in which
we would not want to follow such a course of actiéor instance, there may be
prohibitive costs for conducting even a single expent, such as determining the level
of concentration at which a drug proves to be fatattudying the radiation effects of a
failure in a nuclear power plant near a major papah area. Or we may not be willing to
accept even a single experimental failure, suchhes investigating different designs for

a heat shield for a manned spacecraft. Moreovarait not even be possible to produce a
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trial, as in the case of investigating specificrap@in the composition of the ionosphere
and its corresponding effect on the polar ice éapthermore, we may be interested in
generalizing the conclusions beyond the specifiedd®mns set by one trial (such as a
cloudy day in Addis Ababa with temperature 82°Fndvil5—20 miles per hour,
humidity 42k. and so on). Finally, even though wecged in predicting the real-world
behavior under some very specific conditions, weeh@ot necessarily explained why the
particular behavior occurred. (Although the alektito predict and explain are often
closely related, the ability to predict a behavidoes not necessarily imply an
understanding of it). The preceding discussion tsutges the need to develop indirect
methods for studying real-world systems.
An examination of Figure 1.6 suggests an altereatay of reaching conclusions
about the real world. First, we make specific obsgons about the behavior being
studied and identify the factors that seem to beliued. Usually we cannot consider, or
even identify, all the factors involved in the beioga, so we make simplifying
assumptions that eliminate some factors. For itstawe may choose to neglect the
humidity in Addis Ababa, at least initially, whetudying radioactive effects from the
failure of a nuclear power plant. Next, we conjeettentative relationships among the
factors we have selected, thereby creating a raugdel of the behavior. Having
constructed a model, we then apply appropriate emadtical analysis leading to
conclusions about the model. Note that these ceimisg pertain only to the model, not to
the actual real-world system under investigatioac&ise we made some simplifications
in constructing the model and the observations bichvthe model is based invariably
contain errors and limitations, we must carefulgc@unt for these anomalies before
drawing any inferences about the real-world behavidn summary, we have the

following rough modeling procedure:

1. Through observation, identify the primary factorgolved in

the real- world behavior,  possibly maksugpplifications.

2. Conjecture tentative relationships among the  tofac
3. Apply mathematical analysis to the resultant ehod
4. Interpret mathematical conclusions in termthefreal-world problem.
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Given some real-world system, we gather sufficiata to formulate a model. Next we
analyze the model and reach mathematical conclssibaut it. Then we interpret the model and
make predictions or offer explanations. Finally, test our conclusions about the real- world
system against new observations and data. We neayfitld we need to go back and refine the
model to improve its predictive or descriptive daipies. Or perhaps we will discover that the
model really does not fit the real world accuratsly we must formulate a new model. We will

study the various components of this modeling pgsde detail throughout the module.
Mathematical Models

Definition.

A mathematical model is a mathematical construsigied to study a particular real-world

system or phenomenon. We include graphical, sympdimulation, and experimental

constructs. Many real problems can be very comafekso the idea of creating a mathematical
model is to simplify the real situation, so thattén be described using equations or graphs.
These equations or graphs are referred to as eematttal model. These mathematical models
can provide solutions to the original problem.sloften necessary to interpret these answers in
the context of the original problem and to checét tthe answers that you have obtained are

reasonable.

Mathematical models can be differentiated furthBnere are existing mathematical
models that can be identified with some particuéad-world phenomenon and used to study it.
Then there are those mathematical models that westrumt specifically to study a special
phenomenon. Starting from some real-world phenomewe can represent it mathematically by
constructing a new model or selecting an existimgleh On the other hand, we can replicate the

phenomenon experimentally or with some kind of $ation.

The real world refers to

* engineering

* physics
* physiology
* ecology

13



» wildlife management
* chemistry
e economics

« sports

Regarding the question of constructing a mathematiodel, a variety of conditions can
cause us to abandon hope of achieving any suc@éss.mathematics involved may be so
complex and intractable that there is little hogeanalyzing or solving the model, thereby
defeating its utility.

This complexity can occur, for example, when rafieng to use a model given by a
system of partial differential equations or a systef nonlinear algebraic equations. Or the
problem may be so large (in terms of the numbefacfors involved) that it is impossible to
capture all the necessary information in a singth@matical model. Predicting the global
effects of the interactions of a population, the o$ resources, and pollution is an example of
such an impossible situation. In such cases we attaynpt to replicate the behavior directly by
conducting various experimental trials. Then wdembldata from these trials and analyze the
data in some way. Possibly using statistical teqies or curve-fitting procedures. From the

analysis, we can reach certain conclusions.

There may be distinction between the various mtges. For example, the distinction
between experiments and simulations is based othehthe observations are obtained directly
(experiments) or indirectly (simulations). In priaat models this distinction is not nearly so
sharp, one master model may employ several modetsila models, including selections from
existing models, simulations, and experiments. Kbeedess, it is informative to contrast these

types of models and compare their various capasilfor portraying the real world.

1.2 Properties of models

To that end, consider the following properties of anodel:
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Fidelity: The preciseness of a model’s representation tifyrea
Costs: The total cost of the modeling process
Flexibility : The ability to change and control conditions etfifeg the  model as

required data are gathered.

It is useful to know the degree to which a givendelgpossesses each of these characteristics.
However, since specific models vary greatly, thetlvee can hope for is a comparison of the
relative performance between the classes of mofiglseach of the characteristics. The
comparisons are depicted in Figure 1.7, where thdinate axis denotes the degree of

effectiveness of each class.

Figure 1.7
. )
Comparisons among the 3
model types — g 3
LT - 3
L ‘ — 2| E
g g ERIG
]
: : 1 |%l§
g1, £ 35
@ 2] n =
z| | |38 z|E] 8|3 HEIEIE:
512182 |- 5121818 |o 218|%
A EIEEIEE I EEE E|Z|E)3
- 5| 28|38 i glc 3 = EARAN
HEEHEEEE | E|E| 22|28 |3E|B|E|E|2
“|d]n|CE|SE @ |d|a|CE|dE ©2|d|a|d|d
Fidelity Cost Flexibility

Let's summarize the results shown in Figure 1.7stFiconsider the characteristic of
fidelity. We would expect observations made dinecti the real world to demonstrate the
greatest fidelity, even though some testing biad er@asurement error may be present. We
would expect experimental models to show the nexatgst fidelity because behavior is
observed directly in a more controlled environmemth as a laboratory. Because simulations
incorporate indirect observations, they suffer hier loss in fidelity. Whenever a mathematical
model is constructed, real-world conditions arepdified, resulting in more loss of fidelity.
Finally, any selected model is based on additisimaplifications that are no even tailored to the
specific problem, and these simplifications implyill s further loss in fidelity.

Next, consider cost. Generally, we would expeust selected mathematical model to be

the least expensive. Constructed mathematical mdaehr an additional cost of tailoring the
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simplifications to the phenomenon being studiedpdfiments are usually expensive to set up
and operate. Likewise, simulations use indirectiai=/that are often expensive to develop, and

simulations commonly involve large amounts of cotepgpace, time, and maintenance.

Finally, consider flexibility. Constructed mathatical models are generally the most
flexible because different assumptions and conastican be chosen relatively easily. Selected
models are less flexible because they are developddr specific assumptions; nevertheless,
specific conditions can often be varied over widages. Simulations usually entail the
development of some other indirect device to adtesumptions and conditions appreciably.
Experiments are even less flexible because sontergaare very difficult to control beyond
specific ranges. Observations of real-word behavawe little flexibility because the observer is
limited to the specific conditions that pertaintaé time of the observation. Moreover, other
conditions might be highly improbable, or impossilib create. It is important to understand that
our discussion is only qualitative in nature, améttthere are many exceptions to these

generalizations.

1.3 Building a model

Model building involves imagination and skill.ift like listing rules and provides a framework

around which to build skill and develop imagination

1.3.1 Constriction of Models

In the preceding discussion we viewed modeling psoaess and considered briefly the form of
the model. Now let’'s focus attention on the corettom of mathematical models. We begin by
presenting an outline of a procedure that is hélipficonstructing models. In the next section,
we illustrate the various steps in the proceduredlsgussing several real-world examples.

STEP 1. Identify the problem What is the problem you would like to explore?
Typically this is a difficult step because in réifd- situations no one simply hands you a
mathematical problem to solve. Usually you havesaoat through large amount of data and
identify some particular aspect of the situationstady. Moreover, it is imperative to be
sufficiently precise (ultimately) in the formulatiof the problem to allow for translation of the

verbal statements describing the problem into nma#tieal symbology. This translation is
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accomplished through the next steps. It is importarrealize that the answer to the question

posed might not lead directly to a usable probldemiification.

STEP 2. Make assumptions. Generally, we cannot hope to capture in a usable
mathematical model all the factors influencing ithentified problem. The task is simplified by
reducing the number of factors under consideratidren, relationships among the remaining
variables must be determined. Again, by assumilagively simple relationships, we can reduce
the complexity of the problem. Thus the assumptidal into two main activities:

a. Classify the variablesWhat things influence the behavior of the probidentified in Step
1? List these things as variables. The variablesntiodel seeks to explain are the dependent
variables and there may be several of these. Thmingng variables are the independent

variables. Each variable is classified as dependiependent, or neither.

You may choose to neglect some of the independatdbles for either of two reasons.
First, the effect of the variable may be relativetyall compared to other factors involved in the
behavior. Second, a factor that affects the varateynatives in about the same way may be
neglected, even though it may have a very imporiafiluence on the behavior under
investigation. For example, consider the problendetermining the optimal shape for a lecture
hall, where readability of a chalkboard or overhpeglection is a dominant criterion. Lighting is
certainly a crucial factor, but it would affect gdbssible shapes in about the same way. By
neglecting such a variable, possibly incorporattrigter in a separate, more refined model, the

analysis can be simplified considerably.

b. Determine interrelationships among the variabts selected for Study:
Before we can hypothesize a relationship betweernvéniables, we generally must make sonic
additional simplifications. The problem may be guéintly complex so that we cannot see a
relationship among all the variables initially. $nch cases it may be possible to study sub
models. That is we study one or more of the inddpetvariables separately. Eventually we will
connect the Sub models together. Studying varieclniques, such as proportionality, will aid

in hypothesizing relationships among the variables.
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STEP 3. Solve or interpret the model Now put together all the sub models to
see what the model is telling us. In some casemtidel may consist of mathematical equations
or inequalities that must be solved to find theoinfation we are seeking. Often, a problem
statement requires a best or optimal solution eriodel. Models of this type are discussed
latter.

Often, we will find that we are not quite readydomplete this step or we may end up
with a model so unwieldy we cannot solve or intetpt. In such situations we might return to
Step 2 and make additional simplifying assumpti@@netimes we will even want to return to

Step 1 to redefine the problem. This point willareplified in the following discussion.

STEP 4. Verify the model Before we can use the model, we must testtit ou
There are several questions to ask before desighiege tests and collecting data—a process
that can be expensive and time-consuming. Firsgs dioe model answer the problem identified
in Step 1, or did it stray from the key issue asomastructed the model? Second, is the model
usable in a practical sense; that is, can we reg@ltiier the data necessary to operate the model?
Third, does the model make common sense?

Once the commonsense tests are passed, we willtavdest many models using actual
data obtained from empirical observations. We rtedek careful to design the test in such a way
as to include observations over the same rangeloés of the various independent variables we
expect to encounter when actually using the motleé assumptions made in Step 2 may be
reasonable over a restricted range of the indepgndeiables but very poor outside of those
values. For instance, a frequently used interpogtaif Newton’s second law states that the net
force acting on a body is equal to the mass ofbibdy times its acceleration. This law is a
reasonable model until the speed of the object caumbres the speed of light.

Be careful about the conclusions you draw fromg tests. Just as we cannot prove a
theorem simply by demonstrating many cases thapastpghe theorem, likewise, we cannot
extrapolate broad generalizations from the pamricevidence we gather about our model. A
model does not become a law just because it isieadniepeatedly in some specific instances.

Rather, wecorroborate the reasonablenestour model through the data we collect.

STEP 5. Implement the model Of course, our model is of no use just sitiimg

filing cabinet. We will want to explain our modeal ferms that the decision makers and users can
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understand if it is ever to be of use to anyonetieumore, unless the model is placed in a user-
friendly mode, it will quickly fall into disuse. Erensive computer programs sometimes suffer
such a demise. Often the inclusion of an additistep to facilitate the collection and input of

the data necessary to operate the model determsn&sccess or failure.

STEP 6. Maintain the model Remember that the model is derived from a specifi
problem identified in Step 1 and from the assunmsimade in Step 2. Has the original problem
changed in any way, or have some previously negfefetctors become important? Does one of
the sub models need to be adjusted?

We summarize the steps for constructing matheadatnodels in Figure 1.8. We should
no be too enamored with our work. Like any modal, procedure is an approximation process
and therefore has its limitations. For example, ghecedure seems to consist of discrete steps
leading to a usable result, but that is rarelydhse in practice. Before offering an alternative
procedure that emphasizes the iterative naturehefnbodeling process. Let us discuss the

advantages of the methodology depicted in Figu8e 1.

Figure 1.8
Construction of a
mathematical model

Step 1. ldentify the problem.

Step 2. Make assumptions.
a. Identify and classify the variables.
b. Determine interrelationships between
the variables and submodels.

Step 3. Solve the model.

Step 4. Verify the model.
a. Does it address the problem?
b. Does it make common sense?
¢. Test it with real-world data.

Step 5. Implement the model.

Step 6. Maintain the model.

The process shown in Figure 1.8 provides a metlogg for progressively focusing on
those aspects of the problem we wish to study.hEBumore, it demonstrates a curious blend of

creativity with the scientific method used in thedeling process. The first two steps are more
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artistic or original in nature. They involve abstiag the essential features of the problem under
study, neglecting any factor judged to be unimpurtand postulating relationships precise

enough to help answer the questions posed by ti#gon. However, these relationships must be
simple enough to permit the completion of the remmay steps. Although these steps admittedly
involve a degree of craftsmanship, we will learrmsoscientific techniques we can apply to

appraise the importance of a particular variable the preciseness of an assumed relationship.
Nevertheless, when generating numbers in Step-d3aremember that the process has been

largely inexact and intuitive.

EXAMPLE 1. Vehicular Stopping Distance

Scenario  Consider the following rule often given inwit education classes: Allow
one car length for every 10 miles of speed undemabdriving conditions, but more distance in
adverse weather or road conditions. One way toraptish this is to use the 2-second rule for
measuring the correct following distance no mattbat your speed. To obtain that distance,
watch the vehicle ahead of you pass some defimiet wn the highway, like a tar strip or
overpass shadow. Then count to yourself “one thuisad one, one thousand and two;” that is
2 seconds. If you reach the mark before you fisigfing those words, then you are following

too close behind.

The preceding rule is implemented easily enoughhbw good is it?

Problem Identification Our ultimate goal is to test this rule and suggemther
rule if it fails. However, the statement of the Ipleom, How good is the rule? is vague. We need
to be more specific and spell out a problem, or asjuestion. Whose solution or answer will
help us accomplish our goal while permitting a mexact mathematical analysis? Consider the

following problem statement:

Predict the vehicle’s total stopping distance as #function of its speed.
Assumptions We begin our analysis with a rather obvious ehoidr total

stopping distance:

total stopping distance = reaction distance +aking distance
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By reaction distance, we mean the distance theclkeetravels from the instant the driver
perceives a need to stop to the instant when thleebrare actually applied. Braking distance is
the distance required for the brakes to bring #t@cte to a complete stop.

First let's develop a sub model for reactionahse. The reaction distance is a function
of many variables, and we start by listing just mfdhem:

reaction distance = f (response time, speed)

We could continue developing the sub model wishnauch detail as we like. For
instance, response time is influenced by both idd& driving factors and the vehicle operating
system. System time is the time from which the efriouches the brake pedal until the brakes
are mechanically applied. For modern cars we wqulmbably neglect the influence of the
system because it is quite small in comparisoméchiuman factors. The portion of the response
time determined by the driver depends on many #iagch as reflexes, alertness, and visibility.
Because we are developing only a general rule, avddgust incorporate average values and
conditions for these latter variables. Once all tegables deemed important to the sub model
have been identified, we can begin to determineriatationships among them. We suggest a
sub model for reaction distance in the next section

Next consider the braking distance. The weight apeed of the vehicle are certainly
important factors to be taken into account. Theiefficy of the brakes, type and condition of the
tires, road surface, and weather conditions arerd#igitimate factors. As before, we would must
likely assume average values and conditions fasehatter factors. Thus, our initial sub models
give braking distance as a function of vehiculaightand speed:

braking distance = h(weight, speed)
In the next section we also suggest and analyné aedel for braking distance.

Finally, let’s discuss briefly the last threepgten the modeling process for this problem.
We would want to test our model against real-waldda. Do the predictions afforded by the
model agree with real driving situations? If notg would want to assess some of our

assumptions and perhaps restructure one (or bbtrecsub models. If the model does predict
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real driving situations accurately, then does thle stated in the opening discussion agree with
the model? The answer gives an objective basiariewering, how good is the rule? Whatever
rule we come up with (to implement the model), usinbe easy to understand and easy to use if
it is going to be effective. In this example, mamince of the model does not seem to be a
particular issue. Nevertheless, we would want tedesitive to the effects on the model of such
changes as power brakes or disc brakes, a fundaimegminge in tire design, and so on.
Let’s contrast the modeling process presentelligare 1.8 with the scientific method.

One version of the scientific method is as follows:

STEP 1 Make some general observations of a phenomenon.
STEP 2.Formulate a hypothesis about the phenomenon.
STEP 3.Develop a method to test that hypothesis.

STEP 4.Gather data to use in the test.

STEP 5. Test the hypothesis using the data.

STEP 6. Confirm or deny the hypothesis.

By design, the mathematical modeling process saehtific method have similarities.
For instance, both processes involve making assangbr hypotheses, gathering real-world
data, and testing or verification using that dathese similarities should not be surprising;
though recognizing that part of the modeling predssan art, we do attempt to be scientific and

objective whenever possible.

There are also subtle differences between thepnwoesses. One difference lies in the
primary goal of the two processes. In the modepraress, assumptions are made in selecting
which variables to include or neglect and postatathe interrelationships among the included
variables. The goal in the modeling process isyfwothesize a model, and as with the scientific
method, evidence is gathered to corroborate thalemdJnlike the scientific method, however,
the objective is not to confirm or deny the modeé (already know it is not precisely correct
because of the simplifying assumptions we have jnladerather to test its reasonableness. We
may decide that the model is quite satisfactory aseful, and elect to accept it. Or we may
decide that the model needs to be refined or siifagliln extreme cases we may even need to
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redefine the problem, in a sense rejecting the matlegether. We will see in subsequent

chapters that this decision process really corieitthe heart of mathematical modeling.

1.3.2 Iterative Nature of Model Construction

Model construction is an iterative process. We bdyyi examining some system and identifying
the particular behavior we wish to predict or explaNext we identify the variables and
simplifying assumptions, and then we

Figure 1.9 Unacceptable results
The iterative nature of
model construction

No, simplify No, simplify

Identify the
Examine the _ | behavior and Can you Can you
“system” > make formulate solve the

. 2 9
assumptions a model? model?

Validate the
model

Are the
results precise
enough?

Apply results Make predictions
to the -« and/or Yes

system explanations

generate a mode. We will generally start with éeatsimple model, progress through the
modeling process, and then refine the model asethdts of our validation procedure dictate. If
we cannot come up with a model or solve the ondawve, we must simplify it (Figure 1.9). This
is done by treating some variables as constanteghiecting or aggregating some variables, by
assuming simple relationships (such as linearitydny sub model, or by further restricting the
problem under investigation. On the other handuif results are not precise enough, we must
refine the model (Figure 1.9).
Refinement is generally achieved in the opposits to simplification we introduce
additional variables, assume more sophisticatedioelships among the variables, or expand the

scope of the problem. By simplification and refirea) we determine the generality, realism,
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and precision of our model. This process cannob\ueemphasized and constitutes the art of

modeling. These ideas are summarized in Table 1.2.

Table 1.2 The art of mathematical modeling: simplying or refining the model as
required
Model simplification Model refinement
1. Restrict problem identification. I.  Expand the problem.
2. Neglect variables. 2. Consider additional variables.
3. Conglomerate effects of several 3. Consider each variable in detalil.
variables. 4. Allow variation in the variables.
4. Set some variables to be constant. 5. Consider nonlinear relationships.
5. Assume simple (linear) relationships. 6. Reduce the number of assumptions

6. Incorporate more assumptions.

We complete the section by introducing seveeains that are useful in describing
models. A model is said to bm®bust when its conclusions do not depend on the precise
satisfaction of the assumptions. A modefragile if its conclusions do depend on the precise
satisfaction of some sort of conditions. The tesnsitivity refers to the degree of change in a
models conclusions as some condition on which thepend is varied; the greater the change,

the more sensitive is the model to that condition.

Problems

In Problems 1 - 4, the scenarios are vaguelyestaFrom these vague scenarios, identify a
problem you would like to study Which variable®etfithe behavior you have identified in the
problem identification? Which variables are the miogportant? Remember there are really no
right answers.

1. The population growth of a single species.

2. Aretail store intends to construct a nevkiay lot. How should the lot be

illuminated?

3. How would you design a lecture hail for agkaclass?

4. How should a manufacturer of some produciddehow many units of that product
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should be manufactured each year and how muchargetior each Unit?

Projects

1. Consider the taste of brewed coffee. What are safrtiee variables affecting taste?
Which variables might be neglected initially? Supmgou hold all variables fixed
except water temperature. Most coffeepots use doiater in some manner to
extract the flavor from the ground coffee. Do ybink boiled water is optimal for
producing the best flavor? How would you test gub model? What data would
you collect and how would you gather it?

2. A transportation company is considering transpgrppeople between skyscrapers
in New York City via helicopter. You are hired asansultant to determine the
number of helicopters needed. Identify an approgrmmaoblem precisely. Use the
model-building process to identify the data you lddike to have to determine the
relationships between the variables you select. M@y want to redefine your

problem as you proceed.

1.4 Modeling Using Proportionality
We introduced the concept of proportionality in thigoduction part . Recall that:

y o x if and only if y = kx for some constant k > 0 (1.2)

Of course, if ¥ ® ¥, thenx o« ¥ pecause the constant k in Equation (1.2) is gréass

zero and theX = (Ej Y. The following are other examples of proportiotyatelationships:

y o x2 if and only if y = k;x2 for k; a constant

1.3)
y « Inx if and only if y = k; In x for k3 a constant (1.4)
y o ¢* if and only if y = k3e* for k3 a constant
(1.5)
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_ 1.2
In  Equation  (L.3), y = kx*,k > 0, so we also have ¥ & y!/2 pecause

1

—| = |2
X \/E y . This leads us to consider how to link propardiities together, a transitive

rule for proportionality:

yoxx and x oz, then yxz

Thus, any variables proportional to the same béggare proportional to one another.

Figure 1.10
Geometrical interpretation

of y x x

Now let's explore a geometric interpretation of godionality. In Equation (1.2) ,

_ - y
y =kx yields k= '« - Thus, k may be interpreted as the tangent ohttuie A depicted

in Figure 1.10, and the relati * ¥ defines a set of points along a line in the plaitd angle

f.

of inclination

Comparing the general form of a proportionalieAationshipy= kX with the

equation for a straight lin¥ = MX+ £ : we can see that the graph of a proportionality

relationship is a line (possibly extended) passithgough the origin. If we plot the
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proportionality variables for Models (1.3)—(1.5)gewbtain the straight-line graphs presented in
Figure 1.11.

Figure 1.11 y y y
Geometrical interpretation A A A
of Models (a) (2.2),
(b) (2.3), and (c) (2.4)
Slepe k; Slope k, Slope k3
— x? > Inx > e*
a b ¢

It is important to note that not just any straidime represents a proportionality
relationship: the y-intercept must be zero so thatline passes through the origin. Failure to
recognize this point can lead to erroneous resutisn using our model. For example, suppose
we are interested in predicting the volume of wdisplaced by a boat as i is loaded with cargo.
Because a floating object displaces a volume oémeatjual to its weight, we might be tempted
to assume that the total volume y of displaced miatproportional to the weight x of the added
cargo. However, there is a flaw with that assunmphecause the unloaded boat already displaces
a volume of water equal to its weight. Although th@ph of total volume of displaced water
versus weight of added cargo is given by a strdight it is not given by a line passing through

the origin (Figure 1.12). so the proportionalitgasption is incorrect.
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Figure 1.12

A straight-line relationship
exists between displaced
volume and total weight,
but it is not a

proportionality because the
line fails to pass through the
origin
A proportionality relationship may, however, be easonable simplifying assumption,
depending on the Size of the y-intercept and thpesbf the line. The domain of the independent

variable can also be significant since the relaginer
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is greater for small values of x. These featuresdapicted in Figure 2.13. If the slope is nearly
zero, proportionality may be a poor assumption beedhe initial displacement dwarfs the effect
of the added weight. For example, there would briaily no effect in placing 400 Ibs. on an
aircraft carrier already weighing many tons. On dtkeer hand, if the initial displacement is
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relatively small and the slope is large, the effgicthe initial displacement is dwarfed quickly,
and proportionality is a good simplifying assumptio
EXAMPLE 1. Kepler's Third Law
To assist in further understanding the idea of pribpnality, let's examine one of the famous
proportionalities from Table 1.3, Kepler’'s thirdMaln 1601, the German astronomer Johannes
Kepler became director of the Prague Observatogplét had been helping Tycho Braise in
collecting 13 years of observations on thy relativation of the planet Mars. By 1609, Kepler
had formulated his first two laws:
1. Each planet moves along an ellipse with the sah one focus.
2. For each planet, the line from the sun to tlaei sweeps out equal areas in equal
times.

