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Chapter One

Revision on Numerical Integration

This chapter is highly devoted to find the numerical integration for a
given set of data points. The topics covered here are

- Numerical Integration

- Newton-Cote’s quadrature formula

- Trapezoidal Rule

- Simpson’s one-third Rule

- Simpson’s three-eighths Rule

- Weddle’s rule

- - - - b
Consider the definite integral L f(x)dx .

This integral represents the area between y = f (x), the X —axis and the lines x=a & x=b.
This integration is possible as far as f (x) is explicitly given and the function is integrable.

Now suppose set of (n+ 1) paired values are given. First as we did in the case of numerical

differentiation, we find f(x) by an interpolating polynomial P, (x)and obtain _[: p,(x)dx which

b
can approximate the value for L p, (x)dx .

A General Quadrature Formula for Equidistant Spacing (Newton-Cote’s Formula)

For equally spaced intervals, we have Newton’s forward difference formula as

u(u-1)
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Here, u-= L

,h is the interval of differencing.

Now, instead of f (x), we will replace it by this interpolating polynomial y(x) of Newton.
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This equation is called Newton-cote’s quadrature formula and is a general quadrature
formula.

By taking different values for n we get a number of special formulas. Here we try to look for
some values of n for which their practical application is very important in different disciplines of

science. Detail information and results are explained below.



Trapezoidal Rule

Put n =1, in the quadrature formula
x0+nh 1
J f(x)x = J- " (x)x ~ h[l.yO + EAyO}

Since other differences do not exist if n = 1.

1
~ h()’o +E(y1 - yo)}

N | =

(Yo + V1)
LX" f(x)dx = .[XXMh f (x)dx
_ J-Xx0+nh (X)j "+ x0+2h X)jx+ +J-x0+nh X)jx

Xo +h +(n-1)h

h h h
=§(yo+yl) 2(y1+y2)+ o+ (yn1+yn)

h
= 5[(3/0 + Yo )+ 2V, + Yo+t Vo))

This is known as a trapezoidal rule.
Even though this method is very simple for calculation, the error in this case is significant.

Truncation Error in Trapezoidal Rule

In the neighborhood of X - X,, we can expand y = f(x) by Taylor series in powers of x—X,.

That is,

V0= v+ (= )ys + XS ey )
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If h is the equidistant length, then also
X h
L ydx = E(yo + yl) = Area of the first trapezium = Ag say

Putting x =X, in (1), we get

2
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Subtracting Ao from (2), we obtain

X1 M3y 1 1
J.XO ydx—A, =h y{ﬁ—ﬁjh.
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*. The error made in the first interval (x,,X;) is — Eh3yo + ..

. . s 1. 5.
Similarly the error in the i interval = _Eh Vi1
Hence, the total cumulative error E is

E ~ _%hs(ys n yl” + y; +.o+ y;_l)
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nth M where M =max{‘y0Hy1Hy2‘}

= |E| <
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(b a)h M if the interval is(a,b) and h :b_a
n

<

.. The error in the trapezoidal rule is of order h?.
The accuracy of the result can be improved by increasing the number of intervals and

decreasing the value of h.

Simpson’s One-Third Rule

Setting n = 2 in Newton-cotes quadrature formula, we have

X

IXZ f(x)dx = h| 2y, + 4Ay, + %[g —%)Azyo} since the other terms vanish (become zero).

i 1
=hl 2y, + 2(y, — ¥, )+ §(E ~1f yo}

1
= h[zyo + 2y1 - 2y0 +§(y2 _2y1 + yo)}
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h
= E[yz + 4y, + Y, ]

similarly, [ f (x)x = g[yz +4ys+y,]and [ F (xhix = g[yi FAY+ Y]
If n is an even integer, then the last integral will be
X, h
J.anz f (X)jX = E[yn—z + 4yn—l + yn]

Adding all these integrals, if n is even positive integer, then y,,Y,,Y,,Ys.... Y, are odd in

number; we have

Xn X, Xy X,
f (X)dx = f (x)dx + f(xdx+...+ f(x)dx
Jig fo0ax= [ f0ax+ [ A1 0ddxr [ #(x)
h
=§[(yo+4y1+yz)+(yz+4y3+y4)+---+(yn72+4ynfl+yn)]

h
= 5[(yo + Yo )+ 20V, + Vg ot Yoo )+ A+ Vg et Vo))

Simpson’s Three-Eighths Rule

Putting n = 3 in Newton-cotes formula, we get

ng f (x)dx = h| 3y, +9Ay0 +l[gj&yo +£(8—1— 27+9jA3y0
X 2707 4
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If nis a multiple of 3,

x0+nh +3h x0 +nh
jo f (x)dx = jo f(x)dx+j x)dx+ +j0(n . X )dlx

3h
= g[(yo +3Y, +3Y, + Vo) + (Vs +3Y, +3Ys + Vo) + oot (Vos +3Ya s +3Yos + Y, )]

3h
= ?[(yo + o)+ (Ve + Yo Va Vs ot Voo + Yor)+ 2(Ys + Ve + Y, )]

This is Simpson’s three-eighths rule and is applicable only when n is a multiple of 3.
Weddle’s Rule

Putting n = 6 in Newton-cotes formula

6h [
[t (xydx=h 6y0+18Ay0+%(72—18)A2y0 é (324- 216+ 36)A%y, + }
0

i 123 33 41
=h| 6y, +18Ay. +27A%y. + 24A° Ny —— N
i yO yO yO yO l yO O yO 140 yO
Now replace the term ﬂA6 b 4—2A6 by doing this, the error introduced is onl LAG
p 140 Yo y140 Yo: DY g . y140 Yo

which is negligible when h and Ay, are small.
Using A = E -1 and replacing all differences in terms of y ’s,

we get

+6h 3h
IXX;’ f(x)dx =5 [Yo +5Y, + Yz +6Y5 + Y +5Y; + o]

+12h

Similarly, j o (Xbx [ys +5Y; + Vg +6Yg + Yio + Yy + ylz]

and X0+nh ()dx— [y +5y. c+VY,,+6Y +Y, ,+5Y +y]
x0+(n—6)h n-6 n-5 n-4 n-3 n-2 n-1 n

Adding all these integrals, we get



jx0+nh f(x)x = —[(y0 +5Y, + Y, +6Y, + Y, +5Y; )+ (2y, +5Y, + Y, +6Y, + Y, +5Y,,)
tot(2Y, 6 +5Y, s+ You +6Y0 s+ Yoo +5Y,, +Y,)]
This equation is called Weddle’s rule.
Truncation Error in Simpson’s Formula

By Taylor expansion of y = f(x) in the neighborhood of X = X, , we obtain

2 3
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Now let A =area= L ydx = g(y() +4y, +Y, ), by Simpson’s rule

Putting x =X, in (1), to get

X, —X "
Vi = Yo + (% =% )yo + (12, oy, s
2 ) 3
= Yo+ o+ Yo Yt

Putting x = x, in (1), we have
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This means that the error made in (x,,X,) is = %0 g“] +...
_ho
Similarly, the error made in (x,,x,) is 1) and so on.

5

. . h
Hence the total error E is (x,,x,) is = —g(y([,“] +yis)

5
~|E| < %M , where M is the maximum value of yi, yi+ .yl

Since (x2n, y2n) is the last paired value because we require odd number of ordinates to apply

Simpson’s one-third rule.

If the interval is (a,b), then b—a = h(2n), using this

(b—a)h* M

[Ef <
180

Hence, the error in Simpson’s one-third rule is of the order h*.

Examples
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1. Evaluate szdx by using

a) Trapezoidal rule
b) Simpson’s rule and verify your results by actual integration
Solution

Here y(x) = x®and the interval length is 7-1 = 6 so we divide this interval into 6 equal parts
with h = 6 =1
6

x: 1 2 3 4 5 6 7

y: 1 4 9 16 25 36 49

a) By Trapezoidal rule
J XX = D0+ 97)+ 200+ Yo Y+ ¥+ v
%((1+ 49)+2(4+9+16+25+36)) =115
b) By Simpson’s one-third rule
[ xedx= %((yl Y, )+ 20+ Vo) + A, + Vi + V)
= %[(1+ 49)+2(9+25)+4(4 +16+36)]

=114

Since n = 6, we can also use Simpson’s three-eighth rule.

3
So [ xdx = o (e y2)+30y + o+ v+ o)+ 21,)

- g((1+ 49)+3(4+9+25+36)+2(16))

11



2. Evaluate J'Ol , using Trapezoidal rule with h = 0.2, and hence

dx
1+ x2

obtain an approximate value of 7 .

Solution
1
Let X)=
y(x) =
X: 0 0.2 0.4 0.6 0.8 1
y: 1 0.961538461 0.862068965 0.735294117 0.609756097 0.5

1 dx h
_[01+ W E[(YO + y5)+ 2(y1 Yty + y4)]

_ %[(u 0.5)+2(0.96153846 1+ 0.862068965+ 0.735294117+ 0.6097566097)]

= 0.78373158

But by actual integration

= % ~ 0.78373152¢

-~ 3.134926112
To compare this approximated value of 7 with its actual value using calculator 3.1415926%,

the error is 0.00666654159 which is 0.6%.

12



3. From the table below, find the area bounded by the curve and

the X -axis from Xx=7.47 to x=7.53

X: 147 7.48 7.49 7.50 7.51 7.52 7.53
y: 193 1.95 1.98 2.01 2.03 2.06 2.08

Solution

Let us compare the results obtained by different methods

i) By Trapezoidal rule

753 0.01
jm f(x)x = T[(1.93+ 2.08)+2(1.95+1.98+2.01+2.03+ 2.06)]
= 0.12035
ii) By Simpson’s one-third rule
753 0.01
L L Fxx = T[(1.93+ 2.08)+2(1.98+2.03+4)+ 4(1.95+2.01+2.06)|
~ 0.1203666
iii) By Simpson’s three-eighths rule
[ 8 (x)x = @[(1.9% 2.08)+3(1.95+1.98+ 2.03+ 2.06) + 2(2.01)]

~ 0.120337¢

iv) By Weddle’s rule

[ (x)px = 3’(2;81)[1.9% 5(1.95)1.98 + 6(2.01)+ 2.03+ 5(2.06) + 2.08]
~0.12039

As we can see from these rules the area is 0.1203 (correct to four decimal places)

13



5.2
4.  Evaluate the integral | = L /nxdx using the rules so far developed.

Solution
Since b—a=5.2—-4=1.2 let us divide the interval into 6 equal parts, i.e.; h= % =0.2
X Inx X Inx
4 1.38629434d 4.6 1.5260563(
4.2 1.43508455 4.8 1.56861598
4.4 1.48160454 5.0 1.6094379P

5.2 1.64865865

i) By Trapezoidal rule

Ij'zfnxdx - 0;22[(1.386294361+ 1648658626+ 2(1.435084525+ 1.48160454 1+
1.526056303+1.568615918+1.609437912)]

= 1.82765513

ii) By Simpson’s one-third rule

jj’zznxdx ~ 0;;[(1.386294361+ 1.648658620+ 2(1.481604541+1.568615919 + 4
(1.435084525+1.526056303+1.609437912]

~1.82784725¢

iii) By Simpson’s three-eighths rule

f’zznxdx ~ O_éz[(1.386294361+1.648658626+ 3(1.435084525+1.48160454) + 3
(1.568615918+1.609437912 + 2(1.526056303]

~1.82784725¢

iv) By Weddle’s Rule

14



jf‘zznxdx ~ %62) [1.386294361+ 5(1.435084529 +1.48160454 1+ 6(1.526056303 +

6(1.526056303 +1.1.568615918+ 5(1.609437919+ 1.64865862€

~1.827847407

By actual integration,
5.2 5.2
[ nxdx=x(enx-1) [;* =1.82784740¢
Here Weddle’s rule best approximates the exact value.
1
5. Evaluate L e*dx by Simpson’s one-third rule correct to five decimal places.

Solution

The interval b—a=1
. (b-a), , _ -
Since error |E| < Wh M, where M = Max (e”) in the range
<—h
Now we require |E| <107
h'e

- —<10°
180

(180><1o6
—h<| 222
e

%
J =0.090207886~ 0.1

Hence we take h=0.1

15



I: e'dx = %[(H e)+ 2(e°'2 +e% +e% 4 e°'8)+ 4(e°'l +e%° 4% 4% 4 e°'9)]

~1.718282782
By the actual integration,

jolede — ¢ 2 —e—-1-1.71828182¢

1
Correct to five decimal places J-Oexdx =1.71828 which is the same as the exact value.

6. A curve passes through the points (1,2),(1.5,2.4),(2.0,2.7),(2.5,2.8), (3,3),(3.5,2.6)

and(4,2.1). Obtain the area bounded by the curve, the X -axis, X=1 and Xx=4.
Area = I:ydx = f ydx

_ 0;:[(2 +2.1)+2(2.7+3)+4(2.4+28+26)]

= %(4.1+11.4+31.2) =7.7833 sq. units
Volume = ﬂj: y*dx = ”J? y dx
_ 0%((22 + (200 )+ 2((2.7) +32)+ 4((2.4) + (2.8 + (26) )|

= %(8.41+ 32.58+81.44) = 20.4057 = 64.1041981 cubic units.

7. A river is 80 meters wide. The depth ‘d’ in meters at a distance X
meters from one bank is given by the following table.
Xx: 0 10 20 30 40 50 60 70 80
d: 0 4 7 9 12 25 14 8 3

Calculate the area of cross-section of the river using Simpson’s rule.

