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Preface

The past decade has seen a revolution in the field of spoken dialogue systems. As in
other areas of Computer Science and Artificial Intelligence, data-driven methods are
now being used to drive new methodologies for system development and evaluation.
These methods are proving to be more robust, flexible, and adaptive than the largely
rule-based approaches which preceded them.
We hope that this book is a contribution to that ongoing change. It describes, in

detail, a new methodology for developing spoken dialogue systems – in particular
the Dialogue Management and Natural Language Generation components – which
starts with human data, and culminates in evaluation with real users. The journey
therefore starts and ends with human behaviour in interaction, and explores methods
for learning from the data, for building simulation environments for training and
testing systems, and for evaluating the results.
The detailed material covers: Spoken and Multimodal dialogue systems, Wizard-

of-Oz data collection, User Simulation methods, Reinforcement Learning, and Eval-
uation methodologies.
This book is therefore intended as research guide which navigates through a de-

tailed case study in data-driven methods for development and evaluation of spoken
dialogue systems. Common challenges associated with this approach are discussed
and example solutions provided, for example, how to learn from limited amounts of
data. As such, we hope it will provide insights, lessons, and inspiration for future
research and development – not only for spoken dialogue systems in particular, but
for data-driven approaches to human-machine interaction in general.

Edinburgh, Verena Rieser
September 2011 Oliver Lemon

v



     



Acknowledgements

The research presented here would not have been possible without interaction with
our research community, and we owe special thanks to the participants of the TALK
and CLASSiC projects for discussing the ideas presented in this book.
There is a lively international research community in Spoken Dialogue Systems

whose interest, criticism, and encouragement have helped to shape this work. We
are especially indebted to Steve Young and his colleagues at Cambridge University,
who have had a deep influence on our ideas. Members of the Interaction Lab1 at
Heriot-Watt University’s School of Mathematics and Computer Science have also
helped to discuss and develop these ideas over several years.
In particular we would also like to thank Dr. Xingkun Liu, Dr. Helen Hastie, Dr.
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Chapter 1

Introduction

The past decade has seen something of a revolution in the field of spoken dialogue
systems. As in other areas of Computer Science and Artificial Intelligence, data-
driven methods are being used to drive new methodologies for system development
and evaluation. These methods are proving to be more robust, flexible, and adaptive
than the rule-based approaches which preceded them.
We hope that this book makes a contribution to that revolution. It describes, in

detail, a new methodology for developing spoken dialogue systems – in particular
the Dialogue Management component – which starts with human data, and ends
with evaluation with real users. Related methods are now being developed further
by a number of researchers worldwide. The journey begins and ends with human
behaviour in interaction, and en route we explore methods for learning from such
data, for building simulation environments for training and testing our systems, and
methods for evaluating the results.
This book is therefore intended as a guide which navigates through a detailed

case study in data-driven methods for development and evaluation of spoken dia-
logue systems. It focusses on Dialogue Management and Natural Language Gener-
ation, rather than speech recognition and spoken language understanding. As such,
we hope that it can provide insights and lessons for future research and development
– not only for spoken dialogue systems in particular, but for data-driven approaches
to building better human-machine interaction in general.

1.1 The Design Problem for Spoken Dialogue Systems

The design of Spoken Dialogue Systems (SDS) is not only concerned with inte-
grating speech and language processing modules such as Automatic Speech Recog-
nition (ASR), Spoken Language Understanding (SLU), Natural Language Genera-
tion (NLG), and Text-to-Speech (TTS) synthesis systems. It also requires the de-
velopment of skills for “what to say next”: dialogue strategies which take into
account the performance of these components, the nature of the user’s tasks (e.g.
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2 1 Introduction

information-seeking, tutoring, or robot control), and other features of the operating
environment such as the user’s behaviour and preferences. The great variability and
unpredictability of these factors makes dialogue strategy design an extremely diffi-
cult task for human developers. In conventional, rule-based, dialogue development
many expensive iterations of manual design and re-design are necessary in order to
produce good strategies. In addition, such hand-coded strategies are not re-usable
from task to task, are not scalable, require a substantial amount of human labour
and expertise, and are not guaranteed to be optimal.
For these reasons machine learning methods (such as Reinforcement Learning)

for dialogue strategy design have been a leading research area for several years.
These statistical computational learning approaches offer several key potential ad-
vantages over the standard rule-based hand-coding approach to dialogue systems
development (Lemon and Pietquin, 2007):

• a data-driven automatic development cycle
• provably optimal action policies
• a principled mathematical model for action selection
• possibilities for generalisation to unseen states
• reduced development and deployment costs.

However, in cases where a system is designed from scratch, there is often no
suitable in-domain data to enable such a design. Collecting dialogue data without
a working prototype is problematic, leaving the developer with a classic “chicken-
and-egg” problem. One of the main issues that this book addresses is how to use a
data-driven development methodology when little or no in-domain data exists.

1.2 Overview

In this book we propose to learn dialogue strategies by simulation-based Reinforce-
ment Learning (RL) (Sutton and Barto, 1998), where a simulated environment is
learned from small amounts of Wizard-of-Oz (WOZ) data. Using WOZ data rather
than data from real Human-Computer Interaction (HCI) allows us to learn optimal
strategies for domains where no working dialogue system already exists. Automatic
strategy learning has been applied to dialogue systems which have already been de-
ployed in the real world using handcrafted strategies. In such work, strategy learning
was performed based on already present extensive online-operation experience, e.g.
(Henderson et al, 2005, 2008; Singh et al, 2002). In contrast to this preceding work,
our approach enables strategy learning in domains where no prior system is avail-
able. Optimised learned strategies are then available from the first moment of online-
operation, and labour-intensive handcrafting of dialogue strategies is avoided. This
independence from large amounts of in-domain dialogue data allows researchers to
apply RL to new application areas beyond the scope of existing dialogue systems.
We call this method “bootstrapping”.
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This book first provides the general proof-of-concept that RL-based strategies
outperform handcrafted strategies which are manually tuned for a wide spectrum of
application scenarios. After theoretically motivating our approach, we turn to the
practical problem of how to learn optimal strategies for new application domains
where no prior system or in-domain data are available. We propose to learn dialogue
strategies by simulation-based RL, where the simulated environment is learned from
small amounts of WOZ data. We therefore introduce a 5-step procedure:

1. Collect data in a WOZ experiment.
2. Use this data to construct a simulated learning environment using data-driven
methods only.

3. Train a RL-based dialogue policy by interacting with the simulated environment.
We compare this policy against a supervised baseline. This comparison allows us
to measure the relative improvements over the WOZ strategies contained in the
training data.

4. Evaluate the learned policy with real users.
5. Show that “bootstrapping” from WOZ data is a valid estimate of real HCI by
comparing different aspects of the 3 corpora gathered so far: the WOZ study, the
dialogues generated in simulation, and the final user tests.

It should be noted that these steps are not unique to the method introduced in
this book, but most of the defined steps are required for any simulation-driven ap-
proach to strategy learning (though the last step is specific to our method). A main
contribution of this book is that all these steps are now performed starting with a
limited WOZ data set, and specific methods are introduced to build and validate the
obtained simulations.
We apply this framework to optimise multimodal1 Dialogue Management strate-

gies and Natural Language Generation. In the first case we consider Dialogue Man-
agement and content selection as two closely interrelated problems for information
seeking dialogues: the decision of when to present information depends on how
many pieces of information to present and the available options for how to present
them, and vice versa. We therefore formulate the problem as a hierarchy of joint
learning decisions which are optimised together.
The second study describes a new approach to generating Natural Language in

interactive systems. Natural Language Generation (NLG) addresses the problem of
“how to say” an utterance, once “what to say” has been determined by the Dialogue
Manager. We treat NLG as planning under uncertainty for information-seeking di-
alogue systems, where the strategy for information presentation and its associated
attributes are incrementally selected using hierarchical learning. This hierarchical
approach to DM and NLG has recently been explored by other researchers (Dethlefs
and Cuayahuitl, 2010; Dethlefs and Cuayáhuitl, 2011), and a utility-based approach
to NLG is discussed by van Deemter (2009a).

1 “Multimodal” dialogue systems are those which do not only use speech input and output, but
which also use other information modalities, such as graphics (as in our case), or gesture, gaze,
facial expressions, and so on.
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Our results in both studies show that RL significantly outperforms supervised
learning (SL) when interacting in simulation as well as for interactions with real
users. For optimising multimodal Dialogue Management, the RL-based policy gains
on average 50-times more reward than the SL policy when tested in simulation, and
almost 18-times more reward when interacting with real users. Users also subjec-
tively rate the RL-based policy on average 10% higher. For optimising Natural Lan-
guage Generation, the trained information presentation strategies significantly im-
prove dialogue task completion, with up to a 9.7% increase (30% relative) compared
to the deployed dialogue system which uses conventional, hand-coded presentation
prompts.
One focus of this book is to optimise dialogue strategies with respect to real

user preferences. A major advantage of RL-based dialogue strategy development is
that the dialogue strategy can be automatically trained and evaluated using the same
objective function (Walker, 2005). Despite its central importance for RL, quality
assurance for objective functions has received little attention so far. In fact, the re-
ward function is one of the most hand-coded aspects of RL (Paek, 2006). Clearly,
automatic optimisation and evaluation of dialogue policies, as well as quality con-
trol of the objective function, are closely inter-related problems: how can we make
sure that we optimise a system according to real users’ preferences? This book is
the first to explore learning with data-driven, non-linear objective functions. We also
propose a new method for meta-evaluation of the objective function.
Note that chapters 4 to 8 are significantly revised, updated, and extended versions

of material from (Rieser, 2008).

1.3 Structure of the Book

Chapter 2 (Background)

This chapter provides the reader with relevant background knowledge for the re-
search. After introducing some general information about Spoken Dialogue Sys-
tems, we contrast different methods applied in research and industry to develop di-
alogue strategies. We show how these two approaches fail to meet the current chal-
lenges for strategy design and argue for the use of statistical methods. In particular,
we propose the use of Reinforcement Learning, as it uses trial-and-error exploration
with delayed rewards which, we argue, is a natural model for human dialogue.

Chapter 3 (Reinforcement Learning)

This chapter provides technical background on RL for dialogue strategy develop-
ment and discusses simulation-based learning in particular. We also introduce the
application domain.
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Chapter 4 (Proof-of-Concept: Information Seeking Strategies)

He we develop the theoretical proof-of-concept that RL-based strategies outper-
form hand-coded strategies, which are tuned to the same objective function. We
show this for a wide range of application scenarios, e.g. for different user types and
noise conditions. This chapter also demonstrates how to apply simulation-based RL
to solve a complex and challenging problem for information-seeking dialogue sys-
tems: which questions to ask the user, how many database search results to present,
and when to present them, given the competing trade-offs between the length of
the results list, the length of the interaction, the type of database, and noise in the
speech recognition environment. In this chapter the reader will receive a deeper
understanding of the principles and advantages of Reinforcement Learning for dia-
logue strategy learning. We also explain why data-driven simulation approaches are
preferred over manually constructed simulated environments (as done here for the
theoretical proof-of-concept).

Chapter 5 (A Bootstrapping Approach to Develop Reinforcement

Learning-based Strategies)

This chapter introduces a 5-step procedure model to bootstrap optimal RL-based
strategies for WOZ data. The resulting strategies are tailored to the application envi-
ronment, do not require a working prototype system, and are optimised with respect
to real user preferences. We also explain how we meet the challenges when learn-
ing from WOZ data. In particular, we introduce the problem of how to construct a
simulated environment from limited amounts of WOZ data. We also discuss the fact
that a WOZ study itself is a simulation of real HCI.

Chapter 6 (Data Collection in a Wizard-of-Oz Experiment)

Here we describe the experimental setup of the WOZ experiment. We explain which
changes to the conventional WOZ method are necessary for strategy learning. In
particular, we introduce an utterance distortion method in order to resemble noise
conditions for real dialogue systems. In addition, we explore the “intuitive” strate-
gies that were applied by our human wizards.

Chapter 7 (Building a Simulated Learning Environment from Wizard-of-Oz

Data)

This chapter uses the WOZ data to construct a simulated learning environment.
We therefore introduce methods suited to build and validate simulations from small
amounts of data. In particular, we construct the action set and state space by ex-
ploring the wizards’ actions. The user and noise simulations are obtained using
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frequency-based approaches. The objective function is a predictive model of user
ratings obtained by a regression analysis, following the PARADISE framework of
(Walker et al, 1997). We then train a RL-based dialogue policy by interacting with
the simulated environment, and we compare this strategy against a baseline con-
structed by Supervised Learning. This comparison allows us to measure the relative
improvements over the wizard strategies obtained from the training data.

Chapter 8 (Comparing Reinforcement and Supervised Learning of Dialogue

Policies with Real Users)

In this chapter we evaluate the learned strategy with real users. We therefore develop
a music-player dialogue system using a rapid development tool, where the learned
strategy is implemented using a table look-up between states and learned actions.
We report detailed results from the real user tests.
We also post-evaluate our overall “bootstrapping” approach by comparing differ-

ent aspects of the 3 corpora gathered so far: the WOZ study, the dialogues generated
in simulation, and the final user tests. We first evaluate whether strategies learned in
simulation do transfer to tests with real users, and we also compare the experimental
conditions of the different studies, where we discuss the noise model in particular.
Furthermore, we explore whether the objective function used for learning is a real-
istic estimate of real user preferences.

Chapter 9 (Natural Language Generation)

This chapter further develops the methodology to encompass elements of policy
learning for adaptive Natural Language Generation in spoken dialogue systems.
This chapter shows that our method can quite easily be applied to new domains
and tasks. We show how to develop a data-driven approach to content selection and
structuring decisions in NLG, this time in the domain of a restaurant recommen-
dation SDS. We also report results from evaluations with both simulated and real
users. The real user evaluation shows that improved NLG can lead to significant
improvements in overall dialogue system performance.

Chapter 10 (Conclusion)

Finally, we conclude by summarising the main contributions of this work. We also
report on “lessons learned” to provide guidance for future researchers. For example,
we discuss the data quantity and quality required for the proposed bootstrapping
approach. In the final outlook of this chapter we discuss ongoing challenges for
research in this field.
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Fundamental Concepts



Chapter 2

Background

Fig. 2.1 Wolfgang von Kempelen’s speaking machine, drawing fromMechanism of Human Speech
(1791)

Mankind appears to be fascinated by the idea of talking with machines. The first
attempts to produce human speech by machine were made in the second half of the
18th century. One of the best known examples is Wolfgang von Kempelen’s speak-
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ing machine, as described in his book “Mechanism of Human Speech” 1 (1791), see
Figure 2. Von Kempelen’s machine was the first that produced not only some speech
sounds, but also whole words and short sentences. Clearly, in order to converse with
a machine in natural language more than just automatic sound production is neces-
sary. Descartes even thought that it would never be possible to engage in dialogue
with machines at all. In his book “Discourse on the Method of Rightly Conducting
the Reason, and Searching for Truth in the Sciences” 2 (1637) he declares:

“. . . but if there were machines bearing the image of our bodies, and capable of imitating
our actions as far as it is morally possible, [. . . ] they could never use words or other signs
arranged in such a manner as is competent to us in order to declare our thoughts to others.”

Today, however, it is arguable that such machines now exist, at least for limited
application domains, due to major advances in the field of Human-Computer Inter-
action (HCI) and Spoken Dialogue Systems (SDS) . Still, human-machine dialogue
is far from resembling the capabilities of human-human dialogue, as we discuss
below.

2.1 Human-Computer Interaction

For computers, holding a conversation is difficult. Engaging in a conversation re-
quires more than just technical language proficiency. When people engage in di-
alogue, they carry out a purposeful activity (Austin, 1962), a joint action (Clark,
1996), or a language game (Wittgenstein, 1953), which they know how to perform
using their communicative skills. Dialogue behaviour is often formally described as
a sequence of Speech Acts (SAs) (Searle, 1969). These SAs are organised into struc-
tural patterns in the field of Conversation Analysis, e.g. (Levinson, 1983; Sacks et al,
1974). Some of this behaviour follows standardised cultural conventions. For exam-
ple, the fact that people greet each other is described as the standardised SA “adja-
cency pair” greeting-greeting (Levinson, 1983). Other behaviour is highly
context-dependent. For example, in previous work we show that the way people ask
for clarification is influenced by various contextual and environmental factors, such
as dialogue type, modality, and channel quality (Rieser and Moore, 2005). In addi-
tion, people often engage in dialogue to solve a task together. Their behaviour is then
driven by the goal of the task as well as by their “mental model” (Johnson-Laird,
1983) of the other dialogue participant.
Humans acquire these communicative skills over time, but for a dialogue system,

they need to be developed by a dialogue designer. This usually is an expert who de-
fines a dialogue strategy , which “tells” the system what to do in specific situations.
The “dialogue strategy” is part of the Dialogue Manager (DM) which controls the

1 Original title: Mechanismus der menschlichen Sprache nebst Beschreibung einer sprechenden
Maschine
2 Original title: Discours de la méthode pour bien conduire sa raison, et chercher la verité dans
les sciences
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behaviour of the system. Broadly speaking, a dialogue system has three modules,
one each for input, output, and control, as shown in Figure 2.2. The input module
commonly comprises Automatic Speech Recognition (ASR) and Spoken Language
Understanding (SLU). The control module corresponds to the Dialogue Manager,
which executes a dialogue strategy. The output module consists of a Natural Lan-
guage Generation (NLG) system and a Text-To-Speech (TTS) engine. Usually, these
modules are placed in a pipeline model (see Figure 2.2). The ASR converts the user’s
speech input (1) into text (2). SLU parses the text into a string of meaningful con-
cepts, intentions, or Speech Acts (3). The Dialogue Manager maintains an internal
state and decides what SA action to take next (4). This is what we call a dialogue
strategy. For most applications the DM is also connected to a back-end database.
In the output module, NLG renders the communicative acts (4) as text (5), and the
TTS engine converts text to audio (6) for the user. Interested readers are referred
to introductory texts such as (Bernsen et al, 1998; Huang et al, 2001; Jurafsky and
Martin, 2000; McTear, 2004).
Human-Computer Interaction (HCI) is the study of interaction between people

(users) and computers (such as dialogue systems). Human-machine dialogue dif-
fers from human-human dialogue in various ways. The most prominent features
are the lack of deep language understanding and the lack of pragmatic competence
(communicative skills) of the system. The lack of language understanding is due
to errors introduced by less-than-perfect input processing (ASR and NLU), and the
common use of shallow semantic representations. The lack of pragmatic compe-
tence is mainly due to the limited capabilities (often hand-coded heuristics) of the
control module.
A substantial amount of recent work targets the problem of limited language un-

derstanding capabilities with so-called “error handling”, e.g. (Bohus, 2007; Framp-
ton, 2008; Skantze, 2007a), or “uncertainty handling” mechanisms, e.g. (Thomson
and Young, 2010; Williams, 2006; Williams and Young, 2007a). This book ad-
dresses the problem of pragmatic competence: how to improve the communicative
skills of a system by providing effective mechanisms to develop better dialogue
strategies. In particular, this book explains how to automatically learn these skills
from experience using simulated interactions, starting with a small experimental
study of human behaviour. We now explain the conventional methods for strategy
development.

2.2 Dialogue Strategy Development

There is a wide range of techniques to develop dialogue strategies, and techniques
applied in industry are very different from the ones applied in research (Griol et al,
2010; Pieraccini and Huerta, 2005; Williams, 2008). These differences reflect the
fact that academia and industry often pursue different objectives. Academic sys-
tems often aim to emulate human behaviour in order to generate ‘natural’ behaviour,
whereas commercial systems are required to be robust interfaces in order to solve
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a specific task, see (Larsson, 2005; Pieraccini and Huerta, 2005) for further discus-
sion.
In the following we first describe the general development cycle for dialogue

strategies (which is commonly used in industry as well as in research). We then fo-
cus on two central aspects of this cycle, where techniques in research and industry
differ widely: strategy evaluation/quality control and strategy implementation/for-
malisation. We later argue for a computational learning-based approach, where the
standard development cycle is replaced by data-driven techniques.

2.2.1 Conventional Development Lifecycle

The development lifecycle for dialogue strategies is in many ways similar to the tra-
ditional software engineering approach. This type of dialogue strategy development
is used in industry as well as in research projects (Bernsen et al, 1998; McTear,
2004). The lifecycle model includes a number of sequential stages (see Figure 2.3):
requirements analysis and functional specification, design, implementation, testing
and evaluation. In practise, the concrete realisation of the individual stages varies
from system to system. Here we briefly summarise the major aspects for each stage.
In the initial planning stage, a so-called “requirements analysis” is performed:

the system designer examines the use case of the system (e.g. the role and func-
tion of a system, user profiles, usage patterns), and the language requirements
(e.g. vocabulary, grammars, interaction patterns). Sometimes an initial user survey,
e.g. (Rieser, 2003; Wang et al, 2005), or an initial Wizard-of-Oz experiment, e.g.
(Kruijff-Korbayová et al, 2005a), helps to specify further requirements. For com-
mercial systems, the client also provides a set of functional specifications.
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Fig. 2.3 Iterative development cycle used to develop dialogue systems

In the second stage an initial strategy is designed. The dialogue is commonly
visualised using flow charts, also known as Task Hierarchical Diagrams (McTear,
2004), which describe all the possible choice points for dialogue tasks and sub-tasks
as a finite state automaton.
After the dialogue strategy is defined on paper, it is implemented into a working

dialogue system, for example using VoiceXML 3 (or other alternatives as discussed
in Subsection 2.2.3), translating the design decisions into code.
In the final stage, the strategy is tested and evaluated. So-called “black-box”

testing is frequently used to evaluate the system as a whole with reference to its
functional specification, its performance, and its user acceptance. Further details are
discussed in Subsection 2.2.2. The evaluation results and an error analysis are used
to inform strategy re-design, and the cycle starts again.
In the next two Sections we further investigate the evaluation and implementation

phase in more detail, where we compare methods used in industry with the ones used
in research.

2.2.2 Evaluation and Strategy Quality Control

2.2.2.1 Quality Control in Industry

In industry the initial design is commonly motivated by guidelines and ‘best prac-
tises’ which should help to assure the system’s usability (Paek, 2007). Various
sources exist which define standards, guidelines and recommendations on what a
“good” dialogue should be, e.g. (Balentine and Morgan, 2001; Balogh et al, 2004;
Dix et al, 1998; Dybkjaer and Bernsen, 2000; Frostad, 2003; Lamel et al, 2000;
Larson, 2003; Nass and Barve, 2005; Shneiderman, 1997; Weinschenk and Barker,
2000). However, the quality of the given advice is questionable (Paek, 2007). For

3 http://www.voicexml.org/
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example, the listed “do’s and don’ts” are not substantiated by rigorous experimen-
tal design, and it is also not clear how well they generalise. Furthermore the given
advice is sometimes very vague (e.g. “Reduce short term memory” (Shneiderman,
1997)), and may contradict each other (e.g. “Be brief” vs. “Avoid ambiguity”). It is
up to the designer to translate these statements into a dialogue strategy.
The final system is released into deployment if it is “good enough” as evaluated

by some metrics. For industrial applications this criterion is defined by Return-On-
Investment (ROI), which is the ratio of money gained or lost on an investment rel-
ative to the amount of money invested (Paek, 2007; Pieraccini and Huerta, 2005).
In general, the development costs for dialogue strategies are high. In particular, user
testing is time, labour, and cost intensive. Thus, extensive evaluation is often set
aside in practise. In software engineering this dilemma of insufficient testing was
first described by Sneed and Merey (1985) as the “vicious square”. According to
this theory, the overall productivity of a software project is defined by quantity,
costs, duration, and targeted quality. If costs, duration, and quantity are limited by
ROI, software quality and software testing will need to be reduced.

2.2.2.2 Evaluation Practises in Academia

Dialogue strategies developed in academia are usually extensively tested against
some baseline in order to make scientific claims, e.g. by showing some significant
differences in system behaviour. Research has exerted considerable effort and atten-
tion in devising evaluation metrics that allow for comparison of disparate systems
with varying tasks and domains: see (Paek, 2007) for an extensive survey. In the
rest of this section we discuss the PARADISE framework in more detail. While there
are many other evaluation metrics, e.g. (Hartikainen et al, 2004; Paek, 2001) etc.,
PARADISE has emerged as a “de-facto standard” (Möller et al, 2007), along with the
SASSI framework by (Hone and Graham, 2000). These two evaluation frameworks
serve different purposes. While SASSI (Subjective Assessment of Speech System In-
terfaces) is a framework for designing user questionnaires, the main purpose of PAR-
ADISE (PARAdigm for DIalogue System Evaluation) is to construct a data-driven
model for automatic dialogue evaluation.
Furthermore, the questionnaire used in the original PARADISE studies (Walker

et al, 1997, 2000) is also widely used by other subsequent dialogue studies, e.g.
(Frampton and Lemon, 2006; Hajdinjak and Mihelic, 2006; Hof et al, 2006; Lemon
et al, 2006a; Quarteroni and Manandhar, 2008). The questions used in PARADISE
target different dimensions, as listed in Table 2.1. These dimensions have been crit-
icised for being “arbitrary and based on intuition” (Paek, 2007). The SASSI frame-
work (Hone and Graham, 2000), in contrast, allows a more principled approach to
design questionnaires. In SASSI six main factors are identified which determine the
user’s perception of the dialogue. We argue that in fact the questions in PARADISE
and SASSI measure similar underlying factors/ dimensions. For a direct comparison
see Table 2.1.
In the next Subsection we describe the PARADISE framework in more detail.
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2.2.2.3 The PARADISE Evaluation Framework

PARADISE is a widely used framework for automatic dialogue evaluation introduced
by (Walker et al, 1997, 1998b, 2000). The main idea behind PARADISE is to esti-
mate subjective user ratings (obtained from questionnaires) from objective dialogue
performance measures (such as dialogue length) which are available at system run-
time. (Walker et al, 1997) propose to model “User Satisfaction” (US) using multiple
linear regression (see Equation 2.1). User Satisfaction is calculated as the arithmetic
mean of nine user judgements related to different quality aspects (see Table 2.1),
which are rated on Likert scales . A likert scale is a discrete rating scale where the
subject indicates his/her level of agreement with a statement (e.g. from “strongly
agree” to “strongly disagree”).
The input to the regression analysis consists of two main constituents: A param-

eter related to task success (either the coefficient κ calculated from an external an-
notation of correctly identified concepts, or a direct user judgment on perceived task
success), and of additional interaction parameters measuring dialogue efficiency and
quality Ci. These parameters can include runtime features such as the dialogue du-
ration, the number of system and user turns, a mean recognition score, as well as
the number of time-out prompts, barge-ins, recogniser rejections, help requests and
cancel attempts by the user, and so on (see (Möller, 2005b) for a discussion of other
possible runtime features). The multivariate linear regression analysis is carried out
with the input parameters κ and Ci as the independent (predictive) variables, and
the mean user judgment US as the dependent (target) variable. The regression de-
termines the weighting coefficients α and wi, of the linear prediction function as in
Equation 2.1, where N(·) is a normalisation function.

US︸︷︷︸
sub jective

= α ×N(κ)−
n

∑
i=1

wi ×N(Ci)︸ ︷︷ ︸
ob jective

(2.1)

The major strength of this framework is that the resulting model can be used to
predict subjective user ratings automatically from objective runtime features. Once
the PARADISE regression model is determined from data by a user study, the ex-
pected User Satisfaction for all future dialogues generated by the system can be
calculated automatically.

2.2.2.4 Strategy Re-Implementation

After testing and evaluation, an error analysis is performed and the results are then
used to re-design the strategy. However, there is no framework which describes how
evaluation results are best transferred into code. For example, the three features that
consistently appeared among the top predictive factors for the PARADISE model
are mean recognition score, task completion, and the percentage of recognition re-
jections, e.g. (Möller et al, 2007; Skantze, 2005; Walker et al, 2000; Williams and
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Young, 2004a). Unfortunately, this is not the kind of insight which leads to improved
strategies, as most system designers probably already know that improving speech
recognition (either in absolute terms or by user perception) improves user satisfac-
tion. The question therefore remains how strategy evaluation can directly lead to
improved strategies.

2.2.3 Strategy Implementation

There are many different ways in which a dialogue strategy can be implemented.
The approaches listed in Table 2.2 do not represent an exhaustive list of the tech-
niques available.4 It does however, give some idea of the wide range of the possible
frameworks available. The interested reader is referred to the references in Table
2.2.

2.2.3.1 Implementation Practises in Industry

Most commercial systems rely on Finite State Automata (FSA) controlled by menus,
forms, or frames.5 The most common applications are form filling dialogues, in-
formation retrieval, transactions and services (Pieraccini and Huerta, 2005). Using
the finite-state model, dialogue strategies can be rapidly prototyped, tested and de-
bugged. Furthermore, FSAs are useful for small, well-defined tasks, and in situations
where speech recognition performance may be relatively low (e.g. over a telephone
line) as they allow small sub-grammars to be defined which facilitate robust recog-
nition (e.g. digit recognition).
However, this development methodology is limited by the fact that every change

in the conversation must be explicitly represented by a transition between two nodes
in the network. Dialogue strategies designed as FSA are based on hand-crafted rules
which usually lack context-sensitive behaviour, are not very flexible, cannot handle
unseen situations, and are not reusable from task to task. Furthermore, FSA easily
become intractable for more complex tasks and cannot model complex reasoning.

4 Note that there is no agreed typology for classifying dialogue strategy implementations. The one
used in this book follows Lemon (2006); McTear (2004).
5 Note that this is not an absolute classification. There are also research systems which use FSA,
e.g. (Alexandersson and Reithinger, 1995; Okamoto et al, 2001; Rieser, 2003).
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2.2.3.2 Implementation Practises in Academia

Most research systems to date have been based either on planning with logical in-
ference, e.g. (Blaylock and Allen, 2005; Steedman and Petrick, 2007), or they are
implemented in the “Information State Update” (ISU) approach using frames or
tree sub-structures as control mechanism, e.g. (Larsson and Traum, 2000; Lemon
et al, 2001). More recently, statistical systems using machine learning approaches
have become more prevalent, for example (Griol et al, 2008; Henderson et al,
2008; Thomson and Young, 2010; Young et al, 2007, 2009), and see (Frampton
and Lemon, 2009) for a survey.
Planning approaches are mostly used for complex tasks, like collaborative prob-

lem solving, intelligent assistants, and tutorial dialogues. ISU-based systems are
used for a variety of applications with different complexity (see Table 2.2 for refer-
ences). Both approaches have an higher expressive power than simple FSA, and can
lead to more sophisticated (e.g. context-dependent) strategies. On the other hand,
these systems are harder to maintain and debug. Building these types of systems
requires (linguistic) expert knowledge, and the encoded strategy has to be manu-
ally tailored to a specific application and is not reusable. Furthermore, hand-tuning
these complex strategies requires specialised knowledge of linguistic representation.
Hand-tuning a simple FSA (as used in industry) only requires software engineering
skills. Hence, the dialogue frameworks developed in research are often too costly
to be applied commercially, though see (Griol et al, 2010; Pieraccini et al, 2009;
Williams, 2008) for recent discussions of the use of statistical approaches in indus-
try.

2.2.4 Challenges for Strategy Development

How can this chasm be bridged? Is there a third option which can meet the chal-
lenges for both cost-effective industrial speech interfaces and the advanced dialogue
agents of academic research? What requirements does it have to meet?
In the following we discuss why standard techniques are not suited to meet the

future challenges described in Zue (2007). Zue calls the dialogue system of the
future an “organic interface”, that can learn, grow, re-congure, and repair itself.
First, good strategies have to be more robust towards unseen events (Zue, 2007).

The techniques outlined above require the manual specification of rules which define
an action for all possible dialogue situations. Exhaustive enumeration, encoding, and
maintenance of strategies becomes increasingly complex with growing complexity
of the application. It is not practically possible for the designer to anticipate all the
possible situations of a dynamic environment. Thus, “organic” interfaces will need
a strategy which is able to generalise to unseen events.
Second, good strategies should be context sensitive (Zue, 2007). Most current

strategies make use of hand-coded thresholds in order to react to changes in the
context. For example, thresholds are used to make strategies sensitive to the number
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of retrieved database items, e.g. (Varges et al, 2006), or to the confidence scores
returned from ASR, e.g. (Bohus and Rudnicky, 2005b). Most of the time, these
thresholds stay fixed the whole dialogue. For strategies to be truly context-sensitive
the thresholds would need to be re-defined in each context – a task which becomes
increasingly complex, especially if multiple thresholds are applied. In addition,
these thresholds have to be redefined in the same costly manner when the system is
transferred to another application environment. Thus, while current threshold-based
strategies are usually only crudely adapted to an overall state, “organic interfaces”
should dynamically adapt to every possible system context.
Third, good strategies need to more adaptive to the application environment (Zue,

2007). For example, the dialogue should be adaptive to channel noise, different user
behaviour, user preferences and user types. In order to design adaptive strategies the
system developer has to foresee the requirements of the respective conditions and
manually specify according strategies. Ideally, “organic interfaces” would be able
to automatically adapt to different situations.
Therefore, Zue (2007) concludes that “organic interfaces” will be new interfaces

which implement strategies which automatically learn adaptive behaviour, in con-
trast to the static standard techniques described in Section 2.2.3 above.
Current research has turned to automated dialogue strategy learning using sta-

tistical machine learning techniques, e.g. (Henderson et al, 2008; Levin and Pier-
accini, 1997; Rieser and Lemon, 2011; Thomson and Young, 2010; Williams and
Young, 2007a; Young, 2000) These techniques overcome many of the deficits of
the conventional methods, such as a data-driven development cycle, a precise math-
ematical model for optimisation, possibilities for generalisation to unseen states,
and reduced development and deployment costs for industry (Lemon and Pietquin,
2007).6 However, statistical learning techniques for dialogue strategies, especially
Reinforcement Learning, are also criticised for not being suitable for commercial
development (Paek, 2006). In particular, (Paek, 2006) criticises the large amounts
of data that are needed, and complains that the learned policy is a “black box” which
cannot be controlled by the system designer. In the course of this book we will dis-
cuss this (and other) criticisms. In the final Chapter (section 10.2.2) we will sum-
marise the arguments. A major advantage of this new statistical approach is that it
introduces a principled scientific method for improving dialogue strategy design,
whereas the previous hand-coded approaches were mainly based on the designer’s
intuition.
We now present different Machine Learning paradigms and discuss which are

best suited for dialogue strategy development.

6 Note that this research combines efforts from academia as well as from industry. The first sta-
tistical dialogue systems were actually developed in the context of industrial research (Levin and
Pieraccini, 1997; Walker et al, 1998a).
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2.3 Literature review: Learning Dialogue Strategies

2.3.1 Machine Learning Paradigms

Machine Learning (ML) can be defined as follows. Given a specific task to solve,
and a class of functions F , learning means using a set of observations, in order to
find f ∗ ∈ F which solves the task in an optimal sense. This entails defining a cost
functionC : F → ℜ such that, for the optimal solution ∀ f ∈ F, f ∗,C( f ∗)≤C( f ) (no
solution has a cost less than the cost of the optimal solution). The cost functionC is
an important concept in learning, as it is a measure of how far away we are from an
optimal solution to the problem that we want to solve. Learning algorithms search
through the solution space in order to find a function that has the smallest possible
cost (or alternatively the maximal utility). Several textbooks offer a comprehensive
introduction to Machine Learning, e.g. (Bishop, 2006; Ghahramani, 2004; MacKay,
2003; Witten and Frank, 2005)
In general, there are three major learning paradigms, each corresponding to a

particular abstract learning task: Supervised Learning, Unsupervised Learning and
Reinforcement Learning. We now briefly define each paradigm, following Ghahra-
mani (2004).
In Supervised Learning (SL), we are given a set of example pairs/labelled data

points (x,y),x ∈ X ,y ∈ Y and the aim is to find a function f in the allowed class of
functions that matches the examples. In other words, we wish to infer the mapping
implied by the data; the cost function is to reduce the mismatch between our map-
ping and the data. The goal is to find a model which mimics the data as close as
possible, while still being general enough to classify/predict unseen events well.
In Unsupervised Learning (US) we are given some data x, and the cost function

to be minimised can be any function of the data x and the (unknown) target output. In
contrast to SL, no target outputs/input labels are given. In a sense, US can be thought
of as finding patterns in the data above and beyond what would be considered pure
unstructured noise. Tasks that fall within the paradigm of unsupervised learning are
in general estimation problems; the applications include clustering, or the estimation
of statistical distributions.

Reinforcement Learning (RL) is sequential decision making, where the RL agent
interacts with its environment (Sutton and Barto, 1998). The environment is defined
as:

“anything that cannot be changed arbitrarily by the agent is considered to be outside of it
and thus part of its environment” (Sutton and Barto, 1998, p.53)

For dialogue strategy learning the simulated environment can include the (sim-
ulated) user, channel noise, the back-end database and other components of the di-
alogue system, such as ASR, NLU, and TTS. At each point in time t, the agent
performs an action at and the environment generates an observation ot and an instan-
taneous cost ct (here also called “rewards”), according to some (usually unknown)
dynamics. The goal is then to discover a policy for selecting actions that minimises
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some measure of a long-term cost and maximises the expected cumulative utility
(also known as ‘final reward’). This is usually done by trial-and-error search meth-
ods. A detailed introduction to RL is given in Section 3.2.
To date, different Machine Learning approaches have been applied to automatic

dialogue management:

• Supervised approaches, which learn a strategy which mimic a given data set;
• Approaches based on decision theory, which are supervised approaches in the
sense that they optimise action choice with respect to some local costs as ob-
served in the data. In contrast to SL they explicitly model uncertainty in the
observation;

• Reinforcement Learning-based approaches, which are related to decision theo-
retic approaches, but optimise action choice globally as a sequence of decisions.

We now explain these techniques in more detail and review recent applications
for each ML paradigm.

2.3.2 Supervised Learning for Dialogue Strategies

Supervised learning follows a “learn-by-example” approach which learns a mapping
between given inputs and outputs from a fixed data set. In the following we review
three examples of supervised dialogue strategy learning.
The research of (Lane et al, 2004; Ueno et al, 2004), for example, adapts dia-

logue strategies to various user and situation models via example-based learning.
The training corpus is gathered using the following setup: a set of possible system
responses is displayed on a screen while the user interacts with the system. For each
system turn, the user selects the response that they think is most suitable in the cur-
rent situation.The learned strategy chooses the action which is selected most often
by the users. Note that this method is similar to Active Learning, where the human
annotator selects labels for the most informative cases (Cohn et al, 1994; Seung
et al, 1992). However, one has to assume that users are not experts in dialogue strat-
egy design. As a consequence, the annotations can be considered less than optimal.
In addition, this type of user assisted design has high costs, compared to strategy
design by an expert.
A different approach to “human assisted design” is introduced by Okamoto et al

(2001). They use a Wizard-of-Oz (WOZ) study (see Section 3.3.1) for data collec-
tion, where the human wizard is free to choose from a predefined set of utterances.
They assume that learning an “average” strategy of decisions taken by the human
wizard will result in a good dialogue strategy. Again, the wizard is not an expert in
how a machine should ideally react in a certain situation. In general, human deci-
sions often serve as “gold standard” for other tasks such as automatic summarisa-
tion (Teufel and van Halteren, 2004), or automatic annotation. However, human be-
haviour cannot be viewed as gold standard in the context of dialogue strategy design,
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as Human-Machine Interaction is fundamentally different to Human-Human Inter-
action (as argued in Section 2.1). We will provide some examples of sub-optimal
wizard behaviour in Chapter 6.4. In addition, (Okamoto et al, 2001) report that SL
methods applied to WOZ data suffer from data-sparsity. (Note that WOZ studies are
costly and therefore usually result in limited amounts of data.)
In order to circumvent the data problem, (Filisko and Seneff, 2005, 2006) gen-

erate training data by interaction with simulated users, based on work by Chung
(2004a). A simulated user generates text-based utterances, which are the converted
to sound. An ASR system is used to recognise what was said, while the dialogue
manager explores different error handling strategies. They use SL to select the strat-
egy which is most likely to resolve the error in the next turn, as labelled in the data.
In sum, SL approaches optimise some point-based decision, i.e. they learn to es-

timate the most successful action in a certain context/dialogue state as observed in
a fixed data set, where “success” can be label indicating whether the error was re-
solved in the next turn (Filisko and Seneff, 2005, 2006), a rating assigned by human
judges (Lane et al, 2004; Ueno et al, 2004), or the action taken most frequently by
the human wizard (Okamoto et al, 2001).
However, SL approaches have two short-comings with respect to dialogue strat-

egy learning: First, they do not model uncertainty in what was recognised, which
is one of the major characteristics of human-machine dialogue (see Section 2.1).
Second, they do not model dialogue as a sequence of actions, but are only based
on local point-wise estimates. Third, they only mimic behaviour observed in a fixed
corpus and no new strategies can be explored. The first short-coming is corrected by
approaches using Decision Theory as discussed in the next Section. The other two
are corrected by Reinforcement Learning, as discussed in Section 2.3.4.

2.3.3 Dialogue as Decision Making under Uncertainty

Dialogue was first described as decision making under uncertainty by Paek and
Horvitz (Paek and Horvitz, 1999, 2000, 2003). Similar to SL, this approach is based
on some local cost function, defining a mapping states and actions, which is here
called utility. In addition, this approach also explicitly models the uncertainty in the
observed state. In this framework the agent selects the action A = a that maximizes
expected utility, EU(a|o), where o are observed events. Action selection is guided
by the following optimisation:

A = argmaxEU(a|o) = argmax
a

∑
s

P(S = s|o)×utility(a,s); (2.2)

where utility(a,s) expresses the utility of taking action a when the state of the
world is s. The utility function is trained via “local” user ratings. Users rate the
appropriateness of an action in a certain state via a GUI while they are interacting
with the system (similar to (Lane et al, 2004; Ueno et al, 2004) for SL). Paek and
Horvitz apply this framework to error-handling sub-strategies.
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Bohus (2007) and Skantze (2007a) follow a similar utility-based approach, also
applying it to error handling. The work of Bohus et al (Bohus, 2007; Bohus and
Rudnicky, 2005b; Bohus et al, 2006) follows a similar approach, but derives the
utility function from (post-annotated) dialogue data. In this work, binary logistic
regression is used to determine the costs between task success and various types
of understanding errors. Different regressions may then be calculated in different
dialogue states, resulting in more dynamic behaviour than simple threshold setting
(cf. discussion in Section 2.2.4). In addition, Bohus applies this framework to learn
whether to reject or accept a user input.
Recent work by Skantze Skantze (2007a,b) extends this approach and learns

whether to reject, accept, display understanding, or clarify a user input. Skantze
learns the cost for these actions from data gathered with the HIGGINS dialogue
system (Edlund et al, 2004).
In sum, this approach to dialogue as decision making under uncertainty has been

applied to optimise local error handling strategies i.e. how to detect and recover
from an ASR error within in a certain local context, given some uncertainty. How-
ever, this framework doesn’t consider what action is best in the long run, i.e. how
this local decision will contribute to a successful dialogue in the light of how the
dialogue proceeds after taking this action. For real-life problems, multivariate func-
tions commonly have many local minima and maxima. What is identified to be best
in the current situation, may not be optimal for the overall goal of the dialogue (e.g.
to efficiently solve a task). For example, results from a corpus study by Bohus and
Rudnicky (2005a) show that there is a discrepancy of up to 51.5% between what
is mis-recognised by the system and what is corrected by the users. Similar obser-
vations are also reported by (Acomb et al, 2007), where 13.2% of the confirmed
utterances are mis-recognised. In other words, users may leave errors locally uncor-
rected, which then globally leads to task failure.

2.3.4 Reinforcement Learning for Dialogue Strategies

In contrast to the above approaches, Reinforcement Learning treats dialogue strat-
egy learning as a sequential optimisation problem, leading to strategies which are
globally optimal (Sutton and Barto, 1998).7

Similar to Decision Theory, uncertainty can be explicitly represented in RL.
Stochastic variation in the user response is represented as transition probabilities
between states and actions using Markov Decision Processes (MDPs), which we
introduce in Section 3.2.1. Furthermore, dialogue strategies need to be robust to
“noisy” observations, for example speech recognition errors introduced by ASR.
Therefore, the problem is represented as Partially Observable Markov Decision Pro-
cess (POMDP), which we introduce in Section 3.2.1.2. While being conceptually

7 Note that RL is the global optimisation technique which is most frequently applied to dialogue
strategy learning. However, others do exist. For example, work by Toney (2007); Toney et al
(2006), for example, explores the use of Genetic Algorithms for dialogue strategy learning.
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more attractive that MDPs, POMDP-based SDS still suffer from high computational
power, memory, and storage requirements of the hardware used, thus limiting the
complexity of the systems currently being deployed.
We now review three RL-based systems which address one of the most urgent

problems for RL-based strategy development: while being theoretically most attrac-
tive for dialogue strategy learning, RL needs substantial amounts of data to learn
reliable strategies (also see discussion in Section 3.2.2.3). This is due to the follow-
ing facts: If a situation was not seen in the training data (i.e. is unseen) the agent
has to “guess” what to do, leading to less robust strategies. Furthermore, it leads
to unreliable estimates of the expected utility (reward) of an action if state-action
pairs are visited very infrequently. This is due to the fact that the dialogue learner
interacts with a stochastic environment: every time the agent visits a state and ex-
ecutes an action, the environment (i.e. the user, ASR, etc.) might react differently.
Thus a state action-pair needs to be visited several times in order to obtain reliable
estimates, which is less likely when learning from limited data. Several approaches
have been suggested to overcome the data sparsity problem for RL.
One technique addressing the data sparsity problem, is to limit the number of

possible system states to the size of the available data set. For example Litman et al
(2000); Singh et al (2002) use RL to optimise initiative and confirmation (sub-)
strategies for the NJFun system. They learn these strategies from a fixed data set
comprising 311 dialogues from a user study with 54 subjects. In order to learn reli-
able strategies from this data, Singh et al keep the policy space as small as possible.
The strategy is limited to 42 possible states, where only two actions are made avail-
able in each state. They report that only 8 (19%) states are visited less than 10 times
in the training data. The evaluation results of Litman et al (2000); Singh et al (2002)
are encouraging: results with real users show significant increase in task completion
rate from 52% to 64%. However, learning with limited state spaces still requires “a
fair amount” data. Note that, Tetreault et al (2007) introduce a measure based on
strategy convergence which helps to determine how much data is needed relative to
the size of state-action set. However, learning with limited state spaces is in general
not desirable, as only very simple strategies can be learned (and for very simple
strategies hand-coded strategies might perform equally well). Another approach to
handle the data problem is to summarise the state space in order to generalise to
unseen situations as described below (also see Section 3.2.2.3).
The work of Henderson et al (2005, 2008) addressed a much more complex prob-

lem using RL, which is represented by 10386 states and 74 actions (resulting in pos-
sible 7410386 policies). They therefore learn from a much larger data set of 2331
dialogues and over 103000 turns, taken from the COMMUNICATOR corpus (Walker
et al, 2002b). However, they find that state frequencies in the data set follow a Zip-
fian (i.e., long-tailed) distribution, with 61% of the system turns having states that
only occurred once in the data. Henderson et al (2008) address the data sparsity
problem using two different techniques. First, linear function approximation is ap-
plied. Linear function approximation learns linear estimates between state-action
pairs and expected reward values (Sutton and Barto, 1998), and thus generalises
to states which are not in the training data (also see Section 3.2.2.3). In addition,
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Henderson et al (2008) apply a novel hybrid approach combining Supervised and
Reinforcement Learning. SL is used to model which action to take in portions of the
state space where data is not sufficient. RL is used to choose between the remain-
ing states. The results show that the hybrid RL/SL policy outperforms the strategies
which are based on RL or SL only. The SL policy is a very challenging baseline as
it mimics a ‘multi-version’ system of 8 well-engineered COMMUNICATOR systems
(Walker et al, 2002b). Multi-version systems are known to remove errors made by
any one system that are not shared by most of the other systems.8 Still, RL is able to
improve upon SL by exploring different actions and evaluating how good they are in
the long run (i.e. with respect to all subsequent actions which are likely to follow),
rather than just choosing the locally best action according to the 8 systems. This
result also illustrates that hand-coded strategies are very unlikely to be globally op-
timal: even the very “essence” of 8 expert systems manually designed by a human
developer, is still sub-optimal. RL-based strategies, in contrast, are provably opti-
mal. However, the exploration of new strategies as done by (Henderson et al, 2005,
2008) is very limited as they learn from a fixed data set. In addition, this approach
relies on a substantial amount of initial training data, where annotated dialogue data
is still scarce (Lemon and Pietquin, 2007).
A radically different approach to solve the data sparsity problem was introduced

by Eckert et al (1997, 1998); Levin et al (2000). In this approach, the RL strategy is
trained while interacting with a simulated dialogue environment, including a simu-
lated user (cf. (Filisko and Seneff, 2005, 2006) for SL). This approach allows arti-
ficial expansion of a small amount of initial training data in a two-stage approach:
a statistical learning environment is first trained on a limited amount of dialogue
data and the simulated environment is then used to generate additional dialogues
by interacting with the dialogue policy. However, the simulation-based approach as-
sumes the presence of a small corpus of annotated in-domain dialogues. In addition,
the quality of the learned strategy depends on the quality of the simulated learning
environment. We address these problems in the course of the book .
Finally, new techniques have been explored very recently for rapid learning from

small amounts of data (Gasic and Young, 2011; Pietquin et al, 2011a,b), without
the use of user simulations. These methods may ultimately allow online learning
of dialogue strategies during interaction. For example, (Pietquin et al, 2011a) learn
sparse representations of the value function by sample efficient off-policy learning
using Kalman Temporal Differences, also see Section 3.2.2.2.

2.4 Summary

This Chapter argues for the use of Reinforcement Learning (RL) to develop and
optimise dialogue strategies. We first introduced a general discussion of Human-
Human and Human-Computer Interaction (HCI). Dialogue systems for HCI require

8 For example, multi-expert/ensemble-based learning has also shown to lead to improved results
for parse selection (Osborne and Baldridge, 2004)
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a dialogue strategy which “tells” the system what to do. We then presented the con-
ventional lifecycle model for dialogue strategy development and discuss general dif-
ferences between practises applied in industry and research. We concluded that the
current challenge for dialogue development are strategies which are robust, adaptive,
context-sensitive and cheap to develop. For this reason, statistical machine learning
approaches have become attractive. We compare three different learning paradigms
which are currently applied to strategy development: Supervised Learning, Decision
Theoretic approaches, and Reinforcement Learning.
Having summarised the general background to our work, the next chapter deals

with the specifics of Reinforcement Learning approaches, Dialogue simulation
methods, and the application domain of our case-study.



Chapter 3

Reinforcement Learning

Fig. 3.1 Peter Rabbit (Potter, 1902): An agent receiving rewards

In this Chapter we summarise and discuss the main arguments for the use of RL
in dialogue development, and introduce the reader to the technical details of this
approach. We provide the reader with more background knowledge about the basic
principles and ideas behind RL, and we relate these principles to basic character-
istics of dialogue interaction. In particular, we argue that dialogue is temporal and
dynamic in nature (Levin et al, 2000; Walker, 1993), which makes learning with
delayed rewards, instructive feedback, and exploration particularly attractive. For
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the purpose of illustration we take the metaphor of task-oriented dialogue as a game
of chess, since playing board games has similar temporal and environmental char-
acteristics to dialogue (cf. Wittgenstein (1953)’s language games) which requires
strategic planning under uncertainty.1

3.1 The Nature of Dialogue Interaction

In the following we argue that dialogue is temporal and dynamic in nature (Levin
et al, 2000; Walker, 1993), and discuss properties of the previously mentioned sta-
tistical machine learning approaches (Supervised Learning, Decision Theory and
Reinforcement Learning), see Section 2.3.

3.1.1 Dialogue is Temporal

Dialogue is temporal in the sense that how ‘good’ an action is depends on how the
dialogue progresses further. Taking an action affects the state of the dialogue and
thereby affects the options and opportunities available at later times. Thus, action
choice requires foresight and long-term planning with respect to the delayed conse-
quences of actions as specified by to the dynamics of the environment. As such, we
cannot present correct input/output move pairs of ideal dialogue strategy behaviour.
We often have data containing annotations of how good the overall performance of
a specific dialogue was (e.g. task success, or user scores), but we don’t have any
indication about how good a single action was. In other words, it is hard to tell how
things should have been exactly done in a specific situation, but we can tell whether
the dialogue was successful/ satisfying overall.
Thus, Supervised Learning is not a suitable candidate for dialogue strategy opti-

misation (Levin et al, 2000). Nevertheless, SL has potential in the context of “multi-
expert” learning, as shown by Henderson et al (2005, 2008) (see Section 2.3.4).
Local Decision Theory also does not account for the temporal nature of dialogue.

DT produces dialogue strategies which are optimal in a certain context, but do not
account for any long-term consequences. In the context of error handling (cf. (Bo-
hus, 2007; Skantze, 2007a)) one might argue that to recover from an ASR error is a
local problem. However, error recognition, i.e. the decision whether to engage in an
error handling sub-dialogue or progress with the overall task, also affects long-term
goals such as dialogue efficiency and task success. Even though Bohus (2007) and
Skantze (2007a) specify their cost function with respect to a final outcome measure

1 Note that chess is a competitive game, whereas dialogue is described as “joint action” (Clark,
1996) or “collaborative problem solving” (Blaylock and Allen, 2005). However, this difference
will mainly affect the way actions are rewarded. It is still instructive to take chess as a metaphor to
describe the general underlying principles for dialogue as a long-term planning process. Current
research also explores non-cooperative dialogue (Plüss, 2010)
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(task completion), they do not model the consequences of local decisions on fur-
ther dialogue behaviour. Results by Frampton and Lemon (2008) show that good
repair strategies are based on knowledge about the dialogue history, as well as the
further course of the dialogue. In analogy with the chess-playing example, the Deci-
sion Theoretic approach corresponds to a strategy which only improves short-term
tactics, but does not pay attention to how the move changes the overall long-term
configuration on the chess board.
Reinforcement Learning, in contrast, models the problem as sequential decision

process with long-term planning. RL is based on the principle of delayed rewards,
i.e. the effects of an action may only become fully apparent at the end of the dia-
logue. Delayed rewards ensure that the value of an action in a given state is always
defined with respect to the final outcome of a task, and thus helps to avoid local min-
ima. For example, a good long-term tactic for a chess player might be to sacrifice a
pawn in order to change the chess board constellation which then allows execution
of a strategy which is promising in the long-run.

