DISCRETE MATHEMATICS AND ITS APPLICATIONS
Series Editor KENNETH H. ROSEN

HAND

BOO0OK OF

GRAPH THEORY

EDITED BY

JONATHAN L. GROSS
JAY YELLEN

CRC PRESS

Boca Raton London New York Washington, D.C.



SCRETE
MATHEMATICS
I R

AND

[TS APPLICATIONS

Series Editor

Kenneth H. Rosen, Ph.D.

AT&T Laboratories
Middletown, New Jersey

Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs
Charalambos A. Charalambides, Enumerative Combinatorics

Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses,
Constructions, and Existence

Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders

Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry
Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications

Jonathan L. Gross and Jay Yellen, Handbook of Graph Theory

Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information
Theory and Data Compression

Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability:
Experiments with a Symbolic Algebra Environment

David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and
Nonorientable Surfaces

Richard E. Klima, Ernest Stitzinger, and Neil P. Sigmon, Abstract Algebra Applications
with Maple

Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science
and Engineering

Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration
and Search

Charles C. Lindner and Christopher A. Roagers, Design Theory

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied
Cryptography

Richard A. Mollin, Algebraic Number Theory

Richard A. Mollin, Fundamental Number Theory with Applications
Richard A. Mollin, An Introduction to Crytography

Richard A. Mollin, Quadratics



Continued Titles

Richard A. Mollin, RSA and Public-Key Cryptography
Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics

Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary
Approach

Douglas R. Stinson, Cryptography: Theory and Practice, Second Edition

Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and
Coding Design
Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography



Library of Congress Cataloging-in-Publication Data

Handbook of graph theory / editors-in-chief, Jonathan L. Gross, Jay Yellen.
p. cm. — (Discrete mathematics and its applications)
Includes bibliographical references and index.
ISBN 1-58488-090-2 (alk. paper)
1. Graph theory —Handbooks, manuals, etc. I. Gross, Jonathan L. II. Yellen, Jay.
QA166.H36 2003
511'.5—dc22 2003065270

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific
clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is
ISBN 1-58488-090-2/04/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

No claim to original U.S. Government works
International Standard Book Number 1-58488-090-2
Library of Congress Card Number 2003065270
Printed in the United States of America 1 2 3 45 6 7 8 90
Printed on acid-free paper



PREFACE

Over the past forty years, graph theory has been one of the most rapidly growing
areas of mathematics. Since 1960, more than 10,000 different authors have published
papers classified as graph theory by Math Reviews, and for the past decade, over 1000
graph theory papers have been published each year.

This Handbook is intended to provide as comprehensive a view of graph theory
as 1s feasible in a single volume. The 60 contributors to this volume collectively repre-
sent perhaps as much as 90% or more of the content areas in graph theory, including
algorithmic and optimization approaches of graph theory as well as “pure” graph theory.

Format

In order to achieve this kind of comprehensiveness, we challenged our contributors
to restrict their expository prose to a bare minimum by adhering to the ready-reference
style of this CRC series, which emphasizes quick accessibility for the non-expert. We
thank the contributors for responding so well to this challenge.

The 11 chapters of the Handbook are organized into 54 sections. Within each
section, several major topics are presented. For each topic, there are lists of the essential
definitions and facts, accompanied by examples, tables, remarks, and in some cases,
conjectures and open problems. At the end of each section is a bibliography of references
tied directly to that section. In many cases, these bibliographies are several pages long,
providing extensive guides to the research literature and pointers to monographs.

In order that sections be reasonably self-contained, we encouraged contributors to
include some definitions that may have appeared in earlier sections. Each contributor
was asked to include a glossary with his or her section. These section glossaries were
blended by the editors into 11 chapter glossaries.

Terminology and Notations

Graph theory has attracted mathematicians and scientists from diverse disciplines
and, accordingly, is blessed (and cursed) with a proliferation of terminology and nota-
tions. Since the Handbook objective is to survey topics for persons whose expertise is
elsewhere, either on other topics or outside of graph theory, we asked our contributors
to tilt toward the general usage in the mathematical community, rather than staying
strictly within the idioms of their specialities. But to understand the graph theory lit-
erature, it helps to accept the legacy of history. As editors, we tried to strike a balance
between preserving the notation and terminology that evolved from each area’s rich
history and our desire create a cohesive, uniform body of material.

Some uniformity of usage came easily. In general, the word graph is used inclusively
to refer to graphs with directed edges and/or to graphs with multi-edges and self-loops.
In most sections, G denotes a graph and V and F denote its vertex- and edge-sets,
respectively.

However, some words are used differently by different graph theory communities.
For instance, to an algebraic graph theorist, a Cayley graph is simple, connected, and
undirected, and to a topological graph theorist, it may be non-connected, possibly
directed, and have multi-edges and/or self-loops. To some graph theorists, a cligue is
a complete subgraph, maximal under set inclusion, and to others maximality is not
required.



Consistency in notation was also problematic. In graph coloring, the Greek letter
x denotes the chromatic number, and to an algebraic topologist, it means the euler
characteristic.

Notes regarding terminology and notation were added to make explicit such differ-
ences and thereby improve cross-chapter compatibility.

Underscoring the difficulty of achieving uniformity is the co-editors’ disagreement
between themselves on when to place periods and commas inside and/or outside quo-
tation marks. Yellen’s concession on this issue comes with the expectation of yet-to-be-
determined concessions granted to him by Gross on their next project.

Feedback

To see updates and to provide feedback and errata reports, visit the website
http://www.graphtheory.com, and then follow the links to the webpage for this Hand-
book.
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Chapter 1

INTRODUCTION TO GRAPHS

1.1 FUNDAMENTALS of GRAPH THEORY

Jonathan L. Gross, Columbia Unwersity
Jay Yellen, Rollins College

1.2 FAMILIES of GRAPHS and DIGRAPHS
Lowell W. Beineke, Purdue University at Fort Wayne

1.3 HISTORY of GRAPH THEORY
Robin J. Wilson, The Open University, UK

GLOSSARY



1.1 FUNDAMENTALS OF GRAPH THEORY

Jonathan L. Gross, Columbia Unwersity
Jay Yellen, Rollins College

1.1.1 Graphs and Digraphs
1.1.2 Degree and Distance
1.1.3 Basic Structural Concepts
1.1.4 Trees

References

Introduction

Configurations of nodes and connections occur in a great diversity of applications.
They may represent physical networks, such as electrical circuits, roadways, or organic
molecules. They are also used in representing less tangible interactions as might occur in
ecosystems, sociological relationships, databases, or in the flow of control in a computer
program.

1.1.1 Graphs and Digraphs

Any mathematical object involving points and connections between them may be
called a graph. If all the connections are unidirectional, it is called a digraph. Our highly
inclusive definition in this initial section of the Handbook permits fluent discussion of
almost any particular modification of the basic model that has ever been called a graph.

Basic Terminology

DEFINITIONS

D1: A graph G = (V| E) consists of two sets V and F.
e The elements of V are called vertices (or nodes).
e The elements of E are called edges.

e Each edge has a set of one or two vertices associated to it, which are called its
endpoints. An edge is said to join its endpoints.

NOTATION: The subscripted notations Vi and Fg (or V(@) and E(G)) are used for the
vertex- and edge-sets when G is not the only graph under consideration.

D2: If vertex v is an endpoint of edge e, then v is said to be Incident on e, and e is
incident on v.

D3: A vertex u is adjacent to vertex v if they are joined by an edge.

D4: Two adjacent vertices may be called neighbors.



D5: Adjacent edges are two edges that have an endpoint in common.
D6: A proper edge is an edge that joins two distinct vertices.
D7: A multi-edgeis a collection of two or more edges having identical endpoints.

D8: A simple adjacency between vertices occurs when there is exactly one edge
between them.

D9: The edge-multiplicity between a pair of vertices u and v is the number of edges
between them.

D10: A self-loop is an edge that joins a single endpoint to itself.

TERMINOLOGY: An alternative word for “self-loop” is “loop”. This can be used in
contexts in which “loop” has no other meanings.

TERMINOLOGY: In computer science, the word “graph” is commonly used either to mean
a graph as defined here; or to mean a computer-represented data structure whose value
is a graph.

EXAMPLE

E1l: A line drawing of a graph G = (V, E) is shown in Figure 1.1.1. Tt has vertex-set
V = {u,v,w,z} and edge-set F = {a,b,c,d, e, f}. The set {a,b} is a multi-edge with
endpoints u and v, and edge ¢ 1s a self-loop.

Figure 1.1.1 A graph.

REMARKS

R1: A graph is realized in a plane or in 3-space as a set of points, representing the
vertices, and a set of curved or straight line segments, representing the edges. The
curvature or length of such a line segment is irrelevant to the meaning. However, if a
direction 1s indicated, that is significant.

R2: Occasionally, a graph is parametrized so that each edge is regarded as the home-
omorphic image of the real interval [0, 1] (except that for a self-loop, the endpoints 0
and 1 have the same image).

Simple Graphs

Most of theoretical graph theory is concerned with simple graphs. This is partly because
many problems regarding general graphs can be reduced to problems about simple
graphs.

DEFINITIONS

D11: A simple graph is a graph that has no self-loops or multi-edges.

D12: A trivial graph is a graph consisting of one vertex and no edges.



D13: A null graph is a graph whose vertex- and edge-sets are empty.

Edge Notation for Simple Adjacencies and for Multi-edges

NOTATION: An edge joining vertices u and v of a graph may be denoted by the juxta-
position uw if it is the only such edge. Occasionally, the ordered pair (u,v) is used in
this situation, instead of uv. To avoid ambiguities when multi-edges exist, or whenever
else desired, the edges of a general graph may be given their own names, as in Figure
1.1.1 above.

EXAMPLE

E2: The simple graph shown in Figure 1.1.2 has edge-set E = {uv, vw, ve, wa}.
w

X

Figure 1.1.2 A simple graph.

General Graphs

Many applications require non-simple graphs as models. Moreover, some non-simple
graphs serve an essential role in theoretical constructions, especially in constructing
graph drawings (simple and non-simple) on surfaces (see Chapter 7).

TERMINOLOGY NOTE: Although the term “graph” means that self-loops and multi-edges
are allowed, sometimes, for emphasis, the term general graph is used.

DEFINITIONS

D14: A loopless graphis a graph that has no self-loops. (It might have multi-edges.)
Sometimes a loopless graph is referred to as a multigraph.

D15: The dipole D, is a loopless graph with two vertices and n edges joining them.

D16: The bouquet B, is a graph with one vertex and n self-loops.

EXAMPLES

E3: The loopless graph in Figure 1.1.3 depicts the benzene molecule CgHg.
H H

\cic/
VN,

N/

Figure 1.1.3 Graph model for a benzene ring.



E4: The dipole D3 is shown in Figure 1.1.4.

AS—d
Figure 1.1.4 The loopless graph Ds.

E5: Two graphs with self-loops are shown in Figure 1.1.5.

Can®

Figure 1.1.5 The dumbbell graph and the bouquet Bj.

Attributes

Allowing graphs to have additional attributes beyond vertices and edges enables them
to serve as mathematical models for a wide variety of applications. Two of the most
common additional edge attributes, both described in great detail later in the Handbook,
are edge direction (e.g., Chapters 3 and 11) and edge weight (e.g., Chapters 4 and 11).
Another common attribute (for edges or vertices) is color. Graph coloring is discussed
in Chapter 5.

DEFINITIONS

D17: A vertex attribute is a function from the vertex-set to some set of possible
attribute values.

D18: An edge attribute is a function from the edge-set to some set of possible
attribute values.

Digraphs

An edge between two vertices creates a connection in two opposite senses at once. As-
signing a direction makes one of these senses forward and the other backward. Viewing
direction as an edge attribute is partly motivated by its impact on computer imple-
mentations of graph algorithms. Moreover, from a mathematical perspective, regarding
directed graphs as augmented graphs makes it easier to view certain results that tend
to be established separately for graphs and for digraphs as a single result that applies
to both. The attribute of edge direction is developed extensively in Chapter 3 and
elsewhere in this Handbook.

DEFINITIONS

D19: A directed edge (or arc) is an edge e, one of whose endpoints is designated
as the tail, and whose other endpoint is designated as the head. They are denoted
head(e) and tail(e), respectively.

TERMINOLOGY: A directed edge is said to be directed from its tail and directed to
its head. (The tail and the head of a directed self-loop are the same vertex.)



NOTATION: In a line drawing, the arrow points toward the head.

D20: A multi-arcis a set of two or more arcs having the same tail and same head.
D21: A digraph (or directed graph) is a graph each of whose edges is directed.
D22: A simple digraph is a digraph with no self-loops and no multi-arcs.

D23: A mixed graph (or partially directed graph) is a graph that has both
undirected and directed edges. In a mixed graph, using the unmodified term “edge”
avoids specifying whether the edge is directed or undirected.

D24: The underlying graph of a directed or partially directed graph G is the graph
that results from removing all the designations of head and tal from the directed edges
of G (i.e., deleting all the edge-directions).

Ordered-Pair Representation of Arcs

NOTATION: In a simple digraph, an arc from vertex u to vertex v is commonly denoted
(u,v) (or sometimes uv). When multi-arcs are possible, using distinct names is often
necessary.

COMPUTATIONAL NOTE: (A caution to software designers) From the perspective of
object-oriented software design, the ordered-pair representation of arcs in a digraph
treats digraphs as a different class of objects from graphs. This could seriously under-
mine software reuse. Large portions of computer code might have to be rewritten in
order to adapt an algorithm that was originally designed for a digraph to work on an
undirected graph.

The ordered-pair representation could also prove awkward in implementing algorithms
for which the graphs or digraphs are dynamic structures (i.e., they change during the
algorithm). Whenever the direction on a particular edge must be reversed, the associ-
ated ordered pair has to be deleted and replaced by its reverse. Even worse, if a directed
edge is to become undirected, then an ordered pair must be replaced with an unordered
pair. Similarly, the undirected and directed edges of a partially directed graph would
require two different types of objects.

EXAMPLES

E6: The digraph on the left in Figure 1.1.6 has the undirected graph on the right as
its underlying graph. The digraph has two multi-arcs: {a,b} and {f, h}.

Figure 1.1.6 A digraph and its underlying graph.



E7: A simple digraph can have one arc in each direction between two vertices.

O

Figure 1.1.7 A simple digraph whose underlying graph is not simple.

Vertex-Coloring

When the vertex-set of a graph is partitioned, the cells of the partition are commonly
assigned distinct colors. This is developed at length in Chapter 5.

DEFINITIONS

D25: A vertex-coloring of a graph G is a function from its vertex-set Vi vertices to
a set C' whose elements are called colors.

D26: A vertex-coloring is proper if two adjacent vertices are always assigned different
colors.

D27: A graph is c-colorable if it has a proper vertex-coloring with ¢ or fewer colors.

D28: The (vertex) chromatic number of a graph GG, denoted x(G), is the smallest
number ¢ of colors such that G is c-colorable.

REMARK

R3: Definitions of edge-coloring, c-edge-colorable, and edge-chromatic num-
ber, denoted x’'(G), are obtained by simply replacing the word “vertices” in the defini-
tions above with the word “edges”.

EXAMPLE

E8: The graph G in Figure 1.1.8 is shown with a 3-coloring of its vertex-set. Since
it is not 2-colorable, its chromatic number 1s 3. Also, the graph is easily seen to be
3-edge-colorable and clearly is not 2-edge-colorable; hence, x'(G) = 3.

3

1 2
Figure 1.1.8 A graph G with x(G) = x/(G) = 3.

1.1.2 Degree and Distance

Two of the most fundamental notions in graph theory are those of the degree of a
vertex and the distance between two vertices. Distance is developed fully in §9.1.



Degree

DEFINITIONS

D29: The degree (or valence) of a vertex v in a graph G, denoted deg(v), is the
number of proper edges incident on v plus twice the number of self-loops. (For simple
graphs, of course, the degree is simply the number of neighbors.)

TERMINOLOGY: Applications of graph theory to physical chemistry motivate the use of
the term valence as an alternative to degree. Thus, a vertex of degree d is also called
a d-valent vertex.

D30: The degree sequence of a graph is the sequence formed by arranging the vertex
degrees into non-decreasing order.

D31: The indegree of a vertex v in a digraph is the number of arcs directed to v;
the outdegree of vertex v is the number of arcs directed from v. Each self-loop at v
counts one toward the indegree of v and one toward the outdegree.

D32: An isolated vertex in a graph is a vertex of degree 0.

EXAMPLES

E9: Figure 1.1.9 shows a graph and its degree sequence.

<0,1,1,4,6,6,>
Xyzwuyv

Figure 1.1.9 A graph and its degree sequence.

E10: Figure 1.1.10 shows the indegrees and outdegrees of a digraph.

vertex | u v w
indegree 3 4 1
outdegree 3 2

Figure 1.1.10 The indegrees and outdegrees of the vertices of a digraph.

FACTS
For proofs of the following elementary facts, see [GrYe99, §1.1] or other basic texts.

F1: (Euler) The sum of the degrees of the vertices of a graph is twice the number of
edges.

F2: In every graph, the number of vertices having odd degree is an even number.

F3: A non-trivial simple graph G must have at least one pair of vertices whose degrees
are equal.



F4: In a digraph, the sum of the indegrees and the sum of the outdegrees both equal
the number of edges.

F5: The degree sequence of a graph is a finite, non-decreasing sequence of nonnegative
integers whose sum is even.

F6: Conversely, any non-decreasing, nonnegative sequence of integers whose sum is
even is the degree sequence of some graph, but not necessarily of a simple graph.

Walks, Trails, and Paths

DEFINITIONS

D33: A walk in a graph G is an alternating sequence of vertices and edges,
W= Vo, €1,V1,€1,...,€n,Un

such that for j =1,...,n, the vertices v;_; and v; are the endpoints of the edge ¢;. If,
moreover, the edge e; is directed from v;_1 to v;, then W is a directed walk.

e In a simple graph, a walk may be represented simply by listing a sequence of
vertices: W = wp,v1,...,v, such that for j = 1,..., n, the vertices v;_; and v; are
adjacent.

o The initial vertexis vg.
e The final vertex (or terminal vertex) is vy,.

e An internal vertex is a vertex that is neither initial nor final.
D34: The length of a walk is the number of edges (counting repetitions).

D35: A walk i1s closed if the initial vertex is also the final vertex; otherwise, it is
open.

D36: A trailin a graph is a walk such that no edge occurs more than once.

D37: An eulerian trail in a graph G is a walk that contains each edge of G exactly
once. (See §4.2.)

D38: A pathin a graph is a trail such that no internal vertex is repeated.
D39: A cycle is a closed path of length at least 1.

D40: A trivial walk, trail, or path consists of a single vertex and no edges.

EXAMPLE

E11: In the graph shown in Figure 1.1.11, the vertex sequence {(u, v, #, v, z) represents
a walk that is not a trail, and the vertex sequence {u, v, z,y, v, z) represents a trail that
is not a path.

oc
o*N

x y
Figure 1.1.11



Distance and Connectivity

D41: The distance between two vertices in a graph is the length of the shortest
walk between them.

D42: The directed distance from a vertex u to a vertex v in a digraph is the length
of the shortest directed walk from u to v.

D43: A graph is connected if between every pair of vertices there i1s a walk.
D44: A digraph is (weakly) connected if its underlying graph is connected.

D45: A digraph is strongly connected if from each vertex to each other vertex there
is a directed walk.

D46: The eccentricity of a vertex v in a connected graph is its distance to a vertex
farthest from v.

D47: The radius of a connected graph is its minimum eccentricity.

D48: The diameter of a connected graph is its maximum eccentricity.

EXAMPLE

E12: The digraph shown on the left in Figure 1.1.12 1s strongly connected; the digraph
on the right is connected but not strongly connected.

Figure 1.1.12 A strongly connected digraph and a weakly connected one.

1.1.3 Basic Structural Concepts

We are concerned with the possible equivalence of two graphs, with the symmetries
of an individual graph, and with the possible appearance of one graph within another
graph.

Isomorphism

In concept, two graphs are isomorphic if they are structurally identical, which means
that they correspond in all structural details. A formal vertex-to-vertex and edge-to-
edge correspondence is called an isomorphism.

DEFINITIONS

D49: An isomorphism between two simple graphs G and H is a vertex bijection
¢ : Vg — Vi such that for u,v € Vi, the vertex u 1s adjacent to the vertex v in graph
G if and only if ¢(u) is adjacent to ¢(v) in graph H. Implicitly, there is also an edge
bijection Fg¢ — Epg such that uv — ¢(u)¢(v).



D50: An isomorphism between two general graphs G and H is a pair of bijec-
tions ¢v : Vo — Vg and ¢ : Fg — Fg such that for every pair of vertices u,v € Vg,
the set of edges in E¢g joining u and v is mapped bijectively to the set of edges in Ey
joining the vertices ¢(u) and ¢(v).

D51: We say that G and H are isomorphic graphs and we write G = H if there is
an isomorphism G — H.

D52: An adjacency matrix for a simple graph GG whose vertices are explicitly ordered
v1, Vs, ..., U, 18 the n X n matrix Ag such that

.. 1 if v; and v; are adjacent
Aali = ¢ J
6 (i) 0 otherwise

D53: A property associated with all graphs is an isomorphism invariant if it has
the same value (or is the same) for any two isomorphic graphs.

EXAMPLES

E13: The two graphs in Figure 1.1.13 are isomorphic under the mapping

UL F> V] U2 V] UIF>» Vg Ug > V3

Figure 1.1.13 Two isomorphic graphs.

If one flips vertex uy of graph G downward to the bottom and rotates the figure a
quarter-turn counterclockwise, then the resulting image of graph G “looks just like”
graph H. Their adjacency matrices are:

U U Uz Ug V1 U2 U3z U4

w [0 1 1 0 vy {0 1 0 1
w10 11 w10 11
Aa = us |1 1 0 1 Am = vs| 0O 1 0 1
wy NO 1T 10 vwu\1 1 1 0

We observe that transposing rows ug and w4 and also transposing columns us and uq
transforms the matrix Ag into matrix Ag.



E14: The two graphs in Figure 1.1.14 are isomorphic, even if the drawings look quite
different. The vertex-labels indicate an isomorphism.

1

5
dor <>

Figure 1.1.14 Two isomorphic graphs that look quite different.

E15: Figure 1.1.15 shows two non-isomorphic graphs with identical degree sequences.
(Tt is easy to show that connectedness is an isomorphism invariant.)

P O

Figure 1.1.15 Two graphs whose degree sequences are both (2,2,2,3 3 3 3).

FACTS

F7: Considering all possible bijections of the vertex-sets of two n-vertex graphs re-
quires O(n!) steps.

F8: Although some fast heuristics are known (see §2.2), there is no known polynomial-
time algorithm for testing graph isomorphism.

F9: The number of vertices, the number of edges, and the degree sequence are all
isomorphism invariants. On the other hand, having the same values for all three of these
invariants does not imply that two graphs are 1somorphic, as illustrated by Example 15.

F10: FEach row sum (and column sum) in an adjacency matrix equals the degree of
the corresponding vertex.

Automorphisms

The notion of symmetry in a graph is formalized in terms of isomorphisms of the graph
to itself.

DEFINITIONS

D54: A graph automorphism is an isomorphism of the graph to itself.

D55: The orbit of a vertex u of a graph (i is the set of all vertices v € Viz such that
there is an automorphism ¢ such that ¢(u) = v.

D56: The orbit of an edge d of a graph G is the set of all edges e € Fg such that
there is an automorphism ¢ such that ¢(d) = e.

D57: A graph is vertex-transitive if all the vertices are in the same orbit.

D58: A graph is edge-transitive if all the edges are in the same orbit.



FACTS
F11: The vertex orbits partition the vertex-set of a graph.

F12: The edge orbits partition the edge-set of a graph.

EXAMPLE

E16: For the graph on the left in Figure 1.1.16, the vertex orbits are {uj,us} and
{us,us}, and the edge orbits are {ujusg, ujus, usua, ususa} and {usus}. The graph on
the right is vertex-transitive and edge-transitive.

Figure 1.1.16

Subgraphs

DEFINITIONS

D59: A subgraph of a graph G is a graph H such that Vg C Vi and EFyg C Eg.
(Usually, any graph isomorphic to a subgraph of G is also said to be a subgraph of G.)

D60: In a graph G, the induced subgraph on a set of vertices W = {wy,..., w},
denoted G(W), has W as its vertex-set, and it contains every edge of (¢ whose endpoints
are in W. That is,

V(G(W)) =W and E(G(W)) = {e € E(G) | the endpoints of edge e are in W}

D61: A subgraph H of a graph G is a spanning subgraphif V(H) = V(G). (Also,
if H is isomorphic to a spanning subgraph of G, we may say that H spans G.)

D62: A component of a graph ( is a connected subgraph H such that no subgraph
of (G that properly contains H is connected. In other words, a component is a mazimal
connected subgraph.

EXAMPLE

E17: For the graph G in Figure 1.1.17, H; is a spanning subgraph but not an induced
subgraph, and H is an induced subgraph but not a spanning subgraph.

w w w

X X X
G H, H

Figure 1.1.17 A spanning subgraph H; and an induced subgraph H,.



FACTS

F13: Let ¢ : G — H be a graph isomorphism, and let J be a subgraph of G. Then
the restriction of ¢ to the subgraph J is an isomorphism onto its image ¢(.J).

F14: If a graph J is a subgraph of a graph G but not a subgraph of a graph H, then
G 2 H. This is a corollary of Fact 13.

Graph Operations

The operations of adding and deleting vertices and edges of a graph are regarded as
primary operations, because they are the foundation for other operations, which may
be called secondary operations.

DEFINITIONS

D63: The operation of adding the vertex u to a graph G = (V, F), such that u g V|
yields a new graph with vertex set V U {u} and edge set E, which is denoted G U {u}.
(The new vertex u has no neighbors.)

D64: The operation of deleting the vertex u from a graph G = (V| E) not only
removes the vertex u but also removes every edge of which u is an endpoint. The
resulting graph is denoted G — w.

D65: The operation of adding an edge d (or uv) to a graph G = (V, E) joining the
vertices u and v yields a new graph with vertex set V' and edge set EU{d} (or EU{uv}),
which is denoted G U {d} (or G U {uv}).

D66: The operation of deleting an edge d (or uv) from a graph GG = (V, F) removes
only that edge. The resulting graph is denoted G — d (or G — uv).

D67: A cut-vertex (or cutpoint) is a vertex whose removal increases the number of
components.

D68: A cut-edge is an edge whose removal increases the number of components.

D69: The edge-complement of a simple graph G is the graph G (altgnatively de-
noted (G¢) that has the same vertex set as (7, such that wv is an edge of G if and only
if it is not an edge of G.

D70: The join (or suspension) of two graphs G and H is denoted by G+ H.

VG+H)=V(G)UV(H)
E(G+H)=FEG)UEH)U{w |ueV(G)and v € V(H)}

D71: The cartesian product (or product) of two graphs G and H is denoted by
Gx H.

V(G x H)y=V(G) x V(H)

E(Gx HY=E(G)x V(H)UV(G) x E(H)
The endpoints of the edge (d,v) € E(G) x V(H) are the vertices (x,v) and (y,v),
where x and y are the endpoints of edge d € F((G). The endpoints of the edge (u,e) €

V(G) x E(H) are the vertices (u, s) and (u,t), where s and ¢ are the endpoints of edge
e € E(H).



D72: The graph union of two graphs GG and H is the graph G'U H whose vertex-set
and edge-set are the disjoint unions, respectively, of the vertex-sets and the edge-sets of

G and H.

D73: The m-fold self~union mG is the iterated digjoint union GU- - -UG of m copies
of the graph G.

EXAMPLES

E18: Figure 1.1.18 illustrates the operation of edge-complementation.

L

Figure 1.1.18 Edge-complementation.

E19: Figure 1.1.19 illustrates the join operation.

S

O
G H G+H
Figure 1.1.19 Join operation.

E20: Figure 1.1.20 illustrates the product operation.

.

GxH
Figure 1.1.20 Cartesian product.

E21: In Figure 1.1.19 above, the vertex in the upper left corner of the drawing of the
graph G is a cut-vertex, and the edge from that vertex to the center vertex is a cut-edge.

1.1.4 Trees

Trees are important to the structural understanding of graphs and to the algorith-
mics of information processing, and they play a central role in the design and analysis
of connected networks. A standard characterization theorem for trees appears in §1.2.



Acyclic Graphs

DEFINITIONS
D74: A treeis a connected graph with no cycles (i.e., acyclic).
D75: A forest is a (not necessarily connected) graph with no cycles.

D76: A central vertex in a graph is a vertex whose eccentricity equals the radius of
the graph.

D77: The center of a graph is the subgraph induced on its set of central vertices.

TERMINOLOGY NOTE: Classically (see §1.3), the words center and bicenter were used
to mean the set of central vertices of a tree, when there was only one vertex or two
vertices, respectively. (See Fact 15 below.)

EXAMPLE

E22: The graph on the left in Figure 1.1.21 is a tree; the other two graphs are not.

M e

tree non-tree non-tree

Figure 1.1.21 A tree and two non-trees.

FACT

F15: The center of a tree is isomorphic to Ky or to Ka. (See §1.3 for information
about the historical context of this fact.)

Trees as Subgraphs

Several different problem-solving algorithms involve growing a tree within a graph, one
edge and one vertex at a time. All these techniques are refinements and extensions of
the same basic tree-growing scheme given in this section.

DEFINITIONS

TERMINOLOGY: For a given tree T in a graph G, the edges and vertices of T" are called
tree edges and tree vertices, and the edges and vertices of GG that are not in 7" are
called non-tree edges and non-tree vertices.

D78: A frontier edge for a given tree 1" in a graph is a non-tree edge with one
endpoint in 7" and one endpoint not in 7.

D79: A spanning tree of a graph G is a spanning subgraph of GG that is a tree.

EXAMPLE

E23: For the graph in Figure 1.1.22, the tree edges of a tree T are drawn in bold. The
tree vertices are black, and the non-tree vertices are white. The frontier edges for T,



appearing as dashed lines, are edges a, b, ¢, and d. The plain edges are the non-tree
edges that are not frontier edges for 7.
_a _
N Th
“ N\
\
\e

N
a

Figure 1.1.22 A tree with frontier edges a, b, ¢, and d.

Observe that when any one of the frontier edges in Figure 1.1.22 is added to the tree T,
the resulting subgraph is still a tree. This property holds in general, and applying it
iteratively forms the core of the tree-growing scheme of this section.

FACT

F16: Let T beatreein agraph (G, and let e be a frontier edge for T'. Then the subgraph
of G formed by adding edge e to tree T' is a tree. (Formally, adding frontier edge e to
a tree involves adding a new vertex to current tree 7', i.e., its non-tree endpoint.)

Basic Tree-Growing Algorithm
The basic tree-growing scheme uses vertex labels to keep track of the order in which

vertices are added to the tree.

TERMINOLOGY: A standard (0-based) vertex-labeling of an n-vertex graph is a
one-to-one assignment of the integers 0,1,...,7 — 1 to the vertices of that graph.

Algorithm 1.1.1: Basic Tree-Growing with Vertex Labels

Input: a graph G and a starting vertex v € V.
Output: a spanning tree T of Cg(v) and a standard vertex-labeling of Cg(v).

Initialize tree T as vertex v.
Write label 0 on vertex v.
Initialize label counter ¢ := 1
While tree T' does not yet span component Cg(v)
Choose a frontier edge e for tree T'.
Let w be the endpoint of edge e that lies outside of T'.
Add edge e and vertex w to tree T
Write label ¢ on vertex w.
1i=1+1
Return tree T' and vertex-labeling of Cg(v).

REMARK

R4: [Uniqueness of the Output Tree from Tree-Growing)

Without a rule for choosing a frontier edge (including a way to break ties), the output
tree from Algorithm 1.1.1 would not be unique (in which case, many computer scientists
would hesitate to use the term algorithm). The uniqueness of the output depends on
some default priority based on the ordering of the edges (and vertices) in the data



structure chosen to implement the algorithm. The default priority is used whenever no
other rule is given and as a way of breaking ties left from other rules.

FACTS

F17: If an execution of the basic tree-growing algorithm starts at vertex v of a graph
G, then the subgraph consisting of the labeled vertices and tree edges is a spanning tree
of the component Cg(v).

F18: A graph is connected if and only if the basic tree-growing algorithm labels all its
vertices.

Prioritizing the Edge Selection

The edge-prioritized tree-growing algorithm below is a refinement of basic tree-growing.

Algorithm 1.1.2: Edge-Prioritized Tree-Growing

Input: a connected graph ) a starting vertex v € Vi,
and a rule for prioritizing frontier edges.
Output: a spanning tree T and a standard vertex-labeling of V.

Initialize tree T as vertex v.
Initialize the set of frontier edges for tree 7" as empty.
Write label 0 on vertex v.
Initialize label counter ¢ := 1
While tree T does not yet span GG
Update the set of frontier edges for T
Let e be the frontier edge for T" of highest priority.
Let w be the unlabeled endpoint of edge e.
Add edge e (and vertex w) to tree T
Write label ¢ on vertex w.
1i=1+1
Return tree 7" with its vertex-labeling.

FACT

F19: Different rules for prioritizing the frontier edges give rise to different spanning
trees: the depth-first search tree (last-in-first-out priority), the breadth-first search tree
(first-in-first-out priority), the Prim tree (least-cost priority), and the Dijkstra tree
(closest-to-root priority). (See §10.1.)
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Introduction

Whenever a property of graphs is defined, a family of graphs — those with that
property — results. Consequently, we focus on basic families. Along with the definitions
of families, we include characterizations where appropriate. [ReWi98] offers a detailed
catalog of the members of various graph and digraph families.

1.2.1 Building Blocks

Some simple graphs have as few edges or as many as possible for a given number
of vertices. Some multigraphs and general graphs have as few vertices as possible for a
given number of edges.

DEFINITIONS

D1: A simple graph is a complete graph if every pair of vertices is joined by an
edge. The complete graph with n vertices i1s denoted K.

D2: The empty graph K, is defined to be the graph with n vertices and no edges.
D3: The null graph Ky is the graph with no vertices or edges.

D4: The trivial graph K, is the graph with one vertex and no edges.

D5: The bouquet B, is the general graph with one vertex and n self-loops.

D6: The dipole D,, is the multigraph with two vertices and n edges.

D7: A simple digraph is a complete digraph if between every pair of vertices there

is an arc in each direction. The complete digraph with n vertices is denoted K’n

D8: The path graph P, is the n-vertex graph with n — 1 edges, all on a single open
path. (Quite commonly elsewhere, the subscript of the notation P, denotes the number

of edges.)
D9: The cycle graph (), is the n-vertex graph with n edges, all on a single cycle.

REMARKS

R1: Although the empty graph may seem to some a “pointless” concept, it is the
default initial value in computer representations of graph-valued variables.



R2: Whereas a “path” and a “cycle” are alternating sequences of vertices and edges,
a “path graph” and a “cycle graph” are kinds of graphs.

EXAMPLES

E1l:

Figure 1.2.1 A complete graph and a complete digraph.

E2:

Figure 1.2.2 A path graph and a cycle graph.

1.2.2 Symmetry

Graphs with various kinds of symmetry are of particular interest.

Local Symmetry: Regularity

Regularity of a graph is an elementary form of local symmetry.

DEFINITIONS

D10: A graph is regular if every vertex is of the same degree.

e It is k-regular if every vertex is of degree k.

D11: A k-factor of a graph G is a k-regular spanning subgraph.

FACT

F1: All vertea-transitive graphs (see §1.1) are regular.

EXAMPLES
E3: For k=0,1,2,3, there is exactly one k-regular simple graph with 4 vertices.

E4: The only regular simple graphs with 5 vertices are the empty graph K5 (degree 0),
the cycle graph Cs (degree 2), and the complete graph K5 (degree 4).

E5: [ReWid8] There are exactly two 3-regular simple graphs with 6 vertices.

Figure 1.2.3 The two 3-regular simple graphs with 6 vertices.



E6: The disjoint union of the complete graphs K3 and K4 is a 2-regular simple 7-
vertex graph that is not vertex-transitive. Its edge-complement is a 4-regular connected
simple 7-vertex graph that i1s not vertex-transitive.

E7: Of the five 3-regular connected simple graphs with 8 vertices, two are vertex-

P

Figure 1.2.4 The five 3-regular connected simple graphs with 8 vertices.

Global Symmetry: Vertex-Transitivity

Often vertex-transitivity arises from algebra or geometry. See §6.2 for further discussion
of Cayley graphs and circulant graphs.

DEFINITIONS

D12: The Cayley graph C(A,X) for a group A with generating set X has the
elements of A4 as vertices and has an edge directed from a to ax for every a € A and
z € X. We assume that vertices are labeled by elements of A and that edges are labeled
by elements of X.

e We note that an involution x gives rise to a pair of oppositely directed edges between
a and azx, for each a € A; sometimes we identify each such pair of directed edges
to a single undirected edge labeled .

D13: A circulant graph Circ(n; X) is defined for a positive integer n and a subset

X of the integers 1,2,...,|%], called the connections.

e The vertex set is Z,, the integers modulo n.

e There is an edge joining two vertices j and k if and only if the difference |j — k| is
in the set X. A circulant graph is a special case of a Cayley graph; an involution
in the connection set gives rise to a single edge.

D14: The 1-skeleton (often in graph theory, the skeleton) of a k-complex K is the
graph consisting of the vertices and the edges of K.

D15: The d-hypercube graph 4 (or d-cube graph) is the 1-skeleton of the d-
dimensional hypercube {(z1,...,2,) | 0 < #; < 1}. This graph has 2¢ vertices and is
regular of degree d.

D16: The d-octahedral graph Oy is defined recursively:

O, = Ky L fn=1
T 041+ Ky ifn>2



D17: The Petersen graph is the 10-vertex 3-regular graph depicted in Figure 1.2.5.

Figure 1.2.5 The Petersen graph.

EXAMPLES

E8: The n-simplex is the convex hull of n 4+ 1 affinely independent points in n-
dimensional space. Its 1-skeleton is isomorphic to the complete graph K.

E9: A Platonic graph is the 1-skeleton of one of the five Platonic solids: the tetra-
hedron, the cube, the octahedron, the dodecahedron, and the icosahedron.

E10: The Petersen graph is vertex-transitive, since there is an automorphism that
swaps the pentagram (i.e. the star) with the pentagon. It is not a Cayley graph of
either of the two groups of order 10, i.e., of the cyclic group Z;, or of the dihedral group
D, and thus, not a Cayley graph.

E11: The octahedral graph Oy is isomorphic to dK».

FACTS

F2: [Hypercube Characterization Theorem] The graph whose vertices are the binary
sequences of length d in which two vertices are adjacent if their sequences differ in
exactly one place is isomorphic to Q4.

F3: We can construct the d-dimensional hypercube @4 recursively, using the cartesian
product operation:

Ou = K, ifd=0
7 Quor x Ko ifd>1

1.2.3 Integer-Valued Invariants

Some of the most useful graph properties are provided by integer-valued invari-
ants of isomorphism type. Such invariants partition all graphs into an infinite list of
subclasses. Often the subclasses with low invariant values are of special interest.

Cycle Rank

The connected graphs of cycle rank 0 are of great special interest, since they are the
trees (see §1.1).



DEFINITION

D18: The cycle rank of a connected graph G = (V, F) is the number |E|—|V|+1. (See
§6.4 for an interpretation of cycle rank as the rank of a vector space.) More generally, for
a graph G with ¢(G) components, the cycle rank is the number |E(G)| — [V (G)] + ¢(G).

EXAMPLE

E12: The connected graphs of cycle rank 0 are the trees.

R h/

n=1 n=2 n=3 n=4 n=5
Figure 1.2.6 The trees with up to five vertices.

FACTS

F4: [Tree Characterization Theorem] The following statements are equivalent for a
graph T' with n vertices (e.g., see [GrYe99, Theorem 3.1.11]):

e T is atree (that is, GG is connected and has no cycles).
e T is connected and has n — 1 edges.
e T has no cycles and has n — 1 edges.
e Any two vertices of T' are connected by exactly one path.
F5: [Inductive (Recursive) Definition of Trees] Let T be the family of graphs defined
as follows:
(i) KL eT.
(it) If T'€ T and T’ can be obtained by adding a new vertex and joining it to a vertex
of T', then T" € T.

Then 7T is the family of all trees.
(Several more classes of recursively defined graphs are presented in §2.4.)

F6: The cycle rank of a graph is the sum of the cycle ranks of its components.

F7: A forest is a graph such that every component is a tree.

Chromatic Number and k-Partite Graphs

In a proper coloring of a graph, no two vertices with the same color are adjacent, and
thus, every edges joins vertices in different color classes. The graphs with a proper
2-coloring are of special interest. Graph coloring is covered extensively in §5.1 and §5.2.

DEFINITIONS

D19: A simple graph or multigraph is bipartiteif its vertices can be partitioned into
two sets (called partite sets) in such a way, that no edge joins two vertices in the same
set. (For technical reasons, this includes the graph K in this definition.) If  and s are
the orders of the partite sets, then the graph is said to be an r-by-s bipartite graph.



D20: A complete bipartite graph is a simple bipartite graph in which each vertex
in one partite set is adjacent to all the vertices in the other partite set. If the two partite
sets have cardinalities » and s, then this graph is denoted K, ;.

D21: A graph is k-partiteif its vertices can be partitioned into k sets (called partite
sets) in such a way that no edge joins two vertices in the same set.

D22: A complete k-partite graph is a simple k-partite graph in which two vertices
are adjacent if and only if they are in different partite sets. All such graphs are called
complete multipartite graphs. If the k partite sets have orders ny, ns, ..., ng, then
the graph is denoted Ky, n, . a,, and if each partite set has order r, then K-
EXAMPLES

E13: Every tree is bipartite.

E14: Every cycle with an even number of vertices is bipartite, and no cycle with an
odd number is bipartite.

E15: The complete d-partite graph K g2y is isomorphic to the d-octahedral graph Og.

Figure 1.2.7 The complete d-partite graphs Ky, for d=1,... 4.

FACTS

F8: [Bipartite Graph Characterization Theorem] A graph is bipartite if and only if
the length of each of its cycles is even (e.g., see [GrYe99, Theorem 1.5.3]).

F9: A graph is k-colorable if and only if it is k-partite.
F10: For k > 3, the problem of deciding whether a graph is k-partite is NP-complete.

k-Connectivity and k-Edge-Connectivity

Graphs can be categorized according to their connectivity and their edge-connectivity.
There are analogues for strong connectedness in digraphs. See §4.1 and §4.7 for extensive
coverage of connectivity.

DEFINITIONS

D23: The (vertex-)connectivity of a graph G, denoted &,(G), is the minimum
number of vertices whose removal from G leaves a non-connected or trivial graph.

D24: The edge-connectivity of a nontrivial graph (G, denoted k. (G) is the minimum
number of edges whose removal from G results on a non-connected graph.



NOTATION: The subscripted “G” is often suppressed when the graph G is understood.
Elsewhere, the notation x and A are used instead of k, and k., respectively.

D25: A graph G with connectivity &, > k > 1 is called k-connected. Equivalently,
(7 1s k-connected if the removal of k — 1 or fewer vertices leaves neither a non-connected
graph nor a trivial one.

D26: A graph GG with edge-connectivity k. > k > 1 is called k-edge-connected.
That is, the removal of £ — 1 or fewer edges from a k-edge-connected graph results in a
connected graph.

D27: A digraph is strongly k-connected (or k-strong) if the result of removing any
set of fewer than k vertices is strongly connected and nontrivial.

D28: A digraph is strongly k-arc-connected (or k-arc-strong) if the result of
removing any set of fewer than k arcs is strongly connected and nontrivial.

Minimum Genus

Graphs can be categorized according to their topological properties.

DEFINITIONS

D29: The minimum genus (or simply the genus) of a connected graph G is the
smallest number ¢ such that G can be drawn on the orientable surface Sy (see §7.1)
without any edge-crossings.

D30: A graph of genus 0 is planar.

1.2.4 Criterion Qualification

A graph family is also specified as the set of all graphs or digraphs that match a
stated criterion, e.g., traversability and various forms of minimality and maximality.

DEFINITIONS

D31: A graph is eulerian if it has a closed walk that contains every edge exactly
once. (See §1.3 for the history of eulerian graphs and §4.2 for an extensive discussion.)

D32: A graph is hamiltonian if it has a spanning cycle. (See §1.3 for the history of
hamiltonian graphs and §4.5 for an extensive discussion.)

D33: A k-chromatic graph is critically k-chromatic if its chromatic number would
decrease if any edge were removed. (See §5.1.)

D34: A k-connected graph is critically k-connected if its connectivity would de-
crease if any vertex were removed. (See §4.1.)

D35: A k-edge-connected graph is critically k-edge-connectedif its edge-connectiv-
ity would decrease if any edge were removed. (See §4.1.)

D36: The line graph L(G) of a graph G has the edges of GG as its vertices; two vertices
of L(G) are adjacent if the edges in G to which they correspond have a common vertex.
Also, a graph H 1is said to be a line graph if there exists a graph G such that H is
isomorphic to L(G).



D37: A tournamentis a digraph in which there is exactly one arc between each pair

of vertices. (See §3.3.)

EXAMPLE
E16: G: L(G):

Figure 1.2.8 A graph and its line graph.
FACTS

F11: [Line Graph Characterization] The following statements are equivalent:
e (i is a line graph.

e [Kr43] The edges of G can be partitioned into complete subgraphs in such a way
that no vertex is in more than two.

e [Be70] None of the nine graphs in Figure 1.2.9 is an induced subgraph of G.

Figure 1.2.9 The nine forbidden induced subgraphs.
F12: A strongly connected tournament contains a directed spanning cycle.

EXAMPLE

B A GP A

n=1 n=2 n=3

n=4

Figure 1.2.10 All tournaments with one to four vertices.
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Introduction

Although the first mention of a graph was not until 1878, graph-theoretical ideas
can be traced back to 1735 when Leonhard Euler (1707-83) presented his solution of
the Konigsberg bridges problem. This chapter summarizes some important strands in
the development of graph theory since that time. Further information can be found in

[BiLIWi98] or [Wi99].

1.3.1 Traversability

The origins of graph theory can be traced back to Euler’s work on the Konigsberg
bridges problem (1735), which subsequently led to the concept of an eulerian graph.
The study of cycles on polyhedra by the Revd. Thomas Penyngton Kirkman (1806-95)
and Sir William Rowan Hamilton (1805-65) led to the concept of a hamiltonian graph.

The Kénigsberg Bridges Problem

The Konigsberg bridges problem, pictured in Figure 1.3.1, asks whether there is a con-
tinuous walk that crosses each of the seven bridges of Konigsberg exactly once — and if
so, whether a closed walk can be found. See §4.2 for more extensive discussion of issues
concerning eulerian graphs.

Figure 1.3.1 The seven bridges of Konigsberg.



FACTS [BiLIWi98, Chapter 1]

F1: On 26 August 1735 Leonhard Euler presented a paper on “The solution of a prob-
lem relating to the geometry of position” to the Academy of Sciences of St. Petersburg,
Russia, proving that there is no such continuous walk across the seven bridges.

F2: 1In 1736, Euler communicated his solution to several other mathematicians, out-
lining his views on the nature of the problem and on its situation in the geometry of
position.

F3: FEuler [Eu:1736] sent his solution of the problem to the Commentarii Academii
Scientiarum Imperialis Petropolitanae under the title “Solutio problematis ad geome-
triam ad geometriam situs pertinentis”. Although dated 1736, it did not appear until
1741, and it was later republished in the new edition of the Commentariiin 1752.

F4: Euler’s paper is divided into 21 sections, of which nine are on the Konigsberg
bridges problem, and the remainder are concerned with general arrangements of bridges
and land areas.

F5: Euler did not draw a graph in order to solve the problem, but he reformulated
the problem as one of trying to find a sequence of eight letters A, B, C, or D (the land
areas) such that the pairs AB and AC are adjacent twice (corresponding to the two
bridges between A and B and between A and C), and the pairs AD, BD, and CD are
adjacent just once. He showed by a counting argument that no such sequence exists,
thereby proving that the Konigsberg bridges problem has no solution.

F6: In discussing the general problem, Euler observed that the number of bridges
written next to the letters A, B, C, etc. together add up to twice the number of bridges.
This 1s the first appearance of what some graph-theorists now call the “handshaking
lemma” | that the sum of the vertex-degrees in a graph is equal to twice the number of
edges.

F7: Euler’s main conclusions for the general situation were as follows:

e If there are more than two areas to which an odd number of bridges lead, then such
a journey is impossible.

e If the number of bridges is odd for exactly two areas, then the journey is possible
if it starts in either of these two areas.

e If, finally, there are no areas to which an odd number of bridges lead, then the
required journey can be accomplished starting from any area.

These results correspond to the conditions under which a graph has an eulerian, or
semi-eulerian, trail.

F8: Euler noted the converse result, that if the above conditions are satisfied, then a
route 1s possible, and gave a heuristic reason why this should be so, but did not prove it.
A valid demonstration did not appear until a related result was proved by C. Hierholzer

[Hi:1873] in 1873.

Diagram-Tracing Puzzles

A related area of study was that of diagram-tracing puzzles, where one is required to
draw a given diagram with the fewest possible number of connected strokes. Such
puzzles can be traced back many hundreds of years — for example, there are some early
African examples.



FACTS [BiLIWi98, Chapter 1]

F9: In 1809 L. Poinsot [Po:1809] wrote a memoir on polygons and polyhedra in which
he posed the following problem:

Given some points situated at random in space, it 1s required to arrange a
single flexible thread uniting them two by two in all possible ways, so that the
two ends of the thread join up and the total length is equal to the sum of all
the mutual distances.

Poinsot noted that a solution is possible only when the number of points is odd, and
gave a method for finding such an arrangement for each possible value. In modern
terminology, the question is concerned with eulerian trails in complete graphs of odd
order.

F10: Other diagram-tracing puzzles were posed and solved by T. Clausen [Cl:1844]
and J. B. Listing [Li:1847]. The latter appeared in the book Vorstudien zur Topologie,
the first place that the word “topology” appeared in print.

F11: In 1849, O. Terquem asked for the number of ways of laying out a complete
ring of dominoes. This is essentially the problem of determining the number of eulerian
tours in the complete graph K7, and was solved by M. Reiss [Re:1871-3] and later by
G. Tarry.

F12: The connection between the Konigsberg bridges problem and diagram-tracing
puzzles was not recognized until the end of the 19th century. It was pointed out by
W. W. Rouse Ball [Ro:1892] in Mathematical Recreations and Problems. Rouse Ball
seems to have been the first to use the graph in Figure 1.3.2 to solve the problem.

Figure 1.3.2 The graph of the Konigsberg bridges problem.

Hamiltonian Graphs

A type of graph problem that superficially resembles the eulerian problem is that of
finding a cycle that passes just once through each vertex of a given graph. Because of
Hamilton’s influence, such graphs are now called hamiltonian graphs (see §4.5), instead
of more justly being named after Kirkman, who considered the more general problem
prior to Hamilton’s consideration of the dodecahedron, as discussed below.

FACTS [BiLIWi98, Chapter 2]

F13: An early example of such a problem is the knight’s tour problem, of finding a
succession of knight’s moves on a chessboard, visiting each of the 64 squares just once
and returning to the starting point. This problem can be dated back many hundreds



of years, and systematic solutions were given by Euler [Eu:1759], A.-T. Vandermonde
[Va:1771] and others.

F14: 1In 1855 Kirkman [Ki:1855] wrote a paper investigating those polyhedra for which
one can find a cycle passing through all the vertices just once. He proved that every
polyhedron with even-sided faces and an odd number of vertices has no such cycle, and
gave as an example the polyhedron obtained by “cutting in two the cell of a bee” (see

Figure 1.3.3).

Figure 1.3.3 Kirkman’s “cell of a bee” example.

F15: Arising from his work on non-commutative algebra, Hamilton considered cycles
passing through all the vertices of a dodecahedron. He subsequently invented a game,
called the icosian game (see Figure 1.3.4), in which the player was challenged to find
such cycles on a solid dodecahedron, satisfying certain extra conditions.

R

Figure 1.3.4 Hamilton’s icosian game.
F16: In 1884, P. G. Tait asserted that every 3-valent polyhedron has a hamiltonian

cycle. This assertion was subsequently proven false by W. T. Tutte [Tud6] in 1946 (see
Figure 1.3.5).

Figure 1.3.5 Tutte’s 3-valent non-hamiltonian polyhedron.

F17: Saufficient conditions for a graph to be hamiltonian were later obtained by G. A.
Dirac [Di52], O. Ore [Or60], J. A. Bondy and V. Chvétal in 1976, and others.



F18: Hamiltonian digraphs have also been investigated, by A. Ghouila-Houri (1960),
H. Meyniel (1973), and others.

1.3.2 Trees

The concept of a tree, a connected graph without cycles, appeared implicitly in
the work of Gustav Kirchhoff (1824-87), who employed graph-theoretical ideas in the
calculation of currents in electrical networks. Later, trees were used by Arthur Cayley
(1821-95), James Joseph Sylvester (1806-97), Georg Pdlya (1887-1985), and others, in

the solution of problems involving the enumeration of certain chemical molecules.

Counting Trees

Enumeration techniques involving trees first arose in connection with a problem in the
differential calculus, but they soon came to be fundamental tools in the counting of
chemical molecules, as well as providing a fascinating topic of interest in their own
right. Enumeration of various kinds of graphs is discussed in §6.3.

FACTS [BiLIWi98, Chapter 3] [PoRe87]

F19: While working on a problem inspired by some work of Sylvester on “differential
transformation and the reversion of serieses”, Cayley [Ca:1857] was led to the enumer-
ation of rooted trees.

F20: Cayley’s method was to take a rooted tree and remove its root, thereby obtaining
a number of smaller rooted trees (see Figure 1.3.6).

root

Figure 1.3.6 Splitting a rooted tree.

Letting A,, be the number of rooted trees with n branches, Cayley proved that the
generating function

14+ Ajz + Asz? + Asz® + ...
is equal to the product
(1—z) b (1 =a?)~ 4 (1 =237 42 .
Using this equality, he was able to calculate the numbers A,, one at a time.

F21: Around 1870, Sylvester and C. Jordan independently defined the center/bicenter
and the centroid/bicentroid of a tree.

F22: 1In 1874, Cayley [Ca:1874] found a method for solving the more difficult problem
of counting unrooted trees. This method, which he applied to chemical molecules,
consisted essentially of starting at the center or centroid of the tree or molecule and
working outwards.



F23: In 1889, Cayley [Ca:1889] presented his n"~? formula for the number of labeled
trees with n vertices. He explained why the formula holds when n = 6, but he did
not give a proof in general. The first correct proof was given by H. Priifer [Pr18]: his
method was to establish a one-to-one correspondence between such labeled trees and
sequences of length n — 2 formed from the numbers 1,2, ... n.

F24: In a fundamental paper of 1937, Pdlya [P637] combined the classical idea of
a generating function with that of a permutation to obtain a powerful theorem that
enabled him to enumerate certain types of configuration under the action of a group
of symmetries. Some of Pdlya’s work was anticipated by J. H. Redfield [Re27], but
Redfield’s paper was obscure and had no influence on the development of the subject.

F25: Later results on the enumeration of trees were derived by R. Otter [Ot48] and
others. The field of graphical enumeration (see [HaPa73]) was subsequently further
developed by F. Harary [Hab5], R. C. Read [Re63], and others.

Chemical Trees

By 1850 1t was already known that chemical elements combine in fixed proportions.
Chemical formulas such as C'H4 (methane) and CoH5OH (ethanol) were known, but it
was not understood how the elements combine to form such substances. Around this
time, chemical ideas of valency began to be established, particularly when Alexander
Crum Brown presented his graphic formulae for representing molecules. Figure 1.3.7
presents his representation of ethanol, the usual drawing, and the corresponding tree
graph.

() () o
00703070 “—f—?—O—“
(H) (H) H H

Figure 1.3.7 Representations of ethanol.

FACTS [BiLIWi98, Chapter 4]

F26: Crum Brown’s graphic notation explained for the first time the phenomenon
of isomerism, whereby there exist pairs of molecules (isomers) with the same chemical
formula but different chemical properties. Figure 1.3.8 shows isomers with chemical
formula C4y Hqg.

|
H H H H H=C=-H
11 |
H—C=—C—C—C—H
C
I 1 / I\
H H H H H\ H LH
C C
H/\H H, \H

Figure 1.3.8 Two isomers: butane and isobutane.



F27: Cayley [Ca:1874] used tree-counting methods to enumerate paraffins (alkanes)
with up to 11 carbon atoms, as well as various other families of molecules; the followiing
table gives the number of isomers of alkanes for n =1,...,8.

Formula CH, C.Hs C3Hg CiHig CsHiz CsHis CrHig CgHig
Number 1 1 1 2 3 5 9 18

F28: W. K. Clifford and Sylvester believed that a connection could be made between
chemical atoms and binary quantics in invariant theory, a topic to which Cayley and
Sylvester had made significant contributions. In 1878, Sylvester [Sy:1877-8] wrote a
short note in Nature about this supposed connection, remarking that:

Every invariant and covariant thus becomes expressible by a graph precisely
identical with a Kekuléan diagram or chemicograph.

This was the first appearance of the word graph in the graph-theoretic sense.

F29: 1In 1878, Sylvester [Sy:1878] wrote a lengthy article on the graphic approach to
chemical molecules and invariant theory in the first volume of the American Journal of
Mathematics, which he had recently founded.

F30: Little progress was made on the enumeration of isomers until the 1920s and
1930s. A. C. Lunn and J. K. Senior [LuSe29] recognized the importance of permutation
groups for this area, and Pdlya’s above-mentioned paper solved the counting problem
for several families of molecules.

1.3.3 Topological Graphs

Euler’s polyhedron formula [Eu:1750] was the foundation for topological graph
theory, since it holds also for planar graphs. It was later extended to surfaces other
than the sphere. In 1930, a fundamental characterization of graphs imbeddable in the
sphere was given by Kazimierz Kuratowski (1896-1980), and recent work — notably by
Neil Robertson, Paul Seymour, and others — has extended these results to the higher
order surfaces.

Euler’s Polyhedron Formula

The Greeks were familiar with the five regular solids, but there is no evidence that they
knew the simple connection between the numbers V' of vertices, E of edges, and F' of
faces of a polyhedron:

V-E+F=2

In the 17th century, René Descartes studied polyhedra, and he obtained results from
which Euler’s formula could later be derived. However, since Descartes had no concept
of an edge, he was unable to make this deduction.



FACTS [BiLIWi98, Chapter 5] [Cr99]

F31: The first appearance of the polyhedron formula appeared in a letter, dated 14
November 1750, from Euler to C. Goldbach. Denoting the number of faces, solid angles
(vertices) and joints (edges) by H, S, and A,

e In every solid enclosed by plane faces the aggregate of the number of faces and the
number of solid angles exceeds by two the number of edges, or H + S = A + 2.

F32: Euler was unable to prove his formula. In 1752 he attempted a proof by dissec-
tion, but it was deficient. The first valid proof was given by A.-M. Legendre [Le:1794]
in 1794, using metrical properties of spherical polygons.

F33: 1In 1813, A.-L. Cauchy [Ca:1813] obtained a proof of Euler’s formula by stereo-
graphically projecting the polyhedron onto a plane and considering a triangulation of
the resulting planar graph.

F34: Around the same time, S.-A.-J. Lhuilier [Lh:1811] gave a topological proof that
there are only five regular convex polyhedra, and he anticipated the idea of duality
by noting that four of them occur in reciprocal pairs. He also found three types of
polyhedron for which Euler’s formula fails — those with indentations in their faces, those
with an interior cavity, and ring-shaped polyhedra drawn on a torus (that is, polyhedra
with a ‘tunnel’ through them). For such ring-shaped polyhedra, Lhuilier derived the
formula

V-E+F=0

and extended his discussion to prove that, if ¢ is the number of tunnels in a surface on
which a polyhedral map is drawn, then

V-E+F=2-2

The number ¢ is now called the genus of the surface, and the quantity 2 — 2g is called
the Euler characteristic. (See §7.1.)

F35: In 1861-2, Listing [Li:1861-2] wrote Der Census raumliche Complexe, an exten-
sive investigation into complexes; and studied how their topological properties affect
the generalization above of Euler’s formula. This work proved to be influential in the
subsequent development of topology. In particular, H. Poincaré took up Listing’s ideas
in his papers of 1895-1904 that laid the foundations for algebraic topology.

F36: The work of Poincaré’s work was instantly successful, and it appeared in an arti-
cle by M. Dehn and P. Heegaard [DeHe07] on analysis situs (topology) in the ten-volume
Encyklopadie der Mathematischen Wissenschaften. His ideas were further developed by
O. Veblen [Ve22] in a series of colloquium lectures on analysis situs for the American
Mathematical Society in 1916.

Planar Graphs

The study of planar graphs originated in two recreational problems involving the com-
plete graph K5 and the complete bipartite graph Ks 3. These graphs (shown in Figure
1.3.9) proved to be the main obstacles to planarity, as was subsequently demonstrated
by Kuratowski.
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Figure 1.3.9 The Kuratowski graphs K5 and K33

FACTS [BiLIWi98, Chapter 8]

F37: Around the year 1840, A. F. Mobius presented the following puzzle to his stu-
dents:

There was once a king with five sons. In his will he stated that after his death
the sons should divide the kingdom into five regions so that the boundary of
each region should have a frontier line in common with each of the other four
regions. Can the terms of the will be satisfied?

This question asks whether one can draw five mutually neighboring regions in the plane.
The connection with graph theory can be seen from its dual version, later formulated
by H. Tietze:

The king further stated that the sons should join the five capital cities of his
kingdom by roads so that no two roads intersect. Can this be done?

In this dual formulation, the problem is that of deciding whether the graph K35 1s planar.

F38: An old problem, whose origins are obscure, is the utilities problem, or gas-water-
electricity problem, mentioned by H. Dudeney [Dul3] in the Strand Magazine of 1913:

The puzzle is to lay on water, gas, and electricity, from W, G, and E| to each of
the three houses, A, B, and C, without any pipe crossing another (see Figure

1.3.10).
This problem is that of deciding whether K3 3 is planar.

Figure 1.3.10 The gas-water-electricity problem

F39: In 1930 Kuratowski [Ku30] published a paper proving that every planar graph
has a subgraph homeomorphic to K5 or K3 3; this result was obtained independently

by O. Frink and P. A. Smith.

F40: TIn 1931 H. Whitney [Wh31] discovered an abstract definition of duality that is
purely combinatorial and agrees with the geometrical definition of duality for planar



graphs. He proved that, with this general definition of duality, a graph is planar if and
only if it has an abstract dual. Related results were obtained by S. MacLane and others.

F41: In 1935 Whitney [Wh35] generalized the idea of independence in graphs and
vector spaces to the concept of a matroid. The dual of a matroid extends and clarifies
the duality of planar graphs, and Tutte [Tub9] used these ideas in the late-1950s to
obtain a Kuratowski-type criterion for a matroid to arise from a graph (see §6.6).

Graphs on Higher Surfaces

A graph drawn without crossings on a plane corresponds (by stereographic projection)
to a graph similarly drawn on the surface of a sphere. This leads to the idea of graphs
drawn on surfaces other than the sphere. The initial work in this area was carried out, in
the context of coloring maps, by Percy Heawood (1861-1955) and Lothar Heffter (1862-
1962) for orientable surfaces, and by Heinrich Tietze (1880-1964) for non-orientable
surfaces, but the basic problems in the area were not solved until Gerhard Ringel and
Ted Youngs solved the Heawood conjecture in the 1960s and Neil Robertson and Paul
Seymour generalized Kuratowski’s theorem to other surfaces in the 1980s.

FACTS [BiLIWi98, Chapter 7; Ri74]

F42: In 1890, Heawood [He:1890] presented an imbedding of the complete graph K7
on a torus. He also derived a formula for the genus of a surface on which a given
complete graph can be imbedded, but his attempted proof of this formula was deficient.