16



Solution

80
Area of cross-section = _[O ydx

:?[(04_3)_'_2(7+12+14)+4(4+9+15+8)]: 710$q meters

8. The table below gives the velocity vV of a moving particle at time t second. Find the
distance (S) covered by the particle in 12 seconds and also the acceleration at t=2
seconds.

t: 02 4 6 8 10 12
v: 4 6 16 34 60 94 136
Solution

Weknowthatv:% and a:ﬂ

dt
TogetS

12 2
.S = jo vdt = 5((4 +136)+ 2(16+ 60)+ 4(6 + 34+ 94))

= 552 meters
dv
Tofindd 4= E first form the difference table
t=2
t v AV A% Adv
0 4
2 8
2 6
10 0
8
4 16
18 . 0
6 34
26 0
8 60 g
34
0

17



10 94
42 8
12 136

(%j = 1[AvO —~ 1szO + EA3VO:|
dt)_, h 2 3

Taking v, =6

= 1(10—%8)} =3m/sec?
2 2

Exercise

dx
1+ x°2

2
1. Evaluate I taking h=0.2, using Trapezoidal rule. Can you use
1

Simpson’s rule? Justify your reasons.

1
2. Compute the value of j\/sin X +cosxdx correct to four decimal places
0

taking h=0.8.

1 1 2

3. Find the value of Iog25fromj X
0

I dx using Simpson’s one-third rule
+X

with h=0.25.
4. When a train is moving at 30m/sec. steam is shut off and brakes are applied. The speed of the

train per second after t seconds is given by
Time t: 0 5 10 15 20 25 30 35 40

Speed v: 30 24 195 16 136 117 10 85 7.0

Using Simpson’s rule, determine the distance moved by the train in 40 seconds.

1
5. Evaluate je’xzdx a) dividing the range into four equal parts
0

18



b) dividing the range into ten equal parts by
1) Trapezoidal rule and

i) Simpson’s one-third rule

6. Evaluate

O v | N

e""*dx taking h = .
6
7. Calculate Isin3 xdx taking h = %
0
7
8. Evaluate Ixz log xdx taking four strips.
3

0.7
9. Calculate Ie_x Jxdx taking 5 ordinates by Simpson’s rule.
0.5

dx

VJ1-x?

0.5
10. Evaluate I dx by Weddle’s rule, dividing the range into six
0

parts.
Tsinx e : e
11. Evaluate J.—dX dividing into six equal parts using Simpson’s rule,
X
0

Weddle’s rule and Trapezoidal rule.
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Chapter Two
Curve Fitting

Fitting of curves to a set of numerical data is of considerable importance- theoretical as well as
practical. Theoretically it is useful in the study of correlation and regression. In practice it
enables us to represent the relationship between two variables by simple algebraic expressions
(polynomials, exponential or logarithmic functions or any). Besides, it may be used to estimate
the values of one variable which would correspond to the specified values of the other

variable(s).

This chapter covers how to fit a curve for a given set of data points using different methods and
it focuses on the following points:
Regression
- Linear regression

- quadratic regression
- polynomial regression
- multiple regression
- fitting an exponential curve
- curve fitting with Sinusoidal Functions
In most of the fields of engineering and science, we come across experiments which
involve many variables, and most of the time data is collected or given for discrete values
along a continuum; the relation between these variables can be discussed so easily and for
many of these variables it is very difficult to identify the relation unless we can model the
system mathematically. When the system is explained in terms of mathematical models we
have the following relationships about the variables:

1. The relationship between these variables is given in terms of

20



mathematical rules, formulae if any, to determine the quantities of these variables. Actually
it is simple to use these rules for application.

2. The quantities/ variables are given so that we will be interested in finding the
relationships between these variables. This process is a little bit difficult because to write
one variable in terms of the other variables (called empirical equation). Most of the time
we may not be able to get an exact relation between these variables and we may get only
an approximate relation or curve.

This approximating curve is an empirical equation and the method of finding such an
approximating curve is called curve fitting.

Suppose (xi,yi), I =1,2,3,...,n be n sets of observations and the law relating X and
y can be determined by different mathematical systems that clearly explains the relationship
between these sets of n observations (xi Y ) Actually, here we may have different approaches to

fit the given data, and one system may approximate better than the other system on the same given
set of data points.
Now we will see some of these different approaches:

REGRESSION

1. LINEAR REGRESSION
Suppose that the relationship is given
y,=a+bx, 1=123,..,n. (1)
Equation (1) represents a family of straight lines for different values of the arbitrary constants 'a"
and 'b". The problem now is to determine 'a’' and 'b "' so that the line (1) is the line of "best fit".
The term best fit is interpreted in accordance with the Legendre's principle of least squares which

consists of the deviations of the actual values as given by the line of best fit. As a matter of

21



chance all the points may lie on a straight line and in this case the line is a 'perfect fit' and the

sum of the squares of the deviations is zero.

Let P.(X;,Y,;) be any point in the scatter diagram. Draw P,M perpendicular to the x-axis meeting
the line y = a+bx inH,. The coordinates of H; are(x,,a+bx, ).

RH; =AM -HM
=y, —(a+bx)

PiHi is called the error of estimates or the residual fory; .

According to the principle of least squares, we have to determine a and b so that

E=>PH =>(y,—a-bx)’ is the minimum.
i=1

i=1
Using the principle of maxima and minima what we have studied in calculus, the partial

derivatives of E with respect to a and b should vanish separately.

That i, % _ -2>"(y;—a—bx)=0
oa =)

= Zn:yi :Zn:aerZn:xi
i=1 i=1 i=1
=na+ bZn:xi (i)
i=1

22



OE n
—:—2§ X (y. —a—bx.)=0
ab |:1 I(yl I)

=%y =a) % +bY x’ (ii)
i=1 i=1 i=1
Equations (i) and (ii) are called normal equations.
Solving for a and b from (i) and (ii), we get the values of a and b, and with these values of a
and b so obtained, equation (1) is the line of best it to the given set of points  (x,,y, ),
1i=123,...,n.

Now let us see some examples to illustrate the above discussion.

Example 1. By the method of least squares find the best fitting
straight line to the data given below:
x: 5 10 15 20 25

y: 15 19 23 26 30

Solution

Let the line of best be y = a +bx

The normal equations are

Zn: y, =5a+ bzn: X;
i=1l i=1

Zn:xi y, = azn:xi +bZn:xi2
i=1 i=1 i=1

We calculate D_x, Y y,>_x* D xy and form the table below

23



X Yy X Xy
5 15 25 75
10 19 100 190
15 23 225 345
20 26 400 520
25 30 625 750
75 114 1375 1885

Using these values in the normal equations, we get

Sa+75b =114
75a+137% =1885

Solving for a and b we get a=12.3 and b=0.7 and thus the line of best fitis y =12.3+0.7x
Example 2. Find the best fitting straight line to the data given below
by the method of least squares and also estimate y when
X is 70.
X: 71 68 73 69 67 65 66 67
y: 69 72 70 70 68 67 68 64
Solution
First transform the values of X and ytoX =x-68 and Y =y-70

and the normal equations are

b X+8a=>Y
bY XZ+a) X =D XY
Calculations:
X y X Y X2 XY
71 69 3 -1 9 -3
68 72 0 2 0 0

24



73 70 5 0 25 0

69 70 1 0 1 0
67 68 -1 -2 1 2
65 67 -3 -3 9 9
66 68 -2 -2 4 4
67 64 -1 -6 1 6
2 -12 50 18

Substituting these values in the normal equations, we get

2b+8a=-12
50b+2a=18

16

Solving for aandb, we get b = 35 and a==—
99 99

Thus the line of best fit is of the form Y = % X + g

16

.. ) 35
This implies y—70=—(x—-68)+ —
plies y 99( ) 99

35 4566
y="—X+—n
99 99

When x=70= y =70.87
1. Quadratic Regression (Fitting Of Second Degree Parabola)
Let y =a+bx+cx* be the second degree parabola of best fit to set of n points (xi VY )
i=123,..,n.

Using the principle of least squares, we have to determine a,b, and C so that

2

E= Zn:(yi —a-—bx —cxf) is minimum.
i=1

25



Equating to zero the partial derivatives of E with respect to a,b, and C separately, we get the

normal equations for estimating a,b, and Cas

= )XY, —ain+bZn:x, S R (2)
i=1
E:—Zi(yi a—bx —cx )»( =0
oc -y
:Zn:xfyi =azn:xf+bzn:xf+czn:x{‘ ....................... (3)
i=1 i=1 i=1 i=1

Solving for a,b, and ¢ from (1), (2) and (3), we get with these values of a,b, and C the
parabola of best fit.
Example 1 Fit a parabola of second degree to the following data

X: 0 1 2 3 4

Y: 1 18 13 25 6.3

Solution
X Y X? X? X XY X2Y
0 1 0 0 0 0 0
1 1.8 1 1 1 1.8 1.8
2 1.3 4 8 16 2.6 5.2
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3 2.5 9 27 81 7.5 22.5

4 6.3 16 64 256 25.2 100.8

10 12.9 30 100 354 37.1 130.3
Substituting these values in the normal equations, we get

12.9=5a+10b +30c
37.1=10a+30b+100c
130.3=30a+100b + 354c

Solving for a,b, and ¢, we get
a=142,b=-1.07,and ¢=0.55

oy =142-1-07x+0.55x* is the best fit.

Exercise
1. Find the best fitting parabola to the data given below by the
method of least squares and also estimate y when X is 70.
X: 71 68 73 69 67 65 66 67

y: 69 72 70 70 68 67 68 64

2. Polynomial Regression Fitting Of A Polynomial Of k™ Degree

If y=a,+ax+a,x’+..+a,x* is the k" degree polynomial of best fit to the set of points

(x;,v:); 1=12.3,...,n the constants a,,a,,a,,...,a, are to be obtained so that
E= Z(yi —8 —aX — azxiz...akxi")2 is minimum.
i=1

Thus the normal equations for estimating a,,a,,a,,...,a, are obtained on equating to zero the

partial derivatives of E with respect to a,,a,,a,,...,a, separately.
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STI\EO =0=> Dy, =Nay+a, ) X +a, ) X +..+a ) X

% 0= Zn:xiyi =a, ) X +a ) X+ g ) XM
i=1

% =0= Zn:xikyi =3, X +a, ) XM+ +a ) x
Kk i=1

Exercise
1. Find the polynomial of degree three that best fits the data given below by the method of
least squares and also estimate y when X is 70.
X: 71 68 73 69 67 65 66 67
y: 69 72 70 70 68 67 68 64
4. Multiple Regressions
There are different multiple regression forms. For the sake of discussion let us see the following
regression type.
Suppose we want to fit the set of data points by the relation

Z = ax+bxy+cy , here we need the points to be of the form(x;, y;,z, ).

We determine the values of a,b, and C, from

E=>(z-ax-bxy,—oy)

i=1

oE n
2a = _ZZ(Zi —ax —bxy, _Cyi)Xi =0
a i-1

:>Zn:xizi =aZn:xi2+befyi+chiyi .............................. @)
i=1 i=1
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oE :
% = _ZZ(Zi —ax —bxy, —cy, )xiyi
i=1
= Zn:zixiyi = azn:xfyi +bzn:xi2yi2 +czn:xi Y eeeeeneees e seeeses 2
i=1l i=1 i=1 i=1
oE 4
5 = 22z —ax —bxy —cy )y
i=1
:Zn:ziyi :azn:xi yi+bzn:xi yi2+czn:yi2 .............................. (3)
i=1 i=1 i=1 i=1

By solving (1), (2) and (3) for a,b, and ¢, we get the best approximation.
5. Fitting an Exponential Curve
Let(x,,y,), i =1,2,3,...,n be the n sets of observations of related data and let y =ab” be the

best fit for the data.

Then taking logarithm on both sides,
log.. = log;, + xlog. *)
Letv =log., A=log,, and B= Iogfo, then (*) reduces to
Y = A+ BX which is linear in X andY , we can find A,Bsince X and Y are known, and from

A,B we can get a,b and hence y = ab”is found out.

Fitting a curve of the form y = ax’

y =ax’

= log,, = log;, +blog,,
=Y =A+bx, letting y=|ogly0, A=|Ogjo, x=Iogfo

Using this linear fit, we find A,b .
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= a,bare known and thus y = ax” is found out.

Example 1. From the table given below, find the best values of

aand b in the law y = ae™ by the method of least squares.

Xx: 0 5 8 12 20

y: 30 15 1.0 055 0.18
Solution

Let y = ae™ be the approximating curve.

=Y = A+bx|0g;:>Y = A+ BX whereB=b Iog;

So the normal equations are

BY x+5A=>Y

BY x*+AY x=> xY
X y Y X2 XY
0 3.0 0.4771 0 0
5 1.5 0.1761 25 0.8805
8 1.0 0 64 0
12 0.55 -0.2596 144 -3.1152
20 0.18 -0.7447 400 -14.894
45 -0.3511 633 -17.1287

Substituting these values, we get

5A+45B =-0.3511
45A+633B =-17.1287

Solving for Aand B, we get
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A=0.4815
B =-0.0613

So a=10" =10°*" =3.0304

B= blog; - -0.0613

=b=(-00613log. =-0.1411

Hence the curve is Y = 3.0304e %™

Exercise

1. Fita straight line to the following data and hence find y(x = 25)
X: 0 5} 10 15 20
y: 7 11 16 20 26

2. Fit a straight line to the data
X: 05 10 15 20 2.5 3.0
y: 031 082 129 185 251 3.02

3. Fit a parabola to the data
X: 1 2 3 4 5

y: 2 3 5 8 10

4. Fita curve of the form y = ae™ to the data given below:

X: 1 2 3 4 5 6 7 8

y: 153 205 274 36.6 49.1 65.6 87.8 117.6

5. Fit a curve of the form z = ax+ by + cxy to the data given below
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(0,0,1), (0,1,2), (1,0,4), (1,1,1), (2,0,4), (1,2,5)

6. It is given that X, and y are related by y = 2 | bx to the data below and obtain the best
X

values of a and b.
X: 1 2 4 6 8

y: 543 6.28 1032 1486 195
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Chapter Three
Numerical Solution of Ordinary Differential Equations
In this chapter we are highly interested in finding the solution of ordinary differential
equation numerically using different methods.
The topics covered here is
- Taylor series method
- Taylor series method for simultaneous first order DE

- Taylor series method for second order differential equation
- Picard’s method of successive approximations

- Euler’s Method

- Runge-Kutta method

- Predictor-corrector method

In the fields of Engineering and Science, we come across through the natural phenomena that can
be represented by mathematical models which happen to be in the form of differential equations;
for instance, the equation of motion, the equation of deflection of a beam, etc. The solution of
these differential equations is very essential in the studies of such phenomena.