Table 1.3 Famous proportionalities

Hooke’s law: F = kS, where F is the restoring force in a spring stretched or compressec
a distance §.

Newton’s law: F = maora = mi-F , where a is the acceleration of a mass m subjected
to a net external force F.

Ohm’s law: V = i R, where i is the current induced by a voltage V' across a resistance R.

Boyle’s law: V = %, where under a constant temperature k the volume V js inversely
proportional to the pressure p.

Einstein’s theory of relativity: £ = ¢2M, where under the constant speed of light
squared ¢ the energy E is proportional to the mass M of the object.

. 3 . a
Kepler’s third law: T = ¢RI, where T is the period (days) and R is the mean distance
to the sun.

Table 14 Famous proportionalities Orbital periods & mean distances ol

Planets from the sun.
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Mean distance

Planet Period (days) (millions of miles)
Mercury 88.0 36

Venus 224.7 67.25

Earth 365.3 93

Mars 687.0 141.75
Jupiter 43318 483.80
Satum 10,760.0 887.97
Uranus 30,684.0 1764.50
Neptune 60,188.3 2791.05

Pluto 90.466.8 3653.90

Kepler spent many years verifying these laws fomthulating the third law given in
Table 1.3, which relates the orbital periods an@maistances of the planets from the sun. The
data shown in Table 1.4 are from the 1993 World @&dac.

Modeling Vehicular Stopping Distance

Consider again the scenario posed in Example Secfion 1.3. Recall the general rule
that allows one car length for every 10 mph of gpétewas also stated that this rule is the same
as allowing for 2 seconds between cars. The rukegnafact different from one another (at least

for most cars). For the rules to be the same, anfdi® both should allow one car length:

in ft
1 car length = distance = (EPFE’E‘L“_) (2 sec)
S€C
oy (II‘J milcs) (5280fl) ( 1 hr )(2 sec)
N ke mi 3600 sec

=29.33 ft

This is an unreasonable result for an averagesogth of 15 ft, so the rules are not the same.

Let’s interpret the one-car-length rule geomathc If we assume a car length of 15 ft
and plot this rule, we obtain the graph shown iguFé 2.14, which shows that the distance
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allowed by the rule is proportional to the speedfdct, if we plot the speed in feet per second,
the constant of proportionality has the units sdsamnd represents the total time for the equation
D = kv to make sense. Moreover, in the case of &t I&ar, we obtain a constant of

proportionality as follows:

IS 15 ft 9%
= 10mph ~ 52,800 ft/3600 sec 88 -

Figure 1.13 D
Geometrical interpretation A
of the one-car-length rule 150 |-

125 -

S

One car length (15 ft) per
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In our previous discussion of this problem, we pnésd the model

total stopping distance = reaction distance + brak  distance.

Let’'s consider the sub models for reaction distaraE braking distance.

Recall that

reaction distance = f(response time, speed)

Now assume that the vehicle continues at conspe®dsfrom the time the driver determines the
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need to stop until the brakes are applied. Undsratbsumption, reaction distangasisimply the
product of response timeand velocityv:
d. = tyv
rer (1.6)
To test sub model (1.6), plot measured reactistandce versus velocity, if the resultant
graph approximates a straight line through theimrigge could estimate the slopeaind feel
fairly confident in the sub model. Alternativelyewould test a group of drivers representative of

the assumptions made in the example in Section ar®l estimate t directly.

Next, consider the braking distance:
braking distance = h(weight , speed)

Suppose there is a panic stop and that the maxibnake force F is applied throughout the stop.
The brakes are basically an energy-dissipatingcgevhat is, the brakes do work on the vehicle
producing a change in the velocity that resulta loss of kinetic energy. Now, the work done is
the force F times the braking distange This work must equal the change in kinetic engrgy
which, in this situation, is simply 0.5 fvThus, we have
work done = Fdj, = 0.5mv? (1.7)
Next, we consider how the force F relates to thesya the car. A reasonable design
criterion would be to build cars in such a way ttret maximum deceleration is constant when
the maximum brake force is applied regardless efmtlass of the car. Otherwise, the passengers
and driver would experience an unsafe jerk during braking to a complete stop. This
assumption means that the panic deceleration afgel car, such as a Cadillac, is the same as
that of a small car, such as a Honda, owing todisign of the braking system. Moreover,
constant deceleration occurs throughout the paojz $rom Newton’s second law, F = ma, it
follows that the force F is proportional to the mia€ombining this result with Equation (1.7)

gives the proportionality relation

dbocvz
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At this point we might want to design a test foe tivo sub models, or we could test the
sub models against the data provided by the U.&d&uof Public Roads given in Table 1.5.

Figure 1. 15 depicts the plot of driver reacttbstance against velocity using the data in
Table 1.5. The graph is a straight line of appratamnsliope 1.1 passing through the origin; our
results are too good. Because we always expect slawiation in experimental results, we

should be suspicious.

Table 1.5 Observed reaction and braking distances

Speed Driver reaction Total stopping
(mph) distance (ft) Braking distance* (ft) distance (ft)
20 22 18-22 (20) 4044 42)
25 28 25-31 (28) 53-59 (56)
30 33 3645 (40.5) 69-78 (73.5)
35 39 47-58 (52.5) 86-97 (91.5)
40 44 64-80 (72) 108-124 (116)
45 50 82-103 (92.5) 132-153 (142.5)
50 55 105-131 (118) 160186 (173)
55 61 132-165 (148.5) 193-226 (209.5)
60 66 162-202 (182) 228-268 (248)
65 72 196-245 (220.5) 268-317 (292.5)
70 77 237-295 (266) 314-372 (343)
75 83 283-353 (318) 366436 (401)
80 88 334418 (376) 422-506 (464)

*Interval given includes 85% of the observations based on tests conducted by the U.S. Bureau of Public
Roads. Figures in parentheses represent average values.
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In fact, the results of Table 1.5 are based onr8abel (1.5),where an average response time of

3/4 sec was obtained independently. So we migat @ecide to design another test for the sub

model.
To test the sub model for braking distance, wet phe observed braking distance

recorded in Table 1.5 againsf,\vas shown in Figure 1.16. Proportionality seemsbéoa
reasonable assumption at the lower speeds, althibudgies seem to be less convincing at the
higher speeds. By graphically tilting a straighklito the data, we estimate the slope and obtain

the sub model:

_ 2
dp = 0.054v (1.8)
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Figure 1.16 d,
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Summing Sub models (1.7) and (1.8), we obtain tl@lowing model for the
total stopping distance d:

d = 1.1v 4 0.054v* (1.9)
The predictions of Model (1.9) and the actual obsérstopping distance recorded in Table 1.5
are plotted in Figure 1.17. Considering the grossité the assumptions and the inaccuracies of
the data, the model seems to agree fairly reaspmathl the observations up to 70 mph. The rule
of thumb of one 15-ft car length for every 10 mlsjpeed is also plotted in Figure 1.17. We can
see that the rule significantly underestimates tttal stopping distance at speeds exceeding
40mph.

Let’s suggest an alternative rule of thumb teatasy to understand and use. Assume the
driver of the trailing vehicle must be fully stogpbéy the time he or she reaches the point
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occupied by the lead vehicle at the exact timenefdbservation. Thus, the driver must trail the

lead vehicle by the total slopping distance, bastter on Model (1.9) or on the observed data in

Table 1.4. The maximum stopping distance can rgduBl converted to a trailing time. The

results of these computations for the observeaiigs, in which 85% of the drivers were able

to stop, are given in Table 1.6. These computasoiggest the following general rule:

Figure 1.17
Total stopping distance
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Table 1.6 Time required to allow the proper stopping distance

Trailing time required

Speed for maximum stopping
(mph) (fps) Stopping distance* (ft) distance (sec)
20 (29.3) 42 (44t 1.5
25 (36.7) 56 (59) 1.6
30 (44.0) 73.5 (78) 1.8
35 (51.3) 91.5 9" 1.9
40 (58.7) 116 (124) 2.1
45 (66.0) 142.5 (153) 23
50 (73.3) 173 (186) 25
55 (80.7) 209.5 (226) 2.8
60 (88.0) 248 (268) 3.0
65 (95.3) 292.5 (317) 3.3
70 (102.7) 343 (372) 3.6
75 (110.0) 401 (436) 4.0
80 (117.3) 464 (506) 43

*Includes 85% of the observations based on tests conducted by the U.S. Bureau of Public Roads.
fFigures in parentheses under stopping distance represent maximum values and are used to calculate
trailing times.

Speed (mph)  Guideline (sec)

0-10 1
10-40 2
40-60 3
60-75 4

This alternative rule is plotted in Figure 1.18. Alternative to using such a rule might be
to convince manufactures to modify existing speeetens to compute stopping distance and

time for the car's speed v based on Equation (1.9).
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Figure 1.18 d
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Problems

1. Show graphically the meaning of the proportibpa y xufv.

2. Ifaspring is stretched 0.37 in. by a 14dicé, what stretch will be produced by a 9-
Ib force? By a 22-Ib force? Assume Hooke’s law, chhasserts the distance stretched is

proportional to the force applied.

1.6 Why Study Modeling?
Mathematical modeling is the art of translatinglgems from an application area into tractable

mathematical formulations whose theoretical and emnigal analysis provides insight, answers,
and guidance useful for the originating application
Mathematical modeling

» is indispensable (crucial) in many applications

* is successful in many further applications

» gives precision and direction for problem solution

* enables a thorough(detail) understanding of tiséesy modeled

* prepares the way for better design or control ®fsiem

» allows the efficient use of modern computing calgas
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Learning about mathematical modeling is an imparstep from a theoretical mathematical
training to an application-oriented mathematicapexkise, and makes the student fit for
mastering the challenges of our modern technolbgidéure.

Mathematical modeling plays a big role in theaf#tion of a large part of phenomena
in the applied sciences and in several aspectsedinical and industrial activity. By a
“mathematical model” we mean a set of equationgaarather mathematical relations capable of
capturing the essential features of a complex ahtur artificial system, in order to describe,
forecast and control its evolution. The appliedsces are not confined to the classical ones; in
addition to physics and chemistry, the practice nmithematical modeling heavily affects
disciplines like finance, biology, ecology, medigjrsociology.

In the industrial activity (e.g. for aerospaoe naval projects, nuclear reactors,
combustion problems, production and distribution edéctricity, traffic control, etc.) the
mathematical modeling, involving first the analyaisd the numerical simulation and followed
by experimental tests, has become a common proeedecessary for innovation, and also
motivated by economic factors. It is clear that @llthis is made possible by the enormous

computational power now available.

Self Test Exercises.1

l. For the scenarios presented in Problems 1—3,ntdfy a problem worth studying and
list the variables that affect the behavior you hevdentified. Which variables would be
neglected completely? Which might be considerecdasstants initially? Can you identify any

sub models you would want to study in detail? ldéntany data you would want collected.

1. A botanist is interested in studying the @sapf leaves and the forces that mold
them. She clips some leaves from the bottom of itevatak tree and finds the leaves to
he rather broad, not very deeply indented. Whergsles to the top of the tree, she finds
very deeply indented leaves with hardly any brogzhase of blade.

2. Animals of different size work differentlyntall ones have squeaky voices, their

hearts beat faster, and they breathe more oftenlénger ones. On the other hand, the
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skeleton of a larger animal is more robustly bihi#in that of a small animal. The ratio of
the diameter to the length in a larger animal eatgr than it is in a smaller one. So there
are regular distortions in the proportions of arigvas the size increases from small to
large.

3. A physicist is interested in studying pro=of light. He wants to understand the
path of a ray of light as it travels through theiaio a smooth lake, particularly at the

interface of the two different media.

I. ANSWER THE FOLLOWING QUESTIONS.

1. Should a couple buy or rent a home? As tls¢ @ba mortgage rises, intuitively, it
would seem that there is a point where it no lorggrs to buy a house. What variables

determine the total cost of a mortgage?

2. Consider the operation of a medical officecétds have to be kept on individual
patients, and accounting procedures are a daiky Bisould the office buy or lease a
small computer system? Suggest objectives that tnighconsidered. What variables
would you consider? How would you relate the vdda® What data would you like to
have to determine the relationships between théahlas you select? Why might

solutions to this problem differ from office to mf&?

3. Determine whether the following data support@pprtionality argument for

y o 7172

y[35 56 7 8
2[3 6 9 12 15
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CHAPTER 2

DIMENSIONAL ANALYSIS

Objectives:-
At the end of this chapter you will be able to:

» Define dimensional analysis

» Express dimensions of different physical quantiisproducts of dimensions in MLT
system

» Understand the concept dimensional compatibility

Describe the process of dimensional analysis

» Apply Buckingham’s theorem to produce all possitilmensionally homogeneous
equations among the variables under consideration

» Understand the basic procedures in applying dino@asianalysis in model building
process

» Use dimensional analysis in model building process

Y

2.1 Introduction:

Activity 2.1:-

+» Define the term dimension’.
+ When do you say “guantity is dimensionless.

+ Definedimensional analysis
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In the process of constructing a mathematical madelhave seen that the variables influencing
the behaviour must be identified and classified. West then determine appropriate
relationships among those variables retained fosickeration. In the case of a single dependent
variable this procedure gives rise to some unknfwmntion: . v = f(x,,x,, .., x, ) where the

Xj measure the various factors influencing the phesmmm under investigation. In some
situations the discovery of the nature of the fiomct for the chosen factors comes about by
making some reasonable assumption based on a laatwk or previous experience and
construction of a mathematical model. We were &blese this methodology in constructing our
model on vehicular stopping distance (see sectidn On the other hand, especially for those
models designed to predict some physical phenomemmay find it difficult or impossible to
construct a solvable or tractable explicative mdxdslause of the inherent complexity of the
problem. In certain instances we might conductrees@f experiments to determine how the
dependent variablgis related tosarious values of the independent variable(s)ubhases we
usually prepare a figure or table and apply an@mute curve-fitting or interpolation method
that can be used to predict the value of y foradlé ranges of the independent variable(s).

Dimensional analysis is a method for helping determe how the selected variables are
related and for reducing significantly the amount & experimental data that must be

collected It is based on the premise that physical quasthiave dimensions and that physical
laws are not altered by changing the units meagulimensions. Thus, the phenomenon under
investigation can be described by a dimensionatyect equation among the variables. A
dimensional analysis provides qualitative inforrmatabout the model. It is especially important
when it is necessary to conduct experiments imtbédeling process because the method is
helpful in testing the validity of including or negting a particular factor, in reducing the
number of experiments to be conducted to make gteds, and in improving the usefulness of
the results by providing alternatives for the pastars employed to present them. Dimensional
analysis has proven useful in physics and engingdéor many years and now even plays a role
in the study of the life sciences, economics, gretations research. Let's consider an example
illustrating how dimensional analysis can be usethe modeling process to increase the
efficiency of an experimental design.

Consider the situation of a simple pendulum as esiggl in Figure 2.1. Let r denote the length
of the pendulum, m its mass, @tthe initial angle of displacement from the vertical. One
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characteristic that is vital in understanding tieddviour of the pendulum is the period, which is
the time required for the pendulum bob to swing@tigh one complete cycle and return to its
original position (as at the beginning of the cydMe represent the period of the pendulum by

//ﬁ’/_l//////

I
il
!
i
i
}
i
|
{
I
]
|
H
]
x4
the dependent variabte

Figure 2.1 A simple pendulum
Problem identification For a given pendulum system determine its speed.

AssumptionsFirst, we list the factors that influence the pdriSome of these factors are the
length r, the mass m, the initial angle of disptaeatf ,the acceleration due to gravity g, and
frictional forces such as the friction at the hiragel the drag on the pendulum. Assume initially
that the hinge is frictionless, that the mass effilandulum is concentrated at one end of the
pendulum, and that the drag force is negligibldie@@dassumptions about the frictional forces will
be examined in section 2.3. Thus the problem getermine or approximate the function

t= f(r.m,8,g) and test its worthiness as a predictor.

Experimental Determination of the Model Becauseviy is essentially constant under the
assumptions, the period t is a function of the wagables length r, mass m, and initial angle of

displacemen® .At this point we could systematically conduct esments to determine how t

varies with these three variables. We could warhtmose enough values of the independent
variables to feel confident in predicting the pdrtmver that range. How many experiments will
be necessary?
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For the sake of illustration, consider a functidrooe independent variable y=f(x) and assume
that four points been deemed necessary to predicélya suitable domain for x. The situation is
depicted in Figure 2.2.

Figure 2.2 Four points have been deemed necessprgdict y for this function of one variable
X

An appropriate curve-fitting or interpolation methcould be used to predict y within the
domain for x.

Next consider what happens when a second indepemdesriable affects the situation under
investigation. We then have a functien= f(x, z).

For each data value of x in figure2.2, experimemist be conducted to obtain y for four values
of z. Thus, 16(i.e.2 experiments are required. These observationtlastated in figure2.3.
Likewise a function of three variables requiresi @) experiments. In general’ éxperiments
are required to predict y when n is the numbergéiaments of the function, assuming four points
for the domain of each argument. Thus, a procethatreduces the number arguments of the
function f will dramatically reduce the total nunmtzeé required experiments. Dimensional
analysis is one such procedure.
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Figure 2.3 Sixteen points are necessary to predict y forftmstion of the two variables x and z.

The power of dimensional analysis can also be apdezsl when we examine the interpolation
curves that would be determined after collectirgydhta represented in figure 2.2and 2.3. Let's
assume it is decided to pass a cubic polynomialiin the four points shown figure 2.2. That
is, the four points are used to determine the fomstants ¢C, in the interpolating curve:

v=0x +Cxt+ 0+ C

Now consider interpolating from figure 2.3. If farfixed value of x, say xsxwe decide to
connect our points using a cubic polynomial inhe équation of the interpolating surface is

v=Dyx*+ D.x?+ Dyx+D,+ (Dex®+D,x*+Dox+ D)z
T (szg T Dm:f: +Djx+ 91:3'2: T (Dizxg T Diéx: +Dx+ ijzg
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Note from the equation that there are 16 constabtsDs,...,Die--to determine rather than 4 as
in the two dimensional case. This procedure adhistiates the dramatic reduction in effort
required when we reduce the number of argumerttsediunction we will finally investigate.

At this point we make the important observatiort tha experimental effort required depends
more heavily on the number of arguments of thetfando be investigated than on the true
number of independent variables the modeler orilyisalected. For example, consider a
function of two arguments, say y=f(x,z).The diseossoncerning the number of experiments
necessary would not be altered if x were someqaati combination of several variables. That
is, X could be uv/w, where u, v, and w are thealaas originally selected in the model.

Consider now the following preview of dimensionabbysis, which describes how it reduces our
experimental effort. Beginning with a function ofariables (hence, n arguments), the number
of arguments is reduced (ordinarily by three) bsnbming the original variables into products.
These resulting (n-3) products are caliethensionless productf the original variables. After
applying dimensional analysis, we still need todwmt experiments to make our predictions, but
the amount of experimental effort that is requinelll have been reduced exponentially.

In chapter e discussed the trade-offs of considering addilieariables for increased
precision versus neglecting variables for simgdificn. In constructing models based on
experimental data, the preceding discussion sugtfest the cost of each additional variable is
an exponential increase in the number of experiaténals that must be conducted. In the next
two sections we present the main ideas underlyiaglimensional analysis process. You may
find that some of these ideas are slightly morgadilt than previous ones we have investigated,
but the methodology is powerful when modeling pbgsbehaviour.
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2.2 Dimensions as Products

Activity 2.2:-

+¢ Describe basic physical quantities.

+ What dimensions are associated with the physicahtijies mass, length, and time?

+«+ Can you assign dimensions of other physical quastih terms of those of mass, length,
and time?

+» Determine the dimensions of physical quantitiesdpwelocity, density, momentum,
power, and energy as products of dimensions of nersgth, and time.

+ How can you determine dimensionless products artfemgariables?

The study of physics is based on abstract consejets as mass, length, time, velocity,
acceleration, force, energy, work, and pressuresalch such concept there is assigned a unit of
measurement. A physical law such as F=ma is tma®jged that the units of measurement are
consistent. Thus, if mass is measured in kilograntsacceleration in meters per second
squared, then the force must be in newtons. Theite of measurement belong to the MKS
(meter-kilogram-second) mass system. It would bensistent with the equation F=ma to
measure mass in slugs, acceleration in feet pendesquared, and force in newtons. In this
illustration, force must be measured in poundsngithe American Engineering System of
measurement. There are other systems of measurdmeatl are prescribed by international
standards so as to be consistent with the lawbysigs.

The three primary physical quantities we considehis chapter are mass, length, and time. We
associate with these quantities the dimensions,Mnt T respectively. The dimensions are
symbols that reveal how the numerical value of @antjty changes when the units of
measurement change in certain ways. The dimensiosther quantities follow from definitions
or from physical laws and are expressed in terni,df, and T. For example, velocity v is
defined as the ratio of distance s (dimension &yefled to time t (dimension T) of travel--that

is, v=st', so the dimension of velocity is C'T Similarly, because area is fundamentally a produc
of two lengths, its dimension i€ LThese dimension expressions hold true regardfetse
particular system of measurement, and they shavweXample, that velocity may be expressed in
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meters per second, feet per second, miles per aodrso forth. Likewise area can be measured
in terms of square meters, square feet, square,naifel so on.

There are still other entities in physics thatrame complex in the sense that they are not
usually defined directly in terms of mass, lengthd time alone: instead, their definitions
include other quantities, such as velocity. We eiss® dimensions with these more complex
guantities in accordance with algebraic operatiousived in the definitions. For example,
because momentum is the product of mass with wgldts dimension is M(LT) or
simplyMLT™.

The basic definition of a quantity may also invotimensionless constants; these are ignored in
finding dimensions. Thus the dimension of kinetiergy, which is one-half (a dimensionless
constant) the product of mass with velocity squaieM(LT™)? or simply ML?T2. As you will

see in example 2, some constants (dimensionalauais$t such as gravity g, do have an
associated dimension, and these must be consiolegedimensional analysis.

These examples illustrate the following importamaepts regarding dimensions of physical
guantities.

1. We have based the concept of dimension on thrgggat quantities: mass m, length
s, and time t. These quantities are measured ie sqpropriate system of units whose
choice does not affect the assignment of dimensidiss underlying system must be
linear. A dimensional analysis will not work if tiseale is logarithmic, for example.)

2. There are other physical quantities, such asardavelocity that are defined as simple
products involving only mass, length, or time. Hereuse the terrmproduct to indicate
any quotient because we may indicate division lgatiee exponents.

3.There still other, more complex, physical entit®s;h as momentum and kinetic
energy, whose definitions involve quantities ottian mass, length, and time. Because
the simpler quantities from (1) and (2) are produttiese more complex quantities can
also be expressed as products involving mass,Heagt time by algebraic
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simplification. We use the term product to refeatty physical quantity from item (1),
(2), or (3); a product from (1) is trivial becausbas only one factor.

4. To each product, there is assigned a dimensi@t-tghan expression of the form
M™LPTA (2.1)

where n, p, and q are real numbersiiay be positive, negative, or zero.

When a basic dimension is missing from a prodihet,corresponding exponent is understood
to be zero. Thus, the dimensiorfIMT ™ may also appear asW*. When n, and q are all zero in
an expression of the form (2.1), so that the dinoenseduces to

meLere (2.2)

the quantity, or product, is said to thenensionless

Special care must be taken in forming sums of prtedecause just as we cannot add apples and
oranges, in an equation we cannot add producth#vat unlike dimensions. For example, if F
denotes force, m mass, and v velocity, we know idiately that the equatiofi = mv + v~

cannot be correct because mv has dimension Mwhere as ¥has dimension T2 These
dimensions are unlike; hence, the products mv amémmnot be added. An equation such as this-
-that is, one that contains among its terms twalpcts having unlike dimensions--is said to be
dimensionally incompatibld&=quations that involve only sums of products hgthe same
dimensionaredimensionally compatible

The concept of dimensional compatibility is relatecnothermpeortant concept called

dimensional homogeneity. In general, an equatiahithtrue regardless of the system of units in
which the variables are measured is said to bersirorally homogeneous. For example,

pr -] - - . . - - - - -
t= !'—;' giving the time a body falls a distance s undeawiy (neglecting air resistance) is
N

—

dimensionally homogeneous (true in all systemsgreas the equation = ﬁlj is not
dimensionally homogeneous (because it dependgartiaular system). In particular, if an
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equation involves only sums of dimensionless prtgli(ie., it is a dimensionless equation), then
the equation is dimensionally homogeneous. Becdugsproducts are dimensionless, the factors
used for conversion from one system of units taferowould simply cancel.

The application of dimensional analysis to a readrld problem is based on the assumption that
the solution to the problem is given by a dimenallyrthomogeneous equation that the problem
is given by a dimensionally homogeneous equatidarims of the appropriate variables. Thus,
the task is to determine the form of the desirathéign by finding an appropriate dimensionless
equation and then solving for the dependent vagialid accomplish this task, we must decide
which variables enter into the physical problememdvestigation and determine all the
dimensionless products among them. In generalk tlmary be infinitely many such products, so
they will have to be described rather than actuatijten out. Certain subsets of these
dimensionless products are then used to constimetgionally homogeneous equations. In
section 2.2 we investigate how the dimensionlesdymts are used to find all dimensionally
homogeneous equations. The following example Haies how the dimensionless products may
be found.

