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At the end of this section the reader will

1) Define second order linear PDE.

2) Be able to distinguish between the 3
classes of 2nd order, linear PDE's. Know

the physical problems each class

represents and the physical/mathematical

characteristics of each

- J.U - Ademe Kebede -



Definition

Classification of second order PDEs

The linear second-order partial differential equation
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where A, B, C, D, E, and F are real constants, 15 said to be

hyperbolic if B* — 4AC = (),
parabolicif B* — 4AC =0,
ellipticif  B* —4AC < 0.




Examples

Classify the following equations:
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SOLUTION (a) By rewriting the given equation as
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we can make the identifications A = 3, B = 0, and C = (. Since B* — 4AC = 0,
the eguation is parabolic.

By rewriting the equation as
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we see that A=1, B=0, C= —1, and B? — 4AC = —4(1—1) > (. The
equation is hyperbolic.

With A=1, B=0, C=1, and B* — 4AC = —4(1)1) =< 0 the equation is
elliptic. |




5.2 Method of separation of variables

Objective:

At the end of this unit reader will know:
» The method of separation of variables

» How to obtain the solution of P.D.E by the

method of separation of variables.




Continued

This method consists of the following steps

1. If x and y are Indepent variables and u Is
the dependent variable, we find a solution
of the given equation In the form u=XY,
where X=X(x) Is a function of x alone and

Y=Y(y) iIs a function of y alone.




Continued .

Then, we substitute for u and its partial derivative

(computed from u=XY) iIn the equation and

rewrite the equation in such a way that the L.H.S
Involves X and Its derivatives and the R.H.S

Involves Y and Its derivatives.

2. We equate each side of the equation obtained in step
1 to a constant and solve the resulting O.D.E for X and Y.




Continued

3. Finally we substitute the expression for X

and Y obtained Iin step 2 In u=XY. The

resulting expression is the general solution

for u.
Examples :Using the method of separation of
variables solve

a. o°u




Substituting u(x, y)= X (x)Y (y) the partial differential
equation yields Yy =AYy

After dividing both sides by 4XY, we have

separated the variables:
X |

X Y

Both sides of the equation are independent of X
and y. I.e. each side of the equation must be a constant




continued

In practice it Is convenient to write this real
separation constant as —A(using A would
lead to the same solutions)

From the two equalities 2 =X — —a

4X ¥

we obtain the two linear ordinary differential
eguations:

X"+4AX =0 and Y'+AY =0
we consider three cases for A : zero, negative,

nositive




Continued

CASE | : If A=0, then the two ODEs in (1) are:
X"=0 and y'=0

Solving each equation ,we find X=6+6X and Y =¢,

Thus, a particular product solution of the given
PDE is u(x,y)=X(x)Y(y)=(c, +c,x)c,
CASE Il :1f A=—a’,a>0 | thenthe ODEs in (1) are:
X"-4a°X =0 and Y'-@°Y =0
From their general solutions :
X =c,cosh2ax+c.sinh2ax and Y = c6e0‘2y




Continued

we obtain another particular product solution of

the PDE,
u(x,y)=X(x)Y(y)=(c,cosh2ax+c,sinh 2ax)c6e“2y or

u(x y)=X(x)Y (y)= A cosh2ax e’ + A, sinh 2ax e

Where A =c,C; and A, =CsCq

CASE lll: If A=a” ,then the ODEs takes the
form

X"+4a°X =0 and Y'+a°Y =0
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and their general solutions are:
X =C,C082ax+Csin2ax and Y = cge‘“zy

give yet another particular solution
u(x,y)=X(x)Y(y)=(c, cos2ax+c,sin Zozx)cge‘“zy or
u(x, y)= X (X)Y (y)= A, cos2ax e + A, sin 2ax e
Where A, =C,Cy and A, = CgC,

Exercise check each values of u obtained in all cases
satisfies equation a.
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Exercise




5.3 One dimensional heat and their solutions by using methods
of Fourier transform




Derivation Heat Equation in 1D

Exercise




Example :Using Fourier transform

Solve the heat equation

M _ 823 —o0 < x <oo,t >0 Subject to u(x,0)=f(x)
ot OX

Where f (x) :{

u,,if |x| <1
0,if |x|>1

Solution :The problem can be interpreted as finding the
temperature u(x, t) in an infinite rod. Because the
domain of x is the infinite interval (—oc,c) .use Fourier

transform and define F(u(x,t)):% [ u(xt)edx =U (a,1)




Continued

If we transform the partial differential equation and
use properties Fourier transform,

2
F{a—u}zF K U
ot OX

—ka®U (e, t) dY L ke?u (x,t)=0
dt

Solving the last equati(m gives

U(a,t)=e™*“" Now the transform of the initial
condition




Continued

Now the transform of the initial condition
1 -0 .
B f (x)e'“xdx

F(u(x,O))zﬁ.

] ;
1uoe""xdx

eia . e—ia

=U («,0)
Thus,

U (x,0)=u, p _ =u0,/72r sn(r;a

Applying this condition to the solutionu(a.t)




Continued

Then it follows from the inverse Fourier transform that

F(F{u(xt)})=u(xt)= ﬁj:u (a,t)e " da

u(xt)= =] U(at)e da and hence

u (X,t) = %J‘z uO \E Slza e_kazt e—iaxda
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Thus,
r SIN & COS X

—o0 o

2
e—ka t da




Derivation Wave Eqguation in 1D

(Vibratons of a stretched string)

A g

Consider a uniform elastic string of length f stretched tightly between points © and A and
displaced slightly from its equilibrium position OA. Taking the end O as the origin, OA
as the axis and a perpendicular line through © as the y-axis, we shall lind the

displacement v as a function of the distance x and time L.




