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Preface

Almost any kind of human activity is associated with the following situations:
There exist several alternatives, and a human being is free to choose any most
suitable for him.

Best choice problems form the subject of decision theory. Using the latter, it is
possible to perform choice in a more reasonable way, taking advantage of available
information about preferences. This theory allows eliminating wittingly unsuitable
alternatives, with thorough consideration of possible negative consequences caused
by half-baked choice.

An extremely wide and practically important class of choice problems concerns
multicriteria choice problems, where the quality of an accepted alternative is
assessed by several criteria simultaneously. Given a set of criteria, a common
approach here employs the Edgeworth–Pareto principle stating that the “best”
alternatives are the Pareto optimal ones only. However, the Pareto set is often large,
and the final choice within it seems difficult. This aspect leads to the so-called
Pareto set reduction problem. The solution to this problem, i.e., the well-justified
reduction of the Pareto set, is impossible without information about the
decision-maker’s preferences. A major source of such information consists in the
decision-maker’s preference relation. In the elementary case, this information
indicates which of two Pareto optimal alternatives is preferable for the
decision-maker (DM). Such kind of information (known as an information quan-
tum) serves for eliminating one of the two alternatives, thereby slightly facilitating
further choice of the “final” alternative. By adopting some rather natural constraints
(axioms) that regulate the DM’s choice procedure, one can reduce much more
Pareto optimal alternatives using a single quantum. At the same time, with a col-
lection of information quanta available, one can expect to obtain a relatively narrow
set appreciably simplifying the final choice.

Adhering to a rigorous form of exposition, the author still endeavored not to lose
the connection between theory and practice, involving all available means for the
informal discussion and visualization of all new notions and results.

This book is intended for the specialists in the field of decision-making,
requiring a standard university course on mathematics from a reader. No doubt, this
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book will be useful for those who solve multicriteria problems by occupation,
namely researchers, design engineers, product engineers, developers, analysts. In
addition, this book can be of certain value for the undergraduates and postgraduates
specialized in mathematics, economics, and engineering.

Section 5.4 was written by O.V. Baskov, while Sects. 5.2, 8.6, and Subsects. 7.4.
3, 7.4.4 by A.O. Zakharov. Section 5.1 proceeded from the research work of O.N.
Klimova, and Section 8.5 was written jointly with A.V. Prasolov. The author
expresses his sincere gratitude to the listed colleagues for their contribution to this
book.

The formulas, figures, and assertions have the double numbering system, where
the first number corresponds to the chapter.

The symbols □ and ■ indicate the beginning and end of a proof, respectively.
The author is grateful to the Russian Foundation for Basic Research for sup-

porting his investigations in the field since 1998. And finally, my deep appreciation
is expressed to A. Yu. Mazurov for his careful translation, permanent feedback, and
contribution to the English version of the manuscript.

Saint Petersburg, Russia Vladimir D. Noghin
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Introduction

Any optimization problem (extremum problem) contains two objects, namely a set
of feasible alternatives X and a numerical function (criterion) f defined on this set.
The solution to an extremum problem is an element of the set X attaining the largest
(or least) value of the criterion. Therefore, an extremum problem represents a
maximization problem or a minimization problem, and all results obtained for the
problems of one type can be easily reformulated for the problems of the other types.
To present, the theory of extremum problems has been developed intensively,
yielding numerous solution methods and algorithms for certain classes of such
problems.

Apparently, the multicriteria problems (i.e., the ones with several numerical
criteria f1, f2,..., fm) first appeared in the implicit form in the seventeenth century as
voting problems. Following the origination of mathematical economics in the
nineteenth century, they were successfully applied to solve different economic
problems. The notion of a Pareto optimal alternative (domain of compromise) was
pioneered in that period, too. A Pareto optimal alternative possesses a remarkable
property: It cannot be improved, viz. increased or decreased (depending on whether
the original problem concerns maximization or minimization) at least in terms of
one criterion without degrading the values of the rest of the criteria. This notion was
introduced by F. Edgeworth in the 1850s in the case of two criteria and then
generalized by V. Pareto at the junction of the nineteenth and twentieth centuries to
the case of several criteria. The overwhelming majority of researchers believe that
the “best” choice should be made from the Pareto optimal alternatives (the so-called
Edgeworth–Pareto principle). However, note that this principle has been given a
rigorous statement and justification just recently [37], formerly accepted as some
obvious axiom.

Unfortunately, in most multicriteria problems the Pareto set (domain of com-
promise) is rather wide, making specific choice within it nontrivial. This circum-
stance leads to the Pareto set reduction problem associated with searching for a
certain Pareto optimal alternative as the “best” one. The favorable solution to this
problem forms a major practical interest, as in applications-relevant choice prob-
lems one should consider a single or a few alternatives.

xv



Nowadays, there exists a wide range of approaches to solve the Pareto set
reduction problem, from the heuristic to axiomatic ones. Nevertheless, none of them
claims to be uniform and “perfect” (perhaps, such an approach would hardly be
proposed). Each of the existing approaches combines unquestionable advantages
with patent drawbacks.

The abstract choice problem is to indicate one or several alternatives (called
selectable alternatives) from a given original set of feasible alternatives X. Denote by
C(X) the set of all selectable alternatives. This set has to be found as the result of
problem solution. Clearly, CðXÞ � X; in particular, the set C(X) possibly makes a
singleton. Fix some set A containing X. A function associating each set X � A with
its subset C(X) is called a choice function on A. Thereby, generally a choice function
is defined on the one- and multielement subsets of A (including X). In a special case,
the value of a choice function on some set can be an empty set (“refusal to choose”).
Choice theory [1] studies the general properties of a choice function depending on
the variation of the set X (and C(X)) within a certain fixed set A.

Meanwhile, in contrast to choice theory, we will analyze the problems with
a fixed set X and a collection of numerical functions forming a vector criterion
f = (f1, f2,.., fm). By assumption, the choice is performed by some decision-maker
(DM), either an individual or a group of people pursuing a definite goal. For the
choice to fit goal attainment as much as possible (becoming “best” or “optimal” for
the DM), it is necessary to consider the “tastes” and “preferences” of the DM
reflecting somehow the whole sense of “best” alternative. In many cases, the DM
“preferences” can be expressed using a binary (preference) relation �X defined on
the set X. The notation x0 �X x00 reads as “the first alternative is preferable to the
second one.” This means that the DM chooses the first alternative and never the
second from these two alternatives. As a matter of fact, by determining the pref-
erence relation �X , one reduces the choice function to the two-element subsets
of the set X. This relation is generally incomplete, and there may exist pairs of
alternatives not interconnected by the relation �X . In other words, the DM appears
unable to give preference to any of the alternatives in such pairs.

A triplet hX; f ;�Xi is called a multicriteria choice model. The classical multi-
criteria optimization model (e.g., see [9, 10, 18, 19, 26, 53, 58–60, 64, 65]) does not
incorporate the preference relation �X , whereas general choice theory does not
involve the vector criterion. Note that the framework of the classical multicriteria
model containing merely X and f fails to formulate the problem in a rigorous way.
For instance, while announcing that it is desirable to maximize (or minimize) the
criteria, the researchers actually imply the existence of some binary relations
expressing this statement strictly. Therefore, the multicriteria model must include a
binary relation, although many authors still ignore this. A possible explanation is
that, unlike X and f, the preference relation guiding the DM often appears
fragmentary.

According to the Edgeworth–Pareto principle, the set of selectable alternatives
C(X) lies within the Pareto set and any Pareto optimal alternative can be chosen.
Using the set X and the vector criterion f, it is possible to construct the Pareto set,
perhaps with serious computational difficulties. The next stage is to choose an
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alternative within the Pareto set or, in other words, to reduce this set to acceptable
sizes. Consequently, under the Edgeworth–Pareto principle, the multicriteria choice
problem can be formulated as the Pareto set reduction problem to the set of
selectable alternatives C(X). This problem seems so complicated that even called
the Pareto set reduction challenge [30, 39].

The Pareto set can be reduced only with some additional information about the
multicriteria problem (besides X and f). In many cases, investigators replace such
information with certain heuristic considerations or definite “plausible” hypotheses
that narrow the search space of “best” (selectable) alternatives. A distinctive feature
of the heuristic methods is that there exists no clear description for the class of
multicriteria choice problems, where these methods surely yield a desired result. In
this context, the axiomatic approaches are more justified, since axioms define the
class of associated problems, where a desired result is surely obtained.

A number of authors believe that the final choice must be performed by the DM
after the direct analysis of the whole Pareto set or its considerable part. Really,
given a few Pareto optimal alternatives (ideally, two), one of them can be in
principle chosen by comparing and studying their advantages and shortcomings.
However, even in the case of two alternatives, the DM may get into an awkward
predicament, e.g., when the number of criteria is huge. For a rather large Pareto set
(not to mention the infinite set), the direct analysis of the Pareto optimal alternatives
becomes difficult, and the successful solution to the problem requires some for-
malized procedure.

This book has sequential exposition based on the formal definition and further
usage of the notion of an information quantum about a preference relation. The
existence of such a quantum means the DM’s willingness to compromise by
neglecting a group of criteria in order to gain in terms of another group of criteria.
The above definition has a very simple logic, being clear to the experts and,
moreover, to the individuals involved in the decision-making process without deep
knowledge of higher mathematics. This aspect seems substantial, as such infor-
mation often comes from the latter.

Using the definition of an information quantum and its elementary properties, it
is possible to deal with the main question behind this notion: How should such
information be taken into account? As it has turned out, the information quanta can
be easily considered if one slightly restricts the class of the multicriteria choice
problems that satisfy the Edgeworth–Pareto principle by adding several rather
sensible requirements (axioms) on the DM’s preference relation. In particular, one
should just recalculate the original vector criterion by definite formulas, obtaining
the Pareto set in terms of the new vector criterion. Generally, the new Pareto set is
narrower than that of the original problem and, what is more important, all
selectable alternatives of the original problem stay within the new Pareto set. In
other words, the transition from the original Pareto set to the new one actually
reduces the domain of compromise without losing the selectable alternatives.
Owing to the consideration of the existing information about the preference rela-
tion, the search space of the selectable alternatives becomes narrower, thereby
simplifying the choice problem.
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The aforesaid is the content of the first three chapters. Chapter 4 introduces the
notion of a consistent collection of information quanta and three assertions (criteria)
to verify whether a given collection of information quanta enjoys consistency or
not. Next, we find out how the so-called elementary collections of information
quanta should be taken into account.

Chapter 5 analyzes the usage of different finite collections of information quanta
and their application to Pareto set reduction. In particular, we describe two algo-
rithms (the geometric and algebraic ones) for considering an arbitrary finite number
of consistent information quanta.

Chapter 6 explores the completeness of a collection of information quanta. As
demonstrated there, using only a finite collection of such quanta it is possible to
construct an arbitrarily accurate (in some sense) approximation of the unknown set
of nondominated alternatives in the form of the Pareto set for a certain new mul-
ticriteria problem. The results derived in Chap. 6 demonstrate the important role
of the information about the preference relation in the form of quanta. This infor-
mation is complete; i.e., for a sufficiently large class of the multicriteria choice
problems with a finite set of feasible alternatives, such information suffices for
producing a clear view of the set of nondominated alternatives.

Chapter 7 gives the definition of an information quantum in the case of a fuzzy
preference relation (a fuzzy information quantum), formulating the corresponding
axioms of “reasonable” fuzzy choice and establishing some results for taking into
account different fuzzy information quanta.

The outcomes of the preceding chapters are then accumulated in Chap. 8 that
describes explicitly the general axiomatic Pareto set reduction approach based on
the information about the preference relation in the form of information quanta.
This chapter begins with the psychological aspects of human decision-making.
Next, the axiomatic method is formulated and discussed in detail. The underlying
principle of the method can be elucidated via comparison with Michelangelo’s
creative process. As is well-known, the great sculptor was asked how he managed
to create masterpieces like David from shapeless stone. Michelangelo answered, “It
is easy. You just chip away the stone that doesn’t look like David.” The axiomatic
approach is based on the same idea: using the available information about the
preference relation in the form of a collection of quanta, sequentially eliminate from
the original set of feasible alternatives all Pareto optimal alternatives that cannot be
selected according to this information. This process continues until one obtains a set
of alternatives satisfying the DM.

A major advantage of the suggested axiomatic approach lies in the following.
Using a collection of axioms, we outline the class of multicriteria choice problems
for which none of the selectable alternatives is eliminated at each step of the Pareto
set reduction process. Thereby, this collection of axioms clearly specifies the
applicability limits of the approach.

Furthermore, note that the axiomatic approach can be used in combination with
other well-known solution methods of the multicriteria problems. For instance, in
Chap. 8 we discuss how the sequential reduction method of the domain of
compromise is employed jointly with the weighted sum-based approach and goal
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programming ideas. The justification of the linear scalarization method (a rather
widespread linear combination of criteria) and some other nonlinear ones for Pareto
set reduction is given. Chapter 8 also applies the obtained results to some eco-
nomic problems, describing several ways to generalize the axiomatic approach by
weakening the original axioms.
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Chapter 1
Edgeworth-Pareto Principle

This chapter introduces and discusses the basic notions of decision-making in a
multicriteria environment, namely, the set of feasible alternatives, the vector cri-
terion and the preference relation of a decision-maker. Here we formulate the
multicriteria choice problem. In addition, Chap. 1 defines a pair of fundamentally
important notions, the set of nondominated alternatives and the Pareto set, which
are vital for the statement and rigorous substantiation of the Edgeworth-Pareto
principle.

The statement and substantiation of the above principle form the central outcome
of Chap. 1. As established below, the Edgeworth-Pareto principle should be applied
to solve the multicriteria choice problems from a certain sufficiently large class.
This class comprises the problems satisfying two definite requirements (axioms)
that express the “reasonable” behavior of a decision-maker. An attempt to use the
Edgeworth-Pareto principle beyond the class is risk-bearing, possibly yielding
inadequate results.

1.1 Multicriteria Choice Problem

1.1.1 Set of Feasible Alternatives and Set of Selectable
Alternatives

In everyday life, people always face situations when it is necessary to perform
choice. For instance, we choose one or another good in a shop. To reach an
intended destination in a city or country, we choose a route and mode of transport.
A school leaver chooses a university for further education or a place for employ-
ment. High-level executives form the stuff of their companies or departments;
choose one or another behavioral strategy; make business and economic decisions.
In different fields of science and technology, specialists designing various devices
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and equipment, buildings, cars, aircrafts, etc. also seek to choose the best engi-
neering or design decision. Bankers choose objects for investment, the economists
of enterprises and companies elaborate an optimal economic development program,
and so on.

This list of real-world problems can be continued. Let us confine ourselves to
mentioning just these problems, in order to identify common elements inherent in
any choice problem.

First of all, there must exist a given set of alternatives for further choice. Denote
it by X and call the set of feasible alternatives. This set has minimum two elements
to provide real choice. And there are no restrictions on the maximum number of
feasible alternatives, which can be finite or infinite. The nature of these alternatives
does not really matter: project decisions, behavioral patterns, political or economic
strategies, development scenarios, short- or long-term plans, etc.

The choice proper is to indicate an alternative (called the selected alternative)
among all feasible ones. Note that, in many cases, not a single alternative but a
whole collection of alternatives is chosen, making some subset of the set of feasible
alternatives X. An elementary example concerns the competitive selection of uni-
versity entrants.

Designate by C(X) the set of selectable alternatives. It represents the solution of
the choice problem and can be any subset of the set X. Therefore, to solve the
choice problem one has to find the set C(X), CðXÞ � X. If the set of selectable
alternatives contains no elements (i.e., empty), the choice proper disappears, as
none of the alternatives is selected. Such a situation attracts little interest in terms of
applications; and so, the above set must include at least one element. In some
problems, it can be infinite.

A specific feature of the multicriteria choice problems is that, in contrast to
standard (single-criterion) optimization, there exists no uniform definition of
solution for all occasions (and it would hardly be suggested). This circumstance can
be explained as follows: the solution of a multicriteria choice problem [the set C(X)]
is constructed in the course of choice using different additional information (besides
X and f), depending substantially on a decision-maker.

We call attention to the fact that the set of selectable alternatives has been given
just a notation without a rigorous definition. Actually, such a definition is absent. As
illustrated by further exposition, this fact in no way decreases the strictness of the
approach. The only requirement applied to the above set is stated by Axiom 1: an
alternative that is not selected from some pair must not be selected from the original
set of feasible alternatives. And all crucial theorems involving the set of selectable
alternatives state that an arbitrary set C(X) satisfying Axiom 1 has inclusion in a
specific-form Pareto set. In other words, these theorems give some upper estimate
for a whole class of unknown sets of selectable alternatives within the limits of
Axiom 1.
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1.1.2 Decision-Maker

Choice process is impossible without an individual implementing it for personal
goals. An individual performing choice and bearing full responsibility for the
consequences is called a decision-maker (DM).

As a rule, the DM’s nature makes no matter for the solution of the choice
problem. For instance, imagine a human as the DM; obviously, it represents a
complex biological and social being. This being possesses a body of definite
organization with different (perhaps, incompletely explored) biochemical, psy-
chophysical, physiological and mental processes. However, it is unnecessary to
consider the structural peculiarities of its skull or spine to choose, e.g., a certain
economic strategy of a company. For choice process, the important factors include
the experience of this human in economics, its future expectations of the company
and company-related interests, etc. Consequently, speaking about the DM in the
context of the choice problem, we mean not a human as a whole, but only its “part”
and characteristics associated with choice process.

In decision theory, different individuals demonstrating the same behavior in
same situations are indistinguishable from each other, representing the same DM.

1.1.3 Vector Criterion

According to standard considerations, the chosen (best) decision is a feasible alter-
native satisfying the wishes, interests or goals of a given DM as fully as possible. The
DM’s aspiration for a definite goal is often expressed in mathematical terms by
maximization (or minimization) of some numerical function defined on the set X. But
in difficult situations one deals with several such functions simultaneously. For
example, imagine that a phenomenon, an object or a process is analyzed from different
viewpoints each formalized using an appropriate numerical function. In other
example for the dynamic (step-by-step) analysis of this phenomenon involving a
dedicated function at each step, it is necessary to take into account several functions.

The book focuses on the case of several numerical functions f1; f2; . . .; fm,
m = 2; defined on the set of feasible alternatives X. Depending on the interpretation
of the choice problem, these functions are called optimality criteria, efficiency
criteria, goal functions, quality indices, or performance criteria. We emphasize that
the criteria represent numerical functions, i.e., functions taking values in the real
one-dimensional space.

Let us illustrate the terms by considering the best project choice problem. Here
the set X consists of several competing projects (e.g., the construction of a new
enterprise), while the optimality criteria can be the project costs f1 and the expected
profit f2 from the implementation of a project (the profit yielded by an enterprise).
With only one optimality criterion being treated in this problem, the practical
importance of its solution is reduced to naught. Really, using the first criterion only,
we choose the cheapest project, but its implementation possibly yields a very small
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profit. On the other hand, the implementation of the most profitable project (chosen
by the second optimality criterion) often turns out impossible due to insufficient
resources. This explains the need to use both optimality criteria simultaneously in
the best project choice problem. Another goal can be associated with the mini-
mization of the undesired environmental effects of an enterprise (its construction
and further operation), which adds the third optimality criterion reflecting the
ecological risks, and so on. And the role of the DM in this problem is played by the
corresponding municipal administration (for a public-owned enterprise) or the
executive officer of a parent company (for a private owned enterprise).

The numerical functions f1; f2; . . .; fm form the vector criterion

f ¼ ðf1; f2; . . .; fmÞ; ð1:1Þ

which takes values in the m-dimensional vector space Rm. This space is called the
criterion space, and for some x 2 X the value f ðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . .; fmðxÞÞ 2 Rm

of the criterion f is called a feasible vector associated with the alternative x. All
feasible vectors make the set of feasible vectors

Y ¼ f ðXÞ ¼ fy 2 Rm j y ¼ f ðxÞ for some x 2 Xg:

Along with the set of selectable alternatives, it seems convenient to introduce the
set of selectable vectors

CðYÞ ¼ f ðCðXÞÞ ¼ fy 2 Y j y ¼ f ðxÞ for some x 2 CðXÞg;

representing a certain subset of the criterion space Rm.

1.1.4 Multicriteria Problem

A problem with a set of feasible alternatives X and a vector criterion f is usually
called a multicriteria (multi-objective or vector optimization) problem. The prop-
erties of such problems were explored in a vast literature (e.g., see [9, 10, 18, 19,
26, 53, 58–60, 64, 65]).

Note that, in many cases, mathematical modeling of decision-making (i.e.,
designing the set X and the vector criterion f) represents a complicated process with
close cooperation of two groups of specialists, namely, experts in a concrete field of
knowledge associated with a real problem and experts in decision-making (math-
ematicians). On the one hand, it is necessary to consider all major features and
details of the real problem. On the other hand, the resulting model shall be not very
complex so that the up-to-date mathematical methods and procedures become
applicable. Therefore, the modeling stage substantially depends on the experience,
intuition and skills of both groups of specialists. It is impossible to identify this
stage with the simple and formal usage of the well-known algorithms.
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Another important aspect should be emphasized in this context as well. Any
choice problem (including the multicriteria ones) has a close connection to a
specific DM. Even at the stage of mathematical modeling that yields the set of
feasible alternatives and the vector criterion, the specialists can’t do without the
advice, recommendations and instructions of the DM, as the vector criterion serves
for expressing the DM’s goals. Clearly, it is impossible to construct an ideal model
reproducing all real circumstances. A model always gives a simplified description
of the reality. What is important, the model must incorporate all features and details
mostly affecting the final choice of the best alternative.

Assume that the two elements of the choice problem are formed, explicitly
described and fixed. Evidence suggests that, in most cases, it is impossible to
express the whole gamut of desires, tastes and preferences of a given DM in terms
of the criterion f. In fact, the vector criterion merely indicates some local goals that
often conflict with each other. As a rule, these goals cannot be achieved all at once,
and additional information is necessary to implement a compromise. In other
words, with the two elements only (the set of feasible alternatives and the vector
criterion), the choice problem appears “underdetermined.” This underdetermined
character later results in the weak logical validity of the best choice.

The well-justified choice requires some additional information about the DM’s
preferences besides vector criterion. With this purpose, our idea is to introduce one
more element in the multicriteria problem, which would express and describe these
preferences.

1.1.5 Preference Relation

Consider two feasible alternatives, x0 and x00. Assume that this pair of alternatives is
presented to a DM, and the latter chooses (gives preference) to the first alternative.
Then we write

x0 �X x00:

The sign �X denotes a strict preference relation or, in short, a preference
relation.

Interestingly, it is possible that neither the relation x0 �X x00 nor the relation
x00 �X x0 holds for some feasible alternatives x0 and x00. In other words, a DM is
unable to make a final choice between them. Quite probably, there may exist pairs
of different alternatives where a DM cannot give preference to one of them. The
described situation agrees with the reality. Moreover, if a DM was required to
choose a preferable alternative in an arbitrary pair of feasible alternatives, the theory
based on this “stringent” requirement to the DM would be of no value in practice.
Such “omnipotent” DMs are a very rare phenomenon in one’s life.
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A preference relation �X defined on the set of feasible alternatives naturally
induces a preference relation �Y on the set of feasible vectors Y as follows1:

f ðx0Þ �Y f ðx00Þ , x0 �X x00; for x0; x00 2 X:

And so, the vector y0 ¼ f ðx0Þ is preferable to the vector y00 ¼ f ðx00Þ (i.e., y0 �Y y00)
if and only if the alternative x0 is preferable to the alternative x00 (i.e., x0 �X x00).

1.1.6 Multicriteria Choice Problem

It is now possible to formulate all basic elements of the multicriteria choice
problem. Thus, the statement of any multicriteria choice problem includes

• the set of feasible alternatives X,
• a numerical vector criterion f of form (1.1),
• a preference relation �X defined on the set of feasible alternatives.

The multicriteria choice problem statement omits the DM proper: there is no
need for this. By assumption, the vector criterion and the preference relation
“materialize” the aspirations, tastes, desires and preferences of the DM affecting the
process of its choice.

However, we emphasize that the basic elements of a multicriteria choice problem
can be augmented if necessary by new objects deeper reflecting the interests,
motivation and desires of the DM. But this situation is not studied in the book.

The above multicriteria choice problem is stated in terms of alternatives. In many
cases, in terms of vectors it is more convinient. Then it contains two objects,
namely,

• the set of feasible vectors Y ; Y � Rm,
• a preference relation �Y defined on the set of feasible vectors.

1.2 Binary Relations

1.2.1 Definition of Binary Relation

There exists a special mathematical notion, called binary relation, for describing
and studying the preference relation defined earlier. Section 1.2.1 presents an

1Some different alternatives may have same vector values. And so, it seems correct to replace “for
x0; x00 2 X” with “for all x1 2 ~x1; x2 2 ~x2; ~x1;~x2 2 ~X, where ~X represents the aggregate of the
equivalence classes induced by the preference relation x1 � x2 , f ðx1Þ ¼ f ðx2Þ on the set X.”
Here ~xi denotes the equivalence class induced by the element xi, i ¼ 1; 2.
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auxiliary mathematical framework connected with binary relations. A reader having
a good knowledge of the subject may glance over it, passing to the next section.

First, recall the notion of the Cartesian product of two sets. Consider two
nonempty arbitrary sets A and B. Their Cartesian product is a set A� B defined by

A� B ¼ [
a 2 A
b 2 B

fða; bÞg:

That is, the Cartesian product of two sets consists of all possible pairs of their
elements such that the first and second elements in a pair are elements of the first
and second sets, respectively.

For example, the Cartesian product of the two finite numerical sets A ¼ f1; 2g
and B ¼ f2; 3; 4g contains six elements, having the form

A� B ¼ fð1; 2Þ; ð1; 3Þ; ð1; 4Þ; ð2; 2Þ; ð2; 3Þ; ð2; 4Þg:

A binary relation < defined on a set A is a subset of the Cartesian product A� A,
i.e., < � A� A. In other words, any set of pairs composed of elements from a set A
actually forms some binary relation. Particularly, the “largest” binary relation is the
set < ¼ A� A coinciding with the Cartesian product of A by itself.

If the inclusion ða; bÞ 2 < holds, in a standard fashion we write a< b and say
that element a is in relation < with element b(equivalently, element a dominates
element b in terms of relation <). When both inclusions a< b and b< a fail, we say
that these elements are incomparable in terms of relation <.

Generally, a< b does not imply b< a.
Consider the examples of some binary relations. The school curriculum covers a

series of binary relations defined on the real space, viz., =, = , 5 , >, and <. Set
theory deals with the inclusion relation � defined on the set of all subsets of a fixed
set.

For arbitrary vectors a ¼ ða1; a2; . . .; amÞ and b ¼ ðb1; b2; . . .; bmÞ from the
criterion space Rm, let us introduce the following binary relations that will be
involved throughout this book:

a[ b , ai [ bi; i ¼ 1; 2; . . .;m;

a= b , ai = bi; i ¼ 1; 2; . . .;m;

a� b , a= b and a 6¼ b:

The last relationship a� b means that each component of vector a is greater or
equal to the corresponding component of vector b and at least one component of the
first vector is strictly greater than the corresponding component of the second
vector. The binary relation � is often called the Pareto relation.
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1.2.2 Types of Binary Relations

The typification of binary relations depends on their properties. In what follows, we
give definitions for some widespread types of binary relations.

A binary relation < defined on a set A is called

• reflexive if the relationship a< a holds for all elements a 2 A;
• irreflexive if the relationship a< a fails for all elements a 2 A;
• symmetrical if every time the relationship a< b holding for some elements

a; b 2 A implies the relationship b< a;
• asymmetrical if every time the relationship a< b holding for some elements

a; b 2 A implies that the relationship b< a fails;
• antisymmetric if every time the relationships a< b and b< a holding for some

elements a; b 2 A imply their equality a ¼ b;
• transitive if, for any triplet of elements a; b; c 2 A, the relationships a< b and

b< c imply the relationship a< c;
• invariant with respect to a linear positive transformation if, for any triplet of

elements a; b; c 2 A and an arbitrary positive number a, the relationship a< b
implies the relationship ða � aþ cÞ < ða � bþ cÞ (here A ¼ Rm);

• complete if for any pair of elements a; b 2 A; a 6¼ b, we have the relationship
a< b or the relationship b< a;

• partial if this relation is not complete; then there exists a pair of elements in the
set A that are incomparable in terms of the relation <.
The equality relation = and the nonstrict inequality relation = are reflexive,

while the strict inequality relation > and the relation � are irreflexive on Rm.
Moreover, the equality relation and the nonstrict inequality relations are symmet-
rical and antisymmetric, respectively; the relations > and � are asymmetrical. And
all the relations mentioned, ¼; � ; [ , and = , are transitive and invariant with
respect to a linear positive transformation. Obviously, the equality relation on a set
of numbers or vectors and the inclusion relation are partial. At the same time, the
nonstrict inequality relation considered on the real vector space Rm with m[ 1
becomes partial only, too.

As easily verified, any asymmetric relation is irreflexive.
□ Really, assume that a certain asymmetric relation < is not irreflexive. Then for

some a 2 A we have the relationship a<a. Due to the asymmetrical property of <,
this relationship takes no place. The resulting contradiction leads to the irreflexivity
of <. ■

1.2.3 Ordering Relations

The combinations of some binary relations play an important role in set theory. Let
us introduce corresponding definitions.
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A binary relation < defined on a set A is called

• a nonstrict order (a nonstrict ordering relation) if it is reflexive, antisymmetric
and transitive;

• a strict order (a strict ordering relation) if it is irreflexive and transitive;
• a linear order if it is a complete nonstrict or complete strict order.

The inequality relations = and > represent a linear order on the real space, yet
making no sense on the real vector space. The relation � considered on the real
vector space is a strict partial order.

Lemma 1.1 Any strict ordering relation is asymmetrical □
Again, we prove by contradiction: suppose that a certain relation < is irreflexive

and transitive, but not asymmetrical. And so, there exists a pair of elements a; b 2 A
such that the relationships a< b and b< a hold simultaneously. By transitivity, this
directly implies a< a, which is inconsistent with the irreflexivity of the relation <.■

Another example of a strict linear order defined on space Rm is given by the
following lexicographical ordering relation. A vector y0 ¼ ðy 01; y 02; . . .; y 0mÞ is
lexicographically greater than a vector y00 ¼ ðy 001 ; y 002 ; . . .; y 00mÞ if and only if one of
the following conditions hold:

(1) y01 [ y001 ;
(2) y01 ¼ y001; y

0
2 [ y002 ;

(3) y01 ¼ y001; y
0
2 ¼ y002; y

0
3 [ y003 ;

………………………………………
(m) y0i ¼ y00i ; i ¼ 1; 2; . . .;m� 1; y0m [ y00m:

Clearly, any two vectors from space Rm coincide or one of them is lexico-
graphically greater than the other. That is to say, the lexicographical ordering
relation appears complete. Moreover, it is a transitive relation.

1.3 Exclusion Axiom and Set of Nondominated
Alternatives

1.3.1 Asymmetry Requirement for Preference Relation

Consider the multicriteria choice problem with a set of feasible alternatives X, a
vector criterion f and a preference relation �X . As this preference relation is defined
on the pairs of feasible alternatives, it obviously represents some binary relation.

The original approach suggested below evolves from the preference relation �X ,
which is per se a strict preference relation in the sense that the relationship x �X x0

negates the inverse relationship x0 �X x. In terms of binary relations discussed in
the previous section, this means that the preference relation must be asymmetrical.
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Therefore, in the sequel we will study the choice problems with the preference
relations satisfying asymmetry. P. Fishburn [11]–[12] believes that asymmetry is
the minimal requirement to the preference relation, a must-have among other
requirements or conditions imposed on the DM’s preference relation.

1.3.2 Exclusion Axiom

Consider two arbitrary feasible alternatives, x0 and x00. By asymmetry, one and only
one of the following cases takes place:

• The relationship x0 �X x00 holds but the relationship x00 �X x0 fails;
• The relationship x00 �X x0 holds but the relationship x0 �X x00 fails;
• Both relationships x0 �X x00 and x00 �X x0 fail.

In the first case, i.e., under x0 �X x00, we say that the alternative x0 dominates the
alternative x00 (in terms of the relation �X). In the second case, x00 dominates x0. And
in the third case, we say that the alternatives x0 and x00 are incomparable in terms of
the preference relation.

Now, get back to the choice problem. Assume that, for some alternative x00, there
exists an alternative x0 such that the relationship x0 �X x00 takes place. According to
the definition of the preference relation, the DM chooses the first alternative from
this pair. And then the second alternative x00 cannot be selected from the pair x0, x00

(otherwise, we obtain the relationship x00 �X x0 contradicting together with x0 �X x00

the asymmetry of the relation �X). In terms of the set of selectable alternatives, the
aforesaid can be expressed as the equivalence

x0 � x00 , Cðfx0; x00gÞ ¼ fx0g;

for all x0; x00 2 X.
Imagine that the second alternative x00 is not chosen from the pair, since the latter

contains a better alternative. Considering x00 within the whole set of feasible
alternatives X, it seems natural to expect that x00 would not be chosen from the set X,
too (as there exists at least one alternative x0 belonging to the set X that is preferable
to x00).

Following this line of reasoning, the second alternative in the pair x0; x00 is not
chosen from the whole set X if the first alternative is chosen from this pair. Thereby,
throughout the book we accept

Axiom 1 (the exclusion axiom of dominated alternatives) If the relationship x0 �X

x00 holds for a certain pair of alternatives x0; x00 2 X, then x00 62 CðXÞ.2
Axiom 1 involves the preference relation �X guiding the DM and, in addition,

the set CðXÞ. Hence, this requirement should be interpreted as a definite constraint

2As easily verified, the inverse Condorcet condition [1] implies Axiom 1, but not vice versa.
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on the set of selectable alternatives we will deal with. That is, any set of selectable
alternatives must not contain such elements having preferable alternatives.

Now, we give a simple illustrative example where the exclusion axiom fails.
Consider the choice problem with three candidates for two vacancies. By
assumption, both vacancies must be filled. Direct comparison of the candidates
shows that the first is preferable to the second and to the third, while the second is
preferable to the third. Since two candidates must be chosen anyway, they are the
first and the second candidates. Thus, the second candidate is not chosen from the
pair of the first and second ones, yet being chosen from the whole set of three
candidates. And the exclusion axiom of dominated alternatives takes no place in
this example.

1.3.3 Set of Nondominated Alternatives

According to Axiom 1, any dominated alternative does not belong to the set of
selectable alternatives. The elimination of all dominated alternatives from X yields a
set playing a crucial role for further exposition.

The set of nondominated alternatives is defined by

NdomX ¼ fx	 2 Xj there exists no x 2 X such that x �X x	g:

Therefore, NdomX represents a certain subset of the set of feasible alternatives
X. Depending on the structure of the set X and a specific preference relation �X , the
set of nondominated alternatives may

• be empty (containing no elements);
• consist of one element (being a singleton);
• contain a finite number of elements;
• consist of infinitely many elements.

Lemma 1.2 For any set of selectable alternatives CðXÞ satisfying Axiom 1, we
have the inclusion

CðXÞ � NdomX: ð1:2Þ

□ Inclusion (1.2) holds for the empty set C(X). Suppose that inclusion (1.2) fails
for some nonempty set CðXÞ. Then there exists an element x00 2 CðXÞ such that
x00 62 NdomX. By the definition of the set of nondominated alternatives, there exists
an alternative x0 2 X satisfying the relationship x0 �X x00. Then Axiom 1 immedi-
ately yields x00 62 CðXÞ, which contradicts the hypothesis that x00 is the selectable
alternative. ■
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Inclusion (1.2) establishes that choice should be performed only within the
nondominated alternatives for a sufficiently large class of the problems (the ones
satisfying Axiom 1), and also any nondominated alternative can be selected.

If CðXÞ 6¼ £ and the set of nondominated alternatives represents a singleton, the
choice problem is solved in principle: the unique element of this set must be chosen
due to inclusion (1.2). However, note that such situations are very rare in practice.
Nevertheless, even incomplete (fragmentary) information about the DM’s prefer-
ence relation allows to eliminate the dominated alternatives (unfit for choice) from
the whole set of feasible alternatives, making further choice simpler.

Along with the set of nondominated alternatives, let us introduce the set of
nondominated vectors

Ndom Y ¼ f ðNdomXÞ ¼ ff ðx	Þ 2 Y j there exists no x 2 X such that x �X x	g
¼ fy	 2 Y j there exists no y 2 Y such that y �Y y	g:

Axiom 1 and Lemma 1.2 can be reformulated for the set of nondominated
vectors as follows.

Axiom 1 (the exclusion axiom of dominated vectors) If the relationship y0 �Y y00

holds for a certain pair of vectors y0; y00 2 Y , then y00 62 CðYÞ.
Lemma 1.2 (in terms of vectors) For any set of selectable vectors CðYÞ satisfying
Axiom 1, we have the inclusion

CðYÞ � Ndom Y :

1.4 Edgeworth-Pareto Principle

1.4.1 Pareto Axiom

The DM’s interest in obtaining the maximum possible values for all components of
the vector criterion f can be expressed using the Pareto axiom.

Pareto axiom (in terms of alternatives). For all pairs of alternatives x0; x00 2 X
satisfying the inequality f ðx0Þ � f ðx00Þ, we have the relationship x0 �X x00.

Recall that f ðx0Þ � f ðx00Þ means the component-wise inequalities fiðx0Þ= fiðx00Þ
for all i ¼ 1; 2; . . .; m, and also f ðx0Þ 6¼ f ðx00Þ.

1.4.2 Pareto Set and Pareto Principle

If the inequality f ðx0Þ � f ðx00Þ holds for a certain pair of feasible vectors, then by the
Pareto axiom the first alternative is preferable to the second one, i.e., x0 �X x00.
According to Axiom 1, the second alternative would be chosen under no
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circumstances, and it can be eliminated from subsequent analysis in the
decision-making process. The elimination of all such alternatives yields the Pareto
set.

The set of Pareto optimal alternatives (domain of compromise) Pf ðXÞ is defined
by

Pf ðXÞ ¼ fx	 2 Xj there exists no x 2 X such that f ðxÞ� f ðx	Þg:

Similarly, the set of Pareto optimal vectors PðYÞ is defined by

PðYÞ ¼ f ðPf ðXÞÞ ¼ fy	 2 Y j there exists no y 2 Y such that y� y	g;

where Y (as before) denotes the set of feasible vectors, i.e., Y ¼ f ðXÞ.
Edgeworth-Pareto principle Under the exclusion axiom and the Pareto axiom,
for any set of selectable alternatives CðXÞ we have the inclusion

CðXÞ � Pf ðXÞ: ð1:3Þ

□ Assume the opposite, i.e., for the alternative x 2 CðXÞ we have x 62 Pf ðXÞ.
Then, by the definition of the Pareto optimal alternative, there exists x0 2 X such
that f ðx0Þ � f ðxÞ. According to the Pareto axiom, this directly implies x0 �X x, and
the exclusion axiom applied to this relationship yields x 62 CðXÞ, which contradicts
the initial assumption x 2 CðXÞ. ■

Inclusion (1.3) states the Edgeworth-Pareto principle (the Pareto principle),
namely, if the DM demonstrates rather “reasonable” behavior (i.e., obeying the
exclusion axiom and the Pareto axiom), then the alternatives chosen by the DM
must be Pareto optimal. Moreover, any Pareto optimal alternative may be
chosen under certain circumstances.

This principle elucidates the special, extremely important role of the Pareto set in
multicriteria decision-making. In particular, inclusion (1.3) indicates that the set of
selectable alternatives C(X) is the result of Pareto set reduction. Consequently, there
are no selectable alternatives beyond the Pareto set; hence, search for the “best”
alternatives can be immediately restricted to the limits of the Pareto set. This fact
leads to the Pareto set reduction problem, i.e., the problem to find the selectable
alternatives within the Pareto set.

Note that the Edgeworth-Pareto principle holds for a very wide class of multi-
criteria choice problems satisfying the two axioms above. For instance, it does not
require the transitivity of the preference relation, which is a common property in
many research works on decision theory.

1.4.3 Minimality of Exclusion Axiom and Pareto Axiom

An attempt to omit at least one of these two axioms can make the Edgeworth-Pareto
principle invalid. As shown by the examples below, the exclusion axiom and the
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Pareto axiom form the minimal collection of requirements guaranteeing the force of
this principle.

Example 1.1 Consider Y ¼ fy1; y2g, where y1 ¼ ða; aÞ, y2 ¼ ðb; aÞ, a[ b, and
y2 �Y y1. Let CðYÞ ¼ fy2g. The exclusion axiom holds and PðYÞ ¼ fy1g. But the
Edgeworth-Pareto principle CðYÞ � PðYÞ fails, since the Pareto axiom takes no
place.

Example 1.2 Consider Y ¼ fy1; y2g, where y1 ¼ ða; aÞ, y2 ¼ ðb; aÞ, a[ b, and
y1 �Y y2. Here PðYÞ ¼ fy1g. Let CðYÞ ¼ fy2g. The Pareto axiom holds, but the
inclusion CðYÞ � PðYÞ fails due to the violation of the exclusion axiom.

Most investigators do not prove inclusion (1.3). As a matter of fact, they believe
that this inclusion is the axiom to-be-accepted. Such an approach involves not two
but only one axiom. However, this “axiom” (in the form of the Edgeworth-Pareto
principle) is not an axiom in the common sense, i.e., “an intuitively clear assertion
taken on faith.” It appears too “complicated.” At the same time, the exclusion axiom
and the Pareto axiom formulated in terms of the pairs of alternatives and vectors are
substantially simpler for comprehension for everybody (including the DM). Hence,
it is easier to test them in practice.

Moreover, the involvement of the two axioms (instead of one) seems useful in
the following case. Some choice procedures proceed from the assumption (their
authors believe in) that it is not necessary to choose from the Pareto set. In this
context, the final choice of an alternative that is not Pareto optimal would surely
violate one of them (the exclusion axiom or the Pareto axiom) or even both. The
described circumstance must be taken into account by those who make the choice
beyond the Pareto set.

1.5 Axioms of Transitivity and Compatibility

1.5.1 Transitivity Axiom

Consider situation where one alternative is preferable to another and the latter is in
turn preferable to a third alternative. In such circumstances, a sensible individual
comparing the first and third alternatives surely chooses the former. This situation
resembles the congruence of numbers using the strict inequality relation. For
instance, if 5[ 3 and 3[ 1, we surely have 5[ 1. In terms of feasible alternatives,
this property can be reformulated as follows: for any triplet x0; x00; x 000 of feasible
alternatives, the relationships x0 �X x00 and x00 �X x 000 surely imply the relationship
x0 �X x 000. With regard to binary relations, this means that the preference relation
adopted in the multicriteria choice problems must obey transitivity.

As emphasized earlier, we suppose that the preference relation is asymmetrical.
According to the above considerations, introduce the condition (requirement)
applied to the binary preference relations studied in this book: the preference
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relation �X guiding the DM’s choice is asymmetrical and transitive. Note that an
irreflexive and transitive relation is asymmetrical; and so, asymmetry can be
replaced with the weaker requirements of transitivity and irreflexivity.

Recall that the preference relations �X and �Y are interconnected: the rela-
tionship x �X x0 holds for feasible alternatives if and only if the relationship
f ðxÞ �Y f ðx0Þ holds for the corresponding vectors.

Next, we slightly “extend” the DM’s hypothetical capabilities to compare vec-
tors with each other. That is, assume that the DM can in principle compare any two
vectors of the criterion space, not just the elements of the set Y.

And so, in the sequel we accept the following assumption formulated in terms of
vectors from the criterion space.

Axiom 2 (transitivity of preference relation)3 The relation �Y (ergo, the relation
�X) is transitive. In addition, there exists the extension � of the relation �Y to the
whole criterion space Rm that is also transitive.

By this axiom, any two vectors y0; y00 2 Rm satisfy one and only one of the
following relationships:

• y0 � y00;
• y00 � y0;
• neither y0 � y00, nor y00 � y0 take place.

And the preference relation � on the set of feasible vectors Y coincides with the
relation �Y (in this case, the relation �Y is the reduction of � to the set Y).

It is necessary to emphasize that there may exist a whole set of the extensions
mentioned in Axiom 2, not just a unique one. As follows from a thorough study, the
results obtained in the book are invariant to the choice of such extensions.

1.5.2 Compatibility Axiom

The multicriteria choice problem statement employs the vector criterion
f ¼ ðf1; f2; . . .; fmÞ. As a rule, each component fi of the vector criterion characterizes
a definite goal of the DM, and the drive for this goal is often expressed in mathe-
matical terms by maximization (or minimization) of the function fi on the set X.

Note that several problems involve criteria that are not maximized or minimized.
For instance, sometimes it is required to average the criterion in a certain sense or
“keep” its value within definite limits, etc. In such situations, a more flexible
approach is to replace the criteria fi with the so-called “partial” preference relations
�i (see [11–12] for details). However, as established in [12], in many
applications-relevant cases (i.e., under certain “reasonable” requirements to �i and

3Note, that for the Edgeworth-Pareto principle to be true (see Theorem 1.1), in this axiom we may
consider the extension � not on the whole space Rm but merely on the Cartesian product
Y1 � Y2 � . . .� Ym, where Yi is the smallest interval including fiðxÞ; i ¼ 1; 2; . . .; m.
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X) there exists a utility function ui yielding an adequate description for this “in-
dividual” preference relation. In other words, for all x0; x00 2 X we have the
equivalence x0 �i x00 , uiðx0Þ[ uiðx00Þ. These results show that many problems
without criteria maximization (or minimization) in the original statement are, at
least theoretically, reducible to such extremum problems.4

Obviously, in the multicriteria choice problem, the preference relation together
with the optimality criteria expresses the interests of the same DM. Hence, they
must match each other, be interconnected. The time is right to discuss this
interconnection.

We say that criterion fi is compatible with the preference relation � if for any
two vectors y0; y00 2 Rm such that

y0 ¼ ðy 01; . . .; y 0i�1; y
0
i; y

0
iþ 1; . . .; y

0
mÞ; y00

¼ ðy 01; . . .; y 0i�1; y
00
i ; y

0
iþ 1; . . .; y

0
mÞ; y 0i [ y 00i ;

the relationship y0 � y00 holds.
Conceptually, the compatibility of this criterion with the preference relation

means that the DM is interested in the largest possible values of this criterion, other
things being equal.

Let us express the interconnection between the preference relation of this DM
and the optimality criteria in the form of the following requirement.

Axiom 3 (criteria compatibility with preference relation) Each of the criteria
f1; f2; . . .; fm is compatible with the preference relation �.

The Pareto axiom clearly implies the compatibility axiom, but the converse fails.
If Axiom 3 is supplemented by the transitivity axiom, then the Pareto axiom can be
guaranteed, as illustrated by the next result.

Lemma 1.3 Axioms 2 and 3 imply the Pareto axiom. □ Let the inequality
f ðx0Þ � f ðx00Þ hold for two arbitrary feasible alternatives x0; x00 2 X. Without loss of
generality, assume that the strict inequality fkðx0Þ[ fkðx00Þ take place for all indexes
k ¼ 1; . . .; l and some l 2 f1; 2; . . .; mg. For all subsequent indexes k, k[ l (if
any, i.e., under the condition l\m), we believe that the corresponding equalities are
satisfied.

By the compatibility of the first l criteria and the strict inequalities above, write

ðf1ðx0Þ; f2ðx0Þ; . . .; flðx0Þ; . . .; fmðx0ÞÞ � ðf1ðx00Þ; f2ðx0Þ; . . .; flðx0Þ; . . .; fmðx0ÞÞ;
ðf1ðx00Þ; f2ðx0Þ; . . .; flðx0Þ; . . .; fmðx0ÞÞ � ðf1ðx00Þ; f2ðx00Þ; f3ðx0Þ; . . .; flðx0Þ; . . .; fmðx0ÞÞ;
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .::

ðf1ðx00Þ; f2ðx00Þ; . . .; fl�1ðx00Þ; flðx0Þ; . . .; fmðx0ÞÞ � ðf1ðx00Þ; f2ðx00Þ; . . .; flðx00Þ; flþ 1ðx0Þ; . . .; fmðx0ÞÞ:

Hence, due to the transitivity of the preference relation �,

4We remark that further exposition of this chapter can be generalized to the case of “individual”
preference relations.
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ðf1ðx0Þ; f2ðx0Þ; . . .; flðx0Þ. . .; fmðx0ÞÞ � ðf1ðx00Þ; f2ðx00Þ. . .; flðx00Þ; flþ 1ðx0Þ. . .; fmðx0ÞÞ:
ð1:4Þ

According to the earlier assumption, fkðx0Þ ¼ fkðx00Þ, k ¼ lþ 1; . . .; m. Therefore,
relationship (1.4) yields

f ðx0Þ ¼ ðf1ðx0Þ; f2ðx0Þ; . . .; flðx0Þ; . . .; fmðx0ÞÞ
� ðf1ðx00Þ; f2ðx00Þ; . . .; flðx00Þ; . . .; fmðx00ÞÞ ¼ f ðx00Þ;

and, by the definition of the relation �, we arrive at the desired relationship
x0 �X x00. ■

As established before, the acceptance of the exclusion axiom and the Pareto
axiom guarantees the Edgeworth-Pareto principle. Based on the last lemma, it is
possible to formulate a modification of this principle with three axioms instead of
two. Taking into account that the image of a subset represents a subset of the image
of the original set, we have the following result.

Theorem 1.1 (the Edgeworth-Pareto principle) Within the conditions of Axioms 1–
3, inclusions (1.3) and

CðYÞ � PðYÞ

hold for any sets of selectable alternatives CðXÞ and selectable vectors CðYÞ,
respectively.

Here is another fruitful result.

Lemma 1.4 Under Axioms 2 and 3, the set of nondominated alternatives NdomX
satisfies the inclusion

NdomX � Pf ðXÞ: ð1:5Þ

□ On the contrary, let the relationship x 62 Pf ðXÞ be true for some nondominated
element x 2 NdomX. Then, by the definition of the set of Pareto optimal alter-
natives, there exists an alternative x0 2 X such that f ðx0Þ � f ðxÞ. By virtue of Lemma
1.3 and the premises of the current lemma, the Pareto axiom holds. Therefore, the
resulting inequality implies the relationship x0 �X x, which is inconsistent with the
initial hypothesis x 2 NdomX. ■

The subsets of the set of feasible alternatives (see above) under Axioms 1–3 are
interconnected in the form of inclusions

CðXÞ � NdomX � Pf ðXÞ � X: ð1:6Þ

The widest set in relationship (1.6) is the set of feasible alternatives, whereas the
narrowest one is the set of selectable alternatives. Figure 1.1 illustrates this inter-
connection graphically.
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In terms of vectors, inclusions (1.6) acquire the form

CðYÞ � Ndom Y � PðYÞ � Y : ð1:7Þ

1.6 Finding of Pareto Set

1.6.1 Sets of Pareto Optimal Alternatives and Vectors

The equality PðYÞ ¼ f ðPf ðXÞÞ relates the sets of Pareto optimal alternatives and
Pareto optimal vectors. Using this equality, one can find the set of Pareto optimal
vectors based for a known set of Pareto optimal alternatives. The converse state-
ment is true in some sense, too. In particular, given the set of Pareto optimal vectors
PðYÞ, a possible approach is to design the corresponding set of Pareto optimal
alternatives by the formula Pf ðXÞ ¼ f�1ðPðYÞÞ, where the right-hand side repre-
sents the preimage of the set PðYÞ. Therefore, ideologically these two sets com-
pletely define each other, although an attempt to construct one of them from the
other may encounter certain computational difficulties (in the first place, it applies to
the Pareto optimal alternatives design).

Note that, in contrast to the arbitrary nature of the elements of the set Pf ðXÞ, the
elements of the Pareto set PðYÞ represent standard mathematical objects, viz.
numerical vectors of dimension coinciding with the number of criteria m. And so,
the set of Pareto optimal vectors seems more convenient for further consideration.

1.6.2 Calculation of Pareto Set

As is well-known, generally the Pareto set has a rather complex structure, often
causing insurmountable difficulties in the course of its design and calculation.

Ndom X X(X) )(XPf

Fig. 1.1 Nested sets
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In many applications, the set of feasible vectors Y (and the set of feasible
alternatives X) contains a finite number of elements. In this case, the Pareto set PðYÞ
can be constructed via the pairwise comparison of the elements belonging to the set
Y in terms of the relation � , with the subsequent elimination of all dominated ones.
This procedure yields

The Pareto set PðYÞ composed of at least one element.
□ Let us verify the last statement. Really, if each element of the set Y is

dominated by a certain element from Y1 � Y in terms of the relation � , then
by-turn each element of Y1 must be dominated by a certain element from Y2 � Y1.
And so on. This line of reasoning can be continued without any restrictions, and
hence there exists an infinite sequence of elements fykg1k¼1 � Y where a next
element dominates the previous one. Due to the finite character of the set Y, this
sequence includes identical elements. For instance, assume that y1 ¼ yk for some k.
The equality k ¼ 1 is ruled out by the asymmetry of the Pareto relation � . The
equality k ¼ 2 is impossible, as the second vector dominates the first (they do not
coincide). If k[ 2, then the transitivity of the Pareto relation gives the inequality
yk � y1, which is inconsistent with the original equality y1 ¼ yk . ■

As a matter of fact, we have established the following result.

Theorem 1.2 In the case of a nonempty finite set of feasible vectors Y (in par-
ticular, if the set of feasible alternatives X is finite), there exists at least one Pareto
optimal alternative and, accordingly, at least one Pareto optimal vector, i.e.,
Pf ðXÞ 6¼ £; PðYÞ 6¼ £.

Now, illustrate the Pareto set design procedure for the problem with four criteria.

Example 1.3 Let m ¼ 4 and Y ¼ fy1; y2; . . .; y5g. The feasible vectors are com-
bined in the rows of Table 1.1.

First, to find the set of Pareto optimal vectors, let Y1 ¼ Y and compare the first
vector with the others. Obviously, all pairs

y1; y2; y1; y3; y1; y4; y1; y5

appear incomparable in terms of the relation � . Therefore, memorize the vector y1

as a Pareto optimal one and then eliminate it from the set Y1.

Table 1.1 The feasible
vectors

y1 4 0 3 2

y2 5 0 2 2

y3 2 1 1 3

y4 5 0 1 2

y5 3 1 2 3

1.6 Finding of Pareto Set 19



The resulting set is Y2 ¼ fy2; y3; y4; y5g. At step 2, compare the vector y2 with
the other elements of the set Y2. The pair y2; y3 is incomparable in terms of the
relation � . Since y2 � y4, eliminate the vector y4 from the set Y2. The remaining
pair of vectors y2; y5 is incomparable in terms of the relation � . As the vector y2

turns out nondominated, memorize it as a Pareto optimal one and then eliminate
from the set Y2.

The resulting set is Y3 ¼ fy3; y5g. Since y5 � y3, eliminate the vector y3 to obtain
only the vector y5, which is also Pareto optimal.

The procedure has yielded the following set of Pareto optimal vectors:
PðYÞ ¼ fy1; y2; y5g.

1.6.3 Design Algorithm for Pareto Set

The design algorithm for the Pareto set can be rewritten in a better form for further
programming. Consider the set of feasible vectors

Y ¼ fy1; y2; . . .; yNg

composed of N elements.
Design algorithm for Pareto set PðYÞ includes seven steps as follows.

Step 1 Let, i ¼ 1; j ¼ 2, PðYÞ ¼ Y forming the so-called current set of Pareto
optimal vectors. At the beginning of the algorithm, this set coincides
with the set Y , yielding the desired set of Pareto optimal vectors at the
end. The algorithm is organized so that the desired set of Pareto optimal
vectors comes out of Y through the sequential elimination of the surely
nonoptimal vectors.

Step 2 Verify the inequality yi � y j. If true, proceed to Step 3; otherwise, move
to Step 5.

Step 3 Eliminate the vector y j from the current Pareto set PðYÞ, as it is not
Pareto optimal. Next, proceed to Step 4.

Step 4 Verify the inequality j\N. If true, let j ¼ jþ 1 and get back to Step 2;
otherwise, move to Step 7.

Step 5 Verify the inequality y j � yi. If true, proceed to Step 6; otherwise, get
back to Step 4.

Step 6 Eliminate the vector yi from the current Pareto set PðYÞ and proceed to
Step 7.

Step 7 Verify the inequality i\N � 1. If true, let sequentially i ¼ iþ 1 and
j ¼ iþ 1. Then get back to Step 2. Otherwise (i.e., if i = N � 1), finish
the computations. The set of Pareto optimal vectors is completely
constructed.

20 1 Edgeworth-Pareto Principle



1.6.4 Geometry of 2D Pareto Set

Consider the elementary case with two criteria, m ¼ 2. Here the set Y represents a
certain ensemble of points on plane.

All points y satisfying the inequality y � y	 form the angle with the vertex y	

and the arms parallel to the coordinate axes. But the point y	 does not belong to this
angle, as y 6¼ y	 (see Fig. 1.2).

Consider an example where the set of feasible points Y is a closed bounded
domain (see Fig. 1.3).

To construct the set of Pareto optimal points PðYÞ, take advantage of a geo-
metrical observation adopted from Fig. 1.2. By the definition of the Pareto optimal
vector y	, there exist no points y such that y� y	. Geometrically, all these points y
form the angle with the vertex y	. Hence, the point y	 2 Y is Pareto optimal if and
only if the corresponding angle with the vertex y	 and the arms parallel to the

1y

*y

2y

y

Fig. 1.2 Set of points y such that y� y	

A

CB

1y

2y

Y

D

Fig. 1.3 Set Y
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coordinate axes contains no points from the set Y . This means that the inner points
of the set Y cannot be Pareto optimal. Among the boundary points of the set Y , the
candidates for the Pareto optimal points are the ones located in the “northeastern”
part (see the curve ABCD). Next, the boundary in the “dip” (the arc BC) does not
belong to the Pareto set. And finally, among the segments of the northeastern
boundary that are parallel to the coordinate axes, only the extreme point may be
Pareto optimal; it is point D on the segment CD. As a result, we have obtained the
following set of Pareto optimal points: the arch AB (except point B) and separate
point D.

This geometrical approach to Pareto set design fails in the case of three or more
criteria. Nevertheless, the modern computer-aided visualization methods [24]
describe graphically the sets of feasible vectors and Pareto optimal vectors under
relatively small m.
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Chapter 2
Pareto Set Reduction Based
on Elementary Information Quantum

The current chapter lays the foundation for the original axiomatic approach. First,
we introduce the last (fourth) axiom on the invariance of preference relation. It is
established that, within the accepted axiomatics, the DM’s preference relation
represents a cone relation with an acute convex cone. This feature allows employing
the rich arsenal of convex analysis methods.

Next, we give the definition of an elementary information quantum about the
unknown preference relation of the DM. The central result of the chapter is
Theorem 2.5 that shows how the Pareto set can be reduced using an elementary
information quantum.

In addition, different types of scales are discussed and the applicability of
Theorem 2.5 to the multicriteria choice problems with criteria measured in arbitrary
quantitative scales is justified.

2.1 Invariance Requirement for Preference Relation

2.1.1 Relations Invariant with Respect to Linear Positive
Transformation

Recall the definition of an invariant relation given in Sect. 1.2. A binary relation <
defined on space Rm is called invariant with respect to a linear positive transfor-
mation if, for arbitrary vectors y0; y00 2 Rm, any vector c 2 Rm and each positive
number a, the relationship y0 <y00 implies the relationship ðay0 þ cÞ<ðay00 þ cÞ.

The inequality relations [ ; = ; � defined on space Rm are the elementary
examples of invariant binary relations. Obviously, a lexicographical relation (see
Sect. 1.2) also belongs to the class of invariant binary relations.

In many application-oriented multicriteria choice problems, the preference
relation � can be considered invariant with respect to a linear positive
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transformation. Accordingly, let us supplement Axioms 1–3 by another one
required for the development of a constructive mathematical theory.

Axiom 4 (preference relation invariance). The preference relation � is invariant
with respect to a linear positive transformation.

The invariance attributes of the relation � are the properties of additivity and
homogeneity. In other words, for any pair of vectors y0; y00 2 Rm such that y0 � y00,
the relationships ðy0 þ cÞ � ðy00 þ cÞ and ay0 � ay00 hold for any vector c 2 Rm and
any positive number a, respectively.

Lemma 2.1 Owing to the transitivity and invariance of the preference relation �,
the relationships y � y0 and z � z0 can be added termwise, i.e.,

y � y0; z � z0 ) yþ z � y0 þ z0:
▢ Add the vector z to both sides of the relationship y � y0. Using the additive

property of the relation �, we obtain yþ z � y0 þ z. The relationship z � z0 simi-
larly implies zþ y0 � z0 þ y0. Now, taking advantage of the transitivity of the
relation �, the relationships yþ z � y0 þ z and zþ y0 � z0 þ y0, we establish the
desired result yþ z � y0 þ z0. ■

2.1.2 Cone Relations

For further exposition, an important example of invariant binary relations is the
class of cone relations. However, prior to the definition of a cone relation, we have
to introduce some auxiliary notions of convex analysis.

A set A; A � Rm, is called convex if, together with any pair of points, it also
contains the segment connecting them. In other words, a subset A of space Rm is
convex if, for all pairs of points y0; y00 2 A and any number k 2 ½0; 1�, we have the
relationship k y0 þ ð1� kÞy00 2 A. A set K;K � Rm, is called a cone if the inclusion
a � y 2 K holds for each point y 2 K and any positive number a. A cone that is
convex is called a convex cone. In other words, a convex set is a convex cone if,
together with each point, it also contains the whole ray coming from the origin
(generally, except the origin) to the given point. The origin (the vertex of a cone)
may belong to this cone or not. As easily verified, the sum of any two (and more)
elements of a convex cone belongs to this cone. A cone K is called acute if there
exists no nonzero vector y 2 K satisfying �y 2 K. A cone that is not acute contains
at least one line passing through the origin (together with the origin or without it).

The set L of all solutions (vectors x 2 Rm) of a homogeneous linear inequality
hc; xi ¼ c1x1 þ c2x2 þ . . .þ cmxm = 0, where c is a fixed nonzero vector from space
Rm, represents some convex cone (known as the closed half-space).
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▢
Really, from hc; xi= 0 it follows that ahc; xi ¼ hc; axi= 0 for any positive factor

a. Hence, L is a cone. Make sure that this is a convex cone. To this end, take two
arbitrary points x0 and x00 of the cone L. They satisfy the inequalities hc; x0i= 0 and
hc; x00i= 0. Multiply the first inequality by an arbitrary number k 2 ½0; 1� and the
second one by (1� k). The termwise addition of the resulting inequalities yields
khc; x0i þ ð1� kÞhc; x00i ¼ hc; kx0 þ ð1� kÞx00i= 0, which establishes the convexity
of the cone L. ■

Note that the closed half-space is not an acute cone: together with the nonzero
vector �x satisfying the equality hc;�xi ¼ 0, it also contains the vector ��x, since
multiplication by −1 does not violate the equality.

If a single linear homogeneous inequality is replaced by a finite system of such,
then we get the system of linear homogeneous inequalities. This system also has a
convex cone as the solutions set representing the intersection of a finite number of
closed half-spaces (the so-called polyhedral cone). In the general case, this cone is
not acute.

Consider a given collection of vectors a1; a2; . . .; ap 2 Rm. It is easy to verify that
the aggregate of all nonnegative linear combinations of these vectors (i.e., all
vectors of the form k1a1 þ k2a2 þ . . .þ kpap with nonnegative coefficients
k1; k2; . . .; kp) forms some convex finitely generated cone K in space Rm. In this
case, we say that the collection of vectors a1; a2; . . .; ap generates the convex cone
K and write K ¼ conefa1; a2; . . .; apg. The vertex belongs to this cone. According
to duality theory in convex analysis (see [57], [62]), any finitely generated cone can
be represented as the intersection of a finite number of closed half-spaces, i.e., being
a polyhedral cone.

The vectors of a convex cone that are not representable as the linear combination
of two other vectors of this cone with positive coefficients are called the edges or
generators of the cone. As is well-known [57], any acute polyhedral cone not
coinciding with the origin is generated by its edges.

If an acute polyhedral cone is the solution set for some system of linear
homogeneous inequalities then the edges of this cone form a fundamental system of
solutions. And arbitrary solution for this system of linear homogeneous inequalities
can be represented as a linear combination of the fundamental system with non-
negative coefficients. The fundamental system of solutions can be in principle
obtained by exhaustion: just consider all possible subsystems of a definite number
of the linear equations resulting from the original system of linear inequalities
where inequality signs are replaced by equality ones.