Example 1 A simple Pendulum Revised

Consider again the simple pendulum discussed imtheduction. Analysing the dimensions of
the variables for the pendulum problem, we have

Variable m g t r g

Dimension | M LT? T L MOLOTO

Next we find all the dimensionless products agithe variables. Any product of these
variables must be of the form

me g¥teregs 2.3).

and hence must have dimension

(M)* (LT3 (T)* (L) * (M°L°T®)*
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Therefore, a product of the form (2.3) is dimengggs if and only if

Mepbrépe—ib = pojore (2.4)

Equating the exponents on both sides of this lgsaion leads to the system of linear equations

ok +0e =0
b +d+0e =10 (2.5)
—2b+c +0e =0

Solution of the system (2.5) gives a=0, c=2b, dwdbere b is arbitrary. Thus, there are

infinitely many solutions. Here are some generkdgdior selecting arbitrary variables: (1)

choose the dependent variable so it will appear onte, (2) select any variable that expedites
the solution of the other equations (i.e., a vdeighat appears in all equations), and (3) choose a
variable that always has a zero coefficient, ifgiole. Notice that the exponent e does not really
appear in (2.4) (because it has a zero coeffiore@ach equation) so that it is also arbitrary. One
dimensionless product is obtained by setting b=Desl, yielding a=c=d=0. A second,
independent dimensionless product is obtained wkdnand e=0, yielding a=0, c=2, and d=-1.
These solutions give the dimensionless products

m, =m" g% el =4

In section 2.2, we will learn a methodology fdatag these products to carry the modeling
process to completion. For now, we will develoglationship in an intuitive manner.

Assuming t=f(r, m, ¢g), to determine more about the function f, we obsehat if the units in

which we measure mass are made smaller by sanog(gagt, 10), then the measure of the
period t will not change because it is measuraghits (T) of time. Because m is the only factor
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whose dimension contains M, it cannot appear imibdel. Similarly, if the scale of the units

(L) for measuring length is altered, it cannot dpathe measure of the period. For this to
happen, the factors r and g must appear in the lnasdég, g/r, or, more generally, (drThis
ensures that any linear change in the way lengtiesasured will be cancelled. Finally, if we
make the units (T) that measure time smaller actof of 10, for example, the measure of the
period will directly increase by the same factor TBus, to have the dimension of T on the right

side of the equation t=f(r,m#j), g and r must appear 3 /g because T appears to the power -

2 in the dimension of g. Note that none of the pdétg conditions places any restrictions on the
angleé . Thus, the equation of the period should be effthm

[
t= N!;”(E)

where the function h must be determined or appratechby experimentation.

We note two things in this analysis that are char&tic of a dimensional analysis. First, in the
MLT system, three conditions are placed on the medewe should generally expect to reduce
the number of arguments of the function presettieaend of a dimensional analysis (in this

casef) are dimensionless products.

In the problem of the undamped pendulum we assuhatdriction and drag were negligible.
Before proceeding with experiments (which mightbstly), we would like to know if that
assumption is reasonable. Consider the model autao far:

I
L= \fl; h(€)

Keeping# constant while allowing r to vary, form the ratio

Hence the model predicts that t will vary-3s for constan®. Thus, if plot t versus r with fixed

& for some observations, we would expect to gétaaght line (figure 2.4)If we do not obtain a

reasonable straight line, then we need to re-exaihi& assumptions. Note that our judgment
here is qualitative. The final measure of the adegwf any model is always how will it predicts
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or explains the phenomenon under investigation elbeless, this initial test is useful for
eliminating obviously bad assumptions and for cimgpamong competing sets of assumptions.

(0 = Constant)

Period
®

Figure 2.4 Testing the assumptions of the simplelpim model by plotting the period t versus
the square root of the length r for constant disgiaent

Dimensional analysis has helped construct a medi@l m, g#) f or the undamped pendulum as

—
I

= [-h(#&). If we are interested in predicting the behaviolthe pendulum, we could isolate

N8

the effect of h by holding r constant and var#nghis provides the ratio
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Hence a plot of t versusfor several observations would reveal the natfite @his plot is

illustrated in figure 2.5. We may never discover ttue function h relating the variables. In such
cases, an important model might be constructed themexperimental data, as discussed in
Chapter 4. When we are interested in using our htodaedict t, based on experimental results,

it is convenient to use the equatiopg/+ = h(#) and to plotr\,.-'ﬁ versusf , as in figure 2.6.
Then, for a given value @& , we would determing g /» , multiply it by, /r/g  for a specific
r, and finally determine t.

}
{r = Constant) o
]
*
)
* 9 o '
L}
> 9 ¢ ] ¢
>0

Figure 2.5Determining the unknown
Function h Figure 2.6 presenting the

results for the

Simple pendulum
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Example 2 Wind Force on a Van

Suppose you are driving a van down a highway witstyywinds. How does the speed of your
vehicle affect the wind force you are experiencing?

The force F of the wind on the van is certainlyeaféd by the speed v of the van and the surface
area A of the van directly exposed to the wind'sadion. Thus, we might hypothesize that the
force is proportional to some power of the spese$i some power of the surface area; that is,

F = kv©A® (2.6)

for some (dimensionless) constant k. Analyzingdimeensions of the variables gives

variable F k \ A

Dimension MLT MOLOTO LT? L?

Hence, dimensionally, Equation (2.6) becomes

MLT™? = (ML Ty (LT~ 1o (L)t

This last equation cannot be correct becauseithengion M for mass does not enter into the
right-hand side with nonzero exponent.

So consider again equation (2.6). What is missinguir assumption concerning the wind force?
Wouldn't the strength of the wind be affected kydiénsity?

After some reflection we would probably agree thexsity does have an effect. If we include
the densityp as a factor, then our refined model becomes
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F =kvoA%p° (2.7)

Because density is mass per unit volume, the diimems density is ML®. Therefore,
dimensionally, equation (2.7) becomes

MLT ™ = (MOLT Oy (LT 9= (L)P (ML™¥)®

Equating the exponents on both sides of this laguation leads to the system of linear
equations:

c =1
a+2b —3c =1 (2.8)
—a =—-2

Solution of the system (2.8) gives a=2, b=1, emtl. When substituted into equation (2.7)
these values give the model

F=kvi4p

At this point we make an important observation. Whavas assumed that F=3aP, the
constant was assumed to be dimensionless. Subdbgoen analysis revealed that for a

particular medium (S® is constant)

F o Av?

giving F = k,Av~ . However,k does have a dimension associated with it andlisdca
dimensional constant In particular, the dimension of ks
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Dimensional constants contain important informaaod must be considered when a
dimensional analysis. We consider dimensional @mtstagain in section 2.3 when we

investigate a damped pendulum. If we assume thgitgtzns constant, our model shows that the

force of the wind is proportional to the squareh®f speed of the van times its surface area
directly exposed to the wind. We can test the mbgedollecting data and plotting the wind

force F versus3A to determine if the graph approximates a straligletthrough the origin. This
example illustrates one of the ways dimensionalyaigacan be used to test our assumptions and

check whether we have a faulty list of variablemniifying the problem. Table 2.1 gives a

summary of the dimensions of some common physitéies.

Table 2.1 Dimensions of physical entities in 6EMLT system

Mass M Momentum MLT*
Length L Work ML 2T 2
Time T Density ML=
Velocity LT Viscosity ML T T
Acceleration LT Pressure ML T2
Specific weight ML?T? | Surface tension MT 2
Force MLT Power MLZT3
Frequency T Rotational inertia ML 2
Angular velocity T Torque MLZT2
Angular acceleration T? Entropy ML*T™*
Angular momentum MLT? Heat ML 2T 2
Energy MLZT?

57




Problems 2.1

1. Determine whether the equation
s =5, + vt —0.5g#

Is dimensionally compatible, if s is the positiomeasured vertically from a fixed reference
point) of a body at time ty3s the initial velocity, and g is the accelerat@aused by gravity.

2. The various constants of physics often have physimensions (dimensional constants)
because their values depend on the system in wimgghare expressed. For example, Newton's
law of gravitation asserts that the attractive édoetween two bodies is proportional to the
product of their masses divided by the square ®@filiatance between them, or symbolically,

where G is the gravitational constant. Find theetision of G so that Newton's law is
dimensionally Acompatible.

3. Certain stars, whose light and radial velocitiedargo periodic vibrations, are thought to be
pulsating. It is hypothesized that the period puisation depends on the star's radius r, its mass
m, and the gravitational constant G, (see probldor he dimension of G.) Express t as a period
of m, r, and G, so the equation

t=mrPGe
Is dimensionally compatible.

4. In checking the dimensions of an equation, yowkhnote that derivatives also p

iE 4 G5 8 \ gg
— = |mr- (—)mgrsingd | —
g (r:':"j g gt
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for the time rate of total energy E in a pendulystem with damping force is dimensionally
compatible.

5. For a body moving along a straight-line pathh#& mass of the body is changing over time,
then an equation governing its motion is given by

dw dm
m—=F+u—

dt dt

where m is the mass of the body, v is the velazitthe body, F is the total force acting on the
body, dm is the mass joining or leaving the bodthmtime interval dt, and u is the velocity of
dm at the moment it joins or leaves the body (regatib an observer stationed on the body).
Show that the preceding equation is dimensionaatible.

6. In humans, the hydrostatic pressure of blood dmurtis to the total blood pressure. The
hydrostatic pressure P is a product of blood dgniséight h of the blood column between the
heart and some lower point in the body, and grayitpetermine

P = .:{JD chbgc
where k is a dimensionless constant.

7. Assume the force F opposing the fall of a raipdfoough air is a product of viscosity
velocity v, and the diameter r of the drop. Assuhs density is neglected. Find

F=ku v°r°

where k is a dimensionless constant.
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2.3 The process of the Dimensional Analysis

Activity 2.3:-

°

What are dimensionally homogeneous equations?
« How can you use dimensionless products to determiir@ensionally

homogeneous equations?

*
0.0

When is an equation dimensionally homogeneous?

*
0.0

What are the basic steps in dimensional analysisgss?

In the preceding section we learned how to deternaith dimensionless products among the
variables selected in the problem under investigatNow we investigate how to use the
dimensionless products to find all possible dimemaily homogeneous equations among the
variables. The key result is Buckingham's theorgrhich summarizes the entire theory of

dimensional analysis.

Example 1 in the preceding section shows that megg many dimensionless products may be
formed from the variables of a given system. Irt thample we determined every dimensionless

product to be of the form

gbr:b?_bﬂﬁ qz
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where b and e are arbitrary real numbers. Eaclobtiese products corresponds to a solution of

the homogenous system of linear algebraic equagiven by Equation (2.5). The two products

gt’
m, =08 and m,="—

obtained when b=0, e=1, and b=1, e=0, respectialy,special in the sense that any of the

dimensionless products (2.9) can be given as auptaf some power @f, times some power

of m, . Thus, forinstance,

3

-3 1/2 1/2_3
gttt r 31 = n " nd

This observation follows from the fact that b=0,1eand b=1, e=0 represent, in some sense,
independent solutions of the system (8.5). Lefdar these ideas further.

Consider the following system of m linear algebrgiations in the n unknowng, X, . . ., %:
Ayp3%y T apxy, T Fagx, = b
: : : (2.10)
B ™y T lpa Xy T e Tl Xy, = bw
The numbers jaand b denote real numbers for each i=1, 2, . . ., mjaid 2, . . ., n. The

numbers pare called theoefficients of the system and the &re referred to as thenstants
The subscript i in the symboj aefers to the"l equation of the system (2.10) and the subscript
refers to the"] unknown x to which g belongs. Thus, the subscripts serve to locatelta.
customary to read;@as "a, one, three" and,aas "a, four, two," for example, rather than "a,
thirteen" and "a, fourty-two".

A solution to the system (8.10) is a sequence ofbers g, S, . . ., § for which x=s, =5, . . .,
Xn=% solves each equation in the system.#lb= . . . ==0, the system (8.10) is said to be
homogeneous The solution &= . . .=g =0 always solves the homogeneous system and is
called thetrivial solution. For a homogeneous system there are two solutssilglities: Either

the trivial solution is the only solution or theaee infinitely many solutions.

Whenever § 9, . . ., ¢ and g, S5,. . ., § are solutions to the homogeneous system, the
sequences;$si, $+s», . . ., §t+Sp, and cs, €3, . . ., Cg are also solutions for any constant c.
These solutions are called them andscalar multiple of the original solutions, respectively. If

S and S' refer to the original solutions,
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then we use the notations S+S' to refer to their and cS to refer to a scalar multiple of the first

solution. If §, S, . . ., R is a collection of k solutions to the homogenesystem, then the
solution

ES1tCSt . . L Ha&
is called dinear combination of the k solutions, whereg,cc, . . . ,§ are arbitrary real numbers.

It is an easy exercise to show that any linear ¢oation of solutions to the homogeneous
system is still another solution to the system.

A set of solutions to a homogeneous system istedigindependentif no solution in the set is
a linear combination of the remaining solutiongha set. A set of solutions completeif it is
independent and every solution is expressiblelasar combination of solutions in the set. For
a specific homogeneous system, we seek some camgdttof solutions because all other
solutions are produced from them using linear coaions. For example, the two solutions
corresponding to the two choices b=0, e=1 and b=0,form a complete set of solutions to the
homogeneous system (2.5).

It is not our intent to present the theory of linalgebraic equations. Such a study is appropriate
for a course in linear algebra. We do point out thare is an elementary algorithm known as
Gaussian elimination for producing a complete desalutions to a given system of linear
equations. Moreover, Gaussian elimination is rgaidilplemented on computers and handheld
programmable calculators. The system of equatiomswil encounter in this book are simple
enough to be solved by the elimination method ledin intermediate algebra.

How does our discussion relate to dimensional am?yOur basic goal thus far has been to find
all possible dimensionless products among the biasathat influence the physical phenomenon
under investigation. We developed a homogeneousmysf linear algebraic equations to help
us determine these dimensionless products. Thismmysf equations usually has infinitely many
solutions. Each solution product among the vargblé we sum two solutions, we produce
another solution that yields the same dimensionf@ssluct as does multiplication of the
dimensionless products corresponding to the origima solutions. For example, the sum of the
solutions corresponding to b=0, e=1 and b=1, e=0 dguation (2.5) yields the solution
corresponding to b=1, e=1 with the correspondingetiisionless product from equation (8.9)
given by

gt’r78 = m,m,

The reason for this result is that the system ofaigns is the exponents in the dimensionless
products, and addition of exponents algebraicatlyresponds to multiplication of numbers
having the same basd"%=x"x". Moreover, multiplication of a solution by a coest produces

a solution that yields the same dimensionless ptods does raising the product corresponding
to the original solution to the power of the constaFor example, -1 times the solution
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corresponding to b=1, e=0 yields the solution gpoading to b=-1, e=0 with the corresponding
dimensionless product

g—‘l 72 = IT:-_i
The reason for this last result is that algebraidtipiication of an exponent by a constant
corresponds to raising a power to a power=gx™".

In summary, addition of solutions to the homogemse@ystem of equations results in
multiplication of their corresponding dimensionlggsducts and multiplication of a solution by
a constant results in raising the correspondingyxcbto the power given by that constant. Thus,
if S; and $ are two solutions corresponding to the dimenssmi@roductst,and m,,

respectively, then the linear combination#$5, corresponds to the dimensionless product
i’

It follows from our preceding discussion that a pbete set of solutions to the homogeneous
system of equations produces all possible solutidheough linear combination.The
dimensionless products corresponding to a competeof solutions are therefore called a
complete set of dimensionless products. All dimemigiss products can be obtained by forming
powers and products of the members of a compléte se

Next, let's investigate how these dimensionlesslymts can be used to produce all possible
dimensionally homogeneous equations among the blasia In section 2.1 we defined an

equation to be dimensionally homogeneous if it iesi&rue regardless of the system of units in
which the variables are measured. The fundameesaltrin dimensional analysis that provides
for the construction of all dimensionally homogem&oequations from complete sets of
dimensionless products is the following theorem.

Theorem 1

Buckingham's Theorem

An equation is dimensionally homogeneous if ang d@nit can be put into the form

fry s e m,) = 0 (2.11)

where f is some function of n arguments &ad. 7, ..., 7.}

is a complete set of dimensionless products.
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Let's apply Buckingham's theorem to the simpledp&mm discussed in the preceding sections.
The two dimensionless products

gt
m, =8 and m,="—

form a complete set for the pendulum problem.sThaccording to Buckingham's theorem,
there is a function f such that

Assuming we can solve this equation-"ré} as a function of , it follows that

-
t= [-h(f) (2.12)
N

where h is some function of the single vari#blélotice that this last result agrees with our
intuitive formulation for the simple pendulum pressl in section2.1. Observe that Equation
(2.12) represents only a general form for the i@hghip among the variables m, g, t, r, @d
However, it can be concluded from this expressiat t does not depend on the mass m and is
related to ¥? and g2 by some function of the initial angle of displacert#e Knowing this

much, we can determine the nature of the functioexperimentally or approximate it, as
discussed in section 2.1.

Consider equation (2.11) in Buckingham's theoreon.the case in which a complete set consists
of a single dimensionless product, for examglgthe equation reduces to the form

flmy)=0

In this case we assume that the function f hasrealeroot at k (to assume otherwise has little
physical meaning). Hence, the solutioppn= k is obtained.

Using Buckingham's theorem, let's reconsider tlempte from section 2.1 of the wind force on
a van driving down a highway. Because the fouraldes F, v, A, and were selected and all
three equations in (2.8) are independent, a comglet of dimensionless products consists of a
single

F

Ty = —
1 v Aup

Application of Buckingham's theorem gives

flmy)=0
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which implies from the preceding discussion that& k , or
F=kv*Ap

where k is a dimensionless constant as before., aen a complete set consists odiagle
dimensionless productas is generally the case when we begin with fearmables, the
application of Buckingham's theorem vyields the wekirelationship up to a&onstant of
proportionality. Of course, the predicted proportionality must tested to determine the
adequacy of our list of variables. If the list dgg®ve to be adequate, then the constant of
proportionality can be determined by experimentgtithereby completely defining the
relationship.

For the case n=2, Equation (2.11) in Buckinghah®sttem takes the form
flmym,) =0 (2.13)

If we choose the products in the complete{zgtz,} so that the dependent variable appears in
only one of them, for exampl&,, we can proceed under the assumption that equib8) can
be solved for that chosen product in terms of the remaining produgi. Such a solution takes
the form

Ty = H(my)

and then this latter equation can be solved e dependent variable. Note that when a
complete set consists of more than one dimensismezduct, the application of Buckingham's
theorem determines the desired relationship upntaraitrary function. After Verifying the
adequacy of the list variables, we may be luckyughoto recognize the underlying functional
relationship. However, in general we can expeatdostruct an empirical model, although the
task has been eased considerably.

For the general case of n dimensionless produdiseicomplete set for Buckingham's theorem,
we again choose the products in the completdmsgtr,, ..., 7, } so that the dependent variable

appears in only one of them, say for definiteness. Assuming we can solve equatibhl() for
that productr,, in terms of the remaining ones, we have the form

Ty = H(Ty, g0 e, Ty q)

We then solve this last equation for the dependanéable.
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Summary of Dimensional Analysis Methodology

STEP 1Decide which variables enter the problem undeestigation.

STEP 2 Determine a complete set of dimensionless prod{zis=,,..,m,} among the

variables. Make sure the dependent variable of gteblem appears in only one of the
dimensionless products.

STEP 3 Check to ensure that the products found in tte®ipus step are dimensionless and
independent. Otherwise you have an algebra error.

STEP 4 Apply Buckingham's theorem to produce all possitimensionally homogeneous
equations among the variables. This procedure s/@hdequation of the form (2.11).

STEP 5Solve the equation in Step 4 for the dependendlvia.

STEP 6Test to ensure that the assumptions made in Step feasonable. Otherwise the list of
variables is faulty.

STEP 7Conduct the necessary experiments and preserggbks in a useful format.

Let's illustrate the first five steps of this prdoee.
Example 1 Terminal Velocity of a Raindrop

Consider the problem of determining the terminaloeity v of a raindrop falling from a
motionless cloud. We examined this problem fromesy\simplistic point of view in chapter 2,
but let's take another look using dimensional aisly

What are the variables influencing the behaviouhefraindrop? Certainly the terminal velocity
will depend on the size of the raindrop given kay,sts radius r. The densityof the air and the

viscosity i of the air will also affect the behaviour. (Visg@ganeasures resistance to motion---a

sort of internal molecular friction. In gases thésistance is caused by collisions between fast-
moving molecules.) The acceleration due to gragitg another variable to consider. Although

the surface tension of the raindrop is a factot ttwes influence the behaviour of the fall, we

will ignore this factor. If necessary, surface fenscan be taken into account in a later, refined
model. These considerations give the following dgal#lating the selected variables to their

dimensions:
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Variable v r g e i

Dimension | LT* L LT? ML 3 ML T?

Next we find all the dimensionless products amthregvariables. Any such product must be of
the form

‘Ec?bgcpdﬂs (214)

and hence must have dimension

(LT (LT )5 (ML (MLTIT1)®

Therefore, a product of the form (2.14) is dimenkdss if and only if the following system of
equations in the exponents is satisfied:

d+e =10
a+b+c —3d—e =0 13)
—ia— 2c —e =10

Solution of the system (2.15) gives b=(3/2)d-(1/2}(1/2)d-(1/2)a, and e=-d, where a and d are
arbitrary. One dimensionless product is obtained by setting a=1, d=0; another, indepahd

dimensionless produat,is obtained when a=0, d=1. These solutions give

aamn—1/2

— -1/2 — 3/2 102, —1
Ty =T g and m, =7v'"g"'"pu

Next, we check the results to ensure that the mtsdare indeed dimensionless:

LT B2yt ‘I:.‘r_r.r__:'-

s = MOL°T® and LU ! = pmopoTe

ML™=T™=

Thus, according to Buckingham's theorem, therefismetion f such that

f[ib’-’r_i-"fg—i-’ij-"z ,i o \J — o
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Assuming we can solve this last equationsfort’2g=1/2 as a function of the second product
m, , it follows that

where h is some function of the single product

The preceding example illustrates a characterfgtiore of dimensional analysis. Normally the
modeler studying a given physical system has antivi idea of variables involved and has a
working knowledge of general principles and lawscfsas Newton’s second law) but lacks the
precise laws governing the interaction of the \deéa. Of course, the modeler can always
experiment with each independent variable sepgratelding the other constant and the effect
on the system. Often, however, the efficiency efekperimental work can be improved through
an application of dimensional analysis. Although did not illustrate steps 6 and 7 of the
dimensional analysis process for the preceding pigrthese steps will be illustrated in section
2.3.

We now make some observations concerning the diordsanalysis process. Suppose n

variables have been identified in the physical mwbunder investigation. When determining a

complete set of dimensionless products, we foripstem of three linear algebraic equations by
equating the exponents for M, L, and T to zero.tTsiawe obtain a system of three equations in
n unknowns (the exponents). If the three equattmasndependent, we can solve the system for
three of the unknowns in terms of the remainingurBnowns (declared to be arbitrary). In this

case, we find n-3 independent dimensionless predihett make up the complete set seek. For
instance, in the preceding example, there are diaowns, a, b, ¢, d, e, and we determined
three of them (b, ¢, and e) in terms of the renmgr{b-3) two arbitrary ones (a and d). Thus, we
obtained a complete set of two dimensionless prtsdhen choosing the n-3 dimensionless
products, we must be sure that the dependent Vagipears in only one of them. We can then
solve equation (2.11) guaranteed by Buckinghameésrdm for the dependent variable, at least
under suitable assumption on the function f in #gation. (The full story telling when such a

solution is possible is the content of an importeegult in advanced calculus known as the
implicit function theorem.)

We acknowledge that we have been rather sketcbyipresentation for solving the system of
linear algebraic equations that results in the @seaf determining all dimensionless products.
Recall how to solve simple linear systems by thahow of elimination of variables. We
conclude this section with another example.
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Example 2 Automobile Gas Mileage Revisited.

Consider again the automobile gasoline mileage Ipmolpresented in Chapter 1. One of our
submodels in that problem was for the force of ptsipn k. The variables we identified that
affect the propulsion force are,@he amount of fuel burned per unit time, the amdg of
energy contained in each gallon of gasoline, ared dpeed v. Let’'s perform a dimensional
analysis. The following table relates the varialitetheir dimensions:

Variable B C K v

Dimension MLT? L3T? MLIT? LT?

Thus, the product
FoCP K w® (2.16)
Must have the dimension

(MLT ) (L3712 (ML™IT~3)¢ (LT 1)<

The requirement for a dimensionless product leadlsd system

ok +e =0
a+3b —c+d =0 (2.17)
—2a—5 —2c =0

Solution of the system (8.17) gives b=-a, c=-a, dnd, where a is arbitrary. Choosing a=1, we
obtain the dimensionless product

_ 11,
Ty = F,C7 Ky

From Buckingham’s theorem there is a function fimfi(z,) = 0, so =, equals a constant.
Therefore,
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In agreement with the conclusion reached in Chahpter

Problems2.2

1.Predict the time of revolution for two bodies ofsean and mass gin empty space revolving
about each other under their mutual gravitatiottahetion.

2. A projectile is fired with initial velocity v atraanglef with the horizon. Predict the range R.

3. Consider an object falling under the influence goévity. Assume that air resistance is
negligible. Using dimensional analysis, find theag v of the object after it has fallen a distance
s. Let v=f(m,qg,s), where m is the mass of the dlged g is the acceleration due to gravity. Does
yor answer agree with your knowledge of the physitaation?

4. One would like to know the nature of the drg fer@xperienced by a sphere as it passes
through a fluid,. It is assumed that the sphereahlasv speed. Therefore, the drag force is highly
dependent on the viscosity of the fluid. The fldehsity is to be neglected. Use the dimensional
anlysis process to develo a model for drag fores B function of the radius r and velocity m of
the sphere and the viscosityof the flid.

