


Rotordynamics of Automotive Turbochargers



Hung Nguyen-Schäfer

Rotordynamics
of Automotive
Turbochargers
Linear and Nonlinear Rotordynamics
- Bearing Design - Rotor Balancing

ABC



Author
Dr. Hung Nguyen-Schäfer
Bosch Mahle Turbo Systems

GmbH & Co. KG
Stuttgart
Germany
Email: hung.nguyen-schaefer@bmturbosystems.com

ISBN 978-3-642-27517-3 e-ISBN 978-3-642-27518-0
DOI 10.1007/978-3-642-27518-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012930226

c© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface 

This book has arisen from my many years of experience in the automotive  
industry, as a development engineer and a senior expert of rotordynamics of auto-
motive turbochargers. It is intended for senior undergraduates and graduates in 
mechanical engineering, research scientists, and practicing engineers who work on 
the rotordynamics of automotive turbochargers. It could be also used as a rotordy-
namic textbook in colleges and universities, and practical handbook of rotordy-
namics in the automotive turbochargers. 

The topic of rotordynamics of automotive turbochargers is a widely interdisci-
plinary working field, firstly involving rotordynamics to study dynamics of rotat-
ing machines at very high rotor speeds and as well as to balance the rotor. Sec-
ondly, it involves thermodynamics and turbo matching to compute working 
conditions of the turbochargers. Thirdly, it involves fluid and bearing dynamics to 
compute the acting loads in the bearings at various operating conditions, and to 
design the hydrodynamic oil-film bearings. Lastly, it involves applied tribology to 
reduce bearing friction and wears of the journal and bearings. In order to under-
stand the rotordynamic phenomena, readers are assumed to have some mathemati-
cal requisite backgrounds for modeling and simulating nonlinear rotordynamics of 
turbochargers. The author tries to keep the mathematics requirement as simple as 
possible in this book; however, without any mathematical background, it is quite 
difficult to comprehend and thoroughly understand the rotordynamic behaviors of 
the turbochargers.  

Exhaust gas turbochargers used in the automobiles of personal, commercial  
vehicles, and off-road engines have some important discrepancies to the heavy tur-
bomachines applied to the power plants, chemical, and aeroplane industries. The 
automotive turbochargers are much smaller compared to the industrial turbo-
machines. Therefore, they generally work at very high rotor speeds in various dy-
namically operating conditions, such as highly transient rotor speeds, variable 
pressures, high temperatures of exhaust gas, and as well as unsteady-state mass 
flow rates of the intake air and exhaust gas. The industrial turbomachines are lar-
ger and heavier, and often operate at a nearly stationary condition. Due to the large 
compressor and turbine wheels, they operate at relatively low rotational speeds 
from 3,000 rpm (Europe) or 3,600 rpm (US) in the power plants for the electrical 
frequency of 50 Hz or 60 Hz up to about 15,000 rpm in the chemical industries 
and aeroplanes. On the contrary, the exhaust gas turbochargers mostly work at the 
high rotor speeds from 150,000 rpm to 350,000 rpm in the automotive applica-
tions. Therefore, the unbalance force is much larger than the rotor weight, leading  
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to nonlinear characteristics of the oil-film bearings used in the automotive turbo-
chargers. As a reason, nonlinear rotordynamics is usually applied to the turbo-
chargers to study and compute the nonlinear rotor responses of the harmonic,  
sub-, and supersynchronous vibrations.      

Moreover, turbocharger engineers in the industry have to confront many prob-
lems at once, namely good quality, feasibility, form tolerances at the mass-
production, time to market (TTM), highly innovative products, and product price. 
The last one is a very important issue for the company. No matter how good the 
products are, but nobody could afford them because they are very expensive. 
Then, the question is, how long the company could survive without selling any 
product or always selling products at a loss. Parallel to the product price, turbo-
chargers must be qualitative and innovative in terms of high efficiency, best low-
end-torque, working at high temperatures of the exhaust gas, less or no wear of the 
bearings, and as well as low airborne noises. They should come to the market as 
soon as possible since the first bird gets the worm; i.e., despite highly innovative 
products, the time to market (TTM) is always shorter because the competitors 
never sleep. Additionally, the turbochargers should work in all operating condi-
tions while they are produced at a possibly wide range of the form tolerances in 
the mass-production; e.g., radial and thrust bearings with the large form tolerances 
since producing them with the narrow ones increases the production cost, leading 
to rise in the product price.  

All these boundary conditions make the turbocharger development in the indus-
try much more difficult, especially in the nonlinear rotordynamics of turbocharg-
ers. Therefore, development engineers of turbochargers need to have deeply un-
derstanding backgrounds of rotordynamics and bearing systems containing radial 
and thrust bearings applied to the automotive turbochargers. Furthermore, such is-
sues of the rotor balancing and tribology in the bearings have to be coped with, so 
that the produced turbochargers work in any case at the given industrial develop-
ment conditions. Customer requirements of the automotive turbochargers are very 
high, in terms of good rotordynamic stability, low airborne noises, less or no wear 
of the bearings at high oil temperatures, and as well as an acceptable product 
price. 

Despite all careful efforts, there would be some unpredictable errors in this 
book. I would be very grateful to get your feedbacks and hints of errors. As a rea-
son, readers of this book need to have a thorough analysis before applying it to 
their individual applications, and take their own responsibilities for possible  
damages.   

I like to thank the board of directors of Bosch Mahle Turbo Systems (BMTS), 
Dr. M. Knopf, Dr. A. Prang, and Mr. J. Jennes for their supports and allowing me 
to use some pictures of BMTS in this book. Especially, I learned a great deal from 
working with Dr. B. Engels on turbocharging. Also, I am indebted to my col-
leagues at BMTS who supported me in technical discussions, and provided helps 
in this book: Dr. H. Haiser; Ch. Schnaithmann; Th. Ahrens, P. Kothe, and  
R. Kleinschmidt; R. Lemke and J. Kreth; G. Di Giandomenico (Bosch). 
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For fruitful discussions of the computation of nonlinear rotordynamics, I would 
like to acknowledge Dr. J. Schmied at Delta JS, Zurich, Switzerland.  

In addition, I like to thank Dr. Jan-Philip Schmidt at the Springer Publisher in 
Heidelberg for the good and helpful corporation during the publishing of this 
book.  

Finally, my special thanks go to my brother, Richard Nguyen at First American 
in Santa Ana, California for carefully reading this book with constructive critics. 

 
 

Hung Nguyen-Schäfer 
Stuttgart, Germany 
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Chapter 1 

Turbocharging Concepts 

1.1   Introduction 

The enacted average CO2 emission for new passenger vehicles in Europe is li-
mited to 120 g/km from 2012 (65% produced vehicles) to 2015 (100%). This 
emission limit is reduced to the ambitious long-term target of 95 g/km from 2020. 
Additionally, the average CO2 emission limit for new light-duty commercial ve-
hicles is 175 g/km from 2014 (70% manufactured vehicles) to 2017 (100%); and it 
is reduced to 147 g/km (ambitious long-term target) from 2020. To reduce carbon 
dioxide (CO2) and nitrogen oxides (NOx) exhausted by passenger and commercial 
vehicles and to improve the fuel consumption of the engines, we have already car-
ried out many measures, e.g. high-pressure direct injection (HPDI), exhaust gas 
recirculation (EGR), variable valve train (VVT), variable compression (VC), and 
hybrid techniques [3]. Two other important aspects are downsizing of engines by 
reducing the number of cylinders or volumetric size of cylinders, and turbocharg-
ing. Engines with less number of cylinders or small cylinder volumes induce less 
friction power between the pistons and cylinders. Additionally, the total weight of 
the vehicle is also reduced due to small engines, leading to less driving friction. 
Evidently, small engines needs less fuel consumption; in turn, they produce less 
engine power. Small engines consume less fuel and therefore produce less carbon 
dioxide (CO2) and as well as nitrogen oxides (NOx). In the point of view of energy 
and air pollution, they have done a good job to sustain our energy resources and to 
keep the environment less polluted and clean.  

However, it should make more fun at driving, especially with a large accelera-
tion; it needs more power in the small engines. Hence, the specific power defined 
as the engine power per cylinder volume (kW/liter of cylinder) must be improved. 
Therefore, we have to capture an unused and cost-free energy source in the vehicles 
to boost the small engines.  

After the combustion of fuel in the engine, a large energy of the exhaust gas 
still remains in the form of enthalpy at the engine outlet because the temperature 
of the exhaust gas is quite high (e.g. diesel 820°C to 850°C and gasoline 950°C to 
1050°C). Generally, this enthalpy energy escapes from the engine to the environ-
ment. Why do we not capture it to boost the engine for improving its specific 
power? To do that, an exhaust-gas turbocharger is necessary to collect the exhaust 
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gas in the turbine, and compress the intake air in the compressor to a high pressure 
for the engine combustion. This procedure is called turbocharging.  

The exhaust-gas turbocharger consists of the core unit (called CHRA: center 
housing and rotating assembly), turbine, compressor, and actuator. Both compres-
sor and turbine wheels are mounted and fixed in the rotor shaft that is supported 
on the bearing system including two radial bearings and a thrust bearing. The ex-
haust gas expands in the turbine wheel and generates the rotational kinetic energy. 
The created turbine energy drives the rotor shaft and compresses the intake air to a 
high pressure by means of the compressor.        

The concept of using exhaust-gas turbochargers takes advantages of improving 
specific engine power and reducing CO2 and NOx. They are either having the 
same power of the original engine but less fuel consumption, reducing carbon dio-
xide and as well as nitrogen oxides in the downsized engine or getting more power 
at the same fuel consumption in the turbocharged engine without downsizing for 
those who need more fun at driving. However, the first one is an important key to 
help us comply with the new emission law for the automotive vehicles.  

Generally, turbocharged downsized engines with the same original power could 
save nearly 10% fuel consumption by reducing the cylinder volume by 25%. To 
abide by the current emission law of the automotive vehicles or to boost engines 
of passenger vehicles, two-stage turbochargers are applied to engines working at 
the large charge-air compression ratios higher than 4. The two-stage turbochargers 
consist of two single-stage turbochargers with different sizes that are sequentially 
set up in the engine. Some applications of different turbocharger types to the en-
gines shall be discussed in the next section.   

1.2   Applications of Turbochargers to Downsized Engines   

In the automotive applications, single-stage turbochargers are normally used at  
the air compression ratio to nearly 2.5. There are two layouts of turbochargers 
with Exhaust Gas Recirculation (EGR) at low pressure (LP-EGR) and high pres-
sure (HP-EGR). Due to reburning the exhaust gas by means of its recirculation to 
the engine, nitrogen oxides (NOx) are reduced.  

 
a) Single-Stage Turbochargers with EGR 
Figure 1.1 shows a single-stage turbocharger with high-pressure EGR (HP-EGR) in 
which the exhaust gas partly returns to the engine with a maximum of 50% EGR  
rate before entering the turbine. The EGR rate is defined as the ratio of the  
recirculation to outflow mass flow rates of the exhaust gas. The EGR valve regulates 
the EGR mass flow rate so that NOx emission fulfills the current emission law. 
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Fig. 1.1 Schematic layout of a single-stage turbocharger with HP-EGR 

Due to expansion energy of the exhaust gas, the turbine T propels the compressor 
C that compresses the intake air to the maximum pressure ratio of nearly 2.5. The 
compression process in the compressor brings the inlet air from the ambient condi-
tion to the high pressure and temperature as well. To maintain the compressed 
charge air with a large mass flow rate for the engine combustion, the intercooler 
cools it after the compressor; otherwise, the air mass flow rate is reduced due to 
low density of the charge air at high temperature. In case of turbochargers with 
high-pressure EGR, the pressure of the recirculated exhaust gas after the cooler 
must be higher than the charge air pressure at the engine inlet. Hence, the pressure 
ratio of the turbine is required high enough to overcome the charge air pressure. 
Generally, the turbine with HP-EGR is designed to be smaller than the one with-
out HP-EGR, so that the exhaust gas pressure remains higher than the compressed 
charge air pressure. Therefore, the engine must works against the high exhaust gas 
pressure at the engine outlet. As a reason, the fuel consumption increases com-
pared to the system without HP-EGR, especially at high turbocharging pressures. 
That is the reason why the HP-EGR valve should be closed as soon as the exhaust 
gas meets the requirements of the current emission law.   

To overcome this disadvantage, the high-pressure EGR valve is replaced in the 
low-pressure site at the turbine outlet. The turbocharger layout shown in Fig.1.2 is 
called turbocharger with low-pressure EGR (LP-EGR). Its advantage is the engine 
working condition against the high pressure of the exhaust gas drops; therefore, 
the fuel performance becomes much more efficient. 

 
 
 
 
     



4 Rotordynamics of Automotive Turbochargers
 

 

intercooler

Engine

air exh. gas

inter-
cooler EGR

C T

soot trap

 

Fig. 1.2 Schematic layout of a single-stage turbocharger with LP-EGR 

However, the LP-EGR turbocharger has two disadvantages: firstly, the low ex-
haust gas pressure of the turbine outlet and pressure drop in the soot trap limit the 
LP-EGR mass flow rate, hence the EGR rate; secondly, the exhaust gas and am-
bient air mix together at the compressor inlet; they are compressed in the com-
pressor to the higher pressure. Due to pressure increase in the compressor wheel, 
the exhaust gas condenses in the compressor wheel, leading to chemical erosion 
on the surface of the wheel. Additionally, the unburned hard particles in the ex-
haust gas impact and damage the aluminum compressor wheel at high rotor 
speeds, especially the blades at the inlet of the compressor wheel. To prevent the 
compressor wheel from such damages, it is usually coated by NiCr coating layer. 
that causes a reduction of the mass flow rate of the charge air and therefore the 
compressor power as well. Due to low-cycle fatigue (LCF) of the driving cycle, 
the lifetime of the compressor wheel is shortened. 

 
b) Biturbochargers 
Bi- or twin-turbo consists of two small turbochargers with the same volumetric 
size; they are parallel setup and operate at the same time in the entire rotor speed 
range (called parallel bi-/twin-turbo). The mass flow rate of the exhaust gas is  
divided into both turbines of the bi-turbo. In case of an engine with four cylinders, 
in which two cylinders provide exhaust gas for each turbocharger, as shown in 
Fig. 1.3. After compression and cooling, both compressors provide the engine 
with the total compressed charge air.  
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Fig. 1.3 Schematic layout of a biturbocharger 

At the small geometry of turbochargers, the rotor generally has small mass iner-
tia moment that speeds up quickly to achieve the maximum torque; therefore, the 
transient behavior of the parallel bi-turbo is strongly improved in the low-end tor-
que (LET). However, a small turbocharger delivers small air mass flow rate that 
alone does not fulfill the required nominal engine power. Hence, both small turbo-
chargers operate parallel to deliver enough compressed charge air for the required 
nominal engine power. 

In case of the sequential bi-turbo that is parallel setup and sequentially operates, 
only one of the bi-turbo, e.g. the left one operates alone at the low engine speed by 
closing the bypass valve. The small turbocharger builds up the charge air pressure 
much earlier, and improves the transient behavior of the turbocharger at the low 
engine speed. At high engine speeds, the other turbocharger (the right one) is addi-
tionally turned on by opening the bypass valve where both turbochargers work  
parallel like the parallel bi-turbo. Hence, the mass flow rate of the charge air in-
creases to empower the engine at the high speeds. To strongly powered W-engines 
with 16 cylinders (e.g. Bugatti Veyron 16.4 Super Sport with a power of nearly 
1200 hp), four single turbochargers (sequential quad turbo) are applied; every tur-
bocharger is used for four cylinders (4 x 4). 

 
c) Two-Stage Turbochargers 
Two-stage turbochargers are used for high-pressure ratios in which two different 
volumetric sizes of turbochargers are sequentially setup and work at the given 
procedure regulated by the bypass valves (s. Fig. 1.4).  Leaving the engine, the 
exhaust gas containing a large enthalpy is at high pressure and temperature; there-
fore, the turbocharger at the primary stage (C1, T1) is smaller than the secondary 
stage (C2, T2). In case of unregulated pressures in sequentially working condition 
for both stages in applications of commercial vehicles, the primary turbocharger is 
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normally about 15% smaller than the single-stage turbocharger; the secondary tur-
bocharger is 15% larger than the single-stage one. 

At the low engine speeds, only the small turbocharger works alone because of 
its small mass inertia moment; therefore, the transient behavior is significantly 
improved compared to the large one. During this time, the bypass valves are 
closed, and the waste gate in the secondary turbine T2 is fully opened, so that the 
secondary turbocharger is nearly decoupled from the two-stage turbocharger. At 
the middle engine speeds from about 1,500 rpm, both turbochargers work sequen-
tially by means of the regulated bypass valves. As soon as the required charge air 
pressure is reached at the high engine speeds, only the secondary turbocharger 
works alone because the larger turbine T2 has a large efficiency at the high rotor 
speeds. In this case, the primary turbocharger will be decoupled from the two-
stage turbocharger in which both bypass valves are fully opened. 

Engine

air exh. gas

C2 T2

T1C1

intercoolers

intercooler

T-bypass

EGR

C-bypass

blow-off valve

primary TC

secondary TC

 

Fig. 1.4 Schematic layout of a regulated 2-stage turbocharger with HP-EGR            

Similar to the earlier turbochargers, the compressed charge air must be cooled 
by the intercoolers before entering the engine in order to maintain a high air mass 
flow rate for the required nominal engine power.   

The pressure ratio of the two-stage turbocharger is displayed in Fig. 1.5. The 
compressor pressure ratio in the full load curve results from the product of  
the pressure ratios of the two compressors of the two-stage turbocharger. Due to 



1   Turbocharging Concepts 7
 

 

the small volumetric size of the primary turbocharger, its pressure load curve 
speeds up faster at the low engine speeds in order to receive a good transient re-
sponse in the low-end torque.    

The engine torques of the single- and two-stage turbochargers are compared to 
each other over the rotor speed of turbocharger, as illustrated in Fig. 1.6. The sin-
gle-stage turbocharger is larger than the primary but smaller than the secondary 
stage of the two-stage turbocharger. Therefore, the transient response of the two-
stage is better than the single-stage. The advantages of the two-stage turbocharger 
are better response behavior, high-pressure ratio of the compressed charge air, and 
higher engine torque in the entire operating speed range.  

       

redm

Cπ

primaryC ,π

ondaryC sec,π

stageC −2,π

Full load curve

 

Fig. 1.5 Pressure ratio of a regulated two-stage turbocharger 
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Fig. 1.6 Engine torques of the single- and two-stage turbochargers 

d) Electrically Driving Turbochargers (EDTC) in Fuel Cells 
Automotive fuel cells are usually PEMFC type (Proton Exchange Membrane Fuel 
Cells). Gaseous hydrogen H2 is supplied to the anode of the membrane electrode 
assembly (MEA) of the fuel cell. At the anode side, hydrogen molecules H2 are 
catalytically split into hydrogen protons H+ and electrons e-. The protons cross 
over the humid membrane to the cathode; the electrons flow over the external load 
circuit to the cathode side of MEA. Oxygen in the supply air reacts with the 
crossed-over hydrogen protons and the electrons in the cathode, resulting in the 
exhaust gases, such as N2, residual O2, and water steam H2O.   

The transport of electrons between the anode and cathode of the MEA produces 
electric power at 250 Volts to 450 Volts DC. The generated electric power de-
pends on the reaction pressure of the supply air and hydrogen in the fuel cell and 
as well as others parameters. Therefore, the charge air pressure should be 1.5 to 2 
bars absolute, so that the fuel cell works in the optimum condition. In this case, the 
single-stage exhaust gas turbocharger compresses the supply air. However, at the 
low power working condition, the exhaust gas temperature is relatively low (be-
tween 80°C and 100°C) and its mass flow rate is quite small. Hence, an electric 
motor is required besides the turbine wheel to drive the compressor additionally. 
At increasing the fuel cell power, the mass flow rate of the exhaust gas increases; 
so, the turbine wheel generates energy enough to drive the compressor alone with-
out the electric motor. In this case, the electric motor is turned off at once in order 
to spare the generated fuel cell power.             

To avoid electric sparks and wear in the coal burst, the electric motor must 
work with a high alternative current supply voltage (VAC) that is inverted from 
the direct current voltage (VDC) of the fuel cell by a DC/AC inverter, as shown  
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in Fig. 1.7. The electric drive turbocharger normally operates at the maximum  
rotor speed of approximately 120,000 rpm because of its large compressor and 
turbine wheels. The used power of the electric motor is too high when the rotor 
speed exceeding 120,000 rpm to fulfill the required transient response τ90 (about 
0.8 s) of the fuel cell. In this case, the fuel cell overall efficiency decreases. As a 
reason, the rotor speed of the EDTC is limited by nearly 120,000 rpm.  
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electrical motor
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Tg=80 to 100 C

EDTC

H2

H2O

D

Pel (VAC)

 

Fig. 1.7 Schematic layout of EDTC in PEM-Fuel Cells 

e) Turbo-Compound  
Turbo-compound consists of a turbocharger and a second power turbine that uses 
the exhaust gas at a still high temperature of the turbocharger to generate an  
additional power for the engine. The turbine shaft is directly geared to the engine 
drive shaft to increase the engine torque, engine power, and as well as the engine 
efficiency.   

1.3   Regulation of the Charge Air Pressure 

There are three kinds of regulation of the charge air (i.e. compressed intake air) 
pressure in the automotive and industrial turbochargers: unregulated, wastegated 
(WG), and variable turbine geometry (VTG) turbochargers. The pressure ratio of 
the charge air varies from 2.0 to 2.5 in passenger vehicles, and 3.5 to 4.0 in com-
mercial vehicles.    
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There is neither waste gate (WG) nor variable turbine geometry (VTG) in the 
unregulated turbochargers that are mostly applied to the commercial vehicles.      
Figure 1.8 shows the unregulated pressures of the exhaust gas and charge air in the 
engine. At increasing the engine speeds, more charge air is required; therefore, the 
charge air pressure is increased from the ambient pressure to the maximum pres-
sure for the engine combustion. The charge air pressure is always higher than the 
exhaust gas pressure in the unregulated turbochargers.   

p/bar abs

Nengine /rpmNmax

1

 

Fig. 1.8 Unregulated pressures vs. engine speed 

In case of the regulation of the charge air pressure, two measures are used in tur-
bochargers: waste gate (WG) and variable turbine geometry (VTG). The pressure 
behavior of the wastegated turbocharger is shown in Fig. 1.9. As soon as the turbo-
charger reaches the maximum torque, the waste gate in the turbine is continuously 
open to regulate the charge air pressure remaining nearly constant. At high engine 
speeds, the exhaust gas pressure increases even higher than the charge air pressure 
because the flow resistance of the exhaust gas in the catalytic converter (CAT), di-
esel particle filter (DPF), and muffler increases with the mass flow rate. 
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Fig. 1.9 Regulated pressures of a wastegated turbocharger 

Figure 1.10 shows the pressure behavior of a VTG turbocharger versus the en-
gine speed. At low engine speeds, the VTG is in the minimum open position (i.e. 
min-flow position). Therefore, the exhaust gas pressure increases higher than the 
charge air pressure.  After reaching the maximum torque, the VTG continuously 
further opens at increasing the engine speed in order to regulate the charge air 
pressure remaining constant. Shortly after opening the VTG, drops the exhaust gas 
pressure a little bit lower than the charge air pressure; then, it increases over the 
charge air pressure at high engine speeds. The pressure drop of the exhaust gas is 
resulted from suddenly opening the VTG. After that, the VTG continuously opens 
at increasing the mass flow rate of the exhaust gas to the maximum engine speed 
in order to keep the charge air pressure constant. At increasing the engine speed, 
more exhaust gas is produced, leading to the increase of the exhaust gas pressure 
due to the high flow resistance of the exhaust gas in the exhaust system containing 
the catalytic converter, diesel particle filter, and muffler.    
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Fig. 1.10 Regulated pressures of a VTG turbocharger 

1.4   Required Charge Air Pressure of Downsized Engines 

Depending on the engine power, cylinder volumetric size, and number of cylind-
ers, the charge air pressure is determined at every engine speed. The engine power 
is calculated in      

       a

f
ffafffe m

m
QmQmP ηη ==                                (1.1) 

where 

af mm ,  are the mass flow rates of fuel and charge air; 

fη is
 
the fuel combustion efficiency; 

fQ is the fuel heating value.           

The air-fuel ratio is defined as 

f

a

m

m
AFR ≡                                                     (1.2) 

The air-fuel ratio varies from 12 to 18 in applications to SI engines (spark-ignition 
gasoline engines) and from 18 to 70 to CI engines (compression-ignition diesel 
engines).  

The required air mass flow rate for the engine combustion is resulted from the 
air density ρa, the cylinder total volume Vcyl, and the engine speed N as follows: 

R
cylavola n

N
Vm ρη=                                           (1.3) 
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within 

Vcyl = zVc where z is the number of cylinders,  
Vc is the single cylinder volume; 
ηvol is the volumetric efficiency; 
N is the engine speed;

 

nR = 1 for two-stroke; = 2 for four-stroke engine. 

The λ number (called relative air-fuel ratio) defines the ratio of the required air 
mass flow rate to the stoichiometric one for the combustion. 

stoicha

a

m

m

,

=λ                                                (1.4) 

The relative air-fuel ratio can be rewritten in the air-fuel ratio of the required AFR 
and the stoichiometric one as follows: 

stoichAFR

AFR=λ                                              (1.5) 

where 
λ = 1 at stoichiometric combustion; 
λ < 1 at rich mixture (more unburned hydrocarbons in the exhaust gas);  
λ > 1 at lean mixture (more residual oxygen in the exhaust gas).  

In a stoichiometric combustion of gasoline with octane fuel (C8H18), AFRstoich 
equals 14.7. In applications of the SI gasoline engines, λ would be chosen between 
0.9 to 1.1 for an optimal fuel consumption and engine power. 

Having combined equations (1.1), (1.2), and (1.3), the engine power becomes  

AFR
Q

n

N
VP ff

R
cylavole

1ηρη ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=                             (1.6) 

In case of downsizing engines by means of smaller cylinder volume Vcyl (i.e., less 
number of cylinders or smaller volume of each cylinder), the air density must  
be increased, so that the required nominal engine power is arrived according  
to eq. (1.6).  

The smaller engine has less friction between the cylinders and pistons. Hence, 
the fuel mileage MPG (miles per gallon) is improved. In the turbocharged original 
engine, the cylinder volume remains unchanged; however, the engine power in-
creases due to high density of the charge air. The density of charge air is increased 
by means of turbocharging. Assumed that the charge air is an ideal gas, the charge 
air pressure results in 

aaaa TRp ρ=                                                  (1.7) 

where 
ρa is the charge air density; 
Ra is the charge air gas constant; 
Ta is the charge air temperature. 
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Inserting eq. (1.7) in eq. (1.6), the engine power becomes at the engine speed N 
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The charge air temperature is calculated by 
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where 
T1 is the inlet temperature of the intake air; 
p1 is the inlet pressure of the intake air; 
pa is the charge air pressure; 
ηC is the isentropic compressor efficiency; 
κa is the isentropic exponent of the charge air (≈ 1.4). 

Thus, the density ratio of the charge air to the ambient air is resulted from the state 
equation of an ideal gas. 
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where πC is the compression ratio of the charge air. 
Figure 1.11 shows the density ratio and temperature of the charge air versus the 

compression ratio. The charge air density increases without using a charge-air in-
tercooler to about two times the ambient air density at the compression ratio of 3, 
and an average compressor efficiency of 75%. In this case, the charge air tempera-
ture Ta rises from the ambient air temperature T1 of 20°C to nearly 165°C. Note 
that the lower the compressor efficiency, the higher the charger air temperature, 
and the lower the charge air density, leading to the smaller mass flow rate of the 
charge air, in turn to reducing the engine power according to eq. (1.6). On the  
contrary, by the ideal isothermal intercooling after the compression, the charge air 
density is triple the ambient air density at the compression ratio of 3; i.e., 50% more 
than the charge air density in case of without using a charger-air intercooler. In 
practice, the density ratio of the charge air at the compression ratio of 3 is between 
2 and 3 by using a charge-air intercooler in the turbocharger (s. Section 2.5). 
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Fig. 1.11 Density ratio and temperature of the charge air at T1 = 20°C  

The engine torque Me is resulted from the engine power Pe and its rotational speed 
ωe. 

eeee NMMP πω 2==                                          (1.11) 

Thus, 

AFR
Q

nTR
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⎝

⎛
=                               (1.12) 

Equations (1.8) and (1.12) indicate that the engine power Pe and engine torque Me 
do not increase so much even at high charge air pressure pa when the charge air 
temperature Ta also increases. That is the reason why the charge air must be 
cooled after the compressor, as shown in Section 1.2. Note that the charge air den-
sity is the key issue in the engine turbocharging according to eq. (1.6), not the 
charge air pressure. To satisfy the requirement of the engine power and engine 
torque of the downsized engines, the charge air density must be increased by in-
creasing the pressure and reducing the temperature of the charge air according to 
eqs (1.8), (1.9), and (1.10). Therefore, the turbocharger with intercoolers is applied 
to increasing the charge air mass flow rate of the turbocharger.      

The mean effective pressure pme of the engine is used to characterize the engine 
performance; it is defined as the engine work produced in a cycle per the total cy-
linder volume displaced in the same cycle.     
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In order to maintain the same engine power of the downsized engine by reducing 
the total cylinder volume, the mean effective pressure pme must be increased by 
turbocharging. 

R

cylme
e n

NVp
P =

  

                                            (1.14) 

To estimate the fuel consumption of the engine, the brake specific fuel consump-
tion (bsfc) is defined as the required fuel mass flow rate per unit power of the  
engine.    

e

f

P

m
bsfc =                                                      (1.15) 

The brake specific fuel consumption bsfc has the unit g/(kW.s) or g/kJ depending 
on the working conditions. 
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Chapter 2 

Thermodynamics of Turbochargers 

2.1   Thermodynamic Characteristics 

Some essential thermodynamic characteristics of gases are needed to know in the 
turbocharging. They have been usually applied to the turbocharging of engines, 
where the charge air and exhaust gas are assumed as compressible ideal gases.   

• Total temperature Tt in Kelvin (K) is resulted from the sum of the static Ts (K) 
and dynamic temperatures Tdyn (K). The static temperature is measured at the 
wall, where the gas velocity equals zero due to the viscous boundary layer.  

p
sdynst c

c
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2

+=+=                                                              (2.1) 

where c is the gas velocity, cp is the heat capacity at constant pressure. 

• Total pressure pt is calculated from the isentropic gas equation as follows: 
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      where ps is the static pressure; κ = cp/cv, the isentropic exponent of gas;          
M is the Mach number of gas (M = c/a), in which a is the sonic speed.  

• Specific total enthalpy ht is resulted from the sum of the gas specific enthalpy 
and specific kinetic energy of gas. 

2

2c
hht +=                                                    (2.3) 

where the gas specific enthalpy h (enthalpy per mass unit, J/kg) is defined.  

ρ
p

uTTch p +=−= )( 0                                        (2.4) 
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within ρ is the gas density; T0 is the reference temperature; u is the specific  
internal energy of gas that equals the product of the heat capacity at constant 
volume cv and temperature difference of gas ΔT; therefore, u = cv.ΔT.  

2.2   Efficiencies of Compressor and Turbine 

The compression process in the compressor is a polytropic process with increasing 
entropy due to friction and losses in the compressor. Figure 2.1 shows the com-
pression process of the intake air 1→ 2, from the ambient pressure p1 to the  
required charge air pressure p2. The compressor efficiency ηC is defined as the  
ratio of the isentropic total enthalpy change from 1t to 2st to the polytropic total 
enthalpy change from 1t to 2t. In other words, the compressor needs more energy 
in the polytropic compression process to compress the intake air from the state 1 
to state 2 than the possibly minimal required energy of the compressor stage in the 
isentropic compression process.     
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Fig. 2.1 Compression process in the compressor stage 

The total–total isentropic efficiency of the compressor stage (further called 
compressor) consisting of the compressor wheel and diffuser is expressed in  
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(2.5) 

The total–total isentropic efficiency is generally used in the compressor since the 
kinetic energy of gas in the state 2 is transformed into the pressure energy in the 
diffuser to further increase the pressure of charge air.   
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Having used thermodynamic equations for the isentropic process, the compres-
sor efficiency can be written in the total pressures and temperatures at the inlet and 
outlet of the compressor, and the isentropic exponent of the charge air κa (≈ 1.4).   
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The compressor efficiency is determined by measuring the total pressures and 
temperatures at the inlet and outlet of the compressor according to Eq. (2.6). The   
maximum total–total isentropic efficiency of the compressor ηC is normally be-
tween 70% and 80% at the design point of the compressor wheel. 

Analogous to the compressor, the efficiency of turbine is resulted from the po-
lytropic expansion process of the exhaust gas 3 → 4, from the exhaust gas pres-
sure p3 to the turbine outlet pressure p4 (s. Fig. 2.2). The turbine efficiency ηT is 
defined as the ratio of the polytropic total enthalpy change from 3t to 4t to the 
isentropic total enthalpy change from 3t to 4s. Physically speaking, the turbine de-
livers less output energy due to friction and losses in the polytropic expansion 
process than the possibly maximum energy given in the isentropic process. 
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Fig. 2.2 Expansion process in the turbine stage 

The total-static isentropic efficiency of the turbine stage (further called turbine) 
consisting of the turbine wheel and variable turbine geometry (VTG) or waste gate 
(WG) is written as  
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The total-static isentropic efficiency is normally used in the turbine since the  
kinetic energy of gas in the state 4 does not generate the turbine power any longer.   

Having applied thermodynamic equations to the isentropic process, the turbine 
efficiency can be expressed in the total pressure and temperature at the inlet and 
outlet of the turbine, and the isentropic exponent of the exhaust gas κg (≈ 1.32).   
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(2.8) 

The turbine efficiency is determined by measuring the total pressure and tempera-
ture at the inlet and outlet of the turbine according to Eq. (2.8). The maximum  
total-static isentropic efficiency of the turbine ηT is normally between 65% and 
70% at the design point of the turbine wheel. 

2.3   Turbocharger Equations 

The turbocharger consists of the turbine, compressor, and core unit (CHRA: center 
housing and rotating assembly) including the rotor and bearing system. Both tur-
bine and compressor wheels are fixed in the rotor shaft that is supported on the 
bearing system of the radial and thrust bearings. The rotating shaft including the 
compressor wheel, turbine wheel, thrust rings, radial bearings, and seal rings is 
called the rotor of the turbocharger.  

Due to expanding the exhaust gas of the engine in the turbine, it generates the 
turbine power that depends on the mass flow rate of the exhaust gas through  
the turbine and the isentropic enthalpy drop in the turbine. The effective turbine 
power results in  

sTTTT hmP Δ= η                                              (2.9) 

The isentropic enthalpy drop in the turbine stage is calculated by using some 
thermodynamic equations. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Δ

⎟
⎠
⎞

⎜
⎝
⎛ −

g

p

p
Tch gpsT

κ
κ 1

3

4
3, 1                             (2.10) 



2   Thermodynamics of Turbochargers 21
 

By inserting Eq. (2.10) in Eq. (2.9), one obtains the effective turbine power in a 
function of the mass flow rate, inlet temperature, and pressure ratio of the turbine.  
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Due to the friction loss in the bearing system, the required compressor power 
equals the effective turbine power reduced by the mechanical efficiency ηm. 
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Analogously, the required compressor power to compress the intake air is calcu-
lated from the ideal compressor power at the isentropic compression and compres-
sor efficiency. 
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where  
ΔhsC is the increase of  the isentropic enthalpy in the compressor. 

Thus,  

The required compressor power of the charge air is written as a function of the 
mass flow rate, inlet temperature, and pressure ratio of the compressor.  
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Having combined Eqs (2.12) and (2.14), one obtains the pressure ratio of the com-
pressor πC in the first turbocharger equation. 
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within the overall efficiency of the turbocharger ηTC is written as 

    CTmTC ηηηη =                                             (2.16) 
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To achieve the high boost pressure of the charge air p2, the compressor pressure 
ratio πC could be improved according to the first turbocharger equation (2.15) if    

- the overall turbocharger efficiency ηTC is high, especially a high mechanical  
efficiency of the bearing system in low-end torque;   

- the exhaust gas temperature T3 is high due to the large enthalpy. Hence, more  
turbine power is generated; 

- the turbine pressure ratio πT (called turbine expansion ratio) is as high as possi-
ble; 

- the inlet air temperature T1 is as low as possible, so that the charge air tempera-
ture T2 is low, leading to a high density of the charge air;   

- the exhaust gas pressure p3 is chosen at an optimal pressure in order to compro-
mise between the turbine power and specific fuel consumption; 

- the mass flow rate of the exhaust gas through the turbine is large. 

The first turbocharger equation (2.15) shows the behavior of the pressure ratio πC 
(≡ p2/p1) of the compressor versus the pressure ratio πT (≡ p3/p4) of the turbine. In 
fact, the term δ in the angle brackets 〈 〉  of Eq. (2.15) does not change so much 
along the full load curve of the compressor in the operating engine speed range. 
Therefore, the behavior of the pressure ratios of turbine and compressor can be 
displayed at various dimensionless parameters in the angle brackets 〈 〉 of Eq. 
(2.15), as shown in Fig. 2.3.    
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Fig. 2.3 Behavior of the pressure ratios πC versus πT 
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The exhaust gas flow in the turbine can be considered as the flow in a nozzle 
where the inlet and outlet pressures are p3 and p4, respectively. Based on the flow 
equation for compressible fluids in the nozzle, the second turbocharger equation 
describes the mass flow rate through the turbine in a function of the pressure, tem-
perature at the turbine inlet, and the turbine expansion ratio.  
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where 
µ  is the flow coefficient due friction and flow contraction at the nozzle outlet; 
AT is the throttle cross-sectional area in the turbine wheel.  

To eliminate the influences of p3t and T3t on the mass flow rate in the turbine 
shown in Eq. (2.17), the so-called corrected mass flow rate is defined as follows: 
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(2.18) 

Eq. (2.18) indicates that the corrected mass flow rate of the turbine is independent 
of the inlet condition of the exhaust gas of p3t and T3t; it depends only on the tur-
bine expansion ratio πT,ts. 

The performance map of the turbine displays the corrected mass flow rate over 
the turbine expansion ratio πT,ts according to Eq. (2.18) at various rotor speeds in 
Fig. 2.4. From a turbine pressure ratio of approximately 3, the mass flow rate  
has no longer increased, even at higher rotor speeds. In this case, the flow in the 
turbine becomes a choke flow, where the exhaust gas speed at the throttle area has 
reached the sonic speed at Mach number Ma = 1. As a reason, the exhaust gas 
mass flow rate through the turbine corresponding to the nominal engine power 
must be smaller than the choke mass flow rate. Notice that the isentropic turbine 
efficiency at the choked flow condition is extremely low (ηT < 60%) that is unusa-
ble in the turbochargers.         
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Fig. 2.4 Performance map of the turbine 

The mechanical efficiency of turbocharger induced by the bearing friction is re-
sulted from Eq. (2.12).  
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Thus, the efficiency product of the mechanical and turbine efficiencies is written 
by using Eqs (2.14) and (2.19) in 
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The efficiency ηmηT described in Eq. (2.20) is a key part in the overall efficiency 
of the turbocharger. It is determined by measuring the thermodynamic characteris-
tics given in Eq. (2.20), such as the mass flow rates in the compressor and turbine, 
temperatures T1 and T3, compressor efficiency ηC, pressures at the compressor  
in- and outlet p1 and p2, and as well as pressures at the  turbine in- and outlet p3 
and p4. Figure 2.5 displays the efficiency ηmηT versus pressure ratio of turbine πT,ts 
at various speeds of the turbocharger. 



2   Thermodynamics of Turbochargers 25
 

4

3
, p

p t
tsT =π

Tmηη

1.0

NTC increases

Tπ

0.7

Nmin

Nmax

  

Fig. 2.5 Efficiency ηmηT versus πT,ts at various speeds of the turbocharger 

At low rotor speeds corresponding to the low-pressure ratios πT, the mechanical 
efficiency is quite small due to large bearing friction at the low oil temperature in 
the bearings; additionally, the turbine efficiency is also small because of the aero-
dynamic working condition at the low rotor speed. Therefore, the resulting effi-
ciency ηmηT remains low.  

At the design point, the turbine efficiency is maximal while the mechanical  
efficiency of the bearings could increase a little bit due to the increased oil tem-
perature in the bearings and high rotor speed at the same time. As a reason, the  
efficiency ηmηT reaches the maximum value at the turbine pressure ratio of the  
design point.  

As the rotor speed further increases to the maximum speed, the turbine effi-
ciency drops due to the aerodynamic working condition at the high speeds, and the 
mechanical efficiency decreases because the bearing friction increases at high ro-
tor speeds. Hence, the efficiency ηmηT decreases with the turbine pressure ratio.  

However, the efficiency ηmηT depends not only on the turbine pressure ratio 
but also on the position of VTG (variable turbine geometry), as shown in Fig. 
2.6. Initially, the VTG is open at the min-flow condition for the minimum mass 
flow rate that is called 0% VTG (position 1) at the idle condition of the engine. 
The efficiency ηmηT increases with the turbine pressure ratio because the turbine 
efficiency becomes larger at high mass flow rates corresponding to the increased 
turbine pressure ratio. Then, the VTG is partly open at 30% VTG (position 2); at 
increasing the turbine pressure ratio, the corrected mass flow rate through the 
turbine rises, leading to the high turbine efficiency. Hence, the efficiency ηmηT 
increases since the turbine pressure ratio rises, as shown in Fig. 2.5. Hence, the 
efficiency ηmηT is higher than the efficiency at the position 1. At the further open 
position of 70% VTG (position 3), the turbine efficiency begins decreasing at  
the high mass flow rates corresponding to the large turbine pressure ratios. Final-
ly, the VTG is fully open at 100% VTG (position 4); the mass flow rate  
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Fig. 2.6 Efficiency ηmηT versus πT,ts at various VTG positions  

significantly increases in the turbine at increasing the turbine pressure ratio, there-
fore the turbine efficiency reduces with the turbine-pressure ratio. As a result, the 
efficiency ηmηT drops with the turbine-pressure ratio, as illustrated in Fig. 2.6.              

The performance map of the compressor shows the compressor ratio πC versus 
the corrected mass flow rate, as displayed in Figure 2.7. 
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Fig. 2.7 Performance map of the compressor 
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At low speeds of the turbocharger from about 30% of the maximum rotor speed 

Nmax at the idle condition, the pressure ratio relatively increases with a large pres-
sure gradient to satisfy the requirement of a good transient response in low-end 
torque. At further increasing the rotor speed N to nearly 70% of Nmax, the com-
pressor pressure ratio increases to approximately 2.5, and the engine achieves the 
maximum torque T1. Due to the reduced turbine efficiency at the high rotor 
speeds, in turn reducing the overall efficiency of the turbocharger, the compressor-
pressure ratio decreases at the nominal engine power Pnom in the full load curve 
according to the first turbocharger equation (2.15).         

2.4   Response Time of Turbochargers 

The response time is an important characteristic dealing with turbolag in the au-
tomotive turbochargers. The turbolag is the delayed time that the turbocharger 
needs to reach the maximum engine torque after speeding–up.   

To characterize the turbolag of the turbocharger, the response time τ90 is de-
fined as the time required to reach 90% of the maximum engine torque T1 in low-
end torque LET (s. Fig. 2.7). The response time τ90 is resulted from the effective 
turbine power and the polar mass inertia moment of the rotor.  

The angular acceleration of the rotor is calculated from the turbocharger dy-
namics equation.  

Ω=−  θη pCTm IPP                                          (2.21) 

At acceleration in LET, the compressor power is relatively small compared to the 
turbine power. Therefore, the effective turbine power mostly accelerates the rotor 
to the angular rotor speed Ω. 

Ω≈  θη pTm IP                                                 (2.22) 

The rotor speed NTC of the turbocharger in LET is resulted from eq. (2.22).   
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By integrating the angular acceleration during the response time τ90, one obtains 
the average angular rotor velocity in LET 
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where 

 θ is the average angular rotor acceleration in the response time.  
Having substituted Eqs (2.22) and (2.24), and eliminated the average angular acce-
leration, the response time of the turbocharger results in 
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where  
Ip is the polar mass inertia moment of the rotor;  
PT is the effective turbine power;  
ηm is the mechanical efficiency of the bearings. 

To have a good transient response of the turbocharger, it is necessary to keep the 
response time τ90 as small as possible at the given rotor speed Ω90. Unfortunately, 
the effective turbine power PT is relatively small in the low-end torque (LET); 
therefore, the response time τ90 tends to become large, leading to the large turbo-
lag. However, there are some improving measures according to Eq. (2.25):  

1. The polar mass inertia moment Ip of the rotor should be small. The turbine wheel 
plays a key role in the entire polar mass inertia moment of the rotor due to its 
heavy mass of Inconel 713C. The polar mass inertia moment of the turbine 
wheel is proportional to its mass m and wheel diameter squared (D2); because of 
m ∼ ρD3, the polar mass inertia moment of the turbine wheel is written in  

pTWp IDmDI ∝∝∝ 52
, ρ                                   

 
(2.26) 

Therefore, in order to reduce the inertia moment of the turbine wheel, there are 
some possibilities as follows: 

- The turbine wheel should be lighter, such as using a light Titanium aluminide 
TiAl6V4 (ρ = 4.45 g/cm³)  instead of the heavy Inconel 713C (ρ = 7.91 g/cm³); 

- The turbine wheel is scalloped at the back face to reduce its mass; however, 
the turbine efficiency ηT could be reduced by 2% to 3% due to the inappro-
priate aerodynamic flow condition at the scalloped back face, leading to reduc-
ing the effective turbine power PT according to Eq. (2.11); 

- The turbine wheel diameter D should be reduced to decrease to the polar iner-
tia moment, and to increase the turbine efficiency ηT at low rotor speeds, lead-
ing to the increase of the effective turbine power PT. However, the small  
turbine has some negative effects, such as low turbine efficiency ηT at high ro-
tor speeds and as well as small mass flow rate; in turn, reducing the nominal 
turbine power and having low turbine efficiency ηT at the high rotor speeds. 

2. The mechanical efficiency ηm should be increased by using airfoil bearings, 
magnetic bearings, rolling element bearings, or rotating floating ring bearings 
with two oil films. Generally, the rolling-element bearings generate less friction 
power, especially in LET.  Contrary to the ball bearings, oil-film bearings induce 
a little bit more friction power in LET because the effective oil viscosity in the 
bearing is relatively high at low rotor speeds. In fact, the ratio of the bearing fric-
tion to turbine power is relatively high due to the small effective turbine power 
PT generated in LET compared to the ratio at high rotor speeds. However, the 
discrepancy between the friction coefficients of the rolling element and rotating 
floating ring bearings is negligible at high rotor speeds. Note that the rolling 
element bearings cost nearly 10 times more than the oil-film bearings.   

Therefore, it is recommended to carefully decide which material of the turbine 
wheel should be used, the suitable diameter of the turbine wheel, either scalloped 
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or unscalloped turbine wheel. In addition, which bearing system one applies to the 
turbochargers in compromise between the transient response and production cost. 

2.5   Turbocharger Matching 

In the following section, the procedure of turbocharger matching based on the en-
gine characteristics, compressor performance map, first turbocharger equation, 
and turbine performance map is shown in Fig. 2.8.       
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Fig. 2.8 Procedure of turbocharger matching 

The following steps are carried out in the procedure of turbocharger matching: 

1) From the engine characteristics (s. Fig. 2.8 bottom left), the working area of 
the turbocharging in the compressor map is determined at the various operating 
points, such as low-end torque (LET), maximum torque, design point, and no-
minal power of the engine. At an operating point, the required mass flow rate 
of the charge air at the given turbocharger speed for the engine is resulted from 
the engine power according to equations (1.1) and (1.2). Then, the necessary 
charge air density for the engine is given by eq. (1.3); the compression ratio of 
the charge air without using the air intercooler is calculated from eq. (1.10). 
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Otherwise, by using the air intercooler after the compressor (s. Fig. 2.9), the 
charge air temperature T2 is reduced at a lower temperature T2*, leading to the 
increase of the charge air density ρ2*.  

The charge air temperature T2* after the intercooler is calculated from the com-
pressed charge air temperature T2 given in eq. (1.9), coolant inlet temperature Tc, 
and intercooler efficiency εc (normally between 0.6 and 0.8) as follows: 

22*2 )1( TTTT ccc <+−= εε                                  (2.27) 

Thus, the charge air temperature at using the air intercooler has decreased by  

 0)( 22*2*2 <−=−≡Δ TTTTT ccε                               
 (2.28) 

Therefore, the charge air density increases from ρ2 to ρ2* at a small pressure drop 
in the intercooler. It is given by using the state equation of an ideal gas. 
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where Δpc is the pressure drop in the charge air intercooler. 
Substituting eqs (1.9), (2.27), and (2.29) gives the compression ratio of the com-

pressor with using the air intercooler. It is resulted by iteratively solving eq. (2.30).  
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where the charge air density ρ2* is given by the engine requirement, and κa (≈ 1.4) 
is the isentropic exponent of the charge air.   
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Fig. 2.9 Compressor with the charge air intercooler 
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2) The operating point of the turbocharger is located in the compressor perfor-
mance map (s. Fig. 2.8 top left) at the given mass flow rate and compression 
ratio of the charge air that we have just computed in the earlier step. The value 
δ in the diagram of the first turbocharger equation, as shown in Fig. 2.8 (top 
right), involves the mass flow rates of the charge air and exhaust gas, the tem-
peratures of the exhaust gas and intake air, and the turbocharger efficiency. It 
is resulted from the working condition of the engine and the guessed or meas-
ured efficiency of the turbocharger. 

3) From the given compression ratio πC and value δ, the expansion ratio πT of the 
turbine corresponding to the operating point is determined in the diagram of 
the first turbocharger equation, as displayed in Fig. 2.8 (top right).        

4) Both mass flow rate and expansion ratio of the turbine given by the steps 2 and 
3 are used to determine the operating point of the turbocharger in the turbine 
performance map. The operating point gives the corresponding VTG angular 
position. Figure 2.8 (bottom right) shows the angular position of 75% VTG; 
i.e., the VTG opens at 75% of the maximum angle (100% VTG) from the min-
flow position (0% VTG). Note that the mass flow rate of the exhaust gas, 
which is identical with the mass flow rate of the VTG turbine, equals the mass 
flow rates of the charge air and injected fuel in the cylinders based on the air-
fuel ratio AFR defined in eq. (1.2). Therefore, the mass flow rate of the ex-
haust gas is written in 
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(2.31) 

By using the turbomachinery theory, the outlet diameter D2 (exducer diameter) of 
the compressor wheel and the inlet diameter D3 (inducer diameter) of the turbine 
wheel are computed at the given effective powers and mass flow rates of the com-
pressor and turbine, mechanical efficiency, and turbocharger speed. The procedure 
of turbocharger matching is iterated until the guessed values, such as the efficien-
cies of the compressor and turbine, efficiency of the air intercooler, etc. are con-
verged. Furthermore, the computed values could be rematched with the measured 
efficiencies as soon as they are available.            
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Chapter 3 
Vibrations of Turbochargers 

3.1   Introduction 

Exhaust gas turbochargers used in the automobiles, such as passenger, on-road 
vehicles, and off-road engines have some discrepancies to the heavy turboma-
chines applied to the power plants and chemical industries. The first ones are 
much smaller and work at high rotor speeds in various operating conditions, such 
as variable rotor speeds, pressures, temperatures, and as well as mass flow rates. 
Contrary to the automotive turbochargers, the industrial turbomachines are bigger, 
heavier and mostly operate at a stationary working condition. Due to their large 
sizes of compressor and turbine wheels, the turbomachines only operate at low ro-
tor speeds between 3,000 to 20,000 rpm. The maximum circumferential velocities 
of the turbine and compressor wheels used in the automotive turbochargers  
are approximately 530 and 560 m/s, respectively. The maximum circumferential  
velocities of the compressor and turbine wheels are determined by the durability 
of materials at various driving cycles. Their thermo-mechanical characteristics and 
lifetime depend on the using material, producing method, and as well as driving 
cycles.      

The key issue of the discrepancies is the U2W ratio (called Unbalance to 
Weight) of the maximum unbalance force FU acting upon the rotor to the rotor 
weight FW. In case of automotive turbochargers, the excited unbalance forces are 
much larger than their rotor weights due to the very high rotor speeds; hence, the 
U2W ratio is in the order of approximately 100. Contrary to turbochargers, the 
U2W ratio of the industrial turbomachines is in the order of about 1 because of 
their heavy weights and extremely low rotor speeds, as shown in Table 3.1.   

Table 3.1 U2W ratio of turbochargers and turbomachines 

Types
Rotor speed

N (rpm)

Residual
unbalance        

U (g.mm/plane)

Max. unbalance 
force
FU (N)

Weight
FW (N)

Ratio U2W

Automotive 
turbochargers

150,000 to 
300,000

0.1 to 1.0 200 to 500 1 to 5 ≥ 100

Industrial, aero. 
turbomachines

3,000 to 20,000 G2.5* 550 to 1,000
1,000 to 
10,000

≤ 1

* According to the balancing quality grade G2.5 (DIN-ISO 1940-1)  .
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The U2W ratio shows different behaviors of the rotordynamics between the au-
tomotive turbochargers and industrial turbomachines. In case of the automotive 
turbochargers using the oil-film bearings, the journal initially lies nearly in the 
bearing center because of its small weight. After increasing the rotor speed, it 
moves from the bearing center outwards to the bearing wall due to the large un-
balance force (nearly 100 times higher than its rotor weight at the high rotor 
speeds, U2W >> 1). After the rotor reaches the resonance, the journal turns back-
wards to the bearing center because of the self-centering of the rotor. It indicates 
that the journal of the turbochargers moves with the operating rotor speeds in the 
entire bearing clearance. 

Contrary to the turbochargers, the journal of the industrial turbomachines is in-
itially near the bearing bottom at low rotor speeds due to their heavy rotor weight. 
Because the excited unbalance force is much smaller than the rotor weight (U2W 
< 1), the journal cannot move far away from the equilibrium position; hence, the 
journal orbit is smaller and more stable compared to the turbocharger rotors. On 
the contrary, the orbit of the journal locus of turbochargers moves with the operat-
ing rotor speeds in a large range of the bearing clearance. Therefore, the bearing 
stiffness and damping coefficients of change nonlinearly with the rotor speeds. 
The larger the journal locus eccentricity, the higher the stiffness and damping 
coefficients of the oil-film bearing are. The response behavior of the bearing  
stiffness and damping coefficients versus the journal eccentricity ε is displayed in 
Fig. 3.1. In the near of the bearing center (ε = 0), the bearing stiffness and damp-
ing coefficients have minimum values because the oil film thickness is maximum 
and nearly equals the radial bearing clearance. As the rotor journal moves near to 
the bearing wall (ε = 1), the oil film is squeezed due to the large eccentricity and 
the high whirl speed of the journal in the bearing, hence the bearing stiffness and 
damping coefficients increase drastically near the bearing wall.  

