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 Second order partial differential 

equations  

Chapter  Five  



TOPICS 

5.1 Definition and classification of second order 

PDEs  

5.2 Method of separation of variables 

 5.3   One dimensional heat and their solutions by 

using methods of Fourier transform 

5.4   One dimensional wave equations and their 

solutions by using methods of Fourier transform 

5.5 The potential (Laplace) equation   

5.6   Fourier and Laplace transforms, applied to 

other PDEs  



5.1   Definition and classification of second order 

PDEs 

At the end of this section the reader will  

1) Define second order linear PDE. 

2) Be able to distinguish between the 3 

classes of 2nd order, linear PDE's. Know 

the physical problems each class 

represents and the physical/mathematical 

characteristics of each 
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Definition  

Classification of second order PDEs  



Examples   



5.2 Method of separation of  variables  

 Objective: 

At the end of this unit reader will know: 

The method of separation of variables 

  How to obtain the solution of P.D.E by the 

method of separation of variables. 

 



Continued  
 

 

 

 

 

 

 

 

 

 

 

This method consists of the following steps 

 

 

 

 

 

 

 

 

 

 

1. If x and y are indepent variables and u is 

the dependent variable, we find a solution 

of the given equation in the form u=XY, 

where X=X(x) is a function of x alone and 

Y=Y(y) is a function of y alone. 

 



Continued . 

Then, we substitute for u and its partial derivative 

(computed from u=XY) in the equation and 

rewrite the equation in such a way that the L.H.S 

involves X and its derivatives and the R.H.S  

involves Y and its derivatives. 

 2. We equate each side of the equation obtained in step 

1 to a constant and solve the resulting O.D.E for X and Y. 

 

 

 



Continued  

3. Finally we substitute the expression for X 

and Y obtained in step 2 in u=XY. The 

resulting expression is the general solution 

for u. 

  

 

 

 

 

 

 

Examples :Using the method of separation of 

variables solve 

a.                                 

 

 

2

2
4 ,

u u

x y

 


 



Solution :  
 

 Substituting                      the partial differential 

equation yields  

After dividing both sides by 4XY, we have 

separated the variables: 

                       

 

 

 

 

 

 

  

     ,u x y X x Y y

Both sides of the equation are independent of x 

and y. i.e. each side of the equation must be a constant 



continued 

In practice it is convenient to write this real 

separation constant as       (using       would 

lead to the same solutions). 

 

From the two equalities 

we obtain the two linear ordinary differential 

equations: 

                                 and                     ----------(1) 

we consider three cases for       : zero, negative, 

or positive, 

'' 4 0X X  ' 0Y Y 





Continued  

CASE I : If        , then the two ODEs in (1) are:                                               

                    and 

  Solving each equation ,we find               and   

                      

 

 

 

 

0 

'' 0X  ' 0Y 

1 2X c c x  3Y c

Thus, a particular product solution of the given 

PDE is 

 

 

 

       1 2 3,u x y X x Y y c c x c  

CASE II   : If                                   , then the ODEs in (1 ) are: 

                                         and                              

From their general solutions : 

                                                        and    

 

 

 

2 , 0    
2'' 4 0X X  2' 0Y Y 

4 5cosh 2 sinh 2X c x c x  
2

6

yY c e



Continued 

we obtain another particular product solution of 

the PDE, 

                                                                       or 

 

Where                 and  

 

 

 

 

 

       
2

4 5 6, cosh 2 sinh 2 yu x y X x Y y c x c x c e   

     
2 2

1 2, cosh 2 sinh 2y yu x y X x Y y A x e A x e    

1 4 6A c c 2 5 6A c c

CASE III :   If             , then the ODEs takes the 

form 

                               and  

   

 

2 

2'' 4 0X X  2' 0Y Y 



continued 

and their general solutions are: 

                                  and  

 

 

 

7 8cos2 sin 2X c x c x  
2

9

yY c e 

give yet another particular solution 

                                                                          or 

 

Where                   and                     

Exercise check each values of u obtained in all cases  

satisfies equation a.    