F43: 1In 1891, L. Heffter [He:1891] investigated the imbedding of complete graphs on
orientable surfaces other than the sphere and the torus, and he proved that Heawood’s
formula is correct for orientable surfaces of low genus and certain other surfaces.

F44: 1In 1910, H. Tietze [Ti10] extended Heffter’s considerations to certain non-orient-
able surfaces, such as the Mobius band and the projective plane, and stated a corre-
sponding Heawood formula. He was unable to prove it for the Klein bottle, but this
case was settled by P. Franklin [Fr34] in 1934, who found that it was an exception to
the formula. In 1935, 1. Kagno [Ka35] proved the formula for surfaces of non-orientable
genus 3, 4, and 6.

F45: The Heawood formula for general non-orientable surfaces was proved in 1952 by
Ringel. The proof for orientable surfaces proved to be much more difficult, involving
300 pages of consideration of 12 separate cases. Most of these were settled in the mid-
1960s, and the proof was completed in 1968 by Ringel and Youngs [RiYo68], using
W. Gustin’s [Gu63] combinatorial inspiration in 1963 of a current graph. Since then,
the transformation by J. L. Gross [Gr74] of numerous types of specialized combinatorial
current graphs into a unified topological object, with its dualization to a voltage graph
(see §7.4), has led to simpler solutions (see Gross and T. W. Tucker [GrTu74]).

F46: In a sequence of papers in the 1980s of great mathematical depth, Robertson
and Seymour [RoSe85] proved that, for each orientable genus g, the set of “forbidden
subgraphs” is finite (see §7.7). However, apart from the sphere, the number of forbidden
subgraphs runs into hundreds, even for the torus. For non-orientable surfaces, there is
a similar result, and in 1979 H. H. Glover, J. P. Huneke, and C. S. Wang [GIHuWa79]
obtained a set of 103 forbidden subgraphs for the projective plane.



1.3.4 Graph Colorings

Early work on colorings concerned the coloring of the countries of a map and, in
particular, the celebrated four-color problem. This was first posed by Francis Guthrie
in 1852, and a celebrated (incorrect) “proof” by Alfred Bray Kempe appeared in 1879.
It was eventually proved by Kenneth Appel and Wolfgang Haken in 1976, building on
the earlier work of Kempe, George Birkhoff, Heinrich Heesch, and others, and a simpler
proof was subsequently produced by Neil Robertson, Daniel Sanders, Paul Seymour,
and Robin Thomas [1994]. Meanwhile, attention had turned to the dual problem of
coloring the vertices of a planar graph and of graphs in general. There was also a
parallel development in the coloring of the edges of a graph, starting with a result
of Tait [1880], and leading to a fundamental theorem of V. G. Vizing in 1964. As
mentioned earlier, the corresponding problem of coloring maps on other surfaces was
settled by Ringel and Youngs in 1968.

The Four-Color Problem

Many developments in graph theory can be traced back to attempts to solve the cele-
brated four-color problem on the coloring of maps.

FACTS [BiLIWi98, Chapter 6] [Wi02]

F47. The earliest known mention of the four-color problem occurs in a letter from
A. De Morgan to Hamilton, dated 23 October 1852. De Morgan described how a student
had asked him whether every map can be colored with just four colors in such a way that
neighbouring countries are colored differently. The student later identified himself as
Frederick Guthrie, giving credit for the problem to his brother Francis, who formulated
it while coloring the counties of a map of England. Hamilton was not interested in the
problem.

F48: De Morgan wrote to various friends, outlining the problem and trying to describe
where the difficulty lies. On 10 April 1860, the problem first appeared in print, in an
unsigned book review in the Athenaeum, written by De Morgan. This review was read
in the U.S. by C. S. Peirce, who developed a life-long interest in the problem.

F49: On 13 June 1878, at a meeting of the London Mathematical Society, Cayley
asked whether the problem had been solved. Shortly after, he published a short note
describing where the difficulty might lie, and he showed that it is sufficient to restrict
one’s attention to trivalent maps.

F50: In 1879, Kempe [Ke:1879], a former Cambridge student of Cayley, published a
purported proof of the four-color theorem in the American Journal of Mathematics,
which had recently been founded by Sylvester. Kempe showed that every map must
contain a country with at most five neighbours, and he showed how any coloring of the
rest of the map can be extended to include such a country. His solution included a new
technique, now known as a Kempe-chain argument, in which the colors in a two-colored
section of the map are interchanged. Kempe’s proof for a map that contains a digon,
triangle, or quadrilateral was correct, but his argument for the pentagon (where he used
two simultaneous color-interchanges) was fallacious.

F51: In 1880, Tait [Te:1878-80] presented “improved proofs” of the four-color theorem,
all of them fallacious. Other people interested in the four-color problem at this time



were C. L. Dodgson (Lewis Carroll), F. Temple (Bishop of London), and the Victorian
educator J. M. Wilson.

F52: In 1890, Heawood [He:1890] published a paper in the Quarterly Journal of Pure
and Applied Mathematics, pointing out the error in Kempe’s proof, salvaging enough
to deduce the five-color theorem, and generalizing the problem in various ways, such as
for other surfaces (see §1.1.3). Heawood subsequently published another six papers on
the problem, the last while he was in his 90th year. Kempe admitted his error, but he
was unable to put it right.

F53: During the first half of the 20th century two ideas emerged, each of which finds its
origin in Kempe’s paper. The first is that of an unavoidable set — a set of configurations,
at least one of which must appear in any map. Unavoidable sets were produced by

P. Wernicke [We:1904] (see Figure 1.3.11), by P. Franklin, and by H. Lebesgue.

<= A T <X

uadrilateral
q two pentagons pentagon and hexagon

Figure 1.3.11 Wernicke’s unavoidable set

The second is that of a reducible configuration — a configuration of countries with
the property that any coloring of the rest of the map can be extended to the config-
uration: no such configuration can appear in any counter-example to the four-color
theorem. Birkhoff [Bi:1913] showed that the arrangement of four pentagons in Figure
1.3.12 (known as the Birkhoff diamond) is a reducible configuration.

Figure 1.3.12 The Birkhoff diamond

F54: In 1912, Birkhofl [Bil2] investigated the number of ways of coloring a given map
with k colors, and he showed that this is always a polynomial in &, now called the
chromatic polynomial of the map.

F55: In 1922, Franklin [Fr22] presented further unavoidable sets and reducible config-
urations, and he deduced that the four-color theorem is true for all maps with up to 25
countries. This number was later increased several times.

F56: Around 1950 Heesch started to search for an unavoidable set of reducible con-
figurations. Over the next few years, Heesch [He69] produced thousands of reducible
configurations.



F57: 1In 1976, Appel and Haken [ApHa77, ApHaKo77], with the assistance of J. Koch,
obtained an unavoidable set of 1482 reducible configurations, thereby proving the four-
color theorem. Their solution required substantial use of a computer to test the config-
urations for reducibility.

F58: Around 1994, Robertson, Sanders, Seymour, and Thomas [RoSaSeTh97] pro-
duced a more systematic proof. Using a computer to assist with both the unavoidable
set and the reducible configuration parts of the solution, they systematized the Appel-
Haken approach, and they obtained an unavoidable set of 633 reducible configurations.

Other Graph Coloring Problems

Arising from work on the four-color problem, progress was being made on other graph
problems involving the coloring of edges or vertices.

FACTS [BiLIWi98, Chapter 6] [FiWi77] [JeTo95]

F59: 1In his 1879 paper on the coloring of maps, Kempe [Ke:1879] outlined the dual
problem of coloring the vertices of a planar graph in such a way that adjacent vertices
are colored differently. This dual approach to map-coloring was later taken up by
H. Whitney in a fundamental paper of 1932 and by most subsequent workers on the
four-color problem.

F60: In 1880, Tait [Ta:1878-80] proved that the four-color theorem is equivalent to
the statement that the edges of every trivalent map can be colored with three colors in
such a way that each color appears at every vertex.

F61: In 1916, D. Konig [K616] proved that the edges of any bipartite graph with
maximum degree d can be colored with d colors. (See §11.3.)

F62: The idea of coloring the vertices of a graph so that adjacent vertices are colored
differently developed a life of its own in the 1930s, mainly through the work of Whitney,
who wrote his Ph.D. thesis on the coloring of graphs.

F63: In 1941, L. Brooks [Br4l] proved that the chromatic number of any simple graph
with maximum degree d 1s at most d + 1, with equality only for odd cycles and odd
complete graphs. (See §5.1.)

F64: In the 1950s, substantial progress on vertex-colorings was made by G. A. Dirac,
who introduced the idea of a eritical graph.

F65: In 1964, V. G. Vizing [Vi64] proved that the edges of any simple graph with
maximum degree d can always be colored with d 4+ 1 colors. In the following year,
Vizing produced many further results on edge-colorings.

F66: The concepts of the chromatic number and edge-chromatic number of a graph
have been generalized by a number of writers — for example, M. Behzad and others
introduced total colorings in the 1960s, and P. Erdds and others introduced list colorings.



Factorization

A graph is k-regular if each of its vertices has degree k. Such graphs can sometimes
be split into regular subgraphs, each with the same vertex-set as the original graph. A
k-factor in a graph is a k-regular subgraph that contains all the vertices of the original
graph. Fundamental work on factors in graphs was carried out by Julius Petersen

[1839-1910] and W. T. Tutte [1914-2002]. (See §5.4.)

FACTS [BiLIWi98, Chapter 10]

F67: In 1891, Petersen [Pe:1891] wrote a fundamental paper on the factorization of
regular graphs, arising from a problem in the theory of invariants. In this paper he
proved that if & is even, then any k-regular graph can be split into 2-factors. He also
proved that any 3-regular graph possesses a 1-factor, provided that it has not more than
two “leaves”; a leaf is a subgraph joined to the rest of the graph by a single edge.

F68: In 1898, Petersen [Pe:1898] produced a trivalent graph with no leaves, now called
the Petersen graph (see Figure 1.3.13), which cannot be split into three 1-factors; it
can, however, be split into a 1-factor (the spokes) and a 2-factor (the pentagon and
pentagram).

Figure 1.3.13 The Petersen graph

F69: In 1947, Tutte [Tu47] produced a characterization of graphs that contain a
1-factor. Five years later he extended his result to a characterization of graphs that
contain a k-factor, for any k.

1.3.5 Graph Algorithms

Graph theory algorithms can be traced back to the 19th century, when Fleury gave
a systematic method for tracing an eulerian graph and G. Tarry showed how to escape
from a maze (see §4.2). The 20th century saw algorithmic solutions to such problems
as the minimum connector problem, the shortest and longest path problems, and the
Chinese Postman Problem (see §4.3), as well as to a number of problems arising in
operational research. In each of these problems we are given a network, or weighted
graph, to each edge (and/or vertex) of which has been assigned a number, such as its
length or the time taken to traverse it.

FACTS [Da82] [LLRS85] [LoPI86]

F70: The Traveling Salesman Problem, in which a salesman wishes to make a cyclic
tour of a number of cities in minimum time or distance, appeared in rudimentary form



in 1831. It reappeared in mathematical circles in the early 1930s, at Princeton, and was
later popularized at the RAND Corporation. This led to a fundamental paper of G. B.
Dantzig, D. R. Fulkerson, and S. M. Johnson [DaFuJo54] that included the solution of
a traveling salesman problem with 49 cities. In the 1980s a problem with 2392 cities
was settled by Padberg and Rinaldi [PaRi87]. (See §4.6.)

F71: The greedy algorithm for the menimum connector problem, in which one seeks a
minimum-length spanning tree in a weighted graph, can be traced back to O. Boruvka
[Bo26] and was later rediscovered by J. B. Kruskal [Kr56]. A related algorithm, due to
V. Jarnik (1931), was rediscovered by R. C. Prim (1957). (See §10.1.)

F72: Graph algorithms were developed by G. B. Dantzig and D. R. Fulkerson [DaFu54]
for finding the maximum flow of a commodity between two nodes in a capacitated
network, and by R. E. Gomory and T. C. Hu [GoHu61] for determining mazimum flows
in multi-terminal networks.

F73: Finding a longest path, or critical path, in an activity network dates from the
1940s and 1950s, with PERT (Program Evaluation and Review Technique) used by the
US Navy for problems involving the building of submarines and CPM (Critical Path
Method) developed by the Du Pont de Nemours Company to minimize the total cost of
a project. (See §3.2.)

F74: There are several efficient algorithms for finding the shortest path in a given
network, of which the best known is due to E. W. Dijkstra [Di59]. (See §10.1.)

F75: The Chinese postman problem, for finding the shortest route that covers each
edge of a given weighted graph, was originated by Meigu Guan (Mei-Ku Kwan) [Gu60]
in 1960. (See §4.3.)

F76: In matching and assignment problems one wishes to assign people as appropri-
ately as possible to jobs for which they are qualified. This work developed from work
of Konig and from a celebrated result on matching due to Philip Hall [Ha35], later
known as the “marriage theorem” [HaVab0]. These investigations led to the subject of
polyhedral combinatorics and were combined with the newly emerging study of linear
programming. (See §11.3.)

F77: By the late 1960s it became clear that some problems seemed to be more diffi-
cult than others, and Edmonds [Ed65] discussed problems for which a polynomial-time
algorithm exists. Cook [CoT71], Karp [KaT72], and others later developed the concept of
NP-completeness. The assignment, transportation, and minimum spanning-tree prob-
lems are all in the polynomial-time class P, while the traveling salesman and Hamiltonian
cycle problems are NP-hard. It is not known whether P = NP. Further information can

be found in [GaJo79].
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GLOSSARY FOR CHAPTER 1

acyclic graph: a graph with no cycles.

adding a vertex u to a graph G = (V, E), where u € V: an operation yielding a new
graph G'U {u} with vertex-set V U {u} and edge-set E. (The new vertex u has no
neighbors.)

adding an edge d (or uv) to a graph G = (V, E): an operation yielding a new graph
with vertex-set V and edge-set F U {d} (or EU {uv}).

adjacency matrix — for a simple graph G with ordered vertex-set vy, vs, ..., v,: the
n X n matrix Ag such that
Acli,f) = 1 if v; and v; are adjacent

0 otherwise
adjacent edges: two edges that have an endpoint in common.

adjacent vertices: vertices u and v that are endpoints of the same edge.

arc: see directed edge.

attribute: an enhancement of the graph model; see vertex attribute and edge attribute.
automorphism — of a graph: an isomorphism of a graph to itself.

bipartite graph: a 2-partite graph; a graph whose vertices can be partitioned into two
sets in such a way that no edge joins two vertices in the same set. (For technical
reasons, the graph K is sometimes construed to be bipartite.)

bouquet B,: the (general) graph with one vertex and n self-loops.

cartesian product (or product) — of two graphs GG and H: the graph G x H such that
V(Gx H)=V(G)xV(H) and F(G x H)=E(G)x V(H)UV(G) x E(H).

Cayley graph; C(A, X) - for a group A with generating set X: the digraph whose
vertex-set is A, with an edge directed from a to az for every a € A and every
z € X. Sometimes two oppositely directed edges corresponding to an involution z
are merged into a single undirected edge.

Cayley graph,: any graph isomorphic to the underlying undirected graph of a Cayley
graph C'(A, X) is commonly said to be a “Cayley graph”.

center of a graph: the induced subgraph on the set of all central vertices.
central vertex — of a graph: a vertex whose eccentricity equals the radius of the graph.

chromatic number — of a graph G the smallest number ¢ of colors such that G is
e-colorable.

circulant graph Circ(n; X): a Cayley graph for a cyclic group Z,.
color: an attribute of vertices or edges or both; see coloring.
c-colorable graph: a graph that has a proper vertex-coloring with ¢ or fewer colors.

coloring: an assignment to the vertices (or sometimes to the edges) of a graph of
values in a set whose elements are regarded as “colors”; commonly these “colors”
are integers or letters of the alphabet.

__, proper: an assignment of colors to the vertices (or edges) such that no two
adjacent vertices (resp., edges) are assigned the same color.

complement: short form of edge-complement.



complete bipartite graph: a simple bipartite graph such that each vertex in one
partite set is adjacent to every vertex in the other partite set. If the two partite sets
have cardinalities » and s, then this graph is denoted K, ;.

complete digraph K’n the simple digraph on n vertices such that between every pair
of vertices, there is an arc in both directions.

complete graph K,,: the simple graph with n vertices in which every pair of vertices
is joined by an edge.

complete k-partite graph K,,, ,, . n,: asimple k-partite graph such that two vertices
are adjacent if and only if they are in different partite sets. All such graphs are called
complete multipartite graphs.

component — of a graph: a maximal connected subgraph.
connected graph: a graph such that between every pair of vertices there is a walk.

k-connected graph: a graph such that the result of removing fewer than &k vertices is
a connected, nontrivial graph, for all possible choices of the vertices.

connectivity of a graph G: the largest number & such that GG is k-connected. It is
denoted k(@) or kv (G).

cost — of an edge: (synonym for weight) a real number assigned to the edge.

critically k-chromatic graph: a graph of chromatic number k whose chromatic num-
ber would decrease if any edge were removed. (See §5.1.)

critically k-connected graph: a graph of connectivity k& whose connectivity would
decrease if any vertex were removed. (See §4.1.)

critically k-edge-connected graph: a graph of edge-connectivity k whose edge-
connectivity would decrease if any edge were removed. (See §4.1.)

cube graph: see hypercube graph.

cube: see hypercube.

cut-edge: an edge whose removal increases the number of components of a graph.
cutpoint: see cut-vertez.

cut-vertex (or cutpoint): a vertex whose removal increases the number of components
of a graph.

cycle: a closed path of length at least one.

cycle graph C),: the n-vertex graph with n edges, such that every edge lies on a single
cycle.

cycle rank — for a graph G = (V| E) with ¢(G) components: the number |E(G)| —
[V(G)| + c(G).

degree (or valence) — of a vertex v in a graph G, denoted deg(v): the number of proper
edges incident on v plus twice the number of self-loops. (For simple graphs, the
degree of v equals the number of neighbors.)

degree sequence — of a graph: the sequence formed by arranging the vertex degrees
in non-decreasing order.

deleting a vertex u from a graph G = (V| E): an operation that not only removes the
vertex u, but also removes every edge of which u is an endpoint. The new graph is

denoted G — u.



deleting an edge d from a graph G = (V, E): an operation that preserves its vertex-set

V', but yields edge-set £ — {d}. The new graph is denoted G — d.
diameter — of a connected graph: the maximum eccentricity, taken over all vertices.
digraph (or directed graph): a graph in which every edge is directed.
dipole D,,: the multigraph with two vertices and n edges joining them.

directed distance from a vertex u to a vertex v — in a digraph: the length of the
shortest directed walk from u to v.

directed edge (or arc): an edge e, one of whose endpoints is designated as the tail,
and whose other endpoint is designated as the head. In a line drawing, the arrow
points toward the head.

directed graph: see digraph.
direction — on an edge: the designation of head and tail.
distance — between two vertices: the length of the shortest walk between them.

eccentricity of a vertex — in a connected graph: its distance to a vertex farthest from
itself.

edge: a member of the constituent set E of a graph G = (V| E).

edge-coloring — of a graph G: a function from its edge-set Fg to a set C' whose
elements are called colors.

edge attribute: a function from the edge-set to a set of possible attribute values, such
as direction or weight.

edge-complement — of a simple graph G the graph G (alteinatively denoted GG¢) that
has the same vertex-set as (G, such that uv is an edge of GG if and only if it is not an

edge of G.

k-edge-connected graph: a graph such that the result of removing fewer than k edges
is connected and nontrivial for all possible choices of the edges.

edge-connectivity of a graph G: the largest number k such that G is k-edge-
connected. Tt is denoted k'(G) or kg (G).

edge-transitive graph: a graph such that all the edges are in the same orbit.
empty graph K,: the graph with n vertices and no edges.
endpoint: see graph.

eulerian graph: a graph with a closed walk that contains every edge exactly once.
(See §1.3 for the history of eulerian graphs and §4.3 for an extensive discussion of
their theory.)

eulerian trail — in a graph: a trail that contains every edge of the graph.
factor — of a graph: a spanning subgraph.

k-factor — of a graph: a k-regular spanning subgraph.

forest: a graph all of whose components are trees.

frontier edge — relative to a tree in a graph: an edge that has one endpoint in the tree
and the other endpoint not in the tree; this concept arises when growing a spanning
tree within a graph.

general graph: a graph from which the possible occurrence of self-loops and multi-
edges is not explicitly excluded.



genus: see MINIMUM genus.

graph G = (V, E): aset V called vertices and a set E called edges, such that each edge
has a set of one or two vertices associated to it, which are called its endpoints.

hamiltonian graph: a graph that has a spanning cycle. (See §1.3 for the history of
hamiltonian graphs and §4.5 for an extensive discussion.)

head: see directed edge.

hypercube graph Q;: the 1-skeleton of a d-dimensional hypercube.

hypercube of dimension d: the d-dimensional polytope {(z1,...,24) | 0> 2;)}.
incidence: the relationship between an edge and one of its endpoints.

indegree — of a vertex v: the number of directed edges with v at the head.

induced subgraph — on a set of vertices W = {wy, ..., wg} of a graph G: the subgraph
on vertex-set W that contains every edge of (G whose endpoints are in W.

invariant — see isomorphism invariant.

isolated vertex — in a graph: a vertex of degree 0.

isomorphic graphs: graphs G and H between which there is an isomorphism. Nota-
tion: G = H.

isomorphism invariant — of graphs: a graph property such that two isomorphic graphs

always have the same value; for instance, the radius or the chromatic number.

isomorphism of general graphs G and H: a pair of bijections ¢y : Vg — Vg and
or : Eq — Ep such that for every pair of vertices u, v € Vi, the set of edges in Eg
joining u and v is mapped bijectively to the set of edges in Ey joining the vertices

é(u) and ¢(v).

isomorphism of simple graphs GG and H: a bijection ¢ : Vg — Vg such that for
every pair of vertices u,v € Vi, there is an edge uv € E¢ if and only if there i1s an
edge in ¢(u)o(v) € Ep.

Join; (or suspension): an operation on two graphs G and H that yields the graph G+ H
such that

VG+H)=V(G)UV(H)
E(G+H)=FEG)UEH)U{w |ueV(G)and v € V(H)}

joins: the graph G + H is called the “join” of G and H.
joins: an edge is said to “join” its endpoints.
length of a walk: the number of edges.

line graph; — of a graph G: the simple graph L(G) whose vertex-set is the the edge-
set of (G, and in which two vertices are adjacent if the edges in G to which they
correspond have a common vertex.

line graphs: A graph H is said to be a line graph if there exists a graph G such that
H is isomorphic to L(G).

loop: short for self-loop.
loopless graph: a graph with no self-loops.

minimum genus (or genus) of a connected graph G: the smallest number g such that
(i can be drawn on the orientable surface S, (see §7.1) without any edge-crossings.
Notation: Ymin (G) or ¥(G).



mixed graph: synonym for partially directed graph.
multi-arc: a set of two or more arcs having the same tail and same head.
multi-edge: a collection of two or more edges, all having the same endpoints.

multigraph: a graph from which multi-edges are not excluded, but which has no self-
loops.

neighbor — of a vertex: an adjacent vertex.

nontree edge — relative to a tree T in a graph G: an edge of GG that is not in 7.
null graph: a graph whose vertex-set and edge-set are empty; often denoted K.
octahedral graph O,: the edge-complement of a 1-factor in Kaq4.

orbit of a vertex u — in a graph G the set of all vertices v € Vs such that there is
an automorphism ¢ with ¢(u) = v.

orbit of an edge d — in a graph G: the set of all edges e € F¢ such that there is an
automorphism ¢ with ¢(d) = e.

outdegree — of a vertex v: the number of directed edges with v at the tail.
partially directed graph: a graph that has both undirected and directed edges.

p-partite graph: a graph whose vertex-set V has a partition into p subsets Vi,... V),
(called the partite sets), in such a way that no edge joins two vertices in the same
subset.

partite sets: see p-partite graph.

path: a walk such that no edge or internal vertex occurs more than once.
_, closed: a closed walk such that no edge or internal vertex occurs more than once.
__, open: an open walk such that no edge or vertex occurs more than once.

path graph P,: the n-vertex graph with n — 1 edges, such that every edge lies on
a single open path. (Quite commonly elsewhere, the subscript of the notation P,
denotes the number of edges.)

Petersen graph: a 10-vertex 3-regular graph, commonly depicted as a 5-pointed star
inside a pentagon, with a 1-factor joining the vertices of the pentagon to the points
of the star.

planar graph: a graph of minimum genus 0, i.e., a graph that can be drawn in the
sphere or plane with no edge crossings.

platonic graph: the skeleton of any of the five platonic solids.

platonic solid: any of the five regular 3-dimensional polyhedra — tetrahedron, cube,
octahedron, dodecaheron, icosahedron.

product: see cartesian product.
proper edge: an edge that joins two distinct vertices.

proper edge-coloring: an edge-coloring such that no two adjacent edges have the
same color.

proper vertex-coloring: a vertex-coloring such that no two adjacent vertices have
the same color.

radius — of a connected graph: the minimum eccentricity, taken over all vertices.

regular graph: a graph in which every vertex is of the same degree. It 1s k-regular if
every vertex is of degree k.



self-loop: an edge that joins a single endpoint to itself.

self-union, m-fold — of a graph G: is the iterated disjoint union mG = GU---U G of
m copies of the graph G.

simple digraph: a digraph with no self-loops and no multi-arcs.
simple graph: a graph that has no self-loops or multi-edges.

simplex: the convex hull of a set S of affinely independent points in Euclidean space.
It is a k-simplez if |S| = k + 1.

skeleton (or 1-skeleton) of a k-complex K: the graph consisting of the vertices and the
edges of K.

spanning subgraph — of a graph G: a subgraph that includes every vertex of G.
spanning tree — in a graph G: a subgraph that is a tree.

standard (vertex) labeling — of a graph with n vertices: a biective labeling by the
numbers 0,...,n — 1 or by the numbers 1,... n.

strongly connected digraph: a digraph such that from each vertex to every other
vertex there 1s a directed walk.

subgraph of a graph (: a graph H such that Vg C Vg and Eg C Eg, or any graph
isomorphic to such a graph H.

suspension: see join.

tail: see directed edge.

trail: a walk such that no edge occurs more than once.

tree: a connected graph with no cycles.

tree edge — relative to a tree T in a graph G: an edge of G that is in 7.
trivial graph Ki: the graph with one vertex and no edges.

trivial walk, trail, or path: a walk of length zero.

underlying graph — of a graph with vertex or edge attributes: the graph that results
from eliminating all the attribute values (e.g., deleting all the edge-directions).

union operation — on two graphs GG and H: produces the graph G U H whose vertex-
set and edge-set are the disjoint unions, respectively, of the vertex-sets and edge-sets

of G and H.
valence: synonym for degree.

vertex attribute: a function from the vertex-set to some set of possible attribute
values.

vertex-coloring — of a graph G: a function from its vertex-set Vg to a set C' whose
elements are called colors.

vertex: a member of the constituent set V of a graph G = (V| E).
vertex-transitive graph: a graph such that all the vertices are in the same orbit.

walk — in a graph G: an alternating sequence W = vy, e1,v1,€1,...,€,, vy, such that
for j =1,...,n, vertices v;_; and v; are the endpoints of the edge ;.
_, closed: a walk whose final vertex is the same as 1ts initial vertex.
__,open: a walk whose final vertex is different from its initial vertex.
weakly connected digraph: a digraph whose underlying graph is connected.

weight — of an edge: (also called cost) a real number assigned to the edge.
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Introduction

Many problems in science and engineering can be modeled in terms of directed
and undirected graphs. The data structures and algorithms used to represent graphs
can have a significant impact on the size of problems that can be implemented on a
computer and the speed with which they can be solved. This section presents the
fundamental representations used in computer programs for graphs and illustrates the
tradeoffs among the representations using key algorithms for some of the most common
graph problems.

Throughout this section we use the notation |X| to denote the number of elements
in a set X. The graphs and digraphs in this section are assumed to be simple.

2.1.1 The Basic Representations for Graphs

The two most basic representations for a graph are the adjacency matrix and the
adjacency list.
DEFINITIONS

D1: A directed graph or digraph G = (V, E) consists of a finite, nonempty set of
vertices V and a set of edges E. Each edge is an ordered pair (v, w) of vertices.

D2: An undirected graph G = (V, E) consists of a finite, nonempty set of vertices
V and a set of edges E. Each edge is a set {v, w} of vertices.

D3: In a directed graph G = (V, E), vertex w is adjacent to vertex v if (v, w) is an
edge in E. The number of vertices adjacent to v is called the out-degree of v.

D4: In an undirected graph G = (V| E), vertex w is adjacent to vertex v if {v,w} is
an edge in . The number of vertices adjacent to v 1s called the degree of v.

D5: A pathin a directed or undirected graph is a seqence of edges (v1, v2), (v2,v3),...,
(U1, vn). This path is from vertex vy to vertex v, and has length n — 1.

D6: A graph G = (V, E) is dense when the number of edges is close to |V]2.

D7: A graph G = (V, F) is sparse when the number of edges is much less than |V|?.



D8: An adjacency matrix representation for a simple graph or digraph G = (V) E)
is a |V| x |V| matrix A, where A[7, j] = 1 if there is an edge from vertex i to vertex j;
AlZ, j] = 0 otherwise.

D9: An adjacency list representation for a graph or digraph G = (V| E) is an array
L of |V| lists, one for each vertex in V. For each vertex i, there is a pointer L; to a
linked list containing all vertices j adjacent to i. A linked list is terminated by a nil
pointer.

D10: An incidence matrix representation for a simple digraph G = (V, E) is a
|V| x |E| matrix I, where

Iv,e] =41 if edge e is directed from vertex v

{ —1 if edge e is directed to vertex v
0 otherwise

For an undirected graph, I[v,e] = 1 if e is incident on v and 0 otherwise.

EXAMPLES

E1l: Figure 2.1.1 shows the adjacency matrix and adjacency list representations of a
directed graph.

e List Headers

1 - 2 » 4 | ni
(a) 2 > 3 | ni
123 4
1fo1 01 S
210 01 0
310 00 0
alo 11 0 4 | o =2 | e = 3 |ni
(b) (c)

Figure 2.1.1 (a) A directed graph G. (b) Adjacency matrix for G.
(¢) Adjacency list representation for G.

E2: An incidence matrix for the example digraph is shown below.

(L,2) (L4 (2,3) (42) (43

1 1 1 0 0 0
le = 2 -1 0 1 -1 0
3 0 0 -1 0 -1
4 0 -1 0 1 1

FACTS

F1: An adjacency matrix representation for a graph G = (V, E) always takes O(|V|?)
space.

F2: An adjacency list representation for a graph G = (V, E) takes O(|V| + | E|) space.



REMARKS

R1: For a more detailed discussion of graph representations, see [AhHoUl74], [Ah-
HoUl83], [CoLeRiSt01], [Ev79], [Ta83].

R2: As a general rule, an adjacency list representation is preferred when a graph is
sparse, because it takes space that is linearly proportional to the number of vertices and
edges.

R3: When a graph G = (V, F) is dense, both an adjacency matrix and an adjacency
list representation require O(|V|?) space. However, with the adjacency matrix, we can
determine whether an edge exists in constant time, whereas with the adjacency list we
may need O(|V]) time. For this reason, adjacency matrix representations are often used
with dense graphs.

R4: Note that in an adjacency list representation of an undirected graph, an edge i, j
appears on two adjacency lists: the list for vertex 7 and the list for vertex j.

2.1.2 Graph Traversal Algorithms

One of the most fundamental tasks in algorithms involving graphs is visiting the
vertices and edges of a graph in a systematic order. Depth-first and breadth-first search
are frequently used traversal techniques for both directed and undirected graphs. For
both these techniques, the adjacency list representation of a graph works well.

Depth-First Search

ALGORITHM

Depth-first search systematically visits all the vertices of a graph. Initially, all vertices
are marked “new”. When a vertex is visited, it 1s marked “old”. Depth-first search works
by selecting a new vertex v, marking it old, and then calling itself recursively on each of
the vertices adjacent to v. The algorithm below is called “depth-first search” because it
searches along a path in the forward (deeper) direction looking for new vertices as long
as 1t can.

DEFINITIONS

During the course of its traversal, depth-first search partitions the graph into a collection
of depth-first trees that make up a depth-first forest. The forest and its trees are
determined by the edges, which are partitioned by the search into four sets:

D11: Tree edges are those edges (v, w) where w is first encountered by exploring
edge (v, w).

D12: Back edges are those edges (v, w) that connect a vertex v to an ancestor w in
a depth-first tree.

D13: Forward edges are those nontree edges (v,w) that connect a vertex v to a
proper descendant in a depth-first tree.

D14: Cross edges are the remaining edges. They connect vertices that are neither
ancestors nor descendants of one another.



Algorithm 2.1.1: Depth-First Search

Input: A graph G = (V, E), where V = {1,2,...,n} and L[v] is a pointer to the
list of vertices adjacent to vertex v.

QOutput: Traversal of all vertices in V' in a depth-first order.
procedure DepthFirstSearch(G){

for v:=1ton do
mark[v] ;= new;
for v:=1ton do
if mark[v] = new; then
dfs(v);
}
procedure dfs(v){
mark[v] := old;
for each vertex w on L[v] do

if mark[w] = new then

df s(w);

FACTS
F3: Depth-first search takes O(|V| + |E|) time on a graph G = (V, E).

F4: TIf we represent the first visit of a vertex v with a left parenthesis “(v” and its
last visit by a right parenthesis “v)”, then the sequence of first and last visits forms an
expression in which the parentheses are properly nested.

F5: In a depth-first search of an undirected graph, every edge is either a tree edge or
a back edge.

REMARKS

R5: Depth-first search i1s a fundamental graph algorithm that has been in use since the
1950s. [Ta72 and HoTa73] developed several efficient graph algorithms using depth-first
search.

R6: Depth-first search forms the basis of many important graph algorithms such as
determining the biconnected components of an undirected graph and finding the strongly
connected components of a directed graph.

Breadth-First Search

Breadth-first search is another fundamental technique for exploring a graph G'. It starts
from a specified source vertex s from which it constructs a breadth-first tree consisting
of all vertices of G reachable from s. In the process it computes a breadth-first tree
rooted at s such that if a vertex v is reachable from s in G, there is a path in the tree
from the root to s. The path in the tree is a shortest path from s to v in G.



ALGORITHM

Breadth-first search uses the abstract data type queue to hold vertices as they are being
processed. The operation enqueue(s, Q) places vertex s on the back of the queue Q.
The operation dequeue(()) removes the element at the front of the queue Q.

Breadth-first search visits the vertices of G uniformly across the breadth of the frontier
of its search, visiting all vertices distance d from s before looking for vertices at distance
d+ 1. In constrast, depth-first search plunges as deeply into the graph along a path as
it can before backtracking to visit nodes closer to s.

Algorithm 2.1.2: Breadth-First Search
Input: A graph G = (V, E), where V = {1,2,...,n}, L[v] is a pointer to the list

of vertices adjacent to vertex v, and s is a specified source vertex.
Output: A breadth-first tree consisting of root s and all vertices in V reachable
from s.
procedure BreadthFirstSearch(G,s) {
for v:=1ton do {
mark[v] ;= new;
distance[v] := oo;
parent[v] := nil,
}
mark[s] := visited,
distance[s] := 0;
initialize queue @;
enqueue(s, Q);
while @ is not empty do {
v = dequeue(Q);
for each vertex w on L[v] do
if mark[w] = visited then {
mark[w] := visited;
distance[w] := distance[w] + 1;
parent[w] := v;
enqueue(w, Q);

DEFINITION

D15: Let BFT be the tree with root s, vertices v such that parent[v] is not nil, and
edges {(parent[v], v)|parent[v] is not nil}. BFT is the breadth-first tree constructed
by BreadthFirstSearch(G,s).

FACTS
F6: Breadth-first search takes O(|V|+ |E|) time on a graph G = (V, ).



F7: BreadthFirstSearch(G,s) computes the length of the shortest path from s to v
in distance[v].

REMARKS

R7: Like depth-first search, breadth-first search has been used since the 1950s. Early
applications of breadth-first search included maze searching and routing wires on printed
circuit boards.

R8: The ideas found in breadth-first search are the building blocks of many other
graph algorithms such as Dijkstra’s single-source shortest-paths algorithm and Prim’s
algorithm for finding minimal spanning trees.

2.1.3 All-Pairs Problems

This section considers two algorithms: one for computing the shortest paths be-
tween all pairs of vertices in a directed graph and the other for computing the transitive
closure of a directed graph. For both algorithms the adjacency matrix is a natural
representation for the graph.

All-Pairs Shortest-Paths Algorithm

Suppose that we have a schedule that tells us the driving time between n cities at a
given time of day and that we wish to compute the shortest driving time between all
pairs of cities. This is an instance of the all-pairs shortest-paths problem. We could
iterate through every pair of cities and compute the shortest path between each using
a single-source shortest-path algorithm such as Dijkstra’s algorithm.

ALGORITHM

An easier way is to use the Floyd-Warshall algorithm below. The natural representation
for a graph in the Floyd-Warshall algorithm is an adjacency matrix. Assume that we
are given a directed graph G = (V| E) and that the vertices in V are numbered 1,2, ..., n.
Further assume that we are given a matrix CT¢, j] that tells us the cost of edge (¢, 7). If
there is no edge CYi, j], then we assume CTi, ] is set to infinity. We assume all other
costs are nonnegative.

The Floyd-Warshall algorithm computes a cheapest-cost array A, where A[i, j] gives the
cheapest cost of any path from vertex ¢ to vertex j. For the algorithm to work correctly,
it 1s important that there are no negative cost cycles in the graph.

FACT

F8: The Floyd-Warshall algorithm computes the cost matrix of the cheapest paths
between all pairs of vertices of a directed graph GG = (V, E) in O(]V|?) time and O(|V|?)
space.

REMARKS

R9: For additional discussion of the Floyd-Warshall algorithm and its variants see
[AhHoUI74] and [CoLeRiSt01].



Algorithm 2.1.3: Floyd-Warshall

Input: A directed graph G = (V, E), where V = {1,2,...,n} and a cost matrix
Cli, .
Output: Cost matrix A[l..n,1..n] where A[i, j] is the cost of the cheapest path
from 7 to j.
procedure FloydWarshall(G) {
fori:=1tondo
for j :=1ton do
Ali, ) := CTi, J):
fori:=1tondo
Ali,4) :=0;
for k:=1ton do
fori:=1tondo
for j ;=1 ton do
if Ali, k] + A[k, j] < A[i, j] then
AlZ, j] := Ali, k] + Alk, 4];

R10: Let A”*[i,j] be the cost of the cheapest path from vertex i to vertex j that does
not pass through a vertex numbered higher than &, except possibly for the endpoints.
We can prove by induction on k that A*[i, j] = min(A*~1 A*=1[i k] + A*~1[k,j]). In
the next section we see that the Floyd-Warshall algorithm is a special case of Kleene’s
algorithm.

Transitive Closure

In some problems we may just want to know whether there exists a path from vertex
i to vertex j of length one or more in a graph G = (V, F'). We call this the problem
of computing the transitive closure of G. Given a directed graph G = (V, E) with
adjacency matrix A, we want to compute a Boolean matrix T such that TTé, j] is 1 if
there is a path from i to j of length 1 or more, and 0 otherwise. We call T the transitive
closure of the adjacency matrix.

The transitive-closure algorithm below is similar to the Floyd-Warshall algorithm except
that it uses the Boolean operation and to conclude that if there 1s a path from i to &
and one from k to j, then there 1s a path from ¢ to j.

FACT

F9: The algorithm TransitiveClosure((G) computes the transitive closure of G in

O(]V|?) time and O(|V|?) space.

REMARKS
R11: The transitive closure algorithm is due to S. Warshall [Wa62].



Algorithm 2.1.4: Transitive Closure

Input: A directed graph G = (V, E), with V = {1,2,...,n} and adjacency matrix
Ali, 7]
Output: Boolean transitive-closure matrix T[1..n, 1..n] where T7é, j] is 1 if there
is a path from ¢ to j if length 1 or more, 0 otherwise.
procedure TransitiveClosure(G) {
fori:=1tondo
for j :=1ton do
Tli, ] := Al j);
for k:=1ton do
fori:=1tondo
for j ;=1 ton do
if Afi, j] = false then
Ali, j] .= Ali, klorAlk, j];

R12: Let T*[i, j] = 1 if there is a path of length one or more from vertex i to vertex j
that does not pass through an intermediate vertex numbered higher than k, except for
the endpoints. We can prove by induction on % that

C*[i,j] = C*~'[i, j] ox C*~'[i, k] and C*~'[k, j]

where and and or are the Boolean and and or operators. In the next subsection we
will see the transitive closure algorithm is a special case of Kleene’s algorithm.

2.1.4 Applications to Pattern Matching

Graphs play a major role in problems arising in the specification and translation
of programming languages. A special kind of graph called a finite automaton is used
in language theory to specify and recognize sets of strings called regular expressions.
Regular expressions are used to specify the lexical structure of many programming
language constructs. They are also widely used in many string-pattern-matching appli-
cations.

This section presents an algorithm due to S. C. Kleene to construct representations
called regular expressions for all paths between the vertices of a directed graph.

DEFINITIONS
D16: A nondeterministic finite automaton (NFA) is a labeled, directed graph
G = (V, E) in which
1. one vertex is distinguished as the start vertex
2. a set of vertices are distinguished as final vertices
3. each edge is labeled by a symbol from a set ¥ U {e} where
¥ is a finite set of alphabet symbols, and

€ is a special symbol denoting the empty string



D17: An NFA ( accepts a string « if there is a path in GG from the start vertex to a
final vertex whose edge labels spell out .

D18: The set of strings accepted by an NFA G is called the language defined by G.

D19: If R and S are sets of strings, then their concatenation R - S is the set of
strings {xy|x is in r and y is in S}.

D20: Let S be a set of strings. Define S = {¢} and S* = 5 -S°~! for i > 1. The
Kleene closure of S, denoted S*, is defined to be U2 S".

D21: Let ¥ be a finite set of alphabet symbols. The regular expressions over %
and the languages they denote are defined recursively as follows:
1. ¢ is a regular expression that denotes the empty set.
2. € is a regular expression that denotes {¢}
3. For each @ in X, a is a regular expression that denotes {a}
4. If r and s are regular expressions denoting the languages R and S, then
(r 4 s) is a regular expression denoting the language RU S,
rs 1s a regular expression denoting R - S, and
(r*) is a regular expression denoting R*.

We can avoid writing many parentheses in a regular expression by adopting the conven-
tion that the Kleene closure operator * has higher precedence than concatenation or +,
and that concatenation has higher precedence than +. For example, ((a(b*)) + ¢) may
be written ab* + ¢. This regular expression denotes the set of strings {ab’|i > 0} U {c}.

Kleene’s Algorithm

S. C. Kleene presented an algorithm for constructing a regular expression from a nonde-
terministic finite automaton. This algorithm, shown below, includes the Floyd-Warshall
algorithm and the transitive closure algorithm as special cases.

ALGORITHM

Let G = (V, E) be an NFA in which the vertices are numbered 1,2,....;n. Kleene’s
algorithm (see below) works by constructing a sequence of matrices C* in which the
entry C*[i,j] is a regular expression for all paths from vertex i to vertex j with no
intermediate vertex on the path (except possibly for the endpoints) that is numbered

higher than k.

REMARKS
R13: Kleene’s algorithm appeared in [KI56].

R14: To prove the correctness of Kleene’s algorithm, we can prove by induction on
k that C*[i,j] is the set of path labels of all paths from vertex i to vertex j with
no intermediate vertex numbered higher than k, excluding the endpoints. The term
C*=1[i, k] in the inner loop represents the labels of all paths from vertex i to vertex
k that do not have an intermediate vertex numbered higher than & — 1. The term
(C*=1[k, k])* represents the labels of all paths that go from vertex k to vertex k zero
or more times without passing through an intermediate vertex numbered higher than
k — 1. The term C*~1[k, j] represents the labels of all paths from vertex k to vertex



Algorithm 2.1.5: Kleene’s Algorithm

Input: A directed graph G = (V, E), where V = {1,2,...,n}, and a label matrix
L[i, 5].
Output: Matrix C[1..n,1..n] where C[i,j] is a regular expression describing all
paths from ¢ to j.
procedure Kleene(G) {
fori:=1tondo
for j :=1ton do
COli,j) = Lli, J);
fori:=1tondo
C'i, 4] := e+ C[4, 4];
for k:=1ton do
fori:=1tondo
for j ;=1 ton do
i ) == CF=10i, ] 4+ CF= [ K] (C*= [k, K])* - O+ [k, J]
fori:=1tondo
for j :=1ton do
Cli ) := €, )

j that do not have an intermediate vertex numbered higher than & — 1. Thus, the
term C*~1i, j]- (C*~ L[k, k])* - C*~1[k, j]) represents the path labels of all paths with
the segments: from ¢ to k, from k to k zero or more times, and from k to j with no
intermediate vertex numbered higher than & — 1 on any of the segments.

R15: The Floyd-Warshall algorithm is a special case of Kleene’s algorithm with the
inner loop replaced by C*[i, j] := min(C*~1[i, j], C*~[i, k] + C*~ [k, j]. In the Floyd-
Warshall algorithm we don’t need to consider paths from & to k since we assume the edge
costs are nonnegative. Also, in the Floyd-Warshall algorithm the operator representing
concatenation (-) is arithmetic addition.

R16: The transitive closure algorithm is a special case of Kleene’s algorithm with the
inner loop replaced by C*[i, j] := C*=1[i, j] + C*~'[i, k] - C*~'[k, j] where + represents
Boolean or and - represents Boolean and.

R17: Aho, Hopcroft, and Ullman present Kleene’s algorithm in the general setting of
a closed semiring [AhHoUI74].

R18: One of the key results of formal language theory is that the set of languages de-
fined by NFAs is exactly the same as the set of languages defined by regular expressions.
These languages are called regular sets.

R19: For applications of finite automata and regular expressions to string pattern

matching and compiling see [Ah90, AhSeUI86].
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Introduction

The graph isomorphism problem, abbreviated ISO, is to construct an efficient
algorithm for testing whether two given graphs are isomorphic. In the context of 150,
efficiency is interpreted as subexponentiality. Tt is expected (folklore) that testing for
isomorphism can be done in O(exp(log2 n)), or maybe even in O(exp(lognloglogn))
time. The currently fastest algorithm for ISO runs in O(exp(n'/?t°() time. ISO is
fundamental for graph theory as well as for computational complexity theory.

Throughout this section, graphs are assumed to be simple, unless specifically men-
tioned otherwise.

NOTATION: G denotes the class of all graphs.

2.2.1 Variations of the Problem

DEFINITIONS

D1: Two simple graphs G; = (V1, F1) and Ga = (Va, E3) are isomorphic, denoted
(1 =~ (9, if there is a one-to-one, onto mapping ¢ : V43 — V5, such that for any two
vertices x,y € Vi, there is an edge zy in G if and only if there is an edge ¢(z)¢(y) in
G'5. Such an adjacency-preserving bijection ¢ is called an isomorphism.

D2: A labeled graph is a graph whose vertices and/or edges are labeled, possibly
with repetitions, using symbols from a finite alphabet. If some vertices and/or edges
have no labels, then they can be regarded as having a special label different from the
rest. Thus, we may always assume that all vertices and all edges are labeled.

D3: Two labeled graphs Gy = (W1, F1) and Go = (Va, E2) are isomorphic as labeled
graphs if there is an isomorphism ¢ : G — G5, such that for each v € Vj, the vertices
v and ¢(v) have the same label.

D4: A hypergraph G is a pair (V, E), where V is a set of elements called vertices
and F is a collection of non-empty subsets of V', called hyperedges. Two hypergraphs
G1 = (W, Ey) and Ga = (Va, Ey) are isomorphic, denoted Gy & G, if there is a



one-to-one, onto mapping ¢ : Vi — Va, such that for every member s of Ey, ¢(s) € Fa;
and for every hyperedge t of E2, there is a hyperedge s € Ey, such that ¢ = ¢(s).

D5: A certificate for isomorphism is a graph invariant ¢ such that for any two graphs

G1,G2 € G, 1(Gy) = 1(G2) if and only if Gy = Gs.

D6: A canonical numbering algorithm for graphs is an algorithm A that outputs
a permuted sequence

N(G) = {vil,viQ,...,vin}

of the vertices of its input graph, such that two graphs G = ({v1,...,vn}, F) and H =
({u1, ..., un}, F) are isomorphic if and only if the bijection {v;, = u;; : j=1,...,n}isa
graph isomorphism. The vertex ordering produced by a canonical numbering algorithm
for a given graph G is called a canonical ordering of the vertices of G.

FACTS

F1: Two graphs (G; and G5 with respective adjacency matrices A; and A, are isomor-
phic if and only if there is a permutation matrix P, such that

A2:P><A1><P_1

This holds also when the definition of isomorphism is extended to directed graphs and
to graphs with multiple adjacencies and/or self-loops.

F2: The problem of testing labeled graphs for isomorphism is polynomially equivalent
to 150.

F3: The problem of testing hypergraphs for isomorphism is polynomially equivalent
to 150.

EXAMPLES

E1: Examples of labeled graphs are chemical graphs representing molecules; the labels
of the vertices of such a graph are the names of the atoms, and the labels of edges are
integers indicating the multiplicity of the links; usually, the links are not more than
tripled. Sometimes, instead of showing labels on the edges, the edges are replicated (see

[K195]).

E2: Given an ordering 7 = (v, ..., vpn) of vertices of a graph G, let S;(G) denote the
0, 1-vector obtained by concatenating the rows of the adjacency matrix A;(G) in their
natural order. We define S(() to be the lexicographically smallest such bit-vector. Then
the invariant G — S(G) is a certificate for graphs. The corresponding vertex ordering
is a canonical numbering of the vertices of the graph.

2.2.2 Refinement Technique

The technique of refinement is often used to establish whether two given graphs
are isomorphic. Sometimes it is helpful in constructing an isomorphism between the
two graphs. This technique, started in [CoGoT0], [WeT6], [WeT79] is simple, intuitive
and powerful. Most efficient heuristics and randomized algorithms for SO are based
on some implementation of refinement (see [AHU74], [BaErSe80], [Ba97], [CoBo81],



[CoGo84], [DeDaLo77], [FiMa80], [FiScSp83], [GHLSW&T], [Go83], [HoWo74],[KI195],
[Ma79], [Mc81]). The software package nauty (http://cs.anu.edu.au/~bdm/nauty)
— a widely used program for ISO — is based on this technique.

DEFINITIONS

D7: A coloring of a graph (G is a mapping o : Vg — C from its vertex set to a set
C' (often a set of integers).

D8: A trivial coloring assigns the same single color to every vertex.

D9: A color class for a graph with a coloring is the set of all vertices that are assigned
the same color. Alternatively, a coloring o : Vg — C may be regarded as a partition
o =[C1,...,Cp] of V into the color classes.

D10: The neighborhood of a vertex v of a graph is the set of all vertices adjacent
to v. It is denoted by N(v).

D11: The degree vector of a graph coloring o = [C', ..., C},] assigns to each vertex
v the vector

deg, (v) = [|N(v) N Chl, ..., [N (v) N Chl]

D12: The refinement of a graph coloring o = [Cy,...,C},] is the new coloring
R(o) of G, derived by subpartitioning each color class C; into subsets with the same

degree vector dggg(v). For every 7 € [1,m], color the vertices of C; using new colors
i1,...,1m, SO that two vertices x,y € C; have the same new color iff deg,(z) = deg, (y).

D13: A coloring ¢ is stable, if it has the same color classes as its refinement.

D14: For a stable coloring o, define the color-class size vector
s(a) = [IC1],[Cal, - [Crml]
and the color-class adjacency matrix
M (o) = [m; ;] = |N(x) N C;|, where z € C}
(For a stable coloring, these coefficients are independent of the choice of z.)

D15: The stabilization of a coloring o is the coloring that results from iterating
the refinement process until a stable coloring is obtained. It is denoted o*.

D16: Given two colored graphs GG; and G, a mapping ¢ : V(G1) = V(G2) is called
color-preserving if every color class of G; is mapped to a single color class of Gs.
FACTS

F4: Let o1 and o2 be colorings of graphs (1 and (s, respectively, and let ¢ be a color-
preserving isomorphism between ;7 and Gs. Then ¢ is a color-preserving mapping for
the refinements R(o;) and R(o2). Furthermore,

Ve € V(Gy), deg,, (x) = deg,,(¢(x))

F5: Let 07 and o3 be colorings of graphs G; and (5, respectively. If there is a color-
preserving isomorphism between Gy and Ga, then s(o7) = s(03) and M(o7) = M(03).



F6: Let 7y and 7 be the trivial colorings of graphs (G; and (5, respectively. Then
(1 and (2 are isomorphic if and only if there is a color-preserving isomorphism with
respect to the colorings 7 and 3.

REMARK

R1: A generalization of the degree sequence of a graph has found applications in
organic chemistry and drug design (see [Ran90]). For a given n-vertex graph G, the
path degree sequence matrix or path layer matrix is the matrix

MG) =1[Ay) ieln]; jeln—1]

where A;; denotes the the number of paths of length j that start at the vertex v; of G.
In spite of initial hopes, the matrix does not identify graphs up to isomorphism. As
Dobrynin and Mel’nikov [DoMe02] notice, “mathematical investigations of this matrix
deal with finding a pair of non-isomorphic graphs having some specified properties and
such that both graphs have the same path layer matrix.”

Backtracking

The refinement technique is essential in applying the backtracking algorithmic strategy.

DEFINITIONS

D17: A node of a backtracking tree is labeled with quadruples (G, 71; G2, ma), where
m and my are stable colorings of the respective graphs 1 and (5, for which a color-
preserving isomorphism is suspected.

D18: The root of the tree is labeled with (G, 7y; G2, 79), where n{ and 7§ are sta-
bilizations of the trivial colorings of the respective graphs.

D19: For a non-leaf node (i1, m1; G2, m2), a child-node is constructed by selecting
a vertex, called a pivot-vertex, in a non-singleton color class of 71, and a vertex in
the corresponding color class of w2, then making these vertices corresponding singleton
classes (fizing the vertices) of the new colorings. The stabilization of the new colorings
completes the generation of a child-node. If m is the size of the selected color-class,
then m children-nodes are created.

D20: Let C be a non-singleton color class of a coloring 7, let x € C'| and let p be the
stabilization of the coloring obtained from 7 by replacing C' with two color classes: {z}
and C' — z. We say that fixing x shatters C, if every color class C’ of p which is a
subset of C'is either a singleton, or 1 < |C']| < |C/2.

FACTS

A remarkable feature of ISO is that backtracking together with refining is often efficient
in establishing non-isomorphism or in constructing an isomorphism between two graphs.
A beautiful example of the efficiency of the backtracking algorithm fused with refining
is given by Miller.

F7: ([Mi78], [Mi79]) Isomorphism testing of two projective planes can be done in
O(n'°8l°8n) time.

The cornerstone of Miller’s algorithm is a classical theorem of Bruck.



F8: ([Brb5]) Let ® be a proper sub-plane of a finite projective plane ¥, and let the
orders of ® and ¥ be m and n, respectively. Then either m? < n, or m?> + m < n.

The efficiency of the reduction step depends on how fixing a pivot-vertex and stabilizing
the resulting coloring splits the color classes of the current coloring.

F9: If for every non-leaf node of the backtracking tree, fixing the pivot-vertex shatters
every non-singleton color class, then the height of the backtracking tree is O(logn),
where n is the vertex number of the graphs in question, and the running time of the
algorithm is O(n'°8").

The example of disconnected graphs show that for some graphs, fixing no pivot-vertex
shatters all color classes. A more complicated series of examples is based on the notion
of a section of a stable coloring (see [CoGo84], [Go83]).

2.2.3 Practical Graph Isomorphism

FACT

F10: Each of the following classes of graphs admits a polynomial algorithm for iso-
morphism testing:

1. rooted trees (by Edmonds — see [AHU74]);

2. planar graphs (by Hopcroft and Wong [HoWoT74]; and by Fonten [Fo76]);
3. interval graphs (by Lueker and Booth [LuBo79]);

4. circular graph (by Hsu [Hs95]);
5

. graphs with bounded genus (by Miller [Mi80], by Filotti and Mayer [FiMa80],
and by Grohe [Gr00]);

graphs with bounded vertex degree (by Luks [Lu82]);

(@]

7. graphs whose adjacency matrices have bounded eigenvalue multiplicity (by
Babai, Grigoryev, and Mount [BaGrMo82]); and

8. graphs of bounded tree-width (by Bodlaender [Bo88]).

REMARKS

R2: Efficient implementation of the Weisfeiler-Leman algorithm (a generalization of
refining) can be found in [Ba97].

R3: Practical graph isomorphism is successfully provided by the program nauty, de-
veloped by Brendan D. McKay. Using nauty, one can compute sets of generators for
automorphism groups of directed and undirected graphs; nauty can also be used for
producing a canonical labeling of a graph.

R4: The program nauty is written in a portable subset of C and runs on a variety of
Unix/Linux systems.

R5: The web-site of the program nauty with a complete documentation can be found
at http://cs.anu.edu.au/~bdm/nauty.

R6: The background methodology is described in [Mc81], although the algorithm and
the implementation were significantly improved subsequently. The program nauty im-



plements the backtracking algorithmic strategy; the nodes of the backtracking tree
virtually built by the program (except for very simple cases, for which the tree is ex-
plicitly generated) are stable colorings 7 of a given graph G, with the associated sets of
generators of the automorphism groups of the colored graph.

R7: The size of the graphs that can be considered by the program nauty is 2'° — 1 =
32765, unless BIGNAUTY is defined, in which case the absolute size of the graph
order is 22 — 1 = 16777213. Well-designed data structures, efficient implementations,
and a number of additional options fine-tune the performance of nauty, making this
remarkable software system a highly useful tool for research and applications.

2.2.4 Group-Theoretic Approach

The group-theoretic approach (see [WeLe68], [We79], [Ba79], [FuHoLu80], [Lu82],
[BaLu83]) reduces ISO to the color automorphism problem, CAP.

DEFINITIONS

D21: The color automorphism problem (abbr. CAP) is to find a set of generators
for the subgroup of color-preserving permutations of a permutation group P acting on
a colored set X.

FACTS

By itself the group-theoretic reformulation of IS0 in Fact 11 does not yield efficient
isomorphism testing. A fundamental discovery of [Ba79] and [Lu82] was that for many
classes of graphs, Aut(G) is contained in a direct product of small groups. This led
to a polynomial-time probabilistic algorithm for computing the automorphism group
for colored graphs with bounded color classes, and to the remarkable polynomial-time
isomorphism test by Luks [Lu82] for graphs with bounded degree. To give the flavor of
Luks’s technique, we outline his algorithm for 3-regular graphs.

F11: (Mathon [Ma79]) Given an n-vertex graph G, define X to be the set of all vertex
pairs (z,y) in G, each colored red or blue depending on whether (x,y) is an edge. Then,
I50 is equivalent to the problem of finding a set of generators of Aut((G), as a subgroup
of the complete symmetric group X, acting on the set X.

NOTATION: Let Aut.(G) denote the subgroup of automorphisms of a graph G that fix
edge e.

F12: (Luks[82]) If there is a polynomial algorithm that outputs a set of generators
for the subgroup Aut.(G) corresponding to an arbitrary edge of a connected 3-regular
graph, then there i1s a polynomial algorithm that determines if there 1s an isomorphism
between any two 3-regular graphs G and G.

NOTATION: For a connected 3-regular graph G and for e € E(G), let G, (for each r > 0)
denote the induced subgraph on the vertices in the union of the set of paths of length »
that contain e. (Then for each » > 0, Aut.(G,) is the group of automorphisms of G,
that fix e.)

F13: There exists a number r > 0 such that Aut.(G,41) = Aut.(G,) and such that
Aut.(G,) = Aut.(G).



NOTATION: We observe that for every number ¢ > 1, the restriction of an automorphism
o € Aut.(Git1) to the vertices of G, is an automorphism in Aut.(G,). The restriction
operator Aute(Gry1) — Aut.(G,) is denoted by m,.

F14: There is a polynomial algorithm that finds a set of generators for the kernel of
the homomorphism =, i.e.; the group of automorphisms in Aut.(Gry1) that fix the
vertices of the graph G,.

F15: There is a polynomial algorithm that finds a set of generators for the subgroup
mr (Aut. (Grqq1) of automorphisms in Aut.(G,) that can be extended to automorphisms
in Aut.(Gry1).

F16: [GHLSW8T7] There is an O(n®logn) time algorithm for ISO on degree-three
graphs.

Interestingly, it was possible to extend this technique to develop fast, yet not sub-
exponential, algorithms for the canonical numbering of graphs.

REMARKS

R8: The proofs of Fact 13 and Fact 14 are at the heart of Luks’s technique.

R9: The isomorphism testing algorithm for 3-regular graphs given in Fact 16 is the
fastest known at this time.

R10: A paper presented at STOC’83 ([BaLu83]) contains a brief description of an
algorithm that constructs a canonical numbering in O(exp(n'/2+°()) time.

2.2.5 Complexity

Testing two graphs for isomorphism is not known to be NP-complete, nor to be
polynomial. Tt follows from Ladner’s theorem [La75] that if P # NP, then the class
NPI = NP — P of problems with intermediate complexity is not empty. 150 is a prime
candidate for an intermediate computational status (see [GaJoT9], [K693]).

DEFINITION

D22: An isomorphism-complete problem is a problem that is polynomially equiv-
alent to 150.

FACTS
The uncertain computational status of ISO prompted the search for isomorphism-
complete problems (see [AHUT4, Bs94, Bo78, CoCo78, Ma79, HaP1St82, Lu&1]).
F17: The list of isomorphism-complete problems includes the following:
1. bipartite graph isomorphism;
2. regular graph isomorphisms;

3. complement graph isomorphism (given two graphs, determine if one is isomor-
phism to the complement to the other);

4. computing the number of isomorphic mappings between two given graphs;



5. automorphism with restriction (given a graph G and a vertex v), determine if

there is ¢ € Aut(G), for which ¢(v) # v);
6. automorphism orbits (determine the orbits of Aut(G));
7. automorphism generators (determine a set of generators for Aut(G));

8. determine if a set of n graphs of order n — 1 represent a collection of n — 1-
subgraphs of a graph;

9. the rooted directed acyclic graphs isomorphism,;

10. the term equality problem (given two terms with functions that are commu-
tative, associative, or both, and commutative variables, determine if the two
terms are equal).

F18: /SO € NP. (A deterministic polynomial procedure checks whether a given
one-to-one mapping ¢ : V3 — V4 is an isomorphism.)

F19: (Klivans and van Melkebeek [KIMe02]) There is a sub-exponential proof for
testing membership in co-150, unless the polynomial-time hierarchy collapses.

REMARKS

R11: One of the reasons that ISO is expected to be of intermediate complexity is
that the structure of co-150, the Graph Non-isomorphism Problem, is different from
that of the complements of problems known to be NP-complete. Fact 19 is regarded as
important evidence for a special computational status of 150.

R12: It is widely believed that the polynomial-time hierarchy, introduced by A. Meyer
and L. Stockmeyer ([MeSt72], [St76]), does not collapse.
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Introduction

In the first volume of the Journal of Graph Theory (1977), the journal editors char-
acterized the Reconstruction Conjecture as “the foremost currently unsolved problem
in Graph Theory”. Although 25 years have passed, we are still nowhere near a complete
solution of this problem. We hope here to provide a panoramic view of the present state
of knowledge on the Reconstruction Problem.

Throughout this section, graphs are assumed to be simple.

2.3.1 Two Reconstruction Conjectures

Some classical problems in mathematics are of the following type: if the invariant
S’ is associated with the given structure S, does S’ determine .S uniquely? In graph
theory we ask what knowledge, short of full incidence relations, is sufficient to determine
the graph completely. We know, for instance, that neither the chromatic polynomial nor
the spectrum are enough. The best known open problem of this type in graph theory
is the Reconstruction Problem.