0
0

ε+1

k, c

bearing center bearing wall

bearing stiffness coefficient  k

bearing damping coefficient  c

linearized 
characteristics

εeq
 

Fig. 3.1 Stiffness and damping coefficients of the oil film bearings versus journal eccentricity ε  
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The stiffness and damping coefficients of the oil-film bearing obviously have a 
nonlinear characteristic versus the journal eccentricity, as shown in Fig. 3.1. As a 
reason, the induced bearing force acting upon the rotor is nonlinear as the journal 
locus moves in the entire bearing clearance. That is the case of the automotive tur-
bochargers at U2W >> 1. 

In the industrial turbomachines, the journal orbit does not move so far from the 
equilibrium position in the bearing clearance; i.e., in a small orbit of the journal 
locus. Therefore, the bearing stiffness and damping coefficients can be linearized 
at the vicinity of the equilibrium position of the journal εeq. In fact, rotordynamic 
behaviors of the industrial turbomachines supported by the oil-film bearings are 
normally quasi-linear.   

3.2   Vibration Modes of Turbochargers 

In the application of automotive turbochargers, the torsional vibration amplitudes 
of the rotor is relatively small compared to the lateral bending amplitudes caused 
by the rotor unbalance, especially at extremely high rotor speeds. Therefore, only 
degrees of freedom (DOF) in the lateral deflection of the rotor are taken into ac-
count in the rotordynamic analyses. The free vibration rotor responses of the linear 
system consist of many harmonic components with their eigenfrequencies and ei-
genmodes. On the contrary, the nonlinear vibration responses of turbochargers in-
clude not only the synchronous (harmonic) but also sub- and supersynchronous 
frequency components due to the nonlinear phenomena. Hence, the vibration 
modes of the nonlinear rotor responses have the shapes resulted from the combina-
tion of the modes of the synchronous and nonsynchronous vibrations.  

Figure 3.2 shows the layout of a simplified rotor of turbochargers where the 
turbine and compressor wheels are mounted in the rotor shaft. The rotor is sup-
ported by two oil-film bearings located between the two wheels. After the low-
speed balancing (called shop balancing), a residual unbalance UTW remains in the 
turbine shaft; a residual unbalance UCW, in the compressor wheel after the high-
speed balancing (called trim balancing). In case of both unbalance vectors have 
the same direction, the rotor unbalance is called the "in-phase couple" unbalance, 
and when the directions of the unbalance vectors are opposite to each other, the 
"out-of-phase couple" unbalance is resulted. The out-of-phase couple unbalance 
normally provides a good rotordynamic behavior because it leads to the smallest 
residual unbalance vector. In practice, after assembling the compressor wheel in 
the turbine shaft, the angle of the unbalance vectors is unknown between 0° and 
180°.  

The unbalance excites the rotor due to the centrifugal forces as the rotor 
speed Ω increases. The unbalance force equals the product of the unbalance U and 
rotor speed squared Ω² , hence FUn = UΩ² (s. Chapter 8). At the low rotor speeds, 
the unbalance force remains small, and the journal locates nearly at the bearing 
center due to small weight of the rotor. In this case, the bearing has a small stiff-
ness coefficient, as shown in Fig. 3.1; therefore, the rotor behaves as a rigid rotor.  
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Fig. 3.2 An unbalanced rotor supported by oil-film bearings  

The vibration modes of the rotor are displayed in Fig. 3.3. At the low rotor 
speeds, the rotor is still rigid, the first mode has the cylindrical shape whirling in-
side the bearing clearance where both compressor and turbine wheels whirl in the 
same direction with a whirl velocity ω (called cylindrical mode). The second 
mode is the conical mode where the compressor wheel whirls opposite to the 
whirling direction of the turbine wheel (called conical mode). Finally, the third 
mode is the bending mode for further increasing the rotor speed where both 
wheels whirl in the same whirling direction again. 

At the high rotor speeds, the unbalance force strongly increases with the rotor 
speed squared; thus, the journal moves outwards to the bearing wall. As a reason, 
the bearing stiffness coefficients become larger, as shown in Fig. 3.1, and the rotor 
deflects in the lateral direction due to excitation of the unbalance force. In this 
case, the rotor becomes flexible, and the first bending mode has a U-shape where 
both compressor and turbine wheels whirl in the same direction at a whirl velocity 
ω. The first bending mode induces the first resonance of the rotor relating to the 
first eigenmode. At further increasing the rotor speed, the rotor traverses the 
second bending resonance relating to the second eigenmode with a S-shape where 
the compressor wheel whirls in the opposite whirling direction of the turbine 
wheel. Finally, the third bending mode with a W-shape relates to the third eigen-
mode where both wheels whirl in the same direction again.      

The vibration modes of the rotor response in nonlinear rotordynamics are re-
sulted from superimposing the modes of the synchronous and nonsynchronous 
frequency components. Their mode shapes depend on the current stiffness coeffi-
cients, damping ratios, and as well as the nonlinear characteristics of the rotor at 
various rotor speeds.   
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Fig. 3.3 Shapes of the vibration eigenmodes 

3.3   Vibration Characteristics of Turbochargers 

In this section, the characteristics of vibrations are classified in the frequency and 
time domains, in which different kinds of vibrations are defined in each domain. 

a)   In frequency domain 
- Harmonic vibrations have the same frequency of the rotor frequency Ω. Their 
frequency orders are defined as 1X. 

Ω=ω                                                         (3.1) 

- Subharmonics have the whirl frequencies ω that are smaller than the rotor fre-
quency Ω. Their frequency orders equal a fractional integer 1/M. 

Ω=
M

1ω                                                   (3.2) 

where M is an integer, such as M = 1,2,...,N. 

 - Superharmonics have the whirl frequencies that are larger than the rotor fre-
quency. Their frequency orders equal a multiple integer M. 

Ω= Mω                                                   (3.3) 

where M is an integer, such as M = 1,2,...,N. 

- Subsynchronous vibrations have the frequencies that are less than the rotor fre-
quency. Their frequency orders equal an irrational order, such as 0.35X, or 0.47X. 

- Supersynchronous vibrations have the frequencies that are larger than the rotor 
frequency. Their frequency orders equal a non-integer, such as 2.5X or 3.5X.  
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- Forward whirls are the rotor precessions whose velocities have the same direc-
tion of the rotor angular velocity.     

- Backward whirls are the rotor precessions whose velocities have the direction 
opposite to the rotor angular velocity.     

b)   In Time Domain 
- Harmonic vibrations have a timely function of sine or cosine in a mathematical 
form  

)sin()( ϕ+Ω= tAtx                                        (3.4) 

where 

x(t) is the timely amplitude of the vibration;  
A is the amplitude from the center to peak; 
Ω is the rotor angular frequency in rad/s (Ω = 2πN); 
N is the rotor speed in rps (round per second); 
ϕ is the phase in rad, the rotor angular position at the initial time (t = 0). 

The excitation unbalance force is a harmonic vibration; its amplitude A equals the 
unbalance amplitude of UΩ². 

- Periodic vibrations include the sub- and superharmonics. The frequency orders 
of the subharmonics equal a fraction of integer order, such as (1/2)X and (1/3)X; 
the frequency orders of the superharmonics, a multiple integer order of 2X and 
3X. Therefore, they have the same amplitude after repeating of period T. 

  )()( Ttxtx +=                                                  (3.5) 

- Quasi-periodic vibrations consist of the sub- and supersynchronous vibrations; 
their frequency orders equal an irrational order, such as 0.37X or 0.45X (subsyn-
chronous); 1.33X or 1.67X (supersynchronous). The quasi-periodic vibrations 
contain at least two incommensurate frequencies ω1 and ω2, in which the ratio 
ω1/ω2 is an irrational number. After repeating of period T, the amplitude at time (t 
+ T) is not exactly the same amplitude at time t. The quasi-periodic vibrations of-
ten take place in nonlinear dynamics of the Neimark and Sacker bifurcation. After 
passing the bifurcation point, the periodic vibration with the frequency ω1 is bifur-
cated in another periodic vibration with the frequency ω2. The resulting quasi-
periodic vibration consists of two incommensurate frequencies ω1 and ω2. Its qua-
si-periodic orbit wraps on the surface of a torus and does not intersect the Poincaré 
map at the same point at every period T (s. Chapter 4).     

)()( Ttxtx +≠                                                  (3.6) 

- Chaos vibrations have no rule for their motions in which the unstable vibrations 
change from the quasi-periodic to chaos motions due to bifurcation.  

- Steady-state working conditions 
When the acceleration of the vibrations equals zero, the rotor vibrations are in a 
steady-state condition. This condition is considered when the rotor rotates with a 
constant angular speed at a certain interval of time.  
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- Transient working conditions 
When the acceleration of the vibrations is taken into account, the vibrations are 
transient because the angular speed changes with time. At run-up or slowdown, 
the response behavior of the rotor is transient. In the transient condition, the am-
plitude and critical frequency of the rotor response strongly depend on the rotor 
acceleration compared to the steady-state working condition (s. Chapter 5).   

- Free vibration responses are resulted from the rotordynamic system without ex-
citation forces due to unbalance (homogeneous solution of the vibration equation). 
In a linear system, the free vibration response consists of the eigenvectors and ei-
genfrequencies of the rotor.  

- Forced vibration responses are resulted from the rotordynamic system with exci-
tation forces of the rotor unbalance (particular solution of the vibration equation). 
In a linear system, the unbalance forced vibration response is a harmonic vibration 
with the rotor frequency. On the contrary, the rotor forced vibration response is 
periodic or quasi-periodic vibrations including the synchronous and nonsynchron-
ous whirl frequencies.  

3.4   Linear and Nonlinear Vibrations of Turbochargers 

In the following section, the discrepancies between the linear and nonlinear vibra-
tions with synchronous and asynchronous frequencies are discussed. At first, the li-
near rotordynamic system deals with the unbalance excitation of the rotor. In case of 
a free vibration without unbalance excitation, the free vibration responses are the 
sum of the eigenvectors with the corresponding complex eigenvalues of the rotor. 
They are normally periodic vibrations with the relating eigenfrequencies. The eigen-
frequencies of the linear system are the imaginary parts of the complex eigenvalues.  

The unbalance response (also forced vibration response) traverses the reson-
ances at the first, second, third, or higher critical speeds. The critical speeds are 
the rotational speeds of the rotor at which the rotor eigenfrequencies equal the ro-
tor frequency. The unbalance responses are harmonic vibrations with the rotor fre-
quency, having the frequency order of 1X. 

The Campbell diagram (also whirl speed map) is only used in the linear rotor-
dynamics to find the critical speeds where the rotor eigenfrequencies intersect the 
synchronous excitation frequency 1X. Each eigenfrequency of the free vibration 
response corresponds to an eigenmode of the vibration. The eigenmode of the 
flexible rotor has a U shape for the first, S shape for the second, and W shape for 
the third eigenfrequency.  

In case of the linear rotordynamics, the modal analysis is applied to calculate 
the complex eigenvalues and eigenvectors of the rotor. The eigenfrequencies are 
the imaginary parts of the complex eigenvalues, in which the positive sign is  
for the forward whirl and the negative sign, for the backward whirl of the rotor. 
Similarly, the real parts of the complex eigenvalues show the behavior of the rotor 
stability that shall be discussed in the next section.         

The stiffness and damping coefficients of the rotor are linear only at the small 
deflections of the well-balanced and damped rotor. As a reason, the vibration  
equation of the rotor is linear. Otherwise, the restoring forces of the rotor  
are nonlinear at the large rotor deflections; hence, the rotor vibration equation  
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becomes nonlinear. The nonlinear rotordynamic system is caused not only by the  
nonlinear characteristics of the stiffness and damping coefficients of the oil-film 
bearings but also by other characteristics, such as oil whirl, rotor misalignment, 
contact rub between the rotor and bearings, excessive unbalance, and as well as 
sidebands due to frequency modulations. Therefore, the rotor response of nonli-
near rotordynamic systems is resulted from superimposing the unbalance excita-
tion of the rotor on the nonsynchronous frequency components induced by the ro-
tordynamic nonlinearity of the system.  

The nonsynchronous frequency components contain the sub- and supersynchron-
ous frequency components. The subsynchronous vibrations have frequencies smaller 
than the rotor frequencies with rational orders of (1/2)X and (1/3)X of the contact 
rub or irrational orders, such as  0.35X to 0.47X of the oil whirl. On the contrary, the 
supersynchronous vibrations have the frequencies higher than the rotor frequencies 
with integer orders of 2X, 3X, 4X, or non-integer orders of 2.5X and 3.5X in case of 
the frequency modulations. Both vibrations consist of the forward and backward 
whirls that are determined by on the sign of their eigenfrequencies.  

As a result, the orbit of the rotor locus in a stable condition has mostly the Lis-
sajous curves relating to the synchronous and nonsynchronous vibrations. The 
nonlinear vibration responses are normally the periodic or quasi-periodic vibra-
tions. In case of the rotor instability, they could be changed from the periodic to 
quasi-periodic and chaos vibrations due to bifurcation.  

Because of the rotor nonlinearity, the eigenfrequencies of the rotor vibration sys-
tem have no longer existed. As a reason, the assumption that the vibration response 
is resulted from the eigenvectors and eigenvalues of the rotor, fails in nonlinear ro-
tordynamics. Therefore, the modal analysis is not valid for analyzing the eigenfre-
quencies (also natural frequencies) of the nonlinear rotordynamic system. In this 
case, we do not use the Campbell diagram to study the eigenfrequencies and find the 
critical speeds of the rotor. Instead, the Waterfall diagram (also frequency spectrum 
diagram) is applied to analyze the whirl frequencies of the nonlinear rotor response. 
The frequency spectrum analysis in the Waterfall diagram shall be discussed more in 
detail in Chapter 7.  

Some essential remarks of nonlinear rotordynamics of turbochargers are summarized:  

1. In nonlinear rotordynamics, the vibration responses are not harmonic but peri-
odic, quasi-periodic, and chaotic at the large rotor amplitudes. In fact, they 
contain not only the synchronous but also nonsynchronous vibrations, such as 
sub- and supersynchronous vibrations because of the nonlinear phenomena, 
such as excessive unbalance, misalignment, contact rub in the bearings, oil 
whirl, and sidebands as well. 

2. The nonsynchronous frequencies of the vibration responses are induced by 
large rotor deflections and other nonlinear characteristics of the rotor and  
radial bearing forces. 

3. The response amplitude of the rotor consists of not only the synchronous vi-
bration amplitude of the unbalance but also the nonsynchronous vibration  
amplitudes depending on the rotor speed. In general, the amplitudes of the 
nonsynchronous vibrations are much larger than the harmonic unbalance re-
sponse amplitude of 1X; therefore, the bending resonances do not obviously 
emerge in nonlinear rotordynamics. Instead, the rotor response amplitude is 
stabilized in the limit cycle (s. Chapters 4 and 7). 
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4. The bearing stiffness and damping coefficients strongly increase with the rotor 
deflections, leading to increase of the bearing forces. Due to the force balance 
between the bearing, unbalance, and other forces, the rotor response amplitude 
increases and reaches the equilibrium position. In fact, the unstable rotor orbit 
is restabilized in the limit cycle. 

5. At an unbalance force acting upon the rotor, different rotor responses could 
occur in nonlinear rotordynamics due to bifurcation that shall be discussed in 
Chapter 4. These resulting responses generally depend on the initial conditions 
and other parameters, such as rotor speed, bearing clearances, oil inlet temper-
ature and pressure. 

6. Campbell diagram (whirl speed map) is used to analyze the eigenfrequencies 
in linear rotordynamics. However, it has not been applicable in nonlinear ro-
tordynamics any longer; instead, Waterfall diagram (spectrogram) is applied to 
study the whirl frequencies and amplitudes of the rotor response versus the ro-
tor speeds in nonlinear rotordynamics.  

7. Hurwitz-Routh criterion is normally used to study the rotor stability in linear 
rotordynamics; Hopf bifurcation theory, in nonlinear rotordynamics.      

3.5   Orbit of the Rotor Locus 

a) Basic Theory of the Eddy-Current Sensor 
To measure the locus of the certain point on the rotor, two eddy-current sensors 
are set up perpendicular to each other near this point. Figure 3.4 shows the con-
tactless measure principle of the eddy-current sensor and explains how it works on 
the measurement of the rotor locus.  
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Fig. 3.4 Working principle of the eddy-current sensor 
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The working principle of the eddy-current sensor is based on the electromag-
netic induction. By means of using an alternating voltage UAC with a high fre-
quency in the electric coil, a high-frequency alternating electromagnetic field is 
created at the end of the sensor probe according to the induction law. Having re-
placed the sensor probe near to the measured point on the rotor shaft with a dis-
tance δ, the eddy-currents are induced in the target material of the rotor shaft. In 
turn, the eddy-currents create an electromagnetic field that reacts against the initial 
electromagnetic field of the sensor probe, leading to the timely change of the elec-
tric coil impedance. It varies with the current distance δ between the sensor probe 
and target material. Therefore, the timely change of the distance δ is determined 
by measuring the change of the electric coil impedance. To make sure that the 
measuring principle works, the target surface must be at least three times larger 
than the cross-sectional area of the sensor probe; the distance between the sensor 
probe and the rotor shaft is about 1 – 2 mm.  

b) Measurement of the Rotor Locus 
The automotive turbochargers are applied to high temperatures of the exhaust gases, 
such as 820 to 850°C in diesel engines, and 950 to 1050°C in gasoline engines. 
Therefore, it is not simple to measure the rotor locus at the turbine side because of 
very high temperatures of the exhaust gas. Additionally, there is difficulty in  
installing the sensors in the bearing casing to measure the orbit of the journal in the 
radial bearings. As a reason, one sets up the two eddy-current sensors are set up  
perpendicularly to each other at the compressor housing to measure the orbit of the 
shaft at the compressor inlet, as displayed in Figures 3.5 and 3.6. The measured orbit 
shows only the displacement of the shaft at this position but not the actual displace-
ments of the journal inside the bearings or the rotor deflection between both  
radial bearings. However, analyzing the spectrum of the rotor frequencies and  
amplitudes at various rotor speeds in Waterfall diagram helps us to know the rotor 
response behavior. Additionally, the acceleration in the bearing casing near the radi-
al bearings is also measured. Its acceleration spectrum in the Waterfall diagram   
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Fig. 3.5 Position of the eddy-current sensors in the rotor 
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determines whether the contact rub between the rotor and bearings occurs. If the 
contact rub happens in the bearings, the large amplitudes of subsynchronous vibra-
tions of (1/2)X or (1/3)X, and side band frequencies will appear in the Waterfall 
diagram, especially at the high rotor speeds. In addition, the computation of nonli-
near rotordynamics provides all characteristics of the rotor response, like the rotor 
deflections, whirl frequencies, and vibration modes at any point of the rotor versus 
the rotor speeds at the run-up and slowdown simulation.        

The eddy-current sensors are mounted perpendicularly to each other in the axes 
x and y on the compressor housing, as shown in Fig. 3.6. The distance of the sen-
sors to the target is approximately 1 mm. The Bently keyphasor [1] located be-
tween the eddy-current sensors is used to indicate the rotor speed in the orbit. 
Each sensor measures the displacement of the rotor in each direction x and y. The 
orbit of the rotor has the form of Lissajous curve in the phase diagram x-y.  

The orbit amplitude of the measured point of the rotor is resulted from its am-
plitude components in the directions x and y. 

22 )()()( tytxtr +=                                         (3.7) 

where  

x(t), y(t) are the measured vibration signals in the directions x and y, respectively. 
The vibrations of the rotor response are measured by the eddy-current sensors 

in the directions x and y, as shown in Fig. 3.6. Its orbit is calculated according to 
eq. (3.7) and displayed in the phase plane x-y, as shown in Figures 3.7b, 3.8c, 
3.9c, 3.10c, and 3.11c.   
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Fig. 3.6 Layout of the eddy-current sensors 

c) Studying Cases of the Rotor Orbit 
The vibration signals in the directions x and y are measured by the eddy- 
current sensors, as shown in Fig. 3.6. By means of the FFT spectra analyzer, the 
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corresponding frequencies are displayed in the spectrum diagram, and the orbit is 
computed and plotted in the phase diagram x-y.  

Due to the nonlinearity, the harmonic vibration of the unbalance excitation is 
superimposed on  the sub- and supersynchronous frequency components of the ro-
tor; it results in the rotor vibration response. The vibration response of the rotor 
contains vibration components in the directions x and y and can be written in the 
complex formulation in the phase plane x-y (s. [6] and [8]).    
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   (3.8) 

where  

- the first term of the right hand side is the forward and backward unbalance har-
monics with the rotor frequency Ω;  

- the second term is the asynchronous vibrations with the whirl frequencies            
ωk = nkΩ;  

- K is the asynchronous frequency components of the nonlinear rotor.  

Depending on the sub- or supersynchronous vibrations, the whirl frequency orders 
nk could be integer, fractional, and as well as irrational numbers (nk < 1 or nk > 1). 
The positive and negative signs of the whirl frequencies indicate forward and 
backward whirls, respectively.   

3.6   Study of Case Histories 

In the following section, some rotor orbits of the turbochargers are computed in 
which the rotor vibration response is resulted from the superimposition of the un-
balance vibration (1X) on the nonsynchronous frequency components induced by 
the nonlinearity, such as the nonlinear bearing forces, excessive unbalance, rotor 
misalignment, and contact rub in the bearings.  

In order to study the case histories, the frequencies and amplitudes of the vi-
bration components are predetermined and illustrated in the frequency spectrum 
diagram. The timely vibrations in the directions x and y and the rotor response are 
plotted in the time domain; finally, the orbit of the rotor response is displayed in 
the phase plane x-y. These study cases aim to make the readers familiar with the 
nonlinear vibration responses that include various synchronous and asynchronous 
frequency components in nonlinear rotordynamics.     
 

Case History #1: Unbalanced Rotor     

Anisotropic (orthotropic) radial bearings are defined when the bearing stiffness 
coefficients Kx and Ky in the directions x and y, respectively are different from 
each other. In other case, they are called isotropic bearings. Due to the different 
stiffness coefficients,  the rotor deflection in the direction x is different from the 
rotor deflection in the direction y. As a result, the orbit shape of the rotor is elliptic 
where the maximal rotor deflection is in the direction with the lower stiffness 
coefficient of the bearing.      
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The rotor vibration response is resulted from superimposing the forward and 
backward whirls of the unbalanced rotor, its component  

• in the direction x: 

)cos()(cos)()( 11 ϕ+Ω−+Ω= tKrtKrtx xx
 

• in the direction y: 

1( ) ( )sin ( )sin( )y yy t r K t r K t= Ω + −Ω +  1ϕ
 

where 

r is the forward vibration amplitude (peak amplitude, pk);  
r1 is the backward vibration amplitude (peak amplitude, pk); r1 = 0,5r; 
Ω is the rotor angular speed; 
t is time. 
ϕ1 is the vibration phase (= π/4). 

The frequency spectrum of the vibration components is displayed in Fig. 3.7a. The 
orbit of the rotor response is resulted from superimposing the vibration compo-
nents, as displayed in Figure 3.7a. In case of Kx < Ky, the orbit is elliptical with 
the maximal deflection in the direction x. The whirl precession with the frequency 
ω = Ω has the same rotating direction of the rotor velocity. In this case, the rotor 
orbit is a forward whirl because the forward amplitude is larger than the backward 
amplitude. Note that the whirling direction of the rotor follows the whirling direc-
tion of the vibration component with the larger amplitude. The rotor locus moves 
from the equilibrium position, nearly in the middle of the contact circle, forwards 
in an ellipse orbit. The contact circle is determined by manually moving and rotat-
ing the end of the compressor wheel at the screw-nut with a slight contact occur-
ring somewhere between the rotor and bearings. However, the contact circle be-
comes larger in the operating condition of the turbocharger because the inner 
bearing clearance increases due to the thermal expansion of the bearing ring in the 
radial direction, and the flexible rotor deflects at the high rotor speeds.   
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Fig. 3.7a Frequency spectrum of the unbalance vibration 
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Fig. 3.7b Orbit of the rotor response (unbalance) 

Case History #2: Unbalanced Rotor with the Oil Whirl   

In this case history, the unbalanced rotor working under influence of the oil whirl 
is studied. Oil whirl is a subsynchronous self-excited vibration acting upon the ro-
tor with an irrational frequency order between 0.35X and 0.47X (called half-
frequency whirl). The effect of the oil whirl is induced by the oil whirling in the 
bearing clearance that affects the rotor whirling with the oil whirl irrational fre-
quency. Therefore, the oil whirl mostly occurs in the bearing clearance without the 
precondition of the rotor unbalance. Notice that the mass center eccentricity of the 
rotor causes the rotor unbalance; the oil whirling in the bearing clearance induces 
the oil whirl. Hence, both effects have nothing to do with each other.   

In fact, the oil whirl does not take place as long as the damping in the bearing 
is large enough in order to keep the energy balance between the whirling kinetic 
energy induced by the destabilizing force and the dissipated damping energy in the 
bearing clearance. On the one hand, the damping coefficient of bearing decreases 
with the oil temperature. On the other hand, the cross-coupled stiffness coefficient 
of the bearing, causing the destabilizing force of the rotor, increases with the rotor 
speed.  Therefore, the whirling kinetic energy of the rotor exceeds the reducing 
dissipated damping energy in the oil film because the oil film temperature increas-
es with the rotor speed, leading to the oil whirl. Therefore, the oil whirl excites it-
self from a stable to unstable rotor response. 

The rotor vibration response is resulted from the superimposition of the unbal-
ance excitation and subsynchronous frequency component of the oil whirl, its 
component   

• in the direction x: 

)cos(cos)( 111 ϕω ++Ω= trtrtx      
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• in the direction y: 

)sin(sin)( 111 ϕω ++Ω= trtrty      

where 

r is the harmonic vibration amplitude (peak amplitude, pk); 
r1 is the oil whirl vibration amplitude (peak amplitude, pk); r1 = r;  
Ω is the rotor frequency; 
ω1 is the oil whirl frequency with an irrational frequency order 0.47X; 
ϕ1 is the vibration phase. 
 
Figure 3.8b displays the superimposed vibrations in the directions x and y and the 
vibration response of the rotor. The phase difference between the vibrations in the 
directions x and y is 90° because the eddy-current sensors are perpendicular to 
each other (s. Fig. 3.6b). At the rotor speed of 200,000 rpm, the period TΩ is about 
0.3 ms; the period of the oil whirl vibration, Tω1 nearly 0.64 ms.       

The rotor orbit resulted from the periodic vibrations of the unbalance and self-
excited oil whirl in the directions x and y are calculated at the rotor speed of 
200,000 rpm and displayed in Fig. 3.8c. The rotor precession is a forward whirl 
having the same direction of the rotor speed. Due to the irrational frequency order 
of the oil whirl (0.47X), the rotor response is quasi-periodic, in which the orbits 
are not the same after repeat of period T. The timer marks taken by the keyphasor 
indicate the number of the revolutions of the rotor in one orbit cycle, which is 
called the convolution.  

Having considered a single orbit of the rotor response, there are two timer marks 
on it; i.e., the orbit completes one convolution in every two revolutions of the rotor 
due to two timer marks. In other words, the oil whirl is a subsynchronous vibration 
having a frequency of nearly one-half of the rotor frequency (ω = 0.47Ω).  
 

1X0.47X

 

Fig. 3.8a Frequency spectrum of the vibration components 
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Fig. 3.8b Vibrations in the directions x and y and the rotor response at Nrotor = 200,000 rpm 

Generally, in the subsynchronous frequency components with a frequency order of 
(1/N)X, the orbit of the rotor response completes one convolution in every N  
revolutions with N timer marks; in the supersynchronous components with a fre-
quency order of NX,  the rotor orbit completes N convolutions in one revolution 
of the rotor with one timer mark.  

The asynchronous frequency components are summarized as follows: 

•   Subsynchronous frequency component (1/N)X means N revolutions per  
  convolution; 

•   Supersynchronous frequency component NX means N convolutions per  
  revolution. 

 

If the whirl orbit has N inner loops, it corresponds to a subsynchronous forward 
whirl with a frequency order of 1/(N+1)*X. As a rule of thumb, the frequency or-
der is the inversion of the number of loops (N+1). In case of the oil whirl with a 
forward whirl frequency order of (1/2)X, it results in one inner loop in the orbit, as 
shown in Fig. 3.8c. On the contrary, the backward whirls have N outer loops; the 
whirl frequency order is 1/(N-1)*X.           
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Fig. 3.8c Orbit of the rotor response (oil whirl) 

Case History #3:  Unbalanced Rotor with Inner and Outer Oil Whirls  

To reduce the bearing friction, rotating floating ring bearings with two oil films 
have been usually applied to the automotive turbochargers. The rotor vibration re-
sponse is resulted from superimposing the harmonic unbalance excitation on the 
subsynchronous components, the inner and outer oil whirl vibrations. The self-
excited frequency components have irrational frequency orders from 0.25X to 
0.70X for the inner oil whirl, from 0.1X to 0.3X for the outer oil whirl. The whirl 
frequency orders depend on the rotor speed and as well as the oil temperature.    

The rotor vibration  response is resulted from superimposing the unbalance  
vibration on the subsynchronous frequency components of the oil whirls, its  
component 

• in the direction x: 

)cos()cos(cos)( 222111 ϕωϕω ++++Ω= trtrtrtx  

• in the direction y: 

)sin()sin(sin)( 222111 ϕωϕω ++++Ω= trtrtrty  

where 

r is the harmonic vibration amplitude (peak amplitude, pk); 
r1 is the vibration amplitude (peak amplitude, pk) of the inner oil whirl; r1 = 0.5r;  
r2 is the vibration amplitude (peak amplitude, pk) of the outer oil whirl; r2 = 2r;  
Ω is the rotor frequency; 
ω1 is the inner oil whirl frequency with an irrational frequency order 0.25X ;  
ω2 is the outer oil whirl frequency with an irrational frequency order 0.1X;  
ϕ1, ϕ2 are the vibration phases of the vibration components. 
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The frequency spectrum of the vibration components is displayed in Fig. 3.9a 
where the frequency components of the inner and outer oil whirls have frequency 
orders of 0.25X and 0.1X, respectively. 
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Fig. 3.9a Frequency spectrum of the vibrations 
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Fig. 3.9b Vibrations in the directions x and y and the rotor response at Nrotor = 200,000 rpm 
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The amplitude of the rotor vibration response consisting of the unbalance, in-
ner, and outer oil whirls at the rotor speed of 200,000 rpm is calculated according 
to eqs (3.7) and (3.8), as shown in Figure 3.9b. The vibration response is a period-
ic or quasi-periodic vibration because their subsynchronous whirls have irrational 
frequency orders. In case of the quasi-periodic response, the amplitudes after re-
peat of period T are not always the same amplitude. Its response orbit shown in 
Fig. 3.9c does not have the same orbit at times (t + nT). In Fig. 3.9b the period of 
the rotor TΩ is found at 0.3 ms at 200,000 rpm; the period of the inner oil whirl 
Tω1 nearly 1.2 ms; the period of the outer oil whirl Tω2, approximately 3 ms.  

At the high rotor speeds, the temperature of the inner oil film becomes higher 
than the temperature of the outer oil film due to the smaller inner bearing clear-
ance. As a reason, the ring speed of the bearing decreases with the rotor speed, and 
the frequency of the inner oil whirl reduces to nearly 25% of the rotor frequency 
(0.25X) at the high rotor speeds. The frequency of the outer oil whirl is lower than 
the inner oil whirl. It is assumed approximately 10% of the rotor frequency (0.1X).   

The rotor orbit resulted from the periodic vibrations of the unbalance and  
self-excited inner and outer oil whirls in the directions x and y are calculated and 
displayed in Fig. 3.9c. The inner loops of the rotor orbit indicate that the rotor  
precession is a forward whirl having the same direction of the rotor speed. The 
envelope of the rotor orbit is called the limit cycle, in which the rotor locus stabi-
lizes. Note that the limit cycle is different to the contact circle of the rotor.    
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Fig. 3.9c Orbit of the rotor response (inner and outer oil whirls) 

Case History #4:  Heavy Rub in the Bearings 

In a heavy rub at normal tight condition in the bearings, the unbalance forces ex-
cite the subsynchronous frequency components of the nonlinear rotor induced by 
heavy rub; it results in the rotor vibration response. At the heavy rub in the bear-
ings, the rub subsynchronous frequency components have fractional frequency or-
ders like (1/2)X, (1/3)X, or (1/4)X, and high harmonic orders, such as 2X, 3X.  
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The rotor vibration  response is resulted from superimposing the unbalance vibra-
tion on the subsynchronous frequency component of the heavy rub, its component 

• in the direction x: 

)cos()cos(cos)( 111 ϕω ++Ω−+Ω= trtrtrtx bw
 

• in the direction y: 

)sin()sin(sin)( 111 ϕω ++Ω−+Ω= trtrtrty bw
 

where 

r is the harmonic vibration amplitude (peak amplitude, pk); 
rbw is the backward harmonic vibration amplitude (peak amplitude, pk); rbw = 0.5r; 
r1 is the vibration amplitude (peak amplitude, pk); r1 = 1.5r; 
Ω is the rotor frequency; 
ω1 is the rub-related frequency with a fractional frequency order (1/2)X; 
ϕ1 is the vibration phase. 

The frequency spectrum of the vibrations is displayed in Fig. 3.10a where the rub 
frequency component has a fractional frequency order of (1/2)X. 
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Fig. 3.10a Frequency spectrum of the vibrations 

The amplitude of the rotor vibration response consisting of the unbalance and 
subsynchronous whirl of heavy rub at the rotor speed of 200,000 rpm is calculated 
according to eqs (3.7) and (3.8), as illustrated in Figure 3.10b. The rotor vibration 
response is periodic because the subsynchronous whirl has a fractional frequency 
order of (1/2)X. In Fig. 3.10b, the period of the rotor TΩ is found at 0.3 ms at 
200,000 rpm; the period of the contact rub whirl Tω1 nearly 0.6 ms.  

The rotor orbit resulted from the periodic vibrations of the unbalance harmonics 
and rub subsynchronous whirl in the directions x and y are calculated at the rotor 
speed of 200,000 rpm and plotted in Fig. 3.10c. The rotor response is a forward  
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Fig. 3.10b Vibrations in the directions x and y and the rotor response at Nrotor = 200,000 rpm 
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Fig. 3.10c Orbit of the rotor response (heavy rub) 
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whirl with a fractional frequency component of (1/2)X. It indicates that the rub 
contact of the rotor to the bearing occurs once in every two revolutions of the ro-
tor. After contacting the bearing wall, the rotor bounces back; the rub contact 
takes place again after the rotor rotates two revolutions, as shown in Fig. 3.10c.       

Case History #5:  High Radial Loads due to Misalignment 

The rotor misalignment induces high radial loads on the bearings because the 
journal eccentricity increases. As a result, the oil film in the bearing clearance is 
squeezed, so that the rotordynamic behavior of the system becomes strongly non-
linear at the high journal eccentricities. In fact, the unbalance forces excite the su-
persynchronous frequency components at high radial bearing loads, resulting in 
the rotor vibration response. The supersynchronous frequency components nor-
mally have integer frequency orders of 2X and 3X at high radial loads due to mi-
salignment.   

The rotor vibration response is resulted from superimposing the unbalance  
vibration on the supersynchronous frequency component of the rotor misalign-
ment, its component 

• in the direction x: 

)cos()cos(cos)( 11,111,1 ϕωϕω +−+++Ω= trtrtrtx bwfw  

• in the direction y: 

)sin()sin(sin)( 11,111,1 ϕωϕω +−+++Ω= trtrtrty bwfw  

where 

r is the harmonic vibration amplitude (peak amplitude, pk); 
r1,fw is the forward vibration amplitude 2X (peak amplitude, pk); r1,fw = 0.6r;  
r1,bw is the backward vibration amplitude -2X (peak amplitude, pk); r1,bw = 0.4r;  
Ω is the rotor frequency; 
ω1 is the whirl frequency 2X; 
ϕ1 is the vibration phase.  

The frequency spectrum of the vibrations is displayed in Fig. 3.11a in which the 
supersynchronous frequency components have an integer frequency order of 2X of 
the misalignment or extremely large radial load; the unbalance excitation frequen-
cy has an order of 1X. 

The amplitude of the rotor vibration response consisting of the unbalance har-
monics and misalignment supersynchronous whirl at the rotor speed of 200,000 
rpm is calculated according to eqs (3.7) and (3.8) and displayed in Figure 3.11b. 
The vibration response is periodic because the supersynchronous whirl has an in-
teger frequency order of 2X.  

In Fig. 3.11b, the period of the rotor TΩ is found at 0.3 ms at 200,000 rpm; the 
period of the misalignment frequency whirl Tω1, nearly 0.15 ms.  The response or-
bit resulted from the superimposition of the unbalance harmonics and misalign-
ment supersynchronous whirls in the directions x and y is calculated at the rotor 
speed of 200,000 rpm and plotted in Fig. 3.11c. 
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Fig. 3.11a Frequency spectrum of the vibrations 
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Fig. 3.11b Vibrations in the directions x and y and the rotor response at Nrotor = 200,000 rpm 
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Fig. 3.11c Orbit of the rotor response (banana shape) 
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Fig. 3.11d Orbit of the rotor response (lying eight shape) 

At increasing the radial bearing load due to a strong misalignment, the response 
orbit changes from the “banana” shape, as shown in Fig. 3.11c, to the “lying 
eight” shape. The banana orbit shape is a forward whirl and bounces back as it 
comes close to the bearing wall. In case of very high radial loads on the bearings, 
the orbit of the rotor response turns into the lying eight shape, as displayed in Fig. 
3.11d. Contrary to the banana shape, the lying eight shape has forward and back-
ward loops. The journal bounces in the backward loop. Far away from the bearing 
wall, the radial load is decreased; hence, the rotor whirls in the forward loop 
again, having the same whirl direction of the rotor speed, as illustrated in Fig. 
3.11d.  
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The rotor misalignment with an extremely high radial load or the excessively 
unbalanced rotor could cause the contact rub between the journal and bearing. The 
frequencies have multiple harmonic frequency orders of 2X, 3X, or higher, and  
as well as fractional frequency orders of (1/2)X, (1/3)X, as discussed in the case 
history #4.      
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Chapter 4 

Stability Analysis of Rotordynamic Behaviors 

4.1   Introduction  

Two important issues of the automotive turbochargers in the rotordynamics are re-
sonance and instability of the rotor. Both have a common harmful effect that caus-
es damages of the turbochargers during the operation. However, there is a big dif-
ference between the resonance and instability if we take a close look on them.  

At the resonance, the rotor reaches maximum deflection at the critical frequen-
cies depending on the rotor characteristics, such as mass, mass inertia moments, 
stiffness, and damping coefficients. The excitation unbalance force is proportional 
to the rotor speed squared. The unbalanced force is balanced by the inertia force, 
bearing force, stiffness, and damping forces acting on the rotor at any time t. The 
more the rotor deflects, the larger the stiffness force acts upon the rotor. In case of 
lacking or small damping effect, the deflection of the rotor extremely increases at 
the resonance, so that the normal stress of the shaft exceeds the ultimate tensile 
stress, or the contact between the journal and bearings occurs. Therefore, the rotor 
could be damaged at the critical frequency. Due to self-centering effect of the ro-
tor, the maximum deflection amplitude will be reduced at once when the rotor 
speed passes the critical speed.  

Contrary to the resonance, the rotor amplitude in unstable condition extremely 
increases with time, even at a constant rotor speed. As soon as the rotor speed ex-
ceeds the onset of instability (threshold of instability), the rotor becomes unstable at 
which the rotor amplitude increases with time without limit; it is not reduced at fur-
ther raising the rotor speed. In case of using the oil-film bearings, oil whirl takes 
place when the dissipative damping force is quite small compared to the destabiliz-
ing force induced by the cross-coupled bearing stiffness coefficient. The oil whirl is 
a kind of  the self-excitation instability where the rotor amplitude increases without 
precondition of unbalance. When the oil whirl frequency reaches the bending criti-
cal frequency, mostly the first-order critical frequency, the oil whirl turns to oil 
whip. At the oil–whip, the rotor becomes a real instability where the rotor deflec-
tion continuously increases, and the journal eccentricity exceeds the bearing clear-
ance, leading to damage of the radial bearings and turbochargers as well.           

In order to avoid the damage of the turbochargers due to rotor instability, all ro-
tor characteristics including compressor, turbine wheels, shaft, sealing, and fluid 
film bearings must be studied at the beginning of rotordynamic design. There are 
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two common methods to look into the stability analysis of the turbochargers: first, 
eigenvalues analysis with the Routh-Hurwitz criterion for linear rotordynamics; 
second, bifurcation method with the Hopf theory for nonlinear rotordynamics.  

4.2   Stability Analysis of Linear Rotordynamics 

4.2.1   Eigenvalues of the Free Vibration Response 

The eigenvalues analysis is based on the free vibration response of the linear ro-
tordynamic system. The free vibration response is resulted by superimposing the 
harmonic components of the rotor without excitation of the rotor unbalance. In 
fact, the free vibration response is exact the homogeneous solutions of the vibra-
tion equations of the rotor. Each harmonic component has a complex eigenvalue 
in which the imaginary part is the eigenfrequency of the rotor (also called natural 
frequency), and the real part indicates the stability characteristic of the rotor.        

The free vibration response of the rotor is written in 

∑
=

=
N

i

t
i

iertr
1

)( λ                                                       (4.1)

 

where 
ri  is the rotor amplitude corresponding to the eigenvalue; 
λi is the complex eigenvalue of the eigenmode i;                                                                                               
N is the number of degrees of freedom (DOF) of the rotor. 

The complex eigenvalue consists of the real and imaginary parts  

djωαλ ±=                                                     (4.2) 

within 
α  is the real part of the eigenvalue, called the growth/decay rate; 
ωd  is the imaginary part of the complex eigenvalue (eigenfrequency or damped 
natural frequency). 

Substituting λ into eq. (4.1), one obtains the rotor free response by applying 
Euler’s theorem. 

[ ] [ ]

)()(

)sin()cos()sin()cos(

)(

1
,

1
,

1
,

1
,

tjytx

tjtertjter

eereertr

ii

N

i

t
bwiii

N

i

t
fwi

tj
N

i

t
bwi

tj
N

i

t
fwi

ii

iiii

+≡

−+−++=

+=

∑∑

∑∑

==

−

==

ωωωω αα

ωαωα

 

                                (4.3)         

The parts in the square brackets [ ] in eq. (4.3) are the harmonic vibrations with 
the eigenfrequencies of the forward and backward frequency components. Hence, 
the maximal amplitude is limited to one at any time t. On the contrary, the terms  



4   Stability Analysis of Rotordynamic Behaviors 61
 

before the square brackets [ ] containing an exponential function exp(αit) change 
with time. The amplitude of the rotor response depends on the growth/decay rate 
αi. If the rate αi is positive, the rotor amplitude increases with time without limit. 
The rotor response is unstable at any positive rate α; therefore, α  is the key para-
meter for the stability analysis of the rotor in linear rotordynamics.     

Cases of the growth/decay rate α for the rotor response behavior: 

• α  < 0: stability;  
• α  = 0: onset of instability (threshold of instability); 
• α  > 0: instability. 

The stability behaviors depending on the growth/decay rates are displayed in  
Figures  4.1a, b, and c. At a decay rate (α < 0), the vibration amplitude with the 
frequency ω diminishes in a short time. The envelope of the vibration is the expo-
nential function r0.exp(αt) that begins from the initial position r0 at time t = 0 and 
decreases with time to zero. The corresponding forward orbit decays from the  
initial position r0 to zero as t  ∞. In this case, the free vibration is stable or un-
conditionally stable, as displayed in Fig.4.1a.  

On the contrary, at a growth rate (α > 0), the vibration begins at the initial posi-
tion and increases with time exponentially; therefore, the vibration is unstable, as 
shown in Fig. 4.1c.                   

At the rate of α = 0, the vibration amplitude is unchanged with time, neither 
decreasing nor increasing with time because the amplitude of the function 
r0.exp(αt) always remains constant at r0 at any time t, as shown in Fig. 4.1b. The 
rotor vibration moves in a circular orbit that is called limit cycle, which occurs  
in the Hopf bifurcation. The vibration is at the threshold of instability (onset of  
instability).   

To study the rotor stability, the complex eigenvalues λ are analyzed in the λ 
plane, as shown in Fig. 4.2. The complex eigenvalue and its conjugated eigenvalue 
have the common real part and opposite imaginary part with positive and negative 
signs that correspond to forward and backward damped natural frequencies. If 
both these eigenvalues lie in the half-left plane (α < 0), the rotor behavior is sta-
ble; on the half-right plane (α > 0), it is unstable. In case of the threshold of insta-
bility (α = 0), the rotor vibration moves with the damped natural frequency ωd at 
the constant amplitude, neither decreasing nor increasing with time.  

In order to maintain the rotor in a stable condition, all eigenvalues of the rotor 
must lie on the left-half plane, so that the growth/decay rates are always negative.  

In this case, there are two possibilities:  

• When they locate in the upper left-half plane, the vibration response is a stable 
forward whirl and decays with time from the initial position to zero, as shown in 
Fig. 4.1a; 

• When they locate in the lower left-half plane, the vibration response is a stable 
backward whirl and decays with time from the initial position to zero, similar to 
Fig. 4.1a, but the whirl direction is opposite to the forward whirl. 
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Fig. 4.1 a; b; c: Cases of the growth/decay rates α in the phase plane x-y   
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Fig. 4.2 Stability analysis in the λ plane 

4.2.2   A Study Case of Calculating the Eigenvalues 

In the following section, a very simple model of the Jeffcott rotor is chosen to 
demonstrate the principle of calculating the eigenvalues of the rotor. The key issue 
is preferred to understand the physical meaning of the problem, rather than to 
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show off the complicated mathematical calculations. Therefore, a simple Jeffcott 
rotor is used for the study case in which the gyroscopic effect of the wheel is not 
taken into account. Figure 4.3 shows the simulated Jeffcott rotor that consists of 
the wheel, rotor shaft, and two orthotropic bearings. The wheel with mass m is lo-
cated in the middle of the shaft that is supported by the orthotropic bearings (K1 ≠ 
K2) at the ends of the shaft. The rotor is excited by the unbalance force FUn, which 
is proportional to the rotor speed squared.     
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Fig. 4.3 Simulation model of the Jeffcott rotor 

The bearing stiffness coefficients are K1 and K2; bearing damping coefficients, 
c1 and c2 in the directions x1 and x2, respectively. The shaft has its own stiffness 
coefficient KS. The impedance method is used to calculate the equivalent stiffness 
coefficient acting upon the rotor. The equivalent stiffness coefficient of the rotor is 
resulted from the shaft and bearing stiffness coefficients in each direction.     
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Fig. 4.4 Equivalent stiffness coefficient ki  
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The equivalent impedances acting upon the rotor 1/k1 and 1/k2 in the directions x1  
and x2 are calculated. 

2 ,1   ,
111 =+= i
KKk iSi

                                          (4.4) 

Therefore, the equivalent stiffness coefficient of the rotor becomes 
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Having applied the Newton’s second law to the rotor, the vibration equations 
without the gyroscopic effect of the 2-DOF rotor are written in 
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The homogeneous equations are taken into account in studying the rotor stability 
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Eq. (4.7) is formulated in the matrix form 
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The free vibration solutions of eq. (4.8) are assumed  
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where 
X1 and X2 are the amplitudes of x1 and x2, respectively; 
λ is the complex eigenvalue, λ = α ± jωd. 

Inserting eq. (4.9) and its first and second order derivatives in eq. (4.8), one ob-
tains  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

++
++

0

0
.

0

0

2

1

22
2

11
2

t

t

eX

eX

kcm

kcm
λ

λ

λλ
λλ

            (4.10) 

For nontrivial solutions x1 and x2, the determinant of the first matrix must be equal 
to zero.  
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Thus,   
0)).(( 22

2
11

2 =++++ kcmkcm λλλλ                       (4.12) 

Equation (4.12) is called the characteristic equation of the rotor with fourth order 
of λ. It is resulted from twice degrees of freedom (2*DOF) of the rotor due to 
forward and backward whirls. In this case, the number of DOF (x1 and x2) equals 
2; hence, the characteristic equation is in the fourth order of λ. Notice that DOF of 
the rotor is the number of the independent spatial coordinates that describe the ro-
tor vibration behavior at any time. Therefore, it equals the number of the ordinary 
differential equations (ODE) of the rotor vibration; hence, DOF = 2, as shown in 
eq. (4.6).                  

Roots of the characteristic equation D(λ) are the eigenvalues of the system that 
are generally complex numbers. Eq. (4.12) can be written in two homogeneous 
equations  

2 ,1  ;02 ==++ ikcm iiλλ
                            

 (4.13)      

Eq. (4.13) can be transformed with dropping the index i into  

02 22 =++ nn ωζλωλ                                      (4.14) 

where 
ζ is the damping ratio 
ωn is the undamped natural frequency.  

The undamped natural frequency is defined as  

m

k
n =ω                                                  (4.15) 

The dimensionless damping ratio is defined as  
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The eigenvalues are obtained by solving eq. (4.14) 
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Resulting from eq. (4.17), there are four eigenvalues λi of the characteristic  
equation: 

2 ,1  ;, =±= ij idii ωαλ                                     (4.18) 
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2
,, 1 iinid ζωω −= is the damped natural frequency (1/s).                    (4.20)

 

To keep the rotor stable in any working condition, the growth/decay rate must be 
always negative, as discussed earlier. According to eq. (4.19), the rotor is stable 
when the damping coefficient c is positive; otherwise, the rotor is unstable at the 
negative damping coefficient, e.g. in case of suction in the damping absorber.      

The damped natural frequency ωd is normally a little bit smaller than the un-
damped frequency ωn depending on the damping ratio according to eq. (4.20).  

There are three cases of the dimensionless damping ratio ζ: 

• ζ < 1: the vibration response is underdamped or subcritically damped with the 
underdamped frequency ωd < ωn. The rotor orbit is stable, and its amplitude de-
creases with time. In this case, the growth/decay rate results in 

  ζωα n−=                                                   (4.21) 

• ζ = 1: the vibration response is critically damped, ωd = 0. There is no vibration, 
and its amplitude decreases much more quickly to zero without oscillation. In 
this case, the growth/decay rate is opposite to the undamped natural frequency.  

nωα −=                                                      (4.22) 

• ζ > 1: the vibration response is overdamped or supercritically damped, ωd = 0. 
There is no vibration, and its amplitude decreases quickly to zero without oscil-
lation. In this case, the growth/decay rate is written in  

)1( 2 −±−= ζζωα n                                  (4.23) 

The decay rate with the plus sign in eq. (4.23) is much larger than the decay rate 
with the minus sign; therefore, its response amplitude decays much faster than the 
amplitude with the minus sign. In fact, the decay rate with the minus sign domi-
nates the response amplitude in the long-term motion. 

The influence of the damping ratio ζ on the growth/decay rate α is displayed in 
Fig. 4.5. First, at the undamped condition (ζ  < 1), the growth/decay rate linearly 
decreases with ζ.  Second, at the critically damped condition (ζ = 1), the rate α 
equals to -ωn according to eq. (4.22). Third, at the overdamped condition         
(ζ  > 1), the decay rate with minus sign decreases from ωn to zero (long-term mo-
tion ζ− > 1), and the decay rate with the plus sign increases from ωn to ∞ (short-
term motion ζ+ > 1) as the damping ratio ζ increases to ∞.  

The behaviors of the vibration response at various damping ratios are illustrated 
in Fig. 4.6. The underdamped vibration response (ζ < 1) with a damped natural 
frequency ωd decays much more slowly than the critically and overdamped vibra-
tion responses because of its small decay rate α, as shown in Fig. 4.5.  
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Fig. 4.5 Growth/decay rate α at various damping ratios ζ   
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Fig. 4.6 Response amplitudes at various damping ratios ζ 

4.2.3   Stability Analysis by Routh-Hurwitz Criterion 

In the earlier section, a simple model of the Jeffcott rotor without the gyroscopic 
effect has been studied. In fact, the computed model of turbochargers is much 
more complex than the Jeffcott rotor model. In the computed turbocharger model, 
the gyroscopic effect of the compressor and turbine wheels are taken into account, 



68 Rotordynamics of Automotive Turbochargers
 

orthotropic oil film bearings must be also considered. In this case, the numbers of 
degree of freedom N are very large, such as 15, 20, or more; the eigenvalues result 
in two times of DOF (= 2N). Therefore, it is very difficult to solve the 2N-order 
characteristic equation of λ analytically. 

The vibration equations of the rotordynamic model of turbochargers are de-
scribed in the matrix form 

(t)fKxxCxM =++                                     (4.24) 

where 
M = (N x N) mass matrix containing the mass and inertia moments of the rotor; 
C = (N x N) damping coefficient matrix containing the diagonal and cross-coupled 
damping coefficients; 
K = (N x N) stiffness matrix containing the diagonal and cross-coupled stiffness 
coefficients; 
x(t) = (N x 1) vibration response vector;  
f(t) = (N x 1) external forces vector.  

In order to reduce the second to first order equation set, a (2N x 1) new vector z of 
the vibration response is defined.  
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where .   xy;xy ==    

By substituting the vector z into eq. (4.24), one obtains 2N first order vibration 
equations of the rotor.  
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                  (4.26) 

To analyze the dynamic stability, only the homogeneous equations of eq. (4.26) 
are considered where the excitation force f(t) equals zero; hence, b(t) = 0. 

Azz =                                                     (4.27) 

where 
z = (2N x 1) vector, the vibration response vector;  
A = (2N x 2N) matrix of the rotor;  
N = degrees of freedom of the rotor (DOF). 

One assumes the free vibration response vector as  

teλzz ˆ=                                                      (4.28) 

within ẑ  is the ( 2N x 1) eigenvector.   
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Substituting the response vector z and its first order derivative into eq. (4.27), one 
obtains 

0ˆ)(  =− te λλ zIA                                             (4.29)   

The characteristic equation of the eigenvalues is derived from eq. (4.29). 

0)det( =− IA λ                                           (4.30)   

Because A has the order of a (2N x 2N) matrix,  the characteristic equation is a po-
lynomial equation of 2N order. 
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where  
λ are the complex eigenvalues with λ = α + jωd; 
ai is the equation coefficients, i = 0, 1, 2,…, n; 
n is the polynomial exponent that equals twice DOF (n = 2N). 

Having used the Gauss theorem, eq. (4.31) can be written in the polynomial with 
the n order of λ where λi are the roots of D(λ). 

