Chapter One

Fourier series and orthogonal functions
1.1 Orthogonal functions
1.2 Fourier series
1.2.1 Fourier series of functions with period 2pi
1.2.2 Fourier series of functions with arbitrary period

1.2.3 Fourier series of odd and even functions
1.3 Complex form of Fourier series



NTRODUCTION:

 We know that Taylor’s series representation of
functions are valid only for those functions
which are continuous and differentiable. But
there are many discontinuous periodic
functions of practical interest which requires
to express in terms of infinite series containing
“sine” and “cosine” terms



 Fourier series, which is an infinite series
representation in term of “sine” and “cosine”
terms, is a useful tool here. Thus, Fourier series is,
in certain sense, more universal than Taylor’s
series as it applies to all continuous, periodic
functions and discontinuous functions

Fourier series is a very powerful method to solve
ordinary and partial differential equations,
particularly with periodic functions.

Fourier series has many applications in various
fields like Approximation Theory, Digital Signal
Processing, Heat conduction problems, Wave
forms of electrical field, Vibration analysis, etc.



 Fourier series was developed by Jean Baptiste
Joseph Fourier in 1822.

* Dirichlet Condition For Existence Of Fourier
Series of f(x):

. f(X) I1s bounded.

1. f(x) i1s single valued.

1. f(x) has finite number of maxima and minima in
the interval.

Iv. f(x) has finite number of discontinuity In the
Interval.



Definition 4 (Periodic) Let T >O0.

1. A function fis called T-periodic or simply
periodic if f(x+T) =f (x)------------------- (2)
for all x.

2. The number T is called a period of f.

3. If fis non-constant, then the smallest positive
number T with the above property is called
the fundamental period or simply the period
of f.

* For a T-periodic function
fxX)=fix+TN=flx+2T)=f[x+3T)=... =f[x+nT)



If Tis a period then nT is also a period for any integer
n > 0. Tis called a fundamental period.

Definition 2 (Orthogonal Functions) Two functions
f and g are said to be orthogonal over the interval

@ blif
| reogtrax=o

Theorem 2 The functions in the trigonometric
system 1, cos x, cos 2X, ..., cosmkx, ..., Sin X, sin
2X, ..., sin nx, ... are orthogonal over the interval
[c, c+2m] in other words, if m and n are two

nonnegative integers, then



c+2m )
0,if m=n

3 COSMYCOSNXdx = .
mifm=n

c+2m )

, , 0,if m=n
sinmxsinnydyxy = .

b. ] mifm=n

ct+2m
c j cosmxsinnxdx =0V m,n
c

Proof. To provelthis theorem use the identities
sing cosff = 5 [sin(e + §) + sin{a — )]

cosasinff = % [sin{z + §) — sin(a — 5)]

sin & sin § = % [cosle + 5) — cos{a — 5]

cosa cosff = % [cos(a + 5) + cosla — 5]



1.2 Fourier Series of 2n-Periodic Functions

Proposition The Fourier series representation of f(x)
over the interval c < x < ¢+ 2n is given by

flx) = ﬂu+Z{ﬂncnsnx+ b, sinnx)———— —x
n=1

Then the coefficientsas ,2» 2= forn=1, 2, ... are
called the Fourier coefficients of f and are given by

the Euler’s formulas

1

- ct+im
1 ct+Zm J‘ ﬂ: }
_ ) d, = — X ) COS
Ao = 5 J; fix) dx "= 0, I dx

1 ct+2m
and b, :EJ‘ f(x) sin nx dx
C



To determine the coefficient g,

Integrate both sides of Eq. - over the interval
[c, c+21] with respect to x

ct+m

c+dm e+dm
J‘ flx) dx = j agdx + Z J‘ (a,cosnx + b, sinnx) dx
C C n=1 C

Since jﬂ“-*f

ct+2m
sinnxdx = J‘ cosnxdx =0,n =123, -
c A

c+2m c+2n 1 c+2m
j flx)dx = j Qodx = 2MaAy = Qg = —j Flx) dx
C C ETE C

To determine the coefficient a,
Multiplying both sides of Eq. = With Cosnx and
integrating the resulting Eq. over the interval

c+im

flx) cosnxdx

[c, c+271t] with respect to x ,we get . =1j

C



Similarly, the coefficient b is determined by
multiplying both sides of Eq. (=) with sin nx and
integrating the resulting equation over the interval
[c, c+27t] with respect to x, we get

c+ 2

b, =3—IJ; fix)sinnxdx
Euler's Formulae for Different Intervals
Case (i): If C=0, then the interval for the above

series (=) become 0<x< 271 and the Euler's formulas

reduce to _LJ‘“ (o) d
ﬂ'}_Eﬂ . filx X

i 2
a, = %J; flx) cosnx dx

T
1 .
bn=—J‘ fx) sinnxdx
Jg



e Case (ii): If C=-m, then the interval for the above
series (. ) become -1 <x< 1 and the Euler's formulas

reduceto , _ %J‘ " F00) dx
— &

1
., = EJ‘ f(x) cosnxdx

—-x
.l AL
b, = %J‘ flx) sinnxdx

Example 1 Given the step function

—Lif—m=<x=<10
ﬂ:}‘:}_{ Lif0<x<m

a. Show that f has a Fourier series tx -+ #12n=1x

T 2n—1
n=1

b. Find a series forg or show that

[

1:_-1::':rz+1
2n—1

n=1

T
2



Solution :Let the series be of the form
Flx) = ag + Z{aﬂ cosnx + b,, sin nx) Where

Qg = ;—ﬂ [j_:f{x} ;xz—:ll—- J;Rf{x} dx] = ;—E[J‘_:—dx + J;Hnix] = 0
T

L o T L
1
Qy, = —U f(x)cosnxdx + | flx) cnsnxdx] = —U —cosnxdx +J‘ cosnxdx | =0
Mg J T {J-n ]

0

nTE T

: 1ju1:}- ix +
n=_ _fosmnxx |

ﬂnnxdx]

.]- U
flx) sinnxnix] =%U —sinnxdx +J‘
-7 0

0
0,if niseven

1" T 2
=—j —sinnx dx +j sinnxdx |[=—[1-(-1)"]=14
i - 0 mh —,if nisodd
nit
a. Thus,the Fourier series of the given function is
e sin{2rn — 1)x
fl) = E; 2n -1 1

_ T - (—1)m+1
into Eq.1 ,weget ;=) 5. —

n=1

b. Put = — =



HExampIe 2.Show that the Fourier series
representation for the function

lLif 0<x<m
ﬂ:}{}_{ﬂ Jfm<x <2m

3

IS 1 2~ sin(2n—1)x
f{K}ZEJrEZ n —1

n—=1

Solution : Let the Fourier series representation f is of

the form -
Flx) = ag + {a,,cosnx + b, sinnx)

where
i



.l [~ T AT T .l 114
a,=—|| flx)cosnxdx +J flx) cosnxdx | = —J cosnxdx =0
m|Jg T |

b, = 3_r _J‘I}- flx)sinnxdx + ’LL flx) Einﬂxtix]

T
1 .
_— — Sir Frox oA
TL ]

T T .3._ TH - —,ifnisodd
TTH

* |t follows that the Fourier series representation of
the given function is

1 2 i sin(2n — 1)x

fx) ==+ =
() =5+ n —1

n=1



1.2.2 Fourier Series of Functions With Arbitrary Period

In many of the engineering problems (i.e. electrical
engineering problems) the period of the function is
not always 2pi but it is different say 2L or T.



Fourier series representation of f(x) over
the intervalc=x =c+2L

The Fourier series expansion of f(x) in the interval

c=x=c+ 2L isgiven by

flx) = ﬂﬂ.+z Q,, COS n;m:) + b, sin {ﬂTH:]] ______ (c)

Where 1 c+2L
= ﬂ:
Qg = 57 ) Flx) dx
.l ct+2L TTTY
Q, = EJ; flx) cos T:] dx

1 ct+2L NIy
b”:EJ; {x}sm{L )ni:a:



Euler's Formulae for Different Intervals

e Case (i): If C=0, then the interval for the above
series ( ¢ ) become 0<x< 2L and the Euler's
formulas reduce to

1

@0 = 37

J;.:Lf{;x:::l dx

1= NIY

L
a, = EJ;:. flx) CDS(T) dx

17 - MTX
b”:E,L f(x}sm{T)nix

For n=1,2,3,...



e Case (ii): If C=-L, then the interval for the above
series ( ¢ ) become -L<x< L and the Euler's formulas

reduce to
|'_:',.3.=—J- Fix)dx

j flx)cos ﬂfx)dx

Jfor n=1,2,3,...