While finding the solution of these differential equations there are number of differential
equations that we cannot solve analytically; however, in such situations, depending on the nature
of the model, we go for numerical solutions of these differential equations. In many researches,
especially after the advent of modern computers, the numerical solutions of the differential

equations have become very easy for manipulation.
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Thus, in this part we try to look some of the methods of numerical solutions that are

approximate solutions and in many cases these solutions are in the required (desired) degree of

accuracy and are quite sufficient.

Let y(xo) =Y, y(xl) =Y y(xz) =Y -

d
Suppose we want to solve ;
X

f (x,y) with the initial condition y(x,)=Y,.

. be the solution of Y at X = X;, X;, X, ,...

Let y = y(x) be the exact solution. If we plot and draw the graph of

y=y(x), (the exact curve) and also draw the approximate curve by plotting

(X0» Yo), (X, Y1), (X5, Y,),... (the approximated solution graph) we get two curves.

(X01y0) g

_Approximate solution

-
-

Exact solution

Suppose y'= 3
X

v

QM = approximate value
PM = exact value at x = x;j

Then QP = QM-PM

= 7. _ ~xrfv) = ~ 1o ~allaAd

The equation y' = f(x,y) subject to the initial condition

y(X,) =Y, is called an initial-value problem.

Using Taylor series we can expand y(x) in the neighborhood of x, as a power

series of Xx—X,. Thatis, if X is close to X, , then by Taylor’s series, we have
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3

)+ y"(XO)(X—XO)Z n y'”(xO)(x—xo) + .. (*)

2! 3

2
where y'(Xo)=(ﬂj , y"(Xo){MJ , etc

y(x) = y(xo ) + y'(xo )(X —%

dx dx?

If x=x isclosetox,, substitute x = x, in () and get y, = y(x)
Again starting from x,, express y(x) in a power series of x—x, and then substitute x = x, to
gety, = y(x,). Inthis way we can get the sequence of y values y,,Y;,Y,,...

If X =x, =0, we get the Maclaurin’s series expansion,

2

y(x) = y(0)+ Xy'(0)+%y”(0)+---

Example 1. Evaluate the solution of the differential equation % =y’ +1
X

by taking four terms of its Maclaurin’s series forX=0,x=0.2,

X =0.6 given y(0) =0 and compare this result with its exact

solution.
Solution
y'=y*+1 y'(0)=1
y'=2yy' y"(0)=2y(0)y'(0)=0
y''= 2y 2yy" y"(0)=2
yi = 2yy ey y0)=0

By Maclaurin’s series, we have
2 X3

V()= y(0)+xy(0)+ 2y (0)+ 5y (0)+...
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3 5
:0+x+2x—+16x
U

y(0)=0

(02) 2

0.008 2
02)=02+"L 4+ 2 (02 ~02+—2
y02)=02+ 220+ 2 (02 ~02+

+-—(0.00032) ~ 0.4213
15

3
y(0.6)=0.6 +@ +%(0.6)5 ~0.6720

. d

Exact solution j 2y =_[dx = tan'y =x+c = y=tanx
y +1

tan0=0,tan0.2 =0.2927,tan 0.6 = 0.6942

Let us compare the actual value with the approximate value
Values of x 0 02 0.4 0.6
Actual value of y 0 0.2027 0.4228 0.6841
Approximate value ofy 0 0.2027 0.4213 0.6720
Error 0 0 0.0015 0.0121
Percentage of error 0 0 035 1.77

This table shows that when the distance of X from X, increases the error also increases.
In this example, we have expanded y(x) in the neighborhood of Xx=0 and used the same
result to find y(x) whenx=0.2, and x =0.6.
Now instead of doing this, after gettingy(x,)=y(0.2), expand y(x) again in the
neighborhood of X=0.2 and use this result to get y(0.6). In doing so, we can minimize the

error.

Thus in the neighborhood of x=0.2
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y(x) = y(0.2)+ y'(0.2)(x - 0.2) + y"(0.2)(2x!—0.2)2 + y"'(O.Z)gT—O.2)3 +...

y(0.2) =0.2027
y'(0.2) = (y(0.2))* +1 = (0.2027)* + 1 = 1.0411
y"(0.2) = 2y(0.2)y'(0.2) = 2(0.2027)1.0411) = 0.4221
y"'(0.2)=2[y'(0.2)f +2y(0-2)y"(0.2)
= 2[1.0411F +2(0.2027)0.4221) = 2.3389, ..., etc.

Putting these values and using X = 0.4 in (1), we get

y(0.4)=0.2027+1.0411(0.4-0.2) + O'4221(0.4—0.2)2 + 2'3389(0.4—0.2)3 +...

=0.2027+(0.2)(1.0411) + (0.04)(0.21105 + (0.008)(0.389877) +...

=0.422480536~ 0.4225
When we compare this value with the actual one i.e. 0.4228, we see that the error is only 0.0003,
nearly 0.07%

The error has decreased from 0.35% to 0.07%
Therefore, to reduce the error, each time obtain the power series of y(x) at X = X;,, and use this
to get y(x;,,) and so on.

This method is called the method of starting the solution.

Point Wise Methods

Consider the previous example y'= y>+1, y(0)=0

3
. X . .
First we got y(x) = x+ 3 +... in terms of x and then we substituted

37



X=X, =0.2. Instead, without getting y(x) as a function of X we can directly get y(x,)=y(0.2)

as
y(0.2)= y(0) + y'(O)(0-2)+%(|0)(0.2)2 +% .

That is we get (x,,Y,),(X,,Y,)directly. So, a point wise solution is a series of points

(X, ¥1),(X,,Y,),... which satisfy approximately a pre-assigned but not known particular solution.

Solution Using Taylor Series

AIM- To find the numerical solution of the equation

% = f(x,y) given the initial condition y(X,)=VYq........... (1)

Now, we expand y(x) about the point X = X, using Taylor’s series in powers of X —X,.

That is,
2
. X=%) .
V(60 = vl )+ () )+ B0 )+
Where y['](xo):(oI YJ
dx" )y —x
0
hZ . 3 .
V= Y0) = Yot o+ = Yo+ 5 Yo o @)

, Where h =X, — X, or X, =X, +h
To find Y,, Y, we use (1) and its derivatives at X = X, .

Even though the series in (2) is an infinite series, we can truncate it at any convenient term, if h

is small, and the accuracy can be obtained.
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Now, once if we get y , we can calculate y,,y,,... , etc by using
y'=f(xy)
Again, expanding y(x), in a Taylor’s series about the point
X = X,, We get

2 3

w=w+M+Em+§W+m

Proceeding in the same way, we get

2 3

= +h'+h o+ s
yn+1_yn yn Eyn gyn

Since this is an infinite series, to get an approximate value we have to truncate it at some term to
have a calculated numerical value.
Now, let us consider the terms up to and including h" and neglect terms involving h™* and

higher powers of h. The Taylor algorithm used this way is said to be of n™ order.
Thus, the truncation error isO(h™) . If h is small enough we can neglect terms after the n™

term and get the error as
—If[”](e) where x, <@ <x if x-x =h
n!

dy

Example 1. Solve —= =
dx

X+Y, giveny(@) =0, and find y(1.1),y(1.2) by using

Taylor’s method.
Solution

Herex, =1 and y, =0, h=0.

dy
LEY=xey Yo =y(x=1)=0
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y'=y'+1 Yo =X +Y,=1+0=1
y''=y" y'(0)=1+1=2
y"(0)=2, etc

Thus by Taylor’s method, we have

2 h3

h . .
Y1 = yo+£yo+zyo+§yo +

y1.1) =0+ 0.1(0)+ OV (2)4 @ ), O o) O 5y

2! 3 41 ol
=0.1+0.01+0.00033+0.00000833+0.000000166+ ...
~0.11033847

Now again take x, =1.1 and h=0.1
yl' =X +Y,=11+0.11033847=1.21033847

y, =1+, = 2.21033847

”

y, =Yy, =22103384

y, =y =yFl=

.y, =0.11033847+(0.1)(1.21033847)+ © 2) (2.21033847) + © 3) (2.21033847)
+ (041) (2.21033847)+...

—0.11033847+0.121033847+ 2.21033847+ (0.005) + (0.0016667) (2.21033847) +...

~ 0.2461077

Let us check for its exact solution
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dy

—= =X+
dx y
Let x+y:v:>gzl+ﬂ
dx dx
:ﬂzvjtl and :dx=ﬂ
dx v+1

Integrating both sides,
X+C=/(nv+]
= X+C=/nx+y+]

= X+y+1l=¢e"°
Since y(1) =0
=2+0=¢°"
=Cc+1l=/M2 =c=/(n2-1
Sy =—X—1+2e""
Hence y(1.1) =-1.1-1+2e**" =0.1103418%

y(1.2) = -1.2 -1+ 2e"** =0.24280555

Example 2. Using Taylor series method, compute y(0.1) correct to

four decimal places, given % =x*+y? and y(0)=1.
X
Solution
dy _ '=x?+y? here X, =0 andy, =1 h=0.1
x YT y 0= Yo=4 h=U.

y'(0)=0°+1* =1

y"'=2X, + 2y, Y, =2
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Yo =2+2Y,+2YpY, =8

[4]

Yo' = 4YoYo +2YoYo +2YoYo = 6YoYo +2YoY, = 28
2 3 4
09-1-20+ 2. ©2 ) L ).

=1+0.1+0.01+0.001333333+0.0001166G ~ 1.1114499¢

~1.11145

Example 3. Using Taylor method, compute y(0.2) and y(0.4)

correct to four decimal places given

% =1-xy and y(0)=0

Solution
y'=1-2xy Yo =1-2xy, =1
y"'=-2(y +xy) Yo =—-2(0+0(1))=0
y"'=—2(y+y'+xy") Yo =—2(2+0)=—4
yl = 23y xy™) Y51 =0
yEl = —2(ay+xy?) yol =32, etc

By Taylor’s series, we have

. 2 ) h3 h4 .
Vo= Yot Mo+ Yot o Yo

(0'2,)2 (0)+ ©2) (-4)+ 02 (0)+ 2] (33)+..

y(0.2) = 0+(0.2)1)+ 3 2 5

=0.2-0.00533333+0.00008533¢

42



~ 0.19475200:
Now again starting with X =0.2, we have

x=0.2, Y, =0.194752003h = 0.2
Yo =1—2%,y, =1-2(0.2)0.194752003 = 0.9220992

Vo ==2(%Ys + Yo )= —2[(0.2)(0.9220992)+ 0.194752063 = —0.75834380€

s = =22y, +%y; )= —2[(0.2)(~0.7583436808 + 2(0.9220992)]
— ~3.38505937

yi = —2[(0.2)(—3.38505933 + (~0.758343686 = 5.9040858E

(0.2

~. y(0.4)=0.194752003+ (0.2)(0.9220992) + T(—0.75834368@ +

3 4
%(—3.3850593% %(5.90408583+

~ 0.35988372:

Example 4. Using Taylor series method, find y at X=0.1,x=0.2

dy

and X = 0.4 given —Z =
dx

x* -y, y(0)=1 (correct to five decimal places)

Solution

Here X, =0,¥, =1,h=0.1,x, =0.1,x, =0.2,...

y'=x'-y Yo =-1
y'=2x-y' Yo =1
y'=2-y Yo =2-1=1
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y* = -y yol = -1
ybl = —yl] oyPl=1, etc

y(0.1) =1+ (0.)(~1) +@

~1+ 021+ & ). O Oy 0274,

3 A 5!
= 1+ (-0.1) + 0.005 + 0.0001666 + (-0.0000416) +...
=0.905125

Now again using X, =0.1 and y, = 0.905125, we have
y, = x> —y, =0.01-0905125= -0.895125
y, =2x -y, = 0.2—(-0.895125 =1.095125

y, =2-y =2-0905125=0.904875

yi = —y =-0.904875 etc.

2
- y(0.2) = 0.905125+ (0.1)(— 0.895125) + (0'21) (1.095125)+

3 4
(0;) (0.904875)+(0;11') (-0.904875)+... = 0.821235167

Similarly, y(0.3) =0.7492 and Yy(0.4) =0.6897

Taylor series method for simultaneous first order differential equations

The equation of the type

%: f(x,y,2) and %: 9(x,y,2)

with initial conditions
Y(Xo) =Yo Z(Xo): Z,
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can be solved by Taylor series method as given below:

Example 5. Solve % =z- x,% =y +x with y(0)=1,2(0) =1by taking

h=0.1,toget y(0.1) and z(0.1).

Solution
y'=z-X and Z'=X+Yy
X, =0 and y, =1 X, =0, z,=1and h=0.1
y, =y(0.) =7 z,=2(0.1)="
y'=2-X 2"=1+Yy'
y'=12-1 Z"=y" etc

y"'=2"

Using Taylor series, for Y; and Z;, we have

. h* . n
Vi =Y(0)= Yo +hyo + Yo+ Yo F (1)
. h? . .
and 21:2(0.1):y0+hy0+520+§zo+... ..... (2)
Yo =1 z,=1
Yo =2 % =1 Zy =% +Y,=0+1=1
Yo=2=1-1=0 7, =1+y, =1+1=2
Yo =2,=2 z, =Y, =0
7 = yy =2

Substituting these in (1) and (2), we get
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0.01,., 0.001,, 0.0001
y, =1+0.1+ > (0)+ ; (2)+ >4 0)+...

=1+0.1+0.000333+...