3.1.2 Dialogue is Dynamic

Dialogue being dynamic describes the fact that dialogue takes place in interaction
with a stochastic environment, where conditions change frequently (e.g. the level of
noise) or a dialogue partner reacts differently than predicted in a certain situation.
This characteristic requires a strategy which is robust to unseen states.
In Supervised Learning the learner has to be explicitly ‘told’ what to do in a

specific situation by presenting as many examples as possible. This is called learning
via instructive feedback: telling the learner what is right or wrong in given situation.
Once the system deviates from the dialogue in the corpus, there is no way of finding
the correct supervision for the rest of the transaction.
In the chess-playing example, if somebody explains how to play chess, this per-

son could never think of all possible board constellations and tell exactly what to do
in each situation. Once the basic rules of the environment (the game) are known, an
experienced player dynamically adapts his strategy to the current constellation, the
progress of the game, the behaviour of the other player, and so on. Furthermore, a
chess player will not consider the value of a single action choice, but will always
plan his/her moves by “thinking ahead”, i.e. as a sequence of action choices. Good
players usually develop this skill by exploring different strategies over time (getting
rewarded by winning and ‘punished’ by losing), and start to exploit this knowledge
at a later point. Similarly, language learners improve their communicative skills over
time.
This type of explorative learning is called evaluative feedback. In evaluative feed-

back there is no predefined right or wrong answer, but the environment ‘responds’
by assigning some local cost or utility. The learner adapts to this feedback by max-
imising overall utility (rewards) and minimising costs (punishments). Decision The-
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oretic approaches and RL both learn by evaluative feedback, where DT maximises
short-term goals and RL maximises long-term goals.
Another difference between the learning techniques is that RL learns by explo-

ration (of uncharted territory) and exploitation (of current knowledge). The ability to
explore allows a system to learn strategies which are more robust to unseen states.
The ability to exploit current knowledge allows learning by experience. In DT, in
contrast, the dialogue cost function is learned from a fixed corpus. Thus, only state-
action pairs as seen in the corpus have reliable cost values.2

In order to ensure enough exploration, recent research has turned to simulation-
based RL, where the dialogue agent interacts with a simulated dialogue environ-
ment and thus can explore (almost) any number of strategies with (almost) no cost.
Simulation-based RL has been explored by Ai and Litman (2007); Ai et al (2007b);
Frampton (2008); Georgila et al (2006a); Janarthanam and Lemon (2008); Pietquin
(2004); Schatzmann (2008); Thomson et al (2007); Toney (2007); Williams (2006)
amongst others. We further discuss simulation-based RL in Section 3.2.3.
After we have illustrated the main advantages of RL for temporal and dynamic

dialogue, we now turn to a more formal definition of the theoretical concepts of RL.

3.2 Reinforcement Learning-based Dialogue Strategy Learning

3.2.1 Dialogue as a Markov Decision Process

Fig. 3.2 RL with Markov Decision Processes (MDPs): The learning agent travels through a net-
work of interconnected states. At each time t, the agent is in state st , takes an action at , transitions
into state st+1 according to the transition probability p(st+1|st ,at), and receives reward rt+1

2 Though online learning for DT has been proposed by Bohus et al (2006).
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Within the RL framework for dialogue development, dialogue strategies are rep-
resented as mappings from states to actions within (MDPs), as first introduced by
Levin and Pieraccini (1997); Levin et al (1998). A MDP is formally described by a
finite state space S, a finite action set A, a set of transition probabilities T and a re-
ward functionR. The dialogue strategy learner can be visualised as an agent travel-
ling through a network of interconnected dialogue states (see Figure 3.2). Starting in
some initial state, the learning algorithm transitions from state to state by taking ac-
tions and collecting rewards as it goes along. The transitions are non-deterministic,
since the dialogue environment is stochastic and dynamic.
A MDP is a more specialised version of a (see Figure 3.3) which accounts for the

temporal nature of dialogue actions: by taking an action the agent actively changes
the environment and influences what states and actions are available in the conse-
quent dialogue. The Markov Property requires that the state and reward at time t+1
only depend on the state and action at time t, as expressed in Equation 3.1.

P(st+1,rt+1|st ,at ,st−1,at−1,rt−1, . . . ,s0,a0)≈ P(st+1,rt+1|st ,at) (3.1)

Fig. 3.3 Agent interacting with a stochastic environment and actively influencing its behaviour by
taking action at in state st . The changes in the environment are observed (ot+1) and a reward is
received rt+1

3.2.1.1 Representing Dialogue as a Markov Decision Process

We now give a short description of the tuple 〈S,A,T ,R〉 which defines a MDP, in
the case of dialogue systems.
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State space (S):

The S refers to the set of reachable states for the agent within the MDP. The infor-
mation represented in the state corresponds to the agent’s ‘view’ of the environment
and is usually determined by the current status of a finite number of pre-defined state
variables. The state features need to meet the Markov Property, i.e. they “should
summarise everything important about the sequence of positions that led to it” (Sut-
ton and Barto, 1998). That is, the dialogue features can also represent knowledge
about the dialogue history. Most systems include features of the dialogue history
(s̃d), together with variables representing features of the current user input action
(ãu), such as the user’s speech act and the confidence value returned from the speech
recogniser, and task level features, also known as the features representing the “user
goal” (s̃u), such as filled and confirmed slots (cf. (Lemon et al, 2005; Young, 2006)),
also see Figure 3.4.

S1
a1

a2

S2

S3

  Dialogue State:
slot1_ lled: true
slot2_ lled: false
slot1:con rmed: true
slot2_con rmed: false

  Dialogue Action:
implConf(genre='rock'),
requInf(artist=?)

Fig. 3.4 Action space and state space for dialogue as a MDP: For slot filling dialogues the dialogue
state may contain slot states; System actions can be represented as tuples consisting of dialogue
act, slot name and optional slot values

Action set (A):

The action set A contains all actions available to the agent. The action set is often
limited to a small number of actions, such as “request information”, “implicit con-
firm”, “explicit confirm”, “present information” e.g. (Frampton and Lemon, 2006).
A slightly more flexible alternative is to represent each action as a tuple consisting
of speech act, slot name, and slot value, e.g. (Henderson et al, 2008), as shown in
Figure 3.4. Most commonly, the dialogue actions to be learned are represented as
abstract semantic Speech Acts on the intention level. For the final application the
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output SAs are then usually realised using template-based Natural Language gener-
ation.

State transition function (T ):

The state transition function T describes the dynamics of the environment, i.e.
which next state s′ ∈ S is likely to follow when taking action a ∈ A in state s ∈ S. T
is defined over T : S×A×S → [0,1] , where

T a
ss′ = P(st+1 = s′|at = a,st = s); (3.2)

Reward function (R):

Similarly, given a current state st and an action at , the expected reward value of the
next state st+1 is

Ra
ss′ = E(rt+1|st = s,at = a,st+1 = s); (3.3)

R plays a critical role for what is learned by the dialogue agent, as further discussed
in Section 3.2.2.

3.2.1.2 Partially Observable Markov Decision Processes for Strategy Learning

A Partially Observable Markov Decision Process (POMDP) is an extension to the
MDP model. POMDPs correct for the assumption that the state is fully observable,
and thus provide a framework for modelling the inherent uncertainty of spoken dia-
logue systems (see Section 2.1). POMDPs were first introduced to dialogue strategy
learning by Roy et al (2000), followed by Thomson and Young (2010); Thomson
et al (2007, 2008); Williams and Young (2007b); Young (2006) more recently.
In POMDPs, the RL agent cannot directly observe the underlying state, but in-

stead, it must make inferences about the state based on observations.3 In contrast, a
MDP approach assumes that the entire state space is fully observable. In the MDP
approach uncertainty can only be represented as state features encoding ASR con-
fidence scores, such as ‘low’, ‘high’ (cf. (Pietquin, 2006)), or whether slot is con-
firmed or not (confirmed slots are less uncertain than slots which are only filled). In
contrast, POMDPs encode uncertainty by representing the current dialogue state s
as a belief state b(s) which is a distribution over the possible states. According to
some current observations o this belief state gets updated, through a process called
belief monitoring:

3 For instance, chess is a directly observable game: you can always see the positions of all the
pieces. Poker, by contrast, is partially observable: you can make inferences about the set of cards
your opponents hold, but cannot directly observe them.
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b′(s′) = P(s′|o′,a,b(s)) = k×P(o′|s′,as)∑
s∈S

P(s′|a,s)b(s); (3.4)

where b′(s′) is the estimated belief state , P(s′|o′,a,b) the probability of being in
a state s′ given the estimated observation o′, the user action a and the current belief
state b(s). This can be re-written as the probability of observing o′ in a system state
s′ and given a system action as, given the transition probability for all the current
belief states to the new state s, where k is a normalisation constant (Kaelbling et al,
1998).
Modern speech recognisers can produce a list of alternative ASR hypotheses. A

POMDP-based dialogue system can then track a number of possible hypotheses at
the same time, and if required, it can backtrack and correct them. Information about
the user’s goal can also accumulate over a series of dialogue turns. A confidence-
based approach (as applied by MDPs) loses the information about alternative recog-
nition hypotheses and has to engage in complex error recovery procedures in order
to discover and correct the errors.
While being theoretically more attractive than the MDP approach, the POMDP

approach faces challenges in terms of scaling up to real-world problem domains.
Many POMDP approaches are only applicable to simple form-filling problems using
only a small number of states, such as pizza ordering (Williams, 2006). The state
spaces for POMDPs often explicitly represent all the feature values (in order to
update the belief state), in contrast to MDPs where slot values can be approximated.
As a result, belief monitoring for POMDPs is computationally very expensive and
is often intractable for practical spoken dialog systems. How to scale-up POMDPs
to real world problems is a research topic in its own right, and recent progress has
been made, e.g. (Crook and Lemon, 2010, 2011a; Lemon et al, 2008; Thomson and
Young, 2010; Thomson et al, 2007, 2008; Williams and Young, 2007b).
This book explores the MDP framework for dialogue strategy learning, which is

frequently used for practical systems, e.g. (Heeman, 2007; Henderson et al, 2005,
2008; Janarthanam and Lemon, 2010c; Levin et al, 2000; Pietquin and Dutoit,
2006b; Rieser et al, 2010; Singh et al, 2002; Spitters et al, 2007; Walker, 2000)
etc.

3.2.2 The Reinforcement Learning Problem

The MDP model allows a dialogue management strategy (or policy ) π : S → A to
be viewed as a mapping from states to actions: For every state s, the policy selects
the next system action a. The MDP model also enables us to formalize dialogue
management as a mathematical optimisation problem which can be solved using
Reinforcement Learning (Sutton and Barto, 1998).
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3.2.2.1 Elements of Reinforcement Learning

The optimal policy π∗ is the policy that that selects those actions that yield the high-
est final reward over the course of the dialogue. We can define the final reward R
to be the total discounted return that the learning dialogue manager receives when
starting at time t (see Equation 3.5). A discount factor γ , with 0 ≤ γ ≤ 1, can be
used to weight immediate rewards more strongly than distant future rewards. For
γ = 0, RL only maximises the immediate utility of an action, similar to the previ-
ously discussed Decision Theoretic approaches. For dialogue strategy learning γ is
commonly set close to 1 to take future rewards into account as strongly as possible.

Rt = rt+1+ γrt+2+ γ2rt+3+ . . .=
T

∑
k=0

γkrt+k+1 (3.5)

The (estimated) reward received at time step t indicates the intrinsic desirabil-
ity of a state or action. The optimal policy π∗ is discovered via trial-and-error
search through interaction between the learning agent and its dynamic environment.
Thereby the agent learns a value function V π(s) which reflects the long-term desir-
ability of a state by taking into account all the states that are likely to follow it. The
associated V -value of a state s expresses how much future reward can be expected
when visiting state s and subsequently following policy π (see Equation 3.6).

V π(s) = Eπ(R|st = s) (3.6)

The value function can be re-written as the Q-function Qπ(s,a) which estimates
the expected return of taking action a in a given state s and following the policy π
thereafter (see Equation 3.7).

Qπ(s,a) = Eπ(R|st = s,at = a) (3.7)

V π(s) and Qπ(s,a) can be formulated recursively, given the tight correlation of a
state value to the value of its potential successor states, as expressed in the transition
function T a

ss′ (see Equation 3.2) and reward function Ra
ss′ (see Equation 3.3). The

resulting Equations 3.10 and 3.11 are also called the Bellman equations (Bellman,
1957):

V π(s) = ∑
a

π(s,a)∑
s′

T a
ss′ [R

a
ss′ + γV π(s′)] (3.8)

Qπ(s,a) = ∑
s′

T a
ss′ [R

a
ss′ + γV π(s′)] (3.9)

where ∑a represents the summation over available actions in state s, and ∑s′ the
summation over potential successor states of s. The Bellman equations describe the
expected reward for taking the action prescribed by some policy π . The equations
for the optimal policy π∗ are referred to as the Bellman optimality equations :
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V ∗(s) =max
a ∑

s′
T a

ss′ [R
a
ss′ + γV ∗(s′)] (3.10)

Q∗(s,a) = ∑
s′

T a
ss′ [R

a
ss′ + γmax

a
Q∗(s′,a′)] (3.11)

Finding an optimal policy by solving the Bellman Optimality Equation requires
accurate knowledge of the environment dynamics, a substantial amount of time and
space to do the computation, and the Markov Property (Sutton and Barto, 1998).
Since these assumptions can hardly be met by any real-world application, a number
of different algorithms are available to find approximate solutions, as described in
the next Section.

3.2.2.2 Algorithms for Reinforcement Learning

Sutton and Barto (1998) distinguish three elementary classes of algorithms to solve
Reinforcement Learning problems: Dynamic Programming (DP), Temporal Differ-
ence (TD) learning, and Monte Carlo methods. DP is a “model-based” approach to
RL, whereas TD and Monte Carlo are both model-free (also known as simulation-
based) approaches. Model-based approaches explicitly model the dynamics of the
environment to compute an estimate of the expected value of each action. We further
explain and discuss model-based and simulation-based RL approaches to dialogue
strategy learning in Section 3.2.3.
In the following we first explain the general mechanisms underlying all RL al-

gorithms. We then compare DP with TD in order to highlight the general differ-
ences between model-based vs. model-free/simulation-based algorithms. We then
introduce the two most popular forms of TD learning: the SARSA algorithm and
Q-learning.
Most RL algorithms are based on the same basic mechanism: they learn by incre-

mentally updating the expected Q-values for each state action pair, estimating the
Bellman optimality equation. They start with an initial value function, where all the
state-action values are initialised to some arbitrary value. We can visualise the learn-
ing process as a matrix of states versus actions, where the cells are the Q-values, as
in Figure 3.1.

s1 s2 s3 s4
a1 0.0 0.0 0.0 0.0
a2 0.0 0.0 0.0 0.0
a3 0.0 0.0 0.0 0.0

Table 3.1 Initialised state-action values before learning for a learning problem with 4 states s1−4
and 3 actions a1−3

The expected Q-value for a state-action pair Qk is updated in each iteration k,
taking the general form
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NewEstimate ← OldEstimate+StepSize[Target −OldEstimate] (3.12)

where the step-size parameter describes the effect-size of changes from time
step t to time step t + 1. Step size is also called the learning rate (α). [Target −
OldEstimate] is the error towards the optimal value Q∗. The optimal Q-value is
guaranteed if Qt→∞ = Q∗. In practise, the learning algorithm stops if Qk is believed
to be sufficiently close to Q∗. One stopping criterion is to observe whether the Q-
values converge, i.e. when the difference |Qt(s,a)−Qt−1(s,a)| is lower than some
threshold.
The learned Q-values after strategy training in our example might then be as

in Table 3.2. The optimal policy π∗ selects the system action a with the highest
expected value in each state s.

s1 s2 s3 s4
a1 2.40 1.80 4.05 0.46
a2 3.67 1.38 2.01 2.78

a3 0.9 2.90 2.52 1.24

Table 3.2 Learned state-action values: The optimal strategy selects the action a with the highest
expected value in each state s

The essential difference between Dynamic Programming and Temporal Differ-
ence Learning is in the way that they update Q-values. DP works by updating the
Q-value off-line for every possible state-action pair in a single iteration. It therefore
requires an explicit model of the dynamics of the environment, where the transition
function fully defines the probability of moving from any state s to another state s′,
i.e. the state transition probability P(s′|s,a), and the reward function R(s,a) defines
the reward for choosing the action that creates this transition (see Equation 3.13).

Qt(s,a)← R(s,a)+∑
s′

P(s′|s,a)max
a

Qt(s′,a′) (3.13)

Temporal Difference learning, in contrast, does not require a full model of the
transition function to be available, i.e. it is model-free. TD only requires some sam-
ple episodes of state-action transitions, instead of considering all possible transi-
tions. Only the sampled transitions contribute to the improved estimate of Q∗ (see
Equation 3.14). TD therefore requires the online exploration of sufficiently large
number of state-action pairs in order to reduce the error.

Qt(s,a)← Qt(s,a)+α [R(s,a)+Qt(s′,a′)︸ ︷︷ ︸
Target

− Qt(s,a)︸ ︷︷ ︸
OldEstimate

] (3.14)

Temporal Difference learning can be implemented as an on-policy algorithm
called SARSA (Rummery and Niranjan, 1994), and also as an off-policy algorithm
called Q-learning (Watkins and Dayan, 1992). On-policy learning updates the pol-
icy based on actions taken by the agent. Off-policy learning also can learn about
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policies other than that currently followed by the agent. Both approaches have their
advantages and disadvantages, see (Sutton and Barto, 1998) for a discussion.
Previous work has applied a variety algorithms for learning dialogue strategies.

(English and Heeman, 2005; Levin et al, 2000), for example, use Monte Carlo meth-
ods, while Singh et al (2002) use Dynamic Programming, and Schatzmann et al
(2005b); Walker (2000) apply Q-learning. Frampton and Lemon (2006); Henderson
et al (2008); Janarthanam and Lemon (2010c); Rieser et al (2010) use the SARSA(λ )
algorithm. Currently, (different versions of) SARSA are used most widely as they are
easy to implement and are known to converge rapidly.
In this book we will use a RL method which implements different versions of

the SARSA(λ ) algorithm, where the λ refers to the use of an eligibility trace . An
eligibility trace is a temporary record of the occurrence of an event, such as the
visiting of a state or the taking of an action. The trace marks the memory parameters
associated with the event so that the current reward can be attributed to past states.
The name SARSA reflects the fact that the main function for updating the Q-value

depends on the current state of the agent st , the action that the agent choses at , the
reward rt+1 that the agent gets for choosing this action, the state st+1 that the agent
will be in after taking that action, and finally the next action at+1 that the agent
will choose in its new state, as shown in Algorithm 1. The degree of “greediness”
defines the exploration-exploitation trade-off for online policy training. By using an
ε-greedy policy, the so far learned optimal action is taken with probability (1− ε)
while exploration moves are executed with probability ε .

Algorithm 1 SARSA
1: Q(s,a)⇐ arbitrarily

2: repeat {for each episode:}
3: Initialise s
4: Choose a from s using policy derived from Q (e.g. ε-greedy)
5: for all steps in the episode do

6: Take action a, observe r, s′
7: Choose a′ from s′ using policy derived from Q (e.g. ε-greedy)
8: Q(s,a)← Q(s,a)+α[r+ γQ(s′,a′)−Q(s,a)]
9: s ← s′;a ← a′;
10: end for

11: until s is terminal

3.2.2.3 The Curse of Dimensionality, and State Space Reduction

In Reinforcement Learning the number of possible policies grows exponentially
with the state and action spaces (no. policies = no. actionsno. states and no. states =
no. valuesno. f eatures). For example, if the state space consists of only 4 binary fea-
tures, and only 3 actions are available for learning, the total number of policies is
already as high as 324 = 43,046,721. RL algorithms rely on exhaustive trial-and-
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error search, which makes learning with large policy spaces computationally very
expensive. For example, Henderson et al (2008) report that with random trial-and-
error search to learn a complex problem, the algorithm would have visited only one
policy in every 7410385.6 after 1 year, if they would have been able to explore policies
at a rate of 1 policy a second.
On the other hand, the richer the state space, the more expressive the system and

the policy which can be learnt. This dilemma for strategy learning is also known as
the “curse of dimensionality” (Bellman, 1957).
In general, there are two different methods to overcome this problem: either to

reduce the state space or facilitate cheaper training techniques (such as simulation-
based learning), also see Section 2.3.4. In this Section we review different tech-
niques for state-space reduction, and we discuss simulation-based methods in Sec-
tion 3.2.3.
In order to reduce the state space for learning, previous research has investigated

different techniques, such as reducing the number of features, reducing the number
of possible state-action combinations by structural restrictions (or so-called “sub-
policy learning”), or summarising states which are similar.
Work by Frampton and Lemon (2006); Tetreault and Litman (2006), for exam-

ple, reduces the state space by identifying the most ‘valuable’ state space features
for learning, using feature-selection methods. They identify the value of a state fea-
ture by measuring the increase in reward gained (Frampton and Lemon, 2006), or
training time taken until strategies converge (Tetreault and Litman, 2006).
Work by Cuayáhuitl et al (2006); Heeman (2007); Singh et al (2002) applies

sub-strategy learning: Singh et al (2002) hand-code a policy and leave difficult de-
sign decisions for optimisation, while Cuayáhuitl et al (2006) apply hierarchical
Reinforcement Learning, and Heeman (2007) learns with hand-coded constraints.
Similarly Williams (2008) uses a conventional dialogue manager to constrain the
choices available for optimisation by a POMDP system.
Another line of research groups together state spaces which are similar (accord-

ing to some definition of similarity) into one single state, e.g. (Crook and Lemon,
2011a; Denecke et al, 2004; Goddeau and Pineau, 2000; Henderson et al, 2008;
Williams and Young, 2007b). For example, recent work using Value-Directed Com-
pression automates the discovery of states which have similar values and can there-
fore be treated as equivalent (Crook and Lemon, 2011a). Henderson et al (2008)
combine RL with linear function approximation, which we now explain in more
detail.
In order to learn with linear function approximation the dialogue state is repre-

sented as a vector of real valued features f (s). For each state s the vector f (s) is
mapped to a vector of estimates of Q(s,a), one estimate for each action a. Given
weights trained on data, the Q-function can be re-written as the inner product of
state vector f (s) and the weighted vector wa:

Qπ(s,a) = f (s)T wa = ∑
t

f (s)wai (3.15)
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This approximation method has the effect that two states are treated as similar
if they share features. During training, the update function will affect states which
share feature i. Each feature represents a dimension with respect to which two states
can be similar or different. This similarity measure is known as a linear kernel.
In this book we will experiment with several of these techniques. First, we se-

lect the most promising features for state space design. (Section 7.4.3.2) We also
formalise the learning problem as a hierarchy of decisions and apply hierarchical
Reinforcement Learning (Section 7.5.3), we limit the action choices to be learned
by encoding domain knowledge into Information State Update rules (Section 7.5.4),
and we also apply linear function approximation (Section 7.11.1).
Most importantly, we facilitate “cheap” learning by training our policy in a sim-

ulated learning environment, also known as simulation-based RL. We combine this
method with another dialogue simulation technique known as a “Wizard-of-Oz”
methodology. We further explain these techniques below.

3.2.3 Model-based vs. Simulation-based Strategy Learning

In general, there are two different approaches to dialogue strategy learning: model-
based and simulation-based (also known as ‘model-free’) RL. In Section 3.2.2.2 the
corresponding algorithms were presented. This Section now summarises and dis-
cusses their respective advantages and disadvantages for dialogue strategy learning.

3.2.3.1 Model-based Reinforcement Learning

Model-based approaches explicitly represent a model of the dynamics of the envi-
ronment to compute an estimate of the expected value of each action (see Figure
3.5). Learning is then done off-line without any interaction between the learning
agent and the environment using Dynamic Programming techniques. The model-
based approach neglects the actual user responses to system actions – it only con-
siders the system-state transitions and the rewards associated with them. The tran-
sition probabilities T a

ss′ are estimated from a corpus in which the state transitions
have been logged. Parameter estimation can be done using simple Maximum Like-
lihood Estimation based on the relative frequency of occurrence of each transition.
For off-line learning the final reward is already present in the corpus, i.e. it is known
in advance whether the strategy is successful or how it is rated by the user. As such,
Ra

ss′ can be directly estimated as well. With a model, the agent can reduce the num-
ber of steps to learn a policy by simulating the effects of its actions at various states.
For model-based approaches it is possible to derive a policy that is guaranteed to be
optimal with respect to the data.
However, learning from fixed data sets has a number of significant deficiencies:

• Currently available corpora are not large enough to reliably estimate all transition
probabilities for practical systems (Lemon and Pietquin, 2007).
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Fig. 3.5 Model-based Reinforcement Learning: Learning a transition model for the transition func-
tion T a

ss′ and the reward functionRa
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• When learning from a fixed corpus, the dialogue strategy can only use state-
action combinations that were explored at the time of the corpus data collection.
It cannot explore entirely new strategies, since no transition probabilities can be
computed for unseen state-action combinations. A deviation in user behaviour
during the live operation of the system is likely to move the system into an unex-
plored portion of the state space, possibly causing the system to fail. Furthermore,
the optimal strategy is not guaranteed to be present in the training corpus.

• Learning from fixed data sets has the principal drawback that learning is limited
to domains where working systems already exist. The actions for learning are
pre-defined by the system capabilities. The state space also needs to be known
in advance so that the corpus can be annotated accordingly, and/or features can
be logged during the data collection. If the chosen state space representation or
action set turns out to be problematic, it is difficult to change afterwards.

3.2.3.2 Simulation-based Reinforcement Learning

Simulation-based (also known as ‘model-free’) RL approaches do not explicitly rep-
resent the dynamics of the environment, but instead directly approximate a value
function. This is done online by interaction with a simulated environment (see Fig-
ure 3.6). Simulation-based learning involves two stages: First, different simulated
components of the dialogue environment (such as a simulated user and an error
model) are trained on a given corpus using Supervised Learning techniques. The
dialogue strategy is then trained by simulated interaction using Monte Carlo or
Temporal Difference learning techniques (see previous Section 3.2.2.2). These ap-
proaches offer near-optimal solutions that depend on systematic exploration of all
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Fig. 3.6 Simulation-based Reinforcement Learning: Learning a stochastic simulated dialogue en-
vironment from data

actions in all states. Hence, the simulated components need to reliably generalise
to unseen dialogue states in order to support this exploration. As such, simulation-
based RL is a more complex approach than directly learning from a fixed data set,
but it offers significant advantages:

• The simulated user/environment allows any number of training episodes to be
generated, so that the learning agent can exhaustively explore the space of possi-
ble strategies.

• It enables strategies to be explored which are not in the training data. The learner
can deviate from the known strategies and experiment with new and potentially
better strategies.

• The system state space and action set do not need to be fixed in advance, because
the system is not directly trained on corpus data. If the given representation turns
out to be problematic, it can be changed and the system retrained using the sim-
ulated user.

Simulation-based RL, however, also faces challenges:

• The quality of the learned strategy depends on the quality of the simulated envi-
ronment. Hence, appropriate methods to evaluate the simulated components are
necessary.

• The reward signal cannot be read off from the data, but the reward function has
to be explicitly constructed.

• Results obtained in simulation may not be an accurate indication of how the
strategy would perform with real users (though see results by e.g. (Janarthanam
et al, 2011; Lemon et al, 2006a)).

• The simulated components need to be trained on in-domain data, which is expen-
sive to collect. In cases for new application domains where a system is designed
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from scratch, however, there is often no suitable in-domain data available. Col-
lecting dialogue data without a working prototype is problematic, leaving the
developer with a classic chicken-and-egg problem.

In the course of this book we will address these challenges by introducing
new methods and techniques. In particular, we propose ‘bootstrapping’ a simulated
learning environment from Wizard-of-Oz data, as outlined in Chapter 5. In the next
Section we explain more about simulated interaction and Wizard-of-Oz studies.

3.3 Dialogue Simulation

We now explain some general background on simulating dialogue. A dialogue sim-
ulation approximates real Human-Computer Interaction (HCI) in order to facilitate
dialogue system development and testing. Two main simulation techniques exist:
the so-called ‘Wizard-of-Oz’ experiment and computer-based simulation.

3.3.1 Wizard-of-Oz Studies

Wizard-of-Oz (WOZ) studies are performed right at the beginning of the design
process, before a working prototype is available (Dahlbäck et al, 1993; Fraser and
Gilbert, 1991). In a WOZ experiment, a hidden operator, the ‘wizard’, simulates
some aspects of the behaviour of the application, while subjects are led to believe
that they are interacting with a real system. Hence, the wizard’s speech is rendered
using synthetic speech. It is important to keep up the illusion of real HCI, as users
behave differently towards other people than towards machines, for example, they
use simpler language, shorter utterances, and different pragmatic behaviour, see
(Doran et al, 2001; Jönsson and Dahlbäck, 1988; Krause and Hitzenberger, 1992;
Moore and Morris, 1992).
At the end of the interaction the user is asked to fill out a questionnaire or other-

wise rate the interaction (see Figure 3.7). The main purpose of a WOZ experiment is
to gather initial insights about user behaviour and user preferences. Furthermore, the
user utterances are recorded and may be used to develop a language model and/or
acoustic model for the prototype system.
A central difference betweenWOZ studies and real HCI is that the wizard usually

has perfect recognition and full understanding of the user’s utterances, whereas for
real HCI the interaction is affected by noise as introduced by ASR and NLU. Hence,
recent work has suggested introducing artificial noise in the WOZ setup in order to
estimate real HCI more closely, e.g. (Passonneau et al, 2011; Rieser et al, 2005;
Schlangen and Fernandez, 2007; Skantze, 2005; Williams and Young, 2004a). In
Chapter 6 we will describe a WOZ study where we use a similar setup.
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Fig. 3.7 Wizard-of-Oz simulation setup: Hidden operator (the “wizard”) simulates dialogue be-
haviour; user interacts in the belief that they are talking to a machine, and rates the dialogue be-
haviour

3.3.2 Computer-based Simulations

In a computer-based simulation a prototype automated system interacts with a sim-
ulated user (see Figure 3.8). Computer-based simulations are used for different pur-
poses: testing and debugging prototype systems, e.g. (Chung, 2004a; Engelbrecht
et al, 2009; López-Cózar et al, 2003), as well as for automatic strategy develop-
ment, for example using Supervised Learning, e.g. (Filisko and Seneff, 2006), or
Reinforcement Learning, e.g. (Schatzmann et al, 2006). A more detailed classifica-
tion can be found in Chapter 7. In the following we focus on simulated environments
for RL, and summarise some of their general characteristics.
In simulation-based RL, the RL agent explores the expected return value for dif-

ferent strategies while interacting with a simulated environment. The interaction
usually takes place on the intention level, where system and simulated user ex-
change speech acts (au,as). The simulated components of the dialogue environment
are commonly statistical models obtained via Supervised Learning from dialogue
corpus data. An error model introduces errors in order to simulate error-prone ASR.
How close the simulated interaction is able to resemble real HCI in general, de-

pends on the quality of the simulated components. Various evaluation measures for
quality assurance have been proposed, which we will review in Chapter 7.1.1. An-
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Fig. 3.8 Computer-based simulation setup: The dialogue manager (right) interacts with a simulated
user (left) over a noisy channel

other difference to real HCI is that simulated users cannot rate the system according
to their personal preferences. In simulation-based RL, the strategy is rated by the re-
ward function, which is specified by the system designer. It is an open research ques-
tion whether real users will “reward” the real dialogues accordingly (Paek, 2006).
In addition, how to qualitatively and quantitatively measure the differences between
simulated and real dialogues is on ongoing research issue (Ai and Litman, 2006;
Williams, 2007). We will address both questions in Chapter 8.5.

3.3.3 Discussion

This book proposes to combine the two simulation methods into one framework:
we learn the simulated environment for RL from data collected in a WOZ experi-
ment. This approach enables automatic strategy learning in domains where no prior
system is available. Optimised learned strategies are then available from the first mo-
ment of online-operation, and handcrafting of dialogue strategies is avoided. This
independence from the availability of in-domain dialogue data allows researchers
to apply RL to completely new application areas beyond the scope of existing dia-
logue systems. We call this method ‘bootstrapping’. In the next Section we present
the application domain where we will implement our method.
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3.4 Application Domains

3.4.1 Information-Seeking Dialogue Systems

Reinforcement Learning has been applied to many different domains, from sim-
ple slot-filling dialogues, such as pizza ordering (Williams, 2006), to complex tu-
toring tasks (Tetreault and Litman, 2006). In this book we apply RL to optimise
information-seeking dialogue strategies, also known as “information retrieval” dia-
logues. Information-seeking dialogues serve as an interactive natural language in-
terface to database search (Androutsopoulos and Ritchie, 2000). A varying number
of different search candidates is retrieved, dependent on the provided constraints
and the size of the database. Some search constraints may also be left unspecified.
Form-filling dialogues are similar to information-seeking dialogues, as they follow
the basic structure of information acquisition and presentation following each other.
However, form-filling dialogues are also different, as most of the task constraints
are compulsory. (Note that there is also the option for the user to provide the con-
straint “I don’t care” – as long as the form gets filled.) For example, the user always
has to specify date, time, origin and destination city in order to book a flight. Thus,
the decision of when to start the information presentation phase is trivial for form-
filling dialogues, as the database only gets queried when the user has provided all
the necessary information, i.e. at the very end of the information acquisition phase,
e.g. (Lemon et al, 2006b).
In contrast, information seeking dialogue strategies can be applied in domains

where information can be left open/unspecified without causing the task to fail.
For example, digital music and library catalogue search, searching for a restaurant,
searching the web, or “interactive question answering” tasks (Webb and Webber,
2008). Thus, one major decision for information-seeking dialogue strategies is when
to stop asking for further constraints and to present the retrieved information to the
user. This question has also been addressed in the context of RL, e.g. (Heeman,
2007; Levin et al, 2000; Pietquin, 2006), as we further discuss in Section 4.1.
We distinguish between an information acquisition and an information presenta-

tion phase, which we define as follows:

• Information acquisition: during this initial phase the system is gathering infor-
mation from the user. During this phase, the high-level communicative goals that
the system tries to achieve are are fairly complex: the goals include getting the
user to supply information, and explicitly or implicitly confirm information that
the user has supplied. Here, one major decision for information-seeking dialogue
systems is when to stop asking for more constraints.

• Information presentation: this second phase commences when the system has
obtained information that matches the user’s requirements and the options (e.g.
flights, restaurants, or songs) need to be presented to the user. Here, the com-
municative goal is mainly to convey a certain set of facts to the user, possibly
in conjunction with a request for a choice among these options. Here, one major
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decision for information-seeking dialogue systems is how to present the informa-
tion.

Note that Bangalore et al (2001) also distinguish these two phases, where they
define the first phase to be traditionally associated with Dialogue Management, and
the second phase to be a traditional Natural Language Generation task. According
to (Bangalore et al, 2001) one of the major current challenges is to combine both in
a unified framework. We present such a framework in this book. In Chapter 7 jointly
optimise when to start the information presentation phase (a task which is tradition-
ally associated with DM) and then decide on the presentation medium (multimodal
versus speech only). In Chapter 9 we jointly optimise information presentation strat-
egy and attribute selection, which are both higher level NLG tasks.
Another major challenge for information-seeking dialogue systems is how to deal

with bad ASR quality. As a voice interface to large databases, information-seeking
dialogue systems are a challenging task for automatic speech recognition, as a large
set of proper nouns needs to be recognised. Other research investigates different so-
lutions to this problem, e.g. (Filisko and Seneff, 2005; Gruenstein and Seneff, 2006,
2007). However, the question of how to improve ASR quality for large databases is
beyond the scope of this book .

3.4.2 Multimodal Output Planning and Information Presentation

The term “multimodal” has several different meanings (Rudnicky, 2005). In this
book we address the problem of multimodal output planning, where two parallel
modes are available for information presentation: one using speech only (verbal)
and one showing a list of retrieved items on the screen while implicitly confirming
using speech (MM), as in Example 3.1.

Example 3.1.
verbal : “For [constraint1] and [constraint2] I found [n] items in the database:
[i1], [i2], . . . [in]. Which one would you like?”

MM : “For [constraint1] I found [n] items in the database. A list of possible candidates
is displayed.” (see example in Figure 3.9)
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The user input can also be multimodal: the user can speak and make selections
on the screen. Nevertheless, our main focus is on multimodal output planning. There
are two main questions for multimodal output planning: when to use whichmedium,
and how to distribute information across media (also known as “media allocation”
or “multimodal fission”). This book concentrates on the former question.
An issue with multimodal interfaces is, however, the fact that multimodal output

is not always appropriate in every context, and needs to be adapted to the “cognitive
load” of the user (Oviatt, 2006; Oviatt et al, 2004). Dialogue systems typically are
used in so-called “eyes-and-hands-busy” situations, i.e. where the user performs an-
other task in parallel which requires his visual attention, such as driving for in-car
applications or homework for in-home applications. To then display information on
a screen can only be beneficial to a certain extent. The appropriate choice of medium
when the user is performing a eyes-busy task depends on various factors, e.g. the
attention the user spends on the primary task (also known as the “cognitive load”
(Sweller, 1988)), the amount of information to be presented, screen size, user pref-
erences, etc. As such, multimodal output planning is a strong candidate for machine
learning techniques (Rudnicky, 2005), as it requires context-dependent and adapt-
able strategies. To the authors’ knowledge this book is the first to apply RL to the
multimodal output planning problem.
Chapter 9 investigates more sophisticated Natural Language Generation (NLG)

techniques for information presentation. Different content-planning techniques for
information presentation are investigated, such as summaries tailored to the user
type (Demberg and Moore, 2006; Walker et al, 2004a,b), summaries based on the
expected information gain with respect to the database structure (Chung, 2004a;
Polifroni and Walker, 2006; Polifroni et al, 2003), data-driven content planning for
multimodal output generation (Guo and Stent, 2005), as well as data-driven meth-
ods for lower-level aspects, such as sentence planning (Stent et al, 2004a) or word-
choice (Stent et al, 2008). So far, however Dialogue Management (DM) and NLG
have always been considered to be separate tasks, which are performed in a pipeline:
first the DM determines what to say and then the NLG component determines how
to say it. We argue that DM and NLG are two closely interrelated problems for in-
formation seeking dialogues: the decision of when to present information depends
on the available options for how to present them, and vice versa. In this book we take
a first step towards an integrated model of DM and NLG: we formulate the prob-
lem as a hierarchy of joint learning decisions which are optimised together (Lemon,
2011). This hierarchical approach to DM and NLG is now being explored by other
researchers (Dethlefs and Cuayahuitl, 2010; Dethlefs and Cuayáhuitl, 2011). The
central NLG task we address in the following chapters is to determine the output
medium. However, we will also address other NLG tasks such as learning of Infor-
mation Presentation policies later, in Chapter 9.
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3.4.3 Multimodal Dialogue Systems for In-Car Digital Music
Players

This book applies RL to optimise information-seeking strategies for multimodal di-
alogue systems which serve as an interface to a in-car digital music player. This
application domain offers interesting aspects for learning. The in-car scenario is a
eyes-and-hands-busy environment, where strictly multimodal solutions may not al-
ways be appropriate. Results of a study on multimodal in-car interaction by Salmen
(2002) show that the timing of multimodal presentation is important for the driving
performance, where the main focus should be on speech-based output and input. On
the other hand, a study by Kun et al (2007) suggests that verbal interaction leads
to decreased driving performance for conditions with low ASR quality. Further-
more, a study by Hu et al (2007); Winterboer et al (2007) indicates that strategies
are perceived differently, dependent on the dialogue environment: while for driving
situations with low cognitive load users prefer strategies which are most effective,
these are not preferred in situations with high cognitive load. In sum, media choice
depends on various contextual and environmental features when the user is driving.
Hence, learning strategies which automatically adapt to various contextual features
is a promising direction of research.

3.5 Summary

We argued that RL is well-suited for dialogue strategy development, as dialogue is
learned by evaluative feedback with delayed rewards and exploration which suit the
temporal and dynamic nature of dialogue. We then provided further background on
RL and how it is applied to dialogue strategy learning, where we highlighted the ad-
vantages of simulation-based RL. We presented two different simulation techniques
for dialogue development: Wizard-of-Oz studies and computer-based simulation,
and we proposed to combine both into one framework in order to reduce develop-
ment costs even further. Finally, we introduced the concepts of information-seeking
dialogue systems and multi-modal output planning in the application domain, where
we discuss several prototype systems which serve as an interface to a digital mu-
sic player for the in-car domain. We proposed to replace the current hand-coded
threshold-based approaches with automatic RL techniques.
In the next Chapter we provide a“proof-of-concept” that RL outperforms manual

strategy design for a wide range of application scenarios.
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Strategies

Fig. 4.1 Galileo’s Telescope - a proof-of-concept Information Seeking device

4.1 Introduction

In the following Chapter we provide a “proof-of-concept” that RL outperforms
hand-coded strategies which are manually tuned to the same reward function. We
also show this for a wide range of application scenarios. We use simulation-based
optimisation, i.e. we adapt different strategies to different simulated environments.
We also explain and illustrate the major practical advantages of RL policies over
hand-coded heuristics and provide a description of the qualitative differences. This
proof-of-concept study is necessary to motivate the data-driven “bootstrapping” ap-
proach that we introduce in Chapter 5.
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A number of previous studies compare RL-based strategies against hand-coded
rule-based strategies, e.g. (Frampton and Lemon, 2006; Heeman, 2007; Lemon and
Liu, 2007; Lemon et al, 2006a; Scheffler and Young, 2002; Spitters et al, 2007;
Walker, 2000). Their results indicate that RL strategy learning in general outper-
forms hand-coding. However, this method of comparison has been criticised as un-
fair, since the hand-coded strategies are not tuned to the same reward function (Paek,
2006).

4.1.1 A Proof-of-Concept Study

For our proof-of-concept study we make the following assumptions and simplifi-
cations. First of all, we simplify the learning task. In the long run we aim to learn
information-seeking dialogue strategies including the choice of output medium (see
Section 3.4.2). For the proof-of-concept, however, we only learn the decision of
when to end the ‘information acquisition’ phase and to commence with ‘informa-
tion presentation’ (as defined in Section 3.4.1). For the proof-of-concept study we
do not learn how to present (e.g. which medium to choose), but we always present
items multimodally, i.e. displaying them on the screen while naming the number of
retrieved items verbally. After the information is presented to the user we assume
that the user selects one of the displayed items and the dialogue ends. Later in the
book we will investigate different information presentation methods.
Example 4.1 illustrates this approach (where “db:” denotes the number of re-

turned database items). Note that simulation-based strategy development takes place
on the intention level, as explained in Section 3.3. For the purpose of clarity we
choose to illustrate the simulated dialogues with examples from the MP3 music do-
main. However, we do not aim to model a specific type of domain, but rather, we
want our proof-of-concept study to be generic for different applications of informa-
tion seeking dialogue (see Section 3.4.1).

Example 4.1.

System: ‘‘Hello, how may I help you?’’
User: ‘‘I want a Radiohead song’’
System: ‘‘Ok, a Radiohead song. From what album?’’ (db: 77)
User: ‘‘From OK Computer’’
System: ‘‘OK from OK Computer. What song title?’’(db: 12)
User: ‘‘Paranoid Android’’
System: ‘‘Did you say Karma Police?’’ (db: 1)
User: ‘‘No’’
System: ‘‘OK, there are 12 items you might be looking for,

which are now shown on the screen.’’ (db:12)

It is also desirable for our proof-of-concept study to cover a wide spectrum of
application scenarios. We therefore manually construct various simulated environ-
ments to span a wide range of possible applications, as we will explain in the rest of
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this chapter. Our objective is to show that our policy learning framework covers this
spectrum.
Prior work on RL for information seeking dialogue strategies has used two im-

plicit thresholds for representing the number of retrieved database items (“DB hits”);
one for representing the number of DB hits in the state space by quantising them
(low-medium-high), and one in the reward function (Heeman, 2007; Levin et al,
2000; Pietquin, 2006) (cf. discussion in Section 7.10). Policy learning is restricted
by these various thresholds, since it only can operate on a quantised state space and
no fine-grained decisions can be learned.
The vast majority of dialogue policy learning research does not consider the num-

ber of database results at all, resulting in policies which are not sensitive to the cur-
rent number of search results (e.g. (Henderson et al, 2005, 2008; Singh et al, 2002)).
This is obviously bad: if there is only one DB search result for a given set of user
constraints, we should tell it to the user immediately, regardless of how many in-
formation search slots have been filled in the dialogue. Conversely, if there are very
many DB hits, we should persevere in getting more information (i.e. search con-
straints) from the user, depending on the penalty for longer dialogues (reflecting a
‘patient vs. impatient user’) and the reliability of the communication channel (the
‘noise model’).

4.2 Simulated Learning Environments

We test and train the strategies using RL in a simulated learning environment (see
Section 3.3 for a definition). This environment includes several simulated compo-
nents, such as simulated database behaviour, noise simulation, a user simulation, and
particular reward functions. The individual application scenarios define how these
components are instantiated. For example, if our application scenario includes an
‘impatient’ user, the dialogue length is punished more heavily in the reward func-
tion. For the proof-of-concept study we manually design these simulated compo-
nents and scenarios to cover a wide range of (theoretically possible) applications.

4.2.1 Problem Representation

We first explain how we represent the dialogue problem we are trying to solve. Both
the RL-based and hand-coded strategies rely on the same task representation. We
represent the task as a 4-slot search dialogue problem. The dialogue state contains
8 binary state variables, fill-slotN for whether each slot number N is filled
(for 1 ≤ N ≤ 4), confirm-slotN for whether each slot number N is confirmed,
and one variable DB for the current number of DB hits, which takes integer values
between 1 and 100, resulting in 210× 100 = 102,400 distinct dialogue states. The
following system actions are available for exploration in every state:
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• greet e.g. “How may I help you?”
• ask a slot (AskASlot), e.g. “What kind of music would you like?”
• explicit confirm (explicitConf), e.g. “Did you say Jazz?”
• implicit confirm and ask a slot (implConf-AskASlot)
e.g. “OK, Jazz music. Which artist?

• close and present information (presentList)
e.g. “The following items match your query ...”

The action “greet” is an open-initiative question for as many search constraints
as the user wishes to give: “How may help you?”. The next slot name to ask (for
AskASlot and implConf-AskASlot) is controlled by a process model for
the domain which describes a default ordering on slots for the task (e.g. ask for
music first, then artist, then album, then song title, or ask city name, food type,
price range, then location for restaurants). The user is not constrained to follow this
ordering, and can also over-provide information using mixed-initiative behaviour
such as over-answering.

4.2.2 Database Retrieval Simulations

In contrast to previous work, we do not use one specific back-end database, but we
simulate two extreme cases of database behaviour in order to explore the space of
possible policies. In particular, we create a “monotonic” and a “random” database
retrieval model, both reflecting different ways a user query can affect search results.
To the authors’ knowledge this work is the first work which uses simulated databases
to investigate the effects that the nature of the database, together with noise, has on
policy learning.
In both cases, we assume a total database size of 100 items. We assume that

presenting more than 100 results to a user is never going to be desirable, so in
this study we learn strategies where there are 100 or fewer possible answers. When
the number of results is more than 100, we assume that the correct strategy is to
ask for more constraints from the user. We also assume that the user’s goal item is
contained in the database. Learning when to ask for constraint relaxation is not part
of this proof-of-concept study.

4.2.2.1 Monotonic Database Simulation

The first “monotonic” database retrieval simulation models extremely well-behaved
search tasks where each additional search constraint strictly reduces the number of
search results obtained. Thus, if the user fills a search slot (e.g. “I want a song by
Arcade Fire”) the number of results returned is strictly less than in the prior state.
This models boolean AND search. Conversely, if a slot becomes unfilled (e.g. by a
rejected confirmation move), the number of search results will increase. The simu-
lation draws samples from a normally distributed database. Every search constraint
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(i.e. filled slot) lowers the mean (μdb, Equation 4.2) and narrows down the standard
deviation (δdb, Equation 4.2), i.e. for fewer search constraints the distribution will
be flatter (number of hits clusters more widely around the mean and the curve is
closer to a random distribution); the more the search becomes constrained the closer
the number of hits clusters to the mean.

μdb =
databaseSize
2no. f illedslots (4.1)

δdb =
databaseSize
eno. f illedslots (4.2)

4.2.2.2 Random Database Simulation

For the second “random” database model a user-provided search constraint (slot)
can either be interpreted as an AND or an OR constraint. That is, the number of
DB hits can either increase or decrease. This is approximated in a random model,
sampling between 1 and 100 hits. For this model newly provided information may
in fact open up new possibilities in the data. For example the user might say “how
about restaurants in the Old Town?” thus shifting focus away from the current set
of results and opening up a new (possibly larger) set of search results. This is not
intended to be a realistic retrieval model - but one which occupies one end of a
spectrum. Our objective is to show that our policy learning framework covers this
spectrum.

4.2.3 Noise Model

The noise model simulates the effect of channel noise on the interaction. In this
book we describe noise in terms of its effect on the (estimated) task-success from the
system’s point of view, and its effect on the user’s behaviour, i.e. the user correcting
or rejecting the system’s hypothesis. Thus, the noise model is implemented within
two different components of the simulated environment. First, it determines how
task-success is calculated in the reward function, as described in Section 4.2.5. It
also affects the probabilities for generated user behaviour in the user simulation, as
described in Section 4.2.4.
In particular the employed noise model reflects the chance of a filled slot (which

is not yet confirmed) being correct (Pf ) under the specific noise conditions. We
design two different noise scenarios for the proof-of-concept study:

• High Noise (HN): 50% change of filled slots being correct.
• Low Noise (LN): 80% chance of filled slots being correct.
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We further discuss this type of noise simulation in in Section 7.7. In the next
sections we explain how this noise model is realised within the user simulation and
the reward function.

4.2.4 User Simulations

The user simulations that we employ for the proof-of-concept study are simple
bi-gram models which interact on the intention level. The possible user acts are
stochastic estimates conditioned on the previous system action to simulate a rela-
tively collaborative user behaviour. The bi-gram probabilities are manually set, as
shown in Table 4.1. Note that these models solely serve the purpose of simulating
dialogue behaviour for the proof-of-concept study. For a real application these fre-
quencies are learned from data, as described in Section 7.8. Possible user actions
are the following:

• yes-answer
• no-answer
• provide-asked, e.g. “I want ABBA” when asked “Ok, Pop music. What band
do you want?”

• provide-other, e.g. “I want ABBA” when asked “What type of music do
you want?”

• re-provide-asked, e.g. “no, I want Pop” when asked “Did you say Rock
music?

• provide-two slots, e.g. “I want an ABBA song from the album Waterloo”
• remain silent

For example, if the system’s previous move was to ask for a slot, the collabora-
tive user has a 70% chance of providing the requested slot value, a 20% chance of
providing a different slot value, a 6% chance of providing two slot values, and a 4%
chance of remaining silent (see Table 4.1).
For system confirmation moves the likelihood of the user’s reply is determined

by the noise model (i.e. the probability of a filled slot being incorrect (Pf )). In par-
ticular, the noise model determines the chance of the user accepting or rejecting
the system’s hypothesis. After a confirmation the following actions are interpreted
as an acceptance: yes, provide-asked, provide-other, provide-two.
The user acts no and re-provide-asked are interpreted as a rejection. For
example, when the system asks for an explicit confirmation under high noise con-
ditions (P f = 50%), the user simulation accepts the system’s hypothesis with 48%
probability in total. The user model accepts an hypothesis by either performing a
yes act or providing another slot value or another two slot values. Thus, the total
probability for accepting is split over these acts. In 48% of cases the user rejects
the system’s hypothesis. The user model rejects an hypothesis by either performing
a no act or re-providing the slot value). 2% of each likelihood for acceptance and
rejection are assigned to the user being silent (i.e. 4% in total).
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sysAct/ userAct yes provide-
other

provide-
asked

re-prv-
asked

no provide-
two

silent

greet – 80.0 – – – 16.0 4.0
askASlot – 20.0 70.0 – – 6.0 4.0
explConf (HN) 40.0 4.0 – 8.0 40.0 4.0 4.0
explConf (LN) 50.0 4.0 – 8.0 10.0 4.0 4.0
implConf (HN) 2.0 2.0 40.0 30.0 18.0 4.0 4.0
implConf (LN) 4.0 4.0 60.0 3.0 15.0 10.0 4.0

Table 4.1 Probabilistic user simulation with noise model High Noise (HN) and Low Noise (LN)

Note that a similar study was conducted by Lemon and Liu (2007). Here the
authors show that the RL framework also spans non-collaborative user behaviour.
In the current study, however, we focus on collaborative user models, as these are
more similar to the user behaviour we learn from data (see Section 7.8).

4.2.5 Objective and Reward Function

We propose a novel reward function which incorporates noise modelling. In related
work the reward function is also called the objective function (Paek, 2006; Walker,
2005) to express the fact that it serves two different purposes: it is used as a reward
function to train RL-based policies, as well as being used as an evaluation function
to score the generated dialogues. We also evaluate and tune the hand-coded strate-
gies using this function. For the proof-of-concept study we select the factors of the
reward/objective function by hand. For our ultimate application we will learn these
factors (as well as their relative weights) from data using the PARADISE framework
(see Section 7.9). For the proof-of-concept study we define for each dialogue:

FinalReward = completionValue−dialogueLengthPenalty (4.3)
−DBhitsPenalty; (4.4)

Where dialogueLengthPenalty penalises every system turn (via a TurnPenalty
T P per turn) and DBhitsPenalty penalises every item which is presented to the user
(via an itemPenalty IP per presented item).
The completionValue implements the noise model for the objective function. It is

defined as the percentage probability that the user goal is in the presented result set.
For example, if we know with 100% certainty that the user wants Sushi in the Old
Town (i.e. 2 slots, both confirmed at 100% probability), then we have a 100% chance
of supplying the user with an item that meets their goal. On the other hand, if we are
in the same situation but we are only 80% sure that they want Sushi (due to channel
noise) then the probability is only .8×1×100= 80%. Thus the completion value of
a dialogue is directly related to the probability of search slots being correctly filled,
which is in turn related to the noise conditions (see Section 4.2.3) under which the
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dialogue is being conducted. Thus, where Pc is the probability of a confirmed slot
being correct, and Pf is the probability of a filled slot being correct, where C and F
are the number of confirmed slots and filled (but not confirmed) slots respectively,
we have:

completionValue = 100× (Pc)
C × (Pf )

F (4.5)

For example, in a High Noise environment, we might set Pc = 1.0 and P f = 0.5,
reflecting the fact that in a noisy environment unconfirmed slots are fairly likely
to be incorrect (50% chance). The maximum possible reward for any dialogue is
100 (where T P = 0, IP = 0 and all slots are confirmed in cases where Pc = 1). For
an example of the computation of FinalReward, consider a 4-slot problem where,
turnPenalty (TP) =1, itemPenalty (IP) =10, and where 2 items have been presented
to the user at the end of the dialogue after 6 system turns. In the case where 4 slots
are filled, but only 3 were confirmed, we would then have (in the same High Noise
model as above):

• completionValue = 100×13×0.51 = 50
• dialogueLengthPenalty = 6∗1= 6
• DBhitsPenalty = 2×10= 20
• and so ultimately, FinalReward = 50−6−20= 24

4.2.6 Application Scenarios

In the proof-of-concept study we develop policies for a wide range of possible ap-
plication scenarios. In order to define an ‘application scenario’ we choose 4 factors
with 2 options each (24 = 16 scenarios in total).