1 [t nmx
bn:EJ‘_L {I}Sm( ; )Li:a:

Example 1 Find the Fourier series expansion of f(x) if

1,if 0=x=1
f‘:}ﬂ:{ﬂ ifl=x=2



Solution

e Here 2|=2 and hence L=1
Let the series be

flx) = L1.3.+Z Q,, COS ﬂfx) + b, sin {ﬂTH)]

Since L=1,we have -
flx) =ag+ Z[ﬂn cos{nmx)+ b, sin{nmx)]

and

1 - 3
ﬂ.3.=§ A ldx + 12.52:!.: =3



To find .= we use the formula

1 <L TLTTX
a,i:EJ:} f{x}cns{ 7 ::Ir:.,?:!.:

1 2
a, = j cos{nmx) dx + j 2 cos(nmx) dx
0 1

. 1 . 2
o — [Sln(ni'm:}] 4o [sm{rli'r:r}]
0 1

LT TLTT

a,=[0-0]+2[0-0] =0



To find &,, we use the formula

1 [  MITX
=7 f{x) sin j x
o 1
since L=1, @ :j sin(nmx) ni:a:+2j sin(nmx) dx
0 1
—1 —Z s odd
a, = —[1 —{—1)7] = {ﬂﬁ,lfﬂl.ﬁrﬂ
el 0, if nis even

Thus, the Fourier series of the given function is

3 2 v sin(2n— 1)x
ffﬂfzﬂ:E—E;

2rr — 1



* Note: The Fourier series converges to f (x) if f is

continuous at x and Z£22 7% 2 gther wise.

1.2.3 Fourier series of odd and even functions

Definition 1 (Even and Odd)  Let f be a function

defined on an interval | (finite or infinite) centred at
X = 0.

1. fissaid to be even if f (—x) = f (x) for every xin |.
2. fis said to be odd if f (-x) = —f (x) for every x in I.
Examples of even functions are
x4, x"ifnisevencosx ,|x|,..

Examples of Odd functions are |
X, x"%ifnisodd,siny,..



Theorem 2 Let f be a function which domain includes
[-a, a] where a > 0.

1. If fis an even function, then j fix}dx—zj;f{x:mx
2. If fis an odd function ,then j FO)dx = 0

Theorem 3 When adding or multlplymg even and odd
functions, the following is true:

a. even + even = even
b. even X even = even
c. odd + odd = odd

d.odd x odd = even
e. even x odd = odd




Theorem Suppose that f is 2pi-periodic and has the
Fourier series representation

flx) =a,+ ) (a,cosnx+b,sinnx) ———— —«

Then : n=1

1. fis an even function if and anly ifb, =0 for all n
and in this case  ¢(y) = ﬂﬁz a. cosnx Where

n=1
T

@ = — J; Filxd dx 3nd ﬂn=%J‘ flx) cosnxdx
0

2. fis an odd function if and only if 2. = 0for all n
and in this case (x> = » b,.sinnx where

2 7L
b,, =—f Flx)sinnxdx
T Jo



Theorem Suppose that f is 2L-periodic and has the
Fourier series representation

flx) =ag+ Z [a COS m'm: . 5in (HTM)]

Then :

1. fis an even function if and only if 8, =0 for all n

and in this case 7 =ao+ ) a. wﬂ{ﬂm} where

n=1

1 L d 2 L TLTTX
ag=EJf; FGd dx aNda, =2 [7 7o cos (BF) ax
2. fis an odd function if and only if @, =0 for all n

FLTCA

and in this case rio = Z b.sin (o) Where

‘J’lTIT.’-![.'j dx

j fx) sin



Example 1. Obtain the Fourier series for f(x) = Ixl in
the interval - <x< 1 and

duce that —4+i il o T
deduce that ++z+ =7

Solution. we have f(x) = | x |

since f (-x) =I-xI =1 x| =1f(x) , f( x) is an even function

Therefore ,f(x) contain only cosine terms and we have
b, =0

Let Flx) = |x| = ag+ 2,, COSTX

1 T 1 T
we have ao=5= | reoax ==| xax =% and

2

.l iC iC
a, =— | flx)cosnxdx =— | xcosnxdx
TS T Jo



Contu’d-----

2 [_-Jc.' Ssin r1x caosnxl™

ﬂ_ —
= F1 F1 <

A

o= 2 1] = }' _if nis odd
L rl

0,if niseven

There fore, the required Fourier series expansion is

m il* EDE[E?I —1)x

fle) = lal = (2n -1 '

n=1

Putting x=0 in Eq. star, we get
1 1 1 :rrE
atmtats




Class Activities

. Letf(x) =xfor-f=y=71 . Write the Fourier series
of fon [-m m].

. Obtain the Fourier Series expansion for the
function F(x) =x? in -t <x< 1 .Hence, deduce that

1 v
ao —_—— =
L= &
Fa—1
ii_i}rﬁ-l—ﬂ:
b. — n? 12




Example Find the Fourier series representation of
f (x) =x on the interval -2 < x < 2.

Solution. we have f(x) = x since f (-x) = -x = - f(x).
There fore ,f( x) is an odd function. Hence a; =a,=10
for all n o . -

AL 2 & |
Let fx) TIZHZ:'LEIHSIH{T) where by :EJ;, fx) sin T)ri’i‘

1 NTx :
b, = —j x sin T)d: since 2L=4,we have
i

2

—2x niTx 4  mux :
oo = [ c05(F) + ein (),

— 4 A0 —1 a1
b, = (—1)™ = L )

I1TT ITrC

Thus, A (D™ mmxy for —2<x<2.
f{x}—x—EZi " SIH(T)



Class Activities

1. Find the Fourier series representation of f (x) = | x|

in the interval -L < x < L.
2. Obtain the Fourier series expansion of 7{x) = x* in
the interval(—L,L)

[1 11 ]
Find thesumof IIZ T22 T3 7

3. Obtain the Fourier series for f(x) defined in{—1,1}
by

(ke if—1<x<0
f{E}_{k:,if 0<x <1



Half-range series ,Period 0O or L (oto i)

Let f (x) be defined on the interval 0 < x < L. Then the sine
series representation or half-range sine Fourier series is given

by
flx) —Z b,, sin :m'm:
where
b, = j fx) sin ﬂ:x:] X

and the cosine series or half —range Cosine Fourier series
representation of f(x) is given by

flx) = n1.3.+z ., cnﬂﬂ—m

Where —
) X

1 I 7 L
:E,"Dﬂﬂdx and ﬂ”zfj; f(:a:}cns(T d



Let f (x) be defined on the interval O < x < «. Then

the cosine series representation or half-range
cosine Fourier series is given by

flx) = ag+ Z @, COSTX
Where m=d
2

g = ,:'_L—E Jr:fixjn dx and a; =EL flx) cos(nx) dx

and the sine series or half —range sine Fourier series
representation of f(x)is given by

Filx) = b, sin{nx)
Where =1

2 (" |
b, = EJ;. flx) sin(nx) dx



Example 1. Find the sine and cosine representations
of f(x)=xforO<x<T.

Solution The sine series representation is given by

Fix) = Z B, sin{rnx)
Where et

b, = f—rj:: sin(nx) dx integrating ,we find that
O

e,
.i!_'.l:..z S 1: -_-L::|:-z+1_
i i |

so the required half-range sine Fourier series or
Fourier sine representation is

B — (—1)m+1 |
Flx) = E; - sin nx




The cosine series representation is given by

Filx) = ag + E Ly COSFLX
=1

.l 14
Where ﬂu=_J‘ xdx =— and
T Jp 2

xsinny cns*nxr
0

27" 2
@, =—| xcosnydxy=-— + —
T Jy ml n n-
—2 dd
a, — ,.[-I: 1™ — 1] _{ s ifniso
0,ifnis even

so the cosine series representation is

cos(Zn — 1)x
fl) = E__HZ_ Gn — 12




Example 2. Find the sine and cosine representations
of f(x)=x forO<x<L.