The nonnegative orthant Rm
þ of space Rm, i.e.

Rm
þ ¼ fy 2 Rmj y� 0mg;

is a convex acute cone (without the vertex) generated by the unit vectors of this
space. In the two-dimensional case (m ¼ 2), this orthant has the form of the right
angle coinciding with the first quarter (see Fig. 2.1). It is generated by the unit
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vectors e1 ¼ ð1; 0Þ and e2 ¼ ð0; 1Þ, being the intersection of the right and upper
closed half-planes (except the origin).

Other examples of acute plane cones, K1 and K2, can be observed in Fig. 2.2.
The upper half-plane represents a closed half-space, i.e., a convex cone that is

not acute. The convex sets and cones are considered in more detail in [57, 62].

Definition 2.1 A binary relation < defined on space Rm, i.e.< � Rm � Rm, is called
a cone relation if there exists a cone K; K � Rm, such that for any vectors y0 ; y00 2
Rm we have the equivalence

y0<y00 , y0 � y00 2 K:

Often the right-hand side of the equivalence relationship is written in the form
y0 2 y00 þK (see Fig. 2.3).

The inequality relations [ and � considered on space Rm represent some cone
relations with the cones Rm

[ ¼ fy 2 Rmjy[ 0mg and Rm
þ , respectively.

It appears that any binary relation satisfying Axioms 2 and 4 is a cone relation.
This follows from the result below.

0
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2y

2
+R

Fig. 2.1 The nonnegative orthant R2
þ
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Fig. 2.2 Acute cones K1 and K2:
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Lemma 2.2 Any binary relation < defined on space Rm that has irreflexivity,
transitivity and invariance with respect to a linear positive transformation is a cone
relation with an acute convex cone not containing the origin. Conversely, each
cone relation with the described cone represents a relation defined on Rm that has
irreflexivity, transitivity and invariance with respect to a linear positive
transformation.

▢ Let < be a binary relation defined on Rm that has irreflexivity, transitivity and
invariance with respect to a linear positive transformation. Prove that < represents a
cone relation. To this end, introduce the set

K ¼ fy 2 Rmj y< 0mg:

Owing to the homogeneity of the relation <, the set K is a cone. Moreover, for
an arbitrary pair of vectors y0; y00 2 Rm, by additivity we have

y0 <y00 , ðy0 � y00Þ<0m , ðy0 � y00Þ 2 K:

Therefore, the relation < is actually a cone relation with the cone K. Now, it is
necessary to verify that the cone K is convex, acute and does not contain the origin.

If 0m 2 K, then 0m < 0m holds by the definition of the cone K. But this is
inconsistent with the irreflexivity of the relation <. Hence, the cone K does not
contain the origin.

To argue the convexity of the cone K, let us choose two arbitrary vectors
y0; y00 2 K and a number a 2 ð0; 1Þ(note that the values a ¼ 1 and a ¼ 0 can be
omitted from further verification). Owing to the homogeneity of the relation <, the
relationships y0 < 0m and y00 < 0m imply a y0 < 0m and ð1� aÞy00 < 0m, respectively.
By additivity, the first relationship yields ða y0 þ ð1� aÞy00Þ<ð1� aÞy00. Now, based
on the transitivity of <, the second and the last relationships give
ða y0 þ ð1� aÞy00Þ < 0m, or ða y0 þ ð1� aÞy00Þ 2 K, which establishes the convexity
of the cone K.
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K
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Ky +′′Fig. 2.3 Cone K and its

translation y00 þK
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To prove that the cone K is acute, conjecture the opposite. Let there exists a
nonzero vector y 2 K satisfying the relationship �y 2 K. For this vector, we have
y< 0m and �y< 0m. Hence, ðy� yÞ < ð�yÞ < 0m by the additive property of <.
Owing to the latter’s transitivity, this leads to the relationship 0m < 0m contradicting
the irreflexivity of the relation <.

Now, prove the converse statement. Let < be an arbitrary cone relation with an
acute convex cone K not containing the origin.

Verify that this relation is irreflexive, transitive and invariant with respect to a
linear positive transformation. First, this relation is actually irreflexive (otherwise,
the cone K would contain the origin). Second, we verify its transitivity. To this end,
select an arbitrary triplet of vectors y0; y00; y000 2 Rm satisfying the relationships
y0 < y00 and y00 < y000. The last two relationships can be rewritten in the form y0 � y00 2
K and y00 � y000 2 K, whence it follows that there are two definite elements of the
cone K. Since the sum of any two elements of a convex cone belongs to this cone,
the last relationships yield y0 � y000 2 K or, equivalently, y0 < y000. This result testifies
to the transitive property of the relation <.

And finally, the invariance of the relation < follows from the relationships

y0<y00 , y0 � y00 2 K , ðy0 þ cÞ � ðy00 þ cÞ 2 K , ðy0 þ cÞ<ðy00 þ cÞ;

y0<y00 , y0 � y00 2 K , aðy0 � y00Þ 2 K , ay0 � ay00 2 K , ay0<ay00;

which hold for all vectors c 2 Rm and any positive number a. ■

Theorem 2.1 Any binary relation � satisfying Axioms 2, 3 and 4 is a cone
relation with an acute convex cone containing the nonnegative orthant Rm

þ except
the origin. Conversely, each cone relation with the described cone satisfies Axioms
2, 3 and 4.

▢ The binary relation � satisfying Axioms 2–4 is irreflexive, transitive and
invariant with respect to a linear positive transformation.

Necessity. Based on Lemma 2.2, it remains to show that the cone K of the binary
relation � includes the nonnegative orthant. By Lemma 1.3 from Sect. 1, the Pareto
axiom (in terms of vectors) holds, i.e.,

y0 � y00 ) y0 � y00:

Rewrite this axiom as the implication

y0 � y00 2 Rm
þ ) y0 � y00 2 K:

The difference y0 � y00 can be any vector of the nonnegative orthant Rm
þ , and so

the above implication means the inclusion Rm
þ � K.
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Sufficiency. If a cone relation is generated by an acute convex cone (without the
origin), then by Lemma 2.2 the corresponding cone relation is irreflexive, transitive
and invariant with respect to a linear positive transformation (Axioms 2 and 4 are
satisfied). On the other hand, this cone contains the nonnegative orthant Rm

þ , and
therefore the corresponding cone relation also satisfies the Pareto axiom. Obviously,
the Pareto axiom implies Axiom 3, and the cone relation under consideration
satisfies Axioms 2–4. ■

According to Theorem 2.1, the binary relations satisfying Axioms 2–4 (which
are assumed true in the sequel) admit a simple geometrical interpretation. Namely,
they represent cone relations with acute convex cones except the origin, and also
these cones include the nonnegative orthant Rm

þ .
Theorem 2.1 makes it possible to involve convex analysis results for Pareto set

reduction.

2.2 Definition of Elementary Information Quantum

2.2.1 Original Multicriteria Choice Problem

The subsequent analysis is dedicated to the multicriteria choice problem that
includes

• the set of feasible alternatives X,
• the vector criterion f ¼ ðf1; f2; . . .; fmÞ,
• the preference relation �X .

Note that many aspects of this problem become simpler if stated and solved in
terms of vectors. As mentioned in previous chapter, all results obtained in terms of
alternatives can be easily reformulated in terms of vectors and vice versa.
Therefore, further exposition will repeatedly address the multicriteria choice
problem in terms of vectors that includes

• the set of feasible vectors Y ; Y � Rm,
• the preference relation � defined on space Rm.

Recall that the set of feasible vectors is defined by the equality

Y ¼ f ðXÞ ¼ fy 2 Rmjy ¼ f ðxÞfor some x 2 Xg;

while the preference relation � represents the extension to the whole space Rm of
the preference relation �Y naturally connected to the preference relation �X defined
on the set of feasible alternatives X.

Throughout the book below, we assume that Axioms 1–4 hold. Within these
conditions (see Lemma 1.3), the Pareto axiom is true, which states that (in terms of
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vectors) any pair of vectors y0,y00 2 Rm such that y0 � y001 satisfy the relationship
y0 � y00, i.e.,

y0 � y00 ) y0 � y00: ð2:1Þ

Under the above assumptions, the DM can compare any two vectors y0; y00 from
the criterion space Rm using the irreflexive and transitive relation �. And one and
only one of the following cases is realized then:

• y0 � y00, i.e., y0 is preferable to y00;
• y00 � y0, i.e., y00 is preferable to y0;
• neither the relationship y0 � y00 nor the relationship y00 � y0 holds.

2.2.2 Elementary Information Quantum: Motivation

Introduce the criteria index set

I ¼ f1; 2; . . .;mg;

and consider the simplest choice problem with two vectors y0; y00 2 Rm and the
minimum number of different components.

If the vectors y0 and y00 have only one different component, e.g., y0i 6¼ y00i and
y0s ¼ y00s for all s 2 Infig, then the relationship y0 � y00 or y00 � y0 holds. Hence, by
Axiom 3, we have y0 � y00 or y00 � y0, respectively. Therefore, in the elementary
case considered, the choice from the two vectors is determined by Axiom 3.

Now, suppose that the vectors y0 and y00 have two different components, i.e.,

y0i 6¼ y00i ; y
0
j 6¼ y00j ; y0s ¼ y00s for all s 2 Infi; jg;

and the equalities y0i ¼ y0j; y
00
i ¼ y00j do not hold simultaneously. Then one and only

one of the following four cases is realized:

ð1Þ y0i [ y00i ; y0j [ y00j ; ð2Þ y00i [ y0i; y00j [ y0j;

ð3Þ y0i [ y00i ; y00j [ y0j; ð4Þ y00i [ y0i; y0j [ y00j .

Assume that the DM chooses one of these two vectors, i.e., either the rela-
tionship y0 � y00 or the relationship y00 � y0 takes place. Without loss of generality
owing to clear symmetry, we believe that the first relationship y0 � y00 is true. And
the following question arises immediately. How can the DM’s choice be explained?

1Recall that the inequality y0 � y00 means y0 = y00 and y0 6¼ y00.
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If the first case from the four ones above is realized, the relationship y0 � y00

results from the Pareto axiom. The second case is impossible: otherwise, by the
Pareto axiom, we have the relationship y00 � y0 that is inconsistent with the rela-
tionship y0 � y00 due to the asymmetry of �.

Now, examine the last two cases. As they are symmetric, it suffices to consider
one of them, e.g., the third case. The inequality y0i [ y00i means that, in terms of
criterion i, the vector y0 is preferable to y00 for the DM. On the other hand, in terms
of criterion j, the vector y00 is preferable to the vector y0 since y00j [ y0j. In the final
analysis, we have two mutually contradicting conditions and the question is: why
does the DM choose the vector y0 between the vectors y0 and y00 under the existing
contradictions? What is the reason of such choice?

Apparently, the most rational explanation for this fact consists in the following.
In the contradictory case, the DM is willing to compromise, losing in terms of
criterion j for gaining in terms of more important criterion i.

2.2.3 Definition of Elementary Information Quantum

The above arguments applying to the simplest choice problem from an arbitrary
pair of vectors motivate the following definition.

Definition 2.2 Let i; j 2 I; i 6¼ j. We say that there is an elementary information
quantum about the DM’s preference relation with given positive parameters w	

i ;w
	
j

if, for all vectors y0; y00 2 Rm such that

y0i � y00i ¼ w	
i ; y

00
j � y0j ¼ w	

j ; y
0
s ¼ y00s for all s 2 Infi; jg; ð2:2Þ

the relationship y0 � y00 holds. Also in this case we say that criterion fi is more
important than criterion fj with parameters w	

i ;w
	
j .

Remark 2.1 This definition is invariant with respect to the multiplication of the
parameters by arbitrary positive number. More specifically, due to the homogeneity
of the relation �, the specification of an elementary information quantum with
parameters w	

i ;w
	
j actually generates a similar quantum with the parameters a �

w	
i ; a � w	

j for any positive a.
Given an elementary information quantum, the DM that chooses from a pair of

vectors (2.2) is willing to sacrifice the quantity w	
j in terms of criterion fj for gaining

the quantity w	
i in terms of criterion fi (the values of all other criteria are fixed).

And the correlation between the quantities w	
i and w	

j gives a quantitative esti-
mation for the degree of compromise. For instance, it is possible to consider the
ratio w	

j =w
	
i taking any positive values. However, a more convenient approach is to

operate a normalized value from 0 to 1. Apply the transformation y ¼ x=ð1þ xÞ to
this ratio, arriving at the following notion.
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Definition 2.3 Let i; j 2 I; i 6¼ j, and there is an elementary information quantum
with positive parameters w	

i and w	
j . In this case, the number

hij ¼
w	
j

w	
i þw	

j
¼ 1

w	
i =w

	
j þ 1

2 ð0; 1Þ

will be called the DM’s coefficient (or degree) of compromise for this pair of
criteria.

This coefficient shows the share of loss in terms of criterion j the DM accepts
against the sum of loss and gain in terms of criterion i. If the coefficient hij is close
to 1, then the DM incurs a sufficiently large loss in terms of criterion j for obtaining
a relatively small gain in terms of criterion i. In this situation, the criterion i has a
high importance relatively to the criterion j. Whenever this coefficient is close to 0,
the DM is willing to lose in terms of criterion j only for gaining much in terms of
the more important criterion. In other words, the degree of importance of criterion i
against criterion j is relatively small; and this state of things corresponds to the
small degree of compromise. If hij ¼ 1=2, then the DM agrees with a definite gain
in terms of a more importance criterion at the expense of loss in terms of a less
important criterion provided that the loss coincides with the gain.

In addition, take notice that the value of hij quantitatively depends on the type of
scale used for criteria measurement. For details, we refer to Sect. 2.4.

2.2.4 Properties of Elementary Information Quantum

Let us explore the properties of an elementary information quantum.

Theorem 2.2 If criterion fi is more important than criterion fj with given positive
parameters w	

i ;w
	
j then criterion fi is more important than criterion fj with any pair

of positive parameters w0
i;w

0
j satisfying the inequality ðw0

i;�w0
jÞ� ðw	

i ;�w	
j Þ. In

other words, if the DM’s degree of compromise is hij 2 ð0; 1Þ, then this DM
possesses any degree of compromise h0ij\hij.

▢ Choose arbitrarily two positive numbers w0
i;w

0
j,ðw0

i;�w0
jÞ� ðw	

i ;�w	
j Þ, and

two vectors y0; y00 2 Rm such that

y0i � y00i ¼ w0
i; y

00
j � y0j ¼ w0

j; y
0
s ¼ y00s for all s 2 Infi; jg:

Prove that y0 � y00.
Consider a vector z 2 Rm of the form

zi ¼ y00i þw	
i ¼ y0i � w0

i þw	
i ; zj ¼ y00j � w	

j ¼ y0j þw0
j � w	

j ; z
0
s ¼ y0s

for all s 2 Infi; jg:
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Since ðw0
i;�w0

jÞ� ðw	
i ;�w	

j Þ, we have y0 � z. Hence, by the Pareto axiom,
y0 � z.

Recall that criterion fi is more important than criterion fj with the parameters
w	
i ;w

	
j . Using this we get the relationship z � y00. Together with y0 � z, it leads to

the desired result y0 � y00 owing to the transitive property of the relation �.
Now, prove the second part of the theorem. Let h0ij\hij. By virtue of Remark

2.1, we may introduce the parameters

w0
i ¼ 1� h0ij;w

0
j ¼ h0ij; w	

i ¼ 1� hij;w
	
j ¼ hij:

Obviously, for these parameters we have

w0
j

w0
i þw0

j
¼ h0ij;

w	
j

w	
i þw	

j
¼ hij

and, in addition, ðw0
i;�w0

jÞ[ ðw	
i ;�w	

j Þ.
In this case, using the first part of the theorem (see above), we establish the

existence of an elementary information quantum with the parameters w0
i;w

0
j, ergo

with the degree of compromise h0ij. ■
The content of Theorem 2.2 well fits the intuitive idea of compromise. In par-

ticular, if the DM is willing to lose w	
j in terms of criterion fj for gaining w	

i in terms
of criterion fi, then the DM obviously agrees with a smaller loss w0

j ðw0
j\w	

j Þ as
well as with a greater gain w0

i ðw0
i [w	

i Þ.
Based on the definition of an elementary information quantum and Theorem 2.2,

let us analyze the possible cases for an arbitrary pair of different criteria fi; fj.
In fact, one and only one of the three cases are possible as follows:

1. At least one positive number from the interval ð0; 1Þ represents the degree of
compromise for criteria fi and fj, and at least one number does not;

2. None of the positive numbers from the interval ð0; 1Þ is the degree of com-
promise for criteria fi; fj. In this case, we shall say that criterion fi is not more
important than criterion fj;

3. Any positive number from the interval ð0; 1Þ is the degree of compromise for
criteria fi; fj. In this case, we shall say that criterion fi is incomparably more
important than criterion fj.

Let us investigate the first case. If at least one number hij 2 ð0; 1Þ is the degree
of compromise, then by Theorem 2.2 any smaller number within this interval is also
the degree of compromise for the pair of criteria under consideration. Construct two
disjoint sets A and B using the following procedure. Add on to the former set all
numbers from the interval ð0; 1Þ that are the degrees of compromise for this pair of
criteria; naturally, A 6¼ ;. The latter set B comprises all numbers from the interval
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that are not the degrees of compromise; by the data, B 6¼ ;. Clearly, the described
procedure yields A[B ¼ ð0; 1Þ, and the inequality a\b holds for all
a 2 A; b 2 B. This means that the sets A and B define a section of the interval
ð0; 1Þ. By the Dedekind principle, there exists a unique number �hij 2 ð0; 1Þ
implementing this section, further called the limit degree of compromise.

Note that the number �hij may be the degree of compromise or not. In other
words, either �hij 2 A or �hij 62 A holds.

2.2.5 Connection to Lexicographic Relation

The preference relation � satisfying Axioms 2–4 and the lexicographic2 relation
have a certain connection revealed by the next statement in terms of an ordered
collection of incomparably more important criteria.

Theorem 2.3 The irreflexive, transitive and invariant relation � defined on space
Rm is a lexicographic relation if and only if criterion f1 is incomparably more
important than criterion f2, criterion f2 is incomparably more important than cri-
terion f3,…, criterion fm�1 is incomparably more important than criterion fm.

▢ Necessity. Let the relation � be lexicographic. In this case, for arbitrary
vectors y0; y00 2 Rm, we have the logical propositions

ð1Þ y01 [ y001 ) y0 � y00;
ð2Þ y01 ¼ y001 ; y

0
2 [ y002 ) y0 � y00;

ð3Þ y01 ¼ y001 ; y
0
2 ¼ y002; y

0
3 [ y003 ) y0 � y00

:. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

mÞ y0i ¼ y00i ; i ¼ 1; 2; . . .;m� 1; y0m [ y00m ) y0 � y00:

The first proposition implies the relationship y0 � y00 for two arbitrary vectors
y0; y00 2 Rm satisfying y01 [ y001; y

0
2\y002; y

0
3 ¼ y003 ; . . .; y

0
m ¼ y00m. This means that cri-

terion f1 is incomparably more important than criterion f2.
Similarly, using the second proposition, we conclude that criterion f2 is

incomparably more important than criterion f3, and so on; in the final analysis, the
incomparably higher importance of criterion fm�1 against criterion fm follows from
the ðm� 1Þ-th proposition.

Sufficiency.3 For each i ¼ 1; 2; . . .;m� 1, let criterion fi be incomparably more
important than criterion fiþ 1. Prove that the relation � is lexicographic.

2The definition of a lexicographic relation can be found in Sect. 1.2.
3The proof is suggested by O.V. Baskov.
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Consider two arbitrary vectors y0; y00 2 Rm. If they coincide, then none of them is
lexicographically greater than the other, which agrees with the definition of a
lexicographic relation.

Let y0 6¼ y00. Denote by i the minimum index such that y0i 6¼ y00i . Without loss of
generality, assume that y01\y001. It is required to show that y00 � y0. The proof has the
form of an algorithm with the following steps.

Step 1. Compare the numbers y0m and y00m. If y
0
m ¼ y00m, proceed to Step 2 by

setting z1 ¼ y0. If y0m\y00m, introduce the vector
z1 ¼ ðy01; . . .; y0m�1; y

00
mÞ, which satisfies the relationship z1 � y0 due to

the compatibility axiom. Then pass to Step 2.
If y0m [ y00m, fix an arbitrary a[ y0m�1 and introduce the vector
z1 ¼ ðy01; . . .; y0m�2; a; y

00
mÞ. Since the criterion fm�1 is incomparably

more important than the criterion fm, we obtain z1 � y0. Next, move
to Step 2.

Step 2. By analogy, continue the comparison of z1m�1 and y00m�1. And so on.
Step k+1. At this step, we have zkj ¼ y00j ; j ¼ iþ 2; . . .;m. Compare zkiþ 1 and

y00iþ 1. If zkiþ 1 ¼ y00iþ 1, then the compatibility axiom dictates that
y00 � zk. In the case zkiþ 1\y00iþ 1, we get y

00 � zk . Owing to the Pareto
axiom, hence it appears that y00 � zk. If zkiþ 1 [ y00iþ 1, then y0i ¼
zki\y00i and the incomparably higher importance of the criterion fi
against the criterion fiþ 1 again give y00 � zk .

As a result, we arrive at the chain of relationships y00 � zk � . . .z1 � y0 where (at
some but not all positions) the preference symbol � can be replaced by the equality
sign. In combination with the transitivity of the preference relation, this leads to the
desired relationship y00 � y0. ■

2.3 Pareto Set Reduction Using Elementary Information
Quantum

2.3.1 Simplification of Basic Definition

Definition 2.2 reveals the whole essence of an elementary information quantum
about the DM’s preference relation. This definition involves two numerical
parameters used to measure the degree of compromise.

To verify that criterion fi is more important than criterion fj, by Definition 2.2 we
have to compare infinitely many pairs of vectors y0; y00 2 Rm such that

y0i � y00i ¼ w	
i [ 0; y00j � y0j ¼ w	

j [ 0; y0s ¼ y00s for all s 2 Infi; jg: ð2:3Þ
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And if for any pair above, the first vector y0 every time appears preferable to the
second one y00, then by Definition 2.2 there is a given elementary information
quantum with the corresponding parameters.

It is absolutely clear that such verification appears non-implementable in practice
due to infinitely many pairs of vectors for comparison. Actually, this verification is
not required, as the preference relation possesses invariance. The whole procedure
can be reduced to comparing merely a pair of vectors y0; y00 satisfying (2.3). The
following result gives the details.

Theorem 2.4 In Definition 2.2, the vectors y0; y00 can be assumed fixed.
Particularly,

y0i ¼ w	
i ; y

0
j ¼ �w	

j and y0s ¼ 0 for all s 2 Infi; jg; y00 ¼ 0m; ð2:4Þ

or

y0i ¼ 1� hij; y0j ¼ �hij and y0s ¼ 0 for all s 2 Infi; jg; y00 ¼ 0m; ð2:40Þ

where hij is the degree of compromise.
▢ Consider two arbitrary vectors y0 and y00 satisfying (2.3). Obviously,

y0i [ y00i , y0i � y00i [ 0;

y00j [ y0j , y00j � y0j [ 0:

Denote �yi ¼ y0i � y00i ¼ w	
i , �yj ¼ y0j � y00j ¼ �w	

j , where �ys ¼ 0 for all
s 2 Infi; jg. By the additivity of the preference relation �, we have

y0 � y00 , ðy0 � y00Þ � 0m , �y � 0m;

where the vector �y has only two nonzero components, namely, components i and j
being �yi and �yj, respectively. This means that Definition 2.2 in the general form is
equivalent to itself in the “simplified” form with the fixed vectors y0 ¼ �y and
y00 ¼ 0m.

Hence, in Definition 2.2 the vectors y0; y00 can be assumed fixed.
Now, we prove the remainder of Theorem 2.4. The relationship �y � 0m for the

above vector �y is equivalent to the relationship a�y � 0m with any positive number a
by the homogeneity of the preference relation �. Choosing a ¼ �hij=�yj and setting
ŷ¼ a�y yield
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ŷi ¼ a�yi ¼ � hij�yi
�yj

¼ hijw	
i

w	
j

¼ w	
i

w	
i þw	

j
¼ 1� hij;

ŷj ¼ a�yj ¼ � hij�yj
�yj

¼ �hij;

ŷs ¼ a�ys ¼ a0 ¼ 0 for all s 2 Infi; jg :

Therefore, the relationship �y � 0m is equivalent to the relationship ŷ � 0m,
where the vector ŷ has the same components

ŷi ¼ 1� hij; ŷj ¼ �hij; ŷs ¼ 0 for all s 2 Infi; jg;

as the vector y0 from (2.4′). ■
According to the aforesaid, the preference relation � is supposed invariant with

respect to a linear positive transformation. Using Theorem 2.4, we introduce a new
(simplified) definition of an elementary information quantum.

Definition 2.4. Let i; j 2 I; i 6¼ j. We say that there is a given elementary infor-
mation quantum with positive parameters w	

i ; w
	
j (with the degree of compromise

hij 2 ð0; 1Þ) if the relationship y0 � 0m holds for the vector y0 2 Rm of form (2.4)
(form (2.4ʹ), respectively).

To verify that criterion fi is more important than criterion fj with the degree of
compromise hij 2 ð0; 1Þ, by Definition 2.4 it suffices to check that the vector y0 of
form (2.4) is preferable to the zero vector, i.e. y0 � 0m. For instance, if the vector
ð0:7;�0:3; 0Þ appears preferable to ð0; 0; 0Þ for the DM, then the first criterion is
more important for the DM than the second criterion with the degree of compromise
h12 ¼ 0:3.

2.3.2 Pareto Set Reduction Based on Elementary
Information Quantum

The next result shows how the available information about the preference relation
in the form of an elementary quantum can be used for reducing the search space of
selectable vectors.

Theorem 2.5 (in terms of vectors). Assume that there exists an elementary
information quantum with positive parameters w	

i and w	
j (with the degree of

compromise hij 2 ð0; 1Þ). Then for any set of selectable vectors C(Y) we have

CðYÞ � P̂ðYÞ � PðYÞ; ð2:5Þ

where P̂ðYÞ is the set of feasible vectors corresponding to the set of Pareto optimal
alternatives in the multicriteria problem with the initial set of feasible
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alternatives X and the “new” vector criterion f̂ ¼ ðf̂1; f̂2; . . .; f̂mÞ (i.e.,
P̂ðYÞ ¼ f ðPf̂ ðXÞ)) with the components calculated by

f̂j ¼ w	
j fi þw	

i fj; f̂s ¼ fs for all s 2 Infjg; ð2:6Þ

or

f̂j ¼ hijfi þð1� hijÞfj; f̂s ¼ fs for all s 2 Infjg: ð2:60Þ
▢ The proof consists of four parts.

I. Denote by K the acute convex cone (without the origin) of the cone preference
relation �. By the hypothesis of Theorem 2.5 and Definition 2.4, the vector y0

described by equalities (2.4) satisfies the relationship y0 � 0m. The latter is
equivalent to the inclusion y0 2 K.

Consider the collection of unit vectors e1; e2; . . .; em of space Rm; here compo-
nent s of the vector es is 1 and the other components are 0. Let M be the convex
cone (without the origin) generated by the collection of linear independent4 vectors

e1; . . .; ei�1; y0; eiþ 1; . . .; em: ð2:7Þ

The cone M coincides with the set of all vectors representable as the linear
combinations

k1 e
1 þ . . .þ ki�1e

i�1 þ kiy
0 þ kiþ 1e

iþ 1 þ . . .þ km em

of the vectors from collection (2.7) with the nonnegative coefficients k1; k2; . . .; km
that are not zero simultaneously.

Check that the cone M is acute. If not, there exists a nonzero vector y 2 M such
that �y 2 M. According to the aforesaid,

y ¼ k1 e
1 þ . . .þ ki�1e

i�1 þ kiy
0 þ kiþ 1e

iþ 1 þ . . .þ kme
m;

�y ¼ k01 e
1 þ . . .þ k0i�1e

i�1 þ k0iy
0 þ k0iþ 1e

iþ 1 þ . . .þ k0me
m;

where all coefficients of the linear combinations are nonnegative and each of the
collections k1; k2; . . .; km and k01; k

0
2; . . .; k

0
m is not zero simultaneously. The sum of

4Indeed, vectors (2.7) form a linear independent system, since the matrix composed of them has
rank m.
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two elements of a cone belongs to this cone; hence, by summing up the last two
equalities, we obtain

0m ¼ ðk1þ k01Þe1 þ . . .þðki�1 þ k00i�1Þei�1þ ðki þ k0iÞy0 þ ðkiþ 1þ k0iþ 1Þeiþ 1 þ . . .þ ðkmþ k0mÞem;

where at least one coefficient of the linear combination in parentheses is nonzero.
However, owing to the linear independence of vectors (2.7), the last equality
implies that all coefficients of the linear combination are zero. This contradiction to
the initial hypothesis testifies that the cone M is acute.

II. Now, demonstrate that the cone M coincides with the set of all nonzero
solutions to the following system of linear homogeneous inequalities:

ys = 0 for all s 2 Infjg;
w	
j yi þw	

i yj = 0: ð2:8Þ

To this end, find the fundamental system of solutions for the system of
inequalities (2.8) and make sure that it coincides with collection (2.7).

For obtaining the fundamental system of solutions for the system of inequalities
(2.8), consider the corresponding collection of linear equations

ys ¼ 0 for all s 2 Infjg;
w	
j yi þw	

i yj ¼ 0;
ð2:9Þ

which can be rewritten as5

hes; yi ¼ 0 for all s 2 Infjg;
h~y; yi ¼ 0;

ð2:10Þ

where ~y ¼ ð~y1;~y2; . . .;~ymÞ and

~yi ¼ w	
j ;~yj ¼ w	

i ;~ys ¼ 0 for all s 2 Infi; jg:

The number of equations in (2.10) is m. An arbitrary collection of m� 1 vectors
obtained from e1; . . .; ej�1;~y; ejþ 1; . . .; em by removing a single vector appears
linearly independent. And so, to find the fundamental system of solutions for the
system of inequalities (2.8), it suffices to go over the nonzero solutions to each
subsystem constructed from m� 1 equalities of the original system (2.10). Among
them, one should choose the vectors satisfying the system of inequalities (2.8).

5Recall that, for m-dimensional vectors a and b, the notation ha; bi gives their scalar product:
ha; bi ¼ Pm

i¼1
aibi.
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We will sequentially eliminate one equation from system (2.10), seeking for the
nonzero solutions to the resulting “truncated” system. With the last equation
eliminated from (2.10), e.g., the vector e j is a nonzero solution to the “truncated”
system. After elimination of the equation hes; yi ¼ 0 (where s 6¼ i), the vector es can
be chosen as a nonzero solution to the “truncated” system. As easily verified, the
“truncated” system without the equation hei; yi ¼ 0 has the nonzero solution y0.
This procedure yields the fundamental system of solutions
e1; . . .; ei�1; y0; eiþ 1; . . .; em to the system of inequalities (2.8). The fundamental
system coincides with the vector collection (2.7) generating the cone M of the cone
preference relation �. Therefore, the cone M represents the set of nonzero solutions
to the system of linear inequalities (2.8).

III. As mentioned in the beginning of the proof, the inclusion y0 2 K takes place.
By Theorem 2.1, we have the relationship Rm

þ � K. The cone Rm
þ is gen-

erated by the collection of unit vectors e1; e2; . . .; em. Since K represents a
convex cone, together with vectors (2.7) it surely contains all nonzero linear
combinations of vectors (2.7) with nonnegative coefficients, i.e., M � K.
Finally, we get the inclusions

Rm
þ � M � K;

yielding

Ndom Y � P̂ðYÞ � PðYÞ; ð2:11Þ

where

PðŶÞ ¼ fy	 2 Y j there exists no y 2 Y such that y� y	 2 Mg

is the set of nondominated elements of the set Y with respect to the cone
relation with the cone M.

IV. Choose arbitrarily two elements x; x	 2 X; y ¼ f ðxÞ; y	 ¼ f ðx	Þ such that
f ðxÞ 6¼ f ðx	Þ. As shown in part II, the cone M coincides with the set of
nonzero solutions to the system of linear inequalities (2.8), and hence the
inclusion f ðxÞ � f ðx	Þ 2 M takes place if and only if the vector y ¼
f ðxÞ � f ðx	Þ is a nonzero solution to (2.8), i.e.,
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f1ðxÞ � f1ðx	Þ
: : : : : : :
fj�1ðxÞ � fj�1ðx	Þ
w	
j ðfiðxÞ � fiðx	ÞÞþw	

i ðfjðxÞ � fjðx	ÞÞ
fjþ 1ðxÞ � fjþ 1ðx	Þ
: : : : : : :
fmðxÞ � fmðx	Þ

0
BBBBBBBB@

1
CCCCCCCCA

� 0m:

The last inequality can be rewritten in the compact form f̂ ðxÞ � f̂ ðx	Þ 2 Rm
þ , or

f̂ ðxÞ� f̂ ðx	Þ where f̂ is defined by (2.6). And therefore the relationship y� y	 2 M
for the vectors y ¼ f ðxÞ; y	 ¼ f ðx	Þ is equivalent to the inequality f̂ ðxÞ� f̂ ðx	Þ.
Subsequently, P̂ðYÞ ¼ f ðPf̂ ðXÞÞ.

By the hypothesis of the current theorem and Lemma 1.2, we have the inclusion
CðYÞ � Ndom Y for arbitrary set CðYÞ. And so, inclusions (2.11) lead to inclusions
(2.5), which were to be established.

The vector criterion (2.6′) is obtained from (2.6) by dividing component j of the
latter by the positive number w	

i þw	
j . Such an operation clearly do not modify the

Pareto set P̂ðYÞ. ■
According to the Edgeworth-Pareto principle, all selectable vectors must belong

to the Pareto set. If the multicriteria choice problem includes additional information
about the DM’s willingness to compromise while comparing the values of two
certain criteria, then Theorem 2.5 serves for Pareto set reduction based on this
information without losing any selectable vectors. In other words, some vectors can
be eliminated from the Pareto set, since they would not be selected for sure.

For justice’ sake, we have to note the following. In definite cases (especially if
the degree of compromise is close to 0, viz. the criteria fj and f̂j almost coincide), the
reduction may fail due to the identical Pareto sets in terms of the “old” and “new”
vector criteria, i.e. P̂ðYÞ ¼ PðYÞ. One can say that in such cases the available
information about the preference relation is not rich in content.

Theorem 2.4 acquires the following form in terms of alternatives.

Theorem 2.6 (in terms of alternatives). Assume that criterion fi is more important
than criterion fj with given positive parameters w	

i ;w
	
j (with the degree of com-

promise hij 2 ð0; 1Þ). Then for any set of selectable alternatives CðXÞ we have

CðXÞ � Pf̂ ðXÞ � Pf ðXÞ; ð2:12Þ

where Pf̂ ðXÞ is the set of Pareto optimal alternatives in the multicriteria problem

with the set of feasible alternatives X and the “new” vector criterion f̂ ¼
ðf̂1; f̂2; . . .; f̂mÞ with the components calculated by formulas (2.6) or (2.6′).

Figure 2.4 illustrates the inclusions (2.12).
Commenting on Theorem 2.5, first of all we emphasize its universalism.

Namely, there exist no requirements to the set of feasible alternatives X and the
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vector criterion f . This theorem is hence applicable to any multicriteria choice
problem satisfying Axioms 1–4. And the set of feasible alternatives (and vectors)
may be finite or infinite, while the functions f1; f2; . . .; fm may belong to an arbitrary
class (being nonlinear, nonconvex, nonconcave or discontinuous). The only con-
straint in the conditions of Theorem 2.5 concerns the DM’s behavior: during the
choice process, the DM must act “reasonably” in the sense that its preference
relation necessarily meets Axioms 1–4. Second, the “new” criterion f̂ is recalcu-
lated using the “old” one f by a very simple formula, see (2.6). According to it, the
“new” vector criterion is obtained from the “old” counterpart by replacing the less
important criterion fj for the positive linear combination of the criteria fi and fj with
the parameters w	

i ;w
	
j . The other “old” criteria remain the same. As easily seen, this

“recalculation” of criterion j does not affect many fruitful optimization-oriented
properties of the criteria fi and fj. For instance, if these criteria are continuous,
concave, convex or linear, the new criterion f̂j inherits the same properties.

The simplest recalculation formula appears in the case of linear criteria. We state
the corresponding result below.

Corollary 2.1 In addition to the hypothesis of Theorem 2.5, let X � Rn and let the
criteria fi and fj be linear, i.e.,

fkðxÞ ¼ hck; xi ¼
Xn
l¼1

ckl xl; k ¼ i; j;

where ck ¼ ðck1; ck2; . . .; cknÞ. Then the new criterion j has the form f̂jðxÞ ¼ hĉ; xi with
ĉ ¼ w	

j c
i þw	

i c
j, or

ĉ ¼ hij c
i þð1� hijÞc j: ð2:13Þ

This result immediately follows from formula (2.6) and the linear property of the
scalar product of vectors.

Equality (2.13) admits a clear interpretation if the set of feasible alternatives is a
subspace in the two-dimensional vector space, i.e., X � R2 (see Fig. 2.5).

Xˆ ( )
f

P X XPf (X)( )

Fig. 2.4 Nested sets
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The closer is the degree of compromise hij to 0, the closer is the end of the vector
ĉ to that of the vector c j. As we increase hij within the interval ð0; 1Þ, the vector
“attracts” the vector ĉ associated with the new criterion j. In the case hij ¼ 0:5, the
end of the vector ĉ is in the middle of the line segment connecting the ends of the
two vectors ci and c j. If the degree of compromise is close to 1, then the vector ĉ
slightly differs from ci, which means that the vector criterion f̂ includes two almost
identical criteria. And the impact of the less important criterion fj associated with
the vector c j on the solution of the multicriteria choice problem becomes negligible.

2.3.3 Geometrical Aspects

As a rule, the preference relation � guiding the DM choice process is not com-
pletely defined (i.e., fragmentary) in the multicriteria choice problems. Throughout
this book, we assume that it merely satisfies Axioms 1–4. Under these conditions,
by Theorem 2.1 the preference relation � is a cone relation with an (unknown)
acute convex cone K except the origin. Furthermore, the cone K contains the
nonnegative orthant, i.e., Rm

þ � K. This gives the inclusion Ndom Y � PðYÞ, in
combination with CðYÞ � Ndom Y yielding

CðYÞ � PðYÞ: ð2:14Þ

The last inclusion expresses the Edgeworth-Pareto principle, which states that
the choice should be performed within the Pareto set. As mentioned in Sect. 1.4,
this principle is applicable to any multicriteria choice problem satisfying Axioms 1–
3. Here is an alternative formulation of the principle: the Pareto set represents an
upper estimate for the set of selectable vectors.

2x

ic

ĉ

jc

0 1x

Fig. 2.5 Vectors ci; c j and ĉ

2.3 Pareto Set Reduction Using Elementary Information Quantum 43



Now, suppose that (besides Axioms 1–4 satisfied by the multicriteria choice
problem) we have additional information that criterion fi is more important than
criterion fj with the degree of compromise hij 2 ð0; 1Þ. In geometrical terms, the
existence of such information means the specification of a vector y0 2 Rm of form
(2.4) with the inclusion y0 2 K. Consequently, the cone K contains not only the
nonnegative orthant, but also the vector y0 beyond this orthant.

Consider the cone M coinciding with the set of all nonzero nonnegative linear
combinations of the vectors e1; . . .; ei�1; y0; eiþ 1; . . .; em, see the proof of
Theorem 2.5. In the course of this proof, we have also established the inclusions
Rm

þ � M � K, where M 6¼ Rm
þ . These inclusions imply

CðYÞ � Ndom Y � NdomM Y � PðYÞ;

where

Ndom Y ¼ fy	 2 Y j there exists no y 2 Y such that y� y	 2 Kg,

NdomMY ¼ fy	 2 Y j there exists no y 2 Y such that y� y	 2 Mg,

PðYÞ ¼ fy	 2 Y j there exists no y 2 Y such that y� y	 2 Rm
þ g.

Hence, the upper estimate (2.14) for the unknown set of selectable vectors is
refined to

CðYÞ � NdomM Y :

Note that, the wider is the cone M in comparison with the nonnegative orthant
Rm

þ , the narrower is the set NdomMY in comparison with PðYÞ.
Thus, using an elementary information quantum, one can extract in the unknown

cone K a cone M wider than Rm
þ (see Fig. 2.6), thereby constructing a more precise

upper estimate for the set of selectable vectors as against the estimate yielded the
Edgeworth-Pareto principle.

y′
M

0

2
+R

1y

2y

Fig. 2.6 Cones M and R2
þ :
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Example 2.1 Let m ¼ 2 and Y ¼ fy1; y2; y3g, where

y1 ¼ 4; 1ð Þ; y2 ¼ 3; 2ð Þ; y3 ¼ 1; 3ð Þ:
Here all the three feasible vectors are Pareto optimal. In other words, the

Edgeworth-Pareto principle does not assist in reducing the search space of select-
able vectors.

Imagine that the first criterion is more important than the second one with the
degree of compromise 0.5. Geometrically, this means that y0 ¼ ð0:5;�0:5Þ 2 K.

Figure 2.7 shows the three feasible vectors and the cone M translated into the
points corresponding to the second and third feasible vectors.

Clearly, neither the second nor third vector can be selected, as both have
dominating vectors:

y2 2 y3 þM; y1 2 y2 þM:

And the only selectable vector is hence the first one y1. In other words, if the set
of selectable vectors is non-empty in this problem, then it consists of the first vector
only.

The same conclusion can be drawn using Theorem 2.5. Really, by formula (2.6)
the new criterion 2 acquires the form 0:5y1 þ 0:5y2 and, as easily found,

f̂ ðXÞ ¼ fð4; 2:5Þ; ð3; 2:5Þ; ð1; 2Þg:

In this set, the first vector is the only Pareto optimal one; it corresponds to the
vector y1. Therefore, this (and only this vector) can appear selectable from Y if the
selectable vectors exist.
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Fig. 2.7 The dominated
vectors y2 and y3
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2.4 Scales of Criteria and Invariance of Measurements

2.4.1 Quantitative and Qualitative Scales

As mentioned earlier, all criteria f1; f2; . . .; fm in the multicriteria choice problem
statement have numerical values. Therefore, the inclusion yi ¼ fiðxÞ 2 R holds for
any x 2 X and each i ¼ 1; 2; . . .;m. This information about the criteria is enough for
the rigorous mathematical formulation of the multicriteria choice problem.

However, in real applications the numerical values of the criteria are the mea-
surement results in a certain scale. For instance, if a criterion reflects the value, cost
or profit of a project, these quantities can be expressed in RUB, USD, EURO or
other monetary units. The lengths of different objects are measured in meters,
inches, foots, yards, and so on. Hours, seconds, years, millions of years, etc. are
used for time intervals. Consequently, in specific applications the values of criteria
are associated with a certain scale, being expressed in definite units of measure.

There exist various measurement scales. Whenever it is required to count the
number of objects, people, items, etc., one adopts the so-called absolute scale. This
scale has a fixed reference point (0) and a fixed spacing (1). Two individuals
performing independent measurements of same quantities in the absolute scale (two
measurers) must obtain the identical results. In addition, note that this scale has a
unique unit of measure for all measurers.

Different units of measure are used for measuring the physical characteristic of
mass. As is well-known, the mass of an object can be expressed in kilograms,
pounds, tones, poods, etc. Here only the reference point (0) is fixed for all mea-
surers, which corresponds to the absence of mass; and the scale spacing may vary
for measurers. Thereby, for a same object, the measurements results y0i and y00i
obtained by two measurers in different units of measure differ by some fixed
positive factor ai, i.e., y0i ¼ ai y00i . In this case, the measurement results are defined
within the transformation /iðyiÞ ¼ ai yi, ai [ 0. Such a scale is called the ratio
scale, which can be explained as follows. Regardless of the unit of measure, the
measurements in this scale yield the same ratios for different measurers. Really,
assume that, for two objects, measurers 1 and 2 obtain the values y0i,y

00
i and ~y0i, ~y

00
i ,

respectively. Since ~y0i ¼ ai y0i and ~y00i ¼ ai y00i for some ai [ 0, we have the equalities

~y0i
~y00i

¼ a iy0i
a iy00i

¼ y0i
y00i

;

which mean that the ratios of the measurements are preserved for two different
measurers in the ratio scale. And so, if a measurer concludes that, e.g., the mass of
an object is twice as much as that of the other, then another measurer (operating
different units of measure) must come to the same conclusion. This testifies that,
while comparing the measurement results in the ratio scale, the statement “object 1
is ai times greater (smaller) than object 2” actually makes sense.
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Obviously, such quantities as profit, costs, etc. expressed in currency units
should be measured in the ratio scale, too.

Another measurement scale has a given spacing and an unfixed reference point
(for different measurers). A possible example is the chronology scale–passing from
one chronology to another requires an appropriate variation in the reference point.
More precisely, the difference scale is a scale in which the measurement results are
defined within the transformation /iðyiÞ ¼ yi þ ci with a fixed constant ci. The
measurements in this scale preserve the differences between two different mea-
surements performed by distinct measurers. In other words, for the measurements in
the difference scale, a sensible statement has the form “object 1 is greater (smaller)
than object 2 by the constant ci.” For example, the reign of Tsar Nicholas II in
Russia calculated according to the Gregorian and Julian calendars is the same (as
well as in any other calendar).

The interval scale is a scale in which the measurement results are defined within
(are invariant with respect to) the linear positive transformation /iðyiÞ ¼ aiyi þ ci,
where ai [ 0 and ci represent fixed constants. A typical example of such a scale is a
temperature scale. As is well-known, the Celsius scale and the Fahrenheit scale
serve for temperature measurements. Transition from one scale to the other employs
the formula ~yi ¼ ai yi þ ci.

Each measurer choosing the interval scale can have a specific reference point and
a specific spacing. And the measurements performed in the interval scale by dif-
ferent measurers satisfy the ratio of the differences:

~yi � ~y0i
~y00i � ~y000i

¼ a i yi þ ci � ða iy0i þ ciÞ
ai y00i þ ci � ðai y000i þ ciÞ ¼

yi � y0i
y00i � y000i

:

The above-mentioned scales (absolute scale, ratio scale, difference scale and
interval scale) belong to quantitative scales. Naturally, the measurement results that
are invariant with respect to the linear positive transformation of the general form
~yi ¼ ai yi þ ci inherit this property with respect to the transformations ~yi ¼ ai yi or
~yi ¼ yi þ ci. It explains why the interval scale is most “general” among the quan-
titative scales. In this context, all assertions established for the measurements in the
interval scale remain in force for the measurements in the ratio scale and in the
difference scale (and, of course, in the absolute scale).

Besides quantitative scales there exist qualitative scales. A typical representative
of this class is the ordinal scale in which the measurement results are defined within
a transformation /iðyiÞ where /i denotes an arbitrary strictly increasing function.
As examples, we refer to Mohs’ scale for the hardness of minerals, the ordering
scale for different works based on their importance, as well as various rating scales.
The ordinal scales have no fixed reference point, possibly involving different
spacing. Figuratively speaking, different measurers may even employ variable
spacing between the marks. The statements “object 1 is ai times greater (smaller)
than object 2” and “object 1 is greater (smaller) than object 2 by the constant ci”
appear meaningless for the measurement results in the ordinal scale. Only the
“greater-smaller” relation makes sense here.

2.4 Scales of Criteria and Invariance of Measurements 47



All assertions established for the measurements in a qualitative scale remain in
force for the measurements in a quantitative scale, but the converse fails. Thus, the
quantitative scales are “richer” than the qualitative ones, as yielding more sub-
stantial assertions (though, for a narrower class of problems).

2.4.2 Pareto Set Invariance with Respect to Strictly
Increasing Transformation of Criteria

Recall the definition of the set of Pareto optimal vectors:

PðYÞ ¼ fy	 2 Y j there exists no y 2 Y such that y� y	g:

The inequality y� y	 in the definition of the Pareto set means the
component-wise inequalities yi = y	i for all i ¼ 1; 2; . . .;m, with at least one of them
being strict.

Let /i be a strictly increasing numerical function of single variable defined on
the whole real axis, i.e.,

yi [ y0i , /iðyiÞ[/iðy0iÞ

for all yi; y0i 2 R. Obviously, the equality yi ¼ y0i holding for a strictly increasing
function /i is equivalent to the equality /iðyiÞ ¼ /iðy0iÞ. Next, by the definition of
this function, the inequality yi [ y0i takes place if and only if /iðyiÞ[/iðy0iÞ is the
case.

Hence, the definition of the Pareto set does not change essentially if a strictly
increasing transformation is applied to the values of criteria. In other words, the
Pareto set has invariance with respect to the above transformation, and the notion of
the Pareto set can be used whenever the criteria are measured at least in the
ordinal scale (all the more, in any quantitative scale).

2.4.3 Invariance of Theorem 2.5 with Respect to Linear
Positive Transformation

Theorem 2.5 shows how an elementary information quantum can be used for Pareto
set reduction. As stated in the previous section, this reduction proceeds from the
inclusions

CðXÞ � Pf̂ ðXÞ � Pf ðXÞ; ð2:12Þ
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where Pf̂ ðXÞ is the set of Pareto optimal alternatives in the multicriteria choice
problem with the initial set of feasible alternatives X and the “new” vector criterion
f̂ ¼ ðf̂1; f̂2; . . .; f̂mÞ calculated by the formulas

f̂j ¼ w	
j fi þw	

i fj; f̂s ¼ fs for all s 2 Infjg: ð2:6Þ

Since the quantitative approach considered in the book presupposes measuring
the criteria values in quantitative scales, the invariance of inclusions (2.12) with a
linear positive transformation of the criteria is of certain practical interest. Note that,
without such invariance, the suggested approach would be inapplicable to the real
multicriteria problems with quantitative criteria.

Theorem 2.7 Inclusions (2.5) and (2.12) are invariant with respect to a linear
positive transformation of the criteria.

▢ First of all, observe that the inclusion CðXÞ � Ndom X holds for any set of
selectable alternatives under the hypothesis of Theorem 2.5. Moreover, the defi-
nition of the set of selectable alternatives CðXÞ makes no mention of the criteria.
Hence, this definition does not depend on the choice of the criteria scales, being
invariant with respect to any transformation of the criteria.

In subsection 2.4.2, we have established the Pareto set invariance with respect to
a strictly increasing transformation. A linear positive transformation is a special
case of a strictly increasing transformation. Therefore, the Pareto set Pf ðXÞ from
(2.12) inherits invariance with respect to a linear positive transformation of the
criteria. To prove the invariance of the set Pf̂ ðXÞ, it suffices to verify the invariance

of the strict inequality f̂j ¼ w	
j yi þw	

i yj [w	
j �yi þw	

i �yj ¼ �fj incorporating the new
criterion fj, since for an arbitrary criterion fi, i 6¼ j, the invariance of the corre-
sponding inequalities is checked in the same elementary way as in subsection 2.4.2.

At the beginning, recall that

w	
i ¼ y0i � y00i ; w	

j ¼ y00j � y0j;

where y0k ¼ fkðx0Þ; y00k ¼ fkðx00Þ (k ¼ i; j) and w	
i ; w

	
j are fixed positive numbers.

Replace yk with ~yk ¼ akyk þ ck ðak [ 0Þ, k ¼ i; j, in formula (2.6) defining the
new criterion f̂j. This replacement yields the transformed criterion

~̂f j ¼ ðajy00j þ cj � ajy
0
j � cjÞ � ðaiyi þ ciÞþ ðaiy0i þ ci � aiy

00
i � ciÞðajyj þ cjÞ:

And trivial simplifications lead to

~̂f j ¼ aiajw
	
j yi þ aiajw

	
i yj þC; ð2:15Þ
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where the constant

C ¼ ajw
	
j ci þ aiw

	
i cj

does not depend on yi; yj.
Now, assume that the inequality

f̂j ¼ w	
j yi þw	

i yj [w	
j �yi þw	

i �yj ¼ �fj ð2:16Þ

holds for arbitrary fixed numbers yi; yj;�yi;�yj. Having (2.15) in mind, multiply by the
positive number aiaj and add the constant C to both sides of inequality (2.16) to get

~̂f j [
~�f j ¼ aiajw

	
j �yi þ aiajw

	
i �yj þC: ð2:17Þ

Subsequently, inequality (2.16) implies inequality (2.17). In a similar way,
inequality (2.16) can be obtained from inequality (2.17). This means the equiva-
lence of the two inequalities. ■

Note that the degree of compromise hij is not invariant with respect to a linear
positive transformation of the criteria. Furthermore, as easily verified, the degree of
compromise is not invariant with respect to the transformations ~yk ¼ ak yk and
~yk ¼ yk þ ck, k ¼ i; j, which indicates of the following. For different measurers
(different DMs), the degrees of compromise may differ even if the DMs are con-
sidered in the same choice problem, have identical preferences and perform
measurements in a scale of the same type. This fact contains no contradiction, as the
DMs may adopt different units of measure for the same criteria.

Really, imagine two DMs with identical preferences, who measure the values of
the first criterion in USD and, RUB respectively. Suppose that the values of the
second criterion are measured by them in the absolute scale (e.g., in pcs). For the
DM 1 operating USD and willing to compromise 10 pcs for the gain of $1000, the
degree of compromise for the first criterion in comparison with the second one
makes up

h012 ¼
10

1000þ 10

 0:01:

The other DM 2 operating RUB and acting in the same way must be willing to
compromise 10 pcs for the gain of 60,000 RUB, since at the moment of
decision-making $1 = 60 RUB. Therefore, for DM 2 the degree of compromise
constitutes

h0012 ¼
10

60000þ 10

 0:00016;

which is considerably smaller than for DM 1. But this result is correct, since the
latter operates the much more “expensive” currency than the former.
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Chapter 3
Pareto Set Reduction Based on General
Information Quantum

The notion of an elementary information quantum for two criteria (see Chap. 2) is
extended to the general case of two groups of criteria. We study the properties of a
general information quantum, demonstrating how it should be used for Pareto set
reduction. To this end, one has to construct the Pareto set in terms of a new vector
criterion of dimensionality that can be appreciably higher than of the original
criterion.

Some geometrical illustrations are given for the choice problem with three
criteria.

3.1 Definition and Properties of General Information
Quantum

3.1.1 Basic Definitions

Consider two Pareto optimal vectors y0; y00. By the definition of Pareto optimality,
neither of the relationships y0 � y00; y0 � y00 hold. In this case, there must exist two
subsets of the nonempty criteria indexes A;B � I; A\B ¼ £, such that y0i [ y00i for
all i 2 A; y0j\y00j for all j 2 B; and y0s ¼ y00s for all s 62 A[B: If the DM prefers the
first vector from this pair, i.e., y0 � y00, then the second vector becomes unselected
due to the exclusion axiom. Thereby, the Pareto set is reduced by the vector y00.

Definition 3.1
Let A;B � I; where A 6¼ £, B 6¼ £, and A\B ¼ £. We say that there is an
information quantum about the DM’s preference relation with the two groups of
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criteria A and B together with the collections of positive parameters w�
i for all i 2 A

and w�
j for all j 2 B if, for any pair of vectors y0; y00 2 Rm satisfying

y0i � y00i ¼ w�
i [ 0 for all i 2 A;

y00j � y0j ¼ w�
j [ 0 for all j 2 B;

y0s ¼ y00s for all s 2 InðA[BÞ;
ð3:1Þ

the relationship y0 � y00 holds. In this case, the group A is more important than
group B with the corresponding parameters.

In other words, given this quantum, the DM who chooses from the pair of
vectors each time is willing to sacrifice the quantity w�

j in terms of each less
important criterion fj, j 2 B; for gaining the quantity w�

i in terms of each more
important criterion fi, i 2 A; the values of all other criteria being fixed.

Clearly, in the special case of A ¼ fig and B ¼ fjg, Definition 3.1 coincides
with Definition 2.2 of an elementary information quantum.

Just like in the elementary case, the correlation between the quantities w�
i and w�

j

gives a quantitative estimation for the degree of compromise of one group of criteria
against the other.

Definition 3.2
Assume that there is an information quantum with the two groups of criteria A and
B; and the two collections of positive parameters w�

i for all i 2 A and w�
j for all

j 2 B; respectively. The positive numbers

hij ¼
w�
j

w�
i þw�

j
2 ð0; 1Þ; for i 2 A and j 2 B; ð3:2Þ

will be called the DM’s coefficients (or degrees) of compromise for this pair of
groups of criteria.

Denote by |Aj and |Bj the numbers of elements in the sets A and B; respectively.
The number of all degrees of compromise introduced by Definition 3.2 is the
product |Aj � jBj. For instance, if A ¼ fig, then the number of the degrees coincides
with the number of less important criteria jBj.

3.1.2 Properties of Information Quantum

The following result takes place.

Theorem 3.1 Assume that there is a given information quantum with two collec-
tions of positive parameters w�

i for all i 2 A and w�
j for all j 2 B: Then:
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• There exists an information quantum with the two groups of criteria A[fkg for
any k 2 InðA[BÞ and B with the positive parameters w�

i for all i 2 A; w�
j for all

j 2 B; and an arbitrary positive parameter w�
k ;

• There exists an information quantum with the two groups of criteria A[fkg for
any k 2 B and Bnfkg with the positive parameters w�

i for all i 2 A; w�
j for all

j 2 Bnfkg, and an arbitrary positive parameter w�
k ;

• There exists an information quantum with the two groups of criteria A and
Bnfkg for any k 2 B with the positive parameters w�

i for all i 2 A and w�
j for all

j 2 Bnfkg.
□ According to Definition 3.1, let the relationship y0 � y00 hold for vectors y0; y00

satisfying (3.1).
Consider an arbitrary vector y 2 Rm such that

yk [ y0k; ys ¼ y0s for all s 2 Infkg; k 2 InðA[BÞ:

By Axiom 3, we have the relationship y � y0. Due to the transitivity of the
preference relation, this relationship in combination with y0 � y00 implies y � y00.
Since

yi � y00i ¼ w�
i [ 0 for alli 2 A;

yk [ y0k ¼ y00k ;

y00j � y0j ¼ w�
j [ 0 for all j 2 B;

ys ¼ y00s for all s 2 InðA[B[fkgÞ;

and the difference w�
k ¼ yk � y00k can be any positive number, the proof of the first

statement is complete.
To verify the second statement of the theorem, introduce the vector y with the

components

yk [ y00k ; ys ¼ y00s for alls 2 Infkg; k 2 B:

As above, this vector satisfies the relationship y0 � y00, which establishes the
second statement.

And finally, the reader can show that the third statement is true without much
effort, following the same line of reasoning as before. ■

According to this result, the group B of less important criteria can be reduced,
while the group A of more important criteria can be extended. And the new
parameters corresponding to the added criteria can take any positive values.

As follows from the general considerations, if the DM is willing to lose
something in terms of the less important criteria for gaining in terms of the more
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important criteria, then the DM obviously agrees with a smaller loss and with a
greater gain in terms of these criteria, too. And the following result takes place.

Theorem 3.2 Assume that there is a given information quantum with the two
groups of criteria A ¼ fi1; i2; . . .; ikg and B ¼ fj1; j2; . . .; jlg together with two
given collections of positive parameters w�

is for all s ¼ 1; 2; . . .; k and w�
js for all

s ¼ 1; 2; . . .; l: Then there is a given information quantum with the same two groups
of criteria A and B together with any pair of the collections of positive parameters
w0
is for all s ¼ 1; 2; . . .; k and w0

js for all s ¼ 1; 2; . . .; l satisfying the inequality

ðw0
i1 ; . . .;w

0
ik ;�w0

j1 ; . . .;�w0
jlÞ� ðw�

i1 ; . . .;w
�
ik ;�w�

j1 ; . . .;�w�
jlÞ:

In other words, if the group of criteria A is more important than the group of
criteria B with the degree of compromise hij for all i 2 A and all j 2 B; then the
former is more important than the latter with the degree of compromise h0ij\ hij for
all i 2 A and all j 2 B:

The proof of Theorem 3.2 resembles that of Theorem 2.1, thus being omitted
here.

In addition, it is possible to define the relation of the incomparably higher
importance of one group of criteria against another group. Notably, if any positive
number hij 2 ð0; 1Þ (for all i 2 A and j 2 BÞ is the degree of compromise for the
group of criteria A against the group of criteria B; we say that the first group of
criteria is incomparably more important than the second group.

In Chap. 2, we have obtained a characterization of the lexicographical relations
in terms of a sequence of incomparably more important criteria (see Theorem 2.2
for details). A new characterization in terms of groups of criteria is given below.

Theorem 3.3 The binary relation � defined on space Rm that satisfies Axioms 2
and 3 is a lexicographic relation if and only if criterion 1 is incomparably more
important than the group of the successive criteria f2; 3; . . .;mg, criterion 2 is
incomparably more important than the group of the successive criteria f3; . . .;mg ,
…, and criterion ðm� 1Þ is incomparably more important than criterion m:

□ Necessity. Let the relation � be lexicographic. By the definition of a lexi-
cographical relation, for arbitrary vectors y0; y00 2 Rm we have the logical
propositions

(1) y01 [ y001 ) y0 � y00;
(2) y01 ¼ y001; y02 [ y002 ) y0 � y00;
(3) y01 ¼ y001; y02 ¼ y002; y03 [ y003 ) y0 � y00;

………………………………………………..
(m) y0i ¼ y00i ; i ¼ 1; 2; . . .;m� 1; y0m [ y00m ) y0 � y00:

54 3 Pareto Set Reduction Based on General …



Proposition (1) implies that criterion 1 is incomparably more important than the
group of the other criteria. Really, according to proposition (1), for arbitrary vectors
y0; y00 2 Rm with the positive differences y002 � y02; . . .; y

00
m � y0m, all numbers

h12 ¼ y002�y02
y01�y001 þ y002�y02

;

h13 ¼ y003�y03
y01�y001 þ y003�y03

;
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
h1m ¼ y00m�y0m

y01�y001 þ y00m�y0m
;

are the degrees of compromise. Moreover, as the above-mentioned differences
together with y01 � y001 can take all possible values, the degrees of compromise
represent arbitrary numbers completely filling the interval ð0; 1Þ: As a result, cri-
terion 1 appears incomparably more important than the group of the other criteria.

Similarly, using proposition (2), we conclude that criterion 2 is incomparably
more important than the group of the successive criteria f3; . . .;mg, and so on; in
the final analysis, the incomparably higher importance of criterion ðm� 1Þ against
criterion m follows from proposition ðm� 1Þ:

Sufficiency. Let criterion 1 be incomparably more important than the group of all
other criteria f2; 3; . . .;mg, let criterion 2 be incomparably more important than the
group of the successive criteria f3; . . .;mg, and so on. Choose two arbitrary vectors
y0; y00 2 Rm satisfying the inequality y01 [ y001. To prove proposition (1), it is nec-
essary to check that the relationship y0 � y00 holds.

If, in addition to the inequality y01 [ y001, we have y0i = y00i , i ¼ 2. . .;m; then the
relationship y0 � y00 holds by the Pareto axiom.

Consider the case where, together with the inequality y01 [ y001, the inequality
y0s\y00s takes place for some one or several s 2 f2; . . .;mg. Introduce a vector y such
that y1 ¼ y01, ys ¼ y0s � 1 for all s above and yk ¼ y00k � 1 for all other indexes
k. Obviously, the inequality y0 � y is satisfied. Hence, according to the Pareto
axiom, we obtain the relationship y0 � y: Only the first component of the vector y is
greater than that of the vector y00; and all other components of the former are smaller
than their counterparts in the vector y00: It follows that y � y00; since criterion 1 is
incomparably more important than the collection of all other criteria. Due to the
transitivity of the relation �, the relationships y0 � y and y � y00 yield the desired
result y0 � y00:

In a similar manner, using the Pareto axiom and the incomparably higher
importance of criterion 2 against the group of the successive criteria f3; . . .;mg, we
verify proposition (2), and so on.