DB retrieval: The database retrieval mechanism influences whether a newly-
provided constraint narrows or widens the space of retrieved candidates. In Sec-
tion 4.2.2 we defined the monotonic and the random retrieval models.

Noise: The level of noise influences task success and the need for confirmation
strategies. The level of noise reflects the chance of a filled slot being correct
(Pf ), as defined in Section 4.2.3. We defined the High Noise and the Low Noise
environments above.

User type: The user type influences how dialogue length is evaluated (dialogue−
LengthPenalty). The user type is different from the user simulation, as it defines
properties for this specific user, whereas the user simulation is meant to be a
general model of user behaviour (see Section 7.8.1 for a definition). We define
two different user types. For a patient user we assume that s/he does not mind
very much if the dialogue gets longer (low turn penalty = -1). For an impatient
user we assume that short dialogues are most important (high turn penalty = -10).

Screen size: The screen size influences how the length of the presented list is
evaluated (DBhitsPenalty). For an in-car environment we assume that the screen
size is small and the user’s eyes are busy; thus lists should be as short as possible
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(high hit penalty = -10). 1 For the in-home environment we assume that the screen
size is bigger and the user can spend all their attention looking at the screen; thus
lists can also be longer (low hit penalty = -1).

The application scenarios given above are now reflected in how we formulate the
evaluation functions for policy learning and policy testing. In particular we use the
following 8 objective functions for both monotonic and random DB retrieval models
(resulting in 16 scenarios):

1. HiNoise,HiHit,HiTurn: 50% chance of filled slots being correct, turn penalty=-10, hit penalty=-
10; e.g. noisy channel, in-car/small screen, impatient user

2. HiNoise,LowHit,HiTurn: 50% chance of filled slots being correct, turn penalty=-10, hit
penalty=-1; e.g. noisy channel, in-home/large screen, impatient user

3. HiNoise,HiHit,LowTurn: 50% chance of filled slots being correct, turn penalty=-1, hit penalty=-
10; e.g. noisy channel, in-car/small screen, patient user

4. HiNoise,LowHit,LowTurn: 50% chance of filled slots being correct, turn penalty=-1, hit
penalty=-1; e.g. noisy channel, in-home/large screen, patient user

5. LowNoise,HiHit,HiTurn: 80% chance of filled slots being correct, turn penalty=-10, hit
penalty=-10; e.g. reliable channel, in-car/small screen, impatient user

6. LowNoise,HiHit,LowTurn: 80% chance of filled slots being correct, turn penalty=-1, hit
penalty=-10; e.g. reliable channel, in-car/small screen, patient user

7. LowNoise,LowHit,HiTurn: 80% chance of filled slots being correct, turn penalty=-10, hit
penalty=-1; e.g. reliable channel, in-home/large screen, impatient user

8. LowNoise,LowHit,LowTurn: 80% chance of filled slots being correct, turn penalty=-1, hit
penalty=-1; e.g. reliable channel, in-home/large screen, patient user

The dialogue design task is now to find the right “trade-offs” for list size and
dialogue length, as well as deciding when to ask and confirm slot values in order
to optimise the returned value from the reward/objective function. We apply two
different techniques to define dialogue strategies according to the given objective
functions: First, we manually tune thresholds for a rule-based strategy to maximise
the return from the objective function. Second, we directly employ the objective
functions to train RL-based dialogue policies.

4.3 Threshold-based Baseline

First, we construct a hand-coded baseline strategy for each of the dialogue scenarios.
Our baselines are “state of the art” policies in the sense that they allow mixed-
initiative interaction and use thresholds (for dialogue length and number of DB hits)
chosen for the particular operating environments, similar to the system described in
Varges et al (2006). We manually tune different thresholds to maximise the returns
from reward functions as listed in the last section. We follow a similar method to the
one suggested by Chung (2004a): we manually set several combinations of different
thresholds and test their performance with the simulated user. We repeat this until

1 We use linear functions for the list size penalties, i.e. assuming that the shorter lists are the better.
In Section 7.9 non-linear functions will be explored.
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we reach the maximum performance. This “hand-tuning” partially addresses one of
the criticisms made by Paek (2006), that learned polices are usually not compared
to hand-coded policies that have been designed for the same conditions.
The confirmation/grounding mechanism (reflecting the need to confirm in a high-

/low noise environment) is not controlled by thresholds (since we do not simulate
ASR confidence score, see discussion Section 7.7), but is controlled by the follow-
ing general algorithm (which is then modified by the scenario-specific thresholds):

1. Greet the user,
2. either AskASlot (if no slots need to be confirmed) or ImplConf-AskASlot
(if there are remaining slots to ask and slots to confirm),

3. then repeat 2 until there are no slots left to fill,
4. then ExplConf (explicitly confirm) the remaining filled slots (if any)
5. PresentInfo; present the answer set to the user.

The hand-coded baselines will thus always PresentInfo if all slots are con-
firmed or the number of items returned from the database is less than a threshold
(for example < 7) or the dialogue length exceeds a threshold (for example > 6).
The different thresholds for the hand-coded policies thus determine when to stop
asking for new constraints. For the baseline systems, we designed four hand-coded
policies with the following combinations of hand-tuned thresholds:

Hss: short dialogues (≤ 6), short lists (≤ 7): e.g. in-car, with impatient user.
Hls: long dialogues (≤ 10), short lists (≤ 7): e.g. in-home, with patient user.
Hsl : short dialogues (≤ 6), long lists (≤ 14): e.g. in-car, with impatient user.
Hll : long dialogues (≤ 10), long lists (≤ 14): e.g. in-home, with patient user.

Example 4.2 shows an example dialogue using the simulated user and a baseline
policy with DB information presentation and dialogue length thresholds 7 and 6
respectively. At each system move we report the number (“db:”) of DB hits obtained
by the system. 2

Example 4.2.

System: ‘‘Hello, how may I help you?’"
greet

User: ‘‘Do you have some modern classical music?’
provide_info(slot1)

System: ‘‘Ok, modern classical. Which composer?’’
implConf(slot1)AskASlot(slot2) (db: 77)

User: ‘‘Steve Reich?"
provide_info(slot2)

System: ‘‘Do you have a preferred piece by Steve Reich?"
implConf(slot2) AskASlot(slot3) (db:25)

User: ‘‘Yes, Drumming"
provide_info(slot3)

System: ‘‘Did you say Drumming?"

2 Note that our database simulation assumes continuous values in the database and does not account
for domain-specific constraints such as album size, as the proof-of-concept study is meant to be
domain independent.
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explicitConfirm(slot3) (db: 4)
User: ‘‘Yes"

yes_answer
System: ‘‘OK, there are 4 parts on this album,

which are now shown on the screen."
presentList(slot1, slot2,slot3)(db:4)

Amajor draw-back of hand-coded thresholds for a rule-based systems is that they
are usually globally defined, i.e. the thresholds are fixed for the whole interaction.
Ideally one wants to formulate rules like “if the dialogue gets too long, relax the
constraint for DB presentation”, or “if the threshold for DB hits is already reached
at the beginning of the dialogue, it might still be worth asking the user for more
confirmation/constraints in order to increase task success”, and so on. Specifying
these contextual rules makes hand-coding even more complex and it becomes more
difficult to design a policy which is optimal (with respect to the defined objective
function).
The Reinforcement Learning experiments presented below effectively learn op-

timal values for different objective functions.

4.4 Reinforcement Learning Method

For policy learning we use the REALL-DUDE development tool (Lemon et al, 2006c),
which implements the SARSA RL algorithm (see Section 3.2.2.2) with linear func-
tion approximation (see Section 3.2.2.3). We will describe the REALL-DUDE learn-
ing system in more detail in Section 7.11. For learning, the dialogue is formalised
as a Markov-Decision-Process (MDP), with the problem formalised using the state-
action space as described in Section 4.2.1.
In the following we report on 16 experiments where we systematically vary the 2

database definitions and 8 objective/reward functions (as defined in Section 4.2.6).

4.4.1 Training the Policies

For learning we use the following parameters:

• number of cycles = 96,000
• learning rate α = 0.2
• discount rate γ = 0.95
• eligibility trace parameter λ=0.9
• exploration halving time ε= 1

6 ×numbero f cycles = 16,000
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The learning rate α is the step-size parameter for learning, as described in Section
3.2.2.2. The discount factor gamma (γ) may take a value between 0 and 1. For the
dialogue management problem we set it close to 1 so that future rewards are strongly
weighted (Sutton and Barto, 1998). The lambda (λ ) parameter refers to the trace
decay parameter, with 0≤ λ ≤ 1. Higher settings lead to longer lasting traces; that
is, a larger proportion of credit from a reward can be given to more distant states
and actions, (with λ=1 producing parallel learning to Monte Carlo algorithms, see
Section 3.2.2.2). The exploration halving time epsilon (ε) halves the exploration
rate every 16k dialogues, where ε is about 16 of the agent’s total number of cycles.
Each policy is trained over 96,000 cycles of the system, which resulted in about
12,000 simulated dialogues per training run. Figure 4.2 shows a training run where
the policy learns to reduce the number of database hits presented to the user (grey,
+1 per presented item) and dialogue length (black, -1 per turn) while obtaining a
high completionValue (green). Average dialogue reward, computed over windows
of 50 dialogues, is shown by the red line. Note that after about 6000 dialogues the
learner has settled on a policy of confirming all information slots while presenting
fewer than 10 items in fewer than 20 turns.

4.5 Results

We test each (learned and baseline) policy in each condition by running 550 test
dialogues in simulation. 3 We compare the policies in respect of their average fi-
nal reward per dialogue over the test runs. We then perform a paired t-test (with
Bonferroni correction) on the final rewards, to determine statistical significance.
The results produced by the learned policies (denoted RL) and the best hand-

coded baseline can be seen in Table 4.2. The manually optimised hand-coded strat-
egy performs equally well to the RL-based strategy in only 4 out of 16 conditions.
Especially in the more challenging random DB case, the RL-based policy learns to
adapt to the current context better. Detailed results produced by the learned poli-
cies and all the different hand-coded baselines (Hss . . .Hll) for 4 of the operating
conditions/application scenarios can be seen in Figure 4.3. We further discuss these
results below.

3 Note that this policy is trained and tested on the same user simulation. Although this method is
commonly employed for dialogue strategy learning, e.g. (Heeman, 2007; Henderson et al, 2008)
etc., training and testing on the same user simulation has been criticised of being “cheating” (Paek,
2006). In Chapter 7 we train and test a RL-based policy using two different user simulations. We
also show that results transfer between user simulations, i.e. there is no significant difference in
strategy performance between the user model which the strategy is trained on and the one which is
was only used for testing (see Section 7.11.2).
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Reward def. best hand-coded RL
Monotonic DB

HiNoise,HiHit,HiTurn -31.1±54.7 28.1±7.8***
HiNoise,LowHit,HiTurn 25.3±30.2 28.4±11.1**
HiNoise,HiHit,LowTurn 34.9±30.6 41.3±21.3***
HiNoise,LowHit,LowTurn 85.7±11.2 86.0±4.6
LowNoise,HiHit,HiTurn 85.6±5.9 87.2±4.5**
LowNoise,HiHit,LowTurn 38.1±28.7 41.8±45.9
LowNoise,LowHit,HiTurn 31.8±14.4 31.3±10.1
LowNoise,LowHit,LowTurn -22.6±54.3 -20.2±22.5

Random DB
HiNoise,HiHit,HiTurn -373.3±321.4 -159.7±96.3***
HiNoise,LowHit,HiTurn -275.1±312.0 -115.7±164.9***
HiNoise,HiHit,LowTurn -1.3±38.8 13.8±25.5***
HiNoise,LowHit,LowTurn 55.2±30.8 62.6±21.6***
LowNoise,HiHit,HiTurn 55.1±32.3 80.5±9.3***
LowNoise,HiHit,LowTurn -290.2±310.7 -155.3±217.5***
LowNoise,LowHit,HiTurn 1.9±39.5 20.4±23.2***
LowNoise,LowHit,LowTurn -333.6±316.5 -166.1±206.9***

Table 4.2 Direct comparison between mean rewards (with standard deviation ±) obtained by the
RL-based and best performing hand-coded policy for each environment with results from a paired
t-test; ** denotes p < .005, *** p < .001

Consider, for example, the pair of graphs in the top row of table 4.3. These
show the differences between the monotonic and random DB cases, for the case
HiNoise,LowHit,HiTurn. In the monotonic case, we can see that the learned pol-
icy has the fewest turns, but presents the longest lists, and outperforms all the hand-
coded configurations. All policies perform worse in the more challenging random
DB case, as expected, but the learned policy for the random case has learned that in
some cases not all filled slots need to be confirmed (presumably because sometimes
users provide new information when asked for confirmation, which can increase the
number of DB hits in the random model), and to keep dialogues short. The learned
policy here significantly outperforms all the hand-coded configurations (at p < .001
or p < .01).
Now consider the first column of table 4.3. These two graphs show the differ-

ences between the LowHit,HiTurn and HiHit,LowTurn cases for monotonic DBs
in HighNoise. Moving from the LowHit,HiTurn (top left) to the HiHit,LowTurn
(bottom left) case, we see that the learner earns more reward by increasing dialogue
length and decreasing the number of presented items, as expected. In both cases the
learned policies significantly outperform all the different hand-coded (threshold-
based) configurations (p < .001).
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Finally, consider the top right (HiNoise,LowHit,HiTurn) and bottom right
(LowNoise,LowHit,HiTurn) graphs, which are both for the random DB model.
Moving down, we see that in the LowNoise case, the learner has settled on a policy
of confirming fewer slots than in the high noise case (because filled slots are more
reliable in low noise). Interactions are thus shorter, and more reward is gained. In
both cases the learned policies significantly outperform all the hand-coded configu-
rations (p < .001).
The learned policies produce an average relative increase in reward of 86.78%

over the various hand-coded baseline policies. In 93% of the cases the learned poli-
cies perform highly significantly better than the hand-coded ones (p < .001).
It is also interesting to note that amongst all the factors describing our application

scenarios the DB model was the one with with the strongest impact on the strate-
gies’ performance. A sensitivity analysis using stepwise linear regression analysis
on performance measures using noise levels, user type, screen size, and DB retrieval
type as predictors showed that DB retrieval is the most important factor, see Table
4.4.

factors B Std. Error β
constant 6.44 .101
DB retrieval -1.8 .034 -.57***
noise level -0.25 .013 -.239***

Table 4.4 Multiple regression analysis on factors influencing strategy performance (reward); R2 =
.4, dismissed factors: user type, screen size

We now provide a qualitative description of the learned policies, using examples
from the simulated corpus. We report the number of logged database hits at each
stage of the interaction (“db:”). In example 4.3 the policy trained for monotonic DB
and HiNoise,LowHit,HiTurn has learned to attempt to fill all 4 slots and confirm
them before presenting items. It has also learned not to explicitly confirm if the user
rejects, if the dialogue gets too long. This strategy prefers to present a list of results
not including the rejected slot as an search constraint. For the HiNoise environment
presenting a list of options rather than asking for explicit confirmation circumvents
the speech recognition problem.
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Example 4.3.

System: ‘‘Hello, how may I help you?’’
greet

User: ‘‘I want a Radiohead song’’
provide_info(slot1)

System: ‘‘Ok, a Radiohead song. From what album?’’
implConf(slot1)AskASlot(slot2) (db: 77)

User: ‘‘From OK Computer’’
provide_info(slot2)

System: ‘‘OK from OK Computer. What song title?’’
implConf(slot2)AskASlot(slot3) (db: 12)

User: ‘‘Paranoid Android’’
provide_info(slot3)

System: ‘‘Did you say Karma Police?’’
explicitConfirm(slot3) (db: 1)

User: ‘‘No’’
no_answer

System: ‘‘OK, there are 12 items you might be looking for,
which are now shown on the screen.’’
presentList(slot1,slot2)(db:12)

Example 4.4 shows an example of the policy learned for random DB, LowNoise,
LowHit, and HiTurn. The learned policy here fills one slot and then immediately
presents the list, since it has already found a relatively low number of hits, and for
a random DB filling more slots does not necessarily result in a lower number of DB
hits. Due to the LowNoise condition it has also learned not to confirm the slot in this
situation. This strategy has learned to “take its chances” in this type of situation,
once a relatively small number of results has been retrieved.

Example 4.4.

System: ‘‘Hello, how may I help you?’’
greet

User: ‘‘I want a Radiohead song’’
provide_info(artist_name)

System: ‘‘OK, there are 22 items you might be looking for,
which are now shown on the screen.’’

presentList(artist_name,album_name)(db:22)

4.6 Summary

In this Chapter we provide the general proof-of-concept that RL-based strategies
significantly outperform manually tuned heuristics for a wide range of possible ap-
plication scenarios. The RL-based policies produce an average relative increase in
reward of 86.78% over the various hand-coded baseline policies. In 93% of the
cases the learned policies perform highly significantly better than the hand-coded
ones (p < .001).
We also demonstrated how to use a statistical policy learning framework (RL

with the SARSA algorithm and linear function approximation) to address a complex
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problem: what questions to ask the user, howmany database search results to present
to the user, and when to present them, given the competing trade-offs between the
length of the answer list, the length of the interaction, the type of database, and the
noise in the speech recognition environment.
One of the major strengths of RL-based strategies is that they “intelligently”

adapt their behaviour to the changing dialogue context in order to satisfy an over-
all long-term objective. One can think of this as locally adaptive “thresholds” which
are globally optimised. The standard technique for hand-coded threshold-based poli-
cies, in contrast, is to set a single “global” threshold which does not change over the
whole interaction.
This Chapter also demonstrates that RL-based strategies can learn to adapt to the

simulated learning environment in very subtle ways. Thus, the correct representation
of the learning environment is one of the key challenges for this framework. When
constructing a simulated learning environment by hand, one might argue that the
problem has only been transferred to another level of manual tuning. Data-driven
methods to construct such a learning environment should therefore be preferred. In
cases where a system is designed from scratch, however, it is often the case that
no suitable in-domain data is available. Collecting dialogue data without a work-
ing (hand-crafted) prototype is problematic, leaving the developer with a classic
chicken-and-egg problem. In the next chapter we introduce an approach where the
entire simulated learning environment is “bootstrapped” from Wizard-of-Oz data.
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Policy Learning in Simulated
Environments



Chapter 5

The Bootstrapping Approach to Developing

Reinforcement Learning-based Strategies

Fig. 5.1 Baron Münchhausen escaping from a swamp by pulling himself up by his own hair; after
a novel by Raspe (1785), illustration by Hosemann (1840) – The first ‘bootstrapping’

This Chapter motivates and introduces a procedural method for automatic strat-
egy learning from Wizard-of-Oz (WOZ) data. Note that this Chapter presents the
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approach on a conceptual level, while the concrete practical realisation of the indi-
vidual steps will be further elaborated in the subsequent chapters.
It should also be noted that the presented steps are not unique to the method

introduced in this book, but most of them are required for any simulation-driven
approach to strategy learning (though the last step is specific to our method). A
contribution of this book is that all these steps are now performed starting with a
limited WOZ data set, and that specific methods are introduced to build and validate
the obtained simulations.

5.1 Motivation

Statistical learning approaches, such as Reinforcement Learning (RL), for Spoken
Dialogue Systems offer several potential advantages over the standard rule-based
hand-coding approach to dialogue systems development (as further explained in
Chapter 3.1): a data-driven development cycle, provably optimal action policies, a
precise mathematical model for action selection, possibilities for generalisation to
unseen states, and automatic optimisation of competing trade-offs in the objective
function.
In the previous Chapter we showed that RL-based strategies outperform hand-

coded strategies with manually tuned thresholds for a wide range of application
scenarios. One of the major strengths of RL-based strategies is that they can “in-
telligently” adapt their strategies to the (local) representation of the dialogue envi-
ronment in order to satisfy an overall objective. Thus, the correct representation of
the learning environment is one of the key challenges for this framework, and data-
driven methods to construct such an environment should be preferred over hand-
crafting (as done for the proof-of-concept study in Chapter 4 ).
One of the major limitations of this approach is that it relies on a large quantity of

data being available. In cases when a fixed data set is used for learning, e.g. (Hen-
derson et al, 2008; Singh et al, 2002; Walker, 2000), the optimal policy can only
be discovered when it is present in the data set. 1 To overcome this problem, simu-
lated learning environments are being used to explore optimal policies which were
previously unseen in the data, e.g. (Ai et al, 2007b; Eckert et al, 1997; Young et al,
2009). However, several aspects of the components of these simulated environments
are usually hand-crafted, and thus limit the scope of policy learning. In particular,
the optimization (or reward) function is often manually set (Paek, 2006). In order
to build simulation components from real data, annotated in-domain dialogue cor-
pora have to be available, which explore a range of dialogue management decisions.
Collecting dialogue data without a working prototype is problematic, leaving the
developer with a classic “chicken-and-egg” problem. We therefore propose to learn

1 Note, by a policy being “present in a data set” we mean that the set of state-action mappings
which define the policy is contained in that data set. When a policy is not present in a data set,
either some states covered by the policy are not seen at all in that data, or the actions chosen by the
policy in some states are different to those seen in the data.
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dialogue strategies using simulation-based RL, where the simulated environment is
learned from small amounts of Wizard-of-Oz (WOZ) data.
In contrast to preceding work, our approach enables strategy learning in domains

where no prior system is available. Optimised learned strategies are then available
from the first moment of online-operation, and handcrafting of dialogue strategies
is avoided. This independence from large amounts of in-domain dialogue data al-
lows researchers to apply RL to new application areas beyond the scope of existing
dialogue systems. We call this method “bootstrapping”.
In addition, our work is the first using a data-driven simulated environment. Pre-

vious approaches to simulation-based dialogue strategy learning usually handcraft
some of their components.
Of course, some human effort is needed in developing the WOZ environment

and annotating the collected data, although automatic dialogue annotation could
be applied (Georgila et al, 2009). The alternative – collecting data using hand-
coded dialogue strategies – would still require annotation of the user actions, and
has the disadvantage of constraining the system policies explored in the collected
data. Therefore, WOZ data allows exploration of a range of possible strategies, as
intuitively generated by the wizards, in contrast to using an initial system which can
only explore a pre-defined range of options.

5.1.1 Term Definition

The term to ‘bootstrap’ has various different meanings in the fields of computer
science (to ‘boot’ a system), linguistics (theory of language acquisition), statistics
(sample with replacement for statistical inference), physics, law, business and many
more. We use the term in a sense which is closer to its original meaning of “pulling
oneself up by one’s own bootstraps”. The term is said to have come from a tale from
the adventures of Baron Münchhausen who, according to the story, escaped from a
swamp by pulling himself up by the straps of his boots. Although in other versions
of the story he hoisted himself using his own hair (Raspe, 1785), see Figure 5. In this
book the term is used to describe the problem of how to learn an optimal strategy be-
fore a working system or prototype exists, and thus circumvent the chicken-and-egg
problem. The bootstrapping method conceptually contrasts with dialogue strategies
being manually “uplifted” by a by a human expert.
Note that “bootstrapping” was also used to determine other aspects of dialogue

system design: Weilhammer et al (2006) “bootstrap” the ASR language model from
WOZ data. Fabbrizio et al (2004, 2008) “bootstrap” various dialogue components
from out-of-domain data. In general, the term “bootstrapping” is used to describe
the problem of how to build system components in a data-driven manner without
having in-domain data available.
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5.1.2 Related Work

In general, RL-based dialogue policy learning is based on trial-and-error learning
from seeing as many interactions as possible (see Sections 2.3.4 and 3.2.2.3). There
are three main techniques for addressing this problem: generalisation of state spaces,
e.g. (Henderson et al, 2005, 2008) , rapid learning from small data sets (Gasic and
Young, 2011; Pietquin et al, 2011b), and simulation-based learning, also see Section
2.3.4. Nevertheless, both techniques require initial data to start with. In cases where
a system is designed from scratch, however, there is often no suitable in-domain
data.
Learning dialogue strategies from human-human interaction data (if available)

is not an option, since humans behave differently with machines than with other
people (Doran et al, 2001; Jönsson and Dahlbäck, 1988; Moore and Morris, 1992).
Furthermore, human-human interaction is usually less affected by channel noise
since humans are much better at handling noise and uncertainty (see Section 2.1).
It is also not considered an option to use several disparate data sets from which

to build different simulated components. This approach assumes that simulated di-
alogue components are independent from each other, which clearly is not the case
for most of the simulations. For example, it assumes that the user behaviour is inde-
pendent from the channel noise. It is common practise in current research to obtain
all the simulated components from one data set, e.g. (Henderson et al, 2005, 2008;
Schatzmann, 2008; Singh et al, 2002). The work of (Prommer et al, 2006) also ex-
periments with using data from an isolated data collection to retrain some of the
simulated components. However, the results indicate that this can easily lead to ex-
perimental conditions which are inconsistent with the environment of the final task
setup. Nevertheless, some sub-components can be learned using out-of-domain data.
For example, a phoneme confusion matrix for ASR modeling can be learned on any
(big and representative enough) data set (Stuttle et al, 2004).
In sum, there is a strong indication that we need one consistent data set of human-

machine interaction for building a simulated learning environment. When building
a system from scratch, however, there is often no suitable in-domain data available.
Different approaches have been suggested to address the problem of lacking initial
training data: handcrafting the simulated components (Schatzmann et al, 2007a),
online learning (Chickering and Paek, 2007), transfering policies from another do-
main (Lemon and Liu, 2007; Lemon et al, 2006a), and also starting learning from a
limited amount of WOZ data (Prommer et al, 2006; Williams and Young, 2004b).
Schatzmann et al (2007a) suggest to manually set the initial parameters of a sim-

ulated environment to learn a policy. This policy is then used to gather initial data,
which then can be used to re-train the parameters of the simulation and then re-train
the policy. We argue that that data-driven methods should be preferred in order to
ensure consistent, realistic behaviour (see discussion Section 4.6).
Chickering and Paek (2007) circumvent the data problem by using online RL.

However, online learning requires many iterations with real users to have notice-
able effect. In addition, it requires the continuous use of exploration during online
operation, which can result in a quite confusing and frustrating interaction for the
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system’s users. Furthermore, it is not clear how to infer the reward function during
online operation. Hence, online learning can be used to constantly improve/adapt a
reasonably well-performing strategy, but it is not suited to design a strategy from
scratch.
In recent work the use of WOZ data has been proposed in the context of Rein-

forcement Learning (Levin and Passonneau, 2006; Prommer et al, 2006; Williams
and Young, 2004b). Williams and Young (2004b) useWOZ data to discover the state
and action space for the design of a Markov Decision Process (MDP). Prommer et al
(2006) useWOZ data to build a simulated user and noise model for simulation-based
RL. While both studies show promising first results, their simulated environments
still contain many hand-crafted aspects, which makes it hard to evaluate whether the
success of the learned strategy indeed originates from the WOZ data. Schatzmann
et al (2007a) propose to ‘bootstrap’ with a simulated user which is entirely hand-
crafted. In the following we propose what is currently the most strongly data-driven
approach to these problems. We also show that the resulting policy performs well
for real users.
In the following sections we discuss the general advantages and challenges of

RL-based dialogue strategy learning when the simulated learning environment is
obtained from WOZ data.

5.2 Advantages for Learning from WOZ Data

There are several advantages when learning RL-based dialogue strategies from
WOZ data, which makes this approach an attractive alternative to the other ap-
proaches outlined above.
First of all, the data collection in a WOZ experiment does not require a working

prototype, as discussed before. This allows us to learn optimal strategies for domains
where no working dialogue system already exists. Optimised learned strategies are
then available from the first moment of online-operation, and handcrafting of di-
alogue strategies is avoided. This independence from large amounts of in-domain
dialogue data allows researchers to apply RL to new application areas beyond the
scope of existing dialogue systems.
Furthermore, WOZ data can be used to explore human strategies as a basis for

automatic optimisation. For example, the state and action set for learning can then
be defined based on observing human behaviour first, as also suggested by Williams
and Young (2004b) and Levin and Passonneau (2006). A hand-coded strategy for
data-collection would not explore different dialogue policies. Even if some random
elements could be added into a hand-coded strategy, this would still be constrained
variation. Use of human wizards allows less restricted exploration of dialogue poli-
cies.
In addition, a WOZ experiment includes a controlled experimental setup which

can be designed to closely anticipate the final system setup. Subjects are also asked
to fill out a questionnaire (see Section 3.3.1). In conventional system development
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these user ratings are analysed by an expert and used to guide the design process. Al-
ternatively, these scores can also be utilised to learn an automatic evaluation function
using the PARADISE framework (see Section 2.2.2). In RL-based strategy develop-
ment this function can then be directly used to train and test the dialogue strategy.

5.2.1 Challenges for Learning from WOZ Data

However, using WOZ data for RL-based strategy development also generates some
challenges. In the following we discuss two problems in particular: how to learn
simulated components from small data sets, and how to account for the fact that a
WOZ study only simulates real Human-Computer Interaction.
First of all, WOZ experiments are expensive and usually only produce small

amounts of data. Thus, the bootstrapping approach requires methods to learn simu-
lated environments from little data. In order to find methods which are “appropriate”
one needs to remind oneself of the purpose of a simulated environment for strategy
learning. This purpose is usually two-fold. On the one hand it has to provide realis-
tic feedback to the learner. This “experience” gathered in the simulated environment
is then reflected in the learned Q-function (see Section 3.2.2). On the other hand, a
simulated environment also needs to cover a wide state-action space in order for the
learner to explore all possible situations in the dialogue. Exploration is necessary to
guarantee robust strategies (see Section 2.2.4).
In previous work, the simulated components of these learning environments are

either hand-crafted or learned via Supervised Learning (SL). The problem when
applying SL to small data set is that the resulting models often suffer from “data
sparsity”, which is defined as follows Alpaydin (2004).2 In general, SL is learn-
ing to infer a general mappings from seen example (see Section 2.3.1). If training
examples are rare, the learner tends to “overfit” the data, i.e. it adjusts to very spe-
cific features of the training data. Models which overfit do not generalise well to
unseen events and are also not realistic, in a sense that they are only representing
the behaviour of a small population. Thus, the major challenge when constructing
simulated learning environments from small amounts of WOZ data is to construct
simulated components which generate realistic and wide-coverage behaviour.
Previous work on learning simulated environments from WOZ data used hand-

crafted components in combination with “low conditioned” models (Prommer et al,
2006), i.e. models which do not cover the entire policy space. For example, the bi-
gram user simulation used by Prommer et al includes a lot of zero frequencies (see
Section 7.8.1.2). In Chapter 7 we will introduce appropriate methods for building
and evaluating simulated components from small data sets.
Another major problem in this framework is that a WOZ study only simulates

real HCI. That is, a simulated environment learned from this data is a “simulation of

2 Note that corpus size is not the only factor which can cause data sparsity. A corpus also need
to be representative of the real underlying distribution, which does not necessarily depend on the
size.



5.3 The Bootstrapping Method 79

a simulation”. We thus explicitly show that the learned simulations are a sufficient
estimate of real HCI by post-evaluating the simulated environment in Section 8.5.
We also show that a policy trained in this simulated environment “transfers” to real
HCI, i.e. we test whether the obtained results are compatible. We do this by includ-
ing an extra post-evaluation step in the general simulation-based RL framework.
In sum, developing RL-based dialogue strategies from WOZ data offers a num-

ber of important advantages over previous approaches, such as learning without a
working prototype, the ability to study wizard behaviour, and the availability of user
ratings. The major challenges are the data sparsity problem for SL and the fact that a
WOZ study only mimics real HCI. In the next Section we describe a general method
which addresses these challenges.

5.3 The Bootstrapping Method

In this book we introduce a method for training an optimised policy from WOZ
data. We call this method bootstrapping, because an optimised strategy exists even
before a working prototype system (see Section 5.1.1).
In particular, we follow a 5-step procedure (see Figure 5.3): We start by collecting

data in a WOZ experiment. From this data we train and test different components
of our simulated environment (such as the noise simulation and the simulated user)
using Supervised Learning techniques. We then train and evaluate dialogue policies
by interacting with the simulated environment using Reinforcement Learning. Once
the learned policies are “good enough” we test them with real users. In addition, we
introduce a final phase where we explicitly evaluate whether the models and policies
obtained by bootstrapping fromWOZ data are a valid estimate of real HCI (see step
5 in Figure 5.3).
The next Sections provide an overview of the specific methods used in each of

the steps. We also include pointers to the respective Chapters which report on these
steps in more detail.

5.3.1 Step 1: Data Collection in a Wizard-of-Oz Experiment

The first step in our framework is to collect data in a WOZ experiment. In order
to use WOZ data as an initial corpus for dialogue strategy learning we apply the
following changes to the conventional WOZ setup (as described in Section 3.3.1).
First of all, we are not only interested in the users’ behaviour, but also what kind

of strategies human wizards apply. That is, the wizard also becomes a subject of our
study. (This approach has also been described as a “Ghost in the Machine” method.)
We therefore have several different wizards participating in our study and explore
“intuitive” strategies applied by the wizards. We do not restrict the wizard to follow a
script (as done by otherWOZ experiments, e.g. (Prommer et al, 2006; Türck, 2001)),
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Fig. 5.2 Data-driven methodology for simulation-based dialogue strategy learning for new appli-
cations

but the wizard can interact freely with the user. Based on these initial insights about
human behaviour we define the state and action set for learning, following Williams
and Young (2004b).
These initial strategies should also account for noise in the interaction, as they

should be suited to be applied in spoken dialogue systems (which are much more
sensitive to noise). Error or uncertainty handling strategies (such as implicit or ex-
plicitly confirming what was said) are much less frequent in standard human-human
communication, as we previously found in a comparative corpus study of human-
human interaction (Rieser and Moore, 2005). We therefore artificially introduce
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simulated noise by randomly deleting words in the user transcripts before presenting
them to the wizard.
The application domain of the experiment is multimodal information-seeking

dialogue with an in-car music-player (see Section 3.4). In total we collected data
from 21 sessions, containing 72 dialogues with approximately 1600 turns in this
setup. A detailed overview of the experiment follows in Chapter 6 (also see (Rieser
et al, 2005)). Note that the experiments were conducted in the larger context of the
TALK project.3 The resulting corpus is known as the SAMMIE-24 corpus (also see
(Kruijff-Korbayová et al, 2005a,b, 2006a,b)).

5.3.2 Step 2: Build a Simulated Learning Environment

In the second step we use the WOZ data to construct a simulated learning environ-
ment. In particular, we model the following components: The action set and state
space for learning, the user and noise simulation, and the objective function for
learning and evaluation. All of these components are constructed using data-driven
methods. The action set and state space are retrieved by exploring the wizards’ ac-
tions. The user and noise simulations are both constructed using frequency-based
approaches. The objective function is a predictive model of user ratings obtained by
a regression analysis, following the PARADISE framework (see Section 2.2.2). Here
one of the major questions is how to construct simulations from small amounts of
data, as discussed before in Section 5.2.1. onstruct models with full More detail will
be provided in Chapter 7 (also see (Rieser and Lemon, 2006a,b,c, 2011)).

5.3.3 Step 3: Train and test a strategy in simulation

In the third step of our framework, we train and test a policy by interacting with the
simulated environment using Reinforcement Learning. We formulate the problem
as a hierarchical Markov Decision Process (MDP) which reflects the structure of
information-seeking dialogues (i.e. the information acquisition and the subsequent
presentation phase). For strategy training we use the SHARSHA algorithm with lin-
ear function approximation. We test the RL-based strategy against a baseline which
reflects the human wizard behaviour as observed in the data. This baseline is con-
structed by using Supervised Learning.
Note that RL is fundamentally different to Supervised Learning (SL): RL is a

statistical planning approach which allows us to find an optimal policy (sequences
of actions) with respect to an overall goal (Sutton and Barto, 1998); SL in contrast

3 TALK (Talk and Look: Tools for Ambient Linguistic Knowledge; www.talk-project.org
(20. September 2011)) was funded by the EU as project No. IST-507802 within the 6th Framework
program.
4 SAMMIE stands for Saarbrücken Multimodal MP3 Player Interaction Experiment.
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is concerned with deducing a function from training data for predicting/classifying
events. This book is not concerned with showing differences between SL and RL on
a small amount of data, but we use SL methods to capture the average human wiz-
ard strategy in the original data, and show that simulation-based RL is able to find
new policies, which were previously unseen. The supervised wizard strategy will be
explained in Section 7.6 in more detail. The simulated-based learning experiments
will be presented in Section 7.11 (also see (Rieser and Lemon, 2008d)).

5.3.4 Step 4: Test with Real Users

In the fourth step of our framework the strategy is tested with real users. We there-
fore develop a music-player dialogue system using a rapid development tool. The
learned strategy is implemented using a table look-up between states and learned
actions. In the user tests 17 subjects interact with the system, solving 2× 6 tasks
with each policy (SL and RL). At the end of each task they also fill out a question-
naire. The experiments will further be described in Chapter 8 (also see (Rieser and
Lemon, 2008c, 2011)).

5.3.5 Step 5: Post-Evaluation

In the final step of our framework we address the problem that a WOZ experiment
itself is only a simulation of real HCI. We therefore compare different aspects of the
3 corpora gathered so far: the WOZ study, the dialogues generated in simulation,
and the final user tests. We first compare dialogue strategy performance obtained in
simulation with the results obtained when testing with real users. We also compare
the experimental conditions of the different studies, where we discuss the noise
model in particular. We furthermore explore whether the objective function used for
learning is a realistic estimate of real user preferences. We will provide more detail
in Chapter 8.5 (also see (Rieser and Lemon, 2008a, 2011)).

5.4 Summary

This Chapter introduced and motivated a 5-step procedure for bootstrapping an op-
timised strategy from WOZ data using Reinforcement Learning methods. We start
with a data collection in a modified WOZ setup. In this setup the wizard also be-
comes a subject and channel noise is artificially introduced. We then construct a sim-
ulated learning environment from this data, where all the simulated components are
constructed using data-driven methods suited for learning from small data sets. The
strategy is then trained and tested by interacting with this simulated environment.
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We compare RL against a supervised baseline which is derived from the wizards’
behaviour. This comparison allows us to measure relative improvements over the
training data. We also evaluate the strategy with real users (see Chapter 8). Finally,
we post-evaluate the policy and the simulated environment by comparing the WOZ
data, the simulated data, and the real user corpus. We also conduct a detailed error
analysis, see Section 8.5.
Annotated example dialogues from the 3 different corpora can be found in Ap-

pendix A: Appendix A.1 contains dialogues from the WOZ study, Appendix A.2
simulated dialogues, and Appendix A.3 examples from the user study.5

We now apply this framework to optimise multimodal information-seeking dia-
logue strategies for an in-car digital music player. Dialogue Management and multi-
modal output generation are two closely interrelated problems for information seek-
ing dialogues: the decision of when to present information depends on how many
pieces of information to present and the available options for how to present them,
and vice versa. We therefore formulate the problem as a hierarchy of joint learn-
ing decisions which are optimised together. We see this as a first step towards an
integrated statistical model of Dialogue Management and more advanced output
planning/Natural Language Generation, see Chapter 9.

5 Note that we will refer to these example dialogues in different chapters throughout this book .
We therefore decided to put the example dialogues in the Appendix in order to facilitate consistent
reference and allow the reader to directly compare dialogues from different corpora more easily.



Chapter 6

Data Collection in a Wizard-of-Oz Experiment

Fig. 6.1 An engraving of Kempelen’s chess “automaton” The Turk from Karl Gottlieb von
Windisch’s 1784 book “Inanimate Reason”

It is a common approach within the area of Artificial Intelligence to have a human
being simulate the intelligent behaviour of a machine, before one is able to build a
full working system. This method is used for different reasons. Either one needs to
collect initial data before a system is designed, or one needs to produce more intel-
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ligent behaviour than is currently possible by machines. One example of the latter
is The Turk, see Figure 6, constructed and unveiled in 1770 by Wolfgang von Kem-
pelen (1734 - 1804) to impress the Empress Maria Theresa of Austria-Hungaria.
Note that, Wolfgang von Kempelen also was the first to invent Speech Synthesis
(see Chapter 2). Publicly promoted as an ‘intelligent’ automaton, the Turk was in
fact a mechanical illusion that allowed a human chess master to hide inside and op-
erate the machine. With a skilled operator, the Turk won most of the games played
(Standage, 2002).
In this Chapter we simulate interaction between a human and a machine for the

purpose of data collection. In particular, we simulate real Human-Computer Inter-
action (HCI) in a Wizard-of-Oz (WOZ) experiment (Dahlbäck et al, 1993; Fraser
and Gilbert, 1991), which follows a similar idea to the Turk. In a WOZ experiment
a human operator, the so-called “wizard”, simulates (partially or completely) the be-
haviour of a dialogue system, while the user is lead to believe that s/he is operating
with a real system (see Section 3.3.1). Within the context of the book we use WOZ
data to ‘bootstrap’ an optimised dialogue strategy using Reinforcement Learning
(RL). Using WOZ data, as opposed to data from real HCI, also allows us to study
the behaviour of the human operator before specifying the system’s functionality.
We therefore make several changes to the conventional WOZ setup (which is de-
scribed in Section 3.3.1). First of all, we are interested in the actions that a human
wizard intuitively employs in a specific context. We therefore do not restrict the
wizards by using a script (as done by other WOZ experiments, e.g. (Prommer et al,
2006; Türck, 2001)), but the wizards can interact freely with the user (see Section
6.1). In addition, the wizard only “sees what the system sees”, i.e. features which
are available for decision making at system runtime. In particular we simulate chan-
nel noise, as introduced by Automatic Speech Recognition, as described in Section
6.2. Furthermore, we convert the data into a special data format, which facilitates
analysis and annotation, as described in Section 6.3. Finally, we analyse the quality
of the employed strategies, as described in Section 6.4.
The experiments described in the following chapter were conducted in the larger

context of the TALK project.1 The resulting corpus is known as the SAMMIE-22

corpus (also see (Kruijff-Korbayová et al, 2005a,b, 2006a,b)).

6.1 Experimental Setup

The experimental setup for a WOZ study should resemble the intended application
domain as closely as possible. In our case, we simulate a multimodal in-car dia-
logue systems for interactive search in a music database (see Section 3.4.3). In the
following we describe some of the details of the experiment. Different aspects of

1 TALK (Talk and Look: Tools for Ambient Linguistic Knowledge; www.talk-project.org
(20. September 2011)) was funded by the EU as project No. IST-507802 within the 6th Framework
program.
2 SAMMIE stands for Saarbrücken Multimodal MP3 Player Interaction Experiment.
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the experiment are also described in Becker et al (2004); Korthauer et al (2006);
Kruijff-Korbayová et al (2005a); Rieser et al (2005).

Fig. 6.2 Multimodal Wizard-of-Oz data collection setup for an in-car music player application,
using the Lane Change driving simulator. Top right: User, Top left: Wizard, Bottom: transcribers

The experimental setup is shown schematically in Figure 6.2. There are five peo-
ple involved in each session of the experiment: an experiment leader (not shown),
two transcribers, a user, and a wizard. The interactions were carried out in Ger-
man.3 The wizards play the role of an intelligent interface to a music player and are
given access to a database of music information (but not actual music) of more than
150,000 albums (almost 1 million songs), extracted from the FreeDB database.4

Figure 6.3 shows an example screen shot of the music database as it is presented to
the wizard. The database also returns partial matches, e.g. if the wizard searches for
‘Subterranean Homesick’ the song ‘Subterranean Homesick Alien’ by Radiohead
as well as the the song ‘Subterranean Homesick Blues’ by Bob Dylan are retrieved.
The users are given a set of predefined tasks and are asked to accomplish them

by using a music player with a multimodal interface (as further described in Section
6.1.2). In a part of the session the users are also given a primary driving task, using
the Lane Change driving simulator (Mattes, 2003) in order to resemble the in-car
eyes-busy driving situation (see Section 3.4.3). The wizards can speak freely and
display the search results or playlists on the screen. The users can also speak, as
well as making selections on the screen. The user’s utterances are immediately tran-
scribed by a typist and are also recorded. The transcription is then presented to the
wizard. This was done in order to deprive the wizards of information encoded in the

3 However, most of the titles and artist names in the music database are in English.
4 Freely available at http://www.freedb.org/ ((20. September 2011))
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Fig. 6.3 Screenshot from the FreeDB-based database application, as seen by the wizard

intonation of utterances (as in current dialogue systems), and in order to be able to
corrupt the user input in a controlled way, simulating understanding problems at the
acoustic level (as further described in Section 6.2). The wizard’s utterances are also
transcribed (and recorded) and presented to the user using the speech synthesiser
system Mary.5 The transcription is also supported by a typing and spelling correc-
tion module to minimise speech synthesis errors and thus help maintain the illusion
of a working system.
Since it would be impossible for the wizard to construct layouts for screen output

on the fly, s/he gets support for this task from the WOZ system: The system auto-
matically computes four possible screens, as shown in Figure 6.4. The wizard can
chose one of the offered options to display to the user, or can decide to clear the
user’s screen. Otherwise, the user’s screen remains unchanged. It is therefore up to
the wizard to decide whether to use speech only, display only, or to combine speech
and display.
The types of screen output are (i) a simple text-message conveying how many

results were found, (ii) output of a list of just the names (of albums, songs or artists)
with the corresponding number of matches (for songs) or length (for albums),(iii) a
table of the complete search results, and (iv) a table of the complete search results,
but only displaying a subset of columns. These four screens are presented to the

5 TheMary system for German TTS is available at http://mary.dfki.de/ (3. January 2011)
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Fig. 6.4 Screenshot from the display presentation tool offering options for screen output to the
wizard for second-level of choice what to display an how

wizard in different quadrants on a monitor (cf. Figure 6.4), allowing for selection
with a simple mouse click.
This setup is technically realised using the Open Agent Architecture (OAA)

(Cheyer and Martin, 2001), which is a framework for integrating a community of
software agents in a distributed environment. Each system module is encapsulated
by an OAA wrapper to form an OAA agent, which is able to communicate with
the OAA community. The experimental system consists of 12 agents (all of them
written in Java).

6.1.1 Recruited Subjects: Wizards and Users

In our study we are interested in the behaviour of two types of subjects: users and
wizards. We recruited 5 wizards (2 female, 3 male) 6 in total, all were native speak-
ers of German with good English skills (in order to understand and search for En-
glish titles), all were between 20 and 35 years old, and all had no prior experience
with language technology or dialogue systems. Each wizard contributed about equal
portions to the corpus (16.4−25.4%).
In addition we recruited 21 user subjects (11 female, 10 male). Most of them

are between 20-30 years old (66.7%) and their field of study is spread between
subject areas (social science: 23.8%, languages: 23.8%, natural science: 28.6%, arts:

6 Originally we had 6 wizards performing the task. Due to data loss caused by technical failure,
complete data only exists for 5 of our 6 wizards.
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17.1%). Each subject received a compensation of 15.- e. The wizards were paid per
hour.

6.1.2 Experimental Procedure and Task Design

The experiment proceeded as follows. First the wizards were trained to use the
database interface and they were also given general instructions about how to in-
teract with the user. For example, that they should avoid relying on their own mu-
sic knowledge, but should instead ask the user for missing values. Training took 45
minutes, including 5 example tasks. User and wizard were placed in separate rooms.
When the user arrived s/he also first received a sheet of instructions to read. After
the user arrived s/he was introduced to the driving simulator and had to perform
a short test drive. The users solved two sets of tasks with two tasks in each. The
task description is handed out on separate board cards, one for each task, so that
the user can decide to solve the tasks in any preferred order. After each task the
user filled out a task-specific questionnaire, where the they indicated perceived task
success and satisfaction on a 5-point Likert Scale. Finally, the user was interviewed
by the experiment leader following a questionnaire containing similar questions to
the PARADISE study (Walker et al, 2000), including questions on task ease, timing,
multimodal and verbal presentation, as well as future use of such systems. Details
of the questionnaire are provided in Section 6.4.2.
We designed 10 task sets in total. Every task set was used at least twice, and each

wizard never used the same task twice. Each task set contains 4 tasks of 2 different
types. One task type asks the user to search for a specific title or album, the other
one asks the user to build a playlist which has to satisfy a number of constraints.
The tasks are paired into 2 compatible sets, containing one task of each task type.

6.2 Noise Simulation

6.2.1 Related Work

One major difference between real HCI and WOZ experiments is that the wizard
usually has full understanding of the user’s utterance, whereas the interaction with a
real dialogue system is affected by channel noise (see Section 3.3.1). Hence, recent
work has suggested to introduce artificial noise in the WOZ setup in order to get a
closer estimate of real HCI.
Skantze (2003, 2005) was the first to introduce channel noise in a WOZ setup.

He uses a real ASR system to study different error handling strategies as applied by
the wizards. Stuttle et al (2004); Williams and Young (2004a) follow this method,
but simulate ASR errors in order to control the error rate and thus to be able to
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investigate how the wizards adapt to different levels of noise. Results by Williams
and Young (2004a) show that even with high WER conditions the wizards are able
to parse ASR output well and assimilate contextual knowledge about what user ac-
tions are likely to follow. Such abilities are currently unrealistic for spoken dialogue
systems (but see (Gabsdil and Lemon, 2004; Lemon and Konstas, 2009) who use
context to predict likely next user actions and thereby improve ASR). In order to
prevent the wizard from using too much contextual knowledge, we deleted parts of
the user’s input completely, as described below.

6.2.2 Method

To approximate speech recognition errors we used a tool that randomly “deletes”
parts of the transcribed utterances. Due to the fact that humans are able to make
sense of even heavily corrupted input, this method not only covers non-understan-
dings, but wizards also built up their own hypotheses about what the user really
said, which can lead to misunderstandings. The word deletion rate varied: 20%
of the utterances were weakly corrupted (= deletion rate of 20%), and 20% were
strongly corrupted (= deletion rate of 50%). In 60% of the cases the wizard saw
the transcribed speech uncorrupted. Example 6.2.1 illustrates the kind of corrupted
utterances the wizard had to deal with.

Example 6.2.1
uncorrupted: Zu dieser Liste bitte Track ’Tonight’ hinzufügen.

[ Add track ’Tonight’ to this list.]
weakly corrupted: Zu dieser Liste bitte Track Tonight . . . .

[. . . track ‘Tonight’ to this list.]
strongly corrupted: Zu . . . Track Tonight . . . .

[. . . track ‘Tonight’ to . . . .]

6.2.3 Results and Discussion

Altogether, only 30% of the corrupted utterances had a noticeable effect on the inter-
action, i.e. the wizard did indicate some problem with understanding what was said
(see corpus-based example in Appendix A.1, Table A.2). The non-understanding
and misunderstandings are manually annotated as described in Blaylock et al (2006).
In total 7% of all the user turns lead to a communication error, which is much lower
than the current WER for spoken dialogue systems, where error rates can be around
30% (see Chapter 7.7). On the other hand, the error rate is higher than for human-
human communication. For example, when people talk over a telephone line only
1.5% of all utterances are followed by an acoustic communication error (Rieser and
Moore, 2005).
There are some shortcomings of this technique, as also pointed out by Schlangen

and Fernandez (2007), who used a similar setup to simulate a noisy communication
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channel. Deleting words is a rather crude simulation of real-world acoustic prob-
lems. Note that there are also studies introducing errors from ASR (Skantze, 2005;
Stuttle et al, 2004). We think however, that deleting words is simulating more “natu-
ral” communication problems (e.g. some parts of an utterance might be distorted by
transient noise). It is not clear whether confronting human wizards with actual ASR
errors will reveal the range of natural behaviour we are interested in. In contrast to
real ASR errors, our deletion method has the potential to elicit more ‘natural’ be-
haviour from the wizards. Complete deletions are similar to transient noise, whereas
substitutions and insertions as introduced by ASR (see Chapter 7.7) normally won’t
happen in human-human communication. Therefore we believe that our method is
better suited to study natural approaches to dealing with noise.
A major drawback of our method is the time delay introduced by transcribing

the utterances (the user as well as the wizard utterance). On average, the user has
to wait 6.7(±5.2) seconds for the wizard to reply. Most of the wizards reported
that they adjusted their behaviour accordingly. For example, they would omit some
questions in order to speed up the dialogue. On the other hand, it seemed that the
slow interaction pace made the users believe that they were interacting with a real
system.7

An alternative method for inserting deletions was later introduced by Schlangen
and Fernandez (2007). Schlangen and Fernandez distort the acoustic signal by using
white noise. While this method is less time (and cost) intensive, they do not prevent
the wizard from using intonation – a feature which usually is not accessible for real
HCI. Schlangen and Fernandez report similar results, where 71% of noise events
did not have an noticeable effect.
In sum, our results indicate that the applied method still does not prevent the wiz-

ards from using contextual knowledge to parse corrupted user input. Thus, too many
utterances are correctly understood compared to real HCI. As such, this method is
not suited to study detailed error handling. However, this method can be sufficient
in order to study natural presentation strategies under the presence of noise, as we
show in Chapters 7,8, and 8.5.