Decks and Edge-Decks

DEFINITIONS

D1: Let G be a graph on n vertices. For any vertex v of (G, the vertex-deleted
subgraph G — v is obtained by removing v and all edges incident to v. For any edge e,
the edge-deleted subgraph G — e, is obtained by deleting edge e.

D2: The deck of a graph G, denoted D(G), is the collection of all vertex-deleted sub-
graphs. The edge-deck, denoted ED(G), is the collection of all edge-deleted subgraphs
of G.

The graphs in the deck are unlabelled. If G contains isomorphic vertex-deleted sub-
graphs, then such subgraphs are repeated in D(G). The same holds for the edge-deck.



Therefore, the deck and the edge-deck are multisets, rather than sets, of isomorphism
types of graphs.

NOTATION: If A is a subset of vertices of a graph G, then G — A denotes the graph
obtained from G by deleting all vertices in A and every edge incident to at least one of
them. If B is a subset of edges of GG, then G — B denotes the subgraph of G obtained
by deleting all the edges in B.

TERMINOLOGY NOTE: In some sections of the Handbook, the adjectives used to describe
the subgraphs in Definition 1 are vertez-deletion and edge-deletion.

EXAMPLE

E1l: Figure 2.3.1 shows an example of a graph and its deck.

Figure 2.3.1 A graph and its deck.

Reconstructibility

Two important surveys [BoHe77], [Na78] give the early state of knowledge on the Re-
construction Problem, together with a complete bibliographic list. Since then, a number
of survey or expository articles have been published [EI88], [Ma88], [La87], [Bo91]. The
monograph [LaSc03] contains four chapters on the reconstruction problem.

DEFINITIONS

D3: Any graph H with the same deck as G is called a reconstruction of G. If every
reconstruction of G is isomorphic to GG then G is said to be reconstructible.

D4: An edge-reconstruction of (G is a graph which has the same edge-deck as G,
and the graph G is said to be edge-reconstructible if every edge-reconstruction of ¢
1s isomorphic to it.

CONJECTURES

Suppose that G and H are graphs such that D(H) = D(G). Our concern is whether H
must be isomorphic to G. We have a similar concern for the edge-deck invariant.

The Reconstruction Conjecture [Keb7, Ul60]: Every graph with at least three ver-
tices is reconstructible.

The Edge-Reconstruction Conjecture [Ha64]: Every graph on at least four edges
15 edge-reconstructible.

In principle, given a deck D(G) of order n, one can consider all graphs on n vertices
to check which graphs have the given deck. The reconstructibility question is one of
uniqueness, that is, whether this search will find only one graph with the given deck.



EXAMPLES

E2: The complete graph K5 not reconstructible, because the graph 2K, consisting of
two isolated vertices is a reconstruction of (7, yet not isomorphic to G. According to
the Reconstruction Conjecture, Ko and 2K; are the only nonreconstructible graphs.

E3: The graph ¢ = K3z UEK; is not edge-reconstructible because, if the graph /i 3U
(k — 1)K is an edge-reconstruction of D(G) that is not isomorphic to it. Also, 2K is
not edge-reconstructible because if H = P3UK; (where Ps is the path on three vertices),
then ED(G) = ED(H), but G # H. According to the Edge-Reconstruction Conjecture,
these are the only graphs that are not edge-reconstructible.

Relationship between Reconstruction and Edge-Reconstruction

Intuition seems to suggest that it is easier to reconstruct a graph from its edge-deck
than from its deck; there are generally more graphs in the edge-deck, and edge-deleted
subgraphs are generally more nearly like the original graph than vertex-deleted sub-
graphs. Indeed, Fact 1 implies that if the Reconstruction Conjecture is true for graphs
without isolated vertices, then so is the Edge-Reconstruction Conjecture. Fact 2 shows
that the problem of edge-reconstruction is a special case of reconstruction.

FACTS

F1: (Greenwell’s Theorem) [Gr71] Let GG be a graph without isolated vertices. The
deck of GG is edge-reconstructible, that is, D(G) is uniquely determined from ED(G).
Therefore, if G is reconstructible, then it is also edge-reconstructible.

F2: (Hemminger’s Theorem) [He69] A graph is edge-reconstructible if and only if its
line graph is reconstructible and is not Kj.

REMARKS

R1: We tacitly assume henceforth, unless otherwise stated, that any graph to be
reconstructed has no isolated vertices.

R2: The Edge-Reconstruction Problem holds its own considerable independent inter-
est, because several results known in edge-reconstruction have not yet been achieved
for vertex-reconstruction, and some elegant proof techniques have been developed for
edge-reconstruction. We consider these techniques in some detail in a later section.

Reconstruction and Graph Symmetries

At the heart of the difficulty of reconstructing a graph G from its deck is the symmetry
of GG and of the subgraphs in its deck. Suppose, for illustration, that the vertices of GG are
labelled 1,...,n and that these labels are preserved on every vertex-deleted subgraph.
Then, clearly, the graph G can be uniquely reconstructed from any three subgraphs. The
labelings remove all symmetries of G and its subgraphs, and therefore all ambiguities of
how these subgraphs are embedded inside G. A later subsection brings out more clearly
the role of the automorphism of GG in the edge-reconstruction of G.

DEFINITION

D5: Let k be a fixed but arbitrary integer. Then the graph G is said to have property
Ay if, whenever A and B are distinct k-sets of vertices of G, the graphs G— A and G— B



are not isomorphic. In other words, if G has n vertices, then any two subgraphs of G
induced by different sets of n — k vertices are not 1somorphic.

FACTS

F3: If G has property Ag41, then it has property Ay, and if it has property A, then
its automorphism group is trivial.

F4: [Ko7l, Mii76, Bo90] For a fixed k, almost every graph has property Ag, meaning
that the proportion of labeled graphs on n vertices that have this property tends to 1
as n goes to oco.

F5: [My88, Bo90] If a graph GG has property As, then it can be reconstructed uniquely
from any three subgraphs in its deck.

REMARK

R3: Fact 5 provides insight into the Reconstruction Problem. Let G —u, G —v,G—w
be any three subgraphs from the deck of (G. Since G also has property As, we can
identify v in G —u and u in G — v as the only vertices which give G —u—v ~ G —v—u.
Also, by property As, there is a unique isomorphism from G —u — v to G — v — u.
This isomorphism labels the two graphs uniquely, and we have the situation of a labeled
graph which we described above. By comparing the two graphs G — u, G — v we can
then clearly put the vertex u back in GG — u and join it to its neighbors in G. The only
uncertainty is whether u is adjacent to v. But this can be resolved by repeating the
above with G — u and G — w instead of G — v.

2.3.2 Reconstructible Parameters and Classes

Reconstructible Parameters

DEFINITION

D6: A reconstructible (or edge-reconstructible) graph parameter is a parame-
ter P such that, for any graph G with P = p, any reconstruction (or edge-reconstruction)
of (G also has parameter value p.

NOTATION: Let H and G be two graphs. Then (fl) denotes the number of subgraphs of
G that are isomorphic to H.

FACTS

Perhaps the single most useful result in reconstruction has proven to be Kelly’s Lemma,
Fact 11.

F6: The number of vertices and the number of edges are both reconstructible and
edge-reconstructible (see [LaSc03]).

F7: The degree sequence is reconstructible and edge-reconstructible. (See [Bo91,

LaSc03].)

F8: Given a graph G — v from the deck of GG, the degrees in G of the missing vertex
v and of its neighbors are reconstructible (see [LaSc03]).



F9: For graphs without isolated vertices, a parameter is edge-reconstructible if it is
reconstructible, by Greenwell’s Theorem.

F10: Given a graph G — e in the edge-deck of (G, the degrees in G of the vertices with
which the missing edge e 1s incident is edge-reconstructible.

F11: (Kelly’s Lemma) [Ke57] Let G and H be graphs with GG having more vertices
than H. Then (fl) is reconstructible from D(G). Similarly, if G has at least as many

vertices as H and strictly more edges than H, then (fl) is reconstructible from £D(G).

Reconstructible Classes

When we say that a class C of graphs is “reconstructible”, one is only given the deck or
the edge-deck of a graph, and not the information that the graph to be reconstructed
isin C. It must first be first determined from the deck alone that the graph is in C, and
then proved, by using this derived piece of information, that G is reconstructible. The
following is a more exact definition of these two stages.

DEFINITIONS

D7: A class C of graphs is said to be recognizable (or edge-recognizable) if for any
graph G € C, any reconstruction (or edge-reconstruction) of & is also in C. Equivalently,
C is recognizable (or edge-recognizable) if it can be determined from D(G) (from ED(G))
whether G 1s in C.

D8: A graph G € C is said to be weakly reconstructible (or weakly edge-
reconstructible) if any reconstruction (or edge-reconstruction) of G that is also in
the class C is isomorphic to . Equivalently, G is weakly reconstructible (or weakly
edge-reconstructible) if, with the extra information that GG is in C, it can be determined
uniquely from the deck (or edge-deck).

FACTS

The two-step process was essential in the proofs of reconstructibility of nearly all of the
following classes. (Recall also that reconstructible graphs without isolated vertices are
reconstructible are edge-reconstructible, by Greenwell’s Theorem.)

F12: Regular graphs are reconstructible (see [LaSc03]).
F13: Disconnected graphs are reconstructible (see [LaSc03]).
F14: [Ke57] Trees are reconstructible.

F15: [Bo69b] Separable graphs (that is, graphs with connectivity 1) without vertices
of degree 1 are reconstructible.

F16: [Ya88] The reconstruction conjecture is true if all 2-connected graphs are recon-
structible.

F17: [Mc77] A computer search has shown that all graphs on nine or fewer vertices
are reconstructible.

F18: [FiMa78, FiLa81, La81] Maximal planar graphs are reconstructible.

F19: [Gi76] Outerplanar graphs are reconstructible.



F20: [GoMc81] If all but at most one eigenvalue of (¢ is simple and the corresponding
eigenvectors are not orthogonal to the all-1’s vector, then G is reconstructible. In
particular, if G and its complement share no eigenvalue, then G is reconstructible.

F21: [Yu82] If there exists a subgraph G — v of G none of whose eigenvectors is
orthogonal to the all-1’s vector, then G is reconstructible.

F22: [Fa94] Planar graphs with minimum degree at least 3 are edge-reconstructible.

F23: [Zh98a, Zh98b] Any graph of minimum degree 4 that triangulates a surface is
edge-reconstructible. Any graph that triangulates a surface of characteristic at least 0
is edge-reconstructible. A graph G that triangulates a surface X of characteristic x(X)
is edge-reconstructible if |V(G)| > —43x(Z).

F24: [FaWuWa0l] Series parallel networks (that is, 2-connected graphs without a
subdivision of K4) are edge-reconstructible.

F25: [ChT71] If a graph has property A, then it is reconstructible.
F26: [[EIPyXi88] Claw-free graphs are edge-reconstructible.

F27: [MyEIHo87] Bidegreed graphs are edge-reconstructible.

REMARKS

R4: A claw-free graph is one that has no induced subgraph isomorphic to K; 3. This
result made essential use of Nash-Williams’ Lemma, which we shall discuss below.

R5: Bidegreed graphs are graphs whose vertices can have only one of two possible
degrees. (The degrees have to be consecutive numbers, else edge-reconstruction is triv-
ial.) The next step would be edge-reconstruction of tridegreed graphs. (Again, if the
three degrees are not consecutive, then edge-reconstruction is easy.) However, even for
degrees 1, 2, and 3, this seems extremely difficult to tackle [Sc84].

R6: [BoHe77] suggested the problems of reconstructing and in edge-reconstructing
bipartite graphs. No progress has been achieved to date.

R7: The proofs of several of the above results involved long arguments very specific
to the class of graphs under consideration, although in some cases common techniques
began to emerge. Their proofs use special properties of such classes, and often new
properties have to be unearthed. §2.3.4 and §2.3.5 present more general results, that
are less restricted to particular classes of graphs.

2.3.3 Reconstructing from a Partial Deck

The proofs of most of the results above use much less information than the full deck
or edge-deck. In particular, trees have been shown to be reconstructible by deleting
only their endvertices (vertices of degree 1) [HaPa66], or only their peripheral vertices
(vertices at maximum distance from the center of the tree) [Bo69al.



Endvertex-Reconstruction

DEFINITION

D9: The endvertex-deck of a graph G is the collection of graphs G —v for all vertices
v with degree 1in G. A graph (G is endvertex-reconstructible if it is uniquely determined
by its endvertex-deck.

FACTS
F28: [HaPa66] Trees are endvertex-reconstructible.
F29: [Br71] For every positive integer k, there exists a graph with &k endvertices that

1s not endvertex-reconstructible.

A result in §2.3.5 indicates that the proportion of endvertices in a graph is what deter-
mines its endvertex-reconstructibility.

Reconstruction Numbers

Again noting that not all graphs in the deck are usually needed for reconstruction,
Harary and Plantholt [HaPa85] introduced the definition of reconstruction numbers.

DEFINITIONS

D10: The reconstruction number of a graph G, denoted by rn(G), is the least
number of subgraphs in the deck of G that guarantees that (G is uniquely determined.
The edge-reconstruction number, denoted by ern((), is analogously defined.

D11: Let C be a class of graphs. The class reconstruction number of a graph ¢
in C, denoted by Crn((), is the minimum number of subgraphs in the deck of G that,
together with the information that GG i1s in C, guarantees that ' is uniquely determined.
The class edge-reconstruction number, denoted by Cern((), is analogously defined.

FACTS

Facts 31 and 32 imply that there is no nonconnected graph with ¢ vertices in each
component and reconstruction number equal to ¢ + 1. They also raise the natural
question of investigating the gap between 3 and ¢+ 1 for the reconstruction number of
nonconnected graphs.

F30: [My88, Bo90] Almost every graph has reconstruction number equal to 3.

F31: [My90] A nonconnected graph with components not all isomorphic has recon-
struction number 3. If all components are isomorphic and have ¢ vertices each, then the
reconstruction number can be equal to ¢ + 2.

F32: [AsLa02] If the reconstruction number of a nonconnected graph is at least ¢+ 1
then GG must consist of copies of K.

F33: [BaBaHo87] If C is the class of total graphs and G is in C, then Crn(G) equals 1.

F34: [My90] The reconstruction number of trees is 3.



F35: [HaLa87]If C is the class of maximal planar graphs and G is maximal planar then
Crn(G) is at most 2. Those maximal planar graphs with class reconstruction number
equal to 1 are characterized.

F36: Almost every graph has edge-reconstruction number equal to 2 (see [LaSc03]).

F37: [Mo95] Let G be a nonconnected graph. If G contains a pair of nontrivial,
nonisomorphic components, then ern(G) is at most 3. If, furthermore, G is not a forest
and contains a component other than K3 and K 3, then ern(G) is at most 2. If the
components of (G are all isomorphic and contain k£ edges, then the edge-reconstruction
number can be as high as & + 2.

F38: [Mo93] Every tree T with at least 4 edges has ern(T) < 3.

CONJECTURE

Harary and Lauri [HaLa88]: If C is the class of trees and T is a tree, then Crn(7') is at
most 2.

FURTHER REMARKS

R8: Although some results indicate that edge-reconstruction is implied by reconstruc-
tion, no such relationship seems to exist between these rn(G) and ern(G). In fact,
the edge-reconstruction number for a graph could be greater than its reconstruction
number.

R9: We have seen that lack of symmetry favors reconstruction, but highly symmetric
graphs are regular, and thus trivially reconstructible. Reconstruction numbers seem
to put this in a better perspective because, while graphs with property As have recon-
struction number 3, it seems [My88] that regular graphs are the candidates for being the
graphs with the largest reconstruction number. The reconstruction number of regular
graphs is not yet known.

R10: Myrvold [My88] calls the reconstruction number the ally reconstruction number,
regarding it as the smallest number of graphs from the deck which a player A can give
to an ally B such that the ally can determine the graph uniquely. She also defines the
adversary reconstruction number to be one more than the largest number of subgraphs
which A can give an adversary B such that B cannot determine the graph uniquely.
Only partial results have been obtained on the adversary reconstruction number, which
seems even more difficult to tackle than the (ally) reconstruction number.

Set Reconstruction

Harary [Ha64] suggested another way of reconstructing, by the Set Reconstructure Con-
jecture.

CONJECTURE

Set Reconstruction Conjecture: Any graph G with n > 4 vertices can be recon-
structed uniquely from its set of nonisomorphic subgraphs G — v.

In other words, one is now only given one graph from each isomorphism class in the
deck, and one does not know how many times each given graph appears in the deck.



DEFINITION

D12: A graph or a parameter that can be determined from the respective set of non-
isomorphic subgraphs is said to be set reconstructible.

FACTS

F39: [Ma76] The number of edges and the set of degrees of a graph is set recon-
structible.

F40: [Ma76] For every graph in which no vertex of minimum degree lies on a triangle,
the degree sequence is set reconstructible.

F41: [Ma76] The degree sequence of any graph with minimum degree at most 3 is set
reconstructible.

F42: [Ma76] The connectivity of any graph is set reconstructible.
F43: [Ma76] Nonconnected graphs are set reconstructible.

F44: Separable graphs (that is, graphs with connectivity 1) without vertices of degree
1 are set reconstructible.

F45: [Ma70] Trees are set reconstructible.
F46: [Gi76] Outerplanar graphs are set reconstructible.

F47: [ArCoT74] Unicyclic graphs (that is, graphs having only one cycle) are set recon-
structible.

Set Edge-Reconstructibility

The idea of set reconstruction can also be applied to edge-reconstruction, that is, only
one copy of each isomorphism type in the edge-deck is given. When a parameter or a
class of graph is so reconstructible we say that it is set edge-reconstructible. We
highlight a few results in set edge-reconstructibility.

FACTS
F48: [Ma76] The degree sequence of a graph is set edge-reconstructible.

F49: [DeFaRa02] The degree sequence of a graph with at least four edges is uniquely
determined by the set of degree sequences of its edge-deleted subgraphs with one well-
described class of exceptions. Moreover, the multiset of the degree sequences of the
edge-deleted subgraphs determines the degree sequence of the graph.

F50: [AnDiVe96]If a graph GG with at least four edges has at most two non-isomorphic
edge-deleted subgraphs, then G is set edge-reconstructible.

Reconstruction from the Characteristic Polynomial Deck

Schwenk [Sc79] proposed the problem of reconstruction from the characteristic polyno-
mial of each subgraph in the deck, which we call the polynomial deck. He suggested
a weakening of the problem so that what is required is the reconstruction of the char-
acteristic polynomial of GG from its polynomial deck. This problem is still open, and we
here limit ourselves to presenting four results from the few that have been obtained.



FACTS

F51: [Sc79] The characteristic polynomial of any graph is reconstructible up to a
constant from the polynomial deck.

F52: If a subgraph in the deck of GG has a characteristic polynomial with repeated
roots, then the characteristic polynomial of GG is reconstructible from its polynomial

deck (see [LaSc03]).

F53: [CvLe98] The characteristic polynomial of a tree is reconstructible from its poly-
nomial deck.

F54: [Sc] If a graph of order n has at least n/3 vertices of degree 1 then its character-
istic polynomial 1s reconstructible from its polynomial deck.

Reconstructing from k-Vertex-Deleted Subgraphs

A k-vertex-deleted subgraph of GG is a subgraph obtained from G by deleting & of its
vertices and all edges incident to them. We shall have more to say about this mode of
reconstruction in Section 5 when we consider k-edge-deleted subgraphs. Here we limit
ourselves to one result.

FACT

F55: [Ta89] Let k > 3 be an integer. Then the degree sequences of all sufficiently large
graphs are determined by their k-vertex-deleted subgraphs. In particular; this result
is true for all graphs on at least f(k) vertices, where f(k) is a certain function that is
asymptotic to ke.

2.3.4 Tutte’s and Kocay’s Results

If Kelly’s Lemma held for all spanning subgraphs of G, then this would solve the
reconstruction problem. Tutte [Tu79] showed how Kelly’s Lemma can be extended to
certain classes of spanning subgraphs, which has had very important consequences. In
[Ko81], Kocay rederived Tutte’s results with easier proofs. Kocay’s method receives
fuller exposition in [Bo91] and [LaSc03].

Kocay’s Parameter
DEFINITION

D13: Let G be a graph and F = (Fy, Fa,..., Fx) a sequence of graphs (different
F; could be isomorphic). A cover of G by F is a sequence G = (G, Ga,...,Gy) of
subgraphs of G (not necessarily distinct) such that: (i) G; ~ F;, i = 1,...,k and
(il) G = U;G;. The number of covers of G by F is denoted by ¢(F, G).



FACTS [Tu79], [Ko81] (see also [Bo91], [LaSc02])

F56: Let (G be a graph and let F = (Fy, Fa, ..., Fi) be a sequence of graphs with each
|[V(F;| < |V(G)]. Let &(F,G) be the parameter defined by

> e(F,X) (i)

X

where the summation is taken over all isomorphism types X of graphs such that

|[V(X)| = |V(G)|. Then «(F,G) is reconstructible.
The following results are then obtained by defining a suitable choice for the F;.

F57: The number of 1-factors of (G is reconstructible.
F58: The number of spanning trees of GG is reconstructible.
F59: The number of Hamiltonian cycles of GG is reconstructible.

F60: The number of 2-connected spanning subgraphs of G with a specified number of
edges is reconstructible.

The Characteristic and the Chromatic Polynomials

DEFINITION

D14: An elementary graph is a graph in which every component is either an edge
or a cycle.

NOTATION: For any graph X, ¢(X) denotes the number of components of X and s(X)
the number of cycles.
FACTS

F61: [Sa64] (see also [Bi93], p.49) Let the characteristic polynomial of G' be
N+ N P+ a2+ ta,

Then each coefficient a; is given by

[ B3 G
=S (©)
X

where the summation extends over all isomorphism types X of elementary graphs on ¢
vertices.

F62: [Wh32] (see also [Bi93], p.77) Let the chromatic polynomial of G be
b +box’+ ...+ by

Then each coefficient b; is given by

b= 3 (—)E) ()Ci)

where the summation extends over all isomorphism types X of graphs on n vertices and
¢ components.



F63: [Tu79, Ko81] The characteristic polynomial is reconstructible. (See also [Bo91,
LaSc02].)

F64: [Tu79, Ko81] The chromatic polynomialis reconstructible. (See [Bo91, LaSc02].)

2.3.5 Lovasz’s Method; Nash-Williams’s Lemma

It is quite arguable that the deepest and most general results obtained in recon-
struction are those described in this section. Lovdsz [Lo72] showed that if a graph
has at least half the largest possible number of edges, then it is edge-reconstructible,
making a surprising and elementary use of the inclusion-exclusion principle. Using the
same method as Lovdsz, Miiller [M1i77] obtained a stronger conclusion. In a subsequent
survey paper (still applying the method introduced by Lovész), Nash-Williams [Na78]
proved a lemma from which Lovasz’s and Muller’s results follow. A more extended
exposition can be found in [EI88] or [Bo91] or [LaSc03].

The Nash-Williams Lemma

DEFINITIONS

D15: For simple graphs G and H, a monomorphism from G to H can be defined as
a bijection of their vertex sets, such that the endpoints of every edge of (G are mapped
to the endpoints of an edge of H.

NOTATION: The number of such monomorphisms G — H is denoted by [H]g.

D16: A monomorphism with forbidden edge-set X from G to H, where X C
E(G), is a bijection of their vertex sets such that the endpoints of every edge in F(G)—X
are mapped to the endpoints of an edge of H, but the endpoints of every edge in X are
mapped to a nonadjacent pair of vertices in H.

NOTATION: The number of such monomorphisms G — H with forbidden edge-set X is
denoted by [H]e\ x -
REMARK

R11: Notice that [H]g_x > [H]e\ x, even though both count monomorphisms from
G — X to H. To be counted in [H] x, a monomorphism must map every edge of X
to a non-edge of H. However, to be counted in [H]g_x, it can map edges in X either
to edges or non-edges of H.

FACTS

F65: [Lo72] Let G and H be graphs and X C F(G). Then

[Hlavx = Z (_1)|Y|[H]G—X+Y
YCX



F66: Nash-Williams’s Lemma [Na78] Let G and H be graphs and X C F(G), and
suppose that (G and H have the same edge-deck. Then

[H]e = |Aut(G)] + (D) ([H]ex = [Glayx)

(See [Bo91], [LaSc03].)

F67: (Corollary to Nash-Williams’s Lemma) (See [Bo91], [LaSc03].) Suppose that G,
H,and X are as in Nash-Williams’s Lemma, and that G 2 H. Then,

(i) if | X is odd, then [H]g\ x > 0;
(ii) if |X| is even, then [G]g\x > 0;

F68: [Lo72] Let G be a graph such that |E(G)| > (3)/2. Then G is

edge-reconstructible.

F69: [Mii77] Let G be a graph such that 21F(@I=1 > n! Then G is
edge-reconstructible.

F70: [Py90] A Hamiltonian graph with a sufficiently large number of vertices is
edge-reconstructible.

This last result is perhaps the most striking obtained by these methods.

Structures Other Than Graphs

To see the full generality of the methods above, we define a structure to be a triple
(D,T, E) where D is a finite set, T’ is a group of permutations acting on D, and ¥
is a subset of D. By edge-reconstruction of a structure, we mean that the subsets
E — z are given, up to ‘translation’ by the group I'. The question is whether E can be
reconstructed uniquely, again up to action by the group T'.

n

In edge-reconstruction for graphs, D would be the set of all possible (2) edges on n
vertices, E the edges of the n-vertex graph to be reconstructed, and I' the full symmetric
group with its induced action on the unordered, distinct pairs of vertices.

DEFINITION

D17: Instead of removing one edge at a time, suppose that k edges at a time are
removed. Let us call the resulting reconstruction problem k-edge-reconstruction.

FACTS

We now present some results obtained by viewing edge-reconstruction in this more
general setting. The first result, although a straightforward application of the Nash-
Williams Lemma to structures, leads to asking what is the minimum proportion of
endvertices required to guarantee endvertex-reconstructibility. An extended treatment
of edge-reconstruction seen in this light appears in [Bo91, LaSc03].

F71: [LaSc03] Let H be a graph with minimum degree 2, and let G be obtained from
H by adding k endvertices such that no two have a common neighbor. Then G is
endvertex-reconstructible if either k > V|H|/2 or 2871 > Aut(H).

F72: [AlCaKrRo89] Let (D, T, F) be a structure such that 2/F1=% > |T'|. Then the
structure is k-edge-reconstructible.



Radcliffe and Scott [RaSc98] consider the reconstruction of a subset of the cyclic group
Z,, or of the reals, R, up to translation from the collection of its subsets of a given size,
also up to translation.

F73: [RaSc98] Suppose that p is prime. Then every subset of Z, is reconstructible
from the collection of its 3-subsets.

F74: [RaSc98] For arbitrary n, almost all subsets of 7, are reconstructible from the
collections of their 3-subsets.

F75: [RaSc98] For any n, every subset of 7, is reconstructible from its 9a(n)-subsets,
where «(n) is the number of distinct prime factors of n.

F76: [Rasc99] A locally finite subset of R (that is, a subset which contains only finitely
many translates of any given finite set of size at least 2) is reconstructible from its
3-subsets.

F77: [Ra02] Consider two such subsets of R? to be isomorphic if one can be trans-
formed into the other by a translation or a rotation by a multiple of 90 degrees. Then
every finite subset A of the plane R? is uniquely determined by at most 5 of its subsets
of cardinality |A| — 1, given up to isomorphism; that is, in the terminology of graph
reconstruction, the subset A has reconstruction number 5.

The paper [AlICaKrRo89] should be studied carefully by anyone interested in extending
the reconstruction of structures in the direction of k-edge-reconstruction.

The Reconstruction Index of Groups

Looking at reconstruction of structures (D, T', ) has led some authors to focus attention
more directly on the permutation group T

DEFINITION

D18: The reconstruction index p(T', D) of the permutation group I' acting on D
is the smallest number ¢ such that for any subset F C D with |E| > ¢, the structure
(D, T, E) is edge-reconstructible.

FACTS

F78: The Edge-Reconstruction Conjecture can be rephrased: if Y = {1,2,...,n}, if
D is the set of unordered, distinct pairs of Y, and if 57(12) is the symmetric group of YV
acting on these pairs, then p(Sr(Lz),D) =4.

F79: [Mn98] The reconstruction index of an abelian group is 4 and the reconstruction
index of hamiltonian groups is 5.

For additional results on the reconstruction index of groups, see [Ca96, Ma96, Mn87,

Mn92, Mn95].

2.3.6 Digraphs

The reconstruction conjecture for digraphs is false. Ramachandran has noted that
all non-reconstructible digraphs discovered thus far would be reconstructible if, with



every D — v, one is also given the in-degree and the out-degree in digraph D of the
missing vertex v.

DEFINITION

D19: [Ra97] A digraph D is said to be N-reconstructibleif it is uniquely determined
by the triples (D — v;, deg;, (vi), degoyi (v;)), for all vertices v; of D.

FACTS

F80: [St77, Ko85] There exists an infinite family of tournaments that are not recon-
structible.

F81: [HaPa67] Tournaments on at least five vertices that are not strongly connected
are reconstructible. (See also [BoHe77].)

Some additional positive results on the reconstructibility of tournaments can be found

in [DeGu90, Gu96, Vig9].

CONJECTURE

The N-Reconstruction Conjecture for Digraphs (Ramachandran): Every digraph
1s N -reconstructible.

2.3.7 lllegitimate Decks

DEFINITIONS

D20: A collection of graphs G1,G, ..., G, each on n — 1 vertices 1s said to be an
illegitimate deck if there is no graph G having the given collection as deck.

D21: The illegitimate deck problemis to determine whether such a given collection
of graphs is indeed the deck of some graph.

FACTS

F82: [Ma82] Determining whether a given collection of graphs is an illegitimate deck
is at least as hard as the isomorphism problem.

F83: [HaPISt82] The graph isomorphism problem is polynomially equivalent to the
illegitimate deck problem for regular graphs.

More information about the relationship between the computational complexities of
the illegitimate deck problem and the graph isomorphism problem can be found in

[K6ScTo93, KrHe94].
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Introduction

The core idea of recursively constructed graphs is captured in Definition 1, but the
substantial literature on the subject has motivated a considerable breadth and variety
of notational distinctions.

NOTATION: All graphs in this section are simple, and an edge with endpoints  and y is
denoted (z,y).

DEFINITIONS

D1: A recursively constructed graph class is defined by a set (usually finite) of
primitive or base graphs, in addition to one or more operations that compose larger
graphs from smaller subgraphs. Each operation involves either fusing specific vertices
from each subgraph or adding new edges between specific vertices from each subgraph.

D2: Each graph in a recursive class has a corresponding decomposition tree that
shows how to build it from base graphs.

REMARK

R1: Graphs in these classes possess a modular structure, so fast algorithms can often
be designed to solve hard problems restricted to these classes. The algorithms typically
proceed by solving the desired problem on the base graphs, then employ dynamic pro-
gramming to combine solutions for small subgraphs into a solution for a larger graph.
The construction of these algorithms is the subject of Section 10.4.

2.4.1 Some Parameterized Families of Graph Classes

Trees
DEFINITION

D3: The graph with a single vertex r (and no edges) is a tree with root r (the sole
base graph). Let (G, r) denote a tree with root r. Then (Gp,r1) @ (Ga,72) is a tree
formed by taking the disjoint union of G; and G and adding an edge (r1, 72). The root
of this new tree 1s r = ry.



TERMINOLOGY NOTE: Technically, the pairs (G, r) in Definition 3 denote rooted trees.
However, the specification of distinguished vertices 71 and 72 (and hence r) is relevant
here only as a vehicle in the recursive construction.

EXAMPLE

E1l: Figure 2.4.1 illustrates the recursive construction of trees.

RN

Figure 2.4.1 Recursive construction of a tree.

Series-Parallel Graphs

From a non-recursive perspective, a graph is series-parallel if it has no subgraph home-
omorphic to K4 [Du65]. The graph on the left of Figure 2.4.2 is not series-parallel;
the offending subgraph is identified by bold edges. Removal of two edges, as indicated,
yields the graph to the right which is series-parallel.

B 1

Figure 2.4.2 Non-series-parallel and series-parallel graphs.

Following, we give a recursive definition of this class.

DEFINITION
D4: A series-parallel graph with distinguished terminals! and r is denoted (G, !, r)
and is defined recursively as follows:
e The graph consisting of a single edge (v1, v2) is a series-parallel graph (G, !, r) with
{ =v; and r = vs.
o A series operation (G1,l1,71) ®s (Ga,ls, r2) forms a series-parallel graph by iden-
tifying 7y with ls. The terminals of the new graph are {; and rs.
e A parallel operation (G1,l1,71) ©®, (G2,l2,73) forms a series-parallel graph by
identifying [; with [ and r; with 5. The terminals of the new graph are /3 and r;.
e A jackknife operation (G1,l1,71) ®; (Ga,ls, ry) forms a series-parallel graph by
identifying r1 with [5; the new terminals are {; and ry.

COMPUTATIONAL NOTE: The jackknife operation can also be specified where the new
terminals, after composition, are defined to be {1 and /5.

EXAMPLE

E2: The three operations defining series-parallel graphs are demonstrated in Figure
2.4.3. The pair-specific composition is on the left; the result is shown to the right.
Terminal vertices are circled and labeled.
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Figure 2.4.3 Composition operations for series-parallel graphs.

k-Trees and Partial k-Trees

DEFINITIONS

D5:  The k-vertex complete graph, Ky, is a k-tree. A k-tree with n+1 vertices (n > k)
is constructed from a k-tree on n vertices by adding a vertex adjacent to all vertices of
one of its K subgraphs, and only to those vertices.

D6: A partial k-tree is a subgraph of a k-tree.

TERMINOLOGY: In a given construction of a k-tree, the original Kj subgraph is referred
to as its basis.

D7: A graph is chordal (or triangulated) if it contains no induced cycles of length
greater than 3.

D8: A graph is perfect if every induced subgraph has chromatic number equal to the
size of 1ts maximum clique.

FACTS

F1: Trees are 1-trees, and forests are partial 1-trees.
F2: Series-parallel graphs are partial 2-trees.

F3: Any Kj subgraph of a k-tree can act as its basis.

F4: All k-trees are chordal graphs and, hence, perfect (because every chordal graph is
perfect).
EXAMPLES

E3: A 3-tree is shown on the left in Figure 2.4.4, and a partial 3-tree is shown to the
right.
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Figure 2.4.4 Construction of a 3-tree and a partial 3-tree.

Demonstrated by the graph to the left in Figure 2.4.4 above is the “creation” of a 3-tree
following a small number of composition operations starting from the basis given by an
initial K3 identified by vertex labels of 0. At each step, a new (consecutively labeled)
vertex is added. Observe that if edge e is eliminated from the graph on the right in
Figure 2.4.4, a partial 2-tree is created.

E4: The graph on the left in Figure 2.4.5 below is series-parallel; it is a subgraph (and
hence a partial 2-tree) of the 2-tree on the right. The dotted edges complete the 2-tree
where the construction is verified by the labels on the vertices that are interpreted just
as in the first note after Example 3.

Figure 2.4.5 A series-parallel graph and a 2-tree.

Halin Graphs
DEFINITION

D9: A Halin graph is a planar graph having the property that its edge set F can be
partitioned as £ = (T, C), where T' is a tree with no vertex of degree 2 and C'is a cycle
including only and all leaves of T'.

FACTS

F5: Halin graphs are contained in the class of partial-3 trees.

F6: The set of Halin graphs is not closed under the taking of subgraphs, 1.e., some
subgraphs of Halin graphs are not Halin graphs.
EXAMPLES

E5: A Halin graph is given in Figure 2.4.6 below, with the cycle edges drawn on the
outer face; their removal leaves a tree satisfying the stated degree stipulation.



Figure 2.4.6 A Halin graph.

E6: The graph GG in Figure 2.4.7 below is a 3-tree; vertex labels guide the construction
as before. The subgraph given in bold is a tree of an underlying Halin graph; the cycle
edges from G can be easily traced through the leaves of the specified tree.

0 0
Figure 2.4.7 Another Halin graph.

Bandwidth-i Graphs

DEFINITION
D10: A graph G(V,E) is a bandwidth-k graph if there exists a vertex labeling

h V= {1,2,...]V|} such that {u,v} € E = |h(u) — h(v)] < k. (Bandwidth is
discussed in §9.4.)

EXAMPLE

E7: A bandwidth-3 graph is shown to the left in Figure 2.4.8; displayed to the right
is a bandwidth-2 graph.

2 4
Figure 2.4.8 Bandwidth-3 and bandwidth-2 graphs.



Treewidth-k Graphs
The seminal works by Robertson and Seymour (cf., [RoSe86-a], [RoSe86-b], [RoSe91-a])

are commonly identified as being responsible for motivating the creation of the graph
classes in this section. Most notable is the concept of treewidth, which played a key role
in the authors” work on graph minors culminating, ultimately, in the proof of Wagner’s
conjecture, a topic addressed in §2.4.2.

DEFINITIONS
D11: A tree-decomposition of a graph G = (V, E) is a pair ({X; | { € I},T'), where
{X; | i € I} is a family of subsets of V and T is a tree with vertex set I such that

. Uz’eI X;=V

o for all edges (#,y) € E there is an element ¢ € [ with z,y € X;

o for all triples ¢, j, k € I if j is on the path from ¢ to k in 7', then X; () Xx C Xj.

D12: The width of a given tree-decomposition is measured as max ;¢r{|X;| — 1}.

D13: The treewidth of a graph G is the minimum width taken over all tree-
decompositions of G

D14: A graph G is a treewidth-k graph if it has treewidth no greater than k.

REMARK

R2: Trivially, every graph, (G, has a tree-decomposition that is defined by a single ver-
tex (representing G itself). On the other hand, we are interested in tree-decompositions
and, hence, their graphs, in which the X; are small (i.e., graphs with small treewidth).

EXAMPLE

E8: A sample tree-decomposition is shown in Figure 2.4.9. For the stated graph, G,
one family of suitable vertex sets can be given by: Xy = {vy,vq,v3}, Xo = {vs, v7,vs8},
X35 = {vs,vs, 07}, Xa = {vs,v5,v7}, X5 = {vs,va,v5}, and X = {vs5,v6,v7}. An ap-
propriate tree 7' is shown next and then on the right side of Figure 2.4.9, the relevant
subgraphs of GG induced by the stated pair ({X;},7T) are displayed. Moreover, the graph
G has treewidth 2; in fact, the graph is series-parallel.

T

V3
v3 / \ ./1"7
I vs
G vg Us U5 ve

Figure 2.4.9 A sample tree-decomposition.



Pathwidth-+ Graphs

DEFINITIONS
D15: A path-decomposition is a tree-decomposition whose tree is a path.

NOTATION: A path-decomposition is often denoted simply by a sequence of vertex sub-
sets of V' say {Xy, Xa,..., X}, listed in order defined by their position on the path.

D16: The width of a path-decomposition is max 1<;<:{|X;| — 1}.

D17: The pathwidth of a graph G is the smallest width taken over all path-
decompositions of G

D18: A pathwidth-k graph is a graph that has pathwidth no greater than k.

EXAMPLE

E9: A sample path-decomposition is shown in Figure 2.4.10. The vertex-sets X; and
the first edge occurrences are displayed below the corresponding vertices of T

U9

(23 (15}
v
G U4 5 (7
v vy
v
T 8

Xy Xy Xz Xy X5 Xe Xy Xg X9 Xyo X1 Xypo
[ @ @ @ L @ @ @ @ L @ @

vq uq U] U] Ugq Vg Uy Ug Uz Uy Ug Ug Um Ug Ug vg vg vg

[ ] I [ ) " I—. I—' *—a I—' I—. - [ ] [ ]
v ug av3 va vy evs v7 Vg VRe Vg e

HSI eV evs3 ®rd evs eve evVT VTe

Figure 2.4.10 A path-decomposition.

Branchwidth-i Graphs

DEFINITIONS

D19: A branch-decomposition of a graph G = (V, E) is a pair (7, f), where T is
a tree in which every non-leaf vertex has exactly three neighbors and f is a bijection
from the leaves of T to E.

D20: If the degree of every non-leaf vertex in T is at least 3, the pair (T, f) is called
a partial branch-decomposition.

D21: Let (7, f) be a branch decomposition of a graph G = (V| E). The order of an
edge e of T' is the number of vertices v in V such that there exist leaves [; and [y of T
residing in different components of 7' — e, where f(l1) and f(l2) are both incident on v.

D22: The width of a branch decomposition (7, f) is the maximum order of the edges
of T.



D23: The branchwidth of G is the minimum width taken over all branch-
decompositions of G

D24: A graph G is a branchwidth-k graph if it has branchwidth no greater than k.

FACTS

F7: [RoSe9l-a] A graph G is branchwidth-0 if and only if every component of G has
at most one edge.

F8: [RoSedl-a] A graph G is branchwidth-1 if and only if every component of G has
no more than one vertex with degree greater than or equal to 2.

F9: [RoSe91-a] A graph G is branchwidth-2 if and only if G has treewidth no greater
than 2.

EXAMPLE

E10: A branchwidth-2 graph is shown on the left in Figure 2.4.11 (edges are num-
bered); its branch-decomposition is given to the right.

Figure 2.4.11 Branchwidth-2 graph and its branch-decomposition.

k-Terminal Graphs
DEFINITIONS

D25: A k-terminal graph G = (V,T, E) has a vertex set V, an edge set F, and a
set of distinguished terminals T' = {t1,t2, ..., {7} CV, where |T| < k.

D26: A k-terminal recursively structured class C'(B, R) is specified by a set B
of base graphs and a finite rule set R = {fi, fo,..., fn}, where each f; is a recursive
compostition operation.

EXAMPLE

E11: A construction for a 2-terminal graph is shown in Figure 2.4.12. Vertices are
labeled 1n order to clarify how constituent subgraphs compose; terminals are denoted
by doubly circled vertices.
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Figure 2.4.12 Recursive construction of a 2-terminal graph.

REMARKS

R3: Typically, for some k, B is the set of connected k-terminal graphs (V, T, E') with
V' = T. But each such base graph is trivially composed of individual edges, so it is
reasonable and hence convenient to simply use C'(R) to denote C(B, R), where B is a
singleton consisting only of edges (i.e., K»).

R4: The notion of composition typically permitted in the context of k-terminal
graphs, can be described in a more formal way. For 1 < i < m, let G; = (V;, T3, Ey),
such that Vq,...,V;, are mutually disjoint vertex sets. Let G = (V, T, E) as well. Then
a valid vertex mapping is a function f : Uj<;<,V; = V such that

e vertices from the same G; remain distinct:
v1 €Vi,va € Vi, fur) = flv2) = v1 = vs

e only (not necessarily all) terminals map to terminals:
veVi, flv) eT=veT;

e only terminals can merge:
v1 €Vij,vp € Viy,h o, fv1) = flwe) => v €5, 00 €15,
e edges are preserved:

(F)({v1,v2} € Ei) & {f(v1), f(v2)} € F

NOTATION: If f is a valid vertex mapping, the corresponding m-ary composition oper-
ation (denoted by f) is generally written f(Gy,...,Gp) = G.

Cographs
DEFINITION
D27: A cograph is defined recursively as follows:
e A graph with a single vertex is a cograph.
e If G; and (G5 are cographs, then the disjoint union G1 U G5 is a cograph.

e If G; and G5 are cographs, then the cross-product (G; x G5 is a cograph, which 1is
formed by taking the union of GG; and G2 and adding all edges (v1, v2) where vy is
in G1 and vs 1s in (.

TERMINOLOGY: Cographs are also referred to as complement reducible graphs.



EXAMPLE

E12: A cograph construction is demonstrated in Figure 2.4.13. The relevant opera-
tions are signified at each node of the decomposition tree (left) for the graph G shown
on the right.

a , d

b e
[ ] [ ] L ] [ ] f
c d e f G

Figure 2.4.13 Cograph construction.

FACTS
F10: [CoLeBu81] The complement of any cograph is also a cograph.
F11: [CoLeBu81] All cographs are perfect.

Cliquewidth-k Graphs

The graph parameter cliqguewidth was introduced in [CoEnR093] and formed a seminal
concept in linking research in graph theory and logic.

DEFINITION
D28: Let [k] denote the set of integers {1,2,...,k}. A cliquewidth-k graph is
defined recursively as follows:
e Any graph G with V(G) = {v} and [(v) € [k] is a cliquewidth-k graph.
e If G4 and G5 are cliquewidth-k graphs and 4, j € [k], then
(1) the disjoint union Gy U G2 is a cliquewidth-k graph.
(2) the graph (G1)ix; is a cliquewidth-k graph, where (G1);x; is formed from G4
by adding all edges (v1,v2) such that {(v1) = ¢ and {(v2) = j.

(3) the graph (G1);-; is a cliquewidth-k graph, where (G1)i—; is formed from G4
by switching all vertices with label i to label j.

REMARK

R5: Definition 28 defines the class of cliquewidth-k graphs. The cliquewidth of a
graph G is the smallest value of k& such that G is a cliquewidth-k graph. A cliquewidth
decomposition for a graph is a rooted tree such that the root corresponds to G, each
leaf corresponds to a labeled, one-vertex graph, and each non-leaf node of the tree is
obtained by applying one of the operations U, 7 X j, or ¢ = j to its child or children.

TERMINOLOGY NOTE: In this section, the term clique refers to any complete subgraph
of the graph. In some other sections of this handbook, clique is defined to be a mazimal
subset of pairwise adjacent vertices of the graph.



TERMINOLOGY: Every tree is a treewidth-1 graph, so treewidth is a measure of how
much a graph varies from a tree. Similarly, every clique is a cliquewidth-2 graph, so
cliquewidth 1s a measure of how much a graph varies from a clique. This analogy forms
the basis for coining the term cliguewidth (cf. [CoOl00]).

EXAMPLE

E13: A cliquewidth-3 construction is given in Figure 2.4.14. As in Example 12, the
relevant operations are identified at each node of the decomposition tree (left) for the
graph G shown on the right.

[3 x 1]

[3 x 3] [3 x 2]
y T‘%\\.d
(2 = 1) i

[2 x 3] g(2) £(3)

a(l)  b(2)

G
Figure 2.4.14 A cliquewidth-3 construction.

k-NLC Graphs

DEFINITION

D29: Let [k] denote the set of integers {1,2,..., k} and let B denote a bipartite graph
on [k] x [k]. A k-NLC (node-label-controlled) graph is defined recursively as
follows:

e Any graph G with V(G) = {v} and I(v) € [k] is a k-NLC graph.

e If G4 and G2 are k-NLC graphs and ¢, j € [k], then the join Gy xg G5 is a k-NLC
graph, where GG x g (i3 is formed from G; U G by adding all edges (v1, v2) where
v1 € Vi, l(v1) = ¢ va € Va, l(v2) = j and (4,7) is an edge in Ep.

e The graph (G1);—; is a k-NLC graph, which is formed from G4 by switching all
vertices with label ¢ to label j.

EXAMPLE

E14: The graph in Figure 2.4.14is a 2-NLC graph. In Figure 2.4.15, the decomposition
tree has leaves corresponding to the vertices a, b, ¢, d, e, f, and g with starting labels
drawn from the set k = {1,2} as shown. Relevant operations are identified with the
internal nodes of the tree, i.e., (i = j) for label switching and (¢, §) indicating the specific
edge from Ep inducing the stated composition.
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Figure 2.4.15 A 2-NLC graph construction.

k-HB Graphs

Denoting “homogeneous balanced,” these graphs produce a modular decomposition
upon application of a certain decomposition algorithm.

DEFINITION

D30: k-HB (homogeneous balanced) graphs are graphs for which there is a
particular O(n**?)-time top-down decomposition algorithm that constructs a pseudo-
cliquewidth-(k + 2*) balanced decomposition.

REMARKS

R6: Top-down decomposition refers to a recognition algorithm that places a candidate
graph at the root of a tree, and then decomposes this graph into smaller subgraphs that
become its children in the tree, and so on recursively until reaching the leaves of the
tree.

R7: A pseudo-cliquewidth decomposition is simliar to a k-NLC decomposition, except
that the vertex labels used at one node in the tree are not enforced at other nodes.

R8: A balanced decomposition of an n-vertex graph i1s a decomposition tree that has

height O(lg n).

R9: The requirement that the decomposition must be balanced is more restrictive,
while simultaneously the pseudo-cliquewidth condition is less restrictive. This trade-off
yields the class of k-HB graphs. For more details on these matters, see [BoJoRaSp02].

R10: However, k-HB graphs are an ambiguously defined class due to the nondeter-
ministic nature of this decomposition algorithm. On the other hand, the decomposition
is guaranteed to succeed for every cliquewidth-k graph despite this nondeterminism, so
every cliquewidth-k graph is a k-HB graph.

2.4.2 Equivalences and Characterizations

Relationships between Recursive Classes

A number of equivalences serve to relate many of the recursive graph classes defined in
the previous subsection. Several of these are listed below. Unless a specific source is



cited, a good general and fairly comprehensive reference for Facts 12 through 19 (and
others) is [BrLeSp99].

FACTS

F12: A graph has treewidth at most % if and only if it is a partial k-tree.

F13: Every bandwidth-%£ graph is a pathwidth-k and thus a treewidth-k graph.

F14: The class of partial k-trees can be defined as a (k + 1)-terminal recursive graph
class (cf. [WiHe86], [Wi8T7]).

F15: 1-trees are trees in the usual sense and have treewidth 1.
F16: Trees are series-parallel graphs where only the jackknife operation is used.

F17: Series-parallel graphs in which only the series and parallel operations are used
are precisely the 2-terminal series-parallel graphs.

F18: Series-parallel and outerplanar graphs are partial 2-trees and have treewidth 2.

F19: Halin graphs are contained in the class of partial 3-trees; they are also defined
as a class of 3-terminal graphs by an appropriate choice of composition operations.

F20: [CoEnRo093] Cographs are precisely the cliquewidth-2 graphs.

F21: [CoOl00] Every treewidth-k graph is a cliquewidth-(2%+1 + 1) graph.

F22: [RoSe91-a] Every graph of branchwidth at most & has treewidth at most 34/2.

F23: [RoSe91-a] Every graph of treewidth at most k& has branchwidth at most & + 1.

]
F25: [Wa94] Every treewidth-k graph is a (28*! — 1)-NLC graph.
]

F26: [Wa94] Every cliquewidth-k graph is a k-NLC graph.

F27:

[
[
[
[
F24: [Wa94] Cographs are exactly the 1-NLC graphs.
[
[
[Wa94] Every k-NLC graph is a cliquewidth-2k graph.
[

F28: [BoJoRaSp02] Every cliquewidth-k graph is a k-HB graph.

Characterizations

Structural characterizations of recursive graph classes are generally stated in terms of
forbidden subgraph minors.

DEFINITIONS

D31: An edge-extractionoperation on a graph G = (V, E) removes an edge ¢ leaving

a graph, G —e, with V(G —e) =V and E(G —¢) = F — {e}.

D32: The operation of edge-contraction produces a graph with edge-set E — {e}
but with a vertex set obtained by replacing (“merging”) the vertices defining e in G,
thus creating a new single vertex where the latter inherits all of the adjacencies of the
pair of replaced vertices, without introducing loops or multiple edges.

D33: A graph H is a minor of a graph G if and only if it can be obtained from G by
a finite sequence of edge-extraction and edge-contraction operations.



REMARKS

R11: A result apparently first conjectured (but unpublished) by K. Wagner asserts
the following: Suppose F is a graph class with the property that if G is in F and H
is contained as a minor in (G, then H is in F, ¢.e., the class F is closed under minors.
Then there exists a finite set {Hy, Ha, ..., Hi} of graphs, the forbidden minors such
that ¢ is in F if and only if it contains no minor isomorphic to any member H; for
1<i<k.

R12: Robertson and Seymour ([RoSe88-b]) confirmed Wagner’s conjecture and with
their proof, established that any graph class F closed under minors can be recognized
in polynomial time. Unfortunately, this outcome, although deep, is an existential one;
we do not know the number of forbidden minors or their sizes in an arbitrary case.

R13: The class of partial k-trees is closed under minors and thus, by the Robertson-
Seymour results is completely characterized by a finite set of forbidden minors.

R14: The forbidden minors for partial 3-trees are known (see Fact 33 below), but
complete lists of explicit minors for partial k-trees are not known for values of k > 4.
FACTS

F29: [CoLeBu81] Cographs have no induced paths Pj.

F30: Trees are graphs having no K3 minor.

F31: The set of forbidden minors of partial 2-trees is a singleton consisting of the
complete graph, K.

F32: The forbidden minors of outerplanar graphs are K, and K5 3.

F33: The class of partial 3-trees has four forbidden minors: K5 and the three graphs
shown in Figure 2.4.16.

Figure 2.4.16 Forbidden minors of partial 3-trees.

2.4.3 Recognition

In order to solve graph problems on recursive classes and particularly, to do so
efficiently, it is necessary that membership in the classes be quickly recognized.



REMARKS

R15: Some recognition cases are direct and essentially ad hoc. For example, Halin
graphs can be recognized by first testing for 3-connectivity. Then simply embed the
candidate structure in the plane (since easy to test, one can assume planarity), select
any cycle of edges defining a face on the plane embedding, remove the edges and test if
the graph remaining is a tree of the stated form (see [CoNaPu83]).

R16: Partial 2-trees or series-parallel graphs are recognizable, unambiguously, by suc-
cessive application of the following reduction operations (cf. [Du65]): replacement of
any vertex of degree 2 say v; and its incident edges (v;,v;) and (v;,vx) by a new edge
(v, v ); replacement of any pair of multiple edges by a single edge; and elimination of
any edges incident to a vertex of degree 1 unless only one edge remains. Then a single
edge remains, upon an admissible application of these reduction operations, if and only
if the original graph is a partial 2-tree; otherwise, the process will stop with either K4
or a graph with a K4 minor.

R17: Similar reduction operations have also been described in the case of partial
3-trees (cf. [ArPr86]) as well as for partial 4-trees ([Sa96]).
EXAMPLE

E15: An illustration of a successful reduction sequence is shown in Figure 2.4.17.

P D= D D> ]

Figure 2.4.17 Reduction operations for a partial 2-tree.

Recognition of Recursive Classes

FACTS
F34: Trees can be recognized and their decomposition constructed in linear time.

F35: Series-parallel graphs can be recognized and their decomposition constructed in
linear time.

F36: Treewidth-k, pathwidth-%, branchwidth-%k, and bandwidth-k graphs can be rec-
ognized and their decompositions constructed in O(n**2) time.

COMPUTATIONAL NOTE: For fixed k£ the polynomial-time algorithms of Fact 36 are
practical.

F37: The graph classes of Fact 36 can be recognized in linear-time for fixed k.
COMPUTATIONAL NOTE: The corresponding algorithms referred to by Fact 37 are not

practical because their running times possess enormous hidden constants.

F38: When k <4, more practical linear-time recognition algorithms have been found

for the graph classes in Fact 36 (¢f. [MaTh91] for k& = 3; [Sa96] when &k = 4).

F39: When k is part of the problem instance, the recognition problems associated
with the graphs of Fact 36 are N'P-complete.

F40: Branchwidth can be determined in polynomial time for planar graphs [SeTh94].



F41: Since partial k-trees are characterizable by a finite set of forbidden minors, they
are polynomially recognizable (ef., [RoSe88-b]).

COMPUTATIONAL NOTE: Fact 41 was established in the graph minors results of Robert-
son and Seymour. However, the result is existential rather than constructive and so the
actual exhibition of the implied algorithms remains elusive.

F42: [Wi87] Every k-terminal graph is a treewidth-%&" graph for some &’ that depends
upon k and the particular set of recursive composition operations. For example, if m
denotes the maximum arity of any operation, then k' < km.

TERMINOLOGY: The term “arity” refers to the number of operands. For example, a
binary operation has arity 2.

F43: [CoPeSt85] Cographs can be recognized and their decomposition constructed in
linear time.

F44: The complexity status of recognizing cliquewidth-%k graphs is open.
F45: The complexity status of recognizing k-NLC graphs is open.

F46: [BoJoRaSp02] In the case of k-HB graphs, algorithms for problems defined on
same are robust with respect to cliquewidth-k graphs. That is, such an algorithm either
determines the correct answer or reports that the decomposition was unsuccessful and
hence the input graph is not a cliquewidth-k graph. The O(n**?)-time decomposition
algorithm for £-HB graphs is guaranteed to succeed for all cliquewidth-k graphs as well
as some others.
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GLOSSARY FOR CHAPTER 2

adjacency list representation — for a graph or digraph G = (V| E): an array L of |V|
lists, one for each vertex in V'; for each vertex ¢, there is a pointer L; to a linked list
containing all vertices j adjacent to i.

adjacency matrix representation — of a simple graph or digraph G = (V, E): a |V |x|V|
matrix A, where A[i, j] = 1if there is an edge from vertex i to vertex j, and A[i, j] = 0
otherwise.

adversary reconstruction number — of a graph G: the minimum number k such
that every choice of k subgraphs from the deck of G determines GG uniquely.

all-pairs shortest-paths problem: determining the shortest path between every pair
of vertices in a graph.

ally reconstruction number — of a graph G: same as the reconstruction number.

back edge — for a spanning tree in a directed graph: a nontree edge that joins a vertex
to a proper ancestor.

bandwidth-%t graph: a graph for which there exists a vertex labeling h : V —
{1,2,...|V]} such that {u,v} € E = |h(u) — h(v)| < k.

bidegreed graph: a graph whose vertices have only two possible degrees.

branch-decomposition - of a graph GG = (V, E): a pair (7, f), where T is a tree in
which every non-leaf vertex has exactly three neighbors and f is a bijection from the
leaves of T to E.

__, partial: a branch-decomposition in which the degree of every non-leaf vertex in
T is at least 3.

branchwidth-k graph: a graph whose branchwidth is no greater than k.

branchwidth— of a graph GG: the minimum width taken over all branch-decompositions

of G.

breadth-first search: a systematic method for finding all vertices of a graph that
are reachable from a given start vertex, by beginning at the start vertex and then
visiting the unvisited vertices in a shortest-distance-from-the-start-vertex order.

breadth-first tree: tree of all vertices reachable from a given start vertex of a graph
during a breadth-first search.

canonical numbering algorithm for graphs: an algorithm A that outputs a per-
muted sequence N (G) = {vi,,vi,,...,v;, } of the vertices of its input graph, such
that two graphs G = ({vy,...,vn}, E) and H = ({uy, ..., un}, F') are isomorphic iff
the bijection {v;; = u;, : j =1,...,n} is a graph isomorphism.

canonical numbering — of a graph: a numbering of the vertex-set produced by a
canonical numbering algorithm.

CAP: see color automorphism problem.

certificate for isomorphism: a graph invariant ¢ such that for any two graphs

G1,G5 € G, L(Gl) = L(Gz) iff Gy ~ Gs.
chordal graph: a graph that contains no induced cycles of length greater than 3.

class edge-reconstruction number - of a graph G in a class C: the least number of
subgraphs in the edge-deck of G which, together with the information that G is in
the class C, guarantees that G i1s uniquely determined.



class reconstruction number - of a graph G in a class C: the least number of
subgraphs in the deck of G which, together with the information that G is in the
class C, guarantees that GG is uniquely determined.

claw-free graph: a graph that has no induced subgraph isomorphic to K; 3.

cliquewidth — of a graph: the minimum number of labels that are sufficient to construct
a graph from isolated vertices, while using only the union, module join, and relabeling
operations.

cliquewidth-4 graph: defined recursively as follows ([k] denotes the set of integers
{1,2,...,k}):
e Any graph G with V(G) = {v} and [(v) € [k] is a cliquewidth-k graph.
e If G4 and G5 are cliquewidth-k graphs and 4, j € [k], then
(1) the disjoint union Gy U G2 is a cliquewidth-k graph.

(2) the graph (G1)ix; is a cliquewidth-k graph, where (G1);x; is formed from G4
by adding all edges (v1,v2) such that {(v1) = ¢ and {(v2) = j.

(3) the graph (G1);-; is a cliquewidth-k graph, where (G1)i—; is formed from G4
by switching all vertices with label i to label j.
cograph: defined recursively as
e A graph with a single vertex is a cograph.
e If G; and (G5 are cographs, then the disjoint union G1 U G5 is a cograph.

e If G; and G5 are cographs, then the cross-product (G; x G5 is a cograph, which 1is
formed by taking the union of GG; and G2 and adding all edges (v1, v2) where vy is
in G1 and vs 1s in (.

color automorphism problem (CAP): the problem of finding a set of generators for
the subgroup of color-preserving permutations, within a given permutation group
acting on a given colored set.

color class — for a graph: the set of all vertices that are assigned the same color.

coloring — of a graph G: a mapping ¢ : Vg — C from its vertex set to a set C' (often
a set of integers); alternatively, a partition o = [C1, ..., Cp] of the vertex set into
color classes.

__, trivial — for a graph: a coloring that assigns the same color to every vertex.

color-preserving mapping: a graph mapping such that any two like-colored vertices
of the domain are mapped to like-colored vertices in the codomain.

cover of a graph G by F — for a sequence F = (I}, Fa, ..., Fj) of graphs (in which
different F; could be isomorphic): a sequence G = (G, G, ..., Gy) of subgraphs of
G (not necessarily distinct) such that (i) Gy ~ F;, i = 1,...,k and (ii) G = U;G,;
the number of covers of G by F is denoted by ¢(F, ).

cross edge — for a spanning forest in a directed graph: a nontree edge that joins two
vertices that are neither ancestors nor descendants of each other.

deck - of a graph G: the collection D(G) of all vertex-deleted subgraphs of the graph
G.

degree of a vertex v: the number of vertices adjacent to v.

degree sequence — of a graph G the sequence of degrees of the vertices of GG, written
in non-descending order.



degree vector — of a graph coloring o = [C, ..., Cp]: the vector assignment
vy deg, (v) = [|[N(v) N Cyl, ..., [N ()N Chl]

dense graph G = (V, E): one in which the order of magnitude of |E| is close to |V|?%.
depth-first forest: set of depth-first trees formed in a depth-first search of a graph.

depth-first search: a systematic method for visiting all vertices of a graph by begin-
ning at a vertex, picking an unvisited adjacent vertex, and recursively continuing
the search from that vertex.

depth-first tree: tree formed by tree edges discovered in a depth-first search of a
graph.

edge-contraction — of an edge e in a graph G = (V, E): an operation that results in a
graph with edge-set F'—{e} but with a vertex-set obtained by replacing (“merging”)
the endpoints of e in GG, thus creating a new single vertex where the latter inherits
all of the adjacencies of the pair of replaced vertices, without introducing loops or
multiple edges.

edge-deck — of a graph G the collection ED(G) of all edge-deleted subgraphs of G.

edge-deleted subgraph — of a graph G: a graph GG — e obtained from G by deleting
an edge e; also called edge-deletion subgraph.

k-edge-deleted subgraph — of a graph GG: a subgraph obtained from G by deleting &
of its edges.

edge-extraction — on a graph G = (V| F'): an operation that removes an edge e leaving
the edge-deletion graph G — e.

edge-recognizable class: a class C of graphs such that, for any graph G € C, every
edge-reconstruction of G is also in C.

edge-reconstructible graph: a graph GG whose every edge-reconstruction is isomor-
phic to G.

edge-reconstructible parameter: a graph parameter P such that, for any graph G
with parameter value p, every edge-reconstruction of GG also has value p for that
parameter.

Edge-Reconstruction Conjecture: the conjecture that every graph on at least four
edges is edge-reconstructible.

edge-reconstruction number - of a graph G the least number of subgraphs in the
edge-deck of GG which guarantees that GG is uniquely determined.

edge-reconstruction of a graph G: a graph H with the same edge-deck as G.

edge-reconstruction problem for a structure (D,T', E) — where all the subsets
E — z are given, up to action by the group I': the question of whether E can be
reconstructed from these subsets uniquely, again up to action by the group I

k-edge-reconstruction problem: the problem of determining uniquely, up to isomor-
phism, a graph or a structure from its k-edge-deleted subgraphs or sub-structures.

elementary graph: a graph in which any component is either an edge or a cycle.
endvertex — of a graph G a vertex whose degree is 1.

endvertex-deck — of a graph G the collection of graphs G — v for all endvertices v of
G.



endvertex-reconstructible graph: a graph that is uniquely determined by its end-
vertex deck.