Solution The sine series representation is given by

flx) = Z b,, sin :m'm:
Where

2 ¥ mmux 2L{—1)nH1
b, =— x 5in —}r:i:!.::
" TLIT

So the required sine Fourier series of the given
function is

2L {—1}”“5111(?1?:)

f(ﬂ=;

n=1



The cosine series representation is given by

TLITX
L

f{x::' = g T 2, COS

Where
L

1 L 1 L

Ly = % J‘:x cns{ﬂ:ﬂ:j dx

2L —— ifnisodd
5 ,.J;L niso
Ap = [1_( -l:}'n]—{
n’ ﬂlf?l-.-—ﬂlSE'iL’-‘E‘J’l

So the required cosine series is

b ST, (i)




1.3 Complex form of Fourier series

. Let the real function f (x) be defined on the interval

C<X < C+2T Then the complex Fourier series
representation of f (x) is

f{.ﬂf::' — Z I!:'n o inx
Where pp, M=
1 e .
“n :E-’; f{x}E Tax for a”ﬂ =0,x1, X2, ---
How do you get this formulae ? : Here is the answer for

a function f with period 27T It Fourier series
representation is given by

flx) = a.}+Z{an cosnx + b, sinnx) —— — —n

n=1



* From Euler’s formula , we have
g™ = cosnx +isinny and € =cosny—isinny
Hence
ginx 4 gTinx pinx _ p—inx
COSTX = |: 5 :| and SINAY = [ S ]
Substituting these into Eq- =,we have

1 1 c+2m h 1 J‘H-""T ( }
= — ] = — i Ap=Ch=— X dI
cn=5la,+id,] ETJE fwerax , wherea=a=5|

’ ctin

— : : 1 : 1 | —inx
F0) =co+ Y (cne™ +epe™™) and cn=gloa—ibid =5 | fOeax
n=1

Hence, 7= = »  c.e™= with

L — — 3

1 ct+ 2w |
C oy ZEJ‘ }E{I}E—znx adx for a” n=0=x1, 2, ---
c



Note that If f(x) is a period function of period
2L,then the complex form of the Fourier series is

g oy e

givenby s = > c.ez.  Where

— i3

1 c+2L ™ P
Cn = _J‘ f‘:.“-![.'::'E L dx y e =0,+1, &2, ---
2T e

Examplel: Find the complex Fourier series

representation of r(x) = E;}f?;izi

Solution : The function f (x) is defined on the interval
0<x<2L, with 2L=4, so L= 2.Thus, the complex

Fourier coefficients<» are given by

ol o g e o

1 C+ 2L
Cp = —f Ffix)e & dx n=0,+1,+2,---
2T Jo




1 * T 1
=:1L flx)e 2 dx—a

j {x}em%dx+ j f(x}em;u }

1 ( znw) n = 0 +1 42
— 1 — : - Tl f— I y .IIII
“n = 2n = and

1 = 3
But, n=0 o= :],jl 1dx =7 and hence the complex
Fourier series of fis - ( )
(=

ina

=

l1—e 2
T
n=—oonzl

Example 2: Find the complex Fourier series
representation of f(x) =sinax where a is.not an

i sin am (—1)ntlpgine
Integer in - <X< 1 .ANS sinax = - Z -

H——0oa



Solution :

The Complex form of the Fourier series of the given

function f is of the form s = Z c..ei== where
.l T

Cn =5 j fO) e dy mo=0,+1,£2,-+
2 )
But, 1 j | gy & j e e e
Cn_zﬂf _HEIHEJI': £ I_Eﬂ.' B 53 g X
X=T
c, = 1 1 E':ﬂ—:rz::lii:r_|_ 1 E':E'l':"!::'ii:l:']
dmi Lla —n)i (@a+n)i e
~ -1 Efﬂ:‘?(_-l}?! _ E—z'ﬂ.ff(_-l}n Ez'mr{_-l}n _ E—z'r:.:.ff(_-lj:rz
T (a—n) (@a+n)
(—1}”+1 ﬂeifm _ E—iﬂn}(ﬂ + “.I’l} _ {Ez’ﬂrf _ E—iﬂn}(ﬂ _ “.I’l}
‘n = T _ 2

{_.l:}ln+1 l{ﬂeiﬂn + pelaT — gp=iam _ HE—EETE} + —ellT L ge~iaT 4 »pial - HE—EER]

c - -
" A a —n?



1:_-1:}rz+1 [{Eiﬂn — E.—E'EZ'?;H:E_ 4 ﬂ:} — {E.z'mr _ E—EEH}(E — ﬂ}]

Ty =

A1 a? — n?
1: 1}n+1 { Eﬂw_|_nﬁ.z'ﬂn' ae —iam —ne EET}+_EEEEH+ﬂE—iﬂn+nEiﬂn_ﬂE—iﬂn
+1 - ]
T
f{:ﬂ' _ isinam {—1) pim
Z (aZ—n2)"
= — o
(_1}n+1 EHEEEH_ET:[E—EM (_1}n+1m- EEM_E—EM (-1}”“1'11 |
Lo = = p - = = ) = = 7+ ol 7T
" dn a2t —n? m{a®—n?) 2i m{a®-n?)

Thus, the Fourier series of this function is
Parseval’s Identity :

Let f(x) be a periodic function with period 2pi
defined in the interval - <x< 1. Then

1 " - . 1 - "
— | [Flx)]? ti:r=t1c:-‘+—§ la,?+ b,7]
2T J_ 2 =

:I-E_



Where aq.2,, and &,, are Fourier coefficients.

Proof: The Fourier series representation of f(x) in the
interval -m <x< mis given by

flx) =ag+ Z a, COSNX + Z b,sinnx - (1) where

n=1 n=1

1 Ll o8
@o = 5— Jﬂ_wf{:.tr::l el or

T

an=2 [ 7o cosnxax orf_ f)cosnxdx = ayn -----(3)

- :_J‘ o) sin i dx or J‘Rf{x} sinnxdx = b, ~ (4)
Multiplying both sides of Eg-1 by f(x) and
integrating term by term from—m to 7= , we have

L

f [f(x))*dx = aﬁJ‘ flx)dx + Z J‘Hf(ﬁ:} cosnx dx + Z b, j flx)sinnxdy ------ (5)

n=1 ' n=1 e



Using (2),(3),and (4) in to Eg-5,we get
J.zr [Flx)]?dx = Ei'r.gl}: +Zﬂﬂ”: +Z ﬂ-bn: or equivalently

1 [~ ) I )
o= | FreoPrax—ac®+3 §_1[a *

Activies

1. Show that the Parseval’s relation for a function f
(x) defmed on the interval -L < x < L takes the form

f [FGOTZ dx = ag? EZ 2+ 5,.7]
2. Use the sine series together Wlth the Orthogonality

of the functions sin ﬂ—m . for n=1,2,3,...,0n the
interval 0 £ x<Lto show that the Parseval relation for

sine series takes the form %J;L [FOx]2 el :i b, 2



Examplel:Find the Fourier representation off(x) ==* in

(—m ) and using Parseval’s identity show
T 1 1
that sg =1 +3= + 33 +

Example 2 Find the cosine series fors= == in(0.m) .
Use parseval’s identity to show that

,ﬂ_.d-

1+1+1+
96 54



[

2.

3.

Review exercise for chapter one

. Supposethatfis T-periodic. Then show that for any real number a,

T

[ f(x)ae=["" f(x)de

i

Provethat | f(x)dc=0 iffisodd nn[—ﬂ,ﬂ].

v —

o

Provethat | f(x)driZEf(I)dr if f is even Gn[—ﬂ,ﬂ].