Assumptions

(1) Motion takes places in the XY plane and each particle of the string moves
perpendicular to the equilibrium position OA of the string.

()  String 1s perfectly flexible and does not offer resistance to bending.

()  Tension in the string 18 so large that the forces due to weight of the siring can be

Let m be the mass per unit length of the stnng. Consider the motion of an element PQ of
length 8s. Since the string does not offer resistance to bending(by assumption), the
tensions Tyand T, at P and Q respectively are tangential to the curve.
Since there 1s no motion in the honizontal direction, we have

T,cosa =Tycosp = T(constanty .. (1)
Mass of element PQ 15 mos.
By Newton's second law of motion, the equation of motion in the vertical direction 1s

Ay
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Mass of element PQ 1s mds.
By Newton's second law of motion, the equation of motion in the vertical direction is
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This is the partial dilferential equation giving the transverse vibrations of the string. It is
also called the one-dimensional wave equation,

Boundary conditions
For every value ol t, y=0whenx =10
y=0wheny=/
Initial conditions
If the siring 15 made to vibrate by pulling it into a curve y=[{x) and then releasing i, the
initial conditions are

(1) y=[{x)whent=1(

i) =0 whent=0
!




Poisson’s and Laplace Equations

A useful approach to the calculation of electric potentials
Relates potential to the charge density.
The electric field is related to the charge density by the divergence relationship

I = electric field

V-E="— P = charge density

L
£y = permittivity

The electric field is related to the electric potential by a gradientrelationship
E=-VV

Therefore the potential is related to the charge density by Poisson's equation
V.vw=viy="F
€0

In a charge-free region of space, this becomes Laplace's equation

VV=0




K Potential of a Uniform Sphere of Charge
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Continued

Poisson’s and Laplace Equations

From the point form of Gaus's Law
Laplace’s Equation

Del dot D=py
if py=0

Definition D
Del dot D=py

D=¢E Del Del = Laplacian

and the gradient relationship The divergence of the

gradient of a scalar function

E = —DelV is called the Laplacian.

Del D = Del (¢E) = —Del_dot_(eDelV) = p,

—Pv
Del DelV = Poisson’s Equation
€




Continued
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From the point form of Gaus's Law

Del_dot D = p.,

Definition D

D = &

and the gradient relationship

E = —Del\/

Laplace’s Equation

ii Py = 0
Del dot D=py

Del Del= Laplacian

Del_D = Del_(eE) = —Del_dot_(eDelV) = p,, Thedivergence of the

Del_Del\vVv =

SRV

e

gradient of a scalar function
is called the Laplacian.




e
/ Poisson’s and Laplace Equations
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Examples of the Solution of Laplace’s Equation
Given

VIxy.2) = 2 : §0 :=8.85410 12

Find: V @ andv at P V(X,y,2) =12

d|d d (d d|d
LapR == —V(X,y,Z) T — —V(X,y,Z) T — —V(X,y,Z)
{dx(dx ) dy(dy dz\ dz LapR =12

pV :=LapR-€0 pv =1.062x 10 10




Uniqueness Theorem

Givenis a volume V with a closed surface S. The function V(X,y,z) 1s
completely determined on the surface S. There is only one function V(X,y,z)
with given values on S (the boundary values) that satisfies the Laplace
equation.

Application: The theorem of uniqueness allows to make statements about the
potential in a region that is free of charges if the potential on the surface of this
region is known. The Laplace equation applies to a region of space that is free
of charges. Thus, if a region of space is enclosed by a surface of known
potential values, then there is only one possible potential function that satisfies
both the Laplace equation and the boundary conditions.

Example: A piece of metal has a fixed potential, for example, V=0 V.
Consider an empty hole in this piece of metal. On the boundary S of this hole,
the value of V(X,y,z) is the potential value of the metal, i.e., V(S)=0 V.
V(x,y,z) = 0 satisfies the Laplace equation (check it!). Because of the theorem
of uniqueness, V(X,y.z) = 0 describes also the potential inside the hole




Example : Using Laplace transforms

Solve the Wave equation

o
subject to w(0,¢) = f(#)and lim w(x,7) =0 (for > 0)

initial conditions w(x,0) =0,
My
ot |,_,

FIRST, we take the LT with respect toz:

2
SEW(S)—SW(.X,U)—% ch[a TJ
Ot |, ox”

The initial conditions mean that the second and third terms drop out




Continued

2 @ 2 |
L[@ W) for O i
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Exchanging the order of integration and differentiation:

q

o'w) 0% 7 _ 0° o'W
L = Tw(x,)dt = — L(w) =
{&2} 6x2£€ Wn e ox” ) ox’

It follows that :

W =¢* Eﬂf

2 2
LA
ox- ¢

SO

5X 5X

W(x,s)=A(s)ec +B(s)e <




Continued

F(s)=L(f(2)=W(0,s)
Exchanging integration & differentiation again:

lim 7 (x, s) = lim J‘e—”w(x, t)dt =_|' e~ limw(x,2)dt =0
] o

N—poa - (= =] N —»o0

A(s)=0
W(0,s)=B(s)=F(s)
Wi(x,s)=F(s)e ™'

From HLT or from Kreysig page 296 (line11), we have :

c

T)J = F(s)e “ (second shifting theorem)

and so w(x,t) = f[r —iju[r —f)
[ c

that is:

. x e X x
sin| r —— if —<t<—+27
w(x,r) = C c C

0 otherwise