Following this procedure, in the final analysis we establish the truth of propo-
sition ðm� 1Þ: Proposition ðmÞ follows from Axiom 3. ■
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3.2 Pareto Set Reduction Using Information Quantum

3.2.1 Simplified Definition of Information Quantum

For verifying that there is given information quantum, by Definition 3.1 the DM has
to compare infinitely many pairs of vectors y0; y00 2 Rm satisfying relationships
(3.1) with some positive parameters w�

i ; w
�
j . Obviously, such verification appears

non-implementable in practice. Actually, just like in the case of two criteria (see
Theorem 2.4), this verification is not required, since the preference relation pos-
sesses invariance. It suffices to check relationships (3.1) merely for a fixed pair of
vectors y0; y00; as indicated by the following result.

Theorem 3.4 Owing to the invariance of the preference relation �, the vectors
y0; y00 in Definition 3.1 can be assumed fixed. Particularly,

y0i ¼ w�
i for all i 2 A;

y0j ¼ �w�
j for all j 2 B;

y0s ¼ 0 for all s 2 InfA[Bg;
ð3:3Þ

and y00 ¼ 0m.
The proof involves the same scheme as in Theorem 2.4.
Since the preference relation � is invariant with respect to a linear positive

transformation, we use Theorem 3.4 for introducing a simplified definition of an
information quantum. Actually, it is equivalent to Definition 3.1.

Definition 3.3 Let A;B � I; where A 6¼ £, B 6¼ £, and A\B ¼ £. We say that
there is an information quantum about the DM’s preference relation with two given
groups of criteria A and B together with two collections of positive parameters w�

i
for all i 2 A and w�

j for all j 2 B if a vector y0 of form (3.3) satisfies the relationship
y0 � 0m.

For instance, if the vector ð0:7;�0:3; 1Þ is preferred to the vector ð0; 0; 0Þ; then
the group composed of criteria 1 and 3 is more important than the group composed
of criterion 2 only, and the corresponding degrees of compromise are

h12 ¼ 0:3
0:7þ 0:3

¼ 0:3; h32 ¼ 0:3
1þ 0:3

	 0:23:

3.2.2 Pareto Set Reduction Based on Information Quantum

An information quantum being available, one can apply the next theorem to
eliminate from the Pareto set the vectors that are not selectable for sure.
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Let us introduce the following convenient term. Namely, let ai 2 Rm; ki 2
R; i ¼ 1; 2; . . .; n: A linear combination

Pn
i¼1

kiai will be called the N-combination if

ðk1; k2; . . .; knÞ� 0n.

Theorem 3.5. Assume that A;B � I; where A 6¼ £, B 6¼ £, A\B ¼ £, and
there is a given information quantum about the DM’s preference relation with two
given groups of criteria A and B together with the collections of positive param-
eters w�

i for all i 2 A and w�
j for all j 2 B: Then for any set of selectable vectors

CðYÞ we have

CðYÞ � P̂ðYÞ � PðYÞ; ð3:4Þ

where PðYÞ is the set of Pareto optimal vectors in the multicriteria problem with the
initial set of feasible alternatives X and the initial vector criterion f ; while P̂ðYÞ is
the set of feasible vectors corresponding to the set of Pareto optimal alternatives in
the multicriteria problem with the set X and the new p-dimensional vector criterion
g; p ¼ m� jBj þ jAj � jBj (i.e., P̂ðYÞ ¼ f ðPgðXÞÞÞ composed of all components fi of
the vector criterion f that satisfy i 2 InB and of the components

gij ¼ w�
j fi þw�

i fj for all i 2 A and all j 2 B; ð3:5Þ

or

g0ij ¼ hijfi þð1� hijÞfj for all i 2 A and all j 2 B: ð3:50Þ

□ I. Denote by K the acute convex cone of the cone preference relation �. By
hypothesis, the vector y0 described by equalities (3.3) satisfies the relationship
y0 � 0m. The latter is equivalent to the inclusion y0 2 K: According to Theorem 2.1,
we have the inclusion Rm

þ � K:
Introduce the set M as the collection of all N-combinations of a collection of

vectors e1; e2; . . .; em; y0; where e1; e2; . . .; em are the unit vectors of space Rm. The
set M is a convex cone not containing the origin, since the coefficients of the linear
combinations cannot be zero simultaneously.

Moreover, M is an acute cone. If we suppose the opposite, then there exist two

N-combinations y ¼ Pm
i¼1

kiei þ kmþ 1y0 and �y ¼ Pm
i¼1

k0ie
i þ k0mþ 1y

0; such that their

sum

y� y ¼
Xm
i¼1

ðki þ k0iÞei þðkmþ 1 þ k0mþ 1Þy0 ¼ 0m
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is the N-combination too. If kmþ 1 þ k0mþ 1 ¼ 0; then the last system of equation
gives ki þ k0i ¼ 0 for all i ¼ 1; 2; . . .;m: That is impossible, since y� y is the N-
combination. If kmþ 1 þ k0mþ 1 [ 0; then ki þ k0i\0 for all i 2 A that is impossible
too.

Introduce the dual1 cone (without the origin) for the cone M:

C ¼ fy 2 Rmj hz; yi= 0 for all z 2 Mgnf0mg:

According to duality theory of convex analysis (see [62]), the generators of the
cone C are the inner normals to the ðm� 1Þ-dimensional faces of the cone M: And
conversely, the generators of the cone M are the inner normals to the ðm� 1Þ-
dimensional faces of the cone C:

II. Two cases are possible, namely, jAj[ 1 and jAj ¼ 1: In the first case, the
generators of the coneM are all vectors e1; e2; . . .; em; y0; since none of these vectors
can be expressed as the N-combination of the other vectors from this collection. In
the second case (when A ¼ fig), the vector ei can be expressed as the N-combi-
nation of the vector y0 and all vectors es with s 2 B: Hence, here the generators of
the cone M are the vectors e1; e2; . . .; em; y0 except the vector ei. Next, we analyze
these cases by turn.

Since the generators of the cone M are the vectors e1; e2; . . .; em; y0; then the set
of nonzero solutions to the system of linear homogeneous inequalities

hei; yi= 0 for all i 2 I;

hy0; yi= 0; ð3:6Þ

coincides with the dual cone C:
Find the fundamental system of solutions to the system of linear inequalities

(3.6). It must be a system of vectors whose set of linear nonnegative combinations
matches the solution set of the system of inequalities (3.6). And none vector of the
fundamental system can be represented as the N-combination of the other vectors in
this system.

At the beginning, specify some collection of solutions to the system of linear
inequalities (3.6). First of all, note that for i 2 InB each unit vector ei of space Rm

solves (3.6). Next, introduce the vectors

eij ¼ w�
j e

i þw�
i e

j for all i 2 A and all j 2 B:

The components of these vectors are nonnegative, and therefore they all satisfy
the inequality hei; yi= 0 for each i 2 I: Moreover, they satisfy the last inequality
hy0; yi= 0 in (3.6), since

1Dual cones are also considered in Sect. 4.3.
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hy0; eiji ¼ y0iw
�
j þ y0jw

�
i ¼ 0 for all i 2 A and j 2 B:

Consequently, the collection composed the vectors ei for all i 2 InB and the
vectors eij for all i 2 A and j 2 B actually belongs to the dual cone C: In addition, as
easily checked, none of the vectors from this collection can be represented as the N-
combination of the other vectors. The total number of all vectors in this collection is
p ¼ m� jBj þ jAj � jBj:

For verifying that the above collection of vectors forms the fundamental system
of solutions to the system of linear inequalities (3.6), it remains to make sure that
(3.6) do not have other solutions except all nonnegative linear combinations of the
vectors of this collection.

To this end, together with (3.6), consider the corresponding system of (m + 1)
linear equations

hei; yi ¼ 0 for all i 2 I;

hy0; yi ¼ 0:
ð3:7Þ

The desired fundamental system of solutions to the system of linear inequalities
(3.6) is contained among the one-dimensional solutions to the subsystems of the
linear equations (3.7).

In the collection of the vectors e1; e2; . . .; em; y0 answering (3.7), we are con-
cerned with the subcollections of rank m − 1. Exactly the subsystems answering
these subcollections have one-dimensional solutions. Among the obtained
one-dimensional solutions, choose the ones satisfying the system of inequalities
(3.6). The resulting vectors form the required fundamental system of solutions to
the system of inequalities (3.6).

Since elimination of any pair of vectors from the collection e1; e2; . . .; em; y0 leads
to a subsystem of rank m − 1, let us successively remove two equations from (3.7).

If the last equation of (3.7) is among the removed ones, for obtaining the
one-dimensional solutions one has to eliminate another equation of the form
hei; yi = 0: The resulting subsystems possess the unit vectors e1; e2; . . .; em as their
solutions within a positive factor. Clearly, in this collection, the only vectors that
satisfy the system of inequalities (3.6) are the ones with indexes not belonging to B:

Let the subsystem includes the last equation of (3.7). If any two equations of the
form hei; yi = 0 for i 2 A and he j; yi = 0 for j 2 B are removed, then the resulting
“truncated” subsystems among their nonzero solutions have only the
one-dimensional solutions. Among them, choose the vectors eij for all i 2 A and all
j 2 B: All these vectors satisfy the system of inequalities (3.6), as shown earlier. By
eliminating the pairs of equations hei; yi = 0 with index i belonging to the set A or B
only, we will not construct the subsystems having nonzero solutions. If the removed
equations are only of the form hei; yi = 0 for i 2 InðA[BÞ; then we obtain no
additional nonzero one-dimensional solutions.
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This means that the collection of vectors compiled from ei for all i 2 InB and eij

for all i 2 A and all j 2 B forms the fundamental system of solutions to the system
of linear inequalities (3.6) and any solution to (3.6) can be represented as the
nonnegative linear combination of the vectors from this collection. In the sequel,
this collection will be denoted by a1; a2; . . .; ap. Consideration of the first case is
complete.

Let us treat the second case in a few words. For A ¼ fig, the line of reasoning is
same yet somewhat simpler than before. In this case, we have to consider a system
of m equations that differs from (3.7) in the absence of the equation hei; yi = 0
corresponding to the unit vector ei. This fact explains why it is necessary to
eliminate only one equation from (3.7) to get the same fundamental system of
solutions to the system of linear inequalities (3.6) as in the first case.

III. According to the above result, the solution set to the system of linear
inequalities (3.6), i.e., the cone C coincides with the set of all N-combinations of the
vectors a1; a2; . . .; ap. Therefore, for the vector z the inclusion z 2 C takes place if
and only if this vector can be represented as some N-combination of the vectors
from the above-mentioned collection.

Owing to the last circumstance, for an arbitrary fixed vector y 6¼ 0m, the
inequalities

hz; yi= 0 for all z 2 C ð3:8Þ

appear equivalent to the inequalities

hai; yi� 0 ; i ¼ 1; 2; . . .; p; ð3:80Þ

where the sign � indicates strict inequality at least for one index i 2 f1; 2; . . .; pg .
Really, each vector z 2 C can be expressed as some N-combination of the vectors
a1; a2; . . .; ap, e.g., z ¼ k1a1 þ k2a2 þ � � � þ kpap . And if the vector y satisfies
inequalities (3.8′), then through multiplying these inequalities by the nonnegative
numbers k1; k2; . . .; kp and performing the termwise addition of the resulting
inequalities, we get

Xp
i¼1

kia
i; y

* +
¼ hz; yi= 0

from (3.8). Conversely, inequality (3.8) implies inequality (3.8′), since ai 2 C for
all i ¼ 1; 2; . . .; p:

Inequalities (3.8′) cannot hold as equalities all simultaneously. Indeed, if
inequalities (3.8′) hold as equalities for the nonzero vector y; then these equalities
also take place for the opposite vector �y: Hence, the cone dual to C is not acute.
But this dual cone has the form
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M ¼ fy 2 Rmjhz; yi= 0 for all z 2 Cgnf0mg; ð3:9Þ

since C is dual to the cone M:2 Thereby, we have arrived at a contradiction: the
cone M is not acute. This means that, for the nonzero vector y; inequalities (3.8′)
cannot hold as equalities all simultaneously.

Based on the established equivalence of inequalities (3.8) and (3.8′), from (3.9)
we deduce that

y 2 M , hai; yi� 0; i ¼ 1; 2; . . .; p ð3:10Þ

IV. Let us proceed to the final stage of the proof. The inclusions

Rm
þ � M � K

imply

Ndom Y � P̂ðYÞ � PðYÞ; ð3:11Þ

where

P̂ðYÞ ¼ fy� 2 Y j there exists no y 2 Y such that y� y� 2 Mg

is the set of nondominated elements of the set Y ordered by the cone relation with
the acute convex cone M:

Choose arbitrarily y ¼ f ðxÞ; y� ¼ f ðx�Þ such that f ðxÞ 6¼ f ðx�Þ for some x; x� 2
X: Owing to equivalence (3.10), the inclusion f ðxÞ � f ðx�Þ 2 M is true if and only if

hai; f ðxÞ � f ðx�Þi� 0; i ¼ 1; 2; . . .; p;

or, after trivial transformations,

hai; f ðxÞi� hai; f ðx�Þi; i ¼ 1; 2; . . .; p:

Using the specific form of the vectors a1; a2; . . .; ap, rewrite the last inequalities
as

gðxÞ� gðx�Þ;

where g is the p-dimensional vector function mentioned in the statement of
Theorem 3.5. Subsequently, P̂ðYÞ ¼ f ðPgðXÞÞ; i.e., P̂ðYÞ forms the set of all vec-
tors corresponding the set of Pareto optimal alternatives in the multicriteria choice
problem with the initial set of feasible alternatives X and the vector criterion g:

2If M represents a polyhedral cone, then the cone M is dual to the dual cone C, see [57].
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To finish the proof of inclusions (3.4), it remains for any CðYÞ to add the
inclusion CðYÞ � Ndom Y to (3.11), which actually holds by Lemma 1.2.

And finally, in formula (3.4) the functions gij of form (3.5) can be replaced by g0ij
of form (3.5′): the latter are obtained from the former using the division by the
positive constant w�

i þw�
j . ■

One may easily reformulate this result in terms of alternatives. Notably, the
following theorem is valid.

Theorem 3.5 (in terms of alternatives). Assume that there is a given information
quantum about the DM’s preference relation with the two groups of criteria A and
B; and the collections of positive parameters w�

i for all i 2 A and w�
j for all j 2 B:

Then for any set of selectable alternatives CðXÞ we have

CðXÞ � PgðXÞ � Pf ðXÞ; ð3:12Þ

where Pf ðXÞ is the set of Pareto optimal alternatives in the multicriteria problem
with the set of feasible alternatives X and the vector criterion f ; while PgðXÞ is the
set of Pareto optimal alternatives in the problem with the set X and the new p-
dimensional vector criterion g stated in the previous theorem.

According to the established result, the new vector criterion g consists of p ¼
m� jBj þ jAj � jBj= m components. Hence, the number of new criteria may
coincide with the number m of “old” criteria or exceed it.

Corollary 3.1 Under the hypothesis of Theorem 3.5, the equality p ¼ m holds if
and only if jAj ¼ 1:

□ Let p ¼ m� jBj þ jAj � jBj ¼ m: Then jAj � jBj ¼ jBj; and therefore jAj ¼ 1:
Conversely, if jAj ¼ 1; then p ¼ m� jBj þ 1 � jBj ¼ m: ■

Example 3.1 Consider the multicriteria choice problem with ten criteria (m ¼ 10Þ,
where a certain half of the criteria is more important than the other, i.e., jAj ¼
jBj ¼ 5: In this case, by Theorem 3.5 we have p ¼ 10� 5þ 5 � 5 ¼ 30: And so, the
new vector criterion g contains the five old criteria and the twenty five new ones
calculated by formula (3.5).

The next result shows under which conditions the number of components in the
new vector criterion is maximum possible.

Corollary 3.2 Under hypotheses of Theorem 3.5, the maximum value of p is
reached if

jAj ¼ mþ 1
2

� �
; jBj ¼ m� jAj;

where [ � ] denotes the integer part operator.
□ Let x ¼ jAj; y ¼ jBj: Consider the maximization problem
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p ¼ m� yþ xy ! max

subject to the condition xþ y5m: Obviously, the maximum in this optimization
problem is reached only under the equality xþ y ¼ m: Using the latter, express y
through x and substitute the result into p to obtain p ¼ m� ðm� xÞþ xðm� xÞ ¼
xðmþ 1� xÞ: This quadratic function of one variable x takes the maximum value at
the point x ¼ mþ 1

2 : If m is an odd number, then x becomes an integer. For an even
number m; the integer maximum is reached at the closest integer jAj ¼ mþ 1

2

� �
(just

like at jAj ¼ mþ 2
2

� �Þ. ■
Corollary 3.2 demonstrates that, in Example 3.1 with m ¼ 10; the maximum

possible number of components in the new vector criterion makes up 30, being
reached if a certain half of criteria is more important than the other or if a certain
group of six criteria is more important than the residual group of four criteria.

Theorem 2.7 has established the invariance of inclusions (2.12) and (2.15) with
respect to a linear positive transformation of criteria in the case of an elementary
information quantum. Interestingly, the formulas used to define the degrees of
compromise and recalculate the new criteria are identical for two criteria and two
groups of criteria. And so, the arguments adopted in the proof of Theorem 2.7 can
be involved in the case of two groups of criteria. This gives the following result.

Theorem 3.6 Inclusions (3.4) and (3.12) are invariant with respect to a linear
positive transformation of the criteria f1; f2; . . .; fm.

Hence, Theorem 3.5 can be applied to all multicriteria choice problems where
the above criteria are measured in quantitative scales (i.e., interval scales, ratio
scales and difference scales).

3.3 Geometrical Illustrations to the Problem with Three
Criteria

3.3.1 Tricriteria Problem in General Form

An information quantum about the DM’s preference relation in the bicriteria
problem may only have the form where the groups of criteria represent singletons.
In this case, the number of new criteria (the parameter p) coincides with the number
of “old” criteria, i.e., p ¼ 2: In other words, in the bicriteria problem the consid-
eration of an information quantum using Theorem 3.5 does not increase the number
of criteria (as a matter of fact, the same conclusion follows from the results of
Chap. 2).

Consider the problem with m ¼ 3: Assume that there is an information quantum
in which the group A consists of f1; f2 and the group B of the criterion f3. According
to Definition 3.3, this means that the inclusion y0 � 03 holds for some vector
y0 ¼ ðw�

1;w
�
2;�w�

3Þ ¼ OD under certain positive parameters w�
1;w

�
2;w

�
3
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(see Fig. 3.1). The specific values of these parameters make no sense for further
exposition.

The nonnegative octant R3
þ is the acute convex cone OABC (without the origin)

generated by the unit vectors e1 ¼ OA; e2 ¼ OB and e3 ¼ OC: This cone has three
two-dimensional facets representing the corresponding parts of the coordinate
planes OBC; OAC and OAB: The convex cone M generated by the unit vectors of
space R3 and the vector y0 is an acute convex cone (without the origin) having four
two-dimensional facets, namely, OBC; OAC; OAD and OBD: The normal vectors
(the inner normal of the cone MÞ, namely, the vectors a1; a2; a3; a4, represent the
generators of the cone C that is dual to M: Here

a1 ¼ e1?OBC; a2 ¼ e2?OAC; a3?OAD; a4?OBD:

Since the three-dimensional cone M has four two-dimensional facets, then the
dual cone C is generated by the four vectors e1; e2; a3; a4. Hence, in this case, the
new vector criterion g contains four components. Really, it follows from
Theorem 3.5 that p ¼ 3� 1þ 2 � 1 ¼ 4:

In the current example, the initial number of criteria m ¼ 3 has been increased
by 1 after taking into account the available information quantum.

Now, consider another case. Let one of the criteria be more important than the
group of the other two criteria. As easily calculated, p ¼ 3� 2þ 1 � 2 ¼ 3; i.e., the
number of the new criteria coincides with the number of the “old” ones. The same
situation occurs if one of the criteria is more important than the other.

In fact, we have exhausted all possible separations of the criteria in terms of their
importance, and it is possible to draw the following conclusion. In the tricriteria
problem, taking into account an information quantum based on Theorem 3.5 may
increase the number of criteria only by 1 and only if the group of two criteria is
more important that the third criterion.

2e

A
y′

4a3a

1e

3e

D

C

0
B

Fig. 3.1 Geometry of the
tricriteria problem
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3.3.2 Case of Linear Criteria

Consider the tricriteria problem where the set of feasible alternatives is a subset of
the vector space R3 (viz., X � R3 ) and all criteria are linear

f1ðxÞ ¼ hc1; xi; f2ðxÞ ¼ hc2; xi; f3ðxÞ ¼ hc3; xi

where c1; c2; c3; x 2 R3. The cone generated by the vectors c1; c2; c3 (the gradients
of the linear functions f1; f2; f3 ) is called the cone of goals. Let these vectors be
noncomplanar and have the form illustrated by Fig. 3.2. They generate a certain
three-dimensional three-facet cone.

Assume that criterion 1 is more important than the group composed of criteria 2
and 3 with the degrees of compromise h12 ¼ h13 ¼ 0:5: In this case, by
Theorem 3.5, taking into account such information requires considering a new
multicriteria problem with criterion 1 of the same form and the new criteria of the
form g12ðxÞ ¼ hc2new; xi and g13ðxÞ ¼ hc3new; xi instead of the original less important
criteria 2 and 3 (see Fig. 3.3). Therefore, the cone of goals generated by the gra-
dients of the goal functions in the new multicriteria problem has three edges and
three facets (just like in the original multicriteria problem), but appears substantially
narrower than the initial cone generated by the vectors c1; c2 and c3.

And now, suppose that the group formed by criteria 2 and 3 is more important
than criterion 1, and the degrees of compromise make up h21 ¼ h31 ¼ 0:5:
According to Theorem 3.5, to take into account this information quantum, one has
to consider a new multicriteria problem with criteria 2 and 3 of the same form and

3c

2c

1c

0

Fig. 3.2 Cone of goals

2
newc

3
newc

3c

2c

1c

0

Fig. 3.3 Vectors
c1; c2; c3; c1new; c

2
new:
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the new criteria of the form g21 ¼ hc11; xi и g31 ¼ hc12; xi instead of the original
criterion 1, see Fig. 3.4.

Obviously, the cone of goals formed by the gradients c11; c12; c3; c4 of the
components of the new vector criterion has four generators and four facets.
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Fig. 3.4 Vectors
c1; c2; c3; c11; c12:
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Chapter 4
Pareto Set Reduction Using Elementary
Collections of Information Quanta

This chapter focuses on the application of some “simple” collections of information
quanta. We establish that some collections can be inconsistent. Therefore, first the
issue of consistency for an elementary collection of information quanta is consid-
ered, and then the corresponding definition is introduced and several consistency
criteria in different forms are obtained.

In addition, we suggest the notion of mutually dependent and mutually inde-
pendent information quanta, as well as formulate a series of results on Pareto set
reduction using some consistent collections of information quanta.

4.1 Consistent Collections of Information Quanta

4.1.1 Preliminary Analysis

Let A;B � I; where A 6¼ £;B 6¼ £;A\B ¼ £. According to Definition 3.3, by
specifying a pair of vectors y0; y00 2 Rm with the components

y0i � y00i ¼ w�
i for all i 2 A;

y00j � y0j ¼ w�
j for all j 2 B;

y0s ¼ y00s for all s 2 InðA[BÞ;

that satisfy the relationship y0 � y00, we mean that the group of criteria A is more
important than the group of criteria B with the two collections of positive param-
eters w�

i for all i 2 A and w�
j for all j 2 B: Since A 6¼ £ and B 6¼ £, the vector

y0 � y00 has at least one positive and one negative components. Introduce the set of
all such vectors, denoting it by
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Nm ¼ Rmn Rm
þ [ ð�Rm

þ Þ [ f0mg
� �

:

Assume that we have identified a pair of different vectors u; v 2 Rm such that, for
the DM, the vector u is preferable to the vector v: u �Y v: By the transitivity axiom,
the last relationship is equivalent to u � v: Let u� v 2 Nm. Designate by A and B
the index sets of the positive and negative, respectively, components of the vector
u� v: Obviously, A 6¼ £;B 6¼ £;A\B ¼ £. Hence, a given arbitrary pair of
vectors u; v 2 Rm satisfying the relationships u � v and u� v 2 Nm can be treated
as information that the group of criteria A is more important than the group of
criteria B with the two corresponding collections of positive parameters. Thereby,
any pair of vectors u; v 2 Rm satisfying the relationship u� v 2 Nm may give a
certain information quantum about the DM’s preference relation under a specific
condition (viz., the relationship u � vÞ.

Now, assume that there is a finite collection of such pairs of vectors:

ui; vi 2 Rm; ui � vi 2 Nm; i ¼ 1; 2; . . .; k: ð4:1Þ

Then the following question seems natural. May these pairs of vectors specify a
certain collection of information quanta? Simple examples show that, in the general
case, the answer is negative.

Example 4.1 Let m ¼ 2; k ¼ 2 and

u1 ¼ ð1;�3Þ; u2 ¼ ð�2; 1Þ; v1 ¼ v2 ¼ 02:

Suppose that this collection of two pairs of vectors defines two elementary
information quanta so that the relationships u1 � v1 and u2 � v2 hold. The term-
wise addition of these relationships yields u1 þ u2 � v1 þ v2 or, equivalently,
ð�1;�2Þ � 02. On the other hand, we have the relationship 02 � ð�1;�2Þ; since
02 �ð�1;�2Þ: The two relationships ð�1;�2Þ � 02 and 02 � ð�1; �2Þ are
inconsistent with the asymmetrical property of the relation �. And so, for the above
pair of vectors the relationships u1 � v1 and u2 � v2 do not hold simultaneously for
any binary relation satisfying Axioms 2–4.

4.1.2 Definition of Consistent Collection of Vectors

Definition 4.1 Consider a given collection of the pairs of vectors (4.1). We say that
this collection is consistent if there exists at least one binary relation � obeying
Axioms 2–4 such that the relationships us � vs; s ¼ 1; 2; . . .; k; hold. Whenever the
consistent pairs of vectors define a corresponding collection of information quanta,
this information will be called consistent.
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The consistency of the pairs of vectors (4.1) is a necessary condition under which
there exists a given collection of information quanta at least in one multicriteria
choice problem (at least for one DM).

While solving real multicriteria choice problems arising in applications, one
disposes of a whole family of different quanta and the vectors specifying them may
form an inconsistent collection. This is due to the fact that the existing information
about the DM’s preference relation generally contains uncertainty, merely reflecting
his desired (not actual) preference pattern. Moreover, the DM himself (without
wishing!) sometimes slightly deviates from the class of multicriteria choice prob-
lems satisfying Axioms 2–4; in this case, the DM’s behavior should be corrected by
announcing the inconsistency of his preferences expressed via the collection of
information quanta.

In any event, if the choice process based on information about the DM’s pref-
erence relation involves a collection of information quanta, this collection must be
verified for consistency. Such a verification procedure requires appropriate tools,
since Definition 4.1 is of no assistance here.

4.1.3 Criteria of Consistency

In this subsection, we give three criteria of consistency for a finite collection of
vectors specifying a collection of information quanta. One of them has geometrical
form, another is stated in algebraic terms, and the third criterion represents an
assertion facilitating further program coding.

Theorem 4.1 (geometrical criterion of consistency) . For a collection of the pairs
of vectors (4.1) to be consistent, a necessary and sufficient condition is that the cone
generated by the vectors

e1; e2; . . .; em; u1 � v1; u2 � v2; . . .; uk � vk ð4:2Þ

is acute.
□ Using Definition 4.1 and Theorem 2.1, we conclude that a collection of

vectors (4.1) is consistent if and only if there exists a cone relation with an acute
convex cone K (without the origin) satisfying the relationships

Rm
þ � K; us � vs 2 K; s ¼ 1; 2; . . .; k: ð4:3Þ

Necessity. Let a collection of the pairs of vectors (4.1) be consistent. According
to the aforesaid, then there exists an acute convex cone K (without the origin)
satisfying (4.3). The differences of the vectors us � vs; s ¼ 1; 2; . . .; k; together with
e1; e2; . . .; em belong to the cone K and generate a certain convex subcone M of the
cone K. A subcone of an acute cone is acute, too; hence, the collection (4.2)
generates an acute convex cone.
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Sufficiency. Consider the convex cone (without the origin) generated by vectors
(4.2). Denote it by M. This cone is acute by the data. Since all unit vectors
e1; e2; . . .; em belong to M, we have Rm

þ � M: Therefore, relationships (4.3) for
K = M hold for the cone under consideration. ■

A vector z� 2 Rm is called N-solution of the system of linear equations Az ¼ b
with A ¼ ðaijÞn�m and b 2 Rm if the equality Az� ¼ b as well as the inequality
z� � 0m hold.

Theorem 4.2 (algebraic criterion of consistency). For a collection of the pairs of
vectors (4.1) to be consistent, a necessary and sufficient condition is that the system
of linear homogeneous equations

Xm
i¼1

kie
i þ

Xk
s¼1

lsðus � vsÞ ¼ 0m ð4:4Þ

has no N-solution k1; k2; . . .; km; l1; l2; . . .; lk.
1

□ Necessity. In the contrary, if the system of linear equations (4.4) has the N-
solution ðk; lÞ; where k ¼ ðk1; k2; . . .; kmÞ; l ¼ ðl1; l2; . . .; lkÞ; then �ðk; lÞ is the
N-solution too. This means that the cone generated by the vectors (4.2) is not acute.
Due to Theorem 4.1 the collection (4.1) is inconsistent.

Sufficiency. If the collection (4.1) is inconsistent then in according to
Theorem 4.1 the cone M generated by the vectors (4.2) is not acute. In this case,
there exists nonzero vector y 2 Rm such that

y ¼
Xm
i¼1

kiei þ
Xk
s¼1

lsðus � vsÞ 2 M; �y ¼
Xm
i¼1

k0ie
i þ

Xk
s¼1

l0sðus � vsÞ 2 M;

where ðk; lÞ� 0mþ k and ðk0; l0Þ � 0mþ k. Since yþð�yÞ ¼ 0m 2 M; we have

Xm
i¼1

ðki þ k0iÞei þ
Xk
s¼1

ðli þ l0sÞðus � vsÞ ¼ 0m

for the vector ðkþ k0; lþ l0Þ � 0mþ k . Thus, this vector is N-solution of the linear
system (4.4). ■

Remark 4.1 Combining Theorems 4.1 and 4.2 we obtain that the cone M generated
by the vectors (4.2) is acute if and only if the system of homogeneous linear
equations (4.4) has no N-solution.

Consider the trivial case of a single information quantum, i.e., k ¼ 1: The system
of linear equations (4.4) acquires the form

1It means that, in these system of equations (if solvable at all), either all numbers
k1; k2; . . .; km; l1;l2; . . .; lk are zero or at least one of them is negative.
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Xm
i¼1

kie
i ¼ �l1ðu1 � v1Þ: ð4:5Þ

Assume that this system has the N-solution k1; k2; . . .; km; l1. If l1 ¼ 0; then
(4.5) becomes the equality

Pm
i¼1 kie

i ¼ 0m, where at least one coefficient
k1; k2; . . .; km is positive. But then this equality is false.

Let l1 6¼ 0: The vector u1 � v1 has at least one positive component; therefore,
the vector �l1ðu1 � v1Þ; which appears in the right-hand side of (4.5) and contains
at least one negative component, cannot be expressed as the nonnegative linear
combination of the unit vectors e1; e2; . . .; em. Hence, equality (4.5) is again
impossible, and the system of linear equations (4.4) has no N-solutions.

Thus, we arrive at the following result.

Corollary 4.1 If k = 1, then the pair of vectors inducing a corresponding quantum
is consistent. A collection of the pairs of vectors (4.1) may be inconsistent only if
this collection contains more than one pair.

For k ¼ 2; inconsistency may happen and this fact was demonstrated by
Example 4.1. In this example, the system of equations (4.4) has the form

k1 þ l1 þ l2ð�2Þ ¼ 0;

k2 þ l1ð�3Þþ l2 ¼ 0:

As easily checked, one of the N-solutions is k1 ¼ 3; k2 ¼ 1; l1 ¼ 1; l2 ¼ 2:

Corollary 4.2 Information in the form of two quanta stating that criterion i is more
important than criterion j with parameters wi;wj and criterion j is simultaneously
more important than criterion i with parameters w0

j;w
0
i is consistent if and only if

wi=wj [w0
i=w

0
j.

□ It suffices to prove this result for the two-dimensional vectors. Since there is
information in the form of the above quanta, we have the relationships ðwi;�wjÞ �
02 and ð�w0

i;w
0
jÞ � 02. According to Theorem 4.2, this collection is inconsistent if

and only if the system of linear equations

k1 þ l1wi � l2w
0
i ¼ 0;

k2 � l1wj þ l2w
0
j ¼ 0;

has the N-solution k1; k2; l1; l2. Clearly, the equalities l1 ¼ l2 ¼ 0 imply the
equalities k1 ¼ k2 ¼ 0; that is impossible. And so, without loss of generality, we
may suppose that, e.g., l2 6¼ 0: In this case, the system of linear equations is
equivalent to the inequalities
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l1
l2

5 w0
i

wi
;

w0
j

wj
5 l1

l2
;

which are by-turn equivalent to
w0
j

wj
; 5 w0

i
wi
; or wi

wj
5 w0

i
w0
j
: The last inequality is opposite

to the desired one wi=wj [w0
i=w

0
j, which must be the case, since in the beginning of

the proof we have hypothesized the inconsistency of the collection of the two
information quanta. ■

The geometrical meaning of Corollary 4.2 fully manifests itself in the case of the
linear criteria. Let m ¼ 2; n ¼ 2; f1ðxÞ ¼ hc1; xi, and f2ðxÞ ¼ hc2; xi, where
c1; c2; x 2 R2 (see Fig. 4.1).

Since criterion f1 is more important than criterion f2 (e.g., with h12 ¼ 0:4Þ, then
in the new multicriteria problem (whose Pareto set gives an upper estimate for the
desired set of selectable alternatives and vectors) criterion f2 is replaced by the new
second linear criterion with the gradient c2new. To obtain the end of this vector, we
should shift the end of c2 towards the end of c1 to the 40% length of the segment
between these ends. On the other hand, since criterion f2 is more important than
criterion f1 (let h21 ¼ 0:25Þ, the new first linear criterion has the gradient c1new whose
end is at the distance of the 25% length of the above segment from the end of the
vector c1 towards the end of the vector c2. The new vector criterion has the form
ðhc1new; xi; hc2new; xiÞ: Therefore, by taking into account such information, we
observe the mutual change of direction for both gradients, which can be treated as
“closer goals.”

Corollary 4.3 Consider two groups of criteria indexes is 2 I; js 2 I; s ¼
1; 2; . . .; k; fi1; . . .; ikg\ fj1; . . .; jkg ¼ £, where some (or even all) indexes in the
first group (just like in the second group) may be identical. A consistent collection is
formed by the pairs of vectors (4.1) where each vector us � vs has a positive
component with index is, a negative component with index js and all other com-
ponents equal to 0, s ¼ 1; 2; . . .; k:

□ Conjecture the opposite: the system of linear equations (4.4) has the N-
solution k1; k2; . . .; km; l1; l2; . . .; lk . First, consider the case with at least one
positive number among l1; l2; . . .; lk. In this case, the vector

Pk
s¼1 lsðus � vsÞ

contains at least one positive component among the ones belonging to the first
group. This contradicts the initial assumption that the sumPm

i¼1 kie
i þ Pk

s¼1 lsðus � vsÞ is the zero vector.
If all coefficients l1; l2; . . .; lk equal 0, the system of equations (4.4) turns intoPm
i¼1 kie

i ¼ 0m, where at least one of the coefficients ki is nonzero. But such a
system of equations has no nonzero solutions, which contradicts the initial
assumption. ■

Using similar considerations as in the proof of Corollary 4.3, we can establish a
more general result as follows.
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Corollary 4.4 A collection of the pairs of vectors (4.1) is consistent if it satisfies
the following conditions. In each vector us � vs, all components with the indexes
from the set As; As � I; are positive, all components with the indexes from the set
Bs; Bs � I; are negative, and all other components are equal to 0, s ¼ 1; 2; . . .; k;
and moreover the equality Ai \Bj ¼ £ holds for any pair of indexes
i; j 2 f1; 2; . . .; kg.

Now, formulate another criterion of consistency (more specifically, inconsis-
tency) for a collection of vectors.

Theorem 4.3 (criterion of inconsistency). For a collection of vectors (4.1) to be
inconsistent, a necessary and sufficient condition is that in the linear programming
problem

n1 þ n2 þ . . .þ nm þ nmþ 1 ! min,

k1 þ
Pk
s¼1

lsðus1 � vs1Þþ n1 ¼ 0;
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .:

km þ Pk
s¼1

lsðusm � vsmÞþ nm ¼ 0;

k1 þ . . .þ km þ l1 þ . . .þ lk þ nmþ 1 ¼ 1;
k1; k2; . . .; km = 0; n1; n2; . . .; nm; nmþ 1 = 0; l1; l2; . . .; lk = 0;

ð4:6Þ

the optimal value of the goal function is 0.
□ Clearly, the equality constraints in the linear programming problem (4.6)

without the artificial variables n1; n2; . . .; nmþ 1 and the equality
k1 þ . . .þ km þ l1 þ . . .þ lk ¼ 1 coincides with the system of linear equa-
tions (4.4). By Theorem 4.3, a collection of the pairs of vectors (4.1) is inconsistent
if and only if the system of linear homogeneous equations (4.4) has at least one N-
solution. By-turn, this holds if and only if the linear programming problem (4.6) has
a feasible solution where all artificial variables ni ¼ 0; i ¼ 1; 2; . . .;mþ 1: The last
condition is equivalent to the zero optimal value of the goal function in the linear
programming problem (4.6). ■

1c

1
newc

2
newc

2с

Fig. 4.1 Vectors c1; c2; c1new; c
2
new
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Remark 4.2 Note that the linear programming problem (4.6) always has an optimal
solution, since the values of its goal function are bounded below by 0. Therefore,
the optimal value of this function surely exists, being 0 or strictly greater than 0.

4.1.4 Essential Information About Relative Importance
of Criteria

We have emphasized earlier that, in practice, the process of information acquisition
in the form of quanta is often sequential (at the beginning, one quantum is obtained,
then another, and so on). In this case, it is crucial to identify next quanta that
contradict the previous ones. Moreover, it is very useful to distinguish between
essential and nonessential information. For instance, if we already know that cri-
terion i is more important than criterion j with the degree of compromise 0.5, then a
similar message with a smaller coefficient contains nothing new (essential) in
comparison with the previous message and can be therefore ignored.

Consider a given consistent collection of the pairs of vectors (4.1). Supplement
this collection with another pair of vectors ukþ 1; vkþ 1 such that
ukþ 1 � vkþ 1 2 Nm. As a result, we obtain the “expanded” collection of the pairs of
vectors

ui; vi 2 Rm; ui � vi 2 Nm; i ¼ 1; 2; . . .; kþ 1: ð4:7Þ

Definition 4.2 For a consistent collection of the pairs of vectors (4.1), a pair
ukþ 1; vkþ 1 is called essential if the convex cone generated by the unit vectors
e1; e2; . . .; em together with the vectors ui � vi; i ¼ 1; 2; . . .; kþ 1; does not coincide
with the convex cone generated by the same unit vectors and the vectors
ui � vi; i ¼ 1; 2; . . .; k:

The meaning of this definition is that essential additional information about the
DM’s preference relation must modify the existing cone preference relation.
Obviously, the non-coincident cones defined by collections (4.1) and (4.7) may
occur only if the cone generated by the expanded collection is wider than the one
generated by the original collection of k vectors.

Theorem 4.4 (criterion of consistency and essentiality). Let a collection of the
pairs of vectors (4.1) be consistent. For the expanded collection (4.7) to be con-
sistent and simultaneously the pair of vectors ukþ 1; vkþ 1 to be essential, a nec-
essary and sufficient condition is that the two systems of linear inhomogeneous
equations

Xm
i¼1

kie
i þ

Xk
s¼1

lsðus � vsÞ ¼ �ðukþ 1 � vkþ 1Þ ð4:8Þ
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have no nonnegative solution k1; k2; . . .; km; l1; l2; . . .; lk. Here one system of
equations corresponds to + and the other to �.

□ First, we deal with the issue of consistency. According to the algebraic
criterion of consistency, the expanded collection of vectors (4.7) is consistent if and
only if the system of linear homogeneous equations

Xm
i¼1

kie
i þ

Xk
s¼1

lsðus � vsÞþ l
kþ 1

ðukþ 1 � vkþ 1Þ ¼ 0m ð4:9Þ

has no N-solution. Check that this condition is equivalent to the absence of non-
negative solutions for the system of equations (4.8–) (the system of equations (4.8)
with the minus sign in the right-hand side). Really, if the system of equations (4.9)
has no N-solution, then the system of equations (4.8–) is not solvable in the non-
negative variables. Conversely, if the second system of the linear equations [i.e.,
(4.8–)] has no nonnegative solutions, while the first system has the N-solution
k1; k2; . . .; km; l1; l2; . . .; lk, we arrive at contradiction. Indeed, the case lkþ 1

¼ 0 is
impossible, since the collection of vectors (4.1) is consistent; hence, l

kþ 1
[ 0:

Then, by dividing both sides of (4.9) by lkþ 1, we establish that the system of
equations (4.8−) has a nonnegative solution. This result contradicts the initial
assumption. The first part of Theorem 4.4 (dedicated to consistency) is proved.

Now, we argue the second part associated with the relevance of the pair of vectors
ukþ 1; vkþ 1. According to Definition 4.2, this pair of vectors is essential if and only if
the vector ukþ 1 � vkþ 1 does not belong to the convex cone generated by the vectors
e1; e2; . . .; em; u1 � v1; u2 � v2; . . .; uk � vk. The last holds if and only if the system
of linear homogeneous equations (4.8+) has no nonnegative solution. ■

Remark 4.3 Theorem 4.4 consists of two parts, one relating to the consistency of
the pair of vectors ukþ 1; vkþ 1 and the other to their essence. As follows from the
proof, the first part of the theorem concerns the existence of a nonnegative solution
to the system of equations (4.8−), while the issue of essence is settled in terms of
the solutions to the system of equations (4.8+).

4.2 Consideration of Two Elementary Information
Quanta

4.2.1 Case of Two Mutually Independent Quanta

Consider four given non-empty collections of criteria indexes A1, B1, A2, and B2

such that A1 \B1 ¼ £ and A2 \B2 ¼ £. Suppose that the group of criteria A1 is
more important than the group B1 with definite collections of the parameters and,
simultaneously, the group of criteria A2 is more important than the group B2 with
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the corresponding collections of the parameters. In other words, there are two
information quanta. We say that these quanta are mutually independent if

A1 \A2 ¼ £;B1 \B2 ¼ £;A1 \B2 ¼ £;A2 \B1 ¼ £:

In a similar fashion, one may introduce the notion of mutual independence for an
arbitrary finite number of information quanta, requiring the pairwise disjointness of
all groups of criteria involved.

For Pareto set reduction using two mutually independent elementary information
quanta, it is necessary to apply Theorem 3.5 twice, which gives the recalculation
formulas for the vector criterion. In the beginning, this theorem can be applied, e.g.,
for taking into account the first quantum (i.e., to the groups of criteria A1 and B1 ).
As a result, instead of the criteria of the less important group B1, we calculate the
new criteria by formula (3.5). Next, this theorem is applied to the second group of
criteria A2 and B2, which gives the recalculated criteria of the group B2 using the
same formula (3.5). The described procedure yields the new vector criterion, in
terms of which the set of Pareto optimal alternatives (vectors) represents an upper
estimate for the unknown set of selectable alternatives CðXÞ (selectable vectors
CðYÞÞ.

Now, consider situation where criterion i is more important than criterion j and,
by-turn, the latter criterion is more important than criterion k; i 6¼ j; j 6¼ k; i 6¼ k:
Here we also deal with two elementary information quanta, but they are not
mutually independent. Nevertheless, Theorem 2.5 can be applied twice for taking
this collection into account and constructing the new vector criterion. Recall that
this theorem concerns consideration of an elementary information quantum. First,
one should recalculate criterion k for using information that criterion j is more
important than criterion k: And second, one should recalculate criterion j for using
information that criterion i is more important than criterion j: As a result, one
obtains the new vector criterion where all components (except j and kÞ remain the
same. The set of Pareto optimal alternatives (Pareto optimal vectors) in terms of the
new vector criterion is the refined upper estimate for the unknown set of selectable
alternatives (selectable vectors) that corresponds to these information quanta.

4.2.2 Case Where One of Two Criteria Is More Important
Than the Two Others

If several quanta are involved for Pareto set reduction, one should have the fol-
lowing aspect in mind. Let criterion i be more important than criterion j with the
degree of compromise hij and, in addition, let criterion i be more important than
criterion k (k 6¼ jÞ with the degree of compromise hik. Thereby, there is a given
collection of these two elementary information quanta, and such a situation
resembles the one where criterion i is more important than the group of criteria
fj; kg with the degrees of compromise hij and hik.
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By virtue of Theorem 3.1, if criterion i is more important than the group of
criteria fj; kg with the degrees of compromise hij and hik, respectively, then cri-
terion i is more important than each of criteria j and k separately with the same
degrees of compromise.

Now, let criterion i be more important than criteria j and k separately with the
degrees of compromise hij and hik. In this case, the DM is willing to lose separately
the quantity w�

j in terms of criterion j or the quantity w�
k in terms of criterion k for

gaining the quantity w�
i in terms of criterion i: As easily seen, this does not imply

that the DM agrees to lose simultaneously the quantities w�
j and w�

k in terms of
criteria j and k; respectively, as a compensation for gaining the quantity w�

i in terms
of criterion i: In other words, if criterion i is more important than each of criteria j
and k separately with the degrees of compromise hij and hik, respectively, then
generally criterion i is not more important than the group of criteria fj; kg with the
same degrees of compromise.

However, note that the higher importance of criterion i against each of criteria j
and k separately with the degrees of compromise hij and hik, respectively, implies
the higher importance of criterion i against the group of criteria fj; kg, but with
smaller degrees of compromise.

□ Really, the termwise addition of the relationships y0 � 0m and y00 � 0m, where
the vectors y0 and y00 are defined by the equalities

y0i ¼ w�
i ; y0j ¼ �w�

j ; y0s ¼ 0 for all s 2 Infi; jg;

y00i ¼ �wi; y00k ¼ ��wk; y00s ¼ 0 for all s 2 Infi; kg;

yields the relationship y ¼ y0 þ y00 � 0m, where the vector y has the components

yi ¼ w�
i þ �wi; yj ¼ �w�

j ; yk ¼ ��wk; ys ¼ 0for alls 2 Infi; j; kg:

This means that criterion i is more important than the group of criteria fj; kg with
the degrees of compromise

h0ij ¼
w�
j

w�
i þ �wi þw�

j
\hij; h0ik ¼

�wk

w�
i þ �wi þ �wk

\hik:

■
The next result shows how the vector criterion should be recalculated for taking

into account a collection of the two information quanta.

Theorem 4.5 (in terms of vectors). Assume that there are given two information
quanta, one stating that criterion i is more important than criterion j with
parameters wi;wj and the other that criterion i is more important than criterion k
with parameters w0

i;w
0
k . Then for any set of selectable vectors CðYÞ we have the

inclusions
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CðYÞ�P̂ðYÞ � PðYÞ; ð4:10Þ

where P̂ðYÞ ¼ f ðPgðXÞÞ is the set of feasible vectors corresponding to the set of
Pareto optimal alternatives in the multicriteria problem with the initial set X and
the new ðmþ 1Þ-dimensional vector criterion g with the components

gj ¼ wjfi þwifj; gk ¼ w0
kfi þw0

ifk;

gmþ 1 ¼ wjw
0
kfi þwiw

0
kfj þw0

iwjfk;

gs ¼ fs for all s 2 Infj; kg:
ð4:11Þ

□ I. Denote by K the acute convex cone (without the origin) of the cone relation
�.

According to Definition 2.4, the existence of these information quanta means
that the relationships y0 � 0m and y00 � 0m hold, which is equivalent to the inclu-
sions y0 2 K and y00 2 K for the vectors y0 and y00 with the components

y0i ¼ wi; y0j ¼ �wj; y0s ¼ 0 for all s 2 Infi; jg;

y00i ¼ w0
i; y00k ¼ �w0

k; y00s ¼ 0 for all s 2 Infi; kg:

Due to Corollary 4.3 given collection of two information quanta is consistent.
Let M be the acute convex cone (without the origin) generated by the vectors
e1; . . .; em; y0; y00. This cone is generated by the same collection without the vector ei,
since the latter can be expressed as N-combination of the vectors e j; y0: Therefore,
the cone M coincides with the set of all N-combinations of the form

k1e
1 þ . . .þ ki�1e

i�1 þ k0iy
0 þ k00i y

00 þ kiþ 1e
iþ 1 þ . . .þ kme

m:

II. Now, we demonstrate that the cone M coincides with the set of nonzero
solutions to the system of linear homogeneous inequalities

ys = 0 for all s 2 Infj; kg;
wjyi þwiyj = 0;
w0
kyi þw0

iyk = 0;
wjw0

kyi þwiw0
kyj þw0

iwjyk = 0:

ð4:12Þ

To this end, find the fundamental system of solutions of this system of
inequalities by considering the corresponding system of linear equations

hes; yi ¼ 0 for all s 2 Infj; kg;
h�y0; yi ¼ 0;

h�y00; yi ¼ 0;

h�y; yi ¼ 0;

ð4:13Þ
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where the components of the vectors �y0;�y00;�y are defined by the equalities

�y0i ¼ wj;�y
0
j ¼ wi;�y

0
s ¼ 0 for all s 2 Infi; jg;

�y00i ¼ w0
k;�y

00
k ¼ w0

i;�y
00
s ¼ 0 for all s 2 Infi; kg;

�yi ¼ wjw
0
k;�yj ¼ wiw

0
k;�yk ¼ w0

iwj;�ys ¼ 0 for all s 2 Infi; j; kg:

System (4.13) contains (m + 1) linear equations, and any subset of ðm� 1Þ
vectors from the collection es for all s 2 Infj; kg, �y0;�y00;�y that form this system of
linear equations is linear independent. Hence, to construct the fundamental system
of solutions to the system of linear inequalities (4.12), it suffices to find the
one-dimensional nonzero solutions to all possible subsystems of (4.13) resulting
from (4.13) after elimination of some two equations. The solutions obtained by this
approach must satisfy the system of inequalities (4.12).

We start to remove sequentially two equations from system (4.13). First, con-
sider the case where each pair of the removed equations includes the last equation.
After elimination of the last two equations, we obtain the subsystem with the
nonzero solution ek. By removing the last equation together with equation (m–1),
we get the subsystem with the solution e j. Elimination from (4.13) the last equation
together with one of the equations hes; yi ¼ 0 for all s 6¼ i yields the subsystem that
has the solution es. If the last equation is removed together with hei; yi ¼ 0; then the
resulting subsystem has no nonzero solution satisfying the system of inequalities
(4.12).

Now, examine the case where system (4.13) is truncated by eliminating a pair of
equations that contains equation (m − 1). If we remove the preceding equation
together with equation (m − 1), the resulting subsystem has no nonzero solutions
satisfying the system of inequalities (4.12). After elimination of equation (m − 1)
together with another equation of the form hes; yi ¼ 0 for s 6¼ i; we obtain the
subsystem with the solution es. And elimination of equation (m–1) together with the
equation hei; yi ¼ 0 yields the subsystem with the solution y0:

Similarly, one may analyze the case where equation (m − 1) is eliminated
together with another equation of the form hes; yi ¼ 0: This gives one more nonzero
solution y00 for s ¼ i that satisfies the system of linear inequalities (4.12).

Note that no new solutions are obtained as the result of removing two equations
of the form hes; yi ¼ 0 from system (4.13).

We have found the collection of vectors e1; . . .; ei�1; y0; y00; eiþ 1; . . .; em gener-
ating the cone of solutions to the system of linear inequalities (4.12). This collection
coincides with the collection of vectors generating the cone M. Thereby, it is shown
that the set of nonzero solutions to the system of linear inequalities (4.12) coincides
with the cone M.

III. The inclusions Rm
þ � M � K obviously imply the inclusions
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NdomY � P̂ðYÞ � PðYÞ; ð4:14Þ

where

P̂ðYÞ ¼ fy� 2 Y
�� there exists no y 2 Y such that y� y� 2 Mg

represents the set of nondominated elements of the set Y ordered by the cone
relation with the cone M:

Choose arbitrary two vectors y ¼ f ðxÞ; y� ¼ f ðx�Þ; f ðxÞ 6¼ f ðx�Þ for x; x� 2 X:
Owing to the established coincidence of the solution set of the system of linear
inequalities (4.12) and the cone M (see part II), the inclusion f ðxÞ � f ðx�Þ 2 M
takes place if and only if

fsðxÞ � fsðx�Þ= 0 for all s 2 Infj; kg;

wjðfiðxÞ � fiðx�ÞÞþwiðfjðxÞ � fjðx�ÞÞ= 0;

w0
kðfiðxÞ � fiðx�ÞÞþw0

iðfkðxÞ � fkðx�ÞÞ= 0;

wjw
0
kðfiðxÞ � fiðx�ÞÞþwiw

0
kðfjðxÞ � fjðx�ÞÞþw0

iwjðfkðxÞ � fkðx�ÞÞ= 0;

where at least one inequality is strict. Clearly, these inequalities can be rewritten as
gðxÞ� gðx�Þ in terms of the vector function g defined by formulas (4.11). Hence, it
appears that P̂ðYÞ is the set of vectors answering the set of Pareto optimal alter-
natives in the multicriteria problem with the initial set X and the new vector cri-
terion g; i.e., P̂ðYÞ ¼ f ðPgðXÞÞ:

IV. To finish the proof, just take into account the inclusion CðYÞ�NdomðYÞ;
which holds for any set of selectable vectors CðYÞ: ■

Proved Theorem 4.5 can be easily reformulated in terms of alternatives as
follows.

Theorem 4.5 (in terms of alternatives). Assume that there are two information
quanta, one stating that criterion i is more important than criterion j with
parameters wi;wj and the other that criterion i is more important than criterion k
with parameters w0

i;w
0
k. Then for any set of selectable alternatives we have the

inclusions

CðXÞ � PgðXÞ � Pf ðXÞ; ð4:15Þ

where PgðXÞ is the set of Pareto optimal alternatives in the multicriteria
problem with the initial set X and the new ðmþ 1Þ–dimensional g defined by (4.11).

Let us give a geometrical illustration for Theorem 4.5 in the case of linear
criteria. Let m ¼ n ¼ 3; fiðxÞ ¼ hci; xi, i ¼ 1; 2; 3; where c1; c2; c3; x 2 R3 (see
Fig. 4.2). Suppose that criterion f1 is more important than criterion f2 with the
parameters w1 ¼ 1; w2 ¼ 3 and also more important than criterion f3 with the
parameters w0

1 ¼ 2;w3 ¼ 3: By taking into account the higher importance of
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criterion f1 against criterion f2, we arrive at the tricriteria problem with the vectors
c1; c2new; c

3 representing the gradients of the three linear criteria. Similarly, the
consideration of the higher importance of criterion f1 against criterion f3 yields the
tricriteria problem with the three vectors c1; c2; c3new.

Thereby, we obtain the two cones of goals associated with the two information
quanta available. For the simultaneous consideration of both quanta, it is necessary
to intersect these cones, which gives the cone generated by the four vectors
c1; c2new; c

3
new; c

4. The latter represents the cone of goals in the new problem.
The next result shows that Theorem 4.5 can be used for any criteria measured in

quantitative scales.

Theorem 4.6 Inclusions (4.10) and (4.15) are invariant with respect to a linear
positive transformation applied to the components of the vector criterion g defined
by equalities (4.11).

□ Based on the proof of Theorem 2.7, it suffices to verify the invariance of the
sets P̂ðYÞ and PgðXÞ from (4.10) and (4.15) with respect to a linear positive
transformation of the last criterion gmþ 1 only.

We have

gmþ 1 ¼ wjw
0
kyi þwiw

0
kyj þwjw

0
iyk:

Replace ys with ~ys ¼ asys þ csðas [ 0Þ; s ¼ i; j; k, in the formula of the cri-
terion gmþ 1. We get

~gmþ 1 ¼ ajakwjw
0
kðaiyi þ ciÞþ aiakwiw

0
kðajyj þ cjÞþ aiajwjw

0
iðakyk þ ckÞ

¼ aiajakwjw
0
kyi þ aiajakwiw

0
kyj þ aiajakwjw

0
iyk þC

where the constant C is independent of yi; yj; yk.
Clearly, the transformed criterion ~gmþ 1 can be constructed from gmþ 1 via its

multiplication by the positive number aiajak and addition of the constant C:
Conversely, by deducting the constant C from ~gmþ 1 and dividing the result by the
number aiajak , we obtain gmþ 1. Hence, it follows that the following two strict
inequalities

gmþ 1 ¼ wjw
0
kyi þwiw

0
kyj þwjw

0
iyk [wjw

0
ky

�
i þwiw

0
ky

�
j þwjw

0
iy
�
k ¼ g�mþ 1

and

~gmþ 1 ¼ wjw0
k~yi þwiw0

k~yj þwjw0
i~yk [wjw0

k~y
�
i þwiw0

k~y
�
j þwjw0

i~y
�
k ¼ ~g�mþ 1

for the criterion gmþ 1 and transformed criterion ~gmþ 1, respectively, are equivalent
to each other. Subsequently, inclusions (4.10) and (4.15) are invariant with respect
to a linear positive transformation of the criterion gmþ 1, ergo all components of the
vector function g: ■
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4.2.3 Pareto Set Reduction When Each of Two Criteria Is
More Important Than the Third One

This subsection considers the case of two information quanta, one stating that
criterion i is more important than criterion k with parameters wi, wk and the other
that criterion j is more important than criterion k with parameters w0

j, w
0
k.

Prior to detailed analysis, we compare this case with the existence of one
quantum about the higher importance of the group of criteria fi; jg against criterion
k; under the same degrees of compromise in both cases. According to Theorem 3.1,
if each (or at least one) of criteria i and j separately is more important than
criterion k; then the group of criteria fi; jg is more important than criterion k with
the same degrees of compromise, but the converse fails. And so, the two quanta
have higher relevance of information than the one quantum stating that the group of
two criteria is more important than the third criterion.

The above-mentioned pair of information quanta should be used on the basis of
the following theorem.

Theorem 4.7 Assume that there are two information quanta, one stating that
criterion i is more important than criterion k with parameters wi;wk and the other
that criterion j is more important than criterion k with parameters w0

j;w
0
k . Then for

any set of selectable vectors CðYÞ we have inclusions (4.10), where P̂ðYÞ ¼
f ðPgðXÞÞ is the set of vectors corresponding to the set of Pareto optimal alterna-
tives in the multicriteria problem with the initial set X and the vector criterion g
with the components

gs ¼ fs for all s 2 Infkg;
gk ¼ wkw

0
jfi þwiw

0
kfj þwiw

0
jfk:

ð4:16Þ

□ I. Let K be the acute convex cone (without the origin) of the cone relation �.

4

2
new

3
new

3

2

1

Fig. 4.2 Vectors c1; c2; c3; c4; c2new; c
3
new:
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By Definition 2.4, we have the relationships y0 � 0m and y00 � 0m for the vectors
y0 and y00 with the components

y0i ¼ wi; y0i ¼ wi; ; y0k ¼ �wk; y0s ¼ 0 for all s 2 Infi; kg;

y00j ¼ w0
j; y00j ¼ w00

j ; ; y00k ¼ �w00
k ; y00s ¼ 0 for all s 2 Infj; kg:

Due to Corollary 4.3 given collection of two information quanta is consistent.
Let M be the acute convex cone (without the origin) generated by the vectors
e1; e2; . . .; em; y0; y00. The vectors ei and e j can be represented as the linear positive
combinations of the vectors ek , y0 and ek, y00, respectively. Hence, the cone M is
generated by the collection of vectors

e1; . . .; ei�1; y0; eiþ 1; . . .; ej�1; y00; ejþ 1; . . .; em; ð4:17Þ

which means that it coincides with the set of all N-combinations

k1e
1 þ . . .þ ki�1e

i�1 þ kiy
0 þ kiþ 1e

iþ 1 þ . . .þ kj�1e
j�1 þ kjy

00 þ kjþ 1e
jþ 1 þ . . .þ kme

m:

II. Now, prove that the cone M coincides with the set of nonzero solutions to the
system of linear homogenous inequalities

ys = 0 for all s 2 Infkg;
wkw

0
jyi þwiw

0
kyj þwiw

0
jyk = 0:

ð4:18Þ

To this end, find the fundamental system of solutions of (4.18) by considering
the corresponding system of linear equations

hes; yi ¼ 0 for all s 2 Infkg;
h�y; yi ¼ 0;

ð4:19Þ

where �yi ¼ wkw0
j, �yj ¼ wiw0

k, �yk ¼ wiw0
j, and �ys ¼ 0 for all s 2 Infi; j; kg.

System (4.19) contains m equations. Each subsystem of (m – 1) vectors from the
system e1; . . .; ek�1;�y; ekþ 1; . . .; em is linearly independent. Therefore, to construct
the fundamental system of solutions to the system of inequalities (4.18), it suffices
to find a nonzero solution to each of the subsystems resulting from (4.19) after
elimination of a certain equation. Note that the desired solution must satisfy the
system of inequalities (4.18).

By removing the last equation from system (4.19), we get the subsystem with the
solution e j. Elimination from (4.19) the equation hes; yi ¼ 0 for s ¼ i (or s ¼ jÞ
yields the subsystem that has the solution y0 (or y00 ). If the equation hes; yi ¼ 0 for
s 2 Infi; j; kg is removed, then the resulting subsystem has the solution es.
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Thus, one of the fundamental systems of solutions to the system of linear
inequalities (4.18) has form (4.17). Hence, the cone M coincides with the set of all
nonzero solutions to the system of linear inequalities (4.18).

III. The inclusions

Rm
þ � M � K

imply

NdomY � P̂ðYÞ � PðYÞ; ð4:20Þ

where

P̂ðYÞ ¼ fy� 2 Y j there exists no y 2 Y such that y� y� 2 Mg
represents the set of nondominated elements of the set Y in terms of the cone

relation with the cone M.
Choose two arbitrary elements x; x� 2 X; y ¼ f ðxÞ; y� ¼ f ðx�Þ; f ðxÞ 6¼ f ðx�Þ:

Owing to part II the inclusion f ðxÞ � f ðx�Þ 2 M takes place if and only if the vector
f ðxÞ � f ðx�Þ satisfies the inequalities

fsðxÞ � fsðx�Þ= 0 for all s 2 Infkg;

wkw
0
jðfiðxÞ � fiðx�ÞÞþwiw

0
kðfjðxÞ � fjðx�ÞÞþwiw

0
jðfkðxÞ � fkðx�ÞÞ= 0;

where at least one inequality is strict. These inequalities can be rewritten as
gðxÞ� gðx�Þ in terms of the vector function g defined by formulas (4.16). Hence,
P̂ðYÞ ¼ f ðPgðXÞÞ.

IV. To finish the proof, just take into account the inclusions (4.20) and CðYÞ �
Ndom ðYÞ; which holds for any set CðYÞ: ■

For the geometrical illustration of Theorem 4.7, consider the multicriteria choice
problem with the linear criteria, where m ¼ n ¼ 3; fsðxÞ ¼ hcs; xi; s ¼ 1; 2; 3;
w1 ¼ 4; w3 ¼ 1; and w0

2 ¼ 2; w0
3 ¼ 3 (see Fig. 4.3). The cone of goals associated

with the new multicriteria problem has three facets and is generated by the vectors
c1; c2; c3new. This cone is the intersection of two three-facet cones, one corre-
sponding to the multicriteria choice problem with the quantum that criterion f1 is
more important than criterion f3 and the other to the multicriteria choice problem
with the quantum that criterion f2 is more important than criterion f3.

Theorem 4.7 can be used for any multicriteria choice problem with vector
function f whose components are measured in quantitative scales, as shown by the
next result.

Theorem 4.8 Inclusions (4.10) and (4.15) are invariant with respect to a linear
positive transformation applied to the components of the vector criterion g defined
by equalities (4.16).
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□ Just like in the proof of Theorem 4.4, it suffices to verify the invariance of the
sets P̂ðYÞ and PgðXÞ from (4.10) and (4.15) with respect to a linear positive
transformation of the criterion gk only.