Let f(x) be a function of period 2. such that

cE

0,—7T<x=<0

x,0<x<nm

a) Sketch a graph of f(x) in the interval —37 <x <37 .
b) Show that the Fourier series for f(x) in the interval —T<X<7T Is

c)

1
4

By giving appropriate values to x, show that

T .1 11 s

L ==l ==t i
4 3 5 7 8

T 2 1 . 1. 1 .
————-mmx+§fuﬂ3x+gjmmix+_.+ mnx—imn2x+§mn3x—__



Continued

5. Let f(x) be a function of period 2. such that
f(x)=x

a) Sketch a graph of f(x)in the interval —37 <x <37 .
b) Show that the Fourier series for f(x) in the interval —7T <X <7 Is

-

.y

i —4| cosx — 1, 2032.x+ic033.r—...
3 2° 3°

c) By giving appropriate values to x, show that

-

~ .1 1 1 1
6 1 20 3

6. Findthe Fourier series expansion for the function
a) f(?:] = ‘x‘,—lix <1 and f(r +2_] = f(r] to obtain the result

-

T 1 1 1
=l+=+=+—...
3 & I Y
b) f(x)=2-x",2<x<2 and f(x+4)=f(x)
0,—3<x<-—1

o [f(x)={L ~l<x<l and f(x+6)=f(x)
0, 1=x<3



Continued

7. Show that the complex form of the Fourier series for

(1) (l—z'mr_]gm

1+’

a) f(x)=e™ in —1<x<lisgivenby e™ —smhlz

H=0C

b) f(r] =COSdX in —7 < X < 7 where ais not an integer is given by

Z(l)ﬂm

f(x)= T ~ at—w

8. Showthat the Parseval’s relation for a function f(x) defined on the interval

asin (ﬂ.’-T

| L ; L 13,
—. <x <L takes the form E_J;[f(x_]] driﬂaJrE;(aa +EIE)

9. Assume that f has a cosine seriesf(x_] =a, + Y a,cos (M),U <XET
n=l

a) Show formally that Er[f (x)]*dt = 2a; +i a.

b) Apply the result of part (a) to the cosine series for f(r =xin (D ] and thereby
7 1 1 =1
show i =14+ +_+... 2—4
96 3' 5 = (2n-1)




Chapter Two

2. Introduction to Partial Differential Equations
2.1 Definitions and basic concepts
2.2 Classification of PDEs
2.3 Definition of initial/boundary value problems
2.4 Well-posedness of a problem
2.5 Modelling some physical problems using PDEs



2.1 Definitions and basic concepts

Note that . Partial differential equation is an equation
involving an unknown function (possibly a vector-
valued) of two or more variables and a finite
number of its partial derivatives.

*** In the sequel we reserve the following terminology
and notations:

* |ndependent variables: denoted by
X=(X, % X, X, )€Qcl"(n22)
* Dependent variables: denoted by U :(ul,uz,ue,,oo-,un )ED ”
also called unknown function.



* Let a:(al,az,a3,---,an)e(Nu{O})n and‘&‘:a1+a2+053+"'+an
Then p=u denotes
o“u
O X O X, 0 Xy -+ -0 X

DU =

n

We define a PDE more formally as

Definition 2.1 (PDE).Let WI i " and meC
F:W ;P ;™ ;" L ;""®; 9bea
function. A system of Partial differential equations
of order m is defined by the equation

F(xu,Du,D,---,D"u)=0 Where some m" order
partial derivative of the vector function u appears in
the system of equations



Examples of PDEs

o N 62

Laplace Equation au =2>_ 8)(:; — 0

aou

i AU = O

Heat Equation —¢ u

82
Wave Equation == AU — O

ou ou ocu

Burgers’ Equation &y Y ox ~ g tT0x<s0.u=0



2.2 Classification of PDEs

Partial differential equations can be classified in at
least three ways. They are

1. Order of PDE.

2. Linear, Semi-linear, Quasi-linear, and fully non-
linear.

3. Homogenous and non homogeneous



1. Order of PDE
Definition: The order of a PDE Is the order of the

highest partial derivative in the equation

Examples: Find the order of each of the following

partial differential equations:
I, + 2xu,, +u,, =e¥ ;0rderis two

i, Yxwee + XU, +yu®=x  :Orderis three

ou aou o°u

i, —+Uu—=u— t>0,xell,u>0 - '
iil. —Hu—=u—rs t>0xellu » Order is two



2 Linear, Semi-linear, Quasi-linear, and fully
non-linear.

Definitions :

2.1 PDE of order m is called Quasi-linear if it is linear
In the derivatives of order m with coefficients that
depend on the independent variables and derivatives
of the unknown function or order strictly less than
m.

2.2 Quasi-linear PDE where the coefficients of
derivatives of order m are functions of the
independent variables alone is called a Semi-linear
PDE.



2.3 A PDE which is linear in the unknown function
and all its derivatives with coefficients depending

on the independent variables alone is called a

Linear PDE.

2.4 A PDE which is not Quasi-linear is called a Fully

nonlinear PDE.

Remark : The classification first order PDE as Linear,
Semi-linear, Quasi-linear, and fully non-linear



Definition :A first order partial differential equation is
called Quasi-linear if it can be written in the form

a(x,y,u)u, +b(x,y,uju, =c(x,y,u)...(*)
Note that :
1. Ifa(x. y.u)=a(xy¥) and b(x,y,u)=8(xy),then (=)
is called semi- linear .
2. 1f c(xy,u)=y(xy)u+é(xy),then (=) is called linear.

Or A partial differential equation is said to be a linear
if

i) it is linear in the unknown function and

ii) all the derivatives of the unknown functions with
constant coefficients or the coefficients depends on
the independent variables.



or A PDE is linear if the dependent variable and all
Its derivatives appear In a linear fashion (i.e. they are
not multiplied together or squared)

Definition: A partial differential equation that is not
linear is called non-linear.

Examples :Determine whether the given PDE is
linear, Quasi-linear, semi-linear, or non-linear

a. Xu,+yu, = x> +y*
b. uu, +u, =2
c. Uz +~u; =22

Answer :



a. Linear, quasi-linear, Semi-linear.
b. Quasi-linear, non-linear.
c. non-linear

Remark: 1. Linear PDE

4

Semi-linear
PDE

4

Quasi-linear



2. But, the converses may not hold
Examples:
i. Asemilinear PDE need not be Linear
XU, + YU, =(X+Yy)u*+x*+y* |5 Semi linear
PDE but not Linear as the power u Is not one .
11. A Quasi-linear PDE need not be semi linear
x2uu, +xyuu, = x*yu* +x°yu® |5 PDE Quasi-
linear PDE but not Semi linear as the coefficient of
u, and Y, involves terms of u.



3. Homogeneous and Non- Homogenous

. A Partial differential equation is said to
be a homogeneous partial differential equation if
its all terms contain the unknown functions or its
derivatives otherwise non-homogeneous .

2 o2

8,(‘; — axl; =u ; Homogeneous
2

ou_ou_o ; Homogeneous

OX ot

2X‘j+gy‘j=f(x,y) : Non -Homogeneous if f(x.y)=0




2.3 Definition of Initial/Boundary Value Problems

Definition .

" |nitial value problem (IVP): When all of the

constraints are specified at the same value of x, the

problem is called an initial value problem.

" Boundary value problem (BVP): When constraints
are specified at two, or more, different values of x,
for example at each end of an interval I, then the

problem is called a boundary value problem.



* Examplel: As a simple example, we suppose that
our unknown function u is dependent on one

variable x. Then the following problem is known as

initial value problem s+, — 2u = 0,u(0) = 3,1,(0) =7

* Example2: Now we suppose that our unknown
function u is dependent on two variable t; x. Then
the following problem is known as initial value

problemty .- 2u=0ulx) = 3tu(0) = snx



* Examplel: As a simple example, we suppose that
our unknown function u is dependent on one
variable x. Then the following problem is known as

Boundary value problem

U, +u,—2u=0,u(0)=3,u,(1)=7

* Example2: Now we suppose that our unknown
function u is dependent on two variable t; x. Then
the following problem is known as Boundary value
problem u,, +u, —2u = 0,

10— 20 = 0u(0, 1) = 31,10, (0,x) = sinx



* Contu’d----
2.4 Well-posedness of A Problem

A problem (PDE + side condition) is said to be well-

posed if it satisfies the following criteria:
1. The solution must exist.
2. The solution should be unique.

3. The solution should depend continuously on the

initial and/or boundary data.