6.3 Corpus Description

In total we gathered 21 sessions, containing 72 dialogues with about 1600 turns.
Some example dialogues can be found in Appendix A.1. The data for each session
consists of a video and audio recording, the questionnaire data, transcripts, and a
log file. The gathered logging information per session consists of OAA messages
in chronological order, each marked by a timestamp. The log files contain various
information, e.g. the transcriptions of the spoken utterances, the wizard’s database

7 Unfortunately we failed to include a question in the questionnaire asking the user explicitly
whether s/he believed that she interacted with a real system.
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query and the number of results, the screen option chosen by the wizard, and so on.
In addition, the speech data is manually transcribed using the Transcriber Tool.8

The corpus is marked-up and annotated using the Nite XML Toolkit (NXT) (Car-
letta et al, 2005). The NXT format allows multi-layered annotation, where each layer
is annotated independently, but subsequent investigations can involve exploration
and automatic processing of the integrated data across layers. We created the NXT-
based corpus in several steps: First we automatically converted the transcriptions
and information from the log files. Then, we added various features using a mix-
ture of manual and (semi-)automatic annotation techniques (see (Kruijff-Korbayová
et al, 2006a,b)). For example, we manually annotated Clarification Requests (CRs),
as described in Chapter 7.3. We therefore created several annotation tools, based on
the NXT core library to facilitate complex manual annotation tasks (see Figure 6.3
for an example annotation tool created to annotate Clarification Requests).

Fig. 6.5 NXT-based tool for annotating Clarification Requests

In addition, we also manually annotated task success as described in (Blaylock
et al, 2006). Task success is calculated as the ratio of information slots defined by
the task compared to the information slots actually filled and confirmed during the
interaction. Furthermore, we annotated many contextual dialogue features, as fur-
ther described in Section 7.4. Many of them are automatically annotated using NXT
indexing (Carletta et al, 2005).

8 http://trans.sourceforge.net/ (22. April 2008)
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6.4 Analysis

We now present the results of the corpus analysis for multimodal presentation strate-
gies. We first summarise qualitative measures of the wizards’ and users’ behaviour.
We then summarise the results from the user questionnaire.

6.4.1 Qualitative Measures

Here we describe the multimodal behaviour of the dialogue participants in more
detail. A detailed analysis of the frequencies of annotated wizards’ actions can be
found in Section 7.3. An analysis of the annotated user’s actions can be found in
Section 7.8. In this Section we are especially interested in the presentation strategies
applied by the wizards.
Of the 793 wizard turns 22.3% were annotated as presentation strategies, result-

ing in 177 instances for learning, where the six wizards contributed about equal
proportions.Overall, the wizards choose to present a screen output in 48.0% of all
the wizard turns. The table option is presented most frequently (78.6%). The option
to present a list is chosen less frequently (17.5%), and the option to present text only
is hardly ever used (0.04%). The presented lists and tables contain 167.9(±177.7)
items on average, with the maximum number of 1711 items (see Example 6.4.1) and
the minimum of 1 item displayed on the screen. For multimodal presentation the
wizards commonly name the number of results while displaying the chosen screen
output, e.g. “The song is retrieved. There are 142 different versions.” (see Appendix
A.1, Table A.1).9

Example 6.4.1

User: Please search for music by Madonna .
Wizard: I found seventeen hundred and eleven items. The items are displayed on

the screen. [displays list]
User: Please select ‘Secret’.

For verbal presentation the wizards only present 1.6(±.45) items on average,
with a maximum of 3 items verbally enumerated. A common pattern observed for
verbal presentation is that the wizard summarised the results by presenting the op-
tions for the most distinctive feature to the user, e.g. “ The song exists by ‘Eric
Clapton’ or by ‘Derek & the Dominos’.” (see Appendix A.1, Table A.1).
Overall, the tasks are solved with 87.6%(±25.14) task success. One dialogue

takes on average 14.5(±8.8) turns. A turn is defined is defined as in (Paek and
Chickering, 2005): it begins at the start of each new user action (since all system
actions respond to user actions). A user action can be an utterance, or a click (i.e.
the user selected an item on the screen).

9 Note that the database used in the WOZ experiments contained over a million songs and is
searched with partial string match. Therefore the retrieved items for ‘Layla’ can be as high as 142.
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As we want to use the data for learning, it is important to know whether the
individual wizards applied significantly different strategies. We therefore apply a
one-way ANOVA followed by a planned comparison in order to compare the mean
value of different dialogue performance features across wizards. Dialogue length
only varies slightly across wizards (F(4) = 2.84, p = .04). Wizards also present
about the same amount of information on the screen (F(4) = .76, p = .55). Most
of the wizards are equally successful in completing the tasks. Only wizard 4 was
significantly better (p < .001) than wizard 2, as wizard 4 completes all the tasks
with 100% task success whereas wizard 2 only completes the tasks with 78.4%
success rate. Overall, one can say that all the wizards apply similar strategies with
respect to average measures. Note, that this does not mean that wizards reacted the
same way in specific dialogue contexts.
The users’ multimodal behaviour is very limited. Only 3 users selected an item

on the screen by clicking. We only observe 11 clicking events in total. However, the
user verbally referred to the displayed list on average 0.5(±.96) times per dialogue.

6.4.2 Subjective Ratings from the User Questionnaires

At the end of the interaction the user is interviewed using a questionnaire.The ques-
tionnaire contains 28 questions in total, many of them targeted to different research
questions within the TALK project. We are interested in the questions targeting User
Satisfaction as defined by PARADISE (see Section 2.2.2) and the multimodal pre-
sentation strategy. All subjects reported that they were convinced that they were
interacting with a real system.
The results for the mean PARADISE user ratings are displayed in Figure 6.6. ASR

performance is rated highest with 3.9(±.4) points on a 5-point Likert Scale. Ex-
pected Behaviour and Interaction Pace are rated worst with 1.8(±.6) due to the
time delay introduced by transcribing. The other ratings are between 2 and 3 points
which is about average on the 5-point scale. In order to compare the performance to
other systems we calculated the overall user satisfaction as the sum of five core met-
rics (TTS performance, Task Ease, User Expertise, Expected Behaviour, and Future
Use) following
citetwalker:csl02.10 The mean for user satisfaction across all dialogues is 15(±2.9).
Walker et al report an average user satisfaction of 16.2 for 9 Communicator sys-
tems. These results indicate that the performance of our human wizards is perceived
to have a comparable quality to previous dialogue systems.
To measure task experience we elicit data on perceived task success and satisfac-

tion on a 5-point Likert scale after each task was completed (as described in Section
6.1.2). Subjects rate both measures above average: the mean perceived task success

10 Note that
citetsassi criticise that taking the sum of different dimensions produces meaningless results. We
therefore only use this measure to compare our results to other systems, and do not engage in the
discussion of the interpretation of this score.
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Fig. 6.6 User Ratings on the PARADISE questions on a 5-point Likert Scale

is 3.4(±.8) and the mean perceived task satisfaction is 3.8(±.8). These high ratings
indicate that the WOZ ‘system’ is perceived to be very usable in general, and the
users are under the impression that they are able to accomplish most of their tasks.
The mean user ratings for the multimodal presentation strategy are shown in Fig-

ure 6.7. Multi-modal presentation strategies are perceived to be helpful in general,
having a mean of 3.1(±1.7) for switching between different modes within one dia-
logue and a mean of 2.9(±1.2) for combining different modes within one dialogue
on a 5-point Likert scale.
However, the subjects report that too much information is being displayed, es-

pecially for the tasks with driving. Users also find that the interaction distracted
them from driving (see Figure 6.7 ‘cognitive load’, note that the scale is reversed).
85.7% of the subjects report that the screen output (sometimes) distracted them.
The amount of information presented on the screen is rated low with a mean of
2.2(±.8) (see Figure 6.7, ‘multimodal info’). 76.2% of the subjects would prefer
to more verbal feedback, especially while driving. The amount of information pre-
sented verbally is rated as being appropriate (mean of 2.9±1.0).
In sum, the user ratings indicate that multimodal presentation was only per-

ceived to be appropriate in particular contexts. To further explore this hypothesis
we conducted a χ2 test on presentation strategy (comparing whether wizards chose
to present in multimodal or verbal modality). The results showed significant differ-
ences between wizards (χ2(1) = 34.21, p < .001). On the other hand, a Kruskal-
Wallis test comparing user preferences for the multimodal output showed no sig-
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Fig. 6.7 User Ratings on the multimodal presentation questions on a 5-point Likert Scale

nificant difference across wizards (H(5)=10.94, p > .05). 11 Mean performance rat-
ings for the wizards’ multimodal behaviour ranged from 1.67 to 3.5 on a five-point
Likert scale. We also performed an analysis of whether wizards improved their per-
formance over time (learning effects). However, the results show that the wizard’s
average user satisfaction scores in general slightly decreased with the number of
sessions that they performed.
Observing significantly different strategies which are not significantly different

in terms of user satisfaction, we conjecture that the wizards converged on strategies
which were appropriate in certain contexts. To strengthen this hypothesis we split
the data by wizard and performed a Kruskal-Wallis test on multimodal behaviour per
session. Only the two wizards with the lowest performance score showed no signif-
icant variation across session, whereas the wizards with the highest scores showed
the most varying behaviour. These results again indicate a context-dependent strat-
egy.
The dialogues show that common “mistakes” were that the wizards either dis-

played too much information on the screen, see Example A.1 in Appendix A.1. or
that the wizards fail to present results early enough, see Example A.2 in A.1. Screen
outputs should only contain an ‘appropriate’ amount of information. In other words,

11 The Kruskal-Wallis test is the non-parametric equivalent of a one-way ANOVA. Since the users
indicated their satisfaction on a 5-point Likert scale, an ANOVA which assumes normality would
be invalid.
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we need to find a strategy which decides on how many database search result to
present to the user, and when to present them, and which modality to use for presen-
tation, in an adaptive, context-dependent, ‘optimal’ manner.
These results indicate that we need to find a strategy given the competing trade-

offs between the number of results (large lists are difficult for users to process), the
length of the dialogue (long dialogues are tiring, but collecting more information can
result in more precise results), and the noise in the speech recognition environment
(in high noise conditions accurate information is difficult to obtain).
In the next chapter we use the ratings from the user questionnaires to optimise a

presentation strategy using simulation-based RL.

6.5 Summary and Discussion

The analysis of the WOZ data shows that the users perceive the wizards’ behaviour
to be sub-optimal. In particular, the amount of multimodal information as displayed
on the screen is often perceived to be inappropriately large. For example, the wiz-
ards choose to show up to 1711 items on the screen. On the other hand, users prefer
strategies which are short and efficient. We therefore need to find a policy which
addresses the problem of how many database search results to present to the user,
and when to present them, and which modality to use for presentation, given the
competing trade-offs between the number of results (large lists are difficult for users
to process especially when only presented verbally), the length of the dialogue (long
dialogues are tiring, but collecting more information can result in more precise re-
sults). In order to obtain this policy we will optimise presentation strategies with
respect to user preferences, using simulation-based Reinforcement Learning, as de-
scribed in the next Chapter.
Given our small data set, we apply the following simplification for strategy learn-

ing:We do not distinguish between different types of screen outputs (i.e. the 4 output
options available to the wizards cf. Figure 6.4), but only use the table as the only
multimodal option available (since this was the one chosen most frequently by the
wizards). For the learning experiments we simplify the decision to verbal versus
multimodal presentation. The option that the wizard only presents a screen output
without verbal commentary did not occur in the data (as we will show in Section
7.3).
A shortcoming of the WOZ setup described in this Chapter is that the question-

naire is only taken at the very end of the experiment. User ratings only exist for the
whole interaction, including driving and non-driving scenarios. Thus, the obtained
user ratings do not distinguish between the condition for driving and not driving. On
the other hand, it seems to be the case that wizards seem not to pay attention to the
fact whether the user is driving when choosing their presentation strategy. Only 2
of our 5 wizards reported that they (sometimes) took into account whether the user
was driving or not when presenting search results.
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Another shortcoming is that we do not log information about the users’ driving
performance. Other work chooses ‘cognitive load’ as the measure to be minimised
by in-car dialogue strategies, e.g. (Kun et al, 2007; Wada et al, 2001). We consider
learning presentation strategies which optimise driving performance as an interest-
ing direction for future work.
Another direction for future work is to create aWOZ setup which is more realistic

with respect to the final application. In this WOZ study the components for multi-
modal presentation do not resemble a real car environment. For example, the screen
used to display the results has the size of a standard computer screen, whereas for
an in-car dialogue the available screen size usually is much smaller. Furthermore, in
the current experiments the user has to select the items with a mouse click, which
is rather difficult when driving (in fact, only 3 users used the mouse, see Section
6.4.1).
In the next Chapter we use the WOZ data to ‘bootstrap’ different aspects of the

simulated learning environment for RL-based strategy development.



Chapter 7

Building Simulation Environments from

Wizard-of-Oz Data

Fig. 7.1 Wooden mechanical horse simulator during World War I – Learning with simulated envi-
ronments

This Chapter describes a framework for training and testing a RL-based policy
in simulation, where the simulated environment is obtained from limited amounts
of Wizard-of-Oz (WOZ) data.

7.1 Dialogue Strategy Learning with Simulated Environments

Why do we need simulated interaction?
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In general, a simulation is an imitation of some real thing, state of affairs, or
process. Learning in simulation allows the exploration of various strategies in a “low
cost” environment where trying alternatives has a low risk. For example, during
World War I soldiers were trained using a physical simulation of a horse, see Figure
7; nowadays soldiers are trained in virtual environments, e.g. (Traum et al, 2008).
The same is true for dialogue strategy optimisation using Reinforcement Learn-

ing (RL). Instead of having real users interacting with the system we let the system
“practise” in a “low risk” simulated environment until it is skilful enough to inter-
act with real users. RL-based strategy design is based on exploratory trial-and-error
learning methods (see Section 3.2). In exploratory trial-and-error learning the learn-
ing agent may also explore polices which do not make sense to real users. Thus,
exploratory trial-and-error learning with real users is a time-consuming and poten-
tially sadistic procedure, where real users can easily get irritated and frustrated. (For
further discussion on advantages and disadvantages of simulation-based RL please
see Section 3.2.3.)
The quality of the learned strategy depends on the quality of the simulation in

the sense that the strategy learns by interaction with the simulated environment,
as results by Schatzmann et al (2005b) indicate. Thus, building (and evaluating)
simulated environments for dialogue policy learning has become a research area
in its own right, e.g. (Ai et al, 2007b; Georgila et al, 2006b; Pietquin and Dutoit,
2006b; Pietquin and Hastie, 2011; Rieser and Lemon, 2006a; Schatzmann et al,
2006). Some of the research issues for simulation-based dialogue strategy learning
are summarised in the following.
First of all, there is no agreed definition of what a “simulated environment” con-

stitutes. For example, it is not clear where to exactly draw the boundary between the
RL agent and the learning environment. Sutton and Barto (1998) give the general
guideline that “anything that cannot be changed arbitrarily by the agent is consid-
ered to be outside of it and thus part of its environment” (Sutton and Barto, 1998,
p.53). Given this definition we take everything but the learning mechanism itself to
be part of the environment.
Furthermore, there is no general agreement on which components to include

in the simulated environment. At the very least, a simulated user is needed for
simulation-based dialogue strategy learning. Some work also includes a noise simu-
lation which models errors as introduced by ASR, e.g. (Pietquin and Dutoit, 2006b),
while other work has ignored the error channel altogether, e.g. (Levin et al, 2000;
Schatzmann et al, 2007c). In general, which dialogue components are required in
the simulation depends on the application domain of the strategy and the research
questions to be addressed.
In addition, it is also not clear how to obtain these simulated learning environ-

ments in general. Most of previous work uses a mixture between components which
are data driven (in particular the user simulation is often obtained from data), and
components which are handcrafted (in particular the reward function often is set
manually). Different methods are used for different components and we will discuss
them individually in this Chapter. The data-driven methods used in general fall into
the category of Supervised Learning (SL). Handcrafting of the simulated compo-
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nents is not a useful method, since the resulting components are rather unlikely to
reflect the application domain correctly, as discussed in Section ??. In the following
we propose what is currently the most strongly data-driven approach to these prob-
lems. We suggest to learn supervised models from WOZ data, and we identify the
following challenges:

• how to obtain reliable models from a small data set, and
• whether models obtained from simulated HCI are reliable estimates of real dia-
logue interaction.

We now discuss the question of “how much data is enough?” to obtain simu-
lations for dialogue strategy learning. We then discuss different techniques used to
evaluate simulated components. We also show how available corpus size, simulation
technique, and evaluation are closely interleaved problems.

7.1.1 Method and Related Work

How much data is enough to build a simulated environment to train RL-based dia-
logue strategies?
Different techniques have been used to assess the needed data quantity when

learning RL strategies from fixed data sets (see Chapter 2.3.4). For example, people
report on how many times a state was visited during training, e.g. (Henderson et al,
2008; Singh et al, 2002; Spitters et al, 2007); measure whether the obtained V-values
converge (Tetreault and Litman, 2006); or measure the confidence interval for the
learned transition function (Tetreault et al, 2007) (also see the discussion in Section
2.3.4).
For simulation-based learning, however, no such measure exists since one as-

sumes that for RL the simulated environment can produce an infinite amount of
training data. Here the question is how much data is enough to build simulated com-
ponents using data-driven techniques. In general, SL is less “data-hungry” than RL,
but still some initial data is needed.1

Prior work has trained different types of supervised models on corpora of differ-
ent quantity.
Schatzmann et al (2005b) and Georgila et al (2006b) for example build user sim-

ulations from richly annotated dialogues from the COMMUNICATOR corpus (Walker
et al, 2002b). Georgila et al (2006b) utilise 1683 annotated dialogues; Schatzmann
et al (2005b) utilise a subset of 697 dialogues. They both use different SL techniques
(such as n-gram modelling), where they show that more complex models outper-
form simpler ones. For evaluation they choose different metrics like the (expected)
accuracy, recall and precision.

1 However, for SL “There is no data like more data” (a quote attributed to Bob Mercer, former
researcher of the IBM speech group). More data always helps supervised models to become more
accurate and robust, as results by Banko and Brill (2001) indicate.
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Other work has used much smaller corpora to train their simulated models. Prom-
mer et al (2006), for example, learn from limited data (82 dialogues, 314 utterances).
They produce simulations which are “sufficiently accurate”. Unfortunately, their
simulated learning environment also includes a lot of hand-crafted aspects, and the
user models are what they call “low conditioned” as they also contain several states
with zero frequencies (as we will further discuss in Section 7.8.1.2).
However, there is also recent work that shows the limitations of learning from

small data sets. Results by Ai et al (2007b) indicate that user simulations learned
from a small data set (130 dialogues) can fail to provide enough coverage in the
strategy training phase. And in fact, random models might even be superior (as we
will further discuss in Section 7.8.1).
Taken together, there is no fixed threshold or standard recommendation for how

much data is enough. The required data size also depends on the complexity of
the problem we try to learn, how representative the data set is of the problem in
question, and the required accuracy – a fact which is described as the “triple trade-
off problem” for SL (Dietterrich, 2003).
Thus, in order to choose methods for building simulations, we first address the

question of the “required accuracy”.
A number of different metrics have been suggested for evaluating different sim-

ulated components (see Table 7.1 for an overview). In general, the applied metrics
assess two main objectives: accuracy with respect to the initial data set, or its util-
ity for policy learning. (Schatzmann et al, 2006) call this distinction direct versus.
indirect evaluation. However, by measuring the accuracy with respect to the initial
data we assume that there is a large and representative enough data set which allows
learning of realistic behaviour. Furthermore, measuring the utility has the drawback
that we only know about the quality of the simulations after we have trained the
policy, and it would be beneficial to have an estimate even before training.
So, what is an objective function suited to building and testing simulated envi-

ronments?
In Section 5.2.1 we defined the purpose of simulated learning environments to

provide realistic feedback to the learner, while covering all the state-action spaces
that need to be explored. Thus, random models, as suggested by Ai et al (2007b) are
not an option, as they do not give realistic feedback. Models with zero frequencies,
as used by Prommer et al (2006) are also not an option as they don’t cover all the
possible state-action spaces. Furthermore, models which over-fit the data (see defi-
nition Section 5.2.1) are also unlikely to produce behaviour which is representative
and general enough. Over-fitting is especially problematic when learning from small
data sets (Alpaydin, 2004).
Thus, we define our overall objective for building simulated components from

small data sets to handle the trade-off between facilitating coverage, while providing
realistic feedback, and being general enough not to over-fit the data.
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In addition, we need to take into account that simulated environments are used in
two different contexts: on the one hand they are used for strategy training, and on the
other hand they are used for strategy testing. We argue that for strategy training it is
more important that the simulated environments guarantees enough coverage, while
for testing it is more important that the simulated environment is more realistic.
Furthermore, the evaluation should also account for the fact that the simulations

are learned fromWOZ data. We therefore introduce three separate evaluation phases
to assure the quality of our simulated components:

1. We directly evaluate each single component when learning them formWOZ data
(as described in the rest of this Chapter).

2. We indirectly evaluate the simulated learning environment (as a whole) when
testing strategy performance (as described in Section 7.11 and Chapter 8).

3. We post-evaluate single components as well as the whole simulated environment
by comparing dialogue generated in simulation with dialogues obtained with real
users (as described in Chapter 8.5).

7.1.2 Outline

This Chapter describes a framework for training and testing a RL-based policy in
simulation, where the simulated environment is obtained from limited amounts of
WOZ data. We learn an optimised policy addressing the complex and challenging
problem of how many database search results to present to the user, when to present
them, and which modality to use for presentation, given the competing trade-offs
between the number of results (large lists are difficult for users to process especially
when only presented verbally), the length of the dialogue (long dialogues are tiring,
but collecting more information can result in more precise results), and the noise in
the speech recognition environment (in high noise conditions accurate information
is difficult to obtain).2

As outlined in the framework in Chapter 5, we obtain a simulated learning envi-
ronment from WOZ data, where all the simulated components are constructed in a
data-driven manner. In particular, we create the action set by exploring the actions
taken by the wizards, as described in Section 7.3. We use automatic feature selec-
tion techniques in order to define the state space, as described in Section 7.4. We
then formulate the problem as an hierarchical Markov Decision Process (MDP), as
explained in Section 7.5. In Section 7.6 we describe the baseline strategy obtained
via Supervised Learning. In Section 7.7 we present a method for simulating channel
noise if training data is sparse. In Section 7.8 we also introduce methods to build
and evaluate user simulation from small data sets. The applied reward function is
obtained using a modified version of the PARADISE framework, as described in Sec-
tion 7.9. In Section 7.10 we explain how and why some parts of the state space need

2 Note, that here we extend the problem addressed in Chapter 4, by addressing the question of
which output modality to choose for generation.
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to be quantised. In Section 7.11 we test and present the learned optimised policy,
and we conclude in Section 7.12. We now describe the employed database.

7.2 Database Description

Here we learn a strategy for a specific application environment with one fixed
database. (In contrast to Chapter 4 where we provided a general proof-of-concept
by simulating various kinds of database retrieval.) The employed database is similar
in ambiguity and structure to the one used in the WOZ experiment, but is smaller in
size. Ideally, one would use the same database, however, theWOZ database contains
over one million songs, which is (currently) unrealistic for a Spoken Dialogue Sys-
tem, as the lexicon for ASR and language modelling would exceed current system
capabilities. Furthermore, the WOZ database contains many German names and ti-
tles, and the language of the implemented system is English.3 However, the created
database contains a high level of ambiguity, which is comparable to the ambiguity
in the WOZ database. In other words, the returned number of matching items for an
ambiguous user request stays about the same for both experiments.
The created database contains 3 genres, 10 artists, and 36 albums and 438 songs.

The database contains ambiguities of two different types: semantic and referential.
For learning we deal with the latter. With ‘referential’ ambiguity we mean ambiguity
which is caused by under-specification of the user’s goal. For example, if the user
asks for a ‘Blues’ song, there are 142 possible candidates. Referential ambiguity
exists for every database feature (genre, artist, album, and song title). For example,
there are 60 song names which are ambiguous between different artists or albums (6
of them being triply ambiguous and 1 song title has 4 instances), plus ambiguities
which arise if the user only specifies partial information (or only a few words are
recognised). For example, if the system only recognises the first two words of ‘Sub-
terranean Homesick Alien’ by Radiohead, the song ‘Subterranean Homesick Blues’
by Bob Dylan is returned as well.
With ‘semantic’ ambiguity we refer to parsing ambiguities, where an entity can

specify an album name or a song name (e.g. ‘Kid A’ is a song title as well as an
album title by the artist Radiohead). Semantic ambiguities can also result from par-
tial parses, for example, when a string is part of two different database categories,
such as a song title referring to the artist (e.g. ‘Bob Dylan’s Blues’) or an album
name referring to the artist (e.g. ‘The Freewheelin’ Bob Dylan’). In this work se-
mantic ambiguities are resolved using hand-coded strategies. Every time more than
one possible interpretation is returned from the parser the system engages in a clar-
ification dialogue listing all the possible interpretations (e.g. “Do you mean album
or song name?”).

3 This switch of languages is simply because the WOZ tests are conducted at Saarland University
in Germany, whereas the user tests were performed at Edinburgh University in the UK.
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7.3 Action Set Selection

7.3.1 Method and Related Work

The action set defines the set of possible choices available to the learner at each state
(see Chapter 3.2.1). Conventionally, the action space is predefined by the system the
training data is taken from. Previous research either only optimises a sub-set of this
predefined scope, e.g. (Singh et al, 2002; Walker, 2000), or optimises all actions
available to the system, e.g. (Henderson et al, 2008).
In this work, however, we use WOZ data where the wizards talk freely, i.e. they

are not constrained by a script but react intuitively. Hence, we are not limited to a
predefined set of actions, but we are able to study human behaviour first, before we
fix the system’s functionality (a method which is also suggested by Williams and
Young (2004b) and Levin and Passonneau (2006) ). This approach also provides the
advantage that it allows us to discover new action choices for system design. For er-
ror handling and clarification, for example, humans employ a much wider range of
strategies than current systems do (Rieser and Moore, 2005). We therefore hope to
gain insight about natural ways to seek and present information for dialogue systems
from WOZ data. In particular, we are interested in the kind of information acquisi-
tion and multimodal presentation strategies human wizards (intuitively) apply.
We use manual annotation in order to discover the action set from WOZ data,

following a method by Williams and Young (2004b). One challenge is here to find
an adequate level of abstraction in order to describe the wizards’ actions as a set of
speech acts (SAs). On the one hand the SA taxonomy should cover the complexity
of human behaviour. On the other hand, it should be simple enough to learn from a
small data set.
In the following we propose a multilayered and multifunctional annotation

scheme. This scheme is based on semantic annotations reflecting the discourse
function of an utterance. The WOZ data is annotated with this scheme and a gold-
standard annotation is obtained by measuring inter-annotator agreement. These low-
level functions are then mapped / summarised into higher level dialogue acts, as
described in the following.

7.3.2 Annotation Scheme

In order to classify the wizards’ actions, we start out with a very fine-grained clas-
sification scheme which describes semantic discourse functions of so-called “Clar-
ification Requests”. The scheme was first introduced by Purver et al (2003a) and
Rodriguez and Schlangen (2004) and extended by Rieser and Moore (2005). We
found this scheme also to be suited for describing information acquisition and pre-
sentation strategies. We use a slightly modified version of the scheme, where we
only use a subset of the suggested annotation tags, while adding another level de-
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scribing the output modality, as summarised in Figure 7.2. In particular, the anno-
tation scheme describes wizard actions in terms of their communication level,
which describes the linguistic target after Clark (1996). We distinguish between ut-
terances which aim to elicit acoustic information (e.g. Sorry, can you please re-
peat?’ and utterances which aim to elicit further information to uniquely identify the
user’s reference (e.g. By which artist?). As well as utterances trying to establish
contact (e.g. Can you hear me?), and utterances about the user’s intention
(e.g. What do you want me to do?). The problem severity describes which type
of feedback the system requests from the user, i.e. asking for confirmation, for
repetition, or for elaboration. The modality of the dialogue act can ei-
ther be verbal or multimodal. Example 7.3.1 shows how a wizard action is
annotated according to the scheme.

⎡⎢⎢⎢⎢⎢⎢⎢⎣
WIZARD SA:

⎡⎢⎢⎢⎢⎣
level

{
contact |acoustic |reference |intention

}
severity:

{
confirmation |repetition |elaboration

}
modality:

{
multimodal |verbal

}
⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 7.2 Annotation scheme of discourse functions for wizard’s actions

Example 7.3.1
User: “Please search for titles by Madonna.”
Wizard: “Please wait a moment [...] I found two-hundred and thirty seven items. The items are

displayed on the screen”
level= goal, severity= confirm,4 modality= multimodal

An advantage of the applied scheme is that the described functions are strongly
related to surface forms (i.e. a sequence of words), as shown by Purver et al (2003a);
Rieser andMoore (2005); Rodriguez and Schlangen (2004). Thus, once the dialogue
manager decides on the function, the corresponding surface generation can easily be
determined.
Nevertheless, this detailed annotation scheme is likely to cause severe data spar-

sity, when learning a simulated environment from small data sets. For example,
the learned user simulation has to be responsive to (at least) 24 system actions. We
therefore summarise the detailed description of discourse functions into higher level
dialogue acts based on the action combinations most frequently observed in the data,
resulting in 6 distinct system actions, as defined in Table 7.2. (Also see Table 7.3
for examples from the corpus for each of the introduced SA categories.) Note that
the chosen actions are a subset of the Speech Acts defined by the prominent DATE
scheme (Walker and Passoneau, 2001).

4 Note that asking the user to select an item on the screen is annotated as confirm.
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The contact and intention level are excluded, since those levels are rarely ob-
served in the data (also see next section).

Speech Act Level Severity Modality
reject acoustic repetition verbal
explicitConfirm acoustic confirmation verbal
askAQuestion goal elaboration verbal
implicitConfirm goal both verbal
presentVerbal goal confirm verbal
presentMM goal confirm multimodal

Table 7.2 Reduced action set: System speech acts and corresponding discourse functions

7.3.3 Manual Annotation

We first evaluate the reliability of the low-level annotation scheme (Figure 7.2) via
inter-annotator agreement.
A standard technique is to first produce an annotators’ handbook, which contains

detailed instructions for how to classify the utterances (Carletta et al, 1997). The
corpus is then annotated (at least) twice, by an ‘expert’ and by a ‘naı̈ve’ coder.
The resulting annotations are then compared using the kappa (κ) statistics (Carletta,
1996). Annotations with κ ≥ .8 are said to allow strong conclusions to be drawn,
and annotations with .8 > κ ≥ .67 allow tentative conclusions. These ‘magical’
thresholds are heavily discussed and criticised, e.g. (Craggs and McGee-Wood,
2005; Eugenio and Glass, 2004; Reidsma and Carletta, 2008).
In this work, we use the kappa statistic not only to evaluate the resulting anno-

tation itself, but also to (indirectly) evaluate the reliability of the underlying coding
scheme. In particular, we apply an iterative approach of annotation and re-annotation
until the desired κ score is reached and a gold-standard annotation can be con-
structed. The reasoning behind this method is that linguistic categories are often
arbitrarily assigned in a top-down manner. In order to discover the action set for
learning, we want to create categories which have their foundation in the real data,
i.e. they are created in a bottom-up approach.
In particular, we proceed as follows: Two annotators code all the instances in

the data.5 The cases where the annotators disagree are resolved through discussion.
The coding scheme and the annotator’s handbook are updated accordingly. A final
version of the annotators handbook can be found in (Blaylock et al, 2006). The an-
notations reached a kappa score of κ = .78 for the level dimension, and κ = .71
for severity . The modality chosen by the wizard was automatically annotat-

5 Many thanks to the second annotator Michael Wirth.
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ed/logged as described in Section 6.3. The resulting annotations were then merged
to a gold-standard annotation.
This gold-standard annotation was then summarised into 6 distinct Speech Acts

(based on the action combinations most frequently observed in the data), as listed
in Table 7.2 and corpus-based frequencies and examples are given in Table 7.3 (see
discussion Section 7.3.2). 22.3% of the 793 wizard turns were annotated as pre-
sentation strategies, resulting in 177 instances for learning, where the six wizards
contributed about equal proportions.
Note that this relatively small percentage of presentation strategies is mainly due

to the following: First, the majority of the wizards’ speech acts are related to pro-
viding task-related feedback, e.g. “OK, I’m searching”, “OK, I’ve done that”, “Just
a moment please”. We also did not annotate sub-dialogues considered with playlist
building as here we are only interested in simple search tasks.

# action type frq. % example (original) translation
1 askAQuestion 30 16.9 Von welchem Künstler? By which artist?
2 explConfirm 5 2.8 Du suchst das Lied ‘Smile’? Are you searching for the song

‘Smile’?
3 implConfirm 34 29.2 Kannst du mir den Küstler des

Stücks ‘Summertime’ nennen?
Do you know the artist of the
song ‘Summertime’?

4a presentInfo
-multimodal

57 32.2 Ich habe drei Alben. Ich zeige
sie dir an.

I have three (different) albums.
I display them for you.

4b -verbal 28 15.8 Es gibt das Lied von ‘Eric Clap-
ton’ oder von ‘Eric Clapton &
The Dominos’

This song exists by ‘Eric Clap-
ton’ or by ‘Eric Clapton & The
Dominos’.

� reject 14 7.9 Wie bitte? Pardon?
� intention 9 5.1 Was genau soll ich tun? What exactly do you want me to

do?
177 100%

Table 7.3 System action types and frequencies as annotated in the data. (�) indicates the action
types that won’t be learned

7.3.4 Action Set for Learning

From the 7 high level acts we selected actions 1-4b for learning as these decisions
involve complex trade-offs between different dialogue parameters (as further de-
scribed below). The actions reject and actions related to intention recog-
nition are excluded from learning. For the system action reject we decided to
implement system behaviour which is based on a hand-coded heuristic, as this book
does not specifically target error or uncertainty handling (see Chapter 2). Questions
concerning intention recognition are also not addressed in this book . In general, the
intention level is difficult to model, as discussed in (Ginzburg, 2008).
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Actions 1-4b are organised to reflect the structure of information-seeking dia-
logues, as introduced in Section 3.4.1. The actions 1-3 belong to the information
acquisition phase, where the wizards tried to gather new constraints from the user
(with different emphasis on confirming the acquired information). The actions 4a
and 4b belong to the information presentation phase and are different realisations
for presenting a search result. Wizards present the results by either displaying a list
while naming the number of search results verbally (presentInfo-multimodal),
or they give a verbal summary of what was found (presentInfo-verbal). The
case that the wizard only presented the items on the screen without saying anything
does not occur in the WOZ data.
The learning problem is therefore defined as (a) when in the dialogue to present a

list of items and how many items to present to the user and (b) how to present them
(in which modality). In Section 7.5 we explain how to action set is formalised as a
learning problem (using the Markov Decision Process framework).

7.4 State Space Selection

7.4.1 Method and Related Work

The state space defines the agent’s view of the environment (see Chapter 3.2.1).
Two main issues related to state space design are its scalability and that it is often
selected manually (Paek, 2006).
The state space for learning has to be specified in advance by the dialogue de-

signer. This is usually done manually. Choosing which state space features to in-
clude is non-trivial, as there is a trade-off between power of expression (many state
space features can describe more complex problems) and keeping the learning prob-
lem tractable. This dilemma is also refereed to as the “curse of dimensionality” (see
Chapter 3.2.2.3), which describes the fact that the number of possible states grows
exponentially with the number of state variables (Young, 2002).
Previous research used different approaches to address this problem for state

space design. Most of the previous work has used only a limited representation of
the dialogue context, where the chosen features are mainly related to the task, for
example a representation of slots that need to be filled and confirmed for this task,
e.g. (Levin et al, 2000; Pietquin and Dutoit, 2006b; Singh et al, 2002; Williams and
Young, 2007a).
In addition to these task-based state features dialogue designers have explored

the use of enriched representations of dialogue context. One can distinguish between
two approaches. One approach is to use a rich set of features, but reduce the possible
state-action combinations by imposing some structure on the state space (cf. Chapter
3.2.2.3). (Henderson et al, 2005, 2008), for example, utilise the full dialogue context
available and employ linear feature combination to group similar states together.
Other research has investigated which individual context features help to learn better
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strategies, e.g. (Frampton and Lemon, 2006; Tetreault and Litman, 2006). How to
select these features in the first place, however, is left to the designer’s intuition and
is still a manual task.
In the following we distinguish between quasi-standard task-based state features,

and additional domain-specific state features. The former are a representation of the
task as needed for dialogue management. Task-based features commonly represent
the task-related slots, which are straightforward to enumerate manually, whereas
selecting domain-specific features becomes the ‘art’ of state space design. It might
take many iterations of training and testing (in simulation) until the ‘right’ feature
combination (and their representation) is determined. In this book we investigate
possible features for state space designs by first exploring the contextual features
that human wizards condition their decisions on, and we use these features for state-
space design.

7.4.2 Task-based State Space Features

We first manually enumerate a set of task-based variables which encode the dia-
logue task for learning. Task-oriented dialogue systems often use a simple semantic
representation of the task as pairs of slots and fillers (also known as feature-value
pairs). This representation is necessary for the dialogue manager to keep track of
the task progress, i.e. how many slots have been filled, and their confirmation status.
We choose a domain-independent representation of a 4-slot problem, correspond-
ing to the task features genre, artist, album, track for the music-player domain (see
Figure 7.3). In MDP-based strategy learning interpretation uncertainty is encoded in
the confirmation (or “grounding”) status of the slot values. POMDP-based strategy
learning, in contrast, explicitly represents uncertainty in the state space represen-
tation, as described in Section 3.2.1.2. For MDP-based strategy learning it is stan-
dard practise to use slot-status categories such as “empty”, “filled”, “confirmed”,
because if all possible values of each slot would be considered as separate states,
the number of states easily becomes unmanageable. We choose a representation
where the filledSlot feature holds a binary value indicating whether a slot is
filled. Equally, the state feature confirmedSlot holds a binary value indicating
whether a slot is confirmed.

⎡⎢⎣task representation:

⎡⎢⎣filledSlot 1 |2 |3 |4 |:
{
0,1

}
confirmedSlot 1 |2 |3 |4 |:

{
0,1

}
⎤⎥⎦
⎤⎥⎦

Fig. 7.3 State space selection: task representation

In general, there are two possible representations for this problem: Either to en-
code filling and grounding status into one variable, e.g. slotN={empty|filled|
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confirmed}, or to encode this information into two separate variables, e.g.
filledSlotN={0|1}, confirmedSlotN{̄0|1}. We choose the latter binary
encoding approach, even though it results in a larger state space. However, binary
encoding allows us to learn with linear function estimators (see Chapter 3.2.2.3).
Linear estimators learn a preference scale over the attributes of one variable. That
is, when encoding grounding information as {empty—filled—confirmed} one could
either learn that confirmed is preferred to filled, and filled is preferred to empty, or
the other way round. However, the preferred grounding status of a task variable
highly depends on the current context, and therefore it can’t simply be described by
a linear ranking (as also illustrated in Chapter 4). Furthermore, the state space size
for the binary representation is also limited by the fact that not all combinations of
indicator truth values can occur in practise (e.g. a slot cannot be confirmed before it
is filled).

7.4.3 Feature Selection Techniques for Domain-specific State
Space Features

In Section 6.4 we formulated the hypothesis that good wizard multimodal strate-
gies are context dependent. We now investigate whether wizards follow a specific
context-dependent pattern, i.e. whether there are specific contextual features which
influence the ‘average’ wizard’s behaviour. We use these features to design the state
space for RL.
In particular, we are interested in features which are related to when the wizards

present the search results and how they present them. We therefore annotate the
corpus with a rich set of dialogue context features using semi-automatic methods,
as described in Section 6.3. We then use different feature selection techniques (see
(Guyon and Elisseeff, 2003) for an introduction) to automatically select a subset of
these features.
A similar approach to state space selection is also followed by Chickering and

Paek (2007), who utilise Bayesian model selection techniques in order to choose
state features from a large number of candidate variables. In contrast to the approach
followed in this book, Chickering and Paek (2007) are not interested in exploring
human behaviour, but they select features from a human-computer dialogue, which
predict the (immediate) utility of an action.

7.4.3.1 Context/ Information-State Features

We first enumerate a rich set of dialogue context features to choose from.
A state or context in our system is a dialogue “information state” as defined in

(Lemon et al, 2005). We divide the types of information represented in the dialogue
information state into local features (comprising low-level and dialogue features),
dialogue history features, and user model features. We also defined features reflect-
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ing the application environment (e.g. driving). The information state features are
shown in Tables 7.4, 7.5, and 7.6, and are further described below. All features are
automatically extracted from the XML log-files (as described in Section 6.3), and
are available at runtime in ISU-based dialogue systems.

Local features:

First, we extracted features present in the “local” context of a wizard action, as
shown in Table 7.4, such as the number of matches returned from the data base query
(DB), whether any words were deleted by the corruption algorithm (see Chapter
6.2), the previous user speech act (SA-type) of the antecedent utterance, and its
argument (SA-argument). Speech act type and action are manually annotated
following a similar procedure as for annotating the system action set (see Section
7.3), with κ = 0.68 for SA-type and κ = 0.76 for SA-argument.
Note that the deletion feature (and later delHist, and delUser) counts

the number of words deleted by the corruption tool (see section 6.1) and serves as
an approximation to ASR confidence scores as observed by the system. Equally, the
human wizard will be able to infer when words in a sentence were deleted and hence
has a certain confidence that the input is complete.

Local features
DB: database matches (integer)
deletion: words deleted (yes/no)
SA-type: command, confirm, correct, request, provide
SA-argument: genre, artist, album, song, playlist, two arguments, three ar-

guments, other, NULL

Table 7.4 Contextual/Information-state features: Local Features

Dialogue history features:

The history features account for events in the whole dialogue so far, i.e. all in-
formation gathered before entering the presentation phase, as shown in Table 7.5.
We include features such as the number of questions that the wizard asked so far
(questHist), how often the screen output was already used (screenHist), the
average corruption rate so far (delHist), the dialogue length measured in turns
(dialogueLength), the dialogue duration in seconds (dialogueDuration),
and whether the user reacted to the screen output, either by verbally referencing
(refHist), e.g. using expressions such as “It’s item number 4”, or by clicking
(clickHist).
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Dialogue History Features
questHist: number of questions (integer)
screenHist: number screen outputs (integer)
delHist: average corruption rate; no.wordsDeletedInDialogueSoFar

no.utterancesInDialogueSoFar (real)
dialogueLength: length in turns (integer)
dialogueDuration: time in sec (real)
refHist: number of verbal user references to screen output (integer)
clickHist: number of click events (integer)

Table 7.5 Contextual/Information-state features: History Features

User model features:

Under “user model features” we consider features reflecting the wizards’ respon-
siveness to the behaviour and situation of the user. Each session comprises four
dialogues with one wizard. The user model features average the user’s behaviour
in these dialogues so far, as shown in Table 7.6, such as how responsive the user is
towards the screen output, i.e. how often this user clicks (clickUser) and how
frequently s/he used verbal references so far (refUser); how often the wizard
had already shown a screen output (screenUser) and how many questions were
already asked (questUser); how much the user’s speech was corrupted on aver-
age so far (delUser), i.e. an approximation of how well this user is recognised;
and whether this user is currently driving or not (driving). This information was
available to the wizards.

User model features
clickUser: average number of clicks (real)
refUser: average number of verbal references (real)
delUser: average corruption rate for that user; no.wordsDeletedForUserSoFar

no.utterancesForUserSoFar (real)
screenUser: average number of screens shown to that user (real)
questUser: average number of questions asked to user (real)
driving: user driving (yes/no)

Table 7.6 Contextual/Information-state features: User Model Features

Note that all these features are generic over information-seeking dialogues where
database results can be displayed on a screen; except for driving which only ap-
plies to hands-and-eyes-busy situations. Table 7.7 shows a context for the dialogue
in Example 7.3.1, assuming that it was the first utterance by this user. This potential
feature space comprises 16 features, many of them taking numerical attributes as
values. Including them all in the state space for learning would make the RL prob-
lem unnecessarily complex. In the next two sections we describe automatic feature
selection techniques, which help to reduce the feature space to a subset which is
most predictive of when and how to present search results.
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LOCAL FEATURES
DBmatches: 1711
deletion: 0
SA-type: command
SA-argument: artist

HISTORY FEATURES
[questHist, screenHist, delHist,refHist,clickHist]=0
duration= 10s
length= 1 turn

USER MODEL FEATURES
[clickUser,refUser,screenUser,questUser]=0
driving= true

Table 7.7 Example: Features in the context after the first turn in example 7.3.1

7.4.3.2 Feature Selection

Feature selection describes the problem of selecting a subset of features that are
most predictive for a given outcome. We use feature selection techniques to identify
the context features which are most predictable for the wizards choosing a specific
action. We choose to apply forward selection for all our experiments in order to
not include redundant features, given our large feature set. We use 2 different types
of selection techniques: We use the following feature filtering methods: correlation-
based subset evaluation (CFS) (Hall, 2000) and a decision tree algorithm (rule-based
SL). We also apply a correlation-based χ2 ranking technique. Filtering techniques
account for inner-feature relations, selecting subsets of predictive features at the ex-
pense of saying less about individual feature performance itself. Ranking techniques
evaluate each feature individually. For our experiments we use implementations of
selection techniques provided by the WEKA toolkit (Witten and Frank, 2005).
First, we investigated the wizards’ information acquisition strategies, i.e. which

features are related to the wizards’ decision of when to present a list
(presentInfo), i.e. the task is to predict presentInfo versus all other pos-
sible dialogue acts. None of the feature selection techniques was able to identify
any predictive feature for this task. Hence, we conclude that there is no distinctive
pattern the wizards follow for when to present information.
Next, we investigated the wizards’ information presentation strategy, i.e. which

features are related to the wizards’ decision to present a list verbally (present-
Info-verbal) or multi-modally (presentInfo-multimodal). All the fea-
ture selection techniques consistently choose the feature DB (number of retrieved
items from the database). Note that in Chapter 4 this information was already shown
to be valuable for when to present the search results. Here the wizards primarily use
this feature for how to present the results.
This result is maybe not very surprising, but it supports the claim that using

feature selection on WOZ data delivers valid results. Relevant features for other do-
mains may be less obvious. For example, (Levin and Passonneau, 2006) suggest the
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use ofWOZ data in order to discover the state space for error recovery strategies. For
this task, many other contextual features may come into play, as shown by (Gabsdil
and Lemon, 2004; Lemon and Konstas, 2009) for automatic ASR re-ranking.
In sum, the dialogue state is now represented as follows. There are 8 binary state

variables (for 1≤ N ≤ 4): filledSlotN for whether each slot number N is filled,
confirmedSlotN for whether each slot number N is confirmed, and one variable
DB for the current number of DB hits, which takes integer values between 1 and
438, resulting in 28×438= 112,128 distinct dialogue states. In the next section,
we combine the chosen state space (as described in this Section) with the chosen
action space (as defined in Section 7.3) into a Markov Decision Process model in
order to learn optimal, context-dependent action selection using RL.

7.5 MDP and Strategy Design

7.5.1 Motivation

A basic prerequisite to apply RL to dialogue strategy learning is to formulate the
learning problem as a Markov Decision Process (MDP) model, or alternatively, as
a Partially Observable Markov Decision Process (POMDP). This book uses MDPs
for strategy presentation, as discussed in Section 3.2.1.2. Chapter 3.2.1 gives a brief
overview on MDPs, introducing the main elements, namely the state space S, the
action set A, the state transition function T , as well as the reward function R. In
the following Section we present different techniques to impose additional structure
on MDP models for dialogue strategy learning. Adding structure helps to reduce the
possible state-action space and thus makes the learning problem more tractable (cf.
Section 3.2.2.3). In particular, we investigate hierarchical RL, also known as sub-
goal or sub-strategy learning (see (Barto and Mahadevan, 2003)) and learning with
preconditions, implemented as Information State Update Rules (also see (Heeman,
2007)). These techniques can be used to encode prior knowledge which otherwise
had to be learned in more complex ways.

7.5.2 Implementation

We use the REALL-DUDE development tool (Lemon et al, 2006c) for implement-
ing the learning problem. REALL combines reactive planning and hierarchical RL
(Shapiro, 2001). REALL is a language for defining reactive agent behaviour (i.e.
reactive to a rapidly changing environment). It consists of a representation for ex-
pressing hierarchical, goal-oriented plans, together with an interpreter for evaluat-
ing those plans. REALL is also a learning system, containing different algorithms for
simulation-based RL. Programmers can access this capability by writing plans with
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disjunctive elements, and embedding those choice points into hierarchical plans for
learning. A plan is defined by the following elements. Each plan has an objective,
which is the purpose of the plan, or the (sub-)strategy goal. It has requirements,
which are the preconditions for action. For us, these preconditions are defined by
Information State Update (ISU) rules. A plan can also have different means which
are alternate methods for achieving the objective. For us, the different means cor-
respond to the action set as defined in Section 7.3. Furthermore, the execution of
a plan is based on a number of features, which correspond to the state space for
learning (see Section 7.4).
The ISU rules are encoded by using the DUDE tool. DUDE is a “Dialogue and

Understanding Development Environment” for rapid system development (Lemon
and Liu, 2006). Section 8.1.1 provides a more detailed description of the tool. The
ISU rules share the same state features with REALL. Thus, the implemented dialogue
logic in DUDE directly triggers the preconditions for (sub-)plan execution in REALL.

7.5.3 Hierarchical Reinforcement Learning in the ISU Approach

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

acquisition action:

⎡⎢⎢⎢⎣
askASlot

implConfAskASlot

explConf

presentInfo

⎤⎥⎥⎥⎦state:

⎡⎢⎢⎢⎢⎣
filledSlot 1 |2 |3 |4 |:

{
0,1

}
confirmedSlot 1 |2 |3 |4 |:

{
0,1

}
DB:

{
1--438

}
⎤⎥⎥⎥⎥⎦

presentation action:

[
presentInfoVerbal

presentInfoMM

]
state:

⎡⎢⎢⎢⎢⎣
DB low:

{
0,1

}
DB med:

{
0,1

}
DB high

{
0,1

}
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 7.4 State-Action space for hierarchical RL

The structure of an information seeking dialogue system consists of an informa-
tion acquisition phase, and an information presentation phase. For information ac-
quisition the task of the dialogue manager is to gather “enough” search constraints
from the user, and then, “at the right time”, to start the information presentation
phase, where the presentation task is to present “the right amount” of information
in the right way– either on the screen or listing the items verbally. What “the right
amount” actually means depends on the application, the dialogue context, and the
preferences of users. For optimising dialogue strategies information acquisition and
presentation are two closely interrelated problems and need to be optimised jointly:
when to present information depends on the available options for how to present
them, and vice versa.
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We therefore formulate the problem as a MDP relating states to actions in
a hierarchical manner (see Figure 9.4): 4 actions are available for the informa-
tion acquisition phase; once the action presentInfo is chosen, the information
presentation phase is entered, where 2 different actions for output realisation are
available: presenting the list verbally (presentInfoVerbal) or multi-modally
(presentInfoMM).
This structure follows the hierarchical dependencies identified action set (see

Section 7.3.4). The available state features correspond to the feature set identified
in Section 7.4. The state space for the information acquisition phase comprises the
task-related state features (see Section 7.4.2), as well as a feature representing the
number of retrieved database items (see Section 7.4.3). For information presenta-
tion, the DB feature is quantised into three distinctive ranges. The method for quan-
tisation will be further described in Section 7.10. Note that for the acquisition phase
the state-action space is still continuous. In total there are 4112,128 (theoretically)
possible policies for information acquisition. For the information presentation phase
there are (only) 22

3
= 256 possible policies. (Note, that the number of policies which

are practically possible is much lower, due to different types of domain-specific and
logical constraints, as further discussed in Section 7.11.4.)
The automaton in Figure 7.5 illustrates the action choices available to the learner

at different times in the dialogue. The chosen system prompts for the final systems
are modelled after the wizard utterance found in the corpus (see Table 7.3, also see
example dialogues in Appendix A.3). Note that dialogue policy learning takes place
at the intention level, i.e. system and user simulation are ‘communicating’ on the
speech act level as shown in the example dialogues in Appendix A.2.
From a dialogue system perspective, the two sub-plans correspond to the Dia-

logue Management task of choosing an action (‘what to say’) and the Natural Lan-
guage Generation (NLG) task of realising the action (‘How to say it/How to choose
the output’). For information seeking dialogues, Dialogue Management and NLG
are two closely interrelated problems: the decision of when to present information
depends on the available options for how to present them, and vice versa. We there-
fore optimise NLG and Dialogue Management policies in an integrated fashion.
Most of the previous work has learned strategies where the policy chooses be-

tween different utterances with one fixed surface form. In this book we de-couple
form and function of a speech act, by learning in a hierarchical manner. First, the
optimal function is determined, and then the optimal output medium. We currently
only concentrate on whether to realise the presentation phase in an multimodal or
verbal manner, while the surface realisation is still template-based.

7.5.4 Further System Behaviour

It is common practise to restrict the learning space of a policy by integrating prior
domain knowledge in order to not have to learn the obvious (see for example (Hee-
man, 2007; Lemon et al, 2006a)), e.g. always greet the user at the start of the
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Fig. 7.5 Dialogue system automaton

dialogue. We implement this further system behaviour as ISU rules using the DUDE
dialogue engine. The implemented rules encode simple restrictions on the available
action choices, for example that only filled slots can be confirmed. An exhaustive
list of preconditions for each action is shown in Table 7.8.
The task level is implemented assuming the following default ordering of slots:

genre → artist → album → song. A similar ordering is also used by related work
on in-car music player applications, e.g. (Forlines et al, 2005; Schulz and Donker,
2006; Varges et al, 2006; Wang et al, 2005).
The database is queried every time the user provides a new slot value, where all

the filled slots serve as constraints for database retrieval. The retrieval also returns
partial matches of strings, as discussed in Section 7.2.
Once the system decides to present the information, it automatically fills all

empty slots, where a unique value can be retrieved. In example 7.5.1 the system
identifies a unique artist and genre for the song, whereas the album still is ambigu-
ous. Therefore, the system automatically fills genre and artist.
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Action Description Precondition
greeting Self-introduction and mixed-initiative

opening (e.g. “Hi this is iTalk, your
talkative music player. How my I help
you today?”)

Only available at the beginning of the
dialogue.

askASlot Ask for the next unfilled slot (default
ordering) (e.g. “Which genre would
you like?”)