Floyd-Warshall algorithm: an algorithm to compute the shortest length path (or
least cost) between vertex ¢ and vertex j, for all vertices i and j.

forward edge — for a spanning tree in a directed graph: a nontree edge that joins a
vertex to a proper descendant.

graph isomorphsm problem (ISO): the problem of constructing an efficient algo-
rithm to test whether two given graphs are isomorphic.

p-group — for a prime p: a group whose order is a power of the prime p.

Halin graph: planar graph whose edge set can be partitioned into a spanning tree,
with no vertices of degree 2, and a cycle through the leaves of this tree.

k-HB graph: graph that yields a balanced modular decomposition when a certain
decomposition algorithm is applied; see Definition 30 in §2.4.

illegitimate deck: a collection of graphs G1,Gs, ..., Gy, each on n — 1 vertices such
that there is no graph G having the given collection as its deck.

illegitimate deck problem: the problem to determine whether or not a given collec-
tion of graphs is indeed the deck of some graph.

incidence matrix; representation — of a simple graph G = (V| F) is a |V| x | F| matrix
I, where I[v,e] = 1 if e is incident on v and 0 otherwise.

incidence matrix, representation — of a simple digraph G = (V, E) is a |V| x |EF]
matrix [, where

Iv,e] =< 1 if edge e is directed from vertex v
0  otherwise
ISO: see graph isomorphism problem.

{ —1 if edge e is directed to vertex v

isomorphic graphs: two graphs G and H, such that there is an isomorphism G — H.

isomorphism of labeled graphs GG and H: an isomorphism ¢ : G — H, such that
for each v € Vig, the vertices v and ¢(v) have the same label.

isomorphism of simple graphs: a vertex bijection that preserves adjacency relation-
ships.
isomorphism-complete problem: a problem that is polynomially equivalent to 150.

Kleene closure of a set of strings S: the set S* = U2, S°.

Kleene’s algorithm: an algorithm for constructing a regular expression that describes
all paths between every pair of vertices in a labeled graph.

labeled graph: a graph whose vertices and/or edges are labeled, possibly with repeti-
tions, using symbols from a finite alphabet.

linear-time algorithm: algorithm that runs in O(V + E) time for input graph G =
(V, E).
minor — of a graph GG: a graph that can be obtained from G by a finite sequence of

edge-extraction and edge-contraction operations.

module: with respect to a subgraph, a set of vertices that share exactly the same
neighbors outside this subgraph.

monomorphism with forbidden X — of simple graphs G and H, where X is a subset
of the edges of GG: a bijection of V' such that if {u, v} is an edge in E(G) — X then



{f(w), f(v)} is also an edge in H, but if {u, v} is an edge in X then {f(u), f(v)} is
not an edge in H. The number of monomorphisms from G to H with forbidden X
is denoted by [H]a\x -

monomorphism — of simple graphs G and H: a one-to-one function f : Vg — Vg
such that if {u, v} is an edge of G, then {f(u), f(v)} is an edge of H. The number
of monomorphisms from G to H is denoted by [H]g.

nauty: the name of a practical computer program for use in graph isomorphism testing.
(The name is a quasi-acronym for “no automorphisms, yes”.)

neighborhood — of a vertex v of a graph: the set of all vertices adjacent to v. It is

denoted by N (v).

k-NLC (node-label-controlled) graph: defined recursively as follows ([k] denotes
the set of integers {1,2,...,k}, and B denotes a bipartite graph on [k] x [k]):

e Any graph G with V(G) = {v} and [(v) € [k] is a k-NLC graph.

e If G4 and G2 are k-NLC graphs and ¢, j € [k], then the join Gy xg G5 is a k-NLC
graph, where GG x g (i3 is formed from G; U G by adding all edges (v1, v2) where
v1 € Vi, l(v1) = ¢ va € Va, l(v2) = j and (4,7) is an edge in Ep.

e The graph (G1);—; is a k-NLC graph, which is formed from G4 by switching all
vertices with label ¢ to label j.

nondeterministic finite automaton: a directed graph (possibly with multiple edges)
between the same pair of vertices, having a distinguished start state, a set of final
states, and labels on the edges.

N-reconstructible digraph: a digraph D such that the set of triples (D—wv;, deg;, (v;),
degou:(v:)), for all vertices v; of D, is sufficient information to determine D uniquely.

order — of an edge e in T in a branch-decomposition (T, f) of a graph G = (V, E):
the number of vertices v € V such that there exist leaves l; and ls of T residing in
different components of T'— e, where f(l1) and f(l2) are both incident on v.

partial k-tree: subgraph of a k-tree.

path in a graph: a sequence of edges (vq, va), (v2,vs), ..., (Vp—1,vp).
path-decomposition: a tree-decomposition whose tree is a path.
pathwidth-k graph: a graph that has pathwidth no greater than k.

pathwidth — of a graph G: the smallest width taken over all path-decompositions of
(G; measures how closely the graph resembles a path.

perfect: a graph in which every induced subgraph has chromatic number equal to the
size of 1ts maximum clique.

peripheral vertex of a tree: a vertex that has maximum distance from the center of
the tree.

polynomial deck: the collection (multi-set) of the characteristic polynomials of all
subgraphs in the deck.

polynomial-time algorithm: an algorithm that runs in O((V + E)*) time for input
graph G = (V, E) for some constant k.

property Ag — of a graph G the property that whenever A and B are distinct k-sets
of vertices of (G, the graphs G — A and G — B are not isomorphic.

recognizable class of graphs: a class C of graphs such that, for any G € C, every
reconstruction of G is also in C'.



reconstructible graph: graph GG whose every reconstruction is isomorphic to G.

reconstructible parameter: a graph parameter P such that, for any graph G with
the value p for that parameter, every reconstruction of G also has paraemeter value
p.

Reconstruction Conjecture: the conjecture that every graph with at least three
vertices is reconstructible.

reconstruction index — of a group I': the smallest number ¢ such that for any F C D
with |E| > t, the structure (D, T, E) is edge-reconstructible.

reconstruction number - of a graph G: the least number of subgraphs in the deck
of (G which guarantees that GG is uniquely determined.

reconstruction of a graph G a graph H with the same deck as G.

recursively constructed graph class: defined by a set (usually finite) of primitive
or base graphs, in addition to one or more operations that compose larger graphs
from smaller subgraphs; each operation involves either fusing specific vertices from
each subgraph or adding new edges between specific vertices from each subgraph.

refinement of a graph coloring — an operation that yields a new coloring of the
graph: two vertices with the same old color get the same new color if and only if
they have the same numbers of neighbors of every old color.

regular expression: a notation for describing a regular set by using the operators
union, concatenation, and Kleene closure.

series-parallel graph with distinguished terminals [ and r, denoted (G, !, r) — defined
recursively:

e The graph consisting of a single edge (v1, v2) is a series-parallel graph (G, !, r) with
{ =v; and r = vs.

o A series operation (G1,l1,71) ®s (Ga,ls, r2) forms a series-parallel graph by iden-
tifying 7y with ls. The terminals of the new graph are {; and rs.

e A parallel operation (G1,l1,71) ©®, (G2,l2,73) forms a series-parallel graph by
identifying [; with [ and r; with 5. The terminals of the new graph are /3 and r;.

e A jackknife operation (G1,l1,71) ®; (Ga,ls, ry) forms a series-parallel graph by
identifying r1 with [5; the new terminals are {; and ry.

set edge-reconstructible — graph or a parameter: a graph or a parameter that can
be determined from the set of non-isomorphic subgraphs in the edge-deck.

set reconstructible — graph or a parameter: a graph or a parameter that can be
determined from the set of non-isomorphic subgraphs in the deck.

sparse graph G = (V, E): one in which the order of magnitude of |E] is |V] or less.

stabilization of a coloring o: the coloring that results from iterating the refinement
process until a stable coloring is obtained. It is denoted o*.

stable coloring: a graph coloring that is unchanged by the refinement operation.

structure: a triple (D, T', E') where D is a finite set, I' is a group of permutations acting
on D, and F is a subset of D.

k-terminal recursive graph: graph that has at most k special vertices called termi-
nals, and that can be obtained by operations that fuse some of the terminals in its
constituent k-terminal subgraphs. (See Definition 25 in §2.4.)



transitive closure of a graph G: a graph GG that has an edge (¢, ) if and only if
there 1s a path of length 1 or more in & from i to j.

tree: a connected graph with no cycles, and sometimes with a designated root.

__, recursively defined: a graph with a single vertex r as its root r; or, a graph
formed by joining the roots of two trees.

k-tree (recursively defined): the complete graph Kj; or, a graph constructed from a
k-tree on n vertices by adding a vertex adjacent to all vertices of one of its Kj
subgraphs, and only to those vertices.

__, partial: a subgraph of a k-tree.

tree-decomposition — of a graph G = (V, E): a pair ({X; | ¢ € I},T), such that
{X; | i € I} is a family of subsets of V and T is a tree with vertex set I such that

o Ui, Xi=V
o for all edges (z,y) € F there is an element ¢ €  with z,y € X;
o for all triples ¢,j,k € I, if j is on the path from ¢ to k in 7', then X; (X, C Xj.

treewidth — of a graph G: the minimum width taken over all tree-decompositions of
(G; measures how closely the graph resembles a tree.

treewidth-k graph: a graph whose treewidth is no greater than k.

vertex-deleted subgraph — of a graph G: a graph G — v obtained from G by deleting
a vertex v and all the edges incident to it; also called vertez-deletion subgraph.

k-vertex-deleted subgraph — of a graph G: a subgraph obtained from G by deleting
k of 1ts vertices and all the edges incident to them.

weakly edge-reconstructible graph — relative to a class C: a graph G € C such that
every edge-reconstruction of G which is also in the class C is isomorphic to G

weakly reconstructible graph — relative to a class C: a graph G € C such that every
reconstruction of G which 1s also in the class C is isomorphic to G

width; — of a branch decomposition (7}, f): the maximum order of the edges of T
widths — of a tree-decomposition ({X; | i € I}, T): max;er{|X;| — 1}.
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Introduction

This section extends the basic terminology and properties begun in Chapter 1, and
it describes several classical digraph models that preview later sections of the Hand-
book. Many of the basic methods and algorithms for digraphs closely resemble their
counterparts for undirected graphs. Some general references for digraphs are [ChLe96],
[GrYe99], and [We01]. A comprehensive and in-depth reference for digraphs is [BaGu01].

3.1.1 Terminology and Basic Facts
TERMINOLOGY NOTE: The term arc is used throughout this section instead of its syno-
mym directed edge.

NOTATION: Often, when the digraphs under consideration do not have multi-arcs, an
arc that is directed from vertex u to v is represented by the ordered pair (u,v) or by
the juxtaposition uwv.

TERMINOLOGY: An arc that is directed from vertex u to v Is sald to have tail v and
head v.

Reachability and Connectivity

DEFINITIONS

D1: In a digraph, a directed walk from vy to v, is an alternating sequence
W = (vg, €1,v1, €2, ..., Un_1, €n, Un)

of vertices and arcs, such that tail(e;) = v;_1 and head(e;) = v;, for i =1,...,n.

TERMINOLOGY: A directed walk from a vertex x to a vertex y is also called an x-y
directed walk.

D2: The length of a directed walk is the number of arc-steps in the walk sequence.

D3: A connected digraph is a digraph whose underlying graph is connected. Else-
where, the term weakly connected is often used to describe such digraphs.

D4: Let u and v be vertices in a digraph G. Then u and v are said to be mutually
reachable in (G if G contains both a directed u-v walk and a directed v-u walk. Every
vertex is regarded as reachable from itself (by the trivial walk).



D5: A digraph is strongly connected if every two vertices are mutually reachable.

D6: A strong component of a digraph G is a maximal strongly connected subdi-
graph of G. Equivalently, a strong component is a subdigraph induced on a maximal
set of mutually reachable vertices.

D7: Let Sy,S,...,5, be the strong components of a digraph G. The condensation
of G is the simple digraph G* with vertex set Vg« = {s1, s2, ..., 5, }, such that there is
an arc in digraph G* from vertex s; to vertex s; if and only if there is an arc in digraph
G from a vertex in component .S; to a vertex in component S;.

EXAMPLE

E1: Figure 3.1.1 shows a digraph G, its four strong components, 51,52, 53, 54, and its
condensation G*. Notice that the vertex-sets of the strong components of (G partition
the vertex-set of G and that the edge-sets of the strong components do not include all
the edges of . This is in sharp contrast to the situation for an undirected graph G, in
which the edge-sets of the components of (G partition F¢.

Figure 3.1.1 A digraph, its four strong components, and its condensation.

FACT

F1: Let G be a digraph. Then the mutual-reachability relation is an equivalence
relation on Vi, and the strong components of digraph (G are the subdigraphs induced
on the equivalence classes of this relation.

Measures of Digraph Connectivity

We introduce a few basic measures of the connectedness of a digraph. Connectivity
of graphs and digraphs is discussed extensively in §4.1 and §4.7. The concept of an
edge-cut plays an important role in the study of flows in networks (§11.1) and in certain
algebraic properties of a graph or digraph (§6.4).

DEFINITIONS

D8: A complete digraph is a simple digraph such that between each pair of its
vertices, both (oppositely directed) arcs exist.



D9: A vertex-cut in a strongly connected digraph G = (V, E) is a vertex subset
S C V such that the vertex-deletion subdigraph G’ — S is not strongly connected, and
an edge-cut (arc-cut) is an arc subset F' C F such that the arc-deletion subdigraph
G — F is not strongly connected.

D10: The (vertex-) connectivity of an n-vertex non-complete digraph G = (V, E),
denoted £, ((), is the minimum size of a vertex subset S such that G — S is neither
strongly connected nor the trivial digraph. (The connectivity of a complete n-vertex
digraph is n — 1.)

D11: The edge-connectivity of a non-trivial digraph, denoted . (&) is the minimum
size of an edge subset F' such that G — F' is not strongly connected.

NOTATION: When the context is clear, the vertex- and edge-connectivity are denoted ,
and k., respectively. Some other sections of the Handbook use the “traditional” x and
A instead of x, and k., respectively.

TERMINOLOGY NOTE: Synonyms for vertex-cut are cut and disconnecting set. Syn-
onyms for edge-cut are edge-disconnecting set (or arc-disconnecting set) and cut-
set.

Directed Trees

DEFINITIONS
D12: A directed tree is a digraph whose underlying graph is a tree.

D13: A rooted tree is a directed tree having a distinguished vertex r, called the
root, such that for every other vertex v, there i1s a directed r-v path.

TERMINOLOGY NOTE: Occasionally encountered synonyms for rooted tree are out-tree,
branching, and arborescence.

REMARKS

R1: Since the underlying graph of a rooted tree is acyclic, the directed r-v path is
unique.

R2: Designating a root in a directed tree does not necessarily make it a rooted tree.

Tree-Growing in a Digraph

Algorithm 3.1.1, shown below, is simply the basic tree-growing algorithm of §1.1 (Al-
gorithm 1.1.1), recast for digraphs. Its output, as in Algorithm 1.1.1, is a rooted tree
whose vertices are reachable from the starting vertex. But because the paths to these
vertices are directed (i.e., one-way), the vertices in this output tree need not be mutually
reachable from one another.

DEFINITION

D14: A frontier arc for a rooted tree T' in a digraph is an arc whose tail is in 7" and
whose head is not in 7.



Algorithm 3.1.1: Basic Tree-Growing in a Digraph

Input: a digraph G and a starting vertex v € V.
Oulput: a rooted tree T with root v and a standard vertex-labeling of T'.

Initialize tree 71" as vertex v.

Write label 0 on vertex v.

Initialize label counter ¢ := 1

While there is at least one frontier arc for tree T’
Choose a frontier arc e for tree T'.
Let w be head(e) (which lies outside of T').
Add arc e and vertex w to tree T.
Write label i on vertex w.
1i=1+1

Return tree 7" and vertex-labeling of T

COMPUTATIONAL NOTE: We assume that there is some implicit default priority for
choosing vertices or edges, which 1s invoked whenever there is more than one frontier
arc from which to choose.

EXAMPLE

E2: Figure 3.1.2 shows a digraph and all possible output trees that could result for
each of the different starting vertices and each possible default priority. Two opposite
extremes for possible output trees are represented here. When the algorithm starts
at vertex u, the output tree spans the digraph. The other extreme occurs when the
algorithm starts at vertex z (because x has outdegree 0). Notice that any two output
trees in Figure 3.1.1 with the same vertex-set have roots that are mutually reachable.

1)
v W Ll U = y
X i
v v - g Y X v
z Z « Y X z
y y ! X
y z

Figure 3.1.2 A digraph and all possible output trees.

FACTS

F2: Let u and v be two vertices of a digraph GG. Then u and v are in the same strong
component of GG if and only if the output trees that result from starting Algorithm 3.1.1
at vertex u and at vertex v have the same vertex-set.

F3: If the digraph G is strongly connected, then the output tree is a spanning rooted
tree of GG, regardless of the starting vertex.
REMARK

R3: Example 2 above illustrates an important distinction between undirected and



directed graphs: whereas tree-growing in an undirected graph provides a simple algo-
rithm to determine the components of the graph, in a digraph this is not the case. Other
differences were suggested earlier in Example 1. The use of tree-growing, specifically
depth-first search (§10.1), in finding the strong components of a digraph is considerably
more intricate than its undirected counterpart. For discussions of strong-component-

finding algorithms, see, e.g., [BaGe99], [GrYe99, §11.4], and [St93].
Oriented Graphs

DEFINITIONS

D15: An oriented graph is a digraph obtained by choosing an orientation for each
edge of an undirected simple graph. Thus, an oriented graph does not have both oppo-
sitely directed arcs between any pair of vertices, which means that an oriented tree 1s
the same as a directed tree.

D16: A tournamentis an oriented complete graph. That is, it has no self-loops, and
between every pair of vertices, there is exactly one arc. See §3.3 for extensive coverage
of tournaments.

D17: A graph G is strongly orientable if there exists an assignment of directions
to the edge-set of GG such that the resulting digraph is strongly connected.

EXAMPLE

E3: Of the three graphs shown in Figure 3.1.3, only the graph (s is strongly orientable.

G1 Gg GS

Figure 3.1.3 Only the graph G is strongly orientable.

Notice that G is the only graph in the example that does not have a cut-edge. In
fact, the absence of cut-edges is a necessary and sufficient condition for a graph to be
strongly orientable. This characterization of strongly orientable graphs was proved by

H.E. Robbins in 1939.

FACT

F4: Robbins’s Theorem [Ro39] A connected graph G is strongly orientable if and
only if G has no cut-edges.

Adjacency Matrix of a Digraph

DEFINITION

D18: The adjacency matrix of a digraph G = (V, E), denoted Ag, is given by

the number of arcs from u to v fu#wv
the number of self-loops at v if u =wv

Aglu, v] :{



FACTS

F5: A row-sum in a directed adjacency matrix equals the outdegree of the correspond-
ing vertex, and a column-sum equals the indegree.

F6: Let G be digraph with adjacency matrix Ag. Then the value of the entry A% [u, v]
of the ' power of matrix Ag equals the number of directed u-v walks of length .

EXAMPLE

E4: The adjacency matrix of the digraph in Figure 3.1.4 uses the vertex ordering
u,v,w,z. As an illustration of Fact 6, observe that the number of directed w-v walks
equals 3, which is the (w,v)-entry of AZ.

o~ oo &
O = = =
o oo &8
oo o~ 8

8 g e g

Figure 3.1.4 A digraph and its adjacency matrix.

REMARK

R4: Another matrix representation of a digraph is the node-arc incidence matriz,
where the columns are labeled by the arcs, and the rows are labeled by the vertices
(nodes). Connections between the incidence matrix of a graph or digraph and the
structural properties of the graph are explored in §6.4.

3.1.2 A Sampler of Digraph Models

In this subsection, we sample a few of the digraph models. Acyclic digraph models
are the focus of §3.2.

Markov Chains and Markov Digraphs

The topic of Markov processes is part of a more general area known as stochastic pro-
cesses, a branch of mathematics and operations research with far-ranging applications
and theoretical challenges. The reader may consult any of the standard texts in this
subject for a formal presentation of these concepts (e.g., [Ci75], [Wi94]).

DEFINITIONS

D19: A sequence of random variables {X;}, t = 0,1,2,..., is a (finite) discrete-
time Markov chain (DTMC) on a state-space S = {1,2,...,n} if X; € S for all
times ¢t = 0,1,2,... and the probability distribution of X;;1 depends only on the value
of X;. In particular,

prob(Xeyr = j|Xe = i, Xec1 = 41, ..., Xo = do) = prob(Xe1 = j| X = 9)



D20: A stationary DTMC satisfies the additional condition that for all states
i,j € S and all times ¢, the transition probability prob(X:y1 = j|X; = i) = pi;
is independent of ¢.

D21: A Markov digraph GG = (V, E) of a stationary DTMC with state-space S and
transition probabilities p;; is a digraph with vertex-set V = S, arc-set E = {ij|p;; > 0},
and to each arc ¢j € F is assigned the probability p;;.

D22: The transition matrix of a Markov chain is the matrix whose ;" entry is the
transition probability p;;.

EXAMPLE

E5:. A Gambler’s Problem: A gambler starts with $3 and plays the following game.
Two coins are tossed. If both come up heads, then he wins $3; otherwise, he loses
$1. He plays until either he loses all his money or he reaches a total of at least $5.
Let X; be the amount of money he has after ¢ plays, with Xy = 3. The state space
is § = {0,1,2,3,4,5}, and the sequence {X;} is a discrete-time Markov chain. The
transition matrix and Markov digraph for this Markov chain are shown in Figure 3.1.5.

0 1 2 3 4 25
0 1 0 0 0 0 0
1 7500 0 0 25 0
2 0 7 0 0 0 .25
3 0 0 7 0 0 .25
4 0 0 0 75 0 .25
>5\0 0 0 0 0 1

Figure 3.1.5 Gambler’s transition matrix and Markov digraph.

Equipment-Replacement Policy

We present a digraph model that can be used to determine a replacement policy that
minimizes the net cost of owning and operating a car for a pre-specified number of years.

EXAMPLE

E6: Suppose that today’s price for a new car is $16,000, and that the price will increase
by $500 for each of the next four years. The projected annual operating cost and resale
value of this kind of car are shown in the table below. To simplify the setting, assume
that these data do not change for the next five years.

Annual Operating Cost Resale Value

$600 (for 1st year of car) $13,000 (for a l-year-old car)
$900 (for 2nd year of car) $11,000 (for a 2-year-old car)
$1200 (for 3rd year of car) $9,000 (for a 3-year-old car)
$1600 (for 4th year of car) $8,000 (for a 4-year-old car)
$2100 (for bth year of car) $6,000 (for a b-year-old car)

Digraph Model: The digraph has six vertices, labeled 1 through 6, representing the
beginning of years 1 through 6. The beginning of year 6 signifies the end of the planning



period. For each ¢ and j with ¢ < j, an arc i1s drawn from vertex 7 to vertex j and
is assigned a weight c;;, where c¢;; is the total net cost of purchasing a new car at the
beginning of year ¢ and keeping it until the beginning of year j. Thus,

¢;; = price of new car at beginning of year :
+ sum of operating costs for years ¢,¢4+1,...,5—1

— resale value at beginning of year j

Figure 3.1.6 shows the resulting digraph with seven of its 15 arcs drawn. The arc-weights
are in units of $100.

Figure 3.1.6 Part of the digraph model for a car-replacement problem.

The problem of determining the optimal replacement policy is reduced to finding the
shortest (least-cost) path from vertex 1 to vertex 6. This is a simple task for Dijkstra’s
algorithm, even for much larger instances of this kind of problem. Dijkstra’s algorithm
is discussed in §10.1.

The Digraph of a Relation and the Transitive Closure

Our focus here is on general relations and their transitive closure. Digraphs of posets
(partially ordered sets) are discussed in §3.2.

DEFINITIONS
D23: A relation R on a finite set S is a subset of the cartesian product S x S.

D24: The digraph representation of a relation R on a finite set S is the digraph
whose vertices correspond to the elements of S, and whose arcs correspond to the ordered
pairs in the relation; that is, an arc is drawn from vertex x to vertex y if (x,y) € R.

Conversely, a digraph ¢ induces a relation R on Vp in a natural way, namely, (z,y) € R
if and only if there is an arc in digraph G from vertex z to vertex y.

D25: A transitive digraph is a digraph whose corresponding relation is transitive.
That is, if there 1s an arc from vertex x to vertex y and an arc from y to z, then there
is an arc from z to z.

D26: The transitive closure R* of a binary relation R is the relation R* defined by
(z,y) € R* if and only if there exists a sequence & = vg, v1,va,...,v5 = y such that
k> 1and (v;,v;41) € R, for i = 0,1,..., k — 1. Equivalently, the transitive closure R*
of the relation R is the smallest transitive relation that contains R.

D27: Let GG be the digraph representing a relation R. Then the digraph G* represent-
ing the transitive closure R* of R is called the transitive closure of the digraph G.



Thus, an arc (x,y), * # y is in the transitive closure G™ if and only if there is a directed
z-y path in GG. Similarly, there is a self-loop in digraph D* at vertex z if and only if
there 1s a directed cycle in digraph G that contains z.

EXAMPLES

ET7: Suppose a relation R on the set S = {a,b,¢,d} is given by

{(a,a), (a,b), (b, ¢), (¢, b), (e, d)}

Then the digraph G representing the relation R and the transitive closure G* are as
shown in Figure 3.1.7.

G G*

Figure 3.1.7 The digraph ¢ and its transitive closure G*.

E8: Transitive Closure in a Paging Network: Suppose that the arcs of an n-vertex
digraph G represent the one-way direct links between specified pairs of nodes in an
n-node paging network. Thus, an arc from vertex ¢ to vertex j indicates that a page
call can be transmitted from person ¢ to person j.

To send an alert from person ¢ to person j, it 1s not necessary to have a direct link from
¢ to j. There need only be a directed ¢-j path. The transitive closure G* of digraph G
specifies all pairs ¢, j of vertices for which there exists a directed i-j path in G.

Constructing the Transitive Closure of a Digraph: Warshall’s Algorithm

Let GG be an n-vertex digraph with vertices vy, vs,...,v,. A computationally efficient
algorithm, due to Warshall [Wa62], constructs a sequence of digraphs, Dy, D1, ..., Dy,
such that Dy = G, D;_; is a subgraph of D;, ¢« = 1,...,n, and such that D, is the
transitive closure of D. Digraph D; is obtained from digraph D;_; by adding to D;_;
an arc (v;,vg) (if it is not already in D;_1) whenever there is a directed path of length
2in D;_; from v; to v, having v; as the internal vertex.

: 8 V
VJ Vi vk VJ Vi k
® @ . J -
D D,

i-1 i
Figure 3.1.8 The arc (v;,vs) is added to digraph D;_;.



Algorithm 3.1.2: Warshall’s Transitive Closure [Wa62]
Input: an n-vertex digraph D with vertices vy, va, ..., v,.
Qutput: the transitive closure of digraph D.

Initialize digraph Dy to be digraph G.
Fori=1ton

Forj=1ton
If (v;,v;) is an arc in digraph D;_q
Fork=1ton

If (vi, vg) is an arc in digraph D;_;
Add arc (v;,vx) to D;_1 (if it is not already there).
Return digraph D, .

Activity-Scheduling Networks

In large projects, often there are some tasks that cannot start until certain others are
completed. Figure 3.1.9 shows a digraph model of the precedence relationships among
some tasks for building a house. Vertices correspond to tasks. An arc from vertex u
to vertex v means that task v cannot start until task u is completed. To simplify the
drawing, arcs that are implied by transitivity are not drawn. This digraph is the cover
diagram of a partial ordering of the tasks. Section 3.2 discusses this model further and
introduces a different model in which the tasks are represented by the arcs of a digraph.

Activity

Foundation

Walls and ceilings
Roof

Electrical wiring
Windows

Siding

Paint interior
Paint exterior

ON®DOTD N =

Figure 3.1.9 An activity digraph for building a house.

Scheduling the Matches in a Round-Robin Tournament

Suppose that each pair of n teams is to play one match in a tournament. Typically,
one would like to schedule the matches so that all matches are completed in a minimum
number of days (assume that each team plays at most one match on a given day).
If the teams are from different cities, an additional objective is to have an equitable
distribution of home and away matches. We preview here a strategy that is discussed

in §5.6.5.

DEFINITIONS

D28:. A compact schedule for a round-robin tournament is one in which each team
plays a match each day.

D29: A team is said to have a break if it 1s either home for two consecutive matches
or away for two.



D30: A proper arc-coloring of a digraph G = (V| E) is an assignment of colors
to the arcs in (G so that any two arcs that have an endpoint in common are assigned
different colors. Graph coloring is discussed in §5.1 and §5.2, and the related concept
of graph factorization is discussed in §5.4.

REMARK

R5: An algorithm for constructing a compact schedule for a n-team round-robin tour-
nament, where n is even, that minimizes the total number of breaks is given in §5.6
(Algorithm 5.6.1). The strategy is based on orienting the edges of a complete graph
and then producing a proper arc-coloring so that each color is assigned to exactly n/2
arcs.

Flows in Networks

A pipeline network for transporting oil from a single source to a single sink is one proto-
type of a network model. Each arc represents a section of pipeline, and the endpoints of
an arc correspond to the junctures at the ends of that section. The arc capacity is the
maximum amount of oil that can flow through the corresponding section per unit time.
A network could just as naturally represent a system of truck routes for transporting
commodities from supply points to demand points, or it could represent a network of
phone lines from one distribution center to another.

DEFINITIONS

D31: A cost flow network G = (V, E,cap,c,b) is a directed graph with vertex-set
V', arc-set E, a nonnegative capacity function cap : F — N, a linear cost function
¢: F — 7, and an integral supply vector b : V' — 7 that satisfies ) b(w) = 0.
wevV

D32: An s-t flow network G = (V, E, cap, s,1) is a directed graph (typically without
the cost and supply functions) with a nonnegative capacity function cap : £ — N,
that has a distinguished vertex s, called the source, with nonzero outdegree, and a
distinguished vertex %, called the sink, with nonzero indegree.

D33: The maximum-flow problem is to determine the maximum flow that can be
pushed through an s-f network from source s to sink ¢ such that the flow into each
intermediate node equals the flow out (conservation of flow) and the flow across any arc
does not exceed the capacity of that arc. (See §11.1.)

D34: The minimum-cost-flow problem is to find an assignment of flows on the arcs
of the flow network that satisfy the supply and demand (negative supply) requirements
at minimum cost. (See §11.2.)

Software Testing and the Chinese Postman Problem

During execution, an application software’s flow moves between various states, and the
transitions from one state to another depend on the input. In testing software, one would
like to generate input data that forces the program to test all possible transitions.

DEFINITIONS

D35: An eulerian tour of a digraph G is a closed directed walk that uses each arc
exactly once.



D36: A postman tour (or covering walk) is a closed directed walk that uses each
arc at least once.

D37: Given a directed edge-weighted graph G, the Directed Chinese Postman
Problem is to find a minimum-weight postman tour.

Digraph Model: The software’s execution flow is modeled as a digraph, where the
states of the program are represented by vertices, the transitions are represented by arcs,
and each of the arcs is assigned a label indicating the input that forces the corresponding
transition. Then the problem of finding an input sequence for which the program invokes
all transitions and minimizes the total number of transitions is equivalent to the Directed
Chinese Postman Problem, where all arc-weights equal one.

REMARKS

R6: Since certain transitions take more execution time than others, one might want
to minimize the total time of execution during the testing (instead of the number of
transitions). In that case, each arc is assigned a weight equal to the transition time
corresponding to that arc.

R7: Under certain reasonable assumptions, the flow digraph modeling a program’s
execution can be assumed to be strongly connected, which guarantees the existence of
a postman tour.

RS8: Fulerian digraphs and graphs, along with algorithms to construct eulerian tours,
are discussed in detail in §4.2, and various versions of the Chinese Postman Problem
and its algorithms are discussed in §4.3.

Lexical Scanners

The source code of a computer program may be regarded as a string of symbols. A
lexical scanner must scan these symbols, one at a time, and recognize which symbols go
together to form a syntactic token or lezeme. We now consider a single-purpose scanner
whose task 1s to recognize whether an input string of characters is a valid identifier in
the C programming language. Such a scanner is a special case of a finite-state recognizer
and can be modeled by a labeled digraph, as in Figure 3.1.10. One vertex represents
the start state, in effect before any symbols have been scanned. Another represents the
accept state, in which the substring of symbols scanned so far forms a valid C identifier.
The third vertex is the reject state, indicating that the substring has been discarded
because it is not a valid C identifier. Each arc label tells what kinds of symbols cause a
transition from the tail state to the head state. If the final state after the input string
is completely scanned is the accept state, then the string is a valid C identifier.

@ letter or
digit

any char except
letter or digit

non-letter

any
char

Figure 3.1.10 Finite-state recognizer for identifiers.



3.1.3 Binary Trees

At first glance, a discussion of binary trees does not seem to belong in a section on
digraphs. In fact, binary trees are digraphs. In particular, they are special rooted trees.
Here we describe a few applications.

Rooted Tree Terminology

DEFINITIONS

D38: In a rooted tree, the depth or level of a vertex v is its distance from the root,
that is, the length of the unique path from the root to v. (Thus, the root has depth 0.)

D39: The height of a rooted tree is the length of a longest path from the root (which
equals the greatest depth in the tree).

D40: If vertex v immediately precedes vertex w on the path from the root to w, then
v is the parent of w and w is the child of v.

D41: A vertex w is called a descendant of a vertex v (and v is called an ancestor
of w), if v is on the unique path from the root to w. If, in addition, w # v, then w is a
proper descendant of v (and v is a proper ancestor of w).

D42: An ordered tree is a rooted tree in which the children of each vertex are
assigned a fixed ordering.

D43: A standard plane representation of an ordered tree is a standard plane
drawing of the tree such that at each level, the left-to-right order of the vertices agrees

with their prescribed order.

D44: A binary treeis an ordered tree in which each vertex has at most two children,
and each child is designated either a left-child or a right-child.
r

Figure 3.1.11 A binary tree of height 4.

D45: The left (right) subtree of a vertex v in a binary tree T is the binary subtree
spanning the left (right)-child of v and all of its descendants.

FACT

F7: Every binary tree of height A has at most 2"+ — 1 vertices.



Binary Search

An entry in a random-access table consists of two fields. One field is for the actual data
element, and the other one is for the key. An entry is found in a random-access table by
searching for its key, and the most generally useful implementation of a random-access
table uses the following information structure.

DEFINITIONS

D46: A binary-search tree (BST) is a binary tree, each of whose vertices is assigned
a key, such that the key assigned to any vertex v is greater than the key at each vertex
in the left subtree of v, and is less than the key at each vertex in the right subtree of v.

D47: A binary tree 1s balanced if for every vertex, the number of vertices in its left
and right subtrees differ by at most one.

EXAMPLE
E9: Both of the binary-search trees in Figure 3.1.12 below store the keys:
3,8,9,12,14, 21,22, 23, 28, 35,40, 46

22

12 21 23 40

Figure 3.1.12 A balanced binary-search tree and an unbalanced one.

Algorithm 3.1.3: Binary-Search-Tree Search

Input: a binary-search tree T and a target key ¢.
Output: a vertex v of T such that key(v) =t if ¢ is found,
or NULL if ¢ is not found.
v = root(T)
While (v # NULL) and (¢ # key(v))
If t > key(v)
v := rightchild(v)
Else v := le ftchild(v)

Return v.

COMPUTATIONAL NOTE: Since each comparison of a binary search performed on a
binary-search tree moves the search down to the next level, the number of comparisons
is at most the height & of the tree plus one. If the tree is balanced, then it is not hard
to show that the number of vertices n is between 2" and 2**'. Hence, the worst-case
performance of the binary search on a perfectly balanced binary-search tree is O(logan).
The other extreme occurs when each internal vertex of the binary tree has only one child.



Such a binary tree is actually an ordinary linked list, and therefore the performance of
the search degenerates to O(n).
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Introduction

When a digraph has no directed cycles, it is called a directed acyclic graph, or a
DAG. While being acyclic may seem to be a stringent condition, it arises quite natu-
rally because vertices often have a natural ordering. For instance, vertices may represent
events ordered in time or ordered by hierarchy. This ordering makes results and algo-
rithms for DAGs relatively simple.

3.2.1 Examples and Basic Facts

DEFINITIONS

D1: A digraph is acyclic if it has no directed cycles.
D2: DAG is an acronym for directed acyclic graph.
D3: A sourcein a digraph is a vertex of indegree zero.
D4: A sink in a digraph is a vertex of outdegree zero.

D5: A basis of a digraph is a minimal set of vertices such that every other vertex can
be reached from some vertex in this set by a directed path.

EXAMPLES

E1: Operations Research. A large project consists of many smaller tasks with a prece-
dence relation — some tasks must be completed before certain others can begin. One
graphical representation of such a project has a vertex for each task and an arc from u
to v if task u must be completed before v can begin. For instance,; in Figure 3.2.1, the
food must be loaded and the cabin cleaned before passengers are loaded, but luggage
unloading is independent of the timing of cabin activities. This model of a project will
always be a DAG, because if there were a directed cycle, the project could not be done:
every task on the cycle would have to be started before every other one on the cycle.



/oad
passengers

clean cabin

unload
passengers

[ >0

unload luggage load new luggage

Figure 3.2.1 A digraph of precedence in an airplane stopover.

E2: Sociology and Sociobiology. A business (or army, or society, or ant colony) has a
hierarchical dominance structure. The nodes are the employees (soldiers, citizens, ants)
and there is an arc from u to v if u dominates v. If the chain of command is unique,
with a single leader, and if only arcs representing immediate authority are included,
then the result is a rooted tree, as in Figure 3.2.2. (Also see §3.2.2.)

Dept. Head

Supervisors

Office workers

Figure 3.2.2 A corporate hierarchy.

E3: Computer Software Design. A large program consists of many subprograms, some
of which can invoke others. Let the nodes of D be the subprograms, and let there be
an arc from u to v if subprogram u can invoke subprogram v. Then this call graph D
encapsulates all possible ways control can flow within the program. Must D be a DAG?
No, but each directed cycle represents an indirect recursion and serves as a warning
to the designer to ensure against infinite loops. See Figure 3.2.3, where Proc 2 can
call itself indirectly. To determine if a digraph is a DAG or not, do a topological sort
(§3.2.4).

Main
Program

Figure 3.2.3 The call graph of a computer program.

E4: Ecology. A food web is a digraph in which nodes represent species and in which
there is an arc from u to v if species u eats species v. Figure 3.2.4 shows a small food



web. In general, food webs are acyclic, because animals tend to eat smaller animals or
animals in some way “lower down” in the “food chain.” The very fact that phrases like
this are used indicates that there is a hierarchy, and thus no directed cycles.

frog > gpider =< grackle

beetle ——— > cherry tree

Figure 3.2.4 A small food web.

E5: Genealogy. A “family tree” is a digraph, where the orientation is traditionally
given not by arrows but by the direction down for later generations. Despite the name, a
family tree is usually not a tree, since people commonly marry distant cousins, knowingly
or unknowingly. However, it 1s always a DAG, because if there were a cycle, everyone
on it would be older than everyone else on the cycle.

E6: State Diagrams. Let the vertices of D be a set of states of some process, and
let the arcs represent possible transitions. For instance, the process might be a board
game, where the states are the configurations and each arc represents the transition of
a single move. Then walks through D represent “histories” that the process/game can
follow. If the game can never return to a previous configuration (e.g., as in tic-tac-toe),
the state diagram of the game is a DAG.

FACTS

F1: Every DAG has at least one source and at least one sink.

F2: Every DAG has a unique basis, namely, the set of all its sources.
F3: Every subgraph of a DAG is a DAG.

F4: The transitive closure of a DAG is a DAG.

F5: A digraph is a DAG if and only if every walk in it is a path.

F6: A digraph is a DAG if and only if it is possible to order the vertices so that, in the
adjacency matrix, all nonzero entries are above the main diagonal. (Topological sort in

§3.2.4 finds the ordering.)

F7: The condensation of any digraph is a DAG. Figure 3.2.5 shows a digraph and its
condensation.

Figure 3.2.5 A digraph and its condensation.



F8: A digraph is a DAG if and only if it is isomorphic to its condensation.

F9: A digraph is strongly connected (unilateral, weakly connected) if and only if its
condensation is strongly connected (unilateral, weakly connected).

F10: A DAG is never strongly connected, unless it consists of a single vertex.
F11: A DAG is unilateral if and only if it 1s a path.

F12: Every undirected graph without self-loops can be given an acyclic orientation,
in fact, usually many. Namely, arbitrarily index the vertices as vy, vs, ..., v, and direct
each edge from its lower indexed end to its higher indexed end.

REMARKS
R1: For more basic information on DAGs, see [Ha94, Ch. 16] and [Ro76, §2.2-3].

R2: Most of the acyclic orientations in Fact 12 are arbitrary and uninteresting, but
occasionally an acyclic orientation is natural. In a tree, it 1s natural to orient edges
away from a root; see §3.2.2. In a bipartite graph, it is natural to direct all edges from
one side to the other. Still, most interesting orientations are already imposed by the
nature of the problem, and the question i1s whether they are acyclic.

3.2.2 Rooted Trees

If the underlying graph of a digraph D is a tree, then D is certainly a DAG, because
it doesn’t even have any undirected cycles. However, the important tree DAGs have
further restrictions on their edge directions.

For more on rooted trees, see [GrYe99, §3.2].

DEFINITIONS
D6: A directed tree is a digraph whose underlying graph is a tree.

D7: A rooted treeis a directed tree with a distinguished vertex r, called the root,
such that for every other vertex v, the unique path from r to v is a directed path from
r to v.

CONVENTION: In drawing a rooted tree with the root marked, the arrows are usually
omitted because the direction of each arc is always away from the root. In fact, if the
direction is always down or left-to-right, as in Figure 3.2.6, it is not even necessary to
indicate the root.

Figure 3.2.6 Two standard ways to draw a rooted tree.



D8: A rooted tree is also called an out-tree. This alternative name is typically used
when the arc directions are shown explicitly, for instance, when the tree is a spanning
subgraph of a larger digraph.

D9: An In-treeis an out-tree with all the directions reversed, so that all paths are
directed toward the root.

EXAMPLES

Previous Example 2 is about rooted trees. Here are some others.

E7: Decision trees. Any branching process leads to a rooted tree, where each node is
a decision point, each arc from a node 1s an allowed decision, and the root is the start.
For instance, the stages in a game may be represented this way. Figure 3.2.7 shows the
first two moves in a game of tic-tac-toe, one by each player. Each node is represented
by the way the board looks just before the decision. If we take into account symmetry,
the figure is complete through the first two moves.

CONVENTION: In Figure 3.2.7 the two nodes on the bottom level (3rd move) illustrate
that different nodes in the tree can represent the same state. While the board looks the
same at these two nodes, the ordered sequence of decisions leading to these nodes are
different. Thus in a decision tree, each node represents both a state and the complete
history of how it was achieved. Compare with Example 6, where these nodes would be
one, and the digraph would not be a tree.

/x/

< X
o 0 o|x X X X X xx//x X X
X X [e] 0 0 )
/ o ° 0 0 a
0]X 0|X
X X

Figure 3.2.7 The first two moves in the tic-tac-toe game tree,
and a bit of the third level.

E8: Decomposition trees. Any decomposition of an object or structure into finer and
finer parts can be modeled with a rooted tree. Figure 3.2.8 shows an example of sentence
parsing.



sentence

subject phrase predicate phrase
noun verb indirect object phrase
preposition prlnoun
Fran sings to me

Figure 3.2.8 A sentence parse tree.

FACTS

F13: Every directed tree is a DAG.

F14: A digraph is a rooted tree if and only if its underlying graph is connected, exactly
one vertex (the root) has indegree 0, and all others have indegree 1.

DEFINITIONS FOR ROOTED TREES

D10: The depth or level of a vertex v is its distance from the root, that is, the
number of edges in the unique directed path from the root to v.

D11: The height of a rooted tree is the greatest depth of a vertex.
D12: If (u,v) is an edge, the u is the parent of v and v is the child of u.
D13: Vertices having the same parent are siblings.

D14: If there is a directed path from vertex u to vertex v, then u is an ancestor of
v and v is a descendant of u.

D15: A leaf'is a vertex with outdegree 0 (no children).
D16: An internal vertex is a vertex that is not a leaf.
D17: An me-ary treeis a rooted tree in which every vertex has m or fewer children.

D18: A complete m-ary tree is an m-ary tree in which every internal vertex has
exactly m children and all leaves are at the same level. See Figure 3.2.9.

7

Figure 3.2.9 Complete and incomplete ternary (3-ary) trees.
D19: A ordered treeis a rooted tree in which the order of the children at each vertex
makes a difference.

D20: A binary tree is an ordered 2-ary tree in which, even when a vertex has only
one child, it makes a difference whether it is a left child or a right child.



REMARKS

R3: Trees, rooted trees, ordered trees, and binary trees make finer and finer distinc-
tions, which should only be used if the distinctions are important in the application
being modeled. For instance, binary trees are used to model computations with binary
operations, as in 3 x (4/5). Since division is noncommutative (4/5 # 5/4), binary trees
are an appropriate model for such computations.

R4: Figure 3.2.10 shows four graphs. As trees they are all the same (that is, isomor-
phic). However, as rooted trees, (i1 = G2 and Gz = (G4, so there are two rooted trees.
There are three ordered trees, as G; and (G5 are still the same, but G, G4 are different.
Finally, as binary trees they are all different. In (1, vertex ¢ is a right child; in G5 it is

a left child.
a b b
SN N\
a C C a
c

a
b

c
61 62 63 G4

Figure 3.2.10 Four trees: the same and not the same.

FACTS
F15: An m-ary tree has at most m* vertices at level k.

F16: Let T be an n-vertex m-ary tree of height h. Then

h-|—1_1

h—I—lSnSmi.
m—1

The lower bound is attained if and only if T is a path. The upper bound is attained if
and only if T"is a complete m-ary tree.

Spanning Directed Trees

Since every connected graph has a spanning tree, every digraph has a spanning directed
tree. In a graph, a spanning tree connects all the vertices, while using the minimum
number of edges. However, in a digraph, a spanning directed tree may contain few
directed paths and thus may allow fewer connections than the whole digraph does. So
the more interesting question i1s whether a digraph has a spanning rooted tree. This
question is answered algorithmically by the directed version of depth first search; see
§10.1 and [GrYe99, §11.1]. Tt is answered algebraically by the directed matrix tree
theorems; see §6.4. Here we simply state two key facts.

FACTS

F17: If digraph D has a spanning tree rooted at v, directed depth first search starting
at v will find one.

F18: For every vertex of a digraph D there is a spanning tree rooted at that vertex if
and only if D is strongly connected.



Functional Graphs

Closely related structurally to rooted trees, but devised for a different purpose, are
functional graphs.

DEFINITION

D21: A functional graph is a digraph in which each vertex has outdegree one.

EXAMPLES

E9: For each function f from a finite domain U to itself, define a digraph D whose
vertex set is U and for which (u,v) is an arc if and only if f(u) = v. By definition of a
function, there is one such v for every u € U. Hence, D is a functional graph (whence
the name).

E10: Specifically, consider the doubling function on the positive integers, but consider
only the effect on the ones digit. This function is completely described by its effect on
the domain {0,1,...,9}. Tts functional graph is shown in Figure 3.2.11.

Figure 3.2.11 The functional graph for doubling (mod 10).

FACT

F19: Let D be a functional graph, and let G be the underlying undirected graph.
Then each component of (G contains exactly one cycle. In D this cycle is a directed
cycle, and the removal of any arc in it turns that component into an in-tree.

3.2.3 DAGs and Posets

There is a very close connection between DAGs and posets. Every DAG repre-
sents a poset, and every poset can be represented by DAGs in several ways. For more
information, see [Bo90, §7.1-2].

DEFINITIONS

D22: A partial order is a binary relation < on a set X that is
e reflexive: for all x € X, © < x;
e antisymmetric: for all z,y € X, if x < y and y < #, then x = y;
e transitive: for all x,y,2 € X, if x <y and y < z, then z < z.



D23: A poset, or partially ordered set P = (X, <) is a pair consisting of a set X
called the domain, and a partial order < on X.

D24: Elements z,y of P are comparable if either # <y or y < x.
D25: Element z is less than element y, written 2 < y, if # <y and 2 £ y.

D26: The comparability digraph of the poset P = (X, <) is the digraph with vertex
set X such that there is an arc from « to y if and only if x < y.

D27: The element y covers the element x in a poset if # < y and there is no element
z such that z < z < y.

D28: The cover graph of a poset P = (X, <) is the graph with vertex set X such
that z,y are adjacent if and only if one of them covers the other.

D29: A Hasse diagram of poset P is a straight-line drawing of the cover graph such
that the lesser element of each adjacent pair is lower in the drawing.
EXAMPLE

E11: Let X = {2,4,5,8,10,20} and let < be the divisibility relation on X. That is
z < yif and only if y/« is an integer. The comparability digraph and the Hasse diagram
for P = (X, <) are as shown in Figure 3.2.12.

Figure 3.2.12 Comparability digraph and Hasse diagram for a poset.

FACTS
F20: If the loops are deleted, the comparability digraph of any poset is a DAG.

F21: Every Hasse diagram is a DAG if one considers all edges to be directed up (or
all down).

F22: Every DAG D represents a poset in the following sense. The domain of P is the
vertex set of D, and x < y if there is a directed path from z to y.

TERMINOLOGY NOTE: In passing from DAG D to poset P, null paths are included, so
that & < « for all . Alternatively, we obtain the poset by taking the transitive closure
D* of D. Then z < y if and only if (z,y) is an arc of D*.

3.2.4 Topological Sort and Optimization

In a DAG, the vertices can always be numbered consecutively so that all arcs go
from lower to higher numbers. Using this numbering, many optimization problems can
be solved by essentially the same algorithm, one that makes a single pass through the



vertices in numbered order. For more general digraphs, algorithms for these optimization
problems are less efficient or at least more complicated to describe.

DEFINITIONS

D30: A linear extension ordering of a digraph is a consecutive numbering of the
vertices as vy, vs,...,v, so that all arcs go from lower-numbered to higher-numbered
vertices.

D31: A topological sort, or topsort, is any algorithm that assigns a linear extension
ordering to a digraph when it has one. (This name is traditional, but the relation to
topology in the sense understood by topologists is obscure.) A simple topological sort
algorithm is shown as Algorithm 3.2.1. See also [Ro84, §11.6.2].

FACTS

F23: A digraph has a linear extension ordering if and only if it is a DAG.

F24: Topological sort determines if a digraph is a DAG and finds a linear extension
ordering if it is.

Algorithm 3.2.1: Topological sort

Input: a digraph D.

QOutput: A linear extension ordering if D is a DAG; failure otherwise

H=D;k=1
while Vg # ¢ {vertex set of H non-empty}
vg = any vertex in H of indegree zero.

{If no such vertex exists, exit: D is not a DAG}
H:=H—v, {New H isaDAG if old H was}
k= k+1

REMARK

R5: Because of the close connection between DAGs and posets, this whole discussion
of linear extensions and topological sort can just as well be stated in the poset context.
For instance, every poset has a linear extension, which may be found by a topological

sort. See [GrYe99, pp. 373-376].

Optimization

There are many computational problems about graphs, with important real-world ap-
plications, when the graphs have weights on their vertices and/or edges. For DAGs,
many of these problems can be solved by essentially the same single-pass algorithm.
This algorithm is the basic form of the sort of staged algorithm called dynamic pro-
gramming in operations research circles [HiLi95, Ch. 10]. Algorithms 3.2.2 and 3.2.3
provide templates for two versions of this algorithm. The examples that follow fill in
the templates by giving specific formulas for updating the functions they compute.

In Algorithm 3.2.2; topsort is done first, and then the function F' is computed vertex
by vertex in topsort order. In Algorithm 3.2.3, the topsort is done simultaneously with
improving F' on vertices not yet sorted.



Algorithm 3.2.2: Basic Dynamic Programming, First Version

Input: DAG D with vertices numbered vy, vs,...,v, in topsort order; weights
w(v) on vertices or w(v,u) on arcs, as needed.

Qutput: Correct values of desired function F.
Initialize F'(vy)
For k=2ton
Determine F'(vg) in terms of weights and F(v;) for i < k.

Algorithm 3.2.3: Basic Dynamic Programming, Second Version

Input: DAG D with n vertices and weights w(v) on vertices or w(v, u) on arcs,
as needed.

Qutput: Correct values of desired function F.

Initialize F'(v) for all v.

H:=D
Fork=1ton
v := a source in H  {exists since H is a DAG}
Update F'(u) for all u for which (vj, u) is an edge in H.
H:=H—v,
EXAMPLES

For simplicity in the formulas, in all examples below we assume that the DAGs have no
multiple edges.
v5: 10

load
v2: 10 food v7: 25

v4: 15

unload

load
vl: 0 passengers passengers v8: 0
clean cabin
Start ..
V3 20 16: 20 Finish
®
unload luggage load new luggage

Figure 3.2.13 Airplane stopover as CPM graph.

E12: Project Scheduling. Consider Figure 3.2.13, which repeats Figure 3.2.1 with the
following additions: Start and Finish vertices, a topsort ordering, and times for the
tasks as weights on the vertices. Start and Finish, being merely marker vertices, take
time 0. Recall that (u,v) is an arc if task ¥ must be completed directly before task v
begins, and that these tasks are the steps necessary to complete an airplane stopover.
How quickly can the stopover be completed? The bottleneck is the longest path from



Start to Finish, where the length of a (directed) path is the sum of the weights on its
vertices. Dynamic programming can answer this question as follows. Let

F(u) = the length of the longest path (using vertex weights) from Start to w.

Then in Algorithm 3.2.2 use

(v1) =0, (Note: v; = Start)
(vg) + max{F(v;) | (vs, vg) is an arc}.

Initialization: F(vy)
Update:  F(vg)

w
w

In Algorithm 3.2.3 use

Initialization: For all v, F(v) = w(v),
Update: For all u such that (vg, ) is an arc, F'(u) = max{F (u), F(vg)+w(u)}.

For either algorithm, at termination the desired answer is F(Finish), that is, F(v,).

This method of finding the optimal schedule by iteratively finding the longest path is
the essence of the critical path method, or CPM [HiLi95, Ch. 9]. This example uses the
activity on node model, or AoN. See Example 13 for the activity on arc model, or AoA.

E13: Project Scheduling, second model. If edges represent subtasks, and tasks earlier
on directed paths must be completed before those later are begun, then the longest path
from the Start to Finish vertex is the shortest time in which the whole project can be
completed, where now the length of a path is the sum of the weights on its edges. Let

F(u) = the length of the longest path (using edge weights) from Start to u.

Then in Algorithm 3.2.2 use

Initialization: F'(vy) =0,

Update: F(vg) = max{F (v;) + w(v;, vg) | (v, vg) is an arc}.
In Algorithm 3.2.3 use

Initialization: For all v, F'(v) =0,
Update: For all u such that (vg, ) is an arc,
F(u) = max{F(u), F(vg)+w(vg, u)}.

For either algorithm, at termination the desired answer is F(Finish).

E14: Shortest Paths. What is the shortest directed path between two vertices u and
u’, where the length of a path is the sum of the weights on its edges? If a graph
represents a road network, and the weights on the edges are the lengths of the road
segments (or the travel times, or the toll on that segment), then shortest path means
the shortest road distance (or least time, or lowest toll). If the graph is a DAG, and
we make u the Start vertex (by eliminating earlier vertices in the topsort if necessary),
then dynamic programming finds the shortest path as follows. Let

F(u) = the length of the shortest path (using edge weights) from Start to u.

Then in Algorithm 3.2.2 use

Initialization: F'(vy) =0,

Update: F(vg) = min{F(v;) + w(v;, vg) | (vs, vg) is an arc}.



In Algorithm 3.2.3 use

Initialization: F(u) =0, F(v) = oo for v # u,
Update: For all v such that (v, v) is an arc,
F(v) = min{F (v), F(vi)+w(vg,v)}.

For either algorithm, at termination the desired answer is the value of F(u').

E15: What is the shortest directed path between two vertices, where the length of
a path is the sum of the weights on its vertices? Dynamic programming solves this
problem too for DAGs, with a slight change in the formulas in Example 14 (replace
edge weights with vertex weights).

E16: Counting Paths. How many directed paths are there between a given pair of
vertices? If the digraph is a DAG, and the vertices are Start and Finish, let

F(u) = the number of directed paths from Start to w.

Then in Algorithm 3.2.2 use

Initialization: F(v1) =1, (v1 = Start)
Update:  F(vg) = > {F(vi) | (vi,vg) is an arc}.

In Algorithm 3.2.3 use

Initialization: F(Start) = 1, F'(v) = 0 for v # Start,
Update: For all v such that (v, v) is an arc,
F(v) = F(v) + F(vg).

For either algorithm, at termination the desired answer is the value of F'(Finish).

E17: Maximin Paths. What is the directed path between two vertices for which the
minimum edge weight on that path is maximum among all paths between those two
vertices? This is called the maximin path and that maximum value is called the maximin
value. In Figure 3.2.14 the maximin path from vy to ve is vyvzvavg and the maximin
value is 4. If the edges represent railroad segments, and each edge weight is the weight
limit on that railroad segment, then this is the path between the two points over which
the heaviest load can be shipped.

V3 6 V5

Figure 3.2.14 The maximin path vivsvivs has value 4 and
the minimax path vivsvsvs has value 6.



If the digraph is a DAG, and the vertices are Start and Finish, let
F(u) = the maximin value for directed paths from from Start to u.
Then in Algorithm 3.2.2 use
Initialization: F(v1) =0, (v; = Start)

Update: F(vg) = max{min{F(v;), w(v;, vi)} | (vs, vg) is an arc}.
In Algorithm 3.2.3 use

Initialization: F(Start) = 0, F'(v) = oo for v # Start,

Update: For all v such that (v, v) is an arc,
Fv) = max{F(v), min{ F(vg), w(vg, v)}}

For either algorithm, at termination the desired answer is the value of F'(Finish).

E18: Minimax Paths. What is the directed path between two vertices for which the
maximum edge weight on the path is minimum? This minimax question is relevant if
the graph represents a pipeline network, and each edge weight is the maximum elevation
on that segment, because the work necessary to push a fluid through a pipeline route
is related to the maximum height to which the fluid must be raised along the way. In
Figure 3.2.14 the minimax path from v; to v is v1v3vsvs and the minimax value is 6.
Dynamic programming solutions to the minimax problem are found by interchanging
the roles of min and max in the algorithms for Example 17. Also, in Algorithm 3.2.3,
all F'(v) are initialized to 0.

FACTS

F25: Algorithms 3.2.2-3 each solve critical path problems and many other optimiza-
tion and computation problems on DAGs. (See the examples above.)

F26: In project scheduling problems modeled by DAGs, the minimum completion time
is the length of the longest path from the Start node to the Finish node.

F27: Any DAG may be augmented to have just one source and one sink (just create
a new node named Start adjacent to all existing sources, and a new node named Finish
adjacent from all existing sinks).
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Introduction

Tournaments comprise a large and important class of directed graphs. Application
areas in which tournaments arise as models include round-robin tournaments (hence the
name), paired-comparison experiments, domination in some animal societies, majority
voting, population ecology, and communication networks. Many early results were
motivated by applications; more recently, much focus has been on the combinatorial
structure of tournaments as a separate area of graph theory. J. W. Moon’s excellent
monograph [Mo68] contains most of the results on tournaments up to 1968. In large
part because of the influence of that work, tournament theory has so flourished during
the past 35 years that subsequent surveys covered only a fraction of the results available.
However, these surveys remain good sources for results about tournaments and directed
graphs related to tournaments (see [HaNoCa65], [HaMo66], [BeWi75], [ReBeT9], [Be81],
[ZhS091], [Gu95], [BaGu96], and [Re96]). Much work has been done on generalizations
and extensions of tournaments (see [BaGu98]). A good source for digraphs in general,
with extensive coverage of tournaments and various generalizations, is the book by
Bang-Jensen and Gutin [BaGu01].

3.3.1 Basic Definitions and Examples

NOTATION: An arc from vertex x to vertex y will be denoted (z,y) or by z — y.

DEFINITIONS

D1: A tournament is an oriented complete graph, i.e.; there is exactly one arc be-
tween every pair of distinct vertices (and no loops).

D2: The order of a tournament T is the number of vertices in 7. A tournament
of order n will be called an n-tournament.

D3: A vertex  in a tournament 7" dominates (or beats) vertex y in T' whenever
(z,y) is an arc of T. We also say that y is dominated (or beaten) by .



D4: A vertex that dominates every other vertex in a tournament is called a trans-
mitter. A vertex that is dominated by every other vertex in a tournament is called a
receiver.

D5: The score (or out-degree) of a vertex v in a tournament 7' is the number of
vertices that v dominates. It is denoted by d"T'(v). Note that if the tournament 7" under
consideration is clear from the context, then T" will be dropped and the score of v will
be denoted d*(v). The in-score (or in-degree) of a vertex u in a tournament 7' is the
number of vertices that dominate u. It is denoted d (u) (or d™ (u)).

D6: The score sequence (or score vector) of an n-tournament 7' is the ordered
n-tuple (s1,$2,...,8n—1,Sn), Where s; is the score of vertex v;, 1 <i < n, and

51§52§”'§5n—1§5n

D7: A tournament is reducible if its vertex-set can be partitioned into two non-
empty subsets V7 and V5 such that every vertex in Vi dominates every vertex in Vo. A
tournament that is not reducible is said to be irreducible.

D8: The out-set of a vertex z in a digraph D, denoted O(z), is the set of all vertices
that z dominates, and the in-set of x, denoted I(z), is the set of all vertices that
dominate x.

TERMINOLOGY: In a digraph D, the out-set of a vertex x is also called the neighbor-
hood of z, denoted N (z) (or N*(z) if D is understood).

FACTS

F1: There are 2(3) different labeled n-tournaments using the same n distinct labels,
since for each pair of distinct labels {a, b}, either the vertex labeled a dominates the
vertex labeled b or b dominates a.

F2: [Dab4] The number ¢(n) of non-isomorphic (unlabeled) n-tournaments is given
by a rather complicated formula involving a summation over certain partitions of n.
Moreover,

t(n) > and lim — =1
! n—od 2(2)/71'
The first few values of ¢(n) are given by
n 112 (3[4 ]5 6 7 8 9 10

tn) |1 |1 |2 [4 |12 |56 | 456 | 6880 | 191536 | 9733056

EXAMPLES

E1l: Tournaments of orders 1 through 4 are illustrated in Figure 3.3.1.
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Figure 3.3.1 Tournaments of orders 1 through 4.

E2: Tournament Scheduling. To minimize the number of days of an n-tournament,
games are scheduled in parallel. If n is even, then at least n— 1 rounds are needed (since
at most n/2 of the n(n—1)/2 games may be played at once). If n is odd, then at least
n rounds are needed. There are several scheduling methods that achieve these compact
schedules (see [M068]). Round-robin sports tournament scheduling and its relationship
to edge-coloring is discussed in §5.5. Another related topic, factors and factorization, is

discussed in §5.3.

Regular Tournaments

DEFINITIONS

D9: A regular tournamentis a tournament 7" in which all scores are the same (i.e.,

there is an integer s so that d* (v) = s for all vertices v € V(T')). An almost regular (or

near regular) tournament is a tournament 7" in which ma(x){|d+(v) —d (v)|} =1.
veV(T

D10: A doubly-regular tournament is a tournament in which all pairs of vertices
jointly dominate the same number of vertices (i.e., there is an integer k so that |O(z) N
O(y)| = k, for all distinct pairs of vertices # and y in T').