5. The volume flow rate q for laminar flow in a pidepends on the pipe radius r, the viscosity

of the fluid; and the pressure drop per unit Ienigi{h. develop a model for the flow rate q as a

function of r,x and E :

oz

6. In fluid mechanics, the Reynold number is a dinmress number involving the fluid
velocity v, densityg, viscosity:, and a characteristic length r. Use dimensionalyais to find

the Reynolds number.

2.4 A Damped Pendulum

Activity 2.4:-

+«+ Can you apply dimensional analysis process on dysem problem?
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In section 2.1 we investigated the pendulum problerder the assumptions that the hinge is
frictionless, the mass is concentrated at one étldegpendulum, and the drag force is neglijible.
Suppose we are not satisfied with the results prediby the concentrated model. Then we can
refine the model by incorporating drag forces. Ifdpresnts the total drag force, the problem
now is to determine the function

t=f(r,m,g6F)

> ™
> ™

= U P U

a b

Figure 2.7 Possible submodels for the drag force

Let’s consider a submodel for the drag force. Ashaee seen in previous examples, the modeler
is usually faced with a trade-off between simpjicnd accuracy. For the pendulum it might
seem reasonable to expect the drag force to beopiimpal to some positive power of the
velocity. To keep our model simple, we assume thas proportional to either v or’vas
depicted in Figure 2.7.

Now we can experiment to determine directly thaireadf the drag force. However, we will first
perform a dimensional analysis because we expéatréduce our experimental effort. Assume
F is proportional to v so thét= kv. For convenience we choose to work with the dinuerad
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constantk =: , Which has dimensidﬁ‘i%, or simply MT~*. Notice that the dimensional

constant captures the assumption about the drag.fdhus, we apply dimensional analysis to
the model

t=f(r,m,g.68.k)

An analysis of the dimensions of the variables gjive

Variable t r m g g Kk

Dimension | T L M LT? MOLCTO MT

Any product of the variables must be of the form
rc?bmcgdgskf (218)

And hence must have dimension
(TYe(L)2 (M) (LT~ (ML Ty s (MT~ 1)

Therefore, a product of the form (8.18) is dimenkss if and only if

b o+d = (2.19)

The equations in the system (2.19) are independeniye know we can solve for three of the
variables in terms of the remaining (6-3) thredaldes. We would like to choose the solutions
in such a way that t appears in only one of theedigsionless products. Thus, we choose a, e, and
f as the arbitrary variables with

= b=—d="21f g=2_1
c=—f, b=—-d= d—: ;
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Setting a=1, e=0, and f=0, we obtain c=0, b=-1/8d al=1/2 with the corresponding
dimensionless produci,/g/r. Similarly, choosing a=0, e=1, and =0, we get,ds%€0, and d=0,

corresponding to the dimensionless prodiicEinally, choosing a=0, e=0, and f=1, we obtain

c=-1, b=1/2, and d=-1/2, corresponding to the dsiw@riess product ‘__ . Notice that t appears

my'g

in only the first of these products. From Buckingimtheorem, there is a function h with

1 lfr“\-'g-' T 5"3?’:*.5:] 0

.

Assuming we can solve this last equationtgiy /r , we obtain

— kT
t= “\-"?"'gH(B’_mnEj

for some function H of two arguments.

Testing the Model (Step 6)

— k7 . t, '1_ . .
Given t = \._-?;gH(BJ““—'?j , our model predicts that= = /= if the parameters of the function
me, By 4 Tz

kA
m

H (namely, & and =

) could be held constant. Now there is no diffiguh keepingé and k

constant. However, varying r while simultaneousheging

“*" constant is more complicated.
m-g

Because g is constant, we could try to vary r anch such a manner that remains constant.
This might be done using a pendulum with a holloassto vary m without altering the drag
characteristics. Under these conditions we woufzkekthe plot in figure 2.8.
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F 4

ﬁ k, 9, and ¥’ are constant
”m o

-V

Figure 2.8 A plot of t versugr keeping the variables #, and./+/m constant

Presenting the Results (Step 7)

was suggested in predicting the period of the umdam pendulum, we can plot
r\;ﬁ = H(EJ%j However, because H is here a function of two iaegnts, this would yield

a three-dimensional figure that is not easy to ésealternative technique is to plot,/g/r
versus% for various values & This is illustrated in figure 2.9. To be safemedicting t over
the range of interest for representative values mfwould be necessary to conduct sufficient
experiments at various values Gi—_} . Note that once data are collected, various ecabir

models could be constructed using an appropriéegalating scheme for each valuetof
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8 = 45°

6 = 20°

Figure 2.9 presenting the results

Choosing Among Competing Models

Because dimensional analysis involves only algetma, is tempted to develop several models
under different assumptions before proceeding widthaps quite costly, experimentation. In

the case of the pendulum, under different assumgtiave can develop the following three

models (see Problem 1 in the 2.3 problem set):

Al t=r/gh(8) No drag forces
B: t=r/gh(8 ‘:—__j Drag forces proportional to v: F=kv
C:  t=r/gh(8,=5) Drag forces proportional to F=kV?
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Because all the preceding models are approximations reasonable to ask which, if any, is
suitable in a particular situation. We now desctie experimentation necessary to distinguish
among these models, and we present some experimesués.

Model A predicts that when the angle of displacemgntis held constant, the period t is
proportional to+* . Model B predicts that when & andi are both held constant, while

maintaining the same drag characteristics k, rapgrtional to . Finally, ModelC predicts
that if B: and k1 are held constant, then t is proportiomgi:t

The following discussion describes our experimergallts for the pendulum. Various types of
balls were suspended from a string in such a maam&r minimize the friction at the hinge. The
kinds of balls included tennis balls and varioysety and sizes of plastic balls. A hole was made
in each ball to permit variations in the mass withaltering appreciably the aerodynamic
characteristics of the ball or the location of deamter of mass. The models were then compared
with one another. In the case of the tennis bad® A proved to be superior. The period was
independent of the mass, and a plot of t veraudor constan® is shown in figure 2.10.

! (sec) I(SCC)

i
L8 6 = 45° = Constant * r = Constant
Lol L8 '

Ik, e
14F 1§+
. :
12
L1y §(degrees)

10 1!2 1%4 1%6 1?“” G 18 27 36 45

Figure 2.10 Figure 2.11

Model for a tennis ball Isolating the effectf
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Having decided thatt = ,/r/gh(8) is the best of the models for the tennis balliseéated the
effect of & by holding r constant to gain insight into theéuma of the function h. A plot of t
versus & for constant r is shown in figure 2.11.

Note from figure 2.11 that for small angles of imlitdisplacemen® , the period is virtually
independent of. However the displacement effect becomes moreemiie as is increased.

Thus, for small angles we might hypothesize that c,/r/g for some constant c. If one plots t

versusyr for small angles, the slope of the resultingighreline should be constant.

For larger angles, the experiment demonstratestiieaeffect ofé needs to be considered. In
such cases, one may desire to estimate the pemodafious angles. For example, i# = 45°
and we know a particular value ¢¥% , we can estimate t from Figure 2.10. Although stadwn,
plots for several different angles can be graphetie same figure.

2.5 Dimensional Analysis in the Model-Building Process

Activity 2.5:-

+« In what ways is dimensional analysis useful inrtiedel building process?

+ Describe the basic steps of model-building usimgetisional analysis.

Let's summarize how dimensional analysis assiststhim model-building process. In the
determination of a model we must first decide wHmttors to neglect and which to include. A
dimensional analysis provides additional informatmn how the included factors are related.
Moreover, in large problems, we often determine @nmore submodels before dealing with the
larger problem. For example, in the pendulum problee had to develop a submodel for drag
forces. A dimensional analysis helps us choose grtt@various submodels.
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A dimensional analysis is also useful for obtairamginitial test of the assumptions in the model.
For example, suppose we hypothesize that the depemndriable y is some function of five
variables:

v = f(xyx,x5,%x.,x.).A dimensional analysis in the MLT system in geheggelds
m, = h(m, ™), Where eachr, is a dimensionless product. The model predicis$ tiz, will

remain constant ifz, and 7=, are held constant, even though the components, @ndm; may
vary. Because there are, in general, an infinitmmer of ways of choosingz,, we should

choose those that can be controlled in laboratorgeements. Having determined that
m, = h{m,,m;), we can isolate the effect af by holding 7, constant and vice versa. This can
help explain the functional relationship amongvh&ables. For instance, we say in our example
that the period of the pendulum did not depend be initial displacement for small
displacements.

Perhaps the greatest contribution of dimensionalyais is that it reduces the number of
experiments required to predict the behavior. Ifwanted to conduct experiments required to
predict values of y for the assumed relationship f(x,, x,, x5, %, x-) and it was decided that
5 data points would be necessary over the rangadf variable, Sor 3125 experiments would
be necessary. Because a two-dimensional chartjisreel to interpolate conveniently, y might
be plotted against;Xor five values of x, holding %, X3, X4, X5 constant. Because,xxs, X4, and

Xs must vary as well,"®r 625 charts would be necessary. However, aftimansional analysis
yields w, = h(m,,m3), only 25 data points would be required. Moreovef,can be plotted

versusm,, for various values ofr; on a single chart. Ultimately, the task is farieasfter

applying a dimensional analysis. Finally dimenslaralysis helps in presenting the results. It is
usually best to present experimental results ugioge =, that are classical representations

within the field of study. For instance, in theldief fluid mechanics there are eight factors that
might be significant in a particular situation: @eity v, length r, mass density, viscosity: |,

acceleration of gravity g, speed of sound c, serfeensions , and pressure p. Thus, a

dimensional analysis could require as many asifidtependent dimensionless products. The five
generally used are the Reynolds number, Froude eyriach number, Weber number, and the
pressure coefficient. These numbers are definéollasvs.

a3y

Reynotdsmber ==

Froudember —3
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Machnmoer z

Webemmber po’r

Presscoefficient =

Ty

Thus, the application of dimensional analysis bez®muite easy. Depending on which of the
eight variables are considered in a particular lgrabthe following steps are performed:

1. Choose an appropriate sulvsat the preceding five dimensionless products.

2. Apply Buckingham’s theorem.
3. Test the reasonableness of the choices of variables
4. Conduct the necessary experiments and presergghltsin a useful format.

Problems2.3

1. For the damped pendulum,

(a) Assume that F is proportional tband use dimensional analysis to show that
t = r/gh(8,22).

(b) Assume that F is proportional tband describe an experiment to test the model
t = r/gh(8,=2)

2. Under appropriate conditions, all three modetgtie pendulum imply that t is proportional to
7. Explain how the conditions distinguish betweea three models by considering how m

must vary in each case.

3. Use a model employing a differential equatiorptedict the period of a simple frictionless
pendulum for small initial angles of displacemdhtint: Letsin & = £.) Under these conditions,

what should be the constant of proportionality? @ara your results with those predicted by
Model A in the text.
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2.6 Examples Illustrating Dimensional Analysis
Example 1 Explosion Analysis

In excavation and mining operations it is impottém be able to predict the size of a crater
resulting from a given explosive such as TNT in eomarticular soil medium. Direct
experimentation is often impossible or too costljus, it is desirable to use small laboratory or
field tests and then scale this up in some marmerddict the results for explosions far greater
in magnitude.

We may wonder how the modeler determines whichabées to include in the initial list.
Experience is necessary to intelligently determwigch variables can be neglected. Even with
experience, however, the task is usually difficaltpractice, as this example will illustrate. It
also illustrates that the modeler must often chahgdist of variables to get usable results.

Problem Identification Predict the crater volume V produced by a spheegglosive located
at some depth d in a particular soil medium.

Assumptions and Model Formulation initially, let's assume that the craters are geometrically
similar (see chapter 1), where the crater sizemtpen three variables: the radius r of the crater,
the densityp of the soil, and the mass W of the explosive. €hesiables are composed of only

two primary dimensions, length L and mass M, arddimensional analysis results in only one
dimensionless product (see problem 1 a in 2.4 prolset):

T, =r()3

According to Buckingham'’s theorer?, must equal a constant. Thus, the crater dimensibns

radius or depth vary with the cube root of the nafshe explosive. Because the crater volume
is proportional to ¥ it follows that the volume of the crater is prdfmnal to the mass of the
explosive for constant soil density. Symbolicallg have
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Vool (2.20)

Experiments have shown that the proportionalit@®is satisfactory for small explosions (less
than 300Ib of TNT) at zero depth in soils, suchremsst alluvium, that have good cohesion. For
larger explosions, however, the rule proves urfsatisry. Other experiments suggest that
gravity plays a key role in the explosion process] because we want to consider extraterrestrial
craters as well, we need to incorporate gravity eariable.

If gravity is taken into account, then we assuneaesrsize to be dependent on four variables:
crater radius r, density of sgil gravity g, and charge density E. Here, the chargegy is the

mass W of the explosive times its specific eneApplying a dimensional analysis to these four
variables again leads to a single dimensionlessyatq'see problem 1 b in the 2.4 problem set):

T,

_ pPE 14
rg f(#?ji

Thus,m,, equals a constant and the linear crater dimengransus or depth of the crater) vary

with the one-fourth root of the energy (or mass)haf explosive for a constant soil density. This
leads to the following proportionality known as tipgarter-root scaling and is a special case of
gravity scaling:

Ve ()% 22)

o4

Experimental evidence indicates that gravity scpholds for large explosions (more than 100
tons of TNT) where the stresses in the crateringcgss are much larger than the material
strengths of the soil. The proportionality (2.2Xegicts that crater volume decreases with
increased gravity. The effect of gravity on cratermation is relevant in the study of
extraterrestrial craters. Gravitational effects t@ntested experimentally using a centrifuge to
increase gravitational accelerations.

A question of interest on explosion analysts is tvee the material properties of the soil do
become less important with increased charge sidarameased gravity. Let's consider the case
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in which the soil medium is characterized only Iy density. Thus, the crater volume V
depends on the explosive, soil dengitygravity g, and the depth of burial d of the dear In

addition, the explicit role of material strength avhesion has been tested and the strength—
gravity transition is shown to be a function of desize and soil strength.

We now describe our explosive in more detail tharpievious models. To characterize an
explosive, three independent variables are neesled; energy field, and explosive dendity

The size can be given as charge mass W, as chiaeggyeE, or as the radiusof the spherical
explosive. The energy yield can be given as a nmeasiuthe specific energg. or the energy
density per unit volume3,, . The following equations relate the variables:

w==
Qe
Q. = 4Qg,
@ =(2) @

One choice of these variables leads to the modeiuiation

V=F(WQ,5pgd)

Because there are seven variables under consateratid the MLT system is being used, a
dimensional analysis generally will result in fqi@r3) dimensionless products. The dimensions
of the variables are:

Variable Vv W Q g o g d

Dimension| L3 M LT ML™ ML™ LT? L

Any product of the variables must be of the form

VEW?Qigtp gt d™ (2.22)
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and hence have dimensions

(L3)F (MP) (BT 2" (ML) (LT ) (L)

Therefore, a product of the form ( 2.22) is dimengss if and only if the exponents satisfy the
following homogeneous system of equations:

M b +e+f =4
L: 3a+t2c —3e—-3f+k+m =140
T: —2c —2k =1

Solution to this system produces

k—m k—m

—a, c=—k, e=a—f+—

3 3

L=

where a, f, k, and m are arbitrary. By setting ohé&hese arbitrary exponents equal to 1 and the
other three equal to 0, in succession, we obtaridhowing set of dimensionless products:

(Convince yourself that these are dimensionlesscaBse the dimensions @fand & are equal,
we can rewrite these dimensionless products aswsll
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So m, is consistent with the dimensionless product iegplby equation (2.20). Then applying
Buckingham’s theorem, we obtain the model

h(my, Ty, g, m,) = C (2.23)

or

V= ?H(Q’-’r" -:, dé~ _' Jij

o Q: g L)E rl.ll_r"_ =g

Presenting the Results

For oil-base clay the value afis approximately 1.53g/cinfor wet sand, 1.65; and for desert
alluvium,1.60, For TNT, has the value 2.23gicihus, 0.69 < 7. < 0.74, so for simplicitywe
can assume for these soils and TNT thats constant. Then, equation (8.23) becomes

h(my.m,,my) =0 (2.24)

R.M.Schmidt gathered experimental data to plotsiméace described by equation (2.24). A plot
of the surface is depicted in figure 8.12, showthg crater and volume parameteras a

function of the scaled energy chargeand the depth of the burial parametgr Cross-sectional
data for the surface parallel to therw, plane whenr, = 1.15x107° are depicted in figure 2.13.
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(megaton
region)

Figure 2.12 A plot of the surfade(m,,m,,w;) = 0, showing the crater volume parametgras a
function of gravity- scaled yie!d, and depth of burial parametey.

Experiments have shown that the physical effeab@ieasing gravity is to reduce crater volume
for a given charge vyield. This suggests that irswdagravity can be compensated for by
increasing the size of the charge to maintain #meescratering efficiency. Note also that Figures
2.12 and 2.13 can be used for prediction once gureal interpolating model is constructed
from the data. Holsapple and Schmidt (1982) extidwe$e methods to impact cratering., and
Housen, Schmidt, and Holsapple (1983) extend tlweonater ejecta scaling.
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Figure 2.13

Data values for a cross section of the surfacectigin figure 2.12

Example 2 How Long Should You Roast a Turkey?

One general for roasting a turkey is the followiSgt the oven to48B and allow 20min per
pound for cooking. How good is this rule?
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Assumptions Let t denote the cooking time for the turkey. Naomw what variables does t
depend? Certainly the size of the turkey is a fattat must be considered. Let’'s assume that
turkeys are geometrically similar and use | to dersmme characteristic dimension of the
uncooked meat; specifically, we assume that | sgts the length of the turkey. Another factor
is the difference between the temperature of themaat and the ovediT,.. (We know from

experience that it takes longer to cook a bird ihaearly frozen than it does to cook one that is
initially at room temperature.) Because the turkéi/have to reach a certain interior
temperature before it is considered fully cooked,differenceAT. between the temperature of

the cooked meat and the oven is a variable detergithe cooking time. Finally, we know that
different foods require different cooking times épéndent of size; it takes only 10min or so to
bake a pan of cookies, whereas a roast beef agytudquires several hours. A measure of the
factor representing the differences between fosdlsa coefficient of heat conduction for a
particular uncooked food. Let k denote tefficient of heat conductidor a turkey. Thus, we
have the following model formulation for the coogitime:

t = f(AT,, AT, k,1)

Dimensional Analysis Consider the dimensions of the independentisées. The temperature
variablesAT, and AT, measure the energy per volume and therefore haveimension

ML*T ~

, or simphywL™*T~2, Now, what about the heat conduction variabl@k&rmal

conductivity k is defined by the amount of energy crossingumecross-sectional area per
second divided by the gradient perpendicular tcatiea. That is,

p ensrgy/lareaxtime)

temperature/length

[ A Tt et

— > or simply 2T, Our analysis gives the

Accordingly, the dimension of k 531;!,.”_,_?_:

following table:

Variable AT, AT k | t

c

Dimension MLiT? MLIT? LTt L T

Any product of the variables must be of the form
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AT, “AT Y k°19t* 43)

and hence have dimension

(MLTIT )= (MLTIT )P (2T~ H°(L)%(T)"

Therefore, a product of the form (8.25) is dimenkgses if and only the exponents satisfy

M a+ b =0
L: —a—b+2c +d =
T: —2a—2b—r¢ +e =0

Solution of this system of equations gives

1

a=—hb, c=eg d=-—2e

where b and e are arbitrary. If we set b=1, e=0pltain a=-1, c=0, and d=0; likewise, b=0, e=1
produces a=0, c=1, and d=-2. These independertawwield the complete set of
dimensionless products:

m, = AT AT, and m, = kl™*t

From Buckingham’s theorem, we obtain

h(’T‘lJ‘T:) =0

or

= (5)rEs (2.26)

AT

S

5T
m
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The rule stated in our opening remarks gives thstnog time for the turkey in terms of its
weight w. Let's assume the turkeys are geometyicathilar, orl” o< 1%, If we assume the turkey

is of constant density (which is not quite coreetause the bones and flesh differ in density),
then because weight is density times volume andmelis proportional tc’] we getw o 12,
Moreover, if we set the oven to a constant bakamgperature and specify that the turkey must

—
S

initially be near room temperature 65, then is a dimensionless constant. Combining these

AT

Sl

results with Equation (8.26), we get the propodidg

t o w?/3 (22

because k is constant for turkeys. Thus, the reduiooking time is proportional to weight
raised to the two-thirds power. Therefore; ifiburs are required to cook a turkey weighing w
pounds andtis the time for a weight of mpounds,

t | t
1]
I
Iy
5 E
o

it follows that a doubling of the weight of a tugkcreases the cooking time by the factor
2%/% & 1,59,

How does our result (8.27) compare to the ruleedtpteviously? Assume thar,,, AT., and k

are independent of the length or weight of thedwyrland consider cooking a 23-Ib turkey versus
an 8-lb bird. According to our rule, the ratio a@ioking times is given by

(:u:-x:s] = 2875

\ 20xE /

ot ot
'

On the other hand, from dimensionless analysisegjtion (8.27),

= ()% ~ 2.02

ry | ry
1 |

(3]
':"-'lr.-:l
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Thus, the rule predicts it will take nearly thrameds as long to cook a 23-lb bird as it will to
cook an 8-lb turkey. Dimensional analysis preditctgll take only twice as long. Which rule is
correct? Why have so many cooks overcooked a t@rkey

Testing the resultsSuppose that various sized turkeys are cooked @van preheated to 345
The initial temperature of the turkeys is’B5All the turkeys are removed from the oven when
their internal temperature, measured by a meatrtheeter, reaches 195 The (hypothetical)
cooking times for the various turkeys are recoraedbllows:

W(Ib) 5 10 15 20

t(hr) 2 3.4 45 5.4

A plot of t versus #* is shown in Figure 2.14. Because the graph apprates a straight line
through the origin, we conclude thatc w?'? | as predicted by our model.

- W s N )
!

Figure 2.14 Plot of cooking times versus weighthi® two-thirds power reveals the predicted
proportionality
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Problems2.4
1. (a) Use dimensional analysis to establish the -cabelaw
r(=)*® = constant

for scaling of explosions, where r is the radiuslepth of the cratey is the density of the soil
medium, and W the mass of the explosive.

(b) Use dimensional analysis to establish the onetti root law
P e -
r(=)"* = constant

for scaling explosions, where r is the radius gotdeof the craterg is the density of the soil
medium, g is gravity, and E is the charge energhefexplosive.

2. (a) Show that the products,, ., 75, =, for the refined explosion model in the module are
dimensionless products.

(b) Assumep is essentially constant for the soil being used eastrict the explosive to a
specific type, say TNT. Under these conditio?'rs; essentially constant, yieldiag= f(m,, 7).

You have collected the following data with = 1.5x107%:

g 0 2 4 6 8 10 12 14

Ty 15 150 425 750 825 425 250 90

i.  Construct a scatterplot @f, versusr, . Does a trend exist?

il. How accurate do you think the data are? Find aniremapmodel that captures the
trend of the data with accuracy commensurate vwotlr gppraisal of the data.

iii. Use your empirical model to predict the volume otrater using TNT in desert
alluvium with (CGS systemiy’ = 1500g, p = —=, and my = 12.5.

C7

1. Consider a zero-depth burst, spherical explosiva soil medium. Assume the value of
the crater volume V depends on the explosive, gngigld, and explosive energy, as
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well as on the strength Y of the soil (considergedsastance to pressure with dimensions
ML ™T?), soil densityo, and gravity g. In this problem assume

V=Ff(WQ.,8Y pg)

And use the following mass set of dimensionlesslipcts:

, =)

Ty = |_:| :

Qe

|
=
Il

O | Ta

Self Test Exercises 2

I. Definitions and Terminologies

1. Define each of the following terms:
(a) Dimensional analysis method
(b) Dimensional compatibility
(c) Dimensional constant
(d) Complete set of solutions
(e) Dimensionless products
(H Dimensionally homogeneous equation
2. If a function f under an investigation has n argateg how many
dimensionless products will be considered in ML$teyn of units, where
(a) n=57?
(b) n=77?
(c) n=k? (k is a positive integer)
3. State Buckingham’s theorem.
4. Describe the seven basic steps in the dimensiodysis methodology.

Il. Trueffalse items
1. A dimensional analysis provides qualitative infotima about the model.
2. Dimensional analysis is helpful in testing the d@yi of including or
neglecting a particular factor.
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3.

Dimension representations in dimensional analyses @dependent on
particular system of measurement.

Il. Problems.

1.

Find a dimensionless product relating the torquéML*T) produced
by an automobile engine, the engine's rotation a{@ ™), the volume V
of air displaced by the engine, and the air degsity
Using dimensional analysis, find a proportinalitglationship for the
centrifugal force F of a particle in terms of itass m, velocity v, and
radius r of the curvature of its path.

The power P delivered to a pump depends on thefepeeight w of
the fluid pumped, the height h to which the fllsdoumped, and the fluid
flow rate q in cubic feet per second. Use dimeraianalysis to
determine an equation for power.
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Chapter 3

GRAPHICAL METHODS

Objective:- at the end of this chapter student &ble
» Know graphs to model real life activity
* |dentify comparative statistics

* Answer stability question

3.1Using Graphs in Modeling

Graphs can be very useful in modeling if you arar@wof their uses and limitations. Since many
people expect either too much or too little fronerth we discuss their uses and limitations
before going into specific models.

People can take in an entire pictather quickly and then deduce consequences by
using their geometric intuition. It follows thatagrhs should be useful in conveying information.
Those wonderful analog computers people carryeir gkulls can rapidly locate certain patterns
in visually presented data. One of the easiespdbis a straight line. For this reason a varidty o
forms of graph paper (rectangular, polar, log-logrmal probability, etc.) are marketed so that
plotted data will appear linear if the anticipatethtionship exists.