At least one slot still empty.

implConf-
AskASlot

Implicit confirm the most recent filled
slot while asking for the next empty
slot (e.g. “Searching for Rock music.
By which artist?”)

The last provided slot value must be
filled but not confirmed; at least one
slot still empty.

explConf Explicit confirm the most recent filled
slot (e.g. “Did you say ’Rock’?”)

The last provided slot value must be
filled but not confirmed.

presentInfo Present information (and enter the in-
formation acquisition phase) (choose
betweenmultimodal or verbal presen-
tation)

At least one slot must be filled.

endDialogue Serve the best matching item and end
the dialogue. If the user rejects, the di-
alogue re-starts. (e.g. “You will now
hear ‘Mozambique’ by Bob Dylan.
Are you happy with this option? ”)

User selected an item in the presenta-
tion phase.

Table 7.8 Available system actions and their preconditions

Example 7.5.1
User: Search for the song “Layla” please.
State: filled [slot4], confirmed [], db:2
System: There are 2 results matching your query: all by the artist Eric Clapton, all from the

genre Blues, all having the song title Layla, but a different album. You have the following
options: Clapton Chronicles and MTV Unplugged. Which album would you like?

State: filled [slot1,slot2,slot4], confirmed [], db:2

This basic system functionality exists independently from the learned strategy,
i.e. the baseline strategy accesses the same basic functionality.

7.6 Wizard Behaviour

7.6.1 Method and Related Work

Our hypothesis is that simulation-based RL allows us to find optimal policies which
are superior to those present in the original data. Therefore we create a policy which
mimics the average wizard behaviour as a baseline. This allows us to measure the
relative improvements over the training data (cf. Henderson et al (2008)).
A baseline system is a benchmark used as a basis for comparison. In order to

make sensible claims, one must be aware that one compares dialogue policies which
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are commensurable (and not comparing “apples with oranges”). Furthermore, the
observed differences in strategy should be informative, i.e. the differences should
have a clear interpretation. In the following we discuss different options for a base-
line strategy.
The most common practise is to compare the RL-based strategy against a hand-

coded rule-based strategy, e.g. (Frampton and Lemon, 2006; Heeman, 2007; Lemon
et al, 2006a; Scheffler and Young, 2002; Spitters et al, 2007; Walker, 2000). For
hand-crafted strategies to be a fair basis for comparison they must be tuned to the
same objective function, as pointed out by (Paek, 2006). That is, their parameters
need to be manually optimised with respect to the same dialogue performance met-
ric. We have followed this approach in Chapter 4, where we compared RL-based
policies against various manually tuned hand-coded polices. Here, we choose an
alternative baseline which allows us to measure relative improvements over strate-
gies in the training data, as well as allowing us to compare human and optimised
strategies.
(Paek, 2001) suggests comparing dialogue performance againstWOZ data, where

the wizard’s strategy serves as a “gold-standard”. Human performance is clearly su-
perior for error recovery or NLU tasks, however, the wizards’ strategies cannot be
regarded as being “gold standard” for information seeking tasks, as discussed in
Chapter 6.4. Nevertheless, this comparison is still interesting as it allows to measure
the difference between strategies intuitively applied by human wizards and strate-
gies which are automatically optimised.
Another baseline is suggested by Singh et al (2002), which measures the rela-

tive improvement of the optimised model-based policy with respect to the initial
exploratory strategies in the training data for the NJFun system. This comparison
measures the relative performance gain when applying RL to automatic strategy op-
timisation. A similar approach is followed by Henderson et al (2008). They compare
the learned policy against 8 expert systems, on whose data the policy was trained.
In order to measure the relative improvement over the training data, (Henderson
et al, 2008) had to ‘average’ over the different system strategies. This ‘average’ (or
‘multi-expert’) strategy is constructed using Supervised Learning, which models the
majority decision the different systems take in a specific dialogue state (see Section
2.3.4).
Similarly, our data includes strategies of 5 different wizards, see Section 6.1.

Thus, we first have to construct a baseline that reflects the ‘average’ wizard strat-
egy in order to measure the relative the relative improvement over the initial data.
We therefore follow the approach introduced by Henderson et al (2008) and apply
Supervised Learning (SL), as described below.
Note that Supervised Learning is fundamentally different to Reinforcement

Learning: RL is a statistical planning approach which allows us to find an opti-
mal policy (sequences of actions) with respect to an overall goal (Sutton and Barto,
1998); SL in contrast is concerned with deducing a function from training data for
predicting/classifying events. This book is not concerned with showing differences
between SL and RL on a small amount of data, but we use SL methods to capture the
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average human wizard strategy in the original data, and show that simulation-based
RL is able to find new policies, which were previously unseen.

7.6.2 Supervised Learning: Rule-based Classification

The following SL experiments are all conducted using the WEKA toolkit (Witten
and Frank, 2005). As machine learning methods we choose a decision tree algo-
rithm and a rule induction classifier since they are the easiest to interpret and also
to implement in standard rule-based dialogue systems. Furthermore, both models
are known to work well with relatively small data sets (Alpaydin, 2004). We learn
with the decision tree J4.8 classifier, which is WEKA’s implementation of the C4.5
system (Quinlan, 1993), and rule induction JRIP, which is the WEKA implementa-
tion of Cohen (1995)’s “Repeated Incremental Pruning to Produce Error Reduction”
(RIPPER).
In particular, we want to learn models which predict the following wizard actions:

• Presentation timing: when the “average” wizard starts the presentation phase on
a turn level (binary decision).

• Presentation modality: in which modality the list is presented (multimodal vs.
verbal).

We use annotated dialogue context features as input, as described in Section
7.4.3.1 with feature selection techniques as described in Section 7.4.3.2. Both mod-
els are trained using 10-fold cross validation, comparing the predicted labels against
the true labels in a hold-out test set. Table 7.9 presents the results for comparing the
accuracy of the learned classifiers against the majority baseline.
A data analysis shows that all of the wizards are more likely to show a graphic on

the screen when the number of database hits is ≥ 4. However, none of the wizards
strictly follows that strategy.

majority baseline JRip J48
presentation timing 52.00±2.20 50.23±9.70 53.49±11.72
presentation mode 51.00±7.04 93.53±11.47* 94.63±9.96 *

* statistically significant improvement, p < .05

Table 7.9 Predicted accuracy for presentation timing and modality (with standard deviation ±)

Table 7.9 presents the results for comparing the accuracy of the learned classifiers
against the majority baseline, constructed by always predicting the majority class in
the data (which is a standard technique to compare SL classifiers). For presenta-
tion timing, none of the classifiers produces significantly improved results. Hence,
we conclude that there is no distinctive pattern observable by the SL algorithms
for when to present information. For strategy implementation we therefore use a
frequency-based approach following the distribution in the WOZ data: in 48% of
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cases the baseline policy decides to present the retrieved items; for the rest of the
time the system follows a hand-coded strategy.
For learning presentation modality, both classifiers significantly outperform the

majority baseline. The learned models both learn the same rule set, which can be
rewritten as in Algorithm 2. Note that this rather simple algorithm is meant to rep-
resent the average strategy as learned by SL from the initial data (which then allows
us to measure the relative improvements of the RL-based strategy).

Algorithm 2 SupervisedStrategy
Require: An integer DB ≥ 1.
1: DB⇐ number of retrieved database items
2: if DB ≤ 3 then

3: return presentInfoVerbal
4: else

5: return presentInfoMM
6: end if

The learned rules are used to implement a rule-based baseline strategy (SL pol-
icy) by controlling the choice points of the implemented automaton (see last Section
Figure 7.5). As noted above, the SL algorithms could not identify a common pat-
tern in the data for when to start the presentation phase. We therefore employ a
frequency-based approach following the distribution in the WOZ data: in 0.48 of
cases the baseline policy decides to present the retrieved items; for the rest of the
time the system randomly chooses between the 4 available actions for information
acquisition (where the implemented system constraints assure that the strategy is
still sensible). An example for the SL baseline policy (deployed in the simulated
environment) can be found in Appendix A.2, Table A.2.

7.7 Noise Simulation: Modelling the Effects of

Mis-Communication

7.7.1 Method and Related Work

One of the fundamental characteristics of Human-Computer Interaction is an error
prone communication channel, as discussed in Chapter 2.1. Therefore, the simula-
tion of channel noise is an important aspect of the simulated learning environment.
In spoken dialogue systems, the channel noise, as introduced by Automatic Speech
Recognition (ASR), is often measured in terms of word error rate (WER). WER is
defined as in Equation 7.1, where S is the number of substitutions, D is the number
of the deletions, I is the number of the insertions, N is the number of words in the
reference.
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WER =
S+D+ I

N
(7.1)

Previous work on dialogue strategy learning either ignores the error channel al-
together, e.g. (Levin et al, 2000; Schatzmann et al, 2007c), or simulates errors us-
ing (statistical) models of different complexity. One can distinguish between two
strands of research: methods that model noise at a globally fixed error rate, and
methods which compute the word error rate for every utterance. The former as-
sumes a fixed distribution of errors for the whole interaction. Pietquin and Renals
(2002), for example, condition the error rate on the type of the task (e.g. word versus
digit recognition). Prommer et al (2006) set a fixed error rate per individual speaker.
The simulated word error rate can also be set to approximate the distribution found
in the training data: In (Georgila et al, 2005a; Lemon et al, 2006a), for example,
70% of all utterances are transmitted via a WER of 0%, 10% of with a WER of
100%, and 20% with a varying rate between 0 and 100%. In (Scheffler and Young,
2001), the user’s dialogue behaviour is modelled as a network of interconnected
states, with user actions corresponding to state transitions and errors correspond-
ing to special “mumble” or “null” transitions, which occur with a certain (globally
fixed) frequency.
The other strand of research explicitly models the confusability of individual

words and utterances to overcome the assumption of a globally fixed error rate.
Error simulation based on phone-level confusions is explored by in different work,
including (Deng et al, 2003; Pietquin, 2004; Stuttle et al, 2004). While experiments
with phone-level confusions produce promising results, the amount of training data
needed to model context-dependent phone confusions for a typical tri-phone based
recogniser is often very large. Computationally less expensive word-level confusion
methods have been suggested by Pietquin and Dutoit (2006b) and Schatzmann et al
(2007b).
In this book we model channel noise on a level of abstraction which is adequate

to the task and the available data: The introduced model is complex enough to learn
a presentation strategy which is sensitive to the noise level, while it is obtainable
from a small data set. This book does not focus on learning a (sophisticated) er-
ror handling strategy, but on learn an information seeking strategy in the presence
of noise. In particular, we require a framework for modelling the effects of misun-
derstandings (as introduced by insertions and substitutions) and non-understanding
(as introduced by deletions) on formulating a database query. Not all the the ap-
proaches listed above do distinguish between substitution, deletion, and instertion,
e.g. (Pietquin and Dutoit, 2006b; Prommer et al, 2006) only model word confusion-
s/substitutions.
Furthermore, we consider it to be desirable if the noise simulation model is lan-

guage independent. The language of the WOZ data is German, while the user tests
are conducted in English. It is therefore problematic to directly train a detailed noise
simulation (e.g. based on word-level confusion) on the recorded WOZ interaction.
In the following we present a task-based error model which simulates the general
presence of noise and its effects on the interaction, rather than simulating the noise
itself.
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7.7.2 Simulating the Effects of Non- and Mis-Understandings

Here we describe a framework for simulating how non- and misunderstandings ef-
fect the behaviour of the user, as well as the system and the task. We first estimate
a (global) error distribution from the data, following Georgila et al (2005a); Lemon
et al (2006a). In the WOZ experiment 20% of the user utterances were corrupted by
low noise and 20% by high noise. This is averaged into a 30% chance of the input
being mis-recognised. In the WOZ setting only 7% of the user utterances lead to
a (noticeable) communication error (see Section 6.2.3). However, the performance
of present speech and language processing technology cannot be compared to hu-
man performance, especially not when communicating in noisy environments. A
30% error rate is a realistic assumption for deployed dialogue systems. For exam-
ple, Carpenter et al (2001) find that, in the COMMUNICATOR corpus, 33% of over
4.5k user utterances had some kind of processing error. This is consistent with the
findings by Georgila et al (2005a) who estimated a 30% error rate on 697 dialogues
from the same corpus. Hirschberg et al (2001) report on similar results for the TOOT
corpus by Litman and Pan (1999): 29% of over 2.3k user utterances were corrections
of system turns.
For non-understandings we estimate a rejection rate of about 4% of the utter-

ances. We model non-understandings by assigning a 4% probability of generat-
ing out-of-vocabulary (OOV) utterances to the user model (similar to Scheffler and
Young (2001)’s “mumble” state transition). OOV utterances lead to an empty parse.
Corpus studies report similar OOV rates (Bazzi and Glass, 2000).
While the simulation of non-understandings is pretty straight forward, the simu-

lation of misunderstandings requires a more complex model. Where non-understan-
dings are recognised immediately by the system (as well as by the user), misunder-
standings might not be detected until a later turn or might not be detected at all.
Results from a corpus study by Bohus and Rudnicky (2005a) for example show that
there is a discrepancy of up to 51.5% between what is mis-recognised by the system
and what is corrected by the users: users may correct right hypothesis and may leave
errors uncorrected. In order to model such discrepancies, we separately model how
misunderstandings effect the user and the system side.
For the user side, the noise model sets the probabilities of the user rejecting or ac-

cepting the system’s hypothesis for the user simulation. In general, the probabilities
for the user simulation are learned from data (as described in the next Section 7.8).
Note that the user speech act labels in theWOZ data are held on an abstract level, i.e.
they still need to be realised in a context-specific way, e.g. with respect to the current
noise level. In particular, the two abstract user speech acts repeat content and
yes-no answer are differently realised depending on the noise model, as shown
in Table 7.10. For example, if the user simulation predicts a user’s speech act as a
yes-no answer, the noise model sets the probability for the user agreeing with ‘yes’,
or rejecting with ‘no’. That is, while the noise model follows a fixed error rate, the
user simulation determines the probability of individual speech acts in a data-driven
context-dependent manner.
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Annotated in corpus No error Semantic error
repeat content confirm and re-provide same negate and re-provide different
y/n answer yes-answer no-answer

Table 7.10 Action mapping from corpus annotation to user acts including the noise model

For the system side, the effects of misunderstandings are modelled by how we
estimate task completion in the reward function. We estimate a 30% chance for each
slot which is filled but not confirmed for being incorrect due to mis-recognition.
We account for this fact when calculating Task Success in the reward function, as
described in Section 7.9. For slots which are filled but confirmed we always assume
that those are correct. In future work we will refine this assumption.
In sum, we use a simple model simulating the effects of non- and misunderstand-

ing on the interaction, rather than the noise itself. We simulate the effects that noise
has on the user behaviour, as well as for the task accuracy. This method is especially
suited to learning from small data sets. Furthermore, the model is easily adjustable
for different levels of noise. Lemon and Liu (2007), for example, use a similar im-
plementation for the noise model in order to investigate the effects of training and
testing a strategy in environments with different noise levels. The drawback of the
applied technique is that noise is modelled at a globally fixed error rate. It does not
adjust the ASR quality according to the local (e.g. phonetic) context. One direction
for future research is to simulate a context-dependent semantic error rate following
work by Bohus and Rudnicky (2002), which predicts semantic confidence levels,
rather than simulating WER.

7.8 User Simulation

A “user simulation” is a predictive model of real user behaviour used for automatic
dialogue strategy development. The major advantage of user simulations is that they
are less cost-intensive than experimenting with real users.
It should be noted that user simulation is different to user modelling, although

these two terms are sometimes confused in the literature. The main difference is that
they serve different functions on the system side. The purpose of user modelling is
to adapt strategies to different user types, or to compute state updates in POMDP
systems. For example, dialogue strategies are adapted to user expertise (Hassel and
Hagen, 2005), or information is presented according to user preferences (Demberg
andMoore, 2006). Note that RL can also be used for user modelling in order to learn
user-type-specific strategies. For example, different user profiles can be incorporated
in the reward function, as demonstrated in Chapter 4.2.5.
Recent work on user simulation for strategy learning differs from user type in

various respects. The role of a user simulation is as a synthetic dialogue partner
which generates behaviour representative for a diverse user population. As such, the
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user simulation must be able to predict user responses that real users might give
in the same or a similar context. In addition, it must also represent the statistical
distribution over all possible types of user behaviour in order to account for natural
variety in real human user behaviour. These requirements clearly favour a statistical
approach, where the model’s parameters can be estimated from real data.
This Section proceeds as follows. In Subsection 7.8.1 first review user simula-

tions in the context of dialogue strategy learning. We then explain how user acts are
annotated in the WOZ data in Subsection 7.8.2. In Subsection 7.8.3 we then show
that building a simple bi-gram model is not a good option, as it leads to severe data
sparsity. We therefore introduce two different methods for building user simulations
for learning from small data sets: in Subsection 7.8.3 we present a novel technique
for cluster-based user simulations; in Subsection 7.8.5 we apply smoothing to the
bi-gram model. We then evaluate the user simulations using the Kullback-Leibler
(KL) divergence. In Subsection 7.8.7 we describe how the user goal is released with
respect to the chosen user action.

7.8.1 Method and Related Work

7.8.1.1 User Simulation for Dialogue Strategy Learning

Statistical user simulation for dialogue strategy learning is explored by a number
of research groups, not only in the context of RL, but also in combination with su-
pervised techniques for strategy optimisation, e.g. (Filisko and Seneff, 2005, 2006),
or in order to identify weak spots during (manual) strategy development (Chung,
2004a), or also for automatic dialogue evaluation (Engelbrecht et al, 2009; López-
Cózar et al, 2003; Möller et al, 2006; Watanabe et al, 1998). Also see (Schatzmann
et al, 2006) for a review of user simulation for dialogue strategy learning.
For simulation-based (also known as model-free) RL, the dialogue system learns

online during the interaction with the simulated user. One of the major advantages of
simulation-based RL is that a vast state-action space can be explored, as discussed
in Chapter 3.2.3. A simulated user allows any number of training episodes to be
generated, so that the learning dialogue manager can exhaustively explore the space
of possible strategies.
In general, one can distinguish user simulations according to the employed level

of abstraction, their intended purpose, and the utilised modelling technique. The
level of simulated interaction can either be the acoustic level, e.g. (Chung, 2004a;
Filisko and Seneff, 2005, 2006; López-Cózar et al, 2003), the word-level, e.g. (Araki
et al, 1997; Watanabe et al, 1998), or the intention level, as first introduced by (Eck-
ert et al, 1997). Simulations on the word and acoustic level are mainly used for
dialogue system testing (including the ASR and NLU module). Simulations on the
intention level are most popular for RL-based strategy learning, as they outperform
the lower level approaches in terms of robustness, portability and scalability. A vari-
ety of different statistical techniques are applied to build such intention-based sim-
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ulations. All of them exploit the Markov assumption, i.e. the next user action is
assumed to be independent from the dialogue history and can be predicted based on
some representation of the current dialogue state. This is formalised as a sequence
of state transitions and dialogue acts: at any time t, the user is in a state S, takes
action au, transitions into the intermediate state S, receives system action as, and
transitions into the next state S′ where the cycle restarts.

S → au → as → S′ → . . . (7.2)

(Eckert et al, 1997, 1998) pioneered the research area by using simple bi-gram
models to predict the next user action based on the previous dialogue state. Much
current work followed, e.g. (Scheffler and Young, 2001, 2002), (Georgila et al,
2005a, 2006b), (Cuayáhuitl et al, 2005), (Pietquin, 2004; Pietquin and Dutoit,
2006a,b), (Schatzmann et al, 2005a,b, 2007a,c), (Ai and Litman, 2006, 2007; Ai
et al, 2007b), (Rieser and Lemon, 2006a) and so on.
Many of these methods define a “user goal” in order to ensure that the simulation

model generates realistic behaviour in a consistent and goal-directed manner. In this
context, “user goal” usually refers to a concrete task the user tries to accomplish by
using the system. It is commonly assumed that the user goal is an instance of the
task space defined by the possible slot values.
One major issue for user simulation is to assure “consistent” behaviour. This can

mean consistency with respect to the current user goal. For example, Schatzmann
et al (2007a,c) introduce agenda-based models where the user goal is modelled as a
hidden variable to assure consistency. For other domains, such as tutoring, Ai and
Litman (2007) introduced knowledge-consistent user simulations.
Consistent user behaviour also means being concordant with the dialogue history.

Due to theMarkov assumption the user simulation is “memory-less” towards its own
previous behaviour. For example, a user simulation might first confirm a certain
value and then negate it later. (Note that real user behaviour can also be inconsistent
to a certain degree, as shown by (Bohus and Rudnicky, 2005a)). Previous work has
addressed this issue by modelling longer sequences of interactions. For example,
Scheffler and Young (2002) propose the use of graph-models in order to improve
temporal consistency. Georgila et al (2005a, 2006b) combine higher level n-gram
models with linear feature combination techniques, and thus are able to learn with
a rich representation of dialogue context and dialogue history. Work by Cuayáhuitl
et al (2005) uses Hidden Markov Models to simulate user behaviour as a sequence
of actions. Pietquin (2004); Pietquin and Dutoit (2006a,b) use Bayesian Networks
to allow multiple dependencies between dialogue states and user actions. However,
the drawback to all these methods is that they need to be trained on large amounts
of data.
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7.8.1.2 Learning User Simulations from Small Data Sets

In this work we are challenged by learning user simulations from a small data set.
Previous work has also addressed the question of how to learn user simulations
when training data is sparse. Prommer et al (2006) for example learn a simple bi-
gram model from a data set comprising 82 dialogues and 314 utterances. The bi-
gram model comprises 4 user actions and 8 system actions, where 53.13% of the
possible combinations have zero frequency. As a consequence the user simulation
will never generate the full range of user actions (after a specific system action),
and thus fails to let the learner sufficiently explore the state-action space (also see
discussion Section 7.1.1).
An approach to overcome the data-sparsity problem is suggested by (Schatzmann

et al, 2007c). They use a summary-space mapping approach to learn a user simula-
tion from 160 dialogues and 6452 turns. In the summary space mapping approach
similar states are summarised (using the Expectation-Maximisation algorithm), and
a distribution of possible user behaviour is assigned to a set of states. This method
allows generation of the full range of possible user behaviour in every state. In
(Rieser and Lemon, 2006a) we introduced similar approach to Schatzmann et al
(2007c), which is described in the following.

7.8.1.3 Training and Testing with Simulated Users

A common strategy is to first get promising results in simulation, before testing with
real users, e.g. (Filisko and Seneff, 2006; Frampton, 2008; Lemon et al, 2006a).
However, it was criticised that training and testing on the same user simulation
is “cheating” (Paek, 2006). As pointed out by Schatzmann et al (2005b), policies
trained with a poor user simulation model may appear to perform well when tested
on the same model, but fail when tested on a better user simulation model. For-
tunately, the converse is not true: policies learned with a complex model will still
perform well when tested on a less complex model. Lemon and Liu (2007) confirm
that policies for “worst case scenarios” (e.g. an uncooperative user, or noisy condi-
tions) transfer well to “easier” situations, but not the other way round. In sum, these
results indicate that in general training and testing should be done with two separate
user simulations which meet different requirements.
Evaluating simulated components is a difficult issue, as already discussed in Sec-

tion 7.1.1. On the one hand the evaluation metric needs to assess the coverage pro-
vided by the simulation (in order to learn robust strategies); on the other hand the
metric needs to assess how realistic the simulation is in order to produce realistic
feedback. These issues become even more prominent when learning from small data
sets. Furthermore, the importance of coverage and realism seem to be differently
weighted for strategy testing and strategy training.
Results by Ai et al (2007b) indicate that for strategy training strategy coverage

is even more important that realistic feedback. (Ai et al (2007b) show that random
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models perform better than more accurate ones if the latter fail to provide enough
coverage.)
The main purpose of user simulation used for strategy testing is to get a realis-

tic estimate of strategy performance when tested with real users, see for example
(Lemon et al, 2006a). Hence, user simulation for strategy testing needs to be more
realistic.

7.8.2 User Actions

In order to learn user actions from data, they first have to be annotated. Thus, an ac-
tion set for annotation must be defined, similar to the system action set described in
Section 7.3. Similarly, the user model’s action set must achieve a trade-off between
adequately covering the complexity of human behaviour and being simple enough
for its parameters to be trainable on a limited amount of corpus data (in analogy to
the system action set). We therefore employ the same iterative manual annotation
method as for the system actions (see Section 7.3.3). The annotations reach a kappa
score of κ = .70.

Table 7.11 User action types and frequencies as annotated in the data

# action type freq% example (original) translation
1 add 54 30.5 ah, Ella Fitzgerald. erm, Ella Fitzgerald.
3 repeat 57 32.2 ja, Smile ja. yes, Smile yes.
2 y/n 14 7.9 ja, in Ordnung. yes, that’s OK.
4 change 17 9.6 dann machen wir was anderes

und zwar hätte ich gern eine
Playlist mit drei Liedern.

Let’s try something else then. I
would like a playlist with three
songs.

others 35 19.8 — no answer, comment, aside

For our domain, the user can either add new information (add), repeat or para-
phrase information which was already provided at an earlier stage (repeat), give a
simple yes-no answer (y/n), or change to a different topic by providing a different
slot value than the one asked for (change). Examples from the corpus are given in
Table 7.8.2 and in the dialogues listed in Appendix A.1.
The majority of user speech acts are to add or to repeat information. Topic change

and yes-no answers are less common. Instead of providing a simple yes-no answer
the users often repeat or paraphrase the information. Note that the speech acts sub-
sumed under others are not (only) out-of-domain utterances (like giving no an-
swer, making a comment aside), but also any user action which is handled by hand-
coded strategies in the final system, e.g. the user asking for help, repeat, or quit (see
Section 8.1.1). The users also had the option to select an item by clicking on the
screen. As clicking only is observed 11 times over the whole WOZ experiment (as
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discussed in Chapter 6.4), user clicks are subsumed under the action add (adding
information).

7.8.3 A Simple Bi-gram Model

We first construct a simple bi-gram model in order to explore quality of the data.
Bi-gram (or more general n-gram) models for user simulations were first introduced
by (Eckert et al, 1997, 1998). An n-gram based user simulation predicts the user
action âu,t at time t that is most probable given the dialogue history of system and
user actions (see Equation 7.3 where as,t denotes the system action at time t). In
practise, data sparsity may prohibit the use of long dialogue histories. Therefore,
the full history can be approximated using a bi-gram model by using the Markov
assumption, as in Equation 7.4.

âu,t = argmaxau,tP(au,t |as,t−1,au,t−1, ...,au,0,as,0) (7.3)
≈ argmaxau,tP(au,t |as,t−1) (7.4)
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Fig. 7.6 User action frequencies following a system act (bi-gram model): 25% zero frequencies
for state-action pairs due to data sparsity
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Although the bi-gram model only relates one state/feature to one action, it still
can result in data sparsity for small data sets. The bi-gram model obtained from our
WOZ data and the observed frequencies are shown in Figure 7.6. When examining
the distributions of user replies per system turn for the bi-gram model, we can see
that in 25% of the state-action pairs have zero frequencies. For comparison, the
bi-gram model by Prommer et al (2006) has zero frequencies for 53.13% of the
state-action pairs in their data set.
As discussed before, user simulations for automatic strategy learning need to

cover the whole variety of possible user actions for each state in order to produce
robust strategies. In other words, user simulations should allow the learner to also
find strategies which are not in the data. Especially when learning from small data
sets, user simulations for automatic strategy training should cover the whole variety
of possible user actions for each state in order to produce robust strategies. Ai et al
(2007b), for example, show that random models outperform more accurate ones if
the latter fail to provide enough coverage. On the other hand, user simulations used
for testing should be more accurate with respect to the data in order to test under
realistic conditions, e.g. (Möller et al, 2006).
We therefore apply two learning methods to deal with data sparsity (for n-gram

models): First, we develop a user simulation which is based on a new clustering
technique; second, we apply smoothing (which is the standard technique applied to
account for zero frequencies in n-gram models).

7.8.4 Cluster-based User Simulation

We introduced a cluster-based technique for building user simulations from small
amounts of data in (Rieser and Lemon, 2006a). A similar approach has later been
suggested by Schatzmann et al (2007c), called the “summary-space mapping tech-
nique”, where similar states are summarised, and a distribution of possible user be-
haviour is assigned to a set of states, which we call “clusters”. This method allows
one to generate the full range of possible user behaviour in every state.
Cluster-based user simulations generate explorative user behaviour which is sim-

ilar but not identical to user behaviour observed in the original data. In contrast to
the bi-gram model, where the likelihood of the next user act is conditioned on the
previous system action, the likelihood for the cluster-based model is conditioned on
a cluster of similar system states, see Equation 7.5.

âu,t ≈ argmaxau,tP(au,t |clusters,t−1) (7.5)

The underlying idea is that, with sparse training data, we want user simulations to
be “similar to real users in similar situations” but not identical, since we do not want
to over-fit the data. (Note that for n-gram models the trade-off between coverage and
accuracy/data fit is also known as the bias-variance trade-off (Alpaydin, 2004).) This
user simulation should generate any kind of observed user behaviour in a context
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(as opposed to the zero frequencies in the bi-gram model), while still generating
behaviour which is realistic/ pragmatically plausible in this situation. That is, we
want our user simulation to generate behaviour which is complete and consistent
with respect to the observed actions. We also want our model to generate actions
which show some variabilitywith respect to the observed behaviour, i.e. a controlled
degree of randomness. This variance will help us to explore situations which are
not observed in the data, which is especially valuable when building a model from
sparse training data, cf. (Ai et al, 2007b).
Clustering is applied in order to identify more general situations than the previ-

ously annotated system speech acts by grouping them according to their similarity.
Cluster analysis is a un-supervised machine learning technique (see definition Sec-
tion 2.3.1) which partitions the data into subsets (clusters). In contrast to supervised
learning there are no predefined class labels, but the labels are constructed in a
bottom-up manner by grouping feature vectors based on their similarity. For build-
ing such clusters we apply the Expectation-Maximisation (EM) algorithm. The EM
algorithm is an incremental approach to clustering (Dempster et al, 1977), which
fits parameters of Gaussian density distributions to the data.
The first step, calculation of the cluster probabilities (which are “expected” class

values) is “expectation”; the second, calculation of the distribution parameters, is
“maximisation” of the likelihood of the (Gaussian) distributions given the data.

7.8.4.1 Semantic Annotation of System Acts

In order to define similarity between system actions, we need to describe their (se-
mantic) properties. In Section 7.3 we explained that for the incremental annotation
of system acts we start out with a fine grained scheme of “Clarification Requests”
(Rieser and Moore, 2005; Rodriguez and Schlangen, 2004), which is then sum-
marised to a smaller set of more general system acts (cf. Figure 7.2, Section 7.3).
We now reverse this process and decompose the system actions into a more detailed
semantic description.6

7.8.4.2 Results

The EM algorithm generates three state clusters, as shown in Figure 7.7. The
system acts askAQuestion and implConfirm are summarised into cluster
1; explConf and reject are in cluster 2; and presentListVerbal and
presentListMM are in cluster 3.
For every cluster we assign the observed frequencies of user actions (i.e. all the

user actions which occur with one of the states belonging to that cluster), as shown in
Figure 7.8. We observe the following differences when comparing the cluster-based
frequencies with the ones from the original bi-gram model (see Figure 7.6): First,

6 Note that such a flexible, tree-based approach to utilise multifunctional and multidimensional
dialogue act annotation schemes is also suggested by Bunt (2007).
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Fig. 7.7 Clustered System Actions

there are no zero frequencies for any of the possible user-system act combinations.
The cluster-based user simulation generates the full range of possible user acts in
any state, and thus allows to learn robust strategies. Second, the previously 6 states
are now summarised into 3 states. Consequently, the cluster-based user simulation
will generate the same behaviour for the system acts being in one cluster.7

7.8.5 Smoothed Bi-gram User Simulation

For our second user simulation model we apply smoothing to a bi-gram model.
Smoothing is a standard technique applied to n-gram models to account for zero
frequencies observed in the data. Smoothing assigns a non-zero probability to zero-
probability and low-probability n-grams. We implement a simple smoothing tech-
nique called “add-one smoothing” (Jurafsky and Martin, 2000). This technique dis-
counts some non-zero counts in order to obtain probability mass that will be as-
signed to the zero counts. We apply this technique to the original frequency-based
bi-gram model. The resulting model is shown in Figure 7.9. In comparison to the

7 Note that for each two system acts the user simulation now reacts with the same likelihood.
Nevertheless, the learner needs to experience the different consequences/feedback on his actions,
in order to learn distinctive behaviour. These differences still do exist by way of the different effects
that a user action has on the state space (dependent on the previous system act). These effects are
implemented by logical constraints and update rules for system behaviour, as presented in Section
7.5.3. For example, if the user adds new information after implConfirm a slot gets filled and
another gets confirmed in the system state space, whereas after askAQuestion a slot only gets
filled. These different sate space representations have different expected rewards, thus the strategy
learns distinctive behaviour.
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Fig. 7.8 User action frequencies from the cluster-based user simulation

original bi-gram model the smoothed model has no zero frequencies. In contrast to
the cluster-based model, the smoothed model still has 6 distinct states, but for some
state-action combinations the predicted frequencies are still low. We therefore ex-
pect this model to produce less exploratory behaviour. Furthermore, the frequency
for the non-zero states are modelled from data from a relatively small user popula-
tion. Thus, this model is more likely to overfit.
In general, the smoothed model seems to be closer to the original data than the

cluster-based one (thus being more realistic at the expense of allowing less ex-
ploratory behaviour). In the next section we introduce an evaluation metric which
allows us to assess the level of exploratory versus realistic user behaviour as pre-
dicted by the different user simulations.
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Fig. 7.9 User action frequencies from the smoothed bi-gram user simulation
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7.8.6 Evaluation of User Simulations

Several metrics have been proposed to evaluate user simulations , e.g. (Ai and Lit-
man, 2006; Georgila et al, 2006a; Schatzmann et al, 2005a; Scheffler and Young,
2001; Williams, 2007). See Pietquin and Hastie (2011) for a survey on metrics for
the evaluation of user simulations. An established measure of dialogue similarity is
based on the Kullback-Leibler (KL) divergence8, as also used by e.g (Cuayáhuitl
et al, 2005; Jung et al, 2009), which is defined as follows:

DKL(P||Q) =
M

∑
i=1

P(i)∗ log
P(i)
Q(i)

(7.6)

This metric measures the divergence between distributions P and Q in a context
with M responses. Ideally, the KL divergence between two similar distributions is
close to zero.
KL allows us to compare the raw probabilities as observed in the original data

with the probabilities generated by our user simulation models. We then compare the
KL results of the cluster-based and the smoothed user simulation against a random
model and a majority baseline, see Table 7.12. The random model is constructed by
assigning equal frequency to all four actions, whereas the majority baseline always
predicts the most frequent action in one context. The comparison against the random
baseline tests the hypothesis that our user simulations are more consistent with the
observed data than random behaviour. The majority baseline represents the hypoth-
esis that our user simulation explores a significantly wider range of behaviour than
the most frequent user action.
The user simulation models have a small divergence from the original data

suggesting that they are good simulations for training and testing policies. The
smoothed and the cluster-based model gain on average 5 times lower KL scores
than the baselines. We therefore conclude that both simulations show consistent
(i.e. better than random) as well as varying (i.e. better than the majority decision)
behaviour.
As mentioned above, we want user simulations for policy training to allow more

exploration, whereas for testing we want user simulations which are more realis-
tic. We therefore choose to test with the smoothed model because its low KL score
shows that it is closest to the data, and we use the cluster-based simulation for train-
ing.

User simulations: Baselines:
smoothed cluster random majority

0.087 0.095 0.43 0.48

Table 7.12 Kullback-Leibler divergence scores for the different User Simulations

8 Also known as information divergence, information gain, or relative entropy
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Note that the KL divergence only measures consistency with respect to specific
dialogue contexts. However, user simulations also need to be coherent with respect
to the dialogue history and the current user goal. We therefore model the user’s goal
(i.e. the song s/he is looking for) similar to “agenda-based user models” (Schatz-
mann et al, 2007a,c). The user goal corresponds to a database entry, which is ran-
domly chosen in the beginning of each dialogue. Every time the user simulation
generates a speech act, the corresponding value is chosen from the goal record, de-
pendent on the slot value the system was asking for.
Note that the KL divergence only measures consistency with respect to specific

dialogue contexts. However, user simulations also need to be coherent with respect
to the dialogue history and the current user goal. In the next Section we explain how
we incorporate the current user goal in the simulated user behaviour.

7.8.7 Speech Act Realisation Dependent on the User Goal

The user speech acts generated by the user simulations are still on an abstract (se-
mantic) level. We therefore model the user’s goal (i.e. the song s/he is looking for)
similar to “agenda-based user models” (Schatzmann et al, 2007a,c). The user goal
corresponds to a database entry, which is randomly chosen in the beginning of each
dialogue. Every time the user simulation generates a speech act, the corresponding
value is chosen from the goal record, dependent on the slot value the system was
asking for. In the following subsection we explain how the speech acts are realised
with respect to the current user goal in more detail.

7.8.7.1 Over-Answering

Most current dialogue systems allow the user to provide more than one value within
the same turn. This is called “over-answering” and is an aspect of “mixed-initiative”
dialogue interaction. We model over-answering for our user simulations by realising
the speech act add as “provide asked slot value” (prvAsked) and “provide two
slot values” (prvTwo) following the frequencies observed in the data: in 75.12%
of cases the user provides only one value, in 23.88% the user provides two values
within one turn.
The final probabilities for the user simulations, after integrating noise and over-

answering, are shown below. Table 7.13 presents the probabilities for the cluster-
based user simulation. Table 7.14 shows the probabilities for the smoothed bi-gram
model. In each cell, the first number represents the probability assigned by the sta-
tistical model, the two numbers below represent how the user actions are realised
depending on noise and over-answering. Annotated examples for the user speech
acts can be found in the Appendix A.1 and A.3.
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system act/user reply add repeat y/n change OOV
prvAsked/prvTwo same/diff yes/no

explConf 20.1 51.6 20.1 4.3 4.0
15.3/4.8 36.1 /15.5 11.2/8.8

implConfAskASlot 43.7 35.9 12.2 4.2 4.0
33.2/10.5 25.1/10.8 8.5/3.7

askASlot 43.7 35.9 12.2 4.2 4.0
33.2/10.5 25.1/10.8 8.5/3.7

presentListSpeech 37.8 37.8 9.0 11.4 4.0
28.7/9.1 26.5/11.3 6.3/2.7

presentListMM 37.8 37.8 9.0 11.4 4.0
28.7/9.1 26.5/11.3 6.3/2.7

Table 7.13 Final probabilities for generating user actions from the cluster based model

system act/user reply add repeat y/n change OOV
prvAsked/prvTwo same/diff yes/no

explConf 10.1 21.2 54.56 10.1 4.0
7.7/2.4 14.8/6.4 38.2/16.4

implConf 40.7 32.3 15.7 7.3 4.0
31.0/ 9.7 22.6/9.7 11.0/4.7

askASlot 40.2 34.3 13.7 7.8 4.0
30.7/ 9.6 24.0/10.3 9.5/4.1

presentListSpeech 33.4 30.2 27.1 5.3 4.0
25.4/8.0 21.1/9.1 19.0/8.1

presentListMM 38.3 39.9 1.8 16.0 4.0
29.2/ 9.11 27.9/12.0 1.3/0.5

Table 7.14 Final probabilities for generating user actions from the smoothed model

7.8.7.2 User Goal Modelling

In Section 7.8.1 we argued that a user simulation should generate behaviour which
is consistent with the current user goal. Previous work has addressed the problem
in various ways. For example, by constraining the users’ actions by paths through
a graph-based dialogue model (Scheffler and Young, 2001), or by integrating task-
based information into the state which conditions the user action (Georgila et al,
2006b; Pietquin, 2004). The draw-back of these previous approaches is that a sub-
stantial amount for training data is needed to learn user speech acts and goal-directed
behaviour in a goal-directed manner.
In this book we introduce an approach which separates the user goal from learn-

ing. The user goal is represented as a record of state-value pairs, corresponding
to a (randomly chosen) database entry. Every time the user simulation generates a
speech act, the corresponding value is chosen from the goal record, as illustrated in
the following example.
Let us assume that the user’s goal is instantiated with the following database

record:
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⎡⎢⎢⎢⎣
genre= Alternative

artist= Radiohead

album= In Rainbows

title= Videotape

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

Let us also assume that the user has already provided the artist and the genre, and
the genre is also confirmed. The next slot the system asks for is album name (the
system follows the implemented default ordering of slots). The system next tries to
implicitly confirm the artist and asks the user to provide a value for the slot album:

System: “Searching for music by Radiohead. Which album?”
implConf(artist=Radiohead),askSlot(album=?)

The possible user actions are instantiated with values from the goal record as in
Figure 7.10. The statistical user model then chooses one of these actions according
to the probability distributions.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ADD:

⎡⎢⎣prvAsked(album=In Rainbows): e.g. “From the album OK Computer.”
provideTwo(album=In Rainbows,title=Videotape):

e.g. “Lucky from the album OK Computer.”

⎤⎥⎦
REPEAT:

⎡⎢⎣confirmReprovideSame(artist=Radiohead): “Yes, by Radiohead.”
negateReprovideDifferent(artist=Red Hot Chili Peppers):

“No, by the Chili Peppers.”

⎤⎥⎦
Y/N ANSWER:

⎡⎢⎣yes-answer(artist=Radiohead): Okay.
no-answer*(artist=Red Hot Chili Peppers):

No, I want something else.

⎤⎥⎦
CHANGE:

[
provideOtherSlot(title=Videotape): “The song Lucky.”

]
OOV:

[
silence

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 7.10 Example for context-dependent realisation of possible user speech acts

The goal instantiation of the user acts no-answer and negateReprovide-
Different (marked by *) follows special rules. Both of these user actions aim
to correct a value which is mis-recognised by the system. The (hypothesised) user
goal therefore does not correspond to the represented user goal anymore. In order
to model this misalignment, we change the record of the presented user goal by
choosing another entry from the database. However, the database search is con-
strained by the slot values which were already confirmed by the user (as we assume
that these are already representing the ‘true’ user goal). This simple mechanism
of goal updating allows us to integrate grounding information in the user simula-
tion without having to learn this behaviour from data (i.e. this method is suited for
small data sets). For the given example, the entries in the possible subset are all
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database entries which fulfil the constraint genre=Alternative. Note that we
do not aim to model (phonetic) word confusions, but we rather model the effects of
mis-understanding on the interaction (as discussed in Section 7.7). Therefore it is
possible to randomly choose between the subset of retrieved database entries, not
having to consider phonetic similarity.
Note that similar technique was also introduced by Schatzmann et al (2007a,c)

under the name “agenda-based models”. The major advantage in the approach pre-
sented in this book is that we also model misalignment and grounding. We also do
not need to learn the ordering of slot values, as we encode this information in the
user speech acts (provideAsked vs. provideOther/change).
In addition to the task-based constraints, the user behaviour also follows some

logical constraints, similar to the implemented preconditions for system actions (see
Section 7.5.3). In particular, we constrain the possible user actions when there is
only one hit in the database. In this case, the user simulation can only accept or
reject the presented information. In the case where there is only one hit and all the
slots are filled and confirmed, the user simulation can only accept (as we assume
that for confirmed slots the chance to be mis-recognised is zero and therefore the
presented information is identical to the user goal).
In sum, this Section presented methods to build user simulations from limited

amounts of training data, as well as methods to evaluate and realise them with re-
spect to the current user goal. One simulation is built for training and one for testing
dialogue strategies. The user simulation which shows more variance is used for
training, the user simulation which shows more consistency is used for testing.
So far, we have only evaluated individual simulated components (such as the user

simulation). In the next Section we introduce the objective function (also known as
the “reward” for RL) which is used to evaluate the overall dialogue strategy.

7.9 Reward and Objective Functions

7.9.1 Method and Related Work

In this book we use the two terms “reward function” and “objective function”
with slightly different connotations. The term reward function refers to the function
which specifies how the dialogue goal is implemented in RL. Recall the definition
from Section 3.2: it assigns a scalar reward value which represents the degree to
which a state or action is desirable, i.e. it defines a mapping r(d, i) from a dialogue
d and a position in that dialogue i to a reward value r. The reward function penalises
actions or states which do not contribute to the goal, and rewards actions or states
which do. The learner does not try to maximise the immediate reward (which is just
a indication of the goal), but the final reward (which is a measure whether the goal
was reached). Also see Chapter 3.2.
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The term objective function is a mathematical term describing a function asso-
ciated with a general optimisation problem which determines how good a solution
is. It is also used in the context of RL-based dialogue strategy learning, where the
term is used to stress the fact that for RL-based dialogue systems the same function
can be used for strategy training and as well as for strategy evaluation (Paek, 2006;
Walker, 2005).
We use the term “objective function” to describe the (abstract) overall goal/ ob-

jective of a dialogue. The term “reward function” is used to refer to the concrete
implementation of how this goal is expressed. For example, if the objective of a
dialogue is to be efficient, the reward function penalises long dialogues, for exam-
ple by assigning a negative value of −1 to each turn, e.g. (Henderson et al, 2008).
The same objective function is used for evaluation, i.e. the efficiency of the learned
strategy will be compared against the efficiency of a baseline strategy, e.g. (Lemon
et al, 2006a).
In contrast to other fields of computational linguistics and speech research which

apply optimisation methods (such as speech recognition or spoken language under-
standing), the objective function for dialogue strategies is less clear. The ultimate
goal when building dialogue systems is to satisfy the needs and preferences of real
users. However, needs and preferences of real users are often hard to measure and
to estimate. For example, users change their needs and preferences dependent on
the context (Hu et al, 2007). Furthermore, it is nor clear how to encode/ translate
this abstract goal into design principles (e.g. what is the equivalent of a “satisfied
user” in terms of implemented system behaviour?). In the following we review dia-
logue design principles used by previous research, in particular we review different
approaches for scoring multimodal presentation in information-seeking dialogue.

7.9.1.1 Scoring Information Presentation

In most multimodal dialogue systems the number of verbally and multi-modally
presented items is scored with respect to some scoring function. In the following we
review some “best practices” for information presentation as suggested by Human-
Computer Interaction (HCI) literature, threshold-based strategies implemented in
current information-seeking dialogue systems, and work based on RL.
There is a substantial amount of literature on HCI which recommends “best prac-

tises” for dialogue strategy design (see Chapter 2.2.2). The recommended strategies
for information presentation are usually based on universal “human factors”, i.e.
lower cognitive processes such as perception, attention, and memory capacity. They
give general guidelines such as “reduce short-term memory load” (Shneiderman,
1997), as well as very specific suggestions on how many items to present and when
to present them. The recommended menu size for spoken output is 3 to 4 items,
e.g. (Balogh et al, 2004; Weinschenk and Barker, 2000). For presenting lists on the
screen the “magic number”9 is 7+−2 items, e.g. (Dix et al, 1998; Herczeg, 1994;

9 “The magic number” refers to a popular study by Miller (1956).
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Larson, 2003). Furthermore, most of the HCI literature recommends to always use
both modalities in parallel. This recommendation is based on the assumption that
providing the same information in multiple ways will increase information recep-
tion and memorability (following the dual-encoding theory by Paivio (1990) and the
Multiple Resource Theory by Wickens (2002)). These guidelines still seem to have
a great impact on how information presentation is realised in current multimodal
systems, e.g. (Cao and Nijholt, 2008; Landragin, 2008).
Information seeking dialogue strategies are often implemented as rule-based sys-

tems with hand-coded thresholds. We now discuss two in-car information seeking
systems in particular. Varges et al (2006), for example, only use verbal output. For
controlling information presentation they use the following thresholds: fewer than
3 retrieved database items are verbally enumerated, 3 to 8 items are verbally sum-
marised, and for any number higher than 8 the system asks for more constraints.
The speech-controlled in-car MP3 player by Forlines et al (2005) in contrast always
uses multimodal output for every system turn, which may contain up to 10 items
maximum.
Multimodal presentation is also addressed in the context of RL-based dialogue

strategy learning, e.g. (Heeman, 2007; Levin et al, 2000). Heeman (2007) learns
when to display search results using RL, where the reward function assigns increas-
ing negative rewards in the following order: displaying less than 5 items receives
0 reward, 6-12 items gets mildly penalised, 13-30 is penalised more, and showing
more than 30 items gets heavily penalised. Levin et al (2000) don’t report the con-
crete numbers they use, but report that for a number of retrieved itemsN “[the cost] is
zero for N smaller than a reasonable value, and increases rapidly thereafter, where N
depends on the medium used to output information to the user (it is generally small
for voice based communication, and higher for display).”
In sum, previous work scored information presentation according to hand-coded

heuristics, which (at best) are based on “best practises” recommended by HCI lit-
erature. One contribution of this book is a more principled approach to model the
scoring function for information presentation, in contrast to the heuristics used by
previous research. We use this function as a reward to automatically optimise dia-
logue strategies. It is obvious that multimodal presentation should always depend on
the available screen size, and media allocation should also depend on the cognitive
load of the driver, as discussed in Chapter 3.4 (also see (Becker et al, 2006)). In this
book we assume fixed screen size (namely the one used in the experiments), as well
as a constant cognitive load for the driver. In the following we first review different
methods of how the reward function is determined in previous work on RL-based
dialogue strategy learning.

7.9.1.2 Setting the Reward Function for Dialogue Strategy Learning

A variety of techniques and measures are applied for setting the reward function
for RL-based strategy learning. For model-based learning the reward can be directly
read off from the data. For example, Singh et al (2002) employ a binary reward
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measuring task completion for the NJFun system. Or alternatively, user scores from
the questionnaires can serve as a reward, e.g. (Spitters et al, 2007). That is, model-
based RL has a realistic judgement associated with each dialogue in the training
data.
For simulation based learning however, the reward function cannot be read off

from the data, but needs to be explicitly set, as we only have simulated dialogue
and no real users rating the system. Most current research manually constructs a re-
ward function where the reward is represented as the weighted sum of task success,
dialogue length penalty, and mis-recognition as a reward function, e.g. (Frampton
and Lemon, 2006; Levin et al, 2000; Pietquin and Dutoit, 2006b; Prommer et al,
2006). Setting these features and their respective weights by hand is usually done
in a similar fashion as iterative threshold setting (as described in Chapter 4.3): the
dialogue designer manually tunes the values until it allows learning of the desired
behaviour.10 This is why the reward function is also called “the most hand-crafted
aspect of Reinforcement Learning” (Paek, 2006).
However, it seems that setting a reward function by hand is non-trivial and the

resulting strategies do not necessarily seem to reflect real user preferences.
Most user studies only report on improved dialogue performance measures (such

as dialogue length), but user satisfaction scores do not significantly improve, e.g.
(Lemon et al, 2006a; Prommer et al, 2006; Singh et al, 2002).
In this book we design a reward function that reflects real user preferences by

learning a model from data using the PARADISE framework (see description Section
2.2.2). To the authors’ knowledge only Walker (2000); Walker et al (1998a) and
Henderson et al (2005, 2008) previously used a reward function obtained from data.

7.9.1.3 Discussion of the PARADISE Framework

PARADISE has become a “de-facto standard” (Möller et al, 2007) for evaluating spo-
ken dialogue systems. However, various aspects of the PARADISE framework have
been questioned by previous research: In general, models obtained by PARADISE
only fit the data poorly (R2 ≈ 0.4) (Möller, 2005a; Möller et al, 2007). PARADISE
employs linear regression, which is a form of Supervised Learning. For a super-
vised model the following issues can cause a low data fit: inadequate target variable,
missing input features, lack of training data, and a wrong bias (Alpaydin, 2004). We
discuss these factors in the following.
The target variable of the regression model is the subjective user rating which

should be predicted. In the original framework the target variable is “User Satisfac-
tion” which is constructed by summing over different scores as obtained from a user
survey. However, Hone and Graham (2000) argue that the resulting number is mean-
ingless, as taking the sum over different scores could only be justified on the basis

10 For example, Prommer et al (2006) hand-tune their reward function as follows. It is known from
the user questionnaires that user prefer a dialogues in a range of 4 to 6 system turns. In order to
adequately configure the trade-offs between the features in the reward function they iteratively test
and design, until the reward function allows to learn dialogues which are 4-6 turns long.
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that all items measure the same underlying construct (which can be determined by a
factor analysis). Thus, in recent work often only a single target variable is used, e.g.
(Hajdinjak and Mihelic, 2006; Möller, 2005a,b; Möller et al, 2007; Skantze, 2007a).
Möller (2005a,b); Möller et al (2007) also experimented with many different in-

put features. They find that from a large set of potential dialogue performance mea-
sures only few correlated (weakly) with user judgements. Thus, finding predictive
factors is non-trivial. Furthermore, the selected input features also clearly depend
on the chosen target variable. These results confirm that setting a reward function
is non-trivial when done by hand. Möller et al (2007) also investigate the influence
of the size of training data. Surprisingly, more training data only resulted in a very
slightly increased model fit.
Another factor which can cause low model fit is a wrong model bias, i.e. the

assumptions made by a certain machine learning technique do not match the nature
of the problem as represented in the data. (This problem is also shortly discussed in
(Engelbrecht and Möller, 2007).)
In this book we apply a modified version of the PARADISE framework and use it

for reward modelling. We make the following changes in particular:

• We use a single target variable, namely Task Ease.
• We use a hierarchical reward model, reflecting the structure of the task for learn-
ing.

• For the information presentation phase we design a non-linear reward function.