D11: Let G be an abelian group of odd order n = 2m + 1 with identity 0. Let .S be
an m-element subset of G — {0} such that for every «,y € S, x +y # 0. That is, choose
exactly one element from each of the m 2-sets of the form {x, —a}, where x ranges over
all # € G — {0}. Form the digraph D with vertex-set V(D) = G and arc-set A(D)
defined by: arc (z,y) € A(D) if and only if y — # € S. Then D is called a rotational
tournament with symbol set S and is denoted Rg(S), or simply R(S) if the group
G 1s understood.

D12: Let G = GF(p*) be the finite field with p* elements, where p is a prime, p = 3
(modulo 4), and k is an odd positive integer, and let S be the set of elements that
are multiplicative squares of GG (called the quadratic residues). Then the rotational
tournament Rg(S) is called a quadratic residue tournament.

FACTS
F3: The rotational tournament Rg(S), where |G| = n, is a regular n-tournament.

F4: [ReBe79] If T is a doubly-regular n-tournament, then T is regular and n = 3
(modulo 4). Moreover, there exists a doubly-regular (4k 4+ 3) — tournament if and
only if there exists a (4k + 4) by (4k + 4) matrix H of +1’s and —1’s such that HH’
= (4k + 4)T and H + H' = 2I, where I is the identity matrix (such an H is called a
skew-Hadamard matrix) [ReBr72].



REMARK

R1: Frequently, the group G for the rotational tournament Rg(S) is taken to be Z,,
the integers modulo n = 2m + 1.

EXAMPLES

E3: The 9-tournament shown in Figure 3.3.2 is regular since every vertex has score
4, and it is also irreducible. Moreover, it is the rotational tournament Re(S), where
G =27y and S ={2,4,6,8}.

0

5 4

Figure 3.3.2 The regular, rotational tournament R({2,4,6,8}).

E4: The regular 7-tournament shown in Figure 3.3.3 is the quadratic residue tourna-
ment Rg(S), where G = GF(7) and S = {1,2,4}. Observe that it is irreducible, and it
is a doubly-regular tournament since |O(z) N O(y)| = 1 for all distinct pairs of vertices
z and y. The quadratic residue 7-tournament is notorious in tournament theory due to
its occurrence as an exception to many results on tournaments.

/
i

Figure 3.3.3 R({1,2,4}).

Arc Reversals
Any n-tournament can be transformed into any other n-tournament by a sequence of

reversals of arcs.

FACTS

F5: [Ry63] If T and W are two n-tournaments with the same score sequence, then
T can be transformed into an isomorphic copy of W by a properly chosen sequence of
reversals of arcs in 3-cycles.



F6: [Re73] If T and W are two n-tournaments and k is a fixed integer with 1 < k <
n — 1, then 7" can be transformed into an isomorphic copy of W by a properly chosen
sequence of reversals of arcs in k-paths.

REMARK

R2: C.Thomassen [Th88] extended these results to pairs of tournaments with the same
vertex-set. He also described an infinite class of non-tournament digraphs for which the
reversal of no arc decreases the total number of cycles. However, little progress has been
made on the corresponding tournament problem (see [Re84]).

CONJECTURE

Adam’s Conjecture [Ad64]: Every non-transitive tournament contains at least one
arc whose reversal reduces the total number of cycles.

3.3.2 Paths, Cycles, and Connectivity

Paths and cycles are fundamental sub-structures in tournaments and have been well
studied in tournament theory. Many more results than given here have been collected
by Bang-Jensen and Gutin in their survey [BaGu96] and their book [BaGu01].

NOTATION: All paths in this section are directed unless specified otherwise.

DEFINITIONS

D13: A hamiltonian path (or spanning path) in a digraph D is a path that in-
cludes all vertices of D. A hamiltonian cycle (or spanning cycle) in a digraph D is
a cycle that includes all vertices of D. (Hamiltonian paths and cycles are discussed in

§4.5.)

D14: A digraph D is strong (or strongly connected) if for every pair of distinct
vertices x and y of D, there is a path from x to y and a path from y to x.

EXAMPLE

E5: The two tournaments in Figures 3.3.2 and 3.3.3 are strong and irreducible. For
example, the hamiltonian cycle in R({2,4,6,8}) given by

0222623252483 1=27=0
implies that for every pair of distinct vertices x and y, there is a path from z to y and
a path from y to z.
REMARK

R3: Fact 7 is perhaps the most fundamental result about tournaments and is used
frequently in their study. The first part has several inductive proofs.

FACTS

F7: [Ré34] Every tournament contains a hamiltonian path. Moreover, every tourna-
ment contains an odd number of hamiltonian paths.



F8: The following four statements are equivalent for any n-tournament 7":

(a) T is strong.

(b) T is irreducible.

(c) T contains a hamiltonian cycle [Ca59].

(d) For every vertex x of T' and for every integer k, 3 < k < n, x is contained in a cycle

of length k& [Mo68]. (See also [HaMo66].)

F9: [Ga72] A curious fact: the number of n-tournaments containing a unique hamil-
tonian cycle is equal to the (2n — 6)™ Fibonacci number.

F10: [MoMo62] The fraction of labeled n-tournaments that are strong approaches 1
as n — 00.

F11: There is an O(n?) algorithm for finding a hamiltonian path in a tournament,
and there is an O(n?) algorithm for finding a hamiltonian cycle in a tournament. (See

[BaGu01] and [Ma92]).)

F12: [Vo02] Every arc of a strongly connected n-tournament is contained in a path of
length
[(n+3)/2] — 1.

Condensation and Transitive Tournaments

DEFINITIONS

D15: If T is a tournament with vertex partition {V;, V5, ..., Vi }, where each V; in-
duces a maximal strongly connected sub-tournament of 7', then the condensation
tournament of T, denoted T7, is the k-tournament with vertex-set {ui,us,..., ug}
and in which u; dominates u; whenever all of the vertices in V; dominate all of the
vertices in V; in 7.

D16: A tournament T is transitive if for all three distinct vertices z, y, and z in T,
if x dominates y, and y dominate z, then x dominates z.

EXAMPLE

E6: Consider the 9-tournament 7' consisting of three vertex-disjoint 3-cycles A1, As,
Az, in which every vertex of A; dominates every vertex of A, and every vertex of As,
and every vertex of A, dominates every vertex of As. The vertex partition of T in
Definition 15 is V(A1) U V(A2) UV (As), and T* is the transitive 3-tournament with
vertex-set {uy, us, us}, where u; dominates us and us, and us dominates us.

FACTS
F13: [HaNoCa65] The condensation T* of a tournament 7' is a transitive tournament.

F14: The following five statements are equivalent for an n-tournament. See [Mo68]
for references.

(a) T is transitive.

(b) T contains no cycles.

(c) T contains a unique hamiltonian path.

(d) T has score sequence (0,1,2,3,...,n—2,n—1).

(e) The vertices of T can be labeled v1,va,vs, ..., -1, vy s0 that v; dominates v; if
and only if 1 <¢< j <n (i.e., T is a complete [linear] order).



F15: Every (2"~ !)-tournament contains a transitive sub-tournament of order n.

Cycles and Paths in Tournaments

FACTS

F16: [Al67] Every arc in a regular n-tournament, n > 3, is in cycles of all lengths m,
3 < m < n. (See [Th80] for extensions.)

F17: [Ja72] Every arc in an almost regular n-tournament, n > 8, is in cycles of all
lengths m, 4 < m < n. (See [Th80] for extensions.)

F18: [AlReRo74] For every arc (x,y) of a regular n-tournament 7', where n > 7, and
for every integer m, 3 < m < n — 1, T contains a path of length m from z to y. (See
[Th&0] for extensions.)

F19: [Th8&0] For every arc (x,y) of an almost regular n-tournament 7', where n > 10,
and for every integer m, 3 < m < n — 1, T contains a path of length m from z to y.

(See also [GuVo97].)

Hamiltonian Cycles and Kelly’s Conjecture

CONJECTURE

Kelly’s conjecture (see [Mo68]). The arc-set of a regular n-tournament can be parti-
tioned into (n — 1)/2 subsets, each of which induces a hamiltonian cycle.

EXAMPLE
ET7: The arc-set of the quadratic residue rotational 7-tournament R({1,2,4}) can be
decomposed into 3 hamiltonian cycles:

0122232425 —=6—=0;

0=-2—2426>1—-23—=>5—=0;

0=+4—=-1=25—=-2=-6—=3—=0.

REMARK

R4: Kelly’s conjecture has stimulated much work in tournament theory. Evidence
for the conjecture includes: it is true for n < 9 (B. Alspach, see [BeTh81]); every
n-tournament, n > 5, contains two arc-disjoint hamiltonian cycles [Zh80]; regular or
almost regular n-tournaments contain at least |\/n/1000] arc-disjoint hamiltonian cy-
cles [Th82]. The best published result to date is the next result. A covering result then
follows.

FACTS

F20: [Ha93] Then there exists a positive constant ¢, ¢ > 2718 so that each regular
n-tournament contains at least c¢n arc-disjoint hamiltonian cycles.

F21: [Th85] Each regular n-tournament 7' contains 12n hamiltonian cycles so that
each arc of T"is in at least one of the cycles.



Higher Connectivity

DEFINITION

D17: D is k-strong (or k-strongly connected) if for every subset S of k—1 or fewer
vertices of D, D — S is a strong digraph.

FACTS

F22: [Th8&0] Every arc in a 3-strong tournament is contained in a hamiltonian cycle.
Moreover, this is false for infinitely many 2-strong tournaments. For every pair of
distinct vertices  and y in a 4-strong tournament there is a hamiltonian path from z
to y and there is a hamiltonian path from y to x. Moreover, this is false for infinitely
many 3-strong tournaments.

F23: [FrTh87] If T is a k-strong tournament and B is any set of k — 1 or fewer arcs
of T', then the arc-deletion digraph 7'— B contains a hamiltonian cycle.

F24: [Th8&4] There is a function h so that given any k independent arcs, ay, as, ..., ag,
in an h(k)-connected tournament 7', there is a hamiltonian cycle in 7' containing
ai,as, ..., a; in cyclic order.

F25: [S093] For any integer m, 3 < m < n—3, every 2-strong n-tournament 7', n > 6,
contains two vertex-disjoint cycles of lengths m and n — m, unless T is isomorphic to
the quadratic residue rotational tournament RT(1,2,4). (This result is based on the
case m = 3, which was established earlier in [Re85]. See also [BaGu00].)

F26: [ChGoLi0l1] If T' is a k-strong n-tournament with n > 8k, then T contains k
vertex-disjoint cycles that use all of the vertices of T

Anti-Directed Paths

During the last 30 years, researchers have also searched for copies of other orientations
of undirected paths and cycles in tournaments. Initially, study focused on oriented
paths and cycles that contain no directed path of length 2 (called anti-directed paths
and cycles), and successes there led to more general results on arbitrary oriented paths
and cycles.

TERMINOLOGY: In a digraph, a directed path of length & is sometimes called a k-path.

DEFINITION
D18: An anti-directed path (or cycle) in a digraph D is a sequence of arcs that

forms a path or cycle in the underlying graph of D but does not contain a directed path
of length 2 in D.

EXAMPLE

E8: Two anti-directed paths and an anti-directed cycle are illustrated in Figure 3.3.4.
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Figure 3.3.4 Two anti-directed paths and an anti-directed cycle.

FACTS

F27: [HaThOOa] Let T be a tournament different from the 3-cycle, the regular 5-
tournament, and the quadratic residue rotational tournament R(1,2,4). Then T con-
tains every orientation of an undirected hamiltonian path. (This was first proved for
anti-directed hamiltonian paths in 1971 [Gr71].)

F28: [Pe84]If niseven and n > 16, then every n-tournament contains an anti-directed
hamiltonian cycle. (The major part of this result was first established for all even n > 50
[Th73], and then the result was improved to all even n > 28 [Ro74].)

F29: [Ha0Oa] Every n-tournament, n > 68, contains every orientation of a (undirected)
hamiltonian cycle except possibly the (directed) hamiltonian cycle when the tournament
is reducible. (This was first proved for n > 228 [Th86].)

3.3.3 Scores and Score Sequences

Fact 30, due to the mathematical sociologist H. G. Landau [Lab3], is another basic
result that is useful in studies on tournaments. Nearly a dozen proofs appear in the
literature (see the survey [Re96] and subsequent paper [GrRe99]).

FACTS

F30: [Lab3] A sequence of n integers (s1,82,...,8n—1,5n), Where 57 < s < ...
Sn_1 < $p, 18 the score sequence of some n-tournament if and only if

IN

k

k’ n
Zsiz (2), fork=1,2,...,n—1, and ;si: (g)

i=1

F31: [HaNoCa65] A sequence of n integers (s1,8a,...,8n—1,8n), Where s; < 53 <
... < 81 < sy, 18 the score sequence of some strong n-tournament if and only if

k n
Zsi> (2), fork=1,2,...,n—1, and ;si: (g)

i=1
(See also [HaMo66].)

F32: TLet S = (s1,82,83,...,8n-1,5n) be a sequence of n > 2 nonnegative integers
where 51 < s9 < ...<s8p-1 <5, <n—1,and let m = s,. S is the score sequence of
some n-tournament if and only if the new sequence
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when arranged in non-decreasing order, is the score sequence of some (n—1)-tournament.

(See [ReBeT9].)

F33: [Av80] A score sequence S = ($1,82,83,...,5n—1,5p) 18 the score sequence for
exactly one n-tournament 7" if and only if each of the strong components of 7" is simple,
and the simple strong score sequences are (0), (1, 1, 1), (1, 1, 2, 2), and (2, 2, 2, 2, 2).
(See also [Te98].)

F34: [BrQi84] Let S = (s1,53,...,5n) be a score sequence. Every n-tournament with
score sequence S has a unique hamiltonian cycle if and only if

S=(1,1,2,3,...,n—=3,n—2,n—2)

F35: [Ya88]and [Ya89] Every non-empty set of nonnegative integers is the set of scores
for some tournament.

EXAMPLE

E9: Tt is easy to verify that the sequence (1, 1, 1, 4, 4, 4) satisfies the conditions of Fact
30, and hence, it 1s the score sequence for some 6-tournament. In fact, the 6-tournament
consisting of two vertex-disjoint 3-cycles, A and B, where every vertex of A dominates
every vertex of B has score sequence (1, 1, 1, 4, 4, 4). Since the sum of the first three
scores equals (‘;’), Fact 31 implies that no 6-tournament with score sequence (1, 1, 1, 4,
4, 4) is strong.

REMARKS

R5: The transitive n-tournament is the only n-tournament in which all of the scores
are distinct. So, each score occurs with frequency 1. Regular n-tournaments are the
only n-tournaments in which all of the scores are the same. So, each score in a regular
n-tournament occurs with frequency n. Thus, each of the sets {1} and {n} is the set
of frequencies of scores in some n-tournament. Given a non-empty set F' of positive
integers, the least possible order of a tournament with set of score frequencies given by
F was explicitly determined in [AlRe78].

R6: Tournament Rankings. Given the results of a round-robin competition, one would
like to rank the teams or at least pick a clearcut winner. Unfortunately, not one of the
many ranking methods that have been proposed is entirely satisfactory. Ranking by the
order of a hamiltonian path (whose existence is guaranteed by Fact 7 in the previous
subsection) does not work unless the path is unique, which is only the case for transitive
tournaments [Fact 14]. Ranking by score vector usually results in ties, and a team that
beats only a few teams, with those few teams having lots of wins, might deserve a
better ranking. This suggests considering the second-order score vector, where each
team’s score is the sum of the out-degrees of the teams it beats. One can continue
by defining the nth-order score vectors recursively. There is an asymptotic ranking
obtained this way, related to the eigenvalues of the digraph. See [Mo68] for more details
and references.



The Second Neighborhood of a Vertex

DEFINITION

D19: Let x be a vertex in a digraph D. The second neighborhood of =, denoted
N;)""(x), 1s the set of all vertices of D reachable from x by a 2-path but not a 1-path.
Thatis, Ni* (&) =[ U N3y ] - Nj (o).

yeNH ()

FACTS
F36: [Fi96] Every tournament 7' contains a vertex x so that |N7-I:+(l‘)| > |N7‘|:(x)|
F37: [HaThOOb] If a tournament 7' contains no transmitter, then there are at least

two vertices that satisfy the condition in Fact 36.

CONJECTURE

Seymour’s second neighborhood conjecture (see [Fi96]): Every digraph D con-
tains a vertex z for which |N;+(z)| > |NI-|)_(Z)|

3.3.4 Transitivity, Feedback Sets, Consistent Arcs

In a tournament that represents the outcomes of a paired-comparison experiment
(or the results of a round-robin competition or the results of majority voting by an
electorate in which there are no ties), there is much interest in attempts to measure
the consistency of choices by the subject who made the comparisons (or the consistency
of wins among the participants or the consistency of the electorate’s choice among the
alternatives). Consistency corresponds to a lack of cycles. So, one measure is the largest
number of vertices that induce a transitive sub-tournament in the outcome tournament.
Another measure is the largest number of arcs of the outcome tournament that do not
contain the arcs of a cycle.

DEFINITION

D20: A feedback set of arcs in a tournament 7' 1s a set S of arcs such that the
digraph T'— S contains no cycle.

EXAMPLE

E10: Let T be the tournament with vertex-set {1,2 ... n} in which j dominates k
whenever j > k, except that ¢ dominates ¢ + 1, for ¢ = 1,2,...,n — 1. Then the set of
arcs {(i,i+ 1) | 1 <¢<n—1)} is a feedback set of arcs in T, and the smaller set of
arcs {(¢,i+ 1) |1 <i<n—1, iodd} is also a feedback set of arcs in 7.

Smallest Feedback Sets

Finding a smallest feedback set in an n-tournament 7" is equivalent to finding a transitive
n-tournament (or linear order) W such that V(W) = V(T') and the number of pairs
{@,y} of distinct vertices in which 2 dominates y in T but not in W is as small as possible.



The latter problem is known as a Slater problem in the voting literature involving
tournaments. See [ChHuWo96]. Work on the computation of a minimum-weighted
feedback set of arcs in an arc-weighted tournament is reported in [ChGuHuWo97] and

[ShYu01].

FACTS

F38: A smallest set of arcs in a tournament 7" whose reversal yields a transitive tour-
nament is a smallest feedback set in T'. (See [BaHulsRoTe95].)

F39: The number of arcs in a smallest feedback set in a tournament 7' is equal to the
number of arcs in a smallest transversal of the cycles in T'. (See [BaHulsRoTe95].)

F40: [BaHulsRoTe95] If R is a smallest feedback set in a tournament 7', then every
arc of R is contained in some 3-cycle of T'.

F41: [BaHulsRoTe95] A digraph D is acyclic if and only if its arc set is a smallest
feedback set of some tournament.

Acyclic Subdigraphs and Transitive Sub-Tournaments

DEFINITION

D21: A set of arcs in a digraph D is a consistent set of arcs if it induces an acyclic
subdigraph of D.

FACTS

F42: [Sp71/72, Fe83] If g(n) denotes the largest integer so that every n-tournament
contains a consistent set of g(n) arcs, then there are positive constants ¢; and c¢s so
that %(g) +en?? < g(n) < %(g) + ¢on®/2. Moreover, values for n < 12 are as follows
([Re69, Be72]):

N {213 (4|5 |6 |7 [8 ]9 |10 (11 | 12

gn) [1 (2 |4 |6 |9 |12 |20 |24 |30 |35 |44-46

F43: [PaRe70, Ne94, S494] If v(n) denotes the largest integer such that every n-tourn-
ament contains a transitive sub-tournament with at least v(n) vertices, then

3 forda<n<T
v(n) = 4 for8<n<13

5 for 14 <n <27

6 for 28 <n <31

|log, (16n/7)] < v(n) < 2|logon| +1 for 32 < n < 54
v(n) > |log,(n/5b)| +7 forn > 55

F44: [AoHa98] and [GuGyThWe98] For any tournament score sequence S = (si, sa,
ey Sn—1,8pn), where 51 < s9 < 53 < ... < sp_1 < sy, there exists a tournament T
on vertex set {1,2,...,n} so that the score of vertex i is s; and the sub-tournaments
of T" on both the even and the odd indexed vertices are transitive, i.e., ¢ dominates j
whenever ¢ > j and ¢ = j (mod 2). (See also [BrSh01] for a shorter proof, and see
[BaBeHa92] for origins of the result in terms of the so-called cyclic chromatic number
of a tournament.)



Arc-Disjoint Cycles

NOTATION: For a given tournament 7', a(7T') denotes the maximum number of arc-disjoint
cycles in T, and ¢(T) denotes the number of arcs in a smallest feedback set in 7. Also,
let a(n) = max{a(T)} and ¢(n) = max{c(T)}, where the maxima are taken over all
n-tournaments 7.

REMARK

R7: Note that the quantity a(n) equals the maximum number of edge-disjoint (undi-
rected) cycles in the complete graph of order n, which has been shown by [ChGeHeT71]

to equal [ (n/3)|(n —1)/2]].
FACTS

F45: TFor any tournament T, a(7) < ¢(T).

F46: [BeKo76] For n > 10, a(n) < ¢(n). That is, for each n > 10, there exists an
n-tournament 7" such that a smallest feedback set in 7" contains more arcs than in a
largest collection of arc-disjoint cycles in 7. (See also [Be75] and the discussions in

[BaGu01] and [Is95].)

3.3.5 Kings, Oriented Trees, and Reachability

Kings arose in an attempt to determine the “strongest” individuals in certain small
animal societies in which there exists a pairwise “pecking” relationship (see work refer-
enced in [Lab3]). The delightful article by Maurer [Ma80] stimulated early interest in the
topic. Extensions of the idea led to new investigations into combinatorial sub-structures
in tournaments involving oriented trees and other “reachability sub-structures”. The
concept of a king appeared independently as “uncovered vertices” in some of the voting
theory literature (see §3.3.8 below). Moreover, there is current interest in kings and
generalizations in other digraphs, particularly in multi-partite tournaments (e.g., see

the discussion in [Re96]).

DEFINITIONS

D22: A kingin a tournament 7" is a vertex x such that for every other vertex y, there
is a 1-path or a 2-path from z to y in 7.

D23: A serfin a tournament is a vertex x such that for every other vertex y, there is
a 1-path or a 2-path from y to z.

D24: A tournament is k-stable, k > 1, if every vertex is a king and more than k arcs
must be reversed in order to reduce the number of kings.
FACTS

F47: [Vab2] Every tournament contains a king. In fact, every vertex of maximum
score is a king [Lab3].

F48: [Ma80] For positive integers k and n, there exists an n-tournament with exactly

k kings if and only if 1 < &k < n, k # 2, and (k,n) # (4,4) (see also [Re82]).



F49: [Re80] For integers 0 < b < s < k < n, there exists an n-tournament with exactly
k kings, exactly s serfs, and exactly b vertices that are both kings and serfs if and only
if the following four conditions are satisfied: (1) k+s—56<n, (2) s Z2 and k # 2, (3)
either n=k=s#4ork <nandb<s, (4) (n,k,s,b)is none of (n,4,3,2), (5,4,1,0),
or (7,6,3,2). (See [M093] for a shorter proof.)

F50: [ReBr84] A k-stable tournament must have at least 4k + 3 vertices. Moreover,
the following three statements are equivalent: (1) There exists a k-stable (4k + 3)-
tournament. (2) There exists a (4k +4) by (4k 4+ 4) skew-symmetric Hadamard matrix.
(3) There exists a doubly regular (4k 4+ 3)-tournament.

F51: [Ma80] In almost all tournaments every vertex is a king. (See also [Mo068].) In
fact, for each positive integer k, almost all tournaments are k-stable [ReBr84].

REMARKS

R8: Bounds on the least number of vertices that need be adjoined to an n-tournament
T to form a new super tournament W so that the set of kings in W is exactly the vertices
of T were described in [Re82] and [Wa84]. The least order of a tournament Z in which
all vertices of Z are kings and that contains 7" as a sub-tournament was determined in
[Re80]. For other work on kings in tournaments the reader is referred to the references

in [Re96].

R9: By definition, a king is the root of a rooted spanning tree of depth at most 2. So,
1t 1s natural to consider the existence of other oriented trees in tournaments.

Tournaments Containing Oriented Trees

TERMINOLOGY: An out-branching (or out-tree) in a digraph is a rooted spanning
tree, and an in-branching (or in-tree) is an out-branching with all the arcs reversed.

CONJECTURE

Sumner’s conjecture (see [ReWo83]): Every (2n — 2)-tournament contains every ori-
entation of every tree of order n.

EXAMPLE

E11: All of the 8 oriented trees of order 4 are shown in Figure 3.3.5. A copy of each
can be found in any 6-tournament.

S SUD SE G

000 060 -0-—0 0 -0-—0 -0 o 0 -0-0

Figure 3.3.5 The oriented trees of order 4.

REMARK

R10: Note that no integer smaller than 2n — 2 will suffice in the statement of the
conjecture, for a score of at least n—1 is required to accommodate the “out-orientation”
of the tree Ky ,_1; any regular (2n — 3)-tournament fails to have a score of n — 1. Over



the last 20 years several papers reported partial and related results (see the references
in [HaThO0Ob]), all of which support the conjecture.

FACTS

F52: [HaThOOb] If f(n) denotes the least integer m so that every m-tournament con-
tains every orientation of every tree of order n, then f(n) < (7n—>5)/2. (Earlier efforts

yielded f(n) < 12n [HATh91] and then f(n) < %n — 6 [HaThO0Ob].)

F53: [LuWaPa00] Every n-tournament, n > 800, contains a spanning rooted 2-tree of
depth 2 so that, with at most one exception, all vertices that are not a leaf or the root
have out-degree 2.

F54: [Pe02] Each rotational (2n 4+ 1)-tournament contains all rooted trees of order
2n + 1 in which there are at most n branches, each of which is a directed path.

F55: [Ba9l] A tournament 7' contains an out-branching and an in-branching that are
arc-disjoint, both rooted at a specified vertex v, if and only if 7" 1s strong and for each
arc (z,y) of T, the digraph T'— {(#, y)} contains either an out-branching rooted at v or
an in-branching rooted at v. If T is 2-arc-strong, then for every pair of vertices « and
y, there 1s an out-branching rooted at # and an arc disjoint in-branching rooted at y.

Arc-Colorings and Monochromatic Paths

CONJECTURE

P. Erdés conjecture (see [SaSaWo82]): for each positive integer k, there is a least
positive integer s(k) so that every arc-colored tournament involving k colors contains
a set S of s(k) vertices with the property that for every vertex y not in S, there is a
monochromatic path from y to some vertex in S.

REMARK

R11: This conjecture considers reachability in tournaments via monochromatic paths.
Since every tournament contains a hamiltonian path, s(1) = 1. Fact 56 below implies
that s(2) = 1. A certain coloring of the 9-tournament that is the lexicographic product
of a 3-cycle with a 3-cycle shows that s(3) > 2 (see [SaSaWo82]). In particular, Erdds
asked if s(3) = 3. Tt is not even known that s(k) is finite for & > 3. Some progress on
this conjecture is included below. (See also [LiSa96] and [Re00] for a relaxation of the
problem and several open questions.)

FACTS

F56: [SaSaWo82]If the arcs of a tournament 7" are colored with two colors, then there
exists a vertex # in 7' so that for every vertex y # « in 7', there is a monochromatic
path from y to z. (See [Re84] for another proof.)

F57: [Sh88] If the arcs of a tournament T are colored with three colors and 7" does
not contain a 3-cycle or a transitive sub-tournament of order 3 whose arcs use all three
colors, then there exists a vertex z in 7' so that for every vertex y # # in 7', there is a
monochromatic path from y to z.



3.3.6 Domination

Issues concerning domination have played an important role in the development of
tournament theory. However, exact results on domination numbers of tournaments are
scarce. For example, the problem of determining the smallest order of a tournament T’
with domination number v(7T) = k for a given integer k has only some partial results.
Bounds are known, some of which are constructive, but the exact value is known only
for small values of k. Domination in general (undirected) graphs is discussed in §9.2.

DEFINITIONS

D25: A dominating set in a tournament 7' is a set S of vertices in 7" such that every
vertex not in S 1s dominated by some vertex in S.

D26: The domination graph of a tournament 7' is an undirected graph G that has
the same vertex-set as T, and « is adjacent to y in G whenever {z,y} is a dominating
set in T

D27: A spiked cycleis a connected (undirected) graph with the property that when
all vertices of degree 1 are removed, a cycle results.

D28: The domination number of a tournament is the minimum cardinality of a
dominating set in T, denoted (7).

EXAMPLE

E12: Let T denote the transitive n-tournament with vertex-set {1,2,... n}in which j
dominates ¢ whenever j > . Reversal of the arc (n, 1) yields a strong n-tournament W in
which vertex 1 can reach vertex n via a l-path, and 1 can reach vertices 2,3,...,(n—1)
via 2-paths (through vertex n). So, 1 is a king in W. Since W has no transmitter,
and every vertex in W is dominated by 1 or n, {l,n} is a dominating set in W and

y(W) =2.

FACTS

F58: [GrSp71] For a positive integer k, let p denote the smallest prime number greater
than £222%=2 where p = 3 (mod 4). The domination number of the quadratic residue
p-tournament is greater than k. (See also [ReMcHeHe02].)

F59: [FiLuMeRe98] The domination graph of a tournament is either a spiked odd
cycle with or without isolated vertices, or a forest of caterpillars. In particular, the
domination graph of an n-tournament has at most n edges. Furthermore, any spiked
odd cycle with or without isolated vertices is the domination graph of some tournament.

F60: [FiLuMeRe99] A connected graph is the domination graph of a tournament if
and only if it is either a spiked odd cycle, a star, or a caterpillar whose spine has positive
length and has at least three vertices of degree 1 adjacent to one end of its spine. The
tournaments that have a connected domination graph were characterized in [JiLu98].

F61: [SzSz65] If T is an n-tournament with n > 2, then the domination number of T
satisfies ¥(T') < logan — logalogan + 2.



3.3.7 Tournament Matrices

Some early work on tournament matrices included the results by Brauer and Gentry
and by J. W. Moon and N. J. Pullman (Fact 22 and Fact 23 in §3.3.1; see also [BrGe72]);
work by H. J. Ryser [Ry64] on tournament matrices with given row and column sum that
minimize the number of “upsets”; 1.e., the number of 1’s above the main diagonal; and
work by D. R. Fulkerson [Fu65] that described the tournament matrices with prescribed
row sums that minimize and maximize the number of upsets. R. A. Brualdi and Q. Li
[BrLi83a] continued the upset theme and expanded on the work of Ryser and Fulkerson.
These last three references may be thought of as papers on ranking since minimizing
upsets gives rise to orderings of the vertices that minimize the number of losses by
stronger players to weaker players.

DEFINITION

D29: A tournament matrix is a square matrix M = (m;;) of 0’s and 1’s, with 0’s
on the main diagonal and m;; + m;; = 1, for all distinct ¢ and j.

TERMINOLOGY: For a given ordering of the vertices, vy, va, ..., v,, of a tournament T,
the adjacency matrix M = [m;;] of T is the 0-1 matrix given by

s — 1 if v; dominates v;
(3 - .
/ 0 otherwise

Thus, a tournament matrix is the adjacency matrix of some tournament for a given
ordering of the vertices.

EXAMPLE

E13: A tournament matrix of order 6 is shown in Figure 3.3.6.

oO—=OoO0oCo o
— = OO =
O, OO =
oOCoCOoO—O -
—_—o—=oOoO
oo~ —, O

Figure 3.3.6 A tournament matrix.

REMARK

R12: An elementary observation about an n by n tournament matrix M is that M +
M' + I, = J,, where I, is the n by n identity matrix, M’ is the transpose matrix of
M and J, is the n by n matrix of all 1’s. Moreover, any adjacency matrix M of T can
be obtained from any other adjacency matrix N of T by permuting the order of the
vertices used to obtain NV, i.e., there is a permutation matrix P such that M = P~INP.
Thus, the eigenvalues are the same for all of the tournament matrices corresponding to
a particular tournament.



FACTS

F62: [BrGe68] Let Aj, Aa,..., A, denote the eigenvalues of an n by n tournament
matrix A, where |[Ai| > |Az] > ... > |An]. Then 0 < A < (n—1)/2, and |};] <
|n(n —1)/25]Y% j = 2,3,...,n. Moreover, if M is an n by n tournament ma-
trix and Ap denotes max{|A| : A an eigenvalue of M}, then for odd n, max{As :
M an n by n tournament matrix} is attained by the regular tournament matrices.

F63: [CaGrKiPuMa92] For all n > 3, each irreducible n by n tournament matrix
M has at least three distinct eigenvalues; such a matrix has exactly three distinct
eigenvalues if and only if it is a Hadamard tournament matrix (i.e., M*M = nI). There
is an irreducible n by n tournament matrix with exactly n distinct eigenvalues.

F64: [Mi95] If A is an n by n tournament matrix, then the rank of A is equal to
(n —1)/2 if and only if n is odd and AA® = 0. Equality implies that the characteristic
of the field divides (n — 1)/2 (without the hypothesis of regularity). Examples of order
n having rank (n —1)/2 for n = 1 (mod 4) for fields of characteristic p, where p divides
(n — 1)/4, can be obtained from doubly regular tournament matrices of order (n — 2)
by adding an (n — 1)st row of n 0’s (and hence, an (n — 1)st column of all 1’s save for
the 0 in the (n — 1,n — 1) position) followed by an n'* row of (n — 1) consecutive 1’s
and a 0 in the (n, n) position (and hence, an n* column of n 0’s).

F65: [Sh92] A tournament matrix is singular if more than one-fourth of the triples
of vertices in the corresponding tournament induce 3-cycles. All tournament matrices
realizing a given score sequence are nonsingular if and only if the scores are “sufficiently
close” to one another. The spectral radius of a singular n by n tournament matrix is
less than or equal to (1/2)(n — 1), and equality implies that exactly one-fourth of the
triples of vertices in the corresponding tournament induce 3-cycles.

3.3.8 Voting

Work on acyclic digraphs in tournaments, including transitive sub-tournaments, is
of interest in voting theory since such structures give a measure of group consistency by
the voters. Readers can find a rich source of problems and issues in selected articles in the
social choice literature that treats voting theory, particular examples of such literature
include the periodicals Social Choice and Welfare, Mathematical Social Sciences, Public
Choice, and The American Journal of Political Science.

Deciding Who Won

A central issue in voting theory is to pick a “best” alternative (or subset of the alter-
natives) given that voter preferences have been aggregated. A “best” alternative or
subset of alternatives is called a solution and is thought of as the “winners”. Several
tournament solutions have been considered in the literature. Each is to be non-empty,
invariant under isomorphism, and uniquely the Condorcet winner if there is one in the
tournament. Some of these solutions are: the vertices of largest score (the Copeland
solution), vertices based on the maximum eigenvalue of the adjacency matrix of the
tournament, vertices associated with a Markov method, the Condorcet winner of a
transitive tournament that is “closest” to the given tournament (called the Slater solu-
tion), vertices that are uncovered relative to a certain “covering” relation, vertices that



are transmitters of maximal transitive sub-tournaments (the Banks set), and vertices
satisfying a special axiomatic formulation (the tournament equilibrium set). These are
discussed in detail in J.-F. Laslier’s monograph [La97].

DEFINITIONS

D30: The Condorcet winner is a candidate (or alternative) z such that for every
other candidate (or alternative) y, x is preferred over y by a majority of the voters.

D31: The majority digraph D of a set of n-tournaments, all with the same vertex-
set V', has vertex-set V| and vertex « dominates vertex y in D if and only if # dominates
y in a majority of the n-tournaments.

D32: A digraph D is induced by a set of voters if D is the majority digraph based
on a collection of linear orderings of the vertices of D, exactly one for each voter. (The
linear orders represent preferences by the voters for the alternatives that are the vertices
of D. Different voters might have the same linear order.)

D33: The Condorcet paradox is that the voters may be consistent in their pref-
erences (i.e., each of their rankings of the n candidates is a linear order), but the
amalgamation of voters’ preferences using majority rule can result in inconsistencies
(i.e., cycles in the majority digraph).

REMARK

R13: In the definition of a majority digraph, the common vertex set may be thought
of as a finite set of n “alternatives”, and each n-tournament may be thought of as the
pairwise preferences of the alternatives by a “voter”. So, the resulting majority digraph
represents voters’ preferences under majority voting. If there are an odd number of
voters or there are no ties, then the majority digraph is a tournament.

EXAMPLE

E14: Figure 3.3.7 illustrates the majority tournament 7" of the set of three transitive
b-tournaments 71, 75, and 7T5. In the drawings of 71, 75, and T3, the long lines directed
downward are to mean that each vertex dominates exactly the vertices below it. For
example, in the second tournament from the left, vertex ¢ dominates exactly vertices a
and d, and vertex a is dominated by exactly vertices b, e, and ¢. The existence of cycles
in the majority digraph illustrates the Condorcet paradox. For instance, it shows that
a majority of voters prefer a to b, a majority prefer b to ¢, and yet, a majority prefer ¢
to a.

a a

d b

Figure 3.3.7 The majority digraph of 3 tournaments.



Tournaments That Are Majority Digraphs

FACTS

F66: [St59] Every n-tournament (indeed, every oriented graph of order n) is the major-
ity digraph of some collection of n+ 1 tournaments, for n odd, and of n+2 tournaments,
for n even.

NOTATION: Let m(n) denote the smallest integer such that any n-vertex digraph can
be induced as a majority digraph by a collection of m(n) or fewer voters, and let g(n)
denote the smallest integer such that any n-tournament can be induced as a majority
digraph by a collection of g(n) or fewer voters.

F67: Tor large n, m(n) > (.55n/logn) [St59], and there exists a constant ¢ so that
m(n) < (en/logn) [ErMo64].

F68: [Mo68] The integer g(n) is always odd, ¢(3) = g(4) = ¢(5) = 3, g(n+ 1) <
g(n) + 2, and m(n) < 2¢(n).

F69: [Ma99] In contrast to the situation for majority tournaments, for any A, 1/2 <
A < 1, there exists an integer n and a labeled n-tournament 7', so that for every
collection C' of transitive tournaments on the same label set as T, there is an arc (u,v)
of T such that the proportion of C' in which u dominates v is less than A. In short, T’
1s not the A-majority tournament for any collection of transitive n-tournaments.

Agendas

DEFINITIONS

D34: An agendais an ordered list of alternatives (i.e., an ordered list of the vertices
of a majority tournament).

D35: An amendment procedure of voting is a sequential voting process in which,
given an agenda (a1, aq, .. ., a,) of alternatives, alternative a; is pitted against as in the
first vote, then the winner is pitted against ag in the second vote, then the winner is
pitted against a4 in the third vote, etc.

D36: Given a majority n-tournament 7" and an agenda (ay, as,. .., a,) of alternatives
given by the vertices of T, the sincere decision is the alternative surviving the last
vote (i.e., the (n—1)™ vote) in an amendment procedure of voting using majority voting
at each stage. It is a function of the agenda and T'. The decision tree is the spanning,
rooted subtree of T, rooted at the sincere decision, induced by the n — 1 arcs of T" that
describe the n —1 votes taken in the amendment procedure using 7" and (a1, as, ..., an).

EXAMPLE

E15: Given the agenda (b,e,¢,a,d) and the majority tournament shown in Figure
3.3.8, alternative a is the sincere decision. The corresponding decision tree rooted at
vertex a is also shown.



e b (b, e, c.ad) @ b

d c d ®c

Figure 3.3.8 Majority tournament, agenda, and decision tree.

FACT

F70: [Mi77] For any tournament 7', the set of vertices that can be obtained as the
sincere decision under amendment procedure is exactly the set of vertices in the initial
strong component of T'. (For another proof, see [Re91al.)

Division Trees and Sophisticated Decisions

DEFINITIONS

D37: Given an agenda (a1, as,...,a,), the division tree of (ai,as,...,a,) is the
labeled, balanced, binary, rooted tree on 2™ — 1 vertices labeled by non-empty sub-
sequences of the agenda (ai,as,...,a,); the root is labeled (aj,as,...,a,); and, for
0 <j <n—2, avertex at level j which is labeled by a subsequence of (a1, as,...,ay),
say (b1,b9,bs,...,bp_;), dominates exactly two vertices at level j + 1, one labeled

(b1,bs,...,bp_;), and one labeled (bs,bs,...,b,_;).

D38: Let T be a majority n-tournament and let (a1, as,...,a,) be an agenda of al-
ternatives given by the vertices of T. The sophisticated decision is the anticipated
decision at the root of the division tree relative to (a1, aa,...,a,) and T, where the
anticipated decision at each vertex at level n — 2 of the division tree is the majority
choice in T" between the two alternatives that make up the ordered pair labeling that
vertex in the division tree; and inductively, for 0 < j < n — 2, the anticipated decision
at each vertex v of level j in the division tree is the majority choice in T between the
anticipated decisions at the two vertices at level j 4+ 1 that are dominated by v.

FACTS

F71: [Ba85] The set of vertices in a tournament 7' that can be obtained as the sophis-
ticated voting decision under amendment procedure relative to some agenda is equal to
the set of vertices of T" that are transmitters of maximal transitive sub-tournaments of

T.

F72: No alternative is unanimously preferred to the sophisticated voting decision.

(Observed in [Mi77] and [Mi80] and proved in [Re91b].)

F73: [Re97] A tournament T" admits an agenda for which the sincere voting decision
and the sophisticated voting decision are identical if and only if the initial strong com-
ponent of 7" is not a 3-cycle. As a result, asymptotically, most tournaments admit such
an agenda.

EXAMPLES

E16: The division tree of the agenda (#,y, z) is shown in Figure 3.3.9. Given the
majority tournament shown, the anticipated decisions at levels 1 and 0 of the division



tree are underlined in the vertex labels. The anticipated decision at the root is y, so
y 1s the sophisticated decision relative to this tournament and agenda. Note that the
sincere decision is z, which illustrates Fact 73.

Figure 3.3.9 Agenda, division tree, and majority tournament.

E17: The majority 4-tournament shown in Figure 3.3.10 illustrates the positive case
for Fact 73. As before, the anticipated decisions are underlined. For the agenda
(y, v, u, z), the sincere decision and the sophisticated decision are both w.

yvux
o
u v \
"> yux .// . vux

(y,v.u, %)

NN
Cvib iy

Figure 3.3.10 A majority 4-tournament.

Inductively Determining the Sophisticated Decision

The following result yields an algorithm for determining the sophisticated decision that
is much more straightforward than using the definition. (Recall that I(z) denotes the
in-set of vertex z.)

FACT

F74: [ShWe84] Let T be a majority n-tournament and let (ai,as,...,a,) denote an
agenda composed of the alternatives that make up the vertices of T'. Inductively define
the sequence (z1, 23, ..., 2,) as follows: z, = a,, and for 1 < j < n,

n
) 1faj6'm I(z)
Fj = i=j+1
Zj4+1 otherwise

Then z; 1s the sophisticated decision.
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GLOSSARY FOR CHAPTER 3

Activity on Arc: a digraph scheduling model in which arcs represent subtasks to be
scheduled as part of a large project.

Activity on Node: a digraph scheduling model in which nodes represent subtasks to
be scheduled as part of a large project.

adjacency matrix — of a digraph: the |V| x |V| matrix in which the ij entry is the
number of arcs from v; to v;.

agenda — in voting: an ordered list of alternatives (i.e., an ordered list of the vertices
of a majority tournament).

almost regular tournament (or near regular): see reqular tournament.

amendment procedure — for voting: a sequential voting process in which, given an
agenda (ay, as,...,a,) of alternatives, alternative a; is pitted against as in the first
vote, then the winner is pitted against as in the second vote, then the winner is
pitted against a4 in the third vote, etc.

ancestor of a vertex v —in a rooted tree: a vertex that lies on the unique path from
v to the root; see also descendant.

anti-directed cycle — in a digraph D: a sequence of arcs that forms a cycle in the
underlying graph of D but does not contain a directed path of length 2 in D.

anti-directed path — in a digraph D: a sequence of arcs that forms a path in the
underlying graph of D but does not contain a directed path of length 2 in D.

antisymmetric relation R: one in which, for all z,y, if x Ry and yRx, then z = y.
AoA: Activity on Arc.

AoN: Activity on Node.

arc: see directed edge.

arc-cut: synonym for edge-cut.

basis of a digraph: a minimal set of vertices such that every other vertex can be
reached from some vertex in this set by a directed path.

beats: synonym for dominates.

binary tree: an ordered tree in which each vertex has at most two children, and each
child is designated either a left-child or a right-child.

_, balanced: a binary tree such that for every vertex, the number of vertices in its
left and right subtrees differ by at most one.

binary-search tree (BST): a binary tree, each of whose vertices is assigned a key, such
that the key assigned to any vertex v is greater than the key at each vertex in the
left subtree of v, and 1is less than the key at each vertex in the right subtree of v.

child of vertex v — in a rooted tree: a vertex to which there is an edge from v; see
also parent.

_, left — in a binary tree: a child which is designated to be on the left, whether or
not there is another child.

comparability digraph — of a poset (X, <): the digraph with vertex set X such that
there is an arc from « to y if and only if x < y.



comparable elements — of a poset (X, =): elements x,y such that either < y or
y=xz.

complete m-ary tree: an m-ary tree in which every internal vertex has exactly m
children and all leaves are at the same level.

complete digraph: a simple digraph such that between each pair of its vertices, there
is an arc in both directions.

condensation — of a digraph G whose strong components are Sy, Ss,...,.S,: a digraph
G* with vertex-set Vig» = {s1,s2,...,s,} such that (s;,s;) € E(G*) if and only if
there is an arc in digraph G from a vertex in component S; to a vertex in component
S;.

condensation of a tournament 7" a tournament T* whose vertex-set {uy, us, ..., ug}
corresponds to a vertex partition {V1,Va, ..., Vi } of V(T), where each V; induces a
maximal strongly connected sub-tournament of 7', and in which vertex u; dominates
u; whenever all of the vertices in V; dominate all of the vertices in V} in 7.

Condorcet paradox: the possibility that the voters may be consistent in their pref-
erences (i.e., each of their rankings of the n candidates is a linear order), but the
amalgamation of voters’ preferences using majority rule can result in inconsistencies
(i.e., cycles in the majority digraph).

Condorcet winner — in voting: a candidate (or alternative) x such that for every
other candidate (or alternative) y, x is preferred over y by a majority of the voters.

connectivity (or verter-connectivity) — of a non-complete digraph: the minimum size
of a vertex subset S such that G — S is neither strongly connected nor the trivial
digraph. (The connectivity of a complete n-vertex digraph is n — 1.) Denoted &, (G)
or £(G). Synonyms for vertex-cut are cut and disconnecting set.

consistent set of arcs —in a digraph D: a set of arcs that induces an acyclic subdigraph

of D.
cost flow network: see network.

cover graph — of a poset (X,=): the graph with vertex set X such that z,y are
adjacent if and only if one of them covers the other.

covering — in a poset (X, <): the element y covers the element z if < y and there is
no element z such that x < z < y.

CPM: Critical Path Method.

Critical Path Method: a method for scheduling models where subtasks have fixed
times and precedence is known. The whole project is modeled as an AoA or AoN
digraph, and an single-pass iterative algorithm is used to find the longest path from
start to finish.

DAG: a directed acyclic graph.

decision tree — for a sincere decision corresponding to a given majority n-tournament
T and an agenda (ay,as, ..., a,) of alternatives: the spanning, rooted subtree of T
rooted at the sincere decision, induced by the n — 1 arcs of T which describe the
n — 1 votes taken in the amendment procedure using T and (a1, asz, ..., an).

depth (or level) — of a vertex v in a rooted tree: the length (i.e., number of arcs) of the
unique directed path from the root to v.

descendant of a vertex v — in a rooted tree: a vertex w such that v is on the unique
path from the root to w; the vertex v is called an ancestor of w.



digraph: a directed graph.
acyclic: a digraph with no directed cycles, i.e., a directed acyclic graph, a DAG.

S

connected: a digraph whose underlying graph is connected. The term weakly
connected 1s also used.

S

representation of a relation R on a finite set S: the digraph whose vertices
correspond to the elements of S, and whose arcs correspond to the ordered pairs
in the relation.

weak: short form of weakly connected digraph.

weakly connected: a digraph whose underlying graph is connected; synonym
for connected digraph.

directed acyclic graph: a digraph without directed cycles.

Directed Chinese Postman Problem: to find a minimum-weight postman tour in
a given weighted digraph.

directed cycle: a closed directed path.

directed edge (or arc): an edge e, one of whose endpoints is designated as the tail,
and whose other endpoint is designated as the head. In a line drawing, the arrow
points toward the head.

directed path: a path in a digraph or partial digraph in which all edges are oriented
in the same direction.

directed tree: a digraph whose underlying graph is a tree.

directed walk — from vy to v,: an alternating sequence (v, €1, v1, €2, ..., Up_1, €n, Upn)
of vertices and arcs, such that tail(e;) = v;_1 and head(e;) = v;, for i = 1,2... n.
Also called a vg-v,, directed walk.

division tree — in voting: see §3.3, Definition 37.

dominating set — in a tournament 7" a set S of vertices in 1" such that every vertex
not in S is dominated by some vertex in S.

domination (or beating)— a vertex y in a tournament: a property that a vertex x has
if there is an arc from z to y.

__, graph — of a tournament 7": an undirected graph G that has the same vertex-set
as T', and « is adjacent to y in G whenever {z,y} is a dominating set in 7.

__, number - of a tournament: the minimum cardinality of a dominating set in 7T';
denoted (7).

doubly-regular tournament: see regular tournament.

edge-connectivity — of a non-trivial digraph: the minimum size of an edge subset I
such that G — F' is not strongly connected. Denoted k¢(G) or A(G).

edge-cut (or arc-cut) — in a strongly connected digraph: an arc subset whose deletion
results in a digraph that is not strongly connected. Synonyms are edge-disconnecting
set, arc-disconnecting set, and cut-set.

eulerian tour of a digraph G: a closed directed walk that uses each arc exactly once.

feedback set of arcs — in a tournament 7" a set S of arcs such that the digraph T'— S
contains no cycle.

flow network: see network.



frontier arc — relative to a rooted tree 1" in a digraph: an arc whose tail is in 7" and
whose head is not in 7.

functional graph: a digraph in which each vertex has outdegree 1.

hamiltonian cycle (or spanning cycle) — in a digraph D: a cycle that includes all
vertices of D.

hamiltonian path (or spanning path) — in a digraph D: a directed path that includes
all vertices of D.

Hasse diagram — of a poset: a straight-line drawing of the cover graph such that the
lesser element of each adjacent pair is lower in the drawing.

head: see directed edge.
height — of a rooted tree: the length of a longest path from the root.

in-branching (or in-tree) — in a digraph: a rooted spanning tree with all the arcs
reversed.

in-score — of a vertex v in a tournament 7: the number of vertices that dominate v
(i.e., its indegree; denoted d (v) (or d~(v) when T is understood).

in-set — of a vertex « in a digraph D: the set of all vertices that dominate x; denoted
I(z).

internal vertex — in a tree or rooted tree: a non-leaf.

in-tree: synonym for in-branching.

k-strong tournament: see strong tournament.

king — in a tournament 7" a vertex x such that for every other vertex y, there is a
1-path or a 2-path from = to y in 7.

leaf — in a rooted tree: a vertex with outdegree 0.

left subtree — of a vertex v in a binary tree: the binary subtree spanning the left-child
of v and all of its descendants.

length of a directed walk: the number of arc-steps in the walk sequence.
level of a vertex — in a rooted tree: synonym for depth.

linear extension ordering — of a digraph: a consecutive numbering of the vertices as
V1,2, ..., U, so that all arcs go from lower-numbered to higher-numbered vertices.

linear ordering: a consecutive numbering.
m-ary tree: see rooted tree.

majority digraph D — of a set of n-tournaments, all with the same vertex-set V: a
digraph with vertex-set V and such that vertex x dominates vertex y in D if and
only if # dominates y in a majority of the n-tournaments.

Markov digraph: a complete digraph with a self-loop at each vertex and whose arcs
are assigned probabilities such that the out-probabilities at each vertex sum to one;
models a stationary Markov chain.

maximum-flow problem: to determine the maximum flow that can be moved through
an s-t network from source s to sink ¢ such that the flow into each intermediate node
equals the flow out (conservation of flow) and the flow across any arc does not exceed
the capacity of that arc.

minimum-cost-flow problem: to find an assignment of flows on the arcs of the
flow network that satisfy the supply and demand (negative supply) requirements at
minimum cost.



mutually reachable vertices — in a digraph G: vertices that have a directed walk
from one to the other and vice versa. Every vertex is regarded as mutually reachable
with itself (via the trivial walk).

neighborhood: see out-set.

network: a digraph G = (V| F) used to model a variety of network flow problems;
vertices might have supply or demand, and arcs might have capacities and or flow
costs.

__, st flow: a network G = (V, E, cap, s,t) with a nonnegative capacity function
cap : E — N, a distinguished vertex s, called the source, with nonzero outdegree,
and a distinguished vertex ¢, called the sink, with nonzero indegree.

__, capacitated cost flow G = (V, E, cap, ¢, b): a directed graph with vertex-set V,
arc-set F| a nonnegative capacity function cap : £ — N, a linear cost function

¢: F — 7, and an integral supply vector b : V' — 7 that satisfies ) b(w) = 0.
wevV

__, cost flow: a network G = (V, F, cap, ¢, b) with nonnegative capacity function
cap : E — N, a linear cost function ¢ : £ — Z, and an integral supply vector

b:V — 7 that satisfies ) b(w) = 0.
wevV

order of a tournament: the number of vertices it contains. A tournament of order n
1s an n-tournament.

ordered tree: a rooted tree in which the children of each vertex are assigned a fixed
ordering.

ordering: a linear ordering.

orientation — of a graph: an assignment of directions to its edges, thereby making it a
digraph.

oriented graph: a digraph obtained by choosing an orientation for each edge of an
undirected simple graph.

out-branching (or out-tree) — in a digraph: synonym for rooted spanning tree.

out-set (or neighborhood) — of a vertex x in a digraph D: the set of all vertices that x
dominates; denoted O(z) or NT(z) (or with a subscripted “D” if necessary).

out-tree: a rooted tree, especially when the arc directions are shown explicitly.

parent of a vertex w — in a rooted tree: a vertex v that immediately precedes w on
the path from the root to w; also, w is the cheld of v.

partial order: a binary relation < on a set X that is reflexive, antisymmetric, and
transitive.

partially ordered set: a pair (X, <) consisting of a set X and a partial order < on
X.

path in a digraph: a directed path.
_, k-2 a directed path of length k.
poset: a partially ordered set.

postman tour (or covering walk): a closed directed walk that uses each arc at least
once.

proper arc-coloring — of a digraph: an assignment of colors to the arcs such that any
two arcs that have an endpoint in common are assigned different colors.



receiver — in a tournament: a vertex that is dominated by every other vertex in a
tournament.

reflexive relation R: one in which, for all z, 2 Rx.
regular tournament: a tournament 7" in which all scores are the same.
__, almost (or near): a tournament 7" in which ma(x){|d+(v) —d (v} =1.
veV (T
__, doubly-: a tournament in which all pairs of vertices jointly dominate the same

number of vertices (i.e., there is an integer k so that |O(x) N O(y)| = &, for all
distinct pairs of vertices # and y in T').

right child — in a binary tree: a child which is designated to be on the right, whether
or not there is another child.

right subtree — of a vertex v in a binary tree: the binary subtree spanning the right-
child of v and all of its descendants.

root: see rooted tree.

rooted tree: a directed tree having a distinguished vertex r, called the root, such that
for every other vertex v, there is a directed r-v path. Occasionally encountered
synonyms for rooted tree are out-tree, branching, and arborescence.

__, m-ary: a rooted tree in which every vertex has m or fewer children; also called
an m-ary tree.

rotational tournament: denoted R¢(5), or simply R(S) if the group G is understood;
see §3.3, Definition 11.

s-t low network: see network.

score of a vertex v in a tournament T the number of vertices that v dominates (i.e.,
its outdegree). Denoted d} (v) (or d*(v) when 7' is understood).

score sequence (or score vector) — of an n-tournament: the ordered n-tuple
($1,82,...,5n—1,Sn), Where s; is the score of vertex v;, 1 < i < n, and s; < s9 <
. < sp-1 < 8y

score vector: synonyim for score sequence.

second neighborhood — of a vertex  in a digraph D: the set of all vertices of D
reachable from x by a 2-path but not a 1-path; denoted Ni';'"(x).

serf — in a tournament 7: a vertex x such that for every other vertex y, there is a
1-path or a 2-path from y to =.

siblings — in a rooted tree: children of the same parent.
simple digraph: a digraph with no self-loops and no multi-arcs.
simple digraph: a digraph with no self-loops or multi-arcs.

sincere decision — for a given majority n-tournament 7" and an agenda (ay, as, ..., an)
of alternatives given by the vertices of T': the alternative surviving the last vote (i.e.,
the (n — 1)™ vote) in an amendment procedure of voting using majority voting at
each stage.

sink — in a digraph: a vertex of outdegree zero.
sophisticated decision — in voting: see §3.3, Definition 38.
source — in a digraph: a vertex of indegree zero.

spanning subgraph — of a graph or digraph: a subgraph that includes all the vertices
of the original graph.



spiked cycle: a connected (undirected) graph with the property that when all vertices
of degree 1 are removed, a cycle results.

standard plane representation of an ordered tree: a standard plane drawing of the
tree such that at each level, the left-to-right order of the vertices agrees with their
prescribed order.

strong component — of a digraph G: maximal strongly connected subdigraph of G.
strong digraph: short form of strongly connected digraph.

strong orientation — of a graph: an orientation that results in a strong digraph.
strong tournament: a tournament that i1s a strongly connected digraph.

_, k-1 astrong tournament such that the removal of any set of k —1 or fewer vertices
results in a strong digraph.

strongly connected digraph: a digraph in which every two vertices are mutually
reachable, i.e., there is a directed path from each of the two vertices to the other.

strongly orientable graph a graph for which there exists an assignment of directions
to the edges such that the resulting digraph is strongly connected.

symbol set — for a rotational tournament: see §3.3, Definition 11.
tail: see directed edge.

topological sort or fopsort: any algorithm that assigns a linear extension ordering to
a digraph when it has one.

topsort: short form of topological sort.

tournament matrix: a square matrix M = (m;;) of 0’s and I’s, with 0’s on the main
diagonal and m;; + mj; = 1, for all distinct ¢ and j (i.e., the adjacency matrix of
some tournament).

tournament: a simple digraph such that between each pair of vertices there is exactly

one arc.
, irreducible: a tournament that is not a reducible tournament.

__, quadratic residue: a special rotational tournament; see §3.3, Definition 12.

_,reducible: a tournament whose vertex-set can be partitioned into two non-empty
subsets V7 and V5 such that every vertex in V; dominates every vertex in V5.

__, k-stable: a tournament in which every vertex is a king and more than & arcs

must be reversed in order to reduce the number of kings, where k& > 1.
n-: a tournament of order n, 1.e., an n-vertex tournament.

S

transitive closure — of a graph of digraph D: the smallest supergraph of D that is
transitive.

transitive digraph: a digraph in which, if (v, v) and (v, w) are arcs, then so is (u, w).
transitive orientation — of a graph: an orientation that results in a transitive digraph.
transitive relation R: a relation in which, for all x,y, z, if # Ry and yRz, then zRz.

transitive tournament: a tournament such that for every set of three distinct vertices
x, y, and z, if x dominates y, and y dominate z, then & dominates z.

transmitter — in a tournament: a vertex that dominates every other vertex in a tour-
nament.

unilateral digraph: a digraph in which, for all pairs of vertices u, v, there is a directed
path between them in at least one direction.



vertex-cut — in a strongly connected digraph: a vertex subset whose deletion results
in a digraph that is not strongly connected.

weights — in a graph or digraph: numbers on the vertices or edges or arcs, often
representing something that is to be maximized or minimized.
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Introduction

Connectivity is one of the central concepts of graph theory, both from a theoret-
ical and a practical point of view. Its theoretical implications are mainly based on
the existence of nice maz-min characterization results, such as Menger’s theorems. In
these theorems, one condition which is clearly necessary also turns out to be sufficient.
Moreover, these results are closely related to some other key theorems in graph theory:
Ford and Fulkerson’s theorem about flows and Hall’s theorem on perfect matchings.
With respect to the applications, the study of connectivity parameters of graphs and
digraphs is of great interest in the design of reliable and fault-tolerant interconnection
or communication networks.

Since graph connectivity has been so widely studied, we limit ourselves here to the
presentation of some of the key results dealing with finite simple graphs and digraphs.
For results about infinite graphs and connectivity algorithms the reader can consult,
for instance, [AhDi94], [Ha00], and [Gi85], [Wi92], [HeRaGa00]. For further details, we
refer the reader to some of the good textbooks and surveys available on the subject:

[Tu66], [Be76], [Ma79], [BeHoPe89], [Fr90], [Fr94], [Fr95], [Lo93], [0e96], [GrYe9d].

4.1.1 Connectivity Parameters

In this first subsection the basic notions of connectivity and edge-connectivity of
simple graphs and digraphs are reviewed.

NOTATION: Given a graph or digraph G, the vertex-set and edge-set are denoted V()
and E(G), respectively. Often, when there is no ambiguity, we omit the argument and
refer to these sets as V' and F.

Preliminaries

DEFINITIONS

D1: A graph is connected if there exists a walk between every pair of its vertices. A
graph that is not connected is called non-connected.



D2: The subgraphs of G which are maximal with respect to the property of being
connected are called the components of GG.

D3: Let G = (V, E) be a graph and U C V. The vertex-deletion subgraph G — U
is the graph obtained from G by deleting from G the vertices in U. That is, G — U 1is
the subgraph induced on the vertex subset V — U. If U = {u}, we simply write G — u.

D4: Let G = (V, E) be a graph and F' C E. The edge-deletion subgraph G — I
is the subgraph obtained from G by deleting from G the edges in F. Thus, G — F =
(V,E — F). As in the case of vertex deletion, if F' = {e}, it is customary to write G — e
rather than G — {e}.

D5: A disconnecting (vertex-)set (or vertex-cut) of a connected graph G is a
vertex subset U such that G — U has at least two different components.

D6: A vertex v is a cut-vertex of a connected graph G if {v} is a disconnecting set

of GG.

D7: A disconnecting edge-set (or edge-cut) of a connected graph G is an edge
subset F' such that G — F' has at least two different components.

D8: An edge e is a bridge (or cut-edge) of a connected graph G if {e} is a discon-
necting edge-set of G.

FACTS

F1: Every nontrivial connected graph contains at least two vertices that are not cut-
vertices.

F2: An edge is a bridge if and only if it lies on no cycle.

Vertex- and Edge-Connectivity

The simplest way of quantifying connectedness of a graph is by means of its parameters
verter-connectivity and edge-connectivity.

DEFINITIONS

D9: The (vertex-)connectivity «(G) of a graph G is the minimum number of ver-
tices whose removal from G leaves a non-connected or trivial graph.

D10: The edge-connectivity A(G) of a nontrivial graph G is the minimum number
of edges whose removal from G results on a non-connected graph.

NOTATION: When the context is clear, we suppress the “G” and simply use x and A.
NOTATION: In some other sections of the Handbook, k,(G) and &.(G) are used instead
of (G) and A(G).

EXAMPLE

E1l: Figure 4.1.1 shows an example of a graph with x = 2 and A = 3.



Figure 41.1 k=2 and A = 3.

FACTS

F3: k = 0 if and only if G is non-connected or G = K;. If GG has order n, then
£ =n —1if and only if G is the complete graph K,,. In this case, the removal of n — 1
vertices results in the trivial graph K. Moreover, if G # K, is a connected graph, then
1 < & <n —2 and there exists a disconnecting set U of  vertices.

F4: If G # Ky we have A = 0 if GG is non-connected. By convention, we set A(K7) = 0.

F5: If G # K; is connected, then the removal of a A edges results in a non-connected
graph with precisely two components.

F6: The parameters k and A can be computed in polynomial time.

Relationships Among the Parameters

NOTATION: The minimum degree of a graph G is denoted §((). When the context is
clear, we simply write d. (In some other sections of the Handbook, the notation 6, (G)
is used.)