We have

gk ¼ wkw
0
jyi þwiw

0
kyj þwiw

0
jyk:

Here replace ys with ~ys ¼ asys þ csðas [ 0Þ; s ¼ i; j; k: We get

~gk ¼ akajwkw
0
jðaiyi þ ciÞþ aiakwiw

0
kðajyj þ cjÞþ aiajwiw

0
jðakyk þ ckÞ

¼ aiajakwkw
0
jyi þ aiajakwiw

0
kyj þ aiajakwiw

0
jyk þC

where the constant C is independent of yi; yj; yk .
According to the last expression, the transformed criterion ~gk can be constructed

from gk via its multiplication by the positive number aiajak and addition of the
constant C: Conversely, by deducting the constant C from ~gk and dividing the result
by the number aiajak, we easily obtain gk . Hence, it follows that the strict
inequalities

gk ¼ wkw
0
jyi þwiw

0
kyj þwiw

0
jyk [wkw

0
jy
�
i þwiw

0
ky

�
j þwiw

0
jy
�
k ¼ g�k

and

~gk ¼ wkw
0
j~yi þwiw

0
k~yj þwiw

0
j~yk [wkw

0
j~y
�
i þwiw

0
k~y

�
j þwiw

0
j~y
�
k ¼ ~g�k

for the criterion gk and transformed criterion ~gk, respectively, are equivalent to each
other. Subsequently, inclusions (4.10) and (4.15) are invariant with respect to a
linear positive transformation of the criterion gk. ■

O

3
newc

3c

1c

2c

Fig. 4.3 Vectors c1; c2; c3; c3new:
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4.3 Pareto Set Reduction Based on a Finite Number
of Some Information Quanta

4.3.1 Usage of Information Quanta of Point-Set Type

Theorem 4.5 deals with the case where one criterion is more important than each of
the two others. In what follows, we consider the general case where a group of
criteria is more important than other two groups of criteria.

Theorem 4.9 Assume that there are three given pairwise disjoint subsets of cri-
teria indexes A;B;C � I and information from the DM stating that y0 � 0m and
y00 � 0m, where the vectors y0 and y00 have the components

y0i ¼ w0
i for all i 2 A; y0j ¼ �w0

j for all j 2 B; y0s ¼ 0 for all s 2 InðA[BÞ;

y00i ¼ w00
i for all i 2 A; y00k ¼ �w00

k for all k 2 C; y00s ¼ 0
for all s 2 InðA[CÞ;

where w0
i;w

0
j;w

00
i ;w

00
j are fixed positive numbers.

Then this information is consistent, and for any set of selectable vectors C(Y) we
have inclusions (4.10), where P̂ðYÞ ¼ f ðPgðXÞÞ gives the set of feasible vectors
corresponding to the set of Pareto optimal alternatives in the multicriteria problem
with the initial set X and the new p-dimensional vector criterion g; p ¼
m � jBj � Cj j þ jAj 	 jBj þ Aj j 	 Cj j þ Aj j 	 Bj j 	 Cj j; that consists of the components

g0ij ¼ w0
jfi þw0

ifj for all i 2 A; j 2 B;
g00ik ¼ w00

k fi þw00
i fk for all i 2 A; k 2 C;

gijk ¼ w0
jw

00
k fi þw0

iw
00
k fj þw0

jw
00
i fk for all i 2 A; j 2 B; k 2 C;

gs ¼ fs for all s 2 InðB[CÞ:
ð4:21Þ

□ This result is proved using a standard scheme.
I. At the beginning, check the consistency of the available information. By

Theorem 4.2, this information is consistent if and only if the system of linear
algebraic equations

Xm
i¼1

kie
i þ kmþ 1y

0 þ kmþ 2y
00 ¼ 0m ð4:22Þ

has no N-solution for k1; . . .; kmþ 2. Here ei means the m-dimensional vector with 1
as component i and 0’s as the other components. System (4.22) can be rewritten in
the expanded form
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ki þ kmþ 1w
0
i þ kmþ 2w

00
i ¼ 0 for all i 2 A;

kj � kmþ 1w
0
j ¼ 0 for all j 2 B;

kk � kmþ 2w
00
k ¼ 0 for all k 2 C;

kl ¼ 0 for all l 2 InðA[B[CÞ:

The equations in the first row imply the equalities ki ¼ kmþ 1 ¼ kmþ 2 ¼ 0 for all
i 2 A: In this case, the other equations yield the equalities kj ¼ 0 for the other
indexes j 2 InA: Hence, system (4.22) has the trivial (zero) solution as the only
nonnegative solution. This establishes the consistency of the existing information in
the form of the relationships y0 � 0m and y00 � 0m.

II. Recall that K is the acute convex cone (without the origin) of the cone relation
�. Denote byM the acute convex cone (without the origin) generated by the vectors
e1; . . .; em; y0; y00:

Here two cases are possible, namely, jAj[ 1 and jAj ¼ 1: In the former case, the
generators of the cone M are all the vectors e1; e2; . . .; em; y0; y00; since none of them
can be expressed as N-combination of the other vectors from this collection (due to
the acuteness of the cone M). In the latter case (i.e., if A ¼ fig ), the vector ei can be
represented by the linear positive combination of the vector y0 and all vectors es for
s 2 B: And so, in this case, the generators of the cone M are e1; e2; . . .; em; y0; y00

without the vector ei. We will first analyze the case jAj[ 1 and then the other.
For the polyhedral cone M, introduce the dual cone D (without the origin) of the

form

D ¼ fy 2 Rmjhu; yi= 0 for all u 2 Mgnf0mg:

The generators of the polyhedral cone D are the inner normals to the ðm� 1Þ-
dimensional facets of the cone M, and conversely, the generators of the cone M are
the inner normals to the ðm� 1Þ-dimensional facets of the cone D, see [62].

Since the cone M is generated by the vectors e1; e2; . . .; em; y0; y00; the set of
nonzero solutions to the system of linear homogenous inequalities

hei; yi= 0 for all i 2 I;
hy0; yi= 0;
hy00; yi= 0;

ð4:23Þ

coincides with the dual cone D.
III. Find the fundamental system of solutions to the system of linear inequalities

(4.23). It must be a collection of vectors whose all linear nonnegative combinations
coincide with the solution set of system (4.23). And none of the vectors from the
fundamental system can be expressed as N-combination of the other vectors from
this system.
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Let us specify a certain collection of solutions to the system of linear inequalities
(4.23). First of all, note that in space Rm each unit vector es for s 2 InðB[CÞ is a
solution to (4.23). Next, introduce the vectors

eij ¼ w0
je
i þw0

ie
j for all i 2 A and all j 2 B:

Their components are nonnegative, and therefore all these vectors satisfy
inequalities (4.23) written in the first row. Moreover, they satisfy the inequality
hy0; yi= 0 from the second row of (4.23), since

hy0; eiji ¼ y0iw
0
j þ y0jw

0
i ¼ 0 for all i 2 A and all j 2 B:

Finally, the vectors under consideration clearly satisfy the inequality from the
third row of (4.23).

In a similar manner, one may check that the vectors

êik ¼ w00
k e

i þw00
i e

k for all i 2 A and all k 2 C

satisfy system (4.23).
The vectors eijk ¼ w0

jw
00
k e

i þw0
iw

00
k e

j þw0
jw

00
i e

k for all i 2 A; j 2 B; k 2 C also
satisfy system (4.23) so that the inequalities in the second and third rows hold as
equalities.

Consequently, the collection composed of the vectors es for all s 2 InðB[CÞ;
the vectors eij for all i 2 A and j 2 B; the vectors êik for all i 2 A and k 2 C; as well
as the vectors eijk for all i 2 A; j 2 B; k 2 C; belongs to the dual cone D. Denote
this collection by (*). In addition, as easily observed, none of the vectors from this
collection is representable in the form of N-combination of the other vectors. The
total number p of all vectors in collection (*) makes up
p ¼ m� jBj � Cj j þ jAj 	 jBj þ Aj j 	 Cj j þ Aj j 	 Bj j 	 Cj j:

IV. To verify that the above collection of vectors forms the fundamental system
of solutions to the system of linear inequalities (4.23), it remains to show that these
inequalities have no other solutions (up to a positive factor) except all N-combi-
nations of the vectors from collection (*). To this effect, together with system (4.23)
consider the corresponding system of (mþ 2Þ linear equations

hei; yi ¼ 0 for all i 2 I;

hy0; yi ¼ 0;

hy00; yi ¼ 0:

ð4:24Þ

By calculating the ranks of the appropriate matrices, we may verify that any
subsystem of (m� 1) vectors from the collection e1; e2; . . .; em; y0; y00 is linearly
independent. Hence, the desired fundamental system of solutions to the system of
linear inequalities (4.23) is contained in the one-dimensional nonzero solutions to
the subsystems of m� 1ð Þ equations from system (4.24).
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We will sequentially remove three equations from (4.24) and write the solutions
to the resulting subsystems that also satisfy the system of inequalities (4.23). The
vectors constructed in this way form the required fundamental system of solutions
to the system of inequalities (4.23).

If the last two equations of system (4.24) are among the removed ones, then the
unit vectors e1; e2; . . .; em give nonzero solutions to the resulting subsystems (up to
a positive factor). However, in this collection only the vectors es with s 2 InðB[CÞ
satisfy the system of inequalities (4.23).

If the last equation of system (4.24) remains in the system and the last but one is
eliminated, then the vectors êik for all i 2 A and all k 2 C are nonzero solutions to
the resulting subsystems (up to a positive factor). As established earlier, all these
vectors satisfy inequalities (4.23).

Similarly, if the last but one equation remains in (4.24) and the last equation is
removed, then the vectors eij for all i 2 A and all j 2 B can be taken as solutions of
the resulting subsystems. Clearly, these vectors satisfy the system of linear
inequalities (4.23).

Finally, imagine that the last two equations remain in the subsystem; in this case,
we get the solutions eijk for all i 2 A; j 2 B; k 2 C:

We have considered all possible triplets of equations that can be eliminated from
system (4.24), and there exist no other solutions (up to a positive factor) to the
subsystems of (m� 2) equations from system (4.24) that satisfy (4.23). This means
that the vector collection (*) forms the fundamental system of solutions to the
system of linear inequalities (4.23). Hence, any solution to inequalities (4.23) can
be represented in the form of the nonnegative linear combination of this collection.
For convenience, denote the vectors in this collection by a1; a2; . . .; ap.

In the case Aj j ¼ 1 (i.e.,A ¼ fig ), the arguments are the same and even slightly
simpler. Here it is necessary to consider a system of (m + 1) equations obtained
from (4.24) by eliminating the equation hei; yi ¼ 0: In this case, we remove
sequentially merely two equations from the original system to get the same fun-
damental system of solutions to the system of linear inequalities (4.23).

V. On the strength of the earlier considerations, the nonzero solution set of the
system of linear inequalities (4.23), i.e., the cone D coincides with the set of all N-
combinations of the vectors a1; a2; . . .; ap. Therefore, the vector u satisfies the
inclusion u 2 D if and only if this vector can be represented as some N-combination
of the vectors from the above collection.

Owing to this circumstance, the inequality

hu; yi= 0 for all u 2 D; ð4:25Þ

where y is an arbitrary fixed nonzero vector, appears equivalent to the inequalities

hai; yi� 0 ; i ¼ 1; 2; . . .; p : ð4:250Þ
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Note that the sign � indicates that, at least for one index i 2 f1; 2; . . .; pg , the
inequality is strict. Really, let the vector y satisfy inequalities (4.25′). Each vector
u 2 D can be expressed as some N-combination of the vectors a1; a2; . . .; ap, e.g.,
z ¼ k1a1 þ k2a2 þ . . .þ kpap. Multiply inequalities (4.25′) by the corresponding
nonnegative numbers k1; k2; . . .; kp(that are not zero simultaneously) and perform
termwise addition of the resulting inequalities to get (4.25):

Xp
i¼1

kia
i; y

* +
¼ u; yh i= 0:

Conversely, inequality (4.25′) follows from (4.25), since ai 2 D for all i ¼
1; 2; . . .p: And inequalities (4.25′) do not hold as equalities all simultaneously.
Indeed, assume that inequalities (4.25′) turn out into equalities for a nonzero vector
y: Then these inequalities take place for the opposite vector �y: Hence, the cone
dual to D is not acute. But this dual cone has the form

M ¼ fy 2 Rmj hu; yi= 0 for all u 2 Dgnf0mg; ð4:26Þ

since, for polyhedral cones, the dual cone to the dual cone D is the original cone
M. We have arrived at a contradiction: the cone M is not acute. This means that, for
the nonzero vector y; inequalities (4.25′) do not hold as equalities all
simultaneously.

Based on the established equivalence of inequalities (4.25) and (4.25′), from
(4.26) we infer that the inclusion y 2 M holds if and only if inequalities (4.25′) are
true, i.e.,

y 2 M , hai; yi� 0 ; i ¼ 1; 2; . . .; p:

VI. The final stage of the proof is standard; therefore, we omit it. ■
According to Theorem 4.9, for taking into account the information about the

DM’s preference relation in the form of the two relationships y0 � 0m and y00 � 0m,
reducing the Pareto set based on them, it is necessary to form the new vector
criterion g by the above formulas and then construct the Pareto set PgðXÞ in terms
of this criterion.

Using the proof scheme of Theorem 4.9 and similar considerations, one may
further generalize it to the case where the DM is willing to compromise a whole
collection of groups of criteria B1;B2; . . .;Bk for gaining in terms of a group of
criteria A. In particular, the following result takes place.

Theorem 4.10 Assume that there is a given finite collection of kþ 1 pairwise
disjoint subsets of criteria indexes A;B1;B2; . . .;Bk � I and information from the
DM stating that ys � 0m; s ¼ 1; 2; . . .; k; where the vectors ys for s ¼ 1; 2; . . .; k
have the components
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ysi ¼ ws
i for all i 2 A;

ysj ¼ �ws
j for all j 2 Bs; ysj ¼ 0 for all j 2 InðA[BsÞ;

where all ws
i ;w

s
j are fixed positive numbers.

Then this information is consistent, and for any set of selectable vectors C(Y) we
have inclusions (4.10), where P̂ðYÞ ¼ f ðPgðXÞÞ gives the subset of feasible vectors
corresponding to the set of Pareto optimal alternatives in the multicriteria problem
with the initial set X and the new r-dimensional vector criterion g;
r = m�Pk

s¼1 Bsj j þ Aj j 	Pk
s¼1 Bsj j þ Aj j 	Qk

s¼1 Bsj j; that consists of the compo-
nents (s ¼ 1; 2; . . .; kÞ

gsij ¼ ws
j fi þws

i fj for all i 2 A; j 2 Bs;

gsij1...jk ¼ ws
j1 	 . . . 	 ws

jk fi þws
i 	 ws

j2 	 . . . 	 ws
jk fj1 þ . . .þws

i 	 ws
j1 	 . . . 	 ws

jk�1
fjk

for all i 2 A; j1 2 B1; . . .; jk 2 Bk;

gt ¼ ft for all t 2 In
[k
s¼1

Bs:

4.3.2 Usage of Information Quanta of Set-Point Type

Now, consider situation where (according to available information about the
preferences) the DM is willing to compromise criteria of a third group C for gaining
in terms of criteria of two groups A and B. As illustrated by the forthcoming
theorem, such information is always consistent and, for taking it into account, we
have to construct the “new” vector criterion from the “old” one by replacing all
components from the group C with the “new” components calculated by definite
formulas.

Theorem 4.11 Assume that there are three given pairwise disjoint subsets of
criteria indexes A;B;C � I and information that y0 � 0m and y00 � 0m, where the
vectors y0 and y00 have the components

y0i ¼ w0
i for all i 2 A; y0k ¼ �w0

k for all k 2 C; y0s ¼ 0
for all s 2 InðA[BÞ;

y00j ¼ w00
j for all j 2 B; y00k ¼ �w00

k for all k 2 C; y00s ¼ 0
for all s 2 InðB[CÞ:

where all w0
i;w

0
k;w

00
j ;w

00
k are fixed positive numbers.
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Then this information is consistent, and for any set of selectable vectors C(Y) we
have inclusions (4.10), where P̂ðYÞ ¼ f ðPgðXÞÞ gives the subset of feasible vectors
corresponding to the set of Pareto optimal alternatives in the multicriteria problem
with the initial set X and the new ðm� Cj j þ Aj j 	 Bj j 	 Cj jÞ-dimensional vector
criterion g that consists of the components

gijk ¼ w0
iw

00
j fk þw00

j w
0
kfi þw0

iw
00
k fj for all i 2 A; j 2 B; k 2 C;

gs ¼ fs for all s 2 InC: ð4:27Þ
□ The proof consists of four stages as follows.
I. At the beginning, verify the consistency of the available information. By

Theorem 4.2, this information is consistent if and only if the system of linear
algebraic equations

Xm
i¼1

kie
i þ kmþ 1y

0 þ kmþ 2y
00 ¼ 0m ð4:28Þ

has no N-solution k1; . . .; kmþ 2. System (4.28) can be rewritten in the expanded
form

ki þ kmþ 1w
0
i ¼ 0 for all i 2 A;

kj þ kmþ 2w00
j ¼ 0 for all j 2 B;

kk � kmþ 1w
0
k � kmþ 2w

00
k ¼ 0 for all k 2 C;

kl ¼ 0 for all l 2 InðA[B[CÞ:

Owing to the non-negativeness of ki; kj; kmþ 1; kmþ 2, the equations in the first
and second rows imply the equalities ki ¼ kj ¼ kmþ 1 ¼ kmþ 2 ¼ 0 for all i 2 A and
j 2 B: In this case, the other equations yield the equalities kk ¼ 0 for the other
indexes k 2 InðA[BÞ: Hence, system (4.28) has the trivial (zero) solution as the
only nonnegative solution. This establishes the consistency of the existing infor-
mation in the form of the relationships y0 � 0m and y00 � 0m.

II. Denote by K the acute convex cone (without the origin) of the cone relation
�, and by M the acute convex cone (without the origin) generated by the vectors
e1; . . .; em; y0; y00:

Here four cases are possible, namely, Aj j[ 1 and Bj j[ 1; Aj j ¼ 1 and Bj j[ 1;
Aj j[ 1 and Bj j ¼ 1; and, Aj j ¼ Bj j ¼ 1: In the first case, the generators of the cone
M are all the vectors e1; e2; . . .; em; y0; y00; since none of them can be expressed as the
N-combination of the other vectors from this collection (due to the acuteness of the
cone M). In the second case (i.e., if A ¼ fig ), the vector ei can be represented by
the linear positive combination of the vector y0 and all vectors es for s 2 B: And so,
in this case, the generators of the cone M are the vectors e1; e2; . . .; em; y0; y00 without
the vector ei. Similarly, in the third case, the generators of the cone M are the
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vectors e1; e2; . . .; em; y0; y00 without the vector e j ; in the fourth case, the vectors ei

and e j are both excluded from the list of generators.
Our analysis begins with the first case. For the polyhedral cone M, introduce the

dual cone D (without the origin) of the form

D ¼ fy 2 Rmjhu; yi= 0 for all u 2 Mgnf0mg:

Since the cone M is generated by the vectors e1; e2; . . .; em; y0; y00; the set of
nonzero solutions to the system of linear homogeneous inequalities

hei; yi= 0 for all i 2 I;
hy0; yi= 0;
hy00; yi= 0;

ð4:29Þ

coincides with the dual cone D.
III. Find the fundamental system of solutions to the system of linear inequalities

(4.29). It must be a minimal collection of vectors whose all N-combinations
coincide with the nonzero solution set of system (4.29). And none of the vectors
from the fundamental system can be expressed as the N-combination of the other
vectors from this system.

Let us specify a certain collection of solutions to the system of linear inequalities
(4.29). Clearly, the vectors eijk ¼ w00

j w
0
ke

i þw0
iw

00
k e

j þw00
j w

0
ie
k for all i 2 A; j 2

B; k 2 C satisfy system (4.29), and for these vectors the inequalities from the
second and third rows hold as equalities.

Consequently, the collection composed of the vectors es for all s 2 InC and the
vectors eijk for all i 2 A; j 2 B; k 2 C; belongs to the dual cone D. Denote this
collection by (*). In addition, as easily observed, none of the vectors from this
collection is representable in the form of the linear nonnegative combination of the
other vectors. The total number p of all vectors in collection (*) makes up
p ¼ m� Cj j þ Aj j 	 Bj j 	 Cj j:

To verify that the above collection of vectors forms the fundamental system of
solutions to the system of linear inequalities (4.29), it remains to show that these
inequalities have no other solutions (up to a positive factor) except all N-combi-
nations of the vectors from collection (*). To this end, together with system (4.29)
consider the corresponding system of (mþ 2Þ linear equations

hei; yi ¼ 0 for all i 2 I;

hy0; yi ¼ 0;

hy00; yi ¼ 0:

ð4:30Þ

By calculating the ranks of the appropriate matrices, we may check that any
subsystem of (m� 1Þ vectors from the collection e1; e2; . . .; em; y0; y00 is linearly
independent. Hence, the required fundamental system of solutions to the system of
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linear inequalities (4.29) is contained in the one-dimensional nonzero solutions to
the subsystems of (m� 1Þ equations from system (4.30).

We will sequentially remove three equations from (4.30) and write the solutions
to the resulting subsystems that also satisfy the system of inequalities (4.29). The
vectors constructed in this way form the required fundamental system.

If the last two equations of system (4.30) are among the removed ones, then the
unit vectors e1; e2; . . .; em give nonzero solutions to the resulting subsystems (up to
a positive factor). However, in this collection only the vectors es with s 2 InC
satisfy the system of inequalities (4.29).

If the last equation of system (4.30) remains in the system and the last but one is
eliminated, then the vectors not satisfying the system of inequalities (4.29) are
nonzero solutions to the resulting “truncated” subsystems (up to a positive factor).

Similarly, if the last but one equation remains in (4.30) and the last equation is
removed, then the solutions to the “truncated” subsystems contain no vectors sat-
isfying the system of linear inequalities (4.29).

Finally, imagine that the two last equations remain in the “truncated” subsystem;
in this case, we have the solutions eijk for all i 2 A; j 2 B; k 2 C:

We have considered all possible triplets of equations that can be eliminated from
system (4.30), and there exist no other solutions (up to a positive factor) to the
subsystems of (m� 2) equations from system (4.30) that satisfy (4.29). There also
exist no other one-dimensional solutions to system (4.30) that satisfy (4.29).This
means that the vector collection (*) forms the fundamental system of solutions to
the system of linear inequalities (4.29). Hence, any nonzero solution to inequalities
(4.29) can be represented in the form of N-combination of this collection. For
convenience, denote the vectors in this collection by a1; a2; . . .; ap.

In the case jAj ¼ 1 (i.e., A ¼ fig), the arguments are the same and even slightly
simpler. Here it is necessary to consider a system of (m + 1) equations obtained
from (4.30) by eliminating the equation hei; yi ¼ 0. In this case, we remove
sequentially merely two equations from the original system to get the fundamental
system of solutions to the system of linear inequalities (4.29). The other cases are
studied by analogy, and we therefore omit them.

IV. The rest parts of the proof are the same as in Theorem 4.9. ■
Using the proof scheme of Theorem 4.11 and similar considerations, one may

further generalize it in the following manner.

Theorem 4.12 Assume that there are a given finite collection of kþ 1 pairwise
disjoint subsets of criteria indexes A1;A2; . . .;Ak;B � I and information stating
that ys � 0m; s ¼ 1; 2; . . .; k; where the vectors ys (for s ¼ 1; 2; . . .; kÞ have the
components

ysi ¼ ws
i for all i 2 As, ysj ¼ �ws

j for all j 2 B; yst ¼ 0 for all t 2 InðAs [BÞ
with positive numbers ws

i ;w
s
j .
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Then this information of set-point type is consistent, and for any set of selectable
vectors C(Y) we have the inclusions (4.10), where P̂ðYÞ ¼ f ðPgðXÞÞ; and also the

new ðm� Bj j þ Bj j 	Qk
s¼1 Asj jÞ

-dimensional vector criterion g consists of the following components
gsji1...ik ¼ ws

i1 	 . . . 	 ws
ik fj þws

j 	 ws
i2 	 . . . 	 ws

ik fi1 þ . . .þws
i1 	 . . . 	 ws

ik�1
	 ws

j fik for all
i1 2 A1; . . .; ik 2 Ak; j 2 B; s ¼ 1; 2; . . .; k;

gt ¼ ft for all t 2 InB:
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Chapter 5
Pareto Set Reduction Based on Collections
of Information Quanta

Here we further develop the results of the previous chapter on Pareto set reduction
using given finite collections of mutually dependent information quanta about the
DM’s preference relation. In addition, this chapter formulates and solves the
problem of taking into account an arbitrary finite collection of information quanta.
Particularly, we suggest two algorithms to construct a new vector criterion using a
given arbitrary finite collection of quanta; the Pareto set in terms of this vector
criterion is an upper estimate for the unknown set of selectable alternatives (or
vectors). At the end of this chapter, we describe an algorithm of taking into account
an arbitrary collection of information quanta for the set of feasible vectors con-
sisting of a finite number of elements.

5.1 Closed Collections of Information Quanta

5.1.1 Closed Collection of Two Information Quanta and Its
Consistency

First, introduce the notion of a mutually dependent closed collection of two
information quanta about the DM’s preference relation.

Definition 5.1 Let m= 3 and consider two groups A and B that consist of r and t
criteria, respectively, where rþ t5m and A\B ¼ £. Without loss of generality, it
is possible to renumber the criteria so that the group A contains the criteria of
indexes 1; 2; . . .; rf g, whereas the group B the criteria of indexes rþ 1; . . .; rþ tf g.
Assume that the group of criteria A is more important than the group B with the
collections of positive parameters wi for all i2A and wj for all j 2 B. In addition,
assume that the group of criteria B = rþ 1; . . .; rþ tf g is more important
than the group of criteria A = 1; 2; . . .; rf g with the collections of positive
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parameters cj for all j 2 B and ci for all i 2 A. In this case, we say that there is a
given closed collection of two information quanta (A, B).

According to the simplified definition of an information quantum about the
DM’s preference relation, the existence of such a closed collection of two infor-
mation quanta (A, B) is equivalent to the specification of two vectors

y1 ¼ ðw1; . . .;wr;�wrþ 1; . . .;�wrþ t; 0; . . .; 0Þ and
y2 ¼ ð�c1; . . .;�cr; crþ 1; . . .; crþ t; 0; . . .; 0Þ

that satisfy the relationships y1�0m and y2 � 0m.

Lemma 5.1 A closed collection of two information quanta (A, B) is consistent if
and only if there exist criteria indexes p 2 A and l 2 B such that

wp

cp
[

wl

cl
: ð5:1Þ

□ This result will be proved by establishing that a closed collection of infor-
mation (A, B) is inconsistent if and only if

wi

ci
5 wj

cj
for all i 2 A and j 2 B: ð5:2Þ

Necessity. If a closed collection of information is inconsistent, then by the
algebraic criterion of consistency the system of homogeneous linear equations

k1e
1 þ . . .þ kme

m þ kmþ 1y
1 þ kmþ 2y

2 ¼ 0m ð5:3Þ

has at least one N-solution. Hence, for some nonnegative numbers k�1; k
�
2; . . .; k

�
mþ 2

that are not zero all simultaneously, we have

k�mþ 1w1 � k�mþ 2c1 5 0; . . .; k�mþ 1wr � k�mþ 2cr
5 0;�k�mþ 1wrþ 1 þ k�mþ 2crþ 1 5 0; . . .;�k�mþ 1wrþ t þ k�mþ 2crþ t 5 0:

ð5:4Þ

From equality (5.3) it follows that k�rþ tþ 1 ¼ k�rþ tþ 2 ¼ . . . ¼ k�m ¼ 0,
ðk�mþ 1; k

�
mþ 2Þ� 02 and
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k�mþ 1w1 5 k�mþ 2c1; . . .; k
�
mþ 1wr 5 k�mþ 2cr;�k�mþ 1wrþ 15 k�mþ 2crþ 1; . . .;�k�mþ 1wrþ t 5 k�mþ 2crþ t:

Without loss of generality we may assume k�mþ 2 [ 0. After trivial transforma-
tions, we obtain

k�mþ 1

k�mþ 2
5 c1

w1
; . . .;

k�mþ 1

k�mþ 2
5 cr

wr
;
k�mþ 1

k�mþ 2
= crþ 1

wrþ 1
; . . .;

k�mþ 1

k�mþ 2
= crþ t

wrþ t
: ð5:5Þ

By eliminating the quantities k�mþ 1; k
�
mþ 2, system (5.5) can be rewritten as

cj
wj

5 ci
wi

for all i 2 A and j 2 B:

Obviously, this system of inequalities is equivalent to (5.2).
Sufficiency. Let inequalities (5.2) hold. In this case, there exist positive numbers

k�mþ 1; k
�
mþ 2 satisfying (5.5). By repeating the same steps as in the necessity part

(now, inversely), we arrive at formula (5.4). Therefore, the system of linear
Eq. (5.3) has the N-solution k�1; k

�
2; . . .; k

�
mþ 2. Subsequently, the closed collection of

the two information quanta (A, B) is inconsistent. ■
Introduce the following sets of criteria indexes:

P ¼ fp 2 Aj there exists j 2 B such that
wp

cp
[

wj

cj
g;

L ¼ fl 2 Bj there exists i 2 A such that
wi

ci
[

wl

cl
g;

Pl ¼ fp 2 Pj for fixed l 2 L;
wp

cp
[

wl

cl
g;

Lp ¼ fl 2 Lj for fixed p 2 P;
wp

cp
[

wl

cl
g;

�Pl ¼ fi 2 Aj for fixed l 2 L;
wi

ci
5 wl

cl
g;

�Lp ¼ fj 2 Bj for fixed p 2 P;
wp

cp
5 wj

cj
g:

According to the above notation, for each l 2 L we have the relationships
Pl [ �Pl ¼ A and Pl \ �Pl ¼ £; for each p 2 P, the relatissonships Lp [ �Lp ¼ B,
Lp \ �Lp ¼ £, and jPj5 r; jLj5 t: Here the overline symbol indicates the comple-
ment of an appropriate set to the criteria index set f1; 2; . . .;mg:
Remark 5.1 Lemma 5.1 says that a closed collection of two information quanta (A,
B) is consistent if and only if P 6¼ £ and L 6¼ £.
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5.1.2 Reduction of the Pareto Set Using Closed Collection

The following result is the case.

Theorem 5.1 Assume that there is a given consistent (i.e., P 6¼ £ and L 6¼ £)
closed collection of two information quanta (A, B). Then for any set of selectable
vectors CðYÞ we have the inclusions

CðYÞ � P̂ðYÞ � PðYÞ; ð5:6Þ
where P̂ðYÞ ¼ f ðPgðXÞÞ and the vector criterion g of the dimension

m� ðjAj þ jBjÞþ
X
p2P

jLpj þ
X
l2L

jPlj þ
X
l2L

jPljj�Plj þ
X
p2P

jLpjj�Lpj ð5:7Þ

has the components

gpl ¼ wlfp þwpfl for all p 2 P and l 2 L satisfying 5:1ð Þ;
glp ¼ clfp þ cp fl for all p 2 P and l 2 L satisfying 5:1ð Þ;

gpli ¼ ðciwl � clwiÞfp þðclwp � cpwlÞfi
þðciwp � cpwiÞfl for all l 2 L; p 2 Pl; and i 2 �Pl;

gplj ¼ ðclwj � cjwlÞfp þðclwp � cpwlÞfj
þðcpwj � cjwpÞfl for all p 2 P; l 2 Lp; and j 2 �Lp;

gs ¼ fs for all s 2 InfA[Bg:

ð5:8Þ

I. As stated earlier, the specification of a closed collection of two information
quanta (A, B) means that the cone K of the cone preference relation � includs
the m-dimensional vectors

y1 ¼ ðw1;w2; . . .;wr;�wrþ 1;�wrþ 2; . . .;�wrþ t; 0; . . .; 0Þ;
y2 ¼ ð�c1;�c2; . . .;�cr; crþ 1; crþ 2; . . .; crþ t; 0; . . .; 0Þ:

Moreover, owing to the Pareto axiom, we have Rm
þ � K:

Introduce the cone M (without the origin) generated by the collection of the
vectors e1; e2; . . .; em; y1; y2: Due to Theorem 4.1 the cone M is acute and convex.

I. Only one of the following four cases is possible:

(1) jPj ¼ 1; jLj ¼ 1; (2) jPj ¼ 1; jLj[ 1; (3) jPj[ 1; jLj ¼ 1;
(4) jPj[ 1; jLj[ 1:
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We begin with the first case where the sets P and L are singletons, i.e., P ¼
fpg; L ¼ flg: Then

wp

cp
[ wl

cl
; wi
ci
5 wj

cj
for all i 2 Anfpg; j 2 B;

wi
ci
5 wj

cj
for all j 2 Bnflg; i 2 A:

ð5:9Þ

Show that the generators of the cone M are the vectors y1; y2 and the unit vectors
es for all s 2 InfP[ Lg. Supposing the opposite, represent, e.g., the vector es for
s 2 ðA[BÞnfP[ Lg in the form

es ¼
Xm

k ¼ 1;
k 6¼ s

kke
k þ l1y

1 þ l2y
2; ð5:10Þ

where the coefficients kk; 1; 2; . . .;m; k 6¼ s; y1; y2 are nonnegative. Consider com-
ponents p and l of this vector equality, which satisfy (5.1):

�kp ¼ l1wp � l2cp; �kl ¼ �l1wl þ l2cl;

or

l1wp � l2cp 5 0; �l1wl þ l2cl 5 0:

The last inequalities yield

wl

cl
= wp

cp
;

which contradicts (5.1).
If the vector es is such that s 2 InðA[BÞ; then contradiction directly follows

from (5.10), notably, 1 ¼ Pm
k ¼ 1
k 6¼ s

kk � 0þ l1 � 0þ l2 � 0:

Now, assume that the vector y1 can be expressed as

y1 ¼
Xm
k¼1

kke
k þ ly2; l= 0:

In this case, for each component j 2 B we have the contradictory relationship
0[ � wj ¼ kj þ lcj = 0:

In a similar manner, the vector y2 is not representable as N-combination of the
others vectors.

5.1 Closed Collections of Information Quanta 101



Demonstrate that the vector ep can be expressed as N-combination of the vectors
y1; y2 and es; where s 2 Infp; lg: A necessary and sufficient condition is that there
exist nonnegative numbers l1; l2; ks that are not zero all simultaneously and satisfy
the equality

ep ¼
X

s2Inðp;lÞ
kse

s þ l1y
1 þ l2y

2;

or (in the coordinatewise form)

1 ¼ l1wp � l2cp;
0 ¼ ki þ l1wi � l2ci for all i 2 Anfpg;
0 ¼ kj � l1wj þ l2cj for all j 2 Bnflg;

0 ¼ �l1wl þ l2cl;
0 ¼ ks for all s 2 InðA[BÞ:

This system of equations has the unique solution

l1 ¼
cl

clwp � cpwl
; l2 ¼

wl

clwp � cpwl
; ki ¼ ciwl � clwi

clwp � cpwl
for all i 2 Anfpg;

kj ¼
clwj � cjwl

clwp � cpwl
for all j 2 Bnflg; ks ¼ 0 for all s 2 InðA[BÞ:

The above solution is N-solution if and only if

wp

cp
[

wl

cl
;
wi

ci
5 wl

cl
for all i 2 Anfpg; wj

cj
= wl

cl
for all j 2 Bnflg:

By virtue of (5.9), all these inequalities hold. Therefore, the vector ep can be
expressed as N-combination of the vectors y1; y2 and es for all s 2 Infp; lg:

Using the same procedure, we can verify that the vector el is representable as N-
combination of the vectors y1; y2 and es for all s 2 Infp; lg:

Consider the second case when P ¼ fpg; jLj[ 1. Then the following inequal-
ities take place:

wp

cp
[

wl

cl
for all l 2 L;

wi

ci
5 wj

cj
for all i 2 Anfpg and j 2 B: ð5:11Þ

We will show that the cone M is generated by the vectors y1; y2 together with the
unit vectors es for all s 2 InP:

Just like in the first case, verify that each of the vectors y1; y2; es for all s 2
InfP[ Lg is not representable as N-combination of the other vectors.

Fix a number �l 2 L such that wl
cl
= w�l

c�l
for all l 2 L. Show that the vector ep can be

expressed as N-combination of the vectors y1; y2; and es; s 2 Infp;�lg; i.e.,
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ep ¼
X

s2Infp;�lg
kse

s þ l1y
1 þ l2y

2:

In this case, it is easy to verify that the numbers l1; l2; and ks (for all
s 2 Infp;�lg) form N-solution if and only if

wp

cp
[

w�l

c�l
;
wi

ci
5 w�l

c�l
for all i 2 Anfpg; wj

cj
= w�l

c�l
for all j 2 Bnf�lg:

Due to (5.11) in this case all above inequalities hold. Therefore, the vector ep can
be expressed as N-combination of the vectors y1; y2; and es; s 2 Infp;�lg:

In contrast to thefirst case, none of the vectors el (for l 2 L) can be represented asN-
combination of the vectors y1; y2; and es for all s 2 Infp; lg: Conjecture the opposite.
Withoutlossofgenerality,for�l 2 Lletthefollowingrepresentationbetrue:

e
�l ¼

X
s2Infp;�lg

kse
s þ l1y

1 þ l2y
2:

This system has the solution

l1 ¼
cp

c�lwp � cpw�l
; l2 ¼

wp

c�lwp � cpw�l
; ki ¼

ciwp � cpwi

c�lwp � cpw�l
for all i 2 Anfpg;

kj ¼
cpwj � cjwp

c�lwp � cpw�l
for all j 2 Bnf�lg; ks ¼ 0 for all s 2 InðA[BÞ:

It is nonzero nonnegative if and only if

wp

cp
[

w�l

c�l
;

wp

cp
= wi

ci
for all i 2 Anfpg; wj

cj
= wp

cp
for all j 2 Bnf�lg:

However, then the inequalities wj

cj
= wp

cp
fail for j 2 Lnf�lg: This contradiction

means that, in the second case, the vectors y1; y2; es for all s 2 InP; are the
generators of the cone M.

By analogy, we may consider the third case jPj[ 1; jLj ¼ 1; establishing that
the the cone M is generated by the vectors y1; y2 and the unit vectors es for all
s 2 InL:

The fourth case jPj[ 1; jLj[ 1 actually generalizes the second and third ones,
and here each of the vectors e1; e2; . . .; em; y1; y2 is a generator of the cone M.

III. Introduce a cone C (without the origin) that is dual to the cone M, i.e.,

C ¼ fx 2 Rmj x; yh i= 0 for all y 2 Mgnf0mg:
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Based on the duality theory of convex analysis, the generators of a polyhedral
cone C are the inner normals to the ðm� 1Þ-dimensional facets of the cone M;
conversely, the generators of a cone M are the inner normals to the ðm� 1Þ-
dimensional facets of the cone C:

Consider the first case and prove that the cone C coincides with the set of all
nonzero solutions to the system of linear homogtnious inequalities

ek; y
� �

= 0 for all k ¼ Infp; lg;
y1; y
� �

= 0;
y2; y
� �

= 0:
ð5:12Þ

To this end, find the fundamental system of solutions to the system of
inequalities (5.12) up to a positive factor.

Obviously, the unit vectors es for all s 2 InfA[Bg are solutions of system
(5.12). The number of such vectors makes up m� ðjAj þ jBjÞ: In addition, another
solution is the vector y ¼ dpl ¼ wlep þwpel: As direct substitution shows, the
vector dpl satisfies the first ðm� 1Þ inequalities of system (5.12). Since the closed
collection of two information quanta (A, B) is consistent, this vector also obeys the
last inequality of system (5.12). Really, direct substitution with inequality (5.1)
yield the required result

y2; dpl
� � ¼ �cpwl þ clwp = 0:

A solution of the system of inequalities (5.12) is also the vector y ¼ hlp ¼
cle

p þ cpe
l; this fact can be verified just like the case involving the vector dpl:

Finally, other solutions of system (5.12) are the vectors

y ¼ qi ¼ ðciwl � clwiÞep þðclwp � cpwlÞei
þðciwp � cpwiÞel for all i 2 �Pl;

y ¼ hj ¼ ðclwj � cjwlÞep þðclwp � cpwlÞe j
þðcpwj � cjwpÞel for all j 2 �Lp:

In this case, �Pl ¼ Anfpg and �Lp ¼ Bnflg: Direct substitution shows that y ¼ qi
and y ¼ hj satisfy the last two inequalities of system (5.12). Clearly, owing to (5.9),
the collection of vectors qi; hj is a solution of the first (m − 2) inequalities of system
(5.12).

Thereby, we have found the following solutions of the system of linear
inequalities (5.12):
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es for all s 2 InfA[Bg;
wle

p þwpe
l; cle

p þ cpe
l;

qi ¼ ðciwl � clwiÞep þðclwp � cpwlÞei
þðciwp � cpwiÞel for all i 2 �Pl;

hj ¼ ðclwj � cjwlÞep þðclwp � cpwlÞe j
þðcpwj � cjwpÞel for all j 2 �Lp;

ð5:13Þ

The total number of these solutions is

m� ðjAj þ jBjÞþ 2þ j�Plj þ j�Lpj: ð5:14Þ

Now, we have to verify that system (5.12) admits no other nonzero solutions
except the ones representable by all N-combinations of vectors (5.13). Consider the
corresponding system of equations

ek; y
� � ¼ 0 for all k 2 Infp; lg;

y1; y
� � ¼ 0;
y2; y
� � ¼ 0:

ð5:15Þ

Any subcollection composed of ðm� 1Þ vectors from the collection y1; y2; and
ek for all k 2 Infp; lg is linearly independent. Therefore, to find the fundamental
system of solutions to the system of inequalities (5.12), it suffices to look through
the nonzero solutions to all possible subsystems of system (5.15) that consist of
ðm� 1Þ equations. And then, among the obtained solutions, it is necessary to
choose the ones satisfying (5.12).

Remove the last equation from (5.15). Then the resulting “truncated” subsystem
has the solution wlep þwpel: If we eliminate equation ðm� 1Þ; the solution is
cle

p þ cpe
l:

Next, let us remove sequentially one of the first ðm� 2Þ equations from system
(5.15). This yields the solution set es for all s 2 InfA[Bg; and

qi ¼ ðciwl � clwiÞep þðclwp � cpwlÞei
þðciwp � cpwiÞel for all i 2 �Pl;

hj ¼ ðclwj � cjwlÞep þðclwp � cpwlÞe j
þðcpwj � cjwpÞel for all j 2 �Lp:

Consider the second case when jPj ¼ 1, jLj[ 1. Here system (5.12) is replaced
by the system of inequalities
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ek; y
� �

= 0 for all k 2 Infpg;
y1; y
� �

= 0;
y2; y
� �

= 0:
ð5:16Þ

Just like before, it is possible to show that the fundamental system of solutions to
inequalities (5.16) consists of the vectors

es for all s 2 InfA[Bg;
wle

p þwpe
l for all l 2 Lp;

cle
p þ cpe

l for all l 2 Lp;

qi ¼ ðciwl � clwiÞep þðclwp � cpwlÞei
þðciwp � cpwiÞel for all l 2 Lp; i 2 �Pl;

hj ¼ ðclwj � cjwlÞep þðclwp � cpwlÞe j
þðcpwj � cjwpÞell 2 L for all l 2 Lp; j 2 �Lp:

ð5:17Þ

The total number of these vectors makes up

m� ðjAj þ jBjÞ þ 2jLpj þ jLpjj�Plj þ jLpjj�Lpj: ð5:18Þ

In the third case, the fundamental system of solutions to the inequalities

ek; y
� �

= 0 for all k ¼ Inflg;
y1; y
� �

= 0;
y2; y
� �

= 0;

is the collection of vectors

es for all s 2 InfA[Bg;
wlep þwpel for all p 2 Pl;

cle
p þ cpe

l for all p 2 Pl;

qi ¼ ðciwl � clwiÞep þðclwp � cpwlÞei
þðciwp � cpwiÞel for all p 2 Pl; i 2 �Pl;

hj ¼ ðclwj � cjwlÞep þðclwp � cpwlÞe j
þðcpwj � cjwpÞel for all p 2 Pl; j 2 �Lp:

ð5:19Þ

Their total number is

m� ðjAj þ jBjÞ þ 2jLpj þ jLpjj�Plj þ jLpjj�Lpj: ð5:20Þ
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In the fourth case, the fundamental system of solutions to the inequalities

ek; y
� �

= 0 for all k 2 I;
y1; y
� �

= 0;
y2; y
� �

= 0;

is the collection of vectors

es for all s 2 InfA[Bg;
wlep þwpel for all p 2 P and l 2 Lp;
cle

p þ cpe
l for all l 2 L and p 2 Pl;

qi ¼ ðciwl � clwiÞep þðclwp � cpwlÞei
þðciwp � cpwiÞel for all l 2 L; p 2 Pl; i 2 �Pl;

hj ¼ ðclwj � cjwlÞep þðclwp � cpwlÞe j
þðcpwj � cjwpÞel for all p 2 P; l 2 Lp; j 2 �Lp:

ð5:21Þ

Their total number makes up

m� ðjAj þ jBjÞ þ
X
p2P

jLpj þ
X
l2L

jPlj þ
X
l2L

jPljj�Plj þ
X
p2P

jLpjj�Lpj:

Obviously, the fundamental system of solutions to (5.21) coincides with (5.13),
(5.17), and (5.19) in the first, second, and third cases, respectively, while formulas
(5.14), (5.18), and (5.20) for the total number of vectors are special cases of formula
(5.7). In particular, in the first case when P ¼ fpg and L ¼ flg, we have jLpj ¼ 1,
jPlj ¼ 1, j�Plj ¼ jAj � 1, and j�Lpj ¼ jBj � 1. With these equalities, formula (5.14)
coincides with (5.7).

Hence, further considerations can be confined to the system of solutions (5.21)
only.

V. For convenience, denote by a1; a2; . . .; aq the vectors of the fundamental
system (5.21). Then any vector z 2 C can be represented as the N-combination:

z ¼
Xq
i¼1

kia
i:

We will demonstrate that the cone M is the solution set of definite system of
linear inequalities with at least one strict inequality, i.e.,

M ¼ fy 2 Rmj ai; y� �� 0 ; i ¼ 1; . . .; qg: ð5:22Þ

Really, let y be an arbitrary nozero vector from M. Then for any z 2 C we have
the inequality z; yh i= 0. But ai 2 C, i ¼ 1; . . .; q, and therefore
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ai; y
� �

= 0 ; i ¼ 1; . . .; q: ð5:23Þ

Conjecture that all inequalities in (5.23) become equalities; then the resulting
system of equalities has the opposite vector �y as its solution. And we arrive at a
contradiction: the cone M is not acute. And so,
M � fy 2 Rmj ai; yh i� 0 ; i ¼ 1; . . .; qg.

Now, verify the reverse inclusion. To this end, choose an arbitrary vector z 2 C,

which is the N-combination z ¼ Pq
i¼1

kiai. By multiplying each of inequalities (5.23)

by an appropriate number ki and performing their termwise addition, we obtain the

inequality
Pq
i¼1

kiai; y

� �
= 0, i.e., z; yh i= 0, for any z 2 C. This means that the

vector y belongs to the cone that is dual to the cone C. This dual cone is equal to the
cone M [57]. Thus, we obtain y 2 M.

Consequently, the cone M can be rewritten as (5.22).
V. The inclusions Rm

þ � M � K obviously imply the inclusions

NdomðYÞ � P̂ðYÞ � PðYÞ; ð5:24Þ

where

P̂ðYÞ ¼ fy� 2 Y j there exists no y 2 Y such that y� y� 2 Mg:
Consider two arbitrary alternatives x; x0 2 X and the corresponding vectors

y ¼ f ðxÞ, y0 ¼ f ðx0Þ, assuming that f ðxÞ 6¼ f ðx0Þ. Due to equality (5.22), the inclu-
sion y� y0 2 M takes place if and only if

ai; f ðxÞ � f ðx0Þ� �� 0 ; i ¼ 1; . . .; q;

or, equivalently,

ai; f ðxÞ� �� ai; f ðx0Þ� �
; i ¼ 1; . . .; q;

with at least one strict inequality. Recall that the notation ai is used for vectors
(5.21). Hence,

wje
i þwie

j; f ðxÞ� �
= wje

i þwie
j; f ðx0Þ� �

for all p 2 P ; l 2 Lp;

cje
i þ cie

j; f ðxÞ� �
= cje

i þ cie
j; f ðx0Þ� �

for all p 2 P ; l 2 Lp;

ðwlci � wiclÞep þðwpcl � wlcpÞei þðwpci � cpwiÞel; f ðxÞ
� �
= ðwlci � wiclÞep þðwpcl � wlcpÞei þðwpci � cpwiÞel; f ðx0Þ
� �

for all l 2 L; p 2 Pl; i 2 �Pl;
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ðwjcl � wlcjÞep þðwpcl � wlcpÞe j þðwpcj � cpwjÞel; f ðxÞ
� �
= ðwjcl � wlcjÞep þðwpcl � wlcpÞe j þðwpcj � cpwjÞel; f ðx0Þ
� �

for all p 2 P; l 2 Lp; j 2 �Lp;

es; f ðxÞh i= es; f ðx00Þh i for all s 2 InfA[Bg;

or gðxÞ� gðx0Þ, where the vector function g described by (5.8) has dimension (5.7).
Consequently, P̂ðYÞ ¼ f ðPgðXÞÞ.

Finally, inclusions (5.24) and C ðYÞ � NdomðYÞ yield (5.6). ■
As a matter of fact, there are two extreme cases when the consistency condition

from Lemma 5.1 holds. In the first case, the inequality wi
ci
[ wj

cj
takes place for all

i 2 A and j 2 B. Then P ¼ A, L ¼ B, �Pl ¼ £, and Pl ¼ A for each l 2 L, while
�Lp ¼ £ and Lp ¼ B for each p 2 P. Accordingly, Theorem 5.1 acquires the fol-
lowing form.

Theorem 5.2 Assume that there is a given consistent closed collection of two
information quanta (A, B) and inequalities (5.1) hold for all indexes i 2 A and
j 2 B. Then for any set of selectable vectors C(Y) we have inclusions (5.6), where
P̂ðYÞ ¼ f ðPgðXÞÞ and the vector criterion g of dimension m� ðjAj þ jBjÞþ 2jAjjBj
consists of the components

gpl ¼ wlfp þwpfl for all p 2 A; l 2 B;

glp ¼ clfp þ cpfl for all p 2 A; l 2 B;

gs ¼ fs for all s 2 InfA[Bg:
In the second extreme case, the inequality wi

ci
[ wj

cj
takes place for a unique pair

of indexes i 2 A,j 2 B. Then P ¼ fpg, L ¼ flg, Pl ¼ P ¼ fpg, �Pl ¼ Anfpg,
Lp ¼ L ¼ flg, and �Lp ¼ Bnflg. Accordingly, we obtain the following result.

Theorem 5.3 Assume that there is a given closed collection of two information
quanta (A, B) where P ¼ fpg and L ¼ flg. Then for any set of selectable vectors
C(YÞ we have inclusions (5.6), where P̂ðYÞ ¼ f ðPgðXÞÞ and the vector criterion g
of dimension m� ðjAj þ jBjÞ þ 2þ j�Plj þ j�Lpj consists of the components

gpl ¼ wlfp þwpfl;
glp ¼ clfp þ cpfl;

gpli ¼ ðciwl � clwiÞfp þðclwp � cpwlÞfi
þðciwp � cpwiÞfl for all i 2 �Pl;

gplj ¼ ðclwj � cjwlÞfp þðclwp � cpwlÞfj
þðcpwj � cjwpÞfl for all j 2 �Lp;
gs ¼ fs for all s 2 InfA[Bg:
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Example 5.1 Let m ¼ 10 and Aj j ¼ 5 and Bj j ¼ 5. If there exists a unique pair of
indexes p 2 A, l 2 B, under which inequality (5.1) holds, then the new vector
criterion g has 10 components. Now, assume that inequality (5.1) takes place only
for indexes p1; p2 2 A, l 2 B. Then Plj j ¼ 2, Lp1

�� �� ¼ Lp2
�� �� ¼ 1, Lp2

�� �� ¼ 1,
�Plj j ¼ Aj j � Plj j ¼ 3, �Lp1

�� �� ¼ �Lp2
�� �� ¼ Bj j � Lp1

�� �� ¼ 4 and, by formula (5.7),
dimension of vector criterion g is equal to 18. If inequality (5.1) is true for all i 2 A
and j 2 B, then the new vector criterion g consists of 50 components.

It can be proved the following result.

Theorem 5.4 Inclusions (5.6) are invariant with respect to a linear positive
transformation of the components of the vector criterion g that are defined by
formulas (5.8).

5.2 Cyclic Collections of Information Quanta

5.2.1 Definition and Consistency of Cyclic Collection
of Information Quanta

Introduce pairwise disjoint subsets Ai � I; i ¼ 1; 2; . . .; k;
Pk
i¼1

Aij j �m; and consider

the following closed “chain” of information quanta:

(1) The group of criteria A1 is more important than the group of criteria A2 with

parameters wð1Þ
i1 for all i1 2 A1 and wð1Þ

i2 for all i2 2 A2;
(2) The group of criteria A2 is more important than the group of criteria A3 with

parameters wð2Þ
i2 for all i2 2 A2 and wð2Þ

i3 for all i3 2 A3; and so on.
(3) The group of criteria Ak is more important than the group of criteria A1 with

parameters wðkÞ
ik for all ik 2 Ak and wðkÞ

i1 for all i1 2 A1.

The corresponding formal definition can be found below.

Definition 5.2 We say that there is a given cyclic collection of information quanta
with the groups of criteria A1;A2; . . .;Ak and the collection of positive parameters

wð1Þ
i1 ;wð1Þ

i2 ;wð2Þ
i2 ;wð2Þ

i3 ; . . .;wðk�1Þ
ik�1

;wðk�1Þ
ik ;wðkÞ

ik ;wðkÞ
i1 [ 0 for all i1 2 A1; i2 2 A2; . . .; ik 2 Ak

n o
if the vectors y1; y2; . . .; yk of the form
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y1i1 ¼ wð1Þ
i1 ; y1i2 ¼ �wð1Þ

i2 ; y1s ¼ 0 for all i1 2 A1; i2 2 A2; s 2 In A1 [A2ð Þ;
y2i2 ¼ w2

i2 ; y2i3 ¼ �wð2Þ
i3 ; y2s ¼ 0 for all i2 2 A2; i3 2 A3; s 2 In A2 [A3ð Þ;

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
ykik ¼ wðkÞ

ik ; yki1 ¼ �wðkÞ
i1 ; yks ¼ 0 for all ik 2 Ak; i1 2 A1; s 2 In Ak [A1ð Þ;

ð5:25Þ
satisfy the relationships y1 � 0m; y2 � 0m; . . .; yk � 0m.
For all i1 2 A1, i2 2 A2, …, ik 2 Ak, introduce a square matrix W(i1, i2, …, ik) of

order k that depends on the criteria indexes i1, i2, …, ik and has the form

W i1; i2; . . .; ikð Þ ¼

wð1Þ
i1 0 . . . 0 �wðkÞ

i1

�wð1Þ
i2 wð2Þ

i2 . . . 0 0
� � � � � � � � � � � � � � �
0 0 . . . wðk�1Þ

ik�1
0

0 0 . . . �wðk�1Þ
ik wðkÞ

ik

0
BBBBB@

1
CCCCCA

Cyclic collections of information quanta are mutually dependent and have some
specifics. In this connection, the parameters of such collections may take values
making them inconsistent. The next result gives a consistency criterion for cyclic
information.

Theorem 5.6 A cyclic collection of information quanta with the groups of criteria
A1;A2; . . .;Ak is consistent if and only if there exist indexes ip 2 Ap; p ¼ 1; 2; . . .; k,
such that the determinant of the matrix W i1; i2; . . .; ikð Þ is positive,
i.e., W i1; i2; . . .; ikð Þj j[ 0:

□ Clearly, the inequalities W i1; i2; . . .; ikð Þj j[ 0 and
wð1Þ
i2
wð2Þ
i3
�...�wðk�1Þ

ik
wðkÞ
i1

wð1Þ
i1
wð2Þ
i2
�...�wðk�1Þ

ik�1
wðkÞ
ik

\1 are

equivalent.
By the algebraic criterion of consistency from Chap. 4, a cyclic collection of

information is consistent if and only if the system of linear equations

Xm
i¼1

kie
i þ

Xk
j¼1

ljy
ðjÞ ¼ 0m

has no N-solution ðk1; . . .; km;l1; . . .; lkÞ, where the vectors y(1), y(2), …, y(k) are of
form (5.25). In other words, there exist indexes i0p 2 Ap, p ¼ 1; 2; . . .; k, such that
the system of linear equations xði01; i02; . . .; i0kÞWEði01; i02; . . .; i0kÞ ¼ 0k has no solution
xði01; i02; . . .; i0kÞ� 02k, where

xði1; i2; . . .; ikÞ ¼ ðki1 ; ki2 ; . . .; kik ; l1; l2; . . .; lkÞ;
WEði1; i2; . . .; ikÞ ¼ Ek	k

WTði1; i2; . . .; ikÞ
� �

;
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and Ek	k is the identity matrix of order k. According to Motzkin’s theorem of
the alternative (e.g., see [25]), the last statement is equivalent to the existence of a
solution x 2 Rk to the system of inequalities WEði01; i02; . . .; i0kÞx[ 02k.

Therefore, a cyclic collection of information quanta is consistent if and only if
there exist criteria indexes i0p 2 Ap, p ¼ 1; 2; . . .; k, such that the system of linear
inequalities WEði01; i02; . . .; i0kÞx[ 02k has some solution.

Necessity. Assume that there exist indexes i0p 2 Ap, p ¼ 1; 2; . . .; k, and a vector

x 2 Rk such that WEði01; i02; . . .; i0kÞx[ 02k. Then

x[ 0k;
wð1Þ
i01
x1 � wð1Þ

i02
x2 [ 0;

. . .
wðk�1Þ
i0k�1

xk�1 � wðk�1Þ
i0k

xk [ 0;

wðkÞ
i0k
xk � wðkÞ

i01
x1 [ 0:

ð5:26Þ

Trivial transformations applied to (5.26) yield the inequality

wð1Þ
i02
wð2Þ
i03

� . . . � wðk�1Þ
i0k

wðkÞ
i01

wð1Þ
i01
wð2Þ
i02

� . . . � wðk�1Þ
i0k�1

wðkÞ
i0k

x1\x1:

And the desired result follows by dividing both sides by x1 > 0.
Sufficiency. Assume that there exist indexes i0p 2 Ap, p ¼ 1; 2; . . .; k, such that

the inequality
wð1Þ
i0
2
wð2Þ
i0
3
�...�wðk�1Þ

i0
k

wðkÞ
i0
1

wð1Þ
i0
1
wð2Þ
i0
2
�...�wðk�1Þ

i0
k�1

wðkÞ
i0
k

\1 holds. Multiply it by an arbitrary positive

number x1 to obtain

wð1Þ
i01
wð2Þ
i02

� . . . � wðk�1Þ
i0k�1

wð1Þ
i02
wð2Þ
i03

� . . . � wðk�1Þ
i0k

x1 [
wðkÞ
i01

wðkÞ
i0k

x1:

Obviously, we can find a number xk such that

wð1Þ
i01
wð2Þ
i02

� . . . � wðk�1Þ
i0k�1

wð1Þ
i02
wð2Þ
i03

� . . . � wðk�1Þ
i0k

x1 [ xk [
wðkÞ
i01

wðkÞ
i0k

x1;

whence it appears that
wð1Þ
i0
1
wð2Þ
i0
2
�...�wðk�2Þ

i0
k�2

wð1Þ
i0
2
wð2Þ
i0
3
�...�wðk�2Þ

i0
k�1

x1 [
wðk�1Þ
i0
k

wðk�1Þ
i0
k�1

xk. Next, there esists a number xk�1

such that
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wð1Þ
i01
wð2Þ
i02

� . . . � wðk�2Þ
i0k�2

wð1Þ
i02
wð2Þ
i03

� . . . � wðk�2Þ
i0k�1

x1 [ xk�1 [
wðk�1Þ
i0k

wðk�1Þ
i0k�1

xk:

Subsequently,

wð1Þ
i01

� . . . � wðk�3Þ
i0k�3

wð1Þ
i02

� . . . � wðk�3Þ
i0k�2

x1 [
wðk�2Þ
i0k�1

wðk�2Þ
i0k�2

xk�1:

Using the same line of reasoning, we demonstrate that there exists a number x2
such that

wð1Þ
i01

wð1Þ
i02

x1 [ x2 [
wð2Þ
i03

wð2Þ
i02

x3:

And trivial transformations of these inequalities give (5.26). Moreover, since
x1 [ 0, we have x > 0k. ■

5.2.2 Pareto Set Reduction Based on Cyclic Collections
of Information Quanta

This subsection deals with Pareto set reduction using cyclic collections of infor-
mation quanta. First, consider the elementary situation, i.e., all groups in the def-
inition of cyclic information represent singletons: As ¼ fisg, s ¼ 1; 2; . . .; k. In this
case, we have cyclic information with criteria (criteria indexes) i1, i2, …, ik, and
denote by W the corresponding matrix W i1; i2; . . .; ikð Þ. And the necessary and
sufficient condition of consistency (Theorem 5.6) is reduced to the inequality |
W| > 0.

Introduce the family of matrices Ws;p; s ¼ 1; 2; . . .; k; p ¼ 1; 2; . . .; k, where
column s of the matrix W (further designated by Ws) is the unit vector ep of space
Rk, i.e.,

Ws;p ¼ W1; . . .;Ws�1; ep;Wsþ 1; . . .;Wk
	 


:

Lemma 5.3 The determinant of the matrix Ws;p is positive for all
s ¼ 1; 2; . . .; k,p ¼ 1; 2; . . .; k.

□ Let Mij be the (k − 1)-th minor of the matrix W obtained after elimination of
row i and column j from this matrix. In addition, consider the two triangular
matrices
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L l; qð Þ ¼

wðlÞ
il 0 . . . 0 0

�wðlÞ
ilþ 1

wðlþ 1Þ
ilþ 1

. . . 0 0
� � � � � � � � � � � � � � �
0 0 . . . wðq�1Þ

iq�1
0

0 0 . . . �wðq�1Þ
iq wðqÞ

iq

0
BBBBBB@

1
CCCCCCA
;

where l; q 2 f1; 2; . . .; kg, l5 q, and

U r; tð Þ ¼

�wðrÞ
irþ 1

wðrþ 1Þ
irþ 1

. . . 0 0

0 �wðrþ 1Þ
irþ 2

. . . 0 0
� � � � � � � � � � � � � � �
0 0 . . . �wðt�2Þ

it�1
wðt�1Þ
it�1

0 0 . . . 0 �wðt�1Þ
it

0
BBBBB@

1
CCCCCA
;

where r; t 2 f1; 2; . . .; kg, r\t. Construct a matrix Z n	mð Þ of dimensions n	 m

where all elements except the last element �wðkÞ
i1 in row 1 are zero. The determi-

nants of these triangular matrices make the product of their diagonal elements.
Therefore, the determinant of the matrix L l; qð Þ is positive for all possible values of
l and q. Denote it by a l; qð Þ. The sign of the determinant of the matrix U r; tð Þ
depends on the difference t�rð Þ, since jUðr; tÞj ¼ ð�1Þt�r bðr; tÞ, where b r; tð Þ is
some positive number.