=1.1003

0.01(2)+ 0.001(O)+ 0.0001(2)+

z,=1+0.1+ > 5 24

=1+0.1 +0.01+0.0000083+... = 1.1100

Example 6. Find y(0.1), y(0.2),z(0.2) given
L % =x-y? and y(0)=2, z(0)=1

Solution

Here X, =0, Yo =2 and 7, =1

y'=X+12 Z=X-Y

y'=1+2' 2"'=1-2yy'

Y= 7" 2"=-2(y'Y —2yy"

yl=2" etc 2 = —ay'y=2y'y -2yy= -6y'y"-2yy"

Yo=Y (©0)=x+2=1  2,=0-2"=-4

Yo =1+(-4)=-3 z,=1-2(2)1)=-3
Yo =3 7o =-2(1f - 2(2)(-3)=10
“-10 21 = —6(1)(- 3)- 2(2)-3) = 30
y5) =30 21 =74
_ 0.1 4, 014, 01" ©2F
y(0.1) = 2+ (0.)(1) + > (-3)+ - (-3)+ o (10)+ 50 (30)+...
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=2.084544167

2(0.1) =1+ (0.1)(-4) + @(_ 3)+ (0-61)3

(0.1
120

10)+ (0.2)°

o (30)+

(—74)+...

=2.084544167+0.267132966-0.016226621-0.0003105449027

-(0.000003091501458) +...

2 3 4
y(0.2) = 0.5867855+ (0.1)(—4.245324389) +@(—1.863269416)+%(— 0.74196035)+%+

=0.152817221

Taylor series method for second order differential equation

Any differential equation of the second order or higher can be solved by reducing it to
a lower order differential equation. A second order differential equation can be reduced to a first

order differential equation by transforming y’ = z and then the given equation can be solved so

easily.
Suppose d—zz = f(x,y,ﬂj ...... (1)
dx dx
y'= f(x, Y, y') is the given differential equation together with the given initial
conditions

y(X,) =Y, and y'(X,) =y, where y,, Yy, are known values at x, .
Setting y' = p,we get y" = p" and (1) becomes
p'=f(xy.p)
with initial condition y(x,) =Y, and p(X,) = P, = Y,

Using Taylor series method, we get

2 3

. h° .
P = po+hpo+? po+§yo +... where p, = p(X= Xi)&Xl—XO =h...... ()
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2 3

Y, = Yo + hy, +?y;; +§y;;' +.. becomes

2 ! 3 ”

h
Y1 =y0+hp0 +E Po +§ Py +.. ...(**)

Since p'= f(x,y, p) and taking the derivative of p’again and again with respect to x, we get

p”, pH! ,etC,

Hence Py, Pys Py »--- Can be solved using (**) and (*), so that we can get

Y, & p;.
Once knowing y, and p, we can get p;, p;, p; ... at (x,y;)

Again using

2 3
p,=p,+hp, o D, ty p, +... we get some value for p, and using

2 3

y, =Y, +hy, +Ey{ +§yi" +... we get still some value for vy, .

Example 7. Evaluate the values of y(0.1) and y(0.2) given

2

y"—x(y'f + y* =0, y(0)=1,y'(0) = 0 by using Taylor series method.
Solution

First put y’ = z and hence the equation reduces to z'-xz° +y* =0
= 7'=xz* - y?
Using the initial condition y(0)=1,2, =y, =0

Now Z'= XZ° — ¥* can be solved given that Zo = Z(O) =0, and x, =0

2
Here, z, = z, + hz, +?zg +.. (D)
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7'= xz° — y? y=12
7' =17%+2x27-2Yyy' y'=zy"=127",
7'"'=2127 +2(xzz +22+x(2'f ) (yy +(y'Y )
2y =%Z — Yo =1

2,=0 and z, =2

Substituting, these values in (1), we get

z, =0+(0.1)(-1)+ (0'201) (0)+ 0'201(2)+

=-0.0997
By Taylor series for y, , we get

2

. he .
=y(0-1)=yo+hyo+7yo+

:1+(o.1)(z0)+@(zg,) (061) (z0)+...
~1+04(0)+ 22+ = 0) #0995
Similarly,

2

A
Y, = y(xz): lerhler?m+

=0.995+0.1(z, ) + 0';12; + 0'0012; +.. ..(2)

6
z, = x,2* — y? = (0.1)—0.0997) —(0.995)" = —0.9890

2 =-0.1687
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Using (2),

y, = 0.995+ (0.1)(—0.0997)+ 0'701(— 0.9890) + %01(— 0.1687)+....

=0.9801

Example 8. Solve y'=Yy+Xy' given y(O) =0 and calculate y(0.1).
Solution
Here X, =0,¥,=1Y,=0 and y'=y + Xy’

Differentiating with respect to x,

Y= Yy XY= 2y ey Yo = Yo+ XY, =1
Y = 2y ey exy = By ey Yo =2Yo+ %Yo =0
Y15l = 4y gyl yi =3

ylel = 5yl 4 xyP) yE =0 yBl Z15,..

2 3

Here y(x)=y, + xy, +7yg +§yg' ¥

2 4

X X
=1+0+E(1)+0+E(3)+m

x> xt X
=14+ —+—+—+...
2 8 48

2 4 6
(01 (09" 01, _ 10501252

=1+
2 8 48

Exercise
Using Taylor series method, find the values required in each problem.

1. Find y(0.1) given %: x+y, y(0)=1
X
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2. Find y(0.1)given y'=x’y -1, y(0)=1

3. Obtain y(4.2)and y(4.4) given %: ! y(4) = 4takingh =0.2.

X>+y’

x® + xy?

4. Find y(0.1),y(0.2),y(0.3) giveny' = —, y(0)=1.
e

5. Find y(0.1),y(0.2),2(0.1),z(0.2) given

ﬂ=x+z,%=x—y2 and y(0)=2,z(0)=1
X

dx

6. Evaluate x(0.1),y(0.1),x(0.2),y(0.2) given

dX—ty+1, ﬂ:—tx given x=0,y=1att=0

dt dt

7. Solve for x and y£:x+ y+t, %:Zx—t given x=0,y =1latt =1.

8. Find yat x=11, x=1.2, x=13giveny"+y*y'=x>, y)=1 y'@)=1
9. Express Y as a power series given, y' = (0.1)(x* + y*), y(0)=1

Picard’s Method of Successive Approximations

AIM: To solve % = f(x,y) subjectto y(x,) =Y,
X

Now &Y — f(x,y)= dy= f(x,y)dx

dx

Integrating, y = J.X f(x,y)dx+c
Setting X = X, , we have

Vo= F(x y)x+c

= y-Yo =] fxykx

Xo
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Y=Y, +j:0 f(x,y)dx this type of equation is called an integral equation.

As the integration is not possible as it is, we will solve it numerically by successive

approximation. Now substitute the initial values of y namely y, in the integrand f(x,y) in

place of y and then integrate it to get an approximate value of vy .
ie. yY=vy, +on f(x, y, Jx
After getting the first approximation y® fory , use this value of y® in place of y in
f (x,y) and then again integrate to get the second approximation of y namely y®.
Thus y? =y, +LX0 f(x, y®)dx
Repeating this procedure again and again, we eventually get
y™ =y, +J'XXo £ (x, y™)dx

This equation is called Picard’s iteration formula. This formula gives the general iterative

formula for y.

The sequence y®, y@ ..., y™ should converge to y(x); otherwise the process is not valid.

. . of .
The condition for the convergence of the sequence is both f(x,y) and 5 are continuous.

ie [f(xy)<k and ‘% <k, in a region containing the point (X,,Y,) where k,, k, are

constants.

Example 1. Solvey’ = y—Xx,, y(0) =1, by Picard’s method up to the
third approximation. Hence find the value of y(0.1),y(0.2).
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Solution
y=y-x
Y=Y, +LX0 (y—xz)jx....

Hence, Xo=0,yo=1 and f(x,y)=y-x°

Using y again in (1), we get

y® =1+ [y - x bix

Using again this result, we get

Y =1+ [(y? - % bix

2 3 4
=1+J' Toxs -2 X ey
0 2 3

12
x> x2 oxt X
=l+X+————-——-— —
2 6 12 60
Now put Xx=0.1

(0.1 (02° (01" (0.20

0.1)=1+0.1 - —
y( )=1+01+ 2 6 12

60
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=1.10482483:

_ (0.2f (0.2 (0.2) (0.2p
y(0.2)=1+0.2+ SR T —

= 1.218528

Note- In getting the value y(0.2) we could have started with x,=0.1 and

Y, = 1.104824833 to get a closer value of y(0.2)

ie. y=1.104824833+ [ (y,—x*}ix

3 X
Y =1.104824833+(y0x—%J

0.1
x3 0.23
=1.104824833+ 1.10482483% — —(1.1048248330.0)) + —

3

= 0.99467574+1.10482483% —%
y? =1.104824833+ [ (y" - x* bix
3
= 1.104824833: | (0.99467574+ 1.10482483% — X? _ xz)dx

—1.104824833+ 0.99467574x —0.1) +1.10482483%x — (0.1

—%(XA —(0.1)4)—%( : —(0.1)3)
y?(0.2)=1.2184066

Example 2. Solve % =X+, given y(0) =1. Obtain the values of
X

¥(0.1) and Y(0.2) using Picard’s method and check your
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result with the exact solution.
Solution

Here f(X,y)=x+Yy, X,=0and y,=1
Y=Y, +J‘XXO f(x, y)x
:1+onf(x, y ix
y® :1+J.0Xf(x, y ix

=1+ jox(x,l)dx

2

— X _ X
—1+I0(x+1)dx_1+x+?

2
@ _14 (" x
y _1+J.0(1+x+ 5 +dex

3
X
:1+x+x2+E

3
y® :1+I (x+1+x+x2 +X—jdx
0 6

3 X4
=1+ X+ X+ —+—
24
¥ x!
Sy(X) =1 XX
y() 3 24

Now put Xx=0.1

(.10 (0.2)"

0.1)=1+0.1+(0.1)
Y(0.)=1+01+ 01 + 2+
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0.001 0.0001
+ + ...
24

=1+0.1+0.01+

=1.1103374

To find y(0.2) we use x,= 0.1 and y,=1.1103374
Y=Y, +_|‘0X.1 f(x, y)dx
=1.1103374+ [ (x+y)dx

y" =1.1103374+ [ (x+1.1103374)dx
0.1

=1.1103374+1.1103374x - 0.1) + (x* — (0.1)%)

= 0.98930366+1.1103374x + X’
y® =1.1103374+ [ (x+0.98930366+1.1103374¢+ x* kix
— 1.1103374+ 0.98930366x — 0.1) + 2.1103374 %’ — (0.1)?) +%(x3 —(0.2y)

=0.989970326+ 0.98930366x + 2.1103374* +%X3

y® =1.1103374+ onl[0.989970326+ 1.98930366X + 2.1103374x’ +%x3jdx

=1.1103374+0.98997032¢x — 0.1) +1.98930364x> — (0.1)?)
+2.1103374x° - (0.1 + %(x“ —(0.1)")

- y®¥(0.2) =1.1103374+0.9899703260.1) +1.989303660.03)

+2.11033740.007) + é(o.oms)

= 1.2839109¢
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Solving % = x+y analytically, we get y =2e* —x-1
X

y(0.1) = 1.11034183% and

y(0.2) = 1.24280555

Example 3. Solve % = x?+y?,y(0)=1 by Picard’s method
X

Solution

Here X, =0,y,=1

Y=Y+ LZ f(x,y)dx=1+ '[Ox(xz + y?)dx

Now

3

X X
y® :1+j0(x2 +1)dx:1+ X+

3 2
@ —q4 [ x2 x
y 1+L[x +(1+x+3]]dx

3
:1+x+x2+2i+1x4+ix7+£x
3 6 63 15

5

Clexe X2ty ey LTy
3 6 15 63

Example 4. Solve y'+y=e"*,y(0) =0, by Picard’s method

Solution

By Picard’s method Yy =Y, + LXO f(x,y)dx = _[OX (ex — y)dx

yY = J.Ox(eX —O)dx =e* -1
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Exercise
1. Using Picard’s iterative formula,

a) Solve % =Xx+Yy®+1,given y(0)=0.
X

b) Obtain y(0.1)given y'=2—% and y(0) =1
y+X

c) Solve y"'=1+2xy given y(0)=0

2. Find the values of y for x =0,x =0.1and X =0.5given y’ = x? + y? and which passes
through (0,) .

2

3. Given y' = X__and y(0)=0, find y(0.25), y(0.5)
+y
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Euler’s Method

In solving a first order differential equation by numerical methods, we have two types of
solutions:

) Values of y at specified values of X

i) A series solution of y in terms of X, which will yield the value of y at a particular

value of X by direct substitution in the series solution.

Taylor and Picard’s method studied so far belong to the first category in finding the numerical
solution of differential equations; the methods due to Euler, Runge-kutta, Adam-Bash Forth and
Milne come under the second category.

The methods of second category are called step-by-step methods because the values of y are

calculated by short steps ahead of equal interval h of the independent variable x .
Euler’s method
Suppose we want to solve % = f(x,y) with initial conditions y(x,) =Y,
X
Let us take the points

X = Xy, X, X,,... Where x,—X_, =h

ie. X =X,+ih,i=012,.

Let the actual solution of the differential equation be denoted by the graph P, =P (X,y,) lies on
the curve. We require the value of y the curve atx =X .

The equation of the tangent line at (X,, Y,) to the curve is
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Y= Yo = Vi) (X—%)
= (%, Yo X = %)
=y =Y+ (X Yo \X=X;)
In the interval (X,,X,), the curve is approximated by the tangent.
. The value of y on the curve is approximately equal to the value of y on the tangent
at (x,,Y,) correspondingto x = X;.
Y= Yo+ (Yo )04 = %)
ie. y, =Y, +hy,
Again, we approximate the curve by the line through (x;, y,) and whose slope is f(x,,y,), we
get
Yo=Y+ Fx, v
=y, +hy,
Thus, y,., =y, +hf(x,y,), n=012,..
This formula is called Euler’s algorithm.
In other words, y(x+h) = y(x)+hf(x,y)

In this method, the actual curve is approximated by a sequence of short straight lines.
As the intervals increase the straight line deviates much from the actual curve. Hence the
accuracy cannot be obtained as the number of intervals increase.
Referring to the above graph

Q,P, = errorat x=x,

2 2
_ (% _2:(_0) y'(x,y,)= h?y(x1 y,) itis of order h®.
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Example 1. Given y' = -y and y(0) =1, determine the values of y at

x =0.01,x=0.02 and X =0.04 by Euler method.