FACTS

F7: [Wh32] For any graph, x < A < 4.

F8: [ChHa68] For all integers a, b, ¢ such that 0 < a < b < ¢, there exists a graph G
with Kk = a, A= b, and d = c.

DEFINITIONS

D11: G is maximally connected when k = A = §, and G is maximally edge-
connected when A = 4.

D12: A graph G with connectivity & > k > 1 is called k-connected. Equivalently,
GG 18 k-connected if the removal of fewer than k vertices leaves neither a non-connected
graph nor a trivial one. Analogously, if A > k£ > 1, (G is said to be k-edge-connected.

D13: A connected graph without cut-vertices is called a block.

Some Simple Observations

The following facts are simply restatements of the definitions.

FACTS

F9: A nontrivial graph is 1-connected if and only if it is connected.



F10: If G is k-connected, either G = Kj 41 or it has at least k + 2 vertices and G — U
is still connected for any U C V with |[U]| < k.

F11: G is k-edge-connected if the deletion of fewer than k edges does not disconnect
it.

F12: Every block with at least three vertices is 2-connected.

Internally-Disjoint Paths and Whitney’s Theorem

DEFINITIONS

D14: An internal vertex of a path is a vertex that is neither the initial nor the final
vertex of that path.

D15: The paths Py, Ps, ..., P joining the vertices v and v are said to be internally-
disjoint (or openly-disjoint) u—v paths if no two paths in the collection have an
internal vertex in common. Thus, V(P;) NV (P;) = {u, v} for i # j.

FACTS

F13: [Whitney] A graph G with order n > 3 is 2-connected if and only if any two
vertices of G are joined by at least two internally-disjoint paths.

F14: Whitney’s theorem implies that every 2-connected graph is a block.

F15: A graph GG with at least three vertices is a block if and only if every two vertices
of G lie on a common cycle.

Strong Connectivity in Digraphs

For basic concepts on digraphs, see, for example, the textbooks [ChLe96], [HaNoCa68],
[BaGuo1].

DEFINITIONS

D16: In a digraph G, vertices u and v are mutually reachable if G contains both a
directed u—v walk and a directed v—u walk.

D17: A digraph G is said to be strongly connected if every two vertices u and v
are mutually reachable.

D18: For a strongly connected digraph G, the (vertex) connectivity k = r(G)
is defined as the minimum number of vertices whose removal leaves a non-strongly
connected or trivial digraph. Analogously, if G is not trivial, its edge-connectivity
A = A(G) is the minimum number of directed edges (or arcs) whose removal results in
a non-strongly connected digraph.

“
D19: Let GG be an undirected graph. The associated symmetric digraph G is the
digraph obtained from G by replacing each edge uv € E(G) by the two directed edges
(u,v) and (v, u) forming a “digon”.



REMARKS

R1: In our context, the interest for studying digraphs is that we can deal with an
“

undirected graph G by considering G. In particular, x(G) = (), and, since a minimum

edge-disconnecting set cannot contain digons, we also have A(G) = A(G).

NOTATION: 0T and J~ denote the minimum outdegree and indegree among the vertices
of a digraph G. Then, the minimum degree of G is defined as § = min{§t, 6= }.

R2: Note that, if G is a strongly connected digraph, then § > 1. The following result,
due to Geller and Harary, is the analogue of (and implies) Fact 7.

FACT
F16: [GeHa70] For any digraph G, k < A < 4.

TERMINOLOGY: A digraph G is said to be maximally connected when kK = A = 4§,
and (G is maximally edge-connected when A = 4.

An Application to Interconnection Networks

The interconnection network of a communication or distributed computer system 1is
usually modeled by a (directed) graph in which the vertices represent the switching
elements or processors, and the communication links are represented by (directed) edges.
Fault-tolerance is one of the main factors that have to be taken into account in the design
of an interconnection network. See, for instance, the survey of Bermond, Homobono,
and Peyrat [BeHoPe89]. Indeed, it is generally expected that the system be able to
work even if several of its elements fail. Thus, it is often required that the (di)graph
assoclated to the interconnection network be sufficiently connected, and, in most cases,
a good design requires that this (di)graph has maximum connectivity. Communication
networks are discussed in §11.4 of the Handbook.

4.1.2 Characterizations

When a graph G is k-connected we need to delete at least k vertices to disconnect
it. Clearly, if any pair u, v of vertices can be joined by & internally-disjoint u—wv paths,
G is k-connected. It turns out that the converse statement is also true. That is, in a k-
connected graph any two vertices can be joined by k internally-disjoint paths. We review
in this subsection some key theorems of this type that characterize k-connectedness.

Menger’s Theorems

DEFINITION

D20: Let v and v be two non-adjacent vertices of a connected graph G # K,. A
(u|v)-disconnecting set X, or simply (u|v)-set, is a disconnecting set X C V — {u, v}
whose removal from ' leaves u and v in different components.

NOTATION: For any pair of non-adjacent vertices u and v, x(u|v) denotes the minimum
number of vertices in a (u|v)-set.



NOTATION: For any two vertices u and v, k(u—v) denotes the maximum number of

internally-disjoint u—v paths.

FACTS

F17: TFor any graph G, the connectivity & = min{«(u|v) : v, v € V, nonadjacent}.

F18: [Menger’s theorem, Me27] For any pair of non-adjacent vertices u and v,
k(u—v) = &(ulv)

F19: Although x(u—v) can be arbitrarily smaller than the minimum of the degrees
of u and v, Mader proved that every finite graph contains vertices for which equality

holds:

F20: [Ma73] Every connected non-trivial graph contains adjacent vertices u and v for

which k(u—v) = min{deg(u), deg(v)}.

NOTATION: For any pair of distinct vertices u and v, A(u|v) denotes the minimum number
of edges whose removal from G (G non-trivial) leaves « and v in different components
and A(u—v) denotes the maximum number of edge-disjoint u—v paths.

F21: TFor any non-trivial graph G, A(G) = min{A(u|v), u,v € V}.
F22: (Edge-analogue of Menger’s theorem) [EIFeSh56,FoFub6] A(u—v) = A(ulv).

REMARKS

R3: Digraph versions of Menger’s theorems are the same except that all paths are
directed paths.

R4: The edge form and arc form of Menger’s theorem were proved by Ford and Fulk-
erson [FoFub6] using network-flow methods. Network flow is discussed in Chapter 11.

Other Versions and Generalizations of Menger’s Theorem

In addition to the ones given below, there exist other versions and generalizations of
Menger’s theorem, see for example [Di97], [Fr95], [McCu84]. A comprehensive survey
about variations of Menger’s theorem can be found in [Oe03].

DEFINITIONS

D21: Given A, B C V,an A—B path is an u—v path P such that u is the only vertex
of P belonging to A, and v is the only vertex of P that belongs to B.

D22: A set X CV separates A from B (or is (A|B)-separating) if every A— B path
in G contains a vertex of X.

D23: An A-pathis an A—B path with A = B.

D24: A subset X C V — A totally separates A if each component of G — X contains
at most one vertex of A (or, equivalently, every A-path contains some vertex of X).

D25: A vertex subset is an independent set if no two of its vertices are adjacent.

NOTATION: The maximum number of (internally-)disjoint A—B paths is denoted
k(A—B), and the size of a minimum (A|B)-separating set is denoted x(A|B).



FACTS

F23: The minimum number of vertices separating A from B is equal to the maximum

number of disjoint A— B paths. That is, k(A—B) = &(A|B).

F24: If Ais an independent set, then maximum number of internally-disjoint A-paths
is at most the minimum number of vertices in a totally A-separating set, i.e., kK(A—A) <

K(AlA).

F25: The corresponding Menger-type result does not hold and inequality can be strict.
In fact, there exist examples for which k(A—A) = k(A4|A)/2.

F26: Gallai [Ga61] conjectured that Fact 25 corresponds to the “extremal” situation
and that always k(A—A) > «(A|A)/2, and Lovész [Lo76] conjectured that A(A—A) >
A(A]A)/2. Both conjectures were proved by Mader.

F27: [Ma78b,Ma78c] k(A—A) > k(A|A)/2 and M(A—A) > A(A]|A4)/2.

REMARK

R5: The classical version of Menger’s theorem (Fact 18) is easily derived from Fact 23
by taking A and B as the sets of vertices adjacent to u and v, respectively.

Another Menger-Type Theorem

NOTATION: For any pair of vertices u and v, kn(u—v) denotes the maximum number
of internally-disjoint u—v paths of length less than or equal to n. For any pair of non-
adjacent vertices u and v, £, (u|v) denotes the minimum number of vertices of a set
X C V —{u,v} such that every u—v path in G — X has length greater than n.

FACTS
F28: There are examples for which we have the strict inequality &, (u—v) < &£, (ul|v).
However, for n = d(u,v) > 2 (i.e., for shortest u—v paths), we have kp(u—v) = & (ulv).

This Menger-type result is equivalently restated as Fact 29.

F29: [EnJaSI77,LoNeP178] The maximum number of internally-disjoint shortest u—wv
paths is equal to the minimum number of vertices (different from u and v) necessary to
destroy all shortest u—v paths.

Whitney’s Theorem

In a connected graph, there exists a path between any pair of its vertices, and if the
graph 1s 2-connected, then there exists at least two internally-disjoint paths between
two distinct vertices (Fact 13). As a corollary of Menger’s theorem, we have the re-
markable result that this property can be generalized to k-connected graphs, which was
independently proved by Whitney. It provides a natural and intrinsic characterization
of k-connected graphs.

FACTS

F30: [Whitney’s theorem, Wh32] A non-trivial graph G is k-connected if and only if
for each pair u, v of distinct vertices there are at least k internally-disjoint u—v paths
(or, alternatively, if and only if every cut-set has at least k vertices).



F31: (Edge version of Whitney’s theorem) A nontrivial graph G is k-edge-connected
if and only if for each pair u, v of distinct vertices there exist at least & edge-disjoint
u—v paths.

F32: (The Fan Lemma) Let GG be a k-connected graph (k > 1). Let v € V and let
B CV,|B|>k,v¢ B. Then there exist distinct vertices by, bs, ..., by in B and a v—b;
path P, i = 1,2...,k, such that the paths Py, Ps, ..., Py are internally-disjoint (i.e.,
with only vertex v in common) and V(P;) N B = {b;} for i = 1,2,.. k.

Other Characterizations

Another interesting characterization of k-connected graphs was independently conjec-
tured by Frank and Maurer. The conjecture was proved by Lovdsz and by Gyory (who
worked independently), and it appears as Fact 33. Su proved a characterization of
k-edge-connectivity for digraphs (Fact 34).

FACTS

F33: [Lo77,Gy78] A graph G with n > k + 1 vertices is k-connected if and only if|
for any distinct vertices uyi, us, ..., ug and any positive integers nq, ns, ..., ng such that
ny + no + -+ ni = n, there is a partition V1, V5, ...,V of V(@) such that u; € V},
|Vi| = n;, and the induced subgraph G(V;) is connected, 1 <i < n.

F34: [Su97] A digraph G with at least k edges is k-edge-connected if and only if, for
any k distinct arcs e; = (uy,v), 1 < @ < k, the digraph G — {ey, ea,..., e} contains k
edge-disjoint spanning arborescences (rooted trees) T1,Ts, ..., Ty such that T; is rooted
at v;, 1 <2< n.

4.1.3 Structural Connectivity

Here our purpose is to give results about certain configurations that must be present
in a k-connected or k-edge-connected graph.

Cycles Containing Prescribed Vertices

The first 1s a classical result by Dirac, which generalizes Fact 15.

FACTS

F35: [Di60] Let G be a k-connected graph, k& > 2. Then G contains a cycle through
any given k vertices.

F36: [WaMe67] Let G be a k-connected graph with & > 3. Then G has a cycle
containing a given set H with k 4 1 vertices if and only if there is noset T C V — H
with |T'| = k vertices whose removal separates the vertices of H from each other.

Cycles Containing Prescribed Edges — The Lovasz-Woodall Conjecture

Loviész [Lo74] and Woodall [Wo77] independently conjectured that every k-connected
graph has a cycle containing a given set F' of k independent edges (i.e., no two edges
have a vertex in common), if and only if F is not an edge-disconnecting set of odd
cardinality.



REMARK

R6: Lovasz [Lo74,Lo77] first showed the Lovdsz- Woodall Conjecture is true for k = 3.
The conjecture was also shown to be true for & = 4 [ErGy85,L090] and k = 5 [Sa96].
Subsequently, Haggkvist and Thomassen [HaTh82] arrived at the same conclusion by
assuming that G is (k + 1)-connected (without restriction on the the edge set F'). More
recently, the conjecture seems to have been settled by Kawarabayashi in a series of four
papers (only one of which has been published to date).

FACT

F37: [Ka02a,Ka03a,Ka03b,Ka03c] Let G be a k-connected graph with & > 2, and let
F be a set of k independent edges. Then G has a cycle containing F' if and only if F' is
not an edge-disconnecting set of odd cardinality.

TERMINOLOGY: A subset of independent edges is also called a matching. Matchings
are discussed in Section 11.3.

Paths with Prescribed Initial and Final Vertices

Given any two subsets A, B C V of k vertices of a k-connected graph, the existence of &
disjoint paths P; (1 < ¢ < k) connecting A and B is guaranteed by Menger’s theorem.
Menger’s theorem does not, however, ensure that each of these paths can be so chosen
to join a fixed u;, v; pair of vertices, u; € A, v; € B, (1 < i < k). Now we consider the
existence of paths with prescribed end-vertices.

DEFINITIONS

D26: A graph G is called k-linked if it has at least 2k vertices, and for every sequence
UL, U,y . . ., U, V1, Vs, ..., U, of 2k different vertices, there exists a u;—v; path P, i =
1,2,...,k, such that the k£ paths are vertex-disjoint.

D27: A graph is weakly k-linked if it has at least 2k vertices, and for every k pairs
of vertices (u;,v;), there exists a u;—v; path Py, 1 < i < k, such that the k paths are
edge-disjoint.

D28: A graph is said to be k-parity-linked if one can find k disjoint paths with
prescribed end-vertices and prescribed parities of the lengths.

D29: The bipartite index of a graph is the smallest number of vertices whose deletion
creates a bipartite graph.

FACTS

F38: A k-linked graph is always (2k — 1)-connected, but the converse is not true.

F39: [LaMa70], [Ju70] (independently) For each k, there exists an integer f(k) such
that if K > f(k) then G is k-linked.

F40: Thomassen [Th80a] and Seymour independently characterized the graphs that
are not 2-linked. This is the first problem in the so-called k-paths problem that has
been solved using the Robertson-Seymour theory [RoSe85].

NOTATION: For k > 1, g(k) denotes the smallest integer such that every g(k)-edge-
connected graph G is weakly k-linked.



CONJECTURE
[Th80a] For every integer k > 1, g(2k + 1) = g(2k) = 2k + 1.

FACTS

F41: [Ok84,0k85,0k87]If k > 3isodd, uy, ua, ..., ug, v1,v2.. ., vy are (not necessarily
distinct) vertices from a set T with |T'| < 6, and A(u;,v;) > k (1 < ¢ < k), then there
exists a u; — v; path for 1 <7 <k such that the k paths are edge-disjoint.

F42: [Hu91] For every integer k > 1, ¢(2k + 1) < 2k + 2 and g(2k) < 2k + 2.

F43: [Ok88,0k90a] For every integer k > 1,
(a) g(2k+1) < 3k and g(2k +2) <3k + 2,
(b) g(3k) < 4k and ¢(3k + 2) < 4k + 2.

F44: [ThO1] Every f(k)-connected graph (defined in Fact 39) with bipartite index at
least 4k — 3 is k-parity-linked.

F45: [Su97] Let G be a k-edge-connected digraph. Then, for any k triples (uy, f1,v1),
(w2, fa,v2), ..., (Uk, fi, vi), Wwhere uy, ug ..., up, v1,va ..., v are not necessarily distinct
vertices, and fi, fa, ..., fy are different arcs of the form f; = (w;,v;), i = 1,..., k, there
exist k edge-disjoint u;—v; paths P; in G such that f; € E(P;),i=1,..., k.

Subgraphs

High connectivity implies a large minimum degree (Fact 7). Conversely, a large mini-
mum degree does not guarantee high connectivity (Fact 8). However, it does ensure the
existence of a highly connected subgraph.

FACT

F46: [Ma72a] Every graph of minimum degree at least 4k contains a k-connected
subgraph.

REMARK

R7: A very short proof of this result was given by Thomassen in [Th88]. In fact,
Mader proved that if the average of the degrees of the vertices of GG is at least 4k, then
G contains a k-connected subgraph.

4.1.4 Analysis and Synthesis

An interesting question in the study of graph connectivity is to describe how to
obtain every k-(edge-)connected graph from a given “simple” one by a succession of
elementary operations preserving k-connectedness. A classical result in this topic is
Tutte’s theorem, which states how to construct all 3-connected graphs, starting with a
wheel graph. We also consider some relevant results dealing with deletion of edges or
vertices. Finally, some facts concerning minimally and critically k-connected graphs, as
well as a reference to connectivity augmentation problems, are considered.



Contractions and Splittings

DEFINITIONS

D30: The contraction of an edge uv consists of the identification of its endpoints u
and v (keeping the old adjacencies but removing the self-loop from u = v to itself). Let
G be a k-connected graph. An edge of G is said to be k-contractibleif its contraction
results in a k-connected graph.

D31: The converse operation is called splitting: A vertex w with degree ¢ is replaced
by an edge wv in such a way that some of the vertices adjacent to w are now adjacent
to u and the rest are adjacent to v. Moreover, if the new vertices u,v have degrees at
least k = §/2 + 1 we speak about a k-vertex-splitting.

D32: For any integer n > 4, the wheel graph W, is the n-vertex graph obtained by
joining a vertex to each of the n — 1 vertices of the cycle graph C,_;.
FACTS

F47: If G isa k-connected graph, the operations of k-vertex splitting and edge addition
always produce a graph that is also (at least) k-connected. In fact, as shown below, for
k = 3 these operations suffice to derive all 3-connected graphs.

F48: [Th80b] Every 3-connected graph distinct from K4 has a 3-contractible edge.

F49: [Th81] Every triangle-free (no 3-cycles) k-connected graph has a k-contractible
edge.

F50: [Tu61] Every 3-connected graph can be obtained from a wheel by a finite sequence
of 3-vertex-splittings and edge additions.

EXAMPLE

E2: In Figure 4.1.2, the cube graph Q3 is synthesized from the wheel graph W5 in
four steps. All but the second step are 3-vertex-splittings.

VeV

Ve

Figure 4.1.2 A 4-step Tutte synthesis of the cube graph @s.

REMARKS

R8: In general, k-connectedness does not assure the existence of k-contractible edges.



R9: Thomassen used Fact 48 to give a short proof of Kuratowski’s theorem on pla-
narity. Fact 48 can also be derived from Tutte’s theorem (Fact 50).

R10: Since Tutte’s paper, the distribution of contractible edges in graphs of given
connectivity has been extensively studied. For a comprehensive survey of this subject,
we refer the reader to [Kr02], where the author also considers subgraph contractions
(see below).

R11: Fact 50 is a reformulation of the following proposition [Tu61]: a 3-connected
graph 1s either a wheel, or it contains an edge whose removal leaves a 3-connected
subgraph, or it contains a 3-contractible edge that is not in a cycle of length 3.

R12: Slater [SI74] gave a similar result for constructing all 4-connected graphs starting
from K5, but in this case three more operations are required. For k& > 5 the problem
is still open. However, Lovisz [Lo74] and Mader [Ma78a] managed to construct all k-
edge-connected pseudographs (loops and multiple edges allowed) for every k even and
odd, respectively.

Subgraph Contraction

The contraction of a subgraph is a natural generalization of edge contraction.

DEFINITION

D33: A connected subgraph H of a k-connected graph G is said to be k-contractible
if the contraction of H into a single vertex results in a k-connected graph.

FACTS

F51: [McOt94] Every 3-connected graph on n > 9 vertices has a 3-contractible path
of length two.

F52: [ThTo81] Every 3-connected graph with minimum degree at least 4 contains a
3-contractible cycle.

F53: [Kr00] Every 3-connected graph of order at least eight has a 3-contractible sub-
graph of order four.

CONJECTURE

[McOt94] For every n, a 3-connected graph of sufficiently large order has a 3-contractible
subgraph of order n.

Edge Deletion

DEFINITION

D34: A subgraph H of a k-edge-connected graph G is said to be p-reducible if the
graph obtained from G by removing the edges of H is (k — p)-connected.

FACTS

F54: [Ma74] Every k-connected graph G with minimum degree at least k& +2 contains
a cycle C such that G — E(C') is k-connected.



F55: [Ok88] Let G be a k-edge-connected graph with k > 4 even. Let {u,v} C V and
{ler,ea, fY CE,e; #f (i =1,2). Then,

(a) There exists a 2-reducible cycle containing e; and es, but not f.

(b) There exists a 2-reducible u—v path containing e;, but not f.

F56: [Ok90b] Let G be a k-edge-connected graph with k& > 2 even. If {uy, vy, us, va}
are distinct vertices, with edges eg = v1v2, €; = wv; (¢ = 1,2), and there is no edge-cut
with &k or k + 1 elements containing {eg,e1,es}, then there exists a 2-reducible cycle
containing {eg, e1,ea}.

F57: [HuOk92] For each odd k > 3, there exists a k-edge-connected graph containing
two vertices u and v such that every cycle passing through u, v is p-reducible with p > 3.
REMARK

R13: For the case of three consecutive edges €1, es, e3 of a k-connected graph, Okamura
[Ok95] also found a nontrivial equivalent reformulation of the condition that no cycle
of (G containing ey, es, and e3 is 2-reducible.

Vertex Deletion

FACTS

F58: [ChKalLi72] Every 3-connected graph of minimum degree at least 4 has a vertex
v such that G — v is 3-connected.

F59: [Th81] Every (k 4 3)-connected graph has an induced (chordless) cycle whose
deletion results in a k-connected graph.

F60: [Eg87] Every (k + 2)-connected triangle-free graph has an induced cycle whose
deletion results in a k-connected graph.
REMARK

R14: Fact 59 was conjectured by Lovasz, and Thomassen used Fact 49 to prove it.

Minimality and Criticality

A standard technique used to study a certain property P is to consider those graphs
that are edge-minimal or vertex-minimal (critical) with respect to P, in the sense that
the removal of any vertex or edge produces a graph for which P does not hold.

DEFINITIONS

D35: A graph or digraph G is said to be minimally k-connected if k(G) > k but,
for each edge e € E, k(G — ¢) < k. Analogously, G is minimally k-edge-connected
if A(G)) > k, but for each e € B, A(G —¢) < k.

D36: A vertex u of a digraph has half degree k if either degt(u) = k or deg™ (u) = k.

FACTS

F61: [Ma71,Ma72b] Every minimally k-connected (or k-edge-connected) graph con-
tains at least k& + 1 vertices of degree k.



F62: [Ma72b] Every cycle of a minimally k-connected graph contains a vertex of degree
k.

F63: Every cycle in a k-connected graph G contains either a vertex of degree k or an
edge whose removal does not lower the connectivity of G.

F64: [Ha81] Every minimally k-connected digraph contains at least k 4 1 vertices of
half degree k.
REMARKS

R15: Halin [Ha69,Ha00] proved the existence of a vertex of degree k in every minimally
k-connected graph, and the corresponding theorem for minimally k-edge-connected
graphs was proved by Lick [Li72]. Both results were then improved by Mader (Fact
61).

R16: Fact 64, proved by Hamidoune, is the digraph analogue of (and implies) Mader’s
theorem (Fact 61) about the existence of vertices of degree k. The existence of at least
one of vertex of half degree k had been previously asserted by Kameda [Ka74].

Vertex-Minimal Connectivity — Criticality

Maurer and Slater [MaSI77] introduced the general concept of eritically connected and
critically edge-connected graphs, 1.e., graphs whose connectivity decreases when one or
more vertices are removed.

DEFINITION

D37: A graph G is called k-critically n-connected, or an (n, k)-graph, if, for each
vertex subset U with |U] < k, we have k(G — U) = n — |U|. When k = 1, we simply
refer to the graph as critically n-connected.

FACTS

F65: [MaSI77] The only (n,n)-graph is the complete graph K,41.

F66: The “cocktail party graph” (obtained from Kap 42 by removing a 1-factor [perfect
matching]) is a (2n, n)-graph but not a (2n,n + 1)-graph.

F67: [Su88] The complete graph on k+1 vertices is the unique k-critically n-connected
graph with n < 2k.

F68: [Ma77] If G is a (n, 3)-graph, then its order is at most 6n?. Thus, for each n,
there are only finitely many of (n, 3)-critical graphs.
REMARKS

R17: A survey about (n, k)-graphs, along with some conjectures and open problems,
can be found in [Ma84].

R18: TFact 66 led Slater to conjecture that, apart from K, 41, there is no (n, k)-graph
with & > n/2, which, after some partial results, was finally proved by Su (Fact 67).

R19: Fact 68 was generalized by Mader to the class of all finite n-connected graphs.



Connectivity Augmentation

We conclude the section by referring the reader to [Fr94] for an in-depth discussion of
connectivity augmentation. In the edge-connectivity augmentation problem, we are given
a graph GG = (V, E) and a positive integer k, and the goal is to find the smallest set
of edges F that we can add to G such that G = (V, EF U F) is k-connected. Due to
its applicability to the design of fault-tolerant networks, connectivity augmentation has
also been widely investigated from an algorithmic point of view. Watanabe and Naka-
mura [WaNa87] gave the first polynomial-time algorithm solving the edge-connectivity
augmentation problem. In the same paper, the authors formulated a necessary and
sufficient condition to decide if a given graph GG can be made k-connected by adding at
most a certain number of edges. The same question for digraphs was solved in [Fr92].
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Introduction

Eulerian graph theory has its roots in the Konigsberg Bridges Problem: Four land-
masses are being connected by seven bridges as depicted in Figure 4.2.1(a).
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Figure 4.2.1

QUESTION: Starting at any of the four landmasses, is it possible to perform a walk
such that every bridge is crossed once and only once, the walk ending at any of these
four landmasses? L. Euler wrote an article on this problem in 1736 [Eu,1736]; hence
the name eulerian graph. This paper can be viewed as the “birth certificate” for graph
theory, in general. For an extensive treatment of eulerian graphs and related topics see

[F190, F191].

4.2.1 Basic Definitions and Characterizations

NOTATION: Throughout this section, a graph, digraph, or mixed graph are denoted
G = (V, E), where V is the vertex-set of G and F is the edge-set of GG, consisting of
undirected edges, directed edges (arcs), or both, respectively.

TERMINOLOGY: Sometimes, for emphasis and to avoid confusion, the adjective “undi-
rected” is used for “graph” or “edge”.



DEFINITIONS

D1: An eulerian tour in a graph (or digraph) G is a closed walk that uses each edge
(or arc) of G exactly once. An eulerian tour in a mixed graph is a closed trail that uses
each edge and each arc exactly once.

D2: A graph, digraph, or mixed graph that has an eulerian tour is called eulerian.
D3: An undirected graph is even if every vertex has even degree.

D4: In adigraph, a vertex v is balanced if the indegree and outdegree of v are equal.
A digraph is balanced if all of its vertices are balanced.

TERMINOLOGY NOTE: In §4.3) the term symmetric is used instead of balanced when the
indegree and outdegree of v are equal.

D5: A balanced orientation of a graph (or mixed graph) G is an assignment of a
direction to each edge of the graph (or each undirected edge of the mixed graph) so that
the resulting digraph is balanced.

D6: A cycle decomposition of a graph (digraph) G is a partition of the edge-set
(arc-set) of (G such that each partition set forms a cycle (directed cycle).

Some Basic Characterizations

FACTS
For details of the following facts, see, e.g., [To73, Mc84, Wo90, FI189, F190].

F1: The Classical Characterization ([Eul736], [Hi1873], [Vel2, Ve31])
Let G be a connected graph. The following are equivalent:

(a) G is eulerian.

(b) G is an even graph.

(c) G has a cycle decomposition.

F2: A graph is even if and only if it has a balanced orientation.

F3: A graph is even if and only if it has a decomposition into closed trails.

F4: A graph is even if and only if every edge belongs to an odd number of cycles.
F5: A graph is even if and only if it has an odd number of cycle decompositions.

F6: A connected graph G = (V, E) is eulerian if and only if the number of subsets of
FE (including the empty set) that induce an acyclic subgraph of G is odd ([Sh79, FI89,
F190]).

F7: For a connected digraph D the following are equivalent.

(a) D is eulerian.

(b) D is a balanced digraph.

(¢) D has a directed-cycle decomposition.



REMARKS

R1: For the classical characterization, Euler ([Eu,1736]) showed that Fact 1(a) implies
Fact 1(b), while the converse is due to Hierholzer [Hi,1873]. The equivalence of Fact
1(b) and Fact 1(c) is due to Veblen ([Vel2, Ve31]).

R2: By Fact 1, the statements in Facts 2 through 6 can be viewed as alternative
characterizations of eulerian graphs.

R3: Note that a connected eulerian digraph is strongly connected.

R4: There is no digraph or mixed graph analog for the characterization expressed in
Fact 4.

Characterizations Based on Partition Cuts

DEFINITIONS

D7: Let G be a graph and let X C V(G). The partition-cut associated with X
denoted FE(X, X), is the set of edges in G with one endpoint in X and one endpoint in
X =V(G) — X. A partition-cut in a digraph or mixed graph is analogously defined.

D8: An edge-cut, arc-cut, and mixed-cut are partition-cuts in a graph, digraph,
and mixed graph G| respectively, associated with some X C V(G).

D9: The out-arcs of an arc-cut (or mixed-cut) E(X, X) is the subset of directed edges
whose tail is in X and is denoted F* (X, X). The in-arcs of F(X, X) is the subset of
directed edges whose head is in X and is denoted E~ (X, X).

D10: Let v be a vertex of a graph, digraph, or mixed graph G. The incidence set
of v, denoted F,, is the partition-cut F(X, X), where X = {v}.

NOTATION: In a digraph, the out-arcs and in-arcs of the incidence set of v are denoted
EF and E, respectively.

v

FACTS

F8: A graph G is even if and only if |F(X, X)| is even for every X C V(G).

F9: A connected digraph G is eulerian if and only if |E+(X, X)| = |[E~ (X, X)| for
every X C V(G).

F10: Let G be a connected mixed graph. The following are equivalent:

(a) G is eulerian.

(b) |E(X, X)| — ||E+(X,7)| - |E_(X,Y)|| is nonnegative and even for every X C
V(G).

(c) G has a cycle decomposition.

REMARKS

R5: While Fact 1(b) and its digraph analogue, Fact 7(b), are (local) degree conditions
guaranteeing that a graph (undirected or directed) is eulerian, for mixed graphs one
needs the global condition in Fact 10(b) (which reduces to Facts 8 and 9 for undirected
graphs and digraphs).



R6: Although the condition in Fact 10 is impractical from an algorithmic point of
view for producing an eulerian tour in a mixed graph &, such a tour can be obtained
using network-flow techniques by first getting a balanced orientation D¢ of (; then any
eulerian tour of D¢ corresponds to an eulerian tour in G [FoFu62].

4.2.2 Algorithms to Construct Eulerian Tours

We begin with two classical algorithms for constructing an eulerian tour. All three
algorithms in this subsection are polynomial-time (see [F190]).

Algorithm 4.2.1: Hierholzer’s Algorithm [Hi,1873]

Input: a connected graph G whose vertices all have even degree.
Qutput: an eulerian tour 7.

Start at any vertex v, and construct a closed trail 7" in G.

While there are edges of G not already in trail T
Choose any vertex w in T that is incident on an unused edge.
Starting at vertex w, construct a closed trail D of unused edges.
Enlarge trail 7" by splicing trail D into T" at vertex w.

Return T'.

COMPUTATIONAL NOTE: A modified depth-first search (see §10.1), in which every un-
used edge remains in the stack, can be used to construct the closed trails.

EXAMPLE

E1: The key step in Algorithm 4.2.1 is enlarging a closed trail by combining it with
a second closed trail — the “detour.” To illustrate, consider the closed trails, T' =
(t1,12,t3,t4) and D = (dy,ds,ds), in the graph shown in Figure 4.2.2. The closed
trail that results when detour D is spliced into trail T' at vertex w is given by 7’ =
(t1,4,d1,d2,ds, t3,t4). At the next iteration, the trail (e, es, e3) is spliced into trail 7",
resulting in an eulerian tour of the entire graph.

Figure 4.2.2

REMARKS

R7: The splicing operation in Hierholzer’s algorithm is also called a k-absorption and
is discussed later in this section.



RS8: The strategy in Fleury’s algorithm, shown below, is to avoid, if possible, traversing
a bridge in the subgraph induced on the set of untraversed edges. Fleury’s algorithm
also appeared in [Lu,1894].

Algorithm 4.2.2: Fleury’s Algorithm [F1,1883]

Input: Eulerian graph G with ¢ edges and vy € V(G).
Output: Eulerian tour T7.

Choose e; = vgv1 € E,, arbitrarily.
Let T1 = <v0,61,v1>
Fori=1tog—1
Let Gy = G — E(T;).
If degg (v5) =1
Let €41 = VUiVl € E(Gl)
Else
Choose €;41 = viv;41 € F(G;) that is not a bridge in Gj.
Extend T; to Ti11 = (vo, €1, V1, ..., V5, €541, Vi1 )-

The Splitting and Detachment Operations

The splitting and detachment operations can serve as the basis for many of the charac-
terizations, constructions, and decompositions discussed in this section.

DEFINITIONS

D11: Let G be a graph with vertex v such that deg(v) > 3, and let e4, e, be incident
on v and wg, wy, respectively. The graph G, obtained from G by introducing a new
vertex vgp, adding new edges el e} joining v, and wg, ws, respectively, and deleting
€q, ey 1s called the a-b split of G at v. The operation that produces G, is called the
splitting operation (see Figure 4.2.3).

W, \ "1
w = v
W
G'IZ

)

Figure 4.2.3 The splitting operation producing the 1-2 split of G at v.

D12: Let v be a vertex of a graph GG with deg(v) > 2, and let the edge subsets
E1(v), E2(v),..., Ex(v), k > 2 be a partition of the incidence set E,. Replace v with
new vertices vy, va, ..., vg, and let v;, ¢ = 1,2, ... k, be incident on the edges of F;(v)
(without altering any other incidence). The graph H thus obtained is called a detach-

ment of G at v. This action is called a detachment operation at v (see Figure
4.2.4).



Figure 4.2.4 Graph H is a detachment of GG at v.

D13: A graph H is a detachment of G if it results from a sequence of detachment
operations performed at each of the vertices of some vertex subset W C V(). For a
discussion of detachments of graphs, see [Na79, Na8ba, Na85b].

FACTS

F11: Splitting Lemma. Let v be a vertex of a connected, bridgeless graph G with
deg(v) > 4, and let ey, eq,e3 € F,.

(a) If v is not a cut-vertex then at least one of the splits G1 » or G 3 is connected and
bridgeless.

(b) If v is a cut-vertex and e; and ez belong to different blocks, then Gy 3 is connected
and bridgeless.

F12: Let v be a vertex in a 2-connected graph G (i.e., no cut-vertices) with deg(v) > 4.
If neither the 1-2 split G4 2 at v nor the 1-3 split Gy 3 is 2-connected, then G » and
(1,3 have the same cut-vertex z and no other cut-vertices. In this case, both ;1 » and
(1,3 are connected and bridgeless.

F13: A graph is connected if and only if there is a detachment of GG that is a tree.

F14: A graph is eulerian if and only if it has a detachment that is a cycle.

REMARKS

R9: The Splitting Lemma (Fact 11) can serve as the basis for many of the results and
algorithms mentioned in this section (see, e.g., [F190]). Tt can also be used to restrict,
with no loss in generality, various other (solved as well as unsolved) graph theoretical
problems to 3-regular graphs. For a short proof of the Splitting Lemma, see [F100].

R10: Definitions 11 through 13 and Facts 11 through 14 can be formulated for graphs
with self-loops as well. In this case (but also later on) it makes sense to consider an
edge e (not just self-loops) as composed of two half-edges incident on the respective
endpoints of e. Correspondingly, one then considers the splitting operation as involving
different half-edges and the sets F,, F;(v) as being sets of half-edges.

R11: The splitting operation can be viewed as a special case of the detachment op-
eration, where the partition of the incidence set F, has exactly two cells with at least
one cell containing exactly two edges.



Algorithm 4.2.3: Splitting Algorithm

Input: Eulerian graph G with ¢ edges and vy € V(G).
Output: Eulerian tour Ty in the form of a detachment of G.

Initialize H = G.
Choose e; = vgv1 € E,, arbitrarily.
Let T1 = <v0,61,v1>
Fori=1togq
If degpr(vi) = 2
Let ;41 = vivi41 € Fy,(H) — E(T;).
Else {apply splitting lemma}
If v; 1s not a cut-vertex of H
Choose €;41 = viviy1 € By, (H) — E(T;) arbitrarily.
Else
Choose €;41 = v;v;41 1n a different block than e;.
H := H;(i41y {thei-(i4 1) split of H at v;}
Extend T; to Ti11 = (vo, €1, V1, ..., V5, €541, Vi1 )-

REMARKS

R12: Algorithms 4.2.1-4.2.3 can easily be adapted to construct an eulerian tour in a
digraph: all one needs to do is choose ;41 such that v; is its tail since v; is the head of
€.

R13: The difference between the Splitting Algorithm and Fleury’s Algorithm lies ex-
clusively in the fact that the intermediate trails 7;, 0 < ¢ < ¢, are stored separately as
edge sequences, say, by Fleury’s Algorithm, while the Splitting Algorithm retains them
as part of the graphs considered. In both cases, however, it is the Splitting Lemma
which guarantees the correctness of these algorithms (see [F190]). Observe that all even
graphs are necessarily bridgeless.

4.2.3 Eulerian-Tour Enumeration and Other Counting Problems

The BEST-Theorem gives an explicit, computationally good formula for the number
of eulerian tours in an eulerian digraph. It rests on the Matriz Tree Theorem (Fact 15)
and can be applied to (undirected) graphs by summing over all balanced orientations
of G. The latter, however, grows exponentially large with the number of vertices. We
also briefly mention deBruijn (di)graphs because of their relevance to DNA-sequencing
and other questions. DeBruijn digraphs are discussed in §4.4.

DEFINITIONS

D14: An out-tree in a digraph is a tree having a root of indegree 0 and all other
vertices of indegree 1, and an in-tree is an out-tree with edges reversed.

D15: Let D be a digraph, A(D) its adjacency matrix with entries a; ;, and let A; be
the number of loops at v; € V(D) = {v1,...,v,}. The Kirchhoff matrix A*(D) with
entries a; ; is defined by setting

aj ;= —a;; if i #j, a; = id(vi) — Ai; 1<¢,j<n



D16: Letaset A= {ay,...,a,} becalled an alphabet whose letters are the elements
of A. A k-letter word over A is an ordered k-tuple whose components are letters. A
k-deBruijn sequence over A is a cyclic sequence of letters from A such that every
k-letter word over A appears exactly once in this cyclic sequence.

D17: Let n > 2,k > 2. The deBruijn graph D, ; has as its vertices the length-
(k — 1) words over an n-letter alphabet A; thus, there are altogether n*~! vertices. For
each length-k word a;,, ..., a;, in the alphabet A, there is an arc of D, ; that joins the
vertex a;,,...,a;,_, to the vertex a;,,... a;,.

TERMINOLOGY: For a matrix A, A4;; denotes the (4, j)-th minor, i.e., the matrix obtained
by deleting the ¢-th row and j-th column from A.

FACTS

F15: Matriz Tree Theorem. Given a digraph D, V(D) = {v1,...,v,}, and let A* =
A*(D) be its Kirchhoff matrix. The number of spanning out-trees of D rooted at v;, is
det AY,.

F16: In an eulerian digraph D, the number of spanning in-trees rooted at v; equals
the number of spanning out-trees rooted at v;.

F17: For an eulerian digraph D, det A}, = det Aj

7,47 1 Slaj S n.

F18: BEST-Theorem. [EhBrbl, TuSm41] Let D be an eulerian digraph, and let v; €
V(D), a € E;"l be chosen arbitrarily. The number of eulerian tours starting at v; with

the traversal of a 1s
n

det A7, JJ (od(v;) = 1)!

j=1

F19: TFor an eulerian graph G with p vertices and ¢ edges, and chosen e € E(G), the
number Og (G) of balanced orientations of G containing a fixed orientation of e, satisfies

3 q—p
()" <omr <z

F20: The deBruijn graph D, ; is a n-regular digraph (id(v) = od(v) = n for every
v € V(Dp ) with n*—1 vertices.

F21: There is a 1-1-correspondence between the set of k-deBruijn sequences over an
n-letter alphabet and the set of eulerian tours of the deBruijn graph D), ;. Consequently,
and as an application of the BEST-Theorem, the number of k-deBruijn sequences over
an n-letter alphabet is

EXAMPLE

E2: The deBruijn graphs D, 3 and D5 4 are shown in Figure 4.2.5 (see also [ChOe93,
p. 220]).
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Figure 4.2.5 The deBruijn digraphs D> 3 and Ds 4

REMARK

R14: DeBruijn graphs are of particular interest in the case n = 2, 1.e., when the
words are binary sequences. The study of these graphs D, ; are of particular interest
in biochemistry when considering the problem of DNA sequencing. The same graphs
are of interest, however, also in telecommunications when one is concerned with the
question of network reliability: apart from Ds i, also Kautz graphs and hypercubes
play an important role because these graphs perform well with respect to diameter and
other parameters although the number of edges is relatively small in comparison to its
number of vertices (see, e.g., [Xu02]).

4.2.4 Applications to General Graphs

In this subsection, we introduce some applications of eulerian graph theory to graph
theory in general; some of these applications are also relevant in computer science and
operations research, for example, the Chinese Postman Problem (§4.3). Interestingly,
while certain analogues of results in eulerian graph theory hold equally well for general
graphs, there are other quite natural analogues that lead to yet unsolved problems.

Covering Walks and Double Tracings

DEFINITIONS

D18: A covering walk (or postman tour) in an arbitrary graph G is a closed walk
containing every edge of G.

D19: A double tracing is a closed walk that traverses every edge exactly twice. A
double tracing is bidirectional if every edge is used once in each of its two directions.



D20: A retract or retracing in a walk W is a section of the form v;_1, e;, v;, €41,
viy1 such that ¢; = e;41 (and thus v;y; = v;—1). W is called retract-free if it has no
retracts.

D21: A double tracing is called strong if it is both bidirectional and retract-free.

D22: The edge-connectivity of a connected graph (G, denoted A(G), is the minimum
number of edges whose removal can disconnect G. G is called k-edge-connected if

AG) > k.

FACTS

F22: Let GG be a graph with 2k vertices of odd degree, & > 0. Then G has a de-
composition into k£ open trails whose initial and end vertices are of odd degree in G.
Consequently, G has a decomposition into cycles and k paths; and if £ = 1 and G is
connected, then it has an eulerian trail.

F23: Every connected graph has a bidirectional double tracing. In a tree, every double
tracing is bidirectional.

F24: [Sa77] A connected graph has a retract-free double tracing if and only if it has
no end-vertices (vertices of degree 1).

F25: [Th&7]If GG is a graph without 1- and 3-valent vertices, then it has a strong double
tracing. Consequently, every 4-edge-connected graph has a strong double tracing.

F26: [Tr66], [Th87] A connected 3-regular graph with |[V(G)| = 0 mod 4 has no strong

double tracing.

F27: [Ve75] Let GG be a connected graph, Ey C F(G). G has a double tracing using
every e € E(G)—Ey twice in the same (not prescribed) direction and acting bidirectional
on Ey, if and only if G — Fy is an even graph. Observe that this implies Fact 23 (taking
Ey = E(G).

REMARKS

R15: The condition for a double tracing to be bidirectional (Definition 19) applies to
the case of self-loops if one views edges as composed of two half-edges, which allows a
loop to be viewed as being also orientable in two ways.

R16: The double tracings quoted in Facts 23 and 25 can be obtained in polynomial
time by reducing the respective problems to problems of finding eulerian tours satisfying
certain restrictions, in eulerian digraphs derived from the given graphs by replacing every
edge by two oppositely oriented arcs joining the same pair of vertices.

Maze Searching

In the context of this section, a maze may be viewed as a connected graph for which
one has at each vertex, local information only. Tarry’s algorithm 1is just one of several
maze-searching algorithms. (See [F191] for a more extensive study.)

NOTATION: In the description of Algorithm 4.2.4, e (v) denotes the edge that was
traversed in visiting vertex v for the first time, and Eies(v) denotes the set of edges
that have been already traversed in leaving v.



Algorithm 4.2.4: Tarry’s Algorithm [Ta,1895]

Input: a connected graph G
Output: a bidirectional double tracing of G.

Choose vy € V(G).
Initialize ¢ = 0 and W = (vp).
While (Ev, - E]eft(vi) 75 @)
While ([Ey, — Fiet(vi)] — {ein(vi)} # 0)
Choose edge e; = v;vi41 € [Fy, — Bress (v;)] — {em (vi) }.
W .= W, {e;,viy1) { Extend W to v;4; via edge €;.}
1i=1+1
Let €; = viviq41 = €in(vs)
W .= W, <6i, UZ'_|_1>
1i=1+1

Covers, Double Covers, and Packings

DEFINITIONS

D23: A cycle cover of a graph (G is a family S of cycles of G such that every edge of
G belongs to at least one element of S.

D24: A cycle cover S is a cycle double cover (CDC) if every edge of G belongs to
exactly two elements of S.

D25: A cycle packing in G is a set of edge disjoint cycles in G.

D26: A CDC S is called orientable if the elements of S can be cyclically oriented
in such a way that every edge e is given opposite orientations in the two elements of S
containing e.

CONJECTURES
Cycle Double Cover Conjecture (CDCC): Every bridgeless graph has a CDC.

Oriented Cycle Double Cover Conjecture: Every bridgeless graph has an oriented
CDC.

Strong Cycle Double Cover Conjecture: Every bridgeless graph has a CDC con-
taining a prescribed cycle of the graph.

Three Optimization Problems

DEFINITIONS

D27: Let G be a bridgeless, edge-weighted graph with weight function w: E(G) — R™T.
The weight of a cycle C' in G, denoted w(C'), is given by w(C) = > w(e). The
e€eE(C)
weight of a cycle cover or cycle packing S is w(S) = > w(C).
ces
D28: The Minimum-Weight Cycle-Cover Problem (MWCCP) is to find a cycle
cover S in G such that w(S) is minimum.

D29: The Maximum-Weight Cycle-Packing Problem (MWCPP) is to find a
cycle packing S such that w(S) is maximum.



D30: The Chinese Postman Problem is to find a minimum-weight covering walk
W in G where w(e) is counted as often as e is traversed by W. (See §4.3.)

FACTS

F28: [FI86] Let G be a planar, bridgeless graph. Then G has an oriented CDC, and
for any given cycle packing S, (G has a CDC containing .S as a subset. Thus, the strong
Cycle Double Cover Conjecture is true for planar graphs.

F29: [FIGu85] The Undirected Chinese Postman Problem and the Maximum-Weight
Cycle-Packing Problem are both solvable in polynomial time, and for planar, bridgeless
graphs, the Minimum-Weight Cycle-Cover Problem can be solved in polynomial time.

F30: [FIGu85] Let G be an edge-weighted graph with weight function w. If W is a
solution of the Undirected Chinese Postman Problem and S a solution of the Maximum-
Weight Cycle-Packing Problem, then w(S) = w(W) — 2w(FEy), where Eq C E(G) is the

set of those edges used twice in W, and w(Eyq) :== Y. w(e).
ecFy

F31: [FIGu85] For any planar, connected, bridgeless graph, if S is a solution of the
Minimum-Weight Cycle-Cover Problem and W is a solution of the Undirected Chinese
Postman Problem, then w(S) = w(W¥).

F32: For any connected, bridgeless graph GG with weight function w, if W is a solution
of the Undirected Chinese Postman Problem and S is a solution of the Minimum-Weight
Cycle-Cover Problem, then w(S) > w(W). The Petersen graph (§1.2) shows that the
inequality can be strict (w(S) = 21 and w(W) = 20, for w = 1).

Nowhere-Zero Flows

DEFINITIONS

D31: Let f: E(D) — R be given for a digraph D. The function f is called a flow if
for every v € V(D), > fla)= > f(a).

acEF aCEJ

D32: Let f: E(G) — N be given for a graph (. Let D be an orientation of G with
a. € E(D) be the directed edge corresponding to e € E(G), and define f'(a.) := f(e).
Then f is an integer How in the graph G if f’ is a flow in the digraph D.

D33: An integer flow f in G is nowhere-zero if f(e) # 0 for each edge e € E(G).
D34: A k-flow is an integer flow f such that f(e) < k for each edge e € F(G).

CONJECTURE
Nowhere-Zero 5-Flow Conjecture (NZ5FC). Every bridgeless graph has a nowhere-

zero 5-flow. [Tub4]
FACTS
F33: [Se81b] Every bridgeless graph has a nowhere-zero 6-flow.

F34: [Tub4] In a plane graph G, a (proper) k-face coloring of G corresponds to a
nowhere-zero k-flow, and vice versa.

F35: A 3-regular graph G has a nowhere-zero 4-flow if and only if it is 3-edge-colorable,
and it has a nowhere-zero 3-flow if and only if it is bipartite.



F36: To prove or disprove the NZHFC and CDCC, one can assume without loss of
generality that the graphs are 3-regular.

F37: [Se79] Let G be a bridgeless, planar graph, and let f: E(G) — Z*. Then the
following two statements are equivalent:
(a) There exists a cycle cover S such that for every edge e € F(G),

e belongs to exactly f(e) elements in S

(b) For every edge-cut Fy C E(G),

Z f(e) is even and % Z f(e) > max{f(e): e € By}

e€Eq e€Eq

REMARKS

R17: Double tracings in arbitrary connected graphs are the natural analogue to eu-
lerian tours — Euler was already aware of that. Correspondingly, cycle double covers
seem to be the natural analogue to cycle decompositions, yet their existence has been
guaranteed so far only for certain classes of graphs, apart from the planar case. See
[AlGoZh94], and [Zh97] for a thorough treatment of integer flows and cycle covers.

R18: Nowhere-zero flows can be viewed as eulerian tours in an eulerian multidigraph
derived from an appropriate orientation of the given graph G, by replacing every arc a,
(corresponding to e € F(G)) by f(e) arcs with the same head and tail as a. has.

4.2.5 Various Types of Eulerian Tours and Cycle Decompositions

DEFINITION

D35: Let G be an eulerian digraph and Dy a subdigraph of G. If for every v € V(G),
an eulerian trail 7' of (G traverses every arc of Dy incident from v, before 1t traverses
any other arc incident from v, then T is called Dy-favoring.

FACTS

F38: [Kob6] Let G be a connected graph with vertex-set V(G) = {v1,...,v,} and
having an even number of edges. Then G is eulerian if and only if GG is the edge-disjoint
union of graphs (i1, Gz with degg (v;) = degg, (v:), 1 <@ < nj;and if G is the union of
two such graphs, then G has an eulerian tour in which the edges of GG; and G'» alternate.

F39: [Se8la, FIFr90] A planar even graph G has a decomposition into even cycles if
and only if every block of G has an even number of edges.

F40: Let v be an arbitrary vertex of a strongly connected digraph . Then there
exists a spanning in-tree of G with root v.

F41: [EhBr51] Let D’ be a spanning in-tree with root v in the eulerian digraph G,
and let Dy = G — E(D'). Then there exists a Dy-favoring eulerian tour of G starting
and ending at v.



F42: [CaF195] Let {e1,...,em} € F(G) be an ordered set where G is eulerian. An
eulerian tour 7" of the form T = ... e1,...,€9,...,€n, ... exists if the edge-connectivity
A(G) > m — 1; and if A(G) > 2m, then one can even prescribe the direction in which
these m edges are traversed by T

REMARKS
R19: Fact 38 can be proved using the Splitting Lemma (Fact 11).

R20: Fact 39 is stated for planar graphs, but it can be extended to a more general
class of graphs (see [Zh97]).

R21: Dy-favoring eulerian tours are studied in [FIWe89, FI190]. However, in-trees are
a special case of a more general class of digraphs D’ for which there is a (G — E(D))-
favoring eulerian tour. We restricted Fact 41 to in-trees because of its relevance to
enumerating eulerian tours in digraphs (see the BEST-Theorem [Fact 18]).

Incidence-Partition and Transition Systems
DEFINITIONS

D36: For each vertex v in a graph G, let P(v) =

{E1(v), ..., Ex,(v)}, ke > 1, be
a partition of the incidence set E,. Then P(G) = |J P(v
=

)
) is called an incidence-

partition system of G.

D37: A transition system of an even graph (G, denoted 7((), is an incidence-

partition system 7(G) = |J P(v) such that for every v € V(G), |F;(v)| = 2 for every
veEV
cell of the partition P(v). Each cell E;(v) is called a transition.

D38: An eulerian tour 7" and a cycle decomposition S give rise to transition systems,
denoted 7r and 75, respectively, in a natural way. Each transition in the eulerian-tour
transition system 7p is a pair of consecutive edges in the tour 7. Similarly, each
transition in the cycle-decomposition transition system s is a pair of consecutive
edges in a cycle C € S.

TERMINOLOGY: A transition in 7y and a transition in 75 are referred to as a transition
of T" and a transition of S, respectively.

D39: Let P(G) be an incidence-partition system of a graph G. An eulerian tour T
is P(G)-orthogonal (or orthogonal to P(()) if no transition of T is a subset of any
cell E;(v) of P(G). P(G)-orthogonal cycle decompositions are defined analogously.

D40: A cycle decomposition S and an eulerian tour T' are orthogonalif 7¢ N7r = .

TERMINOLOGY: The term “orthogonal” has been suggested by several authors as de-
scribing the underlying concept more accurately than the original term “compatible”.

D41: An incidence-partition system_P(G) satisfies the cut condition if for every
vertex subset X, the edge-cut F(X, X) satisfies |E(X, X) N E;(v)| < %|E(X,X)| for
every cell E;(v) of P(G).



FACTS

F43: [Ko68] A loopless eulerian graph G has an eulerian tour orthogonal to a given
partition system P(() if and only if P((G) satisfies the cut condition restricted to the
edge-cuts F,, v € V(G).

F44: [FI80] Given a cycle decomposition S of the eulerian graph G with deg(v) > 2

for every v € V((), there exists an eulerian tour orthogonal to S.

F45: [FI80] Let T be an eulerian tour of the eulerian graph G. If deg(v) = 0 mod 4
for every v € V((), then there exists a cycle decomposition orthogonal to 7.

F46: [FIFr90] Let G be a planar, even, loopless graph with incidence-partition system
P(G). Then G has a P(G)-orthogonal cycle decomposition if and only if P(() satisfies
the cut condition.

F47: [FI80] Let G be a planar eulerian graph and let 7' be an eulerian tour of G. If
deg(v) > 2 for every v € V(G), then G has a cycle decomposition orthogonal to 7.

EXAMPLE

E3: The complete graph K5 in Figure 4.2.6, with transition system 7(K5) = {{¢, i+1},
{0+ 1)} 1 <4 <5, setting 6 = 1} has no 7(K)-orthogonal cycle decomposition,
which shows that Fact 46 cannot be generalized to arbitrary non-planar graphs.

Figure 4.2.6 K having no 7(Ks)-orthogonal cycle decomposition.

REMARKS

R22: To produce a cycle decomposition S orthogonal to a given eulerian tour in a
graph with deg(v) = 0 mod 4 for every v € V((), one can apply a procedure developed
by J. Petersen in his celebrated paper [Pe,1891]: Color the edges of T alternately ‘blue’
and ‘red’; and combine a cycle decomposition of the blue even graph with one of the
red even graph.

R23: TFact 45 follows from Fact 38 by using the classical characterization (Fact 1).

R24: Fact 44 is basically a special case of Fact 43. We stated it separately because
its converse (given an eulerian tour 7', there exists a cycle decomposition orthogonal to
T) is an open problem known as Sabidussi’s Compatibility Conjecture. Tts relevance to
other open problems such as the Cycle Double Cover Conjecture and the Nowhere-Zero

5-Flow Conjecture is discussed in [FL84, FI88, F101, F102].



R25: Facts 43 and 46 show that the existence of eulerian tours satisfying certain
restrictions does not necessarily imply the existence of cycle decompositions satisfying
the same restrictions: Fact 43 relates to arbitrary loopless graphs and uses the cut
condition only locally, whereas in Fact 46, the full strength of the cut condition is
invoked.

R26: While Facts 46 and 47 have been formulated for planar graphs only, they can
be extended to a somewhat more general class of graphs (see [Zh97]).

R27: P(G)-orthogonal eulerian tours in digraphs have been studied in [F190]. Natu-
rally, due to the appearance of arcs instead of edges, somewhat stronger conditions than
the cut condition of Definition 41 are needed to prove the existence of P(G)-orthogonal
eulerian tours.

Orderings of the Incidence Set, Non-Intersecting Tours, and A-Trails

DEFINITIONS

D42: Given a graph G and a vertex v, a fixed sequence (e, ez, .. ., deg(v)) of the edges
in the incidence set F, is called a positive ordering of E, and is denoted O (v). If
G is imbedded in some surface, one such O%(v) is given by the counterclockwise cyclic
ordering of the edges incident on v.

D43: Let G be an even graph and v a vertex with deg(v) > 4 and with a positive
ordering of its incident set £, given by OF (v) = (e1, €2, ..., €4eg(v)). A transition system
7(G) is non-intersecting with respect to O% (v) if for any e;,¢j,ex,¢; € F, with
i<j<k<l {eiex} and {e;,e} cannot both be transitions of 7(G). That is,

tei et € 7(G) = {ej, e} & 7(G)

D44: Let G be an even graph with a given positive ordering O (v) for each v € V. A
transition system 7(() is non-intersecting if 7(G) is non-intersecting with respect to
O™ (v) for every v € V with deg(v) > 4. An eulerian tour 7" and a cycle decomposition
S are non-intersecting if their corresponding transition systems, 7p and 7g, respectively,
are non-intersecting.

D45: Let G be an eulerian graph with a given positive ordering O (v) for each v € V.
An eulerian tour T is an A-trail if {e;,e;} € 7p implies j =7+ 1 or j = ¢ — 1 (modulo

deg(v)).

D46: An outerplanar graph is a graph with an imbedding in the plane such that
every vertex appears on the boundary of the exterior face.

D47: A graph (imbedding) triangulates a surface if every region is 3-sided.

EXAMPLE

E4: An A-trail T in the octahedron, given by the sequence 1,2,3,...,11,12, is shown
in Figure 4.2.7 below. A cycle decomposition orthogonal to T is given by the sets
{2,6,10}, {4,8,12}, {1,11,9,7,5,3}.



Figure 4.2.7 An A-trail in the octahedron.

FACTS

F48: Given an eulerian graph GG and O%(v) for every v € V((), a non-intersecting
eulerian tour exists.

F49: In an eulerian graph with deg(v) < 4 for every v € V((), the concepts of non-
intersecting eulerian tour and A-trail are equivalent.

F50: [AnFl195] The decision problem whether a given simple, planar, 3-connected eu-
lerian graph has an A-trail is N P-complete.

F51: [AnFIRe98] Simple, outerplanar, eulerian graphs have A-trails; they can be con-
structed in polynomial time.

F52: Let GG be a simple eulerian graph that triangulates the plane. Suppose that G
has maximum degree dpmax (G) < 8 with at most one 8-valent vertex, which, if it exists,
is adjacent to a 4-valent vertex. Then G has an A-trail.

REMARKS

R28: TFacts 43, 44, and 48 can be proved by employing the Splitting Lemma (Fact
11). Consequently, algorithms for constructing eulerian tours and that are based on
the Splitting Lemma, can be modified so as to yield P(G)-orthogonal eulerian tours or
non-intersecting eulerian tours.

R29: Thereisa l-1-correspondence between transition systems 7(G) of the even graph
G and the decompositions of F(G) into closed trails: traversing edges of G following
the given transitions results in closed trails, one at a time; together they form a decom-
position into closed trails. Likewise, each of these trails defines a subset of 7(G) (for a
given 7(()), and since these trails are edge-disjoint, the union of the subsets is 7(G).



4.2.6 Transforming Eulerian Tours

The Kappa Transformations

The kappa transformations consist of various combinations of splitting, splicing, and
reversing closed trails. They form the basis for constructing eulerian tours and for
transforming one eulerian tour into another. For a detailed discussion, see, e.g., [F190].

DEFINITIONS

D48: The reverse of a trail T = (v, e1,v1, ..., €, v;) is the trail

-1
T :<vlaelavl—1a"'aelav0>

D49: Let T = (..., e;,vi,€i41,...,€,Vj,€54+1,...) be an eulerian tour in a graph ¢
such that v; = v;, and consequently, {e;,e;11,¢€;,e;41} C E,,. The closed subtrail
(vi, €41, ..., €5,0v;) is called a segment of tour T and is denoted S; ;.

D50: A segment reversal (or s-transformation) is the replacement of one of the
segments in an eulerian tour 7" by its reverse segment. The resulting eulerian tour is
denoted «(T'). Thus, if tour 7= (..., e;, S j,€j+1,...), then

RIT) = (e ST et )

D51: Let T = (...,e;,5i;,€j+1,...) be an eulerian tour of a graph G with segment
Si ;. The 2-cell partition of E(() consisting of the edge set of S; ; and the edge set of the
(“rest of the way around”) segment S;; = (v;, €541, ..., €;, ;) is called a k-detachment
and is denoted /(7).

D52: Given a trail decomposition of F(G) into closed trails 71, ..., ), k > 2, choose
trails 7; and Tj such that v € V(T;) N V(T}) for some vertex v. Let ep, i, emt1,i € Ey
be consecutive in Tj, and e, ;, €,41; € B, consecutive in 7} (i.e., they are transitions
of their respective trails). Thus, we may write T; = (..., €m;, ¥, €my1,i,...) and T; =
(v,€njs---,ent14,v). A splice at v of trail T; into trail 7; (or the k-absorption at
v) of T; by T; is either one of the closed trails:

splice(T;, T, v) = (... emi, Tj, €mag1i-- )

splice(T;, 7}_1, v) = (..., em, 7}_1, Emtii---)
NOTATION: Either one of the closed trails that result from a splice of T} into T is
denoted «"({T;,1}}).

D53: Let T be an eulerian tour in a graph G. An eulerian tour 7" is obtained from T'
by a &*-transformation, denoted T" = &*(T), if there exists a x-detachment «'(T) =

{5 ;,S;,i} such that 7" = «""{S; ;, S;;}. That is, 7" = &*(T) = &/'(«"(T)).

D54: Let 77 and 7% be two eulerian tours in a graph . Tour 75 1s obtained from 7}
by a ri-transformation, denoted To = k1 (71), if either Ty = x(71) or To = k*(T1).

D55: Two eulerian trails, 77 and 7%, are considered different if their corresponding
transition systems are different, i.e., if 70, # 7r,.



REMARK

R30: The various transformations defined above carry over to eulerian digraphs with
the added restriction that each transition at a vertex v must comprise an arc incident
to v and an arc incident from v.

FACTS

F53: Let Ty and 75 be two different eulerian tours of an eulerian graph G (they exist
unless GG is a cycle). Ty can be obtained from 77 by a sequence of k-transformations

(see [AbKo80], [Sk83], [F190]).

F54: Let GG be an eulerian graph with a partition system P((), and suppose that 7}
and T5 are different P(G)-orthogonal eulerian tours. Then 7% can be obtained from 7
by a sequence of ki-transformations in such a way that any eulerian tour and any trail
decomposition S with |S| = 2 arising in this sequence are P(G)-orthogonal.

F55: Let G be an eulerian graph with a given positive ordering O% (v) for every v €
V(G), and let T} and Ty be different non-intersecting eulerian tours of G. Then T5
can be obtained from T} by a sequence of ki-transformations in such a way that any
eulerian tour and any trail decomposition S with |S| = 2 arising in this sequence are
non-intersecting.