We will calculate the determinant Ws;p

�� �� using the column expansion with
respect to column s:

jWs;pj ¼ ð�1Þsþ pMsp ð5:27Þ

The k�1ð Þ-th minor Msp varies depending on the relationship between the
numbers s and p. Consider three cases as follows: (1) s ¼ p; (2) s[ p; (3) s\p:

(1) s ¼ p. The power of (−1) in (5.39) is 2s, and the sign of Ws;s

�� �� is defined by the
sign of Mss: If s ¼ 1 or s ¼ k; then

M11 ¼ jL 2; kð Þ ¼ a 2; kð Þ; Mkk ¼j jL 1; k�1ð Þj ¼ a 1; k�1ð Þ:

Let s 6¼ 1 and s 6¼ k: Then

Mss ¼ Lð1; s� 1Þ Zðs�1Þ	ðk�sÞ
0ðk�sÞ	ðs�1Þ Lðsþ 1; kÞ
����

���� ¼ að1; s� 1Þaðsþ 1; kÞ:
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(2) s[ p: If p ¼ 1; s 6¼ k or s ¼ k; p 6¼ 1; we accordingly obtain

Ms1 ¼ Uð1; sÞ 0ðs�1Þ	ðk�sÞ
0ðk�sÞ	ðs�1Þ Lðsþ 1; kÞ
����

���� ¼ ð�1Þs�1 aðsþ 1; kÞ bð1; sÞ;

Mkp ¼ Lð1; p� 1Þ 0ðp�1Þ	ðk�pÞ
0ðk�pÞ	ðp�1Þ Uðp; kÞ
����

���� ¼ ð�1Þk�p að1; p� 1Þ bðp; kÞ:

For p ¼ 1 and s ¼ k; the result is Mk1 ¼ jUð1; kÞj ¼ ð�1Þk�1bð1; kÞ:
Now, let s 6¼ k and p 6¼ 1: Subsequently,

Msp ¼
Lð1; p� 1Þ 0ðp�1Þ	ðs�pÞ Zðp�1Þ	ðk�sÞ
0ðs�pÞ	ðp�1Þ Uðp; sÞ 0ðs�pÞ	ðk�sÞ
0ðk�sÞ	ðp�1Þ 0ðk�sÞ	ðs�pÞ Lðsþ 1; kÞ

������
������

¼ ð�1Þp�s að1; p� 1Þ bðp; sÞ aðsþ 1; kÞ:

Based on the above expressions for the minor Msp and (5.27), we conclude that
the determinant Ws;p

�� �� is positive in the case s[ p:

(3) s\p: If s ¼ 1 and p 6¼ k; then

M1p ¼

0 0 . . . 0 �wðkÞ
i1

Lð2; p� 1Þ 0ðp�2Þ	ðk�pÞ
0ðk�pÞ	ðp�2Þ Uðp; kÞ

0
..
.

0
wðkÞ
ik

�����������

�����������
¼ ð�1Þ2k�pþ 1wðkÞ

i1 að2; p� 1Þ bðp; kÞ:

For p ¼ k and s 6¼ 1; it follows that

Msk ¼

wð1Þ
i1 0 . . . 0 �wðkÞ

i1

Uð1; sÞ 0ðs�1Þ	ðk�s�1Þ
0ðk�s�1Þ	ðs�1Þ Lðsþ 1; k � 1Þ

0
..
.

0
0

�����������

�����������
¼ ð�1Þkþ swðkÞ

i1 aðsþ 1; k � 1Þbð1; sÞ:

With s ¼ 1 and p ¼ k; we have
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M1k ¼

0 0 . . . 0 �wðkÞ
i1

Lð2; k � 1Þ
0
..
.

0
0

�����������

�����������
¼ ð�1Þkþ 1wðkÞ

i1 að2; k � 1Þ:

Now, let s 6¼ 1 and p 6¼ k: The minor obtained from the minor Msp by elimi-

nating the row and column that contain wð1Þ
i1 is zero. Using this and performing the

raw expansion of minor Msp with respect to row 1, we obtain

Msp ¼

wð1Þ
i1 0 . . . . . . . . . 0 �wðkÞ

i1

Uð1; sÞ 0ðs�1Þ	ðp�s�1Þ 0ðs�1Þ	ðk�pÞ
0ðp�s�1Þ	ðs�1Þ Lðsþ 1; p� 1Þ 0ðp�s�1Þ	ðk�pÞ
0ðk�pÞ	ðs�1Þ 0ðk�pÞ	ðp�s�1Þ Uðp; kÞ

0

..

.

0

0

�������������

�������������
¼ð�1Þ2kþ s�pwðkÞ

i1 aðsþ 1; p� 1Þ bð1; sÞ bðp; kÞ:

Based on these results and formula (5.27), a conclusion is that the determinant |
Ws,p| takes a positive value in the case.s\p:

Therefore, we have established that the determinant |Ws,p| is positive in all the
three cases s ¼ p; s[ p; s\pð Þ: ■

Theorem 5.7 Assume that there is a given consistent cyclic collection of infor-
mation with criteria i1; i2; . . .; ik and a corresponding collection of positive
parameters. Then for any set of selectable vectors CðYÞ we have inclusions (5.6),
where P̂ðYÞ ¼ f ðPgðXÞÞ and the “new” m-dimensional vector criterion g has the
components

gis ¼
Xk
p¼1

Ws;p

�� ��fip s ¼ 1; 2; . . .; k; gi ¼ fi; for all i 2 InIk: ð5:28Þ

□ I. Let K be the acute convex cone (without the origin) of the cone relation �.
The specification of a cyclic collection of information means that the vectors
yð1Þ; yð2Þ; . . .; yðkÞ with the components

y1i1 ¼ wð1Þ
i1 ; y1i2 ¼ �wð1Þ

i2 ; y1s ¼ 0 for all s 2 In i1 [ i2ð Þ;
y2i2 ¼ wð2Þ

i2 ; y2i3 ¼ �wð2Þ
i3 ; y2s ¼ 0 for all s 2 In i2 [ i3ð Þ;

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
ykik ¼ wðkÞ

ik ; yki1 ¼ �wðkÞ
i1 ; yks ¼ 0 for all s 2 In ik [ i1ð Þ;
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satisfy the relationships y1 � 0m, y2 � 0m, …, yk � 0m. This is equivalent to the
inclusions y1; y2; . . .; yk 2 K.

Let M be the acute convex cone (without the origin) generated by the vector
collection

es for all s 2 InIk; y1; y2; . . .; yk:

Show that all vectors from this collection are the generators of the cone M:
Conjecture the opposite. Let a certain unit vector es; s 62 Ik; be representable as the
following N-combination

es ¼
X

l62Ik [fsg
kle

l þ
Xk
i¼1

liy
i:

The above linear combination fails for any coefficients, since component s of the
last equality is 1 = 0.

Assume that there exists p 2 f1; 2; . . .; kg such that

yp ¼
X
l62Ik

kle
l þ

Xk
i ¼ 1
i 6¼ p

liy
i: ð5:29Þ

If p = 1, for component i1 of (5.29) we have wð1Þ
i1 ¼ �lkw

ðkÞ
i1 . And if

p 2 f2; . . .; kg, then component ip of the vector equality (5.29) is

wðpÞ
ip ¼ �lp�1w

ðp�1Þ
ip . The both last equalities are impossible due to nonnegativity of

lk and lp�1. Thus, the vector equality (5.29) takes no place.
Show that the unit vectors eis ; s ¼ 1; 2; . . .; k; belong to the cone M, i.e., each of

them is the following N-combination:

eis ¼
X
l62Ik

kðsÞl el þ
Xk
i¼1

lðsÞi yi; s ¼ 1; 2; . . .; k:

Choose kðsÞl ¼ 0 for s ¼ 1; 2; . . .; k and any l 2 InIk: The unknowns lðsÞp ; s ¼
1; 2; . . .; k; p ¼ 1; 2; . . .; k; can be found as the solutions of the system of linear
equations

WlðsÞ ¼ ês; s ¼ 1; 2; . . .; k; ð5:30Þ

where lðsÞ ¼ lðsÞ1 ; lðsÞ2 ; . . .; lðsÞk

� �T
and ês 2 Rk . The inequality Wj j[ 0 holds due

to the consistency of the cyclic collection of information. Hence, system (5.30)
possesses a unique solution for all s ¼ 1; 2; . . .; k. Using Cramer’s rule, we obtain
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lðsÞp ¼ Wp;s

�� ��
Wj j [ 0;

since Wj j[ 0 and Ws;p

�� ��[ 0 for all s ¼ 1; 2; . . .; k, p ¼ 1; 2; . . .; k (see Lemma 5.3).
In fact, we have established that the generators of the cone M are the vectors

es for all s 2 InIk; y1; y2; . . .; yk; and also that the inclusions eis 2 M; s ¼
1; 2; . . .; k; hold.

II. Now, it is necessary to prove that the cone M coincides with the nonzero
solutions to the system of linear inequalities

hel; yi= 0 for all l 2 InIk;
h�ys; yi= 0 s ¼ 1; 2; . . .; k;

�ys
ip
¼ Ws;p

�� ��; p ¼ 1; 2; . . .; k; �ysq ¼ 0 for all q 2 InIk; s ¼ 1; 2; . . .; k:

ð5:31Þ

Find the fundamental system of solutions to the system of inequalities (5.31).
The idea is to show that the latter coincides with the vector collection es for all
s 2 InIk and y1; y2; . . .; yk:

Consider the system of linear equations that correspond to inequalities (5.31), i.e.,

hel; yi ¼ 0 for all l 2 InIk;
h�ys; yi ¼ 0; s ¼ 1; 2; . . .; k:

ð5:32Þ

The matrix of any subsystem obtained from (5.32) by eliminating a certain
equation has rank m�1ð Þ: To get the fundamental system of solutions, it suffices to
find the nonzero solutions to all possible subsystems of m�1ð Þ equations from
system (5.32) that satisfy the system of inequalities (5.31).

If the equation hel; yi ¼ 0 is removed from (5.32), then the resulting “truncated”
subsystem has the solution el that satisfies (5.31). If we eliminate the equation
h�yp; yi ¼ 0; the solution is the vector yp; p ¼ 1; 2; . . .; k: Let us demonstrate it.
Obviously, h�yp; eli ¼ 0 for all l 2 InIk . Consider the scalar product h�ys; ypi,
s ¼ 1; 2; . . .; k, s 6¼ p. Our analysis will be confined to the case p 6¼ k (if p ¼ k; the
line of reasoning is the same).

Here three cases are possible, namely, (1) s ¼ 1; (2) s ¼ k; (3) s 6¼ 1 and s 6¼ k:

(1) Let s ¼ 1: In this case, we have

h�y1; ypi ¼ W1;p
�� �� � wðpÞ

ip � W1;pþ 1
�� �� � wðpÞ

ipþ 1
¼ êp;W2; . . .;Wk

�� �� � wðpÞ
ip � êpþ 1;W2; . . .;Wk

�� �� � wðpÞ
ipþ 1

¼ wðpÞ
ip êp � wðpÞ

ipþ 1
êpþ 1;W2; . . .;Wk

��� ��� ¼ Wp;W2; . . .;Wk
�� �� ¼ 0;

since the columns W2; . . .;Wk surely contain the column Wp.
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(2) Let s = k. Then

h�yk; ypi ¼ Wk;p

�� �� � wðpÞ
ip � Wk;pþ 1

�� �� � wðpÞ
ipþ 1

¼ W1; . . .;Wk�1; êðpÞ
�� ��

� wðpÞ
ip � W1; . . .;Wk�1; êpþ 1

�� �� � wðpÞ
ipþ 1

¼ W1; . . .;Wk�1;Wp
�� �� ¼ 0;

since the columns W1,…, Wk−1 surely contain the column Wp.

3) Let s 6¼ 1 and s 6¼ k. It follows that

h�ys; ypi ¼ Ws;p

�� �� � wðpÞ
ip � Ws;pþ 1

�� �� � wðpÞ
ipþ 1

Ë

� W1; . . .;Ws�1; êpþ 1;Wsþ 1; . . .;Wk
�� �� � wðpÞ

ipþ 1

¼ W1; . . .;Ws�1;Wp;Wsþ 1; . . .;Wk
�� �� ¼ 0;

since the columns W1, …, Ws−1, Ws+1, …, Wk surely contain the column Wp.
For checking that y(p) satisfies (5.31), it remains to show that �yp; yph i= 0. If

p = 1, we have

h�y1; y1i ¼ W1;1

�� �� � wð1Þ
i1 � W1;2

�� �� � wð1Þ
i2

¼ ê1;W2; . . .;Wk
�� �� � wð1Þ

i1 � ê2;W2; . . .;Wk
�� �� � wðpÞ

i2 ¼ Wj j[ 0:

For p = k,

h�yk; yki ¼ Wk;k

�� �� � wðkÞ
ik � Wk;1

�� �� � wðkÞ
i1

¼ W1; . . .;Wk�1; êk
�� �� � wðkÞ

ik � W1; . . .;Wk�1; ê1
�� �� � wðkÞ

i1 ¼ Wj j[ 0:

With p 6¼ 1 and p 6¼ k, the result is

h�yp; ypi ¼ Wp;p

�� �� � wðpÞ
ip � Wp;pþ 1

�� �� � wðpÞ
ipþ 1

¼ W1; . . .;Wp�1;wðpÞ
ip � êðpÞ � wðpÞ

ipþ 1
� êðpþ 1Þ;Wpþ 1; . . .;Wk

��� ���
¼ W1; . . .;Wp�1;Wp;Wpþ 1; . . .;Wk

�� �� ¼ Wj j[ 0:

Therefore, the fundamental system of solutions to the system of inequalities
(5.31) is the vector collection es for all s 2 InIk and y1; y2; . . .; yk. Hence the cone
M coincides with the set of the nonzero solutions to system (5.31).

III. The inclusions Rm
þ � M � K imply

Ndom Y � P̂ Yð Þ � P Yð Þ;

where
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P̂ Yð Þ ¼ y� 2 Y j there exists no y 2 Y such that y� y� 2 Mf g:

The remainder of the proof is similar to Theorem 5.1 and is therefore omitted. ■

Corollary 5.1 Under the hypotheses of Theorem 5.7, choose k = 2, i1 = i, and
i2 = j. Then formulas (5.28) for the “new” vector criterion g are reduced to

gi ¼ W1;1

�� ��fi þ W1;2

�� ��fj ¼ wð2Þ
j fi þwð2Þ

i fj;

gj ¼ W2;1
�� ��fi þ W2;2

�� ��fj ¼ wð1Þ
j fi þwð1Þ

i fj;

gs ¼ fs for all s 2 In i; jf g;

W1;1

�� �� ¼ 1 �wð2Þ
i

0 wð2Þ
j

�����
����� ¼ wð2Þ

j ; W1;2

�� �� ¼ 0 �wð2Þ
i

1 wð2Þ
j

�����
����� ¼ wð2Þ

i ;

W2;1

�� �� ¼ wð1Þ
i 1

�wð1Þ
j 0

�����
����� ¼ wð1Þ

j ; W2;2

�� �� ¼ wð1Þ
i 0

�wð1Þ
j 1

�����
����� ¼ wð1Þ

i :

Corollary 5.2 Under the hypotheses of Theorem 5.7, choose k = 3, i1 = i, i2 = j,
and i3 = l. Then formulas (5.28) for the “new” vector criterion g are reduced to

gi ¼ wð2Þ
j wð3Þ

l fi þwð2Þ
l wð3Þ

i fj þwð2Þ
j wð3Þ

i fl;

gj ¼ wð1Þ
j wð3Þ

l fi þwð1Þ
i wð3Þ

l fj þwð1Þ
j wð3Þ

i fl;

gl ¼ wð1Þ
j wð2Þ

l fi þwð1Þ
i wð2Þ

l fj þwð1Þ
i wð2Þ

j fl;

gs ¼ fs for all s 2 Infi; j; lg:

5.3 Geometrical Algorithm of New Vector
Criterion Design

5.3.1 Preliminary Analysis

Clearly, the above cases of using different collections of information quanta do not
exhaust all possible situations. Of course, this applies to the mutually dependent
collections.

Let us discover a common scheme for obtaining the recalculation formulas of the
new vector criterion, as appears from the proofs of all theorems on taking into
account different information about the DM’s preference relation. This scheme can
be described in brief in the following way. Right from the start (i.e., when there
exists no information in the form of quanta), only the inclusion Rm

þ � K holds
owing to the Pareto axiom; here K denotes the acute convex cone of the cone
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relation �. Generally speaking, the availability of a certain collection of k infor-
mation quanta in geometrical terms means the specification of k vectors yi with at
least one positive and at least one negative componnets such that yi � 0m or,
equivalently, yi 2 K, i ¼ 1; 2; . . .; k. Next, we introduce the acute convex cone
M (without the origin) generated by the vectors e1; e2; . . .; em,y1; y2; . . .; yk. This
cone defines a wider cone relation from the same class as the unknown preference
relation �, since M � K. The cone M is finitely generated and therefore polyhedral.
The dimension of the new vector criterion coincides with the number of the
ðm� 1Þ-dimensional facets of the cone M, while the inner normals of these facets
yield the recalculation formulas of the new vector criterion.

For example, in the elementary case (criterion i is more important than criterion j
with parameters wi; wj), the cone M has the inner normals
e1; . . .; ej�1;wjei þwie j; ejþ 1; . . .; em, see proof of Theorem 2.5. And the resulting
recalculation formula of the new vector criterion j is given by gj ¼ wjfi þwifj.

According to the aforesaid, we are going to consider the general problem whose
solution would yield the recalculation formulas of the new criteria in any situations
with arbitrary collections of information quanta.

Recall the definition of a dual cone. Let a1; a2; . . .; amþ k be a finite collection of
vectors in the m-dimensional Euclidean space. Denote by

M ¼ conefa1; a2; . . .; amþ kg

the convex (polyhedral) cone generated by the above vectors. It consists of all
nonnegative linear combinations of the vectors a1; a2; . . .; amþ k . By assumption, the
cone is acute and m-dimensional.1

Let Mo be the dual cone for M, i.e.,

Mo ¼ fx 2 Rmjhx; yi� 0 for all y 2 Mg:

The dual cone for a polyhedral (finitely generated) cone also forms a polyhedral
cone, thereby being generated by a certain finite collection of vectors. Another
well-known result [57] states that the dual cone for an acute m-dimensional cone is
acute and m-dimensional. And so, the consideration of an arbitrary finite collection
of information quanta about the DM’s preference relation can be reduced to the
following problem.

Problem
Given a finite collection of vectors a1; a2; . . .; amþ k that generate an acute

polyhedral m-dimensional cone M, develop an algorithm yielding the minimal
collection of vectors b1; b2; . . .; bn that generate the dual cone Mo, i.e.,

Mo ¼ conefb1; b2; . . .; bng:

1The dimension of a cone coincides with the dimension of the minimal subspace containing it.
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In geometrical terms, this problem is to construct the collection of normal
vectors for all hyperplanes representing the ðm� 1Þ-dimensional facets of a cone
M using the generators of M.

Note that the problem becomes trivial in the special case where M is the non-
negative orthant of space Rm

þ . One of the solutions is the collection of the unit
vectors of this space (exactly the ones generating the nonnegative orthant under
consideration).

For any finite consistent collection of information quanta, the above algorithm
can be used to obtain the recalculation formulas of the new vector criterion from the
old one. And the resulting new criterion is then applied to construct an upper
estimate for the set of selectable alternatives (vectors) in the associated multicriteria
choice problem.

5.3.2 Geometrical Algorithm and Its Justification

This subsection provides the so-called geometrical algorithm for new vector cri-
terion design using an arbitrary finite collection of consistent information quanta.

As the input data, the algorithm requires a finite collection of vectors
a1; a2; . . .; amþ k, k= 1, that generate an acute m-dimensional convex (polyhedral)
cone M in space Rm. As the output data, the algorithm forms a new collection of
vectors b1; b2; . . .; bn that generate the dual cone in the same space.

Step 1 (looping for all possible vectors). Open a loop on variable i from 1 to
Cm�1
mþ k to generate all possible subcollections of (m� 1) vectors from the

collection a1; a2; . . .; amþ k.
Step 2 (checking of linear independence). If a current i-th subcollection

ai1; . . .; aiðm�1Þ selected from a1; . . .; amþ k is linear dependent, set
i = i +1 and again execute Step 2. If further increment of i is impossible
(i.e., i = Cm�1

mþ k), move to Step 5. Otherwise (i.e., the above subcollection
is linearly independent), go to Step 3.

Step 3 (constructing the orthogonal vector for the linearly independent sub-
collection). Take the column vectors of the subcollection ai1; . . .; aiðm�1Þ

and enlarge them to a square matrix D of order n as follows. Attach to
the right any vector from the set Ii ¼ fa1; . . .; amþ kgnfai1; . . .; aiðm�1Þg
that forms a linearly independent system together with ai1; . . .; aiðm�1Þ

(such a vector surely exists, since the coneM is m-dimensional). Find the
last column of the inverse matrix ðDTÞ�1, where T denotes matrix
transposition. Memorize this vector column and denote it by zi. By the
construction procedure, the vector zi is orthogonal to all vectors from the
subcollection ai1; . . .; aiðm�1Þ.
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Step 4 (checking of the belonging of zi to the desired collection b1; b2; . . .; bn).
Calculate the scalar products ha j; zii for all vectors a j 2 Ii. If at least one
scalar product is negative, then eliminate the vector zi from memory.
Otherwise (i.e., all scalar products are nonnegative), set i = i +1 and get
back to Step 2. If further increment of i is impossible, move to Step 5.

Step 5 (completing the calculations). Looping on variable i yields the column
vectors memorized as zi. These vectors form the desired minimal col-
lection of the vectors b1; b2; . . .; bn generating the dual cone Mo.

Let us justify the algorithm. We begin with an auxiliary result.

Lemma 5.4 [61] A vector zi 2 Mo is a generator2 of the dual cone Mo if and only
if the collection a1; a2; . . .; amþ k contains (m − 1) linearly independent vectors with
zero scalar products by the vector zi and (k + 1) vectors with nonnegative scalar
products by the vector zi.

□ Sufficiency. Denote by ai1; . . .; aiðm�1Þ the linearly independent vectors. By the
hypothesis, we have

haij; zii ¼ 0; j ¼ 1; . . .;m� 1;

haij; zii= 0; j ¼ m; . . .;mþ k:
ð5:33Þ

Suppose that the vector zi is not a generator of the dual cone. In this case, there
exist two noncollinear vectors t1; t2 2 Mo and two positive numbers a1; a2 such that
yi ¼ a1t1 þ a2t2. Since t1; t2 2 Mo,

haij; t1i= 0; haij; t2i= 0; j ¼ 1; . . .;m� 1: ð5:34Þ

It follows from the equalities in (5.33) that

haij; zii ¼ a1haij; t1iþ a2haij; t2i ¼ 0; j ¼ 1; . . .;m� 1:

Due to a1; a2 [ 0 and inequalities (5.34), we obtain the relationships
a1haij; t1i ¼ a2haij; t2i ¼ 0, j ¼ 1; . . .;m� 1. This means that the linear hull
Lðt1; t2Þ of the vectors t1; t2 is contained in the orthogonal complement of the linear
hull of the vectors ai1; . . .; aiðm�1Þ, i.e., Lðt1; t2Þ � L?ðai1; . . .; aiðm�1ÞÞ and
dim Lðt1; t2Þ ¼ 2. Hence, dim L?ðai1; . . .; aiðm�1ÞÞ= 2, which is inconsistent with
the linear independence of the subcollection of the m-dimensional vectors
ai1; . . .; aiðm�1Þ.

Necessity. Let a vector zi be a generator of the dual cone Mo. Obviously, this
vector satisfies the inequalities ha j; zii= 0; j ¼ 1; . . .;mþ k. According to [62],

2A generator (edge) of a polyhedral cone is a vector of the cone that is not representable in the
form of a positive linear combination of two other vectors belonging to this cone (see Subcection
2.1.2). All edges form the minimal system of vectors generating a given cone.
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the generators of the acute m-dimensional cone Mo and the (m − 1)-dimensional
facets of the original acute m-dimensional cone M have a bijection. Notably, each
vector (in particular, zi) representing a generator of the dual cone is the inner normal
for some (m − 1)-dimensional facet of the original cone, and conversely.

Fix a linearly independent subcollection ai1; . . .; aiðm�1Þ from (m − 1) vectors in
the collection a1; a2; . . .; amþ k, that generates the (m − 1)-dimensional facet of the
cone M with the vector zi as its normal. Suppose that relationships (5.33) fail for the
subcollection ai1; . . .; aiðm�1Þ. This means violation of the corresponding inequali-
ties, i.e., there exists index j 2 fm; . . .;mþ kg such that haij; zii\0. This inequality
is inconsistent with the inclusion zi 2 Mo. ■

By Lemma 4.1, the vector zi memorized at Step 4 is a generator of the dual cone
Mo, i.e., it is one from the collection b1; b2; . . .; bn.

The next result justifies the algorithm usage for Pareto set reduction.

Theorem 5.8 Assume that there are given vectors u1; u2; . . .; uk with at least one
positive and at least one negative components that generate a consistent collection
of information quanta, i.e., ui � 0m, i ¼ 1; . . .; k,. Then for any set of selectable
vectors C(Y) we have

C Yð Þ � P̂ðYÞ � PðYÞ: ð5:35Þ
Here P̂ðYÞ ¼ PgðYÞ and the vector function

gðyÞ ¼ ðhb1; yi; hb2; yi. . .; hbn; yiÞ; n=m;

is constructed from the vectors b1; b2; . . .; bn yielded by the above algorithm with
the vectors u1; u2; . . .; uk and the m unit vectors of space Rm as the input data.

□ For convenience, denote by a1; a2; . . .; amþ k the vectors
e1; e2; . . .; em; u1; u2; . . .; uk mentioned in the hypothesis of this theorem. And let
M indicate the cone (without the origin) generated by this collection of vectors, i.e.,
M ¼ conefa1; a2; . . .; amþ kgn0m. Since the given collection of information quanta
is consistent, this cone is acute and m-dimensional. Consider the dual cone (without
the origin)

Mo ¼ fy 2 Rmj ha j; yi= 0; j ¼ 1; . . .;mþ kgnf0mg:

It is acute and m-dimensional, too (for details, see [57, 62]).
Under the reasonable choice axioms, the preference relation � described in this

theorem is a cone relation with an acute convex cone containing the nonnegative
orthant Rm

þ . Let K be the cone of the relation �. Therefore, we have the inclusions
Rm � M � K, and all the participating cones are acute, convex and m-dimen-
sional. The corresponding sets of nondominated vectors are nested in the inverse
order:
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NdomY � NdomMY � PðYÞ: ð5:36Þ

Here PðYÞ means the Pareto set, i.e., the set of nondominated vectors with
respect to the cone relation with the cone Rm

þ ; Ndom Y is the set of nondominated
vectors with respect to the cone relation �; NdomMY stands for the set of non-
dominated vectors with respect to the cone relation �M with the cone M, i.e.,

NdomMY ¼ fy� 2 Y j there exists no y 2 Y such that y� y� 2 Mg:

By Lemma 5.4, the above algorithm constructs the generators b1; b2; . . .; bn of
the dual cone Mo. As is well-known [57], the cone M is dual to the cone Mo (the
origin should not be taken into account). Hence, the relationship y� y� 2 M is
equivalent to the inqualities hb j; yi� hb j; y�i; j ¼ 1; 2; . . .; n, and NdomMY = P̂ðYÞ
in (5.36), where g is the vector function described in the hipothesis of Theorem 5.8.
Since for any set of selectable vectors C(Y) we have the inclusion C(Y) � Ndom Y ,
relationships (5.36) imply the desired inclusions (5.35). ■

According to this theorem, the algorithm requires constructing the new vector
criterion g, and the Pareto set P̂ðYÞ in terms of this criterion yields the upper
estimate for the unknown set of selectable vectors C(Y) considering the available
collection of information quanta. Generally, this estimate is more accurate than the
original Pareto set PðYÞ.

5.3.3 Example

Example 5.2 Choose m ¼ 3; k ¼ 2, u1 ¼ ð�2; 3; 1Þ � 03, and
u2 ¼ ð4; �1; 1Þ � 03. It is easy to verify that the information about the DM’s
preference relation in the form of these two quanta is consistent. Let us apply the
above algorithm to construct the new vector criterion. The input data are the five
vectors from the collection fe1; e2; e3; u1; u2g, where e1 ¼ ð1; 0; 0Þ; e2 ¼
ð0; 1; 0Þ; and e3 ¼ ð0; 0; 1Þ. The total number of iterations in this algorithm is
C2
5 ¼ 10.

Consider the first subcollection fe1; e2g. The vector f e3g is orthogonal to both of
them, and he3; u1i ¼he3; u2i = 1[ 0. Hence, the vector z1 ¼ e3 is memorized.

Take the second subcollection fe1; e3g. The vector e2 is orthogonal to both
vectors from this subcollection, but he2; u1i ¼ 3[ 0 and he2; u2i ¼ �1\0. This
means that the vector e2 is not memorized.

Next, study the subcollection fe2; e3g. Here the orthogonal vector e1 satisfies
the conditions he1; u1i ¼ �2\0 and he1; u2i ¼ 4[ 0. And so, this vector is also
skipped.
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For the subcollection fe1; u1g, an orthogonal vector is, e.g., ð0; 1; �3Þ. Since
hð0; 1; �3Þ; e2i ¼ 1[ 0 and hð0; 1; �3Þ; u2i ¼ �4\0, we skip this vector too.

For the subcollection fe2; u1g, a possible orthogonal vector is z2 ¼ ð1; 0; 2Þ,
which is memorized. In the same fashion, for the subcollections fe3; u1g and
fe1; u2g we memorize, e.g., the vectors z3 ¼ ð3; 2; 0Þ and z4 ¼ ð0; 1; 1Þ,
respectively. For the subcollection fe2; u2g the corresponding orthogonal vector is
skipped, whereas for the subcollection fe3; u2g we have to memorize the vector
z5 ¼ ð1; 4; 0Þ. And finally, there is nothing to memorize for the subcolletion
fu1; u2g.

As a result, we have found the five vectors z1; . . .; z5. They correspond to the
new vector criterion g with the components g1ðyÞ ¼ hz1; yi ¼ y3,
g2ðyÞ ¼ hz2; yi ¼ y1 þ 2y3, g3ðyÞ ¼ hz3; yi ¼ 3y1 þ 2y2, g4ðyÞ ¼ hz4; yi ¼ y2 þ y3,
and g5ðyÞ ¼ hz5; yi ¼ y1 þ 4y2.

According to Theorem 5.8, the Pareto set in terms of this five-dimensional
criterion is a refined upper estimate for the unknown set of selectable vectors.

To obtain a particular solution, choose, e.g., the feasible set Y ¼ fy1; y2; y3; y4g
of the form

y1 ¼ ð1; 4:5; 2Þ, y2 ¼ ð2; 3; 1Þ, y3 ¼ ð3; 2; 1:5Þ, y4 ¼ ð5; 1:5; 2Þ.
As easily checked, all these vectors are Pareto optimal. Standard calculations

show that

gðYÞ ¼ fð2; 5; 12; 6:5; 19Þ; ð1; 4; 12; 4; 14Þ; ð1:5; 6; 13; 3:5; 9Þ; ð2; 9; 18; 3:5; 11Þg:

The second and third vectors in this set are not Pareto optimal. Consequently,
P̂ðYÞ ¼ PgðYÞ = fy1; y4g, i.e., using the available information we have reduced the
Pareto set by 50%.

5.4 Algebraic Algorithm of Vector Criterion Recalculation

5.4.1 Statement of the Problem

Under Axioms 1–4, the preference relation is a cone relation and its convex cone
K includes the nonnegative orthant (see Theorem 2.1). If there exists additional
information in the form of the relationships uk � 0m; where
uk 2 Nm,k ¼ 1; 2; . . .; q, then uk 2 K; k ¼ 1; 2; . . .; q, by the definition of the cone
relation �. Furthermore, all unit vectors of Rm belong to the cone K, i.e.,
ek 2 K; k ¼ 1; 2; . . .;m. Since the cone K is convex, it contains the whole cone
generated by the above vectors, i.e.,
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conefe1; e2; . . .; em; u1; u2; . . .; upgnf0mg ¼ M � K:

The chain of inclusions K � M � Rm
þ implies

Ndom Y � fy 2 Rmj there exists no y0 such that y0 � y 2 Mg � PðYÞ: ð5:37Þ

Consider the cone Q that is dual to the closed coneM [f0mg. Since the latter is a
finitely generated cone, then its dual cone Q can also be represented in the form of a
linear nonnegative combination of a finite number of vectors:
Q ¼ conefb1; b2; . . .; bqg. In this case, the relationship y0 � y 2 M is equivalent to
the inequalities hbk; y0 � yi � 0 for all k ¼ 1; 2; . . .; p, with at least one inequality
here being strict. Indeed, if y0 � y 2 M, then the inequalities hold by the definition
of a dual cone. Imagine that all these inequalities hold as equalities. Then the
nonzero vector y0 � y is orthogonal to the linear hull Lfb1; b2; . . .; bqg, which
implies the inclusion y0 � y 2 M and also the inclusion y� y0 2 M by to the def-
inition of a dual cone. In this case, we simultaneously have the relationships y0 � y
and y � y0, which are inconsistent with the asymmetric property of the preference
relation. The converse seems obvious: the above inequalities imply y0 � y 2
M [f0mg by the definition of a dual cone, but the vector y0 � y cannot be zero
(there exists at least one strict inequality).

Construct the new vector criterion g in the following way. Choose the scalar
product gkðyÞ ¼ hbk; yi; k ¼ 1; 2; . . .; q; as its component k. Then the result
established above can be rewritten as y0 � y 2 M , gðy0 � yÞ� 0q, which is
equivalent to gðy0Þ � gðyÞ owing to the linear property of the scalar product. Hence,
the set in the right-hand side of (5.37) is none other than the Pareto set in terms of
the new vector criterion, i.e.,

fy 2 Rmj there exists no y0 2 Rm such that y0 � y 2 Mg
¼ fy 2 Rmj there exists no y0 2 Rm such that gðy0Þ � gðyÞg ¼ PgðYÞ:

These considerations naturally lead to the following statement.

Theorem 5.9 Assume that there is a given finite collection of vectors uk 2 Nm that
satisfy the relationships uk � 0m, k ¼ 1; 2; . . .; p. In addition, let vectors
b1; b2; . . .; bq generate the dual cone for conefu1; u2; . . .; up; e1; e2; . . .; emg. Finally,
let the components of the vector criterion g(y) be defined by the equalities
gkðyÞ ¼ hbk; yi; k ¼ 1; 2; . . .; q. Then for any set of selectable vectors C(Y) we have
the inclusions

CðYÞ � PgðYÞ � PðYÞ: ð5:38Þ
Therefore, to take into account a finite collection of information quanta, one has

to construct the generators of the dual cone for a given acute finitely generated cone
(the former problem is reduced to the latter one). This is the subject of the forth-
coming subsection.
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5.4.2 Construction of Dual Cone Generators

Consider the following problem. Given acute finitely generated
conefe1; e2; . . .; em; u1; u2; . . .; upg, it is required to find the generators of its dual
acute cone Q.

Generally (i.e., if the cone M has an arbitrary structure), the dual cone may
contain no unit vectors of the space, or even may not be acute. In the general case,
the problem is solved by the Motzkin-Burger algorithm [7]. However, owing to the
special properties of the cone associated with the multicriteria specifics, we can
substantially simplify this algorithm.

The dual cone is representable as the intersection of the half-spaces

Q ¼ ð \ m
k¼1fy 2 Rmj hek; yi= 0gÞ \ ð \ p

k¼1fy 2 Rmj huk; yi= 0gÞ
¼ fy 2 Rmj y= 0g\ ð \ p

k¼1fy 2 Rmj huk; yi= 0gÞ:

Introduce the cones

Qs ¼ fy 2 Rmjy= 0g\ \ s
k¼1fy 2 Rmjhuk; yi= 0g; s ¼ 0; 1; . . .; p:

Then Qsþ 1 ¼ Qs \fy 2 Rmj husþ 1; yi= 0g, and the desired cone has the form
Q ¼ Qp, while Q0 ¼ \ m

k¼1fy 2 Rmj hek; yi= 0g ¼ conefe1; e2; . . .; emg.
Thus, if we know the recalculation algorithm for the vectors generating the

intersection of the cone Qs with the half-space fy 2 Rmj husþ 1; yi= 0g, then the
generators of the cone Q can be obtained in p steps from the generators of the first
orthant. This idea is justified by the following statement.

Theorem 5.10 Divide the indexes of the vectors a1; a2; . . .; ar into three groups in
accordance with the partition of the whole space by the plane
fy 2 Rmj husþ 1; yi ¼ 0g:

A ¼ fij husþ 1; aii[ 0g, B ¼ fjj husþ 1; a ji\0g, C ¼ fkj husþ 1; aki ¼ 0g.
Then the vectors

ai for all i 2 A[C; dij ¼ husþ 1; aiia j � husþ 1; a jiai
for all ði; jÞ 2 A	 B;

ð5:39Þ

generate the cone Qsþ 1 ¼ Qs \fy 2 Rmjhusþ 1; yi= 0g.
□ It is easy to verify that the vector collection (5.39) belongs to the intersection

Qs \fy 2 Rmjhusþ 1; yi= 0g. Indeed, the vectors dij are the linear combinations of
the vectors a1; a2; . . .; ar with positive coefficients, and so they do belong to the
above intersection. The index sets A and C are organized so that husþ 1; aii= 0 for
all i 2 A[C. Finally, husþ 1; diji ¼ husþ 1; aiihusþ 1; a ji� husþ 1; a jihusþ 1; aii ¼ 0.
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It remains to demonstrate that each vector y 2 Qs satisfying the inequality
husþ 1; yi= 0 can be expressed as a linear nonnegative combination of the vectors

from collection (5.39). Since y 2 Qs , we have the representation y ¼ Pr
i¼1

cia
i where

all coefficients ci are nonnegative. If
P
i2A

cihusþ 1; aii ¼ 0, then using the inequality

husþ 1; yi= 0 we get
P
j2B

cjhusþ 1; a ji ¼ 0. The sum of nonnegative numbers ci with

positive (or negative) coefficients is zero if and only if all these numbers are zero.
Thereby, the vector y ¼ P

i2C
cia

i has been decomposed with respect to the vectors

from collection (5.39).
In the case

P
i2A

cia
i [ 0m, perform the transformation

y ¼
X

i2A[C

cia
i þ

P
i2A

cihusþ 1; aii
P
k2A

ckhusþ 1; aki
X
j2B

cja
j ¼

X
i2A[C

cia
i þ

P
i2A

P
j2B

cicjhusþ 1; aiia j

P
k2A

ckhusþ 1; aki

¼
X

i2A[C

cia
i þ

P
i2A

P
j2B

cicjðdij þhusþ 1; a jiaiÞ
P
k2A

ckhusþ 1; aki ¼
X
i2C

cia
i þ

X
ði;jÞ2A	B

cicjd
ijP

k2A
ckhusþ 1; aki

þ
X
i2A

ci 1þ

P
j2B

cjhusþ 1; a ji
P
k2A

ckhusþ 1; aki

0
B@

1
CAai;

which actually represents the vector y as the linear nonnegative combination of
vectors (5.39):

1þ

P
j2B

cjhusþ 1; a ji
P
k2A

ckhusþ 1; aki ¼

P
k2A

ckhusþ 1; akiþ P
j2B

cjhusþ 1; a ji
P
k2A

ckhusþ 1; aki

¼ husþ 1; yiP
k2A

ckhusþ 1; aki = 0:

■
However, not all vectors of collection (5.39) are the generators the cone Qsþ 1.

To illustrate this, e.g., consider Qs ¼ conefð3; 1; 1Þ; ð1; 3; 1Þ; ð3; 3; 1Þ; ð1; 1; 1Þg
and usþ 1 ¼ ð1; �1; 0Þ. The first vector generating the cone Qs belongs to the
positive half-space, the second to the negative half-space and the rest to the
hyperplane fy 2 Rmj husþ 1; yi ¼ 0g. According to Theorem 5.11, the cone Qsþ 1 is
generated by the vector collection fð3; 1; 1Þ; ð3; 3; 1Þ; ð1; 1; 1Þ; ð8; 8; 4Þg. The
last vector clearly is a positive linear combination of the two preceding ones (their
doubled sum), and hence it is not a generator.
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Theorem 5.11 A vector ar is not an edge (generator) in the collection of vectors
a1; a2; . . .; ar generating a certain acute cone if and only if it is a zero vector, or it is
collinear to another vector from the collection, or there exist noncollinear vectors
x; y 2 conefa1; a2; . . .; arg and a number a[ 0 such that xþ y ¼ a � ar:

□ Necessity. If a vector ar is not an edge, then

ar 2 conefa1; a2; . . .; arg ¼ conefa1; a2; . . .; ar�1g. Hence, the representation ar ¼
Pr�1

k¼1
cka

k takes place, and also ck � 0; k ¼ 1; 2; . . .; r � 1. If all coefficients ck are

zero, then ar ¼ 0m. If exactly one coefficient is nonzero, then the vector ar is
collinear to the corresponding generator. Finally, assume that at least two coeffi-
cients are nonzero. Without loss of generality, let the first of them be positive, i.e.,

c1 [ 0. In this case, ar ¼ c1a
1 þ Pr�1

k¼2
cka

k . It follows thast the vector ar is expressed

as the sum of two noncollinear vectors or the vectors ar and a1 are collinear.
Sufficiency. The inclusion conefa1; a2; . . .; ar�1g � conefa1; a2; . . .; arg natu-

rally holds. We will show the opposite inclusion. Take a vector
z 2 conefa1; a2; . . .; arg. It can be expanded into the sum

z ¼
Xr

k¼1

cka
k: ð5:40Þ

If ar is a zero vector, we have z ¼ Pr�1

k¼1
cka

k � conefa1; a2; . . .; ar�1g. If ar is

collinear to one of the generators, it can be also eliminated from the sum. Consider
the case a � ar ¼ xþ y, where x and y are two noncollinear vectors from the cone

conefa1; a2; . . .; arg. These vectors admit the representations x ¼ Pr
k¼1

/ka
k and

y ¼ Pr
k¼1

wka
k. Since the vectors under consideration are noncollinear, there exist

i; j; i 6¼ j, such that /i [ 0; ai 6¼ 0m; wj [ 0; a j 6¼ 0m. In this case,

ar ¼ xþ y
a

¼
Xr�1

k¼1

/k þwk

a
ak; 1� /r þwr

a

� �
ar ¼

Xr�1

k¼1

/k þwk

a
ak;

and the right-hand side of the last equality contains at least one positive coefficient.
The parenthesized expression is not negative (otherwise, conefa1; a2; . . .; arg fails
to be acute). This expression is not zero, as the right-hand side makes a nonzero
vector. Therefore, the parenthesized expression is positive, and the vector ar is
represented in the form a linear nonnegative combination of the generators
a1; a2; . . .; ar�1. By substituting this representation into sum (5.40), we actually
expand the vector z with respect to the generators a1; a2; . . .; ar�1. This proves the
opposite inclusion. ■
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Now, we analyze possible ways to eliminate the vectors that are not edges at
each step of the algorithm. Suppose that all vectors generating the cone Qs are
edges. Since Qsþ 1 � Qs, all the memorized vectors ak; k 2 A[C are still edges.
Indeed, if not, we have two possible cases: (1) there exist two noncollinear vectors
x; y 2 Qsþ 1 � Qs whose sum is collinear to ak or (2) a certain vector among the
ones generating the cone Qsþ 1 is collinear to the vector ak. Case (1) directly
contradicts the fact that ak is an edge in the cone Qs. In case (2), this collinear vector
is dij, as the vectors generating Qs represent edges. As a result, the vector ak ¼
husþ 1; aiia j þh�usþ 1; a jiai is rewritten as the sum of two noncollinear vectors
from Qs, which means that it is not an edge.

As is well-known, a generator (edge) of a cone is a normal to an (m − 1)-
dimensional facet of the dual cone. This property leads to the following result.

Theorem 5.12 A vector dij of the cone Qsþ 1 that is not collinear to any other
vector di

0j0 forms a generator if and only if rangTðdijÞ ¼ m� 1, where

TðdijÞ ¼ ð
[m
k¼1

fekjhdij; eki ¼ 0gÞ [ ð
[sþ 1

k¼1

fekjhdij; eki ¼ 0gÞ:

□ Necessity. The rank of the vector collection TðdijÞ is not m, since an edge is
not a zero vector. Assume that this rank is smaller than m − 1. Then the linear hull
of the vectors TðdijÞ [ fdijg has a smaller dimension than space Rm, and hence there
exists a nonzero vector z orthogonal to dij and also to all vectors from TðdijÞ.

By the construction procedure of the cone Qsþ 1, the vector dij satisfies the
inequalities

hdij; eki= 0; k ¼ 1; 2; . . .;m; hdij; uki= 0; k ¼ 1; 2; . . .; sþ 1

Choose a number e[ 0 so that

05 e hz; eki�� ��5 hdij; eki; k ¼ 1; 2; . . .;m;

05 e hz; uki�� ��5 hdij; uki; k ¼ 1; 2; . . .; sþ 1:
ð5:41Þ

This is possible, since if the right-hand size is hdij; eki ¼ 0, we have ek 2 TðdijÞ
and hz; eki ¼ 0; if the right-hand side forms a positive number, the number e can be
chosen sufficiently small.

The conditions imposed on e allow stating that

hdij 
 ez; eki= 0; k ¼ 1; 2; . . .;m;

hdij 
 euk; eki= 0; k ¼ 1; 2; . . .; sþ 1:

Therefore, the vectors dij 
 ez belong to the cone Qsþ 1. And they are not col-
linear, since dij?z. This means that the vector dij can be expressed as the half-sum
of two noncollinear vectors from Qsþ 1, and it is not an edge accordingly.
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Sufficiency. Now, suppose that (despite the equality rangTðdijÞ ¼ m� 1) the
vector dij is not an edge. Note that dij is a nonzero vector (otherwise, all unit vectors
of space Rm would enter TðdijÞ, yielding rank m for the resulting collection). It has
been shown above that the vectors ak; k 2 A[C, cannot be collinear to dij. Assume
that there exist vectors x; y 2 Qsþ 1 such that xþ y ¼ a � dij for some a[ 0. Take
an arbitrary vector z 2 TðdijÞ. The inequalities hz; xi= 0; hz; yi= 0 hold due to
x; y 2 Qsþ 1. However, it follows from the inclusion z 2 TðdijÞ that
hz; xþ yi ¼ hz; diji ¼ 0. The sum of two nonnegative numbers can be zero only if
they are both zero: hz; xi ¼ hz; yi ¼ 0. And so, both vectors x and y are orthogonal
to all vectors from TðdijÞ. But in this case they must be collinear, since
rangTðdijÞ ¼ m� 1. This contradiction completes the proof of Theorem 5.12. ■

Rank calculation can be replaced with the comparison of vector collections for
different generators. Then we have the following criterion to eliminate the vectors
that are not generators.

Theorem 5.13 A nonzero vector dij of the cone Qsþ 1 is not a generator if and only
if there exists a vector q ðak or di0j0 ) of this cone such that TðdijÞ � TðqÞ.

□ Necessity. If the vector dij is not an edge, then two situations are possible,
namely, (1) there exists a collinear vector di

0j0 or (2) rangTðdijÞ\m� 1. In situation
(1), we have TðdijÞ � Tðdi0j0 Þ and the necessity is proved accordingly. In situation
(2), there exist a vector z being orthogonal to dij and to all vectors from TðdijÞ and a
number e[ 0 satisfying inequalities (5.41). Choose the maximum number among
all such numbers e, i.e.,

e ¼ min
t2TnTðdijÞ

hdij; ti
hz; tij j ; ð5:42Þ

where T ¼ fu1; u2; . . .; usþ 1; e1; e2; . . .; emg. By definition, both vectors dij 
 ez
belong to the cone Qsþ 1, and one of them is also orthogonal to the vector�t 2 TðdijÞ
that corresponds to the minimum in (5.42). Let us expand this vector with respect to
the edges of the cone Qsþ 1 except the vector dij. Since dij 
 ez 2 Qsþ 1, there exists
at least one vector q entering this expansion with a positive coefficient. As it
belongs to Qsþ 1, the inequality hq; ti= 0 holds for all t 2 T . But the sum of such
vectors with positive coefficients yields the vector that is orthogonal to f�tg[ TðdijÞ.
This is possible only if f�tg[TðdijÞ � TðqÞ, and hence TðdijÞ � TðqÞ.

Sufficiency. If the inclusion TðdijÞ � TðqÞ takes place, then rankTðdijÞ5m� 1.
Under the equality rankTðdijÞ ¼ m� 1, the vectors dij and q belong to the
one-dimensional linear space, thereby being collinear. This means that dij is not an
edge. If rankTðdijÞ\m� 1, then the desired result follows directly from
Theorem 5.12. ■

Note that all the vectors dij are nonzero, since they represent nonnegative linear
combinations of the nonzero edges ai; a j.
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Finally, consider another special case that may occur in the algorithm. Let
A ¼ £ at some step during the construction of the cone Qsþ 1. That is, all vectors
q of the cone Qs satisfy the inequality hq; usþ 1i 5 0. But then hq;�usþ 1i = 0, and
the vector �usþ 1 belongs to the cone that is dual to Qs, i.e.,
�usþ 1 2 conefu1; u2; . . .; us; e1; e2; . . .; emg. The compatibility axiom dictates that
ek � 0m; k ¼ 1; 2; . . .;m, while the definition of an information quantum leads to
the relationships uk � 0m; k ¼ 1; 2; . . .; s. Owing to the invariance axiom, we
deduce that �usþ 1 � 0m. At the same time, the relationship usþ 1 � 0m holds by the
above specification of an information quantum. The resulting contradiction
usþ 1 þð�usþ 1Þ ¼ 0m � 0m indicates that the available collection of information
quanta is inconsistent.

5.4.3 Algorithm of Information Quanta Consideration

Now, we describe the algorithm for taking into account the available information in
the form of an arbitrary collection of vectors u1; u2; . . .; up 2 Nm.

At the start of the algorithm, it is necessary to initialize the list of generators by
the unit vectors e1; e2; . . .; em.

At each step s ¼ 1; 2; . . .; p we have the list of the generators q1; q2; . . .; qrs

divided into three groups as follows:

A ¼ fij hus; qii[ 0g, B ¼ fjj hus; q ji\0g, C ¼ fkj hus; qki ¼ 0g.
If A ¼ £, the collection of the existing information quanta that includes the

vectors u1; u2; . . .; up is inconsistent and the algorithm halts. Otherwise, the vectors
qi for i 2 A[C are added to the new list of vectors. Next, iterating over all pairs
ði; jÞ 2 A	 B, it is necessary to add the vector dij ¼ hus; aiia j � hus; a jiai to the
new list if the set

TðdijÞ ¼ ð
[m
k¼1

fekj hdij; eki ¼ 0gÞ [ ð
[s
k¼1

fukj hdij; uki ¼ 0gÞ

is not contained in any similar set TðqÞ for the generatrix q from the new list.
The vectors q1; q2; . . .; qrp included in the list after p steps are the generators of the

dual cone. Based on these vectors, wemay construct the new vector criterion using the
formula gðyÞ ¼ ðg1ðyÞ; g2ðyÞ; . . .; grpðyÞÞ, where gkðyÞ ¼ hqk; yi; k ¼ 1; 2; . . .; rp.
And the Pareto set in terms of the new vector criterion g yields the desired upper
estimate (5.38).
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5.5 Reduction of Finite Pareto Set

5.5.1 Main Idea

Consider situation where the available information about the DM’s preference
relation contains an arbitrary finite collection of vector pairs

ui; vi 2 Rm; ui � vi 2 Nm \K; i ¼ 1; 2; . . .; k;

satisfying the relationships ui � vi, i ¼ 1; 2; . . .; k, where K denotes the acute
convex cone of the cone preference relation �. Recall that the set Nm is formed by
all m-dimensional vectors having at least one positive and at least one negative
components.

Introduce the convex cone M (without the origin) generated by the vectors

e1; e2; . . .; em; u1 � v1; . . .; uk � vk: ð5:43Þ

We have the inclusion M � K and hence the cone M is acute. Moreover,
Rm

þ � M.
Denote by �M the cone relation with the cone M. This relation represents the

same class of relations as the original relation �. For justice’ sake, note that the
relation � also satisfies Axiom 1, whereas the relation �M may not. But this aspect
is not crucial for further exposition.

Consequently, we have two cone relations, � and �M , that are interconnected
via the implication

y0 �M y00 ) y0 � y00

for all y0; y00 2 Rm. This interconnection holds due to the inclusion M � K, yielding

Ndom Y � NdomM Y ; ð5:44Þ

where

NdomMY ¼ y� 2 Y jf there exists no y 2 Y such that y �M y�g.
Inclusion (5.44) means that the set NdomMY is an upper estimate for the set of

nondominated vectors NdomY , and so for any set of selectable vectors CðYÞ. Since
the set Y is finite, the direct enumeration of all pairs of its elements allows for
obtaining the set NdomMY . The latter is generally narrower than the Pareto set, and
we actually reduce the Pareto set by eliminating some Pareto optimal vectors. This
makes the key idea of the approach suggested below.
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5.5.2 Majorant Relation

The cone relation �M with the acute convex cone M (without the origin) generated
by vectors (5.43) is called the majorant relation. This relation is used below to
construct an upper estimate (majorant) for the set of selectable vectors, which
explains its name.

The suggested approach proceeds from the following statement.

Theorem 5.14 Let y0; y00 2 Rm; y0 6¼ y00. The relationship y0 �M y00 holds if and
only if the canonical linear programming problem

n1 þ n2 þ . . .þ nm ! min
subject to the constraints

Xm
i¼1

kie
i
ssignðy0s � y00s Þþ

Xk
i¼1

liðuis � visÞsignðy0s � y00s Þ

þ ns ¼ jy0s � y00s j; s ¼ 1; 2; . . .;m;

ð5:45Þ

and

k1; k2; . . .; km; l1; l2; . . .; lk; n1; n2; . . .; nm = 0;

has the zero optimal value of the goal function.
Here

signðaÞ ¼ 1; if a[ 0 or a ¼ 0;
�1; if a\0:




□ First of all, take notice that the relationship y0 �M y00 holds or not simulta-
neously with the inclusion y0 � y00 2 M, which is equivalent to the equality

Xm
i¼1

kiei þ
Xk
i¼1

liðui � viÞ ¼ y0 � y00 ð5:46Þ

for some N-solution k1; k2; . . .; km; l1; l2; . . .; lk . By-turn, the above equality (5.46)
is true if and only if

Xm
i¼1

kie
i
ssignðy0s � y00s Þþ

Xk
i¼1

liðuis � visÞsignðy0s � y00s Þ

¼ jy0s � y00s j; s ¼ 1; 2; . . .;m:

ð5:47Þ
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Next, for equalities (5.47) to be true for some N-solution
k1; k2; . . .; km; l1; l2; . . .; lk, a necessary and sufficient condition is that the
canonical linear programming problem (5.45) has the optimal solution with
n1 ¼ n2 ¼ . . . ¼ nm ¼ 0. The last requirement is equivalent to the zero optimal
value of the goal function in the linear programming problem (5.45). ■

In accordance with Theorem 5.14, the relationship y0 �M y00 is verified by
solving the linear programming problem (5.45). This can be done by the
well-known simplex method. Such a verification procedure of the relationship
y0 �M y00 seems convenient for the general upper estimation algorithm with a finite
set of feasible vectors Y . Sometimes, it is required to solve a low-dimensional
problem “manually”; then one should use the following result that represents a
special case of Theorem 5.14 established in its proof.

Corollary 5.3 Let y0; y00 2 Rm; y0 6¼ y00. The relationship y0 �M y00 holds if and only
if the system of inhomogeneous linear equations (5.46) has the N-solution
k1; k2; . . .; km; l1; l2; . . .; lk.

5.5.3 Example

Let m ¼ 3; k ¼ 2; Y ¼ fy1; y2; y3; y4g, where

y1 ¼ ð1; 4:5; 2Þ, y2 ¼ ð2; 3; 1Þ, y3 ¼ ð3; 2; 1:5Þ, y4 ¼ ð5; 1:5; 2Þ,

u1 ¼ ð0; 5; 1Þ, v1 ¼ ð2; 2; 0Þ, u2 ¼ ð5; 0; 2Þ, v2 ¼ ð1; 1; 1Þ.
Since

u1 � v1 ¼ ð�2; 3; 1Þ � 03; u2 � v2 ¼ ð4;�1; 1Þ � 03;

two pairs of vectors u1; v1 and u2; v2 specify a pair of information quanta. The first
quantum states that the group of criteria f2 and f3 is more important than criterion f1.
According to the second quantum, the group composed of criteria f1 and f3 has
higher importance than criterion f2.

First, verify the consistency of these two quanta using Theorem 4.2. Write the
corresponding system of homogeneous linear equations (4.4):

k1 � 2l1 þ 4l2 ¼ 0;

k2 þ 3l1 � l2 ¼ 0;

k3 þ l1 þ l2 ¼ 0:

The last equation implies k3 ¼ l1 ¼ l2 ¼ 0, since the numbers k3; l1; l2 are
nonnegative. Then we obtain k1 ¼ k2 ¼ 0 from the first and second equations.
Hence, the system of linear equations has no N-solutions and, by Theorem 4.2, the
two pairs of vectors are consistent.
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Now, construct an upper estimate for the set of nondominated vectors NdomY
(ergo, for the set of selectable vectors CðYÞ). To this end, write the system of linear
equations (5.46) for the vectors y0 ¼ y1 and y00 ¼ y2:

k1 � 2l1 þ 4l2 ¼ �1;

k2 þ 3l1 � l2 ¼ 1:5;

k3 þ l1 þ l2 ¼ 1:

It has the N-solution k1 ¼ k2 ¼ l2 ¼ 0, k3 ¼ l1 ¼ 0:5. The relationship y1 �M

y2 holds accordingly and the vector y2 does not enter the set of nondominated
vectors NdomMY .

For the vectors y0 ¼ y4 and y00 ¼ y3, the system of linear equations (5.46)
acquires the form

k1 � 2l1 þ 4l2 ¼ 2;

k2 þ 3l1 � l2 ¼ �0:5;

k3 þ l1 þ l2 ¼ 0:5:

This system has the N-solution k1 ¼ k2 ¼ k3 ¼ l1 ¼ 0, l2 ¼ 0:5; and so, the
vector y3 does not belong to the set of nondominated vectors NdomMY too.

For the vectors y0 ¼ y1, y00 ¼ y4 and y0 ¼ y4, y00 ¼ y1, the system of linear
equations (5.46) is given by

k1 � 2l1 þ 4l2 ¼ �4; k1 � 2l1 þ 4l2 ¼ 4;

k2 þ 3l1 � l2 ¼ 3; and k2 þ 3l1 � l2 ¼ �3;

k3 þ l1 þ l2 ¼ 0; k3 þ l1 þ l2 ¼ 0:

None of these systems has N-solutions, and the relationships y1 �M y4, y4 �M y1

both fail.
We have obtained the two-element set of nondominated vectors

NdomMY ¼ fy1; y4g:

This set yields an upper estimate for arbitrary set of selectable vectors CðYÞ, i.e.,
CðYÞ � fy1; y4g. Clearly, none of the vectors y2; y3 can be selected.

5.5.4 Upper Estimation Algorithm

Assume that the vector set Y is finite, i.e.,
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Y ¼ fy1; y2; . . .; yNg:

The design algorithm for the set of nondominated vectors NdomMY consists of
eight steps.

Step 1 Verify the consistency of the collection of vector pairs ui; vi 2 Rm that
satisfy ui � vi 2 Nm, i ¼ 1; 2; . . .; k: This verification is reduced to the
solution of the canonical linear programming problem (4.6). If the
optimal value of the goal function is zero, terminate the calculations (the
given collection of vector pairs is inconsistent). Otherwise, move to the
next step.

Step 2 Assign i ¼ 1; j ¼ 2;NdomMY ¼ Y , thereby forming the so-called cur-
rent set of nondominated vectors (this set yields the desired upper esti-
mate at the end of the algorithm). The algorithm is organized so that this
estimate is obtained from Y by the sequential elimination of dominated
vectors.

Step 3 Verify the relationship yi �M y j by solving the linear programming
problem (5.45) for y0 ¼ yi, y00 ¼ y j. If the optimal value of the goal
function is zero, move to Step 4. Otherwise, move to Step 6.

Step 4 Eliminate the vector y j from the current set of nondominated vectors
NdomMY , since the former might not be contained in the latter.

Step 5 Verify the inequality j\N. If it holds, set j ¼ jþ 1 and get back to Step
3. Otherwise, move to Step 8.

Step 6 Verify the relationship y j �M yi by solving the linear programming
problem (5.45) for y0 ¼ y j, y00 ¼ yi. If the optimal value of the goal
function is zero, move to Step 7. Otherwise, get back to Step 5.

Step 7 Eliminate the vector yi from the current set of nondominated vectors
NdomMY .

Step 8 Verify the inequality i\N � 1. If it holds, set i ¼ iþ 1, then j ¼ iþ 1
and get back to Step 3. Otherwise (which means that i ≧ N � 1), finish
the calculations. The set of nondominated vectors NdomMY is
constructed.
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Chapter 6
Completeness Property of Information
Quanta

In this chapter, we justify theoretically the original axiomatic approach to Pareto set
reduction based on a finite collection of information quanta. Here the exposition
seems most difficult in mathematical terms, but the readers with an insufficient
background may skip it without losing the comprehension of further material.

The whole essence of the results derived below can be expressed as follows.
Information in the form of quanta is complete: for any multicriteria choice problem
from a definite (rather wide) class, it is possible to find the unknown set of non-
dominated vectors (nondominated alternatives) with an arbitrary accuracy only
based on such information. Moreover, if the number of feasible vectors is finite,
then the set of nondominated vectors can be constructed precisely. In other words,
by eliciting information quanta about the DM’s preference relation, one may suc-
cessfully construct the set of nondominated alternatives (vectors) without involving
other types of information.

6.1 Preliminary Analysis

6.1.1 Problem Statement

An available information quantum allows for eliminating certain Pareto optimal
vectors as unacceptable for sure. This gives a refined upper estimate (approxima-
tion) for the set of selectable vectors in comparison with the Pareto set. If there
exists a finite collection of such information quanta, then hopefully it can be used to
construct even a better (more precise) upper estimate, i.e., a narrower set. According
to general considerations, a larger collection of information quanta yields a more
precise upper estimate. And the following question arises immediately: what are the
applicability limits for a finite collection of information quanta about the DM’s
preference relation?
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Note an important aspect prior to further analysis. Owing to Lemma 1.2, the set
of selectable vectors is contained in the set of nondominated vectors. Clearly, any
subset of the set of nondominated vectors can be selected in the multicriteria choice
problems satisfying Axioms 1–4. This means that information about the DM’s
preference relation and an existing collection of criteria satisfying Axioms 1–4 do
not assist in eliminating any nondominated vector as unacceptable for sure. And the
set of nondominated vectors is the narrowest upper estimate for the set of selectable
vectors in the model under consideration. Therefore, in the sequel we consider the
approximation of the set of nondominated vectors instead of the set of selectable
vectors.

The above question can be further specified in the following way. Is it possible
to obtain an arbitrary precise representation for the unknown set of nondominated
vectors using only a finite collection of information quanta? In principle, the answer
to this question is affirmative, as it will be illustrated below. The reservation “in
principle” indicates that it is necessary to restrict slightly the class of the multi-
criteria choice problems satisfying Axioms 1–4.

For a definite class of multicriteria choice problems, all we need is to extract and
utilize information quanta, see the details below. It is quite enough to obtain (at
least, theoretically) the unknown set of nondominated vectors with an arbitrary
accuracy. This situation testifies to the crucial role of information quanta for
decision-making in multicriteria environment.

6.1.2 Geometrical Aspects

Let us formulate the above question in geometrical terms.
According to Definition 3.3, the presence of an information quantum means that

there is a given vector u 2 Nm with at least one positive and at least one negative
components satisfying the relationship u � 0m. For a finite collection of such
information quanta, we accordingly have a collection of vectors ui 2 Nm satisfying
the relationships ui � 0m, i ¼ 1; 2; . . .; k. If this collection of vectors (more
specifically, the collection of vector pairs ui; 0m, i ¼ 1; 2; . . .; k) is consistent, then
the convex cone M generated by the vectors e1; e2; . . .; em; u1; u2; . . .; uk represents
the aggregate of all N-combinations of these vectors and also an acute convex cone
(without the origin). It defines a cone relation further denoted by �M .

The question about the completeness of information quanta collections (see the
previous subsection) can be easily restated in geometrical terms. How close to the
unknown preference relation � can be the relation �M obtained using different
finite consistent collections of vectors u1; u2; . . .; uk only? Equivalently, is it pos-
sible in principle to make the relation �M arbitrarily close to the unknown pref-
erence relation � by choosing the above collection of vectors?
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To simplify further solution, let us translate this problem into the plane of cones:
is it possible to obtain a cone M that is arbitrarily close to the unknown cone K1 by
choosing the collection of vectors u1; u2; . . .; uk? Note that k is not fixed and can be
an arbitrary finite number.