N/

** |If one or more of the conditions above does not hold,

we say that the problem is ill-posed.



[
N/
0.0
N/

0‘0

2.5 Modelling some physical problems using PDEs

Many PDE models come from a basic balance or
conservation law, which states that a particular
measurable property of an isolated physical system does
not change as the system evolves. Any particular
conservation law Is a mathematical identity to certain

symmetry of a physical system.
Here are some examples

conservation of mass ( states that the mass of a closed
system of substances will remain constant)

conservation of energy (states that the total amount of
energy In an isolated system remains constant, first law

of thermodynamics)



Continued

% conservation of linear momentum (states that the
total momentum of a closed system of objects —
which has no interactions with external agents — is
constant)

’0

« conservation of electric charge (the total electric
charge of an isolated system remains constant)



Chapter 3

3.1 Solution of first order PDEs with constant
coefficients

3.2 Solution of a first order PDEs with variable
coefficients

3.3 Charpit’s method

3.4 Application of a first order PDEs to fluid flow
problems



In this chapter z will be taken as dependent variable
and x,y are independent variables so that z=f(x,y).
We will use the following standard notations to
denote the partial derivatives

A= = o <= <= .
T Sxdv = s p

Formation of partial differential equation:

There are two methods to form a partial differential
equation.

i. By elimination of arbitrary constants.
ii. By elimination of arbitrary functions.



I. By elimination of arbitrary constants

Consider two parameters family of surface described
by the equation f(x, y, z, a, b) = 0---------- (1)

Where a and b are arbitrary constants.
Differentiating (1) with respect to x and y, we obtain

= T Paz = 0@ (2)
g g F
oy Vg — O -m-mmee- (3)

Eliminate the constants a, b from equations(1),
(2),and (3) ,we obtain a first-order PDE of the form

f(X/ V, Z, b, q) =0. -----—-- (4)
This is Equ.( 4 )a partial differential of first order.



Example Form the partial differential equation by
eliminating the arbitrary constants a and b from
the following equation

a) z=(x+a)(y+h)
Solution :Letz=(x+a)(y+b) -—-------- (1)

Differentiating equation (1) partially with respect to x

and y, we get
dz dz
ﬂ=p={}-+b} and 5y~ =(x+a)

Substituting in (1) we have z = pqg which is the
required differential equation.

b) z=(x*+a)(y*+b)
Solution : let z=(x* +a)(y* +1b)------------—- (2)



Differentiating equation (2) partially with respect to x

and v, we get dz , 0z 2
Y, WE B —=P=2x{y‘+b}ﬂﬂda_y=L?=E}’{I‘+tﬂ

dx q
(x* +a) =
Therefore, 2y and
(v2 +b) = —

o L Ex q P
Substituting these in (2),we get 2 = 375

i.e. 4xyvz = pg

Note

1. If the number of arbitrary constants equal to the
number of independent variables in (1) ,then the P.D.E
obtained is of first order.

2. If the number of arbitrary constants is more than the
number of independent variables, then the P.D.E
obtained is of 2nd or higher orders.



Class activity

1. Find the differential equations of all spheres whose
centres lie on z-axis.(Hint : the equation of these
sphere sis x*+y*+(x—c)?=r? )

2. Find the differential equations of all spheres of

radius 3 units having centres on the x y-plane
(Hint : the equation of these sphere s whose

centre is (a,b,0) (r-a)*+(y-b)*+z'=9)
Answer
l. gx — py =0
2. zHpi+gi+1) =09



|l. By elimination of arbitrary functions.

Consider z = f{u) ----------——--- (5),where f{u) is an
arbitrary function of u andu = u(x,y,z)

Differentiating (5) partially w.r.t x, y by chain rule

ad= adfF du " af cud=z (6)
Sx | Owdx gL F= dx
= G i W i FfFf e dd= (7)
8y G Sy B 8= Sy

By eliminating the arbitrary function f from (5), (6), (7)
we get a P.D.E of first order.

Note: If the partial differential equation is obtained by
elimination of arbitrary functions, then the order of the
partial differential equation, in general, equals to the
number of arbitrary functions eliminated.



Example. Form the partial differential equation by
eliminating the arbitrary function from

) = = £ (Z) oo (1)
Solution : Differentiating partially (1) with respect to x
rEg_nd y, we get
=P =7 () () (2) and
5 == () (Z) e (3)
Dividing (2) by (3),we get o == or px +vg =0 s
the required partial differential equation.
b) z=flx+ay) +g(x - ay) - (a)
Solution :Differentiating (a) partially with respect x
and y ,we get



g_i =p=f"(x+ay)+g'(x—ay)--—------ (b)

=z

ﬂ
Agaln differentiating partially (b) with respect to x

aand (c) with respecty, we get
“Z

=g=af{x+ay) —ag'x—ay) 777 (C)

. —=p'=f"lxtay) +9"x-ay) o (d)
LR U E— (e) .Substituting (d)
¥ 8<%z , 8%z

In to (e) z3z=2"3= which is the required partial
differential equation

Exercise :Form the partial differential equation by
eliminating the arbitrary function from

f(x} '|'E.’:J.’J[.' '|'_']. -|-E:J = (] ANS. P(I—EE] -I-Q(Ej:—}r:l =y-x



Solutions of Partial Differential Equations of First
Order

Solutions of Partial Differential Equations of First
order with constant coefficients

Definition: a) The general solution of a linear partial
differential equation is a linear combination of all
linearly independent solutions of the equation with
as many arbitrary functions as the order of the
equation

b) A particular solution of a differential equation is
one that does not contain arbitrary functions or
constants



c) Any equation of the type F(x,y,u,c,,c,)=0, where c,
and c, are arbitrary constants, which is a solution of
a partial differential equation of first-order is called
a complete solution or a complete integral of that
equation.

Definition: The most general form of linear partial
differential equations of first order with constant
coefficients is

a(x, y)u, + b, y)uy + e, y)u = O y),u = ulty) oo (1)
Where a, b, and c are constants .

To find the general solution of Equ-1,we apply two
cases.

Case |:Assume b=0 0) ,then Equ-(1)takes the form



Characteristics line of the partial differential (1).

To find the appropriate change of variables, we
choose ( w, z) such that w=b x-a y and z=y. Then we
define a new function v by

=) = wlx,v) = u - =4 (4)

Thus, Eg-(1) can be rewritten in terms of the variables
(w, z) as

and hence ,the general solution of Eg-(1) is given by
U(x, y)=v (bx-ay, y).



First order PDEs with variable coefficients

They have the form
au,+bu, +cu=f(x,y),u=u(xy) (1)
Where a, b, and ,c are constants

Assume that a® +b? >0 ( at least one of constants
a and b is not zero; if they are both zero ,we do not
have a Pde any more )

Here we consider the vector§ = (a,b) that
indicates the direction in which information
“propagates “



To solve equ.(1) we consider two cases

Case I: Eithera=0 or b=0 (but not both)

say a=0,b =0 .In this case the vector g=(o,b) and
the Pde becomes:

bu, +cu=f (X,y),u=u(x,y) or

uy+%u:%f(x,y) (2)

Treating x as a constant ,we may see it as first order
linear differential in variable y.

b

here the integrating factor of equ.(2) is e® and



The general solution of equ.(2) is

u(x,y)—e®’ [%je;y F(x y)dy+c(x)j

(The casea#0 andb=0 is completely similar).

Case ll: Both a,b=0
Note that the lines that are parallel to g=(ab) is
called “ the characteristic lines of the pde ” ,have

equation: bx—ay =k ,where k is arbitrary
constant .

Now if we perform the change of variables :



Now if we perform the change of variables :

{wsz—ay whose inverse is {x=%(w+az)

Z =Y y =2

And define the function V(w,Z)=U[%(W+aZ),zj

equ.(1) takes the form
1

bv, +cv = f (B(W+ az),z() (3)
s first order linear differential equation in variable z
and where a, w are constants .