))()...()(()( 121 nnnaD λλλλλλλλλ −−−−= −                
(4.32) 

Finding the roots λi of the polynomial D(λ) in eq. (4.31) is quite difficult, espe-
cially at a large number of DOF. In fact, it need not know the exact values of the 
roots λi, but only the real parts α of the eigenvalues are necessary for the stability 
analysis. In this case, the Routh-Hurwitz stability criterion is applied to analyze 
the eigenvalues in linear rotordynamics.    

According to the Routh-Hurwitz criterion, the vibration response is stable when 
the two following conditions are satisfied: 

1. All coefficients ai in the characteristic equation (4.31) must be nonzero and 
have the same positive or negative signs. 

2. Hurwitz determinant Dn-1, and its diagonal determinants Di for i = 1, 2,…, n-2  
must be positive. 
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where the coefficients an-i equal zero at all negative indices (n-i) for  i = 0, 1,..., n. 
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The Hurwitz determinant Dn-1 and diagonal determinants Di for the characteris-
tic equation D(λ) of n order (n = 2 DOF) can be written in  
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The Routh-Hurwitz criterion is applied to the Jeffcott rotor, as shown in Fig. 4.3 to 
analyze the rotor stability of the vibration equations with the fourth order of λ. 
The characteristic equation of the rotor vibration is written in 
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Checking stability conditions of eq. (4.34): 

• the first condition is satisfied because all coefficients are positive and nonzero; 
• the second condition of D1, D2, and D3 has to be checked whether they are positive. 

The Hurwitz determinant and diagonal determinants are calculated. 
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The determinant D3 results in after a few calculating steps  

( )))(()( 122121
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All determinants D1, D2, and D3 are positive due to positive damping coefficients 
c1 and c2; hence, the vibration response is stable. Otherwise, the rotor response is 
unstable when the damping coefficients are negative at a suction damper.  

4.3   Stability Analysis of Nonlinear Rotordynamics  

The eigenvalues have not existed any longer in nonlinear rotordynamics; therefore, 
the eigenvalues analysis is not valid in this case. Instead, the bifurcation theory  
is normally used to analyze the stability of nonlinear rotordynamics. The nonlinear-
ity is mainly caused by the nonlinear characteristic of the oil-film bearings. The 
nonlinear bearing forces acting upon the rotor contain two parts, the rotation and 
damping forces. According to the bearing dynamics, the bearing rotation forces are 
nonlinear to the journal eccentricity and angular position of the journal locus. The 
bearing damping forces are nonlinear not only to the journal eccentricity and its an-
gular position but also to the eccentricity velocity and whirl velocity of the journal 
in the bearing clearance. As a reason, the vibration equations are generally nonli-
near in the rotordynamics of the automotive turbochargers.    

4.3.1   Vibration Equations in the Autonomous Systems 

Having used the Newton’s second law for the nonlinear rotor of N degrees of 
freedom (DOF), one obtains the vibration equations of the rotor in the matrix 
second-order equations.  
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where 
M = (N x N) diagonal matrix containing mass and mass inertia moments;  
KS = (N x N) shaft stiffness coefficient matrix; 
Ι = (N x N) unit matrix; 
x = (N x 1) DOF vector including all degrees of freedom of the system; 
FUn = (N x 1) unbalance force vector; 
FB = (N x 1) bearing force vector consisting of the rotation and damping forces; 
N = degrees of freedom (DOF). 
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By substitution of the new vector z into eq. (4.35), the vibration equations become 
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 is the (2N x 2N) stiffness matrix of the shaft; 
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is the (2N x 1) vector including the unbalance

 

excitation force and bearing forces 
acting upon the rotor. 

The system is called autonomous when it is explicitly independent of time t ex-
plicitly. For simplicity of using the bifurcation theory, we transform the non-
autonomous nonlinear system into the autonomous nonlinear system. Hence, the 
vibration equations in eq. (4.36) become the autonomous equation system of 

),,(** Ω+= θubuAu                                         (4.37) 

where the external force vector b* is explicitly is independent of time t. Equation 
(4.37) is the 2N+1 first-order differential equations with an additional equation 

( 1=θ ) that only depend on the rotor speed Ω, which is chosen as a bifurcation pa-
rameter of the vibration equation system at the given rotor and bearing characteris-
tics. To study the interactive bifurcation analysis of dynamic systems, the software 
package MATCONT [4] based on the MATLAB code is recommended.  

4.3.2   Stability Analysis by Bifurcation Theory 

The bifurcation occurs when the quantitative characteristic of the vibrations 
change from the steady state at the equilibrium to the unsteady-state condition (pe-
riodic motions) as the bifurcation parameter µ reaches the critical threshold value 
µ0, which is called bifurcation point. At the bifurcation point, the dynamic beha-
vior of the system is transferred from the steady-state to periodic or quasi-periodic 
vibrations, from the stable to unstable dynamic behaviors, and from the regular to 
irregular and as well as to chaotic motions. Hopf bifurcation is a special kind of 
the bifurcation that connects the equilibrium to the periodic oscillation at the bi-
furcation point (s. [7], [9], and [10]). 



4   Stability Analysis of Rotordynamic Behaviors 73
 
The loss of stability at Hopf bifurcation takes place as the eigenvalue λ(μ0) and 

its conjugated eigenvalue cross the imaginary axis at the points ±ω0 where the bi-
furcation parameter arrives at the critical value µ0 that depends on the given  
characteristic of the system, such as the rotor unbalance, bearing clearances and 
geometries, and oil working condition (oil temperature and pressure). At the bifur-
cation point, the dynamic behavior changes from the equilibrium to periodic oscil-
lations with the initial frequency ω0. The orbit of the rotor locus is limited in the 
limit cycle at the studied bifurcation parameter, such as the rotor speed. 
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Fig. 4.7 Hopf bifurcation in the λ plane 

4.3.3 Characteristics of Hopf Bifurcation Theory 

a) Equilibrium points 
Equilibrium points are defined as the state vectors u* where the system is in a 
steady-state condition. They are found by setting the vibration equation (4.37) 
equal zero.  

0Ω),f(uubuAu =≡Ω+= ,  ),,( ****** θθ                        (4.38) 

where Ω  is chosen as the bifurcation parameter (Ω ≡ µ). The system state changes 
from the equilibrium to periodic vibrations with the initial frequency ω0 at the bi-
furcation point  µ0 = Ω0. The equilibrium points are also called fixed or singular 
points. 

b) Bifurcation point 
Bifurcation point µ0 ≡ Ω0 is the intersection of the trivial branch and nontrivial 
half-branches; their solutions correspond to the equilibrium points. At this point, 
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the loss of stability takes place, and the vibration response of the system changes 
from the equilibrium state to periodic vibrations (s. Fig. 4.8).  

c) Node and focus 
- Node has no oscillation (ω = 0) where the stable trajectories approach the stable 
node, and the unstable trajectories move away from the unstable node (s. Fig. 4.9a).  
- Focus contains a vibration with a non-zero frequency ω where the spirals ap-
proach the stable focus with time. They are called stable spirals whose speeds  
are negative.  At the unstable focus, the spirals move away from it, as shown in 
Fig. 4.9b. Hence, the spirals are unstable; their speeds are positive; i.e., the spiral 
amplitudes increase with time. 
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Fig. 4.8 Bifurcation point in the bifurcation plane 
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Fig. 4.9 a,b: Node and focus in the phase plane 

d) Limit cycles 
Limit cycle is a closed orbit that the trajectories asymptotically move to (stable 
spirals) or away from (unstable spirals). Generally, the limit cycle has an ellipse 
shape. There are three kinds of the limit cycle in nonlinear rotordynamics.  
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• Stable limit cycle encircles an unstable focus that the inner unstable spiral moves 
away from and approaches the stable limit cycle. The outer stable spiral moves from 
outside towards the limit cycle. The focus is also called spiral point (s. Fig. 4.10a).  

• Unstable limit cycle encircles a stable focus that the inner stable spiral moves 
away from the limit cycle towards. The outer unstable spiral moves away from 
the limit cycle outwards (s. Fig. 4.10b). 

• Half-stable limit cycle encircles a stable focus that the inner stable spiral moves 
away from the limit cycle towards, and the outer stable spiral moves from out-
side towards the limit cycle, as shown in Fig. 4.11a or vice versa in Fig. 4.11b.  
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Fig. 4.10 a,b: Stable and unstable limit cycles in the phase plane 
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Fig. 4.11 a,b: Half-stable limit cycles in the phase plane 

e) Stability definitions 
- The dynamic behavior is asymptotically stable to the equilibrium u* when the 
perturbation ε reaches zero as time t goes to infinity.  
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- The dynamic behavior is stable at u* when the perturbation ε remains smaller 
than the limit value ε0 as time t goes to infinity.  

0
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- The dynamic behavior is unstable at u* when the perturbation ε increases to  δ 
that is larger than the limit value ε0 as time t goes to infinity.  
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4.3.4   Classifications of Hopf Bifurcation 

There are three kinds of Hopf bifurcation, as shown in Fig. 4.12. 

a) Transcritical bifurcation 
The loss of stability on the trivial branch occurs when the bifurcation parameter Ω 
arrives at the critical value µ0 at the bifurcation point.    

b) Supercritical pitchfork bifurcation 
Two stable nontrivial half-branches encircle the unstable trivial branch beginning 
from the bifurcation point. The supercritical bifurcations are called subtle bifurca-
tions because the amplitude of the periodic vibrations is limited in the limit cycle 
after the soft loss of stability at the bifurcation point µ0 (s. Fig. 4.10a). As long as 
the limit cycle remains within the bearing clearance, they are harmless and not 
dangerous for the bearings.  
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transcritical supercritical subcritical

 

Fig. 4.12 Classification of Hopf bifurcations 

c) Subcritical pitchfork bifurcation 
Two unstable nontrivial half-branches encircle the stable trivial branch beginning 
from the bifurcation point. The subcritical bifurcations are much more dangerous 
and harmful than the supercritical bifurcations because the amplitude of the peri-
odic vibrations moves away from the unstable limit cycle outwards (s. Fig. 4.10b).  
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They are called the hard loss of stability at the bifurcation point µ0. Such jumps to 
higher amplitudes could often happen near the bifurcation point where the rotor 
behavior changes from the equilibrium state to periodic vibrations. In this case, 
bearing wears and damages could occur when the journal amplitude exceeds the 
bearing clearance.     

The bifurcations are classified into the transcritical bifurcations when the quan-
titative characteristics change along the trivial branch, into the supercritical bifur-
cations when two stable nontrivial branches encircle the unstable trivial branch, 
and into the subcritical bifurcations when  two unstable nontrivial branches encir-
cle the stable trivial branch.   

4.3.5   Coordinates Transformation in the Bifurcation 

Having studied the vibration equations at the given rotor and bearing characteris-
tics, the right-hand side of eq. (4.37) is defined as a vector f(u,θ,Ω).   

Ω)f(u,ubuAu ,),,()( ** θθ ≡Ω+=t                             (4.39)  

For simplicity, the vector u(t) is considered in the two dimensions of x1(t) and 
x2(t). The coordinate transformation of (x1,x2) in the polar coordinate system (r, θ) 
is written down as follows: 
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The bifurcation in the polar coordinate system of eq. (4.39) is displayed in the bi-
furcation plane, as shown in Fig. 4.13. The coordinates (x1,x2) are transformed to 
the polar coordinates (r, θ) where r is the radius and θ is the angular position of the 
rotor locus. The supercritical pitchfork bifurcation is demonstrated in the follow-
ing example.   

Having varied the bifurcation parameter of the rotor speed Ω, Hopf bifurcation 
takes place when this parameter arrives at the critical value Ω0. From the bifurca-
tion point, the rotor vibration is transferred from the steady-state equilibrium to 
the periodic vibrations, as shown in Fig. 4.14. At the given rotor speed of Ωk after 
the bifurcation point, the periodic vibration is limited in the limit cycle that encir-
cles the unstable focus. The soft loss of stability causes the unstable spiral of the 
rotor locus moving away from the unstable focus towards the stable limit cycle. 
The response amplitude r(t) and the rotor orbit of the periodic vibration at the rotor 
speed Ωk are plotted in the phase plane x1x2, as displayed in Fig. 4.14. The rotor 
orbit stabilizes in the limit cycle that corresponds to both nontrivial half-branches. 
Obviously, the radius of the limit cycle changes with the rotor speed.    
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Fig. 4.13 Coordinate transformation in the bifurcation plane 
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Fig. 4.14 Limit cycle of the periodic vibration in Hopf bifurcation 
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4.3.6   Jacobian Matrix of the Vibration Equations   

In order to find the eigenvalues of the equilibrium points (singular points), the Ja-
cobian matrix is necessary. The Jacobian matrix J is calculated from the first par-
tial derivatives of the vibration equations (4.39) and written as 
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The singular point-related eigenvalue is resulted by setting the characteristic determi-
nant D of the matrix (J - λiΙ) at the corresponding singular point *

ix to zero, where Ι is 
the unit matrix. Hence, the determinant D at the singular point is written as follows:  
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Eq. (4.43) is in fact the characteristic equation of the vibration system. If the real 
part of the complex eigenvalue λi is negative, the solutions of the rotor response 
are stable. Hence, the trivial branch and nontrivial half-branches are stable in the 
supercritical bifurcations. Otherwise, the rotor responses are unstable with positive 
real parts of λi at the trivial branch and nontrivial half-branches in the subcritical 
bifurcations, as displayed in Fig. 4.12.  

4.3.7   A Study Case of the Subcritical Hopf Bifurcation  

Having considered a rotor with two DOF of x1 and x2, the vibration equations are 
written in  
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                            (4.44)    

By using the polar coordinate transformation in eq. (4.40), one obtains the vibra-
tion equations in the polar coordinate system (r, θ) after a few calculating steps. 
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where µ  is the bifurcation parameter; r(t) the radius; θ(t) the polar angle. 
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a) Finding the equilibrium points 
By setting the first part of eq. (4.45) equal zero, three equilibrium points are given. 
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b) Finding the corresponding eigenvalues 
The eigenvalues are resulted from setting determinant D equals zero, at the equili-
brium points in eq. (4.43). 
Thus, 
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Thus, the eigenvalues are found. 
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c) Bifurcation plane (µ, xi) 
The first eigenvalue has only a real part µ that can be negative or positive depending 
on the bifurcation parameter µ. In case of µ < 0, one has the stable trivial branch; 
otherwise, the unstable trivial branch. The second and third eigenvalues have also 
only a real part of -2µ that is always positive because the bifurcation parameter µ 
must be negative at the singular solutions in eq. (4.46). Hence, the two nontrivial 
half-branches are unstable in the bifurcation plane, as displayed in Fig. 4.15. 

d) Studying behavior of stability 
The speeds of the inner and outer spirals are calculated from eq. (4.45) for various 
radii r depending on the bifurcation parameter µ. 
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The behavior of the rotor stability in the subcritical Hopf bifurcation is shown in 
Fig. 4.16. As long as the rotor locus is inside the limit cycle, the rotor behavior is 
always stable and tends to move to the stable focus due to the negative speed. The 
stable focus corresponds to the stable trivial branch at µ < 0. 

When the rotor locus exceeds the limit cycle, the response behavior becomes 
unstable; the rotor locus moves from the limit cycle outwards while the response 
amplitude with the positive speed increases with time. In this case, the limit cycle 
corresponds to the unstable non-trivial half-branches at µ < 0, as displayed in Fig. 
4.15. Such unstable response causing jump in the amplitude from the unstable lim-
it cycle; the jump amplitude exceeds the bearing clearance, leading to damage of 
the radial bearings. 
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Fig. 4.15 Subcritical pitchfork Hopf bifurcation 
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Fig. 4.16 Behavior of the rotor locus at µ < 0  
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4.3.8   Stability with Neimark-Sacker Torus Bifurcations  

a) Classification of Neimark-Sacker bifurcations 
Hopf bifurcation occurs when the dynamic behavior changes from the equilibrium 
state to periodic vibrations and loses its stability at the first bifurcation point Ω0,1. 
On the contrary, to the Hopf bifurcation, the periodic vibrations at the Neimark-
Sacker bifurcation lose their stabilities to the torus at the second bifurcation point 
Ω0,2. Therefore, it is a kind of the secondary Hopf bifurcation or generalized Hopf 
bifurcation [7]. The torus can be attractive or repelling with the periodic vibra-
tions. In case of attractive torus (stable torus), the trajectories move towards the 
torus; in case of repelling torus (unstable torus), the trajectories move away from 
it. The first one is called supercritical torus bifurcation; the latter, the subcritical 
torus bifurcation. The periodic or quasi-periodic vibration amplitudes are limited 
on the limit torus surface in the Neimark-Sacker bifurcation that is called torus bi-
furcations; their quasi-periodic vibrations often occur at the beginning of the chao-
tic vibrations.    

Figures 4.17 and 4.19 display the super- and subcritical Neimark-Sacker bifur-
cations. In the supercritical torus bifurcation, the trajectories with periodic with 
frequency ω2 or quasi-periodic vibrations move on the limit surface of the attrac-
tive torus. The resulting vibrations of the Neimark-Sacker bifurcation with two in-
commensurate frequencies of ω1 and ω2 are quasi-periodic and on the verge of be-
coming chaos (s. Fig. 4.17). 

Having taken a close look at the supercritical torus bifurcation in the Poincaré 
map, the vibration response consists of two frequencies ω1 and ω2 in the longitu-
dinal and latitudinal directions, respectively [7]. Depending on the frequency ratio, 
the vibration is quasi-periodic if the ratio is irrational (i.e. incommensurate ω1 and 
ω2). The orbit of the quasi-periodic vibration response that wraps on the torus sur-
face intersects the Poincaré map at the point P that is in the invariant curve C. Be-
cause of quasi-periodicity, the orbit never cuts the Poincaré section at the same 
point P after repeat of period T at time t = T, 2T, ..., nT,  instead at different points 
P', P'',…, Pn in the invariant curve C. Therefore, the Poincaré map is usually ap-
plied to study the periodic vibrations, especially of non-autonomous systems. The 
quantitative change of stability in the Neimark-Sacker bifurcation can be investi-
gated in the Poincaré map [7], as shown in Fig. 4.18.           

Contrary to the supercritical torus bifurcation, the trajectories of the subcritical 
torus bifurcation are repelled from the repelling inner torus, as shown in Fig. 4.19. 
Just before the second bifurcation point Ω0,2, the jump-up of the periodic vibra-
tions with the frequency ω2 takes place from the inner (repelling) to outer (attrac-
tive) torus directly; shortly after the turning point ΩT between the inner and outer 
tori, the response amplitude jumps from the turning point to the center of the inner 
torus. Between the second bifurcation and turning point, the outer trajectories are 
repelled from the inner torus surface to the outer torus surface; the inner trajecto-
ries, from the inner torus surface to the nontrivial half-branches of the Hopf  
bifurcation.  
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Fig. 4.17 Supercritical Neimark-Sacker bifurcation 
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Fig. 4.18 Supercritical Neimark-Sacker bifurcation in the attractive torus 
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Fig. 4.19 Subcritical Neimark-Sacker bifurcation 

These vibrations in the tori that are superimposed by the periodic vibrations 
with the frequency ω1 of the Hopf bifurcation and the periodic vibrations with the 
frequency ω2 of the Neimark-Sacker bifurcation could contain other periodic or 
quasi-periodic vibrations with the rational and irrational frequencies, respectively. 
In case of the irrational frequency ratio; i.e., both ω1 and ω2 are incommensurate, 
the vibrations could change from the periodic vibration of the Hopf bifurcation to 
the quasi-periodic and eventually chaotic vibration in the Neimark-Sacker bifurca-
tion. Such sudden jumps of the journal in the radial bearings at large response am-
plitudes are dangerous and harmful for the radial bearings and destructively dam-
age them.  

b) Stability in Neimark-Sacker bifurcations 
In the following section, the stability of a two-DOF problem in the Neimark-
Sacker bifurcation is studied in the λ plane [10]. Having developed the Taylor se-
ries at the vicinity of the equilibrium point x*, one obtains the vibration solutions 
in the first order at the time iteration step i+1.  
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where ε1, ε2 are the disturbances of x1 and x2, respectively.   
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At small disturbances, they can be written in terms ε of the earlier time step i. 
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where a, b, c, and d are the coefficients. 
According to [10], the disturbances in eq. (4.51) can be transformed to the new 

coordinates of u1 and u2. 

⎩
⎨
⎧

+≈
−=

+

+

iii

iii

uuu

uuu

,2,11,2

,2,11,1

βα
βα

                                        (4.52) 

where α and β are the real and imaginary parts of the eigenvalues λ, respectively.   
Equation (4.52) is further transformed to the polar coordinate system (r, θ) with 

using the relation of α and β with the complex eigenvalues of λ1 and λ2. 
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and 
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Thus, 
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Substituting of eqs (4.53), (4.52), and (4.55), the vibration solutions at time step 
i+1 are written in 
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Therefore, 

. ,...,2 ,1 ,0    
1

1 nifor
rr

ii

ii =∀
⎩
⎨
⎧

+=
=

+

+

φθθ
ρ

                       (4.57) 

- Setting i = 0 into eq. (4.57), it gives:  
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- Analogously, i = 1:  
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- Analogously, further i = n > 0:  
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The solution r(t) in eq. (4.58) is stable if the radius ρ < 1 for increasing n. Hence, 
the stability condition is written as 
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where the eigenvalues are 
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The stability behavior is shown in Fig. 4.20 where the dynamic behavior is stable 
within the unit circle; unstable, at outside the unit circle, according to eq. (4.59). 
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Fig. 4.20 Stability of the Neimark-Sacker bifurcation 
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4.3.9   Vibration Equations of the Non-autonomous Systems  

The vibration system is called non-autonomous when its solutions depend on time 
t explicitly. Hence, the vibration equations (4.36) with the bifurcation parameter  
Ω become  

),,( Ω+= tzbAzz                                          (4.60) 

The non-autonomous first-order ODE with two DOF of x1 and x2 in eq. (4.60) can 
be converted into the autonomous first-order ODE of x1 and x2 and one ODE of 
time t.                                                                                                                    
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Suppose that x1(t) and x2(t) are converged, the initial solutions of the equations are 
x1,0 and x2,0 at t0 = 0 at the starting point P0 in the phase plane x1x2.  

The Poincaré mapping M is applied to the transformation from P0 to P1, P1 – P2, 
and successively to Pk. Finally, one can write the relation of Pk at time tk in P0 by 
successively iterating the mapping function M in k times [10].   
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where T  is the period. 
The vibration responses x1(t) and x2(t) consist of many periodic frequency 

components due to nonlinearity. The result from superimposing sub- and super-
synchronous vibrations on the excitation harmonics; hence, the vibration res-
ponses are periodic or quasi-periodic vibrations. In case of subsynchronous  
frequency components of a frequency order (1/N)X, one has N cutting points in 
the Poincaré map in every convolution in which the whirl orbit completes a cycle 
in the time interval of N times T. Because of the quasi-periodicity, the Poincaré 
points are never the same points after repeat of period T at time t = 0, T, 2T, ..., 
mT [10] as shown in Fig. 4.21. Therefore, the transient vibrations will appear ra-
ther in scattered dots in the Poincaré map, as shown in Figure 4.22.  

For a vibration equation system of two DOF (x1 and x2), the transient solu-
tions are quasi-periodic vibrations containing the unbalance harmonic frequency 
of 1X and subsynchronous frequency component with the frequency order of 
nearly (1/2)X (oil whirl with 0.47X). They intersect the Poincaré map at two 
points Pk,1 and Pk,2 (called Poincaré point) at time tk = kT with k = 0,1,…,m after 
repeat of k times period T.  Their transient response orbits at the various times tk 
are demonstrated in Figure 4.22.  
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Fig. 4.21 Poincaré points in the Poincaré map at various times  
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Fig. 4.22 Response orbits at various times in the Poincaré map 
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Chapter 5 
Linear Rotordynamics of Turbochargers  

5.1   Introduction  

We have thoroughly discussed the rotordynamic stability in Chapter 4. In this  
chapter, it deals with the resonance that is a harmful effect causing damages to the 
turbochargers. When the rotor angular frequency equals its eigenfrequency (un-
damped natural frequency), the resonance occurs at the critical speed at which the 
rotor arrives at the maximum deflection amplitude.  

The unbalance force FUn acting upon the rotor, which is proportional to the ro-
tor speed squared, induces the rotor deflection r. That means, the higher the rotor 
speed, the larger the unbalance force acts on the rotor. During the operation of tur-
bochargers, the unbalance force deflects the rotor outwards in the lateral direction, 
against the stiffness force of the rotor shaft and the damping force. The larger the 
rotor amplitude, the higher the stiffness force acts on the rotor, and the larger the 
restoring potential energy generated in the vibration rotor. Additionally, the damp-
ing force is proportional to the deflection velocity of the shaft. In other words, the 
rotor is kept in balance from the inertia, stiffness, damping, and unbalance forces 
of the rotor at any rotor speed according to Newton’s second law.  

At subcritical rotor speeds (Ω << Ωcr), both the inertia and damping forces are 
small; hence, only the stiffness force balances the unbalance force. The deflection 
direction is nearly the same direction of the unbalance force; thus, the rotor deflec-
tion further increases during speed-up, leading to increasing the phase angle of the 
vibration φ > 0°, as displayed in Fig. 5.1.  

At the critical speed (Ω = Ωcr), the direction of the unbalance force is perpendi-
cular to the deflection direction, leading to a phase angle φ = 90°. At the reson-
ance, the stiffness force balances the inertia force that becomes larger; hence, only 
the damping force keeps the unbalance force in balance. Therefore, the resonance 
amplitude is proportional to the inversion of the damping ratio ζ, as shown in eq. 
(5.17) at η = 1. Note that the larger the damping ratio, the smaller the resonance 
amplitude.       

At supercritical speeds (Ω > Ωcr), the vibration phase angle φ is larger than 90° 
due to the self-centering of the rotor where the deflection direction is nearly oppo-
site to the unbalance force of the rotor. As a result, the rotor amplitude continuous-
ly reduces to the unbalance radius as the rotor speed passes the critical speed. At 
the very high rotor speeds (hypercritical speeds, Ω >> Ωcr), the stiffness and 
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damping forces become smaller; therefore, only the inertia force balances the un-
balance force.  The rotor mass center tends to approach the bearing center at the 
vibration phase angle of φ ≈ 180°, as shown in Figs 5.1 and 5.5.   

From the point of view of energy consideration, the resonance amplitude of the  
rotor is determined by the energy balance between the total kinetic energy of the 
rotor (translation and rotation), the total potential energy of the rotor stiffness 
(translation and rotation), and the dissipated damping energy of the bearings act-
ing upon the rotor. The rotor damping energy dissipates the kinetic energy of the 
rotor during the deflection. The higher the rotor speed, the larger the dissipation 
energy induced in the rotor. Increasing the rotor speed increases the potential and 
dissipation energies in order to balance the kinetic energy of the rotor. When the 
rotor arrives at the equilibrium of the energy balance, the resonance takes place at 
the maximum rotor deflection.  

Obviously, the larger the damping force, the smaller the resonance amplitude 
becomes. In case of small damping ratios, the rotor deflection increases extremely 
large at the resonance, so that the normal stress of the shaft exceeds the ultimate 
tensile stress, leading to fracture of the rotor. Therefore, the rotor could be dam-
aged at the critical frequency due to contact between the journal and bearings or 
rotor fracture. 
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Fig. 5.1 Rotor response behavior versus rotor speed 
 
After traversing the resonance at the critical speed Ωcr, the rotor speed increases 

at speed-up of the turbocharger and reaches the onset of instability ΩOI at which 
the rotor behavior becomes unstable; therefore, the amplitude sharply increases 
with time and becomes very large because of oil whip, a self-excitation instability 
in nonlinear rotordynamics. Due to the subsynchronous self-excited vibration  
of the oil whip, the speed at the onset of instability is much higher than the first 
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critical speed. Therefore, at designing the rotordynamic system of the turbocharg-
ers, the critical speed should be as high as possible, so that the rotor speed at the 
onset of instability occurs outside the working speed range of the turbochargers. It 
would be very comfortable and ideal if the working speed range lay between the 
first resonance and the onset of instability. In fact, automotive turbochargers work 
on a wide speed range in the resonance region that varies from small to very large 
rotor speeds. In order to avoid damages of the turbochargers, a large damping ratio 
in the bearings is required to reduce the rotor deflection at the resonance in case of 
linear rotordynamics; and to keep the limit cycle as small as possible in case of 
nonlinear rotordynamics. However, the large bearing damping forces could induce 
more friction in the bearings, leading to a low efficiency of the turbochargers, es-
pecially in low-end torque. Hence, the bearing damping force should be as large as 
required, but not larger than necessary to compromise among the resonance ampli-
tude, bearing friction, and reducing noises.       

5.2   Vibration Response of the Linear Rotordynamic System 

Vibration response of the linear rotordynamic system is resulted by the excitation 
force of the rotor unbalance. The rotor response results in the product of the sys-
tem transfer impedance and unbalance excitation force, as shown in Fig. 5.2. The 
transfer impedance Z of the linear system is defined as the inversion of the com-
plex dynamic stiffness coefficient KS that contains the stiffness and damping coef-
ficients of the rotor, rotor mass, and rotor speed as well ([2], [5]).  
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Fig. 5.2 Vibration response of a linear rotordynamic system 

In the linear rotordynamic system, the rotor unbalance response vector is the 
sum of the responses of N degrees of freedom (DOF).  
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The linear rotordynamic system is only valid in small response amplitudes with 
low rotor unbalances. Otherwise, at large amplitudes in case of high unbalances, 
the rotor response becomes nonlinear because the stiffness and damping forces of 
the radial bearings have not been linear any longer.     
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According to Eq. (5.1), the vibration response is resulted from the complex 
dynamic stiffness and excitation unbalance force of the rotor. For the sake of sim-
plicity, the Jeffcott rotor with the isotropic bearings is used to calculate the rotor 
response in linear rotordynamics, as displayed in Fig. 5.3. 
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Fig. 5.3 Jeffcott rotor with isotropic bearings 

In case of isotropic bearings (i.e. k1 = k2 ≡ k;  c1 = c2 ≡ c), the vibration equa-
tions of the rotor are written in 
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where  

k is the equivalent stiffness coefficient of the rotor resulted from K and KS, as 
given in Eq. (4.5); 
c is the damping coefficient of the rotor.  

Note that both degrees of freedom x and y (DOF = 2) could be combined in one 
degree of freedom r (DOF = 1) only if the isotropic bearings have the same bear-
ing characteristics in the directions x and y, e.g. the bearing stiffness and damping 
coefficients have the same values in both directions.      

Having used the complex coordinate (r, φ) with   
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Eq. (5.2) is written in the complex coordinate 

tjemkcm  2   ΩΩ=++ εrrr                                       (5.4)                
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The rotor response r(t) of the linear ordinary differential Equation (5.4) consists of 
the free and forced vibration responses that are the homogeneous and particular 
solutions of Eq. (5.4), respectively.  

)()( )( ttt uh rrr +=                                                (5.5) 

 

where 

rh(t) is the free vibration response (homogeneous solution), 

ru(t) is the forced vibration response (unbalance response or particular solution). 

The generalized free vibration response of the homogeneous equation (5.4) is  
expressed in 
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within the (N x N) modal matrix Φ of the (N x 1) eigenvectors ϕi 

( )NφφφΦ ...21=  

where 

N is the degrees of freedom (DOF) of the rotor; 
λi is the eigenvalue corresponding to the eigenfrequency ωi;  
ϕi is the eigenvector corresponding to the eigenvalue λi;  
ri  is the vibration amplitude of the DOF i, and forward (fw); backward (bw).   

The generalized unbalance vibration response of Eq. (5.4) is written as  

 tj
i
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i
i ept Ω

=

=
∑=

1

)( φru
                                      (5.7) 

where 

N is the degrees of freedom (DOF) of the rotor; 
ϕi is the eigenvector corresponding to the eigenvalue λi; 
pi is the vibration amplitude of the DOF i; forward (fw) and backward (bw); 
Ω is the rotor speed. 

For a stable rotor response, the free vibration response rh(t) diminishes in a short 
time (called short-term response), as discussed in Section 4.2. Notice that the free 
vibration response (homogeneous solution) is responsible for the rotor stability; 
the forced vibration response (unbalance response or particular solution), for the 
rotor resonance.  

Therefore, the rotor response r(t) approaches the unbalance response ru(t) of 
the (N x 1) vector in the long-term response.    
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)()( )( ttt uu Φprr =→                                          (5.8)
 

where  
the (N x N) modal  matrix Φ of the (N x 1) eigenvectors ϕi 

( )NφφφΦ ...21=                                     (5.9) 

 

and the (N x 1) modal response vector pu with 
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Now, we turn back to the simple Jeffcott rotor with the vibration equation (5.4), 
the unbalance response becomes after a short time 

tj
u eAtr ΩΩ= )()(                                           (5.11)

 

Inserting ru, its first, and second derivatives in eq. (5.4), one obtains the complex 
response amplitude 

[ ]Ω−Ω−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω+Ω−

Ω=
Ω+Ω−

Ω=Ω jcmk
cmk

m

jcmk

m
A )(

)()()(
)( 2

222

2

2

2 εε
    (5.12) 

within the complex dynamic stiffness coefficient KS of the rotor as given in 

Ω+Ω−=Ω jcmkK S )()( 2                                    (5.13) 

The amplitude of the rotor response A is calculated from Eq. (5.12) 
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and the phase angle φ of the rotor response results in  
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Thus, 

)()()( φφ +ΩΩΩ ==Ω= tjtjjtj
u eAeeAeAtr                 (5.16) 

Having used Eqs (5.14) and (5.15), the amplitude and phase angle of the rotor re-
sponse are written in the unbalance radius, speed, and damping ratio. 
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where  

ε  is the unbalance radius, 
ζ  is the damping ratio defined in Eq. (4.16), 
η is the speed ratio of the rotor to critical speed (η ≡ Ω/Ωcr). 

The amplitude of the vibration response relative to the unbalance radius versus 
speed ratio η is plotted in Fig. 5.4.  

At a given damping ratio ζ, the rotor amplitude reaches the resonance ampli-
tude of ε/(2ζ) according to Eq. (5.17) since the denominator reaches the minimum 
of 2ζ at the speed ratio η=1. In case of the critically damped vibration at ζ = 1, the 
rotor critical amplitude equals ε/2, even lower than the unbalance radius ε. The 
pikes of the resonance amplitudes at various damping ratios are located in the 
curve Amax lying on the right-hand side of the critical speed ratio η = 1. Obviously, 
the resonance amplitudes change inversely related to ζ, as shown in Fig. 5.4.   
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Fig. 5.4 Relative rotor amplitude |A|/ε of the vibration response 
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Applying the L ´Hôpital´s rule to Eq. (5.17), the rotor amplitude asymptotically 
approaches the unbalance radius ε at hypercritical speeds (η >> 1).    
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Fig. 5.5 Self-centering of the rotor at super- and hypercritical speeds 
(O: bearing center; M: rotor geometric center; G: rotor mass center;  

ε: unbalance radius) 

 
Figure 5.5 shows the self-centering effect of the rotor where the rotor mass cen-

ter G moves toward the bearing center O at supercritical rotor speeds (η > 1); at 
hypercritical rotor speeds of about 3Ωcr (η ≈ 3), the rotor mass center nearly ap-
proaches the bearing center (G→O) according to Eq. (5.18), as shown in Fig. 5.4.  

The phase angle of the vibration response versus the speed ratio is drawn in 
Fig. 5.6 (a). According to Eq. (5.17), the phase angle begins nearly from zero at 
subcritical rotor speeds (η << 1), decreases to -90° at the critical speed (η = 1), 
and changes from -90° to -180° at supercritical speeds (η >> 1).   

Similarly, the deflection amplitude of the rotor is displayed in the polar coordi-
nate system (r,φ) in Fig. 5.6 (b). At the small rotor speeds, the deflection direction is 
in nearly the same direction as the unbalance force locating at the heavy spot (HS), 
which is identical to the point G shown in Fig. 5.5. This behavior is useful during 
the balancing of the rotor that shall be discussed later. The deflection direction lags 
behind the unbalance force direction with a phase lag φ that grows when increasing  
the rotor speed Ω. The amplitude of the response vector reaches the maximum at  
the resonance with a phase lag of 90° where the rotor deflects perpendicularly to the 
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unbalance force at the critical speed Ωcr. For hypercritical speeds, the rotor ampli-
tude decreases and the rotor deflection changes its direction opposite to the unbal-
ance force with a phase lag larger than 90°. At very large hypercritical speeds (Ω → 
∞), the phase lag approaches 180° opposite to the unbalance force, as shown in Fig. 
5.6(b), and the rotor amplitude converges to the unbalance radius ε (s. Fig. 5.4).            
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Fig. 5.6 (a) Phase angle of the vibration response; (b) Response vector 

5.3   Bearing Force Acting on the Flexible Rotor  

The bearing force FB acting on the rotor in Fig. 5.7 at the steady-state condition 
will be studied. Having considered the shaft with the rotor effective stiffness coef-
ficient k resulted from the shaft and bearings coefficients, as given in Eq. (4.5), the 
bearing force is proportional to the rotor deflection. 

MB krF =                                                        (5.19) 

Using the relation among k, m, and the critical speed Ωcr, one obtains 

McrB rmF 2Ω=                                                  (5.20) 

With further relations of η and rM in eq. (5.17) with  
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the bearing force acting on the flexible damped rotor becomes 
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In the rigid rotor, the bearing force equals the unbalance force because the rotor 
stiffness coefficient k is very large (k → ∞). 

222
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Fig. 5.7 Bearing force acting on a flexible rotor 

The relative bearing force in Eq. (5.22) versus the speed ratio with various 
damping ratios is plotted in Fig. 5.8. Contrary to the rigid rotor, the bearing force 
of the flexible rotor reduces after the resonance in supercritical speeds. According 
to the L'Hôpital's rule, at a very high rotor speed, the bearing force approaches the 
limit value of 
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According to Eq. (5.23), the bearing force of the rigid rotor increases without limit 
at large hypercritical speeds(η >> 1), as shown in Fig. 5.8. The bearing forces  
of both cases are relatively small up to the rotor speed ratio of 0.5 because the  
deflection of the rotor is quite small in this speed range. After that, the bearing 
force of the underdamped and flexible rotor increases very fast to the resonance 
and reaches the critical force depending on the damping ratio ζ according to  
eq. (5.22)  
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With a very low damping ratio ζ, the bearing force becomes too large enough to 
damage the rotor and bearings. At a damping ratio of 5%, the bearing force of the 
flexible rotor at the critical speed is 10 times higher than the asymptote unbalance 
force at η >> 1, as shown in Fig. 5.8. 
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Fig. 5.8 Bearing forces acting on a rigid and flexible rotor 

According to Eq. (5.22), the bearing force depends on two key parameters: the 
unbalance radius ε and damping ratio ζ. In fact, the high-speed balancing (called 
trim balancing) could be carried out at a high balancing speed to about maximum 
1.5 times of the first critical speed and not further higher because the turbine 
wheel is generally driven by the cool air at the balancing, instead of the high tem-
perature of exhaust gas (large enthalpy). Therefore, the residual unbalance remains 
high at the operational condition in the supercritical speeds. Normally, the maxim-
al speed of the automotive turbochargers is about 2.5 times of the critical speed. 
Hence, the bearing force in the working condition of the speed ratios η between 
1.5 and 2.5 is relatively large. In this speed range, more damping in the bearings is 
required to reduce the bearing force. Generally, the damping ratio should be large 
enough to prevent bearing defects and to reduce airborne noises. Fortunately, the 
engine noise is loud enough in the speed ratios between 1.5 and 2.5 to suppress the 
unbalance whistle.     

5.4   Gyroscopic Effect of the Rotor System 

Gyroscopic effect of the large compressor and turbine wheels becomes more  
important at high rotor speeds in the rotor. The gyroscopic effect is proportional to 
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the rotor speed and the polar mass inertia moment of the wheel, which is propor-
tional to the mass and radius squared. In the turbochargers, the compressor and 
turbine wheel diameters are much larger than the rotor shaft diameter, as shown  
in Fig. 5.9. Therefore, their gyroscopic effects must be taken into account in the 
rotordynamic computation of the rotor. 

thrust bearingcompressor wheel turbine wheel

radial bearings

rotor shaft

 

Fig. 5.9 Rotor of a small automotive turbocharger 

The gyroscopic effect of the rotor is based on the angular momentum theorem. 
It indicates that the timely change of the angular momentum equals all external 
moments acting upon the rotor. 

P
P dt
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M                                                    (5.26) 

where 
MP is the external resulting moment vector at a reference point P in the rotor; 
LP is the angular momentum vector at the point P.  

Having used the product rule of differentiation in the transport theorem in analyti-
cal dynamics between the stationary and rotating coordinate systems (x,y,z) and 
(x',y',z'), the timely change of the angular momentum is formulated in the Euler’s 
equation [15]. 

( )LωLL
M ×+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂==

rottdt

d                              (5.27) 

where ω is the angular velocity of the rotating coordinate system (x',y',z') due to 
the gyroscopic effect and results in  

jiω ′+′= yx θθ                                                (5.28)
 

The angular momentum of the wheel in Fig. 5.10 is calculated in the rotating 
coordinate system (x',y',z') with the unit vectors i', j', k'  
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kjiL ′Ω+′+′= pyytxxt III θθ ,,                              (5.29) 

where 
It,x, It,y are the transverse mass inertia moments in the directions of x' and y'; 
Ip is the polar mass inertia moment in the direction z'; 

yx θθ , are the angular velocities of the wheel in the directions x', y', respectively; 

Ω is the rotor speed (Ω = const).  
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Fig. 5.10 Gyroscopic effect of the rigid rotor wheel 

The timely derivative of the angular momentum in the rotating coordinate system 
is derived by differentiating Eq. (5.29).  
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The vector cross product of (ω×L) in Eq. (5.27) is calculated. 
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The resulting moment M on the rotor consists of two parts in the rotating coordi-
nate system: the timely change of the angular momentum given in Eq. (5.30) and 
the timely change of the unit vectors i', j', and k' in Eq. (5.31), and is resulted ac-
cording to Eq. (5.27) in 

( ) ( ) jiM ′Ω−+′Ω+=   xpytypxt IIII θθθθ                   (5.32) 

The unit vectors i' and j' of the rotating coordinate system (x',y',z') with the angu-
lar velocity ω become very small angles θx, θy << 1 (s. Appendix A).  
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Hence, the resulting moment M in the stationary coordinate system (x,y,z) is  
written in 
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The fictitious gyroscopic moment additionally acting upon the rotor is defined in 
Eq. (5.33) and written in the stationary coordinate system (x,y,z).  
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The gyroscopic moment stiffens the rotor stiffness of the forward whirls and de-
stiffens the rotor stiffness of the backward whirls when increasing the rotor 
speeds. As a result, the forward whirl eigenfrequencies increase with the rotor 
speed; the backward whirl eigenfrequencies, decrease with the rotor speed, as 
shown in the Campbell diagram (s. Section 5.7). Hence, the critical speeds of the 
turbochargers are higher than the critical speeds of the rotor without consideration 
of the gyroscopic effect.      

5.5   Vibration Equations of Turbochargers 

To create the vibration equations of the turbochargers, two methods are most ap-
plied: the momentum theorems and Lagrange's equations.  

a) Momentum approaches 

Lateral vibrations 
Based on the impulse momentum theorem, the vibration equation is written at the 
rotor mass center G. 

GM rF m=                                                        (5.35)
 

 



5   Linear Rotordynamics of Turbochargers 105
 

where 
FM is the external forces acting upon the rotor geometric center M; 
rG is the vector of the rotor mass center G. 

The mass center vector of the rotor is calculated from the vectors of the rotor 
geometric center and unbalance radius (s. Fig. 5.11). 

εMG rrr +=                                                (5.36) 

with 
( ) ( )ββ εε +Ω+Ω Ω−=→= tjtj ee  2     εε rr                           (5.37) 

Setting the external forces acting at the rotor center M containing the stiffness  
and damping forces in Eq. (5.35), one obtains the vibration equation at the rotor 
center M. 

( )βε +ΩΩ=++ tjemkcm 2
MMM rrr                          (5.38) 

where  

rM is the vibration response of the rotor; 
rhs term is the excitation unbalance force. 
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Fig. 5.11 Response vector rM of the unbalanced rotor 

• Rotational vibrations 
The rotational vibration equations are derived from the angular momentum theo-
rem at a reference point P in the rotor.  
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where 
MP are the external torques acting upon the rotor; 
L is the angular momentum defined in Eq. (5.29). Its time derivative is written as  
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The external torques MP contain the circulant damping, stiffness moments, as well 
as the unbalance moment in which 

- the circulant damping moment is described  

)( ,, jiMc yyrxxr cc θθ +−=                                     (5.40) 

- the circulant and interaction stiffness moment results in 

jiM )()( ,, yKkxKk tryyrtrxxrk +−+−= θθ                        (5.41) 

- the unbalance moment MU caused by the misalignment between the wheel and 
rotation axis due to the couple unbalance is derived in Eq. (5.49).  
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where 
It, Ip are the transverse and polar mass inertia moments at the mass center G;               
α is the amplitude of the couple unbalance; 
Ω is the rotor speed. 
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Fig. 5.12 Couple unbalance with a misalignment angle α 

b) Calculating the moment MU of the couple unbalance 

By production process, the geometric axis of the turbine wheel is misaligned with 
the rotational axis of the shaft at an angle α, as shown in Fig. 5.12, leading to the 
couple unbalance that induces the unbalance moment acting on the rotor. This un-
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balance moment excites the rotor by an excitation moment, similar to the excita-
tion unbalance force. Both excitations cause large response amplitudes of the rotor 
in the cylindrical and conical modes at the resonance.    

Having used the angular momentum theorem and the product rule of differen-
tiation in the transport theorem of analytical dynamics according to the Euler’s  
equation, one derives the unbalance moment MU induced by the dynamic unbal-
ance in the timely change of the angular momentum like the gyroscopic moment. 
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where 

 
iω Ω=                                             (5.44) 

ω is the angular velocity of the rotating coordinate system (x’,y’,z’);                
L is the angular momentum of the rotor.  

The angular momentum vector of the turbine wheel is written in the rotating coor-
dinate system (x’,y’,z’), as shown in Fig. 5.13.    

( ) ( )jiL ′Ω−′Ω= αα sin cos tp II                              (5.45) 
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Fig. 5.13 Unbalance moment of a misaligned rotor  
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Using the relations between the unit vectors i, j, i’, j’ of two coordinate systems 
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the angular velocity ω can be written in the rotating coordinate system (x',y',z') as 

jiiω ′Ω−′Ω=Ω=  sin cos αα                                 (5.47)  

Substituting Eqs (5.45) and (5.47) into Eq. (5.43), one obtains the unbalance mo-
ment vector in the stationary coordinate system (x,y,z) with k = k’.   
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because Ω and α are constant, as given in Eq. (5.45).  

The misalignment angle α of the couple unbalance is generally very small (α << 
1); hence, Eq. (5.48) can be written in α (radian). 

kkM U
22   )( Ω=Ω−≈ αα UII pt                             (5.49) 

The unbalance moment vector MU acting upon the rotor in the direction z is 
caused by the moment unbalance of 

 )( pt IIU −= αα                                             (5.50) 

In the automotive turbochargers, the transverse mass inertia moment It of the en-
tire rotor is mostly larger than the polar inertia moment Ip (It >> Ip).  Therefore, 
according to Eq. (5.49), the direction of the unbalance moment MU is positive in 
case of a positive misalignment angle α, as shown in Fig. 5.13. During the rota-
tion, the misalignment angle takes turns changing from the positive to negative  
direction and vice versa; hence, the unbalance moment direction is changed in the 
same direction of α. Therefore, the unbalance moment MU excites the rotor in the 
third and fourth equations of eq. (5.52). As a result, the rotor amplitude of the con-
ical vibration mode is strongly amplified (s. Fig. 5.14), leading to wear in the bear-
ings by rubbing and damages them in the worst case.  

Note that the misalignment angle due to the couple unbalance cannot be re-
moved by the low-speed balancing (called shop balancing). Moreover, it is very 
difficult to balance the unbalance moment MU of the turbine shaft at the shop  
balancing in case of It >> Ip and a large misalignment angle α. The useful way to 
reduce this unbalance moment is trying to produce a good turbine shaft by well 
centering and setting the shaft possibly perpendicular to the turbine wheel at weld-
ing and grinding. As a result, it could provide the rotor with a small misalignment 
angle (small dynamic unbalance) and a low eccentricity (low static unbalance) in 
order to prevent the rotor from the vibration excitations induced by the unbalance 
moments and forces, as shown in Eq. (5.52).    
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Fig. 5.14 Influence of the unbalance moment on the turbine shaft 

The vibration equations of the linear rotordynamic turbocharger with N degrees of 
freedom (DOF) resulted from the lateral and rotational vibrations are written in 

( ) )(tQKqqGCqM =+++                                     (5.51)
 

where 
N = degrees of freedom of the turbocharger; 
M = (N x N) diagonal mass and inertia moment matrix;  
C = (N x N) lateral and circulant damping matrix; 
G = (N x N) gyroscopic moment matrix; 
K = (N x N) lateral and circulant stiffness matrix; 
q = (N x 1) DOF vector; 
Q(t) = (N x 1) unbalance force and moment vector. 
 
An application of Eq. (5.51) to the Jeffcott rotor with 4 DOFs is demonstrated  
in Fig. 5.15. The vibration equations for the Jeffcott rotor are derived in the coor-
dinate system (x,y,z) by means of the momentum approach where the gyroscopic 
effect is taken into account in the vibration equations. 
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where 
kl, kr are the lateral and circulant system stiffness coefficients; 
Ktr is the interaction stiffness coefficient of lateral and circulant vibrations;  
cl, cr are the lateral and circulant system damping coefficients; 
ε is the unbalance radius of the rotor; 
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α is the misalignment angle. 
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Fig. 5.15 Jeffcott rotor with 4 DOFs 

Vibration equations (5.52) are written in the matrix form as follows: 
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(5.53) 

c) Lagrange's approach 

The vibration equations can be derived from the Lagrange’s approach based on the 
kinetic and potential energies of the rotor with N degrees of freedom (DOF=4). 

- The kinetic energy Trotor consists of the lateral and rotational parts,  

2
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1 θr ImTrotor +=                                           (5.54)
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within Ι  are the transverse and polar mass inertia moments.   
 

- The potential energy Vrotor consists of the lateral and rotational parts,  
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potential energy; 

within  
kl, kr are the lateral and circulant stiffness coefficients, respectively; 
r is the lateral vector; 
θ is the angle vector. 

Having defined the Lagrange function L of the rotor, 

rotorrotor VTL −≡                                               (5.56)  

the vibration equations of the rotor with N degrees of freedom are written in the 
Lagrange equation.  
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where 
qi are the Lagrangian coordinates of DOF; 
Qi are the non-conservative generalized forces and moments, such as friction 
forces and moments; 

F is the Rayleigh dissipation function defined as [17] 
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where 
cl, cr are the lateral and circulant damping coefficients, respectively. 

5.6   Transient Response at the Run-Up  

In the run-up, the rotor with an angular acceleration, the transient rotor response  
will be studied on a Jeffcott rotor with two DOFs of x and y, as demonstrated in 
Fig. 5.15.  
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The coordinates of the mass center G of the rotor are written in the coordinate 
system (x,y).  

( )[ ] ( )[ ] ji

rrr εMG

 sin cos βϕεβϕε +++++=
+=

yx
               (5.59) 

where  
ϕ is the rotation angle of the rotor.  

The rotor speed is resulted from 

tat ϕϕϕ ≡=                                               (5.60) 

where 
aϕ is the constant angular acceleration of the rotor.  

The rotation angle of the rotor is resulted by integrating Eq. (5.60). 
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Fig. 5.16 Coordinates of the geometric and mass center of the rotor 

After twice differentiating Eq. (5.59), one obtains the acceleration of the mass  
center G    
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The first term in the square brackets in Eq. (5.62) is much larger than the second 
term with increasing time t since 
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The vibration equations of the two-DOF Jeffcott rotor with anisotropic bearings, 
as shown in Fig. 5.17, are written at the rotor center M (x,y) with β = 0. 
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where 
c22, c33 are the diagonal damping coefficients in the directions x and y; 
k22, k33 are the diagonal stiffness coefficients in the directions x and y.  
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Fig. 5.17 Computed model of the Jeffcott rotor 

The Jeffcott rotor has a mass of m = 0.1 kg, the polar and transverse mass iner-
tia moments of Ip = 12.5 kg.mm² and It = 10 kg.mm², respectively. The total length 
of the rotor is about l = 85 mm and its various lengths and diameters are given in 
Fig. 5.17. The residual unbalance U = 1 g.mm lies at the mass center of the wheel 
and induces the excitation unbalance force acting on the rotor. The rotor rotates 
with accelerated rotational speeds Ω in the direction z and deflects in the direc-
tions x and y due to the unbalance force. In the computation, it is assumed that the 
anisotropic bearings are located at each end of the rotor with the constant stiffness 
and damping coefficients in Fig. 5.17.  
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To compute the rotor vibration response of Eq. (5.65), the computational pro-
gram of rotordynamics MADYN 2000 [9] based on the finite element method is 
applied at a steady-state working condition and various accelerations during the 
speed-up. At steady state (aϕ = 0), the rotor deflection versus the rotor speed is 
displayed in Fig. 5.18. Owing to the unbalance force, the rotor deflects at increas-
ing rotor speeds and reaches the resonance at the critical speed of nearly 59,100 
rpm. The maximum rotor deflection at the resonance is about 27 µm. 

After passing the resonance, the rotor amplitude continuously decreases to the 
unbalance radius ε of approximately 5 µm because of self-centering effect of the 
rotor at the supercritical speeds, as discussed in Section 5.2.      

At the run-up, the rotor speed is accelerated with an acceleration aϕ; therefore, 
the unbalance force is also increased with time according to Eqs (5.60) and (5.65).  
Figure 5.19a shows a time interval Δt that is needed to run-up the rotor from 5 to 
100% of the maximum rotor speed Nmax. Note that the shorter the time interval, 
the higher the acceleration at which the rotor speeds up. At the acceleration with 
time interval of 0.1 s, the resonance at aϕ = 0.158 Nmax/s occurs at 64,700 rpm 
higher than the steady-state critical speed, but the resonance amplitude is reduced 
from 27 to 12 µm, as shown in Fig. 5.19c. For further increasing accelerations 
with a time interval of 0.05 s, the resonance at aϕ = 0.317 Nmax/s takes place much 
later at the critical speed of about 69,750 rpm where the resonance amplitude of 
11 µm is smaller than the earlier case, but the critical speed is higher (s. Fig. 
5.19d). Contrary to the stationary working condition, the rotor deflection at the 
run-up vibrates with reducing amplitudes.  

Ωcr = 59,100 rpm

A = 27 µm 

Rotor speed (rpm)  

Fig. 5.18 Deflection rotor amplitude vs. rotor speed at steady state 
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Fig. 5.19 a, b, c, d: Rotor responses at various run-up accelerations 

The computing results in Fig. 5.19 show that the critical speeds increase with  
the run-up acceleration compared to the critical speed at aϕ = 0. However, the re-
sonance amplitudes decrease with the acceleration. Therefore, it is usually to 
speed-up the rotor over the critical speeds at high accelerations in order to avoid 
the resonance damage, especially in turbomachines of the power plants.     