The cone K is an arbitrary acute convex cone without the origin. The cone M
belongs to the same class as K, being acute, convex and without the origin. In
contrast to K, the cone M is generated by a finite number of vectors (a finitely
generated cone) and hence polyhedral. In such statement, the completeness problem
of information quanta has much in common with a standard convex analysis
problem where an arbitrary convex compact set is approximated by a polyhedron.
As is well-known, this approximation problem has a solution, i.e., an arbitrary
convex closed bounded set can be approximated by a polyhedron with an arbitrary
accuracy. And we have every reason to expect that the same problem for cones
(approximate an arbitrary convex cone by a polyhedral cone) would be solvable.
But first of all it is necessary to agree about the distance between convex cones.

6.1.3 Distance Between Cones

Let A and B be arbitrary non-empty convex subsets of space Rm. The Hausdorff
distance [23] between these sets is defined by the formula

distðA;BÞ ¼ inffr 2 Rþ jA � ðBÞr;B � ðAÞrg;

where Rþ denotes the set of positive real numbers,

ðAÞr ¼
[

y2A
UrðyÞ; ðBÞr ¼

[

y2B
UrðyÞ;

and UrðyÞ (r[ 0) is a closed ball in Rm having radius r and center at the point y,
i.e.,

UrðyÞ ¼ fz 2 Rmj z� yk k 5 rg:

Here ak k designates the Euclidean norm (length) of a vector a 2 Rm, that is,

ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ . . .þ a2m

q
:

In a special case where A and B are singletons fag and fbg, respectively, the
Hausdorff distance between them coincides with the Euclidean distance, being the
norm of the difference between the corresponding vectors, a� bk k.

1Recall that K is an acute convex cone of the preference relation �.
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The next result shows that the direct application of the Hausdorff distance to
measure the distance between two convex cones causes some difficulties (they will
be eliminated, though).

Lemma 6.1 Let K1 and K2 be two arbitrary convex cones in space Rm that do not
contain the origin and K1 6¼ K2, where overline means the closure of a set.2 Then

distðK1;K2Þ ¼ þ1:

□ According to the inequality K1 6¼ K2, there exists a point y 2 Rm such that
y 2 K1; y 62 K2, or there exists a point y 2 Rm such that y 2 K2; y 62 K1. For defi-
niteness, consider the first case only, as the second case can be studied by analogy.

The relationships y 2 �K1; y 62 �K2 lead to the existence of a point y0 such that
y0 6¼ 0m, y0 2 K1; y0 62 K2. Consider a ray that comes from the origin and passes
through y0, as a special case of a cone. Denote this ray by l. Obviously, it satisfies
the relationships l � K1; l 6� K2.

The norm jjy0 � yjj is a continuous function of the variables y1; y2; . . .; ym and
bounded below on the cone K2. Hence, there exists a limit point ŷ 2 Rm in the set
K2 such that

inf
y2K2

y0 � yk k ¼ y0 � ŷk k

and ŷ 6¼ y0. Construct a sequence fykg1k¼1 of points on the ray l by choosing

yk ¼ ky0; k ¼ 1; 2; . . .;

For this sequence, we have

inf
y2K2

yk � y
�� �� ¼ inf

y2K2

ky0 � yk k ¼ k inf
y2K2

y0 � y
k

���
��� ¼ k inf

ky2K2

y0 � yk k ¼ k y0 � ŷk kk!þ1

! þ1;

which immediately gives the required result dist (K1;K2Þ ¼ þ1. ■
This lemma states that the Hausdorff distance between two “essentially nonco-

incident” cones (whose closures do not coincide) is þ1. And so, this distance
does not represent an appropriate closeness measure for the cones of binary
relations.

Let K be a convex cone in space Rm and Y be a subset of this space. Introduce
the set

Yz ¼ fy 2 Y j y� z 2 Kg

for each z 2 Y . If there exists a positive constant r such that the inequality

2The closure of a set contains this set together with all its limit points.
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sup
y2Yz

y� zk k 5 r

holds for any z 2 Y , then the set Y is called K-bounded. As easily checked, each
bounded set is K-bounded, but the converse generally fails.

Now, let Y be the set of feasible vectors and K be the convex cone of the cone
preference relation �. Assume that the relationship y0 � y00 takes place for vectors
y0; y00 2 Rm. This is equivalent to the inclusion y0 � y00 2 K. If the set Y is also K-
bounded, then we obtain the inequality y0 � y00k k5 r, which is equivalent to the
inclusion

y0 � y00 2 K \Urð0mÞ:

Therefore, for the K-bounded set of feasible vectors Y ,

y0 � y00 2 K , y0 � y00 2 K \Urð0mÞ:

In other words, for the K-bounded set Y , the closeness of the cones is equivalent
to the closeness of their parts located in the ball Urð0mÞ.

The above considerations naturally bring to the following definition. The dis-
tance between cones K1 and K2, further denoted by drðK1;K2Þ, is

drðK1;K2Þ ¼ distðK1 \Urð0mÞ; K2 \Urð0mÞÞ; ð6:1Þ

where r means a sufficiently large positive number. This distance has the standard
properties of a metric, namely, for any convex cones K1;K2; and K3,

(1) drðK1;K2Þ= 0;
(2) drðK1;K2Þ ¼ 0 , �K1 ¼ �K2;
(3) drðK1;K2Þ ¼ drðK2;K1Þ
(4) drðK1;K3Þ5 drðK1;K2Þþ drðK2;K3Þ:

Let K3 � K2 � K1. It is easy to verify that

drðK1;K2Þ5 drðK1;K3Þ:

6.2 First Completeness Theorem

6.2.1 Statement of Mathematical Problem

By virtue of Axioms 2–4, the binary preference relation � guiding the DM’s
behavior is a cone relation with an acute convex cone K without the origin. And so,
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consider an arbitrary acute convex cone K; K � Rm, that does not contain the
origin and includes the nonnegative orthant Rm

þ due to the Pareto axiom. Note that
generally K is not a polyhedral cone.

As established in Sect. 6.1, the existence of a finite collection of information
quanta is equivalent to the specification of a certain consistent finite collection of
vectors u1; u2; . . .; uk 2 Nm, that together with the unit vectors e1; e2; . . .; em gen-
erate a polyhedral cone M contained in the cone K.

The question can be stated in mathematical terms as follows: is it possible to
make the distance drðK;MÞ between the cones K and M arbitrarily small by
choosing the vectors u1; u2; . . .; uk (where k is a finite unfixed number)?

The next theorem gives the answer.

6.2.2 First Completeness Theorem

Teopeмa 6.1 Let K be an arbitrary acute convex cone without the origin, and also
K � Rm; K � Rm

þ ; K 6¼ Rm
þ . Fix an arbitrary positive number r. Then for any

positive number e there exists a finite collection of vectors

fuigki¼1 � Rm; ui 2 Nm \K \Urð0mÞ; i ¼ 1; 2; . . .; k;

such that

drðK; conefe1; e2; . . .; em; u1; u2; . . .; ukgÞ\e; ð6:2Þ

where conefe1; e2; . . .; em; u1; u2; . . .; ukg is the convex cone generated by the
finite collection of vectors e1; e2; . . .; em; u1; u2; . . .; uk .

Moreover, the components of all vectors ui can be assigned rational numbers.
□ Denote

K̂ ¼ K \Urð0mÞ; int K̂ ¼ intK \ intUrð0mÞ:

Fix an arbitrary positive number e. Introduce m-dimensional regular grid with
uniform spacing e=2

ffiffiffiffi
m

p
. Obviously, the hypercube of this grid has diagonal’s

length e=2.
Extract all cubes of the grid that intersect with the set intK̂. Since the latter is a

bounded set, the number of such cubes appears finite. Denote them by
P1;P2; . . .;Pl and let

P ¼
[l

j¼1

Pj:
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By the design procedure, int K̂ � P. Hence, the closure of the set int K̂ is a
subset of the closure of the set P that coincides with P due to its closedness. At the
same time, K̂ is contained in the closure of the set int K̂ and therefore K̂ � P. Thus,
P covers the set K̂.

In each intersection Pj \ int K̂ there exists a point u j with rational components,
j ¼ 1; 2; . . .; l. Let P be the convex hull3 of all such points u j. This set is a certain
polyhedron.

As K̂ is a convex set and u j 2 K̂, j ¼ 1; 2; . . .; l, then P � K̂ and hence

P � ðK̂Þe: ð6:3Þ

On the other hand, there exist points that belong to K̂ and do not belong to
P simultaneously. Since P covers K̂, the distance between each such point and
P does not exceed e=2. We accordingly have the inclusion K̂ � ðPÞe, which
together with (6.3) yields the inequality

distðK̂;PÞ\e: ð6:4Þ

Clearly,

P � ðconefPgÞ \Urð0mÞ � K̂:

Using (6.4), the above inclusions and the equality
conefPg ¼ conefu1; u2; . . .; ulg, write

distðK̂; conefu1; u2; . . .; ulg\Urð0mÞÞ\e: ð6:5Þ

By turn, it follows from (6.5) and Rm
þ � K that

distðK̂; conefe1; e2; . . .; em; u1; u2; . . .; ulg\Urð0mÞÞ\e:

This inequality coincides with the required result (6.2) if we eliminate all “re-
dundant” vectors from the collection u1; u2; . . .; ul (i.e., the ones belonging to the
nonnegative orthant Rm

þ ) and denote the residual vectors by u1; u2; . . .; uk . ■

3The convex hull of a given set A is the smallest convex set containing A.

6.2 First Completeness Theorem 145



6.3 Second Completeness Theorem

6.3.1 Example

Under definite conditions, the cone of the unknown preference relation can be
approximated “from the inside” with an arbitrary accuracy by a polyhedral cone
that corresponds to a certain finite collection of information quanta about this
relation, see Sect. 6.2 for details. Note that the closeness of the cones of these
relations [measured in terms of distance (6.1)] generally does not imply the
closeness of the binary relations, ergo the closeness of the sets of nondominated
vectors constructed using these relations. A simple example below confirms this
fact.

Example 6.1 Choose m ¼ 2, consider the two-dimensional set of feasible vectors
(points) of the form

Y ¼ fðy1; y2Þ 2 R2jy1; y2 = 0; y1 þ y2 ¼ 1g;
and define the acute convex cone K by

K ¼ ðconefð1; 0Þ; ð�1; 1ÞgÞnf0mg:

Here the point ð0; 1Þ 2 Y dominates all other points from the segment (see
highlighting in bold type in Fig. 6.1) in terms of the cone relation with the cone K.
In particular, we have the relationship ð0; 1Þ � ð1; 0Þ, since ð0; 1Þ � ð1; 0Þ ¼
ð�1; 1Þ 2 K.

Now, slightly change K by considering the cone

Ke ¼ ðconefð1; 0Þ; ð�1; 1þ eÞgÞnf0mg;

where e 2 ð0; 1Þ (see Fig. 6.1). Using a sufficiently small positive number e, the
cone Ke can be made arbitrarily close to the cone K in the sense of distance (6.1).

1y

1

1

1−

2y

εKK

O

Fig. 6.1 Cones K and Ke
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On the other hand, the cone relation with the cone Ke does not appear close to the
cone relation with the cone K regardless of the choice of e. For the latter relation,
the set of nondominated points consists of the point ð0; 1Þ only, whereas for the
former relation the set of nondominated points is the whole segment between the
points ð0; 1Þ and ð1; 0Þ for any e 2 ð0; 1Þ.

6.3.2 Second Completeness Theorem

As a matter of fact, Example 6.1 shows the following. If the cone K is not an open
set, then a “small” change of this cone may modify appreciably the corresponding
set of nondominated points. However, within the class of preference relations with
open cones, the set of nondominated points in terms of an arbitrarily relation
satisfying the conditions of Theorem 6.1 can be obtained as the limit of the
sequence of the sets of nondominated points in terms of some cone relations
constructed using a collection of information quanta. To be more precise, the
following result takes place.

Theorem 6.2. Let K be an open acute convex cone without the origin, K � Rm
þ

and K 6¼ Rm
þ . Assume that the set Y is K-bounded. Then there exists a vector

sequence

fusg1s¼1; us 2 Nm \K; s ¼ 1; 2; . . .;

with rational components such that

Ndom�sY ! Ndom Y as s ! 1; ð6:6Þ

where �s is the cone relation induced by the acute convex
conefe1; e2; . . .; em; u1; u2; . . .; usg without the origin, s ¼ 1; 2; . . .:

Remark 6.1 In formula (6.6), we mean the so-called pointwise convergence of the
sets of nondominated vectors defined in the following way. A point (vector) y� 2 Y
belongs to the limit set, i.e., y� 2 Ndom Y , if and only if there exists a natural
number s0 such that the inclusion y� 2 Ndom�sY holds for all natural numbers
s[ s0.

□ Choose e ¼ 1=n. Using the proof of Theorem 6.1, for n ¼ 1 we establish the
existence of a vector collection u1; u2; . . .; uk such that

drðK; conefe1; e2; . . .; em; u1; u2; . . .; ukgÞ\1:

For n ¼ 2, by analogy there exists another vector collection ukþ 1; . . .; ukþ p such
that
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drðK; conefe1; e2; . . .; em; ukþ 1; ukþ 2; . . .; ukþ pgÞ\1=2:

The “extension” of the conefukþ 1; . . .; ukþ pg by adding the obtained vectors
u1; . . .; uk 2 K does not increase the distance between K and the “extended”
conefu1; . . .; uk; ukþ 1; . . .; ukþ pg. Hence,

drðK; conefe1; e2; . . .; em; u1; u2; . . .; uk; ukþ 1; ukþ 2; . . .; ukþ pgÞ\1=2

The same line of reasoning proves the existence of a vector sequence fusg1s¼1
with the following property. For each natural number n, there is a number sn such
that

drðK; conefe1; e2; . . .; em; u1; u2; . . .; usgÞ\1=n; s ¼ sn; sn þ 1; . . .; ð6:7Þ

Introduce the convex closed cones

Cs ¼ conefe1; e2; . . .; em; u1; u2; . . .; usg; s ¼ 1; 2; . . .;

Clearly, Cs � Csþ 1 � K [f0mg, s ¼ 1; 2; . . . Moreover, by inequality (6.7) for
any n there exists a number sn such that

drðK;CsÞ\ 1
n
; s ¼ sn; sn þ 1; . . .:

This inequality immediately implies that, for any point z 2 int K̂ where
K̂ ¼ K \Urð0mÞ, there exists a number s0 under which the inclusion z 2 Cs holds
for all s ¼ s0; s0 þ 1; . . .:

Now, we demonstrate convergence (6.6) for the nondominated sets. If y� 2 Y
and y� 62 NdomY , by the definition of a set of nondominated points there exists a
point y 2 Y such that y� y� 2 K. Since the set Y is K-bounded, it follows that
y� y� 2 K̂. Next, K is an open cone and we may assume that z ¼ y� y� 2 int K̂
(otherwise, choose, e.g., 0:5ðy� y�Þ 2 int K̂ as such an inner point z). According to
the aforesaid, then there exists a number s0 such that the inclusion z ¼ y� y� 2 Cs

holds for all numbers s ¼ s0; s0 þ 1; . . . This implies y� 62 Ndom�s Y for all s
mentioned. And so, each point of the set Y that does not belong to the set NdomY is
not the limit point of the sequence of the sets Ndom�s Y , s ¼ 1; 2; . . .:

On the other hand, each point from NdomY surely belongs to the above limit of
the sequence, since the inclusions Cs � Csþ 1 � K [f0mg yield Ndom�s Y �
Ndom Y for all s ¼ 1; 2; . . .:

This concludes the proof of formula (6.6) and Theorem 6.2. ■
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6.3.3 Case of Finite Set of Feasible Vectors

If the set of feasible vectors Y is finite, it suffices to use a definite finite collection of
information quanta to find precisely the set of nondominated vectors in terms of the
cone relation with an open cone K. The next theorem states this fact formally, being
of great importance for the approach developed in the book. Really, Theorem 6.3
gives a theoretical justification for the axiomatic approach in the design of the set of
nondominated vectors. According to this theorem, it is possible to find the set of
nondominated vectors for the multicriteria choice problems of a definite class using
only information quanta about the DM’s preference relation.

Theorem 6.3 Under the hypotheses of Theorem 6.2, let the set of feasible vectors Y
be finite. 4 Then there exists a collection of p vectors fuigpi¼1 � Nm \K with
rational components such that

NdomY ¼ Ndom�pY ;

where �p is the cone relation induced by the acute convex
conefe1; e2; . . .; em; u1; u2; . . .; upg without the origin.

Let Y ¼ fy1; y2; . . .; yNg. For each yi 2 Y , introduce the finite set

Zi ¼ fz 2 Y j there exists y 2 Y such that z ¼ y� yi 2 Kg; i ¼ 1; 2; . . .;N:

Since K is an open set, there exists a number si such that Zi � Cs for all
s ¼ si; si þ 1; . . ., where Cs denote the cones defined in the proof of Theorem 6.2.
Choose p ¼ maxfs1; s2; . . .; sNg. Due to the inclusions Cs � Csþ 1; s ¼ 1; 2; . . ., we
obtain

Zi � Cp for all i ¼ 1; 2; . . .;N:

Take two arbitrary vectors yi; y j 2 Y , yi 6¼ y j. If y j � yi 2 K, then y j � yi 2
Zi � Cp and hence y j � yi 2 Cp. Conversely, the inclusion y j � yi 2 Cp together
with Cp � K [f0mg leads to the inclusion y j � yi 2 K. Therefore, we have
established the equivalence

y j � yi 2 K , y j � yi 2 Cp;

which proves the equality of the cone relations with the cones K and Cpnf0mg. ■

4The K-boundedness of the set of feasible vectors can be omitted, since any finite set is bounded,
ergo K-bounded.
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Chapter 7
Pareto Set Reduction Using Fuzzy
Information

In a series of applications-relevant multicriteria choice problems, the available
information about the DM’s preference relation can be fuzzy in the sense that it is
impossible to define explicitly the preference for one alternative rather than another,
since there exist the pros and cons of it. Then the framework of fuzzy sets and
relations gives a convenient mathematical tool to describe such preference relations.

The current chapter formulates the multicriteria choice problem with a fuzzy
preference relation, as well as introduces the notion of a fuzzy information quan-
tum. In addition, the consistency of a finite collection of fuzzy information quanta
and their consideration for Pareto set reduction are analyzed.

7.1 Statement of Fuzzy Multicriteria Choice Problem

7.1.1 Basic Notions from Theory of Fuzzy Sets

Recall some major notions from theory of fuzzy sets. The details can be found, e.g.,
in the books [20, 21].

Let A be a certain non-empty set (the so-called universal set). A fuzzy set X in
A is defined by a membership function kX : A ! 0; 1½ �: For each element x 2 A;
the number kXðxÞ 2 0; 1½ � is interpreted as its grade of membership to the set
X. Speaking about a given fuzzy set, quite often researchers refer to its membership
function, as the latter uniquely defines the corresponding fuzzy set. If the mem-
bership function kXð�Þ takes values 0 and 1 only, it becomes the characteristic
function of a common (crisp) set X. All elements x of the set A that satisfy
kXðxÞ[ 0 form the support of the set X, further denoted by suppX: Two fuzzy sets
are equal to each other if they have the identical membership functions.

For two fuzzy sets X and Y, the inclusion relation, the operations of union and
intersection are defined (in terms of membership functions) in the following way:
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X � Y , kXðxÞ5 kYðxÞ for all x 2 A;
kX [ YðxÞ ¼ max kXðxÞ; kY ðxÞf g for all x 2 A;
kX \ YðxÞ ¼ min kXðxÞ; kYðxÞf g for all x 2 A:

Consider a fuzzy set defined by a membership function g �ð Þ in some linear space
L. It forms

• a fuzzy cone if the equality g xð Þ ¼ g a � xð Þ holds for all a[ 0 and all x 2 L;
• a fuzzy acute cone if the support of this cone is acute, i.e., none of the nonzero

elements is contained in the support together with the opposite element;
• a fuzzy convex set if the inequality g h xþ 1� hð Þ yð Þ=min g xð Þ; g yð Þf g takes

place for all x; y 2 L and all h 2 0; 1½ �:
A fuzzy binary relation is defined on the set A using a membership function

l : A� A ! 0; 1½ �: The number l x; yð Þ 2 0; 1½ � is interpreted as the degree of
confidence in that an element x has this relation with an element y. All pairs
x; yð Þ 2 A that satisfy l x; yð Þ ¼ 1 form the so-called crisp part of this fuzzy
relation.

A fuzzy relation with a membership function l �; �ð Þ is called
• irreflexive if l x; xð Þ ¼ 0 for all x 2 A;
• transitive if l x; zð Þ=min l x; yð Þ; l y; zð Þf g for all x; y; z 2 A;
• asymmetrical if l x; yð Þ[ 0 ) l y; xð Þ ¼ 0 for all x; y 2 A;
• a fuzzy cone relation in a linear space L if there exists a fuzzy cone g : L !

0; 1½ � such that l x; yð Þ ¼ g x� yð Þ for all x; y 2 L;
• invariant with respect to a linear positive transformation if this relation is

defined in a linear space L and the equalities lðax; ayÞ ¼
lðx; yÞ; lðxþ c; yþ cÞ ¼ lðx; yÞ hold for all x; y 2 L; a[ 0; c 2 L:

As in crisp case, it is easy to verify that any irreflexive and transitive fuzzy
relation is asymmetrical.

7.1.2 Fuzzy Multicriteria Choice Problem

Denote by X a (crisp) set of feasible alternatives that contains at least two elements.
There are m (m= 2) numerical functions f1; f2; . . .; fm defined on the set X. They
form the vector criterion f ¼ f1; f2; . . .; fmð Þ that takes values in the m-dimensional
vector space Rm.

Suppose that the DM is not always able to decide unambiguously which of the
two given alternatives is preferable. Accordingly, we consider a DM’s fuzzy
preference relation defined on the set X with a membership function lX �; �ð Þ: For
alternatives x0; x00 2 X; the number lðx0; x00Þ 2 ½0; 1� represents the degree of DM’s
confidence in that the alternative x0 is preferable to x00:
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Now, let us specify all elements of the fuzzy multicriteria choice problem
hX; f ; lXi in terms of alternatives:

1. the set of feasible alternatives X,
2. a numerical vector criterion f defined on the set X,
3. a fuzzy preference relation with a membership function lX �; �ð Þ that is defined

on the Cartesian product X � X and takes values within the interval ½0; 1�: In
practice, this relation is known only fragmentary.

As is well-known, choice consists in indicating a certain alternative (selectable
alternative) among all feasible alternatives, but in some cases a whole subset of
alternatives is selected from the set X. It may appear difficult to judge whether
certain alternatives are “good” or “bad” for choice. On the one hand, such alter-
natives have a series of advantages, which is a good reason to reckon them among
the appropriate ones. On the other, these alternatives suffer from some shortcom-
ings, which throws doubt upon their choice. In other words, the “good”-“bad”
classification of all feasible alternatives seems “rough” in such situations. Here a
more flexible and convenient approach involves theory of fuzzy sets when for each
feasible alternative one has to assign a certain number from the interval ½0; 1�. This
number can be treated as the relative degree (or share) of positive or desirable
qualities of the corresponding alternative. Therefore, generally the solution of the
fuzzy multicriteria choice problem is a fuzzy set CðXÞ, CðXÞ � X, with a mem-
bership function lCX . This set has to be found at the end of decision making process.

The above multicriteria choice problem can be stated in terms of vectors. Denote
by CðYÞ the fuzzy set of selectable vectors whose membership function is naturally
associated with the membership function of the fuzzy set of selectable alternatives
as follows:

kCX ðYÞ ¼ kCX ðxÞ; if y ¼ f ðxÞ for some x 2 X;
0; if y 2 RmnY :

�

Suppose that there exists a bijection between the set of feasible alternatives and
the set of corresponding vectors. Then the membership function of the fuzzy set of
selectable alternatives is defined through the membership function of the fuzzy set
of selectable vectors.

A function lXð�; �Þ induces a membership function lY �; �ð Þ of a fuzzy preference
relation on a set Y in the following way:

lYðy0; y00Þ ¼ lXðx0; x00Þ , y0 ¼ f ðx0Þ; y00 ¼ f ðx00Þ for all x0; x00 2 X:

By-turn, the membership function of a fuzzy preference relation defined on
Y induces the membership function of the fuzzy preference relation on the set X.

Consequently, the fuzzy multicriteria choice problem in terms of vectors
includes
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1. the set of feasible vectors Y,
2. a fuzzy preference relation with a membership function lY �; �ð Þ defined on Y.

This problem is to find the fuzzy set of selectable vectors CðYÞ with the
membership function lCY .

The two fuzzy multicriteria choice problems formulated in terms of alternatives
and in terms of vectors are equivalent to each other: owing to the bijection and
compatibility of their membership functions, all results obtained in terms of one
problem can be reformulated in terms of the other.

The solution of both problems entails difficulties, since in practice the DM’s
fuzzy preference relation is often unknown. This aspect essentially complicates the
design of the set of selectable vectors (alternatives).

7.1.3 Axioms of Fuzzy Reasonable Choice

Here we provide several axioms that are accepted throughout Chap. 7. They
actually represent the extensions of the corresponding axioms (see Chaps. 1 and 2)
to the case of a fuzzy preference relation.

Axiom F1 (exclusion axiom). For each pair of alternatives x0; x00 2 X that satisfies
lX x0; x00ð Þ ¼ l� 2 0; 1½ �; we have the inequality kCXðx00Þ5 1� l�. In other words,
for all x0; x00 2 X the inequality kCXðx00Þ5 1� lXðx0; x00Þ holds.
Axiom F2 (transitivity axiom). A fuzzy preference relation with a membership
function lX �; �ð Þ (hence, with a corresponding membership function lY �; �ð Þ) is
irreflexive and transitive. Moreover, there exists an irreflexive and transitive
relation defined in the all criterion space Rm with a membership function lð�; �Þ
such that its restriction to Y coincides with the preference relation lYð�; �Þ:

We say that criterion fi is compatible with a preference relation lð�; �Þ if for any
vectors y0; y00 2 Rm the relationships

y0 ¼ ðy01; . . .y0i�1; y
0
i; y

0
iþ 1; . . .; y

0
mÞ;

y00 ¼ ðy01; . . .y0i�1; y
00
i ; y

0
iþ 1; . . .; y

0
mÞ;

y0i [ y00i ;

imply the equality lðy0; y00Þ ¼ 1:
Just like in the case of a crisp preference relation, the compatibility of a given

criterion with a preference relation means that the DM is interested in the largest
possible values of this criterion, other things being equal.

Axiom F3 (compatibility axiom). Each of the criteria f1; f2; . . .; fm is compatible
with the preference relation lð�; �Þ:
Axiom F4 (invariance axiom). The fuzzy preference relation lð�; �Þ is invariant
with respect to a linear positive transformation.
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As easily seen, the above axioms are transformed into their counterparts from
Chaps. 1 and 2 if the fuzzy preference relation becomes crisp.

Denote by

kPXðxÞ ¼
1; if x 2 Pf ðXÞ;
0; otherwise

�

the membership function of the set of Pareto optimal alternatives (i.e., the char-
acteristic function of this set). The membership function kPYðyÞ of the set of Pareto
optimal vectors is introduced by analogy.

7.1.4 Fuzzy Pareto Principle

S. Orlovsky [51] adopted the notion of the fuzzy set of nondominated alternatives
with the membership function kNX defined by the formula

kNX ðxÞ ¼ 1� sup
z2X

lXðz; xÞ for all x 2 X:

Let NdomX designate the fuzzy set of nondominated alternatives. If the pref-
erence relation is crisp (i.e., the membership function lXð�; �Þ takes values 0 or 1
only), the fuzzy set of nondominated alternatives coincides with the standard (crisp)
set of nondominated alternatives, see Chap. 1 for details.

Lemma 7.1 (in terms of alternatives). The acceptance of Axiom F1 guarantees the
inclusion

CðXÞ � NdomX ð7:1Þ

for any fuzzy set of selectable alternatives CðXÞ:
□ Choose an arbitrary alternative x 2 X: Owing to Axiom F1, for any z 2 X we

have kCXðxÞ5 1� lXðz; xÞ: Passing to the greatest lower bound over z 2 X in the
right-hand side of this inequality yields

kCX ðxÞ5 inf
z2X

ð1� lXðz; xÞÞ ¼ 1� sup
z2X

lXðz; xÞ ¼ kNX ðxÞ for all x 2 X:

The inequality kCX ðxÞ5 kNX ðxÞ holding for all x 2 X proves inclusion (7.1). ■
According to the (crisp) Pareto axiom, the inequality f ðx00Þ � f ðx0Þ implies the

relationship x00 	X x0: For the fuzzy preference relation the corresponding version of
the Pareto axiom is stated as follows: the inequality f ðx00Þ � f ðx0Þ implies the
equality lXðx00; x0Þ ¼ 1: This axiom can be formulated in terms of vectors by
analogy.
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Theorem 7.1 (fuzzy Pareto principle). Under Axiom F1 and the Pareto axiom, the
inclusion

CðXÞ � Pf ðXÞ ð7:2Þ

holds for any fuzzy set of selectable alternatives CðXÞ: Equivalently, the relation-
ship kCX ðxÞ5 kPXðxÞ holds for all x 2 X:

□ Owing to Lemma 7.1, we have the inclusion CðXÞ � NdomX; which is
equivalent to the relationship kCXðxÞ5 kNX ðxÞ for all x 2 X: It remains to check that
the fuzzy set of nondominated alternatives NdomX is a subset of the Pareto set
Pf ðXÞ: Conjecture the opposite, i.e., there exists x0 2 X such that kNX ðx0Þ > kPXðx0Þ:
Since the characteristic function of the Pareto set takes only two values (0 and 1),
we arrive at the equality kPXðx0Þ = 0. The latter means that the alternative x0 is not
Pareto optimal and hence there exists x00 2 X such that f ðx00Þ � f ðx0Þ: According to
the Pareto axiom, the last inequality implies lðx00; x0Þ ¼ 1: In this case, by Axiom
F1 we get kNX ðx0Þ = 0, and this result together with kPXðx0Þ = 0 contradicts the initial
hypothesis kNX ðx0Þ > kPXðx0Þ: ■

Inclusion (7.2) expresses the general principle of fuzzy choice: in a rather wide
class of fuzzy multicriteria choice problems (the ones satisfying Axiom F1 and
the Pareto axiom), any choice (including fuzzy choice) must be made within the
Pareto set.

In the special case of a crisp preference relation, Theorem 7.1 coincides with the
(crisp) Edgeworth–Pareto principle, see Chap. 1.

We accept Axioms F1–F3 for the remainder of this chapter. Similarly to the case
of a crisp preference relation,

Axioms F2 and F3 guarantee the Pareto axiom.
□ Really, choose two arbitrary vectors y0; y00 2 Rm such that y00 ¼

f ðx00Þ � f ðx0Þ ¼ y0: This vector inequality contains strict inequality for at least one
component. Suppose that there are l such strict inequalities ð0\l5 mÞ and all of
them correspond to the first l indexes of the criteria (the last assumption does not
restrict the generality of subsequent considerations). Then we have the chain of
inequalities

y00 � y1 ¼ ðy01; y002 ; . . .; y00mÞ� y2 ¼ ðy01; y02; y003 ; . . .; y00mÞ� . . .� yl

¼ ðy01; y02; . . .; y0l; y00lþ 1; . . .; y
00
mÞ ¼ y0:

According to Axiom F3, it leads to the chain of equalities

lðy00; y1Þ ¼ lðy1; y2Þ ¼ . . . ¼ lðyl�1; ylÞ ¼ lðyl�1; y0Þ ¼ 1;

which yields the desired result lðy00; y0Þ ¼ 1 due to the transitivity of the fuzzy
preference relation. ■
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7.2 Fuzzy Information About Preference Relation and Its
Consistency

7.2.1 Definition and Some Properties of Information
Quantum on Fuzzy Preference Relation

Definition 7.1 Consider two groups of criteria indexes, A and B, such that A;B � I;
A 6¼ ; , B 6¼ ; , and A\B ¼ ;. We say that there is a given quantum of fuzzy
information with the groups of criteria A and B,1 two collections of positive
parameters wi for all i 2 A and wj for all j 2 B; and a degree of confidence
l� 2 ð0; 1� if the equality lðy0; y00Þ ¼ l� holds for all vectors y0; y00 2 Rm satisfying

y0i � y00i ¼ wi for all i 2 A;
y00j � y0j ¼ wj for all j 2 B;
y0s ¼ y00s for all s 2 InðA[BÞ:

As before, the number

hij ¼
wj

wi þwj
2 ð0; 1Þ

is called the degree (coefficient) of compromise.
If there exists a fuzzy information quantum as described by Definition 7.1, we

say that the group of criteria A is more important than the group of criteria B with
the corresponding parameters and degree of compromise.

The next proposition reveals the mathematical sense of the fuzzy choice axioms
introduced earlier.

Lemma 7.2 The two statements below are equivalent:

1. The fuzzy relation lð�; �Þ satisfies Axioms F2–F4;
2. The fuzzy relation lð�; �Þ is a cone relation with a fuzzy acute convex cone that

contains the nonnegative orthant Rm
þ and does not contain the origin with the

unit grade of membership.

□ I. Establish that the invariance of the preference relation with the membership
function lð�; �Þ (which is postulated by Axiom F4) is equivalent to the conicity of
this relation. Let l be invariant. Introduce a fuzzy set g by

gðxÞ ¼ lðx; 0mÞ for all x 2 Rm:

1Recall that, whenever no confusion occurs, we refer to a group of criteria by specifying the group
of their indexes.
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Owing to invariance, we have

gðaxÞ ¼ lðax; a0mÞ ¼ lðx; 0mÞ ¼ gðxÞ for all x 2 Rm; a[ 0:

Hence, the fuzzy set g is a cone. In addition,

lðx; yÞ ¼ lðx� y; 0mÞ ¼ gðx� yÞ for all x; y:

This means that the invariant relation l is a cone relation.
Conversely, let l represent a fuzzy cone relation with a cone g. Its invariance

follows from the equalities

lðx; yÞ ¼ gðx� yÞ ¼ gððxþ aÞ � ðyþ aÞÞ ¼ lðxþ a; yþ aÞ for all a 2 Rm;
lðx; yÞ ¼ gðx� yÞ ¼ gðaðx� yÞÞ ¼ gðax� ayÞÞ ¼ lðax; ayÞ for all a[ 0:

II. We will prove the implication (1) ) (2). Assume that the fuzzy relation l
satisfies Axioms F2–F4. By the aforesaid, the relation l is a cone relation; denote its
cone by g. The support of the cone g does not contain the origin, since otherwise the
relation would not be irreflexive. To demonstrate that the cone g is acute, conjecture
the opposite, i.e., there exists a nonzero vector y such that lðy; 0mÞ ¼ gðyÞ[ 0 and
lð0m; yÞ ¼ gð�yÞ[ 0: Based on the transitivity of the relation l , we accordingly
have lðy; yÞ[ 0; which contradicts the irreflexivity of l.

To show that the cone g is convex, take x ¼ ax0; y ¼ 0m; z ¼ ð1� aÞð�x00Þ;
a 2 ð0; 1Þ in the definition of a transitive fuzzy relation. In this case,

lðax0; ð1� aÞð�x00ÞÞ = minflðax0; 0mÞ; lð0m; ð1� aÞð�x00ÞÞg:

Hence, using the invariance property, we get

lðax0; ð1� aÞð�x00ÞÞ=minflðx0; 0mÞ; lð0m;�x00Þg;

or

gðax0 þ ð1� aÞx00Þ=minfgðx0Þ; gðx00Þg:

This inequality means the convexity of the fuzzy cone g.
Let ei be unit vector i in space Rm. Then Axiom F3 dictates that lðei; 0mÞ ¼

gðeiÞ ¼ 1: And so, all unit vectors of this space belong to the cone g with the unit
grade of membership. Due to the convexity of g, the whole nonnegative orthant of
this space has the same grade of membership.

Now, we prove the implication (2) ) (1). First of all, note that the fuzzy relation
l is invariant, as established earlier. Based on the convexity of the cone g, for any x,
y, z we have

158 7 Pareto Set Reduction Using Fuzzy Information



g
x� y
2

þ y� z
2

� �
=minfgðx� yÞ; gðy� zÞg:

This gives the inequality

lðx; zÞ = minflðx; yÞ; lðy; zÞg for all x; y; z;

which establishes the transitivity of the fuzzy relation l. The latter is also
irreflexive, since the support of the cone g does not contain the origin. Therefore,
the fuzzy relation l satisfies Axioms F2 and F4. This relation obeys Axiom F3 as
well: for any two vectors y0 and y00 from the definition of a compatible criterion
together with the invariance property we get

lðy0; y00Þ ¼ lðei; 0mÞ ¼ gðeiÞ ¼ 1: �

Lemma 7.3 Under Axiom F4, the specification of a fuzzy information quantum
with the groups of criteria A and B, given positive parameters wi and wj for all
i 2 A; j 2 B; and the degree of confidence l� 2 ð0; 1� is equivalent to the equality
lð~y; 0mÞ ¼ l� , where the vector ~y 2 Rm has the components ~yi ¼ wi, ~yj ¼ �wj,
and ~ys ¼ 0 for all i 2 A, j 2 B, s 2 InðA[BÞ:

□ Necessity is obvious. To verify sufficiency, choose two arbitrary vectors
y0; y00 2 Rm from Definition 7.1. Then the required result is immediate from the
following equalities based on the invariance of the fuzzy relation l:

l� ¼ lð~y; 0mÞ ¼ lð~yþ y00; y00Þ ¼ lðy0; y00Þ: �

As above, denote by Nm the set of all m-dimensional vectors having at least one
positive and at least one negative components. According to Lemma 7.3, each
vector from this set may define a certain quantum of fuzzy information if it is
preferable to the zero vector with some nonzero degree of confidence.

7.2.2 Consistent Collection of Fuzzy Information Quanta

Consider a given collection of the pairs of vectors ui; vi ðui � vi 2 NmÞ together
with a collection of numbers li 2 ð0; 1� such that lðui; viÞ ¼ li, i ¼ 1; 2; . . .; k: Let

l11; . . .; l1k1 ; l21; . . .l2k2 ; . . .; ll1; . . .; llkl

be a permutation of the numbers l1; l2; . . .; lk that satisfies

1=l11 ¼ � � � ¼ l1k1 [ l21 ¼ � � � ¼ l2k2 [ � � � [ ll1 ¼ � � � ¼ llkl [ 0;
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where k1 þ � � � þ kl ¼ k; 15 l5 k: Thus, we obtain the following bijection: each
pair ui; vi corresponds to a definite positive number lrs ðr 2 f1; 2; . . .; lg; s 2
f1; 2; . . .; krgÞ such that li ¼ lrs. Conversely, each number lrs above corresponds
to a certain pair of vectors from the collection ui; vi, i ¼ 1; 2; . . .; k:

Let ei be a unit vector of space Rm, i ¼ 1; 2; . . .;m: Introduce the crisp cones
Kh; h 2 f1; 2; . . .; lg, generated by the unit vectors e1; e2; . . .; em together with the
vectors ui � vi, i 2 f1; 2; . . .; kg, associated with the numbers li of the form li ¼
lrs for some r and s, and also li = lh1. This definition of cones Kh directly leads to
the inclusions K1 � K2 � � � � � Kl.

Definition 7.2 A collection of the pairs of vectors ui; vi ðui � vi 2 NmÞ,
i ¼ 1; 2; . . .; k, together with a collection of numbers l1; l2; . . .; lk 2 ð0; 1� define a
consistent collection of fuzzy information quanta if there exists at least one fuzzy
preference relation lð�; �Þ that satisfies Axioms F2–F4 and lðui; viÞ ¼ li 2 0; 1ð �,
i ¼ 1; 2; . . .; k (k = 1).

The following theorem gives a consistency criterion for a collection of fuzzy
information quanta.

Theorem 7.2 A collection of the pairs of vectors ui; vi ðui � vi 2 NmÞ,
i ¼ 1; 2; . . .; k, together with a collection of numbers l1; l2; . . .; lk 2 ð0; 1� specify
a consistent collection of fuzzy information quanta if and only if the system of linear
equations

k1e
1 þ � � � þ kme

m þ n1 u1 � v1
� �þ � � � þ nk uk � vk

� � ¼ 0m ð7:3Þ

has no N-solution k1; . . .; km; n1; . . .; nk and, in addition, each cone Kh,
h 2 f1; . . .; l� 1g, contains no vectors ui � vi, i 2 f1; 2; . . .; kg, that are associated
with a number li satisfying the inequality li\lh1.

□ Necessity. Assume that a collection of the pairs of vectors
ui; vi ðui � vi 2 NmÞ, i ¼ 1; 2; . . .; k, together with a collection of numbers
l1; l2; . . .; lk 2 ð0; 1� specify a consistent collection of fuzzy information quanta.
Due to Definition 7.2 and Lemma 7.2, there exists a fuzzy preference relation l
with a fuzzy convex cone η, where the unit vectors e1; . . .; em and the vectors
ui � vi, i ¼ 1; 2; . . .; k, belong to the support of the cone η, which is a crisp acute
cone. Hence, the crisp polyhedral convex cone generated by the vectors e1; . . .; em,
ui � vi, i ¼ 1; 2; . . .; k, is also acute, and the system of linear Eqs. (7.3) has no N-
solution k1; . . .; km; n1; . . .; nk, see Remark 4.1.

To prove the concluding part of necessity, we conjecture the opposite, i.e., for
some h 2 f1; . . .; l� 1g the cone Kh contains a vector ui � vi whose grade of
membership li¼ lrs satisfies the inequalities lrs\lh1, r[ h, for some r and s. The
inclusion ui � vi 2 Kh can be rewritten as
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ui � vi ¼
X
q

kqeq þ
X
j

ajðu j � v jÞ;

where kq [ 0; aj [ 0 and, in the second term, summation runs over the set of all j
satisfying lðu j; v jÞ = lh1. Using the convexity of the fuzzy cone η, we have

lrs ¼ li ¼ lðui; viÞ ¼ gðui � viÞ ¼ g
X
q

kqe
q þ

X
j

ajðu j � v jÞ
 !

= min
q;j

fgðeqÞ; gðu j � v jÞg

¼ min
j
fgðu j � v jÞg ¼ min

j
flðu j; v jÞg ¼ lt1

for some t 2 f1; . . .; h� 1g. Then the resulting inequalities lrs = lt1 and r[ t
contradict the accepted hypothesis:

1 =l11 ¼ . . . ¼ l1k1 [ l21 ¼ . . . ¼ l2k2 [ . . .[ ll1 ¼ . . . ¼ llkl [ 0:

Sufficiency. System (7.3) has no N-solution by the hypotheses of this theorem.
And so, the crisp polyhedral convex cone Kl generated by the unit vectors e1; . . .; em

together with the vectors ui � vi, i ¼ 1; 2; . . .; k, is acute according to the
above-mentioned Remark 4.1

Consider the fuzzy cone relation l with the fuzzy cone g that has the support Kl

(without the origin), i.e.,

gðzÞ ¼
1; if z 2 Rm

þ ;
li; if z ¼ aðui � viÞ for some a[ 0 and i 2 f1; . . .; kg;
max

j2f1;2;...;lg
flj1jz 2 Kjg; in the rest cases:

8><
>:

ð7:4Þ

Obviously, lðui; viÞ ¼ gðui � viÞ ¼ li; i ¼ 1; . . .; k: And therefore it remains to
show that the relation l satisfies Axioms F2–F4. According to Lemma 7.3, this is
equivalent to the following: the cone g is convex and contains the nonnegative
orthant Rm

þ with the unit grade of membership and the origin with the zero grade of
membership. Recall that (a) the support of the cone g is the cone Kl without the
origin and (b) the cone g contains the nonnegative orthant with the unit grade of
membership by (7.4). Hence, the only thing to do is to verify the convexity of the
fuzzy cone g.

To this end, choose arbitrary vectors x; y 2 Kl and an arbitrary number k 2 ½0; 1�:
Without loss of generality, suppose that x 2 Kh; x 62 Kh�1 and y 2 Kt; y 62 Kt�1,
where l = h = t = 0 (note that K0 ¼ Rm

þ ;K�1 ¼ ;).
To prove that the cone g is convex, verify the inequality gðzÞ = lh1, where

z ¼ kxþð1� kÞy: By the hypothesis of this theorem, each cone Kj; j 2 f1; . . .; lg,
contains the unit vectors e1; . . .; em and also the vectors ui � vi satisfying the
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inequality li = lj1. The cone Kh particularly contains the vectors e1; . . .; em and
only such vectors ui � vi that satisfy li = lh1.

Let us verify the inequality gðzÞ = lh1. Since Kh 
 Kt and the cone Kh is convex,
we have z 2 Kh. If the point z obeys the inclusion z 2 Rm

þ , then equality (7.4) leads
to gðzÞ ¼ 1 = lh1. If z ¼ aðui � viÞ holds for some a[ 0 and i 2 f1; . . .; kg, then
gðzÞ ¼ li = lh1 due to the inclusion z 2 Kh and equality (7.4). In the rest cases, we
obtain z 2 Kj and z 62 Kj�1 for some j 2 f1; . . .; hg, which also yield gðzÞ ¼
lj1 = lh1 using equality (7.4). This proves the convexity of the cone g. ■

7.3 Pareto Set Reduction Based on Fuzzy Information
Quantum

7.3.1 Basic Result

As a matter of fact, the next theorem extends Theorem 3.5 to the case of a fuzzy
preference relation. Further exposition is based on Axioms F1–F4.

Theorem 7.3 Let we have a given quantum of fuzzy information with the groups of
criteria A and B, positive parameters wi; wj for all i 2 A; j 2 B, and the degree of
confidence l� 2 ð0; 1�: Then for any set of selectable vectors with a membership
function kCY ð�Þ the inequalities

kCY ðyÞ5 kMY ðyÞ5 kPYðyÞ for all y 2 Y ; ð7:5Þ

hold, where kPYð�Þ is the membership function of the Pareto set and kMY ð�Þ is the
membership function defined by

kMY ðyÞ ¼ 1� sup
z2Y

1ðz; yÞ for all y 2 Y ; ð7:6Þ

fðz; yÞ ¼
1; if z� y 2 Rm

þ ;
l�; if ẑ� ŷ 2 Rp

þ ; z� y 62 Rm
þ ; for all y; z 2 Y :

0; in the rest cases;

8<
: ð7:7Þ

Here p ¼ m� jBj þ jAj � jBj, while the vectors ŷ and ẑ have the components yi
and zi, respectively, for all i 2 InB, and wjyi þwiyj and wjzi þwizj, respectively, for
all i 2 A and j 2 B:

□ Owing to Lemma 7.3, the fuzzy preference relation is a cone relation with a
fuzzy acute convex cone (without the origin). Denote it by K: This cone contains
the nonnegative orthant Rm

þ with the unit grade of membership. The presence of an
information quantum as stated by Lemma 7.3 means that the corresponding vector ~y
belongs to the cone K, and its grade of membership is l�.
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Consider a fuzzy set M in the criterion space whose support represents the
collection of all N-combinations for a finite collection of the unit vectors
e1; e2; . . .; em from space Rm and the above vector ~y: The vectors of the support that
belong to the nonnegative orthant have the unit grade of membership (except the
origin with the zero grade of membership), while the rest vector of the support have
the grade of membership l�. The set M is a fuzzy acute convex cone (without the
origin) that contains the nonnegative orthant with the unit grade of membership
and, owing to the convexity of the cone K, is a subset of this cone.

According to the results of Chap. 3, the support of the cone M coincides with the
set of all solutions to the system of linear inequalities hai; yi � 0,
i ¼ 1; 2; . . .; p ¼ m� jBj þ jAj � jBj, where the vectors a1; a2; . . .; ap are ei for all
i 2 InB and wjei þwie j for all i 2 A; j 2 B:

Consider the fuzzy cone relation 1 with the coneM: Clearly, it coincides with the
one defined by (7.7). On the other hand, the fuzzy set with the membership function
kMY ðyÞ in inequality (7.5) represents the fuzzy set of nondominated vectors in terms
of the relation 1, see formula (7.6).

We have mentioned that the nonnegative orthant belongs to the coneM: By-turn,
this cone is contained in the cone K. The Pareto set therefore contains the set of all
nondominated vectors in terms of the cone relation 1 that includes the set of
nondominated vectors generated by the cone preference relation with the mem-
bership function lð�; �Þ: And the latter set contains the fuzzy set of selectable vectors
owing to the fuzzy Pareto principle. ■

Analysis of Theorem 7.3 shows the following. To construct the fuzzy set with
the membership function kMY ðyÞ (i.e., to reduce the Pareto set based on the fuzzy
information quantum), one has to solve two (crisp) multicriteria problems (more
specifically, to find the Pareto sets in two multicriteria problems). First, it is nec-
essary to consider the multicriteria problem incorporating the initial vector function
f and the set of feasible alternatives X: And then assign the unit grade of mem-
bership to all vectors in the resulting Pareto set and the zero grade of membership to
the rest vectors. Second, on the same set X it is necessary to solve the multicriteria
problem with the new (“recalculated”) p-dimensional vector function with the
components fi for all i 2 InB and wjfi þwifj for all i 2 A; j 2 B: And then assign the
grade of membership 1 − l� to all vectors in the “old” Pareto set that do not appear
in the “new” Pareto set. The described procedure allows to reduce the Pareto set
containing the unknown set of selectable vectors. An illustrative example will be
given below.

In the special case where the sets A and B are singletons, Theorem 7.3 can be
reformulated as follows.

Corollary 7.1 Let i; j 2 I; i 6¼ j, and consider a given elementary quantum of fuzzy
information with the pair of criteria fi, fj, parameters wi; wj and the degree of
confidence l� 2 ð0; 1�: Then for any set of selectable vectors with the membership
function kCY ð�Þ we have inequalities (7.5), where the membership function kMY ðyÞ
and the relation 1 are defined by (7.6) and (7.7), respectively, p ¼ m and the m-
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dimensional vectors ŷ and ẑ have the components y1; . . .; yj�1;wjyi þ
wiyj; yjþ 1; . . .; ym and z1; . . .; zj�1;wjzi þwizj; zjþ 1; . . .; zm, respectively.

7.3.2 Example

Example 7.1 Consider an illustrative example. Under the hypotheses of Corollary
7.1, let m ¼ 2, f ¼ ðf1; f2Þ, Y ¼ fy1; y2; y3; y4g � R2, y1 ¼ ð0; 3Þ; y2 ¼ ð1; 1Þ;
y3 ¼ ð2; 1Þ, and y4 ¼ ð4; 0Þ: In this case, the set of Pareto optimal vectors consists
of three elements, kPYðy1Þ ¼kPYðy3Þ ¼kPYðy4Þ ¼ 1, kPYðy2Þ ¼ 0, since y3 � y2.

Assume that there is a fuzzy information quantum, which states that criterion f1
is more important than criterion f2 with the parameters wi ¼ 0:3; wj ¼ 0:7 and the
degree of confidence 0.6. Then using Corollary 7.1 we obtain

ŷ1 ¼ ð0; 0:9Þ; ŷ2 ¼ ð1; 1Þ; ŷ3 ¼ ð2; 1:7Þ; ŷ4 ¼ ð4; 2:8Þ;
1ðy1; y2Þ ¼ 1ðy1; y3Þ ¼ 1ðy1; y4Þ ¼ 1ðy2; y3Þ ¼ 1ðy2; y4Þ ¼ 1ðy3; y4Þ ¼ 0;

1ðy2; y1Þ ¼ 1ðy3; y1Þ ¼ 1ðy4; y1Þ ¼ 1ðy4; y2Þ ¼ 1ðy4; y3Þ ¼ 0:6; 1ðy3; y2Þ ¼ 1;

kMY ðy1Þ ¼ 1�maxf0:6; 0:6; 0:6g ¼ 0:4; kMY ðy2Þ ¼ 1�maxf0; 1; 0:6g ¼ 0;

kMY ðy3Þ ¼ 1�maxf0; 0; 0:6g ¼ 0:4; kMY ðy4Þ ¼ 1�maxf0; 0; 0g ¼ 1:

The fuzzy set with the membership function kMY ðy1Þ ¼ 0:4, kMY ðy2Þ ¼ 0,
kMY ðy3Þ ¼ 0:4, kMY ðy4Þ ¼ 1 yields an upper estimate for the unknown set of
selectable vectors.

The same estimate can be constructed in a different way. At step 1, in the initial
multicriteria problem assign the unit grade of membership to all Pareto optimal
vectors and the zero grade of membership to the rest vectors (in the current
example, to the vector y2 only). At step 2, find the Pareto optimal vectors in the set
of “recalculated” vectors fŷ1; ŷ3; ŷ4g. Such is the vector fŷ4g only. Hence, the first
and third vectors (y1 and y3) receive the grade of membership defined by
1 − 0.6 = 0.4. This procedure yields the same upper estimate as before.

The following recommendations for choice can be suggested using the above
example. If exactly one vector must be selected, in this case the DM should set its
choice on the vector y4. Analyze the same example under the condition that it is
necessary to choose two vectors from the four ones. In this case, a possible approach
is to consider the new problem where the feasible vectors are the pairs of vectors
(instead of separate vectors). In this problem the preference relation is a new binary
relation defined on these pairs of vectors. Thereby, we obtain a distinctly different
(and much more difficult) problem, and its solution requires new information about
the preference relation in comparison with the initial problem. Moreover, in this case
the initial information is of little interest for subsequent choice.

Now, let us study the second approach to choose two vectors. If the individual
properties of the alternatives combined in into pairs remain almost the same, then
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we may suggest the following recommendations within the framework of the initial
problem. One should choose the pair containing the third and fourth vectors (y3 and
y4), since the third vector is preferable to the first vector (ŷ3 � ŷ1) taking into
account the fuzzy information quantum available.

Finally, if it is necessary to choose three vectors among the four ones, a natural
recommendation consists in choosing the triplet that forms the Pareto set in the
initial problem (i.e., the first, third and fourth vectors), since the (crisp) Edgeworth–
Pareto principle holds under these conditions. Note that the existing information
about the preference relation is not used at all; it becomes “redundant.”

7.3.3 Case of a Fuzzy Set of Feasible Alternatives

The results established for a crisp set X can be extended to the case of a fuzzy set of
feasible alternatives. Denote by kXð�Þ and kYð�Þ the corresponding membership
functions for alternatives and for vectors, respectively.

To carry out such extension, first we have to agree what is the solution of the
fuzzy choice problem. Fuzzy choice is performed within the fuzzy set X, and so for
each selectable alternative the grade of membership must not exceed its grade of
membership in the fuzzy set X: We may therefore assume that the fuzzy set of
selectable alternatives (further designated by FCðXÞ) with a membership function
kFY ð�Þ is by definition the intersection X \CðXÞ, where CðXÞ indicates the set of
selectable alternatives under the hypothesis that the set X is crisp. Thus, to solve the
fuzzy choice problem with the fuzzy set X, it is necessary (1) to find the set of
selectable alternatives under the hypothesis that the set X is crisp set and (2) to
obtain the intersection of the resulting set with the given fuzzy set X.

The following theorems can be formulated using the aforesaid and the results
established above.

Theorem 7.4 In the case of the fuzzy set X and the fuzzy preference relation, for
any fuzzy set of selectable alternatives FCðXÞ we have the inclusion

FCðXÞ � X \Pf ðXÞ:
Theorem 7.5 Let the set X be fuzzy. If there is a given quantum of fuzzy infor-
mation with the groups of criteria A and B, parameters wi; wj for all i 2 A; j 2 B,
and the degree of confidence l� 2 ð0; 1�, then for any set of selectable vectors with
the membership function kFY ð�Þ we have the inequalities

kFY ðyÞ5minfkMY ðyÞ; kYðyÞg5minfkPYðyÞ; kYðyÞg for all y 2 Y ;

where kPY ð�Þ is the membership function of the Pareto set, kMY ð�Þ is the membership
function defined by (7.6), (7.7), while the number p and the vectors ŷ, ẑ are the same
as in Theorem 7.4.
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7.4 Pareto Set Reduction Based on Collections of Fuzzy
Information Quanta

7.4.1 Pareto Set Reduction Using Two Fuzzy Information
Quanta

The next theorem deals with the consideration of two fuzzy information quanta
stating that the criterion fi is more important than the criteria fj and fk. Recall that
lð�; �Þ denotes the membership function of the preference relation from Axiom F2.

Theorem 7.6 Let i; j; k 2 I; i 6¼ j; i 6¼ k; j 6¼ k; and lðy0; 0mÞ ¼ l1 2 ð0; 1�,
lðy00; 0mÞ ¼ l2 2 ð0; 1�, where l1 = l2 and the vectors y0 and y00 both have only
two nonzero components, y0i ¼ w0

i, y
0
j ¼ �w0

j and y00i ¼ w00
i , y

00
k ¼ �w00

k , respectively.

Then for any set of selectable vectors with the membership function kCY ð�Þ we have
the inequalities

kCY yð Þ5 kMY yð Þ5 kPY yð Þ for all y 2 Y ; ð7:8Þ

where kPY yð Þ is the membership function of the Pareto set and kMY yð Þ is the mem-
bership function defined by

kMY yð Þ ¼ 1� sup
z2Y

1 z; yð Þ for all y 2 Y ; ð7:9Þ

1 z; yð Þ ¼
1; if z� y 2 Rm

þ ;
l1; if �z� �y 2 Rm

þ ; z� y 62 Rm
þ ; for all y; z 2 Y ;y 6¼ z;

l2; if ẑ� ŷ 2 Rmþ 1
þ ; �z� �y 62 Rm

þ ; z� y 62 Rm
þ ;

0; in the rest cases;

8>><
>>:

ð7:10Þ

and

�y ¼ y1; . . .; yj�1;w
0
jyi þw0

iyj; yjþ 1; . . .; ym
� �

;

ŷ ¼ ðy1; . . .; yj�1;w
0
jyi þw0

iyj; yjþ 1; . . .; yk�1;w
00
k yi

þw00
i yk; ykþ 1; . . .; ym;w

0
jw

00
k yi þw0

iw
00
k yj þw00

i w
0
jykÞ;

�z ¼ z1; . . .; zj�1;w
0
jzi þw0

izj; zjþ 1; . . .; zm
� �

;

ẑ ¼ ðz1; . . .; zj�1;w0
jzi þw0

izj; zjþ 1; . . .; zk�1;w00
k zi

þw00
i zk; zkþ 1; . . .; zm;w

0
jw

00
k zi þw0

iw
00
k zj þw00

i w
0
jzkÞ:

□ Owing to Lemma 7.2, each fuzzy relation lð�; �Þ defined in the criterion space
Rm that satisfies Axioms F2–F4 is a cone relation with the fuzzy acute convex cone
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K without the origin that contains the nonnegative orthant with the unit grade of
membership.

By the hypothesis of this theorem, we have two quanta and hence k ¼ 2:
Consider the two crisp cones K1 and K2 in the notation of Sect. 7.2.2. They satisfy
the inclusion K1 � K2.

The existence of these two quanta means that the vector y0 belongs to the cone
K1 with the grade of membership l1 ¼ l y0; 0mð Þ, while the vector y00 to the cone K2

with the grade of membership l2 ¼ l y00; 0mð Þ:
First, using Theorem 7.2 we verify that this collection of information quanta is

consistent. The system of linear Eq. (7.3) acquires the form
k1e1 þ . . .þ kmem þ n1y0 þ nky00 ¼ 0n. Equation i of this system gives ki ¼ n1 ¼
n2 ¼ 0: Then it follows from equations j and k that kj ¼ kk ¼ 0: And the rest
equations of this system dictate that all other components of the vector k ¼
ðk1; k2; . . .; kmÞ are zero. Hence, the system of linear equations has no N-solution
k1; . . .; km; n1; n2.

If l1 ¼ l2, then obviously the collection of information quanta is consistent.
Suppose that l1 [ l2, and verify the second condition of Theorem 7.2. By

conjecturing the opposite, i.e.,y00 2 K1, we may represent the vector y00 as N-com-
bination of the vectors e1; . . .; em; y0: Equation k of the vector equality
k1e1 þ . . .þ kmem þ n1y0 ¼ y00 leads to the inequality kk\0, which contradicts the
nonnegative property of the coefficients k1; . . .; km. And so, by Theorem 7.2 the
collection of information quanta under consideration is consistent.

Introduce two fuzzy cones with the supports K1 and K2. Denote by M1 the fuzzy
cone with the support K1 and the unit grade of membership for all its elements that
belong to the nonnegative orthant and the grade of membership l1 for the other
elements of this cone. Similarly, designate by M2 the fuzzy cone with the support
K2 and the unit grade of membership for all its elements that belong to the non-
negative orthant and the grade of membership l2 for the other elements of this cone.

Let M be the fuzzy cone (without the origin) whose support is generated by the
vectors e1; . . .; em; y0; y00, so thatM is the union of the fuzzy conesM1 andM2. Since
the fuzzy information specified by the conditions of Theorem 7.6 is consistent, the
fuzzy coneM is acute and convex. Thereby, the vectors of suppM ð¼ K2Þ belonging
to the nonnegative orthant have the unit grade of membership (except the origin with
the zero grade ofmembership); the vectors belonging to the coneK1 and not belonging
to the nonnegative orthant have the grade of membership l1; the vectors belonging to
the cone K2 and not belonging to the cone K1 have the grade of membership l2.

It follows from the proof of Theorem 4.5 that the support of the cone
M coincides with the set of all nonzero solutions to the system of linear homoge-
neous inequalities

ys = 0 for all s 2 Infj; kg;
w0
jyi þw0

iyj = 0;
w00
k yi þw00

i yk = 0;
w0
jw

00
k yi þw0

iw
00
k yj þw00

i w
0
jyk = 0;
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while supp M1 coincides with the set of all solutions to the system of linear
homogeneous inequalities

ys = 0 for all s 2 In jf g;
w0
jyi þw0

iyj = 0:

Consider the fuzzy cone relation with the cone M. Denote by 1 its membership
function. Analysis shows that this function is exactly the one defined by (7.10). The
definition of the fuzzy set of nondominated vectors (7.9) and formula (7.10) imply
that the fuzzy set with the membership function kMY yð Þ is the fuzzy set of non-
dominated vectors in terms of the relation 1.

The nonnegative orthant is contained in M with the unit grade of
membership. By-turn, the cone M is contained in the cone K of the fuzzy relation
lð�; �Þ: The Pareto set hence includes the set of all nondominated vectors in terms of
the cone relation 1, which includes the set of all nondominated vectors in terms of
the cone relation M: Due to Lemma 7.1, the latter set contains any fuzzy set of
selectable vectors. ■

According to Theorem 7.6, one has to solve three (crisp) multicriteria problems
in order to construct the fuzzy set with the membership function kMY �ð Þ: First, it is
necessary to find the Pareto set for the multicriteria problem incorporating the initial
vector function f and the set of feasible alternatives X: And then assign the unit
grade of membership to all vectors in the resulting Pareto set and the zero grade of
membership to the rest vectors. Second, on the same set X it is necessary to solve
the multicriteria problem with the new vector function with the components fs for
all s 2 In jf g and w0

jfi þw0
ifj. And then assign the grade of membership 1� l1 to all

vectors in the “old” Pareto set that do not appear in the “new” Pareto set. Third, on
the same set X it is necessary to solve the multicriteria problem with the new vector
function with the components fs for all s 2 In j; kf g, w0

jfi þw0
ifj, w

00
k fi þw00

i fk, and the
additional component fmþ 1 ¼ w0

jw
00
k fi þw0

iw
00
k fj þw0

jw
00
i fk . And then assign the grade

of membership 1� l2 to all vectors in the “old” Pareto set that do not appear in the
“new” Pareto sets for the second and third multicriteria problems. This procedure
allows constructing a fuzzy set of vectors that is the reduced original Pareto set
based on the two available quanta of fuzzy information.

7.4.2 Example

Example 7.2 Under the hypotheses of Theorem 7.6, let m ¼ 3, f ¼ f1; f2; f3ð Þ,
Y ¼ y1; y2; y3; y4; y5; y6

� � � R3, y1 ¼ 4; 3; 5ð Þ, y2 ¼ 0; 3; 2ð Þ, y3 ¼ 1; 2; 3ð Þ,
y4 ¼ 4; 3; 0ð Þ, y5 ¼ 5; 2; 7ð Þ, and y6 ¼ 2; 5; 5ð Þ: In this case, the set of Pareto
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optimal vectors consists of three elements, since kPY y1ð Þ ¼ kPY y5
� � ¼ kPY y6

� � ¼ 1

and kPY y2ð Þ ¼ kPY y3ð Þ ¼ kPY y4ð Þ ¼ 0:
Assume that there is a fuzzy information quantum, which states that criterion f1

is more important than criterion f2 with the parameters w0
1 ¼ 0.4, w0

2 ¼ 0:6 and the
degree of confidence 0.6, and that criterion f1 is more important than criterion f3
with the parameters w00

1 ¼ 0.5, w00
3 ¼ 0:5 and the degree of confidence 0.4.