Solution
y'=-yandy(0)=1; f(x,y)=-y
Here X, =0, y, =1 X =0.01, x,=0.02, x,=0.03, x,=0.04
We have to findy,, y,, Vs, y,. Take h=0.01
By Euler algorithm,
Yo = Yo +hY, =y, +hf(x,,y,)
Y, = Yo +hf(x,,y,)=1+(0.01)-1)=1-0.01=0.99
y, = Y, +hy, =0.99+(0.01)(-y,)
=0.99+(0.01)(- 0.99) = 0.9801

Y, =Y, +hf(x,,y,) = 0.9801+(0.01f-0.9801) = 0.9606

Y, = Y, +Nf(x,,y,)=0.9703+(0.01(~ 0.9703) = 0.9606
Let us compare the results
X 0 0.01 0.02 0.03 0.04
y 1 0.9900 0.9801 0.9703 0.9606
y=e* 1 0.9900 0.9802 0.9704 0.9608
Example 2. Using Euler’s method, solve numerically the equation,
y'=x+V,y(0)=1 for x=0,x=0.2 and x=1.0.

Check your answer with the exact solution
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Solution
Here h=02, f(x,y)=x+y, X, =0,y,=1
x,= 0.2, x,= 04, x,= 06, x,= 0.8, x;,= 1.0
By Euler algorithm,
V= Yo +hf (x5, ¥5) = Yo +h(% + o)
=1+0.2(0+1)=1.2
Y, =Yy, +h(x +y)=12+(0.2)(0.2+1.2)
=148
Yy =Y, +h(X, +y,)=1.48+(0.2)(0.4 +1.48)
= 1.856
Y, =Ys+h(X; +Yy,) =1.856+(0.2)(0.6 +1.856)
= 2.3472

Y, =2.3472+0.2(0.8+2.3472) = 2.94664

Exact solution is y =2e* —x -1

X 0 02 0.4 0.6 0.8 1.0
Euler y 1 12 148 1.856 2.3472 2.94664

Exact y 1 1.2428 15836 2.0442 2.6511 3.4366
As you can see from the table, the values of y deviate from the exact values as X increases. To

avoid this discrepancy we need to improve Euler’s method.
Improved Euler Method

Let the tangent at (X,,Y,) to the curve be PoA. In the interval (x,,X) by the previous

Euler’s method, we approximate the curve by the tangent PoA.
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(Xo0,Yo)

|Ql (1)
o P )
: XO :Xl
X
MO Ml

Let Q.1C be the line at Q; whose slope is f (x1 yl(l))

Now take the average of the slopes at Py and Q;
.1
1€ E[f (Xo’ YO)+ f (X:L’ yl(l))]

Draw a line PoD through P (X,, Y,) with this as the slope.

That is,
= vo =2 [106,30)1 6,y (x- )

and this line intersects x = x, at
1
Vi = Yo 5 {1 G o)+ (6 v

1
=Y +Eh[f(xo’YO)+ f(xl’ Yo+ hf(XO’ yo))]

In general,
1
yn+1 = yn +Eh[f(xn7yn)+ f(Xn +h’yn + hf(xmyn))]

This is what is known as improved Euler’s method.
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Notice that the difference between Euler’s method and the improved Euler’s method
is that in the improved one we take the average of the slopes at (X,,Y,) and (xl, yl(l)) instead of
the slope at (X,,Y,) in the former method.

Modified Euler’s Method
In the improved Euler method, we arranged the slopes, whereas in modified Euler method, we
will average the points.

Let Po(X,,Y,) be the point on the solution curve

Let PoA be the tangent at (X,, Y,) to the curve. Now let this tangent meet the ordinate at

X=X, +%h at N, and Yy coordinate of N, =y, +%hf(xo, y,) . Calculate the slope at Ny i.e.

1 1
f(x0 +Eh,y0 +§hf(xo,yo)j.

Y A
ki(x1,y1)
! B
PO (XOIVO) : A
| Ny
i Mo i i X
0 Xo Xo+ — h X1=X0+h
2

Let this line meet x = x, at k,(x, ).

This y{” is taken as the approximate value of y at x=x,

1 1
yl(l) =Y ‘”{f(xo +§thO +§hf(xo’yo)ﬂ
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In general,

A +h{f(xn +%h, Y, +%hf(xmyn)j

or y(x+h)= y(x)+h{f(x+%h,y+%hf(x,y)

L 1

This is called modified Euler’s formula.

Note: The Euler predictor is y,., =Y, +hy, and the corrector is y, ., =V, +g(y'n + y'm) in the

improved Euler method.
When you read some literature there is some confusion among the authors. Some take the
improved Euler method as the modified Euler method and the modified Euler method is not

mentioned at all.

Example 3 Solve numerically Y'=y+¢€*, ¥(0)=0 for x=0.2, x=0.4 by improved

Euler’s method.

Solution
y=y+e, y(0)=0 x%=0 y,=0, =02, x =04 andh=02.

By improved Euler method,
1
Yi=Yo +§h[f(xo’ yo)"' f(X1’ Yo+ hf(xo’ YO))]
0.2 « X Xo +
y1:0+7[y0+e 0 +y0+h(yo+e °)+e 0 h]

= (0.1)0+1+0+0.2(0+1)+e%)

y(0.2) =y, =0.24214
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yi=y, +%h[f (x,y,)+ F(x +h,y, +hf(x,y,))
Here T(x,Y,)=Y, +&* =0.24214+e%* =1.46354
y, +hf(x,y;)=0.24214+0.2(1.46354) = 0.53485
f(x, +h,y, +hf(x,y,)) = 053485+ = 2.02667
y, = 0.24214+(0.1)1.46354+ 2.02667)

y(0.4) = y, =0.59116

Example 4. Compute Y at X =0.25 by Modified Euler’s method
y'=2xy,y(0)=1.
Solution
f(x,y)=2xy; %, =0, y, =1
Take h=0.25, x, =0.25

By modified Euler method,

Yo = Ya +hHXn +g,yn +%hf(xn,yn)ﬂ

h 1
Y= Yo +h{f(xo 5 Yo +§hf(><o,yo)ﬂ

f(%, ¥0) = f(01) =0
y, =1+ (0.25) f (0.125)

_ 1+ (0.25)(2)(0.125)(1)
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y(0.25) =1.0625
y'=2xy = dy = 2xdx
y

Using y(0) =1

y(0)=c=1
—y=e"

- y(0.25)=e®®" =1.06449445¢

The error is only 0.00199944891.

Example 5. Solve the equation dy

1-1vy, given y(0) =0 using modified
and Euler’s method and tabulate the solutions at x=0.1,x=0.2,

and X =0.3. Compare these results with the exact solutions.

Solution

Here X, =0,¥, =0,%x, =0.1,x, =0.2,X, =0.3,h=0.1
y'=1-y

L fxy)=1—y, = f(X.Y,)=1—Yy, =1

i) Modified Euler method

h 1
y, =Y, h f(x0+§,y0+5h f(xo,yo)j

X, +%h = %(0.1): 0.05 and vy, +%hf(x0, Y,) = 0.05

.y, =0+(0.1) £ (0.05,0.05)] = 0.1(1- 0..05) = 0.095
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Now again f(X;,y;) =1-Y, =1-0.95=0.905

1 1
y, = y1+hf[><1+§h,y1+§hf(x1,y1)]

= 0.095+ (0.1 f(0.15)0.14025)
= 0.095+(0.1)(1—0.14025)
= 0.18097¢

1 1
Y; =Y, +h f[x2+5h,y2+5h f(Xz’Y2)j

=0.180975+(0.1)f [o.z +O—2'1,O.180975+0—é1 f(0.2,0.180975)j

= 0.180975+ (0.1)f(0.25,0.22192625

= 0.25878235

i) Improved Euler method

1
Yo = Yn +§h [f(xn’yn)+ f(Xn +h’yn +h f(Xn’yn))]

1
S Y= Yot oh [ (X0, ¥o)+ T(%h, Yo +h f (X, ¥,))]

f(xm)’o):l_y =1
f(x,+hy, +hf(xY,)) = f(0.1,0+0.11))= £(0.1,0.1)
=1-0.1=0.9

-y, =y(0.1)=0+ %(u 0.9)=0.095

1
Y= v+ h [F(x,y)+ f (¢ +hy,+hf(x,y))
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f(x,y,)=1—y, =1—0.095= 0.905
f(x, +h,y, +hf(x,y,)) = £(0.2,0,905+ (0.1)1—0.095))
= £(0.2,0.1855) =0.8145

-y, =0.095+ %(0.8145+ 0.905) = 0.180975

1
Ys=Y> +Eh [f(xz,y2)+ f (Xz +h,y, +h f(XZ’yZ))]

=0.180975+ 07'1((1— 0.180975)+ f(0.3,0.180975+ (0.1)(1—0.180975)))

= 0.180975+ 0.05(0.819025+1—-0.262877H

=0.25878237¢

Exact solution

gz:1—y :>JH—=dX
dx 1-vy

—Mml-y)=x+¢, = 1-y=ce”
At x=0, 1-0=ce’=c=1
sy=1-e
= y(0.1) = 0.095162581
y(0.2) = 0.18126924¢€

y(0.3) =0.25918177¢

X Modified improved exact
0.1 0.095 0.095 0.09516258
0.2 0.180975 0.180975 0.1812692%6
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0.3 0.258782356 0.258782356 0.2591817®

Example 6. Find, correct to four decimal places, the value of y(0.1)
Given y' =x*—y, y(0) =1 by using improved Euler method.
Solution

Here, h=0.1,%x, =0,X, =0.1and y, =1

By the improved Euler method,

1
Ynea = Yo+ 5 LE (6 ¥ )+ £ O 0oy, +0F (%, v,)))
1
Y1 =Y +Eh[f(XOJ/o)+ f(Xo +h,y, + hf(Xo’yo))]

— 142206 - yp + 101y, +0.10¢ - v,)

=1+0.05(-1+ (0.1 — (1+(0.1)1))) =0.9055
Example 7. Using improved Euler method find y at X = 0.1 and at

. dy 2X
x=0.2 —=y—-—, y(0)=1
given ¥ =y, y(0)

Solution

By improved Euler theorem,
1
Yaiw = Yo + 5 W[ (0 va)+ £ 0+ 0y, + 0 F(x,y,))]

Here X, =0,¥, =1, h=0.1
1
- Y1 = Yo +Eh[f(XO’y0)+ f(Xo +h,y, +hf(X0,y0))]

=1+O—'1[1—&0)+1+%1)(2)—0}
2 1 11
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f(x, +h,y, +hf(x,,y,))= f(0.1,1+0.11))= f(0.1,1.1)

=1.1- %11) =0.918181818..

= 0.918182
0.1
LY =1+ 7(1+ 0.918182) =1.095909091

h
Yo =W +§(f (X11 3/1)+ hf (Xl +h,y, +hf (X1’ yl)))

2(0.1)
f(x,,y,)=1.095909091
(. 1) 1.09590909

=0.913412201

f(x +h,y, +hf(x,y;))= £(0.21.095909091+(0.1)0.913412203)

= (0.21.18725031)

=1.187250311- 2(0.2)
1.187250311

= 0.850337365
Thus y, =1.095909091+ 0—2'1(0.913412201+ 0.850337369

=1.18409656¢

Example 8. Using modified Euler method, find Y(0.1), y(0.2)
: dy 2, .2
iven —=x"+y°, yl0)=1
given y*, y(0)
Solution

Here, Xo =0,¥, =1L, h =0.1,x, =0.1, f(x,y)=x*+y?

71



By modified Euler method,
1 h
Yi=Yo + hf(xo +Eh’ Yo +§ f(XO’ yo)j

=1+(0.1)0.05" + (1+0.05(1))’)

y(0.1)=1.1105
1 h
yf=m+m(&+§hm+5f&pmﬂ

=1.1105+(0.1)0.15? +1.17266051% )

=1.25026326¢

Exercise

1. Use Euler’s method to find
a) y(0.4) given y'=xy,y(0)=1
b) y(1.5)taking h=0.5giveny’'=y-1,y(0) =1.1

dy 2X

2. Compute y(0.3) taking h=0.1given Frl

method.

y-— 7 y(0) =1using improved Euler

3. Find y(0.6),y(0.8) and y(1) given y'=x+Yy,y(0) =0 taking h=0.2 by improved

Euler method.

4. Use improved Euler method to find y(0.1) given y’ _y=X
y

X
,y(0)=1.
X

5. Using improved Euler method find y(0.2),y(0.4) given% =X+ ‘\/ﬂ y(0) =1.

6. Use improved Euler method to calculate y(0.5) ,taking h=0.1 and

y'=y+sinx, y(0) =2
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7. Use modified Euler method and obtain y(0.2) given y’' =log(x+y),y(0) =1,h=0.2.

8. Use improved and modified Euler method, to get y(1.6) if jy y? —X i y(@) =1.
9. Solve y'=3x?+Yy given y(0) = 4if h=0.25 to obtain y(0.25), y(0.5).

. , Y 5 5, 4 1 . .
10. G == —-=x"y’,y(@) =—= find y(2) if h=0.125.
ven y' =2 =Xy’ y(® = find y(2) i

11. Find y(0.2) by improved Euler method, given y’ = —xy?, y(0) = 2
if h=0.1.
Runge-Kutta Method

i) Second order Runge-kutta method

Suppose % = f(x,y) given y(X,)= Yy -eoreeren @)
By Taylor series, we have

y(x +h) = y(x)+ hy'(x) + h?zl y"(x)+0(h%) .......... (2)
Differentiating (1) with respect to X,

VUL VY S S (3)

ox oy dx
Using the values of y" and y” derived from (1) and (3), in (2) we get

y(x +h)—y(x) = hf +%h2(fx + ff,)+0(h?)