5.7   Frequency Analysis in Campbell Diagram  

In linear rotordynamics, only the resonance response of the rotor has been studied. 
The characteristics of the rotor system are designed in such a way that the reson-
ances are possible to occur outside the operating speed range of the rotor. Howev-
er, the resonance cannot always be outside the operating speed range, such as  
in the automotive turbochargers. In this case, more damping is necessary to keep 
the resonance rotor amplitude as small as possible, and therefore to prevent the 
bearings from fatal damages. 

According to Eq. (5.17), the resonance amplitude increases dramatically when 
the rotor speeds equal the eigenfrequencies (called natural frequencies) of the rotor 
in case of small damping ratio. In fact, it is not easy to calculate the natural fre-
quencies depending on many rotor characteristics like gyroscopic effects by analyt-
ically solving the nonlinear equation of the rotor eigenfrequencies and rotor speed.            

Ω=Ω ),,,,,( ckIIm ptnω                                   (5.66)
 

However, Eq. (5.66) can be graphically solved in the Campbell diagram (called 
whirl speed diagram) by means of the intersections between the eigenfrequencies 
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and the synchronous excitation line 1X where ωn equals Ω. The critical speeds are 
resulted from the cutting points in the Campbell diagram. The gyroscopic effect 
stiffens the rotor eigenfrequencies of the forward whirls and destiffens the rotor 
eigenfrequencies of the backward whirls with increasing rotor speeds, as shown in 
Fig. 5.20a. Therefore, the critical speeds of the forward whirls are higher than 
those without the gyroscopic effect.  

The rotational kinetic energy of the rotor excites only the forward whirls  
because both have the same rotational direction; therefore, the amplitudes are 
strongly amplified at the resonance. On the contrary, the backward whirl direction 
is opposite to the rotational direction of the rotor; hence, the rotational kinetic 
energy of the rotor is dissipated, instead exciting the backward whirls at the reson-
ance. As a result, the unbalance forces normally excite only the forward whirls at 
the resonances. However, the unbalance force could excite the backward whirls in 
case of asymmetric rotors or oscillating rotor speeds. Therefore, the intersections 
between the eigenfrequencies of the forward whirls and the synchronous excita-
tion line 1X determine the critical speeds in the Campbell diagram.  

The first forward whirl eigenfrequency ω1 cuts the synchronous excitation line 
1X at the first bending resonance; the maximum amplitude A takes place at the 
critical speed Ωcr,1 (ω1 = Ωcr,1). Any point in the excitation line 1X satisfies eq. 
(5.66) with ω = Ω. The eigenfrequency ω2 may cut the excitation line 1X at 
 

1X (synchronous excitation line)

0
cr,1

resonance

1 (forward whirl)

2 (forward whirl)

3 (backward whirl)

4 (backward whirl)

A( )

max

 

Fig. 5.20a Campbell diagram of the eigenfrequencies versus rotor speed 
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Fig. 5.20b Simplified Campbell diagram 

a higher rotor speed that is outside the operating speed range. The backward 
whirls ω3 and ω4 have not been normally excited by the unbalance force, and 
therefore they do not cause resonances at the symmetric rotor. 

In the turbochargers, it has to design the rotor having its first bending critical 
speed as high as possible, so that the onset of instability speed at the oil whip is 
outside the operating speed range of the turbochargers. Moreover, the rotor unbal-
ance induces the unbalance whistle, one of the unwanted airborne noises in the au-
tomotive turbochargers. The unbalance whistle has the same frequency as the rotor 
and disturbs the driver and passengers during driving. However, the unbalance 
whistle induced at high critical speeds is generally suppressed by the engine noise 
at high motor speeds. That is a second reason that the first critical frequency 
should be as high as possible.                     

For simplicity, the Campbell diagram is sometimes displayed as in Fig. 5.20b 
where the backward whirls (dash lines) are in the same side as the forward whirls 
(solid lines). While the eigenfrequencies of the forward whirls increase with the 
rotor speed, the backward whirls eigenfrequencies decrease to zero. Even the 
backward whirls frequencies cut the excitation line 1X, however the resonances do 
not occur in the backward whirls.    

In the following section, the eigenmodes of the rigid rotor of Fig. 5.21 are com-
puted, as shown in the Campbell diagram. The rotor is supported at each end by 
two isotropic bearings with an effective stiffness coefficient k/2 of the rotor. The 
rigid rotor has a translatory vibration in the directions x and y, and a conical vibra-
tion in the directions θx and θy, as shown in Fig. 5.21. The rotor is assumed as a 
full cylinder with a radius r and length l. In case of l² < 3r², the polar mass inertia 
moment is larger than the transverse inertia moment (Ip > It) for the short, thick ro-
tor;  if l² > 3r²,  Ip is smaller than It (Ip < It) for the long, slender rotor.  
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The free vibration equations of the rigid rotor with 4 DOFs of x, y, θx, and θy are 
written in   
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where  
k, kθ are the lateral and circulant bearing stiffness coefficients; 
kδ is the coupling stiffness coefficient of DOF.   

Having inserted the free vibration response 
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Fig. 5.21 Case history of the rigid rotor 

in Eq. (5.67), one obtains the characteristic equation 

0)).(()( 222 =−−Ω+−= δθ ωωωω kIIkmkD tp                     (5.68) 

The eigenfrequencies are resulted from the roots of Eq. (5.68) which are in a  
function of the rotor speed Ω because of the gyroscopic effect. They can be numeri-
cally computed at various rotor speeds and are plotted in Figs 5.22a and 5.22b. How-
ever, one can analytically calculate their responses depending on the rotor speeds. 

The rotor speed is derived from the characteristic Equation (5.68) and written in 
the rotor eigenfrequency.   
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• At Ω = 0, the numerator of Eq. (5.69) equals zero; hence, four natural frequen-
cies ω1,0, ω2,0, ω3,0, and ω4,0 are determined. 

• As Ω goes to ∞, the denominator converges to zero; one gets  

0   ; ,3,4;2 →±= ∞∞ ωω
m

k                                    (5.70) 

• As ω goes to ∞, it gives the asymptotic relation between Ω and ω according to 
the L’Hôpital’s rule. 
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where 

•  Ip < It  gives ω/Ω < 1; its gradient is smaller than 1X (ω = Ω); 

•  Ip > It  gives ω/Ω > 1; its gradient is larger than 1X (ω = Ω). 
 

The behaviors of the eigenfrequencies can be plotted by such asymptotic methods 
in Figs (5.22a) and (5.22b). In case of Ip < It, the gradient of the asymptote ω1 in 
Eq. (5.72) is less than 1; there are two critical speeds Ωc,1 and Ωc,2 in the syn-
chronous excitation line 1X, as shown in Fig. 5.22a. On the contrary, if Ip > It, 
there is only one critical speed Ωc,2 because the gradient of the asymptote ω1 is 
larger than 1. Therefore, the eigenfrequency of the forward whirl ω1 never cuts the 
excitation line 1X at Ip > It (s. Fig. 5.22b). 

To investigate the eigenmodes of the eigenfrequencies ω1 and ω2, the ratio of crit-
ical speeds is used. The critical speed ratio ξ  for the symmetric rotor with overhung 
ends is defined [14], as shown in Fig. 5.21. 
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where  
l is the length of the rotor; 
r is the rotor radius; 
lB is the bearing span. 
There are two cases of ξ: 

•  ξ  < 1 at (l - 3r²) < 3lB², the cylindrical mode occurs at the lower frequency.  

•  ξ  > 1 at (l - 3r²) > 3lB², the conical mode occurs at the lower frequency.  
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Fig. 5.22a Campbell diagram in case of  Ip < It   

0

ω

Ω

1X (ω=Ω)ω1

ω4

ω2

ω3

Ω=
t

p

I

I
ω

m

k+

m

k−

0,1ω

0,4ω

Ωc,1

tp II >

0,2ω

0,3ω

backward whirls

forward whirls

 

Fig. 5.22b Campbell diagram in case of  Ip > It 
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5.8   Computations of Linear Rotordynamics 

Automotive turbochargers mostly use rotating floating ring bearings (RFRB) with 
two oil  films which have some nonlinear characteristics of the bearing stiffness 
and damping coefficients: Therefore, the nonlinear rotordynamic effects of sub-
synchronous whirls, such as oil whirls and supersynchronous whirls like exces-
sively high unbalance forces, rotor misalignment, contact rubs, and frequency 
modulations must be taken into account in the computations. To compute the  
rotordynamic behavior of the turbocharger some commercial codes such as 
Adams, SimPack, MADYN 2000, etc. are used. Unfortunately, the nonlinear cha-
racteristics of the oil-film bearings have not been well simulated yet for nonlinear 
rotordynamics because all mutual effects between the fluid-, thermo-, and rotor-
dynamics in the oil films are quite difficult to simulate numerically.  

However, some characteristics of turbochargers have been carried out at first by 
the  computation of linear rotordynamics with the program MADYN 2000 in order 
to study the modal analysis. In this case, the anisotropic bearings are assumed to 
have constant stiffness and damping coefficients in each direction, instead of the 
nonlinear bearing forces acting upon the rotor. Nevertheless, the results of the li-
near rotordynamic computation can provide the critical speeds of the rotor in the 
Campbell diagram and the rotor eigenmodes of the harmonic vibrations induced 
by the unbalance excitation forces as well as moments.     

The rotor of the turbocharger displayed in Fig. 5.23 consists of the compressor 
and turbine wheels, and two rotating floating ring bearings. The computed rotor 
model is transformed to the finite element model where the wheels, shaft, and 
bearings with all necessary degrees of freedom (DOF) are taken into account in 
the computation. Each wheel has 4 DOFs of x2, x3, θ2, and θ3 in the inertial coordi-
nate system (1,2,3); the shaft element and bearings have 2 DOFs of x2 and x3. The 
rotor velocity Ω aligns with the axial direction 1, as shown in Fig. 5.23.    

The bearings have the stiffness coefficients k22=2.0E3 N/m; k33=2.25E3 N/m 
and the small damping coefficients c22=50 Ns/m; c33=55 Ns/m, which are used in 
the computation of the modal analysis. The total mass of the small turbocharger 
rotor is about 95 g. The polar and transverse mass inertia moments at the mass 
center G result in Ip=6.4E-6 kg.m² and It=107E-6 kg.m², respectively, as shown in 
Fig. 5.23.  

The first bending resonance is found at the first critical speed of nearly 131,900 
rpm in the Campbell diagram (s. Fig. 5.24) in which the forward whirl eigenfre-
quency ω4 with the eigenmode #4 cuts the synchronous excitation line 1X. Three 
forward whirls with the eigenmodes #2, #4, and #6 in the frequency range up to 
6,000 Hz appear in the Campbell diagram; however, three backward whirls with 
the eigenmodes #1, #3, and #5 do not excite the rotor at the resonances. The 
second resonance of the eigenmode #6 occurs outside the operating rotor speed of 
285,000 rpm.   
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Fig. 5.23 Computational model of the turbocharger rotor 
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Fig. 5.24 Campbell diagram of the turbocharger rotor 
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Fig. 5.25 Vibration eigenmodes of the rotor near the resonance 

The vibration shapes of the eigenmodes of the rotor were already discussed in 
Chapter 3. At a low rotor speed of about 7,588 rpm, the rotor is still rigid and its 
transverse mass inertia moment It = 107E-6 kg.m² is larger than the polar inertia 
moment Ip = 6.4E-6 kg.m². In this case, the critical speed ratio ξ in Eq. (5.73) is 
much larger than 1 (ξ >> 1); therefore, the conical mode (eigenmode #2) takes 
place at the low frequency, as shown in Fig. 5.25. Obviously, a long and slender 
rigid rotor (It >> Ip) tends to tumble with the conical mode shape at low rotor 
speeds rather than with the cylindrical one. In the conical mode, the displacements 
of the compressor (CW) and turbine wheels (TW) go out of phase; i.e., their def-
lection directions are opposite to each other with a phase lag of 180°.  

The rotor amplitude of the conical mode is normally larger than the amplitude 
of the cylindrical because it is amplified by the long arm of the rotor from the rota-
tion point of the conical mode. On the contrary, the rotor amplitude of the cylin-
drical mode is limited by the small bearing clearance. At large, the shorter, and 
thicker rigid rotor (It << Ip) is more stable than the long, and slender rotor (It >> Ip) 
at low rotor speeds since the forward whirl eigenmode is a cylindrical mode. In 
this case, the displacements of the compressor (CW) and turbine wheels (TW) go 
in phase and their amplitudes are limited in the bearing clearance. The whirl orbits 
of the rotor eigenmodes are illustrated in the phase plane 2-3, in which the ampli-
tude and direction of the minimal and maximal rotor deflections are indicated for 
each vibration mode (s. Fig. 5.25).  
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Fig. 5.26 Vibration eigenmodes of the rotor near Ωcr = 132,000 rpm 

The rotor becomes flexible at increasing its speed. It begins to deflect itself due 
to unbalance and arrives at the maximum deflection at the first resonance with Ωcr 
= 131,900 rpm. The forward whirl eigenmode #4 of the flexible rotor has a U 
mode shape where the deflections of the wheels are in phase. At high supercritical 
speeds, the bending shape of the forward whirl eigenmode #6 changes from the U 
to S shape and approaches the second resonance at a second critical speed outside 
the rotor speed range, as shown in the Campbell diagram (s. Fig. 5.24). The def-
lection directions of the wheels are opposite to each other in the S shape of the ei-
genmode #6. Unless the second resonance is far away from the maximum rotor 
speed, the rotor amplitude will increase again shortly after the self-centering of the 
first resonance.                  

Figure 5.26 displays the shapes of the eigenmodes #2, #4, and #6 of the for-
ward whirls. The elliptic whirl orbit of the rotor has the maximum amplitude 
whose direction locates in the phase plane 2-3, as shown in Fig. 5.25.  
In order to measure the rotor eigenmode, four eddy-current sensors should be in-
stalled at the ends of the rotor at the compressor and turbine wheels. If the vibra-
tion responses at the rotor ends take turns moving in the opposite direction with 
 a phase lag of 180°, the rotor vibration is out of phase, either the conical (rigid  
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rotor) or the second bending mode with a S shape (flexible rotor) depending on the 
rotor speed is possible. Otherwise, the rotor vibration is in phase, either the cylin-
drical (rigid rotor) or the first bending mode with a U shape (flexible rotor)  
depending on the rotor speed could be the case. However, it is very difficult  
to measure the rotor deflection at the turbine side due to high temperatures of the 
exhaust gase at 850°C  in diesel engines and 1,050°C in gasoline engines.               
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Chapter 6 
Bearing Dynamics of Turbochargers  

6.1   Introduction  

To support the rotor in the operation, the bearing system including the thrust and 
radial bearings is necessary for turbochargers. The impulse forces of fluids in the 
wheels and pressures acting on the compressor and turbine wheels cause the axial 
thrust on the rotor that depends on different working conditions. Hence, the axial 
thrust is balanced by the thrust bearing to keep the rotor stable in the axial direc-
tion. On the contrary, the radial bearings induce the bearing forces to balance the 
unbalance forces acting upon the rotor in the radial direction.  

Figure 6.1 displays the layout of the bearing system in the core unit (CHRA: 
center housing and rotating assembly) that includes the rotor shaft, turbine and 
compressor wheels, thrust rings, and radial bearings. The thrust bearing is mounted 
and fixed in the bearing housing, not rotating with the rotor; it is in the middle  
between the thrust rings that are fixed in the shaft, rotating with the rotor. The 
reacting force of the thrust bearing acts upon one of thrust rings to keep the rotor in 
balance against the axial thrust. The thrust bearing force is induced by squeezing of 
the oil film between the bearing and thrust rings; hence, the oil-film thickness de-
termines the reacting force of the thrust bearing. Note that the smaller the oil-film 
thickness, the larger the thrust bearing force induces, and vice versa.    

 Radial bearings rotate and float in the inner and outer oil films, called the rotat-
ing floating ring bearings (RFRB). These bearings are applied to the automotive 
turbochargers in order to reduce the bearing friction compared to the semi-floating 
ring bearings, especially in low-end torque (LET). As a reason, the response beha-
vior of turbochargers (turbolag) improves at low rotor speeds. Normally, two kinds 
of radial bearings are used in the automotive turbochargers: hydrodynamic fluid-
film bearings and rolling-element bearings. The latter reduces much more bearing 
friction at low rotor speeds; therefore, they are sometimes applied to some automo-
tive turbochargers in order to keep CO2 emission low according to the current 
emission law or to improve the transient behavior further. At high rotor speeds, the 
difference of the bearing friction between the fluid-film and rolling-element bear-
ings is quite small because the oil temperature increases; hence, the oil viscosity re-
duces, leading to reduction of the bearing friction of the oil-film bearings.  

The rotor is supported on the bearing system rotating and floating in the bearing 
housing, as displayed in Fig. 6.2. The bearing system is supplied with pressurized oil 
at the oil inlet. The oil channels in the bearing housing provide the thrust and radial 
bearings with the pressurized oil, which has two main functions. Firstly, the bearing 
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forces that are generated by the oil hydrodynamic effect keep the rotor stable in the 
axial and radial directions, and damp the rotor vibration to prevent its response from 
large amplitude at the resonance. Secondly, fresh supply oil removes the induced 
heating flow in the bearings by the convection in the axial direction, and by the con-
duction between two oil-films in the radial direction through the bearing ring. This 
cooling function keeps the effective oil temperature in the bearings as low as possi-
ble, and therefore maintains the bearing stiffness and damping coefficients large at 
the high rotor speeds, in turn large stiffness and damping forces of the bearings.    

thrust bearingcompressor wheel turbine wheel

radial bearings

rotor shaft

thrust rings

 

Fig. 6.1 Layout of the bearing system in a turbocharger 

compressor wheel

thrust bearing

turbine wheel

radial bearings

thrust rings rotor shaft

bearing housing

seal rings
 

Fig. 6.2 CHRA (center housing and rotating assembly) of a wastegated turbocharger (Cour-
tesy BMTS) 



6   Bearing Dynamics of Turbochargers 129
 
In the following section, Table 6.1 compares the characteristics between the 

fluid-film and rolling-element bearings. Despite many disadvantages, the rolling-
element bearings have only one main advantage of the small bearing friction at 
low rotor speeds, especially in low-end torque. As shown in Tab. 6.1, the friction 
coefficient of the ball bearings is in the order of 10 times lower than the oil-film 
bearings at low rotor speeds. However, the friction coefficients of both bearings 
are nearly equal at the high rotor speeds since the effective oil temperature in the 
bearings has been already high, leading to low oil viscosity and low bearing fric-
tion at these rotor speeds. However, the bearing efficiency only plays a secondary 
role at the high rotor speeds because the turbine power is much larger than the 
bearing friction power at these high rotor speeds.  

The main disadvantage of the rolling-element bearings is very loud. Besides the 
unbalance whistle (1X), the typical induced noises of the ball bearings are highly-
harmonic noises (2X, 3X, or higher frequency order), defected-bearing-related 
noises, and side-band noises induced by the frequency modulations of the unbal-
ance whistle, highly harmonic noises, and defected-bearing-related noises. Com-
pared to the oil-film bearings, the so-called constant tone (subsynchronous noise) 
due to oil whirl does not occur in the ball bearings. However, the ball bearings 
cost nearly 10 times more than the oil-film bearings. When the monetary penalty 
for exceeding the allowable limit of CO2 emission is quite high, or the transient 
behavior is significantly improved at the low-end torque, the ball bearings are rea-
sonable to apply to the automotive turbochargers.            

Table 6.1 Comparison of bearing characteristics between the oil-film and rolling-element 
bearings of turbochargers 

Characteristics Oil-film bearings                                                         
(rotating floating ring bearings) 

Rolling-element bearings  
(combined thrust and radial 
bearings) 

Functionality separate radial and thrust bearings combined radial and thrust 
bearings 

Load direction radial and axial  radial and axial 

Volumetric size small outer diameter of radial bearings outer diameter: 2x larger 

Friction coefficient • in LET: large μ = 10-2…10-1 

• at high speeds: small  μ = 10-3

• in LET: small
 μ = 10-3… 10-2

• at high speeds: small 
 μ = 10-3

Damping coefficient            
(bearing/rotor) 

2x larger because of two oil films: inner bearing 
clearance (20 µm); outer bearing clearance (70 µm)   

very small, clearance between 
balls/race (< 0.5 µm); 
1x oil-film damper (50…80 µm) 

Noise less noisy: unbalance whistle; constant tone (inner 
oil whirl) 

noisy: unbalance whistle, high 
harmonics, defected bearing 
frequencies, sidebands due to 
frequency modulation 

Oil volumetric flow rate small nearly 2x larger 

Lifetime unlimited limited by high cycle fatigue 
(HCF)  

Damage possibly damaged by oil whip (self-excited 
instability); less or no wear (normal condition)

ball contacting at high speeds; 
more wear 

Cost low very high  
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6.2   Reynolds Lubrication Equation  

The Reynolds lubrication equation is used to compute the bearing forces of the 
oil-film bearings. While the Navier-Stokes equations deal with the highly large 
convection terms at high Reynolds numbers, the Reynolds equations, with the in-
significantly small convection terms at low Reynolds numbers. The flows in the 
oil-film bearings of the automotive turbochargers are normally laminar with low 
Reynolds numbers between 100 and 200; therefore, the convection terms are quite 
small. As a reason, the Reynolds equations are used in the oil-film bearings in-
stead of the more complex Navier-Stokes equations.       

Figure 6.3 shows the hydrodynamic characteristic of the oil film in the bearing in 
which the journal moves with a circumferential velocity U2; the bearing rotates in 
case of the rotating floating ring bearing with a circumferential velocity U1. 
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Fig. 6.3 Hydrodynamic oil film in the radial bearing 

The oil film can be simplified as a fluid wedge that is surrounded by the bear-
ing and journal moving with the velocities U1 and U2, respectively (s. Fig. 6.3). 
Due to the moving journal and bearing, lubricating oil is drawn into the wedge 
from the inlet with the pressure p0 and flows with a velocity u(x,y) through the 
wedge. The oil film is squeezed inside the wedge because of the wedge and 
squeeze effects in the oil film. Hence, the oil-film pressure p(x,z) increases in the 
directions x and z from the oil inlet to the middle of the fluid wedge; it remains 
unchanged in the direction y since the oil-film thickness is very small. The Rey-
nolds number of the oil flow in the wedge is very low; therefore, the flow of the 
oil film is laminar, and its velocity has a parabolic profile.  

The velocity of the journal U2 contains two components: Uj parallel to the jour-
nal surface and Vj perpendicular to the moving direction of U2. The first one is 
nearly equal to the moving velocity U2 because the inclination angle α between 
the journal and bearing is very small (U2 ≈ Uj). The second one is derived from U2 
and α and written in 
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The direction of Vj is negative, acting perpendicular to the oil film. Therefore, the 
incompressible oil is squeezed; the oil-film pressure increases correspondingly.  

Having applied the Reynolds and continuity equations to the incompressible 
oil film of the wedge, the pressure distribution in the oil film is given by the Rey-
nolds lubrication equation [5]. 
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where 
h(x,z,t) is the thickness of the oil film; 
p(x,z) is the oil-film pressure; 
η is the oil dynamic viscosity. 

By setting Eq. (6.1) into Eq. (6.2), the Reynolds lubrication equation becomes  
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In a non-rotating radial bearings with U1 = 0, Eq. (6.3a) is rewritten as 
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Both first terms in the right-hand side of eq. (6.3a) are induced by the rotor veloci-
ty and wedge effect (called the wedge-velocity term); the third term, by the 
squeeze-film effect (called the squeeze-film term). Due to the converged wedge 
geometry, the change of the oil-film thickness h in the direction x is always nega-
tive; therefore, the wedge-velocity term is also negative.  

The oil-film thickness h in the radial bearing results in 

0ceh =+                                                          (6.4)
 

where 
e is the journal displacement inside the bearing clearance; 
c0 the radial bearing clearance (= const). 

Thus, 
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In case of the journal moves from the bearing center outwards due to unbalance; 
i.e., the timely rate change of e is positive. According to Eq. (6.5), the timely 
change of the oil-film thickness is negative; i.e., the squeeze-film term is also neg-
ative. All terms in the right-hand side in Eqs (6.3a) and (6.3b) are negative.  



132 Rotordynamics of Automotive Turbochargers
 

Obviously, the pressure terms in the left-hand side of Eqs (6.3a) and (6.3b) are 
negative. Notice that this term is the second-order derivatives of the oil-film pres-
sure. So, the oil-film pressure p(x,z) has a paraboloid shape with the maximum 
pressure inside the wedge, as shown in Fig. 6.4. On the one hand, the wedge-
velocity terms in Eqs (6.3a) and (6.3b) raise the bearing stiffness coefficients due 
to the rotation of the bearing with the velocity U1, and the journal with the velocity 
U2 where the oil is pumped into the wedge, and compressed by the rotating kinetic 
energy. On the other hand, the squeeze-film term induces the bearing damping 
coefficients by means of the timely change of the oil-film thickness.  
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Fig. 6.4 Pressure distribution p(x,z) of the oil film 

By solving Eq. (6.3a) or (6.3b) with the boundary conditions, one obtains the 
pressure distribution of the oil film in the bearing clearance. The total bearing force 
is resulted by integrating the pressure of the oil film over the bearing surface.     
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where Ab is the pressure surface of the bearing.       

6.3   Lubrication Regimes in the Stribeck Curve 

Two rough surfaces 1 and 2 lubricated by the oil film move to each other where 
the friction force Ft acts on the moving surface 2. Figure 6.5 displays three general  
lubrication regions of the boundary, mixed, and hydrodynamic lubrications in the 
tribology. We begin to study the lubrication regimes in the Stribeck curve, from 
the right-hand to the left-hand side in Fig. 6.5. The hydrodynamic lubrication  
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occurs when the surfaces are completely separated by the lubricated oil film; i.e., 
no contact of materials takes place between two surfaces in this regime. In the  
hydrodynamic lubrication region (full oil film), the friction coefficient µ is propor-
tional to the Hersey dimensionless number according to Eq. (6.11). 

The Hersey number is defined as 
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where 
η is the oil dynamic viscosity (Pa.s); 
N is the rotor speed (rps); 
p is the oil-film pressure between two surfaces (Pa). 
 
The friction force in the hydrodynamic lubrication is calculated  
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The oil velocity U2 is calculated from the shaft rotational speed and its diameter. 
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Thus, Eq. (6.8) becomes 
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where 
D is the shaft diameter; 
h is the oil film thickness between the surfaces; 
At is the oil lubricated surface area; 
η is the oil viscosity; 
N is the rotor speed (rps). 

The normal force at the contact surface is calculated as 

tn pAF =                                                   (6.10) 

The friction coefficient is defined as the ratio of the friction to the normal force of 
Eqs (6.9) and (6.10). 
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Equation (6.11) indicates that the friction coefficient is proportional to the Hersey 
number in the hydrodynamic lubrication, as shown in Fig. 6.5. It is straightforward 
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that the higher the rotor speed, the larger the friction force induces in the oil film 
at a constant bearing load.   

When the oil-film thickness becomes smaller, the micro-contact at the asperi-
ties between the surfaces takes place. This lubrication regime is now called  
the mixed lubrication where the adhesion friction mainly causes the friction at the 
asperities of the surfaces.  

The friction force is derived from the shear stress of the softer material at the 
asperities and contact surface. 

tt AF τ=                                                    (6.12) 

The normal force is derived from the normal stress at the asperities and contact 
surface.   

tnn AF σ=                                                    (6.13)
 

where σn is the plastic normal stress .  
Therefore, the friction coefficient in the mixed lubrication is resulted from Eqs 

(6.12) and (6.13). 
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The plastic deformation takes place at the vicinity of the contact asperities rather 
than the elastic deformation that occurs far away from the contact zone. At the 
plastic deformation, the atoms near the contact zone in the surface slide and move 
to each other in the form of slip planes and dislocations that correct the errors in 
the crystal structures of the surfaces. This process is called the work hardening or 
strain hardening in which the shear stress, normal stress, and hardness of the sur-
face material are strengthened as the plastic deformation continues. Hence, the 
surface material at the contact zone is hardened by increasing the strength of the 
plastic shear and normal stress. According to [9], the plastic shear stress increases 
faster than the plastic normal stress. Therefore, the friction coefficient µ , as given 
in Eq. (6.14) increases in the mixed lubrication region at reducing the Hersey 
number. In this region, the plastic deformation occurs at the asperities of the  
surfaces.          

In the boundary lubrication, the surfaces are only lubricated by oil additives 
connected by the oil molecules in the point of view in the nanotribology [9]. In this 
case, the friction coefficient is nearly unchanged at small Hersey numbers in this 
regime. At increasing load, the Hersey number reduces because the pressure p in 
the contact zone becomes larger. By further increasing load or oil temperature, the 
oil-molecule chains break, and therefore the surfaces are now non-lubricating 
seized. As a reason, the friction coefficient jumps up, leading to the seizure of the 
surfaces, as shown in the Stribeck curve at very small Hersey numbers (s. Fig. 6.5).  
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Fig. 6.5 Stribeck curve of the oil lubricated journal bearing 

6.4   Thrust Bearings 

6.4.1   Working Principle 

The working principle of thrust bearings, as shown in Fig. 6.6 is based on the hy-
drodynamic effect of the lubricating oil described by the Reynolds lubrication  
equation. The thrust rings fixed to the rotor shaft rotates with the same rotor speed 
Ω and its circumferential velocity U at the mean diameter Dm of the bearing seg-
ment (s. Fig. 6.7). The bearing segment including the tapered land, flat plateau, 
and oil groove is mounted and fixed in the bearing housing, and therefore the 
thrust ring moves relatively to the thrust bearing with the rotor speed Ω. Due to 
the wedge and squeeze-film effects, the oil-film pressure is generated on the thrust 
ring to keep the rotor in balance, against the axial thrust acting upon the rotor.   

In this case, the wedge velocity U2 = 0 and the bearing velocity U1 = U, as indi-
cated in Figure 6.3 where U is the thrust-ring’s velocity. Therefore, the Reynolds 
lubrication Equation (6.3a) for the thrust bearing becomes 

t

h

x

h
U

z

p
h

zx

p
h

x ∂
∂+

∂
∂=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ ηη 12633                    (6.15) 

 



136 Rotordynamics of Automotive Turbochargers
 

where 
p(x,z) is the induced pressure in the bearing; 
h(x,z) is the oil film thickness in the bearing; 
η is the oil dynamic viscosity;  
U is the circumferential velocity at the mean diameter Dm.  
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Fig. 6.6 Working principle of a thrust bearing 
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Fig. 6.7 Geometry of a segment of the thrust bearing 

On the one hand, the thrust ring with the velocity U pumps oil into the wedge 
and squeezes it in the bearing due to the wedge effect. Hence, the oil pressure in-
creases strongly because of its incompressibility. On the other hand, at increasing 
the axial thrust, the timely change of the oil film thickness is negative, leading to 
the increase of pressure induced by the squeeze-film effect.   
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By integrating the pressure p(x,z) over the bearing surface Ab of all bearing 
segments, one obtains the bearing force acting opposite to the axial thrust. At 
equilibrium position, the bearing force equals the axial thrust where the oil film 
thickness between the thrust ring and bearing segment is determined. The oil film 
thickness must be larger than the required minimum oil-film thickness, as given in 
Eq. (6.32) depending on the surface roughness, to prevent the bearing wear in the 
mixed lubrication and the seizure of the bearing in the boundary zone.  

6.4.2   Calculation of the Axial Thrust on the Rotor 

To design a thrust bearing that is used in the automotive turbochargers, the axial 
thrust must be determined at first. The axial thrust is caused by the different  
pressures acting upon the compressor and turbine wheels and as well as the im-
pulse force induced by the flows in the wheels in the axial direction. Since the  
turbochargers work at various speeds in the run-up, slowdown at different traffic 
situations, the axial thrust depends on the rotor speed; its acting direction could 
change from one direction to the opposite one.  

There are two usual ways to compute the axial thrust: either using CFD (com-
putational fluid dynamics) or applying the Newton’s second law. The first one  
provides a precise result but requires a huge computing effort at all working con-
ditions of turbochargers including the mesh generation of the entire turbocharger, 
computing time (CPU), and post processing of the computational results. On the 
contrary, using the Newton’s second law to compute the axial force is quite sim-
ple, but some thermodynamics and turbomachinery backgrounds are required. 
However, its analytical result is quite good, compared to the CFD numerical re-
sults. The discrepancy between them is less than 10% according to our test com-
putation by using both methods at an automotive turbocharger. Moreover, using 
the Newton's second law needs much less computing time to carry out the task for 
all working conditions; the result discrepancy between both methods is smaller 
than the safety tolerance range of the axial thrust at the bearing design. As a rea-
son, the Newton’s second law is usually applied to computing the axial thrust in 
automotive turbochargers.                               

The thrust force 
TF  opposite to the reaction force 

RF is derived from the 

second law applied to the control volume (CV). The fluid flows through the con-
trol volume with a mass flow rate m , as shown in Fig. 6.8. 

The fluid flow is assumed as steady state and the viscous friction at the wall of 
the control volume (CV) to be negligibly small. According to the Newton’s 
second law, the acting forces on the control volume (CV) are written at the steady 
state condition.  

( ) 0,, ==++=∑∑ amFFFF R
j

jJjp
                       (6.16) 

where 

pF is the pressure force; 

JF is the impulse force; 
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Fig. 6.8 Forces acting upon a control volume (CV) 

RF is the reaction force acting upon the control volume; 
a is the flow acceleration. 

By integrating pressure p over surface A, the pressure force results in  

nApdAnpF
A

p −=−= ∫                                   (6.17) 

where 
n  is the normal vector at the surface; 
p  is the average pressure at the surface. 

The momentum force is calculated by the momentum theorem. 

( ) nvmnAvdAnvvF
A

J −=−=−= ∫ 2,. ρρ               (6.18) 

where 
m  is the mass flow rate through the control volume; 
v is the fluid velocity vector perpendicular to the surface; 
ρ is the fluid density at the surface; 

v is the fluid average velocity at the inlet and outlet flow areas. 
Substitution of Eqs (6.16), (6.17), and (6.18) gives the axial thrust acting on the 

rotor at the steady state. 
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Fig. 6.9 Acting forces on the rotor of a turbocharger 

Eq. (6.19) is the fundamental equation that is used to compute the axial thrust 
of the thrust bearing. Due to the rotor symmetry, the resulting force on the rotor is 
acting in the axial direction x, which is called the axial thrust FT,ax, as displayed in 
Fig. 6.9.    

The axial thrust FT,ax acting upon the rotor is resulted from all forces of the 
compressor and turbine wheels that are indicated in Fig. 6.9. On the compressor 
wheel (left) F1,C is the pressure force at the compressor inlet surface; F2,C the pres-
sure force at the shroud surface; F3,C the impulse force in the compressor wheel;  
F4,C the pressure force at the back face. Similarly, the acting forces at the turbine 
wheel (right) are F1,T, F2,T, F3,T, and F4,T.  

The pressure force F1,C is calculated according to Eq. (6.17). 
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where 
D1 is the inlet diameter of the compressor;  
p1 is the inlet pressure of the ambient air. 
 
The pressure force F2,C is resulted by using the mean pressure pm of the inlet and 
outlet pressures of the compressor wheel.  
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where 
AS 

is the projected area in the direction x of the shroud surface; 
p1 is the inlet pressure at the compressor wheel; 
p2* is the outlet pressure at the compressor wheel. 
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The impulse force F3,C is resulted from Eq. (6.18) by using the ideal gas  
equation. 
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where 

Cm is the air mass flow rate through the compressor wheel; 
cm,1 is the meridional component of air velocity at the compressor inlet; 
Ra is the gas constant of air;  
T1 is the inlet temperature of air; 
p1 is the inlet pressure of air; 
Ain is the cross-sectional area at the inlet of the compressor wheel. 

The air pressure at the back face of the compressor wheel is nearly unchanged 
when the gap between the bearing housing and the back face of the compressor 
wheel is as large as about 1 mm according to the CFD results. Hence, the pressure 
force F4,C at the back face is computed with a constant pressure p2* like Eq. (6.17).  

*2,,4 pAF CbfC =                                                (6.23) 

where 
Abf,C is the acting pressure surface of the back face of the compressor wheel; 
p2* is the outlet pressure at the compressor wheel.  

The resulting force on the compressor wheel (CW) is computed from Eqs (6.20)  
to (6.23). 

1, 2, 3, 4,CW C C C CF F F F F= + + −                                  (6.24) 

Analogous to Eq. (6.24) one obtains the resulting on the turbine wheel (TW).  

1, 2, 3, 4,TW T T T TF F F F F= − − − +                             (6.25) 

Therefore, the axial thrust acting upon the rotor becomes 

,T ax CW TWF F F= +                                          (6.26) 

Normally, the acting force on the compressor wheel is higher than the one on the 
turbine wheel because the compressor wheel diameter is generally larger than the 
turbine wheel diameter. As a reason, the resulting axial thrust is normally acting in 
the direction to the compressor wheel; it defines the negative axial thrust with the 
direction from the turbine to compressor wheel (FT,ax < 0). At the compressor 
surge, the axial thrust takes turns changing its direction from the turbine to com-
pressor wheel (FT,ax < 0) and vice versa (FT,ax > 0) with a very high frequency, as 
displayed in Fig. 6.9.        

The inlet and outlet pressures, temperatures, and mass flow rates of the com-
pressor and turbine are computed by the turbocharged engine processing. Howev-
er, the pressure p2* at the outlet of the compressor wheel in front of the diffuser, 
and p3* at the inlet of the turbine wheel after the variable turbine geometry (VTG)  
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have been unknown. It is very difficult to determine them by means of measure-
ment. Therefore, they are estimated by using the reaction degrees of the compres-
sor and turbine.  

The reaction degree rC of the compressor is defined as the ratio of the enthalpy 
increase in the compressor wheel to the enthalpy increase of the compressor stage.       

a

a

a

a

p

p

p

p

h

h
r

St

C
C

κ
κ

κ
κ

1

1

2

1

1

*2

1

1

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
Δ
Δ=                                    (6.27)

 

where κa is the isentropic exponent of the charge air.  
Having solved Eq. (6.27), the pressure p2* is given.  
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where the reaction degree rC of the compressor is normally between about 55% 
and 60% for all working conditions. 

Analogously, the reaction degree rT of the turbine is defined as the ratio of the 
enthalpy decrease in the turbine wheel to the enthalpy increase of the turbine stage.
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where  
κg is the isentropic exponent of exhaust gas. 

The pressure p3* is resulted from Eq. (6.29) in 
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where the reaction degree rT of the turbine is varied from about 20% to 90% de-
pending on the position of the variable turbine geometry (VTG); nearly 50% at 
wastegated turbochargers for all positions of the waste gate. The reaction degrees 
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of the compressor and turbine are the key factor to compute the axial thrust. They 
should be determined by measurement at the similar type of the designed turbo-
charger in order to choose an appropriate reaction degree at the first design.  

The axial thrust acting upon the rotor has been computed by the program CAF 
(Computing Axial Force) for turbochargers in [10] for turbochargers. The results 
of the axial thrust versus rotor speed are demonstrated in Fig. 6.10.  
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Fig. 6.10 Computed axial thrusts vs. rotor speed of a small turbocharger 

Figure 6.10 shows the characteristic of the axial thrust over the rotor speeds in a 
small turbocharger with an unscalloped and a 50%-scalloped turbine wheel (TW). 
In case of the unscalloped turbine wheel, the negative axial thrust is nearly 50N in 
the low-end torque T1 at a rotor speed of 182,000 rpm; its negative thrust direction 
is acting to the compressor wheel. At increasing the rotor speed to approximately 
188,000 rpm, the turbocharger provides various engine torques T2, T3, and T4 in 
the full load curve, in which the corresponding axial thrusts increase from 50 N to 
60 N in the negative thrust direction. After that, the negative axial thrust reduces  
at T4 from 60 N to the positive axial thrust of nearly 10 N at the nominal power 
Pnom. Shortly before reaching the nominal power, the negative thrust turns to the 
positive direction because the acting force on the turbine wheel becomes larger 
than the acting force on the compressor wheel; hence, the axial thrust direction 
changes from the compressor to the turbine wheel (s. Fig. 6.9).           

To improve the response behavior of the turbocharger, the turbine wheel is 
scalloped by 50%; i.e., the possibly scalloped area of the back face reduces by 
50%. Therefore, the axial thrust FTW on the turbine wheel is strongly reduced 
while the axial thrust FCW on the compressor wheel remains unchanged. As a rea-
son, the resulting axial thrust FT,ax increases at T1 from 50 N to 90 N; at T4 from 60 
N to about 105 N; at Pnom from 10 N to 60 N in the negative thrust direction. In 
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this case, only negative axial thrust (FT,ax < 0) acts on the rotor in the negative 
thrust direction from the turbine to compressor wheel, as indicated in Fig. 6.10.      

6.4.3   Design of Thrust Bearings 

Before designing the geometry of thrust bearings for the automotive turbocharg-
ers, one has to decide which concept should be applied. Either each thrust bearing 
for the tailored turbocharger of each application or one thrust bearing for all tur-
bochargers used in various applications. The former offers customers an optimal 
performance in terms of bearing loads and friction as well because the bearing is 
tailored for this individual application. However, it is not economical for the tur-
bocharger producers to make each thrust bearing for each individual application. 
On the contrary, the latter concept is very economical for the turbocharger  
producers, but the bearing friction is huge at most applications because the over-
dimensioned bearing has to be designed at the maximum thrust load of the largest 
turbocharger in the platform. To make compromise between both extremes, at 
least two types of thrust bearings are normally designed for each platform of the 
turbochargers; the platform is based on the diameter of the rotor shaft. Each plat-
form contains many combinations of various sizes of the compressor and turbine 
wheels for different nominal powers of the engines.  

In case of only one type of thrust bearings is designed for the platform, the 
bearing friction is quite large at small turbochargers in the platform because the 
thrust load is based on the largest turbocharger. Therefore, it is recommended that 
at least two types of thrust bearings should be used in each platform: the small one 
is applied to the range of the smallest to the middle turbocharger, and the large one 
for the middle to the largest turbocharger. For an application range in a platform, 
the maximum thrust load is determined at the combination of the largest compres-
sor wheel and the smallest turbine wheel at the maximum pressure ratio of the 
compressor; it has been computed in Section 6.4.2 with a safety factor. If the safe-
ty factor is chosen too high, the thrust bearing is overdesigned and therefore quite 
robust against the bearing wear. However, the bearing friction increases; the re-
sponse behavior of the turbocharger is worse. In case of a small safety factor, the 
bearing friction reduces, and the response behavior of the turbocharger is  
improved. However, the bearing could be worn or damaged at some working con-
ditions in the mixed or boundary lubrication region; in turn, the bearing friction 
increases significantly. As a reason, one should think twice at deciding how large 
the safety factor should be selected. 

Figure 6.7 shows the typical geometry of a thrust bearing that is derived by  
experience. At a given thrust load, the minimum oil-film thickness of the thrust 
bearing geometry is computed at the various working conditions, such as the high-
est oil inlet temperature, corresponding to rotor speeds by using the program TBD 
[11] based on DIN 31653 [1], so that it satisfies the limit oil-film thickness to 
avoid the mixed lubrication region. Figure 6.11 gives the required minimum oil-
film thickness that is based on the combined conjunction mean roughness depth of 
the bearing and thrust ring surfaces surrounded by the oil film (s. Table 6.2).   
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Table 6.2 Conjunction mean roughness depths of the various finishing surfaces  

Conjunct. roughness  
Rz (µm)

Finishing methods Limit oil-film thickness       
hlim (µm)

0.8 – 1.6

1.6 – 4.0

4.0 – 8.0

8.0 – 18.0

grind, lap, honing, polishing

grind and lap, honing

grind and lap

grind, precision mill, and 
fine turning

depends on Rz and the 
bearing segment mean 
diameter Dm, as given in 
Fig. 6.11. 

 
 
The conjunction mean roughness depth combined the surfaces of the bearing 

and thrust ring is defined as 

2
,

2
, diskzbearingzz RRR +=                                      (6.31) 

According to DIN 31653 [1], the limit oil-film thickness hlim that depends  
on the surface roughness Rz and segment mean diameter Dm, is empirically  
determined.  

3limmin 10.3
25.1 zm RD

hh =≥                                    (6.32) 

where 
Dm is the mean diameter of the bearing segment in meter; 
Rz is the combined conjunction mean roughness depth in meter. 

To prevent the working condition of the thrust bearing from the mixed lubrication 
region, the oil-film thickness should be larger than the limit film thickness, as dis-
played in Fig. 6.11; otherwise, the thrust bearing works in the mixed or boundary 
lubrication regions. In this case, the bearing pressure surface has to be enlarged, so 
that the minimum oil-film thickness hmin fulfills the requirement given in Eq. 
(6.32) for all operational conditions. 

In the following section, the minimum oil-film thickness, oil volumetric flow 
rate, friction power of the bearing, and effective oil temperature inside the thrust 
bearing are computed at the various rotor speeds, oil inlet temperatures, and  
as well as oil types for an application of the automotive turbochargers by the  
program TBD [11].           

The dimensionless load number in the hydrodynamic lubrication region is  
defined as 
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where 
F is the bearing load; 
Ff is the friction force in the bearing; 
hmin is the minimum oil-film thickness;   
L is the bearing segment (pad) length (s. Fig. 6.7).    
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Fig. 6.11 Limit oil-film thickness vs. segment mean diameter Dm and Rz 

The friction force is resulted from the bearing theoretical friction power Pf,th. 
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where 
ηeff  is the effective oil dynamic viscosity; 
U is the circumferential velocity at the mean diameter of bearing; 
W is the width of bearing (s. Fig. 6.7); 
Z is the number of bearing segments.  

The dimensionless load number FB* for a thrust bearing is resulted from F*    
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where  
cwed is the wedge height, as shown in Fig. 6.6. 
 
The dimensionless load number FB* is a function of hmin/cwed and W/L given in 
Eq. (6.35) that is computed by solving the Reynolds lubrication equation [1]. At 
the given bearing geometry and boundary conditions, such as the axial bearing 
load F, bearing mean velocity U, the minimum oil-film thickness hmin is calculated 
from FB*at the initial oil viscosity with the guessed effective oil temperature Teff. 
The effective oil temperature is computed by the iterative method based on the 
balance of heat flows in the thrust bearing. The effective oil temperature is con-
verged when the absolute relative change of the oil temperature is smaller than the 
given convergence value of 10-6.       

Similar to Eqs (6.33) and (6.35), the dimensionless friction number of the thrust 
bearing is the basics of computing the effective oil temperature at each iteration 
step. 
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where  

Pf is the real bearing friction power derived from Eq. (6.36). 
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The dimensionless friction number fB* depends on the bearing geometries and oil 
film thickness and is resulted by solving the Reynolds lubrication equation [1]. 
Hence, the real bearing friction power Pf is determined at the effective oil viscosi-
ty relating to the iterated oil temperature Teff in the bearing at each iteration step. 
The oil volumetric flow rates and oil temperature distribution in the bearing are 
displayed in  Figure 6.12. 

Due to the bearing friction, the oil temperature in the bearing increases by a 
temperature difference 
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The volumetric in- and outflow rates of Q1 and Q3 are calculated by the Reynolds 
equation depending on the bearing geometries, rotor velocity, and iterated effec-
tive oil viscosity; therefore, the temperature increase ΔT2 in the bearing is com-
puted at every iteration step according to Eq. (6.38).  
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To remove the friction power induced in the bearing, fresh oil with a volume-
tric flow rate Q with the inlet temperature Tin is partly mixed with the oil outflow 
rate Q3 from the bearing segment.     

( ) 2213  )1( TQcTQMMQc pp Δ=Δ−+ ρρ                      (6.39) 

 
where 
M is the mixing factor (0 ≤ M ≤ 1) of the fresh oil (common value 0.5); 
ΔT1 = T1 - Tin, the temperature increase after the oil mixing; 
ΔT2 = T2 – T1, the temperature increase in the bearing segments; 
ρ is the oil density; 
cp is the heat capacity at constant pressure. 
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Fig. 6.12 Volumetric flow rates and oil temperatures in a thrust bearing 

The temperature increase of the fresh oil due to mixing with the high-
temperature outflow oil from the bearing segment results from Eq. (6.39) in 
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The required fresh oil flow rate Q is calculated from the bearing friction power.  
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The effective oil temperature is defined as the average temperature of T1 and T2. 
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The effective bearing temperature in Eq. (6.42) has to be iterated so long that the 
convergence criterion is reached. 
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where 
i

effT is the effective temperature at iteration step i; 
1−i

effT  
is the effective temperature at iteration step (i-1); 

ε is the convergence radius (common value 10-6). 
One computes the effective oil dynamic viscosity ηeff by using the Cameron and 

Vogel equation at the effective temperature i
effT at the iteration step i. 
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where  
a, b, and c are the coefficients determined by three reference points (η1, T1), (η2, 
T2), and (η3, T3) of the oil type.  

By solving the equation system at the reference points, one obtains the coefficients 
a, b, and c as follows: 
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where  
a is in N.s/m² (Pa.s);  
b, c, and T are in Kelvin (K);  
β is dimensionless. 

The computed dynamic viscosity η of SAE 5W30 oil versus oil temperature T is 
displayed in Fig. 6.13. The effective oil temperature in the bearing generally lies 
between 30°C and 50°C above the inlet temperature. The temperature increase 
caused by the bearing friction depends on many parameters, such as the bearing 
geometries, oil inlet temperature, rotor speed, minimum oil-film thickness. In any 
cases the effective oil temperature should not exceed the oil coking temperature of 
about 210°C for SAE 5W30 oil. When it exceeds the coking temperature, oil will 
be burnt (coked) in the bearing. To avoid coked oil in the bearing, the geometry of 
the bearing segment must be optimized, so that the effective oil temperature de-
creases below the oil coking temperature.       

The thrust bearing with many segments (pads) is mostly made of brass, a yel-
lowish alloy of copper and zinc including small amounts of manganese and alumi-
num (CuZnX-MnAl; X is the percentage of zinc). The bearing material of brass 
has not only an excellent tribological characteristics but also high thermal conduc-
tivity that reduces wear and removes the heat flow caused by the bearing friction. 
Therefore, it decreases the effective oil temperature and increases the oil-film 
thickness (s. Fig. 6.14).     
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Fig. 6.13 Computed oil dynamic viscosity versus temperature 
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Fig. 6.14 Thrust bearing with five segments (Courtesy BMTS) 

Figure 6.15 displays the computed axial load versus the minimum oil-film 
thickness at various oil inlet temperatures. The minimum oil-film thickness in the 
thrust bearing is found at the axial thrust of 70 N with the rotor speed of 190,000 
rpm and the oil inlet temperatures from 50°C, 90°C, 120°C, and 150°C. Obvious-
ly, the oil-film thickness decreases with the axial load and oil inlet temperature. 
The bearing geometry must be designed at the worst case with the maximum oil 
inlet temperature of 150°C and largest thrust load in the turbocharger. The result-
ing oil-film thickness for this case is about 5 µm (case d) that satisfies the limit 
oil-film thickness with the conjunction surface roughness Rz between 1.6 µm and 
4 µm, as given in Fig. 6.11 according to DIN 31653 [1].  

Notice that the limit oil thickness is only a recommended value that should be 
validated by experiments for each application. It is very difficult to predict at 
which oil-film thickness the mixed lubrication occurs in the bearing. In practice, 
the contaminants in oil cause more wear in form of deep cuts or scratches than 
wear in the mixed lubrication (s. Chapter 9). By reducing the oil inlet temperature 
from 150°C to 120°C, 90°C, and 50°C, the oil-film thickness increases from 5 µm 
to approximately 6.5 µm, 8.5 µm, and 14 µm, as displayed in Fig. 6.15 in cases c, 
b, and a.  

The computed bearing friction power versus the oil inlet temperature at the 
thrust load of 70 N and rotor speed of 190,000 rpm is shown in Fig. 6.16. By re-
ducing the oil inlet temperature, the minimum oil-film thickness increases; hence, 
the velocity gradient U/hmin of the oil film reduces. At the same time, the effective 
oil viscosity at low temperatures increases faster than the velocity-gradient drop; 
therefore, the bearing friction power increases at reducing the oil inlet tempera-
tures. However, the bearing friction power decreases as the oil inlet temperature 
increases up to about 135°C, then the friction power increases a little bit as the oil 
inlet temperature further increases to 150°C. The reason for this increase could be 
that the velocity gradient of the oil film is higher than the decrease of the oil vis-
cosity in the high temperature due to strongly reducing the oil-film thickness.   
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Fig. 6.15 Thrust loads versus oil-film thickness at different Tin 
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Fig. 6.16 Computed thrust bearing friction power versus oil inlet temperature 
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6.4.4   Influential Parameters of Thrust Bearings 

To optimize the bearing design in terms of bearing friction, effective temperature in 
the bearing, and maximum bearing load, some influential parameters should be con-
sidered. They are the ratios W/L, lwed/L, cwed/lwed ,and Dm, as displayed in Fig. 6.17.  

•  Ratio W/L 
The ratio of the segment width to its length of the bearing should be between 0.5 
and 2. On the one hand, at a long bearing segment with the length L much larger 
than its width W (W/L << 1) the effective oil film is overheated and the bearing 
temperature increases due to the long wedge; therefore, the oil viscosity reduces; 
in turn, the oil-film thickness decreases, so that the mixed lubrication takes place. 
On the other hand, at the narrow bearing segment with W/L >> 1 the oil-film pres-
sure does not have enough time to build up because of the short wedge; hence, the 
oil-film thickness is reduced. Moreover, the side oil outflow Q3 in the radial direc-
tion is smaller due to large flow resistance. It induces an increase of the effective 
oil temperature in the bearing segment, and in turn the reduction of the oil-film 
thickness. In order to compromise of both extremes of W/L, and to optimize  
the bearing friction the square bearing segment (W/L = 1) shows an optimum for 
the oil-film thickness and maximum thrust load by experience. 