Using Theorem 7.6 we obtain

�y1 ¼ 4; 3:6; 5ð Þ; �y2 ¼ 0; 1:2; 2ð Þ; �y3 ¼ 1; 1:4; 3ð Þ;
�y4 ¼ 4; 3:6; 0ð Þ; �y5 ¼ 5; 3:8; 7ð Þ; �y6 ¼ 2; 3:2; 5ð Þ:

Here the set of Pareto optimal vectors consists of two elements, namely, the first
and fifth vectors. Therefore,

kMY y1
� � ¼ kMY y5

� � ¼ 1; kMY y6
� � ¼ 0:4; kMY y2

� � ¼ kMY y3
� � ¼ kMY y4

� � ¼ 0:

According to Theorem 7.6, next we calculate the additional criterion
f4 ¼ 0:3f1 þ 0:2f2 þ 0:3f3. Hence,

ŷ1 ¼ 4; 3:6; 4:5; 3:3ð Þ; ŷ2 ¼ 0; 1:2; 1; 1:2ð Þ; ŷ3 ¼ 1; 1:4; 2; 1:6ð Þ;
ŷ4 ¼ 4; 3:6; 2; 1:8ð Þ; ŷ5 ¼ 5; 3:8; 6; 4ð Þ; ŷ6 ¼ 2; 3:2; 3:5; 3:1ð Þ:

The fifth vector is Pareto optimal in this collection. In the end, we have

kMY y5
� � ¼ 1; kMY y1

� � ¼ 0:6; kMY y6
� � ¼ 0:4; kMY y2

� � ¼ kMY y3
� � ¼ kMY y4

� � ¼ 0:

The resulting fuzzy set forms the desired reduction of the initial Pareto set. The
best candidate for choice is the fifth vector, followed by the first and sixth vectors.

The next theorem shows how to reduce the Pareto using the two fuzzy infor-
mation quanta stating that each of criteria fi; fj separately is more important than the
criterion fk .

Theorem 7.7 Let i; j; k 2 I; i 6¼ j; i 6¼ k; j 6¼ k; and lðy0; 0mÞ ¼ l1 2 ð0; 1�,
lðy00; 0mÞ ¼ l2 2 ð0; 1�, where l1 = l2 and the vectors y0 and y00 both have only
two nonzero components, y0i ¼ w0

i, y
0
k ¼ �w0

k and y00j ¼ w00
j , y

00
k ¼ �w00

k , respectively.

Then for any set of selectable vectors with the membership function kCY ð�Þ we have
the inequalities

kCY yð Þ5 kMY yð Þ5 kPY yð Þ for all y 2 Y ;

where kPY yð Þ is the membership function of the Pareto set and kMY yð Þ is the mem-
bership function defined by
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kMY yð Þ ¼ 1� sup
z2Y

1 z; yð Þ for all y 2 Y ;

1 z; yð Þ ¼
1; if z� y 2 Rm

þ ;
l1; if �z� �y 2 Rm

þ ; z� y 62 Rm
þ ; for all y; z; y 6¼ z;

l2; if ẑ� ŷ 2 Rm
þ ; �z� �y 62 Rm

þ ; z� y 62 Rm
þ ;

0; in the rest cases;

8>><
>>:

and

�y ¼ y1; . . .; yk�1;w
0
kyi þw0

iyk; ykþ 1; . . .; ym
� �

;

ŷ ¼ y1; . . .; yk�1;w
0
kw

00
j yi þw0

iw
00
k yj þw0

iw
00
j yk; ykþ 1; . . .; ym

� �
;

�z ¼ z1; . . .; zk�1;w
0
kzi þw0

izk; zkþ 1; . . .; zm
� �

;

ẑ ¼ z1; . . .; zk�1;w
0
kw

00
j zi þw0

iw
00
k zj þw0

iw
00
j zk; zkþ 1; . . .; zm

� �
:

The proof of this theorem is similar to that of the previous one, and we omit it.

7.4.3 Fuzzy Cyclic Information Quanta and Their
Consistency

Definition 7.3 We say that there is given fuzzy cyclic information with the degrees

of confidence l1; . . .; lk 2 0; 1ð � and positive parameters wð1Þ
i1 , wð1Þ

i2 , wð2Þ
i2 , wð2Þ

i3 , …,

wðk�1Þ
ik�1

, wðkÞ
ik ,wðkÞ

i1 if the vectors yð1Þ; . . .; yðkÞ 2 Rm defined by

yð1Þi1 ¼ wð1Þ
i1 ; yð1Þi2 ¼ �wð1Þ

i2 ; yð1Þs ¼ 0 for all s 2 Infi1; i2g;
yð2Þi2 ¼ wð2Þ

i2 ; yð2Þi3 ¼ �wð2Þ
i3 ; yð2Þs ¼ 0 for all s 2 Infi2; i3g;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
yðkÞik ¼ wðkÞ

ik ; yðkÞi1 ¼ �wðkÞ
i1 ; yðkÞs ¼ 0 for all s 2 Infi1; ikg;

satisfy the equalities lðyð1Þ; 0mÞ ¼ l1; . . .;lðyðkÞ; 0mÞÞ ¼ lk.
As cyclic information is specified using a collection of quanta, it is necessary to

consider the issue of consistency. The definition of a consistent collection of vectors
has been given in Sect. 7.2.2. For numbers l1; . . .; lk, also recall the permutation

l11; . . .; l1k1 ; l2k2 ; . . .; l2k2 ; . . .ll1; . . .; llkl ;

170 7 Pareto Set Reduction Using Fuzzy Information



having the property

1= l11 ¼ . . . ¼ l1k1 [ l21 ¼ . . . ¼ l2k2 [ . . .[ ll1 ¼ . . . ¼ llkl [ 0;

where k ¼ k1 þ . . .þ kl, 1= l= k: In the sequel, we will use the crisp cones Kh,
h 2 1; . . .; lf g, generated by the unit vectors e1,…, em of space Rm together with the
vectors yðiÞ, i 2 1; . . .; kf g, such that the corresponding numbers li satisfy the
inequality li = lh1. These cones are nested: K1 � K2 � . . . � Kl.

Consider the matrix

W ¼

wð1Þ
i1 0 . . . 0 �wðkÞ

i1

wð1Þ
i2 wð2Þ

i2 . . . 0 0

..

. ..
. ..

. ..
. ..

.

0 0 . . . wðk�1Þ
ik�1

0

0 0 . . . �wðk�1Þ
ik wðkÞ

ik

0
BBBBBBB@

1
CCCCCCCA
:

Demonstrate that the fuzzy cyclic information introduced by Definition 7.3 is
consistent if and only if the matrix W has the positive determinant, i.e., Wj j[ 0:

□ Necessity. Let the fuzzy cyclic information be consistent. According to
Theorem 7.2, for the vectors forming this collection of cyclic information quanta,
the system of linear Eq. (7.3) has no N-solution. In this case, Wj j[ 0 by
Theorem 5.6.

Sufficiency. Let Wj j[ 0: By Theorem 5.6, the corresponding system of
homogeneous linear Eqs. (7.3) has no N-solution. Prove that each cone Kh,
h 2 1; . . .; l� 1f g, does not contain any vectors yðjÞ, j ¼ 1; 2; . . .; k, such that the
corresponding number lj obeys the inequality lj\lh1. Conjecture the opposite,
i.e., there exist numbers �h 2 1; . . .; l� 1f g and �j 2 1; . . .; kf g such that l�j\l�h1,

and the cone K�h contains the vector yð�jÞ.
Assume that �j 2 1; . . .; k � 1f g (the case �j ¼ k is treated by analogy). On the

strength of the aforesaid, the vector yð�jÞ can be expressed as the linear nonnegative
combination

yð�jÞ ¼
Xm
i¼1

�kie
i þ

X
j: lj = l�h1

�njy
ðjÞ: ð7:11Þ

Here two cases are possible, namely, l�jþ 1 = l�h1 or l�jþ 1\l�h1. Then the com-

ponents of the vectors yð�jÞ and yð�jþ 1Þ have the following form that corresponds to
these cases:
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yð
�jÞ
p ¼ wð�jÞ

p ; yð
�jÞ
q ¼ �wð�jÞ

q ; yð
�jÞ
s ¼ 0 for all s 2 In p; qf g;

yð
�jþ 1Þ
q ¼ wð�jþ 1Þ

q ; yð
�jþ 1Þ
t ¼ �wð�jþ 1Þ

t ; yð
�jþ 1Þ
s ¼ 0 for all s 2 In q; tf g;

where p, q, and t are some pairwise different numbers of the criteria from the
collection fi1; i2; . . .; ikg. In the first and second cases above, component q of the
vector equality (7.11) is defined by

�wð�jÞ
q ¼ �kq þ �n�jþ 1w

ð�jþ 1Þ
q and � wð�jÞ

q ¼ �kq;

respectively. Both of these equalities fails under any positive numbers �kq and �n�jþ 1.

Hence, the hypothesis yð�jÞ 2 K�h is wrong and, by Theorem 7.2, the fuzzy cyclic
information is consistent. ■

7.4.4 Pareto Set Reduction Via Elementary Fuzzy Cyclic
Information Quantum

Consider given fuzzy cyclic information quantum with the degrees of confidence
l1; l2; l3 2 0; 1ð �: According to Definition 7.2, this means that the vectors
yð1Þ; yð2Þ; yð3Þ 2 Rm with the components

yð1Þi ¼ wð1Þ
i ; yð1Þj ¼ �wð1Þ

j ; yð1Þs ¼ 0 for all s 2 Infi; jg;
yð2Þj ¼ wð2Þ

j ; yð2Þl ¼ �wð2Þ
l ; yð2Þs ¼ 0 for all s 2 Infj; lg;

yð3Þl ¼ wð3Þ
l ; yð3Þi ¼ �wð3Þ

i ; yð3Þs ¼ 0 for all s 2 Infl; ig;

satisfy lðyð1Þ; 0mÞ ¼ l1, lðyð2Þ; 0mÞ ¼ l2, lðyð3Þ; 0mÞ ¼ l3. Suppose that this fuzzy
cyclic information is consistent, i.e., Wj j[ 0:

Order the numbers l1, l2, l3 so that ~l1 = ~l2 = ~l3, where ~l1; ~l2; ~l3 is some
permutation of l1; l2; l3:

Analyze the following situation.

(I) l1 = l2 = l3. These inequalities correspond to the ordered collection of vectors
y 1ð Þ, y 2ð Þ, y 3ð Þ that forms the “chain” of quanta: criterion i is more important than
criterion j, criterion j is more important than criterion l, and criterion l is more
important than criterion i.

Situation (I) also covers the cases l3 = l1 =l2 and l2 = l3 = l1. For instance,
the first case corresponds to the vectors y 3ð Þ, y 1ð Þ, y 2ð Þ forming the “chain” of quanta
described by situation (I) with index l replaced by index i, index i by index j, and
index j by index l.
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Now, consider another situation.

(II) l1 [ l3 [ l2. The corresponding ordered collection of vectors y 1ð Þ, y 3ð Þ, y 2ð Þ

forms the following “chain” of quanta: criterion i is more important than
criterion j, criterion l is more important than criterion i, and criterion j is more
important than criterion l. Again, with an appropriate change of indexes, the
same situation describes the inequalities l2 [ l1 [ l3 and l3 [ l2 [ l1.

Since there exist just 6 permutations of three numbers, situations (I) and
(II) exhaust all possible inequalities for l1, l2, and l3. Situation (I) involves
nonstrict inequalities, while situation (II) the strict ones.

Consider situation (I). Without loss of generality, let l1 = l2 = l3 (otherwise,
simply renumber the criteria). Define the membership function

kMY ðyÞ ¼ 1� sup
z2Y

1ðz; yÞ for all y 2 Y ; ð7:12Þ

where

1 z; yð Þ ¼

1; if z� y 2 Rm
þ ;

l1; if �z� �y 2 Rm
þ ; z� y 62 Rm

þ ;
l2; if ~z� ~y 2 Rm

þ ; �z� �y 62 Rm
þ ; for all y; z 2 Y ; y 6¼ z;

l3; if ẑ� ŷ 2 Rm
þ ; ~z� ~y 62 Rm

þ ;
0; in the rest cases,

8>>>><
>>>>:

ð7:13Þ

and the vectors �a, ~a, â, a ¼ ða1; a2; . . .; amÞ 2 fy; zg have the form

�a ¼ aþðwð1Þ
j ai þðwð1Þ

i � 1ÞajÞe j;
~a ¼ aþðwð1Þ

j ai þðwð1Þ
i � 1ÞajÞe j þðwð2Þ

l wð1Þ
j ai þwð2Þ

l wð1Þ
i aj þðwð2Þ

j wð1Þ
i � 1ÞalÞel;

â ¼ aþððwð2Þ
j wð3Þ

l � 1Þai þwð2Þ
l wð3Þ

i aj þwð2Þ
j wð3Þ

i alÞei þðwð1Þ
j wð3Þ

l ai þðwð1Þ
i wð3Þ

l � 1Þaj
þwð1Þ

j wð3Þ
i alÞe j þðwð2Þ

l wð1Þ
j ai þwð2Þ

l wð1Þ
i aj þðwð2Þ

j wð1Þ
i � 1ÞalÞel:

Theorem 7.8 Assume that there is given consistent cyclic information quantum
described by situation (I). Then for any fuzzy set of selectable vectors C(Y) with the
membership function kCY ð�Þ we have the inequalities

kCY ðyÞ5 kMY ðyÞ5 kPYðyÞ for all y 2 Y ;

where the function kMY ð�Þ is defined by (7.12)–(7.13).
□ The specification of consistent fuzzy cyclic information means that

lðyð1Þ; 0mÞ ¼ l1, lðyð2Þ; 0mÞ ¼ l2, and lðyð3Þ; 0mÞ ¼ l3 for vectors yð1Þ, yð2Þ, and
yð3Þ.

Consider the three crisp cones K1, K2, and K3 such that K1 � K2 � K3, see
above. The vector yðiÞ belongs to the cone Ki for all i 2 1; 2; 3f g:
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For each cone Ki, i ¼ 1; 2; 3, introduce a fuzzy cone Mi such that supp Mi = Ki

and all its elements belonging to the nonnegative orthant (except the origin) have
the unit grade of membership, while the rest elements have the grade of mem-
bership li.

Let M be a fuzzy cone with the membership function gð�Þ and the support
formed by the nonnegative orthant Rm

þ without the origin and by the vectors yð1Þ,
yð2Þ, and yð3Þ, where

gðyÞ ¼

1; if y 2 Rm
þ ;

l1; if y 2 K1; y 62 Rm
þ ;

l2; if y 2 K2; 62 K1;
l3; if y 2 K3; y 62 K2;
0; in the rest cases:

8>>>><
>>>>:

The cone M is the union of the cones M1, M2, and M3; moreover, it is acute and
convex due to the consistency of the given information.

Based on the proof of Theorem 5.7, the set of vectors making the support of the
cone M (i.e., K3) coincides with the set of all nonzero solutions to the system of
inequalities

wð2Þ
j wð3Þ

l yi þwð3Þ
i wð2Þ

l yj þwð3Þ
i wð2Þ

j yl = 0;

wð1Þ
j wð3Þ

l yi þwð1Þ
i wð3Þ

l yj þwð3Þ
i wð1Þ

j yl = 0;

wð1Þ
j wð2Þ

l yi þwð1Þ
i wð2Þ

l yj þwð1Þ
i wð2Þ

j yl = 0;
ys = 0 for all s 2 Infi; j; lg:

The inclusion y 2 supp M2 ¼ K2 is equivalent to the following system of
homogeneous linear inequalities (where at least one inequality is strict):

wð1Þ
j yi þwð1Þ

i yj = 0;

wð1Þ
j wð2Þ

l yi þwð1Þ
i wð2Þ

l yj þwð1Þ
i wð2Þ

j yl = 0;
ys = 0 for all s 2 Infj; lg:

And the inclusion y 2 suppM1 ¼ K1 is equivalent to the system of inequalities

wð1Þ
j yi þwð1Þ

i yj = 0;
ys = 0 for all s 2 Infjg;

where at least one inequality is strict, see Theorem 2.5.
Consider the fuzzy cone relation with the cone M. Denote by wð�; �Þ its mem-

bership function, which satisfies wðz; yÞ ¼ gðz� yÞ for all z; y 2 Y : Obviously, this
function is exactly 1ð�; �Þ defined by (7.13). The fuzzy binary relation f is hence the
cone relation with the cone M.
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As follows from (7.12), the fuzzy set with the membership function kMY �ð Þ makes
the fuzzy set of nondominated vectors in terms of the relation 1. The nonnegative
orthant Rm

þ is contained in M by definition and, in addition, we have the inclusion
M � K: The Pareto set therefore includes the fuzzy set of nondominated vectors in
terms of the binary relation 1, which includes the fuzzy set of nondominated vectors
in terms of the relation l.

Let kNY ð�Þ be the membership function of the fuzzy set of nondominated vectors
in terms of the binary relation l (the latter corresponds to the cone K). The
inequality kCY ðyÞ5 kNY ðyÞ holds for all y 2 Y by Lemma 7.1. This yields the desired
inequalities kCY ðyÞ5 kNY ðyÞ5 kPYðyÞ for all y 2 Y : ■

According to Theorem 7.8, one has to solve four multicriteria problems with
crisp preference relations in order to reduce the Pareto set using fuzzy cyclic
information. First, it is necessary to find the Pareto set P(Y) for the original mul-
ticriteria problem with respect to the initial vector function f and the set of feasible
alternatives X; then assign kMY yð Þ ¼ 1 for all vectors y 2 PðYÞ and kMY yð Þ ¼ 0 for all
other vectors from the set Y. Second, it is necessary to solve the multicriteria
problem with the new vector criterion �f obtained from f by replacing fj with the

linear combination wð1Þ
j fi þwð1Þ

i fj. Denote �PðYÞ ¼ f ðP�f ðXÞÞ and assign the grade of
membership 1� l1 to the vectors belonging to the set PðYÞn�PðYÞ: Third, it is
necessary to solve the multicriteria problem with the new vector criterion ~f obtained

from f by replacing fj with the linear combination wð1Þ
j fi þwð1Þ

i fj and fl with the

linear combination wð2Þ
l wð1Þ

j fi þwð2Þ
l wð1Þ

i fj þwð2Þ
j wð1Þ

i fl. Denote by ~PðYÞ the image of
the set of Pareto optimal alternatives P~f ðXÞ under the mapping f; then assign the

grade of membership 1� l2 to all vectors in the set �PðYÞn~PðYÞ: And fourth, it is
necessary to solve the multicriteria problem with the new vector criterion ~f obtained
from f by replacing fi, fj, and fl with the linear combinations

wð2Þ
j wð3Þ

l fi þwð2Þ
l wð3Þ

i fj þwð2Þ
j wð3Þ

i fl, wð1Þ
j wð3Þ

l fi þwð1Þ
i wð3Þ

l fj þwð1Þ
j wð3Þ

i fl, and

wð2Þ
l wð1Þ

j fi þwð2Þ
l wð1Þ

i fj þwð2Þ
j wð1Þ

i fl, respectively. Again, denote P̂ðYÞ ¼ f ðPf̂ ðXÞÞ
and then assign the grade of membership 1� l3 to all vectors in the set ~PðYÞnP̂ðYÞ:

And so, by solving the four multicriteria problems above, we construct the
desired membership function kMY ð�Þ of the fuzzy set that represents the reduced
Pareto set.

Remark 7.1 Let l1 ¼ l2 under the hypotheses of Theorem 7.8. Then for all
y; z 2 Y ; y 6¼ z, the fuzzy cone relation f is calculated by the formula

1 z; yð Þ ¼
1; if z� y 2 Rm

þ ;
l1 ¼ l2; if ~z� ~y 2 Rm

þ ; z� y 62 Rm
þ ;

l3; if ẑ� ŷ 2 Rm
þ ; ~z� ~y 62 Rm

þ ;
0; in the rest cases:

8>><
>>:
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Remark 7.2 Let l2 ¼ l3 under the hypotheses of Theorem 7.8. Then for all
y; z 2 Y ; y 6¼ z, the fuzzy cone relation f is calculated by the formula

1 z; yð Þ ¼
1; if z� y 2 Rm

þ ;
l1; if �z� �y 2 Rm

þ ; z� y 62 Rm
þ ;

l2 ¼ l3; if ẑ� ŷ 2 Rm
þ ; �z� �y 62 Rm

þ ;
0; in the rest cases:

8>><
>>:

Remark 7.3 Let l1 ¼ l2 ¼ l3 ¼ l� under the hypotheses of Theorem 7.8. Then
for all y; z 2 Y ; y 6¼ z, the fuzzy cone relation f is calculated by the formula

1 z; yð Þ ¼
1; if z� y 2 Rm

þ ;
l�; if ẑ� ŷ 2 Rm

þ ; z� y 62 Rm
þ ;

0; in the rest cases:

8<
:

Example 7.3 Consider an illustrative example where the set of feasible vectors
Y consists of the six three-dimensional vectors

yð1Þ ¼ 4; 2; 1ð Þ; yð2Þ ¼ 5; 1; 3ð Þ; yð3Þ ¼ 1; 0; 1ð Þ;
yð4Þ ¼ 3; 4:5; 3ð Þ; yð5Þ ¼ 1; 5; 3ð Þ; yð6Þ ¼ 2; 4; 4ð Þ:

Assume that there is cyclic information about the DM fuzzy preference relation
in the form of the vectors

vð1Þ ¼ ð3;�1; 0Þ; vð2Þ ¼ ð0; 2;�3Þ; vð3Þ ¼ ð�2; 0; 4Þ

with the degrees of confidence 0.9, 0.7 and 0.3. In other words, we have

lðmð1Þ; 03Þ ¼ 0:9; lðmð2Þ; 03Þ ¼ 0:7; lðmð3Þ; 03Þ ¼ 0:3:

Obviously, this information is consistent due to the positive determinant Wj j ¼
vð1Þvð2Þvð3Þ
		 		 ¼ 18: All vectors of the set Y (except y(3)) are Pareto optimal. Hence,

the membership function kPY of the Pareto set P(Y) is

kPYðyðiÞÞ ¼ 1 for i ¼ 1; 2; 4; 5; 6; kPYðyð3ÞÞ ¼ 0:

This case corresponds to situation (I) (0.9 > 0.7 > 0.3), and we will construct the
“new” Pareto set with the membership function kMY using Theorem 7.8 based on the
fuzzy cyclic information. Solve the second multicriteria problem with the vector
criterion �f ¼ ð�f1;�f2;�f3Þ, where �f1 ¼ f1, �f2 ¼ f1 þ 3f2, �f3 ¼ f3. Using these relation-
ships, form the set of feasible vectors �Y as follows:
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�yð1Þ ¼ 4; 10; 1ð Þ; �yð2Þ ¼ 5; 8; 3ð Þ; �yð3Þ ¼ 1; 1; 1ð Þ;
�yð4Þ ¼ 3; 16:5; 3ð Þ; �yð5Þ ¼ 1; 16; 3ð Þ; �yð6Þ ¼ 2; 14; 4ð Þ:

Here the first, second, fourth and sixth vectors are Pareto optimal. At this stage,
the membership function kMY is given by

kMY ðyðiÞÞ ¼ 1 for i ¼ 1; 2; 4; 6; kMY ðyð5ÞÞ ¼ 0:1; kMY ðyð3ÞÞ ¼ 0:

Now, solve the third multicriteria problem with the vector criterion
~f ¼ ð~f1;~f2;~f3Þ, where ~f1 ¼ f1, ~f2 ¼ f1 þ 3f2, ~f3 ¼ 3f1 þ 9f2 þ 6f3, and with the cor-
responding set of feasible vectors ~Y :

~yð1Þ ¼ 4; 10; 36ð Þ; ~yð2Þ ¼ 5; 8; 42ð Þ; ~yð3Þ ¼ 1; 1; 9ð Þ;
~yð4Þ ¼ 3; 16:5; 67:5ð Þ; ~yð5Þ ¼ 1; 16; 66ð Þ; ~yð6Þ ¼ 2; 14; 66ð Þ:

The Pareto optimal vectors are ~yð1Þ, ~yð2Þ, and ~yð4Þ; hence,

kMY ðyðiÞÞ ¼ 1 for i ¼ 1; 2; 4; kMY ðyð6ÞÞ ¼ 0:3; kMY ðyð5ÞÞ ¼ 0:1; kMY ðyð3ÞÞ ¼ 0:

Finally, solve the fourth multicriteria problem, where the vector criterion f̂ ¼
ðf̂1; f̂2; f̂3Þ consists of the functions f̂1 ¼ 8f1 þ 6f2 þ 4f3, f̂2 ¼ 4f1 þ 12f2 þ 2f3, and
f̂3 ¼ 3f1 þ 9f2 þ 6f3. The set of feasible vectors Ŷ is constructed in the following
way:

ŷð1Þ ¼ 48; 42; 36ð Þ; ŷð2Þ ¼ 58; 38; 42ð Þ; ŷð3Þ ¼ 12; 6; 9ð Þ;
ŷð4Þ ¼ 63; 72; 67:5ð Þ; ŷð5Þ ¼ 50; 70; 66ð Þ; ŷð6Þ ¼ 56; 64; 66ð Þ:

Since the vector ŷð4Þ dominates the others in terms of the Pareto relation, the
membership function kMY acquires the form

kMY ðyð4ÞÞ ¼ 1; kMY ðyð1ÞÞ ¼ kMY ðyð2ÞÞ ¼ 0:7;

kMY ðyð6ÞÞ ¼ 0:3; kMY ðyð5ÞÞ ¼ 0:1; kMY ðyð3ÞÞ ¼ 0:

Thus, using the cyclic information about the fuzzy preference relation, we have
reduced the initial Pareto set to the fuzzy set with the membership function kMY .

Let us study situation (II). Without loss of generality, suppose that l1 [ l3 [ l2
(i.e., ~l1 ¼ l1, ~l2 ¼ l3, ~l3 ¼ l2); otherwise, just renumber the criteria
appropriately.

As before, consider the membership function kMY ð�Þ defined by (7.12). Here for
all y; z 2 Y ; y 6¼ z, the fuzzy relation f has the membership function
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1 z; yð Þ ¼

1; if z� y 2 Rm
þ ;

l1; if �z� �y 2 Rm
þ ; z� y 62 Rm

þ ;
l3; if ~z� ~y 2 Rm

þ ; �z� �y 62 Rm
þ ;

l2; if ẑ� ŷ 2 Rm
þ ; ~z� ~y 62 Rm

þ ;
0; in the rest cases:

8>>>><
>>>>:

ð7:14Þ

while the vectors �b, ~b, b̂, b ¼ ðb1; . . .; bmÞ 2 fy; zg, are such that �b ¼ �a, b̂ ¼ â, and

~b ¼ bþðwð3Þ
i bl þðwð3Þ

l � 1ÞbiÞei þðwð1Þ
j wð3Þ

l bi þðwð1Þ
i wð3Þ

l � 1Þbj þwð1Þ
j wð3Þ

i blÞe j:

Theorem 7.9 Assume that there is given consistent fuzzy cyclic information
described by situation (II). Then for any membership function kMY ð�Þ of the fuzzy set
of selectable vectors C(Y), we have the inequalities

kCY ðyÞ5 kMY ðyÞ5 kPYðyÞ for all y 2 Y ;
where the function kMY ð�Þ is defined by (7.12) and (7.14).
The proof of this result resembles that of Theorem 7.9 associated with situation

(I), except that

(a) the crisp cone K2 is generated by the nonnegative orthant and the vectors
yð1Þ; yð3Þ and

(b) the support of the fuzzy coneM2 (the cone K2) is the set of all nonzero solutions
to the following system of homogeneous inequalities (with at least one strict
inequality):

wð3Þ
i yl þwð3Þ

l yi = 0;

wð1Þ
j wð3Þ

l yi þwð1Þ
i wð3Þ

l yj þwð3Þ
i wð1Þ

j yl = 0;
ys = 0 for all s 2 Infi; jg:
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Chapter 8
Decision-Making Based on Information
Quanta: Methodology and Practice

This chapter considers in brief the aspects of decision-making by humans and then
presents the axiomatic approach to Pareto set (domain of compromise) reduction
based on information quanta about the DM’s preference relation. The corre-
sponding theoretical background can be found in the previous chapters, and here we
describe the axiomatic approach without mathematical details, as well as give some
recommendations on usage. In addition, possible ways to combine this approach
with some multicriteria scalarization methods and some potential extensions are
discussed.

8.1 How Do Humans Make Their Decisions?

8.1.1 Mental Components of Decision-Making Process

Decision-making process includes three phases, namely, search, choice and
implementation of decisions.

Decision-making is an act of volition that forms a sequence of actions towards
goal attainment by transforming initial information under uncertainty. The main
stages of decision-making process are situational analysis using available infor-
mation and the decision-making procedure itself, i.e., the formation and comparison
of alternatives, the choice of an appropriate alternative and the development of an
action plan.

On the one hand, decision-making may represent a special form of mental
activity (e.g., in management) and, on the other, as a stage of thinking in problem
solving. This notion has a very wide range of application. Throughout the book, we
understand decision-making as a special process of human activity intended for
choosing a best alternative (a best action).

© Springer International Publishing AG 2018
V.D. Noghin, Reduction of the Pareto Set, Studies in Systems,
Decision and Control 126, https://doi.org/10.1007/978-3-319-67873-3_8

179



Decision-making process is functionally supported by intelligence based on the
joint activity of memory, attention and thinking.

Memory constructs a bridge between the past of a subject and its present and
future, representing special processes for the organization and retention of accu-
mulated experience; these processes allow to use repeatedly the existing experience
in human activity or even to recur to consciousness. Memory underlies any mental
phenomena. As a matter of fact, an individual together with its relations, skills,
habits, hopes, desires and claims exists owing to its memory.

Memory has different types depending on retention period, namely, momentary
or sensory memory (retention period is less than 1 s), short-term memory (retention
period is up to 30 s), working memory (retention period is up to several minutes),
and long-term memory (retention period is from several hours to decades).
Psychologists believe that decision-making is mostly associated with working
memory, since information retention for further decision-making is a typical sce-
nario for this memory. Working memory has a close connection with long-term
memory and is based on different methods and techniques of remembering
developed in other kinds of activity. By-turn, long-term memory employs the
methods and techniques of remembering that are established within working
memory. These types of memory are closely connected in the sense of information
flows: working memory uses some information stored in long-term memory and, at
the same time, transmits a certain portion of new information to long-term memory.

Interestingly, the working memory of a human has a limited capacity. This fact
is known as Miller’s law, in the honor of psychologist George A. Miller who
published in 1956 his famous paper [28] on the magical number 7 ± 2. He claimed
that the information-processing capacity of young adults is around seven simulta-
neous elements, which were called “chunks”, regardless whether the elements are
digits, letters, words, or other units. Later research revealed that this number
depends on the category of chunks used (e.g., span may be around seven for digits,
six for letters, and five for words), and even on features of the chunks within a
category.

The statement of the memory problem was appreciably affected by the analogy
between data processing by humans and the structural blocks of computers. Note
however that the functional structure of human memory demonstrates higher
flexibility against that of a computer.

The next component of intelligence concerns attention, which is often com-
prehended as the concentration of the subject’s activity on an ideal or real object (an
item, event, image, idea, etc.) at a given moment. Attention makes the dynamic side
of consciousness that characterizes the degree of orientation to (focus on) an object
for its adequate reflection during the implementation of a definite activity (e.g.,
decision-making). Attention allows an individual to direct consciousness towards
objects it perceives in the course of certain activity. A human does a job faster and
with higher quality owing to focused attention. On the other hand, improper
attention complicates the perception of new information and learning. As is
well-known, inattentive behavior has a pernicious effect, e.g., on calculations:
merely a single mistake yields an incorrect result.
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Psychology defines thinking as the cognitive activity of a human that ensures
information organization and processing; it forms the analysis, synthesis and gen-
eralization of conditions and requirements of a problem and solution methods.
Owing to developed thinking, a human can surmount the space limitation of per-
ception, directing its thoughts towards the immense ranges of the macro- and
microworld. Note that the time limitation of perception is also eliminated, as
thinking gives free motion along the time axis from the ancient periods to the
uncertain future.

Thinking is activated while a human solves a new problem, which is topical and
has no ready-made solutions; and a powerful motive stimulates it to find a way out.
The origin and realization of a new problem form the direct spur that initiates
mental process. The next stage is often connected with the delay of impulsive
reactions. This delay creates a necessary pause for the analysis of the problem and
its conditions, as well as for the extraction of essential components and their cor-
relation with each other. The key stage of thinking is to choose a certain alternative
and design a general scheme of solution.

Thinking includes voluntary and involuntary components. Among the examples
of involuntary components, we mention associations causing uncontrolled relations
that may define stereotyped reasoning (on the one hand) or yield the original and
fruitful ideas and hypotheses in the context of the problem (on the other hand).
Thinking has the unity of conscious and unconscious as its characteristic feature. It
should be remembered that a major role in mental activity is played by emotions
that guide problem-solving.

There exist several types of thinking, namely, visual image thinking, verbal
image thinking, verbal logical thinking, etc. As generally accepted, verbal logical
thinking is the latest product in the development of human thinking and transition
from visual thinking to abstract thinking makes a line of this development.
Moreover, psychologists identify the following (opposite) types of thinking: the-
oretical and practical (empirical), logical (analytical) and intuitive, realistic and
autistic (cescape from reality into internal experience), and so others.

8.1.2 Decision-Making Strategy of Humans
in Multicriteria Environment

In many situations the result of choice cannot be assessed using one scale, e.g., in
terms of money or time. Though, the well-known idiom “time’s money” states (at
least, in theory) that time can be converted into money. In other words, one scale is
in principle reducible to the other. But the idiom “man shall not live by bread alone”
acts as a counterbalance here. We believe that the latter confirms the multicriteria
character of the environment humans live in, as well as the irreducibility of the
spiritual to the material. Hence, many aspects connected with a human cannot be
expressed in a single scale.
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The above idioms can be considered as a concentrated expression of the two
fundamentally different positions reflecting the opposite viewpoints on the subject.
According to the first viewpoint, there exists a uniform index or criterion to measure
all qualities. And the second one claims that such an index does not exist in
principle. It seems that none of these positions can be logically proved or rejected at
the conceptual level, and therefore both have right to exist. But the second one
(“man shall not live by bread alone”) is more realistic and viable, since the abstract
fact that everything can be expressed in a uniform scale is of little assistance in
practical decision-making: this viewpoint requires implementation. In other words,
it is necessary to master such reduction to a uniform scale (to perform the
scalarization of the multicriteria problem in terms of multicriteria optimization),
and this scalarization forms nothing but a definite stage of solution for the initial
multicriteria problem.

The multicriteria problems represent an extremely difficult class of problems
arising in the intellectual activity of humans. The presence of multiple criteria
increases the load on the limited-capacity working memory of a human, making the
problem more uncertain and requiring focused attention and, in many cases,
unconventional thinking.

Nowadays, there is no clear picture how (using which mechanisms) a human
performs choice in a multicriteria environment. There exist only certain approaches
and proposals how to deal with these complex issues. Note that they often con-
tradict each other and do not exhaust all possible ways of choice. It is considered
that a behavioral trait of an individual that faces a choice problem consists in
decomposing the initial problem into a set of simpler intermediate subproblems.

Let us discuss the elementary case where a human chooses between two feasible
alternatives using multiple criteria. Then the behavioral strategies (see [54]) can be
divided into two classes, namely,

• the compensatory strategy,
• the noncompensatory strategy (elimination).

The compensatory strategy corresponds to a line of behavior under which small
values of one criterion (or a group of criteria) are balanced (compensated) by large
values of another criterion (or another group of criteria). For instance, buying a car
is a typical example of choice with the compensatory strategy: low fuel economy
can be compensated by stylish appearance or brand image. Another example is
buying an imperfect-layout house at a slightly overestimated price but in an
attractive urban district near a public green space in close proximity to the place of
employment.

The noncompensatory strategy is to remove from the list of existing feasible
alternatives all ones that do not satisfy one or several criteria. While buying a car or
house, an individual with the noncompensatory strategy directly eliminates all
alternatives that go beyond its financial possibilities. The situation where the
buyer’s attention is focused on the cars with automatic transmission only (i.e., all
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cars with manual transmission are eliminated from consideration) gives another
common example of noncompensatory strategy usage.

Numerous experiments show that humans do not adhere to a single line of
behavior while solving multicriteria problems with more than two feasible alter-
natives. As a rule, humans adopt some combinations of these strategies. The
decision-making mechanisms can be divided into two large classes, namely, exact
(analytical, logical) and heuristic (approximate, intuitive) mechanisms, depending
on the guarantee of their result. The mechanisms of the first class provide a clear
description for the decision-making problems in which their application surely
yields positive results (or at least eliminate all unacceptable decisions). And the
heuristic mechanisms may give different results in terms of adequacy for different
decision-making problems. Note that it is impossible to identify precisely the two
subgroups of the decision-making problems where a given heuristic mechanism
works well and does not so.

Many researchers reckon the decision-making mechanisms based on a mathe-
matical apparatus as the exact mechanisms and methods. However, this approach
might not be admitted, as the usage of a mathematical language to express a
statement does not mean that the latter is exact. Moreover, humans without nec-
essary background on mathematical subtleties would harbor an illusion that such
mechanisms and methods have high accuracy and reliability.

8.2 Methodology of Axiomatic Approach Application
for Pareto Set Reduction

8.2.1 Mathematical Modeling

In the simplified form decision-making process can be illustrated by the following
scheme, see Fig. 8.1.

An appropriate decision (or decisions) is chosen by the decision-maker (DM).
The latter also bears full responsibility for the decision. The solution of the mul-
ticriteria choice problem is called the set of feasible alternatives and denoted by
CðXÞ. In some real problems this set represents a singleton. However, in common
situations the set of feasible alternatives may include several (or even infinitely
many) elements. For instance, the number of chosen candidates must coincide with
the number of open vacancies.

The basic components of the multicriteria choice problem are the set of feasible
alternatives X, a vector criterion f ¼ ðf1; f2; . . .; fmÞ and a preference relation �X

that guides the DM’s choice.
To solve a specific choice problem, first one has to construct its mathematical

model. In other words, it is necessary to form the set of feasible alternatives, the
vector criterion and the preference relation that provide the most complete and
precise description of the real situation. The higher is the adequacy of the
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mathematical model to the real problem, the better is the chance to obtain the
actually optimal solution.

The mathematical model is constructed by the DM together with researchers
(specialists in the field of decision-making) and experts (specialists in the subject
field of the initial problem). As a rule, exactly the joint and intensive efforts of these
individuals yield a satisfactory mathematical model, which describes the real sit-
uation in adequate terms on the one hand and gives the best solution in reasonable
time on the other. The first stage that is used to construct the mathematical model
(the formalization stage) cannot be preset. Here many things depend on the expe-
rience and intuition of all participants.

The set of feasible alternatives can be finite, but it may also happen that this set
consists of infinitely many elements. A finite set is often defined by enumerating all
its elements. In the case of an infinite set, there exist different ways to do it (e.g., by
the solution set of certain system of equations or inequalities). Further solution of
the choice problem considerably depends on how the set of feasible alternatives is
defined. Some definitions may appear inconvenient for the subsequent handling of
sets. Here the final word rests with the specialist in decision-making.

Now, let us discuss the criteria. All functions f1; f2; . . .; fm in the multicriteria
choice problem must be numerical and the DM must be interested in the maxi-
mization of each this function. Imagine that the values of one or several criteria are
measured in a qualitative scale. The experience shows that in such cases it is
possible to pass to numerical values by introducing, e.g., a numerical rating scale.
For instance, in Russia the academic performance of schoolchildren and students is
assessed using the four-mark grade system (2, 3, 4, 5). Similar scales exist for
assessing the performance of gymnasts and figure skaters in professional sports.
Many examples of quantitative scales for measuring qualitative characteristics can
be found in psychology. In this context we also refer to T. Saaty’s 9-point scale
[58].

If the DM seeks to minimize (not maximize) a certain criterion, then the latter is
incorporated in the mathematical model with minus sign. Such a widespread
technique transforms minimization into maximization. Note that, just like functions,

Researchers
Experts

Decision-maker
),,( XfX

Solution
)(XC

Fig. 8.1 Decision-making process
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criteria can be defined in different ways. Some situations require criteria with useful
mathematical properties (e.g., continuity, differentiability, concavity or convexity).
Again, here the DM needs a piece of advice from the specialist in decision-making.

The third component of the multicriteria choice problem–the preference rela-
tion–is most difficult to formalize. As a rule, it appears impossible to construct
completely the preference relation that guides the DM’s choice. One may acquire
merely some fragmentary knowledge about this relation. Such knowledge must
include information that the preference relation belongs to a definite class satisfying
appropriate requirements. Recall that the original solution approach to the multi-
criteria choice problems that is suggested in the book implies that the DM’s pref-
erence relation satisfies Axioms 1–4, which describe in a determinate sense the
reasonable behavior of the subject in the course of decision-making.

According to Axiom 1, a certain alternative that is not chosen from a pair of
alternatives belonging to the set of feasible alternatives will not be chosen from this
set considered wholly. This requirement seems rather acceptable and so burden-
some, but fails in some applications-relevant cases.

Next, Axiom 2 claims that the DM is in principle able to compare any vectors of
the criterion space: for two arbitrary vectors y; y0 2 Rm, only one of the following
situations can be implemented:

• y is preferable to y0, which is denoted by y � y0 (among these two vectors the
DM chooses the first vector and does not choose the second one);

• y0 is preferable to y, which is denoted by y0 � y (among these two vectors the
DM chooses the second vector and does not choose the first one);

• Neither of the relationships y � y0 and y0 � y holds (among these two vectors
the DM is unable to give preference to any).

By Axiom 2, the pairwise comparison results must have transitivity, i.e., for any
triplet of vectors y; y0; y00 satisfying the relationships y � y0 and y0 � y00, we have
y � y00. This property expresses the logical (reasonable) behavior of the DM during
choice. However, despite the naturalness of this requirement, psychologists insist
that humans do not always follow transitivity: while comparing three alternatives
such that the first is better than the second and the second is better than the third,
they may choose the third alternative between the first and third ones.

The whole essence of Axiom 3 is that the DM strives to maximize each of the
criteria f1; f2; . . .; fm under fixed values of the other criteria. Perhaps, it is clear that
this requirement may also fail in some situation (e.g., if the DM is interested to
maintain the value of a certain criterion within a definite range).

The last Axiom 4 dictates the following. For any two vectors y; y0 of the criterion
space Rm, the relationship y � y0 remains in force under (a) the simultaneous
increase (or decrease) of all their components by the same number of times and
(b) their addition with the same arbitrary vector from the criterion space. Properties
(a) and (b) are called homogeneity and additivity, respectively, and their combi-
nation means the invariance property. Namely, let the relationship y ¼
ðy1; y2; . . .; ymÞ � ðy01; y02; . . .; y0mÞ ¼ y0 hold. Then by Axiom 4 we have the
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relationships a y ¼ ða y1; a y2; . . .; a ymÞ � ða y01; a y02; . . .; a ymÞ ¼ a y0 for an
arbitrary positive number a and yþ c ¼ ðy1 þ c1; y2 þ c2; . . .; ym þ cmÞ �
ðy01 þ c1; y02 þ c2; . . .; y0m þ cmÞ ¼ y0 þ c for any vector c ¼ ðc1; c2; . . .; cmÞ.

If the DM’s preference relation does not satisfy at least one of the four axioms,
the axiomatic approach below not necessarily yields the best result.

When these axioms are difficult to verify in a specific situation, it remains to
hope that the axiomatic approach would not give an unsatisfactory solution.

8.2.2 Elicitation of Information About DM’s Preference
Relation

The main idea of the suggested approach is to use information about the DM’s
preference relation in the form of quanta in order to eliminate the (unacceptable)
Pareto optimal alternatives. There exist at least two methods to acquire such
information, namely,

• the analysis of the earlier actions undertaken by the DM,
• the direct questioning of the DM.

The first method proceeds from the knowledge of the DM’s past behavior in
similar choice problems with the criteria f1; f2; . . .; fm. If the DM has never faced
such problems, the only way is to question the DM directly (in this case the second
method leaves no option).

Prior to questioning, it is necessary to explain Definition 2.2 (or Definition 2.4)
to the DM; recall that it covers the elementary case where criterion i (i.e., fi) is more
important than criterion j (i.e., fj) with positive parameters w�

i and w�
j . This defi-

nition rests upon the compensatory principle discussed in the previous subsection:
every time the DM is willing to sacrifice at most w�

j units in terms of less important
criterion j for gaining not less than w�

i units in terms of more important criterion
i under fixed values of the other criteria. In other words, the loss of maximum w�

j

units in terms of criterion j can be always compensated by obtaining minimum w�
i

units in terms of criterion i. The positive number

hij ¼
w�
j

w�
i þw�

j
ð0\hij\1Þ;

which expresses the ratio of the loss to the sum of the loss and gain, is called the
degree (coefficient) of compromise.

If this coefficient is close to 1, then criterion i has very higher importance against
criterion j, as the DM is willing to suffer a considerable loss in terms of a less
important criterion for obtaining a relatively small increase in terms of a more
important criterion. In the case hij � 0, the degree of compromise is small, since the
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DM agrees to lose in terms of a less important criterion only under an appreciable
gain in terms of a more important criterion.

However, the aforesaid should not be interpreted in absolute sense: the degree of
compromise strongly depends on the measurement units of the criteria compared by
importance (see Sect. 2.4). It may happen that two identical DMs (i.e., indistin-
guishable in terms of decision-making) solve the same problem using different
degrees of compromise simply because they adopt different measurement units for
the criteria compared by importance. And so, in a specific situation the degree of
compromise depends on the measurement units of the criteria. The transition to
other units (within the same scale!) often changes the degrees of compromise. For
example, consider profits that are expressed in monetary units; then the degrees of
compromise calculated by two identical DMs in different currencies (RUB and
USD) would naturally differ.

Assume that in the course of questioning it turns out that the DM is willing to
sacrifice a definite quantity in terms of criterion j for obtaining a certain gain in
terms of criterion i. This situation indicates that criterion i has higher importance
against criterion j according to Definition 2.4. It remains to define the degree of
importance, i.e., to find the values of the parameters w�

i and w�
j . Here one should

keep in mind an important aspect as follows: the higher is the degree of compromise
hij 2 ð0; 1Þ, the more essential is the resulting information about the preference
relation, and hence the greater reduction rate of the Pareto set (the domain of
compromise) may be expected. Therefore, it is very desirable to clarify the maxi-
mum quantity w�

j in terms of less important criterion j that the DM agrees to lose for
gaining a fixed quantity w�

i in terms of more important criterion i.
While eliciting the values of the parameters w�

i and w�
j , a convenient approach is

to fix one of them (e.g., w�
i ¼ 1) and define only the other. In this case, the DM has

to answer the following question: what is your maximum admissible loss w�
j in

terms of less important criterion j for gaining minimum 1 unit in terms of more
important criterion i?

8.2.3 Sequential Reduction of Pareto Set

Let us describe the general sequential reduction scheme of the Pareto set based on a
collection of information quanta. It involves the elimination (noncompensatory)
strategy, see Sect. 8.1.2.

The first stage of this scheme is to elicit information about the preference relation
in the form of quanta. The most widespread method lies in the direct questioning of
the DM. This yields the pairs of more important and less important criteria fi and fj,
as well as the corresponding parameters w�

i and w�
j that specify an elementary

information quantum about the DM’s preference relation.
The second stage runs without the DM. According to Theorem 2.5, it is nec-

essary to replace the less important criterion fj among the criteria f1; f2; . . .; fm with
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the new criterion calculated by the simple formula w�
i fj þw�

j fi, and then to find the
Pareto set (the so-called new Pareto set) in terms of the new vector criterion. This
stage may cause some computational difficulties if the set of feasible alternatives is
infinite. For a finite set of feasible vectors, the Pareto set can be constructed using
the algorithm described in Sect. 1.6.

The Pareto set designed using the new vector criterion represents an upper
estimate for the set of selectable alternatives. Simply speaking, further choice must
be performed within this new Pareto set. And so, at the third stage the former set is
shown to the DM for analysis. If the DM considers this set acceptable for final
choice (in the sense of size), the decision-making process ends. Otherwise (the
constructed Pareto set is “too wide”), one should try to acquire additional infor-
mation in the form of a new quantum and then use it by analogy for further
reduction of the set of selectable alternatives. In this case, there is a collection of
information quanta for new vector criterion design and first one has to verify their
consistency (see the details in Sect. 4.1). Note that generally such verification is
reduced to the solution of an associated linear programming problem.

The sequential implementation of the above stages makes a cyclic process
illustrated by Fig. 8.2. This process is repeated until the result satisfies the DM. The
result is the current Pareto set whose size (as the DM believes) maximally fits the
size of the set of selectable alternatives CðXÞ.

In some cases the DM is willing to lose certain quantities in terms of several
criteria simultaneously in order to gain more in terms of a very important criterion.
In other cases a loss in terms of a less important criterion cannot be compensated by
an increase in terms of a single criterion but only in terms of several criteria
simultaneously. In the general case, there may exist two groups of criteria with two
disjoint index sets A and B such that the DM agrees to lose maximum w�

j units in
terms of the criteria fj, for all j 2 B, for gaining minimum w�

i units in terms of the
criteria fi, for all i 2 A. According to Definition 3.3, this means that the group of
criteria A is more important than the group of criteria B with the two collections of
positive parameters w�

i and w�
j for all i 2 A and all j 2 B.

It is necessary to take into account an important aspect during quanta elicitation,
as explained below. Theorem 3.1 states that the higher importance of the group of
criteria A against the group of criteria B implies the higher importance of a wider
group than A against a narrow group than B. Roughly speaking, a more important
group can be always extended, whereas a less important group can be always
reduced. And so, while eliciting information quanta one should make a more
important group as narrow as possible and a less important group as wider as
possible. Such information appears more essential, further facilitating higher
reduction of the domain of compromise. In this sense, the best situation is where a
certain criterion has higher importance against the group of all other criteria.

The new vector criterion is calculated on the basis of a general information
quantum using Theorem 3.5. According to this theorem, from the initial collection
of criteria f1; f2; . . .; fm first we have to eliminate all less important criteria, i.e., the
ones with indexes from the set B. And then the residual criteria are
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supplemented by the new criteria of the form wjfi þwifj; their number is given by
the product of the numbers of elements in the sets A and B.

Clearly, the total number of the resulting criteria can be much higher than in the
original collection. For example, if the sets A and B consist of two and three
elements, respectively, then we obtain 6 new criteria. Three less important criteria
must be eliminated, but six new criteria are added. And the total number of the new
criteria increases by 3.

If the group of more important criteria represents a singleton, the consideration
of the existing information quantum does not enlarge the number of the resulting
criteria (see Corollary 3.1), since the number of the new criteria coincides with the
number of the old ones.

The theorems of Chaps. 3–5 have studied different collections of information
quanta and stated the consistency conditions for them. If the available collection of
information quanta does not satisfy any of these theorems, the new vector criterion
can be calculated by the algorithms described in Sects. 5.3–5.4.

Elicitation of 
information quanta 

and their consistency 
verification

New vector criterion 
construction

New Pareto set construction

Result analysis

Set C(X)

Fig. 8.2 The cyclic process
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This method of Pareto set reduction based on a collection of information quanta
has been theoretically justified in Chap. 6. In particular, Theorem 6.3 claims that in
many cases where the set of feasible vectors is finite (this condition surely holds if
the set of feasible alternatives is finite) one may construct the unknown set of
nondominated vectors (ergo, the set of nondominated alternatives) with high pre-
cision using a finite collection of information quanta. Unfortunately, this result is
not constructive in the sense that there exists no clear description which collection
of information quanta to use. Moreover, the number of such quanta is also not
specified. These issues strongly depend on the concrete form of the set of feasible
alternatives and the criteria participating in the choice problem. Nevertheless,
Theorem 6.3 is of crucial importance in theoretical terms, as it justifies the original
axiomatic approach suggested in the book. As a matter of fact, it states that one
merely has to learn to elicit information quanta and to use them appropriately for
solving the multicriteria choice problem. Using only such information it is possible
to construct completely and precisely the set of nondominated alternatives for an
arbitrary multicriteria choice problem from a rather wide class with a finite set of
feasible alternatives. If the latter set is infinite, then the set of nondominated
alternatives or vectors can be approximated with a required precision using a finite
collection of information quanta (see Theorem 6.2 for details).

Note that it is not always possible to get a clear answer from the DM during
information quanta elicitation by questioning. “Is criterion i more important for you
than criterion j?” The DM may find difficulty in replying this question and simply
measure its confidence that it is true by a number (e.g., a share of 1). In this case, it
is necessary to adopt the definition of a fuzzy information quantum about the DM’s
preference relation and the results of Chap. 7. But by supplying fuzzy information
at the “input” of the suggested approach, one obtains a certain fuzzy set at the
“output,” and the final choice is performed within it. At the same time, usually in
practice choice must be definite (crisp), and therefore a certain crisp subset has to be
used. The extraction of this crisp set from the fuzzy set may cause difficulty.
Unfortunately, there exist no universal recipes to form the crisp set from the fuzzy
set, and each specific case requires detailed analysis. An example of such analysis
and final choice recommendations can be found in Sect. 7.3.2.

8.3 Linear Scalarization Approach

8.3.1 Linear Combination of Criteria

The multicriteria problems can be solved using linear scalarization. According to
this approach, it is necessary to assign somehow nonnegative (often positive)
coefficients l1; l2; . . .; lm such that l1 þ l2 þ � � � þ lm ¼ 1 (optional) and then to
maximize the linear combination (weighed sum) of criteria

Pm
i¼1 lifiðxÞ
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on the set X. In the sequel, the coefficients l1; l2; . . .; lm will be called the
scalarization coefficients or weights.

Such a solution method for the multicriteria problems appeared before the notion
of Pareto optimality. It was actually pioneered in the 18th century by French
mathematician and political scientist J.-C. de Borda for voting problems. In par-
ticular, the ranked preferential voting system suggested by him (the Borda count)
determines the winner of an election by giving each candidate, for each ballot, a
number of points corresponding to the number of candidates ranked lower. Once all
votes have been counted the candidate with the most points is the winner. Let us
consider it in detail.

The voting problem has a finite set of alternatives X = {x1, …, xn}, referred to as
candidates, and m voters who assign ranks for the elements of this set (i.e., place
them in the descending order of their preferability). Ranking associates each can-
didate with a certain number starting from n (least preferable). In other words, on
the set X it is necessary to define numerical functions f1, f2,..., fm, such that
fkðxjÞ ¼ nkj, where nkj means the rank of candidate xj (starting from rank n)
according to the opinion of voter k. By the Borda count, the winner is candidate
i receiving the maximum sum

Pm
k¼1 fkðxiÞ. This count employs the linear combi-

nation of the criteria with the unit weights.
Interestingly, outstanding Russian naval architect A. Krylov used a linear

scalarization approach to assess the quality of products and services at the begin-
ning of the 20th century.

Almost none of the researchers who solve applications-relevant problems using
the linear scalarization approach consider whether their actions are valid or not. In
terms of the multicriteria choice model, the linear combination of criteria is
applicable under the following conditions:

(1) Axiom 1 (the exclusion axiom of dominated vectors) holds;
(2) There exist the scalarization coefficients l1; l2; . . .; lm such that the preference

relation � is representable as a linear function, i.e.,

y � y0 ,
Xm
i¼1

liyi [
Xm
i¼1

liy
0
i for all y; y0 2 Rm: ð8:1Þ

Indeed, by the exclusion axiom, condition (8.1) implies the following. Each
vector for which there exists another vector with a greater value of the linear
combination is eliminated from the set of selectable vectors, and therefore this set
contains only the vectors maximizing the linear combination. Hence, under the two
conditions above for any C(Y) we have the inclusion

CðYÞ � y0 2 Y j
Xm
i¼1

liy
0
i ¼ max

y2Y

Xm
i¼1

liyi

( )
: ð8:2Þ
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Note that the exclusion axiom is not universal in the sense that in some multi-
criteria choice problems it may fail.

The function
Pm

i¼1 liyi satisfying (8.1) is called the linear utility function. This
linear function is often said to form the binary relation �. Perhaps the existence of
the linear utility function was first explored by the founders of game theory, J. von
Neumann and O. Morgenstern. Their research was later continued by different
authors. As it was established, the sufficient existence conditions of the linear utility
function are rather restricting and hold for a relatively narrow class of preference
relations (e.g., see [12]). They include the weak order requirement (which means
irreflexivity and negative transitivity) of the relation �, as well as the so-called
Archimedean axiom. As the binary relation � defined by (8.1) is a cone relation, the
necessary (yet, not sufficient) conditions for linear utility function existence are the
compatibility axiom together with the transitivity and invariance of this relation
with respect to a positive linear transformation. Another necessary condition for
linear utility function existence consists in the transitivity of the indistinguishability
relation �, which is defined by the equivalence

y � y0 , none of the relationships y � y0 and y0 � y holds:

Analysis shows that this condition can be also characterized as rather
“stringent.”

Therefore, the linear utility function exists not in so many cases as it is believed
by some researchers who use the linear scalarization approach for solving the
multicriteria choice problems without the Edgeworth-Pareto principle.

Note another circumstance, too. Inclusion (8.2) means that the set of selectable
vectors is contained in the set of the vectors maximizing the linear combination of
criteria. If the latter represents a singleton, then this unique vector must be chosen
for sure. However, simple examples show that this set may be rather wide (even
coinciding with Y), and all its elements are nonequivalent in the similar sense as the
non-equivalence of different Pareto optimal vectors. In this case, choice remains an
open issue, and to find C(Y) one has to involve additional information.

8.3.2 Linear Scalarization as a Choice Tool for Specific
Pareto Optimal Vector

By accepting the Edgeworth-Pareto principle, it is possible to justify the applica-
bility of the linear scalarization approach without requiring the existence of the
linear utility function. Really, this principle dictates to perform choice within the
Pareto set, and hence we may use the following Pareto optimality criterion in terms
of the linear combination of criteria.
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Theorem 8.11 Let the set

Y� ¼ y� 2 Rmjy� 5 y for some y ¼ ðy1; y2; . . .; ymÞ 2 Y
� �

be convex.2 For a vector y0 2 Y to be Pareto optimal, a necessary condition is
that there exists a collection of nonnegative numbers l1; l2; . . .; lm;

Pm
i¼1 li ¼ 1,

such that

Xm
i¼1

liy
0
i ¼ max

y2Y

Xm
i¼1

liyi: ð8:3Þ

Conversely, equality (8.3) holding for some positive numbers l1; l2; . . .; lm
implies the Pareto optimality of the vector y0 2 Y .

Theorem 8.1 together with the Edgeworth-Pareto principle leads to the following
result.

Theorem 8.2 Let the exclusion and Pareto axioms hold. Assume that the set Y� is
convex. Then for any set of selectable vectors C(Y) we have inclusion (8.2), where
the components of the vector l ¼ ðl1; l2; . . .; lmÞ are nonnegative and their sum is
1.

Hence, by varying the scalarization coefficients l1; l2; . . .; lm within the above
ranges and compiling all vectors that maximize the linear combination of criteria
with these coefficients on the set Y, we construct a set that surely contains the
desired set of selectable vectors. In the general case, this set may include the vectors
resulting from the maximization of the linear combinations with several different
collections of scalarization coefficients (i.e., with several vectors l). Thus, if there is
no guarantee that the linear utility function exists, theoretically some collection of
linear combinations of criteria should be used to estimate the set C(Y).

Now consider the multicriteria choice problem where it is necessary to choose a
single vector. According to inclusion (8.2), this vector can be obtained by assigning
a single set of scalarization coefficients to the linear combination and maximizing
this combination on the set Y.

As readers can see, there is some “discrepancy” between the necessary and
sufficient conditions here: the former requires the nonnegativity of the scalarization
coefficients l1; l2; . . .; lm, whereas the latter states that these coefficients are
strictly positive.

Recall another fundamental notion of multicriteria optimization, namely, a
proper efficient vector. A feasible point x� 2 X is called proper efficient [14] with

1See, for example, [55].
2This assumption is true if the vector function f has componentwise concavity on the convex set
X.
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respect to a vector function f on a set X if it is efficient (Pareto optimal) and, besides,
there exists a positive number A such that the inequality

fiðxÞ � fiðx�Þ
fjðx�Þ � fjðxÞ 5 A

holds for all i 2 f1; 2; . . .;mg; x 2 X, satisfying fiðxÞ[ fiðx�Þ, and for some j 2
f1; 2; . . .;mg satisfying fjðxÞ\fjðx�Þ. In this case, f ðx�Þ is called the proper efficient
vector.

If we confine analysis to the proper efficient vectors (instead of the Pareto
optimal ones), then the above “discrepancy” can be partially neglected and the
scalarization coefficients l1; l2; . . .; lm can be assumed strictly positive. The more
so because the “difference” between the sets of efficient and proper efficient vectors
is not so considerable under the hypotheses of Theorem 8.1. (To be more precise,
the latter set is dense in the former, see [55] for details).

However, the convexity of the set Y� in Theorem 8.2 might not be ignored, since
otherwise some Pareto optimal vectors are not obtained via the maximization of the
linear combination with positive scalarization coefficients. An elementary example
is the two-dimensional set Y ¼ y 2 R2jy1 � y2 5 10; y1 = 1; y2 = 1

� �
: all Pareto

optimal points lie on the curved segment of its boundary, but the maximization of
the linear combination with nonnegative scalarization coefficients yields only the
limit points (1, 10) and (10, 1). The same reason explains the inapplicability of the
linear scalarization approach if the set Y is finite and contains at least three vectors.
Meanwhile, the linear combination of criteria underlies the well-known analytic
hierarchy process (AHP), see [58]. This aspect should be remembered by those who
use the AHP.

8.3.3 Normalization of Criteria and Assignment
of Scalarization Coefficients

In real multicriteria choice problems the criteria are not abstract numerical func-
tions, since they have specific meanings. To be more exact, the values of these
functions express variables that belong to certain quantitative scales and are mea-
sured in certain units. As is well-known (see Sect. 2.4), the basic quantitative scales
include the absolute scale, the ratio scale, the difference scale and the interval scale.

If the values of the criteria in the multicriteria choice problem are homogeneous
(i.e., have the same scale and the same measurement units), then their linear
combination surely makes sense. However, this situation is not widespread in
applications, since the multicriteria problem can be often reduced to the
single-criterion problem. For example, consider m different types of costs associ-
ated with the manufacturing process of some product. Here it seems unreasonable to
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solve the problem with m criteria, as the costs may be simply summed up to form a
single criterion.

The multicriteria property of the choice problem appears due to the hetero-
geneity of the existing criteria: as a rule, their values belong to different scales and
are measured in different units, which prevents from their combination using a
single formula. A typical economic problem of this class is to obtain maximum
profit in minimum time. Profit is measured using the ratio scale in RUB, USD, etc.,
whereas time using the difference scale in hours, days, years, etc. Is it possible to
add the profit criterion to the time criterion? This sum becomes ill-posed. What is
the way out of this situation?

A standard technique here (known as the normalization of criteria) consists
reducing heterogeneous criteria to a unified scale. The resulting “artificial” scale has
nothing in common with the “natural” quantitative scales mentioned above. This
technique employs monotonic transformations that “equalize” the ranges of the
criteria. The most widespread transformation of this class replaces an initial crite-
rion fi with the new criterion

~fi ¼ fiðxÞ � ymin
i

ymax
i � ymin

i
;

where ymax
i and ymin

i are the maximum and minimum values, respectively, of the
function fi on the set X (of course, under the assumption that both exist). We will
surely stay within the Pareto set after the maximization of the linear combination
with positive scalarization coefficients and hence the normalized criterion should be
rewritten as

~~f i ¼
fiðxÞ � yNi
ymax
i � yNi

;

where yNi means component i of the nadir vector defined by
yN ¼ ð min

y2PðYÞ
y1; min

y2PðYÞ
y2; . . .; min

y2PðYÞ
ymÞ.