Graphs are most useful in conveyip@litative relationships or approximate data
which involve only a few variables. A graphical apgch to a problem is most likely to be useful
when not much information is available or whersigiven in a rather imprecise form. Analytical
methods are usually more appropriate when moraggreécsformation is available. In complex
simulation models, graphs are frequently used ltstilate the qualitative behavior of several
time varying endogenous variables simultaneoushys Tielps one obtain a qualitative feel for
the behavior of a complicated simulation model.

So far we have talked about graptmarily as a way of presenting data. Now let's
consider some major roles graphs play in model ftation.

Since our imagination is limited ttwee dimensions, graphical representations of the
interrelations of more than three variables aredmetctly useful. However, it is often possible to
graph a function with most variables held fixed #@hein determine how the graph will change
when one of the fixed variables is changed. Thishe heart of the geometric approach to
comparative statics which is discussed in Secti@nThe differential calculus approach parallels
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the geometric arguments and provides a firm fouodafor making statements when any
number of variables is involved. The basic
problem of comparative statics can be stated dswel: How does the equilibrium point of a
system move when certain exogenous variables amgell ? For example, how will the output
of a firm be affected by a higher tax rate?

Graphical methods are also usefulsindying stability questions. The analytical
treatment of local and global stability theory @&t easy. Therefore it is desirable to use graphical
methods whenever possible to suggest and perhape pesults. Section 3.3 touches on this
approach.

As a glance at the figures in thisptbashows, the intersections of curves are of majo
importance in comparative statics. This is becabsy determine the equilibrium points. A
subtler observation is that slopes of curves plagrdral role in stability questions. The slope of
a curve is a rate, and rates play a crucial ro&ability theory.

Finally, graphical arguments are useful in optetizn problems especially if the model
is not quantitative.

3.2. COMPARATIVE STATICS
The Nuclear Missile Arms Race

The United States and the U. S.S.R. both feeltthet require a certain minimum number of
intercontinental ballistic missiles (ICBMs) to adoinuclear blackmail." The idea is to ensure
that enough missiles will survive a sneak attackhsw “unacceptable damage " can be inflicted
on the attacker. Given this philosophy, it is mlad by some and denied by others that the
introduction of antiballistic missiles (ABMs) and/multiple warheads on each missile (MIRVS)
will cause both nations to increase their stockmiésiles. Is this true? What about making
missiles less vulnerable to attack by hardeningssar building missile firing submarines? The
wrong answers to these questions could have d@stgequences. Who is right?

Obviously we cannot hope to settle the debate. Mewe simple graphical model can
shed some light on the problems involved and hdlydfielp lead to more intelligent debate. The
following discussion is adapted from T. L. Saat9g&, pp. 22-25).

We deal with two countries which we call countrgrid country 2.

Let x and y be the number of missiles possessetbbgtries 1 and 2, respectively. W e treat x
and y as real numbers. O f course they are actuélgers; but since they are large, the relative
errors introduced by treating them as real numhbglisbe small; for example, the percentage
difference between 500 and 500. 5 is quite small.tke time being we assume that all missiles
are the same and are equally protected. From iheeatiscussion

it follows that there exist continuous, increasingctions f and g such that country 1 feels safe if
and only if x>f(y) and country 2 feels safe if amaly if y > g(x). These functions are plotted in
Figure 1. The shaded region is the area in whiolaarents are stable, since both countries feel
they have sufficient weapons to prevent a snealclatiWe consider questions such as: Does
such a region actually exist? What effects do shittgs as ABMs,

MIRVs, and so on, have on the poiAt=(X,,,Y,,)?

First we show that the solid curves in Figure 1 guelitatively correct. Let's look at
things from the point of view of country 1. A cantanumber of missiles¢,is needed to inflict
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what is considered unacceptable damage on couniéh2n country 2 has no missiles, country
1 requires, .

We show that for any r > 0 the curve x = f(y) cesthe line y = rx. It suffices to show that there
is a function x(r) such that, whenevee x(r) and y = rx, country 1 believes that it has enough
missiles so that the number surviving a sneak lattac country 2 will be able to inflict
unacceptable damage on country 2. In other worstey 1 wants to be practically certain of at
least x, of its missiles surviving a sneak attack by coutrjsuppose that y = rx. To destroy the
most missiles, country 2 should aim about r missde each of country 1 's missiles. Since a

warhead may fail to reach and destroy its tar¢petet is some probability, p(r) > 0, that a given
missile belonging to country | will survive a snestkack.

Xm

Figurel: Country 1 introduces ABMs. A = initial &ta (shaded area stable); B =
Country 1 protects its missiles; C = country 1pctdets cities. Axes show number of missiles.
Thus country 1 can expeqgt(r) missiles to survive. For large enough x(r) , this will exceed

X, by an amount large enough to allow for uncertamtiéhis completes the proof that the curves
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intersect. Thus the curve x = f(y) starts &§,(0) and curves upward with a slope increasirg to

. By a symmetry argument, y = g(x) has the formwahowith a slope decreasing to O.
Two such curves meet at exactly one point whichcale (x,,,y,,), the minimum stable values

for x and y.
This analysis applies to all the situations disedskelow, so there is always a unique

minimum stable point. We want to know how its piositcompares witi(x.., y,, .)

Suppose the missiles of country 1 are made leseerkable to sneak attack by the use of
hardened silos, ABM protection, or some other me@hss increases p(r), the probability that
any given missile belonging to country 1 will swmwia sneak attack. Hence the cui(yg¢ moves
to the left with the pointx, fixed. The shape of the curve is altered somewhéte process. The

new curve is shown dashed in Figure 1. We cantsgdbbthcountries require fewer missiles for
stability.

Suppose that country 1 protects its cities by sdmace such as ABMs. Country 2 now
requires more thary, missiles to inflict unacceptable destruction onrdop 1 . Thus the curve

g(x) moves upward as shown by the x - x - x curvd-igure 1.Both countries require more
missiles for stability.

What happens if multiple warheads are installed® $tuation is more complicated than
the previous two. Suppose country 1 replaces thiglesivarheads on each of its missiles with N
warheads. It will then require that fewer of itsseiies survive a sneak attack. (The number
required is abowt,/ N .) Thus x = f (y) moves to the left as in Figure 2. Country 2 willfaeed

with N times as many warheads in a sneak attack;oso its point of view the scale of the x
axis has changed by about a factor of N, as showkigure 2. It appears that country 2 will
require more missiles, and country 1 will requiesvér; however, this depends on the detailed
shape of the curves.

Therefore probabilistic models should be used atst&, or in conjunction with, graphical ones.
This would require us to make more precise assamptregarding the capabilities of the
missiles, so we do not go into it here.

It seems unreasonable to assume that country 2etithlso develop and deploy multiple
warheads if country 1 does. Therefore we shouldyaeahe situation in which both countries
deploy multiple warheads. There are two conflictfigcts:

1. Since the axes measure missiles, the points {{{&nd [0, g(O)] will move toward the origin,

tending to decreasg,,, y,, )
2. f(y) becomes more horizontal and g(x) becomesemertical, tending to increase,,,y,, )
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Figure 2 Country 1 introduces MIRVs. Axes show nemii¥ missiles.

We cannot decide without further information wheffect will dominate.

In the above discussion, we assumed that all resssibre the same. This is unrealistic. If
we drop this assumption, each country will changesirategy by aiming different numbers of
missiles at the various enemy missiles. Of thesmestargeting makes the expected surviving
firepower a minimum. This targeting gives the caréer Figure 1, and the analysis proceeds as
before.
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Activity

1. Suppose that both countries install N warheadsah enissile and that the new warheads
are as effective as the old ones. Show that bathtdes will require more warheads.
2. Suppose a country is able to retarget missiledightfso as to aim for missiles that

previous warheads have failed to destroy. Disdus®tfect.

3.3 STABILITY QUESTIONS
Cobweb Models in Economics

Definition:-The cobweb model is a graphical metHod finding and testing fixed points for
stability. Its graphs are called cobweb diagrantss Tnethod is exceptional for the degree of
visual insight that it gives, although to find add point this way requires very precisely drawn
graphs.

We consider the dynamics of supply and demand where is a fairly constant time lag in
production as, for example, in agriculture. It bagn observed that there are fairly regular price
fluctuations in such situations. This situation waglied by economists in the 1920s and 1930s.

When a commodity is marketed, the selling pricdetermined by theemand curveThis
price is one of the factors producers use in deteng how to alter production. In a " pure "
situation, they produce the amount on the supptyecthat corresponds to the present price.
There we were interested in the intersection pafithe curves. Thus (see
The following figure)
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Figure3 The cobweb model

if the amount of potatoes produced in year bjisthe price per bushel will b@,, As a result,

farmers will decide to produce the amogpntin year 2, the market will set a pripg per bushel

for this crop, and so on. Because of the pictinis,itlea is referred to as the cobweb theorem. In
practice one does not know the supply and demanesubut the above model predicts that the
demand curve can be obtained by plott{ag, p, and the supply curve by plottifg,, p,, - )

How realistic is this model? The existence of apdyigurve assumes that producers can
control output perfectly. This is not true in thgriaultural sector where weather is very
important, but it may be a reasonable approximatibthe supply and demand curves move
erratically, the model will be upset. Changes ilcgs for other goods the supplier may produce,
sudden changes in demand (e.g., the sale of wigghelJnited States to the U. S.S.R. in 1972),
and sudden changes in supply (e.g., crop blights) cause this to happen. If the suppliers have
some understanding of price fluctuations, they wdt raise production levels much in spite of
higher prices. However, this does not wreck the @hobh this case the supply curve will be
nearly independent of price near the equilibriumegyrbut the model will still apply. It predicts
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small fluctuations in supply and a rapid approaztstability. Plot this. Ezekiel presented the
material on U.S. potato production contained
in Table 1 . He obtained it from the Bureau of Agtiural Economics.

Discuss what should be used as "quantity" and whatild be used as "price" in a cobweb plot
and construct the plot. Should the model be matiifiecause the yield per acre is not constant?
What about the effect of population growth during L5 year period? What about the effect of
the Depression? Clearly there is a lot of noise.,(idisturbances we can't hope to take into
account in a simple model) in the data. Thus weikhsee if the data fit the model better than a
random set of data would. Can you propose a mdtiratbing this?

From the supply and demand curves near equilibiiiuim easy to make a prediction
concerning stability. If the negative of the demandve's slope exceeds the slope of the supply
curve, there will be instability; if it is less adtility. Convince yourself of this. Demand for some
agricultural products is rather inflexible. Whenoguction is sensitive to price, the model
predicts instability. The government can attempeliminate this by controlling production or
prices. The former causes the supply curve to becwertical (or nearly so) above (and/or
below) certain ranges of quantity. This keeps tisgability from growing further.

Activity
Discus on the effect of price control on cobweb gisd
Phase planes
The previous model dealt with the stability of #etence equation. A similar procedure is used
for differential equations. This requires the notaf a phase plane, suppose we are dealing with
the two equations

xX=f(xy) y=9(xy) @)
At each point (X, y) in the x - y plane we can motector proportional to (X', y'). This is called
the direction field of (1). To graph a solution(@) we then start at an initial point and follow a
path parallel to the direction field. (Since theedtion field varies from point to point, the pagh
usually curved.) The speed is determined by thenimade of the vector tangent to the path at
that point. If we start at a point with I1f=g=0, well not move from it. Such points are called
equilibrium points.

Since we have only crude information about f anduy,phase plane diagrams cannot be
this detailed. To answer stability questions wfien sufficient to plot the two curves f =0 and g
= 0 and indicate roughly the vectors (x', y) ire tineighborhood of these curves. The
intersections of the curves are the equilibriumngnf (1). The curve f = 0 divides space into
two regions such that x' > 0 in one and x' < Ohia bther. If you determine which region is
which for f = 0, and likewise for g = 0, the regtlwe easy.

The vectors cross f = 0 vertically, and the di@ctwill be upward if and only if g > O.
Similarly, they cross g = 0 horizontally, and thesdtion will be rightward if and only if f> o.
See Figure for an example. In plotting f = 0 ard @ it is helpful to determine the slopes of the
curves.

This can be done by implicit differentiation: For D,

dy _ of /ox
dx of /oy
for the slope of f= 0 are evaluated at values afd y at which x is at equilibrium; that is,

,and similarly for g = O. It is important to remembbeat the partial derivatives
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x'=00. (This is important in determining the sighads / 0x).The partial derivatives also help

decide which region corresponds to f > 0 and whach< 0 : f > 0 to the right of (or above) f=0
if and only ifof /0x >0 (orof /dy > 0).).
Small - Group Dynamics

You wish to set up a local committee to help ekeaandidate to office. What keeps a group
together and working? Does more work improve a tasnted group or harm it? Very little
mathematical modeling has been done in this arda @amfortunately, the following is rather
crude and lacking in practical advice.

We want to study the stability and comparativeistadf a group which has a required
activity imposed from the outside (a task). The elasl taken from H. Simon (1952), who based
it on a nonmathematical model proposed by G. C. &wm{1950).

There are four basic functions of time:

I(t), the intensity ofnteractionamong the group members.

F(t), the level offriendlinessamong the group members .

A(t), the amount o&ctivity within the group.

E(t), the amount of activity imposed on the group byekeernal environment. The variables can
be treated as averages over all group members swras overall measure for the entire group.
We regard I, F, and A as endogenous variables amd$ Bn exogenous variable which we
generally treat as being constant.

To make the concepts more concrete, let's conaiexample. The imposed activity E is
the laying in of firewood. The group may be engagethis for wages, or they may be friends
preparing for winter. The various activities A inde locating wood sources, sawing logs,
stacking logs, and setting up a football pool. Nbt some activities may not be directed
toward the externally imposed task. G. C. Homans,s&8y our definition interaction takes
place when the action of one man sets off the matf@nother.” "Action" here refers to activity,
so that activity is required for interaction, bt ronversely-a person can work alone. The many
situations in our example that involve interactimelude discussing where to obtain wood,
working opposite ends of a saw while cutting lgggssing wood from one person to another in
stacking, and conversing idly. Some of the intéoacis necessary, but a lot of it can be reduced
considerably. The same is true of activity, as efficiency expert knows ; however, this may
involve changes in habit patterns and so requireertime.

There are three relations on which the model isthas

1. I(t) depends on A(t) and F(t) in such a way thancreases if either A or F does. The
adjustment is practically instantaneous.

2. F(t) depends on I(t). It tends to increase wihéntoo low for the present level of interaction
and to decrease if there is not enough interadbosustain its present level. This adjustment
requires time, and the rate

of adjustment is greater when the discrepancy typeesent and equilibrium levels is greater.
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Chapter 4

Application of Mathematical Modeling

Introduction
How can we construct and use models in the mathemhavorld to help us better understand

real-world system? Before discussing how we lirnk tlvo worlds together, let’'s consider what
we mean by a real-world system and why we woulthtexested in constructing a mathematical

model for a system in the first place.

A systemis an assemblage of objects joined in some regudaraction or independence. The
modeler is interested in understanding how a padicsystem works, what causes changes in

the system, and how sensitive the system is taicecthanges.

In this section we will discuss different applicets of modeling process to express real world

phenomenon.

Objectives

At the end of this chapter you will be able to:
» apply proportionality concept in mathematical moideming
» apply similarity concept in mathematical model form
» form mathematical model by using differential egurat

» form mathematical model by using system of difféiedrequations

4.1 Modeling using Proportionality
We introduced the concept of proportionality in gtes one in this section we use the concept of

proportionality in model formation.

Examplel: Testing for Proportionality
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Consider a spring-mass system, such as the oneirghaw figure 1.2. We conduct an
experiment to measure the stretch of the spring famction of the mass (measured as weight)
placed on the spring. Consider the data collectedHis experiment, dis playing in the table
below a scatter plot graph of the stretch or eltongaof the spring versus the mass or weight

placed on it reveals an approximate straight liaespg through the origin.

The data appear to follow the proportionality riliat elongation e is proportional to the mass m,

or symbolically,ea m.the straight line appears to pass through therorigi

Figure 4.1 spring-mass system
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This geometric understanding allows us to lookatdata to determine if proportionality is a
reasonable simplifying assumption and, if so, tineste the slope k. In this case, the assumption
is valid, so we estimate the constant of propodiiby by picking the two points (200, 3.25) and
(300, 4.875) as lying along the straight line. Vdéalate the slope of the line joining this points

as slope= ABTS— 325 _ 0.01625
30C-20C
}
9.0 : L ]
é 6'05 . )
Fa0f e
.
0.0 . L L . 1 Mass
0 100 200 300 400 500

Figure 4.2Data from spring-mass system

Thus the constant of proportionality is approxinhate0163 and we estimate our model as
e=0.0163n
Now ya xif and only if y=kx for some constant k>0 1)

Of course, ifya x, thenxa y because the constant k in equation (1) is grélader zero and then

= % y. The following are other examples of proportiotyatelationships:

ya x?if and only if y = k x* for k; a constant (2)
ya In xif and only if y =k, In xfor k> a constant (3)
ya e*if and only if y = k,e*for ks a constant 4)
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In equation (2),y = kx*, k>0, so we also havea y** becausex= (i)y“. This leads us to

JK

consider how to link proportionalities togethetransitive rule for proportionality:

yaxand xa z,thenya z

Figure 4.3 Geometrical interpretation of y a x

Thus, any variables proportional to the same végare proportional to one another.

Now let's explore a geometric interpretation of podionality. In equation (1)y = kx yields
k = y/x.Thus, k may be interpreted as the tangent of tigeeafdepicted in Figure 4.3, and the

relation ya x defines a set of points along a line in the plartk angle of inclinatiord .

Comparing the general form of a proportionalityatelinship y = kx with the equation for a
straight line y = mx+b,we can see that the graph of a proportionalitytiiahip is a line

(possibly extended) passing through the originwé plot the proportionality variables for

Models (2)-(4), we obtain the straight line graphssented in Figure 4.4.

Slope k; Slope k, Slope k3

x Inx e*

Figure 4.4 Geometrical interpretations of models (g(2), (b) (3), (c) (4)
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Remark:-it is important to note that not just any straityhe represents a proportionality

relationship: the y- intercept must be zero so thatline passes through the origin.

Example: suppose we are interested in predicting the volohweater displaced by a boat as it is
loaded with cargo. Because a floating object dsgdaa volume of water equal to its weight, we
might be tempted to assume that the total volurokdysplaced water is proportional to the
weight x of the added cargo. However, there isw@ flvith that assumption because the unloaded
boat already displaces a volume of water equdbstavéight. Although the graph of total volume
of displaced water versus weight of added cargivisn by a straight line, it is not given by a

line passing through the origin (Figure 4.5), s® phoportionality assumption is incorrect.

y

. A
Displaced

volume /

i
Added weight u

Figure 4.5 A straight —line relationship betweespticed volume and total weight, but it is not a

proportionality because the line fails to passtigiothe origin.

Example: Kepler’s Third Law

To assist in further understanding the idea of propnality, let's examine one of the famous
proportionalities from Table 1, Kepler's third lawm 1601, the German astronomer Johannes

Kepler became director of the Prague Observatory.
Kepler's had formulated his first two laws on tle¢ative motion of the planet:
i) Each planet moves along an ellipse with the sumatfocus.

i) For each planet, the line from the sun to the pilaneeps areas in equal times.
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Activity
1. Show graphically the meaning of the proportionaltyl u/v

2. If an architectural drawing is scaled so that Oni%epresents 4m, what length represents
27m?

3. Determine whether the following data support a propnality argument fory O z*2. If so,

estimate the slope.

y 35 5 6 7 8

z 3 6 9 12 15

4. A new planet is discovered beyond Pluto at a maatartte to sun of 4004 millions
miles. Using Kepler’s third law, determine an estienfor the time T to travel a round the

sun in an orbit.

4.2 Modeling Using Geometric Similarity

Geometric similarity is a concept related to projmality and can be useful to simplify the

mathematical modeling process.

Definition: - Two objects are said to be geometrically similarthere is a one to one
correspondence between points of the objects shelh the ratio of distance between

corresponding points is constant for all possilalig’ points.

For example, consider the two boxes depicted inrei@.2.1. Let | denote the distance between
the points A and B in (a), and Let I’ be the dis@atetween the corresponding points A’ and B’
in (b).Other corresponding points in the two figusad associated distance between the points,
are marked the same way. For the boxes to be gdoatigtsimilar, it must be true that

s|s

:% = k.for some constant k>0
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Figure4.6 Two geometrically similar objects

Let’s interpret the last result geometrically. ligire 4.6, consider the triangles ABC and
A'B'C’. If the two boxes are geometrically similathis triangle must be similar. The same
argument can be applied to any corresponding tieanguch as CBD and C'B’'D’. Thus,
corresponding angles are equal for objects thatgamametrically similar. In other words the
shape is the same for two geometrically similareots, and one object is simply an enlarged

copy of the other.

One advantage that results when two objects aralasins a simplification in certain

computations, such as volume and surface area.

For example for the boxes in Figure 2.2.1, considerfollowing argument for the ratio of the

volumes V and V’:
V
2= kB 5
v (5)

Similarly, the ratio of their total surface areaarf8l S’ is given by

S _ 2h+2wh+2wl _ K2
S 2'h+2w h+2w'l’

(6)

Not only are these ratios immediately known on@edtaling factor k has been specified but also

the surface area and volume may be expressed psrpomality in terms of some selected
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characteristic dimensions. Let's select the lenigls the characteristic dimension. Then with
I/1'=k,we have
|2

P ok2=l
s |2

S

| 2

Therefore,— =

12
|S'_2 = constant holds for any two geometrically similar objectshig is,

surface area is always proportional to the squitieeocharacteristic dimension length:
sol?
Likewise, volume is proportional to the length cdbe

volr?

Thus, if we are interested in some function depggain an object’s length, surface area, and

volume, for example:
y= f(l,S,V)

We could express all the function arguments in $erofi some selected characteristic

dimension, such as length, giving
y=(@,1%17%)
Geometric similarity is a powerful simplifying assption.

Example: Raindrops from a Motionless Cloud

Fy L Alir resistance
6 Raindrop
F, ' Force of gravity
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Suppose we are interested in the terminal velogftya raindrop from a motionless cloud.

Examining the free-body diagram, the only forceracon the raindrop are gravity and drag.

Assume that the atmospheric drag on the raindrgpaportional to its surface area S times the
square of its speed v. The mass m of the raindsqpaportional to the weight of the raindrop

(assuming constant gravity in Newton’s second law)

F=F,-F,=ma (7)

Under terminal velocity{ =V, ), we have a=0 so equation (7) reduced to

Or

We are assuming th&, 0 SV and thatF is proportional to weight' . Sincem [ w, we have

FgDm

Next we assume all the raindrops are geometricathylar. This assumption allows us to relate

area and volume so that
SOI? andVv OI°
For any characteristic dimensibrThus,| 0 S*2 OV *3, which implies
sav?®

Because weight and mass are proportional to voltimeetransitive rule for proportionality gives

sSOm?®

From the equatioR; = F,, we now haven[] m%vtz. Solving for the terminal velocity, we have

111



1 1
m3 O vZor mé Ov,

Therefore, the terminal velocity of the raindrogpreportional to its mass raised to the one-sixth

power.
Activity

1. Consider a 20-kg pink flamingo that stands 3 m eight and has legs that are 2m in
length. Model the height and leg length of a 10@kgningo. What assumption is
necessary? Are they reasonable assumptions?

2. A circle of radius r increases by 5% by what petage the area of the circle increases?

3. How fast is the volume of a rectangle box changihgn the length is 6cm, the width is
5cm, and the depth is 4cm, if the length and depthboth increasing at a rate of 1cm/s
and the width is decreasing at a rate of 2cm/s?

4. How fast is the surface area of a cube changingwithe volume of the cube is 64amd
is increasing at 2/¥s?

4.3 Modeling Using Differential Equations

Introduction

Many phenomena can be described in a general wagyigg that rates of change of the
endogenous variables depend on past and presees\all the variables. These situations lead to
models involving differential and difference eqoas.
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Section objectives
At the end of this section you will able to:
» Apply derivatives as a rate change means
> Apply derivatives as a slope of the tangent line
» Apply First order differential equation in modelingal world phenomenon

» Use higher order differential equations in mathecaatmodeling

On this section we have information relating a ratechange of a dependent variable with
respect to one or more independent variables aadnéerested in discovering the function
relating the variables. For example Pifrepresents the number of people in a large pdmria
with respect to time then it is reasonable to assume that the ratdafge of the population
with respect to time depends on the current size a$ well as other factors like immigration,
emigration, age, gender and so on. For ecologecalinomical, and other importance reasons, it
is desirable to determine a relation betw®eandt to make prediction abow. If the present

population size is denoted [B(t) and the population size at tinter Atis P(t +At), then the
change in populatiodP during that time period\t is given by

AP = P(t + At) - P(t) (1)

By assuming all other factors listed above negte&P [0 P.and we can assume that during a
unit time period a certain percentage of the pdmnareproduces while a certain percent age
dies. Suppose the constant of proportionality &digressed as a percentage per unit time. Then

our proportionality assumption gives
AP = P(t + At) - P(t) = kPAt (2)

Equation (2) is a difference equation in which we teating a discrete set of time period rather

than allowing t to vary continuously over some maé.
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Assume that t does vary continuously so that wetake advantage of the calculus. Division of

equation (2) byAt gives

AP _P(t+A)=P() _ o,

At At ®)

Next, allow At to approach zero. The definition of the derivatigases the differential equation

Where dP/dtrepresents the instantaneous rate of change.

In modeling the derivatives is used in two distirajes:
1. To represent the instantaneous rate of changenitncus problems.
2. To approximate an average rate of change in despretblems.