Example 1: Find the general solution of the PDE
a) 3u, — 2u, +u =xu=ulx,y)
Solution : This equation is equation of the form

al(x,y)u, + bx,y)uy + clx,y)u = f(x,v),u =ulx,y) with a=3,b=-2,
c=1,and flx,y) =

Thus, takes the form
a1 w + 3=
—25+v=f( — z) ----------------- (1) or
equivalently
air 1 w + 3= .
8z 27 a4 | - (2).The general solution of
Eq (2 ) viw,z) ———gz 3+c'[l.+}e Hence the general

solution of the given equation is 1
ulx,v) =v(-2x—3y,v) =x — 3+ c(—2x — 3y)ez



B) U —u, + 2u =1
Solution : This equation is equation of the form
oy, +blxyhu, +cleyu=floy)u=ulty) with a=1,b=-1,andc= 2

So, with a,b, and c values in Eq

'E_':l

give - — 2w+ = 1 The general solution this Eqg- is

1 _— .
viw,z) =5+ cwle™ Thus, the general solution of the

givenpdeis ulx.y) =vx+yy) = %+ clx + y)e?
Example 2 Solve the following PDE with the given
condition: u, —u, + 2u =1 y{x, 0) = x*




Definition: The most general form of linear partial
differential equations of first order with variable

coefficients is
o,y b y)u, +elry)u=fley)u=ulyy) - (1)

where a,b,c,and f continuous function .

Definition :The characteristic curve of pde (1) is a
curve on the xy-plane that ,at each point, is tangent

to the vector field g (x.y).

To solve (1) at each point (x.y) the slope of the vector
9(xy)=(a(xy).b(xy))
dy b(xy)
dx a(x,y)

------ (2) is an ode



* Then put the solution to (2) in “ implicit form”
h(x,y)=d,constant

Finally ,define the change of variables
{W — h(X, y) and:i>nvert it {X — k (W, Z)
Z=Y y =12
And the function v(w, z) ,which is nothing but u(x,y)
expressed in a new coordinates
v(w,z)=u(k(w,z),z);equivalently we have :
u(x,y)=v(h(x,y),y)
Now
au, +bu, =(ah +bh, v, +bv,  -----meeeee- (3)



* But,ah +bh =0--——- (4) Thus,au, +bu, =bv, ysing the

equation (1) takes the form
bv, +v = f (k(w,z),z)

Example 1: consider the simple xu, —yu, =0subject to the
boundary condition U = x"on the liney = X,

Answer: U(X,y)=xy"

Example 2: show that the pde

yu, —3x°yu, =3x°u.
Has the general solution yu(x,y)=f (x+y)where f is

arbitrary function.
. if you are given that u(0,y)=y"tanhy on the line x =0

,show that yu (% y):tanh(x3+y)



li. If we are given thatu(x,1)B x°* show that

yu(x,y)B (x*>+ y- 1)2



Theorem 3.1 . The general solution of first order
quasi-linear partial differential equation Pr + 29 =R

can be written in the form F(u; v) = 0; where F is an
arbitrary function, andu(xv,z) =¢, andvlxy.2/ =0, form a

solution of the equation
adx I."H 22
\ — i — a7 .y —===- (3.1)

P(x,y,z) Qlx,y.z) Rxyz)
The curves defmed by ulx,,z) =¢; andvl(x,y,z) =¢, are

called the families of characteristics curves of
equation Pr + Qg =R

Method of obtaining the general solution:

1. Rewrite the given equation in the standard form
Pp+Qqg=R.



2. Form the Lagrange’s auxiliary equation (A.E)

dx dy dz=

P{x,v,z) Q{x,v,z) R{x, v =)
3. ulxyz =6 and vix,v,z) =c, are said to be the
complete solution of the system of the
simultaneous equations (3.1) provided u and v are

linearly independent .

4. To find these u and v we can apply the following 4
cases

Casel: One of the variables is either absent or
cancels out from the set of auxiliary equations

Case2: If u =19 is known butv = ¢z is not possible
by case 1, thenusell =1 togetv= ¢, .



Case3: Introducing Lagrange’s multipliers =y, Q, ,
F4 which are functions of x, y, z or constants,

each fraction in (3.1) is equal to
F.'.l I_T:..:!i." —+ {El'l l:':._-!._ —+ F:".l dz
P,P+Q,Q +R,R (3.2)

¥, ,0, ,Rs arechosenthatr,P+ ¢,0+R,R =0,then
Pidx + (ydyv + Rydz = 0 which can be integrated.
Case 4: Multipliers may be chosen (more than once)

such that the numeratorF.dx + ¢.dy +R.dz is an exact
differential equation of the denominatorfF + 010 + E4R

,Combining (3.2) with a fraction of (3.1) to get an
integral.

4. General solution of (1) is F(u, v)=0 or v=®(u).



Example: Solve

b) xyp+y?q=xyz-2x? 9 1z, 1ox, 1y

¢ (y+z)p+(z+x)q=x+y

Solution:a) y*p—xyq =x(z—2vy)

dx _dy __ 4z : . :
v —xy x(z-2v) IS an auxiliary equation
. alax dy . . . ) 2_
Consider — = —— on integration give u(x,y,z)=x+y*=c,

-

Similarly by considering o i we get v(x,y,z)=yz-y*=c,

The required general solution is f(x2+y2,yz-y2)=0,f
being an arbitrary differentiable function.




b)p +3q=5z+tan(y — 3x)

Solution :The auxiliary equations are
de dy dz
1 3 5z+tan (y— 3x)

Taking the first two relations we get, v(x,y,z) =y—-3x=¢q
dx dz

Taking first and last member, T =7
u(x,y,z) = 5x = In(5z + tan(y - 3x)) = ¢; . The general solution
fly= 352 ~In(5z + tan(y-3x))) =0 js where f is an arbitrary
differentiable function.

C) v’p —xyq = x(z — 2y)

. dc _dy  dz .
solution: 32==;, 7z=2»  .The general solution of

the left pair is X2+y2=C; L4 the last two YZ-Y>=C Thus the
f(x2+y?,yz-y?)=0.

general solution of the given pde is



y—=z Z—x  x—Yy
d) VZ P zx 1 xy

Solution : The given equation is of the form rp + 0q = &
cdx -y =

The auxiliary equationis givenby ¥—==~"zZ== ===

V= X WV

Here we choose the multipliers x, y,z(~ xdx+ ydy + zdz = 0)

= x*+y*+z° = ¢, where c; = 2¢; and again we choose
the multipliers yz, zx, xy (- yvzdx + xzdy + xydz = 0)

= dlxyz) =0 =xyz = c; , The general solution is given
by Flx2+ 92 + z2,xyz) = 0

e)( y+z)p+(z+x)g=x+y. Answer
General solution is f((x-y)?(x+y+z) , Z=2) =0.

y— Z

-




DEFINITION 1. (Compatible systems of first-order PDEs) A
system of two first-order PDEs

f(X/y/Z/ p/ Q)=O -------------- (1)
and  g(x, ¥,z p, q) = 0--------------- (2)
are said to be compatible if they have a common solution.

weorem2. 1HE equations f(x, v, z, p, q) =0and g(x, y, z p, g) =0
are compatible on a domain D if

i, JDa(f’g)Dfp fq
6(p1Q) gp gp

.o onD

ii. pandq can be explicitly solved from (1) and (2) as p =
o(x, v, z) and g = Y(x, y, z). Further, the equation

dz=¢(x, y, z)dx + Y(x, y, z)dy is integrable.



THEOREM 3. A necessary and su/fficient condition for
the integrability of the equation dz = ¢(x, vy, z)dx +
w(X, Y, 2)dy IS

_o(f.g) a(f.g) _ao(f.g9)
L09l=560m © avea) TP o e T o(za)

In other words, the equations (1) and (2) are
compatible 1/(3) holds.