= Ay = hf +%h2(fx+ ffy)+O(h3) ........ (4)

Let A,y =hf(x,y)= f(x,y)Ax =k,

A,y = hf(x+mh, y+mk )=k,
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and let Ay =ak, +bk, where a,b andm are constants to be determined to get the better
accuracy of Ay.

Now expand K, and Ay in powers of h, by Taylor series for two variables, we have

k, = h f(x+mh,y+mk,)

2
5 5 [mh§+mklaj f
=h| f(x,y)+| mh —+mk,— |f + X oy + ...
OX oy 2!

2
mhiijkli f
OX oy

= h| f + mhf, + mhff, + +...

2!

=h f + mh?f, + mh®ff, + .. higher powers of h.
Substituting k, ,k, in Ay, we get
Ay = ahf +b(hf +mh?(f, + ff, )+ O(h°))

— (a+b)hf +bmh?*(f, + ff, )+ O(h?)= ak, +bk,.....(5)

Equating (4) and (5), we have

a+b=1 mb=l
2

=a=1-b and m=i
2b

Ay = (1—Db)k, +bk,
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Where k; =hf(Xx,y)

h hf
kK, =hf| X+—,y+—
2 ( 27 2bj

Now Ay = y(x+h)—y(x)

h hf
h)= 1-b)hf +bhf —, —
= y(x+h)=y(x)+{@-Db)hf + [X+2b y+2bj

e Yo = Yo - A-DI £, 10 (3,501, 501 (0, +Ol)

From this general second order Runge-kutta formula, setting a=0, b=1, m= % , We get the

second order Runge-kutta algorithm.
k, = hf(x,y)

1 1
k, =hf| x+=h,y+ =k
o= nf(x 3nyJk)

and Ay =k, where h=AXx
ii) Third order Runge-kutta Method

For n = 3, a similar derivation to the one as the second-order method can be performed. Since

the derivation is tedious we state simply the formula.
1
Ynia = Yn t E(kl + 4k, + ks)

, where kK, =h f(x,y)
1 1
k2 =hf[x+5h,y+§k1h)

k, = hf (x+h,y—k+2k,)
iii) Fourth Order Runge-kutta method

75



The most popular and commonly used form is the classical fourth-order Runge-kutta method.

Youu = Yo t %(kl + 2K, + 2K, + k4)
, where k, = hf(x,y)

1 1
k, =hf| x+=h,y+=kh
=ti{x Iy L)

h 1
k,=hf| x+—,y+=k,h
L
k, = hf(x+h,y+k;h)
Note 1. The second order Runge-kutta method,

h 1
Ay, =k, = hf(x0 +E,y0+§klj

h 1
= hf[xo +§’yo+5hf(xo’yo)j

h 1
SYi =Y +hf[xo +E1yo +Ehf(XO’yO)j

this is exactly the Modified Euler method.
Thus, the second order Runge-kutta method is simply the modified Euler method.

2. If f(x,y)= f(x), a function of X alone, then the fourth order Runge-kutta method

reduces to

k, = hf(x,)

Ay:%h[f(xo)wf(xo +g)+ f(x0+h)}
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oo

= the area of y=f(x) between X=X, and X=X, +h with two equal intervals of

length 2 by Simpson’s one-third rule. i.e. Ay reduces to the area by Simpson’s one-third rule.

Example 1. Apply the fourth order Runge-kutta method to find
y(0.2) giventhat Y = x+Y,y(0) =1
Solution

Since h is not mentioned, we can take h=0.1
(X y)=x+y,% =0, y,=1 x =01 x,=0.2

By fourth-order Runge-kutta method, for the first interval

k, = hf(x,,Y,)=(0.10+1)=0.1
1 1
k, = hf(x0 +Eh, Yo +Eklj =(0.1(0.05+1+0.05)=0.11
k, = hf(xo +%h, Yo +%th) =(0.1)(0.05+1+0.055)=0.1105
k, = hf(x, +h,y, +k,)=(0.1(0.1+1+0.1105) = 0.12105
1
~y(0.1)=y, =y, +E(k1 + 2K, + 2k, + K, )

=1+ %(o.1+ 2(0.11)+2(0.1105)+0.12105)

-1.110341667
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Now starting from (Xl, yl) we get(Xz, yz). Again apply Runge-kutta algorithm replacing

(Xov yo) by(Xl, y1) .

k, = hf(x,y,)=(0.1)0.1+1.110341667) = 0.12103416¢€
h K,
k, = hf| x, ot = (0.1)(0.15+1.176384609

=0.1326384¢

y(0.2)=1.110341667+%[0.121034166+ 2(0.132085875+0.13263846+ 0.144298017

= 1.24280514

Remember that the exact solution is Y = 28 —x —1
y(0.2) =1.242805556

The difference between the exact solution and the fourth order Runge-kutta method is
0.0000003%432.

As compared to other methods, this method is the best one.
Example 2. Find the values of y at X =0.1, 0.2 using Runge-kutta

method of i) second order i) third order and

iii) fourth order for the given that Y’ = —Y and y(0) =1,

Solution
f(x,y)=-v,% =0,y,=1,x,=0.1x,=02,h=0.1
i)  Second order

k, = hf(x,,Y,)=(0.1(-1)=-0.1
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k, = hf(xo +%h, Yo +%k1j = (0.1)—(1-0.05)) = —0.095

SoY = Yo kK,
=1-0.095=0.905
Again let (X;,Y;) =(0.1,0.905)

k, = (0.1)(-0.905)=-0.0905
1
k, = (0.1){— (0.905+ E(_ 0.0905)]} =-0.085975

y(0.2) =0.905+ (-0.085975 = 0.819025

i) Third order
k, =hf(x,,y,)=-0.1
k, =-0.095
k, =hf(x, +h,y, +2k, —k,)

=(0.1)(-(1+2(-0.095) (-0.1))=-0.091

0.0 =1+ 2k + 4k, +k,)

=1+ %(— 0.1+ 4(-0.095) + (-0.091)

=0.90483333
Now take (X;,Y;) =(0.1,0.904833333) and repeat the process

k, = hf(x,y,)=(0.1,0.904833333) = —0.090483333:
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h 1
kz = (0-1)()(1 +§1 Y1 +Ek1j

= (0.1)(— (0.90483333& %(— 0.0904833333D

=-0.08595916%

k, = (0.1)(— [(0.904833333 + 2(— 0.085959168 — (— 0.0904833333))

=-0.08233983

1
Y, =Y, +€(k1 +4k, +k;)

=0.904833333+ %(— 0.0904833333+ 4(— 0.082339833 + (— 0.082339833)

=0.821136248
iii) Fourth order
k,=-0.1

k, = -0.095
k, = hf(xo +%h, Yo +%k2j = (0.1)(— (1 + (- 0.0475))) = 0.09525
k, = hf(x, + h,y, +k;) = (0.1~ (1+ (- 0.09525))) = —~0.090475

1
Ly =1+ E(kl + 2k, + 2k, +k,)

=0.9048375
Again taking (%, ;) =(0.1,0.9048375) and repeating the process, we get

k, =(0.1)(-0.90483%)=-0.0904837E
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1 1
k, = (O.l)f(xo +§h, Yo +§k1j

=(0.1)(-(0.9048F5- 0.045241875)) =- 0.0859595@

k;=(0.2)f x0+%h,yo+%k2j

= (0.1)(— 0.9048375+ %(— 0.085959562)D =-0.086185771

k, = hf(x +hy, +k,)

=(0.1)(-0.948375+0.08618577.=-0.0818655172
1
Y, =Y, +g(k1 + 2k, + 2K, + Kk, )

= 0.9048375+ %(— 0.09048375+ 2(—0.085959562+ —0.086185771)

+(~0.081865172 = 0.818730902

X 2"%order 3" order 4™ order exact y=e™
0.1 0.905 0.90483333 0.9048375 0.9048374B
0.2 0.819025 0.82113624 0.81873092 0.8187307%3

As we can see from the table fourth order values are closer to the exact values.

Example 3. Compute Y(0.3) given % +y=-xy?,y(0)=1 by taking h=0.1
X
using Runge-kutta method of fourth order.
Solution

y' =-y—xy?=f(x,y)=—(y+xy®)
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Xo =0,¥,=1,h=0.1%x =0.1,x, =0.2,X;, =0.3

Now k, = (0.1) (-1) =-0.1

oo oro2) o272

— —(0.1)/0.95+ (0.05)0.95F |

=-0.099512¢

h 1
Kk, = hf(x0 +§,y0+§k2j

=(0.1)f(0.05,0.95024375

= —(0.1))0.95024375+ (0.05)(0.95024375 |
=-0.0995391¢

k, = hf(x, +h,y, +k;)
=—(0.1)f(0.1,0.900460809

=-0.098154371

Sy, =1+ %(— 0.1+ 2(~0.0995125+ 2)(— 0.09953919 + (- 0.098154377)

y(0.1)=0.900623707
Now again taking (X, Y,) in place of (X,,Y,) , we get

k, = hf(x,y,)=(0.1)f(0.1,0.900623707)

=0.098173601
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h k
k, =hf| x, +—,y, +=
2 (Xl 2 yl 2)

=(0.1)f(0.15,0.851536909

=-0.096030417
h k
k, = hf(x1 +§’ A +Ezj

— —(0.1)0.852608498+ (0.15)(0.852608494"
= -0.09616496¢

k, =hf(x +h, y, +k,)
=(0.1)£(0.2,0.804458739

=-0.09338893

.y, =0.900623707+ %[— 0.098173601+ 2(— 0.096030417)+ 2
(—0.096164969+ (—0.09338895] |

=0.8046314%

Again, using (X,,Y,) = (0.2,0.8046314&) we find Yy, = y(0.3)

k1 = hf (Xz’ Y2)
= —(0.1)|0.804631486+ (0.2)(0.80463148¢°

= -0.0934117%
h k,
k, = hf X+ 50 Yo + o = (0.1) f(0.25,0.757925593

= -0.09015383
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k, = hf(xz +h,y, +k—22j =(0.1)f(0.25,0.759554566

=-0.090378%5

k, = hf(x, +h,y, +k;)=(0.1)f (0.25,0.71425295)

=-0.08417927

.y, =0.804631486+ % [-0.093411785+ 2(— 0.090153839 + 2
(—0.090378539+ (- 0.084179227)]

=0.714855526

Example 4. Using Runge-kutta method of fourth order, find y(0.8)
if y'=y—x%vy(0.6)=1.7379
Solution

Here X, = 0.6,y, =1.7379,h =0.1,X, =0.7,%, =0.8 and f(x,y)=y—x’

k, = hf (%, Y,)=(0.1)1.7379-0.6%) = 0.13779

h k
k, =hf| X, +=,y, +—=
2 [Xo 5 Yo 2}

=(0.1)(0.65,1.806795) = 0.1384295
h k
k, = hf[x0 +§’ Yo +?2j
= (0.1)1.80711475= 0.65 ) = 0.38461475

k, = hf(x, +h,y, +k;)
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- y(0.7) =1.7379+%[o.13779+ 2(0.1384295)+ 2(0.138461479+0.138636147]

= 1.8762680b

Now using (X,,Y,) = (0.7,1.8762680%5) we continue to find y(0.8)

k, = hf(x,y,)=(0.1{1.876268016-0.7) = 0.138626801

h k
k, =hf| X, +—,y, + =
2 [Xl 2 yl 2

Kk, = hf(xleg,yl +k—22

= (0.1)f(0.751.945422087) = 0.13829220¢
k, =hf(x +h,y, +k;)

=(0.1)(0.8,2.014560224) = 0.137456022

y(0.8)=1.876268016+ %[0.138626801+ 2(0.138308147 + 2
(0.138292209+ 0.13746023

=2.0144819%

Example 5. Using Runge-kutta method of fourth order, solve

2 2
% - y2 —x2 given y(0)=1 at x=0.2,0.4
Xy +X

Solution

2 2

¥ =0.Yp =Lh =02, =025, =04 and £(uy)- L=
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k, = hf(x,,y,)= )(Hoj :

h k
k, =hf| X, +=,y, +—=
2 (0 2 yO 2]

2 2
= (0. )[112 01) 0.196721311

h
K, _hf(x0 —, Yo+ 2)

1098360656 —0.1°
(0.2 .
1.098360656 +0.1

jz 0.196711597

k, = hf(x, +h,y, +k;)

1.196711598 —0.22
=(0.2 ,
1.196711598 +0.2

j: 0.18913131
y(0.2)=1+ 6(o 2+2(0.196721319+2(0.196711597)+0.1891313))

=1.19599952

To find y(0.4) we use (X;,Y;) = (0.2,1.19999521)

k, = (O'Z)f (X11 Y1

1.19599952% —0.22
)=(0.2 5
1.19599952% +0.2

= 0.189118717
h k
k, =(0.2)f (x1 5% +51] =(0.2)f(0.31.29055889

=0.17949351¢
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k, = hf(xl +g, y, + %} =(0.2)f(0.31.285746279
=0.17934765¢

k, = hf(x +h,y, +k,)=(0.2)f(0.41.375347179

=0.16880452¢

- y(0.4)=1.195999521+ %[0.189118717+ 2(0.179493515+ 2
(0.179347659+ 0.168804524
= 137526710

Runge-kutta method for simultaneous first order differential equations
Aim- To solve numerically the simultaneous equations

% = f,(x,y,z) and % = f,(x,y,z) given the initial conditions
X X

y(Xo) =Yo Z(Xo) =1,

Now starting from (X,, Y,,Z,) the increments Ay and Az in y and z respectively are given

by formulae
k, = hfl(XO’ yo’zo) m = hfz(xo’ Yo Zo)

h k h k
k, =hf1(xO +§,y0+51,zo+%J m, :hfz(x0+§,yo+zl,zo+%j

h k m h k m
k, = hfl(x0 +E,y0 +?2,zo +72j m, = hf{xO +E,y0 +EZ'Z° +72j
k, = hf,(x, + Ny, + K, 2, +m,) m, = hf, (%, +h,y, +Kk,;,z, +m,)

1 1

and Ay:g(k1+2k2+2k3+k4) Az:g(m1+2m2+2m3+m4)
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SYi=Yo+Ay and oz, =7,+Az
By repeating this algorithm once again we can find (x,,Y,, z,) starting from(x,,y,,z,) .