Therefore, the optimum value for the segment ratio W/L equals one at the 
square bearing segment (W = L). However, it is very difficult in practice to design 
a thrust bearing with square segments that fulfills many predetermined parameters, 
such as the given bearing outer diameter, given bearing pressure surface, an  
acceptable number of segments for a small  mean diameter, mass-producing toler-
ance. In fact, the ratio of W/L between 0.75 and 1 is normally used for a well-
designed thrust bearing of the turbochargers.               
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Fig. 6.17 Geometrical parameters of a thrust bearing 
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- Ratio lwed/L 
The ratio should vary between 0.7 and 0.8 where the optimum value is at 0.75 for 
the maximum bearing load capacity. If the wedge length lwed is so small that the 
oil-film pressure does not build up enough to balance the thrust load because the 
hydrodynamic wedge effect is too small. In consequence, the oil-film thickness 
reduces, the bearing friction increases, the effective oil temperature becomes high-
er, leading to the bearing wear and possibly to the seizure of the bearing and thrust 
rings. In the other case, at lwed >> L the oil-film pressure increases due to large 
wedge effect; hence, the oil thickness becomes larger and in turn more oil flow 
rate is required. However, the maximum induced pressure begins dropping in front 
of the trailing edge sooner than in the normal case at the ratio of 0.75 due to the 
very small flat plateau. The early pressure drop is not optimal for the load capacity 
of the bearing. In order to optimize the load capacity, oil flow rate, oil-film thick-
ness, and friction power of the bearing, the ratio lwed/L should be chosen nearly 
0.75 for the bearing segments.  

• Ratio cwed/lwed 
This ratio indicates the slope of bearing wedge. At a small slope, the oil-film pres-
sure is not increased strongly; therefore, the oil-film thickness decreases, and the 
effective oil temperature in the bearing segment becomes higher. On the contrary, 
the oil pressure increases faster due to the large wedge effect. As a reason, the oil-
film thickness increases, but much more oil flow rate is necessary.  

At small thrust bearings, the bearing slope cwed/lwed varies from 1:75 to 1:150; at 
large thrust bearings, flatter bearing slopes from 1:200 to 1:400 are usually applied 
to designing thrust bearings. The reason of using the flatter bearing slopes is to 
avoid a large pressing force required by producing thrust bearings. On the con-
trary, steep bearing slopes can be used at small thrust bearings at which the press-
ing force is still small.      

• Mean diameter Dm 
The bearing friction power is proportional to the mean velocity squared at the 
mean diameter of the bearing segment, as shown in Eq. (6.37).     

wed

eff
f c

LWZU
P

2η
∝                                            (6.45) 

with the mean velocity at the mean diameter Dm   

m
m ND

D
U π=Ω=

2
                                          (6.46) 

where N is the rotor speed in rps.  

In order to reduce the bearing friction, the segment mean diameter should be as 
small as possible, but one has to check whether 

- the minimum oil-film thickness is less than the limit oil-film thickness;  
- the effective oil temperature in the bearing is higher than the oil coking  

temperature; 
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- the maximum induced oil pressure in the bearing is higher than the ultimate  
tensile stress of the bearing material, leading to the plastic deformation in the 
bearing. 

The influential parameters of thrust bearings are summarized in Table 6.3.   

Table 6.3 Influential parameters of thrust bearings 

Influential parameters Normal values Optimum 

value 

W/L

lwed/L

cwed/lwed

Dm

0.5 ... 2.0

0.70 ... 0.80

1:75 ... 1:150 (small bearings)

1:200 ... 1:400 (large bearings)

possibly small 

1.0

0.75

-

-

-

 

6.5   Fluid-Film Radial Bearings 

Some points of view on designing radial bearings for turbochargers are taken into 
account, as shown in Fig. 6.18. First, the main function of the radial bearings is to 
keep the rotor stable (rotordynamic stability) at all operating conditions of the tur-
bocharger. Second, the rotor must be well balanced with high-speed balancing,  
so that the residual unbalance is small enough to reduce the unbalance force  
acting on the bearing and unbalance whistle. Additionally, radial bearings  
must have enough damping effect to keep the rotor stable and to suppress noises 
induced by the unbalance excitation (unbalance whistle) and inner oil whirl (con-
stant tone). The latter can be reduced by a suitable geometry of the bearing and 
bearing clearances. Third, the bearing friction should be reduced as much as poss-
ible to improve the transient response of the turbocharger or to reduce CO2 and 
NOx emission, especially in low-end torque. Fourth, radial bearings should work 
in a long lifetime with minimum or without wear. Fifth, they should be produced 
at an economical producing cost with the best quality and functionality for a long 
lifetime.  

However, there is no patent remedy on how to 100% fulfill all five challenging 
targets perfectly. Therefore, the best solution is compromising of them and setting 
priority of the targets. One has to take the compromise between the need to satisfy 
the customer wishes and the need to gain profit. However, the customers would 
accept to pay a little bit more for innovative products that the competitors have not 
yet brought in the market. Note that the early bird catches the worm but just for a 
short time because the enemies never sleep. Therefore, do not enjoy yourself too 
long after the winning; instead, go back to hard work as soon as possible for the 
next battle. 
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Fig. 6.18 Strategy to design radial bearings for turbochargers 

In the technical point of view the producing tolerance for the nominal diametral 
bearing clearance of 20 µm is normally ±6 µm due to saving producing costs. It is 
resulted from tolerances of the diameters of the bearing and journal. Bearing 
clearances with large tolerances mostly cause rotor instabilities at high rotor 
speeds and bearing wear. When the diametral bearing clearance is the minimum of 
14 µm, the bearing friction becomes larger; the oil temperature in the bearing in-
creases (coked oil); the oil-film thickness reduces (mixed or boundary lubrica-
tion); therefore, wear and seizure could occur in the bearing. On the contrary, 
when the bearing clearance is the maximum of 26 µm, the bearing stiffness and 
damping coefficients reduce; the rotor instability takes place at some working 
conditions (oil whirl or oil whip). Such rotor instabilities cause wear and damage 
of the rotor and bearings. That is just only one of many technical difficulties at the 
bearing design, and the goal is always to keep the producing cost as low as possi-
ble; hence, the profit as high as possible. In order to save costs of development, 
testing, and production, only one type of radial bearings is used in each platform 
to that different compressor and turbine wheels belong. Hence, we have to design 
one type of radial bearings for different rotors that consist of different diameters of 
the compressor and turbine wheels operating on various conditions. All of these 
are a big challenge for the rotordynamic engineers who have to cope with the 
bearing design in the industry of turbochargers.                    

6.5.1   Theory of Fluid Film Bearings 

The working principle of the radial bearings, as shown in Fig. 6.19 is based on the 
hydrodynamic effect described by the Reynolds lubrication equation. The pressure 
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of the oil film is induced by the wedge contour between the bearing and journal 
whose velocities are Ub and Uj, respectively.  

Lubricating oil is squeezed in the converged wedge by the rotation of the jour-
nal and bearing. Therefore, the oil pressure increases and reaches the maximum 
pressure in the wedge in front of θ = π, as displayed in Fig. 6.20. At the minimum 
oil-film thickness (θ = π), the oil velocity arrives at the maximum, and the lowest 
pressure occurs shortly behind the minimum bearing gap hmin at the high rotor 
speeds. Due to the pressure drop, air releasing and cavitation could take place 
there, and the gas bubbles continue moving in the diverged bearing wedge (π < θ 
≤ 2π). The induced pressure of the oil film in the converged wedge generates  
the bearing forces acting upon the journal to keep the rotor stable in the radial  
direction.                     
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Fig. 6.19 Working principle of the radial bearing  

The Reynolds lubrication equation for radial bearings is derived from Eq. (6.3a) 
and rewritten as 
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where 
Uj is the journal velocity; 
Ub is the bearing ring velocity; 
h is the oil-film thickness.  
x is the circumferential direction (x = Rθ); 
z is the axial direction. 

At the non-rotating floating ring bearings, the bearing velocity Ub equals zero, and 
the Reynolds lubrication equation is the same equation for thrust bearings, as 
shown in Eq. (6.15) where U is the journal velocity instead of the velocity of the 
thrust ring.  
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Figure 6.20 shows the bearing force induced in the wedge, and the pressure dis-
tribution in the bearing clearance. To balance the external force FJ acting upon the 
rotor, the bearing force FB is resulted at the attitude angle α, acting on the journal 
in the opposite direction of the external force. At the equilibrium position, the 
minimum oil-film thickness at θ = π is determined by the hydrodynamic Reynolds 
lubrication equation, as shown in Fig. 6.20.       

 

JF

BF

2X

jO

bO

α

γ

θ
journal

bearing )(θh

e

C

B
R

attitude angle ( )eFJ ,=α

Ω

)( cRDb += 2

),,( tzp θ

)(min πθ =h

1X

t

r

θRx =

 

Fig. 6.20 Bearing force vector BF  acting upon the journal 

The bearing force FB is resulted from integrating the pressure distribution over 
the journal surface in the bearing clearance. The relation between the angular posi-
tion, journal eccentricity, and bearing clearance allows calculating the oil-film 
thickness in the bearing, as shown in Fig. 6.21. 

After a few calculating steps, one obtains the oil-film thickness in a function of 
the position angle θ and time t.   

θϕθ cos)(cos)(),( tectecth +=−=                            (6.48) 

where 
c is the radial bearing clearance; 
e is the journal eccentricity changed with time t (ε = e/c).  

According to Eq. (6.48), the maximum and minimum oil-film thicknesses are giv-
en at θ = 0; 2π and θ = π, respectively. 
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Fig. 6.21 Geometric relation of the oil-film thickness  

Having used the geometric relations given in Figs 6.20 and 6.21,  
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the Reynolds lubrication Equation (6.47) is written in the cylindrical coordinates.   
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           (6.50) 

where 
p is the induced pressure in the oil film; 
R is the journal radius (= D/2); 
Ω is the angular velocity of the rotor; 
γ is the whirl velocity; 

ε is the journal relative eccentricity; 
ε is the timely change of the journal relative eccentricity; 
η  is the oil dynamic viscosity. 
 
The boundary conditions (BCs) for the Equation (6.50) at the 

- inlet:    p(θ=0, z) = p(θ=2π, z) = pi;                                                                            (6.50a) 

-  outlet:  p(θ, z= +L/2) = p(θ, z= - L/2) = po                                                  (6.50b) 

where  
pi is the oil inlet pressure; 
po is the oil outlet pressure; 
L is the bearing width.  
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1. Pressure distribution for long bearings (L/D > 1) 

In the long bearings, the pressure gradient in the circumferential direction θ is 
much larger than in the axial direction z; therefore, the second term at the right-
hand-side of Eq. (6.50) is omitted. The Reynolds equation becomes obviously 
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(6.51)         

By solving Eq. (6.51) with the given boundary conditions, one obtains the pres-
sure distribution p(θ) in the bearing [16].  
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The bearing forces of the non-cavitating oil film are resulted by integrating the 
pressure distribution over the journal surface in the radial and tangential directions 
[5]. 
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2. Pressure distribution for short bearings (L/D ≤ 1) 

In the short bearings, the pressure gradient in the circumferential direction θ  
is much smaller than in the axial direction z; therefore, the first term at the  
right-hand-side of Eq. (6.50) is omitted. The Reynolds equation becomes 
straightforwardly 
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By solving Eq. (6.54) with the given boundary conditions, one obtains the pres-
sure distribution p(θ, z) on the journal surface [8].  
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Similarly, the bearing forces of the non-cavitating oil film are resulted by integrat-
ing the pressure distribution over the journal surface in the bearing clearance in 
the radial and tangential directions [14]. 
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The attitude angle α between the external force and journal eccentricity is calcu-
lated from the radial and tangential force components of Eq. (6.56).   
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where γ is the whirl velocity of the journal ( ωγ ≡ ).  

6.5.2   Nonlinear Bearing Forces on the Rotor 

The bearing forces Fr and Ft are based on the rotating coordinate system (r,t) in the 
journal. In fact, the bearing forces acting upon the journal in the inertial coordinate 
system (X1,X2) are required for the rotordynamic vibration equations. Therefore, 
the coordinate transformation from the rotating to inertial coordinate system is ne-
cessary to compute the bearing forces in the inertial coordinate system (X1,X2).    

The nonlinear bearing force is transformed to the inertial coordinate system 
(X1,X2). 
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where 
F1, F2 are the force components in the inertial coordinates X1 and X2; 
Fr, Ft are the force components in the rotating coordinates r and t. 

Thus, 
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where γ is the angular position of the journal (s. Fig. 6.22). 
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Fig. 6.22 Transformation between the coordinate systems (r, t) and (X1, X2) 

For a large displacement ε and high whirl velocityγ of the journal, the bearing 

force depends on ,,,, γγεε and Ω nonlinearly, as given in Eqs (6.56) and (6.59). 

They cannot be separated into the stiffness and damping bearing forces like in the 
linear rotordynamics. As a reason, the vibration equation system of the rotor be-
comes nonlinear due to the nonlinear bearing forces. They change with time, de-
pending on the journal eccentricity ε, its velocity ε , the journal angular positionγ, 

the whirl velocityγ , and the rotor speed Ω.     

The bearing force given in Eq. (6.56) is valid only for the short bearings of non-
cavitating flows. In fact, the radial bearings used in the turbochargers are neither 
short nor long bearing type, and cavitating flows could occur in the oil film at the 
high rotor speeds. Hence, two-phase flows must be taken into account in the ro-
tordynamic computation due to cavitation and air releasing [13].  

Solving the Reynolds lubrication equation for  two-phase cavitating flow of the 
oil film, one obtains the nonlinear bearing forces for any bearing ratio L/D. At a 
given journal eccentricity ε and angular journal position γ, the bearing forces Fr 
and Ft are in functions of ,,,, γγεε and the Sommerfeld number So.  

By using the coordinate transformation in Eq. (6.59), one achieves the bearing 
forces F1 and F2 in the inertial coordinate system (X1, X2). To reduce computing 
time, the transient nonlinear bearing forces are computed by the impedance me-
thod, instead of solving the Reynolds lubrication equations at each iteration time 
step. As a reason, the transient bearing forces are linearized at each iteration time 
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step by applying the Taylor’s series to the computed bearing forces at the journal 
equilibrium position of ε , γ , and So.  

Having used the Taylor’s series, the bearing forces in the inertial coordinate 
system (X1, X2) are linearized at the journal equilibrium position.  
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             (6.60) 

where 

2,01,0 , FF  are the static loads acting upon the bearing given in Eq. (6.64); 

k

i

x

f

∂
∂ is the bearing stiffness coefficients; i, k = 1, 2; 

k

i

x

f

∂
∂ is the bearing damping coefficients; i, k = 1, 2. 

The static load F0 acting on the short bearing is resulted by substituting 0==γε  

into Eq. (6.56). 
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tr ee  ,  are the unit vectors in the coordinate system (r,t); 
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The magnitude of the static load vector F0 results in 
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within  
the reference force Fη  in Eq. (6.62) is defined as 
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The attitude angle α  at the equilibrium condition is derived from Eq. (6.64).  
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The static load curve on which the journal center Oj locates at the equilibrium po-
sition is displayed in Fig. 6.23. According to Eq. (6.65), the attitude angle α goes 
to π/2 (So → ∞) at very small journal eccentricities (ε → 0).; α approaches zero          
(So = 0) at the maximum eccentricity (ε  → 1). Under the static load F0, the jour-
nal center locates at the relative eccentricity ε and attitude angle α. At increasing 
the bearing load, the journal center moves downwards along the static load curve 
to the new equilibrium position, locating at the larger eccentricity and smaller atti-
tude angle, and vice versa.     

At a constant rotor speed Ω, the journal center Oj occurs near the bearing center 
Ob under a low static load F0. As the static load increases, the journal center moves 
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Fig. 6.23 Static load curve of the oil-film bearing 
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downwards with increasing eccentricity and decreasing attitude angle along  
the load curve to the bearing wall Wb at the contact circle ε = 1 (So = 0). On the 
contrary, the journal is loaded by a constant large load F0: at first, its center lies 
near the bearing wall Wb at a low rotor speed Ω. Then, as the rotor speed increas-
es, the journal center begins moving upwards with decreasing eccentricity and in-
creasing attitude angle along the load curve to the bearing center Ob at ε = 0 (So 
→ ∞).  
 
Sommerfeld number. So is defined according to the English convention*. It de-
scribes the relation between the bearing geometry, average load pressure, rotor 
speed, and oil viscosity in one dimensionless number.    
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where 
R is the shaft radius; 
c is the radial bearing clearance; 
η is the oil dynamic viscosity; 
N is the rotor speed (rps) with N = Ω/(2π); 
p  is the average load pressure on the bearing.  

*) In the German convention, the Sommerfeld number So* is defined as 
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Note that we use the Sommerfeld number So according to the English convention 
in this book.  

The average load pressure in the bearing is defined as 
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F
p 0≡                                                     (6.67) 

where 
F0 is the static load on the bearing at equilibrium (s. Fig. 6.23); 
D is the bearing inner diameter; 
L is the bearing inner length.  

Inserting the average load pressure and rotor speed in Eq. (6.66), the Sommerfeld 
number becomes 
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                                      (6.68) 

Having substituted F0 of Eq. (6.62) into Eq. (6.68), one obtains Sommerfeld num-
ber for short bearings in the relative journal eccentricity ε.  
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where 

D

L≡β  is the length to diameter ratio of the bearing.  

Thus, 
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where  

S* is called the modified Sommerfeld number, which is resulted from So and β.  
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According to Eq. (6.71), the modified Sommerfeld number S* is a function of ε, 
as displayed in Fig. 6.24, in turn ε can be described in S* or So.   
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Fig. 6.24 Modified Sommerfeld number S* versus ε for short bearings 
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The impedance method combined with using Eqs (6.59), (6.60), and (6.64) is ap-
plied to computing the transient nonlinear bearing forces at each iteration time 
step resulted from the bearing stiffness and damping coefficients. 

The bearing stiffness coefficients kik are defined 
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where 
κik is the bearing dimensionless stiffness coefficients; 
F0 is the static load at equilibrium; 
c is the radial bearing clearance.    

Similarly, the bearing damping coefficients dik are defined  
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where 
βik is the bearing dimensionless damping coefficient; 
F0 is the static load at equilibrium; 
c is the radial bearing clearance; 
Ω is the rotor speed.    

Since f1 and f2 are the functions of γγεε ,,, , as given in Eq. (6.59), one uses the 

chain rule of differentiation to compute the required partial derivatives of   
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Having used the coordinate transformation, as given in Fig. 6.25, The relations be-
tween the coordinates result by using the chain rule of differentiation in.  
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where  
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Fig. 6.25 Coordinate transformation of the differentiation chain rule 

Thus, Eq. (6.75) becomes 
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By inversely transforming Eq. (6.76), one gets the relation 
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Differentiating both sides of Eq. (6.77) with e = c ε, one obtains 
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By partially differentiation of Eqs (6.77) and (6.78), one achieves the relations.  
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Having substituted Eqs (6.79) and (6.80) into Eq. (6.74), one computes the bearing 
dimensionless stiffness and damping coefficients κik and βik for short bearings [8].  
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and 
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In case of linear or quasi-linear rotordynamics, the bearing forces F1 and F2 in the 
coordinate system (X1,X2) are linearized from the equilibrium at each iteration 
time step according to Eq. (6. 83) for the small rotor amplitudes.     
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where ii FF 21   , ΔΔ  are the changes of force relating to small displacements and ve-

locities of the rotor. 
The changes of force at the equilibrium position are resulted from Eqs (6.60), 

(6.72), and (6.73). 
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where  

kik and dik are the bearing stiffness and damping coefficients, respectively. In case 
of short bearings, they only depend on the angular position γ and journal relative 
eccentricity ε, in turn on the Sommerfeld number So and γ.  

By solving the Reynolds lubrication equation of the bearings, one creates the 
impedance table. In case of nonlinear rotordynamics, the nonlinear bearing forces 
in the entire bearing clearance are resulted from the corresponding bearing stiff-
ness and damping coefficients by linearly interpolating the computed values of the 
bearing characteristics at ε, γ, and So in the impedance table. They contain two 
force components: firstly, the bearing rotation force induced by the rotation with 
Ω, and it depends on η, ε, and γ; secondly, the bearing damping force caused by 
the journal velocities γε , , and it depends on γεγεη ,,,, .     

6.5.3   Floating Ring Bearings  

Floating ring bearings are usually applied to the automotive turbochargers to re-
duce airborne noises and rotor amplitudes at resonances. There are two common 
types of the floating ring bearings: semi-floating (SFRB) and rotating-floating ring 
bearings (RFRB). The common character of both floating ring bearings is having 
two oil films, the inner and outer oil films. However, they are different because 
the bearing ring does not rotate at the semi-floating bearing, and rotates at the ro-
tating-floating ring bearing. 

In order to reduce the bearing friction, the rotating-floating ring bearings (RFRB) 
are usually used in the turbochargers (s. Fig. 6.2). Due to reduction of the bearing 
friction at the low rotor speeds, the transient response of turbochargers is improved 
in low-end torque. Figure 6.26 shows the set-up of the rotating-floating ring bearing 
in the rotor shaft. Lubricating oil at the pressure pi from the inlet flows through the 
outer bearing clearance in the circumferential and axial directions; leaves the bearing 
ends at the ambient pressure p0. By means of the oil holes in the bearing ring, lubri-
cating oil enters the inner bearing clearance and flows in the circumferential and 
axial directions; leaves the bearing ends at the ambient pressure p0. The oil volume-
tric flow rate depends on the oil inlet temperature, pressure drop of pi and po, rotor 
speed, and as well as the rotating speed of the bearing ring.  

The inner oil film has a key function to carry the rotor against to the external 
forces acting upon the rotor. Therefore, its inner bearing radial clearance c1 is 
relatively small to increase the bearing stiffness. On the contrary, the outer oil 
film provides the rotor with large damping coefficient to reduce the rotor deflec-
tion at resonances and suppress the airborne noises, like unbalance whistle and 
constant tone induced by the rotor unbalance and inner oil whirl in the bearing, 
respectively. 
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Fig. 6.26 Sketch of a rotating floating ring bearing 

Flow characteristics of the oil films are taken into account in computing the 
friction power in the bearing (s. Fig. 6.27). 

The bearing friction power on the rotor shaft is written in 
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where 
ηi is the dynamic viscosity of the inner oil film; 

hU ∂∂ /  is the velocity gradient in the oil film;  
h is the oil-film thickness; 
Aj is 

the journal frictional area; 
Uj is the journal circumferential velocity. 
 
In order to reduce the friction power, the velocity gradient is decreased by letting 
the bearing ring rotate with a circumferential velocity UR at the bearing inner sur-
face in case of the rotating floating ring bearings. Hence, the reduced bearing fric-
tion power becomes  

jj
Rj

if UA
h

UU
P

)(* −
≈ η                                  (6.86) 

The relative reduction of the friction power results from Eqs (6.85) and (6.86) in 
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where 
ΩR is the ring angular velocity (ΩR < Ω); 
Ω is the rotor angular velocity. 

Equation (6.87) indicates that the friction power reduction is proportional to the 
ring speed ratio RSR, the ratio of the bearing ring speed to the rotor speed.   

Torque acting upon the bearing ring is calculated by the Petroff’s law resulting 
from the Reynolds lubrication equation. 
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Having applied Eq. (6.88) to the bearing ring, one obtains the driving torque act-
ing on the inner side of the bearing 
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and the friction torque on the outer side of the bearing 
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By using the angular momentum law, the ring speed ratio RSR is resulted at the 
steady state condition )0( =θ . 
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where 
ηi, ηo are the dynamic viscosity of the inner and outer oil films; 
Li, Lo are the inner and outer bearing width (s. Fig. 6.26); 
c1, c2 are the inner and outer radial bearing clearance; 
Di, Do are the inner and outer bearing diameter; 
Ip is the polar mass inertia moment of the rotor. 
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Fig. 6.27 Flow velocities in the oil films 

The modified steady state RSR* becomes when the inner and outer relative  
eccentricities ε1 and ε2 are taken into account, according to [5]: 
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In case of the unsteady state condition with ,0≠θ the ring speed ratio, as given in 

Eqs (6.91a) and (6.91b) becomes 
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Because the inner clearance is much smaller than the outer clearance, the inner oil-
film temperature is higher than the outer oil-film temperature due to the induced 
bearing friction, especially at increasing the rotor speeds. Hence, the oil viscosity 
ratio that is larger than 1 (i.e., ηo > ηi) leads to decreasing the ring speed ratio 
RSR. The computed behavior of the ring speed ratio versus the rotor speed at var-
ious oil inlet temperatures of the rotating floating ring bearing is displayed in Fig. 
6.28 [12].  
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The effective temperatures Ti and To of the inner and outer oil films are only in-

duced by the bearing friction where the heat conduction of the bearing housing to the 
oil films is not taken into account. In fact, the heat conduction from the bearing hous-
ing increases the temperature of the outer oil film; therefore, the ring speed ratio in-
creases. The ring speed ratio RSR varies between 15% and 30% at low rotor speeds to 
about 90,000 rpm (1,500 rps) at the oil inlet temperature of 90°C. Hence, the friction 
power of the rotating floating ring bearing (RFRB) on the rotor shaft could be reduced 
averagely by 20% compared to the semi-floating ring bearing in low-end torque 
(LET), leading to improving the response behavior of the turbocharger.  

The higher the rotor speed, the higher the inner temperatures of the oil films 
become due to bearing friction, leading to reducing the ring speed. At high oil 
temperatures, the dynamic viscosity ratio of both outer and inner oil films does not 
change so much; therefore, the ring speed ratio reduces slowly, and tends to re-
main constant at the very high rotor speeds, as shown in Fig. 6.28. At decreasing 
the oil inlet temperature, large bearing friction is generated in the inner oil film, 
leading to higher oil temperature in the inner bearing clearance; as a reason, reduc-
ing the ring speed of the bearing. Generally, the ring speed ratio RSR decreases 
with the rotor speed at a constant oil inlet temperature and increases with the oil 
inlet temperature at a constant rotor speed.    
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Fig. 6.28 Computed ring speed ratio RSRsteady vs. rotor speed and Tin 

The rotating floating ring bearings take advantages of more damping due to the 
outer oil film and reducing the bearing friction power, especially in low-end tor-
que. However, they need more oil volumetric flow rate, and the rotor deflection 
could be larger than the one of the semi-floating ring bearings.  

If we consider the unsteady state, the ring speed ratio is very low at small rotor 
speeds and high oil inlet temperatures because the inertia term of the ring speed ratio 
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in eq. (6.92) is significantly large, especially at high angular accelerations. At increas-
ing the rotor speeds, this term becomes smaller; hence, the ring speed ratio increases; 
then, it reduces again at further increasing the rotor speeds like in the steady state.  

6.5.4   Influential Parameters of Rotating Floating Ring Bearings 

To optimize the bearing design in terms of bearing friction, effective temperature in 
the bearing, and rotor stability, some influential parameters are discussed. They are the 
geometric ratios of Do/Di, Lo/Li, and c2/c1, as displayed in Fig. 6.26. They have mutual 
effects on the characteristics of turbochargers, as shown in Fig. 6.18. As a reason, they 
must be carefully chosen after the given priorities. In the following section, some ro-
tordynamic characteristics of the geometric ratios of the radial bearings are given.  

• Ratio Do/Di   
The larger the diameter ratio Do/Di at the given inner bearing diameter Di, the 
more the damping coefficient of the bearing acts upon the rotor due to the large 
outer surface of the bearing. It improves the rotor stability against oil whirl; reduc-
es the rotor amplitude at resonance and induced airborne noises. However, it needs 
more oil volumetric flow rate in the bearings, and more blowby is resulted by the 
corresponding large seal rings. Blowby is the volumetric flow rate of the charge 
air and exhaust gas leaking in the seal rings to oil in the bearing housing. Addi-
tionally, the large diameter ratio strongly reduces the ring speed ratio according to 
eq. (6.91a); hence, it can lessen the main advantage of low bearing friction of the 
rotating floating ring bearings. At excessively large Do, the bearing stiffness coef-
ficient of the outer oil film increases, therefore, the outward move of the bearing 
ring in the outer bearing clearance is more difficult. Hence, bearing wear could 
occur between the shaft and the inner bearing.     

• Ratio Lo/Li    
The larger the length ratio Lo/Li at the given inner bearing width Li, the more the 
damping coefficient of the bearing acts upon the rotor due to the large outer surface 
of the bearing. It improves the rotor stability; reduces the rotor amplitude at reson-
ance and induced airborne noises. Moreover, it needs less oil volumetric flow rate 
through the bearings due to increased flow resistance in the outer oil film. However, 
the large length ratio reduces the ring speed ratio according to eq. (6.91a); hence, it 
could lessen the main advantage of the low bearing friction of the rotating floating 
ring bearings. The wider the outer width of the bearing Lo, the shorter the bearing 
span is. That reduces the rotor stability of the rotor. Similarly, at excessively wide 
Lo, the bearing stiffness coefficient of the outer oil film increases, therefore, the 
outward move of the bearing ring in the outer bearing clearance is more difficult. 
Hence, bearing wear could occur between the shaft and bearing.  

• Ratio c2/c1  
The larger the clearance ratio c2/c1 at the given inner bearing clearance c1, the more the 
damping coefficient of the bearing is due to the large outer bearing clearance. It im-
proves the rotor stability; reduces the rotor amplitude at resonance and induced air-
borne noises. Moreover, the large clearance ratio at the given inner bearing clearance 
increases the ring speed ratio because the bearing friction in the outer ring 
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surface reduces according to eq. (6.91a). However, it needs more oil flow rate due to 
the larger outer bearing clearance. At excessively large outer bearing clearance c2, the 
bearing stiffness coefficient of the outer oil film decreases. It could cause high rotor 
deflection of the conical vibration mode in the outer oil film.  

These important parameters of the oil-film bearings should be considered under 
various operating conditions, such as the oil types, oil inlet temperatures, pres-
sures, rotor speed range, kinds of balancing, etc.     

6.6   Rolling-Element Bearings 

There are some common types of the rolling-element bearings [7]: 

- Angular contact ball bearings; 
- Ball thrust bearings; 
- Straight roller bearings; 
- Tapered roller bearings; 
- Needle roller bearings.  

This section focuses on two normal types of the rolling-element bearings that are 
applied to the automotive turbochargers: angular contact ball and straight roller 
bearings, as shown in Fig. 6.29. The other types of rolling-element bearings are ei-
ther similar to the ball and roller bearings or have already been existing in [4], [7], 
and [14].    
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Fig. 6.29 (a) Angular contact ball bearing; (b) Straight roller bearing 

6.6.1   Characteristics of the Rolling-Element Bearings 

At first, some advantages and disadvantages of the angular contact ball bearings 
applied to the automotive turbochargers are reviewed in [2]. Ball bearings have no 
intrinsic damping due to very small clearances between the balls and races. As a 
reason, they need an additional external damping coefficient to suppress the rotor 
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amplitude at resonance and to reduce the airborne noises, like unbalance whistle 
and constant tone (howling). In this case, a squeeze-film damper is unconditional-
ly necessary for the ball bearings of the turbochargers. Contrary to the oil-film 
bearings, they do not have the inner oil whirl; therefore, no constant tone occurs. 
However, they usually have the multiple harmonic vibrations of 2X, 3X, 4X, or 
higher frequency orders, and modulation sidebands frequencies due to unsuitable 
clearance of the oil damper between the outer race and bearing housing. Moreo-
ver, some asynchronous vibrations could occur in the ball bearings if defects of 
balls, cage, inner, and outer races take place. Such high-frequency vibration com-
ponents induce high-frequency noises in the ball bearings that are uncomfortable 
and unwanted audible noises in the passenger vehicles. Unbalance of the rolling 
elements, cage, and outer race cannot be directly balanced; however, it is very 
small. Sometimes unusual asynchronous responses could happen if the balls have 
slightly different diameters due to production or bearing wear. 

The bearing stiffness coefficient of the ball and roller bearings depends on the 
acting forces whose amplitudes change with the rotor speed. Therefore, the bear-
ing stiffness coefficient varies with the bearing forces and rotor speed as well.  

a) Rolling-element deflection 
According to the Hertzian theory, the deflection of the balls at the contact area is 
derived 
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F
K ννδ ≡−=              (6.93) 

where 
ν is the Poisson’s ratio; 
E is the elasticity module; 
F is the acting force on the balls; 
ri is the radii of the ball bearing geometry; 
R is the equivalent radius; 
cK is the deflection factor.   

Having used the elasticity module E = 20.6x104 N/mm² and Poisson’s ratio ν = 
0.3, one obtains the deflection of the rolling elements empirically [8].  

- Ball bearings: 

3/1

3/2
41037.4

d

F−×=δ                                       (6.94) 

where 
δ is the ball deflection (mm); 
d is the ball diameter (mm); 
F is the acting force on the ball bearing (N). 

- Roller bearings: 

8.0

9.0
41077.0

l

F−×=δ                                          (6.95) 
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where 
δ is the roller deflection (mm); 
l is the roller effective length (mm); 
F is the acting force on the roller bearing (N).  

The equivalent radius R between the balls and inner race are given for various 
geometries of convex, plane, and concave contact areas in the ball bearings, as 
shown in Fig. 6.30 [8].  
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Fig. 6.30 Equivalent radius R of various contact surfaces 

b) Bearing force and its stiffness 
The bearing force is empirically determined by the rolling-element deflection, 
number of rolling-elements, and some bearing parameters depending on the bear-
ing types [8].  

n

C
SzF ⎟

⎠
⎞

⎜
⎝
⎛= δ
                                              (6.96) 

where 
z is the number of rolling elements (balls or rollers); 
δ is the rolling-element deflection (mm) in direction of the acting force F (N); 
S = 0.23 (all ball bearings); 0.24 (all roller bearings); 
n = 3/2 (all ball bearings); 10/9 (all roller bearings); 
C = 4.37x10-4d-1/3 in mm.N-2/3 (all ball bearings) with d (ball diameter) in mm; 
    = 0.77x10-4l-0.8 in mm.N-0.9 (all roller bearings) with l (roller effective length) 
       in mm. 

Having combined the bearing force in Eq. (6.96) with the bearing parameter C, 
one obtains the bearing force in a function of rolling-element deflection for the 
ball and roller bearings, as illustrated in Fig. 6.31. 
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-  Ball bearings: 

5.15.0 4105.2 δzdF ×=  in N with d (mm), and δ (mm); 

-  Roller bearings:       

12.19.0 41089.0 δzlF ×=  in N with d (mm), and δ (mm). 

The rolling-element deflection is derived from Eq. (6.96).  
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Having inserted the bearing parameters C and S in Eq. (6.97), the rolling-element 
deflection results in a function of the acting force for 

- Ball bearings: 
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Fig. 6.31 Bearing force vs. deflection (z = 8; d = l = 3.2 mm) 
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The bearing stiffness coefficient is resulted from the partial derivative of force to 
deflection by using Eqs (6.96) and (6.97). 
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By inserting the parameters C and S for each bearing type in Eq. (6.98), one ob-
tains the bearing stiffness for 

- Ball bearings: 

3/13/13/23103.1 Fdzk ×=  in N/mm; d (mm); F (N); 

- Roller bearings: 

1.08.09.03104 Flzk ×=  in N/mm; l (mm); F (N).  
 
Figure 6.32 displays the bearing stiffness coefficient of the ball and roller bearings 
in a function of acting force in case of z = 8 rolling elements, the ball diameter d, 
and roller length l  of 3.2 mm.  
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Fig. 6.32 Bearing stiffness coefficient vs. acting force (z = 8; d = l = 3.2 mm) 

c) Kinematics of the rolling-element bearing 
To calculate the angular velocities of the cage ωc and rolling element ωb (ball or 
roller), a simple bearing model is used in Fig. 6.33. The inner race is fixed to the 
shaft, and it rotates with the rotor velocity ωi; the outer race rotates with an angu-
lar velocity ωo. The rolling element contacts the inner and outer races at the radius 
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ri and ro, respectively. The pitch diameter Dp is defined as the maximum diametral 
distance of the centers between two rolling elements.   

The angular velocity of the bearing cage ωc about the bearing axis Oba is written 
in  
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where 
− νi is the circumferential velocity at the contact area between the inner race and 
the rolling element, and resulted from 
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− νo is the circumferential velocity at the contact area between the outer race and 
the rolling element, and resulted from 
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Fig. 6.33 Model of a ball bearing with the angular velocities                                                                       

By substitution of Eqs (6.100), (6.101), and (6.99), one obtains the angular veloci-
ty of the cage. 
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Similarly, one computes the angular velocity ωb of the rolling element about its 
own axis without spin and slip at the races. 
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=ω                                              (6.103) 

where  
the velocity direction of ωb is the same direction of (vi - vo). 

By substitution of Eqs (6.100) and (6.101) into Eq. (6.103), one obtains the an-
gular velocity of the rolling element. 
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In a cylinder roller bearing with θ = 0, the angular velocities of the cage and roll-
ing element become obviously at cos θ = 1 in Eqs (6.102) and (6.104). 
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and 
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Additionally, at non-rotating outer race of the bearing (ωo = 0), the angular veloci-
ties of the cage is resulted from Eqs (6.105). 

 
2

1
2

i

p

i
c D

d ωωω <⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=   since 0>

pD

d .               (6.107) 

It indicates that the angular velocity of the cage of the bearing is always less than a 
half of the rotor velocity.  

The angular velocity of the rolling element becomes at ωo = 0 (non-rotating 
outer race). 
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In case of Dp/d ≥ 2, the angular velocity of the rolling element about its own axis 
is larger than or equal to a half of the rotor velocity. 
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6.6.2   Squeeze-Film Damper  

As discussed earlier, the rolling-element bearings have no intrinsic damping; 
therefore, they need an additionally external damping measure in applications of 
turbochargers. In fact, they are usually integrated in the squeeze-film damper (di-
ameter D, and length L) where the rotor shaft is built into the bearings at the inner 
races. The squeeze-film damper is floating, but normally non-rotating in the bear-
ing housing with the squeeze oil film of a radial clearance c, as shown in Fig. 6.34, 
In case of a non-rotating damper, its whirl velocity ω equals zero. In case of no-
end oil damper where the damping oil continually flows outside through the 
squeeze film, the theory of short bearings is generally used to calculate the damp-
ing forces. There are four cases: non-cavitating and cavitating squeeze oil films, 
each with no-end and end oil damper. The 2π-theory is applied to the first (non-
cavitating); the π-theory, to the second (cavitating).   
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Fig. 6.34 Squeeze-film damper in the bearing housing 

Case 1 
No-end oil damper with a non-cavitating squeeze oil film (2π−theory) 

In this case, the cross-coupled damping coefficients drt and dtr equal zero. The 
damping force is resulted from the short bearing theory [3]. 
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where 
drr is the damping coefficient in the normal direction r; 
dtt is the damping coefficient in the tangential direction t; 
drt = dtr = 0, the cross-coupled damping coefficients; 
e is the eccentricity velocity of the damper; 
γ is the whirl velocity ω of the damper (= 0 for non-rotating). 
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The damping coefficients result in 
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within 
η is the oil dynamic viscosity; 
δ is the diametral damper clearance; 
L is the damper length; 
D is the damper diameter; 
ε is the relative eccentricity of the damper (ε = e/c).  

Thus,  
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Case 2 
No-end oil damper with a cavitating squeeze oil film (π-theory) 

In this case, the cross-coupled damping coefficients drt and dtr are not equal to ze-
ro. The damping force is resulted from the short bearing theory [3].     
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where 
drr is the damping coefficient in the normal direction r; 
dtt is the damping coefficient in the tangential direction t; 
drt, dtr ≠ 0, the cross-coupled damping coefficients; 
e is the eccentricity velocity of the damper; 
γ is the whirl velocity ω of the damper (= 0 for non-rotating). 

The damping coefficients result in case of a very small eccentricity velocity. 
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within 
η is the oil dynamic viscosity; 
δ is the diametral damper clearance; 
L is the damper length; 
D is the damper diameter; 
ε is the relative eccentricity of the damper (ε = e/c).  
 
Thus, 

γε
ε
ε

δ
η

ε
ε

ε
δ

πηγ

c
L

D

c
L

DededF rtrrr

⎥
⎦

⎤
⎢
⎣

⎡
−

⎟
⎠
⎞

⎜
⎝
⎛−

⎥
⎦

⎤
⎢
⎣

⎡
−
+

⎟
⎠
⎞

⎜
⎝
⎛−=−−=

22

3

2/52

23

)1(

2
4                           

)1(

21
2

              (6.119) 

γε
εδ

πη

ε
ε
ε

δ
ηγ

c
L

D

c
L

DededF tttrt

⎥
⎦

⎤
⎢
⎣

⎡
−

⎟
⎠
⎞

⎜
⎝
⎛−

⎥
⎦

⎤
⎢
⎣

⎡
−

⎟
⎠
⎞

⎜
⎝
⎛−=−−=

2/32

3

22

3

)1(

1
2                                

)1(

2
4

            (6.120) 

In case of end oil damper where the damping oil remains in the squeeze oil film 
closed by an O-seal ring, the theory of long bearings is generally used to calculate 
the damping forces. There are two cases: non-cavitating and cavitating squeeze oil 
films. The 2π-theory is applied to the first; the π-theory,  to the second.    

Case 3 
End oil damper with a non-cavitating squeeze oil film (2π-theory) 

In this case, the cross-coupled damping coefficients drt and dtr equal zero. The 
damping force is resulted from the long bearing theory [3]. 
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where 
drr is the damping coefficient in the normal direction r; 
dtt is the damping coefficient in the tangential direction t; 
drt = dtr = 0, the cross-coupled damping coefficients; 
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e is the eccentricity velocity of the damper; 
γ  is the whirl velocity ω of the damper (= 0 for non-rotating). 

The damping coefficients result in 
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within 
η is the oil dynamic viscosity; 
δ is the diametral damper clearance; 
L is the damper length; 
D is the damper diameter; 
ε is the relative eccentricity of the damper (ε = e/c).  

Thus, 
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Case 4 
End oil damper with a cavitating squeeze oil film (π-theory) 

In this case, the cross-coupled damping coefficients drt and dtr are not equal to ze-
ro. The damping force is resulted from the short bearing theory [3]. 
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where 
drr is the damping coefficient in the normal direction r; 
dtt is the damping coefficient in the tangential direction t; 
drt, dtr ≠ 0 are the cross-coupled damping coefficients (≠ 0); 
e is the eccentricity velocity of the damper; 
γ is the whirl velocity ω of the damper (= 0 for non-rotating). 

The damping coefficients result in case of a zero eccentricity velocity. 
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within 
η is the oil dynamic viscosity; 
δ is the diametral damper clearance; 
L is the damper length; 
D is the damper diameter; 
ε is the relative eccentricity of the damper (ε = e/c).  

Thus, 
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The damping forces Fr and Ft in the rotating coordinate system (r,t) are trans-
formed to F1 and F2 in the inertial coordinate system (X1,X2) by using Eqs (6.60) 
and (6.74). The transformed damping forces F1 and F2 are used in the computation 
of nonlinear rotordynamics.  

6.6.3   Bearing Defect-Related Frequencies  

Defects in the rolling-element bearings, such as bearing defects in the inner and 
outer races, cage (retainer), and rolling-elements (balls or rollers) generate some 
asynchronous vibration components with high frequency orders and sidebands 
frequencies due to frequency modulations. They are called the bearing defect-
related frequencies.    

Figure 6.35 shows the key elements and their geometries of a ball bearing. The 
balls with diameter d are held in the cage (retainer); the pitch diameter Dp is  
defined as the maximum diametral distance between the centers of two balls. Con-
tact angle θ  is the angle between the line perpendicular to the shaft and the radius 
of the ball at the contact point at the outer race. The inner race is fixed to the shaft; 
it rotates with the rotor speed N (rps); the outer race is mounted in the cartridge 
(damper) supported by the damper oil-film, as shown in Fig. 6.34.  

The bearing defect-related frequencies are computed from the bearing geome-
tries, number of balls, and rotor speed [2], [15].    

• Fundamental train frequency (ftf) 
is caused by the defects of cage depending on the rotor speed N in rps. 
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Fig. 6.35 Key elements of an angular contact ball bearing 

• Ball passing frequency over defective inner race (bpfi) 
is generated when the Z balls or rollers pass over the defective inner race. 
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• Ball passing frequency over defective outer race (bpfo) 
is generated when the Z balls or rollers pass over the defective outer race. 
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• Two-times ball spin frequency (2bsf) 
is induced by the defective balls or rollers spinning over the inner and outer 
races.  
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where 
d is the diameter of balls or rollers; 
Dp is the pitch diameter of the bearing; 
θ is the contact angle of the rolling elements; 
Z is the number of rolling elements; 
N is the rotor speed in rps.  

The bearing-defect-related frequencies are displayed in Fig. 6.36 for a ball  
bearing containing 8 balls with d = 3.2 mm, Dp =12.2 mm, and θ = 45°. The fre-
quencies-induced bearing defects bpfi, 2bsf, and bpfo are supersynchronous  (f > 
1X); the ftf frequency is subsynchronous (f < 1X).         
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Fig. 6.36 Bearing defect related frequencies  
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Chapter 7 

Nonlinear Rotordynamics of Turbochargers  

7.1   Boundary Conditions of the Rotordynamics 

Some uncertain boundary conditions play a key role for the stability and functio-
nality of the rotor, as shown in Fig. 7.1. Unfortunately, it is very difficult or im-
possible to take all of them into account in the rotordynamic computation where 
only the rotor containing the compressor, turbine wheels, rotor shaft, radial bear-
ings, and seal rings is considered. Normally, the boundary conditions are generally 
assumed ideal in the computation, such as sufficient supply oil, good parallelism 
of the thrust bearing, all wedges of the thrust bearing having the same slope, good 
quality of the radial bearing in terms of the bearing non-coaxiality, non-roundness, 
and characteristics of surface roughness. Therefore, the rotordynamic computation 
cannot cure the instability and malfunctions of the rotor, or prevent it from dam-
ages at inappropriate boundary conditions, like oil insufficiency, oil contaminated 
with hard particles, foamy oil, or oil coking in the bearing in the operation. How-
ever, the computational results help us better to understand the rotor response. 
Therefore, further improvements could be done for the rotor stability and reduc-
tion of the bearing friction. Additionally, experimental measurements also provide 
us with the real rotor response at such unknown boundary conditions that one 
could not consider in the computation. 

Some particularly unknown boundary conditions are discussed in the following 
section. If the compressor wheel speed takes turns changing from the high circumfe-
rential speeds (U > 560 m/s) to low speeds and vice versa during the operation with 
a driving cycle for a long time interval. The ultimate tensile stress of the compressor 
reduces with the operating cycles (about 105 cycles); it is called low-cycle fatigue 
(LCF); leading to damages of the compressor wheel. The partly broken compressor 
wheel induces an extremely large unbalance to damage the entire turbocharger.  

In case of oil insufficiency, the bearings operate in a poorly lubricated oil condi-
tion; hence, it causes the rotor instability and damages the bearings due to wear and 
seizure. Moreover, contaminated oil with hard particles or diluted oil with fuel and 
water causes wear in the bearing and reduces the rotor stability of the turbocharger. 

Improperly balancing turbochargers induces excessively large unbalances that 
exceed the load capability of the bearings. Hence, the rotor instability at exces-
sively high unbalance, bearing wear, and seizure of the shaft in the bearing follow. 
Without high-speed balancing (called trim balancing), the unbalance whistle is 
audible. 
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Turbine runner:
• journal non-roundness 
• journal surface roughness
• strong misalignment and
• very large residual unbalance

causing contact rub

Bearing housing: 
• non-coaxiality of the bearing foundation
• insufficient supply oil
• unsuitable cross-sectional area of oil outflow  
• oil coking due to high temperature 

Rotor balancing:
unknown angle between the 
balancing vectors of the 
compressor wheel and turbine 
runner at assembling.

Thrust bearing:
• bearing nonparallelism
• uncertain wedge slopes
• surface roughness 

Oil operating conditions:
• fuel in oil
• foamy oil
• contaminated oil with particles 

Radial bearings:
• bearing non-coaxiality
• bearing non-roundness
• bearing surface roughness

Compressor working conditions:
comp. wheel speed Umax > 600m/s 

 

Fig. 7.1 Unknown boundary conditions in the rotordynamic computation 

Misaligned turbine shaft due to production mistake induces the dynamic unbal-
ance of the rotor. It causes high rotor amplitude because of the conical mode of the 
vibration response. At last, the non-coaxiality of the bearing foundation is to blame 
for the rotor misalignment, leading to the rotor instability and inducing high-order 
frequencies. Moreover, the oil outflow in the bearing housing is very important for 
the bearing functionality and stability. If the foaming oil blocks the bearing outlet or 
does not leave the bearing outlet so quickly, the effective oil temperature increases 
inside the bearing. Hence, the bearing stiffness and damping coefficients drop, lead-
ing to the rotor instability and oil coking in the bearings as well.  

7.2   Vibration Equations of the Rotor with RFRBs 

Figure 7.2 displays the rotor of an automotive turbocharger including the rotor 
shaft, compressor wheel, turbine wheel, rotating floating ring bearings (RFRBs), 
seal rings, thrust rings. All components must be taken into account in the rotordy-
namic computation to study the vibration response of the rotor, such as the fre-
quency components in Waterfall diagram, shaft orbit in the phase plane, and rotor 
amplitude of the response vibrations in the time diagram.     

The continuum vibration equations of the rotor are discretized by two methods, 
the finite element and transfer matrix methods. By discretization of the vibration 
equations, one divides the rotor into a finite number of elements in the computa-
tional model including concentrated masses, cylindrical elements, disks, and inter-
faces between the rotor, bearings, and seal rings.  

The finite element method, a discretization method of the continuum structure of 
the rotor, is based on the principle of D’Alembert where the sum of virtual work of 
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all rotor elements equals zero, as shown in Section 8.4.1. Therefore, the vibration 
equations of the rotor are derived and written in a discrete matrix equation. Another 
alternative method is the transfer matrix method developed by Myklestad and Prohl 
where the first element of the rotor is connected with the last one by the overall-
transfer matrix that consists of the transfer matrices of all rotor elements. The main 
advantage of this method is to spare the computational working memory compared 
to the finite element method. They are not discussed further in details here because 
one can find them in other literatures, e.g. [10] and [19].    

compressor wheel turbine wheel

radial bearingsthrust rings

rotor shaftseal rings
 

Fig. 7.2 Layout of the rotor of an automotive turbocharger (Courtesy BMTS) 

The vibration equations of the rotor with N degrees of freedom, as shown in 
Fig. 7.2 are written in the discrete matrix equation. 

(t)xKxCxM fSS =++                                         (7.1) 

where 
M = (N x N) mass matrix containing the masses and inertia moments of the rotor, 
similar toM given in Eq. (5.53) but for N = DOF; 
CS = (N x N) damping coefficient matrix of the shaft; it is negligibly small; 
KS = (N x N) stiffness coefficient  matrix containing the diagonal and cross-
coupled stiffness coefficients of the shaft; 
x = (N x 1) vibration response vector includes all degrees of freedom of the  
rotor with two translational and two rotational displacements at each station of the 
element;  
f (t) = (N x 1) vector of the unbalance and nonlinear bearing forces. 

To reduce the second-order to first-order equation system, the (2N x 1) vector z of 
the vibration response is defined as 
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where  
.   xy;xy ==    

By substituting the vector z (t) into Eq. (7.1), 2N first-order vibration equations of 
z result in 
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                               (7.3) 
where 
U is the unbalance force and moment; 
FB is the nonlinear bearing force, as computed in eqs (6.83) and (6.84) or by the 
impedance table. 

The coupled nonlinear vibration equation system (7.3) is written in the simple eq-
uation matrix of z. 

)b(zAzz t,,Ω+=                                              (7.4)                                               

where  
A = (2N x 2N) stiffness matrix of the shaft;  
b = (2N x 1) vector of the external forces including unbalance and nonlinear bear-
ing forces within  
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The matrix A containing the matrices M, KS, and CS is obviously non-symmetric; 
i.e., A ≠ AT where AT is the transposed matrix of A. As a reason, the bimodal me-
thod [14] is applied to solve the first-order nonlinear equation matrix of z with a 
(2N x 2N) large matrix A of N degrees of freedom.       

The eigenvalue λ of the vibration system is found by solving the characteristic 
equation of the homogeneous vibration equation (7.4). 

( ) 0rIA =−   λ                                                 (7.5) 

where r is defined as the right eigenvector. 
Having changed the matrix A by AT   in the homogeneous equation (7.4), one 

obtains 

0zAz =− T

                                                     (7.6) 
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With te λlz = one gets the characteristic equation of Eq. (7.6). 

( ) 0l IA =−  λT

                                                
(7.7) 

where l is defined as the left eigenvector. 
In following section, it proves that the right and left eigenvectors of Eqs (7.5) 

and (7.7) are orthogonal; i.e., r.lT = l.rT = Ι.   
The left eigenvector li corresponding to the eigenvalue λi is resulted from Eq. 

(7.7). 
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Multiplying both sides of Eq. (7.8) by T
jr , it results in 
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Having transposed Eq. (7.9), it gives 
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Similar to the left eigenvector, one obtains the corresponding relation for the right 
eigenvector. 
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The orthogonality of the eigenvectors is given by substituting of Eqs (7.10) and 
(7.11)  
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Having normalized the eigenvectors by ai given in (7.12), the orthonormality of the 
normalized right and left eigenvectors is written in 
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ji ,
δ is the Kronecker symbol.     

The modal right and left matrices R and L are resulted from the corresponding 
normalized eigenvectors l* and r*.  
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( ) ( ) Njiij 2 ,...,1,  ; l    ,   ** === LrR                        (7.14) 

The new response vector w(t) is defined, so that  

)()( tt Rwz =                                              (7.15) 

By inserting Eq. (7.15) in Eq. (7.4) and multiplying both sides by the transposed 
left modal matrix LT, it gives the vibration equation of w(t). 
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Due to the orthonormality of the right and left normalized eigenvectors, as proved 
in Eq. (7.13), one obtains two relations:  

 IRLT =  is the unit matrix;                                                                         (7.17) 
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Therefore, 

  ],...,,...,[ 21 Nkdiag λλλ=≡ ΛARLT                         (7.18) 

Eq. (7.18) is the diagonal matrix of the eigenvalues λ.                                                                                              
Substituting Eqs (7.17) and (7.18) into Eq. (7.16) gives   

),()()( ttt wcΛww +=                              (7.19) 

where  
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Equation (7.19) can be written in 2N first-order decoupled nonlinear equations as 
follows 
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By using the Runge-Kutta scheme with the higher order to solve Eq. (7.20), one ob-
tains the solution wk(t) for the kth degree of freedom, and the response vector w(t).  

Then, inserting w(t) in Eq. (7.15), one computes backwards the vector z(t).  
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The unknown vibration response vector x(t) is given by the substitution of Eqs 
(7.22) and (7.2). 

Nitztx ii ,...,1  );()( ==                                      (7.23) 
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where  
N is the degree of freedom of the rotor.  

7.3    Synchronous and Asynchronous Vibrations 

The nonlinear bearing forces, as discussed in Chapter 6, are mainly to blame for 
the rotor responses in nonlinear rotordynamics. The vibration responses are re-
sulted from superimposing the asynchronous frequencies of such malfunctions, 
like unbalance, oil whirls, rotor misalignment, excessively large unbalance, con-
tact rub, wear, and sidebands of the frequency modulations, on the unbalance 
harmonics in the nonlinear system, as shown in Fig. 7.3. Additionally, the working 
conditions of the turbochargers at oil shortage, contaminated oil, or high oil tem-
peratures affect the rotor responses. Depending on the malfunctions, the rotor  
responses consist of at least two or many frequency components of the unbalance 
excitation, oil whirls, and sidebands. Therefore, they are periodic or quasi-periodic 
vibrations that are superimposed by the synchronous and asynchronous frequency 
components, as discussed in Chapter 3. 