7.9.2 Linear Regression for Information Acquisition

First of all, we construct the overall reward function using multiple linear regression
as done by the standard PARADISE framework. In contrast to the standard PARADISE
framework we set the target variable to be predicted to a single dimension, namely
Task Ease. We choose Task Ease as target outcome for the following reasons. First,
Task Ease is significantly correlated with most of the other questions from the WOZ
user questionnaire (see Chapter 6.4.2). For example, Task Ease is significantly cor-
related with overall User Satisfaction (Spearman’s ρ = .840, p < .01) and Future
Use (Spearman’s ρ = .475, p < .01).11 Thus, Task Ease can be seen representative
for other dimensions of user satisfaction. Furthermore, measures like Task Ease and
Task Efficiency are most important for task oriented dialogue, according to the prin-
ciple of the least effort (Clark, 1996) which says: “All things being equal, agents try
to minimize their effort in doing what they intend to do”. Finally, we intend our
reward function to have a hierarchical structure, where the multimodal score of the
presentation phase is a predictive factor for the overall reward. Taking Task Ease as

11 Spearman’s rank correlation coefficient is used to measure correlation between two variables at
the ordinal level. Spearman’s ρ is the the non-paramatric equivalent to Pearson product-moment
coefficient.
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the target variable allows us to construct such a model where the multimodal score
is included in the overall regression model.
Task Ease is constructed by taking the average of two user ratings on a 5-point

Likert scale. The ratings from the following two questions are averaged :12

1. The task was easy to solve. (Question 2)
2. I had no problems finding the information I wanted. (Question 6)

For model selection we used stepwise linear regression. This technique combines
forward and backward feature selection. Only features which are significant predic-
tors of the target variable are included in the model. Furthermore, we only choose
input features which are not correlated with each other, (as two correlated variables
explain the same variance in the model and thus hinders each other from being
selected by step-wise regression). For example, dialogue duration (as measured in
seconds) is positively correlated with dialogue length in turns (Pearson’s correlation
r = .536, p < .01). Therefore dialogue duration is not entered into the model.
The following dialogue performance measures are used as input feature to the

stepwise regression model (see Section 7.4.3.1 for a more detailed description of
these features):

• Dialogue length in turns (dialogueLength)
• Average corruption rate of the user input (delHist)
• Task completion (manually annotated, see (Blaylock et al, 2006))
• Multimodal score from user questionnaire (also see next Section).

The resulting model selects dialogue length, task completion, and the multimodal
user score, as shown in Equation 7.7. Dialogue length is a strong negative predictor,
while task completion and multimodal score are positive predictors of the perceived
task ease.13

12 We take the average of several questions to construct the Task Ease dimension, rather than
only taking one single question. We do this in order to meet the assumptions made by the linear
regression model. In linear regression input and target variables are assumed to be on an (at least)
interval scale. The results from Likert-scales, however, are typically ordinal. By taking the average
of several ordinal values we aim to approximate interval scale (see http://en.wikipedia.
org/wiki/Likert_scale (4. January 2011) for a discussion).
13 It is interesting to note, that the number of deleted (“mis-recognised”) words did not influence
the perceived Task Ease, where for most other studies the mean recognition score is one of the
most prominent features, e.g. (Möller et al, 2007; Skantze, 2005; Walker et al, 2000; Williams and
Young, 2004a). This might be an artefact of the fact that in a WOZ study the understanding of
the human wizard was hardly affected by the corrupted input (only 30% of the corrupted utter-
ances lead to a (noticeable) communication error, see Section 6.2.3). Similar results are reported
by Hajdinjak and Mihelic (2006) when using WOZ data for PARADISE. Hajdinjak and Mihelic
(2006) argue against including ASR-related features in the regression model, as it’s influence on
user ratings is so dominate that it hinders other relevant parameters to enter the regression model,
and therefore it should be excluded altogether. We (partially) agree, as in a sense, it should be ob-
vious to the designer that improving speech recognition quality improves user satisfaction. Thus,
by including ASR measures into the regression not much would have been gained. On the other
hand, ASR features are an important factor when optimising error handling strategies. For our task
however, the PARADISE regression model as in Equation 7.7 contains all the relevant information.
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TaskEase =−20.2∗dialogueLength+

11.8∗ taskCompletion+8.7∗multimodalScore; (7.7)

The overall model fit is low (R2 = 0.144, R2ad justed = 0.123).14 Despite the low
fit to the initial data, it generalises well to unseen events, as we will show in Section
8.5.2

7.9.3 Non-linear Rewards for Information Presentation

The results from feature selection now allow us to formulate the reward for the infor-
mation presentation phase as a simple two-way relationship between two variables.
In Section 7.4.3.2 we found that the wizards’ information presentation strategy is
based on the number of retrieved items from the database (the DB feature). In order
to design the reward function for information presentation we relate the number of
presented DB items (independent variable) to the multimodal score from the user
questionnaires (dependent variable). The multimodal score is measured by taking
the average of the user ratings for the following questions (translated from German):

1. I liked the combination of information being displayed on the screen and pre-
sented verbally.

2. Switching between modes did not distract me.
3. The displayed lists and tables contained on average the right amount of informa-
tion.

4. The information presented verbally was easy to remember.

The questions are rated on 5 and 3-point Likert Scales, and the scores are nor-
malised for taking the average.
For model selection we use curve fitting (also known as non-linear regression).

Curve fitting is used when the relationship between two variables can also be non-
linear. It allows us to choose the model/curve which is closest to the data. In contrast
to linear regression, curve fitting does not assume a linear inductive bias, but it
selects an appropriate inductive bias by function interpolation. The simplest model
with the best data fit is the one which gets selected (due to Occam’s razor). The
following models are fitted to the data – first relating verbally presented items to the
multimodal score and then relating items presented on the screen to the multimodal
score:

• Linear (Y = b0+(b1× t))
• Logarithmic (Y = b0+(b1× ln(t)))
• Inverse (Y = b0+ b1

t )

14 R2 indicates how much variance is explained by the model; in this case 14.4%. Adjusted R2 is a
modification of R2 that adjusts for the number of explanatory terms in a model.
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• Quadratic (Y = b0+(b1× t)+(b2× t2))
• Cubic (Y = b0+(b1× t)+(b2× t2)+(b3× t3))
• Power (Y = b0× (tb1) or ln(Y ) = ln(b0)+(b1× ln(t)))
• Compound (Y = b0× (b1t) or ln(Y ) = ln(b0)+(ln(b1)× t))
• S-curve (Y = e(b0+( b1

t )) or ln(Y ) = b0+( b1
t ))

• Logistic (Y = 1/( 1u +(b0× (b1t))) or ln( 1y − 1
u ) = ln(b0)+(ln(b1)× t) where u

is the upper boundary value)
• Growth (Y = e(b0+(b1×t)) or ln(Y ) = b0+(b1× t))
• Exponential (Y = b0× (eb1×t) or ln(Y ) = ln(b0)+(b1× t))

The best fitting model for relating the verbally presented items is a linear de-
creasing line (R2 = 0.24,R2ad justed = 0.21) assigning positive values to all strategies
which present fewer than 4 items verbally, and a negative value to all strategies
which present 4 or more items verbally (see Equation 7.8 where x is the number of
presented database items, and see Figure 7.11). Note, that in the WOZ experiments
the wizards never present more than 3 items verbally. For training the policy (where
unseen state spaces also need to be explored) we extrapolate the fitted line to model
unobserved behaviour.
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The best fit for the wizards’ multimodal strategy is a quadratic model (R2 = 0.12,
R2ad justed = 0.103), (see Equation 7.8 and Figure 7.11). The resulting model assigns
a maximal score to a strategy displaying 14.8 items (curve inflection point). For
items higher than 30 it assigns negative values (intersections with x-axis at x1 =
−0.1,x2 = 29.63). The two reward functions intersect at x1 = 2.62,x2 = 57.98.

multimodalScore =+

⎧⎪⎪⎨⎪⎪⎩
Verbal(x) = 5.259+(−0.932× x);

for x : [1,+ inf]
MM(x) = 0.705+0.886× x−0.03× x2;

for x : [1,+ inf]

(7.8)

Again, the fit to the initial data is rather low (other studies report on R2 up to
0.47). Nevertheless, these models make useful predictions, as we will show in Sec-
tion 8.5.2.

7.9.4 Final Reward

Finally, we integrate the obtained models into one (hierarchical) reward function
for learning. The final reward is calculated as in Equation 7.9a – 7.9d. The over-
all reward, as calculated at the end of each dialogue, corresponds to the reward for
information acquisition, see Equation 7.9a. It is computed as follows. After each
system turn the the dialogue length receives a penalty of (−1), see Equation 7.9b.
The task completion is calculated according to the noise model, see Equation 7.9c,
where Pc is the probability of a confirmed slot being correct, and P f is the proba-
bility of a filled slot being correct, whereC and F are the number of confirmed slots
and filled (but not confirmed) slots respectively. A more detailed explanation of how
task completion is calculated can be found in Section 4.2.5.

reward = 20.2×dialogueLength+11.8× taskCompletion+

8.7×multimodalScore; (7.9a)
dialogueLength = numberO f Turns× (−1); (7.9b)

taskCompletion = 10× (Pc)C × (P f )F ; (7.9c)
multimodalScore =Verbal(x)+MM(x); (7.9d)

We illustrate how the final reward is calculated in the following examples. In the
dialogue in Appendix A.2, Table A.3 the Supervised Learning policy receives a final
reward of -18701.43. Following the equations above, this is calculated as follows.
The dialogue is 7 turns long. Thus the length penalty is 20.2× [7×(−1)] =−141.4.
All the slots are filled and confirmed. Thus the task completion is 11.8× [10×
(1)4× (0.3)0] = 118. In the dialogue 142 items are presented multi-modally and 1
item is presented verbally. Thus the multimodal score is 8.7× [4.33− 2151.23] =



7.10 State-Space Discretisation 151

−18678.03, whereVerbal(3) = 5.259+(−0.932×3= 4.33);MM(142) = 0.705+
0.886∗142−0.03∗1422 =−2151.23.
An example of a dialogue strategy which is rated highly under this reward func-

tion can be found in Appendix A.3, Table A.8. Here the user immediately asks
for a song called “Polly”, for which two alternatives are found in the database.
These alternatives are presented verbally (Verbal(2) = 3.4) and the user selects
one of the options (Verbal(1) = 4.33). This results in a dialogue which is 3
turns long (lengthPenalty = 20.2× (−3) = −60.6) and the task is fully completed
(complVal = 118). The final reward for this dialogue is 124.6, which is close to
the maximum possible reward which is 158.10. This maximum reward is achieved
when the user immediately provides a slot value for which 15 items can be retrieved
in the database. The system immediately presents multimodally (MM(15)=7.25)
and the user selects an item. Then, the system presents verbally (Verbal(1)=4.33),
and the user confirms. This “optimal” interaction results in a dialogue which is
3 turns long (lengthPenalty = −60.6), where all the filled slots are confirmed
(taskCompletion = 118). The learned policy in Appendix A.3, Table A.7, for ex-
ample, almost achieves the maximal possible reward.
To the authors’ knowledge the work presented in this book is the first to learn with

non-linear reward functions. This also imposes new challenges for the RL frame-
work. In the next Section we describe prerequisites for learning with non-linear
reward functions.

7.10 State-Space Discretisation

We use linear function approximation in order to learn with large state-action spaces.
Linear function approximation learns linear estimates for expected reward values of
actions in states represented as feature vectors. This is inconsistent with the idea
of non-linear reward functions (as introduced in the previous section). We therefore
quantise the state space for information presentation. We partition the database fea-
ture into 3 bins, taking the first intersection point between verbal and multimodal
reward and the turning point of the multimodal function as discretisation boundaries.
Previous work on learning with large databases commonly quantises the database
feature in order to learn with large state spaces using manual heuristics, e.g. Pietquin
(2006) use 2 bins, Levin et al (2000) use 4 bins, and Heeman (2007) 5 bins. Our
quantisation technique is more principled as it reflects user preferences for multi-
modal output. Furthermore, in previous work database items were not only quan-
tised in the state-space, but also in the reward function, resulting in a direct mapping
between quantised retrieved items and discrete reward values, whereas our reward
function still operates on the continuous values. In addition, the decision of when to
present a list (information acquisition phase) is still based on continuous DB values.
In future work we plan to engineer new state features in order to learn with non-
linear rewards while the state space is still continuous. A continuous representation
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of the state space allows learning of more fine-grained local trade-offs between the
parameters, as demonstrated in (Rieser and Lemon, 2008b).

7.11 Learning Experiments

We now train and test the multimodal presentation strategies by interacting with the
simulated learning environment. We first train the policy using the SHARSHA algo-
rithm (Section 7.11.1). We then test the strategy using a different user simulation.
We compare the performance of the RL-based policy against the supervised baseline
(Section 7.11.2). And finally, we implement the learned strategies in a table-look-up
(Section 7.11.4). The look-up table can be found in Appendix B.

7.11.1 Training with SHARSHA

The policy is trained by interacting with the cluster-based user simulation which is
predicted to allow more exploration, see Section 7.8.6. We use the REALL-DUDE
environment (Lemon et al, 2006c) for learning (see Section 7.5.2). REALL com-
bines Reactive Planning and Hierarchical RL (Shapiro, 2001), as explained in Sec-
tion 7.5.3. Hierarchical RL is implemented using the SHARSHA algorithm (for State
Hierarchy, Action, Reward, State Hierarchy, Action) (Langley et al, 2004; Shapiro,
2001; Shapiro and Langley, 2002). The SHARSHA algorithm adds hierarchical struc-
ture to the well known SARSA algorithm (see explanation in Section 3.2.2.2).
For learning we use the following parameters (for a description of these parame-

ters see Section 4.4.1):

• numberOfCycles = 180k
• learning rate α = 0.2
• discount rate γ = 0.95
• eligibility trace parameter λ=0.9
• exploration halving time ε= 1

6 ×numberO fCycles = 30k

The policy is trained over 180k system cycles, which results in about 20k simu-
lated dialogues. The two figures in Table 7.15 show a training run, where the graph
on top shows the whole run for over 20k dialogues. The picture below zooms-in to
the area between 5k and 13k training cycles, where the learner converges towards
the optimal policy. The policy learns to reduce dialog length (black, -1 per turn) and
database hits presented multimodal (pink, +1 per item) and presented verbally (blue,
+1 per item) while getting a high task completion (green). Average dialogue reward,
computed over windows of 50 dialogues, is shown in red.
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7.11.2 Results for Testing in Simulation

We test the RL-based and the SL wizard baseline policy, as shown in Listing 2,
which allows us to measure relative improvement over the training data. We run 500
test dialogues with the smoothed user simulation, as described in Section 7.8.5, so
that we are not training and testing on the same simulation. We then compare quan-
titative dialogue measures by performing a paired t-test. In particular, we compare
mean values of the final rewards, number of filled and confirmed slots, dialogue
length, and items presented multimodally (MM items) and items presented ver-
bally (verbal items).
RL performs significantly better (p < .001) than the baseline strategy. The RL-

based policy gains on average 50-times more reward when tested in simulation. It
results in significantly shorter dialogues, where significantly fewer slots get con-
firmed, while about the same number of slots get filled. The only non-significant
difference is the number of items presented verbally, where both the RL and the
average wizard strategy settled on a threshold of fewer than 4 items. The mean per-
formance measures for simulation-based testing are shown in Table 7.16.

Measure SL wizard baseline RL Strategy

av. turns 8.42(±3.04) 5.9(±2.4)***
av. speech items 1.04(±.2) 1.1(±.3)
av. MM items 61.37(±82.5) 11.2(±2.4)***
av. reward -1741.3(±566.2) 44.06(±51.5)***

Table 7.16 Comparison of results for SL wizard and RL-based strategies in simulation; *** de-
notes significant difference between SL and RL at p < .001 (with standard deviation ±)

The major strength of the RL policy is that it learns to keep the dialogues reason-
ably short (on average 5.9 system turns for RL versus 8.4 turns for the SL wizard)
by presenting lists as soon as the number of retrieved items is within tolerance range
for the respective modality (as reflected in the reward function). The wizard strategy
in contrast has not learned the right timing nor an upper bound for displaying items
on the screen (note that the distribution for MM items is highly positively skewed
with a maximum of 283 items being displayed). See example dialogues in Appendix
A.2.
The results show that simulation-based RL with an environment bootstrapped

from WOZ data allows learning of robust strategies which significantly outperform
the strategies learned by SL from the original data set. This confirms our hypothesis
that simulation-based RL allows us to find optimal policies which are not easily
discoverable (by Supervised Learning) in the original data.
Furthermore, RL allows us to provide additional information about user prefer-

ences in the reward function, whereas SL simply mimics the data. In addition, RL
is based on delayed rewards, i.e. the optimisation of a final goal. For dialogue sys-
tems we often have measures indicating how successful and/or satisfying the overall
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performance of a strategy was, but it is hard to tell how exactly things should have
been done in a specific situation. This is what makes RL specifically attractive for
dialogue strategy learning. In Chapter 8 we test the learned strategy with real users.
In the next Section we give a qualitative description of the learned strategy.

7.11.3 Qualitative Strategy Description

We now give an example-based description of the RL-based and the wizard baseline
strategy. We show that both policies originate from the same WOZ data set. We also
give examples showing how the additional information about user preferences (as
obtained from the user ratings and modelled in the reward function) helps RL to
rule-out the weak strategies in the data, whereas SL simply mimics the data. The
example dialogues can be found in Appendix A.1 and A.2.
We first describe different strategies for information presentation. In the WOZ

experiments the wizards display very long lists on the screen. In the WOZ dialogue
in Table A.1, for example, the wizard displays a list with 142 items (Wizard: “The
song is retrieved. There are 142 different versions.” [Table with 142 entries is shown
on the screen.]). This presentation strategy was rated low by the user (timing:2, mm-
Presentation:1, verbalPresentation:3). For RL-based strategy learning, these ratings
are used to estimate the reward function with the PARADISE framework, as explained
in Section 7.9.3. The SL policy in contrast only mimics the wizard’s behaviour. In
the simulated dialogue in Example 7.1 and Table A.3, the SL policy also displays
142 items to the user (immediately after the user provided the first constraint). Here
the number of current search results is shown by “db:”.

Example 7.1.
SL policy: greet (db:438)
sim.User: prvAsked-->genre(Rock)
SL policy: implConf(genre),AskASlot(artist) (db:142)
sim.User: confirmAndReprvSame-->genre(Rock)
SL policy: present[mm] -->genre (db:142)
sim.User: change-->artist(Jimi Hendrix)
SL policy: implConfAskASlot-->artist, album
sim.User: prvAsked-->album(Electric Ladyland)}
SL policy: implConfAskASlot-->artist, album (db:4)
sim.User: prvAsked-->song-title(Voodoo Child)
SL policy: explicitConfirm-->song-title (db:1)
sim.User: confirmAndReprvSame-->song-title(Voodoo Child)
SL policy: present[verbal] (db:1)
sim.User: yes-answer-->yes(yes)

The RL policy in contrast learns to wait and first gather more constraints until an
adequate number of items is retrieved. In the simulated dialogue in Example 7.2 and
Table A.4 the RL policy displays 14 items, which according to the reward function,
gains the highest multimodal reward.

Example 7.2.
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RL policy: greet (db: 438)
sim.User: prvAsked-->artist(Nirvana)
RL policy: implConf(artist)AskASlot(album) (db:26)
sim.User: prvAsked-->album(MTV Unplugged)
RL policy: present[mm] -->artist, album (db:14)
sim.User: click-->song-title(On a Plain)
RL policy: present[verbal] (db:1)
sim.User: yes-answer-->yes(yes)}

We now describe different strategies for information acquisition and show how
the RL and SL policies both originate from the WOZ data set.
In the WOZ study the wizards sometimes fail to present results early enough in

the information acquisition phase. In the WOZ dialogue Table A.2 in Appendix A.1,
for example, the wizard does not present the retrieved items until the user explicitly
asks to see the list (Wizard: “I am searching... I found four songs with only ‘Smile’ as
the title.”; User: “Very well then, why don’t you show it?”). The wizard then shows a
list of 4 items, which the user rates with the maximal score (mmPresentation). Task
Ease and presentation timing, however, are rated low (TaskEase : 2, timing : 3).
The SL policy in the simulated dialogue in Example 7.1 (also see Table A.3 in

Appendix A.2) replicates this behaviour and fails to present the retrieved items over
several turns as well, even though the number of retrieved database items is already
fairly low in the beginning (4 items are retrieved after the third turn).
The RL policy in contrast learns to present as soon as the number of retrieved

items is adequate for verbal or multimodal presentation. In the simulated dialogue
in Example 7.2 (also see Table A.4 in Appendix A.2), for example, the RL policy
displays 14 items on the screen in the third turn of the dialogue.
In the simulated interaction in Example 7.3 (also see Table A.5) the RL policy

presents 2 items verbally in the third turn. This action choice corresponds to the
wizard’s behaviour in Table A.1 in Appendix A.1 (Wizard: “The song exists by
‘Eric Clapton’ or by ‘Eric & the Dominos’.”), where the verbal presentation was
rated high by the user (presentVerbal : 3).

Example 7.3.
RL policy: greet (db: 438)
sim.User: prvAsked-->artist(Bob Dylan)
RL policy: implConf(artist)AskASlot(genre) (db:56)
sim.User: change-->song-title(Hurricane)
RL policy: present[verbal] -->album1,album2 (db:2)
sim.User: prvAsked-->album(Desire)
RL policy: present[verbal] -->artist, album, song-title (db:1)
sim.User: yes-answer-->yes(yes)

In sum, the dialogue examples demonstrate how information from the WOZ data
is used by the different learning mechanisms: One major advantage of RL is that
it allows us to provide additional information about user preferences in the reward
function, whereas SL simply mimics the data.
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7.11.4 Strategy Implementation

The RL strategy has been operating in simulation so far. For strategy testing in the
simulated environment, we set the RL agent’s learning rate to be zero. The Dialogue
Manager calls the RL agent each time a strategy decision is needed. The same ap-
proach can be taken when integrating the learned strategy into a working dialogue
system, e.g. by ‘wrapping’ REALL as an OAA agent. A similar method has been
used by e.g. (Lemon et al, 2006a) However, this method has been criticised as being
a “black box which tells the system what to do” (Paek, 2006). Paek claims that for
this reason, RL-based dialogue design is less attractive for industry, as it takes away
the control from the system designer and makes it hard to change the strategy if
required.
An alternative method for strategy implementation is to transfer the learned strat-

egy into a table, where the Dialogue Manager can look-up which action to take in
which state. The look-up table for the learned strategy described in this book can be
found in Appendix B, which indicates the action with the highest expected reward
for each state. This method has also been used in previous research, e.g. (Singh et al,
2002; Walker, 2000).
Both methods are appropriate under different circumstances. Implementing the

strategy as an RL agent has the advantage that it can handle large state-action spaces
(given that the implemented algorithm is able to do so). Furthermore, the system has
the option to learn online (i.e. while it is employed). Online learning has the major
advantages that it can adapt to the individual user and also can constantly adapt
to changing environmental conditions. However this kind of implementation faces
the criticism of being a ‘black box’. The look-up table implementation, in contrast,
is a clear and detailed description of what was learned, which allows the dialogue
designer to understand and, if needed, change the policy. However, a table-look-up
easily becomes intractable for large state-action spaces.
For the given strategy learning problem there are 4112,128+22

3
theoretically pos-

sible policies (see Section 7.5), the number of policies which are practically possible
in the concrete application environment is much lower. This is due to the follow-
ing constraints. First, preconditions (which are implemented as ISU rules) prohibit
state-action combinations which are inconsistent with the system logic (see Section
7.5.4). In addition, the possible values for the number of retrieved items (DB) are
limited by the semantic relations between the database and the provided constraints,
i.e. there are restrictions by the given “ontology”. In our database, for example, there
are only 3 genres (see Section 7.2). That is, if the only constraint provided by the
user is ‘genre’ there are only 3 possible partitions of the database, and the DB fea-
ture can only take the values DB = {175/142/34}, i.e. for “Blues” 175 items are
retrieved, for “Rock” 142, and for “Alternative” 34.15 The same is true for the other
slots values and their combinations. For example, in our database an album can con-
tain a range of 4 to14 songs, and a song can be maximally quadruply ambiguous

15 Note that for our simulated retrieval model in Section 4.2.2 did not encode such domain-specific
constraints and therefore a larger policy space had to be explored.
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(see Section 7.2). Hence, the retrieval behaviour of the underlying database does
influence strategy learning (as also shown in Chapter 4.2.2 by simulating different
retrieval methods).
The constraints from the database, together with the ISU update rules, leave us

with a restricted set of possible state-action combinations, which is sufficiently small
for a table-look-up implementation. As we (currently) do not learn online, we prefer
this approach as it is easy to inspect and understand for the system developer as well
as for the reader of this book . In total the learned strategy has 371 state action pairs
as shown in Appendix B. This list is constructed by running the DUDE-REALL sys-
tem in test mode (i.e. with zero learning and exploration rate). We generate a corpus
of over 5k simulated dialogues, where we also log the corresponding system state.
From this corpus we extract all possible state-action combinations. After ordering
the state-action space (starting with no slots filled), one can observe stable patterns,
as shown in the table in Appendix B.
On an abstract level the state-action mappings can be described as in Algorithm 3.

Of course, there are several context-specific exceptions from the general rule set. For
example, the preferred confirmation act is an implicitConfirm. An exception
is the case where the user has already provided the song name (slot4). The system
then explicitly confirms rather than implicitly confirms, in order to end the dialogue
as soon as possible. Note that strategies which are sensitive to the different semantic
qualities of slots types can only be learned with a binary representation of slot state
features (as discussed in Section 7.4.2).
Furthermore, if there are too many slots which are filled but not confirmed, the

system tries to get the user to confirm first, although the number of retrieved items
may be already small enough to present.

Algorithm 3 Highlevel −Description−LearnedStrategy
Require: An integer DB ≥ 1.
1: DB⇐ number of retrieved database hits
2: repeat

3: gather constraints by implConf whenever allowed by the system logic
4: until DB ≤ medium
5: if DB = low then

6: return presentSpeech
7: else if DB = med then

8: return presentMM
9: end if

7.11.5 Discussion and Error Analysis

In this book we have formalised the dialogue strategy problem as being task-
independent, i.e. the user simulation as well as the system employ a separate task
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model and discourse model. Only the discourse behaviour is learned, whereas the
task model is set by hand following a default ordering (see Section 7.5.4). These
types of model separation for Dialogue Management gained popularity in the dia-
logue management community (Bohus and Rudnicky, 2003; Lemon and Liu, 2006;
Lemon et al, 2002; Xu and Rudnicky, 2000), as well as for user simulation (Schatz-
mann et al, 2007a,c). In the following we show the advantages and disadvantages of
this separation for strategy learning.

7.11.5.1 Consistent User Behaviour

In this book we introduce a separate user goal as an extension to simple bi-gram
models. The bi-gram model is learned from data and generates discourse behaviour,
while the user goal is defined as a record with default ordering (see Section 7.8.7).
We illustrate the advantages of this separation below.
Previous work has criticised bi-gram to be “without memory” (see Section 7.8.1),

e.g. (Pietquin and Dutoit, 2006b; Schatzmann et al, 2005b).16 However, introducing
a separate model of user goal allows to learn behaviour which is consistent with
the user goal as well as the dialogue history, as illustrated in the following example
(Note that all the following examples are taken from the corpus generated in the
simulated test interaction described in Section 7.11.2):

Example 7.4.
[...]
System1: implConfAskASlot-->album, song (db:11)
User1: provide_info-->song(It Aint Me Babe)

filled [genre, artist, album, song],
confirmed [genre, artist, album]

System2:presentList[speech]-->genre, artist, album, song (db:1)
User2: no_answer-->no(no)

filled [genre, artist, album],
confirmed [genre, artist, album]

System3: presentList[mm] -->genre, artist, album (db:11)
User3: provide_info-->song(All I Really Want to Do)

filled [genre, artist, album, song],
confirmed [genre, artist, album]

System4:presentList[speech]-->genre, artist, album, song (db:1)
User4: yes_answer-->yes(yes)

filled [genre, artist, album, song],
confirmed [genre, artist, album]

In Example 7.4 the user first rejects (User2) a single item presented verbally
(System2). As a consequence, the system un-fills the last provided slot (in this
case the song title, see User1), and queries the database with the reduced set of

16 Note that our cluster-based user model (theoretically) allows to include dialogue history fea-
tures, which enables this model to produce history-sensitive behaviour. In related work we show
that cluster-based models including history features outperform models which do not (Rieser and
Lemon, 2006a). In this book however, we the applied cluster-based model does not include any
history features.
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constraints. Furthermore, the user goal gets updated by choosing another song from
the subset defined by the confirmed slots (album and artist), also see Section 7.8.7.
In User3 the user provides a different song meeting these constraints. The system
then present this item verbally. In this case, the user simulation can do nothing but
to accept the presented, as we implemented the constraint that if all slots are filled
and confirmed the presented item has to be identical with the user goal. (Assuming
that confirmed slots are correct with a 100% likelihood (also see Section 4.2.5).)
In sum, the user simulation shows complex goal and history consistent behaviour,
by using the implemented constraints of the user goal, together with the learned
discourse behaviour from the bi-gram model. This approach has the advantage that
the discourse behaviour can be kept relatively simple (and thus can be learned from
small data sets), while the task behaviour is controlled by an external model.

7.11.5.2 Learning Optimal Slot Ordering

Despite its advantages for learning from small data sets, the separation of task and
discourse model also introduces new challenges, which we discuss as interesting
directions for future research.
At the moment the task model uses a simple default ordering of slots, which is

inspired by related work on music player applications for in-car, e.g. (Forlines et al,
2005; Schulz and Donker, 2006; Varges et al, 2006; Wang et al, 2005), also see
Section 7.5.4. However, this hand-crafted default ordering leads to unnatural (or at
least un-logical) behaviour where user simulation or the system consider redundant
information to be important.

Example 7.5.
System1: greet--> (db: 438.0)
User1: provide_info-->album(I Might Be Wrong)

filled [album], confirmed []
System2: implConfAskASlot-->album, genre (db: 8)
User2: provide_info-->artist(Radiohead)

filled [album, artist], confirmed [album]
System3: presentList[mm] -->album, artist (db: 8)
User3: provide_info-->genre(Indie Rock)

filled [album, artist, genre], confirmed [album]
System4: implConfAskASlot-->artist, song_title (db: 8)

[...]

In Example 7.5 the user simulation has already specified album (User1) and
artist (User2). The user then provides the genre (User3) where genre is redundant,
as only one possible genre for this artist exists. Task-Consistent behaviour would be
for the user to choose an item from the list presented multimodally (System3).
Note that Example 7.5 also illustrates that the RL-based strategy applies flexible

“thresholds” (thus Algorithm 3 is really just a very general simplification of what
was learned). In Example 7.5 the system keeps on asking for new constraints, hop-
ing that the user will provide a song title and thus a list can be presented verbally
(which gains a high immediate reward). It therefore delays the change to present a
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list multimodally, although a small number of possible candidates is retrieved right
at the beginning of the dialogue.
Furthermore, the system also asks for redundant information. In Example 7.6

the system asks for genre (System2), where (in our database) the genre is already
defined by the artist. The same is true for System2 in Example 7.5. Note that other
studies have identified the slot type “genre” to be in general problematic for this task
(Schulz and Donker, 2006; Wang et al, 2005).

Example 7.6.
System1: greet--> (db: 438.0)
User1: provide_info-->album(Bob Dylan)

State: filled [slot2], confirmed []
System2: implConfAskASlot-->artist, genre (db: 92)
User2: provide_info-->genre(Blues)

State: filled [slot1,slot2], confirmed [slot2]
System3: implConfAskASlot-->genre, album(db: 92)
User3: provide_info-->album(Desire)

State: filled [slot1,slot2,slot3], confirmed [slot1,slot2]
System4: presentList[mm] -->genre, album, artist (db: 9)

[...]

Related work has proposed the following solutions for encoding task-related in-
formation.
For learning task-consistent user behaviour, (Schatzmann et al, 2007c) extends

the agenda-based models introduced in (Schatzmann et al, 2007a) with an agenda
which is learned from data. The agenda (or user state) is treated as a hidden variable
which has the advantage that the amount of required annotated training data can be
reduced. This approach is a promising direction for future research.
For learning task-consistent system behaviour, the slot ordering can be included

in the RL task, i.e. which slot type to ask next can be included in the action set,
e.g. (Pietquin and Beaufort, 2005; Thomson et al, 2008; Williams, 2006; Young,
2006). However, this approach does not maintain a separate task model, but merges
discourse and task behaviour. Furthermore, most of the previous work on learning
optimal slot ordering with RL primarily focused on improving ASR quality, and did
not explicitly target task-consitent behaviour.
Most of the work which maintains a separate task model, manually specifies the

ordering of the task, e.g. (Bohus and Rudnicky, 2003; Xu and Rudnicky, 2000).
However, recent work suggests some more principled approaches to determine
which slot to ask next. Becker et al (2006); Polifroni and Walker (2006) choose
the next slot according to the expected information gain with respect to the structure
of the database, where Polifroni and Walker (2006) use decision trees derived from
data; Becker et al (2006) use hand-coded rules. Other recent work learns the task
model from human-human data (Bangalore et al, 2006).
An interesting direction for future research is to determine how to best integrate

task and discourse behaviour into the RL framework.
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7.12 Summary

In this Chapter we learned an optimal strategy for information seeking dialogue
systems using simulation-based RL, where the simulated environment is obtained
from limited amounts of WOZ data.
We address the complex and challenging problem of how many database search

results to present to the user, and when to present them, and which modality to use
for presentation, given the competing trade-offs between the number of results (large
lists are difficult for users to process especially when only presented verbally), the
length of the dialogue (long dialogues are tiring, but collecting more information can
result in more precise results), and the noise in the speech recognition environment
(in high noise conditions accurate information is difficult to obtain).
To train and test such a policy in a efficient but accurate manner, we obtain a sim-

ulated learning environment from WOZ data, where all the simulated components
are constructed using data-driven methods. The overall framework is summarised in
Figure 7.12.

Fig. 7.12 Overall framework for RL in a simulated environment obtained from WOZ data

In particular, we create the action set by exploring the actions taken by the wiz-
ards, and we used automatic feature selection techniques in order to define the state
space. We presented a method for simulating channel noise if training data is sparse,
and we also introduce methods to build and evaluate user simulation from small data
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sets. The applied reward function is obtained using a modified version of the PAR-
ADISE framework.
We then trained and tested a RL-based policy by interaction with the simulated

environments. We compare the results against a supervised baseline policy, reflect-
ing the “average” wizard behaviour. This comparison allows us to measure the rel-
ative improvements of the RL-based policies over the strategies obtained from the
initial data set. The RL policy significantly outperforms (p < .001) the supervised
baseline strategy, gaining on average 50-times more reward when tested in simula-
tion. One main advantage for Reinforcement Learning over Supervised Learning in
this context is that it allows us to incorporate user feedback in the reward function,
and therefore allows learning of strategies which reflect user preferences.
We also described the RL-based policy. We first qualitatively described the strate-

gies using examples, and then gave a detailed description of the RL-based policy as
a table-look-up between states and actions.
Of course, in this Chapter we have only tested the policies in interaction with a

simulated environment. The ultimate evaluation is to test strategies in performance
with real users. In the next Chapter we report on results from a detailed user study.
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Chapter 8

Comparing Reinforcement and Supervised

Learning of Dialogue Policies with Real Users

Fig. 8.1 Verification of a theory by real-world experiment.

In Chapter 7 we showed that Reinforcement Learning (RL) based strategies can
significantly outperform supervised strategies, in interaction with a simulated en-
vironment. The ultimate test for dialogue strategies, however, is how they perform
with real users. For real users it is often difficult to complete even relatively simple
tasks using automated dialogue systems. They often get confused, frustrated, and
irritated by unwieldy dialogue behaviour. These effects are hard to reproduce fully
with simulated users. It is therefore necessary to test the learned strategies with real
users to get subjective feedback, as well as collecting objective metrics.
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In this chapter we report results for testing the learned strategies with real users.
We therefore port the policies into a working dialogue system, which we developed
using the DUDE toolkit, as described in Section 8.1. In Section 8.2 we then explain
the experimental setup for the user tests. The test results are analysed in Section 8.3,
followed by a discussion in Section 8.4.
As a final step, we go on to evaluate our proposed development framework in

Section 8.5. In particular, we compare aspects of simulated and real interactions in
Section 8.5.1 and we evaluate different aspects of the reward function in Section
8.5.2).

8.1 Policy Integration into a Dialogue System

This book ‘bootstraps’ a simulated dialogue learning environment from WOZ data,
which enables the design of optimal strategies before a working prototype is avail-
able. In order to test the validity of the overall framework, we need to show that the
strategies obtained in such an environment are indeed suitable for dialogue interac-
tion with real users. We therefore design a dialogue system where we can integrate
and test the learned policies. The created system is an interactive interface to search
in a large database of digital music files as described below.

8.1.1 The DUDE Rapid Dialogue Development Tools

Building a full-working dialogue system from scratch requires a substantial amount
of manual labour. We therefore rely on the DUDE toolkit for system rapid develop-
ment. DUDE is a Dialogue and Understanding Development Environment which fa-
cilitates rapid development of slot-based dialogue systems for the English language
(Lemon and Liu, 2006).

8.1.1.1 The Development Process in DUDE

In order to develop a system with DUDE, the dialogue developer has to provide
a mySQLdatabase and has to specify a Process Model (PM), see Figure 8.2. A
PM describes the task as a hierarchical automaton with sub-tasks and states which
are linked by conditional transitions (similar to Task Hierarchical Diagrams, as de-
scribed in Section 2.2.1). This specification can be done via a GUI, or by providing
a formatted input file. The DUDE toolkit then automatically generates a full working
dialogue system for the given task, including context-sensitive ASR, a grammar for
Natural Language Understanding, and a set of basic dialogue building blocks, such
as sub-strategies and sub-routines.
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One major advantage of the DUDE toolkit over other graphical toolkits, such as
the CSLU toolkit,1 is that DUDE provides a a simple interface to the Information
State Update (ISU) approach to dialogue strategy design. The ISU approach allows
developers to represent and track a rich representation of the dialogue context, which
allows highly context-sensitive and sophisticated strategies to be specified. This di-
alogue context is managed by a library of generic routines and sub-strategies which
come with the tool.
In addition to this task independent functionality, DUDE automatically derives a

set of task-specific rules, according to the specified process model. The system de-
veloper then can edit the task-specific system prompts, can specify conditions for
sub-task traversal, and s/he also may add some trigger phrases for the grammar.
Other than that, the grammar and the speech recognition language model are au-
tomatically compiled from the provided database. In addition, a core grammar and
lexicon also provide some additional generic functionality for slot-based systems.

Fig. 8.2 The development process with the DUDE toolkit (graphic after Lemon and Liu (2006))

8.1.1.2 DUDE System Architecture and Generic Dialogue Management

The system architecture of DUDE is based on the Open Agent Architecture (OAA)
(Cheyer and Martin, 2001), where several (mostly) JAVA-based agents interact with
each other (also see Figure 8.2):

• A database agent for querying the MySQL database
• An ASR agent implementing the HTK recogniser (Young, 1995) using ATK with
open speech recognition using n-grams (or alternatively Nuance Dragon2 can
also be used)

• A Process Model agent which serves as a default task planner
• A TTS agent for the Festival2 speech synthesiser (Taylor et al, 1998) (or alterna-
tively CereProc3 speech synthesiser can also be used)

1 http://cslu.cse.ogi.edu/toolkit/ (24. April 2008); for a comprehensive introduc-
tion to the CSLU toolkit see (McTear, 2004).
2 http://www.nuance.co.uk/naturallyspeaking/ (4. January 2011)
3 http://www.cereproc.com/ (4. January 2011)
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• A Grammatical Framework (GF) parser agent (Ranta, 2001)
• DIPPER for ISU dialogue management (Bos et al, 2002)
• An agent for text-based interaction (text in/out agent)
• An agent logging all information states (IS logger agent) following the format
specified by Georgila et al (2005b)

• A GUI agent for multimodal dialogue systems (for example see (Lemon et al,
2006b)).

In addition, DUDE comes with a set of subroutines which cover the following
generic core dialogue behaviour:

• mixed initiative and over-answering
• open-initiative dialogue start (“How may I help you?”)
• explicit and implicit confirmation
• generic help, restart/start-over, repeat, and quit commands
• task switching (for applications with multiple tasks)
• database query and result presentation
• template-based Natural Language Generation (NLG)
• clarification of ambiguous semantic content (e.g. “Kid A. Do you mean album or
song title?”)

• possibility to leave a slot under-specified (for example the user might say “I don’t
mind”, “I don’t care”, etc.)

8.1.2 Extensions to DUDE

In addition to the automatically generated behaviour, we added the following ex-
tensions to the dialogue functionality of DUDE. First of all, we changed the overall
structure of the dialogue: from form-filling to information-seeking dialogue strate-
gies (as defined in Section 3.4.1). Form filling strategies gather values for all slots
before the database is queried. The retrieved items are only presented at the end of
the dialogue (see Table 8.1 top). The disadvantage of such a procedure is that the
dialogues can become unnecessarily long and unwieldy. Imagine the case where the
user fills all the slots just to find out that the requested item is not in the database. Or
the case where, there is only one possible candidate in the database after filling the
first slot, then filling all the other slots should become redundant. For information-
seeking dialogue strategies, in contrast, the database is queried every time the user
provides a new constraint (for us this is when a new slot gets filled). The presenta-
tion phase can be entered at any point in the dialogue (see Table 8.1, bottom). Thus,
one major decision for information-seeking dialogue systems is when to stop gath-
ering new constraints (this is what we call “information acquisition”) and present
the retrieved items to the user.
The information acquisition phase includes the system acts for explicit (explConf)

and implicit confirming slots (implConfAskASlot), asking for new slot values
(askASlot), as well as the decision to enter the presentation phase (presentInfo);
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Table 8.1 Form filling (top) and information-seeking (bottom) dialogue strategies for a 4 slot
problem (S1− S4) with different opportunities for entering the presentation phase (P). The arcs
denote slot transitions with implicit/ explicit confirmation or by asking a new slot value (denoted
as ‘aas’ in the figure)

cf. Figure 7.5 in Section 7.5.3. The confirmation strategies and the functionality for
asking new slots values are automatically generated by standard generic routines in
DUDE. In order to implement the additional presentation skills presentInfo-
Verbal and presentInfoMM, we had to extend the current functionality of
DUDE as follows.
For verbal presentation we use a contrastive summary-based approach, following

Polifroni andWalker (2006); Polifroni et al (2003). The retrieved items are presented
by listing all slot features which overlap, and asking the user to provide a value
for the slot which helps to distinguish the retrieved items (see Example 8.1.1). If
there is more than one distinctive feature, the one with the highest information gain
(entropy) with respect to the database content is chosen.

Example 8.1.1

User: “Find me a song called Morning Bell.”
System: “There are 3 results matching your query all by the artist Radiohead,

all from the genre Alternative, and all having the song title Morning Bell, but a
different album. You have the following options: ‘Kid A’ and ‘I Might Be Wrong’
and ‘Amnesiac’. Which album?”

For multimodal presentation we let the system verbally confirm the last slot
value, and, at the same time, display a list of candidates on the screen (see Fig-
ure 8.3) where the user can select an item by clicking. Examples can be found in the
dialogue in Appendix A.3.
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The dialogue decisions for information acquisition and presentation are deter-
mined by the SL and RL policies as presented in the previous Chapter. All the
other (generic) sub-strategies, such as greeting, closing, semantic clarification, or
user commands like help, repeat, start-over, and so on, are implemented by generic
DUDE routines. The SL policy follows a simple set of learned rules (see Algorithm
2 in Section 7.6.2). The RL policy is implemented using a table-look-up technique
(see Section 7.11.4 and Appendix B). We also implemented the same constraints as
used for learning (see Section 7.5.4).
We also handle the case when no results (zero items) are retrieved in the database.

For simulation-based strategy learning we assumed that the user’s goal is always
contained in the database (see Section 7.8.7.2). The tasks for the user tests, how-
ever, are designed in such a way that not all the slot values are specified in advance
(as further discussed in Section 8.2.4). We asked the user not to guess any additional
values, but rather to ask for help or leave the option open (i.e. leaving a slot under-
specified) in order to resemble a concrete ‘search’ scenario rather than a ‘brows-
ing’ task. However, some subjects ignored this instruction and made a guess, which
(occasionally) resulted in zero results. In this case, the system apologises and the
dialogue restarts.
In addition, we added a context-sensitive help function. The existing help func-

tion only gives general information about the interaction with the system . The
context-sensitive help function, in contrast, lists a number of examples of possible
candidates for the current slot value. The system presents maximally 5 help items
(see Example 8.1.2). Note that this threshold is manually set. Example 8.1.2 also il-
lustrates the difference between the option to leave a slot unspecified (“I don’t care”)
and the help function (“I don’t know”). Context-sensitive help is always given if the
user explicitly asks for help. The generic help only follows a time-out.

Example 8.1.2

User: “I would like to hear a Blues song by Bob Dylan”
System: “Blues for type of music; searching for music by ‘Bob Dylan. Which al-

bum?”
User: “Don’t mind”
System: “Okay, it doesn’t matter. What is the title of the song?”
User: “I don’t know.”
System: “You have several options. For example: ‘Positively 4th Street’ , ‘I Dont

Believe You’, ‘Most Of The Time’, ‘Black Diamond Bay’ , and ‘Desolation Row’.
Which one would you like? ’”

Furthermore, we extended the functionality for Natural Language Understanding
and database query. First, the system can now handle partial parses. For example,
the user can say “Hendrix” instead of “Jimi Hendrix”. Furthermore, the database
is queried using “fuzzy” search (or partial string matching). For example, if the
system only recognises the first two words of ‘Subterranean Homesick Alien’ by
Radiohead, the song ‘Subterranean Homesick Blues’ by Bob Dylan is also returned
(see also Chapter 7.2). The new functionality was implemented using Java-based
OAA agents.
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8.2 Experimental Setup

8.2.1 Technical Setup

The experimental conditions are similar to the WOZ study (see Chapter 6.1), i.e.
we ask the users to solve similar tasks, and use similar questionnaires. With two
exceptions: The WOZ study was performed in German, whereas the user test are
performed in English. Therefore, a different database had to be used and tasks sets
and user questionnaires had to be translated.4 Furthermore, we decided to use typed
user input rather than ASR (similar to chat interfaces used by other dialogue studies,
e.g. (Bertomeu et al, 2006; Purver et al, 2003b)). The use of text input allows us
to target the experiments to the dialogue management decisions on presentation
strategies, and prevents ASR quality from interfering with the experimental results,
especially since subjective user scores are highly sensitive to ASR noise (Hajdinjak
and Mihelic, 2006). Both RL and SL wizard policies are trained to handle noisy
conditions, so that they usually confirm user input, which makes dialogues longer
but more reliable. The lack of noise in this experiment means that confirmation
happens more than is strictly required (although there are still text input spelling
mistakes), but the information presentation decisions are not affected.

8.2.2 Primary Driving Task

In contrast to the WOZ experiments we do not ask the experimental subjects to
operate a driving simulator, but let them watch videos of a simulated driving task. In
order to measure the cognitive load we give our experimental subjects a distraction
task. We ask them to count intersections with traffic lights as they occur in these
videos, and note down the number at the end of the dialogue. We can also use this
measure to directly determine the cognitive load of the interaction. In particular, we
use two different sets of driving videos.

• Driving set D1 consist of two videos, ‘Simulated urban driving’ (03 : 26)5 and
‘DriveSafety - Winter Driving Simulation’ (04 : 07).6

• Driving set D2 only contains the video ‘DriveSafety HyperDrive demo’ (08 :
22).7

4 Previous results indicate that human linguistic behaviour on the speech act level is very similar
for English and German – at least for task-oriented dialogues in restricted domains (Rieser and
Moore, 2005).
5 www.youtube.com/watch?v=rACwcqRKRg8 (1. September 2011)
6 www.youtube.com/watch?v=nLgQEYWkvoI (1. September 2011)
7 www.youtube.com/watch?v=gGTDaHgO8zs (41. September 2011)
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Both sets are played back without sound, and the videos are played in a loop
(in case the video ended before the user finished the task). Driving set D1 contains
(3+3) intersections with traffic lights, set D2 contains 4.
The overall experimental setup is shown in Figure 8.4. The experimental subject

is interacting with the dialogue system using a laptop with an external keyboard and
mouse. The driving simulation video is projected on the wall behind. This setup
allows the user to pay attention to both screens.

Fig. 8.4 Experimental setup – experimental subject interacting with the system (laptop) while
watching a driving simulation video (wall projection)

8.2.3 Subjects and Procedure

We recruited 17 subjects (8 female, 9 male) for the experiment. All subjects were
between 20 and 40 years old, and all but 3 subjects were able to touch type. The
majority of our subjects were students (76.5%) and mainly non-native speakers of
English (58.8%).
The experiment proceeded as follows. First, the experimental subject signs a

statement of consent.Then s/he is given a sheet with experimental instructions to
read. The instructions consist of a short description of the system’s functionality,
some explanation on possible commands (e.g. how to get help), and advice on how
to proceed with the tasks. The “driving” task is to count traffic lights (as explained
above). The tasks to solve with the system are simple search tasks where the subject
is asked to search for a specific item (see next Section). Once the experimental sub-
ject has finished a task, the driving simulation video stops, and the s/he fills out a
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questionnaire (see Section 8.2.5). S/he then resumes with the next task and the driv-
ing video continues. After the subject has finished the first task set, the experiment
leader switches between SL and RL dialogue policy, and the experimental subject
starts with the next set of tasks (as described in the next Section). At the very end,
the experimental subject may leave some comments. At the end of the experiment
each participant received a small compensation of £5.

8.2.4 Task Types

Every experimental subject has to solve 12 tasks in total, 6 tasks are solved using the
system executing the SL policy, and 6 tasks with the RL policy. This setup is called
a “repeated-measures within-subject design”, i.e. comparing strategy performance
by subject and task. We therefore design 2 task sets (A and B) of 6 tasks each. These
task sets are counter-balanced with strategy type (SL, RL) and driving simulation
video (D1, D2) in a latin-square design (see (Field and Hole, 2003)).
The tasks are of 2 different types. In tasks with type 1 the subject is given a

partial description of the item s/he should be looking for (e.g. genre, artist name,
and/or album name). A task is successful if the user chooses a final (unique) song
title matching the task. Task specifications of type 1 are of varying detail:

1a: Only one or two pieces of information are given, resulting in many possible
candidates (> 5).

1b: The given information specifies a path leading to a small set of items to
choose from (about 5 items).

A task of type 2 tells the user the specific song title s/he should be looking for.
This song title has different degrees of ambiguity:

2a: Only one song with that title can be retrieved.
2b: The database contains 2-4 songs with that title.

Both task sets contain tasks of type 1 and 2 in the following order: 1a,2b,1b,2b,
1a,2a.

8.2.5 User Questionnaires

The user fills out a questionnaire at the end of each task. The questions are of two
different types. One part of the questionnaire targets task completion, the other part
targets user satisfaction following Walker et al (2000). The first set of questions
measure actual and perceived task completion. For measuring the actual task com-
pletion the user fills in the missing information in an attribute value matrix (AVM).
For example, if the task scenario is described as “You want to listen to a Blues song
by the artist Bob Dylan.”, then the user has to fill in album and song title (as in
Table 8.2).
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genre Blues
artist: Bob Dylan
album:

song title:

Table 8.2 Example AVM for measuring task completion

The perceived task completion is measured as a binary variable, asking the user
whether s/he completed the task in a yes-no question.
The other set of questions targets different dimensions of user satisfaction, using

a subset of the questions asked in PARADISE (Walker et al, 2000). A discussion of
the PARADISE questionnaire can be found in Section 2.2.2. In total the user has to
rank the following 9 statements on a 7-point Likert Scale from ‘totally disagree’
to ‘totally agree’. The corresponding dimensions of user satisfaction are given in
brackets. In addition to PARADISE we also added questions targeting presentation
timing (question 5) and presentation mode (questions 6,7).

1. In this conversation, it was easy to find what I was searching for. (Task Ease)
2. The system worked the way I expected it to, in this conversation. (Expected

Behaviour)
3. In this task, I thought the system had no problems understanding me. (NLU Per-

formance)
4. In this task, the system was easy to understand. (TTS Performance)
5. In this task, I thought the system chose to present the search results at the right
time. (Presentation Timing)

6. In this task, I thought the number of items displayed on the screen was right.
(MM Presentation)

7. In this task, I thought the amount of information presented in each spoken output
was right. (Verbal Presentation)

8. In this task, I found that searching for music distracted me from the driving sim-
ulation. (Cognitive Load)

9. Based on my experience in this conversation, I would like to use this system
regularly. (Future Use)

8.3 Results

In total, 204 dialogues with 1,115 turns8 were gathered in this setup.
We now compare the results for the supervised wizard strategy and the RL strat-

egy (as trained in the previous Chapter) in order to detect statistical differences in
strategy performance. In particular, we compare subjective user ratings (as obtained

8 A turn is defined as in (Paek and Chickering, 2005): it begins at the start of each new user action
(since all system actions respond to user actions). A user action can be a verbal/typed utterance, or
a click (i.e. the user selected an item on the screen).
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from the questionnaires) and objective measures of dialogue performance (such as
dialogue length).

8.3.1 Subjective User Ratings

We use the Wilcoxon signed-rank test for significance testing between the user rat-
ings. The Wilcoxon signed-rank test is the non-parametric alternative to the paired
t-test.9 In the following we first report on the results for different measures of User
Satisfaction, then we report on task related user ratings.

8.3.1.1 User Ratings on User Satisfaction

Measure Wizard/SL Strategy RL Strategy

Task Ease 4.78(±1.84) 5.51(±1.44)***
timing 4.42 (±1.84) 5.36 (±1.46)***
MM Presentation 4.57 (±1.87) 5.32 (±1.62)***
Verbal Presentation 4.94 (±1.52) 5.55 (±1.38)***
Future Use 3.86 (±1.44) 4.68 (±1.39)***

Table 8.3 Comparison of mean user ratings for SL wizard baseline and RL policies(with standard
deviation ±); *** denotes statistical significance at p < .001

The results for user ratings on different dimensions of User Satisfaction are
displayed in Table 8.3. All the observed differences have a medium effects size
(r ≥ |.3|) (see (Cohen, 1992)). For all dimensions from the questionnaire, except for
Cognitive Load, the RL-based policy performs significantly (p < .001) better than
the SL-based policy. The total gain of the RL over the SL policy is on average 0.7
points on a 7-point Likert Scale (10%). The relative improvement for Task Ease (i.e.
the measure optimised by the reward function, see Chapter 7.9) is 15.3%; for Future
Use 23.52%.
An error analysis showed that in 41.2% of the cases the SL policy followed the

same strategy as the RL policy. This is mainly due to the fact that the SL policy
applies a frequency-based decision for starting the information presentation phase
(with P = 0.48, see Section 7.6.2). Nevertheless, the cases where the RL-based sys-
tem does behave differently (i.e. 58.8% of the time) cause a significant increase for

9 Although most previous work uses a paired t-test to analyse user questionnaires, this method
assumes parametric data which is problematic for data on an ordinal scale, as typically obtained
from user questionnaires. We also run a t-test were the results from the non-parametric test are
confirmed. For non-parametric data, the results for the non-parametric tests are said to be more
reliable (Field, 2005). We therefore report on those.
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most of subjective ratings, indicating that the distinctive cases have a strong impact
on user judgement.