Example 6. Find y(0.1), z(0.1) from the system of equations,

jy =X+ z,E = x—y? given y(0) = 2,z(0) =1 using Runge-kutta
X X

method of fourth order.

Solution
Here X, =0,Y¥,=2,2,=Lh=0.1 f,(X,y,2) =x+2 f,(X,y,2) = X—y?
so k, = hf,(xy, Yo, 2,) m, = hf,(X,, Yy, 2,)

—(01)(0+1)=0.1 _ (01)(0-2%)=-04
h k h k
kzzhf1[X0+E'y0+El1zo+%j m2=hf2(xo+5,yo+31,zo+%j

=(0.1)(0.05+1+(-0.2)) =(0.1)(0.05-4.2025)

=0.085 =-0.41525

m,

h k m h k
Kk, = hfl[xo+5,yo+?2,zo+72j m, = hfz(x0+5,y0+?2,zo+7j

=(0.1)(0.05+0.792375) = (0.1)(0.05- (2.0425})

=0.0842375 =-0.41218065
k, = hf,(x, +h,y, +K,;, 2, +m,) m, = hf,(x, +h, Y, +Ky,2, + ;)
—(0.1)(0.140.5878193F)  =(0.1)(0.1- (2.08423752)
=0.0687819F =-0.4244045%

LY, =24 %(o.1+ 2(0.085)+ 2(0.0842379 +0.068781937
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= 2.08454283

z, =1+ %[— 0.4+ 2(—0.41525)+ 2(— 0.412180629 + (- 0.424404599

= 0.58678905
Runge-kutta method for second order differential equation
Aim - Tosolve y” = f(x,y,y')given y(X,) = Yo, ¥"(X,) = Yo

Now, let y'=zandso y" =2’
= y"=2'=f(x,y,y') and y’ = zare the two simultaneous equations with f,(x,y,z) =z

and f,(x,y,2) = f(x,y,2) itself.

Once again by applying Runge-kutta method for solving simultaneous first order differential
equations we can get the solution of the given problem.
Example 7. Giveny"+ xy"+y =0, y(0) =1,y'(0) =0, find y(0.1) by using

Runge-kutta method of fourth order.
Solution
y'+xy+y =0=y"=-y—xy'

Let y'=z = 7'=-y—-xz

%: z=1,(x,y,2)
dz
o = Y= fly)

given Yo =12, =0,Y,,h=0.1,%, =0

k, = hf,(X,, ¥o.2,) = (0.1(0) =0 m, = hf(x,,Y,,2,)=—0.1
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kzzhfl(xo+g’yo+ﬁizo+ﬂJ m2=hf2(xo+h,yo+ﬁ,zo+ﬂj

2 2 2 2 2
=(0.1)(0.05)=-0.005 =(0.1)(0.05,1,-0.05)
k, = hf1(0.05,1— + 0'005,—0.049875j = (0.1)[-1- (0.05)(-005)]
=(0.1)(-0.049879 —-0.09975
=-0.004987¢ m, = hf,(0.05,0.9975-0.049875)
k, = hf,(x,, Y, +Kg 2 + M) =(0.1)((0.05)(0049875)0.®75)
=(0.1)(-0.09950@25) =-0.09950065
= -0.0099500@5 m, = hf,(x, Y, + ks, 2, + M)

= (0.1)(0.1,0.09950125-0.099500625
= (0.1)((0.1)(0.09950125 — 0.9950125

=-0.098506248
Sy, =1+ %[0 +2(~0.005) + 2(-0.0049879 + (—0.0099500625]

=0.9950124%
Exercise
In the exercise below, unless specified use fourth order Runge-Kutta method.

1. Find y(0.2) given y'=y—x,y(0) =2 taking h=0.1.

2. Obtain the value of y at Xx=0.2 if y satisfies % - x’y=x,y(0)=1
taking h=0.1.

3. Solve % = xy for x=1.4, taking y(1) =2,h=0.2.
X
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Solve dy _y=x given y(0) =1, to obtain y(0.2).
dx y+Xx

&

o

Solve the initial-value problem ?j—l: = —2tu®,u(0) =1with h=0.2 on the interval (0,0.6) .

o

Evaluate y(0.1),y(0.2),y(0.3) given y' = %(x +1)y?,y(0)=1.

~

Solve ﬂ+lzi2,y(1) =1 for y(1.1) taking h=0.05.
dx x x

®

Find y(0.1),y(0.2) given y' = x -2y, y(0) =1 taking h=0.1by
1) second order i) third order
iii) fourth order Runge-Kutta methods.

9. Solve y'=xy+1as x=0.2,x=0.4,x=0.6given y(0) = 2taking h=0.2,

10. Solve the system: % = XZ +1,$ =—xy for x=0.3,x=0.6,x = 0.9 taking
X X
x=0,y=0,z=1.
dy dz . .
11. Solve Frie X + z,d— =X-Y,giveny(0)=0,z(0) =1 for x=0.0 to 0.2 taking h=0.1.
X X

12. Evaluate y(1.1),z(1.1) given % = xyz,% = ﬂ, y@) =0.5,z(2) =1.
X X z

13. Using Runge-Kutta method determine x(0.1), y(0.1)

dy

— =ty+Xx,y(0)=-1.
il y(0)

given % =xy+t,x(0) =1,

14. Solve y"—x(y)*+y?>=0 using Runge-Kutta method for x=0.2given
y(0) =1,y'(0) = 0 taking h=0.2.
15. Find y(0.1) given y” =y?,y(0) =10, y'(0) = 5 by Runge-Kutta method.

16. Find y(0.1,y(0.2) given y"—x’y’' —2xy =1,y(0) =1,y'(0) = 0.
91



. . d®x  tdx ,
17. Obtain the value of x(0.1) given Te :E_A'X’X(O):B’X(O):O'

18. Compute the value of y(0.2) given y"=-y,y(0)=1y'(0)=0.

Predictor-Corrector Method
The methods so far discussed are called single step methods because they use only the

information from the last step computed. But now we try to discuss multi-step methods.

Consider % =f(x,y) ¥(x)=Yo

We have used Euler’s formula to solve differential equation of the form
Yo =Y, +hf'(x,y,) i=012, (1)

, and we have improved the Euler method by
1
yi+1 = yi +Eh[f(xi'yi)+ f(Xi+l’yi+l)] (2)
In (2), to get the value of y,,, we require y,,, on the right hand side.
To overcome this difficulty, we calculate y;,, using Euler’s formula (1) and then we use it on the

right hand side of (2), to get the left hand side of (2). This y,,, can be used further to get refined

Y,,, on the left hand side. Here, we predict the value of y,,, from the rough formula (1) and use
in (2) to correct the value. Every time, we improve using (2). Hence equation (1) Euler’s
formula is a predictor and (2) is a corrector.

A predictor formula is used to predict the value of y at y,,, and a corrector formula is used

to correct the error and to improve that value of v,,; .

Milne’s Predictor- Corrector Formulae

Suppose our aim is to solve % = f(x,y), y(x)=y, numerically.
X
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¥, = Yo(X% +h)=y(x)=y(x), v, = (X, +2h), ...y, = y(x, +nh), where h is a suitable
accepted spacing, which is very small.

By Newton’s forward interpolation formula, we have

u(u —1)Azyo s u(u—1)u-2)

3
o 3 Ay, +...

Y = Yo +UAY, +

X — X
, Where u = . 0 = X=X, +Uh

Changing y to y’

. ulu-1 ouu—=1ju-2 .
yI: 3’07Ll'|A3/o+ (2| )Azyo+%fyo+-" (2)

Integrating both sides from X, to x,,

Xo

[Fydx=] XOMh(yg + UAY, + —u(uz._l) Ay, + ---jdx =y o

. Couu-1)
= h.f:(yo +UAY, +¥A2y0 +...jdu

Since x =X, +uh=dx=hdu

2 3 2 4
Now Y, —Y, = h{uy(') + Ay(',u?+1A2yg(u——u—]+1A3y{uZ—u3 + u2j+..1

2 3 2 6
= h| 4Ay, +8Ay, +%(% —8jA2y;, +%A3y(')(64— 64+16)+ }

= h| 4Ay, +8Ay, +%A2y(') +§A3y;) +}

= h| 4Ay, +8(E —1)Ay, +?(E ~1)y, +%(E ~1Py, +Z—2A4y5 +}

- A Coy 8 : ooy 14,
:h{4Ayo+8(yl—y0)+?(yo—2y1+y0)+§(y3—3y2+3y1—y0)+4—5A4y0+..}
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i 20 8) . 40 . (20 8 .| 14 .
=h|4-8+———|y,+|8——+8|y,+| — -8y, + =V, |+ —hA'y, +..
_[ 3 3jyo [ 3 jyl (:3 JY2 3y{] 25" Yo

'8 . 4. 8 .] 14
=hl=y,— =V, +=V, |+ =—=hA'y, +...
3 Y1 3YZ 3)/3} 45 Yo

4hr, . . 1 14h , .
:?[2Y1—y2+2y3]+EA4y0+ ....... (3)
Taking into account only up to the third order equation, (3) gives

w:%+%@n—n+w9

= yo+4?h(2f1_ f, +2f3)

The error happened in (4) is %A“yg +... and this can be proved to be % y“(&) , where

&% %)

Since A =E —-1=¢e"° —1=hD for small values of h.

5

42 y"(&) and hence (3) becomes

. Theerroris

ahg, ooy, 14h
Yo = y0+?(2y1_y2+2ya)+Ey( )(f) ........ (5)
In general,
ahi oo N 1400
wﬂ=ws+§sz—wl+wJ+z§wK§LwmmgeuﬂmM) ...... (6)

This equation is called Milne’s predictor formula.

To get Milne’s corrector formula, integrate equation (2) between the limits X, to X, +2h.

Xo

.fx°+2h y'dx = LXO+2h(y(') +UAY, + _u(uz—l) Ny, + ...)dx
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Yo=Y = h_foz(yg +UAY, +M&y¢, +...Jdu

Coour s 11U out), 2
- h_[oz(you+?Ayo+E[?—?jA y0+...J X

. . 1(8 41,
= h(Zyo +2(E 1)y, +§(§ —2)(E ~1fy, —E.2—4A“y0 +j

- h(ZyA +2(y, - y5)+%(y'2 —2y,+ yL,)—%A“yA +)

h(. .y h o,
ZE(YO+4y1+y2)_%A4yO+... .......... (7)

Again here taking into account only up to third order, we get

he oo
V> = Yo +§(yo +ay,+Y,) .(8)

5
Here the error is —%A“ygJ +... and this can be proved to be —% y“(&)

where X, <& < X,; and thus (7) becomes

5

he o,
Yo = Yo +§(yo 4y, + yz)—%y( ()

In general,

5

Yniu = Yna +g(y;,_1 +4y + yM')_h_

90 y(V)(é:Z) where Xn—l < 52 < Xn+l '

This equation is called Milne’s corrector formula.

dy

Example 1. Find y(2) if y(x) is the solution of ax
X

= %(x +y) given
y(0) = 0, y(0.5) = 2.636, y(1) = 3.595 and y(L5) = 4.968

95



Solution

Here X, =0,x, =0.5,X, =1, X, =15,x, =2,h =0.5

Yo =2,y, = 2.636,y, = 3.595,y, = 4.968

1 1
fly)=S(x+y)=y
By Milne’s predictor formula,

Y1 = Yozt %(zyl}z - yrl'n—l + 2y;1)

dh, . .
SYa =Y +?(2y1 —Y,+ 2y3)
C1 1
Now, y, = E(x1 +y,)= 5(0'5 +2.636)=1.568
C1 1
Y, = E(x2 +y,)= E(1+ 3.595) = 2.2975

Ys = %(xa +Yy)= %(1.5 +4.968) = 3.234

4(0.5)

LYy =2+ (2(1.568)—2.2975+ 2(3.234))

= 6.871

Using Milne’s corrector formula, we get,
h/. : .
Yo=Y +§(y2 +4YS + y4)

Y, = %(x4 +Y,)= %(2 +6.871) = 4.4355

.y, =3.595+ 0—;’(2.2975+ 4(3.234)+ 4.4355)

= 6.8731666&
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Example 2. Using Milne’s method find y(4.4) given 5xy’ + y?-2=0

given y(4) =1, y(4.1)1.0049, y(4.2) =1.0097 and y(4.3) =1.0143.