Nonlinear 
Rotordynamics
due to nonlinear 
bearing forces 

Responses

• oil shortage
• contaminated oil
• high oil temperature

• 1X (unbalance)
• 0.5 … 0.1X (oil whirls)
• 2X (misalignment, 

excessive unbalance)
• 1/2X, 1/3X (contact rub)
• mωi ± nωj (sidebands)

Malfunctions

• Unbalance
• Oil whirls
• Misalignment
• Excessive unbalance
• Contact rub, wear
• Modulations

Working conditions

 

Fig. 7.3 Rotor responses of nonlinear rotordynamics  

   The unbalance force excites the rotor with a harmonic vibration that is syn-
chronous with the rotor speed at the frequency order of 1X. The rotor amplitude 
reaches a resonance when the eigenfrequency of the rotor equals the rotor fre-
quency. The resonances occur at the intersections of the rotor eigenfrequencies 
and the synchronous excitation line 1X in the Campbell diagram. 

Oil whirl is a kind of a self-excited vibration with the frequency order less than 
1 (i.e.  ω/Ω < 1X). Oil whirling in the bearing clearance induces the oil whirl. The 
rotational kinetic energy of the oil whirling excites the rotor and induces the sub-
synchronous self-excited vibration. When the whirl frequency ω equals the first 
critical bending frequency of the rotor, oil whip takes place in which the rotor am-
plitude continuously increases with time. The oil whip is very dangerous and de-
structive because the rotor deflection rises without limit in the bearing clearance 
and touches the bearing. It leads to bearing damage due to wear or seizure of the 
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journal in the bearing. The rotor speed where the oil whip begins occurring is 
called the threshold speed Ωth. In nonlinear rotordynamics, the rotor amplitude is 
mostly limited in the limit cycle, as discussed in Chapter 4. As long as the limit 
cycle is smaller the bearing clearance, the bearing contact does not happen.      

 

OB

OJ

Ω
ΩR

)( Rii ΩΩ += λω

Roo Ωλω =

R

outer oil film

inner oil film

floating bearing ring

journal

 

Fig. 7.4 Oil whirl frequencies in the rotating floating radial bearing 

The oil whirling frequency of the inner oil film (called inner-oil-whirl frequency) 
is resulted from the rotor speed Ω and bearing ring speed ΩR (s. Section 7.5).  

)1( )( RSRiRii +Ω=Ω+Ω= λλω                             (7.24)                                              

where 
λi is the fluid circumferential average velocity ratio of the inner oil film [11]; 

Ω
Ω≡ RRSR  is the ring speed ratio given in eq. (6.91a). 

The ring speed ratio of the bearing was derived in Eq. (6.91a). 
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The frequency order of the inner oil whirl results from Eq. (7.24) in 

)1( RSRi
i +=

Ω
λω

                                      (7.26) 
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The threshold speed Ωth of the rotor is found by setting the inner oil-whirl fre-
quency ωi equals the critical frequency Ωcr,1.  

m

K
RSR sys

crthii =Ω≡Ω+= 1, )1(λω                      (7.27) 

Thus, 

( ) m

K

RSR
sys

i
th +

=Ω
1

1

λ
                                  (7.28) 

where  
Ksys is the rotor stiffness coefficient including the shaft and bearing stiffness coef-
ficients.  

According to the computation of the ring speed ratio RSR in Fig. 6.28, it varies 
with the oil inlet temperature from 0.30 to 0.05. Therefore, at low rotor speeds 
with λi  ≈ 0.5 and RSR ≈ 0.30, the frequency order of the inner oil whirl results in  

7.0≈
Ω

iω
at low rotor speeds Ω.                                (7.29a)    

However, the oil average velocity ratio λi reduces at increasing the journal eccen-
tricities due to the oil friction in the narrow oil film (s. Fig. 7.11). Hence, it can be 
reduced from 0.5 to 0 at high rotor speeds. In this case, the frequency order of the 
inner oil whirl is calculated with λi ≈ 0.3 and RSR ≈ 0.1. 

30.0...25.0≈
Ω

iω
 at high rotor speeds Ω.                (7.29b) 

The oil whirl frequency of the outer oil film (called outer-oil-whirl frequency) is 
resulted only from the ring speed ΩR.  

Roo Ω= λω                                                               (7.30)  

where 
λ0 is the oil average velocity ratio of the outer oil film; 
ΩR ∼ (0.30…0.15) Ω at 120° C oil inlet temperature, as displayed in Fig. 6.28. 

The oil velocity ratio λο decreases from with the bearing ring eccentricity; 
therefore, the outer oil-whirl frequency order results in  

15.0...10.0≈
Ω

oω
                                                        (7.31) 

The response frequency orders of a typical turbocharger are found in Waterfall di-
agram (s. Fig. 7.5). The response orbit is a forward whirl, as displayed in Case 
History #3 (Section 3.6). In nonlinear rotordynamics, there is no apparent reson-
ance but only quasi-resonance, unlike the typical resonance in linear rotordynam-
ics. The reason for the quasi-resonance is explained that the bearing stiffness and 
damping coefficients increase with the rotor deflection; therefore, the eigenfre-
quency of the rotor continuously increases with the rotor deflection at raising the 
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rotor speed, so that the typical resonance does not happen obviously, instead a 
slight increase of the rotor amplitude. However, the resonance amplitude is rela-
tively small compared to the oil whirl amplitudes. The orbit of the rotor response 
is limited in the limit cycle in nonlinear rotordynamics, as discussed in Chapter 4.      
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Fig. 7.5 Modified Waterfall diagram of a typical turbocharger 

In case of a contact rub at the normal tight condition in the bearings, the rotor 
response is resulted from the superimposition of the subsynchronous frequency 
components due to contact-rub-related nonlinearity on the unbalance vibration. In 
fact, the unbalance forces excite the subsynchronous frequency components of the 
nonlinear rotor to induce the rotor response. At the heavy rub in the bearings, the 
rub subsynchronous frequency components have fractional frequency orders of 
(1/2)X, (1/3)X, or higher orders. The fractional frequency orders (1/N)X indicates 
that one convolution of the whirl cycle is done in every N revolutions of the rotor; 
i.e., one rub contact takes place in the bearing in every N cycles of the rotor. In 
fact, the rotor bounces after it touched the bearing. Until the next contact rub oc-
curs between the rotor and bearing, the rotor has made N revolutions during this 
time. Hence, the contact rub has a subsynchronous frequency order of (1/N)X. The 
rotor orbit corresponding to the unbalance and contact rub is a forward whirl, as 
shown in Case History #4 (Section 3.6). 

In case of the misaligned or excessively large unbalanced rotor, such supersyn-
chronous vibrations with multiple harmonic frequency orders of 2X, 3X occur in 
the nonlinear rotor. An excessively large unbalance of the rotor generally causes  
a large rotor deflection, leading to the contact rub at normally tight condition.  
Therefore, the subsynchronous frequency components with fractional frequency 
orders (1/2)X or (1/3)X occur as the consequence of the excessively large  
unbalance. The response orbit of the misaligned rotor is a forward whirl with a 
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“banana” shape. At increasing the radial bearing load, the response orbit changes 
from the “banana” to “lying eight” shape. The banana shape orbit bounces as it 
comes close to the bearing wall. In case of the very high radial loads in the bear-
ing, the response orbit turns into the “lying eight” shape. On the contrary, the “ly-
ing eight” shape has the forward and backward loops. At the very high radial load 
at the bearing wall, the rotor bounces in the backward loop; as far away from the 
bearing wall, the radial load is decreased, the rotor moves in the forward loop, as 
displayed in Case History #5 (Section 3.6).  

In the strongly nonlinear rotor, the sideband frequencies occur due to frequency 
modulations between the harmonic and asynchronous frequencies. The sideband 
frequencies consist of the sum of the multiple integers of all frequencies acting on 
the rotor. The frequency modulation shall be discussed later in Section 7.6.    

In fact, it is very difficult to compute exactly such nonlinear effects, like the 
contact rub and wear due to the misalignment and excessively large unbalance of 
the rotor in the computation of nonlinear rotordynamics. The rotor response in-
duced by the unbalance, inner, and outer oil whirls can be simulated in the nonli-
near rotordynamics. However, the rotor responses caused by misalignment, con-
tact rub, and wear could be recognized by the sideband frequencies in the 
measured Waterfall diagram.   

7.4   Frequency Analysis in Waterfall Diagram 

In nonlinear rotordynamics, Waterfall diagram (or frequency spectrum diagram) is 
used to analyze the frequency components over the rotor speed and whirl frequen-
cy. In fact, Waterfall diagram is the FFT (Fast Fourier Transform) of the rotor  
response; it is a three-dimensional diagram of spectra of the rotor deflection δ  
varying with the whirl frequency ω and rotor speed Ω. The rotor deflection is dis-
played with the color scale in the vertical direction (s. Fig. 7.6). 

To simplify the spectrum analysis, one plots the 3-D Waterfall diagram in a 
frequency spectrum diagram Ω-(ω/Ω), as shown in Figures 7.5 and 7.8. The color 
displayed in the frequency lines indicates the rotor amplitude; e.g., red for the 
maximum amplitude; blue for the minimum amplitude, and other colors for the 
amplitudes between the maximum and minimum values. This Waterfall diagram is 
called the modified Waterfall diagram, which is applicable to the turbocharger in-
dustry, instead of 3-D Waterfall diagrams.  

The quasi-resonance of the rotor occurs at the first critical speed Ωcr,1 at which 
the rotor speed Ω equals the eigenfrequency ω in the excitation line 1X, as shown 
in Fig. 7.7. At further increasing the rotor speed, the inner oil-film temperature is 
higher than the outer oil film temperature due to larger bearing friction in the inner 
oil film; so, the damping coefficient of the inner oil film decreases. As soon as the 
destabilizing force induced by the cross-couple stiffness coefficient exceeds the 
damping force of the bearing, the inner oil whirl occurs with a frequency order of 
nearly 0.7X at low rotor speeds. The frequency order of the inner oil whirl is con-
tinuously reducing because the inner oil-film temperature further increases with 
the rotor speed, as discussed in Section 7.3.  
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Fig. 7.6 Typical three-dimensional Waterfall diagram 
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Fig. 7.7 Modified two-dimensional Waterfall diagram 
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At increasing the rotor speed, the rotor unbalance becomes larger; hence, the 

vibration mode of the inner oil whirl changes from the conical into cylindrical 
mode in the inner bearing clearance. It leads to the jump of the inner oil whirl fre-
quency, as shown in Fig. 7.8. The higher the rotor unbalance, the earlier the jump 
occurs; and vice versa. Therefore, the ring speed ratio RSR suddenly rises; the 
frequency order of the inner oil whirl jumps to the higher frequency order before 
the quasi-resonance occurs (s. Figs 7.5 and 7.7). After that, the inner oil whirl fre-
quency order decreases with the rotor speed due to the increase of the inner oil-
film temperature, and finally arrives at a frequency order of 0.20X to 0.25X.  

Oil whip occurs at the threshold rotor speed at which the whirl frequency at 
0.25X equals the first bending critical speed, as shown in Fig. 7.7. In this case, the 
oil whip takes place at the rotor speed of about four times of the first critical speed 
Ωcr,1. Therefore, the first critical frequency of the rotor should be designed as high 
as possible, so that the oil whip does not happen in the working speed range of the 
turbocharger. The outer oil whirl has the conical or cylindrical vibration mode; the 
frequency order is relatively small, reducing from 0.15X to 0.10X with the rotor 
speed according to Eq. (7.31). In case of the conical mode, the rotor amplitude  
induced by the outer oil whirl is much larger than the inner oil whirl amplitude be-
cause the outer bearing clearance is larger. Note that the outer oil whirl is less noi-
sy because its whirl frequency is very small. The intensity of airborne noises is 
proportional to the whirl frequency squared (Inoise ∼ ω²). On the contrary, the am-
plitude of the inner oil whirl is much lower but much noisy because the inner oil 
whirl frequency is higher; hence, it induces the constant tone.      

 

Fig. 7.8 Measured Waterfall diagram of a turbocharger at 120°C oil [9] 

At the given rotor speed of 150,000 rpm in Waterfall diagram (s. Fig. 7.8), the 
rotor consists of three frequency components of the unbalance (1X), inner oil whirl 
(ca. 0.30X), and outer oil whirl (nearly 0.12X). The amplitudes of each frequency 
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component are given in the curve of the frequency order ω/Ω by the deflection col-
or. The jump occurs at the rotor speed of about 65,000 rpm where the conical vi-
bration mode changes into the cylindrical mode. The computed orbits of the journal 
locus in the rotating floating ring bearings are displayed in Figures 3.9c and 7.31. 

7.5   Oil Whirl and Oil Whip in the Turbochargers 

Oil whirl is a kind of the self-excited instability with a subsynchronous frequency 
that usually occurs in the automotive turbochargers. The occurrence of the oil 
whirl is caused by the oil whirling in the bearing clearance; therefore, it has noth-
ing to do with the rotor unbalance. That means, it happens in the bearing without 
condition whether the rotor is well balanced or unbalanced. However, the strongly 
unbalanced rotor could reduce the oil whirl amplitude when the rotor is close to 
the bearing wall. Instability of the oil whirl at the threshold rotor speed leads to oil 
whip, which damages the bearing due to wear and seizure of the rotor in the bear-
ing. Moreover, the inner oil whirl causes the airborne noise, called constant tone 
that is audible in the middle working range of the rotor speeds, particularly at the 
low oil temperature of 50°C. Therefore, the inner oil whirl is unwanted in the au-
tomotive turbochargers. In the following section, the root cause of the oil whirl is 
investigated, and discussed how to come up with the measure in order to reduce or 
eliminate the self-excitation instability of the oil whirl and its induced airborne 
noise in the turbochargers.    

The computing model of the oil whirling in the inner bearing clearance shown 
in Figs 7.9 and 7.10 is used to investigate the cause of the oil whirl. At first, the 
journal moves outwards from the bearing center due to the rotor unbalance while 
the high oil pressure is generated in the convergent wedge of the bearing clear-
ance. On the contrary, the low oil pressure occurs in the divergent wedge of the 
inner bearing clearance. As a result, the resulting oil pressure acting on the journal 
creates the bearing force.  

7.5.1   Root Cause of the Oil Whirl 

Having considered the convergent bearing clearance, the volumetric flow rate of 
oil at the inlet of the wedge is calculated. 

[ ] iRiininin LecRAvQ )(c)(R ++Ω+Ω== λ                        (7.32) 

where 
λi is the fluid circumferential average velocity ratio [11];  
c is the radial inner bearing clearance; 
e is the journal eccentricity; 
Li is the inner bearing width; 
R is the journal radius.  
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Fig. 7.9 Oil whirling model in the inner bearing clearance 

Analogous to Eq. (7.32), the volumetric flow rate of oil at the outlet of the wedge 
results in  

[ ] iRioutoutout LecRAvQ )(c)(R −+Ω+Ω== λ                    (7.33)    

Obviously, the oil volumetric inflow in the convergent wedge is larger than the oil 
outflow from the wedge. As a reason, the journal has to move away from the 
wedge to satisfy the mass balance of the incompressible oil, with a whirling veloc-
ity vi perpendicular to the journal eccentricity e. However, oil can only flow in the 
axial direction to the ends of the bearing, but the axial outflow 

axQ  is very small in 

a short time interval. During this time interval, the journal has whirled with a for-
ward whirl speed ωi corresponding to vi, as shown in Fig. 7.9.  

The surplus of oil flow rate in the wedge is resulted from Eqs (7.32) and (7.33). 

)1(2
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RSReRL

eRLQQQ

ii

Riioutin

+Ω=
Ω+Ω≈−=Δ

λ
λ

                          (7.34) 

where RSR = Ω/ΩR is the ring speed ratio of the bearing.  
By the journal whirling, the oil removes the volumetric flow rate with the whirl 

speed ωi.  

 iiiiiiw eRLRLeAvQ ωω 2)2).(( ===                        (7.35) 

where 
Ai is the whirling area of the journal (Ai = 2RLi); 
ωi is the whirl speed of the journal. 
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Having used the continuity equation for the oil flow in the converged wedge, one 
obtains the relation between the volumetric flow rates. 

0=−−Δ=∑ axw
i

i QQQQ                             (7.36) 

Thus, 

axiiRii QeRLeRL +=Ω+Ω ωλ 2)(2                    (7.37) 

The forward whirl speed of the journal results in 

eRL

Q

i

ax
Rii 2

)( −Ω+Ω= λω                                  (7.38) 

where  
λi ≈ 0.5  near the bearing center (s. Fig. 7.11). 

Since the axial flow rate is negligibly small, Eq. (7.38) becomes with λi ≈ 0.5. 

)(
2

1
)( RRii Ω+Ω≈Ω+Ω= λω                         (7.39a) 
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Fig. 7.10 Flow cross-sectional areas in the radial bearing with a circular nut 
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Eq. (7.39a) proves that the assumption of the whirling speed of the inner oil 
whirl used in Eq. (7.24) is correct. In case of the semi-floating ring or fixed bear-
ings at the bearing ring speed ΩR equals zero, the oil whirl is usually called the 
half-frequency whirl (ωi = Ω/2). This forward whirl speed ωi of the journal induc-
es an airborne noise called constant tone, which shall be discussed later in Section 
7.7. The inner oil whirl is caused by the journal whirling with the whirl speed ωi 
that depends on the velocity ratio λi. In fact, this velocity ratio varies with the 
journal relative eccentricity ε. Near the bearing center (ε ≈ 0), the velocity ratio λ 
is approximately 0.475 (≈ 0.5) by measurements in [11]. At increasing the journal 
eccentricity ε, the flow resistance in the bearing clearance rises due to the viscous 
friction in the oil boundary layer. Hence, the velocity profile becomes much con-
cave, leading to decrease of the velocity ratio. Due to bearing contact with the 
journal, the velocity ratio λ goes to zero as the journal moves close to the bearing 
wall (ε → 1). Figure 7.11 displays the qualitative behavior of the average velocity 
ratio versus the journal relative eccentricity. 
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Fig. 7.11 Velocity ratio λ versus journal relative eccentricity ε 

In case of the radial bearing with a circular nut in the outer bearing surface (s. 
Fig. 7.10), two outer oil whirls (called twofold outer oil whirl) mostly occur in 
the Waterfall diagram. According to eq. (7.30), the first outer oil whirl speed is 
calculated at a negligibly small axial flow rate due to the small outer bearing 
clearance. 

Roo Ω≈ λω 1,
                                            

 
(7.39b) 

where ΩR is the bearing ring speed.  
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The second outer oil whirl speed due to the circular nut is given according to 
eq. (7.38) as follows: 

1,2, 2 o
nnn

ax
Roo eLR

Q ωλω <−Ω=                            

 

(7.39c) 

The axial flow rate in eq. (7.39c) is no longer negligible because it flows in the in-
ner oil film through the oil holes. The difference between both whirl frequencies is 
proportional to the second term in the right-hand side of eq. (7.39c). Similarly, the 
twofold inner oil whirl is induced in the inner oil film. 

7.5.2   Threshold of Instability 

To investigate the threshold of instability of the oil whirl, the force balance of the 
journal in the bearing is applied to the computed journal model, as displayed in 
Fig. 7.12. In the radial direction r, the journal stiffness force Ke, bearing cross-
couple damping force ejcc− , inertial force em , and centripetal force tjemr ω

εω 2 act 

on the journal. In the tangential direction t, the destabilizing force ejkc  
caused by 

the cross-couple stiffness coefficient kc of the oil-film and the damping force of 
the bearing ejcω−  act on the journal.  

Have applied the impulse momentum theorem to the journal, its vibration equa-
tion is written in the rotating coordinate system (r,t).       

tj
cc emrejkKejccem ω

εω
2)()( =−+−+                    (7.40) 

where 
m is the rotor mass; 
j is the imaginary unit (j2 = -1); 
e is the eccentricity of the journal; 
c is the diagonal damping coefficient of the oil-film bearing; 
cc is the cross-couple damping coefficient of the oil-film bearing; 
K is the stiffness coefficient of the shaft; 
kc is the cross-couple stiffness coefficient of the oil-film bearing;    
ω is the whirl speed of the journal in the bearing;  
rε is the unbalance radius of the rotor. 
 
Having assumed that the journal response is an exponential function of the eigen-
value s and time t. 

stAete =)(                                                   (7.41) 

where  
s is the complex eigenvalue including the real part α and imaginary part ωn. 

ns jα ω= ±                                                   (7.42) 
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Fig 7.12 Forces acting upon the journal in an oil-film radial bearing 

By twice differentiating Eq. (7.41), one gets 

stst AesesAee 2  ; ==                                      (7.43) 

Substituting eqs (7.41) and (7.43) into the homogeneous equation of Eq. (7.40), 
the characteristic equation results in 

0)()()( 2 =−+−+≡ cc jkKsjccmssD                  (7.44) 

The cross-couple stiffness coefficient kc of the bearing is generated by the whirl 
speed ω; therefore, it is proportional to λΩ and written in, s. [11]   

 Ω≡ λck c
                                                    (7.45) 

Thus, the characteristic equation (7.44) becomes 

( ) 0)()( 2 =Ω−+−+≡ λjcKsjccmssD c                 (7.46) 

The rotor stability condition is satisfied if the real part of the complex eigenvalue s 
is negative. The real part α is calculated as (s. Appendix C). 
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By solving Eq. (7.47), one obtains the rotor stability condition of the oil whirl. 
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The frequency of the threshold of instability results in at α = 0, where the oil whip 
takes place.  
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where 
λ is the fluid average velocity ratio, as shown in Fig. 7.11.  

The rotor response of Eq. (7.40) can be written in with a vibration phase β. 

( ) )( βω += tjAete                                               (7.50) 

Substituting Eqs (7.43) and (7.50) and into Eq. (7.40) with kc =cλΩ,  one obtains 

( ) ( ) tjtj
c emrAejccmK ω

ε
βω ωλωωω 22 )()( =Ω−++− +            (7.51) 

The response amplitude of the journal is resulted in 
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Thus, 
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                         (7.53) 

The frequency of the threshold of instability is arrived when the amplitude A goes 
to infinity. Therefore, two working conditions are necessary at the same time: 

0    2 =+− ωω ccmK                                                (7.54a) 

and 

0)  ( =Ω− λωc                                                     (7.54b) 
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The first and second conditions in Eqs (7.54a) and (7.54b) give  
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and 

Ω= λω                                                                  (7.55b) 

Thus, the frequency of the threshold of instability is resulted by fulfilling both ne-
cessary conditions given in Eqs (7.55a) and (7.55b).  
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The threshold frequency Ωth derived in Eq. (7.56) is the same threshold frequency 
in Eq. (7.49) that is resulted by solving the characteristic equation (7.46).  

In case of the term cc/(2m) is negligibly small, the threshold frequency of the 
oil whirl becomes    

λλ
1,

th

1
 cr

m

K Ω
==Ω                                         (7.57) 

Equation (7.57) gives the stability condition for the oil whirl at α < 0:   

m

K<Ω< λ0                                           (7.58) 

where  

K is the rotor stiffness coefficient containing the shaft and bearing stiffness  
coefficients. 

Oil whip occurs at the threshold speed Ωth of the rotor at which the oil whirl 
frequency equals the first bending critical frequency. The oil whip, a kind of self-
excited instability occurs when the rotor speed equals or exceeds the threshold 
speed. It is very dangerous and destructive because the rotor defection continuous-
ly increases with time in the bearing clearance, leading to bearing damage due to 
wear or seizure of the journal in the bearing.   

7.6   Modulations of Vibrations 

In the nonlinear rotordynamic system, some malfunctions, such as, rotor unbal-
ance, oil whirl, misalignment, heavy rub, and excessively large unbalance cause 
truncations of the vibrations; therefore, the sidebands are additionally generated. 
The sideband frequencies are resulted by adding and subtracting multiple integers 
of the frequency components of the malfunctions. This is called frequency mod-
ulation (FM) of the frequency components in the nonlinear system.  

Most of the sidebands take place at the high rotor speeds and amplify the ampli-
tude of the rotor response. The sidebands occur at the sub- and supersynchronous 
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frequencies, which are generated by frequency components of the malfunctions. 
Note that the more visibly the sidebands appear in Waterfall diagram, the more 
nonlinearly the rotor system responds. The response amplitude of the strongly non-
linear system is resulted from all component amplitudes of the malfunctions and as 
well as sidebands. As a reason, the rotor response amplitude is intensified; the rotor 
behavior becomes much more nonlinear at the large amplitudes.      

7.6.1   Responses of Nonlinear Vibration Systems 

Having considered a nonlinear rotordynamic system, the system response y(x) is 
resulted from the input signal x(t) with large amplitudes and the system transfer  
impedance Z(ε), as shown in Fig. 7.13.     
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Fig. 7.13 Response of a nonlinear vibration system 

The nonlinear response y(x) of the system is written in the second order of the 
input function x(t). 
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where 
x is the input signal with large amplitudes; 
Z is the complex transfer impedance of the system;  
Zx is the linear term of the response; 
ε is the nonlinear system factor (ε << 1); 
Zε*x² is the nonlinear term of the response; 
ε* = ε.sgn(x) within sgn(x) is the signum function of x, which is defined as  
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Therefore, 
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The nonlinear vibration response becomes 

)()sgn()( 32 xOxxZZxxy ++= ε                          (7.60) 

The nonlinear vibration response y(x) is displayed in Fig. 7.14, and compared to 
the linear response. In the linear system, the response of Zx is proportional to the 
input function x. On the contrary, the nonlinear response is different to the linear 
term of Zx; it increases or decreases more quickly with the input amplitude x(t) be-
cause the nonlinear term is proportional to x2. As a reason, the nonlinear system can 
only be linearized at the small amplitudes because the nonlinear term is quite small.  

In case of the excessively large unbalance, the system behavior is strongly non-
linear. Thus, the response amplitude y(x) increases faster than the amplitude of the 
linear system since the nonlinear term increases with the input amplitude squared 
that is no longer negligible, as shown in Fig. 7.14.  
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Fig. 7.14 Comparison of the linear and nonlinear responses 

7.6.2   Modulated Sideband Frequencies 

Having supposed that the input x(t) is a harmonic vibration with the amplitude X 
and single frequency ω1.  

tXx 1cosω=                                                 (7.61) 

Its response is resulted from Eq. (7.59) with a second order of x(t). 
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22*
1 coscos ωεω

                          (7.62) 

The rotor response consists of two terms, the first term yL-term is linear with x(t) 
and the latter yNL-term is the nonlinear term of x². The nonlinear term can be written 
in other trigonometric formulation. 

1cos ;L termy ZX tω− ≡                                                  (7.63a) 
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By substituting of Eqs (7.62), (7.63a), and (7.63b), one gets the overall rotor  
response. 

tXZXZtZXy 1
2*2*

1 2cos
2

1

2

1
cos ωεεω ++=             (7.64) 

Compared to the linear system, the nonlinear response has two new additional 
terms: the rectification term of X²  and the second-order harmonic term of 2ω1.   

Now, we consider the input function x(t) of a periodic vibration containing two 
frequency components of ω1 and ω2 and corresponding amplitudes X1 and X2. 

212211   ;coscos ωωωω >+= tXtXx                           (7.65) 

To simplify, we consider only the nonlinear term of the rotor response in the fol-
lowing calculation. 
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           (7.66) 
Similarly, the first two terms y1 and y2 provide two additional second-order har-
monics of the frequencies 2ω1 and 2ω2, respectively. Furthermore, one obtains the 
third term y3 that generates sidebands of ω1 and ω2  after a few trigonometric cal-
culating steps.  

[ ]
[ ]

)cos(cos

)( cos )(cos

)cos()cos(

)cos.cos2(

21
*

212121
*

212121
*

2121
*

3

ttXXZ

ttXXZ

ttttXXZ

ttXXZy

USBLSB ωωε
ωωωωε
ωωωωε

ωωε

+≡

++−=

++−=

=

            (7.67) 

 
 



7    Nonlinear Rotordynamics of Turbochargers 215
 

with 

   
1 2 1 2;    USB LSBω ω ω ω ω ω= + = −                                    (7.68) 

where 
ωUSB is the upper sideband frequency (rad/s); 
ωLSB is the lower sideband frequency (rad/s). 

Thus, 

1
1 2 ( ) 2 ; U SB LSB c cfω ω ω ω π= + ≡ =    

                       (7.69) 

with fc is defined as the carrier frequency (1/s); 

 1
2 2 ( ) 2 ;USB LSB m mfω ω ω ω π= − ≡ =                                (7.70) 

with fm is defined as the modulation frequency (1/s).               
 
Figure 7.15 shows the sideband frequencies of the modulation. Due to nonlinearity 
of the system, the lower and upper sidebands are induced by the amplitude and 
frequency modulations of fc and fm. In fact, the sideband frequency varies in a 
bandwidth of frequency Δfm, e.g.  in case of oil whirl. Therefore, the sideband fre-
quencies fLSB and fUSB scatter in the corresponding frequency bandwidth Δfm.  
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Fig. 7.15 Frequency modulation of double sidebands  

In the radio engineering, the carrier frequency fc is much higher than the mod-
ulation frequency fm (fc >> fm). To broadcast the modulation signal in a long dis-
tance, the carrier signal modulates it in the double sideband (DSB) containing the 
lower (LSB) and upper sidebands (USB) with the ultra-high frequencies fLSB and 
fUSB (s. Figs 7.15 and 7.16). The sideband frequencies are modulated by the carrier 
and modulation frequencies in the wide band of frequency.        
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Fig. 7.16 Double sideband (DSB) of the frequency modulation 

The modulation frequency fm is normally the human voice frequency spreading 
from 300 Hz to 3 kHz; therefore, the sidebands are generated with the maximum 
frequency width of the DSB of 2fm about 6 kHz. The modulation signal is recov-
ered at receiving by using demodulation or detection of the received sideband sig-
nals where the signal detector and low-pass filter are used. The entire process of 
sending and receiving signal is carried out by the MODEM method that consists 
of MOdulation and DEModulation of the signals, generally applied in the wide 
band technique.         

The sideband signal generated by the carrier and modulating signals is dis-
played in Fig. 7.16, in which one finds the carrier and modulation frequencies 
again in the sideband signal. The envelop signal of the sideband has a frequency 
of 2fm since its period equals one-half of the period of the modulation signal, as 
shown in Fig. 7.17. 

The lower and upper sideband frequencies of fLSB and fUSB are calculated from 
the carrier fc and modulation frequencies fm with fm << fc; hence, f1 >> f2: 

- Lower sideband frequency (LSB): 

21 fffff mcLSB −≡−=                                     (7.71) 

- Upper sideband frequency (USB): 

21 fffff mcUSB +≡+=                                     (7.72) 
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Fig. 7.17 Frequencies and periods of the sideband signal 

To sum up, the nonlinear rotordynamic system induces some new additional terms 
due to the amplitude and frequency modulations as follows: 

- The rectification term 2
2
1 XZ *ε  in Eq. (7.64); 

- Second-order harmonic frequencies of 2ω1 and 2ω2 with the amplitudes 
2

1X and 2
2X  in Eqs (7.64) and (7.66); 

- Sideband frequencies modulated by the excitation frequencies of ω1 and ω2 have 
the amplitudes that are proportional to the term of  Zε*X1X2. According to Eqs 
(7.67) and (7.68), the sideband frequencies are the sum or difference of the fre-
quency components; hence, the first-order sideband frequencies result in 3ω2-2ω1, 
2ω2-ω1, 2ω1-ω2, 3ω1-2ω2, 4ω1-3ω2, etc., s. Eqs (7.74a), (7.74b), and Fig. 7.21.      

In case of the unbalanced and misaligned rotor, the sidebands induced by the fre-
quency modulations of misalignment, unbalance, and inner oil whirl are found in 
Waterfall diagram of noise spectra in Fig. 7.18. 

Beat phenomenon, a special case of the modulation, is caused by the modula-
tion of two harmonic vibrations with the frequency components of ω1 and ω2 that 
are close to each other. If their amplitudes are equal, only the amplitude modula-
tion occurs. Otherwise, both amplitude and frequency modulations take place  
at the same time. The input signal is the sum of two sinus functions with the  
amplitudes a1 = a2 ≡ a.     
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where 

cc fπωωω 2)( 212
1 =+= ;  

with fc is the carrier frequency. 

mm fπωωω 2)( 212
1 =−= ; 

with fm is the modulation frequency. 
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Fig. 7.18 Sideband frequencies in Waterfall diagram [9] 
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Fig. 7.19 Beat frequency 2fm of the frequencies f1 and f2 

We choose two frequency components of f1 = 100 Hz and f2 = 85 Hz for the 
beat modulation that is shown in the frequency domain (s. Fig. 7.19). The carrier 
frequency fc is the average frequencies of f1 and f2 and equals 92.5 Hz, and the 
modulation frequency fm equals 7.5 Hz. The beat frequency of 2fm(15 Hz) is de-
fined as the frequency difference of f1 and f2.  
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Figure 7.20 shows that the closer the frequency components, the smaller the 
beat frequency; obviously, the larger the period of the beat signal. The beat period 
is inversely related to the beat frequency 2fm; hence, the beat period is about 0.067 
s at the beat frequency of 15 Hz. The carrier frequency has a period of 0.011 s at 
92.5 Hz in the time domain.           
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Fig. 7.20 Beat response in the time domain 

The generated first-order frequencies of the LSB and USB sidebands are re-
sulted from the sum or difference of the frequency components of f1 and f2, which  
are located in the left and right hand-sides of the carrier frequency fc, as plotted in 
Fig. 7.21. 
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Fig. 7.21 LSB and USB sideband frequencies  

However, the nonlinear terms of the rotor response are not only proportional to 
the input amplitude squared x² but also the high-order input amplitude, such as x³ or 
higher orders compared to eq. (7.59). According to Ehrich [4], the truncation of the 
modulation frequencies of f1 and f2 could induce two new second harmonic frequen-
cies of (f1-f2) and (f1+f2) that in turn generate the third harmonics of (2f2+f1) and 
(2f1+f2) in a strongly nonlinear rotor system, as demonstrated in Table 7.1. 

Table 7.1 Sideband frequencies generated by the frequency modulations 

fc f Order

f2 (f1 + f2)/2 f1 1X

(f1 + f2) 2X

2f2 + f1 3(f1 + f2)/2 2f1 + f2 3X

Upper sideband (USB)

2f1 - f2

2f1

3f1

3f1 - f2

4f1 - f2

Lower sideband (LSB)

2f2

3f2

2f2 - f1

3f2 - f1

4f2 - f1

 
 
To generate the LSB frequencies, one substitutes the excitation frequency f2 to 

(2f2-f1) to get the second-order frequency (3f2-f1) following the thin arrow, and 
substituting f2 again into the second-order frequency to generate the third-order 
frequency (4f2-f1). Another way, following the dark arrow, one obtains the new 
high-order harmonic frequencies of 2f2 and 3f2 by adding f2 to itself and 2f2, re-
spectively. In order to receive the third-order frequency (2f2+f1), one does the 
same way by adding f2 to (f1+f2) in the direction of the dash arrow. Similarly, the 
USB frequencies are generated as the same way.     
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7.7   Induced Airborne Noises in the Turbochargers 

Noises induced in the turbocharger transmit through the bearing oil films, bearing 
housing, exhaust-gas manifold, engine block, and exhaust-gas pipe to car inside. 
The induced noises excite vibrations of the exhaust-gas pipe and chassis and gen-
erate the airborne noises that are uncomfortable for drivers and passengers. They 
are undesirable and therefore should be reduced in the passenger vehicles.             

7.7.1   Classification of Noises 

The induced noises in the turbocharger are caused by the airflow in the compres-
sor wheel, rotation of the compressor and turbine wheels, rotor unbalance, and oil 
whirling in the radial bearings. They excite the vibrations of the intake air filter, 
charge air intercooler, and exhaust gas system and therefore cause the airborne 
noises to the environment.  

- Pulsation noise is caused by the different volume chambers of the compressor 
wheel. Its frequency spreads from 1,200 Hz to 4,500 Hz that occurs at the engine 
speed range from 1,500 rpm to 3,500 rpm in the second gear with the high loads, 
and depends on the number of unequal chambers of the compressor wheel. 

- Rotation noise (rotating-blades-related noise) is generated by the rotating blades 
of the compressor or turbine wheels at the engine speed range from 1,400 rpm to 
2,500 rpm at the second and third gear. These noises have very high frequencies 
between about 3,000 Hz and 18,000 Hz or higher that are resulted from the num-
ber of blades and rotor speed. Although human ears cannot recognize noises high-
er than 16 kHz, animals inside the car could hear such high-frequency noises. 

 - Growling noise (compressor-stall-related noise) is induced by the partial recir-
culation of the intake air in the compressor wheel due to flow separation at the 
blades. Its frequency spreads in a wide band between 1,200 Hz and 3,500 Hz con-
taining partly metallic noise. It occurs at the engine speed range between 1,400 
rpm and 2,500 rpm in the second and third gear. 

- Whining noise (compressor-surge-related noise) induced by the surge condition 
in the compressor wheel where the intake air entirely recirculates to the compres-
sor inlet. The whining noise occurs when the gas pedal is suddenly released. 
Therefore, the mass flow rate of the charge air is strongly reduced at a still high 
speed of the turbocharger, leading to the surge working condition in the compres-
sor (s. Fig. 2.7).  Its frequency spreads in a wide band from nearly 800 Hz to 2,700 
Hz containing partly metallic noise that occurs at the engine speed range from 
1,400 rpm to 2,500 rpm in the second and third gear.  

- Unbalance whistle is caused by the unbalanced rotor and unbalance change of 
the rotor after the long operating time interval. Its harmonic frequency (1X) is be-
tween 1,200 Hz and 4,500 Hz. It happens at the engine speed range between 1,500 
rpm and 3,500 rpm in the second gear with the relatively low loads. 

- Constant tone is induced by the inner oil whirl due to oil whirling in the radial 
bearing; its frequency lies between 600 Hz and 900 Hz in the human audible 
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range. The frequency order of the inner oil whirl in the rotating floating ring bear-
ings reduces from about 0.35 to 0.25 as the rotor speed increases according to Eq. 
(7.29b). Therefore, the induced frequency of the inner oil whirl varies in the small 
range between 600 Hz and 900 Hz; its frequency can be considered nearly con-
stant in the operating speed range of the automotive turbochargers. The constant 
tone often occurs at the speed ranges between 1,500 rpm and 3,500 rpm in the 
second to fifth gear with the middle to the high loads. 

The automotive turbocharger designers are really concerned about both last air-
borne noises (unbalance whistle and constant tone) and try to minimize them to 
bring comfort to drivers and passengers.  Besides, designers make efforts to study 
the noise behaviors with the goal of reducing their undesirable effects as well.  

7.7.2   Unbalance Whistle and Constant Tone 

The malfunctions of the unbalance whistles and constant tone are found in Water-
fall diagram of noise spectra, as shown in Fig. 7.22. 

unbalance whistle (1X)

constant tone
(inner oil whirl)

Ω
ω

Ω

 

Fig. 7.22 Unbalance whistle and constant tone in Waterfall diagram [9] 

a) Unbalance whistles (1X) 
It is caused by the residual unbalance of the rotor after balancing. The possible 
reasons for the unbalance whistle are either the rotor is not well balanced or the 
unbalance change takes place after a long operating time.  

In order to reduce the unbalance whistle at the harmonic frequency 1X, the ro-
tor is balanced by the low-speed (shop balancing) and high-speed balancing (trim 
balancing) at the two balancing planes. They will be discussed more details in the 
next chapter. Moreover, one should check whether the compressor wheel is loose  
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in the shaft because the rotor is over-speeding, or the screw-nut is not enough tigh-
tened or loose at the compressor wheel. Additionally, the rotor unbalance signifi-
cantly increases when the compressor or turbine wheels were damaged or partly 
broken by any reason during the operation, such as impact of hard particles on 
them, blade rubbing on the housing, or low-cycle fatigue. 

 
b) Constant tone (subsynchronous noise) 
To study the root cause of the constant tone, we turn back to Fig. 7.9 and find that 
the oil inflow rate at the convergent wedge is larger than the outflow rate at any 
time t. As a reason, the journal has to move away from the bearing with a 
 velocity vi perpendicular to the journal eccentricity e in order to fulfill the mass 
balance of the incompressible oil. Furthermore, oil could only flow in the axial di-
rection along the inner bearing width to outside; however, the axial flow rate 

axQ  

is very small. Therefore, the journal whirling with the whirl velocity ωi induces 
the constant tone. As long as the damping force in the bearing is larger than the 
destabilizing force caused by the cross-couple stiffness coefficient of the inner oil 
film, the journal whirling amplitude is relatively small in a quasi-stable working 
condition; hence, the constant tone is inaudible inside the car (s. Section 7.5.2). In 
this case, the whirling kinetic energy of the rotor, which is proportional to the ro-
tor speed squared, is dissipated by the damping energy of oil in the bearing. In 
fact, the damping force of the bearing decreases with the rotor speed because the 
oil temperature in the inner bearing rises; therefore, its viscosity strongly reduces 
at high oil temperatures. The journal begins whirling in the bearing when the 
damping force is smaller than the destabilizing force in the inner bearing, in which 
the non-dissipated whirling kinetic energy increasing with the rotor speed excites 
itself to the oil whirl instability. On the contrary, the outer oil whirl does not in-
duce any subsynchronous noise because its frequency is extremely low so that the 
intensity of noise that is proportional to frequency squared is negligible. As a rea-
son, the outer oil whirl is inaudible although its deflection amplitude is larger due 
to the conical vibration mode.  

There are some possible measures to reduce or avoid the constant tone by mi-
nimizing the inner oil whirl amplitude.  

- Passive measures 
The outer bearing clearance is designed large enough to suppress the constant tone 
amplitude as it transmits through the outer oil film of the bearing. However, an 
excessively large bearing clearance could induce the rotor instability because its 
bearing stiffness coefficient reduces. Another possible measure is the large outer 
diameter of the bearing; hence, the damping effect of the outer oil film increases 
in order to dampen the constant tone. However, the ring speed ratio RSR of the 
bearing reduces, leading to increasing the bearing friction on the rotor, as dis-
cussed in Chapter 6.     

- Active measures 
The main reason of the oil whirl is the surplus of oil flow rate in the converged 
wedge of the inner bearing clearance. In order to minimize the constant tone, the 
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surplus of oil flow rate must be relieved to keep the amplitude of the inner oil 
whirl as small as possible; therefore, the rotor remains in the stable condition.  

According to Eq. (7.34), the surplus of oil flow rate in the inner bearing is 

)1(2 RSReRLQQQ iioutin +Ω≈−=Δ λ                        (7.75) 

By applying the mass balance of oil to the convergent wedge, one obtains the con-
tinuity equation of the oil flow rates. 

0=−−Δ=∑ axw
i

i QQQQ                                   (7.76) 

within  

iiw eRLQ ω2=
 
is the journal-whirling-related oil flow rate.      (7.77) 

By substituting Eqs (7.75), (7.76), and (7.77), one obtains the journal-whirling-
related oil flow rate in the converged wedge.    

axiiiiw QRSReRLeRLQ −+Ω== )1(22 λω                  (7.78a) 

The constant tone is avoided if the whirl velocity ωi or whirl eccentricity e in eq. 
(7.78a) equals zero. That gives 

0)1(2 =−+Ω= axiiw QRSReRLQ λ                             (7.78b) 

Equation (7.78b) shows that the journal-whirling related oil flow rate can be mi-
nimized by either reducing the surplus of oil flow rate (the first term) or increasing 
the axial oil flow rate (the second term) to compensate the surplus of oil flow rate. 
As a reason, the journal-whirling related oil flow rate is smaller, leading to reduc-
ing the constant tone.  

For the first one, some measures are possible to reduce the surplus of oil flow 
rate according to eq. (7.75). They are namely, reducing the inner bearing clearance 
c to increase the bearing stiffness so that the journal eccentricity e = c.ε becomes 
much smaller; shortening the inner bearing width Li; reducing the journal radius 
R; decreasing the ring speed ratio RSR. However, all these measures have to be 
thoroughly investigated since they could cause the rotor instability, bearing wear 
due to reducing the bearing load capacity, increase of the bearing friction due to 
reducing the bearing ring speed, and oil coking in the inner bearing clearance.     

The second one is increasing the axial oil flow rate by installing a few axial oil 
grooves in the inner bearing wall to compensate the surplus of oil flow rate (s. Fig. 
7.23). Therefore, the journal whirling amplitude is reduced; in turn, the constant 
tone is minimized or avoided. However, wear could occur in the bearing because 
lubricating oil does not maintain sufficiently enough in the bearing clearance, es-
pecially at the start-stop driving condition or highly unbalanced rotor.    
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Fig. 7.23 Rotating-floating ring bearing with axial grooves 

7.8   Aliasing in DFT and Nyquist Frequency 

Fast Fourier transform (FFT) developed by Cooley and Tukey in 1965 is the com-
puting algorithm for discrete Fourier transforms (DFT) that have been used to ana-
lyze digitalized time signals of the rotor responses in Waterfall diagram. The DFT 
is used not only in the rotordynamic computation but also in the measurement.  

The fast Fourier transform (FFT) has an advantage of reducing the computing 
operations of the DFT based on the Fourier transform from N² to Nlog2N where N 
is the discrete values of the continuous time signal. Therefore, the DFT based on 
the FFT computes much faster and increases the computing accuracy due to 
round-off errors compared to the Fourier transform. At a given number of sam-
pling points N = 210 (1,024 timely discrete values), the required computing  
operations in the FFT is nearly 1.024x104 compared to 1.048x106 in the Fourier 
transform. It results to reducing the number of computing operations in the FFT by 
the factor of N/log2N, approximately 100 times; nearly 2,200 times for N = 215 
timely discrete values. One can find the DFT based on the FFT in [12], which cal-
culates the timely discrete values by partitioning the original full sequence into a 
number of shorter sequences. Hence, it is not dealt with in this book.    

7.8.1   Discrete Fourier Transform (DFT) 

The periodic time signal x(t) is discretized by the Fourier transform (i.e.  
DFT based on the Fourier transform) and resulted in the discrete time series  
(s. Fig. 7.24).  
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where the Fourier coefficients ak and bk are defined  
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Instead of two Fourier coefficients, one complex Fourier coefficient Xk combined 
ak with bk is used in the DFT [12]. 

kkk jbaX −≡                                               (7.81) 

By using Euler's theorem, the new Fourier coefficient Xk becomes 
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One writes the Fourier coefficient Xk in the discrete time series of {xn} for n = 0, 
1,..., (N-1). 

 ∑
−

=

⎟
⎠
⎞

⎜
⎝
⎛ Δ−

Δ≈
1

0

  2
1 N

n

T

ktn
j

nk tex
T

X
π

                               (7.83) 

within  
Δt is the discrete time interval; 
N is the number of discrete sampling points in N discrete intervals.  
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Fig. 7.24 Discrete periodic time signal x(t)  
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By substituting T = N.Δt into Eq. (7.83), the Fourier coefficients in the discrete 
Fourier transform (DFT) are formulated in the discrete time series {xn} for n = 0, 
1, ..., (N-1), as displayed in Fig. 7.24. 
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By inversing the discrete Fourier transform (IDFT: inverse discrete Fourier trans-
form), one obtains the values of xn. 
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With the periodic frequency   
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the Fourier coefficients Xk result in the discrete Fourier transform (DFT)  
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According to Eq. (7.84), the amplitude |Xk| of the Fourier coefficient Xk is an even 
function; hence, it is symmetric about ωk = 0, as shown in Fig. 7.25. It is written in. 

 kk XX −=                                                      (7.88) 

The amplitudes |Xk| of the timely discrete components xn at the frequencies ωk for 
k = 0, 1, ..., N are plotted in Fig. 7.25. At the higher frequencies ωk > ωlim (i.e., k > 
N/2), the amplitudes |Xk| of the Fourier coefficients Xk are periodically repeated 
from the values corresponding to the frequencies ωk that are symmetrical at the 
limit frequency ωlim. Therefore, the Fourier coefficients Xk computed by the DFT 
are only correct for angular frequencies up to ωlim [12]. 

tk Δ
≡≤ πωω lim                                              (7.89) 

7.8.2   Aliasing in DFT 

If any frequency of the real signal exceeds the limit frequency ωlim given in Eq. 
(7.89), the Fourier coefficients computed by the DFT have no longer been correct, 
leading to aliasing (distortion) of the amplitudes between the DFT computed and 
real spectra in the frequencies above ωlim, as shown in Fig. 7.25.  
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Fig. 7.25 Aliased amplitudes between the DFT computed and real spectra 

7.8.3   Nyquist Frequency 

For anti-aliasing of the DFT computed amplitudes, the maximum angular frequen-
cy ωmax (rad/s) of the real time signal must be below the limit frequency. 

tΔ
≡< πωω limmax                                               (7.90) 

Thus, the maximum frequency fmax (s-1) of the vibration response should be li-
mited by 
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The frequency 1/(2Δt) in the rhs term of Eq. (7.91) is called the Nyquist frequency 
where Δt is the time interval between two discrete time values of the vibration  
response, as shown in Fig. 7.24.  

Hence, the Nyquist criterion is satisfied for anti-aliasing when the maximum 
sampling frequency is below the Nyquist frequency.  
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To satisfy the Nyquist criterion in Eq. (7.92), the discrete time interval Δt at sam-
pling must be as small as 
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The sampling time interval Δt is selected for the integrating time step in computa-
tion of nonlinear rotordynamics. In other words, the time interval must be small 
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enough to cover the entire frequency range of the vibration response. Hence, the 
aliasing of the DFT computed amplitudes is prevented in the computation. Moreo-
ver, at measurements of the vibration responses, the sampling time interval is  
chosen according to the Nyquist criterion, as given in Eqs (7.92) and (7.93) for  
anti-aliasing of the measured amplitudes (s. Fig. 7.26).  
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Fig. 7.26 Nyquist frequency versus discrete time interval 

The diagram of Fig. 7.62 shows how to select the discrete time interval. At the 
maximum frequency fmax of the sampling time signal, the intersection between the 
frequency line fmax and frequency curve f gives the maximum time interval Δtmax. 
To fulfill the Nyquist criterion, the discrete time interval Δt must be smaller than 
Δtmax, so that fNyq > fmax, as shown in Fig. 7.26. 

If the real time signal contains a very high frequency, an extremely short integrat-
ing or sampling time step is required for anti-aliasing, leading to an extreme compu-
ting time (CPU). Therefore, these high frequencies are filtered from the real signal 
by using the under-sampling or band-pass sampling technique at an appropriate time 
interval. Hence, the maximum frequency of the real time signal after under-sampling 
is lower than the Nyquist frequency in order to satisfy the Nyquist criterion.   

7.9   Computations of Nonlinear Rotordynamics 

A computation of nonlinear rotordynamics for a typical automotive turbocharger 
using rotating floating ring bearings has been carried out in the case history. Fol-
lowing characteristics are taken into account in the rotordynamic computation 
with the program MADYN 2000 [10] based on the extensionally extra-developed 
module for nonlinear rotordynamics of high-speed turbochargers: 
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- run-up simulation to very high rotor speeds; 
- transient behavior of the rotor responses; 
- gyroscopic effect of the flexible rotor; 
- cavitating two-phase flows of the oil films in the bearing clearances;  
- unbalance forces and moments acting upon the rotor; 
- damping effects of the seal rings; 
- nonlinear bearing forces of the rotating-floating ring bearings;  
- synchronous (unbalance) and asynchronous vibrations (oil whirls); 
- rotating-floating ring bearings with changing ring speed ratios; 
- computing the ring speed ratios of the bearings;  
- heat convection in the oil films in the axial direction; 
- heat conduction between the oil films in the radial direction; 
- various types of lubricating oil (e.g. SAE 0W30, 5W30, 10W40, 15W40); 
- various pressures and temperatures of lubricating oil. 

Figure 7.27 shows the computed rotor of an automotive turbocharger including the 
compressor and turbine wheels, rotor shaft, thrust rings, seal rings, and rotating-
floating ring bearings. One transforms the computed rotor to the discretized finite-
element model where the components of the rotor, such as the compressor and  
turbine wheels, rotor shaft, and radial bearings are discretized in a finite number of 
concentrated mass points, disks, cylinder elements, and interfaces of the bearings and 
seals to the rotor, as shown in Fig. 7.28. The finite-element model of the rotor con-
tains of many sections that are connected by the stations at both ends of each section.     

By applying the principle of D’Alembert to the finite-element rotor, the vibra-
tion equations of the rotor with N degrees of freedom are written in the discrete 
matrix equation, as given in Section 7.2. 

(t)xKxCxM fSS =++  

where 
M = (N x N) mass matrix containing the masses and inertia moments of the rotor; 
CS = (N x N) damping coefficient matrix of the shaft; 
KS = (N x N) stiffness coefficient matrix containing the diagonal and cross-
coupled stiffness coefficients of the shaft; 
x = (N x 1) vibration response vector including all degrees of freedom of the rotor 
with two translational and two rotational displacements at each station of the finite 
element;  
f (t) = (N x 1) vector of the unbalance and nonlinear bearing forces. 

By solving the Reynolds lubrication equation of the bearings, one creates the im-
pedance table. The nonlinear bearing forces in the entire bearing clearance are  
resulted from the corresponding bearing stiffness and damping coefficients by li-
nearly interpolating the computed values of the bearing characteristics at ε, γ, and 
Sommerfeld number (So) in the impedance table. The nonlinear bearing forces 
contain two force components: the rotation force induced by the rotation with Ω 
depends on Ω, η, ε, and γ, and the damping force caused by the journal veloci-
ties γε , depends on γεγεη ,,,, .     
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Fig. 7.27 Computed rotor of an automotive turbocharger 
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Fig. 7.28 Computed finite-element model of the rotor 

The nonlinear bearing forces acting upon the rotor are computed at each iterat-
ing step based on the Sommerfeld number So of the impedance method (s. Sec-
tions 6.5.2 and 6.5.3). The coupled nonlinear vibration equations of the rotor are 
given in eq. (7.4), in which we set the nonlinear bearing forces in the right hand 
side of the equation. By using the bimodal method, we decouple the coupled non-
linear equations (7.4) in the decoupled nonlinear equations (7.20); then, the vibra-
tion responses are solved by the high-order Runge-Kutta scheme at each iterating 
step with the time interval given in eq. (7.92). By using the Discrete Fourier 
Transform (DFT), the frequency spectrum of the rotor responses is displayed and 
analyzed in the spectrogram (Waterfall diagram). The orbits of the rotor at the sta-
tion S1 of the compressor inlet, and at the stations S2 and S3 of the journal loci in 
the radial bearings are computed in the run-up simulation, as shown in Fig.7.28.         