The values of the transformed criteria have the range [0,1], which actually
guarantees their “equalization.” In addition, each of the transformations is positive
linear (more specifically, affine) and hence strictly increasing. After such trans-
formations the Pareto set remains the same, and therefore the normalization pro-
cedure can be performed together with the Edgeworth-Pareto principle and further
usage of the linear combination of the transformed criteria.

The weak spot of the linear scalarization approach concerns the assignment of
scalarization coefficients. It is often assumed that they characterize some “weight”
or “importance” of a corresponding criterion. Still, none of the researchers has
given a precise definition for these notions in the context of the linear combination,
despite the existence of numerous methods to find them.

For example, the scalarization coefficients are chosen the same in the absence of
any information about the priorities of criteria. If the criteria weights are strictly
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ordered, the scalarization coefficients are assigned so that they fill the interval [0, 1]
uniformly. Another obtaining of the linear scalarization coefficients involves the
pairwise comparison of the criteria weights and the analytic hierarchy process
(AHP). In some cases the coefficients are assigned by experts. Each expert puts his
own subjective meaning into the notion of criteria weights, and hence the linear
scalarization approach is far from objectivity. Due to the above factors, this
approach is treated as a heuristic approach to the multicriteria choice problems, i.e.,
rigorous substantiation is replaced with certain reasonable considerations. Another
indication of its heuristic character is that one can hardly describe the class of
problems where the linear scalarization approach surely yields the desired solution.

If the linear utility function exists for sure, then the scalarization coefficients
must be chosen so that condition (8.1) holds. Clearly, this is unrealistic in practice.
And so, the coefficients are often assigned using different tricks based on the
uncertain notions of weight, importance, and so on.

Note that according to the linear scalarization approach a certain Pareto optimal
vector is assigned. But the researcher does not know the exact relationship between
the scalarization coefficients of the linear combination and different Pareto optimal
vectors. Hence, regardless of the sophistication of scalarization coefficients
assignment, there is no guarantee that the resulting Pareto optimal vector(s) would
be really best in the given multicriteria choice problem.

8.3.4 Using Linear Scalarization at the Final Stage
of Pareto Set Reduction

If we accept the Edgeworth-Pareto principle, then the solution of the original
problem (i.e., the finding of the set of selectable vectors) can be interpreted as the
Pareto set reduction to the set C(Y). Such reduction is justified only if it uses some
additional information about the DM’s preference relation to “discard” the
unsuitable Pareto optimal vectors. In this respect a convenient form of the addi-
tional information is a pair of Pareto optimal vectors in which the DM prefers one
vector to the other. It is exactly the information in the form of quanta, see the
previous chapters for its definition and usage in multicriteria choice problems.

Therefore, at the first stage of Pareto set reduction it is necessary to elicit
consistent information about the DM’s preference relation in the form of one or
several quanta. Using this information and the earlier theorems or algorithms, we
have to construct the new vector criterion g ¼ ðg1; g2; . . .; gpÞ, p = m, satisfying
the inclusions

CðXÞ � PgðXÞ � Pf ðXÞ; CðYÞ � f ðPgðXÞÞ � PðYÞ: ð8:4Þ
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If the new Pareto set PgðXÞ is “too large” to perform final choice, then at the
second stage we can apply the linear scalarization approach to implement its further
reduction.

The next proposition justifies this combined approach.

Theorem 8.3 Consider a certain finite consistent collection of information quanta
about the DM’s preference relation and the vector function g ¼ ðg1; g2; . . .; gpÞ that
participates in inclusions (8.4). Assume that the set X � Rn is convex and the vector
function f is componentwise concave on this set. Then for any set of selectable
alternatives CðXÞ we have the inclusion

CðXÞ �
[
l

x� 2 Xj
Xp
i¼1

ligiðx�Þ ¼ max
x2X

Xp
i¼1

ligiðxÞ
( )

; ð8:5Þ

where the vector l satisfies the constraints

l ¼ ðl1; l2; . . .; lpÞ� 0p;
Xp
i¼1

li ¼ 1: ð8:6Þ

▢ According to the axiomatic approach, the inclusion CðXÞ � PgðXÞ holds for
any set of selectable alternatives CðXÞ.

Since the components of the initial vector function f are concave and the com-
ponents of the new vector function g represent their N-combinations, the compo-
nents of g are concave functions, too. It is easy to verify that in this case the set Y� is
convex. By Theorem 8.1, we obtain the inclusion

PgðXÞ �
[
l

x� 2 Xj
Xp
i¼1

ligiðx�Þ ¼ max
x2X

Xp
i¼1

ligiðxÞ
( )

;

where the vector l has form (8.6). And the required result is established by inte-
grating this inclusion with CðXÞ � PgðXÞ. ∎

Under the hypotheses of Theorem 8.3, let us also assume that the set of
selectable alternatives (or vectors) is a singleton. Then the inclusion (8.5) can be
replaced by the simple relationship

CðXÞ � x� 2 Xj
Xp
i¼1

ligiðx�Þ ¼ max
x2X

Xp
i¼1

ligiðxÞ
( )

ð8:7Þ

for some vector l of form (8.6). Hence, in this case it suffices to choose a single
vector of the scalarization coefficients for the linear combination of criteria and to
solve the corresponding scalar maximization problem in order to construct the set
that surely contains the desired “best” alternative.
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The vector lmay have the same components, since the criteria priorities are taken
into account during the formation and usage of the information quanta about theDM’s
preference relation. An additional correction of the priorities (if necessary) can be
realized by redistributing the values of the scalarization coefficients for the linear
combination of criteria. Here the following aspect should be kept in mind. The (orig-
inally nontrivial) assignment problemof the vectorlbecomes evenmore complicated:
the coefficients of this vector is associated with the components g1; g2; . . .; gp of the
new vector function that have no practical interpretation (in contrast to f1; f2; . . .; fm),
since they represent the linear combinations of the initial criteria.

Moreover, in the general case some linear scalarization coefficients in (8.5) can
be zero, since the vector l has form (8.6). The existing zero coefficients make it
necessary to consider the linear combinations of the initial criteria that may include
from 1 to p terms. This feature introduces inconvenience during the implementation
of the approach.

A refined version of Theorem 8.3 that does not suffer from this drawback can be
obtained merely by imposing stronger conditions. In particular, the following result
is true.

Theorem 8.4 Consider a certain finite consistent collection of information quanta
about the DM’s preference relation that is taken into account using the vector
function g ¼ ðg1; g2; . . .; gpÞ. Assume that the set X � Rn is convex and compact,
while the vector function f is concave and continuous on it, with at least one
component of this function being strictly concave. Then for any set of selectable
alternatives CðXÞ we have

CðXÞ � cl
[
l

x� 2 Xj
Xp
i¼1

ligiðx�Þ ¼ max
x2X

Xp
i¼1

ligiðxÞ
( ) !

; ð8:8Þ

where clðAÞ denotes the closure of the set A and the vector l satisfies the
restrictions

l ¼ ðl1; l2; . . .; lpÞ[ 0p;
Xp
i¼1

li ¼ 1: ð8:9Þ

Theorem 8.4 follows directly from the results of the axiomatic approach and
Corollary 5 from [55, p. 145].

In this theorem all components of the vector l are positive, but the closure
operation in the right-hand side of inclusion (8.8) slightly reduces the significance
of this statement. If the selectable vector is unique and proper efficient, we may
formulate the following proposition being convenient in practice.

Theorem 8.5 Consider a certain finite consistent collection of information quanta
about the DM’s preference relation that is taken into account using the vector
function g ¼ ðg1; g2; . . .; gpÞ. Assume that the set X � Rn is convex, while the vector
function f is concave on it. Then for any singleton CðXÞ formed by the proper
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efficient alternative there exists a vector l of form (8.9) such that inclusion (8.7)
holds.

Theorem 8.5 is based on the results of the axiomatic approach and the Geoffrion
theorem [14] on the proper efficient point characterization using the linear com-
bination of criteria in the case of concave criteria on a convex set of alternatives.

Therefore, under the above assumptions, at the second stage of the combined
approach the unique “best” alternative can be sought for among the proper efficient
points by solving a single maximization problem for the linear combination of the
criteria g ¼ ðg1; g2; . . .; gpÞ for some l with positive components.

Each efficient point is proper efficient under definite constraints imposed on the
vector criterion and the set of feasible alternatives. In this case, the properness
requirement in Theorem 8.5 can be omitted. In particular, this holds in case with a
linear vector function f and a polyhedral set X.

8.3.5 Combined Approach with Multiplicative Combination
of Criteria

Along with the linear combination of criteria that allows reducing the initial mul-
ticriteria problem to the single-criterion one under the assumption that all criteria
take positive values, researchers often employ the multiplicative combinationQm

i¼1 f
li
i ðxÞ where the vector l has form (8.6) or (8.9). As a matter of fact, the

maximization of the product of criteria implements the so-called fair compromise
principle. Note that in theory of cooperative games the arbitration Nash solution is
also constructed by maximizing the product of the utility functions of the players.

The results derived for the linear combination of criteria can be easily extended
to the case of their multiplicative combination. To succeed, just use the chain of
equivalences

Xp
i¼1

li ln giðx�Þ =
Xp
i¼1

li ln giðxÞ , ln
Yp
i¼1

glii ðx�Þ = ln
Yp
i¼1

glii ðxÞ

,
Yp
i¼1

glii ðx�Þ =
Yp
i¼1

glii ðxÞ

and also the fact that the logarithm of a positive concave function is a concave
function, too.

For instance, the next proposition follows directly from the aforesaid and
Theorem 8.5.

Corollary 8.1 Consider a certain finite consistent collection of information quanta
about the DM’s preference relation that is taken into account using the vector
function g ¼ ðg1; g2; . . .; gpÞ. Assume that the set X � Rn is convex, while the vector
function f is concave and positive on it. Then for any singleton CðXÞ formed by the
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proper efficient alternative there exist positive numbers l1l2; . . .; lp such that the
inclusion

CðXÞ � x� 2 Xj
Yp
i¼1

glii ðx�Þ ¼ max
x2X

Yp
i¼1

glii ðxÞ
( )

takes place.

8.4 Combined Methods for Pareto Set Reduction

8.4.1 Using Uniform Metric

Recall that a point x� 2 X is called weakly efficient (Slater optimal) with respect to
f if there exists no x 2 X such that f ðxÞ[ f ðx�Þ. Each Pareto optimal (efficient)
point is a weakly efficient one but not vise versa.

In 1966 Yu. Germeier [15] obtained the necessary and sufficient condition of
weak efficiency. Later on, a series of authors rediscovered this result. According to
the latter, a point x� 2 X is weakly efficient if and only if there exist the vector
l ¼ ðl1; l2; . . .; lmÞ[ 0m;

Pm
i¼1 li ¼ 1, such that on the set X the scalar function

min
i¼1;2;...;m

lifiðxÞ reaches its maximum at the point x�. The only prerequisite of the

Germeier theorem is that all components of the vector criterion must have positive
values at the given point, i.e., f ðx�Þ[ 0m. The function min

i¼1;2;...;m
lifiðxÞ is called the

Germeier combination (in Russian literature) and the weighed Chebyshev metric (in
English language literature), since in the case l1 ¼ l2 ¼ . . . ¼ lm it coincides up to
a constant factor with the uniform metric suggested by P. Chebyshev.

Suppose that at the first stage of Pareto set reduction we have utilized one or
several information quanta about the DM’s preference relation, thereby constructing
the new vector criterion g ¼ ðg1; g2; . . .; gpÞ, p = m, that satisfies inclusions (8.4).
The linear combination of positive functions with positive coefficients is a positive
function. Each Pareto optimal point is weakly efficient. Hence, by combining the
axiomatic approach with the Germeier theorem for the vector function g, we arrive
at the following result.

Theorem 8.6 Let the functions f1; f2; . . .; fm have positive values on the set X.
Consider a certain finite consistent collection of information quanta about the
DM’s preference relation that is taken into account using the vector function
g ¼ ðg1; g2; . . .; gpÞ. Then for any set of selectable vectors C(Y) we have the
inclusion
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CðYÞ � f ðPgðXÞÞ �
[
l

f ðx�Þ 2 Y j min
i¼1;2;...;p

ligiðx�Þ ¼ max
x2X

min
i¼1;2;...;p

ligiðxÞ
� �

;

where the vector l satisfies restrictions (8.9).
If the problem specifics dictate that the set C(Y) must be a singleton, then using

Theorem 8.6 we may obtain this set by solving the scalar (single-criterion) maxi-
mization problem for the function min

i¼1;2;...;p
ligiðxÞ on the set X under a fixed vector l

of form (8.9). Note that this maximization problem may have several solutions. In
this case, one should involve additional considerations that would eliminate some
candidates for the final choice. For example, apply the weighed sum of criteria, and
so on.

The assignment problem for the weight coefficients l1; l2; . . .; lp of the function
min

i¼1;2;...;p
ligiðxÞ has been discussed in the previous section in the context of linear

combination. And the conclusions fully apply to the Germeier combination. At the
second stage it is reasonable to use the same coefficients l1; l2; . . .; lp, since the
criteria priorities are taken into account during the formation and usage of the
information quanta about the DM’s preference relation. This approach totally
removes the assignment problem. However, if there exists a vital need to correct the
priorities of criteria, this can be implemented by adjusting the appropriate values of
the coefficients.

Example 8.1 Consider the bicriteria choice problem with Y ¼ fy1; y2; . . .; y5g,
where y1 ¼ ð1; 2Þ; y2 ¼ ð2; 1:8Þ; y3 ¼ ð3; 1:7Þ; y4 ¼ ð4; 1:6Þ; y5 ¼ ð5; 1:3Þ. Here all
vectors have positive components and are Pareto optimal. Assume that by direct
questioning we have established the higher importance of criterion f1 against cri-
terion f2. Moreover, by losing 1 unit in terms of criterion f2 the DM expects to gain
at least 4 units in terms of criterion f1. According to the axiomatic approach, this
means the existence of an information quantum stating that criterion f1 is more
important than criterion f2 with the parameters w�

1 ¼ 4;w�
2 ¼ 1. Using Theorem 2.5,

construct the new vector criterion with the components g1 ¼ y1; g2 ¼ y1 þ 4y2.
Find the image of the set of feasible alternatives in terms of the new vector criterion:
gðYÞ ¼ fð1; 9Þ; ð2; 9:2Þ; ð3; 9:8Þ; ð4; 10:4Þ; ð5; 10:2Þg. At the second stage, maxi-
mize the function min

i¼1;2
yi on the this set to get the unique vector y5, which is the

“best” solution of the problem (the optimal choice).
In fact, there is another way to solve this problem. The inclusion CðYÞ �

P̂ðYÞ ¼ f ðPgðXÞÞ holds by the Pareto principle, and hence before the second stage
it is possible to eliminate from the set gðYÞ all vectors that are not Pareto optimal;
and so, the function min

i¼1;2
yi is then maximized on the truncated Pareto set fy4; y5g.

Interestingly, by ignoring the available information quantum (skipping the first
stage), we obtain the vector y2 in the same uniform metric.
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Just like for the Germeier theorem, the positivity of all criteria on their domain is
a crucial requirement for Theorem 8.6, which might not be neglected. In the next
theorem, this condition is replaced by the boundedness from above, which is not so
restricting as positivity. This result takes place owing to the combination of the
axiomatic approach with Corollary 3.1 from [17]. Note that the latter can be treated
as the result of applying the Germeier theorem to the positive vector criterion
ŷ� gðxÞ.
Theorem 8.7 Consider a certain finite consistent collection of information quanta
about the DM’s preference relation that is taken into account using the vector
function g ¼ ðg1; g2; . . .; gpÞ. Assume that the inequality gðxÞ\ŷ holds for some
ŷ 2 Rp and all x 2 X.Then for any set of selectable vectors C(Y) we have the
inclusion

CðYÞ �
[
l

f ðx�Þ 2 Y j max
i¼1;2;...;p

liðŷi � giðx�ÞÞ ¼ min
x2X

max
i¼1;2;...;p

liðŷi � giðxÞÞ
� �

;

where the vector l satisfies restrictions (8.9).
The above remarks to Theorem 8.6 remain in force for Theorem 8.7, as well.

Therefore, we do not repeat them here.
Usable result of this kind is based on the following new necessary and sufficient

condition of weak efficiency point.

Lemma 8.1 Fix an arbitrary number a. A point y� 2 Y ¼ f ðXÞ is weakly efficient if
and only if there exists a vector u 2 Rm;

Pm
i¼1 ui ¼ a, such that

max
i¼1;2;...;m

ðui � y�i Þ 5 max
i¼1;2;...;m

ðui � yiÞ for all y 2 Y : ð8:10Þ

▢ Necessity. Let y� be an arbitrary weakly efficient vector. Introduce the vector
u with the components

ui ¼ y�i �
1
m

Xm
j¼1

y�j � a

 !
; i ¼ 1; 2; . . .;m;

Xm
i¼1

ui ¼ a:

Conjecture the opposite, i.e., there exists a point y 2 Y satisfying
max

i¼1;2;...;m
ðui � y�i Þ[ max

i¼1;2;...;m
ðui � yiÞ. Hence, for any i we have the inequality

ui � yi\ max
i¼1;2;...;m

ðui � y�i Þ ¼ � 1
m

Xm
j¼1

y�j þ
a
m
:

Substitute the corresponding values of the components ui into the left-hand side
of this inequality to get y�i\yi; i ¼ 1; 2; . . .;m. This obviously contradicts the weak
efficiency of y�.
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Sufficiency. Take the vector u that satisfies the hypotheses of Lemma 8.1 and
inequality (8.10). Again, we will prove by contradiction. If the vector y� is not
weakly efficient, then there exists y 2 Y such that y�\y. In this case, we have
ui � y�i [ ui � yi; i ¼ 1; 2; . . .;m, which directly gives max

i¼1;2;...;m
ðui � y�i Þ[

max
i¼1;2;...;m

ðui � yiÞ. The last inequality contradicts (8.10). ∎

The combination of the axiomatic approach with Lemma 8.1 yields the fol-
lowing result.

Theorem 8.8 Consider a certain finite consistent collection of information quanta
that is taken into account using the vector function g ¼ ðg1; g2; . . .; gpÞ. Fix an
arbitrary number a. Then for any set of selectable vectors C(Y) we have the
inclusion

CðYÞ �
[
u

f ðx�Þ 2 Y j max
i¼1;2;...;p

ðui � giðx�ÞÞ ¼ min
x2X

max
i¼1;2;...;p

ðui � giðxÞÞ
� �

;

where the vector u ¼ ðu1; u2; . . .; upÞ such that
Pp

i¼1 ui ¼ a.
If the set C(Y) represents a singleton, then by Theorem 8.8 it is contained among

the solutions of the minimization problem for the function max
i¼1;2;...;p

ðui � giðxÞÞ on
the set X. We may specify numbers u1; u2; . . .; up by the desired (“ideal”) values for
each criterion, e.g., their maximum values on the set X, i.e.,
ui ¼ sup

x2X
giðxÞ; i ¼ 1; 2; . . .; p. By minimizing the maximum function

max
i¼1;2;...;p

ðui � giðxÞÞ, we obtain the weakly efficient vector from the set gðXÞ that is
uniformly closest to the vector u. This idea to choose the feasible vector having the
shortest distance to some “ideal” vector (or even to some set of “ideal” vectors)
underlies goal programming. In the forthcoming subsection we employ the same
idea of approximation but on the basis of the Euclidean metric.

Example 8.2 Consider the bicriteria choice problem from Example 8.1 with the
same information quantum. The difference is that at the second stage we will
perform scalarization according to Theorem 8.8. To this end, choose u ¼ ð5; 10:4Þ
as the “ideal” vector (actually, it contains the maxima of the components of the
vectors fy4; y5g from the new Pareto set). As easily seen, in this case we again
obtain vector y5 as the “best”.

Note that in Theorem 8.8 the parameter a can be chosen arbitrarily. If the vector
u is defined as the nadir vector with the components ui ¼ inf

x2PgðXÞ
giðxÞ;

i ¼ 1; 2; . . .; p, then the minimization of the function max
i¼1;2;...;p

ðui � giðxÞÞ on the set

X yields the weakly efficient vector having the uniformly largest distance to the
nadir vector.
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8.4.2 Using Euclidean Metric

Assume that on the set X all criteria are bounded from above and introduce the set

U ¼ u 2 Rmjui [ sup
x2X

fiðxÞ; i ¼ 1; 2; . . .;m
� �

;

which is often called the set of ideal or utopian vectors.
Let us solve the multicriteria choice problem using goal programming based on

the idea that the “best” vector of the set Y is the one closest to the set U. The
distance between vectors a; b 2 Rm we will measure by the standard Euclidean

metric a� bk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

ðai � biÞ2
s

.

Lemma 8.2 Assume that the set X � Rn is convex and the numerical functions
f1; f2; . . .; fm are bounded from above and componentwise concave on it. A point
x� 2 X is proper efficient with respect to f if and only if there exists a vector u 2 U
such that

u� f ðx�Þk k ¼ min
x2X

u� f ðxÞk k:

▢ First, observe that under the hypotheses of this lemma the set

Y� ¼ y� 2 Rmjy� 5 y for some y 2 Y
� �

is convex; moreover, the sets of efficient (Pareto optimal) vectors (as well as the sets
of proper efficient vectors) on the sets Y and Y� coincide (see, for example, [55,
p. 99]).

Necessity. Let the vector y� ¼ f ðx�Þ 2 Y be proper efficient. In this case, by the
Geoffrion theorem [14] there exists a vector l with components li [ 0m; i ¼
1; . . .;m;

Pm
i¼1 li ¼ 1 such that on the set Y� the linear function

Pm
i¼1 liyi reaches

its maximum at the point y� 2 Y�. In other words, the vector l is a normal vector of
the supporting hyperplane for the convex set Y� at this point. Since the components
of the vector l are positive, it is possible to find a positive number a such that
y� þ a � l 2 U. Choose u ¼ y� þ a � l as the vector u 2 U satisfying the hypotheses
of Lemma 8.2. Then the above hyperplane is also supporting for the closed ball
with radius u� y�k k and the center located at the point u. This means that the point
y� is the closest point of the set Y� (ergo, of the set Y) to the point u.

Sufficiency. Denote by y� ¼ f ðx�Þ 2 Y the point that implements the minimum
distance from the set Y to some vector u 2 U. Clearly, among all points of the set Y�
the point y� has the minimum distance to u. Let L be the hyperplane that passes
through the point y� and is supporting for the ball with radius u� y�k k and the
center located at the point u. The relative interiors of the convex set Y� and this ball
do not intersect. Therefore, by Theorem 11.3 [57] the set Y� and the ball can be
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separated by a certain hyperplane passing through their common point y�. The ball
has the unique supporting hyperplane L at the point y�, and so this hyperplane is
supporting for the set Y�, too. Consequently, the linear function

Pm
i¼1 ðui � y�i Þyi

with the positive coefficients reaches its maximum on the set Y� (ergo, on the set Y)
at the point y�. This implies the proper efficiency of the point y�. ∎

Now, analyze the combined approach that consists of two sequential stages,
namely,

(1) the Pareto set reduction using one or several consistent information quanta,
(2) the minimization of the distance between the set gðXÞ and a preselected point of

the “ideal” set U0 ¼ u 2 Rpjui [ sup
x2X

giðxÞ; i ¼ 1; 2; . . .; p
� �

.

Theorem 8.9 Consider a certain finite consistent collection of information quanta
that is taken into account using the vector function g ¼ ðg1; g2; . . .; gpÞ. Assume
that the set X � Rn is convex, while the functions f1; f2; . . .; fm are bounded from
above and componentwise concave on it. Then for any set of selectable vectors C
(Y) we have the inclusion

CðYÞ � cl
[
u2U0

f ðx�Þ 2 Y j u� gðx�Þk k ¼ min
x2X

u� gðxÞk k
� � !

; ð8:11Þ

where clðAÞ denotes the closure of the set A.
Theorem 8.9 combines the axiomatic approach with Lemma 8.2 and the fact

that, under the hypotheses of this theorem, the set of proper efficient vectors is
dense in the set of efficient vectors (see [55, p. 140] for details). In other words, the
closure of the set of proper efficient vectors contains the set of efficient vectors.

As we see, Theorem 8.9 has the restricting assumptions that may be crucial for
its force. In particular, if the new Pareto set is finite (which surely holds under a
finite set Y), then the scalarization approach based on the Euclidean metric is
generally not correct. This circumstance should be kept in mind by those who solve
the applications-relevant multicriteria choice problems using the idea that the “best”
vector of the set Y is the one closest to a certain vector from the set U. An illus-
trating example below explains it.

Example 8.3 Consider Y ¼ fy1; y2; y3g, where y1 ¼ ð1; 3Þ; y2 ¼ ð1:5; 1:5Þ;
y3 ¼ ð3; 1Þ. Clearly, all vectors are Pareto optimal; however, the second vector is
not the closest one (in terms of the Euclidean metric) from the points y1; y2; y3 to the
set fu 2 R2ju1; u2 [ 3g. Note that the vector y2 is closest, e.g., to the vector
ð3:1; 3:1Þ in terms of the uniform metric.
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8.5 Customs Duty Optimization

8.5.1 Problem Statement

Suppose that Russia trades a certain product with other countries on its domestic
market. The product is manufactured inland and also abroad. This trade yields the
national budget income

S ¼ tdxpþ sqyþ tmð1þ sÞqy; ð8:12Þ

where

td is the value-added tax (VAT) for the product manufactured in Russia
(presently, td = 18%);

tm denotes VAT for the imported products and services (presently, this tax has
three rates for three different categories of products and services, namely, 0%
for the high importance (crucial) products, e.g., the components and devices for
space industry; 10% for the medium importance products, e.g., food items and
baby goods; and 18% for the low importance (common) products and services);

x gives the domestic output of the product;
p specifies the domestic price of the product;
s is the import duty of the product (in the sequel, we will analyze the ad valorem

duties only; note that the so-called specific duties are also considered in the
literature, e.g., in [22]);

q means the foreign price of the product (under the assumption that the importer
has 0% VAT in the country of product purchase; in other words, the quantity
q is much smaller than the retail price in a corresponding country);

y indicates the import volume

Without loss of generality, let td ¼ tm ¼ t, since for most products and services
VAT is defined in the same way for the inland products and for the imported
products.

The importer of the product makes the profit

D ¼ y p� ð1þ sÞð1þ tÞq½ 	: ð8:13Þ

According to the Russian Tax Code (see [63, Chapter 21, articles 150, 153, 164
and 166], the products and services imported in Russia (with some exceptions) are
liable to VAT; the taxable base is the customs value including the import duty.
Different countries introduce different VAT rates, and in some countries (e.g., USA,
Japan) VAT does not exist at all. Most European countries have high rates (e.g.,
25% VAT in Norway). China, India, and Arab countries use 10% VAT. For the
Russian budget, this tax yields hundreds of billions RUR.

A consuming country faces the problem of import regulation (actually, a choice
problem) depending on the current market situation by establishing an appropriate

206 8 Decision-Making Based on Information Quanta: Methodology …



import duty or quota system (in this book, we will not consider quota systems, as
optimal duties and optimal quotas are interconnected, both representing govern-
mental regulation tools). The objective of such regulation can be the tax revenues or
customs charges (8.12) or the share of domestic manufacturers in the market sales.
The importer’s objective is profit (8.13) or the number of jobs in the countries that
manufacture the imported product (which is assumed directly proportional to the
import volume). To control its objective, the importer varies the import volume
appropriately.

In the sequel, by assumption the global supply price q is constant and not
affected by the domestic consumption of a country. Moreover, we will not analyze
substitute products or accompaniments. These features essentially simplify the
problem and its solution. The market of the product is competitive, which allows
adopting the Walras equilibrium concept to describe the domestic price of the
product. Note that the cases of the price increase due to the monopolies or oligo-
polies on the market are also not considered.

Let us pose the three problems as follows.
Problem A: find the Pareto set for the two objective functions S and D under

y = 0; s = 0;D = 0:
The domestic output x in this problem is assumed constant. The solution of

Problem A defines the capabilities of the mutual strategies of the consuming
country and importer. The Pareto set gives the domain of compromise in trade
policy, and the choice within this set allows to establish the mutually beneficial
strategy (at the negotiating table or, e.g., by the trial-and-error method).

Problem B: find the Pareto set for the three objective functions S, D, and
Y = y under y = 0; s = 0;D = 0:

The domestic output x in this problem is assumed constant, too. The solution of
Problem B defines the capabilities of the mutual strategies of the consuming
country, importer companies and exporting countries: here the additional objective
of optimization is the increasing (or nondecreasing) number of jobs. Such a
statement becomes topical, e.g., in the following situation. The import volume is so
large that the trade unions of the consuming country (or the export control
authorities of the exporting country) require appropriate countermeasures from the
government for import duty establishment. For instance, the constraints imposed by
the Russian government on the US chicken imports (the so-called Bush’s legs)
caused series problems at the poultry farms in Maryland, which initiated the
political response of the US government. At the same time, it seems that the Pareto
set construction would yield an acceptable compromise solution for both sides.

Problem C: find the Pareto set for the three objective functions S, D, and
X = x under y = 0; s = 0;D = 0:

The domestic output x in this problem is assumed variable, which corresponds to
the supply function of the domestic manufacturers. This statement analyzes the
protectionist behavior capabilities in order to improve the competitiveness of the
domestic manufacturers or simply to increase the domestic output (i.e., the gov-
ernment of the consuming country is concerned about the number of jobs in it).

Let us accept the notation X ¼ ðy; sÞjy = 0; s = 0;D = 0f g.
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In Problems A˗C the domestic price of the product is constant and hence we may
choose it as the money unit: q ¼ 1. Similarly, since the statements of Problems A
and B involve a constant domestic output, we choose x ¼ 1 as the measurement
unit for the import volume and consumption volume. In addition, suppose that an
internal customer spends a fixed sum M from its budget on this product. Then the
demand curve is defined by

pðxþ yÞ ¼ M: ð8:14Þ

Under the above assumptions, for Problems A and B we have the three objective
functions

S ¼ txM
xþ y

þ sþ tð1þ sÞ½ 	qy; ð8:15Þ

D ¼ y
M

xþ y
� ð1þ sÞð1þ tÞq

� �
; ð8:16Þ

Y ¼ y: ð8:17Þ

Actually, the objective function (8.17) does not participate in Problem A. The
variables are y = 0; s = 0, while M acts as a positive parameter. We will choose
M = 6 for the calculations and figures below.

8.5.2 Solution of Posed Problems

Find the Pareto set in Problem A. According to (8.16), the import profitability
condition D = 0 is expressed by the inequality s 5 M

qð1þ tÞðxþ yÞ � 1, see the domain

Ω in Fig. 8.3 for t = 0.18. Here the vertical segment gives the solution of
Problem A. Since this problem involves only two objective functions each having
two variables, it is possible to apply the well-known approach based on the
Edgeworth box.

Lemma 8.1 The set of locally Pareto optimal alternatives that compromise
between the consuming country and the importer is contained in the set of points

ð�y; sÞj0 5 s 5 1
1þ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

qxð1�tÞ � 1
qn o

, where �y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�tÞMx

q

q
� x.

□ A point (y, s) lies beyond the set of locally Pareto optimal points if at this
point the contour curves of functions (8.15) and (8.16) intersect. Otherwise, when
the gradients of these functions are collinear, the set of such points contains the
locally Pareto optimal set. The above collinearity condition has the explicit form
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� txM

ðxþ yÞ2 þ sþ tð1þ sÞ½ 	q ¼ #
M

xþ y
� ð1þ sÞð1þ tÞq� yM

ðxþ yÞ2
" #

;

ð1þ tÞqy ¼ �#qyð1þ tÞ:

The second equality implies # ¼ �1. Then the first equality yields the quadratic
equation

qðxþ yÞ2 �Mðxþ yÞþmðyþ txÞ ¼ 0;

whose positive solution is the optimal import volume

�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞMx

q

s
� x:

Recall that we are interested only with the points of the set Ω. Hence, the import
duty must be varied within the range

0 5 s 5 1
1þ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

qxð1� tÞ

s
� 1:

∎
Computer simulations show that the set mentioned in Lemma 8.1 is the Pareto

set.

Remark 8.1 The optimal import volume �y is independent of the tax duty. And so,
the substitution of �y into (8.15) and (8.16) gives the following linear dependencies
on s:
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Sð�yÞ ¼ t

ffiffiffiffiffiffiffiffiffiffi
qxM
1� t

r
þ ð1þ tÞsþ t½ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qxMð1� tÞ

p
� qx;

Dð�yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qxMð1� tÞ

p
� qx

h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

ð1� tÞqx

s
� ð1þ tÞð1þ sÞ

" #
:

The first dependence is increasing, while the second decreasing (both have the
same slope ratio). In other words, the import duty increase by 1% enhances the
consuming country’s income and simultaneously reduces the importer’s income by
the same quantity (which depends on many characteristics of the Russian economy
and the global prices).

Remark 8.2 According to the approach from [56] (the model with tm = 0%), the
importer adopts the strategy y� ¼ argmaxDðy; sÞ for a fixed import duty s, and then
the consuming country defines the optimal duty s� by the import volume y�. Using
the current notation, we have

@S
@y

¼ M
1þ y

� 1� s� My

ð1þ yÞ2 ¼ 0:

Hence, y� ¼
ffiffiffiffiffiffiffiffiffi
M

1þ s�

q
� 1 and s� ¼ M

ð1þ y�Þ2 � 1. The consuming country’s profit is

achieved on the curve

S�ðsÞ ¼ 1:18
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1þ sÞ

p
þ s

ffiffiffiffiffiffiffiffiffiffi
M

1þ s

r
� 1

 !
:

The highest profit corresponds to s� � 2:29 (for M = 6). In this case, we obtain
y� � 0:35. The substitution of these values into the objective functions S and
D yields S� � 1:6; D� � 0:4. On the other hand, the Pareto set allows choosing a
compromise alternative for ŝ from the interval [0, 1.7]. According to the approxi-
mate estimates, S grows from 0.5 to 2.5 while D reduces from 2.1 to 0 as we
increase ŝ. In particular, for ŝ ¼ 0:9 we have S = 1.6 and D = 1. Thus, the trade
policy based on the Pareto set is much better.

The solution of Problem B. The third objective function Y = y reflecting the
interests of the exporting countries slightly modifies the construction of the Pareto
set within X ¼ ðy; sÞjy = 0; s = 0;D = 0f g:

Using the definition of a Pareto optimal alternative and the direct calculations,
we establish that in Problem B the Pareto set acquires the form

ð�y; sÞjy =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞxM

q

s
� x; s = 0;D = 0

( )
:

Proceed to Problem C. As before, the main objective functions have expressions
(8.12) and (8.13), but equality (8.14) now incorporates the variable x (the domestic
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output of the product) determined by the supply function. This function will be
assumed linear (note that in practice one should employ statistical identification
methods in order to obtain proper economic interpretations). And so, let the supply
function be

p ¼ axþ b;

where a[ 0; b[ 0 . The substitution of x ¼ ðp� bÞ=a into (8.14) gives the
domestic price

p ¼ b� ay
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� ayÞ2

4
þ aM

s
:

Here we choose the positive root of the associated quadratic equation due to the
constraint p > 0.

Again, reduce the number of the parameters by introducing special measurement
units for the money and sales volume: q = 1 and a = 1. Then the domestic price
and the domestic output are defined by the formulas

p ¼ b� y
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2

4
þM

s
; x ¼ � bþ y

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2

4
þM

s
:

Their substitution into the objective functions (8.12)–(8.13) yields

S ¼ txpþ syþ tð1þ sÞy ¼ syþ tð1þ sÞyþ t M � y
2

b� yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2 þ 4M

q	 
� �
;

D ¼ y
2

b� yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2 þ 4M

q
� 2ð1þ sÞð1þ tÞ

� �
:

Now, calculate the corresponding derivatives:

@S
@y

¼ ðtþ tsþ sÞþ t
2

2y� b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2þ 4M

q
� yðy� bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb� yÞ2 þ 4M
q

2
64

3
75; @S

@s
¼ yðtþ 1Þ;

@D
@y

¼ 1
2

b� 2yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2 þ 4M

q
þ yðy� bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb� yÞ2 þ 4M
q � 2ð1þ sÞð1þ tÞ

2
64

3
75; @D

@s
¼ �yðtþ 1Þ;

@X
@y

¼ 1
2

y� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2 þ 4M

q � 1

2
64

3
75; @X

@y
¼ 0:
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Further analysis requires some information about the parameter b of the
domestic supply function. If b is smaller than 1, the product can be manufactured
domestically in sufficient quantities without serious problems. Since the global unit
price is 1, then for b\1 the domestic production is possible only using
state-of-the-art technologies without the shortage of production factors. In the case
b[ 4 it seems even unreasonable to boost the production. Therefore, we believe
that 1\b\4.

Since @S
@s ¼ yðtþ 1Þ and @D

@s ¼ �yðtþ 1Þ, let us first estimate the Pareto set for the
objective functions S and D. Their gradients must be collinear at all points of this
set, hence

2y� b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2 þ 4M

q
� yðy� bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb� yÞ2 þ 4M
q þ 2

1� t
¼ 0:

Here b, M, and t indicate some parameters. For M = 6 and t = 0.18, computer
simulations (e.g., in MS EXCEL) show that the above equation has the unique
positive solution with the almost linear dependence on the parameter b:

y
^ � 0:3355bþ 1:633:

On the plane ðy; sÞ the condition D > 0 is equivalent to the inequality

s\
1

2ð1þ tÞ b� yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2 þ 4M

q� �
� 1 ¼ s

^
:

Due to @X
@s \0, the consideration of the third objective function X leads to the

Pareto set in the form of the curvilinear trapezoid 0 5 y 5 y
^
; 0 5 s 5 s

^

depending on the parameters b, M, and t.

8.5.3 Pareto Set Reduction

Get back to Problem A. As follows from (8.12) and (8.13), the objective functions
S and D are linear for fixed y and their slope ratios represent the opposite numbers.
Therefore, if we fix y ¼ �y using Lemma 8.1 to construct the segment containing the
Pareto set, then the resulting linear functions of the variable s have the slope rations
�y and ��y.

Suppose that by negotiations (or due to the current situation) the consuming
country puts the necessary leverage on the importer, compelling it to lose maximum
wD [ 0 units in terms of the criterion D, and by turn expects to gain minimum
wS [ 0 units in terms of the criterion S. This information specifies a definite
quantum. According to Theorem 2.5, we arrive at the new bicriteria problem with
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the objective functions S and wDSþwSD. If wD ¼ wS, the slope ratio of the second
objective linear function is 0, i.e., this function is a constant. The Pareto set with
respect to the criteria S and the constant function coincides with the set of the
maximum points of the function S on the interval specified by Lemma 8.1, i.e., with
the point

�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞxM

q

s
� x;�s ¼ 1

1þ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

qxð1� tÞ

s
� 1:

The same result is obtained in the case wD [wS, as the slope ratio of the linear
function wDSþwSD under variable s has the same sign as that of the function S. If
the inequality wD\wS holds, then the new Pareto set coincides with the initial
counterpart. In other words, then the existing information quantum does allow to
reduce the Pareto set.

By analogy we may consider the symmetrical situation where the importer puts
leverage on the consuming country. As a result, the latter is willing to lose maxi-
mum ws units in terms of the criterion S, also having no objections that the importer
gains minimum wD units in terms of the criterion D. In this case, we obtain the new
bicriteria problem with the objective functions wDSþwSD and D. If wD 5 wS, then

the Pareto set is reduced to the point �y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�tÞxM

q

q
� x;�s ¼ 0; otherwise, no

reduction takes place.
Problem B involves the three criteria S, D and Y = y. In theory, according to the

existing information, a certain pair of the criteria may have the property that a loss
in terms of one criterion gives a gain in terms of the other. Moreover, it is quite
possible that a loss (or a gain) relates to a pair of criteria while a gain (a loss,
respectively) to the third criterion. Also a realistic scenario is where the consuming
country compels the importer to lose in terms of the criterion D, also expecting
some gains in terms of the criteria S and Y. Using information about the criteria for
potential losses and gains and their amounts, it is possible to reduce the Pareto set
based on Theorem 2.5.

For example, assume that the consuming country and the importer are willing to
lose maximum 1 unit in terms of the criterion Y for gaining minimum 0.3 units in
terms of the criteria S and D, i.e., wS ¼ wD ¼ 0:3;wY ¼ 1. As the calculations
show, the corresponding Pareto set has the form

ðy; sÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞxM

q

s
� x 5 y 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞxM
q� 0:6

s
� x; s = 0;D = 0

( )
:

Consider Problem C. Recall that the associated Pareto set is the curvilinear

trapezoid ðy; sÞj0 5 y 5 y
^
; 0 5 s 5 s

^
n o

, where y
^ � 0:3355bþ 1:633 and
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s
^ ¼ 1

2ð1þ yÞ b� yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� yÞ2 þ 4M

q� �
� 1:

Suppose that the consuming country is able to compel the importer to lose
wD [ 0 units in terms of the criterion D (the importer’s profit) in order to increase
the value of the criterion S (the tax revenues of the national budget) by maximum
wS [ 0 units. To construct the new Pareto set using Theorem 2.5, we have to solve
the tricriteria problem with the objective functions S, wDSþwSD, and x (by
assumption, the domestic production development, in particular, the number of
jobs, has lower priority than the tax revenues).

Similarly, in the opposite situation where the consuming country is willing to
lose wS units in terms of the criterion S while the importer gains wD units in terms of
the criterion D, we get the tricriteria problem with the objective functions
wDSþwSD, D and x.

In another realistic scenario the consuming country is willing to lose wx units in
terms of the domestic production in order to gain wS units in terms of the criterion
S. In this case, the criteria are the three functions S, D, and wxSþwSx. If the
consuming country is concerned with the number of jobs and the domestic pro-
duction development, then the criteria are the functions x, D, and wxSþwSx.

Furthermore, in Problem C (like in Problem B) the losses (or gains) may affect
two criteria of the three existing ones S, D, and x.

Consider the following illustrative example with numerical data, which describes
one of the last scenarios. Let the national budget income S have the highest
importance. For M = 6, t = 0.18, b = 3, wx = 1, and wS = 2, the functions S,
D and G ¼ wxSþwSx acquire the form

S ¼ ð0:18þ 1:18sÞyþ 0:18 6� y
2

3� yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� yÞ2þ 24

q	 
� �
;

D ¼ y
2

3� yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� yÞ2 þ 24

q
� 2:36ð1þ sÞ

� �
;

G ¼ ð0:18þ 1:18sÞyþ 0:18 6� y
2

3� yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� yÞ2þ 24

q	 
� �
þ y 3� yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� yÞ2þ 24

q� �
:

To construct the Pareto set, we calculate the gradients of the three functions and
verify when the origin belongs to the triangle formed by their ends. As a result, we
find the set

yþ ½1:69; 2:64	; s 2 0;
1

2:36
3� yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� yÞ2 þ 24

q	 
� �� �
:

Obviously, this set is appreciably narrower than the set obtained in the initial
statement of Problem C without consideration of the information quanta.
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8.6 Production Output Increase Problem
with Resource Costs

8.6.1 Problem Statement

Assume that a certain firm seeks to increase its production output, reducing
simultaneously the resource costs. Clearly, a higher output cannot be achieved
without consuming additional resources, and so output maximization contradicts
resource reduction. Such a situation is typical for multicriteria optimization.
Therefore, it seems reasonable to formalize this problem as some multicriteria
choice problem. Let us pass to this formalization.

In many economic problems the relationship between the production output and
resource consumption is modeled by the power production functions
z ¼ axa11 � � � � � xann . Here z denotes the output, x1; . . .; xn are the volumes of con-
sumed resources, and a; a1; . . .; an represent some positive parameters.

Our analysis will be confined to two types of resources, namely, the labor
resources and the basic production assets. Thus, the production output z is defined
by the labor costs x1 and the capital x2 according to the formula z ¼ axa11 x

a2
2 for

some positive parameters a; a1; a2; a1 þ a2\1.
Formulate the following multicriteria problem. The set of feasible alternatives

consists of all pairs ðx1; x2Þf g such that x1; x2 [ 0. The objective functions are the
labor costs, the costs of the basic production assets and the costs of the manufac-
tured products. The first and second objective functions have to be minimized; and
so, we take them with minus sign to match the general statement of the
decision-making problem where all criteria are maximized. Consequently, the cri-
teria are defined by f1 ¼ �p1x1, f2 ¼ �p2x2, and f3 ¼ pzz, where the quantities
p1; p2; pz specify the prices of the corresponding resources and manufactured
products.

The set of feasible vectors Y represents the surface described by the equation
y3 ¼ apz

p
a1
1 p

a2
2
ð�y1Þa1ð�y2Þa2 under the constraints y1; y2\0. The set of feasible vec-

tors Y is shown by Fig. 8.4. As easily seen, this surface is concave and hence
PðYÞ ¼ Y .

8.6.2 Pareto Set Reduction

Consider the two-dimensional sections of the set Y by the planes that are parallel to
the coordinate planes (y1, y2), (y2, y3), (y1, y3). In the first case, we obtain the
isoquant defined by the set
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Y12
c3 ¼ ðy1; y2Þjðy1; y2; c3Þ 2 Yf g; ðy1; y2Þ:

This is a hyperbola for c3 [ 0 (see the set Y12
4 in Fig. 8.5). The DM reduces the

costs of one resource only by increasing the costs of the other and conversely (note
that the income remains the same). In other words, by choosing a point ðy01; y02Þ
instead of another point ðy001; y002Þ, where both points belong to the set Y12

c3 (and the
corresponding points ðy01; y02; c3Þ; ðy001; y002 ; c3Þ 2 PðYÞ), the DM admits a definite
compromise between the labor costs and the costs of the basic production assets.

The sections of the set of feasible vectors Y by the planes y1 = c1 and y2 = c2,
i.e.,

Y23
c1 ¼ ðy2; y3Þjðc1; y2; y3Þ 2 Yf g; c1\0;

and

Y13
c2 ¼ ðy1; y3Þjðy1; c2; y3Þ 2 Yf g; c2\0;

respectively, represent the power functions. Figure 8.6 shows these sets for c1 ¼
�2 and c2 ¼ �3.

Choosing a specific compromise alternative, the DM has to select the relation-
ships between the income and each type of the costs.

Assume that the DM expresses its preferences in the following way.

1. Higher income f3 is preferable to lower labor costs f1. The DM is willing to
compromise by increasing the labor costs (wages, etc.) by w3

1 thousand RUB for
gaining the additional income of w3

3 thousand RUB, where w3
3 [w3

1.

Fig. 8.4 Set Y
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2. Lower labor costs f1 are preferable to lower costs of the basic production assets
f2. This DM uses high-quality (expensive) production equipment rather than
high-quality labor. For reducing the labor costs by w1

1 thousand RUB, the DM is
willing to increase the costs of the basic production assets by w1

2 thousand RUB,
where w1

1 [w1
2.

3. Lower costs of the basic productions assets f2 are preferable to higher income f3.
However, the purchased material, equipment, etc. (the basic production assets)
must be reasonably priced. Therefore, the DM is willing to decrease the income
by w2

3 thousand RUB for reducing the costs of the basic production assets by w2
2

thousand RUB, where w2
2 [w2

3.

Consequently, there exists the closed information that the labor costs f1 have
higher importance than the costs of the basic production assets f2, the costs of the
basic production assets f2 have higher priority than the income f3, and the income f3
has higher importance than the labor costs f1, with the corresponding collections of
positive parameters. If we take into account the inequalities from items 1)-3), then
the above information in the form of three quanta is consistent. Really,

Fig. 8.5 Set Y12
4

Fig. 8.6 Sets Y32
c1 and Y13

c2
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Wj j ¼
w1
1 0 �w3

1
�w1

2 w2
2 0

0 �w2
3 w3

3

������
������ ¼ w1

1w
2
2w

3
3 � w1

2w
2
3w

3
1 [ 0:

Let us apply Corollary 5.2 to reduce the Pareto set. The new vector criterion
g has the components

g1 ¼ w2
2w

3
3f1 þw3

1w
2
3f2 þw3

1w
2
2f3 ¼ �p1w

2
2w

3
3x1 � p2w

3
1w

2
3x2 þ apzw

3
1w

2
2x

a1
1 x

a2
2 ;

g2 ¼ w1
2w

3
3f1 þw1

1w
3
3f2 þw3

1w
1
2f3 ¼ �p1w

1
2w

3
3x1 � p2w

1
1w

3
3x2 þ apzw

3
1w

1
2x

a1
1 x

a2
2 ;

g3 ¼ w1
2w

2
3f1 þw1

1w
2
3f2 þw1

1w
2
2f3 ¼ �p1w

1
2w

2
3x1 � p2w

1
1w

2
3x2 þ apzw

1
1w

2
2x

a1
1 x

a2
2 :

The set of feasible alternatives X is convex. Under the accepted hypotheses and
a1 + a2 < 1, the power function qðx1; x2Þ ¼ apzw3

1w
2
2x

a1
1 x

a2
2 has concavity on X,

which means that the function g1(x) is also concave for any ðx1; x2Þ 2 X (as the sum
of a power function and a linear function). By analogy we establish that the
functions g2(x) and g3(x) are concave. In the final analysis, we obtain the problem
with the convex set X and the concave vector criterion g. In this case, the set of
proper efficient points (which is slightly narrower than the Pareto set PgðXÞ) can be
found using the linear combination of criteria

uðxÞ ¼ �p1 k1w
2
2w

3
3 þ k2w

1
2w

3
3 þ k3w

1
2w

2
3

� 

x1 � p2 k1w

3
1w

2
3 þ k2w

1
1w

3
3 þ k3w

1
1w

2
3

� 

x2

þ apz k1w
3
1w

2
2 þ k2w

3
1w

1
2 þ k3w

1
1w

2
2

� 

xa11 x

a2
2 :

with the positive coefficients k1; k2; k3 such that k1 þ k2 þ k3 ¼ 1. Denote

A1 ¼ p1 k1w
2
2w

3
3 þ k2w

1
2w

3
3 þ k3w

1
2w

2
3

� 

;

A2 ¼ p2 k1w
3
1w

2
3 þ k2w

1
1w

3
3 þ k3w

1
1w

2
3

� 

;

A3 ¼ apz k1w3
1w

2
2 þ k2w3

1w
1
2 þ k3w1

1w
2
2

� 

:

Consider the first partial derivatives of the linear combination

u0
x1 ¼ �A1 þ a1A3x

a1�1
1 xa22 ; u

0
x2 ¼ �A2 þ a2A3x

a1
1 x

a2�1
2 :

The solution of the system of equations u0
x1ðx0Þ ¼ 0, u0

x2ðx0Þ ¼ 0 yields the
point x0 ¼ ðx01; x02Þ defined by

x01 ¼
a1a3
A1

	 
 1�a2
1�ða1 þ a2Þ a2a3

A2

	 
 a2
1�ða1 þ a2Þ

;

x02 ¼
a1a3
A1

	 
 a1
1�ða1 þ a2Þ a2a3

A2

	 
 1�a2
1�ða1 þ a2Þ

;
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where x01; x
0
2 [ 0 .

Now, calculate the second partial derivatives of the linear combination at the
point x ¼ x0:

u00
x21
ðx0Þ ¼ a1A3ða1 � 1Þðx01Þa1�2ðx02Þa2 ;

u00
x22
ðx0Þ ¼ a2A3ða2 � 1Þðx01Þa1ðx02Þa2�2;

u00
x1x2

ðx0Þ ¼ a1a2A3ðx01Þa1�1ðx02Þa2�1:

The function u(x) reaches its maximum at the point x ¼ x0 under the sufficient
conditions

u00
x21
ðx0Þ\0; u00

x21
ðx0Þ � ux22

ðx0Þ � ðu00
x1x2ðx0ÞÞ

2 [ 0:

As easily seen, the first inequality holds owing to a2;A3; x01; x
0
2 [ 0, and

0 < a1 < 1. For the second inequality, we have

u00
x21
ðx0Þ � u00

x22
ðx0Þ � ðu00

x1x2ðx0ÞÞ
2 ¼ A2

3a1a2ð1� ða1 þ a2ÞÞðx01Þ2ða1�1Þðx02Þ2ða2�1Þ [ 0;

since a1; a2; x01; x
0
2 [ 0, and a1 + a2 < 1. Thus, the point x ¼ x0 is the maximum

point of the linear combination u(x) and hence it is proper efficient. As x0 depends
on the positive parameters k1, k2, and k3, we have actually constructed a whole
family of such points. The final choice must be performed exactly within this set.

8.7 Weakening of Basic Axiomatics

As a rule, in practice one does not know whether Axioms 1–4 hold or not.
Therefore, a challenging problem is to weaken these axiomatics in order to enlarge
the associated class of multicriteria choice problems that can be solved using the
axiomatic approach with Pareto set reduction based on information quanta.

Below we discuss two possible directions of such weakening.

8.7.1 Weakening of Compatibility Axiom

It has been established in Chap. 2 (see Lemma 2.2 and Theorem 2.1) that a pref-
erence relation satisfying Axioms 2 and 4 is a cone relation with an acute convex
cone not containing the origin. If we also accept Axiom 3, then this cone contains
the nonnegative orthant. Consequently, it is possible to suggest the following
(generalized) statement of the compatibility axiom.
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Axiom 3/ In the criterion space Rm there is a given cone of “desired directions” C
that is acute, convex and does not contain the origin. Moreover, for each pair of
vectors y0; y00 2 Rm the inclusion y0 � y00 2 C implies the relationship y0 � y00.

In Axiom 3 the role of the cone C is played by the nonnegative orthant of space
Rm. In the general case, according to Axiom 3/ the cone C may be wider or narrower
than the nonnegative orthant. The last axiom can be treated as some generalization
of the Pareto axiom.

By accepting Axiom 3/, we have to modify the definition of an information
quantum in the following way.

Definition 8.1 Consider a certain pair of vectors y0; y00 2 Rm that satisfy neither the
relationship y0 � y00 2 C nor the relationship y00 � y0 2 C. Under Axiom 3/, we say
that there is a given information quantum about the DM’s preference relation if one
of the relationships y0 � y00 or y00 � y0 holds.

Then the following result is true.

Theorem 8.10 Under Axioms 1, 2, 3/ and 4, assume that there exists an infor-
mation quantum (in the sense of Definition 8.1) stating that y0 � y00. Then for any
set of selectable vectors C(Y) we have the inclusion

CðYÞ � NdomCY ð8:18Þ

where

NdomCY ¼ y� 2 X jthere exists no y 2 Y such that y� y� 2 convfðy0 � y00Þ [Cgf g;

and conv{A} denotes the convex hull of the set A. Moreover, if the cone C
contains the nonnegative orthant, then we also have the inclusion
NdomCY � PðYÞ.

□ As mentioned in the beginning of this subsection, a preference relation sat-
isfying Axioms 2 and 4 is a cone relation with an acute convex cone K not con-
taining the origin. Owing to Axiom 3/ we have the inclusion C � K. Besides, the
presence of the information quantum gives K 
 convfðy0 � y00Þ [Cg. Hence,
Ndom Y � NdomC Y . This result together with the inclusion CðYÞ � Ndom Y
(which follows from Axiom 1) brings to the required inclusion (8.18). ∎

Theorem 8.10 can be extended to the case of a consistent collection of infor-
mation quanta defined by the pairs of vectors ui; vi 2 Rm,
ui � vi 62 fC [ ð�CÞg; i ¼ 1; 2; . . .; k. Prior to this extension, let us formulate the
corresponding definition of a consistent collection of information quanta.

Definition 8.2 Under Axiom 3/, we say that a collection of the pairs of vectors
ui; vi 2 Rm, ui � vi 62 fC [ ð�CÞg; i ¼ 1; 2; . . .; k, is consistent if there exists an
irreflexive binary relation � satisfying Axioms 2 and 4 such that the relationships
ui � vi, i ¼ 1; . . .; k, hold.
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Theorem 8.11 Accept Axiom 3/. A collection of the pairs of vectors ui; vi 2 Rm,
ui � vi 62 fC [ ð�CÞg; i ¼ 1; 2; . . .; k, is consistent if the convex hull

conv
S

i¼1;...;k
ðui � viÞ

" #
[C

( )
forms an acute cone.

□ Indeed, the cone relation with the acute convex cone

conv
S

i¼1;...;k
ðui � viÞ

" #
[C

( )
satisfies Axioms 2 and 4 by Theorem 2.1. ∎

For the corresponding generalization of Theorem 8.10 (that holds for an arbitrary
consistent collection of the pairs of vectors ui; vi 2 Rm,
ui � vi 62 fC [ ð�CÞg; i ¼ 1; 2; . . .; k), in the definition of the set NdomC Y the
convex hull convfðy0 � y00Þ [Cg is replaced by the convex hull

conv
S

i¼1;...;k
ðui � viÞ

" #
[C

( )
:

If the set of feasible vectors Y is finite, then the set NdomC Y can be in principle
constructed by the direct enumeration of all pairs of vectors from the set
Y. However, complex computational problem may arise in the case of the infinite
set Y. We will not discuss the details here.

In the elementary situation (the cone C is polyhedral), the set NdomC Y can be
constructed by a similar algorithm as the one used for dual cone design (see
Sect. 5.3).

8.7.2 Weakening of Invariance Axiom

As we have emphasized above, a preference relation satisfying Axioms 2 and 4 is a
cone relation with an acute convex cone not containing the origin. The idea of the
next generalization of the axiomatic approach is to reject the linearity (more
specifically, homogeneity) of the preference relation and to postulate the existence
of some “good” cone within the set of all vectors dominating an arbitrary vector of
the criterion space. In particular, suppose that instead of Axioms 2-4 the preference
relation � obeys the following requirement.

Axiom 2// The preference relation � is additive and, in addition, for each y 2 Rm

the set Yy ¼ fz 2 Rmjy � zg is convex and contains some fixed acute convex cone C
without the origin.

Definition 8.3 Consider a certain pair of vectors y0; y00 2 Rm that satisfy neither the
relationship y0 � y00 2 C nor the relationship y00 � y0 2 C. Under Axiom 2//, we say
that there is a given information quantum if one of the relationships y0 � y00 or
y00 � y0 holds.
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The elicitation problem of such information quanta turns out much more difficult
than the corresponding problem based on Definition 8.1, since the cone C is initially
unknown.

The following result takes place.

Theorem 8.12 Under Axioms 1 and 2//, assume that there exists an information
quantum (in the sense of Definition 8.3) stating that y0 � y00. Then for any set of
selectable vectors C(Y) we have inclusion (8.18) with the set described by Theorem
8.11 in the right-hand side. Moreover, if the cone C contains the nonnegative
orthant, then we also have the inclusion NdomC Y � PðYÞ.

This result follows from Axiom 1 and the fact that the convex hull convfðy0 �
y00Þ [Cg is contained in the set Yy ¼ fz 2 Rmjy � zg for each y 2 Rm. It can be
extended to the case of an arbitrary finite consistent collection of information
quanta, just like in the previous subsection.
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Concluding Remarks

It is considered that French mathematician and political scientist J.-C. de Borda first
attempted to solve the multicriteria problem. In particular, he suggested the ranked
preferential voting system with the linear combination of criteria, see [1]. In the
middle of the 19th century Irish economist F. Edgeworth [8] introduced the
so-called “Edgeworth box,” which actually involved the notion of a locally Pareto
optimal alternative in terms of two criteria long before V. Pareto. The general
notion of Pareto optimality appeared at the junction of the 19th and 20th centuries,
but its intensive usage started in the 1940s–1950s. The research of that period was
mostly dedicated to different generalizations of the well-known results on opti-
mization theory, i.e., the development of necessary and sufficient optimality con-
ditions and also existence conditions for certain optimality concepts, as well as to
the duality issues in multicriteria programming (the problems with constraints
defined by the solution set of system of equalities and/or inequalities). Nowadays
this direction of investigations continues its evolvement, parallel to the corre-
sponding branches of single-criterion optimization theory. In this context, also
mention the research works suggesting different algorithms (including approximate
ones) for Pareto set construction. For example, for the linear problems was
developed the multicriteria analog of the simplex method, which yields all facets of
the Pareto set.

On the other hand, following the vital demands of economics and engineering
and the associated multicriteria optimization problems, many authors started sug-
gesting different “best” solutions of the multicriteria problems using certain
heuristic considerations. The pioneering results in this field belong to de Borda, see
above. The scientific literature of the 1970s–1980s provides numerous examples
illustrating how the linear combination of criteria (and other scalarization methods)
can be used to solve various economic and engineering problems. In the 1980s it
became finally clear that the “best” alternative choice cannot be justified without
involving additional information (not including the collection of criteria and the set
of feasible alternatives). That period was remarkable for the development and usage
of the so-called “decision rules” that allow to extract the “best” solutions of the
multicriteria problems in a certain sense. In the USSR (by then, with a considerable
community of researchers focused on multicriteria optimization), different authors
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introduced decision rules by designing some “resulting” binary relations. Note that
a similar trend showed up since the 1950s in the western countries after the
appearance of Arrow’s impossibility theorem (a Nobel Prize winner in economics).
Subsequently, this trend yielded the general theory of alternative choice. An
endeavor to translate the result of this theorem into the multicriteria language
gives the following: generally, the multicriteria problem is not reducible to the
single-criterion problem, since these problems are qualitatively different. After the
impossibility theorem, hundreds of papers continued further analysis of the theo-
retical aspects and constructive ways to “aggregate” some general relation from a
finite collection of partial binary relations. In terms of multicriteria optimization this
means the reduction of the multicriteria problem to the single-criterion one (i.e., the
scalarization of the multicriteria problem).

As mentioned, in the 1980s it became clear that the “best” alternative choice
cannot be justified without involving additional information. For instance, such
information may specify certain parameters (e.g., the weight coefficients of the
linear combination of criteria) that participate in the corresponding scalarization
approach. A series of authors proposed “the best alternative” based on some
analogies or general considerations. As an example, refer to the center of gravity for
the set of Pareto optimal vectors (by analogy with the Shapley value from game
theory) or the Pareto optimal vector having the shortest distance to a certain ideal
unattainable vector (like in goal programming).

According to the gradually maturing idea, the researchers started believing that
the final choice is performed by an individual interested in the solution of the
multicriteria problem (called the decision-maker). Each human has the right to
consider its own “best” alternatives. Therefore, all attempts to suggest a universal
rule or notion of the “best” alternative are doomed from the start. Embedding the
binary preference relation in the multicriteria problem gave an opportunity to take
into account the specifics of certain DM. However, the difficulty is that a human
dealing with the choice problem often has a hazy idea of its preferences. In any
case, the DM is unable to describe completely its preference relation. And the path
of further development laid towards the consideration of some “fragmentary”
information about the DM’s preference relation, with minimum assumptions
imposed on it. Such information was represented by the pairs of incomparable
vectors in terms of the Pareto relation: in each pair, the DM surely prefers one
vector to the other. And such information was later called the information quanta
about the DM’s preference relation.

The preference relation was explicitly incorporated into the multicriteria problem
statement in the author’s report presented in 1982 ([29]). The cited report also
included the requirements in the form of axioms imposed on this relation
(irreflexivity, the Pareto axiom, transitivity and invariance). The role of additional
information about the DM’s preference relation was played by a finite collection of
the pairs of incomparable vectors (in terms of the Pareto relation) where one vector
is preferable to the other. The axiomatic approach originated in this report. Later on,
the axiomatic approach was developed in detail first in 1986 for the bicriteria
problems [30] and then in 1991 for the multicriteria problems with an arbitrary
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finite number of criteria [31]. The multicriteria problem supplemented by the DM’s
binary preference relation was subsequently called the multicriteria choice problem
in order to underline its connection to general choice theory (especially, to the
paired dominant choice, i.e., the choice based on a certain binary relation). Next, the
theorem on taking into account a general information quantum was proved in [33],
and the Edgeworth-Pareto principle was logically justified in [37].

Year 2003 saw the monograph by the author on the quantitative approach to
decision-making in multicriteria environment, which systematized the results
obtained by then. The second edition of the monograph was published in 2005, see
[38]. As a matter of fact, a series of new interesting results was published since that
time. Presently, the axiomatic approach to reduce the Pareto set can be considered
well-developed and, as the author believes, this book gives a rather complete
description of the theory.

The interconnection between the original axiomatic approach and other methods
and approaches was discussed in [39].

In conclusion, note that in some papers (see, for example, [16]) the authors avoid
the axiomatic characterization of the preference relation and operate the terminol-
ogy of cone-based approach with allowable tradeoffs among criteria. In fact, they
deal with information quanta in the special case where all parameters wi are 1.
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