Example :Show that the equations xp — yg =0,
Z(Xp + yq) = 2xy are compatible and solve them

Solution: Take f=xp - yg =0, g = z(xp + yq) - 2xy = 0.
Note that f,=p,f,=-q,f,=0,f,=x f,=-V.
and

gy=2p-2y,9,=29 - 2X,9,=Xp +yq, g, = 2X, g, = ZJ.



o(f.g) f, f, x —y
’ o(p.d) |9, 94 |2x xy =2zxy =0fqr Xx,y,z#0
Further,
o(f, ff «
(f.9) o| | P oy (1)
o(x, p) |9« 9, [zp-2y zx
f f _ _
5(f,9) y  la|_ q y _ oy (2)
o(y.q) |9y 94 |z0-2x zy
a(f’g) 1:Z 1:p 0) X 5
— = =—X"P—XYQ ——__
o(z,p) |9, 9, [xp+yq zx P=xyq ----(3)
6(f’g) fz fq O —y )
- = = y“q+Xxyp
a(Z,CI) g, 9, |XP+yq zy ____(4)

Thus substituting (1),(2),(3),and (4)into the equation



120000, 209), A1), 210
o(xp)" o(va) " ozp) oD
=2XY =X P = Xypq-2Xy+Y°q" +Xypg
=(
S0 the equations are compatiable
From the twoequations xp-yq= 0, z(Xxp+Yyq) =2xy solving forpand g, weget

p-X- (xy,2) and ngzt//(x, Y1)

Substltutlng pand g indz 0 pdx+qdy,we get
2dz = ydx+ xdy =d (xy)and on integrating, it gives youz* =2xy+c



Example2: Show that the following partial differential
equations are compatible

XPp—VYq=X,XP+0=XZ

and, hence, find their solution.



Charpit’s Method:

It is a general method for finding the complete integral
of a nonlinear PDE of first-order of the form

f(XI Y, Z, P, q) = 0.-------mmm-- (1)

The basic idea of this method is to introduce another
partial differential equation of the first order

g(X/ y/ Z, p/ q/ a) = 0 ------------ (2)
which contains an arbitrary constant a and is such that

i. Equations (1) and (2) can be solved for p and g to
obtain p=p(x, Y, 2 0a), g=q(x, Y, z a).



ii. The equation dz=p(x, y, z, a)dx + q(x, y, z, a)dy---(3)
is integrable.

When such a function g is found, the solution
F(x,y, z a, b) =0 of (4) containing two arbitrary
constants a, b will be the solution of (1).

Note: Notice that another PDE g is introduced so
that the equations f and g are compatible and then
common solutions of f and g are determined in the

Charpit’s method. The equations (6) and (7) are

. . A(F. alf. alf. d(f,
compatible if 01 =222 + 2893, 993, [ 9T-9)

Expanding it, we are led to the linear PDE
dx zd}?_ dz dp dg

7 ehiah, —(itef) _(f+er) - These equations
are known as Charpit’s equations.




To solve non-linear p de of first order(By Charpit’s method)

Step | :Write the given equation in the form of

f(x,y,2p, 0)=
Stepll:Findf_, £, f_,f, . and £,

Step IlI: Con5|der the Charp|t S Auxmary equations as
dx dy  dz dg

£ f ph+af, —(f. +FJ‘;J —(f, +af.)
Step Iv: Find p(or q) from step Ill and use the given

equation to find qg(or p).
Step V. Usedz =pdx+ady gnd integrate to find general
solution

Example: Solve the following partial differential
equations by Charpit's method.




a) px+qv =pqg b)z’=paxy c)(p’+a)y=aqaz
Solution: let f(xy,z.p.q) = px+qy— pq = Q--------- (1)
Thenf. =pf,=af,=x—q.f,=v—qf,=0 Thus,

of, +af, =p(x - ) +a(y—q),-(f, +pf.) = b, (f, + af.) = -

and the Charpit's auxiliary equations are
dx dy dz dp _dq

4 v-4 se-—Didb—a —» — from the last two
fractions ,we get; =« =» = aa substltutmg this in Eqg-
(1),we get « === Therefore, » = ax+v.and

_I_
dz = (m:+v)dx+( - )dy or adz=a(ax+y)dx+ (ax+y)dy = (ax +y)(adx + dy)

Integrating ,we get a= = “*>227 , .

b) z2 = paxy .Solution :Letf(xyzpq) =z" - pgxy=0 ----- (a)
Then f. = —pav.f, = —pax. f, = —xyq, f; = —pxy, f, = 2z



of, +af, = ~2pquy,~(f, + o) = play-22) ~(f, +af.) = qlex-22) @nd, thus, the
Charpit’s auxiliary equations are

dx dy  dz _ dp _ dg
—xVq - —pxy - —2pqxy plgy—2z) gq(px—2z) (b)
From Eqg-(b),we get on integrating both

. . dz d(px+ gv
sides, we obtain —= (px + 4)
Z X + gy

z=a(px+qy),where a is arbitrary constant and
substituting this in Eg-(a)

1 V1 — 4a?

p=ewherec=—+——— and ? =, substituting these

values of p and q in to eqg- dz = pdx + qdy,we have

dz dx 1dy
dz—;cdx+;d =_=c_—+-— on integrating this we get

u

=z = bx“ys ,where c is arbitrary constant of
integration is the required solution




C) (p*+qY)lv=qz

solution :Letf(x,y,zp.q) = (p* + @)y —qz =0 ------------ (*)
Then £ =0.f,=p’+a* f,=2ov.f,=20y-zf,=—-¢ and
pf, +af,= 20*+ ¢ )y —qz.,—(f,+of.) = pa.—(f, + af.) = -

Thus the Charplt S auxmary equatlons are,

2py Eqﬂ—z 3(?; +qd]1—qz Pq —P: .Form the last two
B q

fractions i.e. »a ~ =2 ,we obtain p%+g?=a?
substituting this in Eq-(*) and solving for p and q,we
get q—":” > and p?=a%-==2— and substituting these
values of p and q in to dz = pdx+ qdy this equation
takes the form

4, - WF -y dﬁﬂdyﬁﬁdzﬂ “jﬂf‘ _.d¢ ON integrating ,we obtain
Z Z |25 —a“y- . . . .
. S Y" .7 whichis the required solution.

z-—a“y- =(ax+ b)°




Special Types of First Order partial differential
equation.
f(p , g)=0[Equations involving only p and q]

dx _ dy __ dp deo

The auxiliary equations are % — 7% ~ sz a7 o — o .

Solving — 22 _ ? , we get elther p=a or g=a. Then we

solve f(a, q) 0 [ or f(a,p)=0] for q=Q(a)[ or p=P(a)].
Then dz=a dx+Q(a) dy implying z=ax+Q(a)y+b.

Example 1: Find a general solution of p + q-pq

Solution : Put g=a. Then p=—— .
Hence z=— '
Example 2:Find a general solution ofpg = 1.

solutlon.

.
Answer : z=ax+=+b



(Equations not involving the independent
variables i.e .(not involving X and y):

For the equation of the type

f(z,p, Q) =0 (a)
Charplt s equation becomes
dx _ d) dz _dp  dg .
5o 7. pf.+taf. —»f.  —ar. and taking the last
two fractions i.e. ——==——= gives p=ag-—---- (b)

Solving (a) and (b) for p and q, we obtain
q= Qla,z) = p = aQ(a, z)

Now dz =aQ(a z)dx+ Q(a,z)dy on integrating both sides
we get [s=-=+v+»  constant of integration.




Example 1 : Find a general solution of »®z* +4* =1,

Solution. Puttingp=a qin the given PDE, we obtain
gt =1= ()" +¢°=1 5 9=

Y1+ az?



:(Separable equations)

A first-order PDE is separable if it can be written in
the form

f(x.p) = g(v.@) ----------------- (a)

That is, a PDE in which z is absent and the terms

containing x and p can be separated from those
containing y and g

For this type of equation, Charpit’s equations

become &_-% ___ 94 _%® _9 {rom the relation

I f, -9, pf,—ag, —f. -3,
— =—~,we obtain fdx+£dy=0 which may be solved to
vield p as a function of x and an arbitrary constant a




3.4 Application of a first order PDEs to fluid flow
problems

Fundamental Principles of Fluid Mechanics Analysis

Fluids |- A substance with mass but no shape

Compressible Non-compressible
(Gases) (Liquids)

Moving of a fluid requires:
o A condutt e.g., tubes, pipes, channels
¢ Driving pressure, or by gravitation. 1.e., difference in *head”
o Fuid flows with a velocity v from higher pressure (or elevation) to
ower pressure (or elevation)
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Chapter 4: Fourier transforms

Theorem [Fourier integral representation]

Suppose that f is piece wise smooth on every finite
interval and that | _ir&o1ex =< Then f has the
following Fourier integral representation

f{}{::lzzlj J‘ f(t) gizlx—t) 3y gz OF equivalently
MJS o J—oa

() = %j: f (6) cos At — x) dt dA



Alternatively,

Definition. (Fourier integrals ) Let f be a function and
let AR = %J‘ ft) cos(td) dt gnd B{&) = %J‘ ft) sin(ta) dt

— 3

Then the integral | 10 cosii) B0 sl = [ [ eosate— aea
0 s —oo

0

i s called the Fourier integral formula for f(x).