232 Rotordynamics of Automotive Turbochargers
 

Two rotating floating ring bearings and two sealing rings at each side support 
the computed rotor with a mass of about 150 g including the shaft with a diameter 
of 7 mm, compressor wheel, turbine shaft, and thrust rings. The relative inner di-
ametral clearance of the bearing is initially about 3x10-3 due to the temperature dif-
ference between the inner and outer oil films, and the centrifugal force of the bear-
ing ring, the bearing ring expands in the radial direction. Hence, the relative inner 
diametral clearance increases to a maximum about 4x10-3 during the operation. The 
ratio of the outer and inner bearing clearances is varied by a factor between 3 and 4. 
The maximum rotor speed is limited to nearly 225,000 rpm (Ω = 3750 Hz). The 
compressor wheel and turbine shaft have residual unbalances of approximately 0.1 
g.mm and 0.2 g.mm, respectively. The lubricating oil SAE 5W30 is used in the 
run-up computation; the oil dynamic viscosity changes with the effective oil tem-
peratures in the oil films at every iterating step according to the Cameron and Vo-
gel equation (6.44). The oil condition at the inlet is given at the relative pressure of 
0.3 MPa (3 bar) and oil temperature of 90°C at S2; 100°C at S3.      

Nmax = 225,000 rpm

Direction 3

Direction 2

Nmax = 225,000 rpm

 

Fig. 7.29 Computed vibration response of the rotor at the station S1   
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Fig. 7.30 Computed response orbits of the rotor at the station S1 

The computing time for the run-up simulation of about 20-hour-CPU is neces-
sary on a PC with a dual-core AMD Opteron of 3 GHz and 8 GB RAM. This 
computing time is quite acceptable in the industry instead of a-few-week-CPU in 
case of instantaneously solving the Reynolds equation at each iteration step.    

Fig. 7.29 shows the rotor response in the directions 2 and 3 at the station S1 (s. 
Fig. 7.28) versus rotor speeds in the run-up simulation up to the rotor speed of 
225,000 rpm. The amplitude of the rotor response is resulted by superimposing the 
harmonic unbalance excitation on the subsynchronous frequency components of 
the inner and outer oil whirls. At the beginning, the rotor amplitude is mainly in-
duced by the outer oil whirl up to the relative rotor speed of nearly 30%; its vibra-
tion mode is conical and whirls in the outer bearing clearance, as shown in Figs 
7.31 and 7.32. From the relative rotor speed of 30% up to 60%, the rotor response 
is superimposed by the unbalance, inner, and outer oil whirls; the conical mode of  
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the rotor response tends toward the cylindrical mode. From the relative rotor speed 
of 60% to the maximum rotor speed of 225,000 rpm, the rotor response is excited 
by the inner oil whirl and unbalance; its response has the cylindrical mode, as 
shown in Figures 7.32a and 7.32b.  

Due to the irrational frequency ratio of the inner and outer oil whirls, the rotor 
response is quasi-periodic vibrations, as discussed in Chapter 3. However, the ro-
tor amplitude is stabilized in the limit cycle at any rotor speed ; e.g., at the relative 
rotor speed of 60% (135,000 rpm), the limit cycle at the station S1 has a peak-to-
peak amplitude of nearly 65 µm, as shown in Figure 7.30. 
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Fig. 7.31 Computed response orbits of the rotor at the stations S2 and S3 
 
Figure 7.30 indicates that the rotor response is a forward whirl because its orbit 

contains only the inner loops (s. Chapter 3); i.e., their whirl speeds ω have the same 
direction of the rotor speed Ω. Within the limit cycle, the rotor orbit is unstable due 
to the self-excited vibrations with subsynchronous frequencies (ω < Ω) of the oil 
whirls. Therefore, the rotor orbit at S1 moves towards the stable limit cycle; during 
this time, the eccentricity of the journal locus increases in the bearing clearances, 
leading to reducing the oil-film thickness, in turn increasing the stiffness and  
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damping coefficients of the bearing. As a reason, the rotor orbit stabilizes in the limit 
cycle of the Hopf bifurcation (s. Chapter 4). From the rotor speed of 170,000 rpm 
(75% relative rotor speed), the limit cycle of the rotor response is reduced from the 
maximum cycle limit of 70 µm to about 55 µm due to the increase of the bearing 
stiffness and damping coefficients, as shown in Fig. 7.30. As long as the limit cycle 
of the rotor response is smaller than both bearing clearances in the entire operating 
speed range, and each minimum oil-film thickness is larger than the limit oil-film 
thickness, as given in Fig. 6.11, no wear occurs in the bearing.  

S2 S3

phase lag

N ≈ 20%Nmax  (45,000 rpm)

S2 S3
in phase

N ≈ 60%Nmax (135,000 rpm)

N ≈ 100%Nmax (225,000 rpm) in phase

S2 S3

 

Fig. 7.32a Computed rotor responses at the stations S2 and S3 at various rotor speeds 
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The vibration mode of the flexible rotor in the run-up simulation is analyzed by 

using the vibration phases at the stations S2 and S3. At low rotor speeds up to nearly 
40% Nmax, the rotor orbits at S2 and S3 are mostly eccentric to each other (s. Fig. 
7.31), i.e. the mode shape of the rotor response is conical since the rotor is still rigid 
at low rotor speeds. As high rotor speeds, the bearing stiffness and damping coeffi-
cients increase, the conical mode of the rotor vibration tends toward cylindrical 
mode. Figure 7.31 shows that the orbits at S2 and S3 are nearly concentric from the 
relative speed of 60% up to the maximum rotor speed. The limit cycles of the rotor 
response at S2 and S3 have a peak-to-peak amplitude of about 25 µm at 60% and 
reduce to 15 µm at 100% relative rotor speed (Nmax = 225,000 rpm).  

Figure 7.32a  displays the time responses of the rotor at the stations S2 and S3 
at the relative rotor speeds of 20%, 60%, and 100%. At small rotor speeds up to 
60% rel. speed, the time vibration responses at S2 and S3 are out of phase (with a 
phase lag), leading to the eccentric orbits (conical vibration mode), as shown in 
Fig. 7.31. At increasing rotor speeds from 60% up to 100% rel. speed, the time 
responses at S2 and S3 are in phase (without phase lag), causing the concentric 
orbits at S2 and S3 (cylindrical vibration mode). In this case, the vibration mode 
of the rotor response is cylindrical. At each rotor speed, the rotor orbit stabilizes in 
the limit cycle, as displayed in Fig. 7.31.   

conical mode
@ 80,000 rpm

cylindrical mode
@ 135,000 rpm

cylindrical mode
@ 170,000 rpm

cylindrical mode
@ 225,000 rpm

rotor mode

 

Fig. 7.32b Computed vibration modes of the rotor at various speeds 
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Figure 7.32b displays the vibration modes of the rotor at various rotor speeds. 
At the low speeds, the rotor vibration has a conical mode. From the rotor speed of 
about 81,000 rpm (36% relative rotor speed) to 225,000 rpm (100% relative rotor 
speed), the rotor vibration changes from the conical to cylindrical mode.    

 We apply the discrete Fourier transform (DFT) to compute the frequency spec-
tra of the rotor vibration response in the run-up simulation up to 225,000 rpm. 
Figure 7.33 shows the Waterfall diagram of the computed rotor response. Oil 
whirling in the outer bearing clearance causes the outer oil whirl. It affects the 
conical vibration of the rotor response at the relative rotor speed of 20% with a 
frequency order of nearly 0.15X (s. Fig. 7.34). At increasing the rotor speeds, the 
oil temperature of the inner oil film is higher than the temperature of the outer oil 
film due to the bearing friction. Therefore, the ring speed ratio of the bearing re-
duces, leading to decreasing the frequency order of the outer oil whirl to approx-
imately 0.1X at the maximum rotor speed of 225,000 rpm. Similarly, the inner oil 
whirl takes place a little bit later with the whirl frequency order of about 0.4X at 
the relative rotor speed of 30%. Because of the reduced bearing ring speed during 
the operation at high rotor speeds, the frequency order of the inner oil whirl drops 
from 0.4X to nearly 0.2X at the maximum rotor speed. Its vibration response is a 
cylindrical mode; the journal amplitude moves the bearing ring towards, and is li-
mited in the limit cycle inside both bearing clearances. The rotor response at each 
rotor speed is resulted from superimposing the harmonic unbalance excitation on 
the subsynchronous vibration components induced by the inner and outer oil 
whirls. The rotor orbits at the stations S1, S2, and S3 are plotted in the phase plane 
2-3 at various rotor speeds, as shown in Figures 7.30 and 7.31, respectively. 
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Fig. 7.33 Computed Waterfall diagram at the station S1 
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The unbalance amplitude (1X) is relatively small compared to the asynchron-

ous amplitudes in the entire rotor speed range. In fact, the typical resonance due to 
unbalance does not exist in nonlinear rotordynamics (s. Fig. 7.33), but only the 
limit cycle of the rotor response occurs at each rotor speed. The reason is that the 
effective stiffness coefficient of the rotor depends not only on the stiffness coeffi-
cient of the rotor shaft itself but also on the bearing stiffness coefficient; the 
equivalent stiffness coefficient of the rotor is called the complex rotor dynamic 
stiffness coefficient. In turn, the bearing stiffness is dependent of the effective oil 
pressure, temperature, rotor speed, bearing ring speed, and journal eccentricity as 
well. At large rotor deflections, the journal eccentricity increases in the bearing 
clearance; the oil-film thickness reduces in the clearance. Therefore, the stiffness 
and damping coefficients of the bearing increase with the rotor deflection until the 
journal orbit stabilizes in the limit cycle at each rotor speed in the supercritical 
Hopf bifurcation. In this case, no typical resonance occurs in the entire rotor speed 
range, as shown in the Waterfall diagram (s. Fig. 7.33).             

In practice, one plots Waterfall diagram in a two-dimensional diagram (called 
modified Waterfall diagram), in which the amplitudes of the vibrations are dis-
played in the color (gray) scale in the frequency-order spectra, as shown in Fig. 
7.34. Instead of the whirl frequency ω, its frequency order ω/Ω is used in the mod-
ified Waterfall diagram, of which advantage is easier to analyze the frequency-
order spectra of the synchronous and asynchronous vibrations versus the rotor 
speed in the abscissa. The frequency jump of the inner oil whirl takes place where 
the conical vibration mode changes into the cylindrical mode.       
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Fig. 7.34 Computed modified Waterfall diagram at the station S1 

Figure 7.35 shows the comparison of Waterfall diagram between the computa-
tion and measurement. Compared to the measurement, the computed inner oil 
whirl takes place a little bit later at the relative rotor speed of about 30% (67,500 
rpm) instead of at nearly 27% (62,000 rpm) at measurement. The frequency order 
of the computed inner oil whirl (called inner OW) begins at a lower frequency or-
der of 0.4X compared to about 0.55X in the measurement and ends at the frequen-
cy order of 0.2X, nearly the same measurement results. 
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The reason for the low frequency order of the inner oil whirl is that the bearing 
ring speed in the measurement is higher than the ring speed in the computation. 
The unknown heat flow transferred from the bearing housing to the outer oil film 
of the bearing has not been taken into account in the computation. As a reason, 
compared to the computation, the outer oil film temperature increases in the mea-
surement; therefore, the ring speed ratio of the bearing is higher, leading to the 
higher frequency order of the inner oil whirl according to eq. (7.26). The frequen-
cy jump of the inner oil whirl occurs at a relative rotor speed of 30% (about 
65,000 rpm). Similarly, the computed frequency order of the outer oil whirl 
(called outer OW) is a little bit lower than the frequency order in the measurement 
due to the reduced bearing ring speed, especially at low rotor speeds. However, it 
is nearly the same frequency order of the measurement at high rotor speeds since 
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Fig. 7.35 Comparison of Waterfall diagrams at the station S1 
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the ring speed ratio of the bearing does not change much at the high-speed range, 
as shown in Fig. 6.28. 

Some unknown boundary conditions that could not be taken into account in the 
rotordynamic computation are: 

 

- Producing form tolerances;  
- Exact inner and outer bearing clearances due to surface non-roundness of the 

journal, bearing, bearing foundations; 
- Non-roundness of the journal and bearing surfaces; 
- Non-coaxiality of the bearing and bearing foundations;  
- Change of the bearing clearances during the operation;  
- Tribological surface roughness (Rz, Ra, Rpk, Rk, Rvk) of the bearing and journal; 
- Real oil temperatures at the bearing inlet at the compressor and turbine sides;   
- Fully or poorly lubricating oil conditions; 
- Bearing inlet and outlet geometries in the bearing housing; 
- Contaminated oil with particles;  
- Foamy oil due to air releasing and cavitation; 
- Angular position between the unbalance vectors of the compressor and turbine 

wheels.   

However, the rotordynamic computation gives us more deeply understanding how 
the rotor reacts at the given boundary conditions, so that the rotor response of the 
turbocharger can be improved; the development time is shortened. In practice, one 
uses both computations and measurements to predict, analyze, and validate the 
amplitudes and frequency spectra of the rotor response. In fact, they help to each 
other in development of turbochargers. Furthermore, one validates the lifetime of 
turbochargers (LCF < 105 cycles, HCF > 105 cycles) and wears in the bearings by 
the measurements because such effects have been not yet calculated by the rotor-
dynamic computation under the real operating conditions.                      

Although Campbell diagram is not valid in nonlinear rotordynamics, as dis-
cussed in Chapter 5, it is however useful to find the bending critical frequency of 
the rotor that is used in the trim balancing (Chapter 8). The Campbell diagram in 
Fig. 7.36 shows the eigenfrequencies (natural frequencies) of the forward and 
backward whirls of the free rotor vibration. In case of linear rotordynamics, the 
first bending mode of the forward whirl #10 happens at the critical speed Ωcr1 of 
approximately 147,000 rpm. The second bending resonance of the forward whirl 
#12 occurs outside the rotor speed range of 225,000 rpm. The first critical speed 
must be high enough to avoid the rotor instability during the operation. Note that 
the rotor should be designed, so that the first bending critical frequency is as high 
as possible in order to keep the rotor from oil whip induced by the self-excited vi-
bration in the bearing. The backward whirls #9 and #11 generally do not excite the 
rotor into resonance in case of a symmetric rotor. At unsymmetrical rotors and ex-
citation forces with alternately changing directions, the backward whirls could 
cause resonances at the intersections between the synchronous excitation line (1X) 
and the backward eigenfrequencies.    

In case of the rotating floating ring bearing, the journal moves relatively to the 
bearing ring at any rotor speed; i.e., the journal motion moves the bearing ring in  
 



7    Nonlinear Rotordynamics of Turbochargers 241
 

Ωcr1 = 147,000 rpm  

Fig. 7.36 Campbell diagram of the free rotor vibration  

the radial direction. In practice, it is very difficult to measure the relative displace-
ments between the journal and bearing ring during the rotation. Hence, the rotordy-
namic computation is a useful tool to compute the relative displacements and the 
current oil-film thickness in the rotating floating ring bearings at any rotor speed. 

Figure 7.37 displays the relative displacements between the journal and bear-
ing ring at various rotor speeds. At the beginning, the journal and bearing ring are 
nearly concentric to each other since the rotor mass is very small of nearly 150 g. 
If the relative displacement is positive, the journal moves closer to the bearing ring 
because the journal displacement is larger than the ring displacement. In other 
case, the journal moves away from the bearing ring. The current oil-film thickness 
is resulted from the bearing clearance and relative displacement. When the oil-film 
thickness is larger than the limit oil-film thickness, as given in Fig. 6.11, the lubri-
cation regime is fully hydrodynamic and outside the mixed and boundary lubrica-
tions; no or less wear occurs in the bearing.  

The computed results show the maximum relative displacement of is about 9 µm 
in the limit cycle for the entire rotor speed range. It indicates that the minimum oil-
film thickness in the inner bearing clearance is nearly 5 µm with the inner radial 
clearance of 14 µm. The minimum oil-film thickness of 5 µm in the bearing clear-
ance is larger than the limit oil-film thickness; hence, no wear occurs in the bearing.  

Therefore, the lubrication regime in the bearing is fully hydrodynamic for all 
working conditions. Due to the difference of temperature between two oil films at 
high rotor speeds, the bearing ring expands in the radial direction, leading to  
extending the inner bearing clearance and reducing the outer bearing clearance. As 
a reason, the minimum inner oil film thickness is larger than 5 µm in practice, 
leading to the larger contact circle. 

Figure 7.38 displays the bearing forces acting on the bearings at the stations S2 
and S3 of the rotor running with various rotor speeds. The bearing forces acting  
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Fig. 7.37 Computed relative displacements of the rotor and bearing ring at the stations S2 
and S3 

upon the rotor at the stations S2 and S3 keep the rotor in balance between the gy-
roscopic moments of the wheels, and the unbalance forces and moments of the 
displaced shaft, compressor and turbine wheels. The bearing force is mainly  
resulted from the unbalance of the compressor and turbine wheels and the shaft 
unbalance induced by its displacement due to oil whirls. 

The induced nonlinear bearing forces are resulted from two force components 
of the rotation and damping forces, as discussed in Section 6.5.2. The rotation 
force is generated by the rotor speed Ω; it also depends on the oil viscosity η, 
journal relative eccentricity ε, and the angular position γ. The journal velocities 

γε , cause the damping force that also depends on γεγεη ,,,, . At the low rotor 

speeds up to about 30% relative speed, the bearing force at the turbine side (S3) is 
quite larger than the bearing force at the compressor side (S2). At increasing the 
rotor speed, the bearing force at the turbine side S3 is however smaller than the 
bearing force at the compressor side S2. The journal amplitude at the turbine side 
S3 is higher than the journal amplitude at S2, as shown in Fig. 7.31, leading to the 
higher oil temperature induced in the inner oil film due to bearing friction, in turn 
the significant reduction of oil viscosity. It results to the lower bearing force at the 
turbine side S3 compared to the bearing force at the compressor side S2. In this 
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case, the influence of the oil viscosity on the bearing force is stronger than the 
other effects. At the small bearing force capability at the turbine side S3, its bear-
ing could be damaged by the large excitation force acting on it, in which the oil 
film thickness is in the mixed or boundary lubrication layer. 
 

135,000 rpm (60%)
S2 S3

225,000 rpm (100%)

S2

S3

67,500 rpm (30%)

S2 S3 S2 S3

90,000 rpm (40%)

 

Fig. 7.38 Computed bearing forces at the stations S2 (compressor) and S3 (turbine) 

The maximum bearing forces at each rotor speed are shown in Fig. 7.38. At the 
maximum rotor speed of 225,000 rpm, the peak amplitude of the bearing force at 
the station S2 (compressor) is about 20 N and approximately 10 N at the station 
S3 (turbine). To investigate further the induced bearing forces, their time signals at 
the stations S2 and S3 are analyzed in Waterfall diagrams by using DFT (Discrete 
Fourier Transform), as shown in Fig. 7.39. The bearing force consists of two force 
components with the different frequencies: the rotation force has the harmonic 
frequency (ω = 1X); the damping force, the subsynchronous frequency (ω < 1X). 
Obviously, the frequency order of the rotation force is synchronous with the rotor 
speed (1X) because it is proportional to the rotor speed. Similarly, the frequency 
order of the damping force is subsynchronous with the frequency of the inner oil 
whirl. The frequency order of the damping force begins with 0.4X at the relative 
rotor speed of 30% and continuously decreases to the frequency order of nearly 
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0.2X at the maximum rotor speed. Its frequency order is the same of the frequency 
order of the inner oil whirl, as displayed in Fig. 7.34. The color (gray) scale de-
notes their force amplitudes in the frequency curves. The resulting bearing force is 
superimposed by the rotation and damping forces with an irrational frequency ra-
tio; therefore, the force vibration is quasi-periodic. 
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Fig. 7.39 Computed Waterfall diagrams of the bearing forces at the stations S2 and S3   

To reduce the unwanted constant tone (subsynchronous noise) induced by the 
inner oil whirl, one possible measure can reduce the inner bearing clearance, as dis-
cussed in Section 7.7.2. In case of the large diametral bearing clearance of about 27 
µm, the inner oil whirl takes place with a high amplitude, leading to the obvious 
constant tone besides the unbalance whistle, as displayed in Fig. 7.40a. As having 
already known, by reducing the inner bearing clearance, the oil whirl amplitude  
decreases; hence, the constant tone is weakened. The computed result with the di-
ametral bearing clearance reduced by 25% to about 20 µm shows that the inner oil 
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whirl disappears nearly in the entire speed range. However, it only occurs with a 
very small amplitude from the relative rotor speed of 90% (s. Fig. 7.40b). On the 
contrary, the outer oil whirl does not induce any subsynchronous noise because its 
frequency is extremely low, so that the intensity of noise that is proportional to fre-
quency squared is negligible. As a reason, the outer oil whirl is inaudible although 
its deflection amplitude is larger due to the conical vibration mode.        
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Fig. 7.40 Computed Waterfall diagrams of the rotor responses at different bearing  
clearances 
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Chapter 8 

Rotor Balancing in Turbochargers  

8.1   Reasons for the Rotor Balancing 

In the following section, we focus only on the rotor balancing in turbochargers and 
not in the industrial turbomachines because we can find them in [1], [4], [6], and [10].    

Production process of the compressor wheel and turbine shaft causes an initial 
unbalance where the mass center does not lie in the geometrical axis of the com-
pressor wheel or turbine shaft. Excessively large unbalance force and moment in-
duce large amplitudes of the rotor response, leading to the bearing wear, rub con-
tact, and seizure of the journal and bearings and as well as the compressor, turbine 
wheels and their housings. Additionally, the rotor unbalance generates unbalance 
whistle that has the synchronous frequency order (1X) of the rotor frequency. The 
unbalance whistle is one of the undesirable airborne noises in the automotive tur-
bochargers. 

 There are two possibilities of producing the turbocharger rotor: either produc-
tion of the rotor without or with the rotor balancing. If we choose the first one 
without the rotor balancing, the production of the compressor wheel and turbine 
shaft must be highly precise, so that the mass-center eccentricity of the rotor is in 
the order of a few microns (∼10-6 m) from its geometric axis. It leads to large defi-
cient producing rates and therefore very high producing cost. Notice that produc-
ing cost is one of the most important competition key of products in the industry, 
and “cost, cost cut, and cost breakdown” always accompanies the products on 
their lifetimes. Therefore, the economical way is producing turbochargers with the 
rotor balancing, at which the production process is less precise. Despite the less 
precise production process, the rotor arrives at an acceptable residual unbalance 
after the balancing procedure that brings the mass center of the rotor possibly 
close to the rotational geometric axis.           

8.2   Kinds of Rotor Balancing 

There are two kinds of the rotor balancing in the automotive turbochargers:  

- Low-speed balancing (called shop balancing) is used in the rigid rotors at a low 
balancing speed up to 3,400 rpm, depending on the balancing machine types, to 
reduce the initial unbalance caused by the production process. Generally, the 
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whole rotor is not balanced at the shop balancing, but only the compressor wheel 
and turbine shaft are separately balanced at the rigid state with the low-speed ba-
lancing. Hence, it is also named single part balancing. The low-speed balancing 
is generally carried out with two balancing planes at the nose and back face of 
the wheel. The goal of this balancing is to reduce the unbalanced force and mo-
ment to minimize the induced unbalanced excitations and therefore to prevent 
the radial bearings from damages due to contact rub and seizure between the 
journal and bearings caused by the excessive rotor unbalances.  

- High-speed balancing (called trim balancing) is applied to the flexible rotors 
at a high balancing speed (generally above the first critical speed) at which the 
rotor deflects in the lateral direction due to large unbalance forces and mo-
ments. Besides the initial unbalance due to production, an additional unbalance 
is resulted from mounting the compressor wheel on turbine shaft and as well as 
the deformed rotor at high rotor speeds during the operation. Hence, it leads to 
the unbalanced whistle; therefore, the additional unbalance must be removed 
by the trim balancing. The high-speed balancing is carried out with two ba-
lancing planes at the screw-nut of the compressor wheel and the hub surface  
between the blades at the compressor wheel outlet. The purpose of the trim  
balancing is only to reduce the unbalance whistle during the operation at high 
rotor speeds, especially in passenger vehicles. Generally, one omits the trim 
balancing in the turbochargers of commercial vehicles and industrial applica-
tions unless the customers explicitly require.     

8.3   Two-Plane Low-Speed Balancing of a Rigid Rotor 

The production of the compressor wheel and turbine shaft induces the static, 
couple, and dynamic unbalances. The static unbalance occurs when the polar 
mass-inertia axis differs from the rotational axis by an eccentricity ε. On the con-
trary, the couple unbalance occurs when the polar mass-inertia axis differs from 
the rotational axis by an angle α; however, they intersect each other at the mass 
center G.  

G
ε

polar mass-inertia axis

rotational  axis

(a)

g
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rotational axis

α
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Fig. 8.1 (a) Static unbalance; (b) Couple unbalance 
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In the static unbalance, the mass center G always lies below the rotational axis due 
to the gravity at the equilibrium position (s. Fig. 8.1). That means the rotor com-
ponent moves from any beginning position to the equilibrium because of its 
weight. Hence, it has the name static unbalance; obviously, one recognizes that 
the rotor moves itself to the equilibrium position in the static unbalance. On the 
contrary, the rotor in the couple unbalance does not move itself to the equilibrium 
position because the mass center G is always in the rotational axis. It is only rec-
ognized in the rotating condition, in which the unbalanced moment acts upon the 
rotor although the static unbalance equals zero, as shown in Fig. 8.1b. 
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Fig. 8.2 Dynamic unbalance of the rotor 

The static unbalance is caused by the production mistakes, large eccentricity at 
welding the turbine wheel on the rotor shaft, non-homogeneous material, and resi-
dual unbalance after the shop balancing. Moreover, it is also induced by thermal 
deformations, wears, and plastic deformations that are generated by over-speeding 
the rotor, over-heating the turbine wheel, and the impact of hard particles in the 
mixed intake air in case of the low-pressure EGR on the compressor wheel after a 
long operating period. On the contrary, the couple unbalance is created by a large 
non-coaxiality at welding the turbine wheel on the rotor shaft, thermal, and plastic 
deformations of the rotor due to over-speeding or loose screw-nut of the compres-
sor wheel during the operation of turbochargers. In practice, we have both static 
and couple unbalances at producing the turbine shaft including the turbine wheel 
and rotor shaft, leading to the dynamic unbalance of the rotor.     

The dynamic unbalance is similar to the couple unbalance, but the mass center 
of the rotor does not lie in the rotation axis (s. Fig. 8.2). Therefore, the dynamic 
unbalance can be decomposed in the static and couple unbalances. In fact, the dy-
namic unbalance often occurs at manufacturing the turbine shaft by welding the 
turbine wheel on the rotor shaft. The eccentricity ε of the static unbalance and the 
non-coaxiality with an angle α of the couple unbalance are combined together, 
leading to the dynamic unbalance, as displayed in Fig. 8.2. The unbalance of the 
turbine shaft is the largest part of the entire rotor unbalance at the production; it 
contains the initial unbalance of the turbine wheel itself and the eccentricity and 
non-coaxiality between the shaft and turbine wheel.   

Having considered the rotor with an unbalanced mass mu at a radius ru, as 
shown in Fig. 8.3, the static unbalance of the rotor results in  
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uu rmU =                                                       (8.1) 

Due to the unbalanced mass mu, the new mass center G of the rotor is located at 
the unbalance radius ε. The rotor unbalance is written in  

ε)( ummU +=                                                (8.2) 

By substituting of Eqs (8.1) and (8.2), one calculates the unbalance radius at mu << m. 
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Fig. 8.3 Unbalanced radius ε of the unbalanced rotor component 

Figure 8.4 shows an unbalanced compressor wheel with the unbalanced vector 
Uε that is balanced at the nose face (plane 1) and back face (plane 2) of the wheel. 
Hence, the unbalanced vector Uε is balanced by two balanced vectors U1 and U2 at 
the balancing planes 1 and 2, respectively. Generally, the balance vectors are in-
duced by removing masses of material m1 and m2 at the given radii of r1 and r2 in 
the opposite direction of the balance vectors U1 and U2, respectively. The unba-
lanced vector Uε is called the initial unbalance of the compressor wheel. 

The balance masses of m1 and m2 are computed from the equations of the unba-
lanced vectors and moments. 
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By giving the balancing radii of r1 and r2 at the balancing planes, the removed 
masses m1 and m2 in the opposite directions of the balanced vectors U1 and U2 of 
the compressor wheel are computed according to Eq. (8.5). The balancing proce-
dure is carried out at the low balancing speed up to 3,400 rpm, depending on the 
balancing machine types.    

To balance the compressor wheel, a well-balanced master shaft is needed to 
mount the compressor wheel on it. The compressor wheel unit including the mas-
ter shaft and compressor wheel is rotated on the air bearings in the balancing ma-
chine. Despite using the master shaft, it has however a small static unbalance that 
can be eliminated by calibrating. To calibrate the master shaft at the first time of 
balancing a compressor wheel, we mount it on the shaft and move the compressor 
wheel at three marked angular positions θ of 0°, 120°, and 240°, as shown in Fig. 
8.5. The unbalanced vector Ti

 
of the compressor wheel unit has been successively 

measured by three times; each time at the given angular position θi.  
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Fig. 8.4 Two-plane low-speed balancing of the compressor wheel 

At θ1 = 0° the measured unbalance vector can be written in 

εUST +=1                                                  (8.6) 

where 

S  is the unbalance vector of the master shaft; 

εU
 
is the initial unbalance vector of the compressor wheel. 

By the two other angular positions, the initial unbalanced amplitudes are un-
changed, but their vector directions changes at the positions 120° and 240°. There-

fore, the vector S determines the unbalance vector of the master shaft where S is 
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the center of the equilateral triangular. The initial unbalance of the master shaft is 
stored in the balancing machine for further balancing the compressor wheels.  

Thus, the initial unbalance vector of the compressor wheel results in     

STU −= 1ε                                                     (8.7) 
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Fig. 8.5 Calibrating the master shaft for the compressor wheel 

The static unbalance Uε causes the unbalance force Fu acting on the compressor 
wheel. 

22 Ω=Ω= εε UmFu
                                        (8.8) 

where Ω is the rotor speed. 
The initial unbalance of the turbine shaft normally contains two main parts: the 

dynamic unbalance due to welding the turbine wheel to the shaft; and the unbal-
ance of the turbine wheel itself due to casting. Figure 8.6 displays the turbine shaft 
with the dynamic unbalance caused by the eccentricity ε and misalignment angle 
α between the shaft and turbine wheel. The dynamic unbalance induces the mo-
ment unbalance Um and unbalance moment Mu acting on the turbine shaft, as de-
rived in Eqs (5.49) and (5.50). 

The moment unbalance vector is perpendicular to the drawing plane. 

kIIU ptm  )( α−=                                            (8.9) 

where  
Um is the moment unbalance (g.mm²), different to the static unbalance Uε (g.mm); 
It, Ip are the transverse and polar mass-inertia moments (kg.mm²), respectively. 
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Similar to the static unbalance, the moment unbalance Um generates the unbalance 
moment Mu acting on the rotor in the dynamic unbalance. The unbalance moment 
is written according to Eq. (5.49).   

kIIUM ptmu
22  )( Ω−=Ω= α                                 (8.10) 

where Mu is the unbalance moment (Nm).  

The unbalance force uF and unbalance moment uM
 
are the external excitation 

sources acting on the rotor in the vibration equations of the rotor, as given in Eqs 
(5.52) and (5.53). 
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Fig. 8.6 Dynamic unbalance of the turbine runner 

The turbine shaft is balanced with the low balancing speed up to about 3,400 
rpm at the nose and back faces. At first, its unbalance is determined by the mea-
suring Schenck machine supported on the air bearings (s. Fig. 8.7). Then, the tur-
bine shaft is balanced in the balancing machine by removing material at the nose 
and back faces in the opposite directions of the balance vectors.  

The balance vectors are resulted from the equations of the unbalance vectors 
and unbalance moments at the initial condition, as shown in Fig. 8.8. 
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The balance vectors at the nose and back faces are calculated from Eq. (8.11). 
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Fig. 8.7 Unbalance measurement in a Schenck machine (Courtesy BMTS) 
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Fig. 8.8 Low-speed balancing at two planes in the dynamic unbalance 
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Similar to the compressor wheel, by the giving balancing radii r1 and r2 in the 
balancing planes, the removed masses m1 and m2 in the opposite directions of U1 
and U2 of the turbine wheel are determined by Eq. (8.12). Notice that the misa-
lignment angle α remains after the low-speed balancing in the dynamic unbalance. 
A large misalignment angle induces the rotor response with a superharmonic fre-
quency order of 2X in the Waterfall diagram, as shown in Fig. 7.18.  

Theoretically, the unbalances would be fully eliminated if the removed masses 
were exactly removed at the given balancing radii. In practice, the removed masse 
has a mass tolerance of ±Δm and the removed masse scatters around the given  
balancing position in the circumferential and radial directions. Therefore, it always 
remains the small residual unbalances U1,r and U2,r at the balancing planes, as 
shown in Fig. 8.9. However, the residual unbalance at the balancing planes must 
be less than the permissible unbalance Ulim according to the ANSI Standard for 
Balance Quality of Rotating Rigid Body, ANSI S2.19-1975 or DIN-ISO 1940-1. 
The balancing quality grade of the automotive turbochargers of passenger and 
commercial vehicles is chosen between G40 and G100 of the DIN-ISO 1940-1, 
which gives the permissible residual unbalance.  

The reason for the high G level is on the one hand the very high rotor speed of 
the automotive turbochargers; on the other hand, the possible balance radius elim. 
Having chosen the balancing quality grade of G100 for a small turbocharger of 
passenger vehicles, one obtains  

smme /  100lim =Ω  

where 
elim is the acceptable balance radius (mm); 
Ω is the maximum rotor speed (rad/s). 

At the maximum rotor speed of Nmax = 280,000 rpm (Ω ≈ 29,320 rad/s), the  
acceptable balance radius is calculated at G100. 

mmx
srad

smm
e 3

lim 104.3
/ 320,29

/ 100 −≈=  

If we use a lower G level for high rotor speeds, the balancing radius becomes  
much smaller and is impossible for the rotor balancing. Therefore, the balancing 
quality grade G40 is used in the turbochargers of commercial vehicles in which 
their rotor speeds are not too high due to the large wheels.  

With the rotor mass m ≈ 120 g, the permissible residual unbalance at G100  
for small turbochargers results in 

mmgmmxgmeU . 4.0)104.3).( 120( 3
limlim ≈== −
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Thus, the residual unbalance for the compressor wheel and shaft runner should be 
smaller than one-half of the permissible residual unbalance of the rotor. 

2
 , limU
UU TRCW ≤                                            (8.13) 

The results of Fig. 8.9 show that the directions of the residual unbalanced vectors 
after the low-speed balancing differ from the balance vectors 

1U  and 
2U  because 

the removed masses scatter around the given balancing points in the circumferen-
tial and radial directions. Hence, the residual unbalanced vectors at the mass cen-
ters of the compressor wheel (CW) and turbine shaft (TS) are resulted in 
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Fig. 8.9 Residual unbalance vectors U1,r and U2,r at the balancing planes 

By assembling the compressor wheel in the turbine shaft, the residual unba-
lanced vectors UCW and UTR are set in fact by an arbitrary angle θ between 0° and 
180° (s. Fig. 8.10a). If the residual unbalance vectors have the same direction (θ = 
0°), the rotor is called the in-phase couple unbalance. At θ = 180°, the residual un-
balance vectors are opposite to each other, the rotor unbalance is called the out-of-
phase couple unbalance, as shown in Fig. 8.10b. 
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Fig. 8.10a Residual unbalance vectors in the compressor wheel and turbine shaft 
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Fig. 8.10b In-phase and out-of-phase couple unbalances 

8.4   Two-Plane High-Speed Balancing of a Flexible Rotor 

Assembling the compressor wheel in the turbine shaft causes the additional static 
and dynamic unbalances. Due to acoustics (unbalance whistle) induced by the ad-
ditional unbalance, the rotor must be balanced at the high balancing speeds (trim 
balancing). Moreover, the rotor is flexible at the high-speed working conditions 
that induce unbalance and therefore unbalance whistle. For this reason, the rotor 
should be balanced at the high speeds with two balancing planes in the screw-nut 
of the compressor wheel (balancing plane 1*) and the hub surface between the 
blades at the compressor wheel outlet (balancing plane 2*), as displayed in Fig. 
8.11.  
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To accelerate the rotor up to 200,000 rpm, we use a nozzle ring supplied by a 
high air pressure of about 3 bar absolute; the nozzle ring is set at the inlet of the 
turbine wheel. The pressure energy of the pressurized air is transformed in the ki-
netic energy with the sonic speed of air (Mach number M = 1) at the nozzle ring 
that speeds up the turbine wheel.  

There are two common methods of the two-plane high-speed balancing (called 
trim balancing): Modal Balancing theory (MB) and Influence Coefficient Method 
Balancing (ICM). 

8.4.1   Modal Balancing Theory  

The modal balancing based on the bending modes of the flexible rotor at high 
speeds was developed between 1959 and 1967 by many pioneers, such as Bishop, 
Parkinson, Gladwell, Kennedy-Pancu, Lindley, and Rieger in [7] and [8]. Due to 
unbalance, the flexible rotor deflects at the amplitude y(z) at the axial position z, 
as shown in Fig. 8.11.       

The rotor deflection shape is described by the series of the modal deflection 
Yi(z) according to Rieger [8].  

)(...)()()( 11
1

zYzYzYzy nni

n

i
i φφφ ++== ∑

∞=

=

                   (8.15) 

where 
φi

 
is the deflection coefficient of the vibration mode i; 

Yi is the modal deflection of the rotor of the vibration mode i. 
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Fig. 8.11 Two-plane modal balancing of a flexible rotor 

Similarly, the mass eccentricity of the rotor is written in the series of Yi(z). 
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The induced rotor unbalance at the axial position z is written in the series of Yi(z).   
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where λi is the unbalance coefficient of the vibration mode i at the position z. 

The virtual kinetic work done by the rotor deflection is calculated 
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where 

ii zYy δφδ )(=  is the virtual displacement of the rotor; 

m(z) is the mass distribution of the rotor at the axial position z; 
Ω is the balancing speed of the rotor. 

By using the orthogonality of the vibration modes, one obtains the relation of 
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By substituting Eqs (8.15), (8.16), (8.18), (8.19a), and (8.19b), the virtual kinetic 
work of the vibration mode i becomes 

( ) iiiikinetic eMW δφφδ 2 Ω+=                                (8.21) 

The virtual potential work of the vibration mode i of the rotor is computed. 
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where the potential energy V is calculated by using Eqs (8.20a) and (8.20b) 
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Thus, 
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According to the principle of virtual work at the equilibrium (δW= 0), one obtains 
the total virtual work of the rotor from Eqs (8.21) and (8.24). 
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Thus,  

The coefficients of the deflection and mass eccentricity of the rotor are given in    
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where 

ηi is the speed ratio of the vibration mode i;                                     
Ω is the balancing speed. 
 
The unbalance coefficient λi is resulted by using the orthogonality of Y(z), as giv-
en in Eq. (8.19a). 
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By rotor balancing, one creates the balance vector p at z = c by the load q in the 

small length ξ in the opposite direction of the unbalance vector )(zU .  
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Therefore, 

ii λα −=                                                 (8.30) 

The balance correction vector p(z) at the position z results in 

)().()(.)( zezmzUqzp −=−== ξ                            (8.31) 

At the modal balance in the vibration mode i, the following characteristics that are 
necessary to be known in advance are the mass distribution of the rotor m(z), 
modal deflection amplitude Yi(z), measured mode shape of the rotor y(z), rotor  
eigenfrequency ωi of the vibration mode i, and critical frequencies of the rotor as 
well. Therefore, the coefficient φi of the rotor deflection is calculated from y(z) 
and Yi(z) in Eq. (8.15) and the mass eccentricity coefficient ei is resulted from φi 
in Eq. (8.26). Then, the mass eccentricity of the rotor e(z) is computed from ei and 
Yi(z) in Eq. (8.16).  

By using Eq. (8.31), the balancing length ξ at the position z is determined at a 
given removed load q < 0 in the same direction of the unbalance vector )(zU , so 

that the balance vector is opposite to the unbalance vector.  
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The main disadvantage of the modal balancing is the necessity of knowing many 
unknown or not-easily-known characteristics of the rotor, such as m(z), Yi(z), 
y(z), and ωi, as discussed earlier. Furthermore, the additional disadvantage is that 
the balancing correction vector depends on the balancing speed Ω, as shown in 
Eqs (8.26) and (8.27). In fact, the automotive turbochargers operate in the wide ro-
tor speed range, not just at the constant speed in the normally working condition, 
such as turbomachines using in the power plants and chemical industries. Hence, 
the modal balancing of the flexible rotors is not suitable for the applications to  
automotive turbochargers. On the contrary, the Influence Coefficient Method  
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balancing can provide an easy-to-use, efficient, and well-done balancing proce-
dure of the turbochargers.      

8.4.2   Influence Coefficient Method 

The Influence Coefficient Method (ICM) has been developed by Goodman, Rieg-
er, Lund and Tonnesen, Tessarzik, Badgley, and Anderson, etc. since 1961 [8]. 
The application of the ICM balancing in turbochargers is normally carried out at 
two balancing planes in the screw-nut of the compressor wheel (plane 1*) and the 
hub surface between the blades at the compressor wheel outlet (plane 2*), as indi-
cated in Fig. 8.13. 

Based on the complex transfer impedance Z of the balancing system, i.e. the in-
version of the complex dynamic stiffness coefficient KS of the system, including 
the turbocharger rotor and less influent balancing machine, the unbalance response 
at the trim balancing is resulted from the complex transfer impedance and unbal-
ance excitation force, as displayed in Fig. 8.12.  

The measured unbalance responses could be the acceleration or vibration veloc-
ity of the rotor in the measuring planes. Theoretically, the measuring planes 
should be the same places of the balancing planes in the compressor wheel, which 
rotates however with the high rotor speeds. As a reason, it is time and cost inten-
sive at the trim balancing in the production to measure the rotor unbalance  
responses in the rotating balancing planes. Hence, in practice, they are computed 
from the measured rotor responses in the certain non-rotating position in the  
bearing housing or the compressor and turbine casings at the trim balancing in the 
production.  
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Fig. 8.12 Unbalance response of the balancing system 

Figure 8.13 shows two balancing planes 1* and 2* in the compressor wheel 
used in the ICM balancing. The reason of the rotor balancing in the compressor 
wheel (CW) rather than in the turbine wheel (TW) is the high temperature of ex-
haust gas in the turbine, nearly 820°C to 870°C in diesel engines and even 950°C 
to 1050°C in gasoline engines.    
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Fig. 8.13 Two-plane ICM balancing of a flexible rotor 

The measured response vectors of acceleration a1 and a2 at the planes 1* and 
2*, respectively are resulted from the unbalance vector Fu and the complex trans-
fer impedance Z, which is inversely related to the complex dynamic stiffness KS, 
as shown in Fig. 8.12 [4].  
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where  
αij are the influence coefficients with the index i for the balancing plane i, and j 
for the excitation force at the plane j.  

Thus, the acceleration vectors a1 and a2 are resulted from the unbalance forces 
F1 and F2 in the balancing planes 1* and 2*. 
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The complex dynamic stiffness coefficient matrix of the balancing system contain-
ing the unbalanced rotor and balancing machine is nearly unchanged at the cali-
bration with the masses m1,c and m2,c.  
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To calibrate the rotor, two given masses m1,c and m2,c are setup at the given posi-
tions (r1,θ1) and (r2,θ2) in the inlet and outlet of the compressor wheel (CW). They 
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correspond to the calibration unbalances U1,c and U2,c, respectively. At first, the 
first given mass m1,c is added in the position (r1,θ1) at the CW inlet.  

The response vectors with the first calibration mass results in    
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From Eq. (8.35a), one gets the relation between the unbalance vectors F1 and F1,c. 
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where aij is the response vector at the balancing plane i with the calibration unbal-
ance force Fj,c. 

After removing the first calibration mass, the second calibration mass m2,c is 
added in the position (r2,θ2). Similarly, the rotor response with the second calibra-
tion mass corresponding to the unbalance force F2,c becomes  
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Therefore, 
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By subtracting Eqs (8.35b) and (8.36b) from Eq. (8.33b), one obtains 
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The response vectors in the balancing planes 1* and 2* are demonstrated in the 
polar plots (r,θ) of Fig. 8.14. The balance vectors U1,b and U2,b in the balancing 
planes 1* and 2* are equal and opposite to the unbalance vectors U1 and U2, re-
spectively (s. Fig. 8.13). 
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Equations (8.33a) and (8.34) give the relation between the excitation forces and 
rotor responses. 
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where KS is calculated from Eq. (8.37) 
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Substituting Eqs (8.38), (8.39), and (8.40), the balance vector Ub results in 
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By using the calibrating unbalance vectors of U1,c and U2,c, one obtains the balance 
vector resulted from the rotor responses and calibrating unbalances.  
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Note that the balance vector Ub given in Eq. (8.42) is independent of the balancing 
speed. Hence, the balance vectors in the balancing planes 1* and 2* given in Eq. 
(8.42) are determined in the wide range of the balancing speeds up to 200,000 
rpm. The ICM balancing procedures are so long repeated that the delivery accele-
ration response is below the delivery acceleration levels of aI*, aII*¸ and aIII* that 
are normally smaller than the limit acceleration levels of aI, aII¸ and aIII. The limit 
acceleration levels are directly determined in the car, so that the unbalance whistle 
and constant tone are inaudible in all operating speed ranges of the turbocharger. 
They are divided into many speed ranges of the balancing speeds N(rpm), as illu-
strated in Fig. 8.15.    
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Fig. 8.14 Calibration response vectors in the balancing planes 1* and 2* 
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After a long operating period, the unbalance change of the rotor takes place due to 
the thermal and plastic deformations of the wheels. It mostly increases to nearly 
twice the delivery acceleration responses at the trim balancing according to expe-
rience. The one-third goes to the turbine runner due to heat-related plastic  
deformation, and the left two-third goes to the compressor wheel. This unbalance 
change of the compressor wheel is generally created by the inappropriate new  
positions of eccentricity, misalignment, unbalance change caused by the plastic 
deformation, loose screw-nut, and therefore slipping of the compressor wheel on 
the rotor shaft in the radial direction. As a reason, the delivery acceleration levels 
at the trim balancing must be at least reduced by nearly one-half of the limit acce-
leration levels where the unbalance whistle is inaudible in the car.      
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Fig. 8.15 Limit and delivery acceleration levels in the ICM balancing 

By twice timely differentiating the rotor amplitude, one obtains the acceleration 
amplitude measured at the trim balancing.  

)()()( 22 txNtxtxa ∝Ω==                          (8.43) 

Note that the measured acceleration amplitude is proportional not only to the rotor 
amplitude but also to the rotor speed squared according to eq. (8.43). Therefore, it 
displays not exactly the resonance behavior of the rotor of the turbocharger; the 
acceleration behavior is strongly affected by the rotor speed squared N2, as shown 
in Fig. 8.15. As discussed in the earlier chapter, the typical resonance due to un-
balance does not exist in nonlinear rotordynamics, but only the limit cycle of the 
rotor response occurs at each rotor speed. The unbalance amplitude (1X) is rela-
tively small compared to the asynchronous amplitudes in the entire rotor speed 
range (s. Fig. 7.33).  

According to eq. (8.43), the acceleration amplitude at high rotor speeds (N be-
tween NII and Nmax) could be higher than the acceleration amplitude at the quasi-
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resonance (Nres between NI and NII) although its rotor amplitude is smaller than 
the other one. Therefore, the failure of the radial bearings at the trim balancing 
happens at the first quasi-resonance instead of at the maximum acceleration ampli-
tude at the higher rotor speeds.      

Figure 8.15 and Table 8.1 give the delivery and limit acceleration levels for the 
rotor acceleration responses at the trim balancing [5].  

Table 8.1 Delivery and limit acceleration levels in the balancing speed ranges 

Balancing speed range
N (rpm)

Delivery acceleration levels 
a* (m/s²)

Limit acceleration levels 
a (m/s²)

0 < N < NI aI* < aI aI

NI ≤ N < NII aII* < aII aII

NII ≤ N < Nmax aIII* < aIII aIII

 

The unbalance-change ratio between the delivery and limit acceleration res-
ponses must be statistically determined by testing many turbochargers in a long op-
erating period. If the ratio is chosen too large, many balancing steps are required at 
the trim balancing, leading to much time needed for the balancing process; there-
fore, more costs for wear of the cutting tools and low production performance. Oth-
erwise, the unbalance whistle is audible after a long operating period due to the  
unbalance change if one selects the unbalance-change ratio too small.     

8.4.3   Comparison between the Modal Balancing and ICM 

The modal balancing is valid not only for rigid but also flexible rotors. However, 
the following characteristics that are necessary to be known in advance are, such 
as the mass distribution m(z), modal deflection amplitude Yi(z), vibration mode 
shape y(z), rotor eigenfrequency ωi, and critical frequencies Ωcr. Moreover, the 
modal balancing is dependent of the balancing speed. In practice, it is very diffi-
cult to determine or know them in advance. The necessary balancing planes are at 
least the number of rotor vibration modes plus 1; i.e., three necessary balancing 
planes for the rotor that has two vibration modes. However, the turbocharger has 
only two possible balancing planes in the compressor wheel. As a reason, the 
modal balancing method is not practical and useable for applications to the high-
speed balancing of the automotive turbochargers.  

By using the Influence Coefficient Method (ICM), the response accelerations 
are measured over the large range of high balancing speeds. The removed masses 
at the given radii in the balancing planes 1* and 2* are computed without condi-
tion of knowing many necessary parameters of the rotor characteristics in the 
modal balancing. Furthermore, the ICM balancing is independent of the balancing 
speed; therefore, it is suitable for balancing over the large balancing speed range.  
However, it is needed to find a suitable position in the balancing machine or in the 
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turbocharger to high-speed balance the flexible rotor by means of the measured re-
sponse accelerations. Nevertheless, the ICM balancing is the state-of-the-art me-
thod of the trim balancing that is usually applied to the automotive turbochargers 
rather than the modal balancing.             
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Chapter 9 

Applied Tribology in the Oil-Film Bearings 

9.1   Introduction 

Tribology is derived from the Greek word tribos, which means rubbing. It deals 
with the tribological phenomena, such as lubrication, friction, and wears in the 
moving parts. It becomes more and more important in the turbochargers in terms 
of synthetic lubricating oils, friction reduction, adhesion and abrasion friction, and 
wear protection of the oil-film bearings including radial and thrust bearings.  

9.2   Characteristics of Lubricating Oils 

Lubricating oils are based on mineral and synthetic oils. Mineral oils are produced 
by refining crude oil containing long hydrocarbon chains of paraffin, and aromatic 
hydrocarbon rings. On the contrary, synthetic oils are manufactured by polymeriz-
ing olefin ethylene gained from cracking of petroleum to produce poly-alpha-
olefins (PAOs) that have similar chemical properties as paraffinic oils (mineral 
oils), but they could be used in the extreme conditions of high thermal and me-
chanical loads. There are two true synthetic oils, esters (chemical compounds like 
alcohols or phenols) and poly-alpha-olefins. Synthetic oils used in automotive en-
gines have been resulted by combining PAOs with about 15% of a synthetic ester 
[7]. Some high-end synthetic engine oils are sold under commercial names, such 
as Castro Edge, Castro Magnatec (Castro), Mobil 1-5W30, SHC 824, and SHC 
629 (ExxonMobil).   

Lubricant oils are classified into SAE viscosity grades (Society of Automotive 
Engineers) for automotive applications and ISO grades (International Organization 
for Standardization) for industrial applications. The ISO viscosity grades (VG) are 
based on the average kinematic viscosity in Centistokes (cSt) at oil temperature of 
40°C.        

The kinematic oil viscosity is defined as the ratio of the dynamic viscosity to its 
density. 

 
ρ
ην =                                                        (9.1) 
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where 
ν is the kinematic viscosity [units: m²/s; mm²/s; 1 cSt (Centistokes) = 1 mm²/s]; 
η is the dynamic viscosity [units: N.s/m²; Pa.s; 1 cP (Centipoise) = 1 mPa.s]; 
ρ is the oil density, nearly unchanged in the working range of temperatures. 

The SAE grade has a general form SAE xWy (e.g. SAE 5W30) where xW stands 
for the oil viscosity grade of SAE xW (i.e. SAE 5W, W for Winter) at -18°C (0°F) 
for low temperature applications. The index y relates to the oil viscosity grade 
SAE y (i.e. SAE 30) at about 100°C (212°F) for high temperature applications.  

Table 9.1 gives the equivalent lubricant oils between the ISO VG (Viscosity 
Grade) and SAE specifications, and their HTHS viscosities according to SAE 
J300. The lubricant oil of SAE 5W30 corresponds to ISO VG 22 for SAE 5W in 
low temperatures and ISO VG 100 for SAE 30 in high temperatures with an 
HTHS viscosity of 2.9 mPa.s at 150°C and oil share rate of 106 s-1.   

Table 9.1 Viscosity grades and HTHS viscosities of lubricating oils of the ISO and SAE 
specifications (SAE J300) 

ISO VG Grade SAE Grade
HTHS Viscosity

(mPa.s)

- 0W -

22 5W -

32 10W -

46 15W -

68 20W/20 2.6

100 30 2.9

150 40 2.9*/3.7**

220 50 3.7

320 60 3.7

* 0W40; 5W40; 10W40: ** 15W40; 20W40; 25W40
 

 
In fact, the oil viscosity changes almost with temperature at small or moderate 

oil shear rate. Generally, the higher the oil temperature, the lower the oil viscosity. 
The oil dynamic viscosity versus temperature is calculated by the Cameron and 
Vogel equation, as given in Eq. (6.44). Figure 9.1 gives the dynamic viscosities 
depending on oil temperatures for some common automotive engine oils.          
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Fig. 9.1 Computed dynamic viscosity of lubricating oils versus temperature 

The related coefficients in the Cameron and Vogel equation of some common 
automotive engine oils are given in Table 9.2. According to this equation, they are 
computed from three points of the oil grade and used further to calculate the  
dynamic viscosities η (Pa.s) versus temperature T (K). These oil viscosities  
are often used at each iteration step in the bearing dynamics and rotordynamic 
computation.  

Table 9.2 Related coefficients in the Cameron and Vogel equation 

ISO VG
Grade

Dyn. viscosity 

a (Pa.s) b (K) c (K)

22 12.312e-5 6.181e+2 1.906e+2

32 9.618e-5 7.391e+2 1.883e+2

46 11.387e-5 7.014e+2 1.930e+2

68 8.396e-5 8.520e+2 1.835e+2

100 7.547e-5 9.081e+2 1.844e+2

150 5.399e-5 10.747e+2 1.758e+2
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9.3   HTHS Viscosity of Lubricating Oils 

HTHS viscosity (high temperature high shear) is defined as the effective oil dy-
namic viscosity (mostly in mPa.s) in the working condition at high temperature of 
150°C and large shear rate of 106 s-1.  