Solution
L 2-y°
V=S % =4 =41 % =42, =43, %, =44,h =01
yO = 1, yl = 10049, y2 = 10097’ y3 = 10143
— 2 _
y, = 2-y _2-10049 —0.048301267
5%, 5(4.1)
2 2
Y, = 2=y 2710097 ) h46690757
5%, 5(4.2)
— 2 _
Yy = 2-y; _2-10143 —0.045171884
5%, 5(4.3)

By Milne’s predictor formula,

Yi=Yo +4—3h(2yi Y, +2y;)

=1+ 4(2' ) (2(0.048301267-0.046690757+ 2(0045171889))

=1.01870073

— 2 —
2-y, _2-1.018700739 _ 0.04373858]
5X, 5(4.4)

Y =
Using the corrector formula, we get

Ve =Y, +g(y; 14y, +y,)
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=1.0097+ %1(0.046690757+ 4(0.045171884+0.04373858)

= 1.01873722

Example 3. Determine the value of y(0.4) using Milne’s method given Y'= Xy + y2, y(O)

use Taylor series to get the values of y(0.1),y(0.2), and Y(0.3)
Solution

Here X, =0,% =0.1, X, =0.2,x, =0.3,x, =04,y,=1L,h=0.5
Y'=Xy+Yy: = Yo =XY+Ye =1
Y'= XYY +2YY' = Yo = %Yo + Yo +2YoYo =3

Y= Xy 2y +2yy +2(y')* =y, =10

2 3

Y, = Yo +hy, + Yo + -

203

=1+(0.1)1)+ 0'701(3)+ %01(10% ..=1.116666667

Now Y, = XY, + y? =1.358611111
Y, = XY, + Y, + 2,y = 4.28675926

Yo = XY, +2Y,+2Y,y; + 2(yi)2 =16.4113088

(0.01) 0.001

.y, =1.11666667+(0.1)1.358611111)+ (4.28675926 )+ (16.4113088 )+...

= 1.27669673
Once again Y, = X,Y, + y> =1.885294059

Yo = X,Ys + Y, +2Y,Y, = 6.467653362
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Yy = %,¥; + 2y, +2y,y; +2(y, | = 28.68725078

0'001(28.68725073

.Y, =1.276696793+ (0.1)1.885294059 + 0'701(6.467653362+

= 1.5023456 7%
By Milne’s predictor formula
Yo=Yy + %(ZVL —y,+2y;)
Since y, =1.358611111
y, =1.88529405¢

Vs = XY, + Y5 = 2.707746226

4(0.1)

Y, =1+ (2(1.358611111-1.885294059%+ 2(2.70774626)

= 1.83298942
Y =X, Y, +Y: = 4.093046

Now using Milne’s corrector formula,
h. L
Yo=Y, F §(y2 +4y3 + y4)

=1.276696793+ %(1.885294059+ 4(2.70774626)+ 4.093046)
=1.83700763

Example 4. Given % = %(1+ x?)y? and y(0)=1,y(0.1)=1.06,y(0.2) =1.12,y(0.3) =1.21,

evaluate y(0.4) by Milne’s predictor-corrector method.
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Solution

X, =0,% =0.1x%,=02,%x,=0.3x,=04

Yo =1Yy,=106y,=112y,=121h=0.1
y'= 1(1+ xz)y2
2
o1 1 1
Yo = §(1+ X) Y5 = §(1+ 0)1) = >
1 AR 2 2
y, = E(1+ X2 fy? = E(1+ 0.12)1.06) = 0.567418
r 1 2,2 _ L 2 2
Y, :E(1+ X3)Ys3 :5(1+ 0.39)(1.21)° =0.7979345
By Milne’s predictor formula

Ys=Yo +4—3h(2yi Y, +2y;)

4(0.1)

=1+ (2(0.367418)—0.652288+ 2(0.7979345))

=1.2771222¢
By Milne’s corrector formula
h/ . . . .
Y=Y, + g(y2 14y, +y,) (y; = 0.946003944

- 1.12+%(0.652288+ 4(0.7979345 + 0.946003944)

= 1.2796676%
Once again if we use this value of y, , we get

Y, = %(1+ 0.42)1.279667665 = 0.949778612
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Soy, =112+ %1(0.652288+ 4(0.7979345)+0.949778612

= 1.27979349

If we repeat this procedure once again using thisy,,
y, = %(1+ 0.4%)(1.279793487) 2= 0.949965394

By Milne’s corrector formula

y, =112+ %(0.652288+ 4(0.7979345+0.949965394

=1.27979978
Continuing this process again and again, after some steps we get
y, =1.2798000%
Example 5. Given Y' =1—Y and y(0)=0, and
i) y(0.1) by Euler method; using that value obtained
i) y(0.2) by Modified Euler method
iii) Obtain y(0.3) by Improved Euler method and find
iv) y(0.4) by Milne’s method.
Solution
By Euler method vy, =y, + hf(x,,y,)=0+(0.1f1-0)=0.1

By Modified Euler

h 1
yz=y1+hf(xl+§,y1+§hf(xl.yl)j

=0.1+ (0.1)(1—(0.1+ %(0.1)(1— 0.1)]} —0.1855
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By improved Euler method
1
Ys =Y, +Eh[f (le yz)"‘ f(Xs, y, + hf (XZv yz))]

=0.1855+ %[(1— 0.1855)+1—(0.1855+ (0.1)(1-0.1855))]

= 0.262877¢

Now using Milne’s predictor formula
dh, . . -
Yo=Yo t ?(Zyl -Y,+ 2y3)

— o+ 5 (- y)- (- y,) 20 1,)

4(0.1)

=0+ (2(1-0.1)-(1-0.1855)+2(1—0.2628775)

= 0.327966
y, =1-y, =1-0.327966= 0.672034
By Milne’s corrector formula
h/. . .
Yo=Y, +§(y2 +4y3 + y4)

=y, +g((1— Vo) + 40— y;)+y,)

=0.1855+ %((1—0.1855) +4(0.2628775 + 0.672034

= 0.33333413
Exercise

1. Using Milne’s method, find y(0.2) given

% = 0.2x+0.1y, y(0) = 2, y(0.05) = 2.0103 y(0.1) = 2.0211, y(0.15) = 2.0323
X
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10.

11.

Find y(0.8) given y' =y —x?,y(0)=1,y(0.2) =1.12186 y(0.4)1.46820, y(0.6) =1.7379.
Using Runge-Kutta method of fourth order, find y at x=0.1,x=0.2,x = 0.3 given

y' = xy+y?,y(0) =1. Continue your work to get y(0.4) by Milne’s method.
Solve y' = %(1+ x)y?,y(0) =1 by Taylor series method at x =0.2,x = 0.4,x = 0.6 and
hence find y(0.8) and y(1) by Milne’s method.

If % =2e" -vy,y(0)=2,y(0.1) = 2.010, y(0.2) = 2.040, y(0.3) = 2.090, find y(0.4) and
y(0.5) by Milne’s method.

Estimate y(0.8) and y(1) using Milne’s method correct to three decimal places, given
y'=1+y? y(0)=0,y(0.2) =0.2027,y(0.4) = 0.4228 y(0.6) = 0.6841.

Solve y’'=x—y?,y(0) =1 to obtain y(0.4) by Milne’s method. Obtain the data you
require by any method you like.

Using both predictor-corrector methods, estimate y(1.4) if y satisfies % A iz and
X X X

y(1) =1, y(1.1) = 0.996, y(1.2) = 0.986, y(1.3) = 0.972.

Given y' = %y y(0) =2, y(0.2) =2.0933 y(0.4) = 2.1755, y(0.6) = 2.2493, find

y(0.8) by Milne’s predictor-corrector method.

Compute y(0.6) by Milne’s method given y' = x+ Y, y(0) =1 with h=0.2. Obtain the
required data by Taylor series method.

Giveny'=3e* +2y,y(0) =0, find y(0.1) by Euler method; y(0.2) by Taylor series

method; y(0.3) by Runge-Kutta method and y(0.4) by Milne’s method.
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12. Find y(0.2) by Taylor series method; y(0.4) by modified Euler method; y(0.6) by

Runge-Kutta method and y(0.8) by Milne’s method, given y' =1+ y?,y(0)=0.

13. Given y' =1+ xy, y(0) =1 obtain y(0.1) by Picard’s method; y(0.2) by modified Euler
method; y(0.3) by Runge-Kutta method; y(0.4) by Milne’s predictor-corrector method.

14. Given y' == 2—xy?, y(0) =10, obtain power series by Picard’s method; using Milne’s
method, estimate and show that y(1) =1.6505h =0.2.
Estimate y(0.5), y(0.4) given y' = x+y?,y(0) =1 usingh=0.1.

Boundary-Value Problem (BVP)

BVPs can be solved numerically by using either the Shooting Method or the Finite-
Difference Method (FDM). Here we consider the numerical solution of PVP using FDM. The

former method is left for the students as a reading assignment.

Some simple examples of two-point linear BVPs are:
y (X)+f(x)y (x)+9(x)y(x)=r(x) @)

with boundary conditions

y(%,)=a and y(x,)=b (@)
y =Y o)y (x)=p(x)y(0)+a(x)

(3)

with boundary conditions
Y(%)=Y (%)=A and y(x,)=y(x,)=B. 4)
Problems of the type in Eq. (3) and Eqg. (4), which involve the fourth-order differential

equation, are much involved and will not be discussed here. There exist many methods for
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solving second-order BVPs of the type in Eg. (1) and Eq. (2). Of these, the Finite-Difference

Method is popular one and will be discussed.

Finite-Difference Method (FDM)

The FDM for the solution for a two-point BVP consists in replacing the derivatives occurring

in the differential equation (and the boundary conditions as well) by means of their finite-

difference approximations and then solving the resulting linear system of equations by a

standard procedure.

To obtain the approximate finite-difference approximations to the derivatives, we proceed as

follows:

Expanding y(x+h)in Taylor’s series, we have

y(x+h)=y(x)+hy (X)+Zy (X)+Ly"(x)+...

from which we obtain

Which is forward difference approximation for y (x).

Similarly, expansion of y(x—h) in Taylor’s series gives

Y(x=h)=y()~hy (x)+ £ ()~ Ly (x) .

from which we obtain

y ()= XN o)
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Which is the backward difference approximation for y (x).

A central difference approximation for y (x) can be obtained by subtracting Eq. (7) from

Eq. (5). We thus have

y (x)= +0(h?) 9)
It is clear that Eq. (9) is better approximationto y (x) than either Eq. (6) or Eq. (8). Again,
adding Eq. (5) and Eq. (7) we get an approximation for y (x)as

RRCUETRTIN

In a similar manner, it is possible to derive finite-difference approximations to higher

derivatives.

To solve the BVP defined by Eq. (1) and Eq. (2), we divide the range [x,, x, ]into n equal
subintervals of width h so that

X =% +ih, 1=012,..,n.
The corresponding values of y at these points are denoted by

y(x)=Y, =y(%+ih),i=012,..,n

From Eq. (9) and Eq. (10), values of y (x) & y (x)at the point x = X, can now be written as

yi' _ yi+12; Yi +O(h2)

and y = Yiu _2h)2/i TYig +O(h2)
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In many applied problems; however, derivative boundary conditions may be prescribed, and
this requires a modification of the procedures described above. The following examples
illustrate the application of the FDM.

Example 1: A boundary-value problem is defined by

y'+y+1=0, 0<x<1,

where y(0)=y(1)=0,and h=05

Use the FDM to determine the value of y(0.5). Its exact solution is given by

1-cosl
sinl

y(x)=cosx+ sinx—1,

from which, we obtain

y(0.5)=0.139493927 .

Here nh=1. The difference equation is approximated as

Vi —2Yi +Vis
h2

+Yy;+1=0

, and this gives after simplification
Yia—(2-h°) Y, + Y, =-h°, i=12,...n-1,
which together with the boundary conditionsy, =y, =0, comprises a system of (n+1)

equations for (n+1)unknowns Y, Y,,..., Y, .

Choosing h= % (i.e.n=2), the above system becomes
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1 1
yo_(z_zj ity =T
Withy, =y, =0, this gives
Y, = y(0.5) =0.142857142 .

Comparing with exact solution given above shows that the error in the computed solution is

0.00336 .

On the other hand, if we choose h = % (i.e. n=4), we obtain the three equations:

31 1
YO_Ey1+y2 :_E
31 1
yl_Eyz"'ys:_E
31 1
yz_Ey3+y4:_E

Wherey, =y, =0. Solving the system we obtainy, = y(0.5) =0.140311804, the error in

which0.00082 . Since the ration of the error is about4, it follows that the order of
convergence is h”.
These results show that the accuracy obtained by the finite difference method depends upon the
width of the subinterval chosen and also on the order of approximations. As his reduced, the
accuracy increases but the number equations to be solved also increases.

Example 2: Solve the boundary-value problem

d’y
d7—y:0, 0<x<2,
with y(0)=0 & y(2)=3,62686.
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The exact solution of this problem is y =sinh x. The finite-difference approximation is given by

1 .
F(yi—l_zyi+yi+l):yi (')
We subdivide the subinterval [O, 2] the four equal parts so thath=0.5. Let the values of y at the

five points be y,, ¥;, ¥,, Y5, & Y, . We are given thaty, =0, and y, = 3.62686 .

Writing the difference equations at the three interval points (which are the unknowns), we obtain

4(yo_ZY1+y2) Y1
4(y1_2y2+y3)=y2 (ii)
4(y2_2y3+y3) Ys

, respectively. Substituting for y, &y, and rearranging, we get the system

-9y, +4y, =0
4y1_9y2+4y3=0 (iii)
4y, —9y3 =-14.50744

The solution of (iii) is given in the table below.

x  Computed solution of Exact value Error
y y =sinh x
0.5 0.52635 0.52110 0.00525
1.0 1.18428 1.17520 0.00908
15 2.13829 2.12928 0.00901
Exercise

1. Solve the boundary value defined by

y —y=0,y(0)=0,y(1)=1,
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by finite-difference method. Compare the computed solution at y(0.5)with the exact

value. Take h=0.25.
. Project work. Shooting Method. This is a popular method for the solution of two-point

boundary-value problems. If the problem is defined by
y ()= 1 (x),y(%)=0and y(x)=A,
Then it is first transformed into the initial value problem

y (X)=2, 2 (x)=f(x) with y(x,)=0 and z(x,)=m,, where m; is a guess
for the value y (x,). Let the solution corresponding to x=x, be Y. If Y, is the value
obtained by another guess m, for y'(xo), then Y,andY, and are related linearly. Thus,
linear interpolation can be carried out between the values (x,,y,) and (m,,y,).

Obviously, the process can be repeated till we obtain the value for y(xl) is closeto A.
Apply the Shooting method to solve the BVP

y' (x)=y(x), y(0)=0,y(1)=1
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