Theorem 1. Assume that f a piecewise smooth
function on every finite interval [a, b] € R and
assume that [ _1reo12= converges. Then the Fourier
integral of f converges to 7 2*7%= for all x € R; .i.e.

fD [AQA) cos(Ax) +B(A) sin(h)]dA = (ﬁ};f &) for all x € R.




Example 1: Find the Fourier integral re-presentation of the

function 1if |x] < 1 rgiﬂl
[

Flx) = {Cl, if |x] = 1and fian the value of A
Solution :  since "I‘_?Ifix}lrin = f_iaz:: =2== Thus, the Fourier
integral representation of f is given by

f(x) = %J:: Lx f(t) cosA(t —x) dtdA l.e

el A

1=t 1 (*[sinalt —)]°" 2 (“sinAcosix
f(x) =—j U 1::051{1:—};}] dtdd = —j ! ( }] d?t=—j dA
E' - [." t=_1 E'

¥ 1 T A T A
Thus,
- ifdy = = = 1
T min A cos Ao 2" k _
1 Ao — { T w2 T (*).When x=0
i, ifx< = 1

(== . -
sin A __
di =

Eq.(*) gives), =&
Example 2:Find the Fourier integral representation of flx) =¢

k| =

|x|

Solution :since f | F(x) ldx = wa_ le~l=l |dx =2 f e”* dx =2 and

o — P = 0



Hence the given function is absolutely convergent
Therefore, the function has a Fourier integral
representation fGo = — j j | cos At — x) dt dA and
Thus, f,.{;:%r msm{‘j_’ce castdt+smm{jﬂc ol smeael L BUt,

| elleosatdt =2 | etcosacar Sinces™ Flcositis even.

v — o JO

lrfc —lzl ginatdt = 0 SINCE g~ o gin At

2 '™ cosAx
f — _II| :—J‘ - d_:,:ll_
Hence, f(x) = e n) 112

= a
1. j e " ecoshy dxy = — -
0 +

e 2 gin by dx =



Fourier sine and cosine integral

1. Fourier sine integral of a function fis given by

. P Y o o
fx) = - I‘ I‘ f{t) sin{ Ax) sin(tA) dtdA and
o o

2. Fourier cosine integral of a function fis given by

(= = [m_ -
I|r ‘l" f{t) cosAx cosAtdt di
Jo Jo

Note that Fourier integral of an even function is
known as Fourier cosine integral where as Fourier
integral of an odd function is known as Fourier sine
integral.

Lif0<x<m

Example 1:Express f(x}={ 0ifx>2 aS a Fourier sine series

u (0T

and hence evaluate J

|:. _.-l"-_

o 2
fix) = —
T

1 —cosAm | i
sin A mdA °




Solution : The Fourier sine integral of f(x) is given by

) = %L [sin(lx]]f f2)sin(0) . = J sin)] (J sin(8) t ).:u since r@ ={") o o"

gin A mdA

— -:::nslt]t_“ 2 [T1— cosAm
=2 |
=10k i

o =2 [ [sin(o0] [—£2 _ -

TL

T

— LI = x =I T¢
T 1 — cosAar T =
J =i A TodA. — —ffl-::l — T
o

A E s 3 = TLC

,!-::::5'1

Example 2: Find the Fourier cosine integral of the

function ™% . .Hence deduce the value of the

integralj; 1+ a2z 9

Answer :The Fourier cosine integral of the function

2a [~ coslx .. and j COSME 7 = T e
0

- e " " - g
f(};::'_eﬂ_ﬂ o 2l + A2 a2 + 32 23




Fourier transform [Complex Fourier transform]

The complex form of Fourier integral is
) 1 = 7= e 1 = . fr= :
f(x) = EJ_E J_E flt) el drds — EJ_EE'E'{ [ J_Ef:__t}c—_-“clt) ds
L

The function = = Flrw) = — | swe—=ar jgthe

— O

complex Fourier transform of f(x).

The function @ =—=| Flrl==asjs called the inversion

W 2T S — e

formula for the complex Fourier transform of F[f(x)]
and it is denoted by ) = F[F(f)] .

Example : Find the Fourier transform of

2—|x|,if |x| = 2

a. flx) = { o .if x| =2 andhence prove that

—

CTT sin ty © T
JII [ ) at=3
A 2




b. reo = {5 L5 Hence deduce that

“sgins —scoss 31T
I} 53 I:EIS{ j S_E

Fourier sine transform and Fourier Cosine transform

1. The Fourier sine transform of the function f is
given by F=[(reo)] = ﬁ [ fGo since ar gnd the
inversion formula for Fourier sine transform is
given byt = rot[Fs(£60)] = ﬁ J; " FalfG] sin(sx) ds.

2. The Fourier cosine transform of the function f is
given by .oy = E [ o cosaeae and the inversion
formula for Fourier sine transform is given by

f(x) = FZFc(fx))] = ﬁ J‘u- Fclf(x)) cossx ds



— =

Example 1:Find f(x),if its Fourier sine transform is £
.Hence find ¢ ( )
Solution: Inver5|on formula we ha g

5

as v —ae _,I _Egsin{sx} ds
f{:{}zFEIES ]:J%J‘u EE sini{sx) ds = dz{} = )
df(z) E = “ I'E a 3'
e _J-MI"T ) e COS SX 5_*.,'I"T -
Integrating both sides with respect to x ,we get
— But
B IE . - ° V4
=) = N Tr,llr '[:a - — a-.,lll ;tan {E::I + c
1:"_ [E;ag] — IIE - E;EE sin{sx) ds

|"IT
Example 2: -Solve for f(x) from the integral equation
1-4,if0=i=1

jf[x}cnsﬂx { f A1
and hence evaIuateJ

-"I

5111 t
] dt




The main operational properties of Fourier
transforms

Theorem : Let the
functions f (x) and g(x) have the respective Fourier
transforms F(w) and G(w), and let a and b be
arbitrary constants. Then

Fla f (x) + bg(x)} = aF{ f (x)} + bF{g(x)}

Theorem :
Let f (x) be a continuous function of x with the
property that lim[x[—><= f (x) = 0, and such that f (x)
is absolutely integrable over (—o<,o0). Then:



(@) F{f(x)}=iwF(w).

(b) For all n such that the derivatives f (r )(x) with r =
1, 2, . . . , n satisfy Dirichlet conditions, are
absolutely integrable over (—oo,o0), and lim|x[—>o° f
(n-1)(x) =0, F{f(n)(x)} = (iw)nF(w), where f (n)(x) =
dn f/dxn.

Theorem : Let f (x) be a
continuous and differentiable function with an n

times differentiable Fourier transform F(w). Then
] F(xf(x))Di;—W(F(w)) and
dn

i, F(x"f(x))0i" -

(F (w)),for all n such that |jm F(n)(w)D 0

|X|—>oo



Theorem :

Let the functions f (x) and g(x) be
piecewise continuous, bounded, and absolutely
integrable over (-0, o0) with the respective Fourier
transforms F(w) and G(w). Then

a. F((f*9)(x)B F(f())F(g(x)).orF(f*g)BFW)G(W) and
,conversely, y
b. (f *g)(x)B O. . F (W)G (w)e™™dw

Y
Proof :exercise

Theorem :
If f (x) has the Fourier transform

Flw), then(‘)_i f (x){zdx B (‘)z F (W)(Zdw



Theorem:

Af f(x) has a
Fourier transform F(w), then
a) F{(r @O)}B S F (%)
b) F(f (x- a))Be "F(w)
c) F(e"f(x))BF(w-1)
Read the remaining properties of Fourier
transform from advanced engineering

mathematics