The shear rate γ is the velocity gradient of the oil film that is defined as the 

change rate of the oil velocity to oil-film thickness, as shown in Fig. 9.2.   

 
h

U

∂
∂≡γ                                                     (9.2) 

Figure 9.2 shows the velocity profile of the oil film in the bearing clearance of a 
fixed radial bearing with the journal velocity U0. The shear stress of the oil film at 
the journal is defined as a function of the shear rate. 

      ( ) ( )γγγηητ f
h

U

A

F

S

f
S ≡=

∂
∂==                            (9.3) 

where  
τS is the shear stress of the oil film acting on the journal; 
Ff is the friction force acting on the journal; 
AS is the oil lubricated surface of the journal.     
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Fig. 9.2 Oil velocity profile and shear rate of the oil film 

In case of a Newtonian fluid, such as single-grade oils (base oils) the dynamic vis-
cosity depends only on the fluid temperature and not on the shear rate, as shown in 
Fig. 9.3a. Hence, the shear stress is linear to the oil shear rate (s. Fig. 9.4).  

γητηη =→=    )(T                                          (9.4)  
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In fact, multi-grade lubricant oils are generally non-Newtonian fluids because  
of long hydrocarbon chains and aromatic rings. As a result, the oil dynamic  
viscosity depends on not only the oil temperature but also on the oil shear rate  
(s. Fig. 9.3b). Hence, the shear stress is nonlinear to the oil shear rate, as shown in 
Fig. 9.4. 

γγητγηη )(  ),( =→= T                                        (9.5) 
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Fig. 9.3 Viscosity behavior of lubricating oils versus shear rate 

Figure 9.3 shows the dynamic viscosity of a Newtonian fluid is constant with 
the shear rate at a constant temperature; it reduces only with oil temperatures. On 
the contrary, the oil viscosity (mostly non-Newtonian fluids) is nearly constant as 
long as the shear rate is below the critical shear rate of 104 s-1 and strongly de-
creases with the oil shear rate up to 106 s-1. From this shear rate, the oil viscosity 
remains unchanged at the lowest viscosity that one defines as the HTHS viscosity 
at the oil temperature of 150°C. Generally, the oil shear rate in the bearing of au-
tomotive turbochargers is very large due to their high rotor speeds in the small 
bearing clearances.  

In the following section, a calculating example of the oil shear rate in the radial 
bearing of a typical turbocharger with a shaft diameter  D = 7 mm supported on 
two rotating floating ring bearings (RFRBs) with a radial bearing clearance h = 10 
µm is demonstrated.               

According to Eq. (9.2), the shear rate of the oil film results in 

h
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 )1( 0 πγ −=−=≈
∂
∂≡             (9.6) 

where 
Ueff  is the effective oil velocity in the RFRBs (m/s); 
RSR is the ring speed ratio (-), as given in Eq. (6.91a); 
D is the shaft diameter (m); 
N is the rotor speed (rpm); 
h is the bearing clearance (m).  
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According to Eq. (9.6), the oil shear rate is approximately 1.1x106 s-1 at the rotor 
speed from 40,000 rpm with a ring speed ratio of 25%. Additionally, the effective 
oil temperature in the bearing clearance is mostly at 150°C or higher at high rotor 
speeds. Therefore, the oil viscosity almost in the working conditions of turbo-
chargers is the HTHS viscosity, as displayed in Fig. 9.3b.          
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Fig. 9.4 Shear stress vs. shear rate of lubricating oils  

Obviously, Fig. 9.4 indicates that the shear stress gradient η (i.e., oil dynamic vis-
cosity) reduces with the shear rate in case of the non-Newtonian oils;  it is constant in 
the Newtonian fluids. Hence, the lower the HTHS of the lubricating oil, the less the 
friction power generated in the engine and in the turbocharger as well, leading to the 
lesser fuel consumption and the higher fuel mileage MPG (miles per gallon).  

Lubricating oils are generally divided into two HTHS levels: low HTHS viscos-
ity with ηHTHS < 3.5 mPa.s and high HTHS viscosity with ηHTHS ≥ 3.5 mPa.s, as 
given in Table 9.1. The low HTHS oils with the HTHS viscosity between 2.9 
mPa.s and 3.5 mPa.s enable less friction in the engine (i.e., higher mileage MPG, 
lower NOx, CO2 emissions), but more wears could occur in the moving parts, such 
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as cylinders and pistons of the engine, bearings in the turbochargers, etc.. Howev-
er, the lifetime of the engine becomes shorter due to wears. On the contrary, the 
high HTHS oils with the HTHS viscosity larger than 3.5 mPa.s cause more fric-
tion power in the engine (i.e., lower mileage MPG, higher NOx, CO2 emissions), 
but the moving parts are protected from wears. As a reason, the long lifetime is 
warranted for the engine even at high thermal and mechanical working conditions. 
Therefore, the automotive industry must take the compromise between the low 
HTHS for high mileage MPG and low NOx, CO2 emissions and the high HTHS 
for the wear protection and the long lifetime of the engines to find out which 
HTHS value is appropriate for the engines. Recently, in order to reduce NOx, CO2 
emissions according to the new emission law, some car manufacturers have been 
thinking of using an ultra-low HTHS oil of 2.6 mPa.s, such as lubricating oil SAE 
0W20. To overcome the problem of wears, the materials of moving parts must be 
improved, such as coatings or new endurable materials. As a reason, the car costs 
a little bit more; eventually, customers have to pay the price increase for the envi-
ronment protection; in turn, they could spare the fuel consumption.   

At high HTHS working conditions, the effective HTHS oil viscosity reduces; 
therefore, the bearing stiffness and damping coefficients decrease. To keep the ro-
tor in balance of forces, the induced pressure in the bearing clearance has to in-
crease by reducing the oil-film thickness itself. Hence, the journal eccentricity ε 
increases in order to enlarge the bearing stiffness and damping coefficients. If the 
oil-film thickness is below the limit oil-film thickness, as given in Fig. 6.11, the 
mixed or boundary lubrication takes place in the bearing clearance. Note that the 
more the bearing friction, the smaller the oil film thickness becomes due to high 
oil temperature. Finally, the oil film ruptures in the radial direction because the 
boundary contact occurs between the journal and bearing (s. Fig. 9.5), leading to 
the seizure of the journal in the bearing. Hence, the HTHS viscosity has nothing to 
do with the shear instability of the oil film that causes the oil-film rupture in the 
tangential direction.  

F

oil film oil film rupture

Ω
ε

bearing
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Fig. 9.5 Oil-film rupture in the bearing clearance 
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9.4   Viscosity Index of Lubricating Oils 

To prevent wears, VI improvers (polymeric additives) are added in lubricating oils in 
order to modify the viscosity change with oil temperature based on the VI index. The 
viscosity index (VI) relates to the change rate of the dynamic viscosity to temperature. 

η∂
∂∝ T

VI                                                 (9.7) 

According to Eq. (9.7), the smaller the viscosity changes with oil temperature, the 
higher the viscosity index VI, leading to the better oil quality. The viscosities of 
lubricating oils with the high and low VI versus oil temperatures are shown in Fig. 
9.6. The viscosity of the high VI oil decreases with temperature more slowly than 
the viscosity of the low VI oil. That means the negative viscosity gradient of the 
high VI oil is larger than the low VI oil. According to Eq. (9.7), the higher the vis-
cosity index VI, the less the viscosity changes with oil temperature; therefore, it is 
a superior oil for wear protection.  
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Fig. 9.6 Dynamic viscosities with the low and high VI oils 

Synthetic oils (PAOs, esters) have mostly higher VI than mineral oils because 
many chemical additives are added in the lubricants at the hydrocracking process. 
They have been produced and customer tailored to optimize and simplify the mo-
lecular structures of the hydrocarbon chains and aromatic rings with predictably 
designed oil properties, instead of complex unpredictable molecular structures of 
the mineral oils with lower VI. As a result, synthetic lubricating oils are suitable 
for the extreme working conditions with the high thermal and mechanical loads at 
high rotor speeds of the automotive turbochargers. By adding VI improvers (po-
lymeric molecular additives) in the lubricating oils, the viscosity change with  
oil temperature reduces, so that the HTHS effective viscosity is improved to  
prevent wears. The VI improvers regulate the oil viscosity with temperature 
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as follows. First, at low oil temperatures, the molecule chain contracts itself to 
generate more empty rooms for the oil molecules, and therefore the oil viscosity 
slightly reduces or much more slowly increases. Second, at high oil temperatures, 
the molecule chain expands itself to occupy more rooms in the oil molecules; 
hence, the oil viscosity slightly increases or much more slowly reduces. 

The viscosity index VI is a dimensionless number; it has been calculated by  
the method described in the ASTM D-2270 (American Society for Testing and 
Materials). 
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where 
U is the viscosity of the test oil at 40°C (~100°F) in cSt; 
L is the viscosity parameter at 40°C of the first reference oil,  
defined as VI = 0  (L > H); 
H is the viscosity parameter at 40°C of the second reference oil, defined as 
VI=100; 
L and H are corresponding to the dynamic viscosity (cSt) of the test oil at 100°C 
(~210°F) and are given in the ASTM D-2270.   

To calculate the VI index, the oil viscosities at 40 and 100°C are required; the 
viscosity-related parameters L and H are given in the ASTM D-2270. The VI in-
dexes of some commonly used lubricating oils are given in Table 9.3.      

Table 9.3 VI indexes of some automotive lubricating oils 

Lubricating oils Viscosity Index (VI) 

Mineral oils 80…120

Hydrocraking oils 125…150

Synthetic oils (PAOs) 140…160

Silicone oils (hydraulic fluids) > 200
 

9.5   Stribeck Curve 

In this section, the lubrication regions in the bearing clearance over the oil-film 
thickness are studied in the Stribeck curve. The oil-film thickness is resulted from 
many rotordynamic and tribological influences, such as the acting force on the 
bearing, rotor speed, journal eccentricity, surface roughness, oil temperature, and 
oil viscosity. If the current oil-film thickness is larger than the limit oil-film thick-
ness, the friction in the bearing remains small; the bearing surface is wear pro-
tected from wear. In this case, the lubrication is fully hydrodynamic. 

In order to look into the lubricating behaviors in the bearing, the dimensionless 
oil-film thickness λ, the ratio of the minimum oil-film thickness to the root-mean- 
square (rms) combined surface roughness, is defined according to [4].  
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qR

hmin≡λ                                                 (9.9) 

where 
hmin is the minimum oil-film thickness; 
Rq is the root-mean-square (rms) combined surface roughness of the surfaces #1           
and #2. 
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Fig. 9.7 Lubrication regions in the Stribeck curve 

The rms combined surface roughness is defined as 

2
2

2
1 qqq RRR +≡                                       (9.10) 

where   
Rq1 and Rq2 are the rms roughness of the surfaces #1 and #2, respectively. 

We transform the rms roughness Rq into the arithmetic average roughness Ra by a 
factor of 1.25 of the Gaussian surface height distribution. 

aq RR 25.1=
   

 

Thus, one writes the rms roughness in the average roughness. 
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2
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125.1 aaq RRR +=                                     (9.11) 

where  
Ra1 and Ra2 are the arithmetic average roughness of the surfaces #1 and #2,  
respectively. 

The lubrication regions in the Stribeck curve are classified into four lubrication 
regions at λ = a ≈ 1, b ≈ 3, c ≈ 5, and d ≈ 10 according to [4]: 

• λ ≤ a: boundary lubrication (BL) 
• a < λ ≤ c: partial boundary lubrication (PBL) 
• b < λ < d: mixed lubrication (ML) containing elasto-hydrodynamic  
                    lubrication (EHL) 
• λ ≥ d: fully hydrodynamic lubrication (HL) 

In case of λ ≤ 1, the boundary lubrication occurs between the surfaces in which 
the oil-film thickness is very small in the order of a few nanometers (10-9 m). In 
this oil film thickness, the molecules of hydrocarbon chains of the lubricating oil 
or polymer additives keep the moving surfaces separate in the nanotribology con-
sideration. Due to the very narrow oil film thickness, the friction coefficient 
strongly increases, leading to seizure of materials between the moving surfaces.       

As the dimensionless film thickness λ increases from 1 to 5, the partial boun-
dary lubrication takes place in which the surfaces partially contact each other be-
tween the boundary lubrication (in the nanotribology ∼10-9 m) and mixed lubrica-
tion (in the microtribology ∼10-6 m). The nanotribology is generally used to 
explain the tribological effects occurring in the microtribology. At first, the fric-
tion coefficient remains nearly constant in the boundary lubrication and then 
slightly decreases with the oil-film thickness in the mixed lubrication. However, 
the friction coefficient is still high because the abrasive and adhesive frictions oc-
cur between the moving surfaces in the mixed boundary lubrication.  

The elasto-hydrodynamic lubrication (EHL) occurs in the mixed lubrication at      
3 <λ<10, in which the asperities between the surfaces have been plastically de-
formed or removed due to abrasive and adhesive wears. As soon as the asperities 
of the surfaces disappear or do not touch with each other at increasing the oil-film 
thickness, the friction coefficient drops significantly to the minimum where the 
fully hydrodynamic lubrication begins, as shown in Fig. 9.7.         

In case of λ ≥ 10, the moving surfaces are fully separated by the large oil-film 
thickness without contact of any asperity, abrasive, and adhesive frictions. This 
lubrication regime is called the fully hydrodynamic lubrication (HL). The friction 
induced in this region is only the viscous friction of the oil film. 

The friction coefficient in the fully hydrodynamic lubrication is calculated by 

λμ ∝∝∝≡ h
h

h

F

F
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t
HL 2)/1(

)/1(                                (9.12)  

where  
 Ft is the friction force proportional to (1/h), inversely related to the film thickness; 
 Fn is the normal force proportional to (1/h)2; 
 h is the current minimum oil-film thickness; 
 λ is the dimensionless oil-film thickness.  
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According to Eq. (9.12), the friction coefficient is proportional to the dimension-
less oil-film thickness in the fully hydrodynamic lubrication (HL). 

In the partial boundary or mixed lubrication regions, the oil temperature in the 
bearing clearance is relatively high due to the large bearing friction. When the ef-
fective oil temperature in the bearing exceeds the flash points of the lubricating oil 
210°C (SAE 5W30) and 250°C (SAE 20W30) [6], the oil film begins coking in-
side the bearing clearance and leaves the hard coked-oil layer on the rotor shaft.  

The process of oil coking generates a hard black thin layer of the carbonaceous 
residue on the surface of the journal inside the bearing clearance. The hard coked-oil 
layer increases continually after a long operating time; hence, the radial bearing 
clearance reduces. As a result, the oil temperature has been further increases as the 
bearing clearance reduces, and the coking process takes place continuously. Finally, 
it leads to seizure of the shaft in the bearing and fatal damage of turbochargers.      

9.6   Surface Texture Parameters 

Surface tribological characteristics play a key role in the rotor stability and wears 
in the bearings as well. They strongly affect the oil-film thickness that depends on 
the lubrication regime in the bearings (s. Fig. 9.7). The oil film involves in the ro-
tordynamic stability, induced airborne noises, and prevention of wears in the bear-
ings. The oil-film bearings work on the hydrodynamic principle where the inner 
oil film bears the rotor against the unbalance excitation forces and keep it stable 
during the operation. Moreover, the outer oil film provides the rotor with large 
damping to keep it in the small amplitudes at resonances, preventing the rotor 
from the oil whirl instability. Therefore, it reduces the induced airborne noises, 
such as the unbalance whistle and constant tone. Without or poorly-lubricated oil 
supply, the bearings cannot fulfill their functions in the turbocharger. It could 
cause damages in the bearings and furthermore in the compressor and turbine 
wheels due to seizure of the wheels in their housings. Thus, we discuss the surface 
texture parameters in the following section.          

9.6.1   Surface Height Profile 

The surface roughness characteristics of the bearings, journal in the radial bearing, 
and thrust rings in the thrust bearing are tribologically analyzed. At first, the sur-
face roughness height of the surface is measured by a stylus, as shown in Fig. 9.8.  

By sampling the surface, the surface traced profile consisting of the waviness 
and roughness profile is measured and digitalized. The peak-to-peak amplitude of 
the waviness profile is defined as the waviness height Wt. The measured signal of 
the surface traced profile is amplified and analyzed by the band-filter technique, as 
displayed in Fig. 9.9a. By using the high-pass filter, one obtains the surface 
roughness profile; by using the low-pass filter, the surface waviness profile is re-
sulted. The waviness profile shows the plateau shape of the surface; the roughness 
profile indicates the real surface roughness height that is measured from the refer-
ence line. The surface roughness profile is the arithmetic average value of the sur-
face height in an evaluation length. The roughness profile contains many peaks 
(asperities) and valleys of the measured surface.  
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Fig. 9.8 Measured surface roughness height 

The mean line of the surface roughness is defined in the evaluation length ln as         
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where  
N is the number of the sampling heights zi measured from the reference line zref 
within the evaluation length.  

The mean line is determined by the weighted average height of the surface  
profile within the sampling length lr with a phase corrector filter. The average 
roughness height is calculated from the measured weighting function p(z) in the 
sampling length, as shown in Fig. 9.9b. 

The variance s of the surface roughness height is calculated as follows: 
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The standard deviation σ is defined as the square root of the variance s. It shows 
the variation of the measured values from the mean value of the surface roughness 
height in the distribution density function (s. Appendix D). A low standard devia-
tion indicates that the measured values tend to be close to the mean value, whereas 
high standard deviation shows that the measured values are spread out over a large 
range from the mean line.   

Thus, the standard deviation is derived from Eq. (9.14). 
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where zi is the roughness height measured from the mean line z. According to 
Appendix D, the smaller the standard deviation σ, the better the production; 
e.g., production at ±3σ gives 99.7% of products that are within the given  
tolerances.   
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Fig. 9.9a Analyzing the measured surface traced profile 
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Fig. 9.9b Mean line of the measured surface traced profile 

9.6.2   Surface Tribological Parameters 

In this section, we deal with some tribological parameters that are usually applied 
to analyze the bearing surface roughness in the turbochargers [8]. 

- Evaluation length ln is the length in which the values of the surface height are  
selected and evaluated. Its length is normally chosen by five times of the cutoff 
wavelength λc.  

cnl λ5≈                                                  (9.16) 

- Sampling length lr is the reference length for the roughness evaluation and nearly 
equals the cutoff wavelength λc. 

crl λ≈                                                    (9.17) 
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- Cutoff wavelength λc is the profile filter that is used by analyzing the surface 
roughness heights. It is generally chosen, so that the surface roughness amplitude 
with a sine function is reduced to about 50% after filtering the measured signals. 
According to DIN EN ISO 4288:1998 and DIN EN ISO 3274:1998, some wave-
lengths are determined for profile filters as follows: 

mmc  0.8 ;5.2 ;8.0 ;25.0 ;08.0=λ                              (9.18) 

At decreasing the cutoff wavelength, the amplitude of the filtered surface rough-
ness profile is also reduced; the amplitude of the filtered waviness profile of the 
surface roughness increases. Therefore, the short cutoff wavelength is rather pre-
ferred at small surface roughness of Ra and Rz.       
 

- Roughness Rsm (DIN EN ISO 4287, ASME B46.1) 
is called the mean peak spacing and defined as the arithmetic average value of five 
mean peak spacings of the roughness profile within the evaluation length ln (s. Fig. 
9.10). 
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The mean peak spacing smi is the wavelength of the roughness profile that must 
contain at least one peak and one valley of the surface roughness, as shown in Fig. 
9.10.  
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Fig. 9.10 Mean peak spacing Rsm 

- Mean roughness Ra (DIN EN ISO 4287, ASME B46.1) 
is the arithmetic average roughness of N roughness heights zi that are measured 
from the mean line within the sampling length lr. 
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Fig. 9.11 Arithmetic mean roughness Ra 

 - Root mean square (rms) roughness Rq (DIN EN ISO 4287, ASME B46.1) 
is the rms roughness of N points of the surface roughness heights within the sam-
pling length lr, in which the influences of the peak and valley values are addition-
ally considered. 
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Fig. 9.12 Root mean square roughness Rq 

- Mean roughness depth Rz and maximum roughness depth Rmax (DIN EN ISO 
4287, ASME B46.1).  

The mean roughness depth Rz is the arithmetic average value of the five single 
roughness depths Rz,i of five consecutive sampling lengths lr within the evaluation 
length ln.  
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The maximum roughness depth Rmax is the largest single roughness depth of the 
five roughness depths within the evaluation length ln. 
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where 
Rz,i and Rmax are as shown in Fig. 9.13. 
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Fig. 9.13 Mean roughness depth Rz and maximum roughness depth Rmax 

- Material ratio Rmr (DIN EN ISO 4287, ASME B46.1)  
is the ratio of the sum l(c) of all material lengths li at the surface height z to the to-
tal material length ln. It is called the bearing length ratio in the ASME B46.1.  
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- Abbott-Firestone curve (also Abbott curve) 
is the most important surface roughness parameter that one additionally uses to 
evaluate the surface roughness quality. The Abbott curve evaluates the tribological 
surface roughness quality of the samples that have the same mean roughness Ra 
and Rz. In this case, the shape of the Abbott curve decides which surface rough-
ness is better.  

According to the ASME B46.1, the Abbott curve is called the bearing area curve 
(BAC). In the statistical analysis, the Abbott curve is in fact the probability distribu-
tion function of the surface roughness heights that is resulted from its distribution 
density function, as discussed in Appendix D. At first, the construction of the Abbott 
curve is derived from the profile of the surface roughness heights z(x). At the cutting 
line with the surface height z, the material ratio Rmr is computed from the sum of all 
cutting lengths li to the total length ln, as demonstrated in Fig. 9.14. 

Having non-dimensioned surface height z, the new dimensionless surface 
height c is defined.  

σ
zz

c
−≡                                                (9.25) 

where  
σ is the standard deviation of the distribution density roughness height. 
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Fig. 9.14 Abbott curve and the material ratio Rmr 

The dimensionless surface height c versus the material ratio Rmr is plotted on the 
right-hand side of Fig. 9.14. The bell-shaped curve is called the Abbott-Firestone 
curve. Obviously, the material ratio equals 0% at the maximum peak because no 
peak is cut; the material ratio arrives at 100% at the minimum valley since all cut-
ting lengths equal the total length. However, in practice, one moves the ordinate 
surface height c from the initial position of Rmr = 0% to 5% (experience value) in 
the direction of the abscissa material ratio Rmr. Therefore, it makes sure that the 
reference line cref lies at the highest peak of the surface height because of initial 
wears after a short operating period.         

In other way, the Abbott curve can be derived by using the amplitude density 
function p(c) of the surface roughness profile, as shown in Fig. 9.15 [2]. 
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Fig. 9.15 Amplitude density function (ADF) of the surface roughness profile 
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The amplitude density function p(c) is the number of surface heights between 
the two cutting heights z and z+dz. The cumulative distribution function P(c) of 
the amplitude density function p(c) of the surface roughness heights is in fact the 
material ratio at the dimensionless surface height c (s. Appendix D).  

)()()( cRdccpcP mr

c

≡= ∫
∞

                                    (9.26) 

Thus, 

Rmr (cmax) = P(cmax) ≈ 0% at the highest peak of the surface height; 

Rmr (0) = P(0) ≈ 50% at the mean line (c = 0); 

Rmr (cmin) = P(cmin) ≈ 100% at the lowest valley of the surface height. 
 

- Roughness Rpk, Rk, Rvk (DIN EN ISO 13565-1 and -2)  
Rpk is the reduced peak height in the Abbott curve in Fig. 9.16 that indicates the 
peak roughness of the surface; Rk is the core roughness depth indicating the pla-
teau shape of the roughness surface; Rvk is the reduced valley height of the surface 
indicating the oil reservoir in the roughness surface.   
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Fig. 9.16 Roughness Rpk, Rk, Rvk; material ratios Mr1 and Mr2 

 The material ratios Mr1 and Mr2 are the smallest and largest material ratios at 
Rpk and Rvk, respectively. Both material ratios determine the shape of the Abbott 
curve that indicates the important tribological parameter besides the mean rough-
ness Ra and mean roughness depth Rz.         

In the following section, the roughness Rpk, Rk, Rvk , and the material ratios Mr1 
and Mr2 are determined in the Abbott curve in Figures 9.14 and 9.16. At first, we 
create the secant AB with Rmr(A) of 40% in Fig. 9.14; then, we rotate the secant 
AB about point A until it is tangential to the left half-branch of the Abbott curve at  
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the point A. The prolonged secant, called the straight line P1AP2, cuts the ordi-
nates with Rmr = 0% and 100% at P1 and P2, respectively, as plotted in Fig. 9.16. 
The corresponding surface heights z1 and z2 at P1 and P2 intersect the Abbott curve 
at Q1 and Q2, respectively. Therefore, the smallest and largest material ratios Mr1 
and Mr2 are found at Q1 and Q2, as shown in Fig. 9.16.  

The area Ap is the sum of all peak surfaces Ai above the cutting surface height 
z1. In the Abbott curve, the triangle P1Q1R1 is constructed, so that its area equals 
Ap. The altitude P1R1 is defined as the reduced peak height Rpk. Similarly, the re-
duced valley height Rvk is equal to P2R2 that is derived from the triangle P2Q2R2 
whose area equals Av of the total groove area below the cutting surface height z2. 
Finally, the core roughness depth Rk is the surface roughness height of P1P2, as 
shown in Fig. 9.16.   

Thus, the reduced peak and valley heights are calculated as follows: 
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Generally, the core roughness depth Rk (< ∼1 µm to 2 µm) should be kept small in 
the bearings to increase the bearing load capability because the bearing surface has 
less plateau shape. Note that the smaller the reduced peak height Rpk (< ∼0.5 µm 
to 1µm), the better the surface quality. On the contrary, the reduced valley height 
Rvk (< ∼1 µm to 2 µm) should be much larger than Rpk to maintain the residual lu-
bricating oil in the valley grooves; hence, the bearing is well lubricated at the 
start-stop driving cycle.    

2,aR

2,1, aa RR =

2,1,

2,1,

2,1,

  

vkvk

kk

pkpk

RR

RR

RR

<
>

>
moderate surface roughness height 

good surface roughness height 

z

z

1z

2z

 

Fig. 9.17 Comparison of two surface roughness heights 



9   Applied Tribology in the Oil-Film Bearings 289
 

Figure 9.17 shows an example of two surface roughness heights that have the 
same Ra but different roughness values of Rpk, Rk, and Rvk. Obviously, the first 
one has only a moderate tribological surface characteristic due to the higher value 
of Rpk,1 compared to Rpk,2 that could cause wear in the surface. On the contrary, 
the latter with smaller values of Rk,2 and Rpk,2 is tribologically better because the 
surface has less plateau and the peaks of the surface roughness are reduced; its 
Rvk,2 is higher than the first one; hence, the surface has more oil reservoir to lubri-
cate the bearing surface.   

Figure 9.18 shows three surface roughness heights that are finished by different 
methods of honing, eroding, and turning. Despite the nearly same roughness Ra 
and Rmax, they have different qualities of tribological surface characteristics. The 
honed surface is the best because all peak heights were removed and the groove 
depths are large enough to maintain sufficiently reserved oil for lubrication. The 
eroded surface has a moderate quality since many peaks remain and thus could 
cause wears at the asperities and reduces the bearing load capability. The turning 
surface with the largest Rz is the worst since it has many peaks with the largest re-
duced peak height Rpk due to the turning traces. It causes reduction of the bearing 
load capability and therefore induces the bearing friction due to abrasive wear at 
the peaks (asperities). In this case, we have to consider the other roughness para-
meters of Rpk, Rk, Rvk, and Rmr.  
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Fig. 9.18 Roughness heights at different finishing methods 
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Besides the surface roughness depths Rz and Ra, the Abbott curve is additional-
ly used to analyze the surface roughness quality. Generally, good tribological sur-
face roughness characteristics are possibly smallest reduced peak heights Rpk and 
possibly largest reduced valley heights Rvk. 
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Fig. 9.19 Analyzing surface quality by means of Abbott curves 

The Abbott curve is derived from the measured values of the surface roughness 
height with the lowest and largest material ratios of Mr1 and Mr2 according to Eqs 
(9.27) and (9.28), as shown in Fig. 9.19. They determine the shape of the Abbott 
curve of the roughness surface height. By experience, at the same roughness Ra or 
Rz, the Abbott curve with a convex shape indicates the best tribological quality of 
the surface roughness height (case c). Therefore, the best surface roughness cha-
racteristic in Fig. 9.19 is the third case with the small reduced peak heights Rpk 

(low peak surface roughness), the high reduced valley heights Rvk (more oil reser-
voir), and the small core roughness depth Rk with less plateau of the surface 
roughness. On the contrary, the surface with a concave shape shows the bad tribo-
logical surface roughness quality (case a). They have many sharp asperities with 
the large reduced peak heights Rpk (high peak surface roughness) and the low re-
duced valley heights Rvk (less oil reservoir). The Abbott curve of the case b has a 
linear shape; one considers its tribological surface quality as moderate.  
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9.7   Elastic and Plastic Deformations in the Bearings 

To study the wear mechanism in the bearings, some backgrounds of the elastic and 
plastic deformations of material are necessary. At a small load, the material begins 
deforming, as soon as one removes the load, its form returns to the initial condition. 
This deformation is called elastic deformation. On the contrary, in case of plastic 
deformation, in which the load-related stress exceeds the yield stress σo, the ma-
terial remains the current form and does not return to the initial condition although 
one removed the load acting on it. At further increasing the load in the plastic de-
formation, the material suddenly fractures at the ultimate tensile stress σu. Then, the 
wear process begins with the loss of the surface asperities (roughness peaks), which 
abrade the moving surfaces and further cause wear traces in the surface.     

9.7.1   Normal Stress 

Having applied the tensile force F on a cylindrical specimen with the initial cross-
sectional area A0 and length l0, the body begins deforming in the axial direction. 
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Fig. 9.20 Stress-strain diagram of a ductile material 

The normal stress σ is defined as the ratio of the acting force to the real cross-
sectional area. 

rA

F=σ                                                  (9.29) 
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In the elastic deformation, the stress is proportional to the strain according to the 
Hooke’s law. 
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where 
E is the elasticity modulus (called the Young’s modulus); 
ε is the normal strain defined as the relative change of the length from l0 to l. 

The Hooke’s law is valid as long as the stress is less than the yield stress σ0; i.e., the 
deformation is elastic and returns to zero when the acting load is removed. At further 
increasing the acting force, the normal stress increases higher than the yield stress; 
hence, the deformation of the body becomes plastic where the Hooke’s law has been 
no longer valid. With a plastic stress of 0.2%, the strain remains at ε = 0.2% after 
removing the acting force. The deformation is plastic up to the ultimate tensile stress 
σu. After exceeding the ultimate tensile stress, the normal stress sharply increases in 
a very short time, and the material fractures. Shortly before the fracture occurs, the 
real cross-sectional area Ar significantly reduces dramatically due to material con-
traction at a constant load F, as shown in Fig. 9.20. Therefore, the normal stress 
sharply increases before the material fracture happens according to Eq. (9.29).     

9.7.2   Shear Stress 

Having applied the force F acting on a specimen in the tangential direction, the 
body form deforms at a shear strain t. The ratio of the shear strain t to the speci-
men height h is called the shear rate γ, as shown in Fig. 9.21.  

The shear stress is given at the contact surface A.   
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where G is the shear modulus of the material. 
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Fig. 9.21 Shear stress and rate in a testing specimen 
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The shear modulus is calculated from the elasticity modulus E and the Poisson ratio ν. 

)1(2 ν+= GE                                           (9.32) 

where ν equals 0.25 to 0.30 for most metals. 
Thus, 
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The elasticity modulus E can be used for 

- low-alloy steels: E ≈ 212 GPa; 
- tool steels (highly-alloyed steels): E ≈ 230 GPa; 
- brasses, copper alloys, and bronzes: E ≈ 96 to 114 GPa. 

9.7.3   Friction Force in the Bearings 

The rotor unbalance induces the normal load Fn acting on the bearing surface. At 
the contact zone between the journal and bearing, the friction force Ft occurs on 
the journal surface against the rotational direction of the rotor. The friction force is 
proportional to the normal load by a friction coefficient. Figure 9.22 shows the 
acting forces including the normal load and the friction force in the bearing. In 
fact, the adhesion and abrasion frictions between the bearing and journal induce 
the total friction force.  
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where the total friction coefficient is combined of the adhesive and abrasive fric-
tion coefficients. 
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Fig. 9.22 Adhesive and abrasive friction forces in the bearing 
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The adhesive friction force is resulted from the shear stress and real contact area.  

radh AF  τ=                                                (9.36) 

within the real contact area Ar is determined as the ratio of the normal load to the 
hardness H of the softer material in the plastic deformation. 
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r =                                                    (9.37) 

where the hardness of material H is the mean contact pressure that is resulted from 
the normal load and permanent indentation in the plastic deformation. 
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The plastic deformation begins with pmean ≈ 1.07σο to 1.1σο (σo= yield stress). At 
pmean ≈ 3σο, it fully develops in the permanent indentation. According to [5], the 
hardness H is nearly 2.8 to 3 times of the yield stress for intenders with spherical, 
conical, pyramid, and flat-end shaped geometries.  

oH σ )3 ... 8.2(≈                                                  (9.39) 

Having combined Eqs (9.36) and (9.37), one obtains the adhesive friction coeffi-
cient. 
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According to [9], the abrasive friction coefficient is calculated as follows:  
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where  
ϕ is the cone semi-angle of the asperity;   
θ is the abrasive angle of material, as shown in Fig. 9.22. 

Thus, the total friction coefficient is resulted from Eqs (9.35), (9.40), and (9.41). 
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Normally, the abrasive angle of most materials is less than 10°; hence, the abra-
sive friction coefficient is about 0.1. The adhesive friction coefficient is 0.17 to 
0.2 for similar hardness of materials where the abrasive friction coefficient is neg-
ligible, and < 0.3 for hard to softer materials. In fact, the total friction coefficient 
is quite larger than these theoretical values between 0.3 and 0.4  due to the work  
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hardening and junction growth in the contact zone [9]. At the plastic deformation, 
the atomic dislocations are removed from the material grid structure; therefore, the 
material becomes harder; the shear and yield stress, and as well as hardness have 
been strengthened. This process is called the work hardening during the plastic de-
formation. Additionally, the real contact area increases due to plastic deformation, 
as given in Eq. (9.37). It is called the junction growth at the contact zone. 

Straightforwardly, the plastic deformation takes place in the contact zone be-
cause the normal load and friction force concentrate on a very small contact area 
of the surface roughness asperities (high Rpk and Rz). The normal stress that is far 
away from the asperity is smaller than in the contact zone; therefore, the elastic 
deformation occurs there instead of plastic deformation. During the plastic defor-
mation in the contact zone, the shear stress increases faster than the hardness. As a 
reason, the friction coefficient increases in the contact zone between the journal 
and the bearing; therefore, the friction force increases in the plastic deformation 
due to the work hardening and junction growth according to eqs (9.34), (9.38), 
(9.40), and (9.42).               

9.7.4   Friction Power in the Bearings 

The following section deals with the friction power in the bearings that occurs in 
the boundary, mixed, and hydrodynamic lubrications in the Stribeck curve, as dis-
played in Fig. 9.7.    

The friction power Pf in the bearings is resulted from the friction force Ff and 
relative velocity U. It consists of the friction powers in the mixed lubrication Pm 
and the hydrodynamic lubrication Ph. At the large oil-film thickness, the friction 
power in the hydrodynamic lubrication Ph (ε = 1) dominates the bearing friction 
power. In other case, the friction power in the mixed lubrication Pm (ε = 0) is do-
minant in the bearing friction power at the small oil-film thickness. 
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(9.43) 

where 
ε is the lubrication factor;  
in the fully hydrodynamic (ε = 1), and mixed lubrication (ε = 0); 
µ is the friction coefficient of the bearing surface; 
σN is the normal stress on the bearing; 
η is the oil viscosity; 
h is the oil-film thickness; 
A is the bearing surface; 
U is the moving relative velocity; 
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In case of the small bearing surface, the oil-film thickness reduces itself to in-
crease the oil pressure in the bearing clearance against the given bearing load. At 
further increasing the bearing load, the oil-film thickness becomes smaller than the 
limit oil-film thickness. Thus, the mixed lubrication regime occurs in the bearing 
in which the friction coefficient µ and normal stress σN significantly increase due 
to the adhesive and abrasive frictions in the bearing surface. According to eq. 
(9.43), the friction power Pm extremely increases, much higher than the friction 
power Ph in the fully hydrodynamic lubrication. As a result, the effective friction 
power in the bearing increases much more although we reduce the bearing surface. 
On the contrary, we enlarge the bearing surface excessively; in turn, the oil-film 
thickness increases, leading to the fully hydrodynamic lubrication in the bearing. 
In this case, the hydrodynamic friction power Ph significantly increases due to the 
large bearing surface and high oil viscosity. Therefore, the effective bearing fric-
tion power also increases by enlarging the bearing surface. The friction power 
reaches the minimum at the oil-film thickness hmin at which the fully hydrodynam-
ic lubrication begins, as illustrated in Fig. 9.23.    

Figure 9.23 shows the behavior of the friction power of the bearing in the 
mixed and fully hydrodynamic lubrication regimes. The result indicates that de-
creasing the bearing surface to reduce the friction power in the bearing is not al-
ways correct; sometimes, we obtain the negative result of increasing instead of re-
ducing the friction power of the bearing. The reduction of the bearing friction by 
decreasing the bearing surface is only correct when the working condition of the 
bearing is in the fully hydrodynamic lubrication (h ≥ hmin). In the mixed lubrica-
tion (h < hmin), we must enlarge the bearing surface to reduce the bearing friction, 
as shown in Fig. 9.23.  
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Fig. 9.23 Effective friction power in the bearing versus oil-film thickness 
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9.7.5   Mohr’s Circle Method 

The normal force and bending moment caused by the friction force act upon the as-
perities of the bearing, as displayed in Fig. 9.24. The asperities begin deforming; at 
increasing the external forces and moments, the plastic deformation takes place at 
the asperities. When the normal and shear stresses exceed their ultimate stresses, the 
asperities rupture in the bearing clearance, leading to abrasive wears. In the follow-
ing section, we compute the general stresses by using the Mohr’s circle method.     
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Fig. 9.24 Acting loads on the bearing asperity 

The principle normal stresses are computed by solving the cubic stress equation 
of σ given in [3]. 
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and 

zσσ =3                                                 (9.46) 

The material failure takes place if the maximum tensile stress σ1 in Eq. (9.45) due 
to bending moment exceeds the ultimate tensile stress σu, or the maximum shear 
stress τmax in Eq. (9.49) is larger than the critical shear stress τc.  

In a three-dimensional case, all six components of normal and shear stresses  
in the directions of x, y, and z exist in the asperities. By using the coordinate  
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transformation between the inertial coordinate system (x,y,z) and coordinate sys-
tem (1,2,3) of the principle normal stress, we obtain only the normal stresses σ1, 
σ2, and σ3 in the directions 1, 2, and 3 where the shear stresses τ1, τ2, and τ3 equal 
zero [3]. Having applied the Mohr's circle method, the related stresses in the coor-
dinate system (1,2,3) are graphically calculated from the principle normal stresses 
σ1, σ2, and σ3, as displayed in Fig. 9.25.  
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Fig. 9.25 Mohr's circles for a three-dimensional state of stress 

The maximum principle shear stresses occurring in the planes inclined 45° to the 
principle normal stress axes in the directions 1, 2, and 3 are calculated.   
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The normal stresses perpendicular to the principle shear stresses result in  
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=

+
=                     (9.48) 

The maximal shear stress for any plane in the asperity is the largest shear stress of 
the principle shear stresses given in Eq. (9.47).   

),,max( 321max ττττ =                                        (9.49) 
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All states of stress (σ, τ) in the asperities occur in the shaded area, which lies in 
the upper half plane outside the two small circles and inside the large one dis-
played in the Mohr's circle diagram, as shown in Figure 9.25.  

9.8   Wear Mechanisms in the Oil-Film Bearings 

Oil-film bearings work on the hydrodynamic principle in the various lubrication 
regimes, such as fully hydrodynamic, mixed, and boundary lubrications in the 
Stribeck curve, as displayed in Fig. 9.7.  

Theoretically, wear in the bearing does not occur or is negligibly small in the 
fully hydrodynamic lubrication because the oil film is thick enough to prevent 
wear in the bearing. In case of clean oils, only the hydrodynamic friction occurs in 
the oil film, as discussed in Section 9.3. However, oil contaminated with hard par-
ticles causes wear in the bearing due to the adhesion and abrasion forces between 
the bearing and journal. As reducing the oil-film thickness below the limit oil-film 
thickness, the mixed and boundary lubrications take place in the bearing clear-
ance. The asperities of the bearing and journal surfaces slide to each other, leading 
to the plastic deformation due to thermo-mechanical loads acting on the asperities. 
As a reason, it causes at first the adhesive wear at the asperities due to plastic 
shearing, then losses the material because of their asperities break. In the abrasive 
wear, the hard particles in the contaminated oil, broken bits of the asperities, and 
still remaining asperities of the surfaces abrade the surface of the softer material; 
therefore, the material is removed from the bearing surface with time, leading to 
wear. In the mixed and partial boundary lubrications, the wear process in the bear-
ing begins with the adhesive friction at the asperities of the roughness surfaces. 
Wears continue further by loss of the asperities, and it is eventually intensified by 
the abrasive wear of the hard particles in the boundary lubrication, leading to sei-
zure and damage of the bearing. 

Figure 9.26 demonstrates the adhesive wear mechanism where the asperities in 
the softer material bearing (brass) contact the other asperities of the moving jour-
nal of hard materials (highly alloyed steels) under the unbalance force or bending 
moment acting upon the bearing asperities.             

U

asperities

cracks lubricating oil broken bits

U

bearing (softer material)

journal (hard)

F F

 

Fig. 9.26 Adhesive and abrasive wear in the bearing clearance 



300 Rotordynamics of Automotive Turbochargers
 

According to the deformation mechanism, as shown in Fig. 9.4, the asperities 
of the bearing surface begin deforming plastically under the acting loads. When 
the tensile and shear stresses in the asperities exceed the ultimate tensile and criti-
cal shear stresses, some asperities of the bearing and journal break off. Then, the 
broken bits together with the hard particles in lubricating oil cause abrasive wear 
in the bearing.  

The theoretical critical shear stress of a perfect material without any atomic dis-
locations in the material grid structure is given in [3] and [9]. 

othc

G

h

Gb σ
π

τ 2
, 10

102
≈≈=                                (9.50) 

where 
G is the shear modulus; 
b, h are the distance between the atoms in horizontal and vertical direction  
(b/h ∼ 0.5 to 1);  
σo is the yield stress of material. 

However, the real critical shear stress in an imperfect pure metal can be re-
duced by a factor of 300 – 10,000 of its theoretical value.   

The theoretical tensile stress to break chemical bonds between the atoms in a 
perfect metal grid is estimated at 

10,

E
thu ≈σ                                                 (9.51) 

where E is the elasticity modulus of material.  
In fact, the real ultimate tensile stress of the common metals could be lower 

than the theoretical value by a factor of 10 – 100.  
The contact types of wears are normally classified into sliding, rolling, erosive, 

fretting, and slurry wear [1].  
The sliding wear occurs when the hard and soft surfaces move to each other; 

the hard asperities slide over the soft ones; hence, the soft material has been re-
moved due to plastic deformation and fracture of asperities.  

The rolling wear happens when the hard particles floating in lubricating oil roll 
over two moving surfaces in the small gap, such as the convergent clearance of the 
radial bearing and axial clearance of the thrust bearing (s. Figs 9.27 and  9.28). 
The asperities of the surfaces are removed because of their fractures.   

The erosive wear is induced by the impact of the particles in lubricating oil or 
hard asperities against the surface. The impacting kinetic energy of the hard par-
ticles and moving broken asperities deforms the asperities at the contact zones and 
causes material fracture when the tensile and shear stresses exceed the ultimate and 
critical values.  

The fretting wear is caused by the repeated cyclical rub between two moving 
surfaces, especially in the bearing. Due to the continuously periodic rubbing, the 
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bonding force between the atoms is weakened after repeating cyclical rub over a 
long operating period. Hence, the asperities are broken and removed from the sur-
face.  

Finally, the slurry wear occurs when the abrasive particles in lubricating oil 
move in the bearing clearance and abrade the asperities and surface of the bearing.         

In the radial bearings, lubricating oil contaminated with hard particles is sup-
plied to the bearing. The hard particles enter the bearing convergent wedge by 
pumping effect of the rotating journal and cause abrasive wear in the bearing that 
is classified into three different types of wears A, B, and C (s. Figs 9.27 and 9.29).  

   
contaminated oil

particles (contaminants)

Ω

journal (harder material)

bearing (soft)

A

B C

lubricating oil

 

Fig. 9.27 Abrasive wear in a radial bearing 

In the thrust bearings, the oil-film thickness becomes large at a small thrust 
load; hence, the hard particles in lubricating oil enter the axial bearing clearance 
between the thrust bearing and thrust rings. At increasing the thrust load, the oil-
film thickness decreases to the minimum of the axial clearance. The large thrust 
load induces the friction force between the particles and surfaces; the friction force 
causes abrasive wear in the surfaces of the thrust bearing and thrust rings, espe-
cially in the soft bearing surface. Figure 9.28 demonstrates the wear mechanism in 
the thrust bearing. Finally, the abrasive wear leaves deep wear traces in the bear-
ing and disk surfaces (s. Fig. 9.29). These wear traces do not cause the failure of 
the bearing at once. However, the bearing failure could happen if the abrasive 
wear is continuously fortified until the mixed and boundary lubrications take place 
in the bearing clearance.  
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Fig. 9.28 Abrasive wear in a thrust bearing 

Figures 9.27 and 9.28 show the most typical types of the abrasive wear occur-
ring in the radial and thrust hydrodynamic bearings of the automotive turbocharg-
ers. The abrasive wear is classified into three different types A, B, and C accord-
ing to [9], as shown in Fig. 9.29 at which the journal material of highly alloyed 
steels is much harder than the bearing material of brass.  

• Type A, called the three-body abrasive wear shows the hard particles slide and 
roll on the bearing and journal surfaces, touch the asperities, deform them plas-
tically, and finally remove them from the bearing surface.     

• Type B, called the two-body abrasive wear shows the hard particles and bro-
ken bits of the asperities are embedded in the softer bearing surface. Due to ro-
tation, they abrade the journal surface as if a sand paper slides on it with the 
high speeds. To prevent the journal from the abrasive wear, its surface is 
treated by nitriding. Nitriding is a heat-treating process of diffusing nitrogen 
(N2) into the surface to create a hard coating layer on the surface, such as bo-
ron nitride (BN), titanium nitride (TiN), and silicon nitride (Si3N4).    

• Type C, called the surface abrasive wear shows the hard asperities of the jour-
nal surface abrade the softer bearing surface in case of poorly lubricated oil 
film in the partly and boundary lubrications. It mostly occurs at the minimum 
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oil-film thickness in the bearing clearance, as displayed in Figs 9.27, 9.28, and 
9.29. The abrasive wear leaves wear traces in the bearing surface, as shown in 
Fig. 9.29.   
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lubricating oil

bearing 

bearing 

bearing 

 

Fig. 9.29 Types of abrasive wears in the bearing convergent wedge of a radial bearing 

In the point of view of the tribological mechanism of wears, fatigue, and corro-
sive wears should be taken into account besides the adhesive and abrasive wears.  

Fatigue wear is generated by the repeated cyclical friction between two moving 
surfaces after a certain number of rubbing cycles. It is caused by the fatigue frac-
ture where the yield stress of material strongly reduces at increasing the numbers 
of rubbing cycles according to the Woehler curve. There are two kinds of fatigue 
wear, the high-cycle fatigue wear (HCFW) occurs at the high number of rubbing 
cycles; the low-cycle fatigue wear (LCFW), at the low number of rubbing cycles.  

Corrosive wear takes place when materials of the surfaces contact a corrosive 
substance (liquid or gas), such as dissolved water, fuel, and diffused air in lubri-
cating oil, that induces tribochemical reactions (chemical and electrochemical) in 
the surfaces of the journal and bearing; therefore, materials of the surfaces are re-
moved by the tribochemical corrosion. 
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Fig. 9.30 Classification of wear mechanisms 

Adhesive, abrasive, and fatigue wears are followed by the plastic deformation 
and fracture of materials; hence, one calls them “mechanical wear”. On the con-
trary, corrosive wear is caused by the tribochemical reactions contacting a corro-
sive medium; therefore, it is called “oxidative wear”, as displayed in Fig. 9.30.  

Used and old lubricating oil in the automotive turbochargers contains besides 
hard particles about 5% volumetric dissolved water, and approximately 10% vo-
lumetric dissolved fuel. Therefore, in order to prevent the bearings from wears, 
both lubricating oil and oil filter must be regularly replaced in every period of 12 
months to 18 months at an average driving rate of 10,000 km/year according to 
ISO 4406-1999: 24/23/18.      
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Appendix A 

Transformation of the Rotating to Inertial Coordinate Systems 

To calculate the moment acting upon the rotor by using the angular momentum 
theorem, the product rule of differentiation is applied. The resulting moment in the 
rotating coordinate system (x',y',z') is transformed into the inertial coordinate sys-
tem (x,y,z). Therefore, the relations between the unit vectors of two coordinate 
systems are needed.     
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Fig. 1 Transformation between the rotating and inertial coordinate systems 

 
Two-dimensional angular position vector θ is written in the rotating coordinate 
system (x',y',z') with θz = 0.    

jiθ ′+′= yx θθ                                                (1) 

where  
θx, θy, and θz are the proper Euler angles in the directions x', y’, and z'. 
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The relation between the unit vectors (i', j', k') and (i, j, k) of the rotating and in-
ertial coordinate systems is derived [1]. 
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where  
I is the unit matrix; 
 
Rθx and Rθy are the transform matrices in functions of θx and θy, respectively. 
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The transform matrix R is calculated from I, Rθx and Rθy as follows:
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At small angles θx, θy << 1 with cosθ ≈1-θ²/2 and sinθ ≈ θ, one obtains 
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Generally, the three-dimensional angular position vector θ is written in the rotat-
ing coordinate system (x',y',z'). 

kjiθ ′+′+′= zyx θθθ                                               (7) 

The relations of the unit vectors are formulated by the transform matrices. 
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with  
the transform matrices Rθx and Rθy given in Eq. (3) and  
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The transformation matrix R* is calculated from Rθz, Rθx and Rθy. 
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(10) 

At small angles θx, θy, θz << 1 with cosθ ≈ 1-θ²/2 and sinθ ≈ θ,  one obtains  

⎪
⎩

⎪
⎨

⎧

≈+−≈′
≈++−≈′

≈−+≈′

kkjik

jkjij

ikjii

xy

xz

yz

θθ
θθ

θθ
                                                   (11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B 

Calculating Value x from X in the Log10 Scale 

The value x at an arbitrary ratio ξ is interpolated from the measured values X at an 
arbitrary ratio ξ in the log10 scale, as shown Fig. 1.  
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Fig. 1 Calculating value x from X in the log10 scale  

The intervals ΔX and ΔXi+1 in the log10 scale are calculated. 
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Having divided Eq. (1) to Eq. (2), one obtains 
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The corresponding value x of X in the log10 scale is computed from the ratio 
ξ according to Eq. (4) where ξ is the relative distance of X between Xi+1 and Xi. 
The values x are plotted for various values ξ in case xi = 101 in Figure 2. The re-
sults help us to calculate the value x at the ratio ξ by interpolating the measured 
values at the ratio ξ in the log10 scale.    

Table 1 Computed values x from ξ of the log10 scale 

xi = 100  xi = 101  xi = 102

0,00 1 1,00 10,00 100,00
0,05 1,12 1,12 11,22 112,20
0,10 1,26 1,26 12,59 125,89
0,15 1,41 1,41 14,13 141,25
0,20 1,58 1,58 15,85 158,49
0,25 1,78 1,78 17,78 177,83
0,30 2,00 2,00 19,95 199,53
0,35 2,24 2,24 22,39 223,87
0,40 2,51 2,51 25,12 251,19
0,45 2,82 2,82 28,18 281,84
0,50 3,16 3,16 31,62 316,23
0,55 3,55 3,55 35,48 354,81
0,60 3,98 3,98 39,81 398,11
0,65 4,47 4,47 44,67 446,68
0,70 5,01 5,01 50,12 501,19
0,75 5,62 5,62 56,23 562,34
0,80 6,31 6,31 63,10 630,96
0,85 7,08 7,08 70,79 707,95
0,90 7,94 7,94 79,43 794,33
0,95 8,91 8,91 89,13 891,25
1,00 10 10,00 100,00 1000,00

 x = xi.10ξ  for
ξ x/xi
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Fig. 2 Calculating x from the log10 scale distribution X at ξ = 0.7 



Appendix C 

Solutions of the Characteristic Equation with Complex 
Coefficients 

The characteristic quadratic equation with complex coefficients is derived from 
the vibration equation [2]. 

( ) ( ) 0)( 2 =++++≡ jdcsjbassD                                          (1) 

where 
C∈±= )( njs ωα  are the complex eigenvalues; 

R∈dcba  , , , are the real numbers.    

By solving the characteristic equation D(s) = 0, the eigenvalue s results in 
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After calculating and rearranging the real and imaginary terms of the eigenvalue, 
one obtains 
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Necessary condition for the rotordynamic stability is that the real term α of the ei-
genvalue must be negative (s. Section 4.2). 
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Thus, the stability condition (α < 0) for the rotor given in eq. (5) becomes after a 
few calculation steps. 
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Appendix D 
 

Normal Distribution Density Function and Probability Function 

The normal distribution density function is defined with parameters z  and σ as 
follows: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=

2

2

1
exp

2

1
)(

σπσ
zz

zp                            (1) 

where 
z  is the mean value of the sampling values; 
σ is the standard deviation resulted from the sampling values. 
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Fig. 1 Distribution density function p(z) and its probability function 
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The normal distribution function is called the Gaussian density function with a 
bell shape; its probability distribution function is calculated by integrating p(z) 
from -∞ to ζ. This integrated value P(ζ) is the area under the bell curve, as shown 
in Fig. 1.  

dz
zz

P  
2

1
exp

2

1
)(

2

∫
∞− ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=

ζ

σπσ
ζ                    (4) 

By substituting z by the new dimensionless variable, 

σ
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the normal distribution function p(z) is written in  
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The new probability function is written in the new variable c. 
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Fig. 2 Distribution density function p(c) and its probability function P(c) 
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The probability distribution values for various parameters are calculated from Eq. 
(8). 
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                                   (9) 

This result indicates that a production with ±3σ would deliver 99.7% of the prod-
ucts that fulfill the given lowest and highest tolerances.   
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