 

 

 

 

 

 

  

       
2

7 8 9, cos2 sin 2 yu x y X x Y y c x c x c e     

     
2 2

3 4, cos2 sin 2y yu x y X x Y y A x e A x e     

3 7 9A c c 4 8 9A c c
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2
.

u u
b

x t

 


 

Exercise 



5.3   One dimensional heat and their solutions by using methods 

of Fourier transform 



Derivation Heat  Equation in 1D 

Exercise 



Example   :Using Fourier transform                  

Solve the heat equation 

                                                 subject to  

Where   

Solution :The problem can be interpreted as finding the 

temperature u(x, t) in an infinite rod. Because the 

domain of x is the infinite interval               .use Fourier 

transform and define  

  

     

 

 

2

2
, , 0

u u
k x t

t x

 
     

 
   ,0u x f x

 , 

      
1

, , ,
2

i xF u x t u x t e dx U t 





 

  0 , 1

0, 1

u if x
f x

if x

 
 





Continued  

2

2

u u
F F k

t x

   
   

    

 

 

Yields 

 

                                                        or                   

                                                       

 

                                                          

                          

 

 

                                    

 

 

    

 2 ,
dU

k U t
dt

    2 , 0
dU

k U t
dt

  

 

 

Solving the last equation gives 

                          .Now the transform of the initial 

condition  

 

  

 
2

, k tU t e  

If we transform the partial differential equation and 

use properties Fourier transform, 



Continued  

Now the transform of the initial condition 

 

 

 

Thus,  

 

Applying  this condition  to the solution  

 

 

  

    

 

1

0
1

0

1
,0

2

1

2

1
,0

2

i x

i x

i i

F u x f x e dx

u e dx

e e
u U

i





 





















 





  0 0

1 2 sin
,0

2

i ie e
U u u

i

  


  


 

 ,U t



Continued  

  gives                                   ,so 

 

Then it follows from the inverse Fourier transform that 

  

                                                and hence  

 

 

  0

2 sin
,0U c u




 
 

 
2

0

2 sin
, k tU t u e 


 



       1 1
, , ,

2

i xF F u x t u x t U t e d 



 


  

   
1

, ,
2

i xu x t U t e d 






 

 
2

0

1 2 sin
,

2

k t i xu x t u e e d 


 


 


 



Continued  

 
2

0 sin cos
, k tu x

u x t e d 


 





 

Thus, 

 

 

 

 

 



Derivation Wave  Equation in 1D 









Poisson’s and Laplace Equations 



Continued  



Continued  



Continued  

From the point form of Gaus's Law

Del_dot_ D  v

Definition D

D E

and the gradient relationship

E DelV

Del_D Del_ E  Del_dot_ DelV   v

Del_DelV
 v



Laplace’s Equation

if  v 0

Del_dot_D  v

Del_Del Laplacian

The divergence of the 

gradient of a scalar function 

is called the Laplacian. 
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LapR
x x

V x y z( )
d

d









d

d y y
V x y z( )

d

d


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





d

d
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

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d

d



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
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LapC
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 



V   z d

d
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

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d
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

1


2  

V   z d

d









d

d



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
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
z z
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d
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d
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

LapS
1

r
2 r
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2

r
V r   d

d



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

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d

d



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



1

r
2

sin  


sin  


V r   d

d










d

d


1

r
2

sin  2
 

V r   d

d

d

d




Examples of the Solution of Laplace’s Equation 

 

Given 

V x y z( )
4 y z

x
2

1


x

y

z











1

2

3











 o 8.85410
12



V x y z( ) 12
Find: V @ and v at P 

LapR
x x

V x y z( )
d

d









d

d y y
V x y z( )

d

d









d

d


z z
V x y z( )

d

d









d

d











LapR 12

v LapR o v 1.062 10
10


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Example : Using Laplace transforms 

Solve the Wave equation 
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Continued  
Applying  boundary conditions  