Table 8.4 Box plots (with outliers) illustrating the effects of gender and native vs. non-native
speakers on user perception

Furthermore, we find that gender, as well as native versus non-native speaker
of English, have an effect on user ratings. We find an effect for native versus non-
native speakers for the Cognitive Load: the RL-based strategy distracts non-native
speakers significantly less from the driving task (z = −2.67; p = .008) whereas for
native speakers the reverse seems to be true (although differences are not significant
here), see Table 8.4, top left.
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It also seems that gender does influence how the presentation strategies are eval-
uated: male participants rate rather indifferently between the RL and the wizard
strategy for most of the questions, whereas female participants clearly favour the
RL-based strategy in terms of Presentation Timing, Multimodal and Verbal Presen-
tation, and Future Use (see Table 8.4, top right and bottom row). Similar gender
effects are reported by other studies on multimodal output presentation, e.g. (Foster
and Oberlander, 2006; Jokinen and Hurtig, 2006; Robertson et al, 2004). Note, that
for the WOZ study we do not find any gender differences.10

8.3.1.2 Comparison of Judgements Related to Task Success

We also asked the user to fill in questions related to task success (see Section 8.2.5).
The actual task completion is measured according to an AVM, where filling all
the requested slots corresponds to 100%. For example, if 2 slots are left to fill in
(and two are specified by the task description), and the user just provides one of
them, then task completion is evaluated as 50%. For actual task completion almost
the maximal score is reached: RL= 93.7% SL= 90.0%. There are no significant
differences between the policies.
The perceived task success is measured as a binary variable.11 Here almost the

maximum score is reached since for RL (taskCompletionRL = .98) and for SL
(taskCompletionSL = .96). Again, there are no significant differences between the
policies. This indicates that the system was very usable in general.
For the secondary task, counting traffic lights, no significant difference in perfor-

mance is found (mean counting errors for RL= 2.0 and for SL= 2.3). However, for
women there is a tendency to make fewer errors when using the RL-based dialogue
strategy (mean counting errors for RL= 2.3 and for SL= 3.0, p=.084). Interestingly
enough, there was no correlation between how much people felt distracted from the
driving simulation (Cognitive Load) and how many errors they made in counting
traffic lights.

10 A related question is, whether the observed differences are due to gender specific preferences,
or if they are due to differences in how men and women use subjective ranking scales (e.g. Likert
Scales). For example, when using bipolar ranking scales respondents may avoid using extreme re-
sponse categories (“central tendency bias”); or tend to agree with statements as presented (“acqui-
escence bias”); or try to portray themselves in a more favourable light (“social desirability bias”),
(see http://en.wikipedia.org/wiki/Likert_scale (11. September 2011) for a dis-
cussion of the ratings produced by Likert Scales). In our study, men used the undecided middle
value more often than women.
11 Note that for the binary measure of perceived task success McNemar’s test was used instead
of the Wilcoxon signed-rank test, because the latter assumes ranked order. McNemar’s test is a
non-parametric method used on nominal data to determine whether the row and column marginal
frequencies are equal, similar to the χ2 test, but for binary data (Field, 2005).
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8.3.1.3 Comments by the Users

At the end of the experiment experimental subjects were encouraged to leave their
own comments. 8 out of 17 users (47.06%) left a comment behind. 5 out of 8 users
criticised the insufficient TTS quality, especially for proper names. Some report
that they were not able to understand some of the names of presented items. 2
users would prefer a speech-based interface, rather than typing. 2 users asked for
more multimodal output and earlier presentation of candidates by the system. (This
is what the SL policy does “wrong”.) One user comments that it felt unnatural to
choose songs by genre. Some others participants also noted that they had difficulties
with specifying genre. Similar problems about choosing songs by genre are reported
by Schulz and Donker (2006); Wang et al (2005).
We believe that these comments are very valuable, as they illustrate some major

bottlenecks in strategy evaluation. The experimental design for evaluating dialogue
system is complex and difficult to control, as there are many variables which can
influence the perception of the system and its strategies. For example, the verbal
presentation strategies suffered from the bad TTS quality, as well as task success.
As such, one might consider learning generation strategies which take TTS quality
into account (Boidin et al, 2009).

8.3.2 Objective Dialogue Performance

We now analyse the system log-files and compare objective measures for dialogue
performance. In Section 7.11.2 we have shown that RL-based policies significantly
outperform supervised policies when interacting with a simulated environment. We
now test whether we can replicate these results with real users.
We use a paired t-test12 (with pair-wise exclusion of missing values) for com-

paring the performance of RL versus the supervised wizard strategy. The results
are shown in Table 8.5. The dialogues of the RL strategy are significantly shorter
(p< .005), while fewer items are displayed (p< .001), and the help function is used
significantly less (p < .003). The mean performance measures for testing with real
users are shown in Table 8.5. Also see example dialogues in Appendix A.3.
The dialogue performance is summarised in the reward function (see Section

7.9.4). The RL-based policy gains on average almost 18-times more reward, which
is significantly (p < .001) higher than for the SL policy (see Table 8.5).
Finally, we compare the performance of different user groups using an ANOVA

with planned comparison. We find no gender effects for any of the dialogue features.
However, we do find an effect for native versus non-native speakers of English.
Non-native speakers performed significantly (F(89) = 24.3, p < .001) better in the
secondary driving task (average errors per task set: 0.3± 2.3) than native speak-
ers (average errors: 3.0±2.7) when using the RL-based strategy. For the SL-based
12 Here, a t-test is a valid option, as objective dialogue quality measures are on an interval scale
and follow an approximately normal distribution.
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Measure Wizard Strategy RL Strategy paired t-test
mean(std) mean(std)

turns 5.86 (±3.26) 5.07(±2.94)* t(101)=-1.9; p=.05 ;r=.19
GUI items 52.2 (±68.5) 8.73(±4.34)** t(25)=-3.3; p=.003; r=.55
help .69 (±1.1) 0.34(±.68)** t(101)=-2.9; p=.005; r=.27
reward -628.16(±1808.3) 37.62(±60.7)*** t(101)=3.7; p=.001; r=.35

Table 8.5 Direct comparison of objective measures for the WOZ and the RL-based policy; where
* denotes statistical significance at p < .05, ** at p < .005, and *** at p <.001 with t-value and
effect size r

policy native and non-native speakers performed about the same (error non-native:
1.4± 2.4; errors native: 1.5± 2.3). This confirms the results of the subjective user
ratings for Cognitive Load (see Section 8.3.1.1): the RL-based policy helps non-
native speakers to concentrate more on the secondary driving task. This suggests
that the RL-based strategy is even more helpful for non-native speakers, as non-
native speakers in general need to spend more effort on communicating in a foreign
language.

8.4 Discussion of Real User Evaluation Results

In this Chapter we have shown that a dialogue strategy learned by Reinforcement
Learning methods outperforms a supervised strategy when tested with real users.
The RL-based policy gains on average almost 18-times more reward than the SL
policy. The human users also subjectively rate the RL-based policy on average 10%
higher.
In these user tests we decided to use typed user input rather than ASR. The use of

text input allows us to target the experiments to the dialogue management decisions,
and block ASR quality from interfering with the experimental results (Hajdinjak
and Mihelic, 2006). However, ideally one would want to employ high-quality ASR
to facilitate spoken interaction, as the user is in a eyes-busy situation (i.e. s/he is
visually distracted by the driving simulation). Nevertheless, we are still able to make
claims about the relative improvement of RL over the supervised wizard policy, as
both were tested under the same conditions.
However, these user tests are still set up under laboratory conditions. Work by Ai

et al (2007a) shows that there are some major differences between laboratory dia-
logues and the interaction between real users and a deployed system. For example,
recruited subjects have no real goals that they want to achieve. For these reasons
recent work focuses on evaluations with real users “in the wild” – that is , real users
who are outside the laboratory and who have their own genuine information goals,
rather than being supplied with a set of experimental tasks. See Black et al (2011)
for examples of this type of evaluation.
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In our case, we learn a strategy from data which was gathered in a controlled ex-
periment, and this strategy is also tested under similar conditions. It is not clear how
the learned strategy would perform while the user is driving a car (as for example
tested by Mutschler et al (2007)).
In the next Section we take a first step towards investigating how well a learned

strategy transfers between different operating conditions. We evaluate how the re-
sults transfer between the initial WOZ study, the simulated environment, and the
tests with real (though still in the laboratory) users.

8.5 Meta-Evaluation

Here we introduce a final phase where we meta-evaluate the whole framework. This
final step is necessary since WOZ experiments only simulate HCI. We therefore
need to show that a strategy bootstrapped from WOZ data indeed transfers to real
HCI. We first show that the results for simulated and real interaction are compati-
ble (Section 8.5.1). We also meta-evaluate the reward function, showing that it is a
stable, accurate estimate for real users’ preferences (Section 8.5.2).

8.5.1 Transfer Between Simulated and Real Environments

We first test whether the results obtained in simulation transfer to tests with real
users, following Lemon et al (2006a). We evaluate the quality of the simulated learn-
ing environment by directly comparing the dialogue performance measures between
simulated and real interaction. This comparison enables us to make claims regard-
ing whether a policy which is “bootstrapped” from WOZ data is transferable to real
HCI. We first evaluate whether objective dialogue measures are transferable, using
a paired t-test, comparing overall mean performance.
For the RL policy there is no statistical difference in overall performance (re-

ward), dialogue length (turns), and the number of presented items (verbal and mul-
timodal items) between simulated and real interaction (see Figure 8.5). This fact
(that the performances are not different) indicates that the learned strategy transfers
well to real settings. For the SL wizard policy the dialogue length for real users is
significantly (t(101) = 5.5, p < .001,r = .48) shorter than in simulation. We con-
clude from an error analysis that this length difference is mainly due to the fact that
real users tend to provide the most “informative” slot value (i.e. the most specific
value from the experimental task description) right at the beginning of the task (and
therefore more efficiently contribute to solve the task), whereas simulated users use
a default ordering of slot values and most of the time they provide the slot value that
the system was asking for (provide info). This difference becomes more promi-
nent for the SL wizard policy than for the RL-based policy, as the SL wizard policy
in general asks more questions before presenting the information. In future work the
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user simulation therefore should learn optimal slot ordering, also see discussion in
Section 7.11.5.2.

Fig. 8.5 Graph comparison of objective measures: SLs = SL policy in simulation; SLr = SL policy
with real users; RLs = RL policy in simulation; RLr = RL policy with real users

8.5.2 Evaluation of the Learned Reward Function

We propose a new method for meta-evaluation of the reward (or “objective”) func-
tion. One main advantage of RL-based dialogue strategy development is that the
dialogue strategy can be automatically trained and evaluated using the same objec-
tive function (Walker, 2005). Despite its central aspect for RL, quality assurance for
objective functions has received little attention so far. In fact, as noted in Section
7.9, the reward function is one of the most hand-coded aspects of RL (Paek, 2006).
Here, we bring together two strands of research for evaluating the reward func-

tion: one strand uses Reinforcement Learning to automatically optimise dialogue
strategies, e.g. (Henderson et al, 2008; Rieser and Lemon, 2008b,c; Singh et al,
2002); the other focuses on automatic evaluation of dialogue strategies, e.g. the
PARADISE framework (Walker et al, 1997), and meta-evaluation of dialogue met-
rics, e.g. (Engelbrecht and Möller, 2007; Paek, 2007). Clearly, automatic optimisa-
tion and evaluation of dialogue policies, as well as quality control of the objective
function, are closely inter-related problems: how can we make sure that we optimise
a system according to real users’ preferences?
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In Section 7.9 we constructed a data-driven objective function using the PAR-
ADISE framework, and used it for automatic dialogue strategy optimisation, follow-
ing work by Walker et al (1998a). However, it is not clear how reliable such a pre-
dictive model is, i.e. whether it indeed estimates real user preferences. The models
obtained with PARADISE often fit the data poorly (Engelbrecht and Möller, 2007). It
is also not clear how general they are across different systems and user groups (Paek,
2007; Walker et al, 2000). Furthermore, it is not clear how they perform when being
used for automatic strategy optimisation within the RL framework.
In the following we evaluate different aspects of the reward function. In subsec-

tion 8.5.2.1 we test the model stability in a test-retest comparison across different
user populations and data sets. In subsection 8.5.2.2 we measure its prediction ac-
curacy.

8.5.2.1 Reward Model Stability

We first test the reward model’s stability by re-constructing it from the data gath-
ered in the real user tests (see Chapter8) and comparing it to the original model con-
structed from the WOZ data. By replicating the regression model on different data
sets we test whether the automatic estimate of Task Ease generalises beyond the con-
ditions and assumptions of a particular experimental design. The resulting models
are shown in Equations 8.1 to 8.3 , where TaskEaseWOZ is the regression model ob-
tained from the WOZ data,13 TaskEaseSL is obtained from the user test data running
the supervised average wizard policy, and TaskEaseRL is obtained from the user test
data running the RL-based policy. They all reflect the same trends: longer dialogues
(measured in turns) result in a lower Task Ease, whereas a good performance in the
multimodal information presentation phase (multimodal score) will positively influ-
ence Task Ease. For the user tests almost all the tasks were completed; therefore
task completion was only chosen to be a predictive factor for the WOZ model.

TaskEaseWOZ = 1.58+ .12∗ taskCompl+ .09∗mmScore− .20∗dialogueLength (8.1)

TaskEaseSL = 3.50+ .54∗mmScore− .34∗dialogueLength (8.2)

TaskEaseRL = 3.80+ .49∗mmScore− .36∗dialogueLength (8.3)

To evaluate the obtained regression models we use two measures: how well they
fit the data and how close the functions are to each other (model replicability). Both
are measured using goodness-of-fit R2. For the WOZ model the data fit was rather
low (R2WOZ = .123),14 whereas for the models obtained from the user tests the fit has
improved (R2RL = .48, and R2SL = .55).

13 In contrast to the model in Equation 7.7 we now include the constant in the regression.
14 For R2 we use the adjusted values.
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Next, we compare how well the models from different data sets fit each other.
While the models obtained from the user test data show almost perfect overlap
(R2 = .98), the WOZ model differs (R2 = .22) in the sense that it assigns less weight
to dialogue length and the multimodal presentation score, and more weight is as-
signed to task completion. Task completion did not play a role for the user tests,
as mentioned above. This shows that multimodal presentation and dialogue length
become even more important once the tasks are being completed. Overall, then, the
data-driven reward model is relatively stable across the different data sets (WOZ,
real users with the SL policy, and real users using the RL policy).

8.5.2.2 Reward Model Performance: Prediction Accuracy

We now investigate how well these reward models generalise by testing their predic-
tion accuracy. Previous research evaluated two aspects: how well a given objective
function / reward model is able to predict unseen scores from the original system
(Engelbrecht and Möller, 2007), and how well it is able to predict unseen scores of
a new/different system (Walker et al, 2000). We evaluate these two aspects as well,
the only difference is that we use the Root Mean Standard Error (RMSE) instead of
R2 for measuring the model’s prediction accuracy. The RMSE is a frequently-used
measure of the differences between values predicted by a model or an estimator
and the values actually observed. It is defined over [0,∞], where 0 indicates perfect
overlap. The maximum RMSE possible (= worst case) in our setup is 7 for SL/RL
and 5 for WOZ. In order to present results from different scales we also report the
percentage of the RMSE of the maximum error (% error). RMSE is (we argue) more
robust for small data sets.15

First, we measure the predictive power of our models within the same data set
using 10-fold cross validation, and then across the different systems by testing mod-
els trained on one system to predict perceived Task Ease scores for another system,
following a method introduced by Walker et al (2000).
The results for comparing the RMSE for training and testing within data sets

(ID 1-3) and across data sets (ID 4–5) are shown in Table 8.7. RMSE measures the
average of the square of the “error”. As such, lower RMSE values are better. The
contrary is true for R2, where “1” indicates perfect overlap between two functions.

15 In particular, we argue that, by correcting for variance, R2 can lead to artificially good results
when using small tests sets (which typically vary more) and is sensitive to outliers (see Equation
8.4). RMSE instead measures the (root) mean difference between actual and predicted values (see
Equation 8.5).

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(y− y)

(8.4)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (8.5)



Table 8.6 Average Task Ease ratings for dialogues of different length (in turns); the solid lines are
the true ratings and the dashed line the predicted values; from top: RL, SL wizard, WOZ data

8.5 Meta-Evaluation 187



188 8 Comparing Reinforcement and Supervised Learning of Dialogue Policies with Real Users

ID train test RMSE % error
1 WOZ WOZ 0.82 16.42
2 SL SL 1.27 18.14
3 RL RL 1.06 15.14
4 RL SL 1.23 17.57
5 SL RL 1.03 14.71

Table 8.7 Prediction accuracy for models within (1–3) and across (4–5) data sets

The results show that predictions according to PARADISE can lead to accurate
test results despite the low data fit. While for the regression model obtained from
theWOZ data the fit was 10-times lower than for SL/RL, the prediction performance
is comparably good (see Table 8.7, ID 1–3). The models also generalise well across
systems (see Table 8.7, ID 4–5).
Table 8.6 visualises the results (ID 1–3): mean values for predicted and for true

ratings are plotted per turn, see Engelbrecht and Möller (2007). The top two graphs
in the table show that the predicted mean values are fairly accurate for the SL and
RL objective functions. The graph at the bottom indicates that the predictions are
less accurate for the WOZ data, especially for low numbers of turns. This seems to
contradict the previous results in Table 8.7, which show low error rates for the WOZ
data. However, this is due to the fact that most of the observations in the WOZ data
set are in the region were the predictions are accurate (i.e. most of the dialogues in
the WOZ data are over 14 turns long, where the curves converge).
We conclude that, according to our measures, an objective function obtained from

WOZ data is a valid first estimate of real users’ preferences. Despite a low fit to the
initial data, the objective function obtained fromWOZ data makes accurate and use-
ful predictions for automatic dialogue evaluation/reward. The models obtained from
the tests with a real system follow the same trends, but can be seen as more reliable
estimates of the objective function in this domain. In future work we recommend
incrementally training a system according to improved representations of real user
preferences, for example gathered online from a deployed spoken dialogue system.

8.6 Summary

This Chapter has presented the results of an evaluation of learned dialogue strategies
with real users. The RL-based policy gains significantly more reward than the SL
policy, with significantly shorter dialogues and fewer items being displayed to the
users. We also presented an analysis of dialogue properties and the reward function
across the different data sets (Wizard-of-Oz, simulated user, and real users).
What other types of problems can our overall methodology be applied to, and

how successful could it be? We explore this issue in the next chapter, as we describe
very recent work in extending this methodology to related problems in Natural Lan-
guage Generation (NLG), again with a real-user evaluation.



Chapter 9

Adaptive Natural Language Generation

Fig. 9.1 Tools for generating language – one of the first typewriters, developed by Peter Mitter-
hofer in 1864, displayed in the Technisches Museum Wien

This Chapter shows how the framework developed throughout the book can be
applied to a related set of problems, in Natural Language Generation (NLG) for
interactive systems. It therefore provides some evidence for the generality of our
approach, as well as drawing out some new insights regarding its application. This
approach to DM and NLG has recently been explored by other researchers (Deth-
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lefs and Cuayahuitl, 2010; Dethlefs and Cuayáhuitl, 2011; Janarthanam and Lemon,
2010c), and a utility-based approach to NLG is also discussed by van Deemter
(2009a).
Here we present a novel approach to generating Information Presentation (IP)

strategies in Spoken Dialogue Systems using a data-driven statistical optimisation
framework for content planning and attribute selection. Again, we collected data in
a Wizard-of-Oz (WOZ) experiment, where we use the observed human behaviour as
a baseline to measure the improvement of optimised policies, developed from this
data using Reinforcement Learning methods. Firstly, in simulated environments, we
will show that the optimised policies significantly outperform the human “wizard”
baselines in a variety of generation scenarios: while the wizards were able to attain
up to 87.6% of the possible reward on this task, the RL policies are significantly
better in 5 out of 6 scenarios, gaining up to 91.5% of the maximum possible reward.
The RL policies perform especially well in more complex scenarios, and we show
that adding predictive “lower level” features (e.g. from a surface realiser and the
predicted user reaction) is important for optimising IP strategies. This provides new
insights into the nature of the IP problem for SDS.
Finally, we also report on an evaluation of the optimised IP strategy with real

users of a tourist information system, compared to a state-of-the-art baseline, in
Section 9.6. For further detail also see (Lemon et al, 2012; Liu et al, 2009; Rieser
and Lemon, 2009a, 2010a; Rieser et al, 2010, 2011).

9.1 Introduction

Information Presentation (IP) is often a “grey area” when building Spoken Dia-
logue Systems (SDS); it falls somewhere in-between Dialogue Management (DM)
and Natural Language Generation (NLG) and it often is not clear which of these
components (if any) should take responsibility for it. A consequence of this is that
in the great majority of deployed SDS the Information Presentation phase is car-
ried out by hand-crafted rule-based templates rather than being developed using a
data-driven methodology.
In the following we show that IP for SDS can be treated as a data-driven joint

optimisation problem, and that this outperforms human ‘wizards’ on a particular IP
task (presenting sets of search results to a user). To achieve this the IP module needs
to take features from both DM and lower-level aspects of NLG into account.

9.1.1 Previous Work on Information Presentation in SDS

Evaluation of SDS suggests that the IP phase is the primary contributor to dialogue
duration (Walker et al, 2001a), and as such, is a central aspect of SDS design. During
this phase the system returns a set of items (“hits”) from a database, which match
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the user’s current search constraints. An inherent problem in this task is the trade-off
between presenting “enough” information to the user (for example helping them to
feel confident that they have a good overview of the search results) versus keeping
the utterances short and understandable, especially when using spoken output.
In the information presentation problem there there are many decisions available

for exploration. For instance, which presentation strategy to apply (NLG strategy
selection), how many attributes of each item to present (attribute selection), how
to rank the items and attributes according to different models of user preferences
(attribute ordering), how many (specific) items to tell them about (coverage), how
many sentences to use when doing so (syntactic planning), and which words to use
(lexical choice) etc. All these parameters (and potentially many more) can be varied,
and ideally, jointly optimised based on user judgements.
Prior work on Content or Attribute Selection has used a “Summarize and Re-

fine” approach. This method employs utility-based attribute selection with respect
to how each attribute (e.g. price or food type in restaurant search) of a set of items
helps to narrow down the user’s goal to a single item (Chung, 2004b; Polifroni and
Walker, 2006, 2008). Related work explores a user modelling approach, where at-
tributes are ranked according to user preferences (Demberg and Moore, 2006; Win-
terboer et al, 2007). Our data collection (see section 9.3) and training environment
incorporate these approaches.
There are also a variety of IP strategies for structuring information (see ex-

amples in Table 9.1). For example, a SUMMARY policy is used in (Demberg and
Moore, 2006; Polifroni and Walker, 2008), whereas a COMPARE strategy is used by
Nakatsu (2008); Walker et al (2007). Most work in SDS uses a RECOMMEND policy,
e.g. (Young et al, 2007).
In an early proof-of-concept study (Rieser and Lemon, 2009b) we showed that

each of these strategies has its own strengths and drawbacks, dependent on the par-
ticular context in which information needs to be presented to a user. Here, we also
explore possible combinations of the strategies, for example SUMMARY followed by
RECOMMEND, e.g. (Whittaker et al, 2002), see Figure 9.2.
Our work has been the first to apply a data-driven method to this whole deci-

sion space, and to show the utility of both lower-level and higher-level features for
this problem. Previous work focused on individual aspects of the problem (e.g. how
many attributes to generate, or when to use a SUMMARY), using a pipeline model for
SDS with DM features as input, and where NLG has no knowledge of lower level
features (e.g. behaviour of the surface realiser). In the following we use our Rein-
forcement Learning framework to explore the contextual features for making these
decisions, and propose a new joint optimisation method for IP strategies combining
content structuring and attribute selection. We show that, as well as higher level DM
features, optimal IP needs access to “forward looking” low-level features of surface
realisation and a model of probable user reactions.
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9.2 NLG as Planning Under Uncertainty

We follow the overall framework of NLG as planning under uncertainty (Lemon,
2008; Rieser and Lemon, 2009b), where each NLG action is a sequential decision
point, based on the current dialogue context and the expected long-term utility or
“reward” of the action. Other recent approaches describe this task as planning, e.g.
(Koller and Petrick, 2008), or as contextual decision making according to a cost
function (van Deemter, 2009b), but not as a statistical planning problem. Below,
we apply this framework to Information Presentation strategies in SDS, where the
example task is to present a set of search results (e.g. restaurants) to users. In par-
ticular, we consider 7 possible policies for structuring the content (see Figure 9.2):
Recommending one single item, comparing two items, summarising all of them, or
ordered combinations of those actions, e.g. first summarise all the retrieved items
and then recommend one of them. The IP module has to decide which action to take
next, which attributes to mention (cuisine, price range, location, food quality, and/or
service quality), and when to to stop generating.

Fig. 9.2 Possible Information Presentation structures (X=stop generation)

9.3 Wizard-of-Oz Data Collection

In an initial Wizard-of-Oz (WOZ) study, we asked humans (our “wizards”) to pro-
duce good IP actions in different dialogue contexts, when interacting in spoken di-
alogues with other humans (the users), who believed that they were talking to an
automated SDS. The wizards were experienced researchers in SDS and were famil-
iar with the search domain (restaurants in Edinburgh). They were instructed to select
IP structures and attributes for NLG so as to most efficiently allow users to find a
restaurant matching their search constraints.
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Strategy Example utterance
SUMMARY no
UM

I found 26 restaurants, which have Indian cuisine. 11 of the restaurants are
in the expensive price range. Furthermore, 10 of the restaurants are in the
cheap price range and 5 of the restaurants are in the moderate price range.

SUMMARY UM 26 restaurants meet your query. There are 10 restaurants which serve Indian
food and are in the cheap price range. There are also 16 others which are
more expensive.

COMPARE by
Item

The restaurant called Kebab Mahal is an Indian restaurant. It is in the cheap
price range. And the restaurant called Saffrani, which is also an Indian
restaurant, is in the moderate price range.

COMPARE by
Attribute

The restaurant called Kebab Mahal and the restaurant called Saffrani are
both Indian restaurants. However, Kebab Mahal is in the cheap price range
while Saffrani is moderately priced.

RECOMMEND The restaurant called Kebab Mahal has the best overall quality amongst the
matching restaurants. It is an Indian restaurant, and it is in the cheap price
range.

Table 9.1 Example realisations, generated when the user provided cuisine=Indian, and
where the wizard has also selected the additional attribute price for presentation to the user

9.3.1 Experimental Setup and Data Collection

We collected 213 dialogues with 18 subjects and 2 wizards (Liu et al, 2009). Each
user performed a total of 12 tasks, where no task set was seen twice by any one
wizard. The majority of users were from a range of backgrounds in a higher edu-
cation institute, in the age range 20-30, native speakers of English, and none had
prior experience of Spoken Dialogue Systems. After each task the user answered a
questionnaire on a 6 point Likert scale, regarding the perceived generation quality
in that task. The wizards’ IP strategies were highly ranked by the users on average
(4.7), and users were able to select a restaurant in 98.6% of the cases. No significant
difference between the wizards was observed.
The data contains 2236 utterances in total: 1465 wizard utterances and 771 user

utterances. We automatically extracted 81 features (e.g #sentences, #DBhits, #turns,
#ellipsis) from the XML logfiles after each dialogue.
The task for the wizards was to decide which IP structure to use next, which

attributes to mention, and whether to stop generating, given varying numbers of
database matches, varying prompt realisations, and varying user behaviour. Wizard
utterances were synthesised using a state-of-the-art text-to-speech engine. The user
speech input was delivered to the wizard using Voice Over IP.

9.3.2 Surface Realiser

In the Wizard-of-Oz environment we implemented a surface realiser for the cho-
sen IP structures and attribute choices, in order to realise the wizards’ choices in
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real time. This generator is based on data from the stochastic sentence planner
SPaRKy (Stent et al, 2004b). We replicated the variation observed in SPaRKy by
analysing high-ranking example outputs (given the highest possible score by the
SPaRKy judges) and implemented the variance using dynamic sentence generation.
The realisations vary in sentence aggregation, aggregation operators (e.g. ‘and’, pe-
riod, or ellipsis), contrasts (e.g. ‘however’, ‘on the other hand’) and referring ex-
pressions (e.g. ‘it’, ‘this restaurant’) used. The length of an utterance also depends
on the number of attributes chosen, i.e. the more attributes the longer the utterance.
All of these variations were logged.
In particular, we realised the following IP actions (see examples in Table 9.1):

• SUMMARY of all matching restaurants with or without a User Model (UM), follow-
ing
(Polifroni and Walker, 2008). The approach using a UM assumes that the user
has certain preferences (e.g. cheap) and only tells him about the relevant items,
whereas the approach with no UM lists all the matching items.

• COMPARE the top 2 restaurants by Item or by Attribute.
• RECOMMEND the top-ranking restaurant (according to UM).

Note that there was no discernible pattern in the data about the wizards’ decisions
between the UM/no UM and the byItem/byAttribute versions of the strategies. In
this study we will therefore concentrate on the higher level decisions (SUMMARY
vs. COMPARE vs. RECOMMEND) and model these different realisations as noise in the
realiser.

9.3.3 Human “Wizard” Baseline Strategy

We analysed theWOZ data to explore the best-rated strategies (the top scoring 50%)
that were employed by humans for this task. Here we used a variety of Supervised
Learning methods to create a model of the highly rated wizard behaviour. The best
performing method was Rule Induction (JRip) 1. The model achieved an accuracy of
43.19% which is significantly (p< .001) better than the majority baseline (34.65%).
The resulting rule set is shown in Figure 9.3.
The features selected by this model were only “high-level” features, i.e. the in-

put (previous action, number of database hits) that an IP module receives as input
from a Dialogue Manager. We further analysed the importance of different features
using feature ranking and selection methods, finding that the human wizards in this
specific setup did not pay significant attention to any lower level features, e.g. from
surface realisation.
Nevertheless, note that the wizard policy achieves up to 87.6% of the possible

reward on this task, as we show in section 9.5.2, and so can be considered a serious
baseline against which to measure performance. Below, we will show that Rein-
forcement Learning (RL) produces a significant improvement over the strategies

1 The WEKA implementation of Cohen (1995)’s RIPPER.
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IF (dbHits <= 9)& (prevNLG = summary):
THEN nlgStrategy=compare;

IF (dbHits = 1):
THEN nlgStrategy= Recommend;

IF(prevNLG=summaryRecommend)&(dbHits>=10):
THEN nlgStrategy= Recommend;

ELSE nlgStrategy=summary;

Fig. 9.3 Rules learned by JRip for the wizard model (‘dbHits’= number of database matches,
‘prevNLG’= previous NLG action)

present in the original data, especially in cases where RL has access to “low-level”
features of the context.

9.4 The Simulation / Learning Environment

Here we “bootstrap” a simulated training environment from the WOZ data, follow-
ing the method presented in earlier chapters.

9.4.1 User Simulations

User Simulations are commonly used to train strategies for Dialogue Management,
see for example (Young et al, 2007). A user simulation for NLG is very similar, in
that it is a predictive model of the most likely next user act.2 However, this NLG
predicted user act does not actually change the overall dialogue state (e.g. by filling
slots) but it only changes the generator state. In other words, the NLG user simula-
tion tells us what the user is most likely to do next, if we were to stop generating
now.
We are most interested in the following user reactions:

1. select: the user chooses one of the presented items, e.g. “Yes, I’ll take that
one.”. This reply type indicates that the information presentation was sufficient
for the user to make a choice.

2. addInfo: The user provides more attributes, e.g. “I want something cheap.”.
This reply type indicates that the user has more specific requests, which s/he
wants to specify after being presented with the current information.

3. requestMoreInfo: The user asks for more information, e.g. “Can you rec-
ommend me one?”, “What is the price range of the last item?”. This reply type

2 Similar to the internal user models applied in recent work on POMDP (Partially Observable
Markov Decision Process) dialogue managers (Gasic et al, 2008; Henderson and Lemon, 2008;
Young et al, 2007) for estimation of user act probabilities.
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indicates that the system failed to present the information the user was looking
for.

4. askRepeat: The user asks the system to repeat the same message again, e.g.
“Can you repeat?”. This reply type indicates that the utterance was either too
long or confusing for the user to remember, or the TTS quality was not good
enough, or both.

5. silence: The user does not say anything. In this case it is up to the system to
take initiative.

6. hangup: The user closes the interaction.

We build user simulations using n-gram models of system (s) and user (u) acts, as
first introduced by Eckert et al (1997). In order to account for data sparsity, we apply
different discounting (“smoothing”) techniques including automatic back-off, using
the CMU Statistical Language Modelling toolkit (Clarkson and Rosenfeld, 1997).
We construct a bi-gram model3 for the users’ reactions to the system’s IP structure
decisions (P(au,t |IPs,t)), and a tri-gram (i.e. IP structure + attribute choice) model
for predicting user reactions to the system’s combined IP structure and attribute
selection decisions: P(au,t |IPs,t ,attributess,t).
We evaluate the performance of these models by measuring dialogue similarity

to the original data, based on the Kullback-Leibler (KL) divergence, as also used
by, e.g. (Cuayáhuitl et al, 2005; Janarthanam and Lemon, 2009; Jung et al, 2009).
We compare the raw probabilities as observed in the data with the probabilities
generated by our n-gram models using different discounting techniques for each
context, see Table 9.2. All the models have a small divergence from the original
data, suggesting that they are reasonable simulations for training and testing NLG
policies.
The absolute discounting method for the bi-gram model is most dissimilar to

the data, as is the linear discounting method for the tri-gram model, i.e. the models
using these discounting methods have the highest KL score. The best performing
methods (i.e. most similar to the original data), are linear discounting for the bi-
gram model and GoodTuring for the tri-gram. We use the most similar user models
for system training, and the most dissimilar user models for testing NLG policies, in
order to test whether the learned policies are robust and adaptive to unseen dialogue
contexts.

Discounting method bi-gram US tri-gram US
WittenBell 0.086 0.053
GoodTuring 0.086 0.051
Absolute 0.091 0.075
Linear 0.011 0.090

Table 9.2 Kullback-Leibler divergence for the different User Simulations (US)

3 Where au,t is the predicted next user action at time t, IPs,t was the system’s Information Presen-
tation action at t, and attributess,t is the attributes selected by the system at t.
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9.4.2 Database Matches and “Focus of Attention”

An important task of Information Presentation is to support the user in choosing be-
tween all the available items (and ultimately in selecting the most suitable one) by
structuring the current information returned from the database. We therefore model
the user’s “focus of attention” created by structuring information with different num-
bers of attributes. We implement this shift of the user’s focus analogously to discov-
ering the user’s goal in DialogueManagement: every time the predicted next user act
is to add information (addInfo), we infer that the user is therefore only interested
in a subset of the previously presented results and so the system should only talk
about this new subset of database items in the rest of the generated utterance. For
example, the user’s focus after the SUMMARY (with UM) in Table 9.1 is DBhits = 10,
since the user is only interested in cheap, Indian places.

9.4.3 Data-driven Reward Function

The reward function is constructed from the WOZ data, using a stepwise lin-
ear regression, following the PARADISE framework (Walker et al, 2000). This
model selects the features which significantly influenced the users’ ratings for the
NLG strategy in the WOZ questionnaire. We also assign a value to the user’s
reactions (valueUserReaction), similar to optimising task success for DM (Jung
et al, 2009). This reflects the fact that good IP strategies should help the user
to select an item (valueUserReaction = +100) or provide more constraints
addInfo (valueUserReaction = ±0), but the user should not do anything else
(valueUserReaction = −100). The regression in equation 9.1 (R2 = .26) indicates
that users like to be focused on a small set of database hits (where #DBhits ranges
over [1-100]), which will enable them to choose an item (valueUserReaction), while
keeping the IP utterances short (where #sentence is in the range [2-18]):

Reward = (−1.2)#DBhits (9.1)
+(.121)valueUserReaction

−(1.43)#sentence

Note that the worst possible reward for an NLG move is therefore (−1.20×100)−
(.121×100)− (18×1.43) =−157.84. This is achieved by presenting 100 items to
the user in 18 sentences, in such a way that the user ends the conversation unsuc-
cessfully. The top possible reward is achieved in the rare cases where the system
can immediately present 1 item to the user using just 2 sentences, and the user then
selects that item, i.e. Reward = −(1.20×1)+(.121×100)− (2×1.43) = 8.06
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9.5 Reinforcement Learning Experiments

We now formulate the problem as a Markov Decision Process (MDP), where states
are NLG dialogue contexts and actions are NLG decisions. Each state-action pair
is associated with a transition probability, which is the probability of moving from
state s at time t to state s′ at time t +1 after having performed action a when in state
s. This transition probability is computed by the environment model (i.e. the user
simulation and realiser), and explicitly captures the uncertainty in the environment.
This is a major difference to other non-statistical planning approaches. Each transi-
tion is also associated with a reinforcement signal (or Reward) rt+1 describing how
good the result of action a was when performed in state s. The aim of the MDP is
to maximise long-term expected reward of its decisions, resulting in a policy which
maps each possible state to an appropriate action in that state (see Chapter 3).
We treat IP as a hierarchical joint optimisation problem, where first the IP struc-

ture is chosen and then the number of attributes is decided, as shown in Figure
9.4. At each generation step, the MDP can choose 1-5 attributes (e.g. cuisine, price
range, location, food quality, and/or service quality). Generation stops as soon as
the user is predicted to select an item, i.e. the IP task is successful. (Note that the
same constraint is operational for the WOZ baseline.)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ACTION:

⎡⎢⎣IP:

⎧⎪⎨⎪⎩
SUMMARY

COMPARE

RECOMMEND

⎫⎪⎬⎪⎭
{
attr: 1-5

}⎤⎥⎦

STATE:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

attributes:
{
1-15

}
sentence:

{
2-18

}
dbHitsFocus:

{
1-100

}
userSelect:

{
0,1

}
userAddInfo:

{
0,1

}
userElse:

{
0,1

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 9.4 State-Action space for the RL-NLG problem

States are represented as sets of NLG dialogue context features. The state space
comprises “low-level” features about the realiser behaviour (two discrete features
representing the number of attributes and sentences generated so far) and three bi-
nary features representing the user’s predicted next action, as well as “high-level”
features provided by the DM (e.g. current database hits in focus). We trained the pol-
icy using the SHARSHA algorithm (Shapiro and Langley, 2002) with linear function
approximation (Sutton and Barto, 1998), and the simulation environment described
in section 9.4. The policy was trained for 60,000 iterations.
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9.5.1 Experimental Set-up

We compare the learned strategies against the WOZ baseline as described in section
9.3.3. For attribute selection we choose a majority baseline (randomly choosing
between 3 or 4 attributes) since the attribute selection models learned by Supervised
Learning on the WOZ data didn’t show significant improvements.
For training, we used the user simulation model most similar to the data, see

section 9.4.1. For testing, we test with the different user simulation model (the one
which is most dissimilar to the data).
We first investigate how well IP structure (without attribute choice) can be

learned in increasingly complex generation scenarios. A generation scenario is a
combination of a particular kind of surface realiser (template vs. stochastic) along
with access to certain features of the dialogue context. We therefore investigate the
following cases:

1.1. IP structure choice, Template realiser: Predicted next user action varies ac-
cording to bi-gram model; Number of sentences and attributes per IP strategy is
set by defaults, reflecting a template-based realiser.

1.2. IP structure choice, Stochastic realiser: IP structure where number of attri-
butes per NLG turn is given at the beginning of each episode (e.g. set by the
DM); Sentence generation according to the SPaRKy stochastic realiser model as
described in section 9.3.2.

We then investigate different scenarios for jointly optimising IP structure (IPS)
and attribute selection (Attr) decisions.

2.1. IPS+Attr choice, Template realiser: Predicted next user action varies accord-
ing to tri-gram (i.e. IPS + Att) model; Number of sentences per IP structure set
to default.

2.2. IPS+Attr choice, Template realiser+Focus model: Tri-gram user simulation
with Template realiser and Focus of attention model with respect to #DBhits
and #attributes as described in section 9.4.2.

2.3. IPS+Attr choice, Stochastic realiser: Tri-gram user simulation with sentence/
attribute relationship according to Stochastic realiser as described in section
9.3.2.

2.4. IPS+Attr choice, Stochastic realiser+Focus model: i.e. the full model = Pre-
dicted next user action varies according to tri-gram model+ Focus of attention
model + Sentence/attribute relationship according to stochastic realiser.

9.5.2 Results

We compare the average final reward (see equation 9.1) gained by the baseline
against the trained RL policies in the different scenarios for each 1000 test runs, us-
ing a paired samples t-test. The results are shown in Table 9.3. In 5 out of 6 scenarios
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Scenario
Wizard Baseline
average Reward RL average Reward

RL % - Baseline %
= % improvement

1.1 -15.82(±15.53) -9.90***(±15.38) 89.2% - 85.6%= 3.6%
1.2 -19.83(±17.59) -12.83***(±16.88) 87.4% - 83.2%= 4.2%
2.1 -12.53(±16.31) -6.03***(±11.89) 91.5% - 87.6%= 3.9%
2.2 -14.15(±16.60) -14.18(±18.04) 86.6% - 86.6%= 0.0%
2.3 -17.43(±15.87) -9.66***(±14.44) 89.3% - 84.6%= 4.7%
2.4 -19.59(±17.75) -12.78***(±15.83) 87.4% - 83.3%= 4.1%

Table 9.3 Test results for 1000 dialogues, where *** denotes that the RL policy is significantly
(p < .001) better than the Baseline policy

the RL policy significantly (p < .001) outperforms the human wizard baseline. We
also report on the percentage of the top possible reward gained by the individual
policies, and the raw percentage improvement of the RL policy. Note that the best
possible (100%) reward can only be gained in rare cases (see section 9.4.3). An
overview of the different IP strategies learned for each setup can be found in Table
9.4.
The learned RL policies show that lower level features are important in gain-

ing significant improvements over the baseline. The more complex the scenario, the
harder it is to gain higher rewards for the policies in general, but the relative im-
provement in rewards also increases with complexity: the baseline does not adapt
well to the variations in lower level features whereas RL learns to adapt to the more
challenging scenarios.
For example, the RL policy for scenario 1.1 learned to start with a SUMMARY if the

initial number of items returned from the database is high (>30). It will then stop
generating if the user is predicted to select an item. Otherwise, it continues with a
RECOMMEND. If the number of database items is low, it will start with a COMPARE and
then continue with a RECOMMEND, unless the user selects an item. Also see Table
9.4. Note that the WOZ strategy behaves as described in Figure 9.3.
In addition, the RL policy for scenario 1.2 learns to adapt to a more complex sce-

nario: the number of attributes requested by the DM and produced by the stochas-
tic sentence realiser. It learns to generate the whole sequence (SUMMARY+COMPARE
+RECOMMEND) if #attributes is low (<3), because the overall generated utterance
(final #sentences) is still relatively short. Otherwise the policy is similar to the one
for scenario 1.1.
The RL policies for jointly optimising IP strategy and attribute selection learn

to select the number of attributes according to the generation scenarios 2.1-2.4. For
example, the RL policy learned for scenario 2.1 generates a RECOMMEND with 5 at-
tributes if the database hits are low (<13). Otherwise, it will start with a SUMMARY

using 2 attributes. If the user is predicted to narrow down his focus after the SUM-
MARY, the policy continues with a COMPARE using 1 attribute only, otherwise it helps
the user by presenting 4 attributes. It then continues with RECOMMEND(5), and stops
as soon as the user is predicted to select one item.
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Scenario strategies learned
1.1

RECOMMEND
COMPARE
COMPARE+RECOMMEND
SUMMARY
SUMMARY+COMPARE
SUMMARY+RECOMMEND
SUMMARY+COMPARE+RECOMMEND.

1.2
RECOMMEND
COMPARE
COMPARE+RECOMMEND
SUMMARY
SUMMARY+COMPARE
SUMMARY+RECOMMEND
SUMMARY+COMPARE+RECOMMEND.

2.1
RECOMMEND(5)
SUMMARY(2)
SUMMARY(2)+COMPARE(4)
SUMMARY(2)+COMPARE(1)
SUMMARY(2)+COMPARE(4)+RECOMMEND(5)
SUMMARY(2)+COMPARE(1)+RECOMMEND(5)

2.2
RECOMMEND(5)
SUMMARY(4)
SUMMARY(4)+RECOMMEND(5)

2.3
RECOMMEND(2)
SUMMARY(1)
SUMMARY(1)+COMPARE(4)
SUMMARY(1)+COMPARE(1)
SUMMARY(1)+COMPARE(4)+RECOMMEND(2)

2.4
RECOMMEND(2)
SUMMARY(2)
SUMMARY(2)+COMPARE(4)
SUMMARY(2)+RECOMMEND(2)
SUMMARY(2)+COMPARE(4)+RECOMMEND(2)
SUMMARY(2)+COMPARE(1)+RECOMMEND(2)

Table 9.4 RL strategies learned for the different scenarios, where (n) denotes the number of at-
tributes generated

The learned policy for scenario 2.1 generates 5.85 attributes per NLG turn on
average (i.e. the cumulative number of attributes generated in the whole NLG se-
quence, where the same attribute may be repeated within the sequence). This strat-
egy primarily adapts to the variations from the user simulation (tri-gram model). For
scenario 2.2 the average number of attributes is higher (7.15) since the number of
attributes helps to narrow down the user’s focus via the DBhits/attribute relationship
specified in section 9.4.2. For scenario 2.3 fewer attributes are generated on aver-
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age (3.14), since here the number of attributes influences the sentence realiser, i.e.
fewer attributes results in fewer sentences, but does not impact the user’s focus. In
scenario 2.4 all the conditions mentioned above influence the learned policy. The
average number of attributes selected is still low (3.19).
In comparison, the average (cumulative) number of attributes for the WOZ base-

line is 7.10. The WOZ baseline generates all the possible IP structures (with 3 or
4 attributes) but is restricted to use only “high-level” features (see Figure 9.3). By
beating this baseline we show the importance of the “low-level” features. Neverthe-
less, this wizard policy achieves up to 87.6% of the possible reward on this task, and
so can be considered a serious baseline against which to measure performance.
The only case (scenario 2.2) where RL does not improve significantly over the

baseline is where lower level features do not play an important role for learning
good strategies: scenario 2.2 is only sensitive to higher level features (DBhits).

9.6 Evaluation with real users

The policy described above was then deployed in an extensive online user study, in-
volving 131 users and more than 800 test dialogues, which explores its contribution
to overall ‘global’ task success in a spoken dialogue system.
The IP policy was integrated into the ‘CamInfo’ system, a spoken dialogue sys-

tem developed in the CLASSiC project4 providing tourist information for Cam-
bridge (Young et al, 2009). This baseline system was made accessible by phone
using VoIP technology, enabling out-of-lab evaluation with large numbers of users.
The speech recogniser (ASR), semantic parser (SLU) and dialogue manager (DM)
were all developed at Cambridge University. For speech synthesis (TTS), the Barati-
noo synthesiser, developed at France Telecom, was used.
The DM uses a POMDP (Partially Observable Markov Decision Process) frame-

work, allowing it to process N-Best lists of ASR hypotheses and keep track of mul-
tiple dialogue state hypotheses. The DM policy is trained to select system dialogue
acts given a probability distribution over possible dialogue states. It has been shown
that such dialogue managers can exploit the information in the N-Best lists (as op-
posed to only using the top ASR hypothesis) and are therefore particularly effective
in noisy conditions (Young et al, 2009).
The Natural Language Generation component of this baseline system is a stan-

dard rule-based surface realiser covering the full range of system dialogue acts that
the dialogue manager can produce. It has only one IP strategy, i.e., the system only
provides information about database entries in the form of single venue recommen-
dations (the RECOMMEND strategy, see Table 9.1). The attributes of the venue to
be presented are selected heuristically. In the extended version of the system, the IP
strategy is replaced by our trained NLG component, which is optimised to decide
between different IP actions as described above.

4 www.classic-project.org
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The subjects were directed to a webpage with detailed instructions and for each
task, a phone number to call, and the scenario to follow. A scenario describes a place
to eat in town, with some constraints, for example: “You want to find a moderately
priced restaurant and it should be in the Riverside area. You want to know the ad-
dress, phone number, and type of food.” After the dialogue, the subjects were asked
to fill in a short questionnaire.
For the objective evaluation of the two systems we focused on measuring task

completion rates. A full presentation and discussion of the results is given in (Rieser
et al, 2011). In summary, we found that the trained Information Presentation strat-
egy significantly improves dialogue task completion for real users, with up to a 9.7%
increase (30% relative) compared to the deployed dialogue system which uses con-
ventional, hand-coded presentation prompts. This result establishes the benefits of
this overall methodology for building NLG systems.

9.7 Conclusion

This Chapter has illustrated that the framework developed throughout the book can
be applied to a new set of problems in NLG, thereby providing evidence for the
generality of our techniques.
We presented a new data-driven method for Information Presentation in Spoken

Dialogue Systems using a statistical optimisation framework for content structure
planning and attribute selection. This work is the first to apply a data-driven optimi-
sation method to the IP decision space, and to show the utility of both lower-level
and higher-level features for this problem.
We collected data in a Wizard-of-Oz (WOZ) experiment and showed that human

“wizards” mostly pay attention to ‘high-level’ features from Dialogue Management.
The WOZ data was used to build statistical models of user reactions to IP strategies,
and a data-driven reward function for RL. We compared the observed human be-
haviour (the ‘human wizard baseline’) against policies optimised using Reinforce-
ment Learning (RL), in a variety of scenarios. Our optimised policies significantly
outperform the IP structuring and attribute selection present in the WOZ data, espe-
cially when performing in complex generation scenarios which require adaptation
to, e.g. number of database results, utterance length, etc. While the human wizards
were able to attain up to 87.6% of the possible reward on this task, the RL poli-
cies are significantly better in 5 out of 6 scenarios, gaining up to 91.5% of the total
possible reward.
We have also shown that adding predictive “lower level” features, e.g. from the

surface realiser and a user reaction model, is important for learning optimal IP strate-
gies. Future work could also include the predicted TTS quality (Boidin et al, 2009)
as a feature.
The method presented here was also evaluated with real users (Rieser et al, 2011),

where we found that the trained Information Presentation strategy significantly im-
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proves dialogue task completion for real users, with up to a 9.7% increase over a
state-of-the-art baseline IP strategy.
This methodology provides new insights into the nature of the IP problem, which

has previously been treated as a module following dialogue management with no
access to lower-level context features. The data-driven planning method applied
here promises a significant upgrade in the performance of generation modules, and
thereby of Spoken Dialogue Systems in general.



Chapter 10

Conclusion

Fig. 10.1 Two chatbots interacting (Cornell Creative Machines Lab)

In this final Chapter we discuss what further challenges machines need to meet
when learning how to engage in useful, meaningful, and natural dialogues with
humans. In contrast to the approach adopted by many “chatbots” (see Figure 10),
which typically use shallow pattern-matching techniques to retrieve a next system
move, we argue that coherent dialogue actions can only be chosen when the system
knows the likely meanings of its dialogue contributions, and has a representation of
dialogue states which allows it to compute the utility of each of those moves. This
is the approach that we have focussed on in this book, for building useful task-based
dialogue systems, and it is a topic of research worldwide. There is still some distance
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to travel, however, in developing more sophisticated systems using these methods,
and in developing more generic tools for creating statistical dialogue systems.
In this Chapter we will first summarise the main contributions of this book to

this overall research programme, and then identify some key directions for future
research.

10.1 Contributions

In the area of dialogue strategy development, machine learning methods, such as Re-
inforcement Learning (RL), have recently been explored as an alternative method
to hand-coding dialogue strategies. One of the key advantages of such statistical
optimisation methods for dialogue strategy design is that the problem can be formu-
lated as a principled mathematical model model which can be optimised by training
on real data. In Chapter 4 we have demonstrated that RL-based strategies can out-
perform hand-coded strategies with manually tuned thresholds for a wide range of
application scenarios (also see (Rieser and Lemon, 2007, 2008b)). In cases where a
system is designed from scratch, however, there is often no suitable in-domain data.
Collecting dialogue data without a working prototype is problematic, leaving the
developer with a classic chicken-and-egg problem.
In Chapter 5 we proposed a method for learning dialogue strategies by us-

ing simulation-based RL, where the simulated environment is learned from small
amounts of Wizard-of-Oz (WOZ) data. The WOZ data collection was described in
Chapter 6 (also see (Rieser et al, 2005)). Using WOZ data rather than data from
real Human-Computer Interaction allows us to learn optimal strategies for domains
where no working dialogue system already exists. To date, automatic strategy learn-
ing has been applied to dialogue systems which have already been deployed in the
real world using handcrafted strategies. In such work, strategy learning was per-
formed based on already present extensive online-operation experience, e.g. (Hen-
derson et al, 2005, 2008; Singh et al, 2002). In contrast to this preceding work,
our approach enables strategy learning in domains where no prior system is avail-
able. Optimised learned strategies are then available from the first moment of online
operation, and handcrafting of dialogue strategies is avoided. This independence
from large amounts of in-domain dialogue data allows researchers to apply RL to
new application areas beyond the scope of existing dialogue systems. We called this
method ‘bootstrapping’.
In Chapter 7 we applied this framework to optimise multimodal information-

seeking dialogue strategies in a music player domain. Dialogue Management and
Natural Language Generation are two closely interrelated problems for information
seeking dialogues: the decision of when to present information depends on how
many pieces of information to present and the available options for how to present
them, and vice versa. We therefore formulate the problem as a hierarchy of joint
learning decisions which are optimised together (Rieser and Lemon, 2008d, 2011;
Rieser et al, 2011).
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The learned strategy was first evaluated in simulation (Chapter 7), and we also
tested its performance with real users, as described in Chapter 8. In particular, we
compared the performance of the RL-based strategy against a supervised learning
(SL) strategy which is obtained from (human) wizards’ policies from the original
data (Rieser and Lemon, 2006c). This comparison allowed us to measure relative
improvement over the initial strategies contained in the training data. Our results
showed that RL significantly outperforms SL when interacting in simulation as well
as for interactions with real users (Rieser and Lemon, 2008c, 2011). The RL-based
policy gained on average 50-times more reward when tested in simulation, and al-
most 18-times more reward when interacting with real users. Users also subjectively
rated the RL-based policy on average 10% higher. We post-evaluated the simulated
learning environment by comparing different aspects of the 3 corpora gathered so
far: the WOZ study, the dialogues generated in simulation, and the final user tests.
We showed that results obtained in simulation are comparable to results for real
users. Hence, we concluded that a strategy bootstrapped fromWOZ data is transfer-
able to real Human-Computer Interaction (Rieser and Lemon, 2008c).
In Chapter 9 we showed that our method can be used for new problems – in

this case the Natural Language Generation task of Information Presentation (Lemon
et al, 2012; Liu et al, 2009; Rieser and Lemon, 2009a, 2010a; Rieser et al, 2010,
2011).
One major advantage of RL-based dialogue strategy development is that the same

objective function can be used for dialogue evaluation, as well as for optimisation.
Despite its central role for RL, it has received little attention so far. In most of the
previous research it is manually set (Paek, 2006). One focus of this book was to
optimise dialogue strategies with respect to real user preferences. We constructed
our objective function from the WOZ data using a modified version of the PAR-
ADISE framework which estimates subjective user preferences from objective di-
alogue measures (Walker et al, 1997). In the post-evaluation we tested different
aspects of this objective function, such as its replicability on different data sets and
its prediction accuracy (Rieser and Lemon, 2008a). We also experimented with non-
linear rewards for strategy learning.