F56: Let 77 and 75 be two different eulerian tours in a digraph . Then tour 75 can
be obtained from T} by a sequence of ki-transformations.

F57: In 4-regular plane graphs, A-trails (which are non-intersecting eulerian tours
in this case) are in 1-1-correspondence with spanning trees in an (easily constructed)
auxiliary graph. The xi-transformations correspond to the edge-addition and edge-
deletion process in transforming one spanning tree into another spanning tree.

EXAMPLES

E5: The complete bipartite graph K» 4 with eulerian tour 7= (1,2, 3,...,8) (written
as edge sequence) is shown in Figure 4.2.8(a). The transitions at v and w are marked
with little arcs. Tour T is transformed into the eulerian tour 7" = (1,2,3,4,8,7,6,5)
by a s-transformation (segment reversal) at v (see Figure 4.2.8(b)).

(@ T (b) T'=x(T)
Figure 4.2.8

E6: The tour 7' in Example 5 is a non-intersecting eulerian tour. By a k-detachment at
v, one obtains the non-intersecting trail decomposition S = {71, To } with T} = (1,2,3,4)
and T = (5,6,7,8) (written as edge sequences) (Figure 4.2.9(a)). A k-absorption at



w results in 7" = (1,2,7,8,5,6,3,4), another non-intersecting eulerian tour (Figure

1.2.9(b)).

(@ §={5,T»}, S=«x'(T) (b)y T"=x1(T)=x"(S)
Figure 4.2.9

Splicing the Trails in a Trail Decomposition

We close the section with an eulerian-tour construction by A. Tucker that starts with a
closed-trail decomposition and iteratively splices pairs of trails together (i.e., performs
k-absorptions) until there is only one trail left.

Algorithm 4.2.5: Tucker’s Algorithm [Tu76]

Input: eulerian graph G.
QOutput: eulerian tour T

Produce a trail decomposition of G by forming an arbitrary 2-regular
detachment H of G.
Let W = {Ti,...,Ti} be the set of components of H.
While k > 2
Choose Tj, T; with i # j such that V(T;) N V(I;) # 0.
Let v € T; NTj;.
Let T; ; = K (T3,T;) {a k-absorption at v}.
W= WU T} AT T
k=k—1
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4.3 CHINESE POSTMAN PROBLEMS

R. Gary Parker, Georgia Institute of Technology

4.3.1 The Basic Problem and Its Variations
4.3.2 Undirected Postman Problems

4.3.3 Directed Postman Problems

4.3.4 Mixed Postman Problems

References

Introduction

The Chinese Postman Problem (CPP) is one of the more celebrated problems in
graph optimization. It acts as a useful model in an array of practical contexts such
as refuse collection, snow removal, and mail delivery. The basic problem appears to
have been first posed by the mathematician Guan (or Kwan Mei-Ko) in 1962 [Gu62];
an attribute that apparently resulted in its being dubbed “Chinese” by Jack Edmonds
([Ed65-a]).

4.3.1 The Basic Problem and Its Variations

DEFINITIONS

D1: A postman tourin a graph G is a closed walk that uses each edge of G at least
once.

D2: Given a finite graph, G = (V, F), with edges weighted as w : F — Z7, the
Chinese Postman Problem secks a minimum-weight postman tour.

TERMINOLOGY: The basic problem is sometimes simply referred to as a postman prob-
lem.

D3: The undirected version of CPP (UCPP) assumes that the instance graph G
is an undirected graph.

D4: The directed version of CPP (DCPP) assumes that the instance graph G is
a digraph.

D5: The mixed version of CPP (MCPP) assumes that the instance graph G is a
mized graph, that is, some edges are directed, and some edges are undirected.

FACTS
F1: UCPP and DCPP are polynomially solvable. (See §4.3.2 and §4.3.3.)
F2: MCPP is NP-hard. (See §4.3.4.)



The Eulerian Case

DEFINITIONS

D6: An eulerian tour in a graph (or digraph) G is a closed walk that uses each edge
(or arc) of G exactly once. An eulerian tour in a mixed graph is a closed walk that uses
each edge and each arc exactly once.

D7: A graph, digraph, or mixed graph that has an eulerian tour is called eulerian.

D8: A digraph G is strongly connected if for every two of its vertices, u and v,
there is a directed walk from u to v and one from v to u.

D9: If G = (V, E) is a digraph, a vertex v € V is symmetric if the indegree and
outdegree of v are equal.

TERMINOLOGY: If every vertex in a digraph (' is symmetric, then & is sometimes referred
to as a symmetric digraph. However, in other contexts, “symmetric digraph” is
sometimes taken to mean (z,y) € F — (y,x) € E for all z,y € V.

FACTS

F3: A connected graph G is eulerian if and only if every vertex of (G has even degree.
F4: A strongly connected digraph G is eulerian if and only if G is symmetric.

F5: If the instance graph G (undirected, directed, or mixed) is eulerian, then CPP is
solved by producing an eulerian tour.

REMARK

R1: A characterization of eulerian mixed graphs is given later in the subsection Mixed
Postman Problems.

Variations of CPP

DEFINITIONS

D10: open postman tour: The postman is required to start and end at distinct
vertices of the graph (or digraph).

D11: not requiring a specified edge: A specified edge is not required to be in an
admissible tour but its inclusion is at least permitted.

D12: a specified edge cannot be duplicated: A specified edge is required to be
present in the postman tour but cannot be duplicated (i.e., cannot be traversed more
than once).

D13: windy postman problem: Instances of UCPP place no restriction on the
direction of traversal along an edge. This does not suggest, however, that in a practical
application, the postman need necessarily experience the same “cost” of traversal in
both directions (suppose the edge-weight metric that is relevant is not distance but
rather time). If one allows edge weights to differ depending upon which direction an
edge is traversed, the problem becomes the windy postman problem.

D14: rural postman problem: This variant, also motivated by practical settings,
arises when rather than requiring that all edges or arcs be traversed at least once, only



a given subset has to be used. This version derives its name from the apparent case of
postal delivery in non-urban settings where, perhaps, the postman may have to traverse
every street within a small town or village and then moves on to another one but can
do so by selecting any of a number of connecting roads (edges) that exist to connect the
towns.

D15: stacker crane problem: This is the rural postman problem for mixed graphs.

FACTS

F6: The open postman problem remains polynomially solvable. If v; and vy are the
pre-specified (distinct) vertices, then all that is required is to add an artificial vertex to
(i, say vq, connect it to vy and ve by two (artificial) edges and assign the new edges a
weight of M, where M is sufficiently large. Clearly, in the application of the algorithm,
the artificial edges would never be part of a shortest path and hence, would never be
duplicated. In the resultant G, one would simply find an eulerian tour starting and
stopping at v,; removing v, from this tour induces the desired open eulerian walk (or
semieulerian tour) from vy to va.

F7: For the second and third variations above, where a specified edge is not required
or cannot be duplicated, the problem remains polynomially solvable (¢f. [EdJo73]).

F8: [Wi92] The windy postman problem is NP-hard although solvable in polynomial
time if instances are eulerian.

F9: The rural postman problem is NP-hard on both graphs and digraphs even if all
edges/arcs have the same weight (see [GaJo79]).

REMARK

R2: It isimportant to note that the list of extensions presented here is not exhaustive.
Additional variations to these sorts of problems in general are often easy to create
whether motivated by purely combinatorial interests or ones more pragmatic, stemming
from a given practical setting. A good starting place for a sense of the breadth of
cases, degree of analysis, and categorization of results is the rather expansive survey in
[EiGeLa95-a] and [EiGeLa95-b]. Extensive coverage for the Chinese Postman Problem
and its variations may also be found in [F191].

4.3.2 Undirected Postman Problems

The solution posed by Guan, though clever, was not fast in the universally adopted,
complexity-theoretic sense (i.e., not polynomial in the size of the input graph). This
flaw was pointed out by Edmonds ([Ed65-a]) who then proposed a polynomial algorithm
for the problem.

DEFINITIONS

D16: A matching M in a graph G is a subset of edges no two of which have a common
vertex. (Matchings are discussed in §11.3.)

D17: A matching is perfect if every vertex in G is incident to some edge in the
matching.



Algorithm 4.3.1: Solution to UCPP

Input: Connected graph G with edges weighted by nonnegative integer values.
QOutput: Minimum-weight postman tour in G.

Let Vo be the set of vertices with odd degree in G.
For each pair of vertices z,y € Vg
Find a shortest path P in GG between & and y.
Form a complete graph K on the vertex set Vo with edges weighted by
the respective shortest-path lengths.
Find a minimum-weight perfect matching M in K.
For each edge e € M
Duplicate the edges in G of the shortest path P corresponding to e.
Let G be the resulting supergraph.
Produce an eulerian tour in G.

COMPUTATIONAL NOTE: The shortest path computation in Algorithm 4.3.1 is straight-
forward and fast. Producing a minimum-weight perfect matching in a graph, although
complicated, can be accomplished in polynomial effort following the seminal work by
Edmonds (¢f. [Ed65-b],[Ed65-c]). The implementation of the step relative to traversal-
finding in G is also easy. The following strategy by Fleury (cf. [Ka67]) can be applied
recursively: Given a position in the walk, select the next edge arbitrarily so long as
its removal would not disconnect the graph G, unless this is the only choice. (Fleury’s

algorithm appears in §4.2.)

EXAMPLE

E1l: Consider G on the left in Figure 4.3.1; weights are specified directly on the edges.
The set Vo is given by {vy, v3, va, v5} and the stated shortest paths along with the path
lengths result as follows:

Vertex Pair Path Length
VU1, V3 V1, €1, V2,€2,V3 3
U1, V4 V1, €1, V2,€7,Vs5, €4, V4 5
V1, Us V1, €1,v2,€7,Vs5 3
U3, V4 V3, €3, V4 3
V3, Us V3, €2, V2, €7, Vs 2
V4, Us V4, €4, Vs 2
U2
0 U3
Us U4

Figure 4.3.1 Application of Algorithm 4.3.1.

An optimal matching in the complete graph K4, shown in the middle of Figure 4.3.1,
consists of edges a and ¢, having total weight 5. These edges correspond to the paths



VU1, €1, V2, €2,v3 and vy, e4,v5. The respective edges in these paths are duplicated in G
producing the multigraph, GG, shown on the right in Figure 4.3.1. The latter is eulerian,
and an eulerian tour (of total weight 30) is given by the walk below:

vl’ 61’ vz’ 62’ /US’ 62’ vz’ 61’ vl’ 66’ /US’ 63’ /U4’ 64’ /US’ 67’ vz’ 68’ /U4’ 64’ /US’ 65’ vl

REMARKS

R3: The stipulation that edges be weighted by nonnegative integer values cannot
be relaxed since otherwise negative weight closed walks result in G (by simply going
back and forth on such an edge), which creates an intractability in the shortest path
computation (see [GaJo79]).

R4: Implementation of the Fleury traversal strategy requires some attention due,
largely, to the requirement to test the stated connectivity stipulation. An alternative
that relaxes this complication was proposed by Edmonds and Johnson ([EdJo73]).

R5: Trivially, a necessary condition for a perfect matching to exist in a graph is that
the graph possesses an even number of vertices. Since we may take (G, in any interesting
instance of UCPP, to be connected, there must be a path between every pair of vertices.
Hence the complete graph specification is clear and since |Vp| is even, it follows that
the perfect matching step of the procedure is well-defined.

R6: Assuming a correct application of Algorithm 4.3.1, a postman would never tra-
verse an edge more than twice in an optimal walk.

COMPUTATIONAL NOTE: If double-traversing occurred, the supergraph, G, would have
an edge from G duplicated more than once. But this would deny that G had been
constructed correctly since two of the duplicated copies could be eliminated, leaving a
connected graph with the same (even) degree parity everywhere and with smaller weight

than G.

4.3.3 Directed Postman Problems

The strategy for solving the DCPP is analogous to the one used for the undirected
case. If the digraph is not symmetric, then a minimum-weight arc duplication produces
a symmetric superdigraph. The number of copies of each arc i1s determined by solving
a ctrculation problem.

FACTS
F10: Since easy to test, we may take G to be strongly connected.

F11: The multigraph GG produced from a correct application of Algorithm 4.3.2 below
i1s symmetric; obviously it remains strongly connected.

COMPUTATIONAL NOTE: The circulation problem in Algorithm 4.3.2 is easily solved
by standard network flow techniques (Chapter 11).



Algorithm 4.3.2: Solution to DCPP

Input: Strongly connected digraph G with arcs weighted by nonnegative integer
values.
QOutput: Minimum-weight postman tour in G.

If G is symmetric
Produce an eulerian tour in G.

Else
For each k, set b, = indegree(vy) — outdegree(vy ).
Solve the following circulation problem:

minimize E Wi 4
(Ulvvj)EE
s.t. E Tkj — E i = by for vy €V
(vi,v;)EE (vivr)€E
Lij Z 0

For each i, j, add x;; copies of arc (v;,v;) to G.
Call the resulting multidigraph G.
Produce an eulerian tour in G.

Producing an Eulerian Tour in a Symmetric (Multi)Digraph

Algorithm 4.3.2 above requires the traversal of an eulerian tour in the original digraph (if
it is symmetric) or in a symmetric multidigraph. This can be accomplished by applying

Algorithm 4.3.3 below (¢f. [EhBr51]).

DEFINITION

D18: An intreeis a connected, acyclic digraph where the outdegree of every vertex
is at most 1.

Algorithm 4.3.3: Producing a Tour in an Eulerian Digraph

Input: Eulerian digraph G
Qutput: Eulerian tour in G.

Select any vertex in G and denote it by v*.

Form an intree 7" that spans G and that is rooted at v*.

For each vertex w in G, w # v*,

Label the out-arcs from w randomly with consecutive integers

subject to the restriction that the last (highest) label is given
to the arc in intree T'.

Label the out-arcs from v* arbitrarily.

Starting at vertex v*, trace an eulerian tour in G by always selecting

the untraversed out-arc with the smallest label.

COMPUTATIONAL NOTE: An easy way to form an intree 7" of digraph G is to start with
T = {v*} and proceed iteratively: select at each iteration an arc in G that is directed
from a vertex in V(G) — V(T') to a vertex in T repeat until 7" spans G.



EXAMPLE

E2: Consider the instance digraph in the upper left of Figure 4.3.2. Specified next to
each vertex is the respective value for b;. Solving the explicit circulation problem defined
in Algorithm 4.3.2 produces the following outcome: 51 = 234 = 1; z45 = 2; and z;; = 0
elsewhere. Copies of the respective arcs are added forming the multigraph shown in the
upper right of the figure. Applying Algorithm 4.3.3 and selecting (arbitrarily) vertex
vy as a root, an intree T is constructed and shown at the bottom of Figure 4.3.2. The
stated arc-labeling scheme is applied with labels affixed to the arcs in the multidigraph.
Starting with vertex v4 and proceeding in label order, produces an eulerian tour specified
(unambiguously) by the following vertex sequence:

V4, Us, V1, U3, V4, Us, V1, U2, U3, Vg, Us, U2, U4

Figure 4.3.2 Applications of Algorithms 4.3.2 and 4.3.3.

REMARKS

R7: The network flow formulation in Algorithm 4.3.2 is due to Edmonds and Johnson
([EdJo73]).

RS8: Trivially, a correct application of Algorithm 4.3.2 may require that an arc be
duplicated several times.

R9: In applying Algorithm 4.3.3, the requirement that a tour be traced beginning
with vertex v* and proceeding in label order cannot be casually relaxed. For instance,
if one starts from vertex vz on the labelled digraph in the upper right in Figure 4.3.2,
any tour generated will violate the label ordering.

4.3.4 Mixed Postman Problems

FACTS

F12: The mixed postman problem, MCPP, is N P-hard; the reduction is from
3-SATISFIABILITY (¢f. [Pa76]).



F13: MCPP remains N P-hard even on planar graphs with no vertex (total) degree
exceeding 3 and with all edge weights the same (see [GaJoT79].

Deciding if a Mixed Graph Is Eulerian
DEFINITIONS

D19: The total degree of a vertex v in a mixed graph G is the total number of arcs
and undirected edges incident on wv.

D20: A mixed graph is even if the total degree of each of its vertices 1s even.
D21: A vertex in a mixed graph is symmetric if its indegree and outdegree are equal.

TERMINOLOGY: A mixed graph is said to be symmetric if all of its vertices are sym-
metric.

D22: A mixed graph G satisfies the balance condition if for every S C V(G), the
difference between the number of arcs from S to V(G) — S and the number of arcs from
V(G) — S to S is no greater than the number of undirected edges joining vertices in S
and V(G) — S (¢f. [FoFu62]).

FACTS

F14: A (strongly) connected, mixed graph G is eulerian if and only if G is even and
satisfies the balance condition.

F15: Mixed graphs that are even and symmetric are balanced.

EXAMPLE

E3: Clearly, the even-degree condition is necessary for a mixed graph to be eulerian
while symmetry at each vertex is not. The graph in Figure 4.3.3 illustrates. An eulerian
tour is specified by the vertex sequence vy, vs, vg, V1, Vs, Us, U4, Us, U3, U1.

0

Vg v [N

Figure 4.3.3 An Eulerian Mixed Graph.

COMPUTATIONAL NOTE: The (nontrivial) requirement in the mixed-graph case is to
create a graph that satisfies the symmetry condition at each vertex or show that this
is not possible. That is, we seek to orient some undirected edges in such a way that
symmetry is created, albeit artificially. There is an easy network flow formulation that
will do this or correctly conclude that no such orientation is possible.



Algorithm 4.3.4: Deciding if a Mixed Graph Is Eulerian

Input: an even and strongly connected mixed graph G.
Output: an orientation of some or all of the undirected edges of G that is
eulerian or a conclusion that no such orientation is possible.
For each k, set b, = indegree(vy) — outdegree(vy ).
Replace each undirected edge in G by a pair of oppositely oriented arcs.
Let U be the set of these new pairs of arcs.
Solve the following network flow problem P;:

s.t. Xi; — zj; = by for vy €V
Z J Z J

If P, has an admissible solution (i.e., G is eulerian)
For each undirected edge {v;, v;}

Else (P; has no admissible solution)
Conclude that G cannot be made eulerian through edge-orientation.

minimize E ;5

(vs,vi)€U

{(viv;)eUli=k} {(vjvi)€Ui=k}
0 <wz; <1for (vi,v;) €U

If Lij = 1

Orient edge {v;, v;} so that it is directed from v; to v;.
Else if z;; =1

Orient edge {v;, v;} so that it is directed from v; to v;.
Else

Leave edge {v;, v;} undirected.

EXAMPLE

E4: The application of Algorithm 4.3.4 on the (mixed) graph in Figure 4.3.3 is illus-
trated in Figure 4.3.4. In the upper graph in the figure, the values by are written next
to each vertex. The non-zero variables x23 and x3; induce the specified orientation for
the original, undirected edges (va,vs) and (v1,vs) as indicated by the lower graph in
the figure. The existing eulerian tour can now be traced using Algorithm 4.3.3.

Figure 4.3.4

Ug v P

Application of Algorithm 4.3.4 on the graph in Figure 4.3.3.



REMARKS

R10: The second part of the balance condition in Definition 22 asks that for every
subset of vertices, a lack of symmetry (a difference between total indegree and total
outdegree of vertices in the subset) must be made up for by some or all of the undirected
edges joining vertices in the subset to those outside.

R11: If the orientation produced by Algorithm 4.3.4 results in a graph with all edges
directed, then an eulerian tour is produced by employing the strategy described pre-
viously in the case of eulerian digraphs (Algorithm 4.3.3). Alternatively, if Algorithm
4.3.4 outputs a graph with some undirected edges remaining, it is still possible to pro-
duce (with polynomial effort) a suitable tour, although care must be exercised, and
even then, the ease of applicability of the procedures depends on whether the subgraph
formed by the directed edges is connected and spanning (¢f. [EdJo73]).

The Postman Problem for Mixed Graphs

Since MCPP is NP-hard in general, options are few. We may have to look for spe-
cial cases that do submit to polynomial resolution, or we will simply have to be less
ambitious and settle for approximation algorithms, i.e., fast procedures that cannot
guarantee optimal solutions but that will produce ones that are, in some well-defined
sense, reasonably close to optimal. Of course, for instances of manageable size, 1t might
be feasible to resort to exact procedures. However, these approaches are inherently enu-
merative and will require effort that is exponential in the worst case (¢f. [EiGeLa95-a],

[EiGeLa95-b]).

DEFINITION

D23: An algorithm is an approximation algorithm for a given problem if given any
instance of the problem, it finds at least a candidate solution for the instance.

REMARK

R12: If the instance for MCPP is at least even but perhaps not symmetric, we can
apply Algorithm 4.3.4 in order to test if symmetry at each vertex can be created. If
so, the instance is eulerian (by Facts 14 and 15), and we can proceed accordingly.
Otherwise, it is not eulerian, and we have to determine if it can be made so through
some duplication of edges and/or arcs.

FACT
F16: A mixed graph G has a postman tour if and only if G is strongly connected.

COMPUTATIONAL NOTE: Testing for strong connectivity in mixed graphs is polynomial
since undirected edges could be replaced by pairs of oppositely directed ones and then
the (polynomial) algorithm for digraphs applies.

REFERENCE NOTE: The graphs that are employed in the remaining figures are either
explicitly drawn from or are alluded to in an important paper by Frederickson ([Fr79]).



EXAMPLE

E5: To illustrate the problematical aspect unique to the mixed postman problem,
consider the mixed graph in Figure 4.3.5, part a; all edges are assumed to have weight
1. Tt 1s easy to see that no orientation exists for undirected edges that would create
symmetry. Now, duplication of two arcs creates symmetry as shown in part b of the
figure; however, the resulting structure is not even so further duplication is required.
On the other hand, the multigraph in part ¢ also has only two arcs duplicated but is
both symmetric and even; clearly, this graph is preferred. Unfortunately, it is not easy
to distinguish, in any general way, its selection over the structure of part b.

(a) (b) (c)

Figure 4.3.5 Interaction between symmetry and even-degree.

COMPUTATIONAL NOTE: It is possible to deal with a few of these complications, albeit
in somewhat ad hoc fashion, by employing various network flow formulations; relevant
results are discussed in [EdJo73]. Important is to note that the prime contributor to the
intractability of the general, mixed postman case is the ambiguity in effectively dealing
with the interaction between symmetry and even-degree creation and/or preservation.

Approximation Algorithm ES

The following approximation algorithm combines an easy even-degree-creation phase
followed by a more intricate, joint symmetry-producing/even-degree-preserving phase.
The details are somewhat involved (¢f. [EdJo73] and [Fr79]), and so in the statement
of Algorithm 4.3.5, the step is simply referenced as “symmetric/even-parity.”

Algorithm 4.3.5: Approximation Algorithm ES

Input: Strongly connected, mixed graph G with edges/arcs weighted by
nonnegative integer values.
Qutput: Admissible postman tour.

Apply the even-degree-creation component of UCPP to the underlying graph
of mixed graph G.

Restore orientation to edges as specified in G.

Let G be the resulting supergraph.

Operating on G, apply the symmetric/even-parity construction.

Let G be the resulting graph.

Produce an eulerian tour in G.

TERMINOLOGY: The approximation procedure stated by Algorithm 4.3.5 is sometimes
referred to as the even-symmetric strategy, i.e., ES.



REMARK

R13: Since it cannot guarantee an optimal solution, it is interesting to consider the
limit (if any) to how poorly Algorithm ES could perform. In fact, this was answered by
Frederickson.

FACT

F17: [Fr79] The ratio of the value of a postman solution produced by Algorithm ES
to an optimal value cannot exceed 2. Importantly, the value of 2 is approachable as
established by Example 6 below.

EXAMPLE

E6: Consider the mixed graph in Figure 4.3.6, part a, where edge weights are specified
on the graph. The even-degree-creation phase of Algorithm ES duplicates the directed
edges (considered undirected for the stated step) yielding the multigraph in part b.
Operating on this graph to produce symmetry while preserving the even degree condition
yields the structure in part ¢ having total edge weight 4 4+ 12¢. The eulerian tour in
this multigraph is not optimal however. Had one been less greedy in the even-degree-
creation application, duplicating instead the edges with weight 2¢, the structure in part
d of the figure would have resulted, yielding an optimal multigraph and hence, a correct
tour directly. Its weight is 2 + 10e.

1
c
2¢ 2¢
1
€
(a) (b)
() (d)
Figure 4.3.6 Application of Approximation Algorithm ES.

Approximate Algorithm SE

A natural alternative approximation is to reverse the strategy proposed by Algorithm
ES, yielding the following, symmetric-even approach (SE) (ef. [Fr79]).

COMPUTATIONAL NOTE: The symmetry-creation construction of step 1 in Algorithm
4.3.6 is polynomial (¢f. [Fr79]) and employs the same symmetry-creation component of
the symmetry/even-parity step in Algorithm 4.3.5.



Algorithm 4.3.6: Approximation Algorithm SE

Input: Strongly connected, mixed graph G with edges/arcs weighted by
nonnegative integer values.
Qutput: Admissible postman tour.

Create symmetry on mixed graph ¢, and denote resulting mixed graph G°.
Let H be the subgraph induced on the undirected edges of G*.

Apply the even-degree-creation component of UCPP to H.

Let G be the resulting even-degree, symmetric super(multi)graph of G°.
Produce an eulerian tour in G.

EXAMPLE

E7: Consider the graph in Figure 4.3.7, part a. A correct application of Algorithm SE
produces the multigraph in part b. However, the structure in part c is optimal.

Figure 4.3.7 Application of Approximation Algorithm SE.

Some Performance Bounds

FACT

F18: [Fr79] The ratio of the length of an outcome from Algorithm SE to an optimal
tour value will also never exceed 2. Example 7 provides evidence that this value is
approachable as well.

EXAMPLE

E8: Proceeding from left to right in Figure 4.3.8 on the respective input instances, it
is evident that Algorithm SE solves a worst-case instance for Algorithm ES; while the
latter accomplishes the same outcome on a worst-case instance for Algorithm SE.

SPeRe

Application of Algorithm SE

H L A

Application of Algorithm ES

Figure 4.3.8 Algorithms ES and SE on each other’s worst-case instances.



REMARKS

R14: In the worst-case sense, both approximation procedures Algorithm 4.3.5 (ES)
and Algorithm 4.3.6 (SE) perform the same. However, Example 8 demonstrates an
interesting phenomenon: if each approximation is applied to a worst-case instance of
the other, the outcome is that Algorithm ES solves (to optimality) the worst-case in-
stance for Algorithm SE, while the latter, when operating on the worst-case instance
for Algorithm ES, produces the optimal outcome.

R15: The outcome of Example 8 motivates an obvious question which is stated loosely
as follows: What if Algorithms ES and SE realize their respective worst-case behaviors
on different classes of graphs? If this is the case, it is conceivable that they could be em-
ployed in a “composite” fashion where each strategy is applied separately and the best
outcome is then selected. While certainly demanding additional work, the polynomial-
ity of total effort required by the approach is unaffected. Preserving polynomiality is
meaningful because if this composite strategy is applied, the outcome does indeed yield
an improvement in guaranteed performance. The first result of this sort is also due to
Frederickson ([Fr79]) where it was shown that applying the two stated heuristics and
selecting the best result would never produce a tour having length that when compared
to an optimal value yielded a ratio in excess of g

R16: 1In the same paper ([Fr79]), Frederickson also proposed a separate composite
strategy for planar instances. The bound on its performance was shown to be %

R17: When the g result in [Fr79] appeared, attempts to create an instance establish-
ing realizability were not fruitful; the closest was a %—inducing instance shown in Figure
4.3.9 below. But a 1999 result, which employed a modification of the stated Freder-
ickson approximation, was proposed in Raghavachari and Veerasamy (RaVe99]) with a

performance ratio bounded by % The instance in Figure 4.3.9 establishes tightness.

Figure 4.3.9 A worst case for composite use of Algorithms ES and SE.

R18: Following its attendant proof of intractability, MCPP is not likely to submit to
any fast solution. However, as with any other provably NP-hard problem, this attribute
does not preclude the existence of nor the value in pursuing special cases which might
prove to be quickly solvable. This is certainly the case for MCPP.

COMPUTATIONAL NOTE: Ifinput instances are confined to the class of recursively struc-
tured graphs, then it is possible to solve MCPP on members of this class and, in fact,
by strategies requiring only linear-time effort (¢f. [BoPaTo91], [BoPaTo92], and §10.4).
Typical recursive graph classes include trees, series-parallel graphs, Halin graphs, partial
k-trees, and treewidth-k graphs.
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4.4.3 Pseudorandom Numbers

4.4.4 A Genetics Application
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Introduction

N. deBruijn solved the problem of finding a minimum-length binary string that
contains as a (contiguous) substring every binary string of a prescribed length k. For
this purpose, he prescribed a special directed graph, of in-degree 2 and out-degree 2,
now called a deBruijn graph. In this section, we cover the basics of deBruijn graphs,
two methods to generate deBruijn sequences, and applications to the generation of
pseudorandom numbers and to genetics.

4.4.1 DeBruijn Graph Basics

DeBruijn Sequences

DEFINITIONS

D1: A deBruijn sequence of order k is a binary string of length n = 2 in which
e the last bit is considered to be adjacent to the first, and
e every possible binary k-tuple appears exactly once.

Two deBruijn sequences are considered to be the “same sequence” if one can be obtained

from the other by a cyclic permutation.

D2: In astring s of length m > k, the successor of a substring t of length % is the
k-bit substring ¢’ that begins at the second bit of ¢. This is understood cyclically within
s, so that if needed, the last bit of the successor substring ¢’ is the first bit of string s.

D3: In a string s of length m > k, the k-tour is the sequence of substrings of length
k, starting with the initial substring. Since this is understood cyclically within s, there
are m substrings in the tour.

D4: A k-bit string b is said to be obtained from a k-bit string @ = ajasas ---ag by a
(left) shift operationif b; = a; 41, fori =1,2,... k—1. The bit by may be arbitrary.

D5: A left shift ajas...ax — b1bs ... by is a cycle shiftif b, = ay.

D6: A left shift ajas...axy — b1ba ... by 18 a deBruijn shift if by # a;.



FACTS

F1: An obvious lower bound on the length of a deBruijn sequence of order k is 2%,
since there are 2* different bitstrings of length &, and since each bit in a sequence starts
only one k-bitstring.

F2: The successor of each k-bit substring ¢ in a deBruijn sequence is either a cycle
shift or a deBruijn shift of ¢.

EXAMPLES

E1: 00010111 is a deBruijn sequence of order 3. Its 3-tour is

000,001,010, 101,011,111,110, 100

E2: 0000101101001111 is a deBruijn sequence of order 4.

DeBruijn Graphs

An intuitive approach to the problem of constructing a deBruijn sequence 1is to construct
a graph in which a hamiltonian tour corresponds to such a sequence.

DEFINITIONS

D7: A deBruijn graph of order k, denoted by G(k), is a directed graph with 2k
vertices, each labeled with a unique k-bit string. Vertex a is joined to vertex b by an
arc if bitstring b is obtainable from bitstring a by either a cycle shift or a deBruijn shift.
Additionally, each arc of G(k) is designated as a cycle-shift arc or a deBruijn arc,
according to the shift operation 1t represents. Each arc is labeled by the first bit of the
vertex at which it originates, followed by the label of the vertex at which it terminates.

D8: The cycle-shift 2-factor in a deBruijn graph is the 2-factor formed by all of its
cycle-shift arcs.

D9: The deBruijn 2-factor in a deBruijn graph is the 2-factor formed by all of its
deBruijn.
EXAMPLE

E3: Figure 4.4.1 below illustrates the deBruijn graph of order 3.

FACTS

F3: The cycle-shift arcs form a directed 2-factor, because the cycle-shift operation
acts as a permutation on the bitstrings. Similarly, the deBruijn arcs form a directed
2-factor.

F4: Every vertex of a deBruijn graph has out-degree 2. The first bit of the label on
one of the vertices to which it points is 0, and the first bit on the label of the other is 1.

F5: Every vertex of a deBruijn graph has in-degree 2.

F6: Every deBruijn graph is strongly connected.



0000

1111

Figure 4.4.1 A deBruijn graph of order 3.

F7: Every deBruijn graph is hamiltonian.

F8: The hamiltonian (directed) circuits in the deBruijn graph G(k) are in one-to-one
correspondence with the deBruijn sequences of order k. The correspondence is realized
by listing, in sequence, the first bit of each vertex encountered on a hamiltonian tour.

F9: deBruijn’s Theorem [dB47] For each positive integer k there are 227 =k e
Bruijn sequences of order k.

k

K 1 2 3 4 5 6
92—k 1 1 2

16 2048 67108864

REMARKS

R1: A hamiltonian circuit in a deBruijn graph can be constructed by splicing together
the components of its deBruijn 2-factors. However, deBruijn’s theorem depends on a
more elegant way to construct deBruijn sequences.

R2: Since each component of the deBruijn 2-factor of the deBruijn graph G(k) has
cardinality at most k, it follows that the number of components of the deBruijn 2-factor
grows exponentially in k.

4.4.2 Generating deBruijn Sequences

An efficient algorithm for constructing a deBruijn sequence of order k is based
not on finding a hamiltonian circuit in the deBruijn graph of order &, but rather on
the easier task of constructing an Eulerian tour in the deBruijn graph of order & — 1.
Another interesting method is strictly lexicographic.



FACTS

F10: [Go46]: A strongly connected directed graph in which every vertex has the same
indegree as outdegree has an Eulerian tour.

F11: In a deBruijn graph G(k), the k-sequence of arc labels encountered on every
directed path of length £ originating at a vertex v is the binary string that labels
vertex v. (This is an immediate consequence of the specification of the arc labels in the
definition of a deBruijn graph.)

F12: The sequence of arc labels encountered on an Eulerian tour of the deBruijn graph
of order k is a deBruijn sequence of order k + 1.
EXAMPLE

E4: Figure 4.4.2 illustrates the construction of a deBruijn sequence of order 4 from
the deBruijn graph of order 3.

0011

Figure 4.4.2 An Eulerian circuit in G(3).

REMARKS

R3: The proof of Fact F12 is not difficult. Since an Eulerian tour of G(k) visits each
vertex twice, it follows from Fact F11 that each bitstring label occurs twice in the
sequence of arc labels. By Fact F4, one occurrence is followed by a ‘0’ and the other by
a ‘1’

ALGORITHM

A1: To construct a deBruijn sequence of order k, use Fleury’s algorithm (quadratic
time) to construct an Eulerian tour of the deBruijn graph G(k — 1). Then record the
sequence of arc labels on the Eulerian tour. (Fleury’s algorithm appears in §4.2.)



Necklaces and Lyndon Words
Fredricksen and Kessler [FrKe77] have published a remarkable alternative method for

constructing deBruijn sequences.
DEFINITIONS

D10: A rotation of a binary string is the result of an iteration of cycle shifts.
(Rotation is clearly an equivalence relation.)

D11: An equivalence class under rotation of the binary strings of length n is called a
necklace of order n.

D12: A Lyndon word of order n is a necklace of order n whose rotation class has
n binary strings. A Lyndon necklace of length 1 is called ¢rivial. We take the lexico-
graphically least element of the equivalence class as representative of the necklace.

FACTS

F13: A necklace representative is a Lyndon word if and only if it is aperiodic, i.e.,
cannot be written as the concatenation of two or more identical strings.

F14: By an elementary application of Burnside-Polya enumeration, the number of

necklaces of order n is
1 n
- Z ¢ (k) - 2%
k:k|n
where ¢(n) is the number of integers in the interval [1, n] that are relatively prime to n.

F15: [FrKe77]: If the (lexicographically least) represenatives of all the nontrivial Lyn-
don words whose lengths divide n are arranged into lexicographic order and concate-
nated, with the terminal string 10 appended at the end, then the result is a deBruijn
sequence of order n that is lexicographically minimum.

REMARK

R4: The number N(n) of necklaces grows exponentially with n. While N(5) = 8, we
have N(10) = 108, and N (15) = 2192.

EXAMPLES

E5: Figure 4.4.3 displays five equivalent strings of length 5.
01101
11010
10101
01011—

10110

Figure 4.4.3 A necklace and its representations.

E6: The only nontrivial Lyndon word of length 2 is 01. We observe that 0110 is a
deBruijn sequence of order 2.



E7: The only nontrivial Lyndon words of length 3 are 001 and 011. We observe that
00101110 1s a deBruijn sequence of order 3.

E8: We now illustrate Fact F15 for n = 4. In lexicographic order, the nontrivial
Lyndon words of lengths that divide 4 are

0001,0011,01,0111

If we now concatenate these words in the order given, we obtain the lexicographically
least deBruijn sequence

0001001101011110
of order 4.

4.4.3 Pseudorandom Numbers

For Monte Carlo applications, the numbers produced by ordinary pseudorandom
number generators (e.g., congruential generators) are close enough to random not to
affect the outcome of the study. But for certain applications called precision Monte Carlo
simulation, special sequences must be used. DeBruijn sequences, which already appear
somewhat random to the untrained eye, may be made more random by interchanging
runs of zeros and ones.

DEFINITIONS

D13: A run in a binary sequence is a subsequence of identical bits, and a maximal
run is a run that is not contained in any longer run.

D14: [Go67] The Golomb postulates of randomness for a periodic sequence X
are as follows:

e The number of 1’s in X differs from the number of 0’s by at most unity.

e At least half the runs in X have length 1, at least one-quarter have length 2, at
least one-eighth have length 3, etc.

e The bit in position i is correlated to the same degree with adjacent bits (¢ + 1 and
i — 1) as it is with ones further away (¢ + 100 and ¢ — 100).
D15: A run-permuted sequence is a pseudorandom sequence obtained by the fol-
lowing procedure:
0. Generate a random deBruijn sequence of order n.
1. Randomly permute the maximal runs of 0’s.

2. Randomly permute the maximal runs of 1’s.

D16: [Ch87] The randomness of an infinite binary sequence S is defined to be

s(m)

lim
m—0o0 M

where s(m) is the minimum number of states in a 2-symbol Turing machine that pro-
duces the first m bits of the sequence S.



FACTS

F16: Obviously, every deBruijn sequence can be generated as a run-permuted se-
quence.

F17: Any deBruijn sequence X of order n satisfies Golomb’s first two postulates. First,
the number of 1’s exactly equals the number of 0’s. Second, it is easily shown that over
all possible binary subsequences of each length n, exactly half of the runs have that
length.

F18: Interchanging (maximal) runs in permuting a deBruijn sequence does not change
the number of runs of any length or kind. One therefore obtains a much larger class
of sequences that are, by Golombs measure, just as random as the original deBruijn
sequence from which the new sequences are generated.

F19: [Je91]: The class C), of run-permuted sequences of order n contains a vanishingly
small proportion of deBruijn sequences of order n as n increases.

4.4.4 A Genetics Application

Typically, the short DNA fragments observed in experiments are not sufficient to
reconstruct the genome of an organism completely. Because of the time and expense of
such experiments, it is desirable to minimize the remaining work. To this end, biologists
algorithmically assemble as much of the genome as they can, thereby obtaining longer
DNA fragments that are fewer in number. They then perform additional experiments
at specific locales in the resulting sequences, in order to extend the reconstruction.

A phenomenon that complicates the stepwise reconstruction of the genome is the
natural occurrence of multiple copies of the same substring in a number of DNA se-
quences acquired by experiment. To help resolve this difficulty, Pevzner, Tang and
Waterman [PvTaWa01] have applied modified de Bruijn graphs, in which a repeated
k-string in a given sequence s; results in multiple vertices, and consequently, in multi-
ple paths connecting certain pairs of vertices in the graph. Such a graph need not be
connected.

DEFINITIONS
D17: A DNA sequence is any finite sequence of the letters A, C, G, T.

D18: For any set S = {s1,s2,...,5,} of DNA sequences, we define the S-relative
deBruijn graph of order k to have vertices corresponding to all k-substrings from
the elements of S, one for each occurrence of a substring. Two such vertices v and v
are adjacent if their substrings belong to the same DNA sequence s; and the last £ — 1
letters of u coincide with the first & — 1 letters of v.

REMARK

R5: Since Eulerian paths can be found very quickly in connected portions of the S-
relative deBruijn graph, partial paths can be produced efficiently for the graph as a
whole. These not only (in most cases) recapture the original sequences, but suggest
where additional experiments need to be performed to choose between different possible
paths through the S-relative deBruijn graph.
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4.5.1 History

Characterizing hamiltonian graphs is an NP-complete problem (see [GaJo79]), thus
the hamiltonian problem is generally considered to be determining conditions under
which a graph contains a hamiltonian cycle. Named for Sir William Rowan Hamilton,
this problem traces its origins to the 1850s. Hamilton exhibited his Icosian Game at
a meeting in Dublin in 1857. The game involved finding various paths and cycles,
including spanning cycles, of the regular dodecahedron. The game was marketed by a
wholesale dealer in 1859, but apparently was not a big hit. Perhaps the only profit was
Hamilton’s, as he sold the game to the dealer for 25 pounds.

Hamilton does not appear to be the first to have considered the question of spanning
cycles. In a paper [Kib6] submitted in 1855, Thomas Penyngton Kirkman posed the
question: Given the graph of a polyhedron, can one always find a circuit (cycle) that
passes through each vertex once and only once. Thus, Kirkman actually asked a more
general question than Hamilton. Unfortunately for Kirkman, the term hamiltonian
cycle 1s much too ingrained to be changed now. For a more detailed account of this

history see [BiLIWi86].
DEFINITIONS
D1: A graph G is hamiltonian if it contains a spanning cycle (hamiltonian cycle).

D2: A graph G is traceable if it contains a spanning path.

D3: A graph GG is hamiltonian connected if any pair of vertices are the ends of a
spanning path.

4.5.2 The Classic Attacks

There are certain fundamental results that deserve attention, both for their contri-
bution to the overall theory and for their effect on the later development of the area.

The approach taken to developing sufficient conditions for a graph to be hamiltonian
usually involved some sort of edge density condition; providing enough edges to ensure
the existence of a hamiltonian cycle.



TERMINOLOGY: The order of a graph is the cardinality of its vertex set, and the size
of a graph is the cardinality of its edge set.

Degrees

NOTATION: The mimimum degree of the vertices of a graph G is denoted 4, (G), and
the maximum degree is denoted 6y a4 (G).

DEFINITIONS

D4: Wesay aset X C V(G) is independent if there are no edges between vertices
in X. The cardinality of a largest independent set in G is called the independence
number of GG and is denoted ind(G).

D5: The k-degree closure of GG, denoted Cy(G), is the graph obtained by recursively
joining pairs of non-adjacent vertices whose degree sum is at least %, until no such pair
remains.

D6: TFor a balanced bipartite graph G = (X UY, E) (i.e., |X| = [Y]), the bipartite
degree closure is that graph obtained by joining any non-adjacent pair z € X and
y € Y whose degree sum is at least n + 1.

NOTATION: The following notation has become standard in the area:

or(G) = mm{z deg x; |x1,..., 2, are independent }

FACTS
F1: [Di52]If G is a graph of order n such that §,,;, (G) > n/2, then G is hamiltonian.

F2: Let G be a graph of order n.
i. [Or60] If o3 (G) > n, then G is hamiltonian, and if o3(G) > n—1, then G is traceable.
ii. [Or63] If o2(G) > n+ 1, then G is hamiltonian connected.

EXAMPLE

E1l: Consider two K,y1)/2 with one vertex from each identified (graph on left in
Figure 4.5.1). This graph is not hamiltonian, but has order p, dpmin (G) = (p—1)/2, and
o2(G) = p— 1, illustrating the sharpness of Dirac’s Theorem and Ore’s Theorem (Fact
21.). The graph obtained by identifying a pair of vertices from two copies of K (p+2)/2 18
not hamiltonian connected, has dp,in (G) = p/2 and ¢2(G) = p, showing Ore ii is sharp
(graph on right in Figure 4.5.1).

Figure 4.5.1 Illustrating the sharpness of Dirac’s and Ore’s results.

F3: [Ja80] Let GG be a d-regular 2-connected graph of order n with d > n/3, then G is
hamiltonian.



F4: [MoMo63] If G = (X UY, E) is a balanced bipartite graph of order 2n (n > 2)
with deg(u) + deg(v) > n + 1 for each non-adjacent pair v € X and v € Y, then G is
hamiltonian.

F5: [BoCh76] Let G have order n. Then
i. Cx(G) is well defined,
ii. G is hamiltonian if and only if Cy, (G) is hamiltonian,

iil. if Cy41(G) is a complete graph, then G is hamiltonian connected.

F6: [He91] A balanced bipartite graph is hamiltonian if and only if its bipartite closure
1s hamiltonian.

REMARK

R1: These closure results provide an interesting relaxation of the degree conditions.
The closure is (hopefully) a denser graph, making it easier to find a hamiltonian cycle.
However, the number of edges actually added in forming these closures can vary widely.
It is easy to construct examples for all possible values from 0 to the total number of
missing edges. Thus, we might receive no help in determining whether the original
graph is hamiltonian, or we might conclude trivially that it is (when the closure is the
complete graph).

Other Counts

DEFINITION

D7: The neighborhood of a vertex z in a graph G, denoted Ng(x), is the set of all
vertices adjacent to # in . Similarly, Ng(S) denotes the neighborhood of the set
S and 1s the collection of all vertices adjacent to some vertex in 5.

NOTATION: When the graph in which the neighborhood is defined is clear, the subscript
1s omitted.

D8: The (vertex-)connectivity of a connected graph G, denoted &, (G), is the mini-
mum number of vertices whose removal can either disconnect GG or reduce 1t to a 1-vertex
graph.

D9: A graph G is k-connected if k,(G) > k.

EXAMPLE

E2: The graph G(r,p) is that graph with order p and vertex set S UT U U where
|S| = |T| =r and |U| = p — 2r and where two vertices are adjacent if either belongs to
S or both belong to U. Hence, the subgraphs induced on S, 7', and U are K,, K, and
K,_»,, respectively. Figure 4.5.2 below shows the graphs G(1,6) and G(2,5).
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Figure 4.5.2 Graphs G(1,6) and G(2,5).

FACTS

F7: [Or63] If (G is a graph of order n and size greater than (”;1) + 1, then G is

hamiltonian. Furthermore, the only non-hamiltonian graphs with size exactly (”;1) +1
are G(1,n) and (G(2,5). In addition, if GG has size at least (”51), then G is hamiltonian
connected.

F8: [Fa84] If G is a 2-connected graph of order n such that
min{max{deg(u),deg(v)} | d(u,v) =2} > n/2
then G is hamiltonian.

F9: [BaBrVeLi89] If (¢ is a 2-connected graph of order n and connectivity &, (G) such
that o3(G) > n + Ky (G), then G is hamiltonian.

F10: [ChEr72] Let GG be a graph of order n > 3.

i. If K, (G) > ind(G) — 1, then G is traceable.

ii. If ky(G) > ind(G), then G is hamiltonian.

iil. If k, (G) > ind(G) 4+ 1, then G is hamiltonian connected.

F11: [WoT78] If for any nonempty S C V, [N(S)| > W—Tn-l'?’, then G is hamiltonian.
F12: [Fr86] Let GG be a k-connected graph of order n. If there exists some ¢ < k such

t(n—1)

that for every independent set S of vertices with cardinality ¢, we have |N(S)| > e

then G is hamiltonian.

F13: [BrVedl], [FaGoJaLe92] If (G is a 2-connected graph of order n > 11 such that
|N(S)| > n/2 for every set S of two distinct vertices of G, then G is hamiltonian.
REMARK

R2: The Petersen graph is the only counterexample for n < 10.

Powers and Line Graphs

TERMINOLOGY: A circuitis a closed walk having no repeated edges (also called a closed
trail).

DEFINITIONS

D10: The line graph L(G) of a graph G is that graph whose vertices can be put into
1 — 1 correspondence with the edges of GG in such a way that two vertices of L(G) are
adjacent if and only if the corresponding edges of GG are adjacent (have an endpoint in
common).



D11: A circuit C' such that every edge of GG is incident on a vertex of C'is called a
dominating circuit.

D12: We say that G contains a k-system that dominates if G contains a collection
of k edge-disjoint circuits and stars, (here stars are Ky ,,,, n; > 3), such that each edge of
G is either contained in one of the circuits or stars, or is adjacent to one of the circuits.

D13: The k-th power G* of a connected graph G is that graph with V(G*) = V(G)
for which wv € F(G*) if and only if 1 < dg(u,v) < k.

D14: A k-factor of a graph (G is a k-regular spanning subgraph of . In particular,
a 2-factor is a (vertex-disjoint) union of cycles that covers V(G).
FACTS

F14: [HaNWG65] Let G be a graph without isolated vertices. Then L((G) is hamiltonian
if and only if G ~ K, ,, for some n > 3, or G contains a dominating circuit.

F15: [GoHy99] Let GG be a graph with no isolated vertices. The graph L(G) contains
a 2-factor with k (k > 1) cycles if and only if G contains a k-system that dominates.

F16: [ChWaT73]If (i is connected with d,;, (G) > 3, then L?(G) = L(L(G)) is hamil-

tonian.
F17: [FI74] If GG is a 2-connected graph, then G? is hamiltonian.

F18: If (G is connected then GG3 is hamiltonian (in fact, hamiltonian-connected) (see

[Be78]).

Planar Graphs

FACTS

F19: [Th8&3] Every 4-connected planar graph is hamiltonian connected (and hence,
hamiltonian [Tut56]).

F20: [Gr68] Let G be a plane graph of order n with hamiltonian cycle C. If r; denotes
the number of i-sided regions interior to C' and #/; the number of i sided regions exterior

to C', then Z?:?, (i—2)(r; —'3) =0.

4.5.3 Extending the Classics

Adding Toughness

DEFINITION

D15: If every vertex cut-set S of G satisfies ¢ - ¢(S) < |S|, where ¢(S) is the number of
components of G — S, we say that (i is t-tough. The toughness of (G is the maximum
t such that G is t-tough.

FACTS

F21: [Ju78] Let GG be a 1-tough graph of order n > 11 such that ¢2(G) > n—4. Then
(' is hamiltonian, and this bound 1s sharp.



F22: [BaMoScVe90] Let GG be a 2-tough graph of order n such that o3(G) > n. Then
G is hamiltonian.

F23: [BrVed0] Let GG be a 1-tough graph of order n > 3 with §, (G) > ntr(G)=2

3
Then G i1s hamiltonian.

REMARK

R3: Chvatal conjectured that there is a ¢y such that all ¢5-tough graphs are hamil-
tonian. For years {5 = 2 seemed possible. However, in [BaBrLiVe00], examples of
(9/4 — €)-tough non-hamiltonian graphs, for arbitrary € > 0, were presented.

More Than Hamiltonian

DEFINITIONS
D16: A graph G of order n is pancyclic if it contains cycles of all lengths [, 3 <1 < n.

D17: A bipartite graph G of order n is bipancyclicif it contains cycles of all possible
even lengths from 4 to n.

D18: A graph of order n is cycle extendable if any cycle C' of length m < n can
be extended to a cycle of length m 4 1 containing all of V(C). Further, if G is cycle
extendable and every vertex is on a triangle, then G is called fully cycle extendable.

D19: A graph is k-ordered (hamiltonian) if for every ordered sequence of k vertices
there is a cycle (hamiltonian cycle) that encounters the vertices of the sequence in the
given order.

FACTS

F24: [BrChFaGoLe97]If G is a graph of order n satisfying
(1) dmin(G) > n/2 and n > 4k or (2) o2(G) > n and n > 4k

then G contains a 2-factor with k cycles for each k, 1 < k < [n/4], and this result is
best possible.

EXAMPLE

E3: To see this result is best possible we need only consider the complete bipartite
graph K, /2 /2. The smallest cycle in any 2-factor of this graph is a 4-cycle, hence the
bounds on & are sharp.

FACTS

F25: [Bo77] If G is a hamiltonian graph of order n with |E(G)| > 72—2, then either (¢
is pancyclic or G ~ Ky /9 /9.

F26: [He90] If GG has order n > 3 and o2(G) > n, then G is cycle extendable unless
G belongs to one of two special classes. Also, if o3(G) > (4n — 5)/3, then G is cycle
extendable. Further, if dpin (G) > (n+ 1)/2, then G is fully cycle extendable.

F27: [He91]If G = (X UY, E) is a balanced bipartite graph of order 2n such that for
any non-adjacent pair x € X and y € Y we have deg(x) + deg(y) > n+ 1, then G is
bipancyclic.



F28: [He9l]Let n > 2m > 2. If G = (X UY, E) is a balanced bipartite graph of order
2n satisfying 8min (G) > m and |E(G)| > n? — mn + m?, then G is bipancyclic.

F29: [KoSaSz96], [KoSaSz98] There exists a natural number ng such that if G has
order n and n > ng and I, (G) > kn/(k + 1), then G contains the k-th power of a
hamiltonian cycle.

F30: [KiSaSe99] Let k& > 2 be an integer and let G be a graph of order n > 11k — 3.

If deg(u) > {%] + L%J — 1 for every vertex u of (G, then G is k-ordered hamiltonian.

F31: [FaGoKoLeScSa] Let k be an integer with 3 < k < n/2 and let G be a graph of
order n. If deg(u) 4+ deg(v) > n+ (3k —9)/2 for every pair u, v of non-adjacent vertices
of (G, then (G is k-ordered hamiltonian.

REMARK

R4: Both of these last two bounds are sharp for the respective values of k. Unexpect-
edly, the Dirac-type bound does not follow from the Ore-type bound.

4.5.4 More Than One Hamiltonian Cycle?

A Second Hamiltonian Cycle

FACTS

F32: Every edge of a 3-regular graph is contained in an even number of hamiltonian
cycles. Thus, every 3-regular hamiltonian graph contains a second and, in fact, a third
hamiltonian cycle (see [Tu46]).

F33: [Th98] If ¢ is hamiltonian and m-regular with m > 300, then G has a second
hamiltonian cycle.

F34: [Th97] Let G be a graph with a hamiltonian cycle C'. Let A be a vertex set
in GG such that A contains no two consecutive vertices of C' and A is domunating in
G—E(C) (i.e., Na_p(s)(A) > V(G- E(C))). Then G has a hamiltonian cycle C’ such
that ¢ — A = C' — A and there is a vertex v in A such that one of the two edges of C”
incident on v is in C' and the other is not in C'.

F35: [HoSt00] For any real number k£ > 1, there exists a function f(k) such that ev-
ery hamiltonian graph G with 0pq, (G) > f(k) has at least dpn (G) — L%@J +2
hamiltonian cycles. In particular, every hamiltonian graph G with dpe, (G) >

F(Omaz (G)/Omin(G)) has a second hamiltonian cycle.

F36: [Ma76], [GrMaT76] There exist 4-regular, 4-connected planar graphs that do not
have two edge-disjoint hamiltonian cycles.

F37: [Za76], [Ro89] There exist infinitely many examples of 5-connected planar graphs
(both regular and nonregular) in which every pair of hamiltonian cycles have common
edges.



REMARK

R5: Fact 32 is due to Smith. Thomason [Th78] extended Smith’s result to all r-regular
graphs where r is odd (in fact, to all graphs in which all vertices have odd degree).
Thomassen extended this further (Fact 33).

Many Hamiltonian Cycles

FACTS

F38: [Th96] Let C : a1,y1,29,Y2,-..,2n, Yn, 1 be a hamiltonian cycle in a bipartite
graph G.

(a) If all the vertices y1, ..., y, have degree at least 3, then G has another hamil-
tonian cycle containing the edge z1y;.

(b) If all the vertices y1,...,y, have degree d > 3 and if P, P5,..., P, (0 < ¢ <
d—3) are paths in C of length 2 of the form y;_1z;y;, then G has at least 2911 ~%(d — ¢)!
hamiltonian cycles containing P, U ... U F,.

F39: [FaRoSc85] Let k be a positive integer.

(a) If G is a graph of order n > 60k? such that o2 (G) > n+2k — 2, then G contains
k edge-disjoint hamiltonian cycles.

(b) If G has order n > 6k and size at least (”;1) + 2k, then G contains %k edge-
disjoint hamiltonian cycles.

F40: [Eg93] Let n, k > 2 be integers with n > 44(k — 1). If GG is a graph of order n

with o3(G) > n and Opmin(G) > 4k — 2, then G contains k edge-disjoint hamiltonian
cycles.

Uniquely Hamiltonian Graphs

DEFINITION

D20: A graph is uniquely hamiltonian if it contains exactly one hamiltonian cycle.

FACTS

F41: [EnSw80] There exist infinitely many uniquely hamiltonian graphs with mini-
mum degree three.

F42: [JaWh89] Any uniquely hamiltonian graph contains a vertex of degree at most
(n+9)/4 and if there is a unique 2-factor, then the graph contains a vertex of degree 2.

F43: [BoJa98] Every uniquely hamiltonian graph of order n has a vertex of degree
at most clog, (8n) + 3, where ¢ = (2 — log, 3)~! ~ 2.41. Further, every uniquely
hamiltonian plane graph has at least two vertices of degree less than four.



Products and Hamiltonian Decompositions

DEFINITIONS

D21: A hamiltonian decomposition is a partitioning of the edge set of GG into
hamiltonian cycles if GG is 2d-regular, or into hamiltonian cycles and a perfect matching

if G is (2d + 1)-regular.
D22: Each of the following four kinds of product graphs has vertex set V(G1) x V (Ga).
The cartesian product G = G; x G5 has edge set

E(G) = {(u1, u2)(vy,v2) | u1 = v1 and ugvs € E(G2) or us = ve and uyv1 € E(G1)}

The direct product (or conjunction) G = (1 - Gy has edge set

E(G) = {(u1, u2)(v1,v2) | uyvy € E(G1) and ugvq € E(Ga)}

The strong product G = G; ® G5 has edge set
E(G) = {(u1,u2)(vy,v2) | u1 = v1 and ugvs € G, or
uz = vy and wyv; € E(Gh), or both uyvy € E(G1) and ugvs € F(G2)}

The lexicographic product (sometimes called composition, tensor or wreath

product) G = G1[G2] has edge set

E(G) = {(u1, u2)(v1,v2) | urv1 € E(G1), or ug = vy and usvs € E(Ga)}

REMARK

R6: Jackson [JaT79] conjectured that every k-regular graph on at most 2k+1 vertices is
hamiltonian decomposable. Another natural question is: If G5 and (G5 are hamiltonian
decomposable, is the appropriate product of 1 and (5 also hamiltonian decomposable?

FACTS

F44: [St91] Let 4 and G2 be two graphs that are decomposable into s and ¢ hamil-
tonian cycles, respectively, with ¢ < s. Then (7 x (5 is hamiltonian decomposable if
one of the following holds:

(1) s <3t

(2)t>3

(3) the order of (G5 is even, or

(4) the order of Gy is at least 6[s/t] — 3.

F45: 1t is easy to see that if (G; and (3 are both bipartite, then the direct product

(1-G5 1s disconnected. Hence, the set of hamiltonian decomposable graphs is not closed
under the direct product.

F46: [Bo90], [Zh89] Suppose both () and G are hamiltonian decomposable. If at
least one of them has odd order, then (1 - G5 is hamiltonian decomposable.



F47: [FaLi98] The set of hamiltonian decomposable graphs is closed under strong
products, that is, if G; and (5 are hamiltonian decomposable, then so is G ® G».

F48: [BaSz81] The lexicographic product of two hamiltonian decomposable graphs is
hamiltonian decomposable.

F49: [Kr97] (a) If G is 1-tough and contains a 2-factor and |E(H )| > 2 then G[H] is
hamiltonian.

(b) If G is 2-tough and |E(H)| > 2, then G[H] is hamiltonian.
(c) If G is connected and 2k-regular and |V ()| > k, then G[H] is hamiltonian.

(d) If G is (2k + 1)-regular and connected and G has a 1-factor and |V(H)| > k + 1,
then G[H] is hamiltonian.

(e) If G is connected and vertex transitive of degree k and |V (H)| > k/2, then G[H]
is hamiltonian.

(f) If G is connected and vertex transitive and |E(H)| > 2, then G[H] is hamiltonian.

(g) Tf G is cubic and 2-edge connected and |V(H)| > 2, then G[H] is hamiltonian. If
(i is 4-regular and connected and |V (H)| > 2, then G[H] is hamiltonian.

4.5.5 Random Graphs

NOTATION: We shall use Pr(X) to denote the probability of event X and we let N = (g)

DEFINITIONS

D23: (The edge density model) Suppose that 0 < p < 1. Let G, , denote a graph
on n vertices obtained by inserting any of the N possible edges with probability p.

D24: (The fixed size model) Suppose that M = M(n) is a prescribed function of
n which takes on values in the set of positive integers. Then there are s = (JJ‘\;) different
graphs with M edges possible on the vertex set {1,2,...,n}. We let G, pr denote one
of these graphs chosen uniformly at random with probability 1/s.

D25: A somewhat different approach is to consider a graph process as a sequence
(G¢), such that

1. each G} 1s a graph on V,
2. Gy has t edges fort =0,1,..., N,
3. GoCcGiC....
D26: If €, is a model of random graphs of order n, we say almost every graph in

2y, has property @ if Pr(Q) — 1 as n — oo. Note that this is equivalent to saying that
the proportion of all labeled graphs of order n that have ) tends to 1 as n — oo.

D27: The k-in, l[-out random digraph Dy_;, ;_ .4 has n vertices, and for each
vertex v, a subset of k arcs into v and [ arcs out of v are chosen independently and
uniformly at random. The union of these arc subsets is the arc-set of Dy _ip 1—out-



FACTS

F50: [Po76], [Ko76] There exists a constant ¢ such that almost every labeled graph of
order n having at least ¢ nlog,n edges is hamiltonian.

F51: [Ko76], [KoSz83] Suppose w(n) — oo as n — oo, and let p = L{logyn +
log,logsn 4+ w(n)} and M(n) = |5{logyn + log,log,n + w(n)}|. Then almost every
G p is hamiltonian and almost every Gy, ar 1s hamiltonian.

F52: [KoSz83] For M(n) = n/2 (logyn + logalogyn + ¢,),

0 cif e, - —00
lim Pr(Gy ar is hamiltonian) = {e_e_c e, >
ne 1 cif e, — o0

F53: [RoWo092, RoWo94] For every r > 3, almost all r-regular graphs are hamiltonian.
F54: [CoFr94] Almost all random digraphs Ds_;; 3—ous are hamiltonian.

F55: [CoFr00] Almost all random digraphs Ds_;5, 92— out are hamiltonian. In particular,
this implies that G4_oy¢, the underlying graph of Da_;n 2_ous, is hamiltonian. On the
other hand, almost all Di_;p 2 our and Da_jp 1—ous are not hamiltonian.

REMARKS

R7: Inthe probability space of all N!graph processes (with equal probability), one can
consider when a property “appears” (called the hitting time). Erdés and Spencer were
the first to conjecture that with probability tending to 1, the very edge that increases the
minimum degree to 2 also makes the graph hamiltonian. This was verified by Bollobas.

RS8: It is natural to ask whether there exists a polynomial algorithm that, with prob-
ability tending to 1, finds a hamiltonian cycle in G, ar(n). Bollobds, Fenner and Frieze
[BoFeFr85] constructed such an algorithm that is essentially best possible.

R9: Still open is the question of hamiltonicity for Gs_ou:.

4.5.6 Forbidden Subgraphs

DEFINITION

D28: A graph G issaid to be {Fy, s, ..., F}-free if G contains no induced subgraph
isomorphic to any F;, 1 <i < k.

NOTATION: (a) The graph N; ; ; is a graph that consists of K3 and three vertex-disjoint
paths of lengths ¢, 7, and k, with one path rooted at each of the three vertices of Kj.

(b) The graph L consists of two vertex-disjoint copies of K3 and an edge joining them.

(c) The graph P; is i-vertex path, and K 3 is the 4-vertex star (also called a claw).

UA NV VAR Vi

Figure 4.5.3 The graphs N; >3 and L.




FACTS
F56: [DuGoJa81]If G is a {1 3, N11,1}-free graph, then
(a) if G is 2-connected, then G is hamiltonian;

(b) if GG is connected, then G is traceable.