The advantage of approximating an average ratdhafige by a derivative is that the calculus
often helps in uncovering a functional relationsbgtween the variables under investigation.
The interpretation of the derivatives as an insta@bus rate of change is useful in many
modeling applications. The geometrical interpretatof the derivative as the slope of the line

tangent to the curve is useful for constructing atical solutions.
Activity:

1. Let's briefly review the derivatives as the slogehe tangent line to the curve from the

calculus.

4.3.1 The Derivative as a Rate of Change

The origin of the derivative lies in human kindigriosity about motion and our need to develop
a deeper understanding of motion. The search ®&latlvs governing planetary motion, the study
of the pendulum and its application to clock builgli and the law governing the flight of a

cannonball and so on.
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Consider a particle whose distance s from a fixesitipn depends on time t. Let the graph in
Figure 4.7 represent the distance s as a funcfibme t, and left;, ) and(t;, $) denotes two

points on the graph

(13, 59)
As
{(ti, 51) o

[}

!

3

]

|
Fedra]

> !

s
A

Figure 4.7 Graph of distance s as a function ogtim

Define At =t, -t, , As=s, —s,, and from the ratia\s/At Note that this ratio represents a rate:
an increment of distance travelefisover some increment of tind¢. That is, the ratio
As/Atrepresents the average velocity during the timéogen question. Now the derivatives

ds/dt evaluated at tztis defined as

ds;, _ . As

qp'te AltrpoE ()

Discuss on what occurs & — 0?

Using the interpretation of average velocity, wa e that at each state of using a smaller
Atwe are computing the average velocity over smalher smaller intervals with left endpoints
att; until, in the limit, we have the instantaneousoedl att=t;. If we think of the motion of a
moving vehicle, this instantaneous velocity woulorrespond to the exact reading of its

speedometer at the instant

4.3.2The Derivatives as the Slope of the Tangent Line
Let’s consider another interpretation of the denxea We consides(t) simply as a curve. Let
examine a set of secant lines each emanating fiempdintA= (t;, s(t)) on the curve. To each

secant there corresponds a pair of increnm@ttsAs ) as shown in Figure 4.8
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Secant lines

A52
(s ZZ2D ) ¥ Tas
A Tangent line
> 1
be-Ars~
e—— At —]
e At ————]

Figure 4.8 The slope of each secant line approxsnidite slope of the tangent line to the curve at

the point A.

The lines AB, AC, and AD are secant lines. Ais— 0,these secant lines approach the line
tangent to the curve at the point A. Because thgesbf each secant iss/At, we may interpret

the derivative as the slope of the line tangetiéocurves(t) at the point A.

4.3.3 Some Mathematical Models Related to first order differential
equations

I. Newton’s Law of Cooling

According to Newton’s empirical law of cooling, &lrate at which a body cools is proportional
to the difference between the temperature of tlty lamd the temperature of the surrounding

medium.”

To model this physical law if we let T(t) represém temperature of the body at any timeyf, T
represent the constant temperature of the surrogndedium, andiT/dt represent the rate at

which a body cools, then Newton’s law of coolingrislates into the mathematical statement
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o7, or k-7, (5)
dt dit

where k is a constant of proportionality. Since e assumed the body is cooling, we must

haveT >T_ and so it stands to reason that k<O.

Example :- Cooling of a cake

When a cake is removed from an oven, its temperasumeasured 800°F . Three minute later

its temperature i200°F . How long will it take for the cake to cool off toroom temperature of

70°F 2
Solution:- In (5) we make the identificatiol,, = 7We must then solve the initial-value
problem

c(lj_: = k(T =70, T(0) =300 (6)

And determine the value of k so thg8) = 200

Equation (6) is both linear and separable. Sepayatariables,

d_T:kdt
T-70

yields In[T =70 =kt +c,, and soT =70+ c,e'. When t=0,T=300. So th&00= 70+ c, gives
¢, =230 and, thereforeT =70+ 230",

Finally, the measuremeiit(3) = 200.leads toe®* = ;—2 or k :%In;—z =-0.19018

Thus
T(t) =70+ 230298, (7)

We note that (7) furnishes no finite solutionsTt@) = 70.since [imT(t) =70.
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Activity

1. A thermometer is taken from an inside room to thtside, where the air temperature is

5°F. After 1 minute the thermometer reafis’F.and after 5 minute the reading3B&’F.

What is the initial temperature of the room?

2. A thermometer is removed from a room where theéemperature i¥0°F.to the outside,
where the temperature i9°F . After % minute the thermometer reaBi8’F.What is the

reading at t=1min? how long will it take for theetmometer to read%’F ?

II. Population Growth
How many people will there be in the populatioraafertain country in n years? How many

births? In this section we build the simplest polgsmodel for answering these questions.

Problem Identification: suppose we know the population at some given, tiareexample,Pat
time t=b, and we are interested in predicting the poputafiat some future time t=in other

words, we want to find a population function P@) f, <t <t, satisfyingP(t,) = F,.

Assumptions Consider some factors that pertain to populagi@wth. Two obvious ones are
the birthrate and the death rate. The birth ratedmath rate are determined by different factors.
The birth rate is influenced by infant mortalityeaattitude toward and availability of
contraceptives, attitudes toward abortion, healtle during pregnancy, and so forth. The death
rate is affected by sanitations and public healtrs, pollutions, medicines, diet, psychological
stress and anxiety, and so forth. Other factorsitiflaence population growth in a given region
are immigration and emigration, living space resiwns, availability of food and water, and

epidemics.

For our model, let's neglect all these latter fest®dNow we will consider only the birthrate and
death rate. Because knowledge and technology felgedhhumankinds diminish the death rate

below the birthrate, human populations have tendepiow.

Let’s begin by assuming that a small unit time e percentage b of the population is newly

born. And a percentage c of the population dies.
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So the new populatioR(t + At) is the old populatioi®(t) plus the number of birth minus the

number of death during the time periad.
Symbolically P(t + At) = P(t) + bP(t)At — cP(t)At or

AP pp-cP=(b-c)P=kP
At

From our assumptions the average rate of chang¢hefpopulation over an interval is
proportional to the size of the population.

Using the instantaneous rate of change to apprdzith& average rate of change, we have the

following differential equation model:

%:kP, P(t,)=P,, t,<t<t, (8)

where (for growth) k is a positive constant.

Solving the Model:- We can separate the variabhesrawrite equation (8) by moving all terms

involving P anddP to one side of the equation and all termsanddt to the other. This gives

Ll kdt,
P

Integration of both sides of this last equatioridse

INP=kt+C (9)

For some constant C. applying the conditieft,) = P, to equation (9) to find C results in

C =InPR, —kt,
Then, substitution for C in to equation (9) gives
InP=kt+InP, —kt

Or, simplifying algebraically,
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P
In—-=k(t-t;)

0

Finally, we obtain the solution

P(t) = R (10)

Equation (10), known as the Malthusian model ofydatpon growth, predicts that the population

grows exponentially with time.

Verifying the Model:- Because Inpﬂzk(t—to), our model predicts that if we plot
0

InP/P,versust -t,,a straight line passing through the origin withpslok should result.

However, if we plot the population data for the tddi States for several years, the model does
not fit very well, especially in the later years.fhct, the 1990 census for the population of the
US was 248,710,000, and in 1970 it was 203,211,8R6stituting this values in equation (10)

we can get the value of k as

248,710000 — gk 19901070
203211926

Thus,

24810000 _ 001

k = (i) Jn———""""~
200 203211926

That is during the 20-year period from 1970-1990pyation in the US was increasing at
average rate of 1%per year. We can use this infommaogether with equation (10) to predict
the population for 2000, in this cage1990, B=248,710,000 and k=0.01 yields

P(2000 = 248710000e %%%°%1999 = 303775080

The 2000 census for the population of the US wds4®®),000. Thus our prediction is off the

mark by approximately 8%. We can probably live witlat magnitude of error, but let's look
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into the disaster future. Our model predicts thatgopulation of the US will be 55,209 billion in
the year 2300, a population that far exceed curestimates of the maximum sustainable

population of the entire planet.

We are forced to conclude that our model is unmegsie over the long term.
Activity

Based on Malthusian model of population growthlgefbllowing activities

1. The population of a certain community is knownrorease at a rate proportional to the
number of people present at any time, if the pdmnas doubled in 5 years, how long

will it take to triple? To quadruple?

2. Suppose it is known that the population of the camity in problem 1 is 10,000 after 3
years. What was the initial population? What wélthe population in 10 years?

3. The population of Ethiopia increase at a rate progaal to the number of its inhabitant
present at any time t. If the population of Eth#éopias 40 million in 1980 and 52 million
in 1990, what will be the population of Eth. In 271

Refining the Model to Reflect Limited Growth

Let’s consider that the proportionality factor keasuring the rate of population growth in
equation (8)is now no longer constant but a fumctod the population. As the population
increases and gets closer to the maximum populdiothe rate k decreases. One simple sub-

model for k is the linear one
k=r(M-P), r>0 where r is a constant.
Substitution in to equation (8) leads to

dpP

E=r(M - P)P, (11)
r __dr rdt (12)
P(M -P)
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Again we assume the initial condition §€P. And Equation (11) is referred kogistic growth

By using partial fraction

1. i(& + Lj
PMM-P) M(P M-P
Thus, Equation (12) can be rewritten as

£+i=ert
P M-P

which integrates to
INP-InM -P|=rMt +C (13)
For some arbitrary constant C. Using the initialdion, we evaluate C in the case P<M:

R

C=lIn - rMt,

Substituting in to Equation (13) and simplifyinygs

P P
In -In—2—=rM (t-t
M-P M-P (t=%)
Or Inw=rM(t—to)
PO(M_P)

Exponentiation both sides of this equation gives

P(M B Po) — erM (t-ty)
PR(M-P)

Then,

P,Me™ ) = p(M - R,) + R, Pe™ (™
So that solving for the population P gives
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P MerM (t-to)
0

P(t) =
() M _ PO + Fg)erM (t-ty)

To estimate P ak - o, we rewrite this last equation as

P(t) = P,M

IR (M —P)e ] (14)

The graph of the limited growth Equation (14) i®wh in Figure 4.9 for the case P<M. Such a

curve is called #ogistic curve.

Population

t * Time

Figure 4.9 Graph of the limited growth model.

Activity

Based on logistic growth Equation (11) and its fing solution Equation (14) answer the

following question.
1. For what value of P the maximum rate of growth o2cu

2. Show that the population P in the logistic equateeaches half the maximum population

M at time t given by
t =t, - @/rM)In[R,/(M - R,)]

3. Consider the solution of Equation (11) evaluate ¢bestant C in Equation (13) in the

case that P>M for all t.
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lll. Prescribing Drug Dosage
The problem of how much a drug dosage to presaniigehow often the dosage should be
administered is an important one in pharmacology.nrost drugs there is a concentration below

which the drug is ineffective and a concentratibove which the drug is dangerous.

Problem Identification:- How can the doses and the time between dosegumextito maintain

a safe but effective concentration of the drudhamhlood.

The concentration in the blood resulting from ggkrdose of a drug normally decreases with
time as the drug is eliminated from the body (Fegdir10).

in blood

L1 bl o

1
012345678

Time (hours)

Concentration

Figure 4.10The concentration of a drug in the b&dehm decreases with time

We are interested in what happens to the concemntrat the drug in the blood as doses are

given at regular intervals.
Now our aim is to Model this pharmacological idead Mathematical concept as follow

Let H denotes the highest save level of the drug irbtbedstream and
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L denotes the lowest effective level of the druthmbloodstream; it would be desirable to
prescribe a dosad& with time T between doses so that the concentration of thggidrthe

blood stream remains betwekemndH over each dose period.

Let’s consider several ways in which the drugs mighadministered. In Figure 4.11a the time
between doses is such that effectively there isuildlup of the drug in the system. On the other
hand in Figure 4.11b the interval between dosedivel to the amount administered and the

decay rate of the concentration is such that @wesiconcentration exists at each time the drug is

taken.
C
hel
[#]
2
L0
=
CO ;
k=t
w
=l
5
g
S
0 T 2T 3T Time

a b

Figure 4.11 Residual build up depends on the timerval between administrations of drug
doses

Our ultimate goal in prescribing drugs is to deti@erdoseamountsandintervalsbetween doses
and thereafter the concentration is maintained éetlv andH, as shown in Figure 4.12

!
- T—>||
|

Concentration in blood

i
|
|
§
|

=)
\

Time

Figure 4.12 Safe but effective levels of drug ie bhood: G is the change in

concentration produced by one dose and T is the ititerval between doses
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Assumption:-To solve the problem we have identified, let's ¢desthe factors that determine

the concentratio(t) of the drug in the blood stream at any time t.
We begin with
C(t) = f (decayrateassimilation rate,dosageamount, dosageint erval,...)

And various other factors, including body weightldtood volume. To simplify our

assumptions, let’'s assume body weight and bloodnvelare constants.
Next we determine sub models for decay rate anchdason rate.

Sub-model for Decay RatexConsider the elimination of the drug from the ldstweam. This is
probably a discrete phenomenon, but let's approteémi by a continuous functio@linical
experiments have revealed that the decrease wotieentration of a drug in the blood stream

will be proportional to the concentration.
Mathematically this assumption means:  C'(t) = —kC(t) (15)

In this formula k is a positive constant called #lemination constant of the drug. Notice

C'(t) is negative; it is to describe the decreasing catnagon. In equation (15) the quantities

measured as follows: time t in hours, C(t) is (My/@'(t) is mg/ml.hr, and k is Ff.

Assume that the concentration H and L can be datedvexperimentally for a given population,

such as an age group. Then set the drug concentffati a single dose at the level
C,=H-L (16)
If we assume thaC, is the concentration at t=0, then we have the model

% =-kC, C(0)=C, (17)

The variables can be separable in Equation (17#.sbitution of the model gives

C(t)=C,e™ (18)
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The graph of C(t) looks like the one in Figure «
Figure 4.13 Exponential model for decay of drugasoriration with time

Sub-model for Assimilation Rate:Having made an assumption about how drug concearirat

decreases with time, let's consider how they ire@eagain when drugs are administered. Our
initial assumption is that when a drug is takems diffused rapidly throughout the blood that the
graph looks vertical. That is, we assume an ingtedus rise in concentration whenever a drug

is administered.
Now let’'s see how the drug accumulates in the Idtredm with repeated doses.

Drug Accumulation with Repeated Doses:- Consideatwiappens to the concentrati@it)
when a dose that is capable of raising the conagotr by Co mg/ml eachtime it is given is

administered regularly at fixed time intervals efgthT.

Suppose at time t=0 the first dose is administededording to model (18),

After T hours have elapsed, the residial= C,e ™" remains in the blood, and then the
second dose is administered. Because of our asgumpbncerning the increase in drug

concentration, the level jumps@=C, +C,e™ then after T hours elapse again, the residual
R, =Ce* =C,e™ +C,e* remains in the blood. In similar fashion this coogs for n

successive time we determine a formula for theesidual R.

Rn - Coe—kT + Coe—ZkT +..+ Coe—nkT

19
=C e T +r+r2+. 41" (19)

Wherer =e™ T,
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Figure 4.14 One possible effect of repeating edoaks.

Algebraically,

n-1 =1_rn
1-r

1+r+r2+..+r

So substitution for r in Equation (19)gives theufes

Coe—kT (1 _ e—nkT )

1-e™ (20)

Rn:

When n - o, the numbere ™" is close to 0. As a result, the sequence 8 Ras a limiting

value, which we call R:

. ce™
R= !]I[To]o R, = 1_Oe—kT
C
or R= ekT—O—l (21)

In summary, if a dose is capable of raising theceotration by @ mg/ml is repeated at intervals

of T hours, then the limiting value R of the resilaoncentration is given by Equation (21)

Determining the Dose Schedule:- The concentrdiipnat the beginning of the nth interval is

given by

Ci=GC tR, (22)
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Ch-1to approach H as n becomes large. That is,

H=limC,_, =lim(C,+R_)=C, +R

n- o

Combining this last result witC, = H - L yields
R=L (23)

A meaningful way to examine what happens to theduves concentration R for different

intervals T between doses is to examine R in coispamwith C,, the change in concentration to

each dose. To make this comparison, we form thewmsonless ratio

== (24)

We then solve the preceding equation éfto obtain
e’ =H/L

Taking the logarithm of both sides of this last &ipn and dividing the result by k gives the
desired dose schedule:

=1t (25)
KL

To reach an effective level rapidly, administerasel often called bading dose which will

immediately produce a blood concentration of H nigFhis medication can be followed every

T= %In% hour by a dose that raises the concentratio@py H — L mg/ml.
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Activity

Based on Prescribing Drug Dosage model try to aniveefollowing

1. Discuss how the elimination constant k in Equafits) could be obtained

experimentally for a given drug.

2. (a) If k=0.05h'and the highest safe concentration is e timesotlvest effective
concentration, find the length of time between e¢pe doses that will ensure safe but

effective concentrations.
(b) Does part a give enough information to deteentire size of each dose?
3. Suppose k=0.01Hrand T=10hr.Find the smallest n such tha@R5R.

4. Given H=2mg/ml, L=05mg/ml, and k=0.02hrsuppose concentration below L are not
only ineffective but also harmful. Determine a solegfor administering this drug (in

terms of concentration and times of dosages).

4.4 Modeling with Higher-order differential Equations
In this section we are going to consider sevena¢dr dynamical systems in which each

mathematical model is a second order differentjalaéion with constant coefficients
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d?y
% 4

d
+aq{+aoy:g(t).

Recall that the function g is the input or forcifghction of the system. A solution of the
differential equation on an interval containingand satisfying prescribed initial conditions

Y(to)=Yo, Y'(to)=Y1 is the output or response of the system.

4.4.1 Spring/Mass Systems: Free Un-damped Motion
Hooke's Law: Suppose, as in Figure 4.15, that a magsisrattached to a flexible spring
suspended from a rigid support. When isreplaced with a different mass,nthe amount of

stretch, or elongation, of the spring will of coaitse different.

rigid support
L G | L

unstretched
spring

at rest

(@) (b) (c)

Figure 4.15

By Hooke's law the spring itself exerts a restofioige F opposite to the direction of elongation

and proportional to the amount s of elongation.

Simply stated,F = ks where k is a constant of proportionality called #m@ing constant

Although masses with different weights stretch angpby different amounts, the spring is
essentially characterized by the number k. For @amf a mass weighing 10kg stretches a
spring1/2cm, then 10 = k(1/2) implies k = 20 kg/cm. Neceibgdinen, a mass weighing, say, 8

kg stretches the same spring 2/5cm.
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Newton's Second LawAfter a mass m is attached to a spring; it stetcthe spring by an
amounts and attains a position of equilibrium at whichutsight W is balanced by the restoring
force ks Recall that weight is defined W = mg where mass is measured in slugs, kilograms,or
grams and g = 32 ftfs, 9.8 m/s?, or 980 cm/€ , respectively. As indicated in Figure 2.4.2(b),
the condition of equilibrium iang = ksor mg-ks= 0.If the mass is displaced by an amount x
from its equilibrium position, the restoring foroé the spring is thek(x + s). Assuming that
there are no retarding forces acting on the systechassuming that the mass vibrates free of
other external forceBee motion-we can equate Newton's second law with the natsrltant,

force of the restoring force and the weight:

md—;(=—k(s+x)+mg=—kx+mg—ks=—kx (1)
dt —

Zero

The negative sign in (1) indicates that the restpfiorce of the spring acts opposite to the
direction of motion. Furthermore, we can adopt tle@vention that displacements measured

below the equilibrium position are positive. Segure 4.16

equilibrium
position
mg—ks=0

motion

(@ (b) (c)

Figure 4.16 Mass spring system

Differential Equation of Free Undamped Motion: By dividing (1) by the mass m we obtain

the second-order differential equatidix/dt® + (k/m)x =0 or
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2
%fozo (2)

Wherew” = k/m. Equation (2) is said to describ#nple harmonic motionor free undamped

motion. Two obvious initial conditions associated with) gtex(0) = a, the amount of initial
displacement, and(0) = £, the initial velocity of the mass. For example, ¢ >0, >0, the
mass starts from a point below the equilibrium posiwith an imparted upward velocity. If

a<0,4=0, the mass is released fromast from a point |a| units above the equilibrium

position, and so on.

Solution and Equation of Motion: To solve equation (2) we note that the solutiohghe
auxiliary equationm® + «* = Oare the complex numbers = ai,m, == «i . We find the general

solution of (2) to be
X(t) = c,cosat + C, Sin a. 3)

The period of free vibrations described by (3)T s27/«, and the frequency is

f =1/T =«/2n. For example, for x(t) =2cos3t — 4sin3t.the period is 27/3 and the

frequency i8/2n.. The former number means that the graph of efipats every®n/3 units;

the latter number means that there are 3 cycldseajraph every®n units or, equivalently, that

the mass undergoe®/ 271.complete vibrations per unit time. In additionc@n be shown that the
period272/3 is the time interval between two successive maxahx(t). Keep in mind that a
maximum of x(t) is a positive displacement corregping to the mass's attaining a maximum
distance below the equilibrium position, whereasinimum of x(t) is a negative displacement
corresponding to the mass's attaining a maximurghbhebove the equilibrium position. We
refer to either case as an extreme displacemetiteomass. Finally, when the initial conditions
are used to determine the constantard ¢ in (3), we say that the resulting particular solut

or response is the equation of motion.
Example linterpretation of an IVP

Solve and interpret the initial-value problem
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d?x B B Lo
o HIx=0. X(0)=10 x(0)=0.

SOLUTION The problem is equivalent to pulling a @ a spring down 10 units below the
equilibrium position, holding it until t=0, and theeleasing it from rest. Applying the initial

conditions to the solution
X(t) = c,cos4t + ¢, sin 4t.
gives x (0) = c,.1 + ¢, .0 so that ¢10. Hence
X(t) =10cos4t + ¢, sin4t

From x'(t) = -40sin4t + 4c, cosdt we see thatx'(0) =0=4c,.1 and so &0. Therefore the

equation of motion i(t) =10cos4t.

The solution clearly shows that once the systesetisn motion, it stays in motion, with the mass
bouncing back and forth 10 units on either sidehef equilibrium position x=0. As shown in

Figure 4.17 the period of oscillation#31/4=n/2s.

— X4 mass below equilibrium position
10K — w/2— /
ANWA
T T T T
_I-T;) \/ \/ 4 t
¥=0-=--34----————-- -107 \ x=10 cos 4t
10 e .
i mass above equilibrium position
(b)
(a)
Figure 4.17

EXAMPLE2  Free Un-damped Motion

A mass weighing 2 pounds stretches a spring 6 siohiet= 0 the mass is released from a point
8 inches below the equilibrium position with an @a velocity of 4/3ft/s. Determine the

equation of free motion.
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SOLUTION Because we are using the engineering systieunits, the measurements given in
terms of inches must be converted into feet: 6=id/2ft; 8 in. = 2/3ft. In addition, we must

convert the units of weight given in pounds intatsirof mass. From m = W/g we have
m:3—22 :1_16 slug. Also, from Hooke's law, 2 = k(1/2) implidgat the spring constant is k = 4

Ib/ft. Hence (1) gives

2 2
LA ax or DX eax=0
16 dt dt

The initial displacement and initial velocity a«®) :é,x'(O) = —g,where the negative sign in

the last condition is a consequence of the acttti@mtmass is given an initial velocity in the

negative, or upward, direction.

Nowa” = 64 or w=16, so that the general solution of the differengigiation is
X(t) = c,cos8t + ¢, sin&t. )

Applying the initial conditions to x(t) and x' (@ives c, :g andc, = —%. Thus the equation of

motion is

2 1 .
X(t) = 50038t - Esm 8t. 5)

Alternative Form of x(t) When, ¢, # 0 and c, # 0,the actuaamplitude A of free vibrations is

not obvious from inspection of Equation(3). For rapde, although the mass in Example 2 is
initially displaced 2/3 foot beyond the equilibriuposition, the amplitude of vibrations is a
number larger than 2/3. Hence it is often conventenconvert a solution of form (3) to the
simpler form

X(t) = Asin(at + ¢), (6)
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where A=,/c,® +c,” and ¢is a phase angle defined by

o
A tanp=2 (7)

To verify this we expand (6) by the addition form@br the sine function:

Asinat cosg + Acosat sing = (Asing) cosat + (Acosg)sinat. 8)

It follows from Figure 2.4.5 that ig is defined by

. C C C C
sing=—=——=-" ——2_ =2 then (8) becomes

-1, cosp=
/ClZ +022 A /012 +C22
c, . :
A% cosat + A% sinat = C, Cosut + ¢, sinat = X(t).
A A

4.4.2 Spring/Mass Systems: Free Damped Motion
The concept of free harmonic motion is somewhatalstic since the motion described by

equation (1) assumes that there are no retardimgdaacting on the moving mass. Unless the
mass is suspended in a perfect vacuum, there wilhtbleast a resisting force due to the
surrounding medium. As Figure 4.18 shows, the noastd be suspended in a viscous medium

or connected to a dashpot damping device.

Differential Equation of Free Damped Motion In the study of mechanics, damping forces
acting on a body are considered to be proportitma power of the instantaneous velocity. In
particular, we shall assume throughout the subs#aqiliscussion that this force is given by a
constant multiple ofdx/dt.When no other external forces are impressed onsys¢éem, it

follows from Newton's second law that

m—- = —-kx- 8 —, 9
dt? ﬁdt ®
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where Sis a positive damping constant and the negative siga consequence of the fact that

the damping force acts in a direction oppositéeorhotion.