10.2 Discussion

We have already discussed some detailed directions for future work in individual
chapters. At this point, we discuss two of the more general claims brought forward
by this book. First, we address some of the limitations of the bootstrapping approach
and review our “lessons learned”. Second, we discuss to what extent RL-based strat-
egy development is suitable for industrial applications.
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10.2.1 Lessons Learned

In this book we demonstrate that one can “bootstrap” an optimised strategy from
limited amounts of WOZ data using simulation-based RL. Our results show that
such a RL-based strategy significantly improves over the strategies derived from
the initial corpus, and that results obtained in simulation do carry over to tests with
real users. We therefore conclude that a simulated learning environment which is
bootstrapped from WOZ data can be a valid and useful estimate of real HCI.
So far, we have only shown this for one specific example. It is not clear how gen-

erally applicable this approach is to other strategy learning problems for dialogue
systems and to other WOZ data sets. From our limited evidence we are not yet able
to make any concrete statements about the required quality and quantity of the WOZ
data with respect to the complexity of the learning problem. Nevertheless, from our
“lessons learned” we can give some recommendations on these issues.

10.2.1.1 Required Data Quality

In Chapter 8.5 we compared several aspects of the WOZ corpus, the simulated cor-
pus, and the corpus gathered with real users. We demonstrated that some of the ex-
perimental conditions between WOZ and real setup only need to be similar, rather
than identical, since strategies learned for a particular set of conditions can transfer
to a different set of conditions under certain circumstances. In particular, we showed
that a strategy trained on a higher noise level transfers well to situations with lower
noise, confirming results by Lemon and Liu (2007).
However, other conditions might not transfer well and thus have to be correctly

reflected in the initial data set. The results by Lemon and Liu (2007), for example,
indicate that a policy trained on different user types (cooperative vs. uncooperative
user) do not produce compatible results. This suggests that a “good enough” user
model has to be learned from data for the policy to fit the intended application
domain.
From our ‘lessons learned’ we conclude that for learning output presentation

strategies it is important to keep the output media constant across experiments. In
particular, the size of the screen influences how the number of multimodal items
is evaluated by the user, and the TTS quality influences how verbal presentation
strategies are evaluated (cf. user comments in Section 8.3.1.3).

10.2.1.2 Required Data Quantity

In Section 7.1.1 we outlined the problem of how much data is enough for bootstrap-
ping a simulated learning environment. Most of the simulated components are con-
structed using a form of Supervised Learning (or a frequency-based approach such
as the bi-gram user simulation). For SL problems there is a “triple trade-off prob-
lem” (Dietterrich, 2003) between the accuracy required, complexity of the learning
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problem, and the available data. In Section 7.1.1 we discussed that under certain cir-
cumstances one can cut back on accuracy for the benefit of exploring larger policy
spaces (also see results by Ai et al (2007b)).
The purpose of simulated learning environments is two-fold: they should ideally

cover all possible situations or states that the dialogue can be in, and they should give
distinctive feedback to the learner about the ‘desirability’ of being in a particular
state (with respect to the expected final reward), see Section 5.2.1. In particular we
found that all components need to guarantee full coverage of possible situations,
while the feedback can be distributed over several components.
For example, in Section 7.8 we discuss different techniques for creating user sim-

ulations with full coverage of the defined context. One of these user simulations is
“cluster-based”, i.e. it clusters together different states (see Section 7.8.4), causing
the simulated user to react similarly in similar situations. However, the reward func-
tion and the implemented domain constraints provide distinctive feedback to the
learner so that it can experience the difference between taking different actions (see
the discussion in Section 7.8.4.2).
Recent research also investigates rapid learning from small data sets, e.g. (Crook

and Lemon, 2011b; Gasic and Young, 2011; Pietquin et al, 2011b), where no simu-
lated environment is required. In this work the the amount of data needed for each
algorithm is also evaluated.

10.2.2 RL for Commercial Dialogue Strategy Development

In this book we have discussed different machine learning techniques as a possibil-
ity for bridging the gap between industry and research (see Section 2.2.4). However,
statistical learning techniques, especially Reinforcement Learning, have been criti-
cised for not being suitable for commercial development (Paek, 2006). The follow-
ing points are mentioned in particular:

1. RL requires large amounts of annotated data, which limits the complexity of the
learned strategy.

2. Many of the aspects are still hand-crafted, especially the selection of the state
space and the objective function used for strategy optimisation.

3. The learned policy is a “black box” which is difficult for the system designer to
change.

4. It is not clear whether results obtained in simulation transfer to interaction with
real users. In particular, it is not clear whether the objective function (reward)
used for strategy optimisation reflects the preferences of real users.

We have provided evidence that these points can be addressed without major
difficulties:

1. We use simulation-based RL which automatically generates the data required for
strategy learning. The simulated learning environment can be obtained from a
relatively small WOZ corpus, without the need for a working prototype.
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2. We also show that it is possible to construct a learning environment which is
completely data-driven, including state space selection and the design of the ob-
jective function.

3. The learned policy is transferred into a table look-up (Section 7.11.4), which
allows the dialogue designer to inspect and (if required) change the policy.

4. Finally, we show that results obtained in simulation do transfer to interaction
with real users. We also explicitly evaluate whether the objective function indeed
reflects real user preferences.

In sum, this book provides counter-examples to these arguments against the com-
mercial use of RL. Furthernore, in very recent work, RL approaches are now being
deployed in commercial settings and tools, for example by researchers at AT&T
(Williams, 2008, 2011) and France Telecom/Orange Labs (Putois et al, 2010).

10.3 Outlook: challenges for future statistical dialogue systems

Reinforcement Learning-based control strategies have been shown to be successful
in a wide variety of fields, such as air traffic management, communication networks,
water allocation, diagnosis based on medical images, and so on, see (Weber et al,
2008) for an overview. One of the best known examples is the application of RL to
board games such as backgammon (Tesauro, 1995) or chess (Baxter et al, 2001).
Chess was considered to be one of the last bastions of human intelligence, but in
1997 world champion Garry Kasparov lost a six-game match against IBM’s chess
computer “Deep Blue”.1 According to its developers several factors contributed to
this success, such as strong computing power, an emphasis on search extensions (i.e.
exploration), and a complex evaluation function (Campbell et al, 2002). In particular
Deep Blue’s ability to break up blocked positions by applying very forward-looking
strategies surprised chess experts.
However, one of Deep Blue’s bottlenecks was that it was not a “learning sys-

tem”, i.e. it was not able to learn and adapt from his own successes and mistakes.
Deep Blue was a product of thorough engineering, rather than being truly “intelli-
gent”. This mock intelligent behaviour evokes certain associations with its famous
predecessor The Turk, designed by Wolfgang von Kempelen (see Chapter 6).
Dialogue is similar to chess in the sense that it is set in a temporal and dynamic

environment (see comparison in Section 3.1). Nevertheless, participating in natural
language dialogue is different from playing chess in several important ways, and
we see some interesting challenges for future dialogue research driven by these
differences.
First of all, in a game of chess all possible moves and board positions are definite

– there is no uncertainty about which move has actually been made by the other par-
ticipant. In dialogue the interpretation of the input is uncertain, which is especially

1 see www.research.ibm.com/deepblue/ (24. April 2008)
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true for human-machine dialogue where ASR and SLU can introduce additional un-
certainty. Therefore, there is a major direction for future research in learning how to
handle this input uncertainty, as currently explored by several research groups us-
ing Partially Observable Markov Decision Processes (POMDPs), e.g. (Bohus, 2007;
Crook and Lemon, 2010; Gasic and Young, 2011; Thomson et al, 2008; Williams,
2006, 2011).
Furthermore, a chess move has only one possible realisation. For the other partic-

ipant it (usually) doesn’t matter how moving a piece from position A to position B is
actually performed. In dialogue interaction however, a speech action can be realised
in various ways, and the other dialogue participant will adapt his/her behaviour de-
pendent on the chosen utterance (Stenchikova and Stent, 2007). For this reason,
statistical approaches to Natural Language Generation (NLG) for dialogue systems
are an important ongoing research area e.g. (Dethlefs and Cuayahuitl, 2010; Deth-
lefs and Cuayáhuitl, 2011; Janarthanam and Lemon, 2008, 2010a,b; Lemon, 2008,
2011; Nakatsu andWhite, 2006; Oh and Rudnicky, 2002; Rieser and Lemon, 2010b;
Rieser et al, 2010, 2011; Walker et al, 2001b). Here the overall aim is the same as in
this book: to improve the global user experience by optimising sequences of local
decisions.
We think that the bootstrapping approach from WOZ data may be especially

promising here, as we consider humans to be experts in generating natural utter-
ances. In contrast to high-level action selection in simulating behaviour for a dia-
logue system, talking to other people is a more natural task for humans (see discus-
sion in Section 2.3.2).
Similarly, in chess, a move cannot usefully be broken down into smaller tem-

poral components, but in spoken dialogue there are useful semantic and pragmatic
components beneath the turn level. Another important new research area for spo-
ken interaction is therefore the development of incremental systems (Schlangen and
Skantze, 2011; Skantze and Schlangen, 2009). “Incremental” refers to the design
goal that incoming speech should be decoded on a word-by-word basis (rather than
at the utterance level, which is the current state-of-the-art), and also that systems
should be able to plan and execute utterances at a sub-utterance level (Skantze and
Hjalmarsson, 2010), for example by completing a user’s utterance as in the example
below:

User: I’m looking for Paranoid Android by umm <pause>
System: by Radiohead ?
User: Yes!

Such systems would be more natural and efficient than current SDS, but the
requirement for incrementality generates serious new challenges for statistical ap-
proaches. In particular, incremental input processing clearly generates more sys-
tem states with higher frequency, thereby increasing the size of the state spaces
required for statistical dialogue models. Likewise, incremental system output intro-
duces many new decisions and trade-offs concerned with generating utterance frag-
ments and feedback signals at the right time. The resulting learning problems will
require new techniques such as state-space compression and rapid, sample-efficient
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learning algorithms (Crook and Lemon, 2011b,b; Gasic et al, 2010; Pietquin et al,
2011b). Efficient learning methods also hold the promise of learning online from
small data-sets, and so constitute a potential alternative to the method that we have
developed in this book.
A further vital direction for the field is in testing learned policies “in the wild”,

see for example (Gruenstein and Seneff, 2007): with real users who have their own
genuine goals – rather than in laboratory-based experiments as is the current state-
of-the-art. This is similar to testing Deep Blue against Gary Kasparov, who certainly
pursued a genuine personal goal in attempting to win the match. Recent advances in
Voice-Over IP capabilities of mobile devices now make “in the wild” testing quite
practical, by opening up systems for free public use, and first steps in this direction
have been made in the evaluation of the CLASSiC project2 systems, for Tourist
Information and Appointment Scheduling, and also within the Spoken Dialogue
Challenge (Black et al, 2011).
Finally, looking further ahead to the Natural Language interfaces of the future,

we note a requirement for processing of non-cooperative, or “strategic”, dialogue
(Asher et al, 2011). While chess is a non-cooperative interaction (in that players
have incompatible goals), all current dialogue interfaces are strictly cooperative.
That is, the system’s goal (as represented in our work by the reward function) is to
help the user to complete their tasks in an efficient manner. However, some dialogue
tasks (for example negotiation) will require systems to pursue their own domain
goals to some extent (i.e. using a reward function not wholly determined by user
preferences), and to recognise that some user utterances are not fully cooperative
(for example, information may be witheld while bargaining). Again, such require-
ments create interesting challenges for our models and will drive further progress in
statistical approaches to meaningful human communication.

2 See www.classic-project.org
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Table A.1 Example dialogue from the SAMMIE WOZ corpus (mixed wizard strategy)

s1 User: Bitte suche das Lied ,Layla’.
Transl.: Search for the song ‘Layla’ please.
SA* user: add --> song-title(Layla)
Wizard: Wir haben das Lied gefunden. Es existiert 142 mal in verschiedenen

Ausführungen
Transl.: The song is retrieved. There are 142 different versions.
mmAction: [ Table with 142 entries is shown on the screen. ]
SA wizard: presentMM --> song-title (db:142)

s2 User: Bitte suche das Lied on dem Komponisten ,Eric Clapton’.
Transl.: Search for the song by the composer ‘Eric Clapton’ please.
mm Action: [ User does not react to what is displayed. ]
SA user: change --> artist(‘Eric Clapton’)
Wizard: Es gibt das Lied von ,Eric Clapton’ oder von ‘Derek & the Domi-

nos’.
Transl.: The song exists by ‘Eric Clapton’ or by ‘Derek & the Dominos’.
SA wizard: presentVerbal -> song-title, artist (db:2)

s3 User: Bitte spiele das Lied von ,Eric Clapton Unplugged’ ab.
Transl.: Play the song from ‘Eric Clapton Unplugged’ please.
SA user: repeat -->album(‘Eric Clapton Unplugged’)
Wizard: Ich spiele das Lied jetzt ab.
Transl.: OK I am going to play the song now.
SA wizard: feedback/others
mmAction: [ music ]
user ratings taskEase: 2, timing:2, mmPresent.: 1 , verbalPresent: 3, futureUse:3

* SA = Speech Act
Comments:

In this example the wizard uses a mixed strategy presenting information multimodally in
turn 1 and verbally in turn 2. The first time 142 items are presented multimodally by verbally
reporting the number of retrieved items while displaying them on the screen. The database
used in the WOZ experiments contained over a million songs and is searched with partial
string match. Therefore the retrieved items for ‘Layla’ can be as high as 142. The user does
not directly react to what is shown on the screen (either by referring to it or clicking), but
continues providing information until the wizards (verbally) presents two alternatives, where
the user indirectly chooses one by providing an album name which also disambiguates the
artist. The user rankings from the questionnaire are about average
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Table A.2 Example dialogue from the SAMMIE WOZ corpus (wizard not starting the presentation
phase early enough).

s1 User: Also, ich suche das Lied ,Smile’.
Transl.: Well, I am searching for the song ‘Smile’.
SA user: add --> song-title(Smile)
Wizard: Welches Lied suchst du?
Transl.: What song are you searching for?
comment: [ Song name was deleted ]
SA wizard: reject(song-title)

s2 User: Smile.
Transl.: Smile.
SA user: repeat --> song-title(Smile)
Wizard: Du suchst das Lied ,Smile’?
Transl.: Are you searching for the song ‘Smile’?
SA wizard: explConf(song-title)

s3 User: Ja, Smile ja.
Transl.: Yes, Smile yes.
SA user: y-answer --> song-title(Smile)
Wizard: Ich suche es... Ich habe vier Lieder mit dem einfachen Titel ,Smile’.
Transl.: I am searching... I found four songs with only ‘Smile’ as the title.
SA wizard: presentVerbal(song-title)

s4 User: Ja denn, das Lied bitte anzeigen.
Transl.: Very well then, why don’t you show it?
SA user: others
Wizard: OK.
Transl.: OK.
SA wizard: presentMM(song-title)
user ratings taskEase: 2, timing: 2, mmPresent.: 5, verbalPresent: 3, futureUse:3

Comments:
In this example the user is asking to see a short list on the screen (after resolving some
understanding errors induced by the deletion tool), which is indicating that (a) the wizard did
not enter the presentation phase early enough, and (b) that for the user 4 items seems to be
a reasonable number to display. The user scores reflect this fact: the presentation mode got a
maximal score (which will influence learning towards showing short lists), whereas the task
ease got a lower score (task ease is used as an overall reward, i.e. this ‘tells’ the learner to
enter the presentation mode earlier).
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A.2 Example Dialogues from Simulated Interaction

Table A.3 Example dialogue with the SL policy operating in the simulated environment.

s1 SL policy: greet (db:438)
sim.User: add-->genre(Rock)
state: filled [slot1], confirmed [], db:142

s2 SL policy: implConfAskASlot --> genre, artist)
sim.User: repeat-->genre(Rock)
state: filled [slot1], confirmed[slot1], db:142

s3 SL policy: present[mm] -->genre
sim.User: change-->artist(Jimi Hendrix)
state: filled [slot1,slot2], confirmed [slot1],

db:4
s4 SL policy: implConfAskASlot-->artist, album

sim.User: add-->album(Experience Hendrix: The Best of
Jimi Hendrix)

state: filled [slot1,slot2,slot3], confirmed
[slot1,slot2], db:4

s5 SL policy: implConfAskASlot-->album, song-title
sim.User: add-->song-title(Voodoo Child)
state: filled [slot1,slot2,slot3,slot4], confirmed

[slot1,slot2,slot3], db:1
s6 SL policy: explicitConfirm-->song-title

sim.User: repeat-->song-title(Voodoo Child)
state: filled [slot1,slot2,slot3,slot4], confirmed

[slot1,slot2,slot3,slot4], db:1
s7 SL policy: present[verbal] -->genre, artist, album,

song-title
sim.User: yes-answer-->yes(yes)
state filled [slot1,slot2,slot3,slot4], confirmed

[slot1,slot2,slot3,slot4], db:1
reward: lengthPenalty :−141.4,complVal : 118, presentVal : 8.7×(4.33−

2151.23)
finalReward:-18701.43

Comments:
This example shows a dialogue where the SL policy is operating in the simulated environ-
ment. Presentation timing and amount of presented information are not ideal (and therefore
leading to quite a long dialogue): in turn 2 the system presents a list of 238 items, whereas
when only having 4 alternatives (from turn 3 onwards) it fails to show a list.



A.2 Example Dialogues from Simulated Interaction 217

Table A.4 Example dialogue with the RL policy operating in the simulated environment (mixed
strategy).

s1 RL policy: greet (db: 438)
sim.User: add-->artist(Nirvana)
state: filled [slot2], confirmed [], db:26

s2 RL policy: implConfAskASlot --> artist, album)
sim.User: add-->album(MTV Unplugged)
state: filled [slot2,slot3], confirmed [slot2],

db:14
s3 RL policy: present[mm] -->artist, album

sim.User: click-->song-title(On a
Plain),genre(Alternative)*

state: filled [slot1,slot2,slot3,slot4], confirmed
[slot2,slot3], db:1

s4 RL policy: present[verbal] -->artist, album, song-title
sim.User: yes-answer-->yes(yes)
state: filled [slot1,slot2,slot3,slot4], confirmed

[slot1,slot2,slot3,slot4], db:1
reward: lengthPenalty : −80.8,complVal : 118, presentVal : 8.7× (4.33+

7.23)
finalReward:140.3

Comments:
This example shows the RL policy interacting in the simulated environment. The system
follows a mixed strategy: first presenting a list of 14 items on the screen and then presenting
a unique item verbally. * the user acts add after a multimodal presentation are equivalent to
clicking

Table A.5 Example dialogue with the RL policy operating in the simulated environment: present-
ing alternatives.

s1 RL policy: greet (db: 438)
sim.User: add-->artist(Bob Dylan)
state: filled [slot2], confirmed [], db:56

s2 RL policy: implConf(artist)AskASlot(genre)
sim.User: change-->song-title(Hurricane)
state: filled [slot2,slot4], confirmed [slot2],

db:2
s3 RL policy: present[verbal] -->album1,album2

sim.User: add-->album(Desire)
state: filled [slot2, slot3, slot4], confirmed

[slot2,slot4], db:1
s4 RL policy: present[verbal] -->artist, album, song-title

sim.User: yes-answer-->yes(yes)
state: filled [slot2, slot3, slot4], confirmed

[slot2, slot3, slot4], db:1
reward: lengthPenalty :−80.8,complVal : 118, presentVal : 8.7×(4.327+

3.395)
finalReward: 104.38

Comments:
This example shows the RL policy interacting in the simulated environment. The system
presents two alternatives and a single item using only verbal output.
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A.3 Example Dialogues from User Testing
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Table A.6 Example dialogue with the SL policy operating with real users.

s1 SL system: Hi, this is iTalk your talkative music player. How may I help you
today?

SA system: greet (db: 438)
User: i would like to listen to a blues song
SA user: add-->genre(Blues)
state: filled [slot1], confirmed [], db:175

s2 SL system: There are 175 items matching your query. A list of possible candi-
dates are shown on the screen.

SA system: presentMM--> genre (db:175.0)
User: —
SA user: nothing (time out)
state: filled [slot1], confirmed [], db:175

s3 SL system: A Blues song. By which artist?
SA system: implConf(genre), askASlot(artist)
User: eric clapton
SA user: add-->artist(‘Eric Clapton) (db:25.0)
state: filled [slot1, slot2], confirmed [slot1],

db:25
s4 SL system: Searching for music by Eric Clapton. Which album?

SA system: implConf(‘Eric Clapton’), askASlot(album)
User: mtv unplugged
SA user: add-->album(‘MTV unplugged’)
state: filled [slot1, slot2, slot3], confirmed

[slot1, slot2], db:13
s5 SL system: A song from the album MTV unplugged. What is the title of the

song?
SA system: implConf(album), askASlot(song-title)
User: what do you have
SA user: request-help
state: filled [slot1, slot2, slot3], confirmed

[slot1, slot2], db:13
s6 SL system: You have several options. For example: Layla , Nobody Knows You

When You Are Down and Out , Lonely Stranger , Old Love , and
San Francisco Bay Blues. Do you want to hear more?

SA system: give-help
User: no layla please
SA user: add-->song-title(Layla)
state: filled [slot1, slot2, slot3, slot4],

confirmed [slot1, slot2, slot3], db:1
s7 SL system: You will now hear Layla by Eric Clapton from the album MTV

unplugged. Are you happy with this option?
SA system: presentVerbal-->genre,artist,album,song-title
User: yes
SA user: yes-answer
state: filled [slot1, slot2, slot3, slot4],

confirmed [slot1, slot2, slot3, slot4], db:1
reward: lengthPenalty :−141.4,complVal : 118, presentVal : 8.7×(4.33−

7.63)
finalReward: -6577.03

user ratings taskEase:2, timing:2, mmPresent:1, verbalPresent:2, futureUse:2
Comments:

This example shows the SL policy applied with real users. In turn 2 the user ignores the 175
items displayed, then the system does not display the 13 retrieved items. The user asks for
help.
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Table A.7 Example dialogue with the RL policy operating with real users: multimodal and verbal
presentation

s1 RL system: Hi. this is iTalk your talkative music player. How may I help you
today?

SA system greet (db:438)
User: play me some blues
SA user: add-->genre(Blues) (db:175)
state: filled [slot1], confirmed [], db:175

s2 RL system: Blues for type of music. By which artist?
SA system: implConf(genre),askASlot(artist)
User: from the album desire
SA user: change-->album(Desire)(db:10)
state: filled [slot1, slot3], confirmed [slot1],

db:10
s3 RL system: There are 10 items matching your query. A list of possible candi-

dates are shown on the screen.
SA system: presentMM-->genre,album
User: [clicks]
SA user: click->genre,song-title
state: filled [slot1, slot2, slot3, slot4],

confirmed [slot1, slot3], db:1
s4 RL system: You selected an item on the screen. Please wait a few moments.

[. . . ] You will now hear Mozambique by Bob Dylan from the album
Desire. Are you happy with this option

SA presentVerbal-->genre,album,artist,song-title
User: yes
SA yes-answer
state: filled [slot1, slot2, slot3, slot4],

confirmed [slot1, slot2, slot3, slot4], db:1
reward: lengthPenalty : −60.6,complVal : 118, presentVal : 8.7× (4.33+

6.57)
finalReward: 152.16

user ratings taskEase:6, timing:7, mmPresent.:7 verbalPresent: 6 futureUse:6
Comments:

This example shows the RL policy interacting with real users. The system uses a mixed
strategy, showing multimodal output as soon as the number of retrieved items is below 15
(and therefore the reward will be positive), and presenting one item verbally.
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Table A.8 Example dialogue with the RL policy operating with real users: verbal presentation of
options

s1 RL system: Hi. this is iTalk your talkative music player. How may I help you
today?

SA system: greet (db:438)
User: i want to hear polly
SA user: add-->song-title(Polly)
state: filled [slot4], confirmed [], db:2

s2 RL system: There are 2 results matching your query all by the artist Nirvana
all from the genre Alternative all having the song title Polly, but
a different album. You have the following options: Nevermind and
MTV Unplugged. Which album would you like?

SA system: presentVerbal-->song-title,artist,genre
comment: systems fills unique slots.
User: mtv unplugged
SA user: add-->album(‘MTV unplugged’) (db:1)
state: filled [slot3, slot4], confirmed [song4],

db:1
s3 RL system: There is only one result matching your query. Please wait a few

moments. [. . . ] You will now hear Polly by Nirvana from the album
MTV unplugged. Are you happy with this option ?

SA system: presentVerbal-->song-title,artist,genre,album
User: yes
SA user: yes-answer
state: filled [slot1, slot2, slot3, slot4],

confirmed [slot1, slot2, slot3, slot4], db:1
reward: lengthPenalty : −60.6,complVal : 118, presentVal : 8.7× (4.33+

3.4)
finalReward: 124.6

user ratings taskEase:7, timing:7, mmPresent.:7 verbalPresent: 7 futureUse:6
Comments:

This example shows the RL policy interacting with real users. Two alternatives are presented
verbally.



Appendix B

Learned State-Action Mappings

The table in this section presents the learned state action mappings, and is to be read
as follows. The first two columns constitute the state space. The first column shows
the slots that have been filled and/or confirmed. The slots are:

slot 1: genre
slot 2: artist
slot 3: album
slot 4: song title

The second column is a represent possible numbers of database hits. Note that only
a the possible number of items returned from the database is constrained by the
structure of the task (i.e. how combinations of different slots values constrain the
search space).
The third column is the optimal action for that state. The “x”s in the second

column denote numbers of database hits that share the same optimal action (given
the set of filled and confirmed slots). Horizontal lines are drawn between sets of
states with different filled slots.
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Manchón P, Moos A, Rieser V, del Solar C, Weilhammer K (2006) Annotators
handbook. Deliverable 6.2, TALK Project



References 231

Bohus D (2007) Error awareness and recovery in task-oriented spoken dialog sys-
tems. PhD thesis, Computer Science Department, Carnegie Mellon University

Bohus D, Rudnicky A (2002) Integrating multiple knowledge sources for utterance-
level confidence annotation in the CMU Communicator spoken dialog system.
Tech. rep., Technical Report CS-190, Carnegie Mellon University

Bohus D, Rudnicky A (2003) RavenClaw: Dialog management using hierarchical
task decomposition and an expectation agenda. In: Proc. of the 8th European
Conference on Speech Communication and Technology (Eurospeech)

Bohus D, Rudnicky A (2005a) Constructing accurate beliefs in spoken dialog sys-
tems. In: Poc. of the IEEE workshop on Automatic Speech Recognition and Un-
derstanding (ASRU)

Bohus D, Rudnicky A (2005b) A principled approach for rejection threshold opti-
mization in spoken dialog systems. In: Proc. of the International Conference of
Spoken Language Processing (Interspeech/ICSLP)

Bohus D, Langner B, Raux A, Black AW, Eskenazi M, Rudnicky A (2006) On-
line supervised learning of non-understanding recovery policies. In: Proc. of the
IEEE/ACL workshop on Spoken Language Technology (SLT), Aruba,, pp 170–
173

Boidin C, Rieser V, van der Plas L, Lemon O, Chevelu J (2009) Predicting how
it sounds: Re-ranking alternative inputs to TTS using latent variables. In: Proc.
of Interspeech/ICSLP, Special Session on Machine Learning for Adaptivity in
Spoken Dialogue Systems

Bos J, Klein E, Lemon O, Oka T (2002) DIPPER: Description and formalisation
of an Information-State Update dialogue system architecture. In: Proc. of the 4th
SIGdial Workshop on Discourse and Dialogue

Bunt H (2007) Multifunctionality and multidimensional dialogue act annotation. In:
Communication - Action - Meaning, A Festschrift to Jens Allwood, Gothenburg
University Press, pp 237 – 259

Campbell M, Hoane AJ, Hsu FH (2002) Deep Blue. Artif Intell 134(1-2):57–83,
DOI http://dx.doi.org/10.1016/S0004-3702(01)00129-1

Cao Y, Nijholt A (2008) Modality planning for preventing tunnel vision in crisis
management. In: Proc. of the AISB Symp. on Multimodal Output Generation
(MOG)

Carletta J (1996) Assessing agreement on classification tasks: the kappa statistic.
Computational Linguistics 22(2):249–254

Carletta J, Isard A, Isard S, Kowtko JC, Doherty-Sneddon G, Anderson AH (1997)
The reliability of a dialogue structure coding scheme. Computational Linguistics
23(1):13–31

Carletta J, Evert S, Heid U, Kilgour J (2005) The NITE XML Toolkit: data model
and query. Language Resources and Evaluation Journal 39(42):313–334

Carpenter P, Jin C, Wilson D, Zhang R, Bohus D, Rudnicky AI (2001) Is this conver-
sation on track? In: Proc. of the European Conference on Speech Communication
and Technology (Eurospeech), Aalborg, Denmark, p 2121

Cheyer A, Martin DL (2001) The open agent architecture. Autonomous Agents and
Multi-Agent Systems 40(1/2):143–148



232 B Learned State-Action Mappings

Chickering D, Paek T (2007) Personalizing influence diagrams: Applying online
learning strategies to dialogue management. User Modeling and User-Adapted
Interaction 17(1-2):71–91

Chung G (2004a) Developing a flexible spoken dialog system using simulation. In:
Proc. of the Annual Meeting of the Association for Computational Linguistics
(ACL)

Chung G (2004b) Developing a flexible spoken dialog system using simulation. In:
Proc. of the Annual Meeting of the Association for Computational Linguistics
(ACL)

Clark H (1996) Using Language. Cambridge University Press
Clarkson P, Rosenfeld R (1997) Statistical Language Modeling Using the CMU-
Cambridge Toolkit. In: Proc. of ESCA Eurospeech

Cohen J (1992) A power primer. Psychological Bulletin 112(1):155–159
Cohen WW (1995) Fast effective rule induction. In: Proceedings of the 12th Inter-
national Conference on Machine Learning (ICML), Tahoe City, California, USA,
pp 115–123

Cohn DA, Atlas L, Ladner RE (1994) Improving generalization with Active Learn-
ing. Machine Learning 15(2):201–221

Craggs R, McGee-Wood M (2005) Evaluating discourse and dialogue coding
schemes. Computational Linguistics

Crook P, Lemon O (2010) Representing uncertainty about complex user goals in
statistical dialogue systems. In: Proceedings of SIGDIAL

Crook P, Lemon O (2011a) Lossless value directed compression of complex user
goal states for statistical spoken dialogue systems. In: Proceedings of Interspeech

Crook PA, Lemon O (2011b) Lossless Value Directed Compression of Complex
User Goal States for Statistical Spoken Dialogue Systems. In: Proceedings of
Interspeech
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Möller S, Smeele P, Boland H, Krebber J (2007) Evaluating spoken dialogue sys-
tems according to de-facto standards: A case study. Computer Speech & Lan-
guage 21(1):26 – 53

Moore RK, Morris A (1992) Experiences collecting genuine spoken enquiries using
woz techniques. In: Proc. 5th DARPAworkshop on Speech and Natural Language



References 241

Mutschler H, Steffens F, Korthauer A (2007) Final report on multimodal experi-
ments Part I: Evaluation of the SAMMIE system. Tech. rep., Deliverable 6.2,
TALK Project

Nakatsu C (2008) Learning contrastive connectives in sentence realization ranking.
In: Proc. of SIGdial Workshop on Discourse and Dialogue

Nakatsu C, White M (2006) Learning to say it well: Reranking realizations by pre-
dicted synthesis quality. In: Proc. of the 44th Annual Meeting of the Association
for Computational Linguistics (COLING/ACL)

Nass C, Barve S (2005) Wired for Speech: How Voice Activates and Advances the
Human-Computer Relationship. MIT Press

Oh AH, Rudnicky AI (2002) Stochastic natural language generation for spoken di-
alog systems. Computer Speech & Language 16(3/4):387—407

Okamoto M, Yang Y, Ishida T (2001) Wizard of Oz method for learning dialog
agents. Lecture Notes in Artificial Intelligence 2182:20–25

Osborne M, Baldridge J (2004) Ensemble-based Active Learning for parse selec-
tion. In: Proc. of the North American Meeting of the Association of Computa-
tional Linguistics (NAACL)

Oviatt S (2006) Human-centered design meets cognitive load theory: designing in-
terfaces that help people think. In: Proc. of the 14th annual ACM international
conference on Multimedia (MULTIMEDIA), ACM Press, New York, NY, USA

Oviatt S, Coulston R, Lunsford R (2004) When do we interact multimodally? Cog-
nitive load and multimodal communication patterns. In: Proceedings of the 6th
International Conference on Multimodal Interfaces (ICMI))

Paek T (2001) Empirical methods for evaluating dialog systems. In: Proc. ACL
Workshop on Evaluation Methodologies for Language and Dialogue Systems, pp
3–10

Paek T (2006) Reinforcement Learning for spoken dialogue systems: Comparing
strengths and weaknesses for practical deployment. In: Proc. Dialog-on-Dialog
Workshop, Interspeech, Pittsburgh, Pennsylvania, USA

Paek T (2007) Toward evaluation that leads to best practices: Reconciling dialogue
evaluation in research and industry. In: Proc. of the NAACL-HLT Workshop on
Bridging the Gap: Academic and Industrial Research in Dialog Technologies,
Rochester, New York, USA, pp 40–47

Paek T, Chickering D (2005) The Markov assumption in spoken dialogue manage-
ment. In: Proc. of the 6th SIGDIAL Workshop on Discourse and Dialogue

Paek T, Horvitz E (1999) Uncertainty, utility, and misunderstanding: A decision-
theoretic perspective on grounding in conversational systems. In: Proc. of the
AAAI Fall Symposium on Psychological Models of Communication in Collabo-
rative Systems

Paek T, Horvitz E (2000) Conversation as Action Under Uncertainty. In: Proc. of
the 16th Conference on Uncertainty in Artificial Intelligence

Paek T, Horvitz E (2003) On the utility of decision-theoretic hidden subdialog. In:
Proc. of the ISCA Workshop on Error Handling in Spoken Dialogue Systems

Paivio A (1990)Mental representations: A dual-coding approach. Oxford University
Press, New York



242 B Learned State-Action Mappings

Passonneau RJ, Epstein SL, Ligorio T, Gordon J (2011) Embedded wizardry. In:
Proceedings of the SIGDIAL 2011 Conference, Association for Computational
Linguistics, Portland, Oregon, pp 248–258, URL http://www.aclweb.
org/anthology/W/W11/W11-2027

Pieraccini R, Huerta J (2005) Where do we go from here? Research and commercial
spoken dialog systems. In: Proc. of the 6th SIGdial Workshop on Discourse and
Dialogue

Pieraccini R, Suendermann D, Dayanidhi K, Liscombe J (2009) Are we there yet?
research in commercial spoken dialog systems. In: Proceedings of TSD’09, pp
3–13

Pietquin O (2004) A framework for unsupervised learning of dialogue strategies.
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Salmen A (2002)Multimodale menüausgabe im fahrzeug (”multimodal menu-based
interaction in the vehicle”). PhD thesis, University of Regensburg

Schatzmann J (2008) Statistical user and error modelling for spoken dialogue sys-
tems. PhD thesis, Cambridge University Engineering Department

Schatzmann J, Georgila K, Young S (2005a) Quantitative evaluation of user simula-
tion techniques for spoken dialogue systems. In: Proc. of the 6th SIGdial Work-
shop on Discourse and Dialogue, Lisbon, Portugal, pp 45–54



246 B Learned State-Action Mappings

Schatzmann J, Stuttle M,Weilhammer K, Young S (2005b) Effects of the user model
on simulation-based learning of dialogue startegies. In: Proc. of the IEEE work-
shop on Automatic Speech Recognition and Understanding (ASRU)

Schatzmann J, Weilhammer K, Stuttle M, Young S (2006) A survey of statistical
user simulation techniques for reinforcement-learning of dialogue management
strategies. Knowledge Engineering Review 21(2):97–126, DOI http://dx.doi.org/
10.1017/S0269888906000944

Schatzmann J, Thomson B, Weilhammer K, Ye H, Young S (2007a) Agenda-
based user simulation for bootstrapping a POMDP dialogue system. In: Proc.
of the North American Meeting of the Association of Computational Linguistics
(NAACL), Rochester, New York, USA, pp 149–152

Schatzmann J, Thomson B, Young S (2007b) Error simulation for training statistical
dialogue systems. In: Proc. of the IEEE workshop on Automatic Speech Recog-
nition and Understanding (ASRU), Kyoto, Japan, pp 526 –531

Schatzmann J, Thomson B, Young S (2007c) Statistical user simulation with a hid-
den agenda. In: Proc. of the 8th SIGdial Workshop on Discourse and Dialogue,
Antwerp, Belgium, pp 273–282

Scheffler K, Young S (2001) Corpus-based dialogue simulation for automatic strat-
egy learning and evaluation. In: Proc. NAACL Workshop on Adaptation in Dia-
logue Systems, Pittsburgh, Pennsylvania, USA, pp 64–70

Scheffler K, Young SJ (2002) Automatic learning of dialogue strategy using dia-
logue simulation and Reinforcement Learning. In: Proc. of the Human Language
Technology Conference (HLT), pp 12–18

Schlangen D, Fernandez R (2007) Speaking through a noisy channel: Experiments
on inducing clarification behaviour in human-human dialogue. In: Proc. of Inter-
national Conference of Spoken Language Processing (Interspeech/ICSLP)

Schlangen D, Skantze G (2011) A general, abstract model of incremental dialogue
processing. Dialogue and Discourse

Schulz S, Donker H (2006) An user-centered development of an intuitive dialog
control for speech-controlled music selection in cars. In: Proc. of the International
Conference of Spoken Language Processing (Interspeech/ICSLP)

Searle J (1969) Speech Acts. Cambridge University Press
Seung S, Opper M, Sompolinsky H (1992) Query by committee. Computational
Learning Theory pp 287–294

Shapiro D (2001) Value-driven agents. PhD thesis, Stanford University, Department
of Management Science and Engineering

Shapiro D, Langley P (2002) Separating skills from preference: Using learning to
program by reward. In: Proc. of the 19th International Conference on Machine
Learning (ICML), Sydney, Australia, pp 570–577

Shneiderman B (1997) Software Psychology: Human Factors in Computer and In-
formation Systems, 3rd edn. Addison-Wesley

Singh S, Litman D, Kearns M, Walker M (2002) Optimizing dialogue manage-
ment with Reinforcement Learning: Experiments with the NJFun system. JAIR
16:105–133



References 247

Skantze G (2003) Exploring human error handling strategies: implications for spo-
ken dialogue systems. In: Proc. of the ISCA Tutorial and Research Workshop on
Error Handling in Spoken Dialogue Systems

Skantze G (2005) Exploring human error recovery strategies: Implications for spo-
ken dialogue systems. Speech Communication 43(3):325–341

Skantze G (2007a) Error handling in spoken dialogue systems. managing uncer-
tainty, grounding and miscommunication. PhD thesis, Speech Communication,
KTH Royal Institute of Technology, Sweden

Skantze G (2007b) Making grounding decisions: Data-driven estimation of dialogue
costs and confidence thresholds. In: Proc. of the 8th SIGdial Workshop on Dis-
course and Dialogue, pp 206–210

Skantze G, Hjalmarsson A (2010) Towards incremental speech generation in dia-
logue systems. In: Proc./ of the Annual SIGdial Meeting on Discourse and Dia-
logue

Skantze G, Schlangen D (2009) Incremental dialogue processing in a micro-
domain. In: Proceedings of the 12th Conference of the European Chapter of
the Association for Computational Linguistics (EACL), Association for Com-
putational Linguistics, Stroudsburg, PA, USA, EACL ’09, pp 745–753, URL
http://dl.acm.org/citation.cfm?id=1609067.1609150

Sneed H, Merey A (1985) Automated software quality assurance. IEEE Transac-
tions on Software Engineering 11(9)

Spitters M, Boni MD, Zavrel J, Bonnema R (2007) Learning to compose effective
strategies from a library of dialogue components. In: Proc. of the 45th Annual
Meeting of the Association for Computational Lingusitics (ACL)

Standage T (2002) The Turk: The Life and Times of the Famous Eighteenth-Century
Chess-Playing Machine. New York: Walker

Steedman M, Petrick R (2007) Planning dialog actions. In: Proc. of the 8th SIGdial
Workshop on Discourse and Dialogue

Stenchikova S, Stent A (2007) Measuring adaptation between dialogs. In: Proc. of
the 8th SIGdial Workshop on Discourse and Dialogue

Stent A, Prasad R, Walker M (2004a) Trainable sentence planning for complex in-
formation presentation in spoken dialog systems. In: Proc. of the Annual Meeting
of the Association for Computational Linguistics (ACL)

Stent A, Prasad R, Walker M (2004b) Trainable sentence planning for complex in-
formation presentation in spoken dialog systems. In: Association for Computa-
tional Linguistics

Stent A, Bangalore S, Fabbrizio GD (2008) Where do the words come from? learn-
ing models for word choice and ordering from spoken dialog corpora. In: Proc.
of the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP)

Stuttle MN, Williams JD, Young S (2004) A framework for dialogue data collec-
tion with a simulated ASR channel. In: Proc. of the International Conference of
Spoken Language Processing (Interspeech/ICSLP), Jeju, South Korea

Sutton R, Barto A (1998) Reinforcement Learning. MIT Press



248 B Learned State-Action Mappings

Sweller J (1988) Cognitive load during problem solving: Effects on learning. Cog-
nitive Science 12:257–285

Taylor P, Black A, Caley R (1998) The architecture of the Festival speech synthesis.
In: Proc. of the 3rd International Workshop on Speech Synthesis

Tesauro G (1995) Temporal difference learning and TD-gammon. Commun ACM
38(3):58–68

Tetreault J, Litman D (2006) Using Reinforcement Learning to build a better model
of dialogue state. In: Proc. of the 11th Conference of the European Association
for Computational Linguistics (EACL)

Tetreault JR, Bohus D, Litman D (2007) Estimating the reliability of MDP policies:
A confidence interval approach. In: Proc. of the North American Meeting of the
Association of Computational Linguistics (NAACL)

Teufel S, van Halteren H (2004) Evaluating information content by factoid analysis:
human annotation and stability. In: Proc. of the Conference on Empirical Methods
in Natural Language Processing (EMNLP)

Thomson B, Young S (2010) Bayesian update of dialogue state: A POMDP frame-
work for spoken dialogue systems. Computer Speech and Language 24(4):562–
588

Thomson B, Schatzmann J, Weilhammer K, Ye H, Young S (2007) Training a real-
world POMDP-based dialog system. In: Proc. of the HLT/NAACL Workshop
“Bridging the Gap: Academic and Industrial Research in Dialog Technologies”

Thomson B, Schatzmann J, Young S (2008) Bayesian update of dialogue state for
robust dialogue systems. In: Proc. of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP)

Toney D (2007) Evolutionary Reinforcement Learning of spoken dialogue strate-
gies. PhD thesis, School of Informatics, University of Edinburgh

Toney D, Moore JD, Lemon O (2006) Developing conversational interfaces with
XCS. In: Proc. of the 9th International Workshop on Learning Classifier Systems
(IWLCS)

Traum D, Swartout W, Gratch J, Marsella S (2008) A virtual human dialogue model
for non-team interaction. Recent Trends in Discourse and Dialogue

Türck U (2001) The technical proceedings in SMARTCOM data collection: a case
study. In: Proc. of the European Conference on Speech Communication and Tech-
nology (Eurospeech)

Ueno S, Lane IR, Kawahara T (2004) Example-based training of dialogue planning
incorporating user and situation models. In: Proc. of the International Conference
of Spoken Language Processing (ICSLP)

Varges S, Weng F, Pon-Barry H (2006) Interactive Question Answering and con-
straint relaxation in spoken dialogue systems. In: Proc. of the 7th SIGdial Work-
shop on Discourse and Dialogue

Wada F, Iwata M, Tano S (2001) Information presentation based on estimation of
human multimodal cognitive load. IEEE pp 2924–2929

Walker M (2000) An application for Reinforcement Learning to dialogue strategiey
selection in a spoken dialogue system for email. Artificial Intelligence Research
12:387–416



References 249

Walker M (2005) Can we talk? Methods for evaluation and training of spoken dia-
logue system. Language Resources and Evaluation 39(1):65–75

Walker M, Passoneau R (2001) DATE: A dialogue act tagging scheme for evalua-
tion. In: Proc. of the Human Language Technology Conference (HLT)

Walker M, Litman D, Kamm C, Abella A (1997) PARADISE: a general framework
for evaluating spoken dialogue agents. In: Proc. of the 35th Annual General Meet-
ing of the Association for Computational Linguistics (ACL), Madrid, Spain, pp
271–280

Walker M, Fromer J, Narayanan S (1998a) Learning optimal dialogue strategies:
A case study of a spoken dialogue agent for email. In: Proc. of the 36th Annual
Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics (ACL/COLING), Montreal, Quebec,
Canada, pp 780–78

Walker M, Litman D, Kamm C, Abella A (1998b) Evaluating spoken dialogue
agents with PARADISE: Two case studies. Computer Speech and Language
12(3):1345–1351

Walker M, Kamm C, Litman D (2000) Towards developing general models of us-
ability with PARADISE. Natural Language Engineering 6(3):363–377

Walker M, Passonneau R, Boland J (2001a) Quantitative and qualitative evalua-
tion of DARPA Communicator spoken dialogue systems. In: Proc. of the Annual
Meeting of the Association for Computational Linguistics (ACL)

Walker M, Rambow O, Rogati M (2001b) SPoT: A Trainable Sentence Planner . In:
Proc. of the 2nd North American Meeting of the Association of Computational
Linguistics (NAACL)

Walker M, Passonneau R, Aberdeen J, Boland J, Bratt E, Garofolo J, Hirschman
L, Le A, Lee S, Narayanan S, Papineni K, Pellom B, Polifroni J, Potamianos A,
Prabhu P, Rudnicky A, Seneff GSS, Stallard D, Whittaker S (2002a) Cross-Site
Evaluation in DARPA Communicator: The June 2000 Data Collection. Submitted
to Computer Speech and Language

Walker M, Rudnicky A, Prasad R, Aberdeen J, Bratt E, Garofolo J, Hastie H, Le A,
Pellom B, Potamianos A, Passonneau R, Roukos S, Sanders G, Seneff S, Stallard
D (2002b) DARPA Communicator: Cross-system results for the 2001 evaluation.
In: Proc. of the 7th International Conference on Spoken Language Processing
(Interspeech/ICSLP)

Walker M, Whittaker S, Stent A, Maloor P, Moore J, Johnston M, Vasireddy G
(2004a) Generation and evaluation of user tailored responses in multimodal dia-
logue. Cognitive Science 28(5):811–840

Walker M, Whittaker S, Stent A, Maloor P, Moore J, Johnston M, Vasireddy G
(2004b) User tailored generation in the MATCH multimodal dialogue system.
Cognitive Science 28:81–840

Walker M, Stent A, Mairesse F, Prasad R (2007) Individual and domain adapta-
tion in sentence planning for dialogue. Journal of Artificial Intelligence Research
(JAIR) 30:413–456

Walker MA (1993) Informational redundancy and resource bounds in dialogue. PhD
thesis, University of Pennsylvania



250 B Learned State-Action Mappings

Wang H, Hamerich S, Hennecke M, Schubert V (2005) Speech-controlled media
file selection on embedded systems. In: Proc. of the 6th SIGdial Workshop on
Discourse and Dialogue

Watanabe T, Araki M, Doshita S (1998) Evaluating dialogue strategies under com-
munication errors using computer-to-computer simulation. IEICE transactions on
information and systems E81-D(9):1025–1033

Watkins C, Dayan P (1992) Q-learning. Machine Learning 8:279–292
Webb N, Webber B (eds) (2008) Journal of Natural Language Engineering: Special
Issue on Interactive Question Answering, Cambridge University Press

Weber C, Elshaw M, Mayer NM (eds) (2008) Reinforcement Learning, Theory and
Applications. I-Tech Education and Publishing

Weilhammer K, Stuttle M, Young S (2006) Bootstrapping language models for di-
alogue systems. In: Proc. of the International Conference of Spoken Language
Processing (Interspeech/ICSLP)

Weinschenk S, Barker DT (2000) Designing Effective Speech Interfaces. Wiley
Whittaker S, Walker M, Moore J, Whittaker S, Walker M, Moore J (2002) Fish or
fowl: A Wizard of Oz evaluation of dialogue strategies in the restaurant domain.
In: Proc. of the International Conference on Language Resources and Evaluation
(LREC)

Wickens C (2002) Multiple resources and performance prediction. Theoretical Is-
sues in Ergonomic Science 3(2):159–177

Williams J (2006) Partially Observable Markov Decision Processes for Spoken Di-
alogue Management. PhD thesis, Cambridge University Engineering Department

Williams J (2007) A method for evaluating and comparing user simulations: The
Cramer-von Mises Divergence. In: Proc. of the IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), Kyoto, Japan, pp 508–513

Williams J (2008) The best of both worlds: Unifying conventional dialog systems
and POMDPs. In: Proceedings of Interspeech

Williams J, Young S (2004a) Characterizing task-oriented dialog using a simulated
ASR channel. In: Proc. of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP)

Williams J, Young S (2004b) Using Wizard-of-Oz simulations to bootstrap
Reinforcement-Learning-based dialog management systems. In: Proc. of the 4th
SIGDIAL Workshop on Discourse and Dialogue, Sapporo, Japan, pp 135–139

Williams J, Young S (2007a) Partially Observable Markov Decision Processes for
spoken dialog systems. Computer Speech and Language 21(2):231–422

Williams JD (2011) An empirical evaluation of a statistical dialog system in public
use. In: Proc./ of the Annual SIGdial Meeting on Discourse and Dialogue

Williams JD, Young S (2007b) Scaling POMDPs for spoken dialog management.
IEEE Trans on Audio, Speech, and Language Processing 15(7):2116–2129

Winterboer A, Hu J, Moore JD, Nass C (2007) The influence of user tailoring and
cognitive load on user performance in spoken dialogue systems. In: Proc. of the
10th International Conference of Spoken Language Processing (Interspeech/IC-
SLP)



References 251

Witten IH, Frank E (2005) Data Mining: Practical Machine Learning Tools and
Techniques (2nd Edition). Morgan Kaufmann, San Francisco

Wittgenstein L (1953) Philosophical Investigations. Blackwell Publishing
Xu W, Rudnicky A (2000) Task-based dialog management using an agenda. In:
Proc. of the ANLP/NAACL Workshop on Conversational Systems

Young S (1995) Large vocabulary continious speech recognition: A review. In: Proc.
of ASRU

Young S (2000) Probabilistic methods in spoken dialogue systems. Philosophical
Trans Royal Society (Series A) 358(1769):1389–1402

Young S (2002) The statistical approach to the design of spoken dialogue systems.
Tech. rep., Tech Report CUED/F-INFENG/TR.433, Cambridge University Engi-
neering Department

Young S (2006) Using POMDPs for dialog management. In: Proc. of the IEEE/ACL
Workshop on Spoken Language Technology (SLT)

Young S, Schatzmann J, Weilhammer K, Ye H (2007) The Hidden Information State
Approach to Dialog Management. In: ICASSP 2007

Young S, Gasic M, Keizer S, Mairesse F, Schatzmann J, Thomson B, Yu K (2009)
The Hidden Information State Model: a practical framework for POMDP-based
spoken dialogue management. Computer Speech and Language 24(2):150–174

Zue V (2007) On organic interfaces. In: Proc. of the International Conference of
Spoken Language Processing (Interspeech/ICSLP)



     

Dr Verena Rieser is a Lecturer in Computer Science at Heriot-Watt University,
Edinburgh. She previously worked at Edinburgh University in the Schools of Infor-
matics and GeoSciences, performing research in data-driven statistical methods for
multimodal interfaces, as well as for modelling impacts of environmental change
for sustainable development. She received her PhD (with distinction) from Saarland
University in 2008, winning the Eduard-Martin prize.

About the Authors

Professor Oliver Lemon leads the Interaction Lab in the School of Mathemati-
cal and Computer Sciences (MACS) at Heriot-Watt University, Edinburgh. He previ-
ously worked at the School of Informatics, University of Edinburgh, and at Stanford
University. His main expertise is in the area of machine learning methods for intel-
ligent and adaptive multimodal interfaces, including work on Speech Recognition,
Spoken Language Understanding, Dialogue Management, and Natural Language
Generation. He applies this work in new interfaces for mobile search, virtual char-
acters, Technology Enhanced Learning, and Human-Robot Interaction, in a variety
of international research projects.

Please see www.macs.hw.ac.uk/InteractionLab.

2 35


	Reinforcement Learning for Adaptive Dialogue Systems
	Preface
	Acknowledgements
	Contents
	Acronyms
	Chapter 1 Introduction
	Part I Fundamental Concepts
	Part II Policy Learning in Simulated Environments
	Part III Evaluation and Application
	Appendix A Example Dialogues
	Appendix B Learned State-Action Mappings
	About the Authors