F57: [BrDrKo00] There exists a linear-time algorithm for finding a hamiltonian cycle
in a {K; 3, N1 1 1}-free graph.

F58: [BrVe90] If GG is a 2-connected {K4 3, Ps}-free graph, then G is hamiltonian.
F59: [GoJa82] If G is a 2-connected {K 3, N2 g o}-free graph, then (' is hamiltonian.
F60: [Be9l] If G is a 2-connected {K; 3, N2 1 0}-free graph, then G is hamiltonian.
F61: [FaGoRySc95] If G is a 2-connected {K1 3, N3 o}-free graph of order n > 10,

then G is hamiltonian.

Other Forbidden Pairs

A natural question is: Are these the only such pairs? This was investigated in [Be91]
for all graphs and in [FaGo97] for graphs of order 10 or more. We now summarize these
combined results.

FACTS

F62: [Be9l], [FaGo97] Let R and S be connected graphs (R,S # Ps) and G a
2-connected graph of order n. Then G is {R, S}-free implies G is hamiltonian if and
only if R = K; 3 and S is one of the graphs N1 11, Ps, N21,0, N2.0,0, (or N30 when
n > 10), or a connected induced subgraph of one of these graphs.

F63: [FaGo97] Let R, S be connected graphs (R, S # Ps) and let G (G # C,) be a
2-connected graph of order n > 10. Then G is { R, S}-free implies G is pancyclic if and
only if R = K; 3 and S is one of Py, Ps, Ps, N1,g,0 or Nago.

F64: [GoLuPf] Let X and Y be connected graphs on at least three vertices such that
X,Y # Ps and Y # Ky 3. Then the following statements are equivalent:

(a) Every 3-connected {X,Y }-free graph G is pancyclic.

(b) X = K13 and Y is a subgraph of one of the graphs from the family F = {P;, L,
Nao,0, N3 1,0, N220, Nojai}

F65: [FaGo97] It is an easy observation that Ps is the only nontrivial single graph
that when forbidden implies G is hamiltonian.

Claw-Free Graphs

In each of the forbidden-pair results above, the claw K 3 is one of the two forbidden
graphs. This led naturally to the question: Is the claw in every triple of forbidden
subgraphs implying hamiltonicity? This was answered in the negative in [FaGoJaLe02],
where all forbidden triples containing no K ; with ¢ > 3 for sufficiently large 2-connected
graphs were given. Further, in [FaGoJa2] other forbidden triples implying the hamil-
tonicity of sufficiently large graphs were investigated. Brousek [Br02] gave the collection
of all forbidden triples which include the claw that imply hamiltonicity for 2-connected
graphs. In [FaGolJa], all possible remaining forbidden triples implying hamiltonicity for
any graph were given.



DEFINITIONS

D29: For a vertex x such that the induced subgraph G[N(z)] is connected, a local
completion of G at z is the graph obtained by replacing G[N(x)] by a complete

subgraph on V(N(z)). (Observe that a local completion of a claw-free graph is claw-
free.)

D30: The claw-free closure of a claw-free graph G, denoted ¢l/(G), is that graph
obtained by repeatedly finding the local completion of a vertex # until it is no longer
possible.

D31: The circumference of a graph G, denoted by circum(G), is the length of a
longest cycle in G.

FACTS

F66: [FaGo97] Let R, S be connected graphs (R, S # P3) and G a 2-connected graph
of order n > 10. Then G is {R,S}-free implies G is cycle extendable if and only if
R= [(173 and S is one of [(3, P4, Nl,O,O or N2,0,0~

F67: [Sho7] If G is a 3-connected {K7 3, N1 11}-free graph, then G is hamiltonian-
connected.

F68: [Ry97] Let G be a claw-free graph. Then
(a) the closure ¢l(G) is well-defined,
(b) there is a triangle-free graph H such that ¢/(G) = H,
(¢) etrcum(G) = circum(el(G)).

REMARKS

R10: The claw-free closure is different from the degree closure (see [BoCh76]) or any
of several other closures that have recently been developed. For more information on
closures, see [BrRySc00].

R11: By Fact 68, if G is claw-free, then G is hamiltonian if and only if ¢/(G) is
hamiltonian.

R12: The vast area of hamiltonian graphs contains far more than can be written here.
For more details on hamiltonian graphs, the reader should see [Be78], [Bo78], [WiGa84],
[Bo95], [CuGad6], [Go91] and [Go03].
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Introduction

The Traveling Salesman Problem (TSP) is perhaps the most studied discrete op-
timization problem. Its popularity is due to the facts that TSP is easy to formulate,
difficult to solve, and has a large number of applications. TSP has a number of vari-
ations and generalizations extensively studied in the literature [Pu02]. In this section,
we consider TSP, the Generalized TSP and the Vehicle Routing Problem.

4.6.1 The Traveling Salesman Problem

K. Menger [Me32] was perhaps the first researcher to consider the Traveling Sales-
man Problem (TSP). He observed that the problem can be solved by examining all
permutations one by one. Realizing that the complete enumeration of all permutations
was not possible for graphs with a large number of vertices, he looked at the most nat-
ural nearest neighbor strategy and pointed out that this heuristic, in general, does not
produce the shortest route. In fact, as we will see below, the nearest neighbor heuristic
will generate the worst possible route for some problem instances. (For an interesting
overview of TSP history, see [HoWo85].)

In applications, both the symmetric and asymmetric versions of the TSP are im-
portant.

Symmetric and Asymmetric TSP

DEFINITIONS

D1: Symmetric TSP (STSP):
Given a complete (undirected) graph K, with weights on the edges, find a hamiltonian
cycle in K, of minimum (total) weight.

D2: Asymmetric TSP (ATSP):
“
Given a complete directed graph K,, with weights on the arcs, find a hamiltonian cycle
“

in K, of minimum weight.



D3: The Euclidean TSP is the special case of STSP in which the vertices are points
in the Euclidean plane and the weight on each edge is the Fuclidean distance between
its endpoints.

Ad
D4: A hamiltonian cycle in K,, or K, is called a tour.

NOTATION: Throughout this section, the set {1,2,...,n} denotes the vertices of K, or

“
K, or any other n-vertex graph under discussion.

NOTATION: By TSP we refer to both STSP and ATSP simultaneously.

Matrix Representation of TSP

Every instance of TSP can be associated with the matrix of edge-weights of the cor-
responding complete graph. Such a matrix 1s symmetric for STSP and, in general,
asymmetric for ATSP.

DEFINITIONS

D5: The distance (or weight) matrix of an instance of STSP is the matrix D = [d;;],
where d;; is the weight of the edge between vertices ¢ and j. The distance matrix of
an instance of ATSP is the matrix D = [d;;], where d;; is the weight of the arc directed
from ¢ to j. Accordingly, the diagonal entries d;; are set to zero.

D6: An instance of TSP is said to satisfy the triangle inequality if d;; + d;i > d;i
for all distinct vertices ¢, j, k.

EXAMPLES

E1: An instance of ATSP with distance matrix

0 6 5 10
3 0 3 9
b= 7T 4 0 8
127 5 0

is shown in Figure 4.6.1. There are 3! = 6 tours of total weight 29, 27, 30, 23, 27, and
22. The optimal tour of weight 22 is (1,4, 3,2, 1).

Figure 4.6.1 An instance of ASTP.

E2: An instance of STSP with distance matrix

0 10 7 7 11
10 0 9 6 5
D=7 9 0 9 10
T 6 9 0 6
11 5 10 6 0



is shown in Figure 4.6.2. Since this graph has 5 vertices, there are 4!/2 = 12 tours. The
optimal tour is (1,3,2,5,4,1) of weight 34.
2

Figure 4.6.2 An instance of SSTP.

Algorithmic Complexity

FACTS

F1: The hamiltonian cycle problem on an n-vertex graph G can be transformed into
STSP by converting GG to an edge-weighted K, as follows: assign weight 0 to each
edge of G; and assign weight 1 to each edge in the edge-complement of G. A similar
transformation can be used for digraphs and ATSP.

F2: Fact 1 implies that TSP is NP-hard, even if the triangle inequality holds.

By replacing the weights 0 by 1 and the weights 1 by nr in the transformation used
in Fact 1, we obtain the following result.

F3: [SaGo76] For an arbitrary constant r, unless P=NP, there is no polynomial time
algorithm that always produces a tour of total weight at most r times the optimal.

Exact and Approximate Algorithms

DEFINITIONS
D7: An exact algorithm is an algorithm that always produces an optimal solution.

D8: An approximate (or approximation) algorithmis an algorithm that typically
malkes use of heuristics in reducing its computation but produces solutions that are not
necessarily optimal.

NOTATION: Let A be an approximate algorithm for TSP and I a problem instance.
Then wmin (1), wmax(I), wa(l) denote the weights, respectively, of an optimal tour, a
heaviest tour, and a tour produced by algorithm A, for instance I.

D9: The Zemel measure [Ze81] of an algorithm A, denoted p,(.A), is the supremum
of (wa(I) — wmin(I))/(Wmax(I) — wmin(I)), taken over all TSP instances I for which
wmax(I) 7& wmin(I)~

FACT

F4: [HaKhO1] There is a polynomial time approximate algorithm .4 for ATSP with
p:(A) < 1, and one for STSP with p, (A) < 2.



The Euclidean TSP

Despite Fact 5 below, there was a feeling among some researchers that the Euclidean
TSP is somewhat simpler than the general STSP. This was confirmed by Arora [Ar98]
in 1996 (see Fact 6). Mitchell [Mi99] independently made a similar discovery a few
months later (see [Ar02]).

FACTS
F5: [Pa77,GaGrJo76] Euclidean TSP is NP-hard.

F6: [Ar02] For every ¢ > 0, there is a polynomial time algorithm A, that, for any
instance of the Euclidean TSP, finds a tour at most 1+ ¢ times longer than the optimal
one.

F7: As of this writing, the fastest algorithm A, has time complexity O(nlogn +
n/poly(e)) [RaSm98].

COMPUTATIONAL NOTE: These A, algorithms have been implemented, but, in their
current form, they are not competitive with other TSP heuristics [Ar02].

F8: [Tr97] There exists a constant » > 1 such that, for the Euclidean TSP in O(logn)-
dimensional Euclidean space, the problem of finding a tour that is at most r times longer
than the optimal tour is NP-hard.

REMARKS

R1: Arora’s result (Fact 6) can be generalized to d-dimensional Euclidean space for
any constant d. However, Fact 8 limits the scope of this generalization.

R2: FExact algorithms cannot be relied on for applications requiring very fast solu-
tions (online, for example) or ones that involve huge problem instances. Although
approximate algorithms forfeit the guarantee of optimality, with good heuristics they
can normally produce solutions close to optimal. For many applications this is good
enough, since often the data are inexact anyway.

R3: TSP heuristics can be roughly partitioned into two classes: construction heuris-
tics, discussed 1n §4.5.3, and improvement heuristics, discussed in §4.5.4. More compre-
hensive overviews of TSP heuristics can be found in [GoSt85], [JoGuMcYeZhZv02], and
[JoMc02].

4.6.2 Exact Algorithms

The NP-Hardness results mentioned in the previous subsection indicate that it
is rather difficult to solve large instances of TSP to optimality. Nevertheless, there
are computer codes that can solve many instances with thousands of vertices within
days (on a single-processor computer) [ApBiChCo098]. For a discussion of TSP software
implementing both exact algorithms and heuristics, see [LoPu02].



FACT

F9: The brute-force method of explicitly examining all possible TSP tours is im-
practible for even moderately sized problem instances because there are (ngl)! different

Ad
tours in K, and (n — 1)! different tours in K.

Integer Programming Approaches

Various methods have been suggested to solve TSP to optimality. They include La-
grangian relazation ([BeLu00]), dynamic programming ([PaSt82]), and branch-and-
bound and branch-and-cut (see [BaTo85], [FiLoTo02], and [Na02]). These are all well-
known methods in integer programming ([Wo98]). The earliest (and still useful) integer
programming formulation of ATSP is due to Dantzig, Fulkerson, and Johnson [Da-
FuJo54].

DANTZIG, FULKERSON, AND JOHNSON FORMULATION: Define zero-one variables z;; by

S 1, if the tour traverses arc (i, j)
Y710, otherwise

Let d;; be the weight on arc (¢, j). Then ATSP can be expressed as:

n n
minz = E E dijl‘ij

i=1j=1

n
subject tonij =1,7=12,...,n
i=1

n
E l‘ijzl, i:l,?,...,n
j=1

ZZl‘ij <|S|=1forall0< |S|<n
ieS jes

z;; =0o0rl, 4,j=1,...,n

FACTS

F10: The first set of constraints ensures that a tour must come into vertex j exactly
once, and the second set of constraints indicates that a tour must leave every vertex
exactly once. These two sets of constraints ensure that there are two arcs adjacent to
each vertex, one in and one out. However, this does not prevent non-hamiltonian cycles.
Instead of having one tour, the solution can consist of two of more vertex-disjoint cycles
(called sub-tours).

F11: The third set of constraints, called sub-tour elimination constraints, requires that
no proper subset of vertices, S, can have a total of |S| arcs.

F12: The formulation without the third set of constraints is an integer programming
formulation of the Assignment Problem that can be solved in time O(n%) [Wo98]. A
solution of the Assignment Problem is a minimum-weight collection of vertex-disjoint

“
cycles C1,...,Cy spanning K, . If £ = 1, then an optimal solution of ATSP has been



obtained. Otherwise, one can consider two or more subproblems. For example, for a
particular arc @ € Cj, one subproblem could add the constraint that arc @ be in the
solution, and a second subproblem could require that a not be in the solution. This
simple idea gives a basis for branch-and-bound algorithms for ATSP.

4.6.3 Construction Heuristics

Approximate algorithms based on construction heuristics build a tour from scratch
and stop when one is produced.

Greedy-Type Algorithms

The simplest and most obvious construction heuristic is nearest neighbor. The nearest
neighbor greedy algorithm constructs a tour by always choosing as the next vertex to
visit, one that is nearest to the last one visited.

Algorithm 4.6.1: Nearest Neighbor (NN)
Input: n x n distance matrix [d;;] and a fixed vertex ;.
Output: TSP tour (i1, ia,..., 0, 11).

Initialize S := {1,2,...,n} — {i1 }.
For k=2,3,....)n
Choose i such that d;,_, ;, = Hliél{dz’k_l,s}
s€

S:=5— {Zk}

A second greedy-type algorithm is based on the observation that a vertex-disjoint col-

A4 A4
lection of paths in K, (K,,) can be extended to a tour in K,, (K,).

Algorithm 4.6.2: Greedy Heuristic (GR)

Input: n x n distance matrix [d;;].
Output: ATSP (STSP) tour as a set S of arcs (edges).

Set S =0 and m = n(n — 1) (for ATSP) or m = n(n — 1)/2 (for STSP).
Sort the arcs (edges) ai,ds, ..., @ in non-decreasing order of weight.
For:=1,2,...,m
If SU {a;} is the arc (edge) set of a collection of vertex-disjoint paths
or is the arc (edge) set of a tour,

S = SU{CLZ'}

EXAMPLE

E3: We apply NN to the instance of ATSP from Example 1, whose digraph is repeated
in Figure 4.6.3. Starting from vertex 1, Algorithm NN moves to vertex 3, then to vertex
2, and on to vertex 4. The resulting tour is (1,3,2,4, 1) of weight 30 (which is the worst
tour).



Figure 4.6.3 An instance of ASTP.

COMPUTATIONAL NOTE: Computational experiments in [JoGuMcYeZhZv02] indicate
that, in fact, on most real-world problem instances of ATSP, NN performs better than
GR; GR fails completely on one family of instances, where the average G'R-tour is more
than 2000% above the optimum. Computational experiments for STSP in [JoMc02]
show that both GR and NN perform relatively well on Euclidean instances and perform
poorly for general STSP. GR appears to perform better than NN for STSP.

Insertion Algorithms

Vertex insertion, another type of construction heuristic, applies to both Symmetric and
Asymmetric TSP. For ATSP, the insertion algorithm begins with a cycle of length 2,
and in each iteration, inserts a new vertex into the cycle. For STSP, the algorithm
begins with a cycle of length 3. The algorithm descriptions and examples that follow
are for ATSP, but with the obvious adjustments, they apply equally well to STSP.

DEFINITION

D10: Let C = (i1,42,...,4m,41) be the vertex sequence of a cycle in K’n, and let v
be a vertex not on C. For any arc (a,b) on cycle C, the insertion of vertex v at
arc (a,b) is the operation of replacing arc (a,b) with the arcs (a,v) and (v,b) (see
Figure 4.6.4). The resulting cycle is denoted C(a,v,b). Thus, if (a,b) = (ig,ix41),
1 <k <m—1, then C(a,v,b) = {i1,%2,...,a,v,b,...4im,i1), and if (a,b) = (im, 1),
then C'(a,v,b) = (i1,42,...im—1,a,v,b).

oV v
Figure 4.6.4 Insertion of vertex v at arc (a,b).

REMARK

R4: Random vertex insertion, nearest vertex insertion, and farthest vertexr insertion,
which are defined below, are three different versions of algorithm VI. Each is determined
by how rule [¥] chooses vertex i;.



Algorithm 4.6.3: Vertex Insertion (VI)

Input: n x n distance matrix [d;;].
Output: TSP tour (i1, ia,..., 0, 11).

Ad
Let ¢; and i3 be two vertices of K,,, chosen by some rule.
Initialize cycle C' = (i1, 42, 141).

Fors=3,...,n
Let is; be a vertex not on cycle (', chosen by some rule [*].
Insert vertex is at an arc (a*,b*) of cycle C' = (i1,4a,...,45_1,41)

such that the weight of C'(a*,4,,6*) is minimum among the
cycles C'(a,is,b) for all arcs (a,b) in C.
C = C(a*, i, b%).

“
NOTATION: Given a vertex v and a cycle C'in K,, d(v, () denotes the distance from v
to ', that is, d(v,C) = in {dyg}-
o C, that is, d(v, C) xél‘l/l(nc){ va |

DEFINITIONS
D11: The random vertex insertion (RVI) chooses vertex i, randomly.

D12: The nearest vertex insertion (NVI) chooses vertex i; so that its distance to
cycle C'is a minimum. That is, d(4;,C) = min {d(v,C)}.
vEV(C)

D13: The farthest vertex insertion (FVI) chooses vertex i; so that its distance
to cycle C'is a maximum. That is, d(¢;,C) = metx){d(v, Y.
vgV(C

COMPUTATIONAL NOTE: The vertex insertion heuristics described above perform quite
well for Euclidean TSP (see [JoMc02]). Computational experiments with RV for ATSP
in [GIGuYeZv01] show that RVT is good only for instances close to Euclidean.

Minimum Spanning Tree Heuristics

There are many more construction heuristics for TSP and especially for STSP, see
[JoGuMcYeZhZv02,JoMc02]. For STSP, the heuristics that are often given in the liter-
ature include the Double Minimum Spanning Tree (DMST) and Christofides heuristics
(see, e.g., Algorithms 6.4.2 and 6.4.3 in [GrYe99]). We will describe only the Christofides
heuristic as it is significantly better than DMST from both theoretical and experimental
points of view.

DEFINITION

D14: The operations to eliminate repeated vertices in the eulerian tour W in order to
obtain an STSP tour are called shortcuts.

COMPUTATIONAL NOTE: Implementing the ordinary shortcuts described in Algorithm
CH below already produces a relatively good heuristic for the Euclidean TSP [JoMc02].
However, so-called greedy shortcuts (see [JoMc02]) result in a modification of CH, which
seems to be one of the best construction heuristics for the Euclidean TSP.



Algorithm 4.6.4: Christofides Heuristic (CH)

Input: n x n distance matrix [d;;].

Output: STSP tour (iy,éa,...,%n,01).
Find a minimum spanning tree 7" in K.
Find a minimum-weight perfect matching M in the subgraph of K,
induced on the odd-degree vertices of T'.
Create an eulerian subgraph H of K, with edge set E(H) = F(T)U M.
Construct an eulerian tour W of H.

Let W = (i1,4a,...,im,i1) (Wwritten as a sequence of vertices).
Fors=3,...,n
If o5 = 4 for some ¢ < s, then delete #;41,...,2; from W.

FACT
F13: [JoPa85] Algorithm CH can be implemented to run in time O(n?).

Worst Case Analysis of Heuristics

While computational experiments are important in the evaluation of heuristics, they
cannot cover all possible families of instances of TSP, and, in particular, they normally
do not cover the most difficult instances. Moreover, certain applications may produce
families of instances that are much harder than those normally used in computational
experiments. For example, such instances can arise when Generalized TSP (discussed
in subsection 4.5.5) is transformed into TSP. Thus, theoretical analysis of the worst
possible cases is also important in evaluating and comparing TSP heuristics.

FACTS

F14: [GuYeZv02-a] For every n > 3, there is an instance of ATSP and an instance
of STSP with n vertices satisfying the triangle inequality on which both NN and GR
compute the unique worst possible tour.

F15: [Ru73] Let H be a tour produced by RVI for an instance I,, of STSP with n > 3
vertices. Then H is not worse than at least (n — 2)! tours when n is odd and (n — 2)!/2
tours when n is even (including H itself).

F16: [GuYeZv02-a] For every n > 2, n # 6 and every instance of ATSP with n
vertices, RVI computes a tour T that is not worse than at least (n — 2)! tours, including
T itself.

F17: For STSP with triangle inequality, the DMST algorithm always produces a tour
no more than twice as long as the optimal one, while HC produces tours never worse
than 1.5 times the optimum (see [JoPa85]). However, there are instances for which
DMST produces the unique worst possible tour, and there are instances for which CH
produces a tour worse than all but at most [n/2]! tours [PuMaKa03].

REMARKS

R5: A simplified proof of Fact 14 can be found in [GuYeZv02-b]. It is based on a proof
of a much more general result for the greedy algorithm in combinatorial optimization

(see [GuYe02-a]).



R6: A proof of Fact 16 is similar to the proof of Fact 15, but is based on a different
result that was first proved for n odd by V. I. Sarvanov [Sa76], and for n even by Gutin
“

and Yeo [GuYe02-b]. The proofs use decompositions of K,, and K, into hamiltonian

“
cycles, which exist for K, if and only if n is odd (see, e.g., [Ha69]), and for K, if and
only if n # 4 or 6 [Ti80].

4.6.4 Improvement Heuristics

Approximate algorithms based on improvement heuristics start from a tour (nor-
mally obtained using a construction heuristic) and iteratively improve it by changing
some parts of it at each iteration. The best known tour improvement procedures are
based on edge exchange, in which a tour is improved by replacing k its edges (arcs) with
k edges (arcs) not in the solution.

COMPUTATIONAL NOTE: For many combinatorial optimization problems, well-known
metaheuristics including tabu search, simulated annealing and genetic algorithms provide
the best tools for producing good quality approximate solutions. This has not been the
case for TSP, for which variations of the edge-exchange algorithms of Lin and Kernighan
(Lin-Kernighan local search) are still state-of-the-art ([JoGuMcYeZhZv02], [JoMc02]).
They are typically much faster than the exact algorithms, yet often produce solutions
very close to the optimal one. Interested readers can find a detailed description of
the Lin-Kernighan local search and its generalizations in [ReGl02]. Although the Lin-
Kernighan local search can be applied only to STSP, ATSP can be transformed into
STSP (see, e.g., [JoGuMcYeZhZv02]).

DEFINITIONS

D15: For STSP, the 2-opt algorithm starts from an initial tour 7" and tries to improve
T by replacing two of its non-adjacent edges with two other edges to form another
tour (see Figure 4.6.5). Once an improvement is obtained, it becomes the new 7. The
procedure is repeated as long as an improvement is possible (or a time limit is exceeded).

Figure 4.6.5 Edges {i,j} and {k,!} are replaced by {i,{} and {j, k}.

D16: For k > 3, the k-opt algorithm is the same as 2-opt except that k edges (arcs)
are replaced at each iteration.

D17: The best improvement k-opt is similar to the k-opt defined above; the differ-
ence is that every set of k arcs (edges) is tried for deletion from 7' and all possibilities
of adding k arcs (edges) are considered before the best replacement of T is retained (as
a replacement for T'). The procedure is repeated.



FACT

F18: [PuMaKa03] Although best improvement 2-opt can take exponential time to find
a local optimum, any (possibly sub-optimal) tour obtained after O(n?logn) iterations is
not worse than anl of all STSP tours. Similar statements hold for the best improvement
k-opt, k > 3.

Exponential Neighborhoods

Best improvement k-opt considers ©(n*) tours that can be obtained from a tour T
by replacing edge-exchanges involving exactly k edges (arcs). Thus, it considers only
a polynomial number of tours in the neighborhood of T'. For TSP, one can construct
various neighborhoods with an exponential number of tours in which the best tour
can be found in polynomial time. In particular, there exist TSP neighborhoods of
size 20(n10gn) (29(n)) where the best tour can be found in time O(n?) (O(n)). These
neighborhoods are discussed in [AhErOrPu02], [DeWo00], and [GuYeZv02-b].

COMPUTATIONAL NOTE: While having seemingly strong theoretical properties, TSP
exponential-neighborhood, local-search algorithms have not shown strong computation
properties so far. Perhaps, this is due to the fact that it is not the size of the neighbor-
hood that matters, but the total number of tours of TSP that are worse than the best
tour in the neighborhood. This may explain why computational experiments show that
some exponential-neighborhood, local-search heuristics are worse than the (seemingly
much weaker) 3-opt.

4.6.5 The Generalized TSP

The Generalized TSP has numerous applications and is one of the most studied
extensions of TSP [FiSaTo02].

DEFINITIONS

D18: The Generalized Asymmetric Traveling Salesman Problem (GATSP):

“
Given a weighted complete digraph K, and a partition Vi,..., Vj of its vertices, find
a minimum-weight cycle containing exactly one (at least one) vertex from each set V;,

1=1,... k.

D19: The sets V; are called clusters, and a cycle containing exactly one (at least one)
vertex from each cluster is called a tour.

D20: The Generalized Symmetric Traveling Salesman Problem (GSTSP) is

“
formulated similarly with K, replaced by K.

REMARK

R7: Observe that the requirements ‘at least one’ and ‘exactly one’ in GATSP and
GSTSP coincide when the triangle inequality holds. The ‘exactly one’ versions of
GATSP and GSTSP have received the most attention in the literature, and only these
versions are discussed here.



Transforming Generalized TSP to TSP

One of the ways to solve instances of the Generalized TSP is to transform them into
TSP instances. The most efficient transformations from GATSP to ATSP and from
GSTSP to STSP appear to be the ones given in [NoBe93] and [LaSe99], respectively.

FACTS

F19: In the transformation of [NoBe93], from GATSP into ATSP, the number of
vertices remains the same. Weights are modified so that an optimal ATSP tour must
visit all the vertices that belong to the same cluster in the original problem before
moving on to the next cluster. This is achieved by adding a large positive constant M
to the weight of each inter-cluster arc. If the constant is large enough, an optimal tour
will contain exactly & such heavy arcs, thus ensuring that no cluster is visited more
than once.

F20: Inthe transformation of [LaSe99], from a GSTSP instance into an STSP instance,
we first add a sufficiently large positive constant to every edge-weight, if needed, to
ensure that all edge-weights are nonnegative. Then we consider each cluster V; of
cardinality at least 2. For each vertex v; in such a cluster, we create a copy v;. In each
such cluster, we form a hamiltonian cycle C' = {vy,v],..., v, v}, v1) and assign weight
—M to every edge of the form v;v; and weight —2M to the rest of the edges in cycle
C, where M is any constant larger than the sum of n heaviest edges in the GSTSP
instance. The weights of the remaining edges within the clusters and between the
clusters are inherited from the corresponding weights of the GSTSP instance. Clearly,
an optimal tour 7" of the resulting STSP instance will use all edges of weight —2A/, all
but one of the (—M)-weight edges from each cluster of cardinality at least 2, and edges
between the clusters. By contracting every vertex v; and its copy v} in T, we obtain an
optimal tour of the GSTSP instance.

F21: TFor the transformations in [LaSe99] and [NoBe93], there is a bijection between
optimal tours in the original problem and those in the transformed one, making the
transformations suitable for exact algorithms.

Exact Algorithms

FACTS

F22: Computational experiments ([BeGuPeYeZv03] and [LaSe99]) have shown that
the transformations given in [NoBe93] and [LaSe99] can be used to solve to optimality
small to moderate instances of Generalized TSP. However, even small instances require
substantial computation because of the corresponding TSP instances’ very large positive
(negative) weights on some of its arcs (edges).

F23: A successful branch-and-cut algorithm for GSTSP is described and analyzed in
[FiSaTo02], and a Lagrangian-based approach for GATSP is given in [NoBe91].

The next result appears to be a major stumbling block for using a standard branch-

and-bound for ATSP adapted for GATSP.

F24: [GuYe03] Let D = (V, A) be a digraph and let V1, V5, ..., V) be a partition of V.
The problem of checking whether D has 1-regular subdigraph containing exactly one
vertex from each Vi, Va, ..., Vg is NP-complete even if |V;| < 2 for every i = 1,2, ... k.
(A digraph H is l-regular if the indegree and outdegree of every vertex in H equal 1.)



Approximate Algorithms

Although several TSP heuristics easily extend to the Generalized TSP, it seems better to
first transform a Generalized TSP instance into a TSP instance, and then use heuristics
on the TSP instance.

FACTS

F25: TFor the transformations in [LaSe99] and [NoBe93], not every tour in the trans-
formed problem corresponds to a tour in the original problem, making the transforma-
tions less suitable for approximate algorithms.

F26: Two other transformations, described in detail in [FiSaTo02] and [BeGuPeYe-
Zv03], are used in producing approximate (or exact) solutions. They apply to both
GATSP and GSTSP. The description below is for an instance of GATSP with & clusters,
Vl,vz, .. ,Vk;

TRANSFORMATION:
(1) Let G be a complete directed graph on k vertices, vy, ..., vk, such that the weight

“
of arc (v;,v;) in G equals some function ¢ of the weights of the arcs in K, from cluster
Vi to cluster V;. (In [FiSaTo02], the function ¢ is the minimum of these arc-weights,
and in [BeGuPeYeZv03], ¢ is the average weight.)

(2) Let {v;,, iy, . .., iy, Ui, ) be an approximate (or exact) solution for the ATSP instance

on (.

(3) Find a minimum-weight cycle C' having exactly one vertex from each cluster and
traversing the clusters in the order V;,, V; ., Vi, by solving shortest path problems
in |V1| acyclic digraphs.

271"

COMPUTATIONAL NOTE: Computational experiments for GATSP in [BeGuPeYeZv03]
indicate that the two different weight-functions ¢ produce solutions of comparable qual-
ity. However, theoretical analysis in [BeGuPeYeZv03] shows that the average-weight
function appears to have better worst-case performance than the minimum-weight one.

4.6.6 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) was introduced by Dantzig and Ramser
[DaRab9]. This problem (including its versions with additional constraints) seems to be
the most applicable of all generalizations of TSP. Vehicle routing is the generic name
given to a large family of problems involving the distribution of goods, information,
services or people. A particularly important special case of VRP is that of minimizing
the total distance traveled by a fleet of vehicles that deliver goods ordered by customers.
The vehicles are assumed to have equal capacity (), and their delivery tours start and
end at a central depot.

DEFINITIONS

D21: Given a weighted complete directed or undirected graph on vertices {0,1,... ,n},
a demand d; > 0 for : = 1,2,...,n, and two parameters ) and k, a CVRP tour is
a collection of k cycles C1,Cs, ..., Cg, which contain all the vertices, pairwise intersect
only in vertex 0, and satisfy >~ d; < @ foreach j=1,2,... k.

iev(c,)



D22: The Capacitated Vehicle Routing Problem (CVRP): Given a weighted
complete directed or undirected graph on n + 1 vertices, a demand d; > 0 for ¢ =
1,2,...,n, and two parameters, () and k, find a CVRP tour for which the total weight
of the cycles is minimum.

REMARKS

RS8: Often, practitioners and researchers consider additional complicating constraints:
the total weight of each cycle is limited, each customer (vertex) ¢ must be visited within
a prescribed time window, vehicles are allowed to have different capacities, routes of
different vehicles cannot cross, etc. [PoKaWa99].

R9: In most research papers, the symmetric CVRP (on K,41) is considered. Never-
theless, the asymmetric (i.e., ‘directed’) CVRP version is also of interest [Vi96].

Exact Algorithms

FACTS

F27: The most efficient exact algorithms for symmetric CVRP are those based on
branch-and-cut ([BIHo00], [NaRi01], [RaKoPuTr]).

F28: For the asymmetric version of CVRP it seems that the state-of-the-art exact
algorithms still use branch-and-bound [ToVi01,ToVi02].

F29: Since CVRP has aspects of both TSP and Bin Packing, set-covering methods
can sometimes be applied to CVRP and its generalizations with great success [BrSi01].

COMPUTATIONAL NOTE: The exact algorithms appear to be less powerful for CVRP
than they are for TSP. Although they are able to solve some instances with 100 or more
vertices, the exact algorithms were unable to solve an instance of symmetric CVRP
with as few as 51 vertices [RaKKoPuTr, ToVi02]. Often, practical versions of CVRP have
various complicating constraints that cannot be tackled by exact algorithms. Thus,
heuristics are of great importance for CVRP.

Heuristics for CVRP

CVRP heuristics fall roughly into two categories: those that produce a CVRP tour
relatively quickly; and those that try to produce a near-optimal solution, using a sub-
stantial amount of computing if necessary. The latter kind are mostly metaheuristic-
based algorithms. Tabu search seems to provide a good tradeoff between the quality
of solution and running time ([ErOrSt], [GeLaPo01], [Ta93], [ToVi98]). Fast CVRP
heuristics are of great importance, supplying quick and flexible solutions, good starting
tours for metaheurisic-based algorithms, and upper bounds for exact algorithms. We
close this section with brief descriptions of three classes of fast CVRP heuristics: savings
heuristics, insertion heuristics, and two-phase heuristics.

REMARK

R10: The descriptions that follow are for the asymmetric CVRP, but they also apply
to the symmetric CVRP with ‘digraph’ replaced by ‘graph’ and ‘arc’ replaced by ‘edge’.



Savings Heuristics

The Clarke-Wright savings heuristic is perhaps the earliest [CIWr64] and best known
heuristic for the VRP. Here, we describe a generic savings heuristic, whose concrete

implementations may be found in [AlGa91], [CIWr64], and [LaSe01].

NOTATION: (a) For a vertex subset S, t(S) denotes (an approximation of) the weight of
an optimal TSP tour of the induced subdigraph on S.

(b) The total demand of a vertex subset S is d(S) = > d;.
i€S

DEFINITIONS

D23: A merge of cycles C and Cy, denoted merge(Ch, Cs), is a cycle whose vertex
set equals V(C1) U V(C2). The resulting cycle is determined by some prescribed rule.
Cycles C7 and C5 can be merged only if the total demand of their vertices does not
exceed capacity @ (i.e., d(V(C1) UV (C2)) < Q).

D24: Given cycles C; and Cy, the saving of merge(Cy, Cs), denoted s(Cq,Cy), is
given by s(C1,C2) = t(V(C1)) + 1V (C2)) —t(V(C1) UV (CY)).

D25: Let R = C1,C5, ...,y be a collection of m cycles of K’n whose pairwise 1n-
tersections are vertex 0. The savings digraph, D(R), is the weighted digraph on m
vertices, labeled C1,Cy, ..., Cp, such that arc (C;, Cj) exists if d(V(C1) UV (Cy)) < @,
and the weight assigned to arc (C;, C;) is the saving s(Cj, Cj).

REMARKS

R11: 1In the Clarke-Wright savings algorithm ([CIWr64],[LaSe01]), the weight of cycle
C'is used as an estimate of {(V(C)). To obtain the exact value of ¢{(V(C)), one would
have to solve a TSP on the induced subdigraph on V(C'), which may be too costly
computationally.

R12: Thesimplest way to merge cycles C] and C'; is the one used in the Clarke-Wright
algorithm. If (¢,0) is the arc in € that enters vertex 0, and (0, j) is the arc in C that
leaves vertex 0, then these two arcs are deleted and arc (7, ) is added to complete the
new cycle. (See Figure 4.6.6.)

i j
A
4]

Figure 4.6.6 A Clarke-Wright merge of cycles € and Cs.

merge (C1 , CZ)

REMARKS

R13: The easiest way to construct M is to simply choose a pair (Cy, Cp) with max-
imum saving s(Cy, C) as the only arc in M. In some versions in which cycle-merging
occurs in parallel, M is built in a greedy manner [LaSe01].



Algorithm 4.6.5: Savings Heuristic (SH)

Input: distance matrix [d;;], demands d;, i =1,...,n,
capacity ), and number of vehicles k.

Output: CVRP tour R={C1,...,Cs}.

Initialize cycle count m = n and cycles C; = (0,4,0),i=1,...,m.
Initialize R = {C1,...,Cn}.
While m > k

Construct savings digraph D(R).
Construct a matching M in D(R) with |[M| < m — k.

For each arc (C;, C;) in M,
R = (R—-{C;,C;}) U merge(Cy, Cy)

m:=m-—1

R14: Often, after R is produced by algorithm SH, each of the cycles in R is improved
by some TSP improvement heuristic (see Section 4.6.4). For example, in [LaSe01], a
CVRP tour found by the Clarke-Wright algorithm is improved by applying the best
improvement 3-opt to each of its cycles.

Insertion Heuristics

In CVRP iteration algorithms [LaSe01], we start from k cycles of the form C,, = (0, 4,, 0).
The vertices outside of the cycles are inserted one by one in sequential or parallel manner.
The word ‘parallel” here means that a vertex is inserted in one of the current cycles C),
for which the insertion i1s most beneficial. In the sequential mode, we start constructing
a new cycle only when the previous one cannot be increased because of the capacity
constraints. The cost of insertion of a vertex ¢ into a current cycle C}, can be measured

by t(V(C) U {i}) = t(V(C)).
REMARKS

R15: An example of such an algorithm is the Christofides-Mingozzi-Toth insertion
heuristic [ChMiTo79].

R16: Fisher and Jaikumar [FiJa81] suggested inserting all vertices at the same time.
They apply the Generalized Assignment Problem to find ‘optimal’ insertions that do
not violate the capacity constraints.

Two-phase Heuristics

The basic idea of two-phase heuristics is to partition vertices {1,2,...,n} into k clusters
Vi,..., Vi and solve TSP for each of the graphs induced by V; U {0}, i = 1,2,... k.
Wren and Holliday [WrHo72] suggested a sweeping technique for the Euclidean CVRP,
in which the depot 0 and vertices ¢, 1 < ¢ < n are points on the Euclidean plane, and
d;; is the Euclidean distance between ¢ and j.

We introduce a polar coordinate system, in which one of the n vertices, say i, is chosen
as the reference point, with polar coordinates (0,dp;). Then every vertex j # ¢ has
coordinates (¢;,do;), where ¢; is the angle between the rays from 0 to ¢ and from 0 to
j. The sweeping algorithm in its simplest form is as follows.



Algorithm 4.6.6: Sweeping Heuristic

Input: distance matrix [d;;], polar angles ¢; for 1 <i < n,
demands d;, 1 = 1, ..., n, capacity (), and number of vehicles &.

Output: CVRP tour consisting of cycles C;, j=1,..., k.

Sort the vertices iy,13,...,4, such that ¢;, < ¢;,,,,s=1,...,n—1.
Initialize S; =0, j=1,... k.
Set 7 =1.
Fors=1,...,n

Ifd(S; U{is}) > Q

J=j+1

S; =55 U {is}
Forj=1,...,k

Let C; be a TSP tour for the subgraph induced on S; U {0}.

REMARK

R17: An extension of this approach to the general CVRP is described in [BrSi95].
Another example of a two-phase heuristic is a truncated branch-and-bound provided in

[CHMiToT79].
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Introduction

Continuing the study of connectivity, initiated in §4.1 of the Handbook, we survey
here some (sufficient) conditions under which a graph or digraph has a given connectivity
or edge-connectivity. First, we describe results concerning maximal (vertex- or edge-)
connectivity. Next, we deal with conditions for having (usually lower) bounds for the
connectivity parameters. Finally, some other general connectivity measures, such as one
instance of the so-called “conditional connectivity”, are considered.

For unexplained terminology concerning connectivity, see §4.1.

4.7.1 High Connectivity

Since connectivity has to do with “connection”, intuitively we can expect to find
high connectivity when the “edge density” is large. Different situations in which this
seems to be the case are:

(a) Vertices with high degrees.

(b) Small diameter (for given girth).

(c) Small number of vertices (for given degree and girth).

(d) Large number of vertices (for given degree and diameter).

The results in this subsection give several conditions of the above types, under
which maximum vertex- or edge-connectivity is attained.

Minimum Degree and Diameter

NOTATION: Let G = (V| E) be a graph with order n, minimum degree §, edge-connect-
ivity A, and (vertex-)connectivity x. In some other sections of the Handbook, the
notation §pmin, dmasz, ke, and k, are used instead of d, A, A, and «, respectively.

DEFINITIONS

D1: The girth of a graph with a cycle is the length of its shortest cycle. An acyclic
graph has infinite girth.



D2: The diameter of graph G is ma)é{distg(u, v)}.
U,V e
D3: The clique number of a graph G, denoted w(G), is the maximum number of
vertices in a complete subgraph of G
D4: A (di)graph G is p-partite if its vertex-set can be partitioned into p independent
(or stable) sets.
FACTS
F1: [Ch66]If § > |n/2], then the edge-connectivity A equals the minimum degree §.

F2: [Le74] If for any non-adjacent vertices u and v, deg(u) + deg(v) > n — 1, then
A=4.

F3: [PI75]If G is a graph with diameter D = 2, then A = 4.

F4: [Vo88] If (i is bipartite and 6 > [n/4] + 1, then A = 4.

F5: [Vo89] If G is p-partite (p > 2) and n < 2{%& — 1, then A = 4.

F6: [ToVo93] If G is p-partite (p > 2) and § > n gg—:i’, then x = 6.

F7: [DaVo95] If G has clique number w < p and n < 2{%& — 1, then A =§.
REMARKS

R1: Asis easily shown, Fact 3 = Fact 2 = Fact 1.

R2: Fact 4 is a slight improvement of Fact 5 for p = 2.

R3: In addition to Fact 7, the authors in [DaVo95] gave other sufficient conditions for
equality of edge-connectivity and minimum degree of graphs, which mostly generalize
conditions in [P1Zn89].

Degree Sequence

NOTATION: For the next group of results, G is an n-vertex graph with degree sequence
di >dy> - >d, =4. For a vertex u, N(u) denotes the set of vertices adjacent to u.

FACTS

F8: [GoWhT78] If the vertex set of G can be partitioned into [n/2] pairs of vertices
(u;,v;) (and, if n is odd, one “unpaired” vertex w) such that deg(u;) + deg(v;) > n,
i=1,2,...,|n/2], then the edge-connectivity A = 6.

F9: [GoEnT79] If each vertex u of minimum degree satisfies
|n/2|? — [n/2|, foreven n orodd n <15
Z deg(v) >
VEN (u) [n/2|? -1, for odd n > 15
then A = 4.

F10: [Bo79] Let GG be a graph with order n > 2. If its degree sequence dy > dy >
-+ >d, = d satisfies Zle(di‘i'dn—i) > kn—1for all k with 1 < k < min{|n/2]-1,4d},
then A = 4.



F11: [DaVo97]Ifé > |n/2] orif § < [n/2]—1and S0 (di+dnyis_1) > k(n—2) +
26 — 1 for some k with 1 < k <, then A = 4.

F12: [Vo03] Suppose that G has order n > 6 with clique number w < p. Let v = 1
when n is even and v = 0 when n is odd. If § > |n/2| orif 6 < [n/2] — 1 and

§+1 —1n v 5 -
Sty dnga—i > (0 + 1) 2 then A = 4.

REMARKS

R4: Note that Fact 8 implies Fact 1 only when n is even. Fact 9 also implies Fact 1.
Moreover, as shown by the examples in [P1Zn89], Fact 9 is independent of Fact 2 and
Fact 3.

R5: Fact 10 implies Fact 1 when n is even, but in general, as shown in [P1Zn89], it is
independent of Facts 1, 2, 3, and 9.

R6: Fact 11 is even valid for digraphs, and a theorem of Xu [Xu94] follows easily (see
Fact 22). As easily shown, Fact 11 implies Fact 10.

R7: Fact 12 generalizes results in [Vo88], [Vo89], as well as Fact 7. Furthermore,
as shown in [HeVo03b], the conditions in Fact 12 also guarantee maximum local edge-
connectivity for all pairs u and v of vertices in G; that is, A(u—v) = min{deg(u), deg(v)}.

Distance

DEFINITIONS

D5: The distance distg(Uy,Us) between two given subsets Uy, Us C V(@) is the
minimum of the distances distg(u1,us) for all vertices u; € Uy and us € Us. (When
there is no ambiguity, we omit the subscript G.)

D6: The line graph LG of a graph G has vertices representing the edges of G, and
two vertices are adjacent if and only if the corresponding edges are adjacent (that is,
they have one endpoint in common).

FACTS

F13: Let ujv; and usvs be edges in a graph G, and let U; = {u;,v;}, 1 = 1,2
Then, the distance between the corresponding vertices of LG satisfies dpg(uiv1, usvs) =

dg(Ur,Us) + 1 and thus, the diameters of LG and G satisfy D(LG) < D(G) + 1.

F14: [PlZn89] Let G be a connected graph such that every pair of vertex subsets
Uy, Us of cardinality two satisfies dist(Uy, Us) < 2. Then G is maximally edge-connected
(A=9).

F15: [BaCaFaFi96] Let GG be a graph with minimum degree ¢ and line graph LG.
Then,

(a) If LG has diameter at most three, then G is maximally edge-connected (A = §).
(b) If LG has diameter two, then G is maximally connected (x = d).



REMARKS

R8: The sufficient condition given in Fact 14 relaxes slightly the one given in Fact 3.
Furthermore, it suffices to require such a condition on the 2-element subsets that are
the endpoints of some edge, as shown in Fact 15(a).

R9: From the above remark, Fact 15(a) generalizes both Fact 14 and Fact 3 (Plesnik’s
result).

Super Edge-Connectivity

Here we consider a stronger measure of edge-connectivity.

DEFINITION

D7: A maximally edge-connected graph is super-A if every minimum edge-discon-
necting set is trivial; that is, consists of the edges incident on a vertex of minimum
degree.

EXAMPLE

E1l: Figure 4.7.1 shows a 3-regular maximally edge-connected graph that is not super-
A. The set {e, f,¢} is a non-trivial minimum edge-disconnecting set.

Figure 4.7.1 ( is maximally edge-connected but not super-A.

FACTS

F16: [Le74] Let G # K, /5 x Ko. If for any non-adjacent vertices u and v, deg(u) +
deg(v) > n, then G is super-A.

F17: If for any non-adjacent vertices u and v, deg(u) + deg(v) > n+ 1, then G is
super-A.

F18: [Ke72]If§ > [n/2] + 1, then G is super-A.

F19: [Fi92]If G has diameter two and contains no complete subgraph H on § vertices
with degg(v) = § for all v € V(H), then G is super-A.

F20: [S092] Let G be a graph with maximum degree A. If n > 26 + A — 1, then G is
super-A.
REMARKS

R10: Facts 17 and 18, which are analogues of Facts 2 and 1, are direct consequences
of Fact 16.



R11: Fact 19 can be seen as a refinement of Fact 3 (where only the diameter condition
is required) and has Fact 20 as a corollary.

Digraphs
As mentioned in §4.1, since the connectivity parameters of a graph G equal those of its

“
symmetric digraph G (obtained by replacing each edge of G by a digon), many of the
previous results can be generalized to the directed case.

DEFINITIONS

D8: The vertex-connectivity of a digraph (G, denoted x((), is the minimum size of
a vertex subset whose deletion results in a non-strongly connected digraph.

D9: The edge-connectivity of a digraph G, denoted A(G), is the minimum size of
an edge subset whose deletion results in a non-strongly connected digraph.

NOTATION: (a) For a vertex u € V(G), deg™’(u) denotes the out-degree, the number
of vertices adjacent from vertex wu, and deg™(u) denotes the in-degree, the number of
vertices adjacent to vertex u; §(u) = min{deg™ (u),deg™ (u)}.

(b) 0%t = minyev{degt(u)} and 6~ = min,ev{deg™ (u)}.

(c) = mingey 6(u) = min{d*,§}.

Similar notations with A stand for maximum degrees.

NOTATION: For vertices u,v € V(G), A(u — v) denotes the maximum number edge-
disjoint u-v directed paths.

FACTS
F21: [Jo72] If G is a digraph with diameter D = 2, then A = 4.

F22: [Xu94] Let GG be a digraph of order n. If there are [n/2] pairs of (different)
vertices (u;, ;) such that §(u;) +8(v;) > n,i=1,2,...,[n/2], then A =4.

F23: [HeVo03b] Let G be a digraph with diameter at most two. Then, A(u—v) =
min{deg™ (u),deg™ (v)} for all pairs u and v of vertices in G.

F24: [HeVo03a] Let GG be a strongly connected digraph with edge-connectivity A and
minimum degree J. If for all maximal pairs of vertex sets X and Y at distance 3 there
exists an isolated vertex in the induced subgraph on X UY' then A = 4.

F25: [HeVo03b] Let G be a p-partite digraph of order n and minimum degree § with
p>2.1tn<2[(pd)/(p—1)| — 1, then A(u—v) = min{deg™ (u), deg™ (v)} for all pairs u
and v of vertices in G.

F26: [HeVo03b] Let G be a bipartite digraph of order n and minimum degree § > 2
with the bipartition V' U V", If deg(x) 4+ deg(y) > (n+ 1)/2 for each pair of vertices
z,y € V' and each pair of vertices z,y € V| then A(u—v) = min{deg* (u),deg™(v)}
for all pairs v and v of vertices in .

REMARKS

R12: Notice that Plesnik’s result (Fact 3) is, in fact, a consequence of the older result
of Jolivet (Fact 21). Similarly, Fact 22 generalizes Fact 8.



R13: Fact 22 was improved by Dankelmann and Volkmann in two subsequent papers
[DaVo97,DaVo00], where the bipartite case was also considered.

R14: A restatement of Fact 23 states that a digraph with diameter two has maximum
local edge-connectivity. Moreover, this obviously implies Jolivet’s result (Fact 21) and
the corresponding local connectivity result for undirected graphs, proved in [FrOeSw00].

R15: A consequence of Fact 24 is the directed version of Fact 14.

Oriented Graphs

DEFINITIONS

D10: A digraph is super-X if every minimum edge-disconnecting set consists of the
edges directed to or from a vertex with minimum degree. A digraph is super-« if every
minimum disconnecting set consists of the vertices adjacent to or from a vertex with
minimum degree.

D11: An oriented graph G (also called an antisymmetric digraph) is a digraph
such that between any two vertices u, v, there is at most one (directed) edge ((u,v) or

(v,u)).

EXAMPLE

E2: Figure 4.7.2 shows a 2-regular maximally connected digraph G that is not super-x.
If ' = {#,y}, then G — F is not strongly connected (for instance, there is no [directed]
path in G — F from u to v) and F is non-trivial (it does not consist of the vertices
adjacent to or from a vertex with minimum degree).

Figure 4.7.2 ( is maximally connected but not super-«.

FACTS

F27: [AyFr70] Let G be an oriented graph with n vertices and minimum degree §. If
d > |(n+2)/4], then A =4.

F28: [Fi92]If G is an oriented graph with n vertices and minimum degree § > |n/4]+
1, then G is super-A.

F29: [Fi92] If G is an oriented graph with diameter two, then G is super-A.



REMARKS

R16: Facts 27 and 28 are analogues of Fact 1, whereas Fact 29, similar to Fact 21, is
a consequence of Fact 19.

R17: 1In fact, the sufficient conditions given in [AyFr70] and [Fi92] (Facts 27 and 28)
were dt + 67 > |n/2] and 6T + 0~ > [n/2] + 1, respectively. Furthermore, it is easily
shown that Facts 28 and 29 do not imply each other.

R18: Higher connectivity in tournaments, which are oriented complete graphs, is dis-

cussed in §3.3 of the Handbook.

Semigirth

To generalize Jolivet’s result (Fact 21) and give new results on superconnectivity, it is
relevant to consider a new parameter related to the path structure of the digraph. In
our context, this parameter plays a role similar (and is tightly related) to the girth of a
graph.

DEFINITIONS

D12: [FaFi89,FiFaEs90] For a given digraph G = (V, E) with diameter D, the semi-
girth, denoted £((), is the greatest integer £ between 1 and D such that for any u,v € V,

(a) if dist(u,v) < £, the shortest u-v directed walk is unique and there are no wu-v
directed walks of length dist(u,v) + 1.

(b) if dist(u,v) = ¢, there is only one shortest u-v directed walk.

D13: A digraph G is a generalized p-cycle when it has its vertex set partitioned in
p parts cyclically ordered, and vertices in one part are adjacent only to vertices in the
next part. Thus, a generalized 2-cycle is the same as a bipartite digraph.

EXAMPLE

E3: Figure 4.7.3 shows a 2-regular digraph for which the semigirth £ is equal to its
diameter, namely, { = D = 3.

Figure 4.7.3 Semigirth /=D = 3.



FACTS

F30: [FaFi89] Let GG be a digraph with minimum degree § > 1, diameter D, semigirth
£, and connectivities k and A.

(a) If D <24, then A = 4.
(b) If D < 2¢ —1, then G is super-A and « = 4.
(c) If D < 2¢—2, then G is super-«.

F31: [FaFi96a,PeBaGo01] Let GG be a generalized p-cycle (p > 2).
(a) f D <204+ p—1,then A =94.

(b) If D < 2¢+p— 2, then G is super-A and & = 4.

(c) It D <20+ p— 3, then G is super-«.

F32: Any bipartite digraph with diameter three is maximally edge-connected.

REMARKS

R19: The main idea in the proof of the results in Fact 30 is that semigirth £ measures
how far away one can move from or to a given subset F' of vertices. For instance, in
proving (a), it is shown that if |F'| < §, in any connected component of GG — F there are
vertices u, v such that dist(u, F'), dist(F,v) > {. Hence, any shortest path of length at
most 2¢ — 1 cannot contain a vertex of F'. As a conclusion, F' cannot be a disconnecting
set.

R20: Since any digraph G has semigirth £ > 1, Fact 21 is included in Fact 30(a).

R21: Fact 32 is the analogue for bipartite digraphs of Jolivet’s result (Fact 21). In
fact, for a bipartite (di)graph, the condition & > |n/4]| + 1 implies D < 3, so that Fact
32 can be also seen as a generalization of Fact 4.

Line Digraphs
DEFINITION

D14: The line digraph LG of a digraph G, denoted LG, has V(LG) = E(G), and a
vertex (u,v) is adjacent to a vertex (w,z) if v = w (that is, the head of edge (u,v) is
the tail of edge (w,2) in digraph G). The k-iterated line digraph, L*G, is defined
recursively by LFG = LLF~1G.

FACTS

F33: The order of LG equals the size of G, |V(LG)| = |E(G)], and their minimum
degrees coincide, §(LG) = §(G) = §. Moreover, k(LG) = A(G).

F34: If G is d-regular, d > 1, has order n, diameter D and semigirth £, then L*G is
also d-regular, has d*n vertices, diameter D(L*G) = D(G) + k and semigirth ¢(L*G) =
£(G) + k. See the papers [Ai67],[FaFi89],[FiYeAl84],[ReKuHoLe82].



F35: [FaFi89] Let ¢ be a digraph with minimum degree § > 1, diameter D and
semigirth £.

(a) If k > D — 2¢, then L*(() is maximally edge-connected.
(b) If k> D —2{+ 1, then L*(G) is super-\ and maximally connected.
(c) If k> D —2¢+ 2, then L*(G) is super-«.

REMARK

R22: As shown in Fact 35, the interest of considering k-iterated line digraphs stems
from the fact that if & is large enough, Fact 34 guarantees that the conditions of Fact
30 hold.

Girth

For a given girth, high density/connectivity graphs occur when they have a reduced
diameter, and also when they have a small number of vertices.

DEFINITION
D15: The same definition for the semigirth (Definition 12) applies for an undirected

graph G (considering undirected walks). In this case, it turns out that the semigirth

“

£ =1L(G) = {(G) equals [(g — 1)/2] where ¢ = g(G) stands for the girth of G.

FACTS

F36: [SoNalm85,SoNalmPe87,FaFi89] Let G be a graph with minimum degree § > 1,
diameter D, girth g, and connectivities x and A.

(a) Ing{g_l’ g odd, then A = 4.
g—2, g even,

(b)y f DL {g —2, godd, then G is super-A and k = 4.
g—3, g even,

(c) DL {g —3, godd, then G is super-£.
g—4, g even,

F37: [BaCaFaFi96,CaFa99] Let G be a graph with minimum degree § > 1, girth g,
and connectivities x and A. Let LG be the line graph of G, with diameter D(LG).
Then,

(a) If D(LG) < {g’ godd, i a =4
g—1, g even,

(b) If D(LG) < {Z : ;’ z Z\C}i{ then G is super-A and k = 4.
g—2, g odd, .

(c) If D(LG) < {g — 9 g even, then GG is super-«.

F38: [FaFi96a] Any bipartite graph with diameter three is maximally edge-connected.

REMARKS

R23: Fact 36 is a simple consequence of Definition 15 and Fact 30.



R24: Fact 38 is the undirected version of Fact 32, which can be seen as Plesnik’s
analogue for the bipartite case.

Cages

DEFINITIONS

D16: A (k, g)-cageis a k-regular graph with girth ¢ having the least possible number
of vertices.

D17: A 3-connected graph G = (V| E) is said to be quasi 4-connected if for every
vertex-cut F' C V such that |F| = 3, F is the neighborhood of a vertex of degree 3 and
G — F has exactly two components.

EXAMPLE

E4: The Heawood graph, shown in Figure 4.7.4, is a (3, 6)-cage with order 14 and
diameter 3.

Figure 4.7.4 The Heawood graph.

FACTS

F39: [FuHuRo97,XuWaWa02] All (&, g)-cages are 2-connected and, for k < 4, every
(k, g)-cage is maximally connected.

F40: [DaRo099,JiMu98] Every (k, g)-cage with k& > 3 is 3-connected.

F41: [MaBa037 MaPeBa02] Every (3, g)-cage is superconnected, edge-superconnected,
and quasi 4-connected.

F42: [MaBaPeFa03?] Every (k,g)-cage with k£ > 4 and g > 10 is 4-connected.

F43: [WaXuWa03] Every (k,g)-cage with k¥ > 3 and odd girth g is maximally edge-
connected.

F44: [MaBa037] Every (k, g)-cage with £ > 3 and odd girth g is super-A.

F45: [MaBaPe037] (k,6)- and (k, 8)-cages are maximally connected.

CONJECTURE
[FuHuR097] Every (k, g)-cage is maximally connected.



Large Digraphs
The following results support the intuitive idea that dense (di)graphs have high con-
nectedness.

DEFINITION

D18: For a digraph with maximum degree A and diameter D, the Moore bound,
denoted n(A, D), is given by n(A, D) = 1+ A+ A2+ ... + AP,

FACTS
F46: An n-vertex digraph with maximum degree A and diameter D has n < n(A, D).

F47: [Wa67] The order of a (di)graph with connectivity & > 1 and diameter D satisfies
n>k(D—1)+2.

F48: [ImSoOk85]
(a) A< d, then n < A-[n(A,D—-2)+ A+1].
(b) If k < d, then n < & -[n(A, D—1)+ Al

F49:
(a) Ifn > (6 — 1)[n(A, D—2)+ A+ 1], then A =94.
(b) fn> (6 —1)[n(A,D—1)+ A], then x = 4.

F50: [Fi93]
(a) A< d, then n < A-[n(A,D—2)+ 1]+ A.
(b)y f k< d,then n < s -[n(A,D—=1)—1]+ A+ 1.

F51: [Fi93] Let G be d-regular.
(a) fn>dP~1 4+ 2d— 2, then A = d.
(b) If n > dP + 1, then x = d.

F52: [S092,Fi94] Let G be a d-regular digraph, d > 2.

3d, D=2 .
(a) Ifn>{QdD_1+dD_2+~~~—|—d2—|—2d D> 3 then G is super-A.

3d2 41, D=3, .
(b) Ifn>{QdD_l—|—dD_2—|—~~~—|—d3—|—2d2—|—1, D>4 then (G is super-«.

EXAMPLE

E5: Figure 4.7.5 shows a regular digraph for whichn =6, A=Jd=d=2 and D = 2.
Since n > dP~' 4+ 2d — 2 and n > d” + 1, Fact 51 guarantees that it is maximally
connected (k = A = d).



Figure 4.7.5 k=A=d=2.

REMARKS

R25: To our knowledge, Fact 47, due to Watkins, was the first result in which the
order n, the diameter D and the connectivity x were related (in the undirected case).
It follows easily from counting the minimum number of vertices involved in « internally
disjoint u-v paths between a pair of vertices u, v at distance D, as Menger’s theorem
guarantees.

R26: A similar reasoning gives a lower bound for the number of edges m of a (di)graph
with edge-connectivity A, namely, m > AD. However, it is not difficult to realize that
this is not a very strong result. (The situation seems to depend heavily on the values
of A and D: for A = 3 there are constructions giving a lower bound of the order of %D,
whereas for A = 4 we have a bound which is “asymptotically optimal”, that is, of the
order of 4D.)

R27: If we take into account the connectivity parameters x or A, the Moore bound
can be refined. Intuitively, a disconnecting set with few vertices or edges is a kind of
“bottleneck” that prevents the order from being large, as shown in Fact 48 (reformulated
as Fact 49) and Fact 50.

R28: Fact 50 is an improvement of Fact 48. Notice that if we set x = A in the upper
bound on n of Fact 50(b), we obtain the Moore bound n(A, D).

Large Graphs
Similar results for graphs were derived independently by Esfahanian [Es85], Soneoka et

al. [SoNaImPe87], [S092], and [Fi93], [Fi94].

DEFINITION

D19: The Moore bound for an undirected graph with maximum degree A and di-
ameter D is given by n(A, D) = 1+ A+ AA—-1)+ -+ A(A-1)P-L.

FACTS

F53: [SoNalmPe87]
(a) fn>@0—1)n(A=1,D=2)+ 1]+ A —1, then A =4.
(b) Ifn> (6§ —1)(A—1)P~1 4+ 2 then x = 6.



F54: [S092,Fi94]
(a) Let D>2and 6 > 2. Ifn>8-[n(A—-1,D—2)+ 1]+ (A - 1)P~1 then G is

super-A.

(b) Let D>3,0 >3and ¢ >5. If n> (6§ — 1)[n(A,D— 1)+ A], then k = 6.

4.7.2 Bounded Connectivity

The techniques used for proving the results of the preceding subsection can often
be used to derive bounds on the connectivity or edge-connectivity of a (di)graph. In
this subsection, we provide some examples.

m-Semigirth
The following definition generalizes semigirth (Definition 12).

DEFINITION

D20: [FaFi89] Let G = (V, E) be a digraph with minimum degree ¢ and diameter D,
and let m be an integer, 0 < m < § — 2. The w-semigirth of GG, denoted ¢, (), is the
greatest integer £ between 1 and D such that, for any v,v € V,

(a) if dist(u,v) < £y, the shortest u-v path is unique and there are at most 7 distinct
u-v walks of length dist(u,v) + 1.

(b) if dist(u,v) = £y, there is only one shortest u-v walk.

FACT

F55: [FaFi89] Let G be a connected digraph with minimum degree § > 1, diameter
D, m-semigirth ¢, for 0 < 7 < § — 2, and with k-iterated line digraph L*G. Then,

(a) If D <20, then A >d — .

(b) f D <20r — 1, then k > § — 7.

(c) If k> D — 20, then A(L*G) > 6§ — .

(d) If k> D — 24, + 1, then (L*G) > § — .

REMARKS

R29: Note that £y corresponds to the or