Dividing (10) by the mass m, we find the differahtequation offree damped motion is

d?x/dt* + (B/m)dx/dt + (k/m)x = 0.or

2
IX 22y w2x=0 (10)
dt dt
Where 2/ = ﬁ, o’ = K (11)
m m

The symbol 24 is used only for algebraic convenience since thgiliary equation is

m® +2im+w” =0and the corresponding roots are themm =-A+vA* -a?,

m, =-A-JA* -af,.

We can now distinguish three possible cases deperath the algebraic sign 4t — «w”. Since
each solution contains the damping face®f',A > thé.displacements of the mass become

negligible for large time.

CASE I: 4* - >0 In this situation the system is said to be ovamed since the damping

coefficient S8 is large when compared to the spring constanthle dorresponding solution of

(10) is x(t) = ce™ + ce™ or

x(t) = e (ge" " + g e ), (12)

This equation represents a smooth and non oscillaotion. Figure 4.19 shows two possible
graphs of x(t).
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Figure 4.18 mass suspended in a viscous medium

‘ t | \/ t
(a) (b)

Figure 4.19 two possible graphs of x(t) in Equa{i®2)

Case Il: /* —«” = 0The system is said to loeitically damped since any slight decrease in the

damping force would result in oscillatory motion.hel general solution of (10) is

X(t) = ¢ce™ + cte™ or
X(t) =e™(c, +c,t). (13)

Notice that the motion is quite similar to thataof over damped system. It is also apparent from

(13) that the mass can pass through the equilibposition at most one time.

CASE lll: A2 -’ <0 In this case the system is said toumeler- damped since the damping

coefficient is small compared to the spring conistéhe roots mand m are now complex:
m =-A++va&’ - A%, m, =-A—-vJa&’ - A% .

Thus the general solution of Equation (10) is
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x(t) = e (c, cosvw’ - At +c, sinVw® — A°t). (14)

As indicated in Figure 2.4.8 the motion describgd(b5) is oscillatory; but because of the

coefficiente™ , the amplitudes of vibration. 0as t — .

N~

‘ \/ ~~— t

Figure 4.20

EXAMPLE 4 Over-damped Motions

It is readily verified that the solution of thetiai-value problem

d?x _dx
—+5—+4x=0, x(0)=1x'(0)=1
a2 0) =1 x'(0)

S« _2 u
X(t)=—e ——e
(t) 3

3 (15)

The problem can be interpreted as representingibedamped motion of a mass on a spring.
The mass starts from a position 1 unit below thaldggium position with a downward velocity
of 1 ft/s.

To graph x(t) we find the value of t for which thenction has an extremum-that is, the value of
time for which the first derivative (velocity) is em. Differentiating (15) gives

X' (t) = —ge“ +§e‘4t so that x'(t) = Oimpliese® :gor t :%Ing = 0157. It follows from the

first derivative test, as well as our physical ititun, that x(0.157)=1.069 ft is actually a
maximum. In other words, the mass attains an exrdiaplacement of 1.069 feet below the

equilibrium position.
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EXAMPLE 5 Critically Damped Motions

An 8-pound weight stretches a spring 2 feet. Asagrttiat a damping force numerically equal to
2 times the instantaneous velocity acts on theesysmodel the equation of motion if the weight

is released from the equilibrium position with g@ward velocity of 3 ft/s.

SOLUTION From Hooke's law we see that 8=k(2)gives k=4 llaffid thatW=mg gives

m= % = %slugs The differential equation of motion is then

2 2
1M=_4X-29‘ ord—zx+82(+16x:0 (16)
4 dt dt

The auxiliary equation for (16) isn* +8m+16=(m+4)* =0so tham =m, =-4. Hence the

system is critically damped and
X(t) = ce™ + cte™. (17)

Applying the initial conditions x(0)=0 and x’(0)=-8ve find, in turn, that C=0 and G=- 3. Thus

the equation of motion is modeled as
x(t) = -3te™. (18)
Example 6 Under-damped Motion

A 16-pound weight is attached to a 5-foot-long sgriAt equilibrium the spring measures 8.2
feet. If the weight is pushed up and released frest at a point 2 feet above the equilibrium
position, find the displacements x(t) if it is fuer known that the surrounding medium offers a

resistance numerically equal to the instantaneelcity.

SOLUTION The elongation of the spring after the weight iated is 8.2-5=3.2ft, so it
follows from Hooke's law that 16=k(3.2) or k =5ftbAn addition, m=16/32=1/2 slug so that the

differential equation is given by
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2 2
1aX oy - B or IX X k=0 (19)
2 dt dat O a Tt

Proceeding, we find that the roots of’ +2m+16=0arem =-1+3 and m, =-1-3i

which then implies the system is under damped and
X(t) =e™(c,cosdt +c, sin3). (20)

Finally, the initial conditions x(0)=-2 and x’(0)=felds g=-2 and e=-2/3, so the equation of
motion is

X(t) = e (—2cos3t —%sinSt) (21)

4.4.3 Spring/Mass Systems: Driven Motion

Differential Equation of Driven Motion with Damping Suppose we now take into
consideration an external ford¢@) acting on a vibrating mass on a spring. For examift)
could represent a driving force causing an osoitiavertical motion of the support of the spring.
See Figure 4.18. The inclusion of f(t) in the fofation of Newton's second law gives the

differential equation ofiriven or forced motion:

d?x dx
m—-=-kx-8— + f(t 22
e l?dt ®) (22)
Dividing (24) by m gives
d?x dx
— 2420 ="+ oPx=F(t 23
dt? dt ® (23)

where F(t) == f(t)/m and, as in the preceding ec81 = B/m, w” =k/m.

To solve the latter non homogeneous equation weusaneither the method of undetermined

coefficients or variation of parameters.
EXAMPLE 7 Interpretation of an Initial-Value Proble m

Interpret and solve the initial-value problem |
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1d3%x dx 1
———+12—+2x=5cos4t, x(0) ==, x'(0) =1 24
5 42 at ) > ) (24)

SOLUTION We can interpret the problem to represeunibrational system consisting of a mass
(m=1/5slug or kilogram) attached to a spring (k #2t or N/m). The mass is released from

rest1/2 unit (foot or meter) below the equilibrigrosition. The motion is dampggs = 1.2) and
is being driven by. An external periodi@ € 721/2s) force beginning at t = 0. Intuitively we

would expect that even with damping the system doeimain in motion until such time as the

forcing function was "turned off," in which casestamplitudes would diminish.

However, as the problem is giveh(t) = 5cos4t will remain "on" forever.
We first multiply the differential equation in (28y 5 and solve

2
X 6% 10x=0,
d® - dt

by the usual methods. Sinog =-3+i and m, =-3-1, it follows that
X, (t) = e (c, cost -, sint).

Using the method of undetermined coefficients, wsuae a particular solution of the form

X, (t) = Acost + Bsin4t). Now
X', (t) = —4Asindt + 4Bcos 4 X" (t) = —~16Acosdt —16Bsin4t.
so thatx, "+6x, +10x, = (-6A+ 24B) cos4t + (-24A - 6B)sin4t = 25cosAt

The resulting system of equations -6A + 24B = 25}A - 6B = 0
yields A =-25/102 and B = 50/51 . It follows that

X (t) =e™*(c, cost —c, sint) - 23 costt + sinat
102 51
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When we set t = 0 in the above equation, we ob;arini—?. By differentiating the expression

and then setting t = 0, we also find they = _86

51

Therefore the equation of motion xs(t) = e™ (i—?cost - gssint) -2 cosAt + %)sinm

51 10z

Activity

1. A 1-kilogram mass is attached to a spring whosestamt is 16 N/m,and the entire syst
is then submerged in a liquid that imparts a dagpance numerically equal to 10 tim
the instantaneous velocity. Model equations of aroif

(a) the weights released from rest 1 meter below the equilibmeosition and

(b) the weight is released 1 meter below the dgyuilin position with an upward velocit
of 12 m/s.

2. A 4-foot spring measures 8 feet long after an 8agoweight is attached to it. Th

medium through which the weight moves offers astasce numerically equal

J2times the instantaneous velocity. Model equatiomotion if the weight is release
from the equilibrium position with a downward vekycof 5 ft/s. Find the time at whic
the weight attains its extreme displacement from equilibrium position. What is th
position of the weight at this instant?

D
(]

e

d
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CHAPTER 5

Basic optimization

Introduction

In the previous Chapters we used calculus to sttee optimization problem
related to modeling. Although we formulated seveopltimization problems
resulting from the first criterion to minimize tlsam of the absolute deviations, we
were unable to solve the resulting mathematicablpra. In this chapter we study
several search techniques that allow us to finddgeautions, and we examine
many other optimization problems as well.

For example, given a collection of data pointqx, y;) ,1 = 1,2 ,...,m , fit the
collection to that line y = ax b (determined by the parameters a dndhat
minimizes the greatest distance,.x between any data poirfk, Yy;) and its
corresponding poir(x;, ax + b) on the line. That is, the largest absolute devmatio
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r = Maximum {|y; — y(x;)|}

IS minimized over the entire collection of datamisi This criterion defines the
optimization problem to ,

Minimize r
r-r.=20

Subjectto } forel,2,...,n
r+r. =20

|
which is alinear programfor many applications. You will learn how to solve
linear programs geometrically and algebraicallythis chapter. We begin by
providing a general classification of discrete oyitiation problems. Our emphasis
iIs on model formulation, whictwill allow you additional practice on the first
several steps of the modeling process while simatiasly providing a preview of
the kinds of problems you will learn to solve invadced mathematics courses.

5.1 An Overview of Discrete Optimization Modeling

To provide a framework for discussing a class studite optimization problems,
we offer a basic model for such problems. The @nwisl are classified according to
the various characteristics of the basic model #natpossessed by the particular
problem. We also discuss variations from the baidel. The basic model is

Optimize f;(X) for j in J

gi(X) {

Now let's explain the notation. To optimize meato maximize or
minimize. The subscript indicates that there may be one or more functions t
optimize. The functions are distinguished by theeger subscripts that belong to
the finite set). We seek the vector oXgiving the optimal value for the set of
functionsf ;(X). The various components of the veckare called the decision

Subject to

AV

] b; foralliin [
(5.1)
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variables of the model. Whereas the functiéngX) are called the objective
functions. Bysubject towe connote that there may be certain side conditibat
must be met. For example, if the objective is tmimize costs of producing a
particular product, it might be specified that etintractual obligations for the
product be met as side conditions. Side conditaraestypically called constraints.
The integer subscript i indicates that there mayope or more constraint
relationships that must be satisfied. A constramaty be an equality (such as
precisely meeting the demand for a product) oruaéty (such as not exceeding
budgetary limitations or providing the minimal ntitmal requirements in a diet
problem). Finally, each constardt represents the level that the associated
constraint functiong;(X) must achieve and, because of the way optimization
problems are typically written, is often called thght-hand side in the model.
Thus, the solution vectorpmust optimize each of the objective function§(X)

and simultaneously satisfy each constraint relahgm We now consider one
simplistic problem illustratinghe basic ideas.

EXAMPLE 1 Determining a Production Schedule

A carpenter makes tables and bookcases. He igyttgiretermine how many of
each type of furniture he should make each weele Tarpenter wishes to
determine a weekly production schedule for tables$ l@ookcases that maximizes
his profits. It costs $5 and $7 to produce tabled laookcases, respectively. The
revenues are estimated by the expressions

50x, — 0.2¢* where x is the number of tables produced per week
and

65x, — 0.3, where x is the number of bookcases produced per week

In this example, the problem is to decide how ynables and bookcases to
make every week. Consequently, the decision vasaaie the quantities of tables
and bookcases to be made per week. We assume thischedule so non integer
values of tables and bookcases make sense. Thetiebjiunction is a nonlinear
express ion representing the net weekly profitdadalized from selling the tables
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and bookcases. Profit is revenue minus costs. Thafit pfunction is,
f(%,%)=50%- 0.2+ 65¢— 0.3¢ — 5~ 7

There are no constraints in this problem.

Let's consider a variation w the previous scemafhe carpenter realizes a
net unit profit of $25 per table and $30 per boskcaHe is trying to determine
how many of each piece of furniture he should mekeh week He has up to 600
board feet of lumber to devote weekly to the progetd up to 40 hr of labor. He
can use lumber and labor productively elsewheréhély are not used in the
production of tables and bookcases. He estimatsittihequires 20 board feet of
lumber and 5 hr of labor to complete a table and@&érd feet of lumber and 4 hr
of labor for a bookcase. Moreover, he has signedracts to deliver four tables
and two bookcases every week. The carpenter wishedetermine a weekly
production schedule for tables and bookcases tlatimizes his profits. The
formulation yields

Maximize 25x; + 30x;
subject to
20x; 4+ 30x2 < 600 (lumber)
5x1 +4x; <4 (labor)
x >4 (contract)

Xy >2 (contract)

5.1.1 Classifying Some Optimization Problems

There are various ways of classifying optimizagwoblems. These classifications
are not meant to be mutually exclusive but to dbsccertain mathematical
characteristics possessed by the problem undestigaion. We now describe
several of these classifications.

An optimization problem is said to be unconstrdiné there are no
constraints and constrained if one or more sidalitions are present. The first
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production schedule problem described in Exampiéudtrates an unconstrained
problem.

An optimization problem is said to be a lineaogmam if it satisfies the
following properties:

1. There is a unique objective function.
2. Whenever a decision variable appears in [eftieeobjective function or

one of the constraint functions, it mustegoponly as a power term with

an exponent of 1, possibly multiplied byoastant.
3. No term in the objective function or in any of #@nstraints can contain

products of the decision variables.
4. The coefficients of the decision variableshi@objectivefunctionand each

constraint are constant.
5. The decision variables are permitted to assumédraad as well as integer

values.
These properties ensure, among other thingsthieagffect of any decision
variable isproportionalto its value. Let’s examine each property moreedios
Property 1 limits the problem to a single objective functi®roblems with

more than one objective function are called muljeotive or goal programs.
Properties 2 and 3are self-explanatory, and any optimization probthat fails to
satisfy either one of them is said to be nonlinddure first production schedule
objective function had both decision variables @sased terms and thus violated
Property 2. Property 4 is quite restrictive for many scenarios you migigh to
model. Consider examining the amount of board &eet labor required to make
tables and bookcases. It might be possible to kexactly the number of board
feet and labor required to produce each item acarporate these into constraints.
Often, however, ills impossible to predict pregystle required values in advance
(consider trying to predict the market price ofrgoror the coefficients represent
average values with rather large deviations from dlctual values occurring in
practice. The coefficients may be time dependentwad; lime-dependent
problems in a certain class are called dynamicnarag. If the coefficients are not
constant but instead are probabilistic in natuhe problem is classified as a
stochastic prog ram. Finally, if one or more of teeision variables are restricted
to integer values (hence violatiigoperty 5). The resulting problem is called an
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integer program (or a mixed integer program if thieger restriction applies to
only a subset of the decision variables). In theiatian of the production
scheduling problem. It makes sertseallow fractional humbers of tables and
bookcases in determining a weekly schedule bedaeyecan be completed during
the following week.

5.1.2 Unconstrained Discrete Optimization Problem

A criterion considered for fitting a model to dggaints is minimizing the sum of
absolute deviations. For the model yf{), if y(x) represents the function
evaluated at x 5x and (X, y;) denotes the corresponding data point for i =.1,2.
,m points, then this criterion can be formulated d®ves: Find the parameters of
the model y= f(x) to

Optimize f;(X) for j in J

& (X) {

This last condition illustrates an unconstrainedi@zation problem. Because the
derivative of the function being minimized fails be continuous (because of the
presence of the absolute value), it is impossiblesdlve this problem with a

straightforward application of the elementary chlsu

Subject to

AV

] b;foralliin/

In the next several sections we focus ournate on solving linear
programming problems, first geometrically and tbgrihe Simplex Method.

Use the model-building process described in thevipus chaptersto
analyze the following scenarios. You may find iptu¢ to answer the following
guestions in words before formulating the optim@amodel:

(a)ldentify the decision variables: What decisionoide made?
(b)Formulate the objective function: How do these sieas affect the
objective?

c) Formulate the constraint set: What camsts must be satisfied? Be
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sure to consider whether negativeeshf the decision variables are

allowed by the problem, and ensure dreyso constrained if required.

After constructing the model, check the assumgtion a linear program
and compare the form of the model to the exampleshis section. Try to
determine which method of optimization may be agdgib obtain a solution.

1. Nutritional Requirements—A rancher has determined that the
minimum weekly nutritional requirements for an aage-sized horse
include 40 Ib of protein, 20 |b of carbohydratesdat5 Ib of roughage.
These are obtained from the following sources iryimg amounts at the
prices indicated:

Protein Carbohydrates Roughage
(Ib) (b) (Ib) Cost
Hay 0.5 2.0 5.0 $1.80
(per bale)
Oats 1.0 4.0 2.0 3.50
(per sack)
Feeding blocks 20 0.5 1.0 0.40
(per block)
High-protein 6.0 1.0 25 1.00
concentrate
(per sack)
Requirements 40.0 20.0 45.0
per horse
(per week)

Formulate a mathematical model to determine hmwnéet the minimum
nutritional requirements at minimum cost.

5.2 Linear Programming I: Geometric Solutions

Consider using the Chebyshev criterion to fit thedel y =cx to the
following data set:
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The optimization problem that determines the patameto minimize

the largest absolute deviatidn — ‘Yi - Y(X)‘ (residual or error) is
the linear program

Minimize r
subject to

r—-2-¢)>0 (constraint 1)

r+2-¢)>0 (constraint 2)
r—58-2c)>0 (constraint 3)
r+3-2)=>0 (constraint 4)
r—8-30)>=0 (constraint 5)
r+@8—-3c)>0 (constraint 6) |

(5.2)
In this section we solve this problem geometrically

5.2.1 Interpreting a Linear Program Geometrically

Linear programs can include a set of constrairds &ne linear equatiorss linear
inequalities. Of course, in the case of two deaisiariables, equality requires that
solutions to the linear program lie precisely oa lime representing the equality.
What about inequalities? To gain some insight, icamghe constraints

x1+2x3 <4

220 (5.3)
The non negativity constraintsx, X, =0 mean that possible solutions lie in the
first quadrant. The inequality, +2X, < 4 divides the first quadrant into two
regions. Thefeasibleregion is the half-space in which the constrainsasisfied.

The feasible region can be found by graphing theatogn X +X, =4 and

determining which half-plane is feasible, as shown Figure 5.1.
If the feasible half-plane fails to be obviouspose a convenient point (such
as the origin) and substitute it into the constriondetermine if it is satisfied. If it
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Is, then all points on the same side of the lingh&s point will also satisfy the
constraint.

Figure 5. x>
The feasible region for the
constraints x; + 2xp < 4,
xp,x2 >0

Infeasible

Xy + 2t2: 4

Feasible

.rl

A linear program has the important property tthet points satisfying the
constraints form a&onvex setwhich is a set in which any two of its points are
joined by a straight line segment, all of whosengiie within the set. The set
depicted in Figure 5.2a fails to be convex, whetkasset in Figure 5.2b is convex.

Figure 5.2 - Line segment joining points A and B
The set shown in a is not does not lie wholly in the set
convex, whereas the set / E
shown in b 1s convex F
> D
C
A
B
a b

An extreme point (corner point) of a convex seamy boundary point in the
convex set that is the unique intersection pointtvad of the (straight line)
boundary segments. In Figure 5.2b, points A—F atteeme points. Let's now
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find the feasible region and the optimal solutiar the carpenter’s problem
formulated in Example 1 in Section 5.1.

EXAMPLE 1 The Carpenter’s Problem

The convex set for the constraints in the carp&npoblem is graphed and given
by the polygon region ABCD in Figure 5.3. Note thiagre are six intersection
points of the constraints, but only four of thesents (namely, A-D) satisfy all of

the constraints and hence belong to the convexT$et. points A - D are the

extreme points of the polygon. The variablesuyd y will be explained later.

If an optimal solution to a linear program exigtsmust occur among the
extreme points of the convex set formed by thetebnstraints. The values of the
objective function (profit for the Carpenter’s pleim) at the extreme poinése

Figure 5.3 13
The set of points satisfying
the constraints of the
carpenter’s problem form a
convex set

¥z

Objective function value:
251; 4+ 301, =750

Extreme point Obijective function value

A (0,0) %0
B (24,0) 600
C((12,15) 750

D (0, 23) 690
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Thus, the carpenter should make 12 tables andakchses each week to earn a
maximum weekly profit of $750. We provide furthexagnetrical evidence later in
this section that extreme point C is optimal.

Before considering a second example, let's sunzedhe ideas presented
thus far. The constraint set to a linear prograra onvex set, which generally
contains an infinite number of feasible pointshe tinear program. If an optimal
solution to the linear program exists, it must Akeh on at one or more of the
extreme points. Thus, to find an optimal solutiai® choose from among all the
extreme points the one with the best value forothjective function.

EXAMPLE 2 A Data-Fitting Problem

Let’s now solve the linear program represented yefion (5.2). Given the model
y = cxand the data set

x]l23
y|2 5 8

Figure 5.4 r
The feasible region for
fitting y =cxtoa

collection of data LY

Constraint &

Constraint 5

a- ,
Constrain 4

Constraint 3 Constraint 2

7

Optimurm selution
1 ] -

P f
4 5

Constring 1
l L

LR
-

we wish to find a value for such that the resulting largest absolute deviatimn
as small as possible. In Figure 5.4 we graph thefsax constraints
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r—2-¢)>0 (constraint 1)
r+2-¢=>0 (constraint 2)
r—-5-200>0 (constraint 3)
r+(G5-20)>0 (constraint 4)
r—(8-3c)>0 (constraint 5)
r+@8—-3¢)>0 (constraint 6)

by first graphing the equations

r—-2-¢)=0 (constraint 1 boundary)
r+2-¢)=0 (constraint 2 boundary)
r—-6-200=0 (constraint 3 boundary)
r+(5—-20)=0 (constraint 4 boundary)
r—8—-3c)=0 (constraint 5 boundary)
r+@8—-3c)=0 (constraint 6 boundary)

We note that constraints 1,3, and 5 are satistedaand to the right of the graph
of their boundary equations. Similarly, constraits4, and 6 are satisfied above
and to the left of their boundary equations. Towoce your self, pick a point
(such as the origin) and determine if the poinisfas the constraint. If it does, it
must be in the feasible region determined by thenstaint.

The intersection of all the feasible regions @mnstraints 1—6 form a
convex set in the, r plane, with extreme points labeléd—Cin Figure 5.4. The
pointAis the intersection of constraiftand the r axist - (8 - 3c) =0 ana =0, or
A= (0, 8). Similarly B is the intersection of constrairisnd 2:

r—(8—-3c)=0 or r+3c=28
r+2—-c)=0 or r—c=-2

C is the intersection of
constraints 2 and 4 yieldinG = (3, 1). Note that the set iboundedlIf an
optimal solution to the problem exists, at least emtreme point must take on the

yieldingc = 3 andr = ,0r B = . ). pinay,
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optimal solution. We now evaluate the objectivection f(r) = r at each of the
three extreme points.

Figure 5.5

Extreme point  Objective function value

(c.r) fry=r
A 8
B 3
C 1

The extreme point with the smallest valuer o the extreme poinB with

51
coordinates (55) . Thus, ¢ =25x, + 30x,is the optimal value of. No other

1

value ofc will result in a largest absolute deviation as straal‘rmaX‘ - 2

5.2.2 Empty and Unbounded Feasible Regions

We have been careful to say that if an optimaltgmiuo the linear program exists,
at least one of the extreme points mag&e on the optimal value for the objective
function. When does an optimal solution fail tostRiMoreover, when does more
thanoneoptimal solution exist?

If the feasible region is empty, no feasible solucan exist. For example,
given the constraints

X <3 & x=5

there is no value ofxXhat satisfies both of them. We say that such tcaim$ sets
areinconsistent.
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There is another reason an optimal solution radyd exist, that is when the
feasible region isunbounded(in the sense that either, or X can become
arbitrarily large). Then it would be impossible to

Maximize x| + x;

over the feasible region becausgand % can take on arbitrarily large values.
Note, however, that even though the feasible regsonnbounded, an optimal
solutiondoesexist for the objective function we considered xaBple 2. So it is
not necessaryor the feasible region to be bounded for an optspéution to exist.

Level Curves of the Objective Function

Consider again the carpenter’s problem. The oljedtinction is25x, + 30X, and
in Figure 5.6 we plot the lines

25x; 4+ 30xy = 650
25x) + 3OX2 = 750
25x1 4+ 30x; = 850

in the first quadrant
Note that the objective function has constantuesl along these line
segments. The line segments are called level cuwivd®e objective function. As

we move in a direction perpendicular to these iegments, the objective function
either increases or decreases.
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Figure 5.6 x
The level curves of the
objective function f are
parallel line segments in the
first quadrant; the objective
function either increases or
decreases as we move in a
direction perpendicular to
the level curves

25x + 30x, = 850
25x, + 30x, =750

25x; + 30x, = 650

,‘1

THEOREM 1

Suppose the feasible region of a linear prograainenempty and bounded convex
set. Then the objective function must attain bothaaimum and mini mum value
occurring at extreme points of the region. If teadible region is unbounded, the
objective function need not assume its optimal egluf either a maximum or
minimum does exist, it must occur at one of theere points.

The power of this theorem is that it guaranteesgimal solution to a linear
program from among the extreme points of a boumde®mpty convex set.

Problems

1. Consider a company that carves wooden soldiérs company specializes in
two maintypes: Confederate and Union soldiers. The profit for emc$28 and
$30, respectively. It requires 2 units of lumberh#of carpentry, and 2 hr of
finishing completing a Confederate soldier. It regs 3 units of lumber3.5 hr of
carpentry, and 3 hr of finishing completing a Uniealdier. Each week the
company has 100 Units of lumber delivered. Theeel®0 hr of carpenter machine
time available and 90 hr of finishing time availmbDetermine the number of each
wooden soldier to produce to maximize weekly psofit

2. Solve the following problems using graphical anislys
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a) Maximizex y b) Minimize x+ y

Sujectta x ¥6 Sujectta x »6
3X-ys<9 3x-y=9
X, y=20 X, y=0

c) Maximize25 x+ 30 X
Sujectta 20 x+ 30 x< 690
5% +4x,<120 &x,%=0

5.3 Linear Programming II: Algebraic Solutions

The graphical solution to the carpenter's problemggests a rudimentary
procedure for finding an optimal solution to a Ang@rogram with a nonempty
and bounded feasible region:

1. Find all intersection points of the constraints.
2. Determine which intersection points, if aage feasible to obtain the
extreme points.
2. Evaluate the objective function at each extrematpoi
3. Choose the extreme point(s) with the largest (omllast) value for the
objective function.

To implement this procedure algebraically, we imuabkaracterize the
intersect ion points and the extreme points.

The convex set depicted in Figure 5.7 consistshode linear constraints
(plus the two non negativity constraints).The naative variables y v, & y;
indicated in the figure measure the degree by whigoint satisfies each of the
constraints I, 2, and 3, respectively. The variables added to the left side of
inequality constraint to convert it to an equality. Thus; ¥ O characterizes those
points that lie precisely on constraint 2, and gatiee value for yindicates the
violation of constraint 2. Likewise, the decisioarnablesx; and % are constrained
to nonnegative values. Thus, the values of thesamtivariables x& x, measure
the degree of satisfaction of the non negativitgstrints, x, 2,0 x, > 0. Note that
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along the x axis, the decision variable, xs 0. Now consider the values for the
entire set of variables {1%,y1,¥»,y3}. If two of the variables simultaneously have
the value 0, then we have characterized an intiogsepoint in the . plane. All
(possible) intersection points can be determinestesyatically by setting all
possible distinguishable pairs of the five varigbte zero and solving for the
remaining three dependent variables. If a solutionthe resulting system of
equations exists, then it must be an intersect@mntpwhich may or may not be a
feasible solution. A negative value for any of fhe variables indicates that a
constraint is not satisfied. Such an intersectiomtpwould be infeasible. For
example, the intersection point B, whese@ and x=0, gives a negative value for
y: and hence is not feasible. Let's illustrate thecpdure by solving the

carpenter’s problem algebraically.

Figure5.7

The variables x,, x5, y;, y2,
and y3 measure the
satisfaction of each of the
constraints; intersection
point A is characterized by
¥1 = x| = 0; intersection
point B is not feasible
because y) is negative; the
intersection points
surrounding the shaded
region are all feasible
because none of the five
variables is negative there

EXAMPLE 1 Solving the Carpenters Problem Algebrallya

The carpenter’'s model is :

Maximize25 x+ 30 X
Sujectta 20 x+30 x< 69q lumb ey
5x, +4x, < 12(( labor) &x,% = 0 nonnegativit)
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We convert each of the first two inequalitieseiguations by adding new
nonnegative “slack” variableg & y.. If either y; or y; is negative, the constraint is
not satisfied. Thus, the problem becomes

Maximize25 x+ 30 x
Sujectta 20 x+ 30 x+ y< 690
X +4x,+ Yy, <120 & X,%, ¥, %= C
We now consider the entire set of four varialfbegx,X3,Xs}, which are
interpreted geometrically in Figure 5.8. To deterena possible intersection point
in the %X, plane, assign two of the four variables the vateeo. There are
41

2121
two at a time). Let’s begin by assigning the vadeahx and % the value zero,
resulting in the following set of equations:

=6 possible intersection points to consider in thiy \{faur variables taken

y, =690, y, = 12(

Figure 5.8 X
The variables

{x1, x2, ¥1. ¥2} measure the
satisfaction of each
constraint; an intersection
poipt is characterized- by D0, 23)
setting two of the variables

(0, 30

to zero

A0, 0) B(24,0) (345,0)
which is a feasible intersection pointA(00) because all four variables are
nonnegative.

For the second intersection point we choose Hr@ables x and y and set
them to zero, resulting in the system
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30x; = 690
4x; + y2 =120

that has solutionx= 23 and y = 28, which is also a feasible intersection point
D(0, 23).

For the third intersection point we chooseard y and set them to zero,
yielding the system

30x, +y, = 69C
4x, =120

with solution % = 30 and y = -210. Thus, the first Constraint is violated 21,0
units, indicating that the intersection point (0,0)3 is infeasible.

In a similar manner, choosiggand y and setting them to zero gives%2
and % = 15, corresponding to the intersection poidt(12,15), which is feasible.
Our fifth choice is to choose the variablgsaxd y and set them to zero, giving
values of x, = 34.5 and y= -52.5, so the second constraint is not satisfiéds,
the intersection point (34.5, 0) is infeasible.

Finally we determine the sixth intersectoint by setting the variables x
and y zero to determine;x= 24 and y = 210: therefore, the intersection point
B(24,0) is feasible.

In summary, of the six possible intersecfp@mts in the ¥, plane, four were
found to be feasible. For the four we find the eabf the objective function by
substitution:

Extreme point  Value of objective function

A(0,0) $0

D(0, 23) 690
C(12, 15) 750
B(24,0) 600

Our procedure determines that the optimum soluttanaximize the profit is x=
12 and x = 15. That is, the carpenter should make 12 talded is
bookcases for a maximum profit of $750.
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Problems
1. How many possible intersection points areethe the following cases?
(a) 2 decision variables and Thequalities
(b) 2 decision variables and £0inequalities

(c) 25 decision variables andsbihequalities

5.4 Linear Programming Ill: The Simplex Method

So far we have learned to find an optimal extremimtpby searching among all
possible intersection points associated with thasttn and slack variables. Can
we reduce the number of intersection points weadlgticonsider in our search?
Certainly, once finding an initial feasible intetien point, we need not consider a
potential intersection point that fails to impraye value of the objective function.
Can we test the optimality of our current solutiagainst other possible if
intersection points? Even if an intersection pgi@mises to be more optimal than
the current extreme point, it is of no interestitilviolates one or more of the
constraints. Is there a test to determine if a @sed intersection point is feasible?
The Simplex Method, developed by George Dantzigonporates botloptimality
and feasibility tests to find the optimal solution(s) to a lineangram (if one
exists).

An optimality test shows whether or not an intetie® point corresponds to a
value of the objective function better than the tbgalue found so far.
A feasibility test determines whether the propos®drsection point is feasible.

To implement the Simplex Method we first sepatate decision and slack
variables into two non overlapping sets that wétbal independent and dependent
sets. For the particular linear programs we comgsithe original independent set
will consist of the decision variables, and thecklaariables will belong to the
dependent set.
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5.4.1 Steps of the Simplex Method

. Tableau Format Place the linear program in Tableau Format, ataged
later.

. Initial Extreme Point: The Simplex Method begins with a known extreme
point, usually the origin (0, 0).

. Optimality Test: Determine if an adjacent intersection point iny@® the

value of the objective function. If not, the curextreme point is optimal.

If an improvement is possible, the optimality téstermines which variable

currently in the independent set (having value yesioould enter the

dependent set and become nonzero.

Feasibility Test To find a new intersection point, one of the ghles in

the dependent se muskit to allow the entering variable from Step 3 to

become dependent. The feasibility test determirf@shwcurrent dependent

variable to choose for exiting, ensuring feasipilit

. Pivot: Form a new equivalent system of equations byielting the new
dependent variable from the equations that do aotain the variable that
exited in Step 4. Then set the new independenabigs to zero in the new
system to find the values of the new dependentakbas, thereby
determining an intersection point.

. Repeat Steps 3 - bintil an optimal extreme point is found.

Before detailing each of the preceding stepss leikamine the
carpenter’'s problem (Figure 5.9). The origin is extreme point, so we
choose it as our starting point. Thus,and % are the current arbitrary
independent variables and assigned the value wdrexeas y andY, are
the current dependent variables with values of &@ 120, respectively.
The optimality test determines if a current indeget variable assigned
the value zero could improve the value of the dbjecfunction if it is
made dependent and positive. For example, eitheorxx, if made
positive, would improve the objective function valy(They have positive
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coefficients in the objective function we are tiyito maximize.) Thus, the
optimality test determines a promising variablestder the dependent set.
Later, we give a rule of thumb for choosing whiodependent variable to
enter when more than one candidate exists. In dngeater's problem at
hand, we selectyyas the new dependent variable.

Figure 5.9 £

The set of points satisfying

the constraints of a linear

program (the shaded region) ‘ (038} vanieau |
form a convex set

Sx; +4x; £ 120, Constraint 2

¥

"7 Tableau 2, optimal o _
, Objective function valug:
25x, + 30x, = 750

PR

20x, + 30x, £ 690
Constraint I

B(24, 0‘)>\ (34.5, 0)

The variable chosen for entry into the dependsit by the optimality
condition replaces one of the current dependerabias. The feasibility condition
determines which exiting variable this enteringiatale replaces. Basically, the
entering variable replaces whichever current depeindariable can assume a zero
value while maintaining nonnegative values for #ilé remaining dependent
variables. That is, the feasibility condition eresithat the new intersection point
will be feasible and hence an extreme point. lruféd.9, the feasibility test would
lead us to the intersection point (0,23), whiclfessible, and not to (0, 30), which
Is infeasible. Thus, 2 replace §s a dependent or nonzero variable. Therefgre, x
enters and yexits the set of dependent variables.

Tableay [ msmeic—
A0, Oy

II

5.4.2 Computational Efficiency

The feasibility test does not require actual compomn of the values of the
dependent variables when selecting an exiting blifor replacement. Instead,
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we will see that an appropriate exiting variablsetected by quickly determining
whether any variable becomes negative if the degr@nhriable being considered
for replacement is assigned the value zero (a tesiothat will be explained later).
If any variable would become negative, then the eddpnt variable under
consideration cannot be replaced by the enteringabla if feasibility is to be
maintained. Once a set of dependent variables sfppneling to a more optimal
extreme point is found from the optimality and fedsy tests, the values of the
new dependent variables are determined by pivotiflge pivoting process
essentially solves an equivalent system of equstifum the new dependent
variables after the exchange of the entering afithgxariables in the dependent
set. The values of the new dependent variablesobtained by assigning the
independent variables the value zero. Note thagy onke dependent variable is
replaced at each stageeometrically, the Simplex Method proceeds frormédial
extreme point to an adjacent extreme point untibd@acent extreme point is more
optimal. At that time, the current extreme point is an oplfirsolution. We now
detail the steps of the Simplex Method.

STEP 1 Tableau Format Many formats exist for implementing the
Simplex Method. The format we use assumes the gedunction is to be
maximized and that the constraints are less thaggaal to inequalities. (If the
problem is no expressed initially in this formatcdan easily be changed to this
format.) For the carpenter’'s example, the prolketo

Maximize 25x1 + 30x;

subject to

20x; + 30xy <690
Sx1+4x <120
xi,x2 >0

Next we adjoin a new constraint to ensure that solution improves the
best value of the objective function found so Teake the initial extreme point as
the origin, where the value of the objective fuoitis zero. We want to constrain
the objective function to be better than its curremlue, so werequire

25x1 +30x3 > 0
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Because all the constraints must Ee inequalities, multiply the new
constraint by -1 and adjoin it to the original civamt set:

20xy + 30x7 < 690 (constraint 1, lumber)
Sxy; +4x3 <120 (constraint 2, labor)

~25x; —30x <0 (objective function constraint)

The Simplex Method implicitly assumes that alti@bles are nonnegative,
so we do not repeat the non negativity constraintdhe remainder of the
presentation.

Next, we convert each inequality to equality logliag anonnegativenew
variable y (or z) called alack variablebecause it measures the slack or degree of
satisfaction of the constraint. A negative valueyfoindicates the constraint is not
satisfied. (We use the variable z for the objectiwection constraint to avoid
confusion with the other constraints.) This proagsss theaugmented constraint

20x, + 30x, + y, = 69(
ox, +4x,+y,=120
—-25x —-30x,+z=0
where the variables x,,y:,y, are nonnegative. The value of the variable z

represents the value of the objective functionjyashall see later. (Note from the
last equation, z = 25% 30x is the value of the objective function.)

STEP 2 Initial extreme point Because there are two decision variables, a
possible intersection points lie in thexxplane and can he determined by setting
two of the variables {xx,,y1,y-} to zero. (The variable is alwaysa dependent
variable and represents the value of the objedtinetion at the extreme point in
guestion.) The origin is feasible and correspondbe extreme point characterized
by x=x =0,y =690, and y= 120. Thus, x and % are independent variables
assigned the value 0;;,),, and z are dependent variables whose valuethanme t
determined. As we will see, conveniently recorasahbrrent value of the objective
function at the extreme points of the convex seha xx, plane as we compute
them by elimination.
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STEP 3 The optimality test for choosing an entering &bk In the
preceding form at, a negative coefficient in the [@r objective function) equation
indicates that the corresponding variable couldrowe the current objective
function value. Thus, the coefficien®5 and -30 indicate that eithey &r X could
enter and improve the current objective functiohugaof z = 0. (The current

constraint corresponds to Zz=25x+30x = 0, with x, and % currently

independent and 0.) When more than one candidats éar the entering variable,

a rule of thumb for selecting the variable to ember dependent set is to select that
variable with the largest (in absolute value) negatoefficient in the objective
function row. If no negative coefficients existetlourrent solution is optimal. In
the case at handye choose x as the new entering variable. (The procedure is
inexact because at this stage we do not know wdlaes the entering variable can
assume.)

STEP 4 The feasibility condition for choosing an exgivariable The
entering variable x(in our example) must replace either gr y, as a dependent
variable (because awaysremains the third dependent variable). To determine
which of these variables is to exit the dependetfgst divide the right-hand side
values 690 and 120 (associated with the originalstraint inequalities) by the

components for the entering variable in each inlgu@0 and4, respectively, in

our example) to obtain the rati%%): 23 & 1—420: 30. From the subset of ratios that

arc positive (both in this case), the variable egponding to the minimum ratio is
chosen for replacement ;(ywhich corresponds to 23 in this cas&éhe ratios
represent the value the entering variable wouldaobif the corresponding exiling
variable were assigned the valQe Thus, only positive values are considered and
the smallest positive value is chosen so as naite @ny variable negative. For
instance, if y were chosen as the exiting variable and assigresalue 0, then,x
would assume a value 30 as the new dependent kartdbwever, then ywould
be negative, indicating that the intersection pddhB80) does not satisfy the first
constraint. Note that the intersection point (0,3000t feasible in Figure 5.9. The
minimum positive ratio rule illustrated previoushpviates enumeration of any
infeasible intersection points. In the case at hatiee dependent variable
corresponding to the smallest ratio 23 is 30 it becomes the exiting variable.
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Thus, %, y» and z form the new set of dependent variablesxarahd yform the
new set of independent variables.

STEP 5 Pivoting to solve for the new dependent varialdkies Next we
derive a new (equivalent) system of equations byieating the entering variable
X, in all the equations of the previous system thatndt contain the exiting
variable y. There are numerous gays to execute this step, asithe method of
elimination used in Section 5.3. Then we find thalues of the dependent
variables, %, ¥, , andz when the independent variablesandy, are assigned the
value 0 in the new system of equations. This ikedahe pivoting procedure. The
values of x and % give the new extreme point,(x,), andz is the (improved)
value of the objective function at that point.

After performing the pivot, the optimality test applied again to determine
if another candidate entering variable exists.olf hoose an appropriate one and
apply the feasibility lest to choose an exitingiahale. Then the pivoting procedure
Is performed againThe process is repeated until no variable has a negativ
coefficient in the objective function row. We nownsmarize the procedure and
use it to solve the carpenter’s problem.

Summary of the Simplex Method
STEP 1 Place the problem in Tableau Format. Adjoin lsleariables as
needed to convert inequality constraints to eqgealitRemember that all variables
are nonnegative. Include the objective functionstiaint as the last constraint,
including its slack variable z.

STEP 2 Find one initial extreme point. (For the prob&we consider, the
origin will be an extreme point.)

STEP 3 Apply the optimality test. Examine the last egpm@a (which
corresponds to the objective function). If allgsefficients are nonnegative, then
stop; The current extreme point is optimal. Otheeyisome variables have
negative coefficients, so choose the variable whih largest (in absolute value)
negative coefficient as the new entering variable.

STEP 4 Apply the feasibility test. Divide the curremgt-hand-side values
by the corresponding coefficient values of the emg¢evariable in each equation.
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Choose the exiting variable to be the one corredipgnto the smallest positive
ratio after this division.

STEP 5 Pivot. Eliminate the entering variable from all the atijons that
do not contain the exiting variable. Then assignualue 0 to the variables in the
new independent set (consisting of the exited téiand the variables remaining
after the entering variable has left to become déeet). The resulting values give
the new extreme poirfk;. X,) and objective function value z for that point.

STEP 6 Repeat Steps 3 - 5 until an optimal extremetpsifound.

EXAMPLE 1 The Carpenter’s Problem Revisited
STEP 1 The Tableau Format gives

20x, +30x, + y, = 690
oX +4x,+y,=120
—25% —30,+z =0
STEP 2 The origin (0,0) is an initial extreme point fahich the independent

variables areq =x, = 0, and the dependent variabés y,= 690,y, = 120, andz =
0.

STEP 3 We apply the optimality test to choose 2 as thgable entering the
dependent set because it corresponds to the negadefficient with the largest
absolute value.

STEP 4 Applying the feasibility testye divide the right-hand-side values 690
and 120 by the components for the entering variapiae each equation (30 and

4,respectively), yielding the rati%%gz 23 & %Oz 30. & z= 0. The smallest positive

ratio is 23, corresponding to the first equatioat thas the slack variable. yT' hus,
we choosey, as the exiting dependent variable.

STEP 5 We pivot to find the values of the new dependeamiables ¥, y, and z
when the independent variablesandy, are set to the value 0. After eliminating
the new dependent variablg fxom each previous equation that does not contain
the exiting variable ywe obtain the equivalent system
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2 1
X1 +x 4+ =y =23

3 30

7 2

3N BT =28
=5x + ¥ +z =690

Setting x;=y;=0, we determine x= 23, y = 28, andz = 690. These results give
the extreme point (0, 23) where the value of thgdalve function is z = 690.

Applying the optimality test again, we set thia¢ current extreme point
(0,23) is not optimal (because there is a negatedficient-5 in the last equation
corresponding to the variablg)xBefore continuing, observe that we really do not
need to write out the entire symbolism of the eiguatin each step. We merely
need to know the coefficient values associated withvariables in each of the
equations together with the right-hand side. A dalfibrmat, ortableau, is
commonly used to record these numbers. We illestthe completion of the
carpenter’s problem using this format, where thedees of each column designate
the variables; the abbreviation RHS is the valuéhefright-hand side. We begin
with Tableau 0, corresponding to the initial exteepoint at the origin.

Tableau 0 (Original Tableau)

X X2 ¥ y2 Z RHS
200 30 1 0 0]6%0¢(=y)
5 4 0 ] 01 120(= yy)

25 30D 0 0 1| 0(=2

Dependent variables: {v|. y,, z}
Independent variables: x; = xy = 0
Extreme point: (x1, x7) = (0, 0)
Value of objective function: 7 = 0

Optimality Test The entering variable is Xcorresponding to -30 in the last row).

Feasibility Test Compute the ratios for the RHS divided by thefftaents in
the column labeled,xo determine the minimum positive ratio.
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. /—Entenng variable
X X2 N m RHS Ratio

Z
20 30 1 0 0] 69 |Q3) (=690/30)<Exiting variable
54 0 1 0] 120 |30 (=120/4)

-25 (3300 0 0

Choose y, corresponding to the minimum positive ratio 23hesexiting variable.

p—

0 *

Pivot Divide the row containing the exiting varialfiee first row in this case) by
the coefficient of the entering variable in thatwr@he coefficient of x in this
case), giving a coefficient of 1 for the enterirggigble in this row. Then eliminate
the entering variable,Xrom the remaining rows (which do not contain éx&ing
variable y and have 0 coefficient for it). The results arensarized in the next
tableau, where we use five-place decimal approxanatfor the numerical values.

Tableau 1
X X i Y2 0z RHS
0.66667 0.03333 0 23 (=x9)

1 0
233333 0 013333 1 0| 28(=yy)
0

Dependent variables: {x,, y;, 2}
Independent variables: x| = y; =0
Extreme point: (x|, x7) = (0, 23)
Value of objective function: ; = 690

1.00000 O

[

690 (= 2)

The pivot determines that the new dependent vasabave the values ; x 23,
y,= 28, and z =690.

Optimality Test The entering variable is,(corresponding to the coefficient
-5 in the last row).

Feasibility Test Compute the ratios for the RHS.
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/Entering variable

X X Y1 y2 z | RHS Ratio

0.66667 | 0.03333 0 0 23 34.5 (=23/0.66667)

233333 0  -013333 1 0| 28 (= 28/2.33333) |- Exiting
0 100000 0 1| 690 | * variable

Choose y as the exiting variable because it correspondsgominimum positive
ratio 12.

Pivot Divide the row containing the exiting varialflee second row in this case)
by the coefficient of the entering variable in thatv (the coefficient of xin this
case),giving a coefficient of 1 for the entering varialitethis row. Then eliminate
the entering variable;Xrom the remaining rows (which do not contain éxéing

variabley, and have a zero coefficient for it). The results smmmarized in the
next tableau.

Tableau 2

Xy X2 n y2 RHS

4
0 1 0.071429 -0.28571 0 15 (= x3)
1 0 0057143 0.42857 O 12 (= xy)

0 0 0.714286 2.14286

[a—

750 (= z)

Dependent vanables: {x7, xq, z)
Independent variables: vi = v, =0
Extreme point: (x;, x3) = (12, 15)
Value of objective function: z = 750

Optimality Test  Because there are no negative coefficienteenbbttom row,
x;= 12 and x = 15 gives the optimal solutiom = $750 for the objective
function. Note that starting with an initial extremoint; we had to enumerate only
two of the possible six intersection points. Thevpoof the Simplex Method is its
reduction of the computations required to find ptiroal extreme point.

EXAMPLE 2 Using the Tableau Format
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Solve the problem

Maximize8 x+ X
Sujectta 2 x+ X<6
X +3%<9
X, % 20

The problem in Tableau Format is

2% +%+Y=6
X +3%+%=9
-3 -%+2z=0 , wherex x ¥ y& =0.

Tableau 0 (Original Tableau)

x1 x2 wyi ¥y z| RHS
2 I 1 0 0] 6(=y)
1 3 0 1 07 9(=y)

@—1 0 0 1]|0=2

Dependent variables: {y|, y2. z}
Independent vanables: x| = x3 =0
Extreme point: (x|, x3) = (0, 0)
Value of objective function: z = 0

Optimality Test  The entering variable i Xcorresponding to -3 in the bottom
row).

Feasibility Test Compute the ratios of the RHS divided by the coldabeled x
to determine the minimum positive ratio.
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Xt x2 yr y» z|RHS Ratio
2 1 | 0 O 6 @ (= 6/2)«—Exiting variable
| 3 01 0 9 9 (=9/1)
-1 0 0 1] 0 |*
\Entering variable

Choose y corresponding to the minimum positive ratio 3tesexiting variable.

Pivot Divide the row containing the exiting varialfiee first row in this case) by
the coefficient of the entering variable in thatvr@he coefficient of xin this
case), giving a coefficient of 1 for the enterirggigable in this row. Then eliminate
the entering variable;Xrom the remaining rows (which do not contain éx&ing
variabley; and have a zero coefficient for it).The results smenmarized in the
next tableau.

Tableau 1
Xy X2 Vi y2 z RHS
11 5 0 0|3=xp
0 3 -3 1 0|6(=y)
0 3 30 1|9(=2

Dependent variables: {x|, y;. z}
Independent vaniables: xp = v; =0
Extreme point: (x|, x3) = (3.0)
Value of objective function: z = 9

The pivot determine that the dependent variables lize values x 3 , =6 , &
z=9.

Optimality Test  There are no negative coefficients in the bottow. Thus,
Xx1=3 , %=0 is an extreme point giving the optimal objeetifunction value
z=9.
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Remarks We have assumed that the origin is a feasildlem®e point. If it is not,
then some extreme point must be found before thpl8k Method can be used as
presented. We have also assumed that the linegrgmnois not degenerate in the
sense that no more than two constraints intersedhe same point. These
restrictions and other topics are studied in maheaaced discrete optimization
courses.

Self Test Exercises

1. Use the Simplex Method to resolve Probler2 In Section 5.2.

2. Solve the following. (Use simplex method)

a Min.z=2x+ 2%
subjectta 2 x+4 x=21, @+ 2x12x x 1 and, X, 2 (

b. MaxZ=3x+4x+ X+ 7%

subjects to:- 8+ 8+ A+ x< 7,2+ B+ x+ §<
X +4x,+5x+2x,<8,and X, X%,,%, ¥ 0
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C Maxz=8x+19x+ 7X
subject t03 x+4 x+ <25 @ 3¢ 3 50 and  x,x X O
d Maxz= x+ x+3 X
subject t03 x+2 x+ X<32x ¥ 2x 2 and X, XX 0
e Maxz=4x+3x+4x6X
subject to }+2 x+2 ¥4 x< 80,24 2x X 603x +3x+x+ x<80and X X,
f. Maxz=2x+4x+ x+4x%
supject to 3 3+ <420 X3, ¥ 4x X 3 and X, X,XX0
0 Maxz=8x+11x
subject t03 )+ X<7, 38, ad Xx,x